

VISUAL STUDIO® 2010 AND .NET 4

SIX-IN-ONE

INTRODUCTION . xxxiii

 PART I VISUAL STUDIO

CHAPTER 1 History of Visual Studio . 3

CHAPTER 2 Visual Studio UI Enhancements . 15

CHAPTER 3 Visual Studio Code Snippets .31

CHAPTER 4 Visual Studio Templates . 65

CHAPTER 5 Getting the Most Out of the IDE . 127

CHAPTER 6 Visual Studio Extensibility . 201

PART II .NET 4

CHAPTER 7 .NET Framework Version History . 279

CHAPTER 8 Modern UI Frameworks (WPF and Silverlight) . 297

CHAPTER 9 Windows Communication Foundation (WCF) . 375

CHAPTER 10 Enhancements to the .NET Core Framework . 399

CHAPTER 11 Enhancements to the .NET Workfl ow Framework 489

CHAPTER 12 Enhancements to the .NET Data Framework . 563

CHAPTER 13 Enhancements to the .NET Communication Framework 581

CHAPTER 14 .NET Charting Components . 593

PART III ASP.NET 4.0

CHAPTER 15 ASP.NET Version History . 653

CHAPTER 16 ASP.NET Charting Controls . 669

CHAPTER 17 ASP.NET Dynamic Data . 711

CHAPTER 18 ASP.NET Model View Controller (MVC) .751

CHAPTER 19 ASP.NET Ajax Improvements . 837

CHAPTER 20 ASP.NET Ajax Control Toolkit and jQuery . 893

�

�

�

ffirs.indd iffirs.indd i 9/6/10 7:21:25 PM9/6/10 7:21:25 PM

PART IV VB.NET

CHAPTER 21 History of Visual Basic . 981

CHAPTER 22 Visual Basic 10.0 Language Improvements . 1007

PART V C#

CHAPTER 23 History of C# .1041

CHAPTER 24 C# 4.0 Language Improvements . 1065

PART VI F#

CHAPTER 25 Visual F# and the Other .NET Languages .1103

INDEX . 1173

�

�

�

ffirs.indd iiffirs.indd ii 9/6/10 7:21:26 PM9/6/10 7:21:26 PM

Visual Studio® 2010 and .NET 4

SIX-IN-ONE

ffirs.indd iiiffirs.indd iii 9/6/10 7:21:26 PM9/6/10 7:21:26 PM

ffirs.indd ivffirs.indd iv 9/6/10 7:21:26 PM9/6/10 7:21:26 PM

Visual Studio® 2010 and .NET 4

SIX-IN-ONE

István Novák
András Velvárt
Adam Granicz
György Balássy
Attila Hajdrik
Mitchel Sellers

Gastón C. Hillar
Ágnes Molnár
Joydip Kanjilal

ffirs.indd vffirs.indd v 9/6/10 7:21:26 PM9/6/10 7:21:26 PM

Visual Studio® 2010 and .NET 4 Six-in-One

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-49948-1

ISBN: 978-1-118-00113-4 (ebk)

ISBN: 978-1-118-00295-7 (ebk)

ISBN: 978-1-118-00298-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010924589

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Visual Studio is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 9/6/10 7:21:27 PM9/6/10 7:21:27 PM

 To Henriett, Eszter and Reka, who supported me in

writing this book with their love and appreciation.

 — Istv á n Nov á k

 To Á gi, always.

 — Gy ö rgy Bal á ssy

 First and foremost, I would like to thank my

daughter, Patr í cia Csenge, for always making me

smile and for understanding while I was writing this

book instead of playing with her on weekends. She

is my everything, and I dedicate this book to her.

I also thank my wife, Eszter, for standing beside me

throughout my career and while
I was writing this book.

 — Attila Hajdrik

 To my son, Kevin, and my nephew, Nicolas.

 — Gast ó n C. Hillar

ffirs.indd viiffirs.indd vii 9/6/10 7:21:27 PM9/6/10 7:21:27 PM

ffirs.indd viiiffirs.indd viii 9/6/10 7:21:27 PM9/6/10 7:21:27 PM

 ABOUT THE AUTHORS

 ISTV Á N NOV Á K is an associate of Grepton, a Hungarian IT services company.
He works as a software architect and community evangelist. In the last 20 years, he
participated in more than 50 enterprise software development projects. In 2002,
he co - authored the fi rst Hungarian book about .NET development. In 2007, he was
awarded with the Microsoft Most Valuable Professional (MVP) title. He holds a
master ’ s degree from the Technical University of Budapest, Hungary, and also has

a doctoral degree in software technology. He lives in Dunakeszi, Hungary, with his wife and two
daughters. He is a passionate scuba diver. You may have a good chance of meeting him underwater
at the Red Sea in any season of the year.

 ANDR Á S VELV Á RT is a Silverlight MVP, with a passion for user experience. As an
accomplished speaker, he gives talks at numerous conferences where Windows
Presentation Foundation (WPF) or Silverlight is the topic. Chapter 8 of this book
feeds from his experience at teaching many Silverlight and WPF classes and work-
shops. He is also the owner of Response Ltd. (www.response.hu), a small consulting
and WPF/Silverlight development company in Hungary.

 ADAM GRANICZ is the CEO of IntelliFactory, a leading provider of F# training, development, and
consulting services, as well as technologies that enable rapid functional, reactive web development.
As one of the fi rst F# users, he is a key community member and an active F# evangelist. He has been
the co - author of two F# books with Don Syme, the designer of the language. He is a regular speaker
at developer conferences and various industry partner events.

 GY Ö RGY BAL Á SSY teaches web portal development as a lecturer at Budapest
University of Technology and Economics. He is a founding member of the local
MSDN Competence Centre (MSDNCC), having an important role in evangelizing the
.NET platform as a speaker, book author, and consultant. He provided leadership in
the foundation of the Hungarian .NET community as a key evangelist on Microsoft
events, technical forums, and as the head of the Portal Technology Group in the

MSDNCC. He is a regular speaker on academic and industrial events, presenting in - depth technical
sessions on .NET, ASP.NET, Offi ce development, and ethical hacking, for which he won the Best
Speaker and the Most Valuable Professional (MVP) Awards in SharePoint and ASP.NET multiple
times. He was selected to be the member of the ASPInsiders group. Since 2005, he has been the
Microsoft Regional Director in Hungary.

 ATTILA HAJDRIK has worked in the IT industry for more than 14 years. He is the founder and lead
architect of Eyedea Ltd., a small independent software vendor (ISV) specializing in Rich Internet
Application (RIA) development. Before founding his own company, he worked for 6 years at
Microsoft as an Application Development Consultant, and later as a Senior Consultant in Microsoft
Services. He specialized in .NET - based custom development projects. In 2004, He was awarded an

ffirs.indd ixffirs.indd ix 9/6/10 7:21:28 PM9/6/10 7:21:28 PM

ASP.NET Most Valuable Professional (MVP) title. He has experience with all .NET - related tech-
nologies from the back end to the front end. He is addicted to Doman Specifi c Languages, model -
 based development, and a big believer in design patterns. His favorite technologies are Silverlight,
Windows Presentation Foundation (WPF), and ASP.NET Model View Controller (MVC).

 MITCHEL SELLERS specializes in software development using Microsoft technologies.
He is the CEO of IowaComputerGurus Inc., a Microsoft C# MVP, a Microsoft
Certifi ed Professional, and experienced technical writer. He enjoys spending time
sharing information with the development community through books, blog postings,
and public speaking events. He is also an active participant in the DotNetNuke
development community. For more information on him, visit his website at
 http://www.mitchelsellers.com .

 GAST Ó N C. HILLAR has been working with computers since he was 8 years old.
He began programming with the legendary Texas Instruments TI - 99/4A and
Commodore 64 home computers in the early 1980s. He has worked as developer,
architect, and project manager for many companies in Buenos Aires, Argentina.
He is now an independent IT consultant working for several American, German,
Spanish, and Latin American companies, and a freelance author. He has written four

books in English, contributed chapters to two other books, and has written more than 40 books in
Spanish. He contributes to Dr. Dobb ’ s Go Parallel programming portal (http://www.ddj
.com/go - parallel/), Dr. Dobb ’ s (http://drdobbs.com), and is a guest blogger at Intel Software
Network (http://software.intel.com). He lives with his wife, Vanesa, and his son, Kevin.
When not tinkering with computers, he enjoys developing and playing with wireless virtual
reality devices and electronic toys with his father, his son, and his nephew, Nico. You can reach
him at gastonhillar@hotmail.com . You can follow him on Twitter at http://twitter.com/
gastonhillar . His blog is at http://csharpmulticore.blogspot.com .

 ÁGNES MOLNÁR has been working with Microsoft technologies and SharePoint since 2001. After
a few years of working as a developer and SharePoint expert, she founded a SharePoint consulting
company in Hungary, Central Europe. She ’ s been working as a senior consultant, and has led
SharePoint implementations at numerous Central European companies. Her main focus is on
architecture, governance, information and knowledge management, and enterprise search. She ’ s a
frequent speaker at conferences around the globe, and is also the co - author of various SharePoint
books.

 JOYDIP KANJILAL was awarded a Microsoft Most Valuable Professional (MVP) title in
ASP.NET in 2007, 2008, and 2009. He has more than 12 years of industry experience in IT, with
more than 6 years experience in Microsoft .NET and its related technologies. He was selected as
MSDN Featured Developer of the Fortnight (MSDN), and was also selected as Community Credit
Winner at www.community - credit.com several times. He has authored numerous books on
ASP - related topics.

ABOUT THE AUTHORS

x

ffirs.indd xffirs.indd x 9/6/10 7:21:28 PM9/6/10 7:21:28 PM

 ABOUT THE TECHNICAL EDITOR

 DOUG PARSONS is a software architect and the director of Ohio Operations for NJI New Media.
His expertise is in web development with a specialization in political websites. Most notably, he has
worked on the 2008 John McCain presidential campaign website and, more recently, Mitt Romney ’ s
offi cial book tour website. In his downtime, he enjoys spending time with his lovely fi anc é e, Marisa,
and their four puppies.

ffirs.indd xiffirs.indd xi 9/6/10 7:21:29 PM9/6/10 7:21:29 PM

ffirs.indd xiiffirs.indd xii 9/6/10 7:21:29 PM9/6/10 7:21:29 PM

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

Kevin Shafer

TECHNICAL EDITOR

Doug Parsons

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Christopher Jones

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

PROOFREADERS

Josh Chase, Word One New York

James Saturnio, Word One New York

INDEXER

J & J Indexing

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© Andreas Bauer/istockphoto.com

CREDITS

ffirs.indd xiiiffirs.indd xiii 9/6/10 7:21:29 PM9/6/10 7:21:29 PM

ffirs.indd xivffirs.indd xiv 9/6/10 7:21:29 PM9/6/10 7:21:29 PM

 ACKNOWLEDGMENTS

 THIS BOOK WOULD NOT BE SO CLEAR in its voice without the contribution of Kevin Shafer, who not
only fi xed our typos and grammar, but added a lot of value by improving our thoughts put down
to paper and ironed out our tangled sentences. Doug Parsons examined the technical content very
carefully, tried all the sample code we prepared, and gave us a lot of suggestions to improve the
understandability of examples. Without his thorough work, samples would contain many more bugs
and ambiguous code details.

 — Istv á n Nov á k

 I WOULD LIKE TO THANK my wife and family for their support, and coping with the long hours and
nights of writing. A special thank you goes to my friend, István Novák, who got me to write the
Modern UI Frameworks chapter, and kept the project alive even if it meant that he had to write
more than half of the book — a lot more than what his share was.

 — András Velvárt

 I WOULD LIKE TO THANK Istv á n Nov á k for his help and useful tips he gave me to write this book.
Last but not least, I would like to thank Tam á s Varga for inspiring me to get this book done. ”

 — Attila Hajdrik

 THIS BOOK STARTED OUT AS MY IDEA and I was the original sole author. However, because of soft-
ware release delays and schedule confl icts, that ended up not being feasible, and I wasn ’ t sure what
would happen with the book. Other authors were brought on to help with the writing. I am very
grateful for the hard work and dedication that each of them gave toward this book. Without their
efforts, the book would have never made it past the overall concept.

 This is the second book that I have been an author on with Wiley/Wrox, and I have to say that their
entire team deserves a pat on the back. I would like to call special attention to two individuals. Paul
Reese (Acquisitions Editor) put up with my schedule and availability changes, while still allowing
me the opportunity to be an author on the book. Kevin Shafer (Project Editor) was yet again a

ffirs.indd xvffirs.indd xv 9/6/10 7:21:30 PM9/6/10 7:21:30 PM

great person to work with, and helped keep everything moving through the process smoothly. The
technical editors and all other individuals on the project were critical to getting the book fi nalized
and ready to release.

 — Mitchel Sellers

 I WISH TO ACKNOWLEDGE Paul Reese and Kevin Shafer. Paul gave me the opportunity to be part of
another project of this size and scope. Kevin improved my paragraphs and found the right place for
each code snippet. The reader will notice his great work. Special thanks go to my wife, Vanesa S.
Olsen, because she understood that I needed to work with many computers and mobile devices at
the same time to test each code snippet.

 — Gast ó n C. Hillar

ACKNOWLEDGMENTS

xvi

ffirs.indd xviffirs.indd xvi 9/6/10 7:21:30 PM9/6/10 7:21:30 PM

CONTENTS

INTRODUCTION xxxiii

 PART I: VISUAL STUDIO

CHAPTER 1: HISTORY OF VISUAL STUDIO 3

Roots 4

The First Breakthrough: Visual Basic 4

Other Languages and Tools 4

Visual Studio 97 and 6.0 5

Visual Studio.NET 2002 and 2003 5

Visual Studio 2005 7

Visual Studio 2008 8

Visual Studio 2010 10

Changes in Editions 10

What’s New in Visual Studio 2010 12

Shift to WPF 12

Summary 13

CHAPTER 2: VISUAL STUDIO UI ENHANCEMENTS 15

Basic IDE Overview 15

Exploring the Start Page 15

Understanding Window Management 16

New Project Dialog Window 17

Creating New Projects in a New Way 19

Using the Add Reference Dialog Window 19

Using the Extension Manager 20

Exploring New Daily Development Features 20

Exploring the Code Editor Window 20

Code Navigation 22

Generate From Usage 24

Exploring the Visual Designers 25

WPF Designer 26

XML Schema Designer 27

New Tools for Architects 27

Summary 29

TOC.indd xviiTOC.indd xvii 9/6/10 7:23:12 PM9/6/10 7:23:12 PM

CONTENTS

xviii

CHAPTER 3: VISUAL STUDIO CODE SNIPPETS 31

Understanding Code Snippets 32

Using Code Snippets 34

HTML, SQL, and JScript Code Snippets 37

Creating Code Snippets 38

Creating a Simple Code Snippet 38

The Code Snippet File Structure 41

Managing Code Snippets 51

The Code Snippet Manager 52

Code Snippet Storage 53

Adding and Removing Snippets 54

Importing Snippets 54

Advanced Code Snippet Features 56

Multiple Snippets in a File 56

Code Snippets in Other Languages 58

Building Online Code Snippet Providers 59

Snippet Editors 59

Export as Code Snippet Add-In 60

Snippet Designer 61

Snippet Editor 62

Summary 63

CHAPTER 4: VISUAL STUDIO TEMPLATES 65

The Role of Templates 66

Project Templates 67

Item Templates 69

Creating Templates 70

Creating a Simple Project Template 71

Creating a Simple Item Template 76

Template Storage Structure 81

Template Folders 82

The Template Manifest File 84

Customizing Templates 98

Template Parameters 98

Custom Template Parameters 99

Wizards 101

Deploying Templates 110

Exporting and Importing Templates 111

Creating a Template Installation Kit 114

Summary 125

TOC.indd xviiiTOC.indd xviii 9/6/10 7:23:13 PM9/6/10 7:23:13 PM

CONTENTS

xix

CHAPTER 5: GETTING THE MOST OUT OF THE IDE 127

Window Management 128

Visual Studio Window Architecture 128

Tool Windows 131

Document Windows 132

Arranging Windows 134

Customizing Menus and Toolbars 138

The Customize Dialog 139

Adding Menus and Commands 140

Creating and Rearranging Toolbars 144

Context Sensitivity 145

IDE Confi guration 145

The Options Dialog 145

Changes in Option Pages 147

Visual Studio Settings 150

Reducing Eff orts with Keyboard Shortcuts 155

Command Routing and Command Contexts 155

Working with Keyboard Shortcuts 157

Working with Keyboard Mapping Schemes 160

Custom Start Pages 162

Creating Your First Custom Start Page 163

Changing the StartPage.xaml File 173

Accessing the Visual Studio Context 176

Accessing the Visual Studio Object Model 182

A Few More Points About Start Pages 186

Customizing the Toolbox 186

A Lap Around the Toolbox 186

Customizing Toolbox Tabs 189

Adding Items to the Toolbox 190

A Few More Points About Toolbox Customization 193

Visual Studio Gallery 193

Browsing the Visual Studio Gallery 194

Downloading and Installing Components 196

Adding Your Own Contributions to the Gallery 197

Working Together with the Community 198

Summary 198

TOC.indd xixTOC.indd xix 9/6/10 7:23:13 PM9/6/10 7:23:13 PM

CONTENTS

xx

CHAPTER 6: VISUAL STUDIO EXTENSIBILITY 201

The Visual Studio Shell and Packages 202

Package Integration 203

Extensibility Out of the Box 204

Extending Visual Studio by Customization 204

Using Macros to Automate Common Tasks 208

Visual Studio Add-Ins 209

Extensions with Visual Studio SDK 210

The Full Power of Extensibility 210

Visual Studio Package Development 211

Editor Extensibility 212

Creating Visual Studio Macros 213

Understanding the Structure of Macros 213

Using the Macros IDE 218

Recording and Developing Macros 221

Macro Samples 225

Creating Visual Studio Add-Ins 229

Add-In Architecture 229

Creating a Simple Add-In 230

Using the Automation Model 239

Going on with Add-In Development 241

Visual Studio Packages in a Nutshell 242

Creating a Package with a Simple Menu Command 242

Debugging the Package 254

Extending the New Editor 255

Extending the Editor with the Managed Extensibility Framework 256

Editor Extensibility Points 258

Creating a Simple Classifi er 260

Summary 275

PART II: .NET 4

CHAPTER 7: .NET FRAMEWORK VERSION HISTORY 279

Before the .NET Framework 279

Win/Win32 Programming in C 279

C++ Programming 280

Programming in Visual Basic 280

Programming in Delphi 281

COM Programming 281

TOC.indd xxTOC.indd xx 9/6/10 7:23:13 PM9/6/10 7:23:13 PM

CONTENTS

xxi

The Origin and Goals of the .NET Framework 282

Evolution of the .NET Framework 283

.NET Framework 1.0 286

.NET Framework 1.1 286

.NET Framework 2.0 286

.NET Framework 3.0 287

.NET Framework 3.5 287

.NET Framework 4.0 288

.NET Compact Framework 289

.NET Micro Framework 289

.NET Framework Architecture 289

Common Language Run-time (CLR) 290

Base Class Library 291

Services of the .NET Architecture 292

Main Benefi ts of the .NET Framework 293

Summary 294

CHAPTER 8: MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT) 297

The Importance of User Experience 297

Developers Are from Vulcan, Designers Are from Venus 299

A New Generation of Presentation Frameworks 301

The Ten Pillars of Silverlight 303

XAML 304

Tools for Working with Silverlight (and WPF) 313

Layout 315

Data Binding 322

Styles 330

Templates 332

Animations 341

Media 345

Networking 352

Other Features 355

Windows Presentation Foundation 359

WPF Features not Available in Silverlight 361

Choosing Between WPF and Silverlight 366

Designer - Developer Cooperation in Silverlight and WPF 367

A Common Solution Format 367

Blendability 368

Design Time Sample Data in Blend 369

TOC.indd xxiTOC.indd xxi 9/6/10 7:23:14 PM9/6/10 7:23:14 PM

CONTENTS

xxii

SketchFlow 370

Triggers, Actions, and Behaviors 371

Model-View-ViewModel Pattern 372

Summary 373

CHAPTER 9: WINDOWS COMMUNICATION FOUNDATION (WCF) 375

WCF Versus ASMX Web Services 375

A Quick Look at SOA 376

Service 377

Service Provider 377

Service Consumer(s) 377

Service Registry 377

Service Contract 377

Service Proxy 378

Service Lease 378

Message 378

Service Description 378

Advertising and Discovery 378

Building Blocks of the WCF Architecture 378

Getting Started With WCF 381

Creating the WCF Service 382

Defi ning Data Contracts 386

Specifying the Binding Information 387

Hosting the WCF Service 388

Creating the Service Proxy 389

Creating the Service Client — The Service Consumer 391

Working with an Ajax-Enabled WCF Service 392

REST and WCF 394

Implementing a WCF Service Declaratively 394

Defi ning the Service Contract 395

Hosting the Service 396

Implementing the Service Logic Declaratively 396

Summary 398

CHAPTER 10: ENHANCEMENTS TO THE .NET CORE FRAMEWORK 399

Changes in Common Language Run-time 400

In-Process Side-By-Side Execution 400

DLR Integration 402

Type Equivalence 411

TOC.indd xxiiTOC.indd xxii 9/6/10 7:23:14 PM9/6/10 7:23:14 PM

CONTENTS

xxiii

Parallel Computing 415

The Challenge of Many-core Shift 416

The Microsoft Approach 418

Parallel LINQ 421

Task Parallel Library 428

Code Contracts 455

Managed Extensibility Framework 463

The Challenge 463

A Simple MEF Example 465

Basic MEF Concepts 471

Composition 477

A Few More Points on MEF 486

Summary 487

CHAPTER 11: ENHANCEMENTS TO THE .NET WORKFLOW
FRAMEWORK 489

An Introduction to WF 4.0 490

The Workfl ow Design Surface 491

The Hello Workfl ow Application 492

Creating Flowcharts and Coded Workfl ows 499

Flowcharts in WF 4.0 500

Code-Only Workfl ows 505

Workfl ow Architecture 509

Workfl owApplication and Hosts 510

Activities 511

Extensions 512

Workfl ow Activity Model Changes 513

Workfl ow Activity Library 517

Primitive Activities 518

Flow Control Activities 518

Workfl ow Run-Time Activities 520

Flowchart-Specifi c Activities 521

Error-Handling Activities 522

Transaction-Handling Activities 523

Collection-Handling Activities 524

Messaging Activities 525

Using the Compensating Transaction Model 527

The ConferenceWorkfl ow Example 527

Implementing Cancellation, Confi rmation, and Compensation 528

Cancellation 530

Compensation 530

TOC.indd xxiiiTOC.indd xxiii 9/6/10 7:23:14 PM9/6/10 7:23:14 PM

CONTENTS

xxiv

Persistence and Human Interactions 532

The DomainNameWorkfl ow Project 533

Workfl ow Tracking 544

Workfl ow Services 551

Creating a Workfl ow Service 551

Using Workfl owServiceHost 553

Summary 562

CHAPTER 12: ENHANCEMENTS TO THE .NET DATA FRAMEWORK 563

Language Integrated Query (LINQ) 563

LINQ Operators 564

LINQ Implementations 566

Parallel LINQ (PLINQ) 572

Entity Framework 573

Entity Framework Architecture 573

The Entity Data Source Control 579

Choosing Between LINQ to Entities and LINQ to SQL 579

Summary 579

CHAPTER 13: ENHANCEMENTS TO THE .NET COMMUNICATION
FRAMEWORK 581

Enhancements in WCF Framework 3.5 581

Enhancements in WCF Framework 4.0 583

Simplifi ed Confi guration 583

Standard Endpoints 585

Discovery 586

REST Improvements 588

Routing Service 589

Summary 592

CHAPTER 14: .NET CHARTING COMPONENTS 593

Creating Charts 594

Creating a Simple Chart 594

Adding Data to the Chart Programmatically 598

Adding Charts to WPF Applications 603

Using Chart Controls 605

Elements of a Chart 606

The Chart Class 607

Chart Types 609

Chart Coordinate System 617

TOC.indd xxivTOC.indd xxiv 9/6/10 7:23:14 PM9/6/10 7:23:14 PM

CONTENTS

xxv

Three-Dimensional Charts 619

Appearance of Chart Elements 621

Axes and Related Chart Elements 623

Data Points 630

Advanced Chart Manipulation 633

Annotations 633

Binding Data to Series 638

The DataManipulator class 641

More Chart Manipulations 648

Summary 649

PART III: ASP.NET 4.0

CHAPTER 15: ASP.NET VERSION HISTORY 653

Development of the Web and Web Development 653

Enter ASP 654

Enter ASP.NET 655

ASP.NET Version History 657

ASP.NET 1.0 659

ASP.NET 1.1 659

ASP.NET 2.0 659

ASP.NET 3.0 664

ASP.NET 3.5 665

ASP.NET 3.5 SP1 667

ASP.NET 4.0 667

Summary 668

CHAPTER 16: ASP.NET CHARTING CONTROLS 669

Creating Charts 670

Adding a Chart Control to a Page 670

Setting up Charts in an Event Handler Method 674

Binding Data to the Chart 676

Rendering ASP.NET Charts 679

Image URL Rendering 680

Using Charts with Legacy Web Sites 683

Binary Stream Rendering 684

Chart State Management 688

Saving Chart State 688

Advanced Chart State Management 690

TOC.indd xxvTOC.indd xxv 9/6/10 7:23:15 PM9/6/10 7:23:15 PM

CONTENTS

xxvi

User Interactivity 694

Using Tooltips 694

Handling Clicks on Data Points 696

Interactivity With Ajax 697

A Few More Points on User Interactivity 709

Summary 709

CHAPTER 17: ASP.NET DYNAMIC DATA 711

Creating a New Dynamic Data Web Site 711

Working Against a Data Model 711

Displaying Data from Existing Tables 716

Creating Simple CRUD Applications 718

Creating a Dynamic Data Application for Master-Detail Relationships 725

Working to Modify Implementation to Fit Business Needs 730

Understanding Dynamic Data’s Structure 730

Customizing the Look and Feel 732

Working with Page Templates 735

Working with Field Templates 738

Working with Entity Templates 741

Working with Filter Templates 744

Creating Custom Pages 746

Customizing Validations 747

Summary 750

CHAPTER 18: ASP.NET MODEL VIEW CONTROLLER (MVC) 751

Introduction to MVC 752

Similar Design Patterns 753

Microsoft and the Web Platform 753

What Is Microsoft ASP.NET MVC 2? 754

Extensibility in MVC 760

Creating an MVC 2 Application 761

The Project Structure 763

How Does it Work? 764

Adding New MVC 2 Pages 771

Create a Database 771

Create a Model 772

Listing Books 773

Adding Book Actions 779

TOC.indd xxviTOC.indd xxvi 9/6/10 7:23:15 PM9/6/10 7:23:15 PM

CONTENTS

xxvii

Customization in MVC 2 790

Model Binding 790

Validation 795

UI Customization 804

Routing Details 816

Controller Factory 816

Infl uencing the Execution Flow 817

Authorization 819

Action and Result Filtering 821

Exception Filtering 822

ActionResult 822

Testing with MVC 2 824

Refactoring AcmeLibrary 824

Creating and Running Unit Tests 831

A Few More Points on MVC 2 834

Areas 834

Metadata Providers 834

Value Providers 834

Model Binders 835

Child Actions 835

Asynchronous Controllers 835

Summary 835

CHAPTER 19: ASP.NET AJAX IMPROVEMENTS 837

Understanding Ajax 838

The XMLHttpRequest Object 839

ASP.NET and Ajax 840

Using the ASP.NET Ajax Server Controls 841

Refactoring the Framework Libraries 844

Using the Microsoft CDN 846

Using the Microsoft Ajax Library 848

Working with DOM Elements 852

The Script Loader 855

Client-Side Data Binding with Templates 859

Advanced Data-Binding Scenarios 872

Working with Server-Side Data 878

Summary 892

TOC.indd xxviiTOC.indd xxvii 9/6/10 7:23:15 PM9/6/10 7:23:15 PM

CONTENTS

xxviii

CHAPTER 20: ASP.NET AJAX CONTROL TOOLKIT AND JQUERY 893

First Look at the Ajax Control Toolkit 894

Installing the Ajax Control Toolkit 894

Creating a Simple Web Application with the Toolkit 896

Using the Controls of the Toolkit 908

New Server Controls 915

Control Extenders 938

Animations 957

The jQuery Library 962

“Hello, World” with jQuery 963

Selectors and Filters 965

Chaining and Utility Functions 970

Eventing Model and Event Handlers 971

Visual Eff ects and Animations 975

jQuery Ajax Features 976

Summary 977

PART IV: VB.NET

CHAPTER 21: HISTORY OF VISUAL BASIC 981

The Roots of Visual Basic 982

Structured and Unstructured BASIC 982

Moving to “Visual” 984

Visual Basic in the 1990s 985

Visual Basic in the .NET Framework 986

Design Goals and Debates 986

Visual Basic .NET (7.0) and .NET 2003 (7.1) 987

Visual Basic 2005 (8.0) 989

Visual Basic 2008 (9.0) 997

Summary 1005

CHAPTER 22: VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS 1007

New Productivity-Improving Syntax 1008

Implicit Line Continuation 1008

Auto-Implemented Properties 1010

Collection Initializers 1012

Multiline Lambda Expressions 1018

Working with Dynamic Objects 1020

Late Binding in Visual Basic 2010 1021

Accessing an IronPython Library 1023

TOC.indd xxviiiTOC.indd xxviii 9/6/10 7:23:15 PM9/6/10 7:23:15 PM

CONTENTS

xxix

Variance 1026

Type Substitution 1026

Variance in Visual Basic 2010 1029

A Few More Points on Variance 1033

Summary 1038

PART V: C#

CHAPTER 23: HISTORY OF C# 1041

The Evolution of C# 1041

Design Goals 1042

Short History 1042

Implementations 1043

C# 1.0 1044

Type System 1044

Memory Management 1045

Syntactic Sugar 1046

C# 1.1 1047

C# 2.0 1047

Generic Types 1048

Partial Types 1050

Static Classes 1051

Iterators 1052

Anonymous Methods 1052

Delegate Inference 1053

Delegate Covariance and Contravariance 1053

Nullable Types 1054

Property Accessors 1055

Null-Coalesce Operator 1056

Namespace Aliases 1056

C# 3.0 1056

Local Variable Type Inference 1057

Extension Methods 1057

Anonymous Types 1058

Lambda Expressions 1059

Query Expressions 1060

Expression Trees 1061

Automatic Properties 1062

Object Initializers 1062

Collection Intializers 1063

Partial Methods 1063

Summary 1064

TOC.indd xxixTOC.indd xxix 9/6/10 7:23:15 PM9/6/10 7:23:15 PM

CONTENTS

xxx

CHAPTER 24: C# 4.0 LANGUAGE IMPROVEMENTS 1065

Pains with Interoperability 1066

Creating the PainWithOffi ce Application 1066

Frustrating Issues 1069

Remove the Pain 1070

Dynamic Lookup 1072

Dynamic Binding 1072

The dynamic Type 1073

Dynamic Operations 1074

The Dynamic Language Run-time 1077

Named and Optional Parameters 1078

Using Optional Parameters 1079

Using Named Parameters 1081

Overload Resolution 1082

COM-Specifi c Interoperability Features 1084

Dynamic Import 1084

Omitting ref from Parameters 1084

Indexed Properties 1085

Compiling Without PIAs 1086

Variance 1087

Type Substitution 1087

Bird’s-Eye View of Variance 1089

Variance in C# 4.0 1090

A Few More Points on Variance 1094

Summary 1099

PART VI: F#

CHAPTER 25: VISUAL F# AND THE OTHER .NET LANGUAGES 1103

A Brief History of F# 1104

F# at First Glance 1105

Trying Things Out with F# 1106

Understanding Syntax 1107

Your First F# Project 1112

Programming with F# 1113

Namespaces and Modules 1113

Attributes 1115

Literals and Bindings 1115

Expressions 1120

Values and F# Types 1124

TOC.indd xxxTOC.indd xxx 9/6/10 7:23:16 PM9/6/10 7:23:16 PM

CONTENTS

xxxi

Type Augmentations 1137

Computation Expressions 1138

Sequences 1141

Range Expressions 1143

Sequence Expressions 1143

Asynchronous Workfl ows 1144

Pattern Matching 1146

Active Patterns 1149

Exceptions 1154

Units of Measure 1157

Lazy Computations 1159

Quotations 1160

Working with Database Queries 1161

A Larger Application in F# 1163

The Ast Module 1164

The Language Module 1164

The Evaluator Module 1166

The FunctionPlotter Module 1167

Running the Function Plotter 1170

Other .NET Languages 1170

IronRuby 1170

IronPython 1170

Summary 1171

INDEX 1173

TOC.indd xxxiTOC.indd xxxi 9/6/10 7:23:16 PM9/6/10 7:23:16 PM

INTRO.indd xxxiiINTRO.indd xxxii 9/6/10 7:24:18 PM9/6/10 7:24:18 PM

 INTRODUCTION

 IN THE .NET DEVELOPMENT WORLD, we have seen massive improvements and enhancements to
the framework over the last several years. Since 2006, we have seen releases of .NET 3.0, .NET 3.5,
and .NET 4. We have also seen the introduction of many new technologies such as Windows
Communication Foundation (WCF), Windows Presentation Foundation (WPF), Windows
Workfl ow, and Silverlight that came as parts of the various releases.

 Keeping up with all of this change can be diffi cult for all developers, both those new to the industry
and those who have been using .NET since its inception almost ten years ago. To help keep up
with this rapid change, this book serves as an “ all - in - one reference ” for the major changes and
enhancements and provides a glimpse into the specifi cs of the new technologies.

 WHO THIS BOOK IS FOR

 This book was written with the experienced .NET developer in mind. Many of the chapters talk
specifi cally about the enhancements or changes that have been introduced with the new versions of
the .NET Framework. However, even those readers who are not fl uent in .NET development should
be able take a lot out of the detailed examples provided in this book.

 For the experienced reader, a few “ history ” chapters have been added to help identify when various
functionality has been added so that you can quickly identify the needed toolset to be able to adopt
a specifi c feature.

 WHAT THIS BOOK COVERS

 This book focuses on enhancements that have been added to .NET and Visual Studio 2010 over
previous versions. In certain chapters and sections, a more historical view is presented to help
provide context. For example, in the chapters discussing WCF, an examination of WCF basics and
features added in .NET 3.5 are needed to help provide a full understanding of the functionality
provided in the 4.0 release.

 This book is intended to be an overview of Visual Studio and .NET as a whole. It is not a book on
any single topic, but rather a more macro - level overview. As such, many concepts will be introduced
in one or two chapters to provide an overview of the functionality and how it can be leveraged. For
many of the topics such as WCF, Silverlight, and WPF, there are several entire books dedicated to
the topic. The goal of this book is to provide an introduction to the technology, allowing you the
capability to make a selection of the next area to study in more detail.

INTRO.indd xxxiiiINTRO.indd xxxiii 9/6/10 7:24:19 PM9/6/10 7:24:19 PM

xxxiv

INTRODUCTION

 HOW THIS BOOK IS STRUCTURED

 Given the broad scope of this book, it has been divided into six distinct sections that will help you
quickly locate the content most relevant to you. It is not necessarily structured in a manner to be
read cover - to - cover, although chapters are tied together to make that reading style as cohesive as
possible.

 The following sections provide you with a section - by - section and chapter - by - chapter breakdown of
the content included.

 Part I: Visual Studio

 This section is dedicated to the discussion of the Visual Studio 2010 Integrated Development
Environment (IDE), and the enhancements and features available to developers.

 Chapter 1: “ History of Visual Studio ” — This chapter provides an important introduction
to the history of how the Visual Studio product has evolved from the foundation to the
current product it is today. Major milestones and supported languages are discussed, along
with major enhancements included in each release.

 Chapter 2: “ Visual Studio UI Enhancements ” — This chapter focuses on the major User
Interface (UI) changes between the Visual Studio 2008 and Visual Studio 2010 products.
The conversion of Visual Studio to use Windows Presentation Foundation (WPF) provided
an incredible amount of new UI features and functionality, which are all discussed in this
chapter.

 Chapter 3: “ Visual Studio Code Snippets ” — From a developer productivity standpoint,
Visual Studio ’ s Code Snippets functionality is one of the biggest timesavers when it comes
down to reducing total keystrokes. This chapter is dedicated to discussing how to use and
create code snippets to improve productivity.

 Chapter 4: “ Visual Studio Templates ” — In addition to code snippets, Visual Studio
provides a robust template system that allows for templates to be created for projects or
specifi c items. This chapter focuses on introducing the various template types, and how they
can be used to improve the development process.

 Chapter 5: “ Getting the Most Out of the IDE ” — The feature set included in Visual Studio
2010 is massive, and the number of confi guration items can be mind - boggling, even to those
who have been using Visual Studio for a long time. This chapter focuses on ways to get the
most out of the IDE, including customization, window management, shortcuts, and the
gallery.

 Chapter 6: “ Visual Studio Extensibility ” — In addition to the robust confi guration and
other features included with Visual Studio, there is additional support for extensibility in
the form of plug - ins, macros, and the like. This chapter illustrates how Visual Studio is set
up to allow for extension by developers.

➤

➤

➤

➤

➤

➤

INTRO.indd xxxivINTRO.indd xxxiv 9/6/10 7:24:19 PM9/6/10 7:24:19 PM

INTRODUCTION

xxxv

 Part II: .NET 4

 The second portion of the book is dedicated to functionality provided by the 4.0 version of the
.NET Framework. Each of these chapters dives into new functionality that has been added across
the various technology sections of the .NET Framework.

 Chapter 7: “ .NET Framework Version History ” — Before individual enhancements can
be discussed, it is important to understand the history of the .NET Framework. With
such rapid change in .NET over the past few years, this chapter helps to level - set the
times, versions, and release cycles that introduced new or improved functionality to the
framework.

 Chapter 8: “ Modern UI Frameworks (WPF and Silverlight) ” — Recent releases of Visual
Studio have added two new UI frameworks. This chapter provides a quick overview to
answer the three most important questions when looking at new frameworks: when it
should be used, why it should be used, and how it should be used.

 Chapter 9: “ Windows Communication Framework (WCF) ” — This chapter is dedicated to
WCF as it functions within the .NET 4 and Visual Studio 2010 environment.

 Chapter 10: “ Enhancements to the .NET Core Framework ” — This chapter examines
the new functionality added to the framework that can support development using various
other framework portions. You will learn about changes to the Common Language
Runtime (CLR), the addition of parallel computing, code contracts, and the Managed
Extensibility Framework (MEF).

 Chapter 11: “ Enhancements to the .NET Workfl ow Framework ” — Windows Workfl ow
is another of the .NET framework pieces that has seen a large number of changes with past
releases of Visual Studio. This chapter is dedicated to discussing the major changes that
have been introduced in the .NET 4 release.

 Chapter 12: “ Enhancements to the .NET Data Framework ” — Microsoft has been
dedicated to providing object relational mapping (ORM) style tools for developers and,
as such, items such as the entity framework and the like have seen a number of massive
changes in recent releases. This chapter is dedicated to the enhancements included within
the Data portions of the framework.

 Chapter 13: “ Enhancements to the .NET Communications Framework ” — This chapter
about communications discusses the enhancements and changes that have been introduced
with .NET 4. This chapter is most helpful for readers who are moving forward from older
versions of WCF.

 Chapter 14: “ .NET Charting Components ” — Although available as part of .NET 3.5
Service Pack 1 (SP1), the .NET charting components are a very powerful and recent
addition to the .NET Framework. This chapter examines the usage and benefi ts provided by
the built - in charting components that are available with .NET 4.

➤

➤

➤

➤

➤

➤

➤

➤

INTRO.indd xxxvINTRO.indd xxxv 9/6/10 7:24:19 PM9/6/10 7:24:19 PM

xxxvi

INTRODUCTION

 Part III: ASP.NET 4.0

 The third portion of this book focuses on ASP.NET 4.0 and related items. For web application
developers, this section pulls together all of the new features and enhancements into one location,
making it easy to fi nd the items specifi c to web functionality.

 Chapter 15: “ ASP.NET Version History ” — Similar in nature to the .NET Framework as
a whole, it is important to remember major milestones with regard to the previous releases
of ASP.NET to ensure that you are aware of new or changed functionality that has been
introduced. This chapter provides that needed foundation.

 Chapter 16: “ ASP.NET Charting Controls ” — This chapter examines .NET Charting
components in a general manner. Here you will learn about the controls within the context
of an ASP.NET application, and the steps necessary to properly leverage the controls.

 Chapter 17: “ ASP.NET Dynamic Data ” — Microsoft recently added support for dynamic
data, and this chapter is dedicated to discussing the features, benefi ts, and options available
when using dynamic data.

 Chapter 18: “ ASP.NET Model View Controller (MVC) ” — Microsoft has added a new
project template type that supports web application development using the well - known
MVC design pattern. The introduction of MVC to the ASP.NET feature set has added a
number of items that can be used by developers of both MVC and Web Forms applications,
and this chapter is dedicated to those discussions.

 Chapter 19: “ ASP.NET Ajax Improvements ” — ASP.NET Ajax is the foundational
component for creating a rich user experience with an ASP.NET application. A number of
enhancements were added to ASP.NET Ajax implementation, and this chapter is dedicated
to outlining all new features.

 Chapter 20: “ Ajax Control Toolkit, jQuery, and More ” — In addition to the base ASP.NET
Ajax offering, Microsoft maintains a secondary download of the Ajax Control Toolkit, which
provides a robust set of additional controls. Microsoft has also embraced and added support
for the jQuery Open Source JavaScript library. This chapter discusses these items and how they
can relate within your applications.

 Part IV: VB.NET

 This section of the book is dedicated to discussing new features and enhancements that have been
added to the Visual Basic language. This is a short section because of the limited changes that
impact the Visual Basic language only.

 Chapter 21: “ History of Visual Basic ” — To help get an understanding of the changes to
the Visual Basic language, it is important to understand the history of the language, and
when certain features were added. This chapter provides the needed introduction.

 Chapter 22: “ Visual Basic 10 Language Enhancements ” — This chapter focuses on additions
and enhancements to the Visual Basic language as provided by Visual Studio 2010.

➤

➤

➤

➤

➤

➤

➤

➤

INTRO.indd xxxviINTRO.indd xxxvi 9/6/10 7:24:19 PM9/6/10 7:24:19 PM

INTRODUCTION

xxxvii

 Part V: C#

 This section of the book is dedicated to discussing new features and enhancements that have been
added to the C# Language. This is a short section because of the limited changes that impact the
C# language only.

 Chapter 23: “ History of C# ” — To help get an understanding of the changes to C#
included with Visual Studio 2010, this chapter has been provided to set up the history of the
language with a short summary of major enhancements provided in past releases.

 Chapter 24: “ C# 4.0 Language Enhancements ” — This chapter examines the new language
features that have been added to C# for version 4.0. Items such as covariance and other
language enhancements are discussed with examples.

 Part VI: F# and Other .NET Languages

 The fi nal section of this book discusses the F# language and other .NET languages such as
IronRuby and IronPython. This section contains Chapter 25, which is the fi nal chapter of the book.
This extensive chapter introduces the F# language with detailed examples and explanations that
will allow you to quickly get up and running with F#. The chapter fi nishes with information on
IronRuby and IronPython.

 WHAT YOU NEED TO USE THIS BOOK

 Readers will need access to an edition of Visual Studio 2010; this book uses the Premium edition
of Visual Studio 2010 for most of the examples. However, other editions (including the Express
editions) will work.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

➤

➤

 Boxes with a warning icon like this one hold important, not - to - be - forgotten
information that is directly relevant to the surrounding text.

 The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

INTRO.indd xxxviiINTRO.indd xxxvii 9/6/10 7:24:20 PM9/6/10 7:24:20 PM

xxxviii

INTRODUCTION

 As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type for most code examples.
 We use bold to emphasize code that is particularly important in the present
 context, or to show changes from a previous code snippet.

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. Some of the source code used
in this book is available for download at www.wrox.com . When at the site, simply locate the
book ’ s title (use the Search box or one of the title lists) and click the Download Code link
on the book ’ s detail page to obtain the source code for the book. Code included on the website is
highlighted by the following icon:

Available for
download on
Wrox.com

 Listings include the fi lename in the title. If it is just a code snippet, you ’ ll fi nd the fi lename in a code
note such as this:

 Code snippet fi lename

➤

➤

➤

➤

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book ’ s ISBN is 978 - 0 - 470 - 49948 - 1.

 Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

INTRO.indd xxxviiiINTRO.indd xxxviii 9/6/10 7:24:36 PM9/6/10 7:24:36 PM

INTRODUCTION

xxxix

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book ’ s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll
check the information and, if appropriate, post a message to the book ’ s errata page and fi x the
problem in subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web -
 based system for you to post messages relating to Wrox books and related technologies, and interact
with other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

 At p2p.wrox.com , you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and
 complete the joining process.

 You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

INTRO.indd xxxixINTRO.indd xxxix 9/6/10 7:24:47 PM9/6/10 7:24:47 PM

xl

INTRODUCTION

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the “ Subscribe to this Forum ” icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

INTRO.indd xlINTRO.indd xl 9/6/10 7:24:52 PM9/6/10 7:24:52 PM

PART I

Visual Studio

CHAPTER 1: History of Visual Studio

CHAPTER 2: Visual Studio UI Enhancements

CHAPTER 3: Visual Studio Code Snippets

CHAPTER 4: Visual Studio Templates

CHAPTER 5: Getting the Most Out of the IDE

CHAPTER 6: Visual Studio Extensibility

�

�

�

�

�

�

CH001.indd 1CH001.indd 1 9/6/10 4:29:26 PM9/6/10 4:29:26 PM

CH001.indd 2CH001.indd 2 9/6/10 4:29:31 PM9/6/10 4:29:31 PM

History of Visual Studio

 Although this book is dedicated to Visual Studio 2010 and .NET Framework 4.0, having a
good historical background in Visual Studio can help you better understand the features treated
in the subsequent chapters. Regardless of whether you are old friends with Visual Studio or it is
new for you, it is always worth knowing where it started and how it ’ s been evolving.

 The roots of Visual Studio go back for almost 19 years, back to the point somewhere between
the release of Windows 3.0 and 3.1. It is incredible how the development tool has evolved
enormously during almost two decades! The road behind Visual Studio was never smooth or
fl at; it was full of bumps and curves. However, one thing stayed constant during the years:
Microsoft created this tool with developers in mind, and made amazing efforts to build a
strong developer community surrounding the product.

 In this chapter, you ’ ll read a short story of Visual Studio ’ s past and present, with emphasis on
the roots of this great tool, as well as the situations and motivations that led to the integrated
development environment (IDE) you use today.

 1

 VISUAL STUDIO DOCUMENTARY

 At PDC 2009 (held between November 17 and 19, 2009, in Los Angeles),
Microsoft published a screencast with the title, “ Visual Studio Documentary. ”
This one - hour video is a great source for “ company secrets ” surrounding Visual
Studio from the ancient ages to the present - day stage. A number of Microsoft (and
ex - Microsoft) celebrities such as Anders Hejlsberg, Alan Cooper, Bill Gates, Tim
Huckaby, Sivaramakichenane Somasegar, Dan Fernandez, Tony Goodhew, Jason
Zander, Scott Guthrie, and Steve Balmer are featured in this video. They add
interesting personal commentaries on history, motivations, technology context,
competitors, and nitty - gritties that paved the road for Visual Studio.

 You can download this two - part documentary from http://channel9.msdn.com/
shows/VisualStudioDocumentary/The-Visual-Studio-Documentary-

Part-One , where you can also fi nd the link for the second part of the video.

CH001.indd 3CH001.indd 3 9/6/10 4:29:31 PM9/6/10 4:29:31 PM

4 ❘ CHAPTER 1 HISTORY OF VISUAL STUDIO

 ROOTS

 For a long time, Windows development was a fi eld where only C and C++ programmers could play.
They had to carry out a lot of tasks for creating the simplest user interface — such as defi ning and
registering Windows classes, implementing the Windows message loop, dispatching Windows messages,
painting the client in Windows, and so on. The smallest “ Hello, World ” program for Windows was
about a hundred lines of code, where you could not meet any explicit statement to print out the “ Hello,
World ” text. Instead, you had to draw this text to an absolute window position as a response to the
WM_PAINT message. At that time, the user interface (UI) was defi ned by static text fi les that were
compiled into binary resources and linked to the application. The UI missed the concept of controls —
there were windows and child windows, all of them represented by HWNDs (or window handles).

 At that time, developers accepted this way of Windows software creation as a price for interacting
with a graphical user interface (GUI).

 The First Breakthrough: Visual Basic

 The fi rst tool that dramatically changed Windows application development was Visual Basic 1.0,
released in May 1991. Visual Basic introduced (or, perhaps, invented) such concepts as forms,
controls, code - behind fi les — all of which are still in use in contemporary development tools.
Instead of writing resource fi les and addressing UI elements through 16 - bit constants, you could
drag - and - drop predefi ned UI controls to your forms and program their events. The hundred - line
 “ Hello, World ” program was so simple with Visual Basic:

Private Sub Form_Load()
 MsgBox(“Hello, World!”)
End Sub

 You did not have to care about programming the message loop or event dispatching code! Visual
Basic allowed you to create an application represented by an icon on the Windows desktop. When
you double - clicked on that icon, the application started and ran just as Word or Excel — which,
at that time, was a delightful experience. Visual Basic revolutionized the application development
platform, because it made Windows programming available for the masses.

 Other Languages and Tools

 The whole visual composition aspect of Visual Basic was something that could be applied for the
C++ and other languages as well. In the few years following the release of Visual Basic, a plethora
of tools was created by Microsoft:

 Visual C++ 1.0 was released in February 1993 with Microsoft Foundation Classes (MFC)
2.0 and proved that C++ programming for Windows could be more productive than ever
before — while still keeping the full and granular control over the operating system.

 In 1992, Fox Technologies (the creator of FoxBASE and FoxPro) merged with Microsoft,
and, at the end of 1995, Visual FoxPro 3.0 was released.

 The emergence of the Java programming language in 1995 motivated Microsoft to create
its own Java language implementation. It was Visual J++1.0 that conformed to the Sun
specifi cation and used Microsoft ’ s Java Virtual Machine (JVM).

➤

➤

➤

CH001.indd 4CH001.indd 4 9/6/10 4:29:37 PM9/6/10 4:29:37 PM

 Having so many separate languages and tools, the architect teams recognized that the whole visual
aspect could be separated from the languages. Why create separate IDEs for all the languages
and tools if they could fi t into the same environment? That was when the idea of Visual Studio
was born.

 Visual Studio 97 and 6.0

 In 1997, Microsoft built a single environment to integrate multiple languages into one application
surface. This was released as Visual Studio 97, bundling Microsoft development tools for the fi rst
time. This package contained Visual Basic 5.0, Visual C++ 5.0, Visual FoxPro 5.0, and Visual
J++ 1.1 from the set of existing tools. The bundle was also extended with Visual InterDev, a new
tool for developing dynamically generated Web sites using the Active Server Pages (ASP) technology.
A snapshot of the Microsoft Developer Network Library was also a part of the package.

 At this time, the IDE named Developer Studio integrated only Visual C++, J++, Visual InterDev, and
MSDN. The name “ Visual Studio ” was rather the name of the bundle (because Visual Basic and
Visual FoxPro had their own IDEs).

 The famous and long - lived logo of Visual Studio that resembles the sign of infi nity (or to the Moebius
strip) was introduced with the fi rst version. You can clearly recognize it from the package cover shown
in Figure 1 - 1.

 Shortly after the 1997 version, in June 1998, Visual
Studio 6.0 was released. It did not contain too many
new things, but fi xed early integration issues to make
the product more robust. The version numbers of all
of its constituent parts also moved to 6.0 to suggest
a higher level of integrity among the individual tools.
However, instead of three IDEs in Visual Studio
97, version 6.0 had four, because Visual C++ got its
own IDE.

 Microsoft understood the challenge of the Java
phenomenon. Not only the language, but also
the managed nature of the Java platform inspired
the company to make a huge leap in regard to a
development platform shift. The huge amount of
research and development work done between
1998 and 2002 led to the introduction of the .NET
Framework. This new platform entirely changed the
future of Visual Studio.

 VISUAL STUDIO.NET 2002 AND 2003

 In July 2000, the .NET Framework was fi rst announced publicly at Professional Developers
Conference (PDC) in Orlando, Florida. At PDC, Microsoft also demonstrated C#, and announced
ASP+ (which was later renamed to ASP.NET) and Visual Studio.NET. It took more than a year

 FIGURE 1 - 1: The Visual Studio 97 package

Visual Studio.NET 2002 and 2003 ❘ 5

CH001.indd 5CH001.indd 5 9/6/10 4:29:38 PM9/6/10 4:29:38 PM

6 ❘ CHAPTER 1 HISTORY OF VISUAL STUDIO

and a half, but, in February 2002, .NET Framework 1.0 was released as part of a pair with Visual
Studio.NET (the latter of which is often referred as Visual Studio .NET 2002).

 Visual Studio.NET had an IDE that fi nally integrated the tools and languages into the same
environment. Because (except for Visual C++) all the languages were new (even Visual Basic .NET
could be considered as new, because it had been fundamentally changed), the toolset had to be
re - designed and re - implemented. Microsoft had a better chance to ultimately integrate the pieces
into a single IDE, and it did so remarkably. Figure 1 - 2 shows the splash screen of Visual Studio.NET
Enterprise Architect Edition, which indicates that constituent languages and tools share a
common IDE.

 FIGURE 1 - 2: Visual Studio.NET splash screen

 The set of languages Microsoft integrated into the product were established with long - term support
for the .NET Framework in mind. At that time, developers could use four languages out - of - the - box:

 Visual C# — This completely new language was developed (by a team led by Anders
Hejlsberg) and enormously used by Microsoft itself to develop the Base Class Library of the
framework. This new language attracted a lot of developers both from the former Visual
Basic and C++ camps, and became very popular. It uses C - like syntax (“ curly - braced -
language ”), but its constructs are more readable than those of C or C++.

 Visual Basic .NET — The former Visual Basic versions just scratched the surface of
object - oriented programming (OOP), but the real innovations were missing from the
language for a long time. The clear object - oriented nature of .NET required a new Visual
Basic. Microsoft recognized the popularity of the language and created Visual Basic .NET
with full .NET and OOP support.

➤

➤

CH001.indd 6CH001.indd 6 9/6/10 4:29:39 PM9/6/10 4:29:39 PM

 Visual C++ — With the ascension of .NET, there were still many software development
areas with native (Win32 API) Windows development rules (for example, device driver
implementation). Visual C++ provided this capability. Besides, Visual C++ was able to
interoperate with managed code, and additional grammatical and syntactic extensions
(Managed Extensions for C++) allowed compiling code targeting the .NET Common
Language Run - time (CLR).

 Visual J# — This language was considered as a replacement for Visual J++. However,
this language had a Java syntax. It could build applications targeting only the .NET
Framework ’ s CLR. Now having a competing platform against Java, after replacing J++,
Microsoft no longer created any language running on the JVM.

 The .NET Framework ’ s Base Class Library was established as a common infrastructure for
developers, thus making it easy and natural to solve common tasks such as using data access and
Web services. Visual Studio .NET provided a rich set of built - in tools to leverage the infrastructure
provided by the framework. The IDE was designed with extensibility in mind, and allowed
developers to integrate their own custom tools into the IDE.

 A bit more than a year after Visual Studio.NET was released, a new version, Visual Studio .NET
2003, was shipped together with .NET Framework 1.1. Microsoft had a lot of work to do to
stabilize the framework, and, of course, dozens of critical bugs were fi xed. A few things (such as
the security model) were also changed, and new features were added to the framework (such
as built - in support for building mobile applications, IPv6 support, and built - in data access for
ODBC and Oracle databases). Also, the CLR became more stable from version 1.0 to 1.1.

 Visual Studio.NET (the one released with .NET 1.0) was not able to compile applications for the
new CLR version, so the 2003 version had to undertake this task. Thanks to the robustness and
stability of Visual Studio .NET 2003, it became very popular, and is still in use because of the large
number of business applications developed for .NET 1.1.

 VISUAL STUDIO 2005

 Released in November 2005, Visual Studio 2005, together with .NET Framework 2.0,
brought fundamental changes to the tool, as well as to the languages. The Common Type
System (CTS) of the framework introduced generic types. This concept affected all languages,
because they must have been prepared to handle the feature of generics, and development
tools also needed to encapsulate support for this. The shift of CTS also touched ASP.NET
and ADO.NET.

 Web application development had some pain in the former Visual Studio versions. Developers
had to install and use Internet Information Server (IIS) locally on their machines, and it meant
confrontation with system administrators who did not want to have IIS on desktops for security
reasons. Visual Studio 2005 installed a local development Web server on desktops and resolved
this particular situation.

➤

➤

Visual Studio 2005 ❘ 7

CH001.indd 7CH001.indd 7 9/6/10 4:29:40 PM9/6/10 4:29:40 PM

8 ❘ CHAPTER 1 HISTORY OF VISUAL STUDIO

 With this release, Microsoft widened the camp of programmers using Visual Studio with two new
editions:

 Express Editions — These editions (they are free) targeted students, hobbyists, and other
developers coding for fun. Instead of giving a “ geese ” version of Visual Studio for free,
Microsoft created language - related kits with the names of Visual C# 2005 Express, Visual
Basic 2005 Express, Visual Web Developer, and Visual C++ 2005 Express, equipped with
the full language feature set, but with limited tool support.

 Team System Editions — Microsoft wanted to move Visual Studio out of the box of
 development tools and position it among the high - end enterprise development tools. Team
System Editions provided out - of - the - box integration with Microsoft ’ s Team Foundation
Server 2005, and added powerful productivity tools for specifi c development project roles.
There are four editions for Developers, Testers, Architects, Database Designers, and a fi fth
one, Visual Studio Team Suite, which includes all of the features of these four editions in a
single package.

 Compare the list of installed products in the
splash screen of Visual Studio 2005 Team
Edition for Software Developers (shown in
Figure 1 - 3) with the list shown in Figure 1 - 2.
The eye - catching difference tells you how many
tools were added to the new editions.

 Following the initial release, a few special -
 purpose products were also shipped and
integrated into the IDE (such as Visual Studio
Tools for Offi ce and Visual Studio Tools for
Applications).

 An unusual thing happened in November 2006:
.NET Framework 3.0 was released without
any accompanying Visual Studio version. This
major .NET version kept the CLR untouched
and added infrastructure components to the framework — Windows Workfl ow Foundations (WF),
Windows Communication Foundations (WCF), Windows Presentation Foundation (WPF), and
CardSpace. Developers could download Visual Studio extensions to use these new .NET 3.0
technologies.

 VISUAL STUDIO 2008

 In November 2007, one year after .NET 3.0, Visual Studio 2008 was shipped together with .NET
Framework 3.5. Although the .NET CLR was still version 2.0, the new query expression syntax
(LINQ) feature in .NET 3.5 demanded changes to the existing tools.

 The most popular feature of version 2008 was multi - targeting. With this, Visual Studio developers
could specify the target framework (.NET 2.0, .NET 3.0, and .NET 3.5) of their projects, or even

➤

➤

 FIGURE 1 - 3: Products installed with Visual Studio

2005 Team Edition for Software Developers

CH001.indd 8CH001.indd 8 9/6/10 4:29:40 PM9/6/10 4:29:40 PM

mix projects with different targets in their solutions. Because one native Win32 process could host
only one CLR at the same time, .NET 1.1 (because it uses CLR 1.1) was not in the list of available
targets.

 Both Visual Basic and C# went through fundamental changes to support the new LINQ syntax.
As an addition, Visual Basic 9.0 was given support for XML literals (including plain XML text in
the source code); C# 3.0 was extended with new initializer syntax. Both languages were equipped
with new constructs (including type inference, anonymous types, extension methods, and lambda
expressions) to support LINQ and reduce syntax noise.

 The J# language was retired in Visual Studio 2008; the last version supporting it was Visual Studio
2005. Microsoft made this decision because the use of J# started to decline. However, the last
version of J# will be supported until 2015.

 The LINQ technology was about moving data access and data processing toward the functional
programming paradigm. This new paradigm (new for Microsoft development tools) gained
momentum as Microsoft Research started to work on a new functional programming language
called F#. The fi rst community technology preview (CTP) of the language appeared in Visual Studio
2005 (take a look again at the last product item in Figure 1 - 3), and Visual Studio 2008 hosted a few
more new CTPs.

 In addition to the main themes of .NET Framework 3.5, Visual Studio has other great features and
changes:

 Built - in support for the three foundations released in .NET 3.0 and refreshed in 3.5:

 WPF has a visual designer for XAML layouts.

 WCF has a few project types out - of - the - box.

 WF has visual a designer to create workfl ows graphically.

 JavaScript programming is now supported with IntelliSense and a debugger.

 Web developers can use a new and powerful XHTML/CSS editor.

 After the initial release, Microsoft ’ s new technologies were also integrated with Visual Studio:

 One of the new emerging technologies was Silverlight. With the initial Visual Studio release
in November 2007, only Silverlight 1.0 was available, and that was based on JavaScript.
In August 2008, Silverlight 2.0 was shipped, implementing the same full CLR version as
.NET Framework 3.0, and so it could execute programs written in any .NET language. In
July 2009, Silverlight 3.0 was released. All versions had their own toolset that can be down-
loaded and integrated with Visual Studio 2008.

 In August 2008, a service release was issued with .NET Framework 3.5 SP1 and Visual
Studio 2008 SP1. This version added new ADO.NET data features to the framework and
also designers to the IDE:

 ADO.NET Entity Framework — This raises the level of abstraction at which pro-
grammers work with data to the conceptual level.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Visual Studio 2008 ❘ 9

CH001.indd 9CH001.indd 9 9/6/10 4:29:42 PM9/6/10 4:29:42 PM

10 ❘ CHAPTER 1 HISTORY OF VISUAL STUDIO

 ADO.NET Data Services — This is fi rst - class infrastructure for developing
dynamic Internet components by enabling data to be exposed as REST - based data
services.

 ASP.NET Dynamic Data — This provides a rich scaffolding framework that allows
rapid data driven development without writing any code.

 Visual Studio 2008 did not change the structure of editions in version 2005. All editions
(including Visual Studio Team System 2008 and Visual Studio 2008 Express Editions) were
released together.

 VISUAL STUDIO 2010

 The latest version of Visual Studio has 10.0 as the internal version, and its name is offi cially Visual
Studio 2010.

 No doubt, Microsoft takes Visual Studio into account as the ultimate tool for developers creating
applications and business solutions on the Windows platform. This intention can be caught on the
messages called “ the pillars of Visual Studio 2010 ” :

 Creativity Unleashed — You can use prototyping, modeling, and visual design tools to
create solid, modern, and visionary solutions through software development. You can
leverage the creative strengths of your team to build your imaginations together.

 Simplicity through Integration — Visual Studio helps simplifying common tasks, and helps
you explore the depth of the platform you and your team work with. It has an integrated
environment, where all team members can use their existing skills to model, code, debug,
test, and deploy a growing number of application types, including the solutions for the
cloud platform.

 Quality Code Ensured — The toolset of Visual Studio includes everything that helps you
with maintaining source code, fi nding and fi xing bugs, and managing your projects. Testers
and developers on your team can use manual and automated testing, as well as advanced
debugging tools, from the very beginning. Utilizing these tools, you can be confi dent that
the right application is built, the right way.

 These messages are a very brief and straightforward summary of what Visual Studio 2010 offers for
experts — software developers, testers, architects, business analysts, project managers — working
on software development tasks and projects.

 Changes in Editions

 While Visual Studio 2008 had many editions — such as Standard, Professional, and Team
System Editions (including Development, Database, Architecture, and Test Editions) — you

➤

➤

➤

➤

➤

CH001.indd 10CH001.indd 10 9/6/10 4:29:42 PM9/6/10 4:29:42 PM

will be able to choose from three main version (of course, free Express editions are still
available):

 Microsoft Visual Studio 2010 Professional with MSDN — This version is intended to
be the essential tool for basic development tasks to assist developers in easily implementing
their ideas.

 Microsoft Visual Studio 2010 Premium with MSDN — This provides a complete toolset to
help developers deliver scalable, high - quality applications.

 Microsoft Visual Studio 2010 Ultimate with MSDN — This version (as its name suggests)
is a comprehensive suite of application life - cycle management tools for software teams to
help ensure quality results from design to deployment.

 The feature sets of these editions are formed so that editions contain every feature the lower editions
have, plus add their own functionality on top of them.

 Microsoft ’ s intention with Visual Studio 2010 is clear from the features all editions have in
common:

 Development platform support — All important platforms (Windows, Web, Offi ce,
SharePoint, and cloud development) are available with a common tool set.

 Team Foundation Server integration — There is no difference among the Visual Studio
editions in the Team Foundation Server support they have! All of them are shipped with
the Visual Studio Team Explorer 2010 to instantly access Team Foundation Server
with the entire feature set, including source control and work item management, build
automation and test case management, Team Portal, Business Intelligence (BI), and
reporting.

 Debugging and Diagnostics — The effi cient debugging and diagnostics tools (with a num-
ber of new Visual Studio 2010 innovations) help developers to become more productive than
ever before. Now, post - mortem debugging, multi - threaded application debugging through
the Parallel Stack and Tasks window, and 64 - bit support for mixed mode debugging are
available for every developer independently of the edition he or she uses.

 These editions are bundled with MSDN subscriptions. This is a great benefi t — especially for
Premium and Ultimate users who receive additional software for production use (such as Expression
Studio 3, Offi ce Plus 2010, Visio Premium 2010, and Project Professional 2010). All users get
the standard MSDN subscription benefi ts, such as priority support on MSDN Forums, technical
support incidents, MSDN magazine, and so on.

 As a result of setting up the editions as treated, small developer teams with the Professional edition
now can work together in a way that was possible only with one of the Team System editions with
the previous versions. The Premium edition adds new tools for database development, testing, and
advanced functions for debugging and diagnostics. Users of the Ultimate edition have architecture,
modeling, and test lab management tools shipped with the product, a benefi t they never got before
with Visual Studio.

➤

➤

➤

➤

➤

➤

Visual Studio 2010 ❘ 11

CH001.indd 11CH001.indd 11 9/6/10 4:29:43 PM9/6/10 4:29:43 PM

12 ❘ CHAPTER 1 HISTORY OF VISUAL STUDIO

 What ’ s New in Visual Studio 2010

 Addressing what is new in Visual Studio is not tackled here in its entirety. Each chapter of this book
contains sections dedicated to this topic. Moreover, many chapters are especially about treating
Visual Studio new features with all nitty - gritty details.

 Without the need of completeness, here is a short list to whet your appetite:

 Cloud development (Windows Azure) and SharePoint development is now supported.

 Test Driven Development (TDD) is available in Visual Studio. You can follow the Consume -
 First - Declare - Later approach during code writing.

 The code editing experience has been signifi cantly enhanced:

 Visual Studio now understands your code, provides you with Call Hierarchy, and
highlights references.

 With the Quick Search function, you can easily navigate within your code — not
just in the current code fi le but in the entire solution.

 IntelliSense has been improved. It now has substring matching, helping you when
you do not remember exact member names.

 The new code editor is extensible, and creating extensions has been signifi cantly
simplifi ed.

 Online Visual Studio Gallery is integrated directly into Visual Studio. With the Extension
Manager, you can browse online content (tools, controls, and templates) and immediately
install third - party extensions.

 You are not obliged to create new projects from the templates already installed on your
machine. You can create your project right from online project templates with the New
Project dialog.

 Multi - core and multi - threaded applications are now fi rst - class citizens in Visual Studio. You
can debug your applications with their nature of using multiple parallel tasks and threads.
The new tools and views allow you to look for and focus on those details (race conditions,
blockings, interoperation, and so on) that were invisible in previous versions.

 Modeling, designing, and validating architecture now are organic parts of Visual Studio.
Not only can architects benefi t from these features, but those can be used for communica-
tion among team members or with customers.

 Shift to WPF

 Maybe it sounds weird, but the majority of Visual Studio ’ s code base is unmanaged code — large
pieces of this code come from the COM era, and did not really change over time. With Visual
Studio 2010, the development team undertook the challenge of a technology shift: the UI technology
of the shell and a major part of the IDE was changed from GDI/GDI+ to WPF — that is, a
managed technology. The new design of the product (the new splash screen is shown in Figure 1 - 4)
communicates this new approach.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH001.indd 12CH001.indd 12 9/6/10 4:29:44 PM9/6/10 4:29:44 PM

 The formerly angular and multi - colored “ infi nity sign ” logo became a round - cornered and
gradually - colored one, emphasizing the smooth integration among the tools within the IDE.

 The new code editor of Visual Studio has been totally rewritten to use WPF as its display
technology, new functions such as the modeling tools, the new parallel task debugger, and many,
many more features also were implemented with WPF.

 SUMMARY

 The name of Visual Studio is about 13 years old, but the roots of the product go back almost
two decades. The fi rst milestone on the road was defi nitely Visual Basic 1.0. Up until 1997,
other programming languages and tools also picked up the visual composition aspect that had
distinguished Visual Basic from the formerly used development tools. Visual Studio was born by
packaging these tools (Visual Basic, Visual C++, Visual FoxPro, Visual J++, Visual InterDev, and
MSDN) into a bundle.

 With the introduction of the .NET Framework in 2002, Visual Studio started to gain big
momentum. The languages and tools encapsulated into the product changed, together with the
state - of - the - art paradigms and trends. The surrounding developer community has experienced a
spectacular growth in the last eight years.

 After seven major versions (fi ve of which leveraged the .NET Framework), Visual Studio
transformed from a single development tool into a rock - solid software development environment.
It supports a wide audience, from students and hobbyists, to large - enterprise IT groups with full
application life - cycle management functionality needs.

 As of this writing, you can use Visual Studio 2010 released together with .NET Framework 4.0. Its
functionality has been signifi cantly extended since Visual Studio 2008.

 In Chapter 2, you ’ ll learn about the new enhancements of the IDE ’ s user interface.

 FIGURE 1 - 4: The splash screen refl ects the brand new

design of Visual Studio 2010

Summary ❘ 13

CH001.indd 13CH001.indd 13 9/6/10 4:29:44 PM9/6/10 4:29:44 PM

CH001.indd 14CH001.indd 14 9/6/10 4:29:45 PM9/6/10 4:29:45 PM

Visual Studio UI Enhancements

 In Chapter 1, you read about the major product changes for Visual Studio 2010, and gained
an historical overview of previous versions. If you have used any of the previous versions of
Visual Studio, you will see with Visual Studio 2010 that Microsoft is adding more and more
features, as well as enabling features for the free Express editions of Visual Studio.

 This chapter highlights the major differences between the 2008 and the 2010 version of the
product, but focuses only on the User Interface (UI) without going into greater detail about
the features.

 BASIC IDE OVERVIEW

 Visual Studio 2010 does not have a piece that has remained untouched from the 2008 version.
As you read in Chapter 1, this is because Visual Studio 2010 is based on Windows Presentation
Foundation (WPF), and now all features and modules seamlessly integrate with the Visual
Studio Shell without serious Component Object Model (COM) interoperability operations. The
interoperability and communication between different parts is accomplished through a new
component in the .NET Framework 4.0 called Managed Extensibility Framework (MEF).

 2

Chapter 8 provides more on the basic principles of WPF, or, if you ’ d like, you can
read more about MEF, and how the modularity and extensibility work, in
Chapter 6.

 Exploring the Start Page

 When you start Visual Studio, the integrated development environment (IDE) presents a
familiar screen to the user — the Start Page shown in Figure 2 - 1. The Start Page is familiar
to those who have used Visual Studio 2008, but this one is a brand new part. If you navigate

CH002.indd 15CH002.indd 15 9/6/10 4:31:16 PM9/6/10 4:31:16 PM

16 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

between the pages and subpages of the Start Page, you will discover that this is the fi rst place where
you ’ ll see some glimpse of WPF — icons look more detailed, and selected items smoothly animate.

 FIGURE 2 - 1: Visual Studio 2010 Start Page

 One of the new features in Visual Studio 2010 is the capability to connect to a Team Foundation
Server straight from the Start Page. Another new feature is that the Recent Projects list can be
pinned, which makes the opening of a solution more accessible.

 When Visual Studio 2010 is used under Microsoft Windows 7, the IDE leverages a new feature in the
operating system, and the same pinning functionality for recently opened projects is available when you
right - click the Visual Studio icon on the taskbar. Projects are pinned and can be opened with a single
click as well. The difference is that a new instance of Visual Studio will be started for this operation.

 The fi rst extensibility point is right in front of you. The Start Page itself is a pure WPF window,
and its content is freely customizable. This is loaded by the IDE from the directory < Visual Studio
Install Directory > \Common7\IDE\StartPages\en\StartPage.xaml . This is valid for the
English version of the Visual Studio.

You can read more about Start Page customization at http://msdn.microsoft
.com/en-us/library/aa991992(VS.100).aspx .

 Understanding Window Management

 In previous versions of Visual Studio, two kinds of windows were defi ned within the IDE: tool
windows and document windows . You were not able to dock a tool window with a document
window. Rather, a tool window was dockable only with other tool windows, or to the edge of the

CH002.indd 16CH002.indd 16 9/6/10 4:31:33 PM9/6/10 4:31:33 PM

Basic IDE Overview ❘ 17

IDE. However, with tool windows, the user had the capability of dragging them out onto a second
monitor, and this solution proved to be perfect for the docking problem.

 For Visual Studio 2010, Microsoft has enhanced window management. This new version unifi es
the concept of windows, and the differentiation between the two kinds of windows has disappeared
from the UI perspective. Now you can dock these windows as you like. Figure 2 - 2 shows how an
output window can be docked into the tabbed document area of the IDE.

 FIGURE 2 - 2: Output window dragged into the tabbed document area

 The visual feedback about the result of a window - docking operation also is much improved, so the
user will know where the currently dragged window will be exactly positioned after releasing
the left mouse button.

 As development tasks become more complex, every developer needs more than just a code editor
window. One display surface, regardless of its size and resolution, cannot fulfi ll all of the developer ’ s
requirements. That ’ s why the Visual Studio team added the multi - monitor support to Visual Studio
2010. Now, any window from the IDE can be dragged out and aligned onto a second, third, and
so on, monitor, and the IDE will remember your settings correctly. It will even reuse them for future
Visual Studio starts. This feature is extended in such a way that you can have your own multi -
 monitor setup for, say, development and debug modes.

 Another useful feature is that when you hold down the Ctrl key and double - click the header of a
dragged - out window, the window is docked in its original position.

 New Project Dialog Window

 The next new thing to note occurs when starting a new project or solution. By choosing the New
Project command from the Start Page, you now see the New Project dialog shown in Figure 2 - 3.

CH002.indd Sec1:17CH002.indd Sec1:17 9/6/10 4:31:40 PM9/6/10 4:31:40 PM

18 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

 In the New Project dialog, you now have three options to begin a new project:

 Select a project type from the recently used templates.

 Select a project type from the Installed Templates (which is the old way) .

 Select a project type from the Online Templates (which are the ones submitted by other
developers) .

 You can fi lter on project type names by entering
search criteria into the textbox in the upper - right
corner of the dialog.

 For every new project, you can specify which
framework you would like to use for that
project. However, if you have Silverlight 3 and
Silverlight 4 developer tools installed, this
framework version selection doesn ’ t have any
effect. For a Silverlight project, you must specify
the Silverlight version for the project after you
have clicked the OK button to create the project.
Figure 2 - 4 shows the ensuing Silverlight version
selection dialog.

➤

➤

➤

 FIGURE 2 - 3: New Project dialog

 FIGURE 2 - 4: Silverlight version selection

CH002.indd Sec1:18CH002.indd Sec1:18 9/6/10 4:31:41 PM9/6/10 4:31:41 PM

Basic IDE Overview ❘ 19

 Creating New Projects in a New Way

 Often, a developer will have some old code fi les somewhere on his or her computer, or a complete
project in a directory, but not organized into a project. In Visual Studio 2008, you had to manually
create a new project and add those fi les by hand. In Visual Studio 2010, you invoke the Project
From Existing Code wizard from the File ➪ New Project ➪ Project From Existing Code menu
selection.

 The fi rst step of the wizard is to provide some brief information, including specifying the language
of the project you would like to create.

 In the next wizard step, you name the project and specify the directory where your fi les are stored.
You also tell the IDE what type of project you would like to create.

 Let ’ s say that you have the following fi les in a directory:

 Program.cs

 Data\City.cs

 Data\Country.cs

 Data\Person.cs

 After you have clicked the Finish button, Visual Studio 2010 is unfolding the default project
template for the selected language and, after it has collected all the fi les from the given directory,
it is adding them to the project. When the wizard has fi nished its job, you get a ready - to - compile
console application.

 Using the Add Reference Dialog Window

 The Add Reference dialog window is one of the most used windows within Visual Studio. As you
might expect, since multi - targeting became a core functionality of the whole project system within
the IDE, every part of the IDE offers some
functionality that is somehow dependent on a
version of the .NET Framework. Because of this,
the given project targets must be smarter and
more developer - friendly.

 That ’ s why this dialog box has been enhanced
for Visual Studio 2010. Take a look at the
Runtime column in Figure 2 - 5. In the upper
part of the fi gure, you can see how the window
is opened for a project that has the .NET 2.0
Framework as its target. In the lower part of
the fi gure, you can see that same information
for a .NET 4 - targeted project. This dialog
not only fi lters based on the .NET Framework
version, but also based on the type of the
project.

➤

➤

➤

➤

 FIGURE 2 - 5: Add Reference dialog for .NET

Framework 2.0 and 4.0 base project

CH002.indd Sec1:19CH002.indd Sec1:19 9/6/10 4:31:42 PM9/6/10 4:31:42 PM

20 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

 Using the Extension Manager

 In Visual Studio 2008, extensions were often troublesome. Neither their installation nor the
development was easy.

 In Visual Studio 2010, the installation experience has been radically changed. Extension developers
can still use a product install experience based on the Windows Installer, and a distribution based
on a website, but leveraging the online extension manager gallery is just providing developers with
a better opportunity to have their extensions installed on more developer machines. The Extension
Manager now shows available online extensions that are regularly updated, and these can be
installed with a single click of a button.

 FIGURE 2 - 6: Code editor

Chapter 5 provides more information about the functionality of the Extension
Manager.

 EXPLORING NEW DAILY DEVELOPMENT FEATURES

 The following discussion examines the new features that Visual Studio 2010 provides to simplify
your daily development tasks.

 Exploring the Code Editor Window

 This is one area within Visual Studio where most developers spend signifi cant time authoring
code. The code editor of Visual Studio 2010 is built from scratch, and with extensibility
in mind.

 A lot of features available in Visual Studio
2008 only through third - party extensions are
now available in the IDE. The code editor
now displays important information to the
developer in a clear, visual form. Figure 2 - 6
shows the code editor. Let ’ s take a closer look
at some of the features in the code editor.

 Take a look at the vertical line on the left
margin, under the row of the class defi nition.
The editor is using different colors to mark
the lines that were changed before the last
save operation and the lines which was
modifi ed after the last save operation.

CH002.indd Sec1:20CH002.indd Sec1:20 9/6/10 4:31:43 PM9/6/10 4:31:43 PM

Exploring New Daily Development Features ❘ 21

 In the upper - right corner of the editor, above the scrollbar, you will fi nd a splitter button. By
dragging that, you can split your window and navigate within the same fi le in the two different
windows. Although this functionality is not that new, another new feature capitalizes on the power
of WPF — you can zoom your code to any level you need. You no longer must change the font size
when doing code - only presentations. Now you can change the zoom level by holding down the Ctrl
key and moving the mouse wheel, and everyone will see the code (even from the last row of the
audience).

 WPF and a brand new editor provide the opportunity to greatly
enhance text selection within the code editor. Box selection can be
activated by holding down the Alt key, in addition to the normal
selection keys (for example, Shift and the arrow keys, as well as other
navigation keys). As shown in Figure 2 - 7, when you ’ re doing an empty
block selection, you can start to type, and the typed - in characters will
appear in all rows.

 Notice the thin vertical line following the “ privat ” text in Figure 2 - 7, which is an empty block selection.
Delete and overwrite operations also work for box selection.

 The code editor now incorporates the concept of a visualizer. Different extensibility points now
are available for you to develop your own extension, which provides a richer, more customized
presentation of code. For example, the default comment presentation now displays in italics.

 Another powerful feature of the IDE is the IntelliSense functionality. If you activate an IntelliSense
visualizer extension, you are presented with a much richer IntelliSense presentation, as shown in
Figure 2 - 8. Visual Studio provides a full WPF feature set to use when developing extensions for
the editor.

 IntelliSense also now includes a new function for fi ltering on code. This feature is called Pascal
cased IntelliSense lookup, and it is very powerful because you must type less during your daily
work, which enables a faster delivery time for projects.

 FIGURE 2 - 7: Empty box

selection for typing in

multiple rows simultaneously

 FIGURE 2 - 8: Rich IntelliSense presentation via an extension

 IntelliSense can operate in two modes: Consume First mode and regular IntelliSense mode. You can
switch between the two modes by using the Ctrl+Alt+Space keyboard combination.

 As an example, say you entered IOE and pressed the space key in Consume First mode. The editor
inserts the fi rst match — InvalidOutOfRangeException , in this case — at the caret position, as

CH002.indd Sec2:21CH002.indd Sec2:21 9/6/10 4:31:50 PM9/6/10 4:31:50 PM

22 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

shown in Figure 2 - 9. In regular mode (Figure 2 - 10), “ IOE ”
remains as typed text, since you did not make an explicit
selection from the available items with the up arrow and
down arrow keys, followed by a Tab or Enter key.

 FIGURE 2 - 9: IntelliSense pop - up selection

in Consume First mode

 FIGURE 2 - 10: IntelliSense pop - up

selection in Regular mode

 Code Navigation

 This section examines other new code - navigation features
included in Visual Studio 2010.

 Reference Highlighting

 Reference highlighting is a function that helps with the
reading of code. If you set the cursor on a variable name,
for example, all the other occurrences of that identifi er are
highlighted in the editor, as shown in Figure 2 - 11.

 Search and Replace

 Visual Studio 2008 included Find and “ Find in
Files ” with their Replace complements for code
navigation and searching, as well as incremental
search. A new feature in Visual Studio 2010
called Navigate To can be activated with the
Ctrl+comma key sequence. This provides a
powerful way to quickly search for something
when you don ’ t know what kind of text you ’ re
looking for. The executed search is very relaxed
(for example, whitespace characters are not
taken into account).

 As shown in Figure 2 - 12, the Navigate To dialog
is very simple and does not clutter the code
editor window.

 FIGURE 2 - 11: Reference highlighting on

Name property

 FIGURE 2 - 12: Navigate To dialog in action

CH002.indd Sec2:22CH002.indd Sec2:22 9/6/10 4:31:51 PM9/6/10 4:31:51 PM

Exploring New Daily Development Features ❘ 23

 Call Hierarchy

 A new function called Call Hierarchy can also be used to navigate code. This function can be
invoked by positioning the caret in a method ’ s name and pressing Ctrl+K, followed by the T key.
The function is also available from the context menu.

 Call Hierarchy shows what methods the selected function is calling, or who is calling the selected
method. This function helps you to understand code execution and code fl ow in more complex
solutions. Call Hierarchy display can go to any depth in function calls. One caveat of this
function is that when someone is using interfaces heavily, this function cannot resolve a “ default
implementation ” class for a given interface.

 Figure 2 - 13 shows the Call Hierarchy function in action on a simple class.

 FIGURE 2 - 13: Call Hierarchy function in action

CH002.indd Sec2:23CH002.indd Sec2:23 9/6/10 4:31:52 PM9/6/10 4:31:52 PM

24 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

 Code Defi nition

 In previous versions of Visual Studio, it was very tedious to look up a class defi nition or its
implementation. To navigate this task, you had to use Go To Defi nition, but this function took your
eye from the current code position to a new code fi le. In Visual Studio 2010, a new Code Defi nition
Window automatically navigates to the given type as you move the caret around in your code.

 Figure 2 - 14 shows that, as soon as you move to the form1 text, the Code Defi nition window opens
the Form1.cs fi le and navigates to the class defi nition of the form1 class.

 FIGURE 2 - 14: Code Defi nition window in action

 Debugging

 The last feature to note regarding the code editor window is related to debugging. In Visual Studio
2010, you can utilize much better management options for breakpoints. One of the most powerful
functions is the capability to label breakpoints.

 For example, let ’ s say that you have a NameLabels label assigned to all parts of the code that have
something to do with the Name property. In the Breakpoints tool window, you can fi lter on labels,
which is very helpful if you have organized labels within the solution, and, say, you must debug
based on a dedicated, assigned label.

 Generate From Usage

 The Generate From Usage feature was designed to help Test Driven Development (TDD). When
following the principles of TDD, developers write the unit and other tests for the project based
on the specifi cation, before the actual code that will be tested is written. When the developers are
fi nished with the tests, the classes and functions are implemented, and, as the process advances,

CH002.indd Sec2:24CH002.indd Sec2:24 9/6/10 4:31:53 PM9/6/10 4:31:53 PM

Exploring the Visual Designers ❘ 25

more and more tests will succeed. TDD makes for a very tedious process to implement all the
classes, constructors, and methods used by a given test.

 However, now, the Generate From Usage feature is making all this really simple. With this feature,
you can create classes, constructors, and methods without actually leaving the current editing
position. Consider the following CalculatorTest class:

 [TestClass]
 public class CalculatorTest
 {
 [TestMethod]
 public void AddTestSuccess()
 {
 var calculator = new Calculator();

 var result = calculator.Add(5, 6);

 Assert.AreEqual(result, 11);
 }
 }

 Visual Studio underlines Calculator type name, since that ’ s not defi ned anywhere in the solution.

 If you open the smart tag and select the Generate New Type command, the ensuing dialog asks you
to tell the IDE the following things:

 What kind of item you would like to create (for example, Class, Struct, Enum, or Interface)

 The accessibility of the item you are about to create

 A target project for the item from the solution

 An existing fi le (or an existing fi le within the project) where the generated item will be
appended

 As soon as the class is generated, the previously underlined line becomes valid, and then all you
must do is add the defi nition of the Add method by invoking the same dialog again, and, following
that, add the implementation of the method.

 Now, if you run the unit test, it will succeed.

 EXPLORING THE VISUAL DESIGNERS

 Visual Studio has included a lot of new designers from release to release, and included enhancements
to existing ones. In Visual Studio 2010, the following designers have been added or greatly
enhanced:

 WPF/Silverlight Designer

 XML Schema Designer

 This section discusses some new features without going into detail about a specifi c feature (since
you can get more information about them in the following chapters).

➤

➤

➤

➤

➤

➤

CH002.indd Sec3:25CH002.indd Sec3:25 9/6/10 4:31:54 PM9/6/10 4:31:54 PM

26 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

 WPF Designer

 The WPF Designer was added in Visual Studio 2008, with a basic design - time experience, and
targeted to WPF projects. For Silverlight, the design surface was in read - only mode. In Visual
Studio 2010, the editor has been enhanced to provide a unifi ed design - time experience for WPF
and Silverlight developers alike.

 Figure 2 - 15 shows time - related windows within the IDE using the WPF Designer. A few things in
this fi gure should be noted.

 FIGURE 2 - 15: WPF development related windows

 In the Toolbox window, you ’ ll notice the full range of controls for both platforms, with drag - and -
 drop support to the editor surface.

 On the right side of Figure 2 - 15, you can see a Document Outline window. This is really handy
when you ’ d like to look at the visual tree and structure of the currently opened XAML fi le. Under
that, you can see the Properties grid. This grid is not the one you may have used during Windows
Forms development. It ’ s a brand new, extensible, WPF - based property grid.

 The Properties grid features two tabs: Properties and Events. You can sort the properties
alphabetically, or you can sort them by categories. However, in Visual Studio 2010, you can type
in partial property names to fi lter on them. This way, when you are looking for a property, it ’ s
sometimes faster to type in a few letters, rather than trying to fi nd it by scrolling.

 In the middle of Figure 2 - 15, you ’ ll notice there is the split view of the design surface. You can switch
between the split and normal view, or you can even vertically split (instead of horizontally) the Design
and XAML views. On the left side of the design surface is a zoom control that enables you to zoom
in and out in a fairly high range to get the ideal zoom factor for the given operation.

 As you see in Figure 2 - 15 the Last Name text box is selected in the editor surface, and the selection
is automatically synchronizing the XAML view (TextBox). When a new element is selected either in
the XAML view or in the design view, the default property of the given element is also selected in the
property grid.

CH002.indd Sec3:26CH002.indd Sec3:26 9/6/10 4:31:54 PM9/6/10 4:31:54 PM

New Tools for Architects ❘ 27

 A powerful feature of the property grid is that it has a full - blown binding editor embedded. The
binding editor can be activated by clicking the property type dependent symbol on the right side of
the property name cell. The binding editor itself is represented with an Accordion control, and every
aspect of the data binding can be edited here. All edit operations are refl ected instantly in the XAML
view as well .

 For debugging purposes, Visual Studio 2010 includes a WPF tree visualization that enables the
run - time inspection of the visual tree of an element. It can be activated from a data tip, Watch
window, Autos window, or from the Locals window by clicking the magnifying glass icon next to
the name of a WPF object.

 XML Schema Designer

 XML Schema Designer is a new addition to the IDE. In previous versions of Visual Studio,
developers could only author XML schema through an XML Schema Explorer.

 XML Schema Designer is a WPF - based graphical designer that aids with the visualization of the of
XML schema sets at different levels of abstraction, including the following:

 XML Schema Explorer — This helps the navigation within the XML Schema defi nition.

 Start View — This is the entry point into this designer. Other functions are accessible from
here.

 Graph View — This visualizes the relationships between the schema elements.

 Content Model View — This visualizes the details of the schema elements, and supports
expansion of included types.

 NEW TOOLS FOR ARCHITECTS

 The architect role was fi rst addressed in Visual Studio
2008 Team System, but missing from the product were
a lot of tasks and tools that can help the architects
to do their daily work (such as designing systems,
validating existing code against an architecture, or
architecting) within the IDE.

 Visual Studio 2010 incorporates unifi ed modeling
language (UML) support with forward - and reverse -
 engineering. Architecture Explorer helps you navigate
a solution from the architecture point of view, and
layer diagrams enable the mapping and validation of a
logical architecture to the physical solution.

 The new IDE offers a new project type named
Modeling. All architectural items are contained
within this project. Figure 2 - 16 shows a sample
business n - tier application structure that includes a
Modeling project.

➤

➤

➤

➤

 FIGURE 2 - 16: Solution structure with

Modeling project

CH002.indd Sec4:27CH002.indd Sec4:27 9/6/10 4:31:55 PM9/6/10 4:31:55 PM

28 ❘ CHAPTER 2 VISUAL STUDIO UI ENHANCEMENTS

 The example solution contains a client application, a service, and some
business logic classes. The architect can defi ne the architecture of such
system in a layer diagram by creating the boxes for each part of the system
and adding dependencies. A layer diagram is a logical representation of
the system. The architect can assign projects, namespaces, and types with
each element in the diagram. During regular development or at every build,
the architecture in the layer diagram can be validated against the physical
solution structure.

 Figure 2 - 17 shows the layer diagram for the sample solution. Notice the
numbers in each box. The UI layer has one ClientApplication project
associated, the Service layer has one WCF Services project assigned, and
the Business layer has four business logic classes assigned. The fi rst two
assignments were done by dragging and dropping the projects themselves onto
the boxes representing each layer. The business logic assignment was done
from the Architecture Explorer view.

 As shown in Figure 2 - 18, the Architecture Explorer supports easy navigation
within the solution:

 Class view — The fi rst level is the namespace level, second level is the
class level, and, going beneath that, the member level (the last level) is
the level of method calls.

 Solution view — The fi rst level is the project level, the next is the fi le level, and, from
there, the same levels are available as when you navigate through the Class view.

 File System navigation — This has been added to make the fi les outside a solution
navigable, too.

 Saved DGQL Query mode — This makes the navigation possible based on a saved
Directed Graph Query Language (DGQL) fi le.

➤

➤

➤

➤

 FIGURE 2 - 17: Layer

diagram

 FIGURE 2 - 18: Architecture Explorer Window

 As mentioned, full UML editing support is available within the modeling project. One of the
powerful features is the capability to reverse a method into a sequence diagram by executing a
command from the context menu.

CH002.indd Sec4:28CH002.indd Sec4:28 9/6/10 4:31:56 PM9/6/10 4:31:56 PM

Summary ❘ 29

 SUMMARY

 This chapter discussed the new UI - related features and functions of Visual Studio 2010. You
learned about changes to the Shell itself, including the new window management and multi - monitor
support. You learned about the new code editor features and the extensibility possibilities. The new
visual designers and their features were also introduced. Finally, you got a glimpse of the functions
available for architects in the new IDE.

 Chapter 3 provides an in - depth exploration of Visual Studio code snippets and some features that
can help you become more productive in your daily work.

CH002.indd Sec5:29CH002.indd Sec5:29 9/6/10 4:31:57 PM9/6/10 4:31:57 PM

CH002.indd Sec5:30CH002.indd Sec5:30 9/6/10 4:31:58 PM9/6/10 4:31:58 PM

Visual Studio Code Snippets

 When you develop applications, you spend a huge amount of time typing source code. Even
if there are many designers and wizards in Visual Studio generating code skeletons, resource
information, and many code related fi les, at the end of the day, each developer writes code.
Sometimes, typing is very tedious. For example, let ’ s assume you have the Name property
defi ned with the following pattern in C#:

private string _Name;

public string Name
{
 get { return _Name; }
 set
 {
 _Name = value;
 PropertyChanged(“Name”, value);
 }
}

 It almost could be written with the automatic property syntax of C# (this syntax was
introduced in C# 3.0), but, unfortunately, you have a PropertyChanged call in the property
setter requiring a backing fi eld and manually created getter - setter defi nitions. If you have other
properties such as Title , Description , Active , and so on, following the same pattern as
 Name , you must type the previous pattern in addition to a lot of replacing for the occurrences
of Name and _Name with the appropriate identifi ers.

 The work of Visual Basic programmers becomes even dustier, because they must type a bit
more, as shown here:

 Private _Name As String
 Public Property Name() As String
 Get
 Return _Name
 End Get

 3

CH003.indd 31CH003.indd 31 9/6/10 4:34:24 PM9/6/10 4:34:24 PM

32 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 Set(ByVal value As String)
 _Name = value
 PropertyChanged(“Name”, value)
 End Set
 End Property

 What if you could create a lot of properties with these semantics by only typing their names? Well,
you can if you use code snippets!

 Early versions of Visual Studio did not include any features that could prevent developers from
having to do this kind of repetitive work. One of the most requested features was adding some tool
into Visual Studio that was capable of creating code based on some template mechanism in order to
simplify typing. Code completion helped a lot, because it could save about every second keystroke,
but it was not effi cient enough.

 Visual Studio 2005 introduced the concept of code snippets . The idea behind this concept was (in
satisfying the wishes of the community) to enable developers to declare a template of code, and then
use it as many times as they wanted in their source code fi les. A template had zero, one, or more
placeholders that could be changed by users — a change in one place altered all the placeholder ’ s
occurrences in the template. This concept was successful in compensating the feature developers,
compensation that was missed in the two early .NET - related versions of Visual Studio.

 Code snippets are easy - fi tting tools for developers who are fastidious about spending their time on
useful things. This chapter provides details that that will help you learn about code snippets. After
reading this chapter, you will be familiar with the following:

 Understanding the concept of code snippets . — This chapter provides a brief explanation
about what code snippets are, and how to use them. You will also learn about a few
language - dependent snippet features that highlight differences between the C# code editor
and the Visual Basic Editor.

 Creating code snippets . — You will create a very simple snippet and integrate it with the
Visual Studio integrated development environment (IDE), and learn about the details of a
fi le format to defi ne a code snippet.

 Managing code snippets . — During your everyday work, you may use not only one, but
more programming languages, and a few dozen code snippets. In this chapter, you will
look at how snippets are stored on your computer, and learn how to use the Code Snippets
Manager to manage them.

 Toward the end of this chapter, you will learn about a few advanced features and extension
opportunities, as well as a few great community tools to help you with code snippet development.

 UNDERSTANDING CODE SNIPPETS

 The concept behind code snippet s is simple and powerful. Snippets are source code pieces that may
range from one character to pages of text, and can be easily inserted into the code. The code to be
inserted is defi ned with a template mechanism that allows defi ning placeholder s and changing them

➤

➤

➤

CH003.indd 32CH003.indd 32 9/6/10 4:34:27 PM9/6/10 4:34:27 PM

when the template is about to be applied. Of course, the same placeholder can be put into many
places within the template, and altering the text of one placeholder triggers changes to all of its
occurrences accordingly.

 Let ’ s revisit that earlier code to defi ne a property:

private string _Name;

public string Name
{
 get { return _Name; }
 set
 {
 _Name = value;
 PropertyChanged(“Name”, value);
 }
}

 Here you see fi ve occurrences of Name used as identifi er or string literal. A code template for this
property could look like this:

private string _%Name%;

public string %Name%
{
 get { return _%Name%; }
 set
 {
 _%Name% = value;
 PropertyChanged(“%Name%”, value);
 }
}

 When it is time to insert the code template, the %Name% value can be changed to a current value to
be applied together with the template.

 Although code snippets are simple, there are a few implementation details that you should know
about:

 From a functional point of view, there are two kinds of snippets. With expansion snippet s,
the code template is simply inserted into the current editor position. With surrounding
snippet s, you let the snippet embrace the code that you select. A good example is a snippet
that creates a try ... catch statement block around selected code. Snippets can be defi ned
so that they are simultaneously expansion and surrounding types.

 C# and Visual Basic code snippet implementations are different with respect to a few
features. There are features available in one language context but not in the other, and
vice versa.

➤

➤

Understanding Code Snippets ❘ 33

CH003.indd 33CH003.indd 33 9/6/10 4:34:28 PM9/6/10 4:34:28 PM

34 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 There are no language - independent code snippets that insert the appropriate snippet
depending on the context in which they are used.

 In C#, code snippets are also used for refactoring. Behind a large number of refactoring
actions, code snippets bear the brunt of the work.

 Visual Studio 2008 and 2010 allow multi - targeting. You might have snippets that are
target framework - dependent. They can be inserted but may not compile with the
wrong target.

 Of course, the most important thing is that you can use not only the code snippets shipped with
Visual Studio, but you can also create your own snippets and integrate them with the IDE. Your
snippets are totally coequal with the ones included with Visual Studio. To understand how you can
build your own snippets, fi rst let ’ s see how to use them.

 Using Code Snippets

 There are several ways to invoke code snippets. To use them, you
must have at least one code editor window open. The expansion
and surrounding type of code snippets can be activated with
separate shortcuts. The reason behind this is that a certain
snippet can be an expansion and surrounding snippet at the same
time. If you have selected text in the code editor, the expansion
type snippet should replace the selection with the inserted
code template, while the surrounding type snippet should
embrace the selection into the template.

 With a C# code fi le open, you can invoke the code snippets from
the Edit ➪ IntelliSense menu, as shown in Figure 3 - 1.

 As you can see, pressing the Ctrl+K keys, and then the X key,
is a shortcut to the Insert Snippet function, while Ctrl+K, and
S represent the shortcut key combination to the Surround With
function. The same functions presented on the Edit menu are also
available on code editor ’ s context menu (accessed by using a right
mouse - click), as shown in Figure 3 - 2.

 Let ’ s have a look at how to insert a code snippet.

 Inserting a Snippet

 Select a position in the code editor where you want to insert a
snippet, and select the Insert Snippet menu command, or use
the Ctrl+K, X shortcut combination. Visual Studio displays
a navigation line and a list of virtual folders that groups the
available code snippets by their category. Figure 3 - 3 shows the list
of top - level snippet categories for C#.

➤

➤

➤

 FIGURE 3 - 2: Code snippet

 functions in the context menu

 FIGURE 3 - 1: Invoking code

 snippets from the Edit ➪

IntelliSense menu

CH003.indd 34CH003.indd 34 9/6/10 4:34:28 PM9/6/10 4:34:28 PM

 You can use the up arrow, down arrow, and Enter keys, or the mouse, to select a category. Categories
may have subcategories. As you traverse through them, the navigation line displays the path. Using the
Backspace key, you can go back to an upper - category level. When you reach the level of code snippets,
the list displays the names of available snippets. When you select any of the available snippets, the
related tooltip displays their descriptions and their shortcuts, as shown in Figure 3 - 4.

 FIGURE 3 - 3: Snippet categories that are displayed FIGURE 3 - 4: Traversing through snippet categories

Understanding Code Snippets ❘ 35

 FIGURE 3 - 5: Code - completion list

with snippets

 At the snippet level, you invoke the selected snippet by using the
Tab or the Enter keys, or by using a mouse - click.

 Using these ways of inserting a snippet is practical when you are
just getting acquainted with the variety of available snippets,
but not really useful when you know exactly which snippet you
want to invoke. A much more effi cient way of accessing snippets
is through their shortcuts. Of course, that means you must
remember the shortcut — or at least the fi rst few characters. Let ’ s
have a look at how this method works.

 Open a project with a C# fi le, or create a new C# project just for
testing purposes. There is a snippet with shortcut propfull that
inserts a property with a backing fi eld.

 Because you know its shortcut, you can use it to invoke the snippet.
Start typing propfull . As you type, the IntelliSense code - completion
list appears. This list contains the code snippets matching the keys
you ’ ve already typed. Figure 3 - 5 shows that all code snippets starting
with “ pro ” on this list.

 When you select the code snippet to invoke (either by using a mouse -
 click, or by pressing Enter and then Tab, or pressing Tab twice), the
snippet template is inserted into the code, indicating the placeholders
you can change, as shown in Figure 3 - 6.

 FIGURE 3 - 6: Code template

with placeholders

CH003.indd 35CH003.indd 35 9/6/10 4:34:29 PM9/6/10 4:34:29 PM

36 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 When the code snippet is inserted, the focus is set on the fi rst placeholder (int in Figure 3 - 6).
Also, the other occurrence of the int placeholder is marked to indicate that editing fi rst one will
automatically change the other. By pressing Tab, you can move to the next placeholder; by pressing
Shift+Tab, you can go back to the previous one. While you are in a placeholder, you can replace its
content at any time. As you move to another placeholder, the content change will be propagated to
other occurrences of the placeholder. When you press the Enter key, you will be fi nished with code
template editing, and placeholder highlights are removed.

 While you are in the code template editing mode, you can page up and page down in the code. You
can even select and copy code details, and then replace the placeholder with them. However, when
you try to edit any other part of the text outside of the code template, editing is terminated.

 Surrounding the Selected Code with a Snippet

 You should now be familiar with how to use the expansion snippets. Surrounding snippets are very
similar, and you can use them exactly the same way as expansion snippets. The only difference is
how you invoke them.

 Invoking a surrounding snippet with its shortcut (just as you did previously with expansion
snippets) will work, but will embrace empty text. If you want it to encapsulate the selected text, you
cannot use the shortcut - based approach — typing in the fi rst key of the shortcut will replace the
selected text.

 So, the only way is to select the surrounding text and then invoking the Surround With command
from the menu, or using the Ctrl+K, S key combination. Visual Studio will display the same
navigation line as you saw with expansion snippets, and enable you to traverse through the snippet
categories, similar to what you did previously. When you invoke the snippet, you can edit the
placeholders exactly as described earlier.

 The bad news for Visual Basic developers is that surrounding type snippets are not supported by the
Visual Basic Editor. To compensate for this lack of support, the Visual Basic Editor provides some
nice features not implemented in other editors.

 Visual Basic Specifi c Features

 The Visual Basic Editor enables you to defi ne code snippets by means of what they contain — type
or method defi nitions, method body statements, and so on. The
IntelliSense code completion and the Insert Snippet command are smart
enough to offer only the list of snippets available at the current Editor
position.

 Let ’ s say that you are using the shortcut Property to insert a property
declaration. If you type it within a module or class, but outside of a
method body, the snippet is offered on the code - completion list, as shown
in Figure 3 - 7.

 Now, let ’ s say you move the caret into the body of a method and try to
invoke the Property snippet with its shortcut. This time, the snippet is

 FIGURE 3 - 7: Property can

be inserted here

CH003.indd 36CH003.indd 36 9/6/10 4:34:30 PM9/6/10 4:34:30 PM

not displayed in the completion list. As shown
in Figure 3 - 8, only the PropertyCollection
class (which starts with the “ Property ”
prefi x) is displayed.

 This is not the only feature unique for Visual
Basic. In other languages, you can edit the
template of the code snippet while you edit
placeholders. As you try to edit something
else outside of the placeholders, template editing is
terminated.

 Visual Basic is different, however, in at least a couple
of ways. First, when you press Enter
while editing a placeholder, you are allowed to put
a new line into the placeholder. Second, you can
edit the placeholders in the code templates, not just
directly after you invoke the snippet. If you use the
Edit ➪ IntelliSense ➪ Show Snippet Highlighting
command to highlight all placeholders in the active
code document, you are allowed to edit them. If you
insert several code snippets into the document, all of
their placeholders will be highlighted, as shown in
Figure 3 - 9.

 Similarly, with the Edit ➪ IntelliSense ➪ Hide Snippet Highlights command, you can disable
placeholder editing. When you close the code fi le, and open it again, you lose the opportunity to
edit template placeholders.

 HTML, SQL, and JScript Code Snippets

 Visual Studio 2005 was the fi rst version that implemented the code snippet feature, and it shipped
with a few dozen snippets out - of - the - box. At that time, Visual C#, Visual Basic, and Visual J# were
supported.

 Visual Studio 2008 was the fi rst version to support .NET 3.0 and .NET 3.5. This version added new
snippets to the existing ones, many of them related to Workfl ow Foundation (WF) and to Windows
Presentation Foundation (WPF). Visual Studio 2008 abandoned supporting Visual J#, so the
corresponding snippets were also removed. However, it added great snippet support for extensible
markup language (XML) and XML Schema Defi nition (XSD) fi les.

 Visual Studio 2010 adds code snippet support for the HTML, SQL, and JScript languages. There
are a few dozen code snippets supporting ASP.NET out - of - the - box, and Visual Studio does
not skimp with JScript snippets. This should defi nitely be good news for web developers. SQL
developers also benefi t because Visual Studio 2010 ships with about two dozen SQL snippets.

Understanding Code Snippets ❘ 37

 FIGURE 3 - 8: Property cannot be inserted here

 FIGURE 3 - 9: Show Snippet Highlighting

CH003.indd 37CH003.indd 37 9/6/10 4:34:30 PM9/6/10 4:34:30 PM

38 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 CREATING CODE SNIPPETS

 Without a doubt, code snippets would not provide enough value if you were constrained to using
only snippets shipped with Visual Studio. Of course, you can always add your own snippets to the
library of existing ones. You don ’ t have to stop at creating general - purpose code snippets, since you
can also tailor them to your special needs.

 In the following discussions, you will learn how easy it is to create a code snippet using XML
format, as well as the nitty - gritty details of this particular format.

 Creating a Simple Code Snippet

 Create a new XML fi le by selecting File ➪ New ➪ File, and then select the XML fi le format from
the listed options. Change the name of the fi le to ConsoleSnippet.snippet and create it.

 Select the document window of the newly created fi le and view its properties. To enable the
IntelliSense support for editing, assign the appropriate XSD fi le to this .snippet fi le with help of
Schemas in the property window. By clicking the ellipsis button belonging to this property, you can
set this schema with the ensuing dialog.

 Toward the middle of the list, you will fi nd the target namespace ending with CodeSnippet with a
fi lename snippetformat.xsd . Right - click on this row, and click on the “ Use selected schemas ” item
in the context menu, as shown in Figure 3 - 10. Close the dialog with OK.

 The .snippet extension is reserved by Visual Studio for code snippet defi nitions.

 FIGURE 3 - 10: Assign the schema to the code snippet fi le

CH003.indd 38CH003.indd 38 9/6/10 4:34:31 PM9/6/10 4:34:31 PM

 Writing the Code Snippet Defi nition

 You now can type in the defi nition of the snippet. Listing 3 - 1 shows the text you should type in.
IntelliSense and code completion will help you accelerate the typing.

 LISTING 3 - 1: ConsoleSnippet.snippet

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > Write a message to the console < /Title >
 < Shortcut > wmc < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description >
 This snippet inserts a “Console.WriteLine” invocation into the code.
 < /Description >
 < SnippetTypes >
 < SnippetType > Expansion < /SnippetType >
 < /SnippetTypes >
 < /Header >
 < Snippet >
 < Code Language=”CSharp” >
 < ![CDATA[
 Console.WriteLine(“This is a message”);
]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

 Save the fi le in one of your working folders.

 Importing the Code Snippet

 To make the snippet available in Visual Studio, go to the Tools ➪ Code Snippets Manager dialog.
In the Language drop - down, select Visual C#. Below the Language drop - down, you will see a
few folders listed. Select the My Code Snippets
folder and click on the Import button.

 A Code Snippets Directory fi le - selection dialog
pops up on the screen to enable you to select
a .snippet fi le. Select the ConsoleSnippet.
snippet fi le from the folder where you previously
saved it. Click Open. The Import Code Snippet
dialog then opens to enable you to select the
location of the specifi ed snippet fi le. Click Finish to
signal that you accept the location.

 The new code snippet fi le is imported. You can see it
in the Code Snippets Manager when you expand the
 My Code Snippets folder, as shown in Figure 3 - 11.

Creating Code Snippets ❘ 39

 FIGURE 3 - 11: The imported code snippet

CH003.indd 39CH003.indd 39 9/6/10 4:34:42 PM9/6/10 4:34:42 PM

40 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 In the folder list, you see the title of the snippet, and, to the right, you will recognize the details you
specifi ed in the < Header > section of Listing 3 - 1.

 Let ’ s try using the snippet.

 Accessing and Using the New Snippet

 To begin, create a C# console application and open the Program.
cs fi le. Look for a position where a statement can be inserted,
and press the “ w ” key. IntelliSense automatically opens a list of
possible completions for “ w, ” as shown in Figure 3 - 12.

 The “ wmc ” item in the list is highlighted as the best suggestion,
and its icon unambiguously indicates that “ wmc ” is a code snippet
shortcut. Pressing the Tab key twice invokes the code snippet,
and the code for the snippet appears in the editor, as shown in
Figure 3 - 13.

 Although the snippet is working, you still have a few things to
polish. First, you have unnecessary line breaks above and below
the inserted statement. Second, you defi nitely would not like
to use the default message but rather should type the one
fi tting with the source code context. Before typing this
custom message, select the default one. Now you must
struggle a bit with whether to use either the mouse or the
keyboard.

 Let ’ s remove these small pains and modify the < Snippet >
section shown previously in Listing 3 - 1. Listing 3 - 2 shows
the modifi ed code.

 LISTING 3 - 2: The Modifi ed < Snippet > Section

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > Write a message to the console < /Title >
 < Shortcut > wmc < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description >
 This snippet inserts a “Console.WriteLine” invocation into the code.
 < /Description >
 < SnippetTypes >
 < SnippetType > Expansion < /SnippetType >
 < /SnippetTypes >
 < /Header >
 < Snippet >

 FIGURE 3 - 12: Code - completion list

with code snippet suggestions

 FIGURE 3 - 13: The result of applying the

snippet

CH003.indd 40CH003.indd 40 9/6/10 4:34:43 PM9/6/10 4:34:43 PM

 < Declarations >
 < Literal >
 < ID > message < /ID >
 < ToolTip > The message to write to the console < /ToolTip >
 < Default > Message < /Default >
 < /Literal >
 < /Declarations >
 < Code Language=”CSharp” >
 < ![CDATA[Console.WriteLine(“$message$”);]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

 Note the addition of a < Declarations > section to the < Snippet > section defi ning a literal
parameter named message . Also note that the Code element has been modifi ed by removing the
unnecessary line breaks and adding a reference to the message literal enclosed in dollar signs.

 Save and import the modifi ed snippet declaration again. The Code Snippets Manager recognizes
that you are importing a snippet fi le that has already been added to the folder. It pops up a dialog
to enable you to decide whether you want to rename or overwrite, or maybe skip it. Choose to
overwrite, and the modifi ed snippet will replace the original one.

 Let ’ s try that out. After typing “ wmc ” and pressing the Tab key
twice, the snippet ’ s code is inserted and the “ Message ” text is
automatically selected, allowing you to replace it with the text you
type in, as shown in Figure 3 - 14.

 You can see how easy it is to declare a new code snippet. Now let ’ s
look behind the structure of the code snippet defi nition fi le.

 The Code Snippet File Structure

 The structure of a code snippet fi le is simple. It doesn ’ t have too many XML nodes, and its structure
can be refl ected with the following skeleton:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format=”1.0” >
 < Header >
 < !-- General information goes here -- >
 < /Header >
 < Snippet >
 < !-- Here goes the code template -- >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

Creating Code Snippets ❘ 41

 FIGURE 3 - 14: The snippet

selected the text to override

CH003.indd 41CH003.indd 41 9/6/10 4:34:43 PM9/6/10 4:34:43 PM

42 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 All elements in the fi le should be in the http://schemas.microsoft.com/VisualStudio/2005/
CodeSnippet namespace, as indicated in the < CodeSnippets > section. A single .snippet fi le may
contain one or more snippets, with each of them represented by one < CodeSnippet > element. This
element is valid only with its mandatory Format attribute set to the version number of the format
used. For Visual Studio format numbers, the major number is 1 . Although you can use just about
any minor version number, you cannot leave the minor version tag empty.

 Each < CodeSnippet > must have two mandatory sections:

 < Header > — This section defi nes general information about the snippet. The Code Snippets
Manager leverages information from this section to display snippet properties.

 < Snippet > — This section defi nes the body, or the code template.

 The schema defi nition requires that the < Header > be specifi ed before < Snippet > . However, you can
import the snippet even if this condition is not satisfi ed.

 The < Header > Element

 Child nodes of the < Header > element contain general information about the code snippet — such
as its title, a detailed description, the shortcut to activate it, and so on. Table 3 - 1 summarizes the
available children of < Header > .

➤

➤

 TABLE 3 - 1: Child Elements of < Header >

 ELEMENT DESCRIPTION

 < Author > This element is a placeholder to specify the author of the snippet and any

other related information (such as trademarks, copyright symbols, and so on).

 < Title > This is a short title or name of the snippet. This name is indicated in the folder

list of Code Snippets Manager. You should keep it short but expressive.

 < Description > The name often does not tell enough about the snippet. This element allows you

to add a more verbose description to the snippet, and this description is displayed

in the Code Snippets Manager when the snippet is selected in the folder list.

 < Shortcut > This element defi nes the shortcut text used with the snippet. Typing this

shortcut and pressing the Tab key will activate the snippet, and the related

code template is processed. When code completion is enabled, this shortcut

also appears on the completion list with an icon indicating that this shortcut

is going to invoke a code snippet.

 < Keywords > This element acts as a container for the < Keyword > child elements. Each

 < Keyword > child contains a custom keyword for the snippet. Although

this is currently not used by Visual Studio, it represents a standard way of

keywording code snippets for online content providers.

CH003.indd 42CH003.indd 42 9/6/10 4:34:44 PM9/6/10 4:34:44 PM

 All the elements shown in Table 3 - 1 are optional, so, in theory, you could create a snippet with
empty header information. You can do that, and your snippet will be imported, but with no header
information, it will not work. For example, if you do not specify a < Shortcut > , you cannot invoke
the snippet directly from the editor, only through menu commands. You should defi ne at least the
 < Shortcut > , < Title > , and < Description > elements.

 The < Snippet > Element

 This element holds the information determining the snippet behavior. Child nodes under the
 < Snippet > element defi ne the code template, and the context of the snippet. This is only a container
for child elements. The following discussions describe these children in detail.

 Defi ning the Code

 The < code > element is a placeholder for the code template. As you saw in the source of the earlier
 ConsoleSnippet sample, this template has a few parameters that can be substituted after the
default text of the snippet has been inserted. Generally, this template contains multiple lines, so
the content of < code > is enclosed in an XML CDATA section to keep all whitespaces during the
XML parsing process, as shown here:

 < Code Language=”csharp” > < ![CDATA[enum $name$
{
 $selected$ end
}]] >

 You can use special placeholders in the code, such as end and $selected$ in the previous example.
 end marks the location to place the cursor after the code snippet is inserted. $selected$ represents
text selected in the document that is to be inserted into the surrounding - type snippet when it is invoked.

Creating Code Snippets ❘ 43

 ELEMENT DESCRIPTION

 < SnippetTypes >

 This element is a container for zero, one, or more < SnippetType > elements

that can have one of the following values:

 Expansion — This snippet is inserted at the cursor.

 SurroundsWith — The snippet can be placed around the text that is

selected in the editor.

 Refactoring — This snippet is used for Visual C# refactoring operations, and

cannot be invoked with a shortcut. When you put this value into your custom

snippets, those can be imported into the snippet directory, but they will not

work. Moreover, they will not be displayed in the code - completion list.

 If you do not specify any < SnippetType > value, your snippet can be placed

anywhere in code.

 < HelpUrl > This element contains a link for any additional online support and help information

you write for the snippet. Currently, this tag is only supported by Visual Basic.

CH003.indd 43CH003.indd 43 9/6/10 4:34:44 PM9/6/10 4:34:44 PM

44 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 For example, let ’ s say that you have selected the following text in the editor:

Value1,
Value2,
Value3,

Applying the enum snippet here with the Surround With function will result in the following code:

enum MyEnum
{
 Value1,
 Value2,
 Value3
}

The caret will be placed after Value3 .

 The code element has a few attributes with the following semantics:

 Language — This is a required attribute specifying the language to which the snippet is
related. The editor uses this value to enumerate the code snippets that can be applied in a
specifi c language context. The supported values are CSharp , HTML , JScript , SQL , VB , and XML .

 Delimiter — This defi nes the character to be used in the literals and placeholders. By
default, it is the dollar sign (“ $ ”). You can change it, and, of course, you must then modify
the code template accordingly, as shown in the following sample:

 < Code Language=”CSharp” Delimiter=”%” >
 < ![CDATA[Console.WriteLine(“%message%”);]] >
 < /Code >

 Kind — This specifi es the kind of code that the snippet contains and, therefore, the location
at which a code snippet must be inserted. This can have the values method body , method
decl , type decl , file , and any . This attribute is used by the Visual Basic Editor, but is
ignored by the C# editor. The Visual Basic Editor allows invoking a code snippet only at the
right location. For example, you cannot activate a type declaration code snippet when you
are within a method body. The C# editor does not make any kind of checks, and it allows
activating the snippet at any editor source code position.

 Declaring Literals and Objects

 In the code template, you can use placeholders for literal parameters and objects in order to let the
user change default values. For example, in a class declaration snippet, the name of the type can
be a literal parameter.

 These placeholders are nested in the < Declarations > element that is placed directly in the
 < Snippet > element. Literal parameters are described with the < Literal > object, while object
references are defi ned with the < Object > element.

➤

➤

➤

CH003.indd 44CH003.indd 44 9/6/10 4:34:44 PM9/6/10 4:34:44 PM

 Literal parameters and object references are very similar from the user ’ s point of view. The
Visual Studio team designed the code snippet feature with the following separation in their
semantics:

 < Literal > — This element is used to identify a replacement for a piece of code that is
entirely contained within the snippet, but will likely be customized after it is inserted into
the code. For example, literal strings, numeric values, and some variable names should be
declared as literals.

 < Object > — This element is used to identify an item that is required by the code snippet,
but is likely to be defi ned outside of the snippet itself. For example, Windows Forms
controls, ASP.NET controls, object instances, and type instances should be declared
as objects.

 Both elements have an optional Boolean attribute named Editable that is true by default. You
can set its value to false (or 0) to disable user edits after the snippet code is inserted. You might
wonder, if the Editable attribute is useful, why you should make a literal read - only at all. Later
in this chapter, you will learn about code snippet functions, and you will then see why to use
read - only literals.

 Table 3 - 2 defi nes the elements that can be nested in < Literal > or < Object > .

➤

➤

Creating Code Snippets ❘ 45

 TABLE 3 - 2: Child Elements of < Literal > and < Object >

 ELEMENT DESCRIPTION

 < ID > This required element specifi es the identifi er of the literal parameter or

object. This identifi er is put into the code template enclosed between the

delimiters (dollar sign, by default). You must use exactly one < ID > element.

The identifi er cannot be end or selected because these are reserved.

 < Default > This required element specifi es the default value of the object or literal

parameter when the code snippet is inserted. However, you can omit this

element and, in this case, a literal is replaced with a space character.

 < Type > Specifi es the type of the literal or the object. This parameter is processed

only for < Object > . However you can set it even for < Literal > . There

must be exactly one < Type > element in the < Object > defi nition.

 < Tooltip > This optional element specifi es the hint to be displayed for the literal

parameter or object. You should describe the expected value and the

intended usage of the literal or object.

 < Function > This optional element specifi es a function to execute when the literal

receives focus in Visual Studio. Currently, this element is used only

with snippets written in C#. For other language contexts, this element

is ignored.

CH003.indd 45CH003.indd 45 9/6/10 4:34:45 PM9/6/10 4:34:45 PM

46 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 Language - Dependent Features

 As mentioned previously, a few code snippet features are implemented in different ways,
depending on the language context. For example, Visual Basic does not support surrounding -
 type snippets, while the other languages do. In contrast, Visual Basic allows showing and hiding
code template placeholders after the code template has been inserted and placeholder editing is
terminated.

 The following sections examine a few language - specifi c features that are related to the structure
of the snippet fi le.

 < Imports > and < References >

 There are two child elements of the < Snippet > section that are supported only in Visual Basic.
When you insert a piece of code into the existing code text, even if that is syntactically correct, it
may prevent the full source fi le from compiling for several reasons. One of the most important is
that type and member references used in the inserted code cannot be resolved in the context they
are used.

 You can use the < Imports > element to defi ne namespaces that should be added to the code as soon
as the code snippet is being inserted. For example, if your code snippet is about creating and using
streams or fi les, it probably uses types from the System.IO namespace. Instead of putting the full
type names with the System.IO namespace prefi x in the code template, you can add the following
element to the < Snippet > section:

 < Imports >
 < Import >
 < Namespace > System.IO < /Namespace >
 < /Import >
 < /Imports >

 < Imports > is a container holding one or more < Import > element, each of them having exactly one
 < Namespace > element.

 Sometimes the inserted code applies types that are in assemblies not referenced by the project where
the snippet is used. The < References > element is a container holding one or more < Reference >
elements to provide a way to add references to assemblies when the code snippet is being inserted
into the code. The following extract shows how to use < References > :

 < References >
 < Reference >
 < Assembly > System.Data.dll < /Assembly >
 < Url > http://msdn.microsoft.com/en-us/library/system.data(VS.100).aspx < /Url >
 < /Reference >
 < Reference >
 < Assembly >
 MyCompany.Widgets.dll, Version=1.0, Culture=neutral,
 PublicKeyToken=0123456789abcdef
 < /Assembly >
 < Url > http://mycompany.com/Widgets/overview.html < /Url >
 < Reference >
 < /References >

CH003.indd 46CH003.indd 46 9/6/10 4:34:45 PM9/6/10 4:34:45 PM

 The < Reference > element has two nested elements:

 < Assembly > — This is mandatory, and it contains the name of the assembly to be referenced.
The name can be either the short name of the assembly (such as System.Data.dll shown in
the previous example) or its strong name (such as MyCompany.Widgets.dll).

 < Url > — This is an optional element that can be set to a link providing more information
about the assembly and types encapsulated.

 Code Snippet Functions

 The < Literal > and < Object > elements may contain a child element named < Function > , which
is processed only by the C# code editor. < Function > contains a name with arguments, and it is
executed when a literal or object placeholder receives the focus in the editor.

 Table 3 - 3 summarizes the function names that can be processed by the C# code editor:

➤

➤

Creating Code Snippets ❘ 47

 TABLE 3 - 3: Code Snippet Functions

 FUNCTION DESCRIPTION

 ClassName() Retrieves the name of the class that contains the

snippet being inserted. This function is very useful

when creating constructor or destructor declaration

code or instantiation statements.

 GenerateSwitchCases(EnumLiteral) Generates a switch statement with the related

 case statements according to the type defi ned by

 EnumLiteral . The EnumLiteral parameter can

be either an enumeration type or a reference to a

 < Literal > with an enumeration type.

 SimpleTypeName(TypeName) Reduces the name in the TypeName parameter to the

simplest form in the context in which the snippet is

being inserted. This function helps you make your

code readable by removing unnecessary namespace

tags in type references.

 Let ’ s create a sample to show how these code snippet functions can be used. The sample shown in
Listing 3 - 3 is a bit enforced and probably does not have too much practical use, but it does help to
illustrate the functions. It will create an enumeration member fi eld and a public constructor writing
out debug information and providing a switch statement.

 LISTING 3 - 3: Code Snippet Functions by Example

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format=”1.0” >
 < Header >

continues

CH003.indd 47CH003.indd 47 9/6/10 4:34:46 PM9/6/10 4:34:46 PM

48 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

LISTING 3 - 3 (continued)

 < Title > Enumeration logger < /Title >
 < Shortcut > loge < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description > Creates a logger method for an enumeration. < /Description >
 < /Header >
 < Snippet >
 < Declarations >
 < Literal >
 < ID > type < /ID >
 < ToolTip > Enum member type < /ToolTip >
 < Default > EnumType < /Default >
 < /Literal >
 < Literal Editable=”false” >
 < ID > Debug < /ID >
 < Function > SimpleTypeName(System.Diagnostics.Debug) < /Function >
 < /Literal >
 < Literal Editable=”false” >
 < ID > className < /ID >
 < ToolTip > Class name < /ToolTip >
 < Function > ClassName() < /Function >
 < Default > ClassNameDefault < /Default >
 < /Literal >
 < Literal >
 < ID > enumExpr < /ID >
 < ToolTip > Enumeration to switch on < /ToolTip >
 < Default > switchExpr < /Default >
 < /Literal >
 < Literal Editable=”false” >
 < ID > cases < /ID >
 < Function > GenerateSwitchCases($enumExpr$) < /Function >
 < Default > default: < /Default >
 < /Literal >
 < /Declarations >
 < Code Language=”CSharp” >
 < ![CDATA[

 private $type$ _EnumValue;

 public $className$($type$ enumValue)
 {
 _EnumValue = enumValue;
 $Debug$.WriteLine(“Value : {0}”, _EnumValue);
 switch ($enumExpr$)
 {
 $cases$
 }
 }
]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

CH003.indd 48CH003.indd 48 9/6/10 4:34:46 PM9/6/10 4:34:46 PM

 As you can see, Listing 3 - 3 contains fi ve literals, and three of them are read - only having an
 Editable attribute with false value. This is intentional, because these literals are to defi ne
function values, and not to be edited by the user.

 The Debug literal uses SimpleTypeName function to reduce the full type name according to the
context where it is used. Should you have a using clause for the System.Diagnostics namespace,
the Debug name is used. Not having this using clause, the full System.Diganostics.Debug type
name would be inserted before the WriteLine member invocation.

 The className literal uses the ClassName function to be substituted by the name of the class where
the snippet is being inserted.

 The most compound part of the Listing 3 - 1 is the use of the cases literal that depends on the
 GenerateSwitchCases function. As you can see, this function ’ s argument is another literal,
 enumExpr , which can be edited by the user.

 After importing this snippet, you can use the loge shortcut to invoke it. Figure 3 - 15 shows how it
was used within the Program class of a C# console application.

Creating Code Snippets ❘ 49

 FIGURE 3 - 15: Invoking the snippet

CH003.indd 49CH003.indd 49 9/6/10 4:34:46 PM9/6/10 4:34:46 PM

50 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 You can replace the EnumType placeholder with an enumeration type such as, for example, with
 System.IO.FileShare . When you press Tab, all occurrences of EnumType are changed accordingly,
and the focus is set to the switchExpr placeholder, as shown in Figure 3 - 16.

 FIGURE 3 - 16: Inserting an enumeration type

 Now, let ’ s say that you substitute switchExpr with _EnumValue and press Tab twice. The editor
recognizes that _EnumValue is an enumeration type fi eld, and automatically generates case
statements according to the value set of System.IO.FileShare , as shown in Figure 3 - 17.

CH003.indd 50CH003.indd 50 9/6/10 4:34:48 PM9/6/10 4:34:48 PM

 FIGURE 3 - 17: Case statement generation

 You can play with the snippet to see how it behaves in several contexts. For example, you could try
the following actions:

 Use a non - enumerated type for EnumType

 Replace swithcExpr with an expression resulting a non - enumerated type

 Insert the snippet outside of a class declaration

 MANAGING CODE SNIPPETS

 Visual Studio ships with a few hundred code snippets out - of - the - box, and you can also create
dozens of your own custom snippets. When you must handle so many of them, you defi nitely need
some tool to categorize them. As you have already seen, Visual Studio 2010 has a tool called Code
Snippets Manager that helps you with this activity. Let ’ s take a look at some details.

➤

➤

➤

Managing Code Snippets ❘ 51

CH003.indd 51CH003.indd 51 9/6/10 4:34:48 PM9/6/10 4:34:48 PM

52 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 The Code Snippet Manager

 Use the Tools ➪ Code Snippets Manager command, or press the Ctrl+K and then Ctrl+B key
combination, to display the dialog to help you in managing code snippets integrated with Visual
Studio. Figure 3 - 18 shows this dialog in action, where a concrete snippet is selected.

 FIGURE 3 - 18: Code Snippets Manager

 At the top of the dialog, you see the Language drop - down box that you can use to fi lter all code
snippets based on a language. The largest part of the dialog screen is occupied by the tree view on
the left displaying the hierarchy of code snippets belonging to the specifi ed language. The details
pane on the right displays the most relevant properties of the snippet selected in the tree view.

 Above the panes, you see the Location fi eld that defi nes the full path of a folder or snippet selected
in the tree view. You can copy the content of the Location fi eld when you need it for further
use — for example, to open the specifi ed folder in Windows Explorer.

 Below the panes, you fi nd the Add and Remove buttons that let you add a new snippet folder to the
list of existing ones and remove a folder from the list. You can also import a snippet fi le or search
for more information online.

CH003.indd 52CH003.indd 52 9/6/10 4:34:48 PM9/6/10 4:34:48 PM

Managing Code Snippets ❘ 53

 Code Snippet Storage

 By now, you should realize that, at the lowest level, code snippets are stored in XML fi les with the
 .snippet extension. The Code Snippets Manager works with a set of folders containing .snippet
fi les. Actually, it stores only paths to those folders, and discovers subfolders and code snippet fi les
dynamically. There are two kinds of folders:

 System folders — These are added to the Code Snippets Manager ’ s list of folders at Visual
Studio setup time.

 User folders — These can be added by users at any time. One user folder stored in your user
profi le is added for each language at Visual Studio setup time.

 Table 3 - 4 summarizes the root of the system folders and default custom folders for each language
supported by Visual Studio 2010 out - of - the - box.

➤

➤

 TABLE 3 - 4: Code Snippet Folders

 LANGUAGE SYSTEM FOLDER USER FOLDER

 HTML %InstallRoot%\Web\Snippets\HTML Visual Web Developer\My HTML

Snippets

 JScript %InstallRoot%\Web\Snippets\

JScript

 Visual Web Developer\My JScript

Snippets

 Visual Basic %InstallRoot%\VB\Snippets Visual Basic\My Code Snippets

 Visual C# %InstallRoot%\VC#\Snippets Visual C#\My Code Snippets

 XML %InstallRoot%\xml\Snippets XML\My Xml Snippets

 SQL %InstallRoot%\VSTSDB\Snippets SQL\My Code Snippets

 Visual Studio puts the custom code snippet folders in your My Documents virtual folder under
the Visual Studio 10\Code Snippets subfolder. Depending on your user name, profi le
type, and operating system, My Document can be located in different places. For example, in a
notebook computer using Windows 7, the Visual C# custom snippets would be in the C:\Users\
 < username > \Documents\Visual Studio 10\Code Snippets\Visual C#\My Code Snippets
folder.

 System folders are under the Visual Studio installation folder (%InstallRoot%) in the subfolders
shown in the Table 3 - 4. Each folder contains a subfolder depending on the language of Visual Studio,
and snippets are under the language folder. For example, if you have installed Visual Studio 2010 with
English language, Visual C# snippets can be found in %InstallRoot%\VC#\Snippets\1033 folder.

CH003.indd 53CH003.indd 53 9/6/10 4:34:49 PM9/6/10 4:34:49 PM

54 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 Code snippets can be grouped into a hierarchical folder structure. For example, Visual C# snippets
have the following folders:

 NetFX3 — These are snippets for .NET 3.0 new features.

 OfficeDevelopment — These are code snippets helping in Microsoft Offi ce development
tasks.

 other — This is the folder for other code snippets. Currently, a few WF snippets can be
found here.

 Refactoring — These are code snippets used by the C# language service for refactoring
functions.

 Visual C# — These are general - purpose snippets related to the C# language (properties,
events, classes, and so on).

 System folders can have so - called index fi les to enumerate snippets. The existence and the
name of these fi les are language service - dependent. This fi le is called SnippetIndex.xml for
Visual Basic, and SnippetsIndex.xml for the other languages. The format of these index fi les
is beyond the scope of this book, but their structure is really simple. Feel free to open and
examine them.

 Adding and Removing Snippets

 The Code Snippets Manager allows you to add your own custom folders with snippets. As
mentioned previously, Code Snippets Manager stores only paths to folders. So, by using the Add
button, you can add only top - level folders to the selected language. When you click the Add button,
a folder - selection dialog with Code Snippets Directory caption is popped up to let you specify the
folder to add. After you add the selected folder to the directory, it is displayed in the folder list. You
can immediately browse its content.

 When you select a folder in the list and click the Remove button, you can draw it off from the
library. Of course, this operation does not delete the content of the folder; it just omits it from the
list handled by the Code Snippets Manager. You can remove only top - level folders. The Remove
button is disabled when you select a subfolder or a snippet.

 Be careful about removing system folders. The Code Snippets Manager allows you to remove
them, and does not even ask for confi rmation. Should you accidentally remove a system folder, you
can add it later by selecting the physical folder you drew off. After adding it again, Visual Studio
recognizes it is a system folder and handles it accordingly.

 Importing Snippets

 If you have a lot of snippets organized in a folder, you can add the folder to the appropriate
language with Code Snippets Manager. However, if you have .snippet fi les that have not been
organized in any folder, you can import them, and make the snippets within them a part of
your library.

➤

➤

➤

➤

➤

CH003.indd 54CH003.indd 54 9/6/10 4:34:49 PM9/6/10 4:34:49 PM

Managing Code Snippets ❘ 55

 After you select one or more .snippet fi les, click the Import button to start importing snippets.
The Import Code Snippet dialog shown in Figure 3 - 19 is displayed to let you select the import folder
for each fi le.

 FIGURE 3 - 19: Using the Import Code Snippet dialog

 The left pane of the window displays the code snippet fi les, while the right pane lists the user
folders into which to import the snippets. When a snippet fi le is imported, the fi le is physically
copied into the selected folder. As you can see from Figure 3 - 19, you can set the import folder for
each individual fi le. One fi le can be copied into one or more than one folder. Figure 3 - 19 illustrates
a situation when both the selected snippets are to be imported into the My Code Snippets folder,
and only one of them is about to be put into the My Special Snippets folder.

 The Code Snippet Manager allows you to import snippets only into the top - level user folders.

 You can select code snippet fi les supporting different languages. The Import Code Snippet dialog
groups them according to their host languages. You can click the Previous and Next buttons to page
among the languages and set the appropriate folder. The label above the snippet pane on the left side
of the dialog tells you the host language of the fi les listed in the pane.

 When you click the Finish button, the snippet fi les will be instantly imported into the selected
folders and are ready to use.

CH003.indd 55CH003.indd 55 9/6/10 4:34:50 PM9/6/10 4:34:50 PM

56 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 ADVANCED CODE SNIPPET FEATURES

 Thus far in this chapter, you have learned about the concept of code snippets, about the .snippet
fi le format, and about the role of Code Snippets Manager. Let ’ s take a look at some advanced
features for code snippets.

 Multiple Snippets in a File

 The .snippet fi le ’ s structure was intentionally designed to be able to describe one or more
snippets. The < CodeSnippets > element is a container that may hold one or more < CodeSnippet >
elements, as shown in Listing 3 - 4.

 LISTING 3 - 4: Multiple Code Snippets in One File

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >

 < !-- First snippet -- >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > Write an empty line < /Title >
 < Shortcut > wel < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description >
 This snippet inserts a “Console.WriteLine()” invocation into the code.
 < /Description >
 < /Header >
 < Snippet >
 < Code Language=”CSharp” >
 < ![CDATA[Console.WriteLine();]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >

 < !-- Second snippet -- >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > Write a message < /Title >
 < Shortcut > wm < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description >
 This snippet inserts a “Console.Write()” invocation into the code.
 < /Description >
 < /Header >
 < Snippet >
 < Declarations >
 < Literal >
 < ID > message < /ID >
 < ToolTip > The message to write to the console < /ToolTip >

CH003.indd 56CH003.indd 56 9/6/10 4:34:50 PM9/6/10 4:34:50 PM

Advanced Code Snippet Features ❘ 57

 < Default > Message < /Default >
 < /Literal >
 < /Declarations >
 < Code Language=”CSharp” >
 < ![CDATA[Console.Write(“$message$”);]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >

 < !-- Third snippet -- >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > Write a message with a new line < /Title >
 < Shortcut > wml < /Shortcut >
 < Author > Istvan (DiveDeeper) Novak < /Author >
 < Description >
 This snippet inserts a “Console.WriteLine()” invocation into the code.
 < /Description >
 < /Header >
 < Snippet >
 < Declarations >
 < Literal >
 < ID > message < /ID >
 < ToolTip > The message to write to the console < /ToolTip >
 < Default > Message < /Default >
 < /Literal >
 < /Declarations >
 < Code Language=”CSharp” >
 < ![CDATA[Console.WriteLine(“$message$”);]] >
 < /Code >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

 When you import the snippet fi le, you will see
all the snippets displayed in the Code Snippets
Manager, as shown in Figure 3 - 20.

 Having multiple snippets in a fi le makes it easy
for you to manage and deploy the snippets — if
you put a reasonable number of < CodeSnippet >
elements into a fi le. A good rule of thumb is
if you put two to fi ve snippets sharing some
common behavior into a fi le, this should be
pretty easy to handle. However, if you put
more into one fi le, or have snippets with very
separate behavior in one fi le, manageability
becomes diffi cult, and, moreover, can lead to
complications. FIGURE 3 - 20: Importing a fi le with multiple snippets

CH003.indd 57CH003.indd 57 9/6/10 4:34:50 PM9/6/10 4:34:50 PM

58 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 Code Snippets in Other Languages

 As mentioned previously, Visual Studio 2010 supports code snippets for HTML, JScript, Visual
Basic, Visual C#, XML, and SQL out - of - the - box. However, the infrastructure for code snippets
is available for any other language. Visual Studio allows creating language services to implement
other languages, and these languages can use the code snippet infrastructure to create their own
snippet support.

 Language services can be customized to determine how they use code snippets, and what kind of
support they provide in the code editor related to the specifi c language. As you can imagine, there
is a big difference between the Visual Basic implementation and other languages when handling
snippet kinds (for example, type declaration, method declaration, method body, and so on), as well
as providing surrounding - type snippets.

 Language providers can decide if they implement
code snippets at all, or, if they do, they can
decide what features they support. For example,
you can install IronPython Studio for Visual
Studio 2008 that provides a language service
for the IronPython language, and does, indeed,
implement the code snippets. Figure 3 - 21 shows
Code Snippets Manager with a language fi lter for
Python and the Python snippets installed.

 When you look into the Python snippet fi les,
you see that they use the standard code snippet
infrastructure, with the well - known snippet
schema. You can defi nitely recognize from the
 < Code > element that these snippets belong to
the Python language:

 < Snippet >
 < Declarations >
 < Literal >
 < ID > expression < /ID >
 < ToolTip > Expression to evaluate < /ToolTip >
 < Default > true < /Default >
 < /Literal >
 < /Declarations >
 < Code Language=”python” >
 < ![CDATA[while $expression$:
 $selected$$end$
]] >
 < /Code >
 < /Snippet >

 FIGURE 3 - 21: Code Snippets Manager with a

language fi lter for Python

 The Nemerle programming language has also been integrated with Visual Studio
2008 and supports code snippets.

CH003.indd 58CH003.indd 58 9/6/10 4:34:51 PM9/6/10 4:34:51 PM

 Building Online Code Snippet Providers

 With code snippets, you can create an online repository where you can select snippets categorized
by your interest, and then download them to your machine. While snippets can be converted into
the .snippet fi le format, you can either import them with Code Snippets Manager or create your
own custom setup tool.

 When you have a code snippet, you can also upload it to a site with its native .snippet fi le format.
The structure of a snippet fi le contains a few elements (such as the < Keywords > and < HelpUrl >
child elements of < Header >) intended to be used by online snippet providers to help with the
categorization and organization of snippets.

 You can even add new information to your code snippets, although the current code snippet scheme
does not allow creating your own elements or attributes. Despite this schema constraint, you can
add your own elements and attributes, as shown in the following extract:

 < Snippet >
 < Code Language=”CSharp” myAttr=”myValue” >
 < ![CDATA[Console.WriteLine();]] >
 < /Code >
 < MyElement > $$## < /MyElement >
 < /Snippet >

 Here, MyElement and myAttr are invalid elements by schema defi nition, but, in reality, the Code
Snippets Manager does not validate the .snippet fi le against the schema. While the Code Snippets
Manager fi nds the elements it looks for, it remains happy, and simply does not take care of other
elements and attributes.

 Although you can do this trick, it is not recommended. You cannot be sure that
a future release of Visual Studio will not change this undocumented behavior. If
you want to provide some kind of extension, you can use the kind attribute of
the < code > element or the < Function > element nested into < Object > .

 SNIPPET EDITORS

 Editing .snippet fi les in Visual Studio is easy when you attach the appropriate XSD schema fi le to it,
because IntelliSense helps a lot by listing elements, attributes, and values available in the current context.
However, the user experience through editing the XML fi le (even with IntelliSense) is not always
pleasant. Generally, the less complex part of your XML fi le is the < code > element encapsulating the
body of the code template. The more complex code template you create, the longer the < Declaration >
part is. As your code with the declarations gets longer than one or two pages on the screen, you can
easily lose the focus. You must page up and down to understand what the code template is about.

 The community recognized that the built - in Visual Studio snippet editing support can be improved
with other tools that provide code template editing similar to editing the original code. Table 3 - 5
shows a few code snippet editors created and supported by the community.

Snippet Editors ❘ 59

CH003.indd 59CH003.indd 59 9/6/10 4:34:57 PM9/6/10 4:34:57 PM

60 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 TABLE 3 - 5: Code Snippet Editors and Tools

 NAME URL

 Snippy http://www.codeplex.com/snippy

 Export as Code Snippet Add - In http://exportascodesnippet.codeplex.com

 Snipp Dogg http://snippdogg.codeplex.com/

 Snippet Builder http://snippetbuilder.codeplex.com/

 Snippet Designer http://snippetdesigner.codeplex.com/

 Snippet Editor http://www.codeplex.com/SnippetEditor

 Let ’ s take a quick look at three of these, each using a separate approach to help with code snippet
development.

 Export as Code Snippet Add - In

 This add - in was created by Alessandro Del Sole, and it works only with Visual Studio 2008.
However, the full source code of the add - in can be downloaded, so you can update it to work with
Visual Studio 2010 as well.

 This is a good add - in because it is simple to use and helps you create snippets directly from your code.
Often, you get the idea of making a snippet from a part of code right when you are typing the text and
recognize that is reusable. With this add - in, you simply right - click on the selected code (this would be
the base of the code template), and your snippet is about to be created. Figure 3 - 22 shows this step.

 FIGURE 3 - 22: Selecting the code template

CH003.indd 60CH003.indd 60 9/6/10 4:35:02 PM9/6/10 4:35:02 PM

Snippet Editors ❘ 61

 Next, you can add metadata attributes to the
code template by fi lling in the form shown in
Figure 3 - 23.

 When you click the Export button, you can save
the snippet into a fi le and use it just like other
snippet fi les.

 Snippet Designer

 This utility provides an even better user
experience than Export as Code Snippet.
Although, as of this writing, the utility was
available only for Visual Studio 2008, the full
source code is available, and it requires only
small changes and recompilation to work with
Visual Studio 2010.

 You can start developing your snippets in two
ways. The fi rst is to use the File ➪ New ➪ File
command and select Code Snippet File from the
General category. The second is to select a piece
of code while you are in the text editor, and use the “ Export as Snippet ” command from the
context menu.

 Independently of how you start, you can edit your .snippet fi le in a custom editor, as shown
in Figure 3 - 24.

 FIGURE 3 - 23: Add metadata to the code template

 FIGURE 3 - 24: Plain code template

 The code template you can edit here does not provide any placeholders, but you can add them easily
with the context menu. Also, snippet metadata can be edited in the Properties window, as shown in
Figure 3 - 25.

CH003.indd 61CH003.indd 61 9/6/10 4:35:02 PM9/6/10 4:35:02 PM

62 ❘ CHAPTER 3 VISUAL STUDIO CODE SNIPPETS

 Snippet Designer supports Visual Basic, Visual C#, and XML snippets.

 Snippet Editor

 The previous two utilities are integrated with Visual Studio to help in code snippet editing. Snippet
Editor is an external tool running out of Visual Studio. The great benefi t of this tool is that is
simultaneously supports Visual Studio 2005, 2008, and 2010. While it allows you to focus on
editing a simple snippet, it also allows you browsing the snippet library. Figure 3 - 26 shows this
application in action.

 FIGURE 3 - 25: Code editing with Snippet Designer

 FIGURE 3 - 26: Snippet Editor in Action

CH003.indd 62CH003.indd 62 9/6/10 4:35:03 PM9/6/10 4:35:03 PM

Summary ❘ 63

 The drop - down box at the top of the pane allows you to select one of the Visual Studio versions
installed on your machine. In the left pane of the screen, you can manage the library of your
snippets. The tree view displays the languages as top - level folders, and, under them, you can see
the directory of snippets similar to what you can do with Code Snippets Manager. When you
double - click on a snippet, you see its properties — including the code template — and you can
immediately edit them.

 The editor highlights the placeholders and allows the setting of their properties. In addition to
being able to save the snippets, you can also export .vsi fi les and use them with the Visual Studio
Community Content Installer tool to deploy the snippet.

 If you intend to use this tool often, use the Tools ➪ External Tools command to set up Snippet
Editor so that it can be launched from the IDE.

 SUMMARY

 Visual Studio code snippets play important role in personal productivity. The concept behind them
is simple and powerful. Snippets are source code pieces that may range from one character to pages
of text, and can easily be inserted into the code. The code to be inserted is defi ned with a template
mechanism that allows defi ning placeholders and changing them when the template is about to be
applied.

 Visual Studio 2010 supports code snippets for the HTML, JScript, Visual Basic, Visual C#, SQL,
and XML languages. There are minor differences in features available, depending on the host
language.

 The IDE ships with a few hundred code snippets altogether, and you can easily add your own
snippets to the directory. By creating an XML fi le with the .snippet extension following the
predefi ned schema, and then importing this fi le with Code Snippets Manager, you can put your
snippets in practice in a few minutes.

 In addition to Visual Studio, you can use community tools to create and manage snippets. Some
of these tools are integrated with the IDE; some of them are external applications. Generally, they
provide a better user experience than pure XML .snippet fi le editing.

 In Chapter 4, you will learn about the concept of Visual Studio templates. In addition to
familiarizing you with using the built - in project and item templates, the chapter will teach you how
to create your own templates and integrate them with Visual Studio.

CH003.indd 63CH003.indd 63 9/6/10 4:35:03 PM9/6/10 4:35:03 PM

CH003.indd 64CH003.indd 64 9/6/10 4:35:04 PM9/6/10 4:35:04 PM

Visual Studio Templates

 Any time you start developing a new application with Visual Studio, you start by creating
a new project or adding a new project to an existing solution. Because you can start with a
new console application, Windows service, ASP.NET site, or whatever application type you
use, you may underestimate the work that the IDE does behind the scenes when generating
a project skeleton.

 Let ’ s enumerate a few activities done by the IDE that help you start with a project:

 A project fi le is created that controls the build process.

 The project ’ s properties related to build, debug, and so on, are set up according to
the project type.

 Source code items and resources are added to the project.

 In several cases, helpful documentation is generated.

 In the heart of Visual Studio, project creation is based on the concept of project templates .
When you start a new project, a template determines how your project ’ s build process is
established, what properties are set up (and to which values), and what kind of items are
generated for you.

 Visual Studio 2010 ships with almost a hundred project templates supporting the Visual Basic,
C#, F#, and Visual C++ languages. The built - in templates are very useful, and, in many cases,
they are a perfect place for you to start with a new application.

 However, there are cases in which a customized project type would be a great benefi t for your
current work. Here are a few examples:

 When you create user interface (UI) intensive applications, you may use third - party UI
controls and frameworks, and you would like to have the related assemblies added to
the list of referenced assemblies.

➤

➤

➤

➤

➤

 4

CH004.indd 65CH004.indd 65 9/6/10 4:37:10 PM9/6/10 4:37:10 PM

66 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 You have special notes and guidelines for developers using your company ’ s domain - specifi c
framework. Having those notes embedded into the project helps the team focus on core
activities.

 You are using special build methods to compile, test, or deploy a specifi c application type.
Keeping these methods together with the project provides a great value for your test and
deployment specialist.

 You ’ ll surely not be surprised to learn that Visual Studio project templates support all of these
scenarios. The template system is designed with extensibility in mind. You can even use third - party
project templates and add them to Visual Studio.

 The template system also allows you to work with item templates . When you work with your
project, you can add items such as code fi les, Windows forms, Windows Presentation Foundation
(WPF) forms, user controls, and so on to the existing project code. Just like project templates,
item templates also can be defi ned by you. In cases where you use special frameworks, classes, and
patterns, customizing project items for your need is especially useful.

 This chapter explores the template system of Visual Studio, and delves into the following topics:

 The categories and role of templates — You ’ ll learn why templates are an honorable friend,
and what you can do with project and item templates.

 Creating templates — Without going too deep into the structure and anatomy of templates,
you will build a very simple project and an item template, and learn how to integrate them
with Visual Studio.

 Template storage structure — You will discover the details surrounding the anatomy of
templates, and how the New Project and Add New Item dialogs provide a list of available
templates.

 Customizing templates — There are great ways you can start from a simple template and
create a few “ fl avors ” from it by utilizing customization. In this chapter, you learn how to
use custom template parameters, and how to build template wizards.

 Deploying templates — You will learn about the many ways to deploy your project and
item templates. Visual Studio 2010 has a brand new feature called Extension Manager that
makes it easy to share and deploy your templates through the Visual Studio Gallery, all of
which you will learn about here.

 Visual Studio project and item templates represent ideal candidates to use to tailor Visual Studio
to your everyday needs. Patterns represented with project and item templates can prevent a lot of
common mistakes from turning into miscommunication.

 THE ROLE OF TEMPLATES

 The role of Visual Studio templates can be best characterized with the word “ reusability. ” Templates
are useful concepts because they save you from the burden of writing code from the scratch for each
project, source code, form, and other types of items every time you start creating any instance of
them. Templates not only save you time, but also help you avoid common mistakes by providing

➤

➤

➤

➤

➤

➤

➤

CH004.indd 66CH004.indd 66 9/6/10 4:37:13 PM9/6/10 4:37:13 PM

you skeletons for your frequently used artifacts. Templates provide consistency among your projects
independently of who uses them and how.

 You can leverage the reusability offered by templates in a variety of ways, including the following:

 At the most basic level, you can use the templates shipped with Visual Studio for the tasks
you want to solve. For example, when you create an application with graphical user interface
(GUI), you could start with the Windows Forms Application or the WPF Application
template, but usually not a Console Application or a Class Library. Maybe it sounds strange,
but you can start a GUI application even with the Console Application project template or
with a Class Library and turn it to a graphical application by changing project properties,
application entry point method, referenced assemblies, and so on. Of course, this is not the
best practice, but, in theory, it could be done.

 You can create your fi rst project and item templates by customizing existing ones. For
example, you could create a new WPF Application template that contains a main form
tailored to your company ’ s design, or even add an About dialog to the project.

 You could create totally new project templates by changing the whole structure of existing
ones, and even adding wizards that guide the user through the startup process.

 At a very high level, you could create templates extended with samples and documentation
to adjust them to the methodology you use within your company.

 The template system has been a part of Visual Studio from the fi rst release. As new versions of
Visual Studio have been released, new templates have been added to the IDE to support young
languages and fresh technologies. With Visual Studio 2008, many templates arrived because of
the new foundations (WF, WCF, and WPF) in .NET 3.0 and .NET 3.5. Visual Studio 2010 also
ships new templates that are primarily related to the F# programming language and the Silverlight
technology.

 Visual Studio supports two categories of templates:

 Project templates

 Item templates

 The template system also provides a way to compose multi - project templates that contain two or
more related project templates.

 The following discussions examine project and item templates to show you their common
characteristics and behavior, as well as differences between them.

 Project Templates

 Any time you start creating a new solution with Visual Studio, one of the fi rst steps in the IDE is the
File ➪ New ➪ Project command used to start a project. You expect this project to compile, to run,
and to be ready for adding source code to give birth to your application. The command pops up
the New Project dialog, where you can select one of the installed project templates, as shown in
Figure 4 - 1.

➤

➤

➤

➤

➤

➤

The Role of Templates ❘ 67

CH004.indd 67CH004.indd 67 9/6/10 4:37:14 PM9/6/10 4:37:14 PM

68 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 You probably use this dialog so often and so intuitively that you don ’ t even think about the
mechanisms moving small cogs behind the scenes resulting in this UI. The left pane of the dialog
shows the categories from which you can select templates. This dialog changed a lot with Visual
Studio 2010. For example, as you can see, you can quickly access the templates you ’ ve recently used.
Another new feature is the capability to browse online templates and create your project based on
one of them. Figure 4 - 2 shows the online WPF templates that were available as of this writing.

 FIGURE 4 - 1: The New Project dialog

 FIGURE 4 - 2: Illustration of online WPF templates

CH004.indd 68CH004.indd 68 9/6/10 4:37:14 PM9/6/10 4:37:14 PM

 All the items you see in the middle pane of the New Project dialog are templates that cover an
entire project, including the project fi le (with the properties set up), all source fi les (including
resources, content fi les, associated document fi les, and so on), and the references used by
the project.

 The project fi les templates also contain some other metadata that is used by the IDE to display
information about the template. For example, a short description of the project is shown on the right
pane of the dialog. Data also includes information to categorize templates on the UI. Templates also
can infl uence the behavior of the New Project dialog — for example, they can disable the Browse
button.

 When you create a project instance from the selected project
template, the template system copies all fi les from the template
to a specifi ed location. Two important mechanisms are provided
in addition to the copy operation:

 The template system can replace strings in the fi lenames
and in the content of the fi les. For example, the project
name can replace the project fi lename, and also the
default namespace specifi cations in the source code fi les.

 A wizard can be started that collects some more
information about the project and uses this information
when generating project artifacts.

 Let ’ s say that you create a new WPF application with the name
of MyWpfApp . Figure 4 - 3 shows the template system that enables
you to start with the project.

 The project template contains all the fi les shown in Figure 4 - 3.
As you see, the project fi lename has been changed to MyWpfApp .
If you open the App.xaml.cs fi le, you would see that the root
namespace has also been renamed to MyWpfApp .

 Item Templates

 When you create your project based on a specifi c template, you often add new items to this project,
and you would like to start with a well - defi ned item skeleton instead of an empty code fi le. This is
where the item templates come into the picture.

 During your everyday activities, you generally work with a few stereotypes of project items such
as forms, entity classes, service and controller types, database scripts, and so on. Visual Studio
provides a great number of item templates you can add to your project with the Add New Item
dialog. Figure 4 - 4 shows the items you can choose when working with a WPF application.

➤

➤

 FIGURE 4 - 3: The new project in

Solution Explorer

The Role of Templates ❘ 69

CH004.indd 69CH004.indd 69 9/6/10 4:37:15 PM9/6/10 4:37:15 PM

70 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 This dialog is very similar to the New Project dialog, and so are the mechanisms behind the UI. The
template system works approximately the same way for item templates as for project templates — all
item template fi les are copied to the appropriate project folder. Replacements and wizards are also
supported for item templates.

 Item templates provide a feature to enable you to add assembly references to the project hosting the
item. In the template defi nition, an item can enlist referenced assemblies that the item is about to
use for successful compilation. When the item is added to the project, all referenced assemblies that
are not yet assigned to the project are also added.

 Items and fi les are separate concepts. Although most items hold a single fi le, a few of them are
composed of several fi les — such as forms and resources that may contain two (or even three)
dependent fi les represented as a hierarchy within the Solution Explorer. An item template is
defi nitely not a fi le template, so each fi le composing an item can be (and should be) added to
the item template.

 An item template may include fi les that will add more items to your project. For example, you may
create an item template for an entity class that adds two fi les using partial class declaration with the
intention that the user should customize only one of them. These fi les are separate items (that is, you
can handle them separately), and, in the project, there is no information to indicate that they were
added in a single step.

 CREATING TEMPLATES

 By now, you are familiar with the idea of project and item templates. Let ’ s have a look at how these
concepts work in practice. In this section, you create a simple project template and a related item
template. The activities here can be repeated for your own project and item templates.

 FIGURE 4 - 4: The Add New Item dialog

CH004.indd 70CH004.indd 70 9/6/10 4:37:16 PM9/6/10 4:37:16 PM

 The creation process starts with actually implementing the application, library, page, form, class, or
whatever artifacts on which you intend to base your template. When these artifacts are ready, you
can use the Export Template Wizard in Visual Studio to physically create the template defi nition,
and integrate it with the IDE. Later, you can add customization points to the template.

 Creating a Simple Project Template

 To demonstrate the steps of template creation, let ’ s build a console application that receives
commands from the user and executes them. Of course, the application will be very simple and not
really robust, because this sample focuses on template development.

 Creating the Startup Project

 Create a new C# project with the File ➪ New ➪ Project command and select the Console Application
from the Windows project category. Name this new application ConsoleBase and click OK. Visual
Studio creates a new console application with Program.cs and AssemblyInfo.cs fi les. (You can
display this latter fi le when extending the Properties folder.) This application does not run any useful
code by default. So, let ’ s change the Program class to implement a very simple console application ’ s
logic, as shown in Listing 4 - 1.

 LISTING 4 - 1: Program.cs

using System;

namespace ConsoleBase
{
 class Program
 {
 const string PromptText = “# > “;
 const string QuitCommand = “quit”;

 static void Main(string[] args)
 {
 DisplayWelcomeMessage();
 Console.Write(PromptText);
 string command;
 string pars;
 while (String.Compare((command = ReadCommand(out pars)),
 QuitCommand, true) != 0)
 {
 ProcessCommand(command, pars);
 Console.Write(PromptText);
 }
 }

 static void DisplayWelcomeMessage()
 {
 Console.WriteLine(“Welcome to the BaseConsole application!”);
 Console.WriteLine();
 }
 continues

Creating Templates ❘ 71

CH004.indd 71CH004.indd 71 9/6/10 4:37:16 PM9/6/10 4:37:16 PM

72 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

LISTING 4 - 1 (continued)

 static string ReadCommand(out string pars)
 {
 var commandLine = Console.ReadLine().Trim();
 var command = commandLine;
 pars = string.Empty;
 var pos = commandLine.IndexOf(‘ ‘);
 if (pos > 0)
 {
 command = commandLine.Substring(0, pos);
 pars = commandLine.Substring(pos).Trim();
 }
 return command;
 }

 static void ProcessCommand(string command, string pars)
 {
 Console.WriteLine(“{0}({1}) processed”, command, pars);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The class is very simple. It displays welcome text and loops with processing commands typed in by
the user unless a “ quit ” command arrives, at which time it terminates. When you build and start it
without debugging, you can see how it works. Figure 4 - 5 shows some sample output.

 FIGURE 4 - 5: Sample output from BaseConsole

 You are now ready to create a project template from this application. Go to the File menu and select
the Export Template command. A new dialog, the Export Template Wizard, pops up on the screen.
This wizard has a few pages, the fi rst of which enables you to select the template type you intend to
export, as shown in Figure 4 - 6.

CH004.indd 72CH004.indd 72 9/6/10 4:37:17 PM9/6/10 4:37:17 PM

 You want to export BaseConsole as a project template, so select that option. At the bottom of the
page, you can select the project the template is based on. This list shows projects in the current solution.

 Click the Next button, and the wizard moves you to the Select Template Options page, where you
can specify a few attributes. Fill these options as shown in Figure 4 - 7.

 FIGURE 4 - 6: The Choose Template Type page

 FIGURE 4 - 7: The Select Template Options page

Creating Templates ❘ 73

CH004.indd 73CH004.indd 73 9/6/10 4:37:18 PM9/6/10 4:37:18 PM

74 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Notice that the “ Output location ” fi eld contains a path within your user profi le. The template
itself is a ZIPped archive that is about to be exported into the Visual Studio 10\My Exported
Template folder under your profi le ’ s documents folder.

 When you click Finish, the wizard collects all
the fi les to include in the project template and
puts them into a .zip archive. At the end of the
process, the output folder is opened in a new
Windows Explorer instance, and you can see the
 Basic Command Console.zip fi le there. Open
this archive to have a look at its content. You
will see a folder and four fi les, as illustrated in
Figure 4 - 8.

 In addition to the original fi les of the project, you should note two new fi les created by the
wizard: __TemplateIcon.ico and MyTemplate.vstemplate . Later in this chapter, you ’ ll learn
what these fi les are and what their roles are in Visual Studio ’ s template infrastructure.

 Close the Windows Explorer instance and go back to Visual Studio. The exported template is ready
to be consumed. Create a new Visual Studio project with the File ➪ New ➪ Project command, and
scroll down to the bottom of the template list within the Visual C# category. You should see the
 Basic Command Console template there, as shown in Figure 4 - 9.

 FIGURE 4 - 8: Project template content

 FIGURE 4 - 9: The template is ready to be consumed.

CH004.indd 74CH004.indd 74 9/6/10 4:37:18 PM9/6/10 4:37:18 PM

 Accept the default project name and click OK. Visual Studio creates the project from the Basic
Command Console , and, when you run it, you can see that it behaves exactly the same as the original
 BaseConsole application from which you created the template.

 Adding a Small Customization

 As you see, in just a few steps, you have created a new Visual Studio project template. Now, let ’ s
take this a step further. Let ’ s add a small customization to the template. The fi rst project you created
from the template wrote the same welcome message (“ Welcome to the BaseConsole application ”) to
the console as the template itself. Let ’ s modify the template so that the current project name given
by the user in the New Project dialog is now used.

 Open the BaseConsole project again, and change the DisplayWelcomeMessage method in the
 Project.cs fi le to the following:

static void DisplayWelcomeMessage()
{
 Console.WriteLine(“Welcome to the $safeprojectname$!”);
 Console.WriteLine();
}

 The $safeprojectname$ placeholder is a template parameter. When a new template is created, this
parameter is replaced with the name of the current project transformed to a name conforming to
the identifi er syntax, so “ unsafe ” characters and spaces are removed.

 Export the BaseConsole project to a project template exactly the same way you did before.
The Export Template Wizard will warn you that the output fi le already exists. Confi rm that you
want to delete the existing fi le, and the original Basic Command Console.zip template will be
replaced.

 Now, create a new project using the refreshed template, and give the My Customized Console
name to the application. Build and start the application. The welcome message now shows what
the effect of the $safeprojectname$ template parameter is, as illustrated in Figure 4 - 10.

 FIGURE 4 - 10: The eff ect of $safeprojectname$ parameter

 As you can see, the My Customized Console project name was transformed to an identifi er - safe
version — spaces were changed to underscores.

Creating Templates ❘ 75

CH004.indd 75CH004.indd 75 9/6/10 4:37:19 PM9/6/10 4:37:19 PM

76 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Creating a Simple Item Template

 You can make the BaseConsole application more sophisticated by creating classes responsible for
processing commands and creating an item template for the command processor classes. First, let ’ s
make a small change in the application architecture, and add the CommandProcessor.cs fi le shown
in Listing 4 - 2 to the BaseConsole project.

 LISTING 4 - 2: CommandProcessor.cs

namespace ConsoleBase
{
 internal abstract class CommandProcessor
 {
 public abstract void ProcessCommand(string pars);
 }
}

 Code fi le [CommandProcessor.cs] available for download at Wrox.com

 This will be the base class of types responsible for processing a simple command. You
associate a class with the related command by using the DisplayName attribute. Create a new
 CommandProcessorItem.cs fi le to the project with the source code shown in Listing 4 - 3.

 LISTING 4 - 3: CommandProcessorItem.cs

using System;
using System.ComponentModel;

namespace ConsoleBase
{
 [DisplayName(“list”)]
 class CommandProcessorItem: CommandProcessor
 {
 public override void ProcessCommand(string pars)
 {
 Console.WriteLine(“list of {0}”, pars);
 }
 }
}

 Code fi le [CommandProcessorItem.cs] available for download at Wrox.com

 CommandProcessorItem.cs will be the base of the project item template you will export. In its
current form, it acts as a real working class responsible for processing the command “ list ” .
To prepare the application for the command processor semantics, let ’ s modify the Program.cs fi le.
Add the following using directives to the top of the fi le:

CH004.indd 76CH004.indd 76 9/6/10 4:37:19 PM9/6/10 4:37:19 PM

using System.Reflection;
using System.ComponentModel;

 Change the ProcessCommand method to seek the appropriate command processor class, as
shown here:

static void ProcessCommand(string command, string pars)
{
 foreach (var type in
 from type in Assembly.GetExecutingAssembly().GetTypes()
 where type.IsSubclassOf(typeof(CommandProcessor))
 select type)
 {
 var attrs = type.GetCustomAttributes(typeof(DisplayNameAttribute), false);
 if (attrs.Length == 0) continue;
 var displayName = (attrs[0] as DisplayNameAttribute).DisplayName;
 if (String.Compare(displayName, command, true) == 0)
 {
 var processor = Activator.CreateInstance(type) as CommandProcessor;
 if (processor != null) processor.ProcessCommand(pars);
 }
 }
}

 At this point, your console application is refactored so that it supports command processor classes.
When you start the application, you can check that it understands the “ list ” and “ quit ” commands
but nothing else. Figure 4 - 11 shows the modifi ed console.

 FIGURE 4 - 11: The refactored console knows the list command

 Now, let ’ s extract an item template from this project. Because the modifi cation you will apply
to CommandProcessorItem.cs will result a syntactically invalid fi le, change the Build Action
property of this fi le to None in the Properties window. Replace a few parts of the fi le with the
 $safeitemname$ template parameter, as shown here:

using System;
using System.ComponentModel;

namespace ConsoleBase

Creating Templates ❘ 77

CH004.indd 77CH004.indd 77 9/6/10 4:37:20 PM9/6/10 4:37:20 PM

78 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

{
 [DisplayName(“$safeitemname$”)]
 class $safeitemname$: CommandProcessor
 {
 public override void ProcessCommand(string pars)
 {
 Console.WriteLine(“list of {0}”, pars);
 }
 }
}

 The $safeitemname$ parameter will replace the item name specifi ed in the Add New Item dialog
with an identifi er - safe name by transforming “ unsafe ” characters and spaces.

 Because you have modifi ed the project template, fi rst export it again using the same settings as
before, and be sure that the Basic Command Console name is used. Then, use the Export Template
wizard to publish a project item template.

 In the fi rst step, you select the Item Template option, as shown in Figure 4 - 12.

 FIGURE 4 - 12: Selecting the Item Template option

 The next step is to select the items of the project that are to be published as item templates. Select the
 CommandProcessorItem.cs fi le as shown in Figure 4 - 13. This is the only fi le you want to use as
item template.

CH004.indd 78CH004.indd 78 9/6/10 4:37:20 PM9/6/10 4:37:20 PM

 FIGURE 4 - 13: Selecting the items to export

 FIGURE 4 - 14: Selecting referenced assemblies

 The item template may have types and namespaces referencing to specifi c assemblies. In the next
wizard page, you select these assemblies from the ones that are added as references to the host
project. Figure 4 - 14 shows this page where only the System assembly is selected, because your item
template references only this one:

Creating Templates ❘ 79

CH004.indd 79CH004.indd 79 9/6/10 4:37:21 PM9/6/10 4:37:21 PM

80 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 The last page of the wizard enables you to specify template options. The page here is the same as
for project templates. Fill in the fi elds of the page as shown in Figure 4 - 15, and then click the Finish
button to export the item template.

 FIGURE 4 - 15: Setting up template options

 FIGURE 4 - 16: Adding a new Command Processor item

 The .zip archive representing the item template is put into the same directory as the Basic
Command Console archive. When you open the archive, beside the CommandProcessorItem.cs fi le,
you see the __TemplateIcon.ico and MyTemplate.vstemplate fi les as well, just as you did with
the exported project template.

 Let ’ s see how this new item template works. Create a new project with the Basic Command Console
project type, and name it MySimpleCommandConsole . When the project is created, add a new
Command Processor item as shown in Figure 4 - 16 and give it the name EchoProcessor.cs .

CH004.indd 80CH004.indd 80 9/6/10 4:37:22 PM9/6/10 4:37:22 PM

 Change the DisplayName attribute and the body of the ProcessCommand method as shown in
Listing 4 - 4.

 LISTING 4 - 4: EchoProcessor.cs

using System;
using System.ComponentModel;

namespace MySimpleCommandConsole
{
 [DisplayName(“Echo”)]
 class EchoProcessor : CommandProcessor
 {
 public override void ProcessCommand(string pars)
 {
 Console.WriteLine(pars);
 }
 }
}

 Code fi le [EchoProcessor.cs] available for download at Wrox.com

 When you run the project, you can try the echo command, as shown in Figure 4 - 17.

 FIGURE 4 - 17: Echo command in use

 You have now built and exported a simple project template and an item template. Let ’ s dive in a bit
deeper and examine how Visual Studio stores and processes templates.

 TEMPLATE STORAGE STRUCTURE

 As you just learned, project and item templates are stored as .zip archives. This archive stores fi les
that will be artifacts when the template is transformed to a concrete project or item, and some other
fi les with “ accessory ” information. When you created the project and item templates earlier, the
Export Template wizard added two fi les to the archives:

 __TemplateIcon.ico — This fi le is used by Visual Studio as the icon representing the
project or item template.

➤

Template Storage Structure ❘ 81

CH004.indd 81CH004.indd 81 9/6/10 4:37:22 PM9/6/10 4:37:22 PM

82 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 MyTemplate.vstemplate — This is the most important fi le in the archive — the template
manifest . The IDE recognizes the .zip fi le as a template from this manifest. This fi le is also
used to describe information the IDE leverages to put the project or item template into the
appropriate category within the New Project and New File dialogs, and also defi nes some
behavior - related attributes.

 Later in this chapter, you ’ ll see a detailed description of the structure and the usage of the manifest
fi le. But fi rst, let ’ s take a look at the template directory storage structure.

 Template Folders

 All .zip archives representing project and item templates are stored in folders with a specifi c
location. There are two kinds of folders:

 System folders — These are installed with Visual Studio setup, and all users of the machine
can access them. The root of the system folders can be found under the Visual Studio
installation folder in the Common7\IDE\ProjectTemplates and in the Common7\IDE\
ItemTemplates folders, respectively.

 User folders — These are located within the current user ’ s profi le, and templates stored
here can be accessed only by the user owning the profi le. User folders can be found under
the My Documents folder in the Visual Studio 10\Templates\ProjectTemplates
and Visual Studio 10\Templates\ItemTemplates folders.

 In addition to the system folders, you can fi nd two other folders under Common7\IDE —
 ProjectTemplatesCache and ItemTemplatesCache . The internal structure of these folders is the
same as the structure of ProjectTemplates and ItemTemplates folders, but, instead of .zip fi les,
you can fi nd folders with the .zip extension representing the extracted content of the corresponding
template fi les. Visual Studio uses these cache folders because of performance reasons.

 Visual Studio scans the template information in the ProjectTemplates and ItemTemplates folders
when you open the New Project or Add New Item dialogs. When you examine the content of the
system folders, it ’ s diffi cult to understand how the folder structure and the .zip fi les are mapped
to the structure you see in the dialogs. In addition to the folder structure, Visual Studio uses some
other information to build up the category hierarchy.

 Understanding the Project Template Hierarchy

 To map the folders and template archives into the categories that can be seen in the New Project
dialog, the IDE counts on other information, including the following:

 Visual Studio looks up the system registry to build up the category structure in the dialog.
This information can be found under the HKEY_CURRENT_USER hive in the Visual Studio
2010 confi guration key root (Software\Microsoft\Visual Studio\10.0_Config) in
the NewProjectTemplates key.

 A few template folders contain an XML fi le with .vstdir extension. These fi les are used to
declare localized names and sort orders for the templates in the folder in which the .vstdir
fi le is located.

➤

➤

➤

➤

➤

CH004.indd 82CH004.indd 82 9/6/10 4:37:23 PM9/6/10 4:37:23 PM

 As shown in Figure 4 - 18, the New Project dialog displays three types of project template hierarchy
nodes:

 Project type root nodes — These are related to languages, or, more precisely, language
service packages such as Visual C# or Visual Basic. Figure 4 - 18 shows examples for
Visual C#.

 Pseudo folder nodes — These are parent folders for a few project type root nodes. Other
Languages and Other Project Types provide good examples in Figure 4 - 18.

 Template folder nodes — These are the children of project root nodes, and they are mapped
to physical folders having template fi les under them. In Figure 4 - 18, the Windows, Web, and
Silverlight nodes under Visual C# are examples of them.

➤

➤

➤

 FIGURE 4 - 18: Project template node types

 The whole procedure of creating the template node hierarchy is a bit complex, so this discussion
does not include all the details. Instead, here are a few points to help you understand the basics:

 To produce the project template hierarchy, Visual Studio uses the .vstemplate fi les within
the .zip archives, registry keys, and values stored in the NewProjectTemplates key
mentioned earlier, resources in the language packages (determined with the help of registry
values), physical template folder structure, and .vstdir fi les.

➤

Template Storage Structure ❘ 83

CH004.indd 83CH004.indd 83 9/6/10 4:37:24 PM9/6/10 4:37:24 PM

84 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Project type root nodes and pseudo folder nodes are described in the registry with localized
names, sort order information, and folder nesting information.

 The template folder node hierarchy follows the structure of the folders in the
 ProjectTemplates folders. For machine templates (templates installed with Visual Studio
2010), the location is Common7\IDE\ProjectTemplates\ under the Visual Studio installation
folder. For user templates, the location is \My Documents\Visual Studio 10\Templates\
ProjectTemplates\ . The folder hierarchies from these two locations are merged to create
the project types hierarchy. If there is a .vstdir fi le in any of these subfolders, it can describe
the sort order of the template folder within its parent.

 When the user clicks on a template folder, all templates in that folder are displayed. The IDE scans
the folder for fi les with the .zip extension and the embedded template manifest to recognize project
templates. When an appropriate fi le has been found, the IDE uses the template manifest to display
information (icon, name, description, and so on) about the project template.

 Looking at the New Project dialog, you can see that several project templates appear not
only in the template folder, but also in other folders. The template manifest may contain a
 < NumberOfParentCategoriesToRollUp > entry that can declare a parent category level above
the physical folder where the template should also be displayed.

 Understanding the Item Template Hierarchy

 The Add New Item dialog also uses a hierarchical approach to list available item templates, just like
the New Project dialog.

 When you add a new item to a project, the hosting project ’ s root type determines the physical
folder under ItemTemplates . For machine templates (templates installed in Visual Studio 2010),
the location is Common7\IDE\ItemTemplates under the Visual Studio installation folder. For user
templates, the location is \My Documents\Visual Studio 10\Templates\ItemTemplates . The
folder hierarchies from these two locations are merged to create the project item category hierarchy.
If there is a .vstdir fi le in any of these subfolders, it can describe the sort order of the template
folder within its parent.

 Visual Studio scans this folder structure for .zip fi les with a template manifest stating the template
is an item template. It uses the information in the manifest fi le to display item templates in a specifi c
folder.

 The root project type may fi lter the item templates. In the registry, there is an AddNewItemFilters
key for the Visual Studio packages that represents the project type, and this key may list template
directories or concrete template names that should be excluded from the list. The template manifest fi le
has two entries named < TemplateID > and < TemplateGroupID > that can be used for further fi ltering
and categorization of item templates based on the project ’ s root type.

 The Template Manifest File

 By now, you know the manifest fi le is the key component of templates. The template manifest is an
XML fi le with the .vstemplate extension, and Visual Studio ’ s template system uses it primarily
with the following purposes:

➤

➤

CH004.indd 84CH004.indd 84 9/6/10 4:37:24 PM9/6/10 4:37:24 PM

 It recognizes that a .zip fi le in a template folder is not a simple .zip archive, but rather a
template defi nition fi le.

 It uses the manifest to display information about templates in the New Project or Add New
Item dialogs.

 It retrieves the list of items to be created for the new project or project item.

 The following discussions describe the structure of the manifest fi le in detail and show a few
samples to help you perform common tasks related to templates.

 The General Structure of the Manifest File

 The .vstemplate fi le contains three fundamental, and two optional, elements representing its
general structure:

 < VSTemplate Type=”_type” Version=”2.0.0”
 xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005” >
 < TemplateData >
 ...
 < /TemplateData >
 < TemplateContent >
 ...
 < /TemplateContent >
 < WizardExtension >
 ...
 < /WizardExtension >
 < WizardData >
 ...
 < /WizardData >
 < /VSTemplate >

 The < VSTemplate > element has a Type attribute used to identify the template as a project or item
template. It can have the values Project or Item , respectively. As a special template type, it also can
have the value of ProjectGroup that will be explained a bit later.

 The Version attribute specifi es the version number for the template. Since Visual Studio 2005, this
value has been 2.0.0 .

 Following are the two other fundamental elements:

 < TemplateData > — This provides template categorization information and display
characteristics for the New Project and Add New Item dialogs.

 < TemplateContent > — This specifi es the fi les included in the template.

 Visual Studio allows using wizards that can add custom functionality to templates. The
 < WizardExtension > and < WizardData > elements are responsible for specifying the assembly
implementing the wizard and for passing information used by the wizard. These two elements
are optional.

 Let ’ s look into the manifest fi le of the Command Processor item template you created earlier.
Listing 4 - 5 shows the fi le.

➤

➤

➤

➤

➤

Template Storage Structure ❘ 85

CH004.indd 85CH004.indd 85 9/6/10 4:37:25 PM9/6/10 4:37:25 PM

86 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 LISTING 4 - 5: Manifest of the Command Processor Item Template

 < VSTemplate Version=”2.0.0”
 xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005” Type=”Item” >
 < TemplateData >
 < DefaultName > Command Processor.cs < /DefaultName >
 < Name > Command Processor < /Name >
 < Description > This item creates a command processor class < /Description >
 < ProjectType > CSharp < /ProjectType >
 < SortOrder > 10 < /SortOrder >
 < Icon > __TemplateIcon.ico < /Icon >
 < /TemplateData >
 < TemplateContent >
 < References >
 < Reference >
 < Assembly > System < /Assembly >
 < /Reference >
 < /References >
 < ProjectItem SubType=”” TargetFileName=”$fileinputname$.cs”
 ReplaceParameters=”true” > CommandProcessorItem.cs < /ProjectItem >
 < /TemplateContent >
 < /VSTemplate >

 Instead of explaining all the details here (which will be done shortly), let ’ s decrypt what this
template defi nition is about.

 The < TemplateData > Element

 This element plays a key role in providing categorization and display information about the
template, and also defi nes a few points infl uencing the behavior of the New Project and Add New
File dialogs. < TemplateData > has no attributes, but it may contain many child elements. Table 4 - 1
summarizes elements responsible for the display characteristics of the template.

 TABLE 4 - 1: < TemplateData > Child Elements — Display Characteristics

 CHILD ELEMENT DESCRIPTION

 < Name > This required element specifi es the name of the

template as it appears in the New Project or Add New

Item dialogs.

 < Description > This specifi es the description of the template as it

appears in either the New Project or Add New Item

dialog box. This element is required.

 < Icon > This specifi es the path and the fi lename of the image

fi le that serves as the icon for the template, which

appears in either the New Project or the Add New Item

dialog box.

CH004.indd 86CH004.indd 86 9/6/10 4:37:25 PM9/6/10 4:37:25 PM

 CHILD ELEMENT DESCRIPTION

 < PreviewImage > This specifi es the path and the fi lename of the image

fi le that serves as the preview image for an online

template. This preview image is displayed in the New

Project and Add New Item dialogs, as well as in the

Visual Studio Gallery.

 < DefaultName > This element is required. For projects, this element

specifi es the name of the directory that stores the

project on disk. For items, it specifi es the fi le name of

the source fi le.

 < ProvideDefaultName > This optional element specifi es whether the Visual

Studio project system will generate a default name

for the template in the Add New Item or New Project

dialog box. The text of this element must be either

 true or false , and the default is false .

 < Hidden > This element specifi es whether the template appears

either in the New Project or in the Add New Item

dialog box. The text of this element must be either

 true or false , and the default is false .

 < SortOrder > This optional element defi nes the order of a project

or item template in the dialogs. This is ignored for

user templates, because those are always sorted

alphabetically. The default value is 100 , and all values

must be multiples of ten. Templates that have low sort

order values appear in either the New Project or New

Add Item dialog box before templates that have high

sort order values.

 < NumberOfParentCategoriesToRollUp > This optional value specifi es the number of parent

categories up to the template folder that also will

display the template in the New Project or Add New

Item dialog box. For example, if a template with this

metadata is placed two folder levels below the top -

 level Visual C# node, and this value is set to 2 , the

template will appear also under the Visual C# category

node in the New Project dialog box. If this node is not

set, the template only appears in the node in which it is

physically located.

 < LocationFieldMRUPrefix > This specifi es the most recently used paths in the New

Project and Add New Item dialogs.

Template Storage Structure ❘ 87

CH004.indd 87CH004.indd 87 9/6/10 4:37:26 PM9/6/10 4:37:26 PM

88 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 The < Name > , < Description > and < Icon > elements can get their content from resources embedded
into Visual Studio packages. In that case, the Package and ID attributes of these nodes should be
used for the package GUID and the resource identifi er, respectively.

 Templates are assigned with project types and can be language - specifi c or language - independent. The
child elements shown in Table 4 - 2 describe these characteristics.

 TABLE 4 - 2: < TemplateData > Child Elements — Project and Language

 CHILD ELEMENT DESCRIPTION

 < ProjectType >

 This value specifi es the type of project the template will create and must

contain one of the following values:

 CSharp , FSharp , Visual Basic — The template creates a Visual C#, F#

or Visual Basic project or item, respectively.

 Web — Specifi es that the template creates a web project or item.

In this case, the language of the project or item is defi ned in the

 < ProjectSubType > element.

 < ProjectSubType >

 This is an optional element and provides a subcategory to the

 < ProjectType > element. This value is used in two scenarios.

 If the project is a smart device project, the SmartDevice - NETCFv1 and

 SmartDevice - NETCFv2 values indicate that the template targets the .NET

Compact Framework version 1.0 or 2.0, respectively.

 If < ProjectType > is Web , this element specifi es the programming language

of the template. In this case, the available values of CSharp and VisualBasic

are related to the Visual C# and Visual Basic languages, respectively.

 TABLE 4 - 3: < TemplateData > Children — Item Template Specifi c Elements

 CHILD ELEMENT DESCRIPTION

 < TemplateID > This optional element represents an identifi er for an item

template that is categorized into a group of item templates by

the < TemplateGroupID > element. If this element is omitted,

the < Name > is used as the identifi er of the item template. This

element is to be used in advanced scenarios where a Visual

Studio package defi nes an item template.

 < TemplateGroupID > This value is optional and specifi es an identifi er for a category

of item templates. This element is to be used in advanced

scenarios where a Visual Studio defi nes an item template.

 The other child elements of < TemplateData > are processed only by project templates or by item
templates. You can put these elements into any manifest fi le, and unparsed elements are simply ignored
by the template type. Table 4 - 3 summarizes those child elements that are processed by item templates.

CH004.indd 88CH004.indd 88 9/6/10 4:37:26 PM9/6/10 4:37:26 PM

 Table 4 - 4 summarizes < TemplateData > child elements that are specifi c to project templates.

 CHILD ELEMENT DESCRIPTION

 < SupportsMasterPage > This optional element is used only for web item templates,

and specifi es whether or not the Select Master Page

checkbox is enabled on the Add New Item dialog box. The

text of this element must be either true or false , and the

default is false .

 < SupportsCodeSeparation > This optional element is used only for web item templates,

and specifi es whether or not the “ Place code in separate fi le ”

check box is enabled in the Add New Item dialog box. The

text of this element must be either true or false , and the

default is false .

 < SupportsLanguageDropDown > This optional element is used only for web item templates

and specifi es whether or not the Language option is enabled

in the Add New Item dialog box. This option enables you to

choose the programming language of the new item that you

want to create from the template. The text of this element

must be either true or false , and the default is false .

 TABLE 4 - 4: < TemplateData > Children — Project Template Specifi c Elements

 CHILD ELEMENT DESCRIPTION

 < BuildOnLoad > This element specifi es whether to build the solution when a

project is created from the template. The text of this element

must be true or false , and the default is false .

 < CreateInPlace > This specifi es whether to create the project and perform

parameter replacement in the specifi ed location, or perform

parameter replacement in a temporary location and then

save the project to the specifi ed location. If the value of this

element is true (this is the default), the project is created,

and parameter replacement is performed in the location

specifi ed in the New Project dialog box. If false , parameter

replacement is performed in a temporary location, and the

project is then copied to the specifi ed location.

 < CreateNewFolder > This specifi es whether a containing folder is created on

instantiation of the project. The text of this element must be

either true or false , and the default is true . The project

system hosting the specifi ed template must support this

option.

continues

Template Storage Structure ❘ 89

CH004.indd 89CH004.indd 89 9/6/10 4:37:27 PM9/6/10 4:37:27 PM

90 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Now that you are familiar with the < TemplateData > element, you can understand what the
following defi nition in the Basic Command Console project template stands for:

 < TemplateData >
 < Name > Basic Command Console < /Name >
 < Description > This console processes simple commands < /Description >
 < ProjectType > CSharp < /ProjectType >
 < ProjectSubType >
 < /ProjectSubType >
 < SortOrder > 1000 < /SortOrder >
 < CreateNewFolder > true < /CreateNewFolder >
 < DefaultName > Basic Command Console < /DefaultName >
 < ProvideDefaultName > true < /ProvideDefaultName >
 < LocationField > Enabled < /LocationField >
 < EnableLocationBrowseButton > true < /EnableLocationBrowseButton >
 < Icon > __TemplateIcon.ico < /Icon >
 < /TemplateData >

 Not all child elements are described here, but, rather, let ’ s focus on what the result is. So, the project
template is for the Visual C# language and the project template will be placed somewhere at the end
of the project template list. The New Project dialog will provide a default name for the project that
is to be created in a new folder, and the user is allowed to select this folder ’ s location.

 CHILD ELEMENT DESCRIPTION

 < PromptForSaveOnCreation > This specifi es whether the user is prompted for a project

save location via the New Project dialog box when creating

a project. If this element is set to true , then the user is

prompted for a save location. If false , then the user is not

prompted, and, in this case, a temporary project is created.

 < EnableLocationBrowseButton > In the New Project dialog box, the Location text box

specifi es the directory where a new project is saved. The

Browse button helps you modify this directory by displaying

the Project Location dialog box, which enables you to

easily navigate to a diff erent directory available from your

computer, and then choose it as the directory where the

new project is saved. The text must be either true or

 false , indicating whether or not to display the Browse

button on the New Project dialog box. The default value

is true .

 < LocationField > The Location text box in the New Project dialog box enables

users to change the default directory in which new projects

are saved. This element specifi es if this text box should be

enabled, disabled, or hidden. Thus, the element values are

 Enabled , Disabled , and Hidden .

 TABLE 4 - 4 (continued)

CH004.indd 90CH004.indd 90 9/6/10 4:37:28 PM9/6/10 4:37:28 PM

 You should now understand the meaning of the < TemplateData > section of the Command Processor
item template:

 < TemplateData >
 < DefaultName > Command Processor.cs < /DefaultName >
 < Name > Command Processor < /Name >
 < Description > This item creates a command processor class < /Description >
 < ProjectType > CSharp < /ProjectType >
 < SortOrder > 10 < /SortOrder >
 < Icon > __TemplateIcon.ico < /Icon >
 < /TemplateData >

 The < TemplateContent > Element

 While the < TemplateData > element is responsible for providing information about template
categorization, appearance, and defi ning simple behavior attributes, the < TemplateContent >
element defi nes the structure of template fi les and related elements (such as referenced assemblies in
project templates). Depending on the template type (that is, the Type attribute of the < VSTemplate >
element), the following child elements can be used:

 Project templates should use the < Project > child element that defi nes the project fi le
and keeps a list of fi les and folders to be added to the project. In this case, the referenced
assemblies are defi ned in the project fi le.

 Item templates should use the < ProjectItem > and < References > child elements to defi ne
the fi les included in the item template and assembly references that should be added to the
project when the item is inserted into the project, respectively.

 The < ProjectCollection > child element should be used with a third kind of template, the
 ProjectGroup type. This element describes the links to projects in multi - project templates.

 Independently of the template type, the optional < CustomParameters > child element can be used in
addition to the ones just described. This element groups custom parameters that are passed to the
template wizard when the wizard makes parameter replacement.

 Defi ning Files and Folders in Project Templates

 When the Type attribute of < VSTemplate > is set to Project , the < Project > child element should
be used under < TemplateContent > to defi ne all fi les and folders to be added to the project. You can
use only one instance of < Project > that has the following attributes:

 File — This attribute is required, and names the project fi le in the .zip archive defi ning
the template.

 TargetFileName — This optional attribute specifi es the name of the project fi le when a
project is created from the template. If this attribute is omitted, the name in File attribute
or the user - specifi ed project name is used.

 ReplaceParameters — This attribute specifi es whether the project fi le has parameter
values that must be replaced when a project is created from the template. The default value
is false .

➤

➤

➤

➤

➤

➤

Template Storage Structure ❘ 91

CH004.indd 91CH004.indd 91 9/6/10 4:37:28 PM9/6/10 4:37:28 PM

92 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 < Project > has two child elements, < ProjectItem > and < Folder > , that defi ne the fi les and folders
to be added to the project, respectively. While < ProjectItem > cannot contain any child element,
 < Folder > can nest both < ProjectItem > and < Folder > element recursively to represent the
hierarchical structure of fi les and folders.

 < Folder > has the following two attributes:

 Name — This attribute is required and indicates the name of the project folder in the .zip
archive.

 TargetFolderName — This attribute is optional and can defi ne the name of the folder when
it is being created. If this attribute is omitted, the folder name in the .zip archive (as the
 Name attribute tells) is used. This attribute is also useful for using parameter replacement to
create a folder name, or for naming a folder with an international string that cannot be used
directly in the .zip fi le.

 The < ProjectItem > element ’ s value contains the fi lename in the .zip archive that should be added
to the project. However, you should use only a simple fi lename without any path information. The
element has about a half dozen attributes summarized in Table 4 - 5.

➤

➤

 TABLE 4 - 5: < ProjectItem > Attributes For Project Templates

 CHILD ELEMENT DESCRIPTION

 TargetFileName This attribute specifi es the name and path of the project item when

a project is created from the template. This attribute is useful for

creating a directory structure diff erent from the directory structure in

the template .zip fi le, or for using parameter replacement to create

an item name. The TargetFileName attribute can also be used to

rename fi les with parameters.

 ReplaceParameters This optional value specifi es whether the item has parameter values

that must be replaced when a project is created from the template.

The default value is false .

 OpenInEditor This attribute specifi es whether the item should be opened in its

respective editor in Visual Studio when a project is created from

the template. If this value is true , the OpenInWebBrowser and

 OpenInHelpBrowser attributes are ignored. This attribute is optional,

and its default value is false .

 OpenInWebBrowser This optional attribute specifi es whether the item should be opened

the web browser when a project is created from the template. Only

HTML fi les and text fi les that are local to the project can be opened

in the web browser. External URLs cannot be opened with this

attribute. The default value is false .

CH004.indd 92CH004.indd 92 9/6/10 4:37:29 PM9/6/10 4:37:29 PM

 The < TemplateContent > section of the Basic Command Console manifest is as follows:

 < TemplateContent >
 < Project TargetFileName=”ConsoleBase.csproj” File=”ConsoleBase.csproj”
 ReplaceParameters=”true” >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”CommandProcessor.cs” >
 CommandProcessor.cs
 < /ProjectItem >
 < ProjectItem ReplaceParameters=”true”
 TargetFileName=”CommandProcessorItem.cs” >
 CommandProcessorItem.cs
 < /ProjectItem >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”Program.cs” >
 Program.cs
 < /ProjectItem >
 < Folder Name=”Properties” TargetFolderName=”Properties” >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”AssemblyInfo.cs” >
 AssemblyInfo.cs
 < /ProjectItem >
 < /Folder >
 < /Project >
 < /TemplateContent >

 You can see here that all fi les — including the project fi le — preserve their original names in the .zip
archive, and are ready for parameter replacement. As you saw in Table 4 - 5, the TargetFileName
attribute can also be used to rename fi les with parameters. For example, in this template, you could
replace the Program.cs fi lename with the project name by changing the related < ProjectItem >
element to the following:

 < ProjectItem ReplaceParameters=”true” TargetFileName=”$safeprojectname$.cs” >
 Program.cs
 < /ProjectItem >

 Attributes with the OpenIn prefi x also can be very useful. With them, you can automatically open
the fi les you intend (or recommend to your template ’ s users) to edit, and you can also display help

 CHILD ELEMENT DESCRIPTION

 OpenInHelpBrowser This optional attribute specifi es whether the item should be opened

in the Help viewer when a project is created from the template. Only

HTML fi les and text fi les that are local to the project can be opened in

the Help browser. External URLs cannot be opened with this attribute.

The default value is false .

 OpenOrder This optional attribute specifi es a numeric value that represents the

order in which items will be opened in their respective views (editors,

web browser, or Help browser). All values must be multiples of ten.

Items with lower OpenOrder values are opened fi rst.

Template Storage Structure ❘ 93

CH004.indd 93CH004.indd 93 9/6/10 4:37:30 PM9/6/10 4:37:30 PM

94 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

fi les. Because you cannot redirect the web browser or the Help browser to external URLs, you
should follow these steps:

 1. Create one or more HTML pages as a part of your template ’ s documentation. You should
put it in a separate documentation folder, especially if you have more than three of them.

 2. Add the OpenInWebBrowser attribute with a true value to the index page of your documen-
tation, and set its OpenOrder value so that it will be the page opened last.

 3. If you need to redirect the user to external pages, create appropriate links in the documenta-
tion pages.

 Defi ning Files and Referenced Assemblies in Item Templates

 When the Type attribute of < VSTemplate > is set to Item , you can use the < ProjectItem > and
 < References > child elements under < TemplateContent > to defi ne all fi les and referenced
assemblies to be added to the project. Even if you are using item templates, you can add more fi les
to the project. Items such as Windows (or WPF) forms and web pages are composed from more than
one fi le. If there are more fi les in your item template, you can add one < ProjectItem > element for
each of them directly under < TemplateContent > .

 The < ProjectItem > elements for item templates do not have any child elements. Their values
contain the fi lename in the .zip archive that should be added to the project. < ProjectItem >
elements in this context can have three optional attributes:

 TargetFileName — This attribute ’ s semantics are the same as in case of project templates.
This attribute specifi es the name and path of the project item when a project is created from
the template, and accepts parameter - replacement expressions.

 SubType — This attribute specifi es the subtype of an item in a multi - fi le item template.
This value is used to determine the editor that Visual Studio will use to open the item. The
possible values depend on the project system. For more information about SubType , open
the project fi le with the XML editor and look at what kinds of subtypes are used for specifi c
project items.

 ReplaceParameters — This attribute specifi es whether the item has parameter values that
must be replaced when a project is created from the template. The default value is false .

 While referenced assemblies are the part of the project fi le in project templates, item templates
do not know in advance the project context they will be added to. The < References > element
provides a way that item templates can declare the code within them is about to use types defi ned

➤

➤

➤

 Be careful not to confuse the < ProjectItem > element used for project templates
with the ones used for item templates. The names may be the same, and both
may describe fi les to be added to the project, but their attributes are different
according to the context in which they are used.

CH004.indd 94CH004.indd 94 9/6/10 4:37:30 PM9/6/10 4:37:30 PM

in particular assemblies. When the item is added to the project, the information here is used to add
the referenced assembly to the project (if not already added).

 If you know that certain assemblies are already added to the project, you can omit those
references from the item template defi nition. For example, if you create custom forms and
dialogs as item templates, and you generally add them to Windows Forms projects, you may
not need to specify System.Windows.Forms as a reference, because that assembly is already
added to the project. As a good practice, you should always add those references to the item
template defi nitions.

 < References > is only a container for a < Reference > element that itself is a container for exactly
one < Assembly > element. The value of an < Assembly > element must be the short name or the strong
name of the assembly.

 Following is a sample extract from an item template to demonstrate the usage of < ProjectItems >
and < References > . The item is a simple Windows form intended to be the base of main application
forms.

 < TemplateContent >
 < References >
 < Reference >
 < Assembly > System.Windows.Forms < /Assembly >
 < /Reference >
 < Reference >
 < Assembly > VSXtra < /Assembly >
 < /Reference >
 < /References >
 < ProjectItem SubType=”Form” TargetFileName=”$fileinputname$.cs”
 ReplaceParameters=”true” >
 MainForm.cs
 < /ProjectItem >
 < ProjectItem SubType=”” TargetFileName=”$fileinputname$.Designer.cs”
 ReplaceParameters=”true” >
 MainForm.Designer.cs
 < /ProjectItem >
 < /TemplateContent >

 Here you see two references added to the item template. One is the “ mandatory ” System.Windows
.Forms assembly, and the other is a third - party one. The assemblies here use simple names. Before
deploying the template, you should change them to strong names to work everywhere.

 You can also see that the item is composed from two fi les. In both fi le defi nitions, the TargetFileName
attributes use the $fileinputname$ replacement parameter that is changed to the fi lename specifi ed
by the user in the Add New item dialog. The ReplaceParameters attributes are also set to true .

 Advanced Features

 So far, you have learned about project and item templates. Actually, there is a third type of template
called multi - project template that is like a project template and contains not only one, but two or

Template Storage Structure ❘ 95

CH004.indd 95CH004.indd 95 9/6/10 4:37:36 PM9/6/10 4:37:36 PM

96 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

more projects. The Type attribute of the < VSTemplate > element should be set to ProjectGroup to
sign the manifest describes a multi - project template:

 < VSTemplate Version=”2.0.0” Type=”ProjectGroup”
 xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005” >

 Using a multi - project template creates more projects in the same solution. When a project based on
a multi - project template is created from the New Project dialog box, every project in the template is
added to the solution.

 A multi - project template must include the following items, compressed into a .zip fi le:

 A root .vstemplate fi le for the entire multi - project template — This root manifest fi le
contains the metadata that the New Project dialog box displays, and specifi es where to fi nd
the .vstemplate fi les for the projects in this template. This fi le must be located at the root
of the .zip fi le.

 One or more folders that contain the fi les required for a complete project template — This
includes all code fi les for the project, and also a .vstemplate fi le for the template.

 The root of the .zip archive can contain only the root .vstemplate fi le, and all the other
 .vstemplate fi les should be put in subfolders within the archive.

 For example, a multi - project template .zip fi le that has two projects (WinFormsApp and
 FormLibrary) could have the following fi les and directories:

 Application.vstemplate : root .vstemplate fi le

 WinFormsApp\WinFormsApp.vstemplate : .vstemplate fi le for the WinFormsApp project

 WinFormsApp\WinFromsApp.csproj

 WinFormsApp\Properties\AssemblyInfo.cs

 WinFormsApp\MainForm.cs

 WinFormsApp\MainForm.Designer.cs

 FormLibrary\FormLibrary.vstemplate : .vstemplate fi le for the FormLibrary project

 FormLibrary\FormLibrary.csproj

 FormLibrary\Properties\AssemblyInfo.cs

 FormLibrary\UserEntities.cs

 FormLibrary\SystemEntities.cs

 To describe this multi - project template, you can use the < ProjectCollection > element nested into
 < TemplateContent > . You can nest the following elements in < ProjectCollection > :

 < ProjectTemplateLink > — This element represents a project in a multi - project template. It
contains a required ProjectName attribute that specifi es the name of the project. The value
of this element is the path to the .vstemplate fi le describing the specifi c project template
within the .zip archive.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH004.indd 96CH004.indd 96 9/6/10 4:37:36 PM9/6/10 4:37:36 PM

 < SolutionFolder > — This element represents a virtual solution folder in a multi -
 project template used to group projects. It has a required Name attribute specifying
the solution folder name. The element can nest further < SolutionFolder > and
 < ProjectTemplateLink > elements recursively to represent the hierarchy of solution folders
and projects.

 Listing 4 - 6 shows the root .vstemplate fi le describing this multi - project template.

 LISTING 4 - 6: Application.vstemplate

 < VSTemplate Version=”2.0.0” Type=”ProjectGroup”
 xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005” >
 < TemplateData >
 < CreateNewFolder > true < /CreateNewFolder >
 < Name > Multi-project Application < /Name >
 < DefaulName > MultiProjectApp < /DefaultName >
 < Description > Demonstrates how a multi-project template looks like < Description >
 < Icon > MultiProjAppIcon.ico < /Icon >
 < /TemplateData >
 < TemplateContent >
 < ProjectCollection >
 < ProjectTemplateLink ProjectName=”Application project” >
 WinFormsApp\WinFormsApp.vstemplate
 < /ProjectTemplateLink >
 < ProjectTemplateLink ProjectName=”Library project” >
 FormLibrary\FormLibrary.vstemplate
 < /ProjectTemplateLink >
 < /ProjectCollection >
 < /TemplateContent >
 < /VSTemplate >

 As you see from Listing 4 - 6, the values of the two < ProjectTemplateLink > elements simply refer to
the included .vstemplate fi les for the projects.

 You can use solution folders to group the projects within the multi - project template. Assuming
that you created separate solution folders for WinFormsApp and FormLibrary , you could use the
 < SolutionFolder > nodes to specify the virtual location of the projects:

 < TemplateContent >
 < ProjectCollection >
 < SolutionFolder Name=”Application” >
 < ProjectTemplateLink ProjectName=”Application project” >
 WinFormsApp\WinFormsApp.vstemplate
 < /ProjectTemplateLink >
 < /Solution >
 < SolutionFolder Name=”Libraries” >
 < ProjectTemplateLink ProjectName=”Library project” >
 FormLibrary\FormLibrary.vstemplate
 < /ProjectTemplateLink >
 < /Solution >
 < /ProjectCollection >
 < /TemplateContent >

➤

Template Storage Structure ❘ 97

CH004.indd 97CH004.indd 97 9/6/10 4:37:37 PM9/6/10 4:37:37 PM

98 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Multi - project templates cannot be created with the Export Template Wizard. You must manually
establish the multi - project structure and the required manifest fi les. Actually, you are able to export
templates for the individual projects into .zip archives, but you must write the root .vstemplate
fi le by hand, and also repackage the .zip archives manually.

 CUSTOMIZING TEMPLATES

 The New Project and Add New Item dialogs provide very limited customization for project
templates. You could use placeholders in the content of template fi les to replace them with
the project or item names specifi ed in the dialogs. In many scenarios, however, these simple
replacements do not provide an appropriate solution.

 In this section, you will learn about the following two customization techniques:

 Using custom parameters — You can add custom parameters to the template manifest by
specifying placeholders and their current replacement values.

 Custom template wizards — You can develop a wizard that can be run when the template
is used. This wizard can collect information from the user and initiate actions according to
this information.

 Both techniques are very useful, especially template wizards that provide sophisticated
customization opportunities.

 Template Parameters

 In the samples presented thus far, you have already used the $safeprojectname$ and $safeitemname$
template parameters. There are a few more predefi ned ones, as shown in Table 4 - 6.

➤

➤

 TABLE 4 - 6: Template Parameters

 PARAMETER DESCRIPTION

 clrversion Current version of the common language run - time (CLR).

 guid[1 - 10] A GUID value to be used in the project fi le, or in any other source

fi les. You can specify up to ten unique GUIDs (for example, guid1).

Visual Studio generates the GUID values and replaces them

consistently (for example, the same value replaces guid1 at every

occurrence).

 itemname The name provided by the user in the Add New Item dialog box.

The default extension is automatically cut from the name.

 machinename The current computer name.

 projectname The name provided by the user in the New Project dialog box.

CH004.indd 98CH004.indd 98 9/6/10 4:37:37 PM9/6/10 4:37:37 PM

 Custom Template Parameters

 The < TemplateContent > element has an optional child element named < CustomParameters >
that can be used independently if the template is a project or item template. < CustomParameters >
is a container that can hold one or more < CustomParameter > elements, each of which holds two
mandatory attributes: Name and Value . A < CustomParameter > describes a placeholder substitution,
where Name is the placeholder to be replaced with Value .

 Let ’ s assume you have the following < TemplateContent > section in the manifest fi le:

 < TemplateContent >
 < !-- ... -- >
 < CustomParameters >
 < CustomParameter Name=”$className$” Value=”EventClass” / >
 < CustomParameter Name=”$idPropertyType$” Value=”long” / >
 < CustomParameter Name=”$idProperty$” Value=”SeqNo” / >
 < CustomParameter Name=”$displayNameProperty$” Value=”ShortName” / >
 < /CustomParameters >
 < /TemplateContent >

 PARAMETER DESCRIPTION

 registeredorganization The registry key value from HKLM\Software\Microsoft\

Windows NT\CurrentVersion\RegisteredOrganization .

 rootnamespace The root namespace of the current project. This parameter

is used to replace the namespace in an item being added to a

project.

 safeitemname The name provided by the user in the Add New Item dialog box,

with all unsafe characters removed and spaces replaced by

underscores.

 safeprojectname The name provided by the user in the New Project dialog box,

with all unsafe characters removed and spaces replaced by

underscores.

 time The current time in the format DD/MM/YYYY 00:00:00 .

 userdomain The current user domain name.

 username The current user name.

 webnamespace The name of the current web site. This parameter is used in

the web form template to guarantee unique class names. If the

web site is at the root directory of the web server, this template

parameter resolves to the root directory of the web Server.

 year The current year in the format YYYY .

Customizing Templates ❘ 99

CH004.indd 99CH004.indd 99 9/6/10 4:37:38 PM9/6/10 4:37:38 PM

100 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 The placeholders between dollar signs will be replaced with the associated Value attribute in all
fi les having a true value in their ReplaceParameters attribute. Let ’ s assume one of your fi les in the
template looks like this:

using System;

namespace MyRootNamespace
{
 public class $className$
 {
 public $className$($idPropertyType$ _$idProperty$,
 string _$displayPropertyName$)
 {
 $idPropertyName$ = _$idPropertyName$;
 $displayNameProperty$ = _$displayNameProperty$;
 }

 public $idPropetyType$ $idPropertyName$ { get; private set; }

 public string $displayNameProperty$ { get; private set; }
 }
}

 The template system will replace the placeholders with their proposed values in the
 < CustomParameters > section of the manifest fi le. For the previous fi le, the following source
code will be added to the project:

using System;

namespace MyRootNamespace
{
 public class EventClass
 {
 public EventClass (long _SeqNo,
 string _ShortName)
 {
 SeqNo = _SeqNo;
 ShortName = _ShortName;
 }

 public long SeqNo { get; private set; }

 public string ShortName { get; private set; }
 }
}

 Similar to the predefi ned template parameters, custom parameters also work for fi lenames. For
example, you could use the $className$ custom parameter in the < ProjectItems > section like this:

 < ProjectItems >
 < !-- ... -- >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”$className$.cs” >

CH004.indd 100CH004.indd 100 9/6/10 4:37:39 PM9/6/10 4:37:39 PM

 Class.cs
 < /ProjectItem >
 < !-- ... -- >
 < /ProjectItems >

 Wizards

 Wizards are great tools to customize templates. If you have ever created a Visual Studio Add - In,
Shared Add - In, C++ ATL project, or many other types of projects where a wizard helps to create
an application, you defi nitely know the effi ciency of this approach.

 This is not solely a privilege of the Visual Studio development team at Microsoft to create
wizards! This extensibility point is open for every Visual Studio developer. In following
discussions, you will learn how easy it is to add your own wizard to a custom project template.

 Wizards are simple .NET classes implementing the IWizard interface that can be found in
the Microsoft.VisualStudio.TemplateWizard namespace in the Microsoft.VisualStudio
.TemplateWizard assembly. If you implement IWizard , you can count on the following features:

 Collect information through your own UI and use that information to create a code
skeleton.

 Extend the replacement dictionary (placeholder/replacement associations) dynamically.

 Declare each fi le that is part of the original template as to whether it should be added to
the target project.

 Access (and even change) the project or the item from the template after Visual Studio has
fi nished generating them.

 Run custom actions before items are opened in their corresponding editors.

 Comment Selector Sample

 To demonstrate the features available through the IWizard interface, let ’ s take a look at a simple
example implementing a one - page wizard that allows the user to select a heading comment from a
list. This example uses this wizard to put the selected comment into the header of the Program.cs
fi le in a console application.

 Start the wizard by creating a C# class library project, and name it SimpleCommentWizard . Delete
the Class1.cs fi le, because you do not need it.

 The wizard uses a WPF dialog as its user interface, so add the following assembly references to
the project: PresentationCore , PresentatioFramework , and WindowsBase . To access the
 IWizard interface, you must also add references for the EnvDTE and Microsoft.VisualStudio
.TemplateWizardInterface assemblies.

 Because the wizard should be put into the Global Assembly Cache (GAC) so that Visual Studio
can fi nd and load it, you must sign it with a key to ensure it has a strong name. Go to the project
properties and, on the Signing tab, click the “ Sign the assembly ” checkbox and select the < New... >
item from the “ Choose a strong name key fi le ” combo box. Specify a key fi lename in the dialog

➤

➤

➤

➤

➤

Customizing Templates ❘ 101

CH004.indd 101CH004.indd 101 9/6/10 4:37:39 PM9/6/10 4:37:39 PM

102 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

appearing (for example, Key.snk) and clear the “ Protect my key
fi le with a password ” checkbox. Click OK, and the key fi le is
immediately added to the project.

 The user interface of the wizard is actually a simple list box, as
shown in Figure 4 - 19.

 The user interface of the wizard is a WPF form using embedded
WPF resources and data binding to keep the UI logic very
simple. Add a WPF User Control item to the project with the
 CommentSelector.xaml name. Listing 4 - 7 shows the XAML
fi le defi ning the UI.

 LISTING 4 - 7: CommentSelector.xaml

 < Window x:Class=”SimpleCommentWizard.CommentSelector”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:src=”clr-namespace:SimpleCommentWizard”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”300” ResizeMode=”NoResize”
 Title=”Simple Comment Wizard”
 Width=”300” Height=”220” WindowStartupLocation=”CenterScreen” >
 < Window.Resources >
 < src:CommentDescriptorCollection x:Key=”CommentTypes” >
 < src:CommentDescriptor
 ShortName=”No restriction”
 Description=”You can use this application with no restriction.”/ >
 < src:CommentDescriptor
 ShortName=”AS IS”
 Description=”The application is provided as it is.”/ >
 < src:CommentDescriptor
 ShortName=”No commercial use”
 Description=”The application cannot be used in commercial products.”/ >
 < /src:CommentDescriptorCollection >
 < /Window.Resources >
 < DockPanel >
 < DockPanel DockPanel.Dock=”Bottom” Height=”36” Margin=”4” >
 < Button Name=”OkButton” IsDefault=”true” DockPanel.Dock=”Right”
 Width=”80” Margin=”4” Click=”OkButton_Click” > OK < /Button >
 < Button Name=”CancelButton” HorizontalAlignment=”Right”
 DockPanel.Dock=”Right” Width=”80” Margin=”4”
 Click=”CancelButton_Click” > Cancel < /Button >
 < /DockPanel >
 < StackPanel Margin=”4” >
 < TextBlock Margin=”4” > Select a comment: < /TextBlock >
 < ListBox x:Name=”CommentListBox” Margin=”4” SelectedIndex=”0”
 ItemsSource=”{StaticResource CommentTypes}”

 FIGURE 4 - 19: The UI of the Simple

Comment Wizard

CH004.indd 102CH004.indd 102 9/6/10 4:37:39 PM9/6/10 4:37:39 PM

 DisplayMemberPath=”ShortName” / >
 < Border BorderBrush=”DarkGray” Margin=”4” BorderThickness=”2” >
 < TextBlock HorizontalAlignment=”Stretch” TextWrapping=”Wrap”
 VerticalAlignment=”Stretch” Padding=”8,8,8,8”
 Text=”{Binding ElementName=CommentListBox, Path=SelectedItem.Description}“
 Background=”LightGoldenrodYellow” / >
 < /Border >
 < /StackPanel >
 < /DockPanel >
 < /Window >

 Code fi le [CommentSelector.xaml] available for download at Wrox.com

 Although you have added a WPF user control, you changed it to a WPF window, as you can see
from Listing 4 - 7. The code - behind fi le of the XAML defi nition is very simple. It responds the OK
and Cancel buttons, as shown in Listing 4 - 8.

 LISTING 4 - 8: CommentSelector.xaml.cs

using System.Windows;

namespace SimpleCommentWizard
{
 public partial class CommentSelector : Window
 {
 public string SelectedComment { get; set; }
 public CommentSelector()
 {
 InitializeComponent();
 }

 private void OkButton_Click(object sender, RoutedEventArgs e)
 {
 var comment = CommentListBox.SelectedItem as CommentDescriptor;
 SelectedComment = comment == null ? null : comment.Description;
 Close();
 }

 private void CancelButton_Click(object sender, RoutedEventArgs e)
 {
 SelectedComment = null;
 Close();
 }
 }
}

 Code fi le [CommentSelector.xaml.cs] available for download at Wrox.com

Customizing Templates ❘ 103

CH004.indd 103CH004.indd 103 9/6/10 4:37:40 PM9/6/10 4:37:40 PM

104 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 The SelectedComment property holds the value of the comment to be inserted into the source
code. CancelButton sets it to null , while the OkButton assigns it with the value of the description
belonging to the comment type selected in the list.

 The CommentListBox control is responsible for listing the comments from which the user can select.
It binds a collection of CommentDescriptor items defi ned in Listing 4 - 9.

 LISTING 4 - 9: CommentDescriptor.cs

using System.Collections.Generic;

namespace SimpleCommentWizard
{
 class CommentDescriptor
 {
 public string ShortName { get; set; }
 public string Description { get; set; }
 }

 class CommentDescriptorCollection : List < CommentDescriptor >
 {
 }
}

 Code fi le [CommentDescriptor.cs] available for download at Wrox.com

 Add a new class fi le with name CommentDescriptor.cs to the project and copy the content of the
listing into the fi le. The CommentSelector.xaml fi le defi nes a resource with the key CommentTypes
bound to CommentListBox .

 Implementing IWizard

 Table 4 - 7 shows a few methods to implement with the IWizard interface.

 TABLE 4 - 7: The IWizard Interface Methods

 METHOD DESCRIPTION

 BeforeOpeningFile Runs the wizard logic after the code generation, when an

item is about to open in the IDE with its corresponding

editor. The method accepts an input parameter with the

type of EnvDTE.ProjectItem that describes the item to

be opened. When you implement this method, you can

obtain information about the item to be opened, or even

change the item ’ s properties.

CH004.indd 104CH004.indd 104 9/6/10 4:37:40 PM9/6/10 4:37:40 PM

 METHOD DESCRIPTION

 ProjectFinishedGenerating Runs the wizard logic when a project has fi nished generating.

This method is called by the IDE only when the wizard

belongs to a project template. The method has an input

parameter with the type of EnvDTE.Project that describes

the project. You can use this method to obtain information

about the project or even to change the project structure or

properties. This method is a good placeholder for activities

to add new fi les to the projects — or change existing

ones — according to the information collected from the user.

 ProjectItemFinishedGenerating Runs the wizard logic when a project item has fi nished

generating. This method is called by the IDE only when

the wizard belongs to an item template. The method has

an input parameter with the type of EnvDTE.ProjectItem

that describes the item generated. You can use this

method to obtain information about the item or even to

change its properties.

 RunFinished Runs wizard logic when the wizard has completed all the

tasks. You can use this method to clean up resources used

by the wizard.

 RunStarted

 Runs custom wizard logic at the beginning of a template

wizard run. This is the method where the user interface

of the wizard should be displayed. The user interface can

collect information from the user and build the template

accordingly. This method has four parameters:

 automationObject — This is a reference to an

automation object, allowing access to the EnvDTE instance

representing IDE objects and services.

 replacementsDictionary — This is a dictionary associating

placeholders and their replacement values. This method can

extend this dictionary with new key and value pairs.

 runKind — This is an instance of WizardRunKind that

tells the template type (project, item, or multi - project) the

wizard is working on.

 customParams — This is an array of objects representing

the key and value pairs defi ned in the < WizardData >

section of the template manifest fi le.

 ShouldAddProjectItem Indicates whether the specifi ed project item should be

added to the project. The parameter of the method is the

full path to the fi le to be added.

Customizing Templates ❘ 105

CH004.indd 105CH004.indd 105 9/6/10 4:37:40 PM9/6/10 4:37:40 PM

106 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 The order of the methods shown in Table 4 - 7 does not refl ect the order and mode they are
fi red in during the template - generation process. Following is the real order these methods
are called:

 1. Before any other activities happen, for any kind of wizard, the RunStarted method is called
to let you initialize your wizard logic and collect information from users through the dis-
played UI.

 2. The template system uses the replacement dictionary (the RunStarted method can
override the default one), and creates the list of fi les to be added to the project.
 ShouldAddProjectItem is called for each fi le with the full physical path of the fi le. These
fi lenames combine name replacements and fi le redirections (through the TargetFileName
attribute). With this method, you can decide whether to include the fi le in the project.
Returning true from this method tells the template system to add the fi le and carry out
replacements in the original template fi le.

 3. When all fi les have been added, one of the ProjectFinishedGenerating or the
 ProjectItemFinishedGenerating methods is called, depending on whether it is a project
or an item template. In both cases, the automation object representing the project or the
item is passed to the appropriate method.

 4. For each fi le where the OpenInEditor attribute was set to true in the template manifest
fi le, the BeforeOpeningFile method is called, passing the automation object representing
the fi le.

 5. At the very end, the RunFinished method is called.

 The IWizard interface implementation is really not as complex as it may seem according to Table 4 - 7
and the steps just described. Listing 4 - 10 shows how the Simple Comment Wizard does this job.

 LISTING 4 - 10: CommentWizard.cs

using System.Collections.Generic;
using Microsoft.VisualStudio.TemplateWizard;
using EnvDTE;

namespace SimpleCommentWizard
{
 class CommentWizard: IWizard
 {
 public void BeforeOpeningFile(ProjectItem projectItem)
 {
 }

 public void ProjectFinishedGenerating(Project project)
 {
 }

CH004.indd 106CH004.indd 106 9/6/10 4:37:41 PM9/6/10 4:37:41 PM

 public void ProjectItemFinishedGenerating(ProjectItem projectItem)
 {
 }

 public void RunFinished()
 {
 }

 public void RunStarted(object automationObject,
 Dictionary < string, string > replacementsDictionary,
 WizardRunKind runKind, object[] customParams)
 {
 var form = new CommentSelector();
 form.ShowDialog();
 if (form.SelectedComment != null)
 {
 replacementsDictionary.Add(“$headercomment$”, form.SelectedComment);
 }
 }

 public bool ShouldAddProjectItem(string filePath)
 {
 return true;
 }
 }
}

 Code fi le [CommentWizard.cs] available for download at Wrox.com

 As you see, the logic is implemented by adding functionality to two methods. ShouldAddProjectItem
returns true for all fi les, and RunStarted implements the logic that allows the user to select the
appropriate comment.

 RunStarted displays the user interface and adds the selected comment to the replacement dictionary
with the $headercomments$ key.

 Integrating the Wizard with the Template

 Now that all pieces of the puzzle are ready, you just have to put them together:

 Earlier in this chapter, you created the Basic Command Console project template. Let ’ s
change it to use the wizard.

 You have the SimpleCommentWizard assembly containing the CommentWizard class that
implements the wizard functionality.

 To make the wizard work in the Basic Command Console project template, you must follow these steps:

 1. Build and insert the SimpleCommentWizard.dll into the GAC. If you do not remember
how to do it, here are the steps to help you:

 a. Start the Visual Studio 2010 command prompt. If you use Vista, Windows Server
2008, or Windows 7, you must start it in administrative mode. (You will fi nd it in the
All Programs Menu under Visual Studio 2010 ➪ Visual Studio Tools.)

➤

➤

Customizing Templates ❘ 107

CH004.indd 107CH004.indd 107 9/6/10 4:37:41 PM9/6/10 4:37:41 PM

108 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 b. Set the current folder with the cd command to the one into which the
 SimpleCommentWizard.dll was compiled.

 c. Add the assembly to the GAC with gacutil - i SimpleCommentWizard.dll
command.

 2. Put down the full name of the SimpleCommentWizard.dll assembly, because you
need it to integrate the wizard with the project template. The easiest way is to use the
 gacutil - l SimpleCommentWizard command line that writes out the full name of
the assembly.

 3. Modify the Program.cs fi le and the template manifest within the Basic Command
Console.zip to integrate the wizard and the new enhanced project template.

 The last step requires some workaround, because it is not easy to modify fi les within a .zip
archive.

 The easiest way to do this is to extract the content of Basic Command Console.zip into a
temporary folder. When you are ready with the modifi cations, zip the temporary folder again
and override the original Basic Command Console.zip fi le with it. Keep in mind the following
things:

 When zipping the temporary folder, select all the fi les in the folder, and zip those (not the
folder itself). If you zip the folder, the template system will not fi nd the manifest fi le and
will ignore your template.

 The Basic Command Console.zip fi le you should override is in your My Documents folder
under Visual Studio 10\Templates\ProjectTemplates .

 So, modify the Program.cs fi le by adding the following lines to the top:

// ==
// $headercomment$
// ==

 The $headercomment$ is the placeholder for the fi le header comment. The RunStarted method
of the wizard will provide the value for $headercomment$.

 Let ’ s take the last step. Modify the original template manifest to be the one shown in Listing 4 - 11.

 LISTING 4 - 11: The Modifi ed Template Manifest (MyTemplate.vstemplate)

 < VSTemplate Version=”2.0.0”
 xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005” Type=”Project” >
 < TemplateData >
 < Name > Basic Command Console Wizard < /Name >
 < Description > This console processes simple commands < /Description >
 < ProjectType > CSharp < /ProjectType >
 < ProjectSubType >

➤

➤

CH004.indd 108CH004.indd 108 9/6/10 4:37:42 PM9/6/10 4:37:42 PM

 < /ProjectSubType >
 < SortOrder > 1000 < /SortOrder >
 < CreateNewFolder > true < /CreateNewFolder >
 < DefaultName > Basic Command Console < /DefaultName >
 < ProvideDefaultName > true < /ProvideDefaultName >
 < LocationField > Enabled < /LocationField >
 < EnableLocationBrowseButton > true < /EnableLocationBrowseButton >
 < Icon > __TemplateIcon.ico < /Icon >
 < /TemplateData >
 < TemplateContent >
 < Project TargetFileName=”ConsoleBase.csproj”
 File=”ConsoleBase.csproj” ReplaceParameters=”true” >
 < ProjectItem ReplaceParameters=”true”
 TargetFileName=”CommandProcessor.cs” > CommandProcessor.cs
 < /ProjectItem >
 < ProjectItem ReplaceParameters=”true”
 TargetFileName=”CommandProcessorItem.cs” > CommandProcessorItem.cs
 < /ProjectItem >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”Program.cs”
 OpenInEditor=”true” > Program.cs
 < /ProjectItem >
 < Folder Name=”Properties” TargetFolderName=”Properties” >
 < ProjectItem ReplaceParameters=”true” TargetFileName=”AssemblyInfo.cs” >
 AssemblyInfo.cs
 < /ProjectItem >
 < /Folder >
 < /Project >
 < /TemplateContent >
 < WizardExtension >
 < Assembly >
 SimpleCommentWizard, Version=1.0.0.0, Culture=Neutral,
 PublicKeyToken=641eb7314f7120d3
 < /Assembly >
 < FullClassName > SimpleCommentWizard.CommentWizard < /FullClassName >
 < /WizardExtension >
 < /VSTemplate >

 As you can see, there are just minor modifi cations in the < TemplateData > section — now the name
ends with Wizard . The real change is the insertion of the < WizardExtension > section that contains
two child elements:

 < Assembly > — This names the assembly where the class implementing the wizard logic is
implemented. Here, an assembly name should be specifi ed that can be resolved in the GAC.
Use the name here you put down when inserting your assembly into the GAC. With simply
copying, the name out from the listing prevents your wizard from working, because it
probably has a different public key token.

 < FullClassName > — This specifi es the full name of the class implementing the wizard
logic to be used in the template. This class must be the part of the assembly and implement
the IWizard interface. As you might guess, one assembly can hold not only one but more
wizard classes.

➤

➤

Customizing Templates ❘ 109

CH004.indd 109CH004.indd 109 9/6/10 4:37:42 PM9/6/10 4:37:42 PM

110 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 If you followed the steps in this section and copied the modifi ed Basic Command Console.zip
to the user project template folder, all pieces of the puzzle are now in the right place. Start Visual
Studio 2010 and select File ➪ New ➪ Project. In the Visual C# root category, you will fi nd the Basic
Command Console Wizard. When you create the project, the wizard is displayed, as shown
in Figure 4 - 19. Select the “ AS IS ” option and click OK.

 After the project is generated, the Program.cs fi le opens and you can recognize the selected header
comment:

// ==
// The application is provided as it is.
// ==
using System;
using System.Linq;
using System.Reflection;
using System.ComponentModel;

namespace Basic_Command_Console1
{
 class Program
 {
 // ...
 }
}

 Now you are ready to learn about template deployment.

 DEPLOYING TEMPLATES

 While it is useful to create templates only for your own consumption, the value of templates can
grow signifi cantly when reused by a team or by a large community.

 A few months after the release of Visual Studio 2008, Microsoft introduced Visual Studio Gallery
(http://www.visualstudiogallery.com). This is a new portal for Visual Studio - related products
and extensions, including free and paid accessories such as custom controls, tools and utilities,
templates, starter kits, and so on. In a very short time, Visual Studio Gallery become a central
place for the Visual Studio community members. As of this writing, about 1,400 components were
available on the gallery, including more than 300 of them for free!

 With the release of Visual Studio 2010, the value of this gallery has grown signifi cantly. The
new IDE has a new feature called Extension Manager that can be used to download and install
tools, controls, and templates directly from Visual Studio Gallery. Also, the New Project and
Add New Item dialogs were extended to browse templates uploaded to the gallery. When you
fi nd an online template you want to work with — or just want to try — you can immediately
start using it.

CH004.indd 110CH004.indd 110 9/6/10 4:37:42 PM9/6/10 4:37:42 PM

 In the following discussions, you will learn about the options from which you can choose when
deciding to export your templates and make them available for your team, or even for the ecosystem
formed by the developer community.

 Exporting and Importing Templates

 Thus far in this chapter, you have created a few project and item templates, including a simple
wizard. During these exercises, you have exported and imported templates several times. Mostly,
you have used the Export Template Wizard, but you have also integrated your templates with Visual
Studio manually.

 Manual Export

 The .zip fi le representing a project template or an item template can be created and exported
manually. You can either start from an existing template by extracting the .zip archive into a
working folder, or by creating it from scratch. Here are a few hints to help you creating your
templates manually:

 Copy all the fi les to be included in the template into the working folder, keeping the
hierarchy of folders. If you have not prepared placeholders for replacements yet, you can
do it now.

 Create the template manifest fi le. Be sure to use the correct information in the < TemplaData >
section, and be sure to use the correct fi lenames and paths in the < TemplateContent > section.
Do not forget that all paths should be relative to the working folder representing the .zip
archive.

 Create icon and preview image fi les for the template. You can omit them, but, in this case,
the default icon and no preview image will be used by the IDE for your template.

 When zipping the fi les, do not send the parent folder into the .zip archive! When Visual
Studio scans the folders for templates, it would fi nd your .zip fi le, but would not recognize
it as a template defi nition because there would be no manifest fi le directly in the root of
the archive.

 Using the Export Template Wizard

 Earlier in this chapter, you used the Export Template Wizard, so you should have a have a solid
understanding of it. As you saw, the wizard has four pages:

 Choose Template Type (Figure 4 - 12)

 Select Item To Export (Figure 4 - 13)

 Select Item References (Figure 4 - 14)

 Select Template Options (Figure 4 - 15)

➤

➤

➤

➤

➤

➤

➤

➤

Deploying Templates ❘ 111

CH004.indd 111CH004.indd 111 9/6/10 4:37:43 PM9/6/10 4:37:43 PM

112 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 When you create a project template, only the fi rst page (Choose Template Type) and the last page
(Select Template Options) are displayed by the wizard, while for item templates, all pages enable
you to specify template data. You can use the wizard intuitively, because it provides enough help
to tell what fi elds and options should be fi lled in. However, the last page (Select Template Options)
requires some explanation.

 Figure 4 - 20 shows the Select Template Options page fi lled in with tips to help you see where specifi c
template information will be displayed.

 FIGURE 4 - 20: The Select Template Options wizard page

 The Preview Image fi eld is totally new in Visual Studio 2010. It allows you to assign an image (even
bigger than the template icon) to your template, and this item is displayed in right pane of the New
Project and Add New Item dialogs when the template is selected. This icon also can be used in the
Visual Studio Gallery as a preview image of your shared extension. Figure 4 - 21 shows a sample of
how the preview image is displayed for a template:

CH004.indd 112CH004.indd 112 9/6/10 4:37:43 PM9/6/10 4:37:43 PM

 Figure 4 - 20 (the Select Template Options page) also shows you the output location with the
full fi lename where your template will be exported. You can use this fi eld to copy the fi lename
for later use.

 There are two useful checkboxes on this page that provide a couple of key options:

 You can tell the wizard that, in addition to exporting the template, you intend to
immediately import it into Visual Studio.

 You can ask the wizard to display the output folder.

 The exported template is copied to the Visual Studio 10\My Exported Templates directory
under your My Documents folder. However, when you select the automatic import option, your
template fi le will also be copied to the Visual Studio 10\Templates\ProjectTemplates or
 Visual Studio 10\Templates\ItemTemplates folder, depending on its type.

 Deploying the Template Files

 In the meantime, your template contains a simple .zip fi le. If you want to deploy more templates,
you can handle their .zip archives together. When you implement one or more custom template
wizards, you must move assemblies representing them into the GAC, or to a location Visual Studio
uses for assembly resolution.

➤

➤

 FIGURE 4 - 21: Preview image of a template

Deploying Templates ❘ 113

CH004.indd 113CH004.indd 113 9/6/10 4:37:43 PM9/6/10 4:37:43 PM

114 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 While you have only a simple .zip fi le, you can use any type of fi le copy mechanism when you put
the templates into the right user folder. You can use simple batch fi les, automatic tools, login scripts,
or whatever you fi nd useful.

 This approach may work seamlessly for a small number of .zip fi les. However, when you have
wizards included within your set of template defi nition fi les, you should create an automatic
installation tool (for example, with Visual Studio) to deploy your template fi les and make
them instantly work without any manual workaround.

 Creating a Template Installation Kit

 You have many options for creating installation kits, even if you decide to use Visual Studio instead
of any other sophisticated setup kit - composition tools. Rather than going through these options,
let ’ s take a look at a new technology, Visual Studio Installer for Extensions (VSIX), introduced
with Visual Studio 2010 and especially easy to use from both the developer side and from the
user side.

 The great thing about this new installer technology is that it connects Visual Studio Gallery with
the Extension Manager in Visual Studio 2010 to provide you with a user experience similar to using
Windows Update for keeping your operating system up - to - date.

 This connection entails following these simple steps:

 1. Create a VSIX installation kit for your template.

 2. Upload the installation kit to Visual Studio Gallery.

 3. Use the Extension Manager (or the New Project or Add New Item dialogs) to install and use
the template in any computer using Visual Studio 2010.

 Let ’ s extend the Basic Command Console sample with SimpleCommentWizard to demonstrate how
VSIX, Visual Studio Gallery, and Extension Manager work together.

 Creating the VSIX Installation Kit

 The VSIX installation kit is actually a .zip archive created with the Open Packaging Convention
(see http://msdn.microsoft.com/en-us/magazine/cc163372.aspx for more details). You could
create it manually just like zip archives representing templates. However, there is a better way.

 The Visual Studio 2010 SDK contains a project type for generating a VSIX installation kit. To
use it, you must install the Visual Studio Software Development Kit (VS SDK). This kit is free,
and you can download it from the Microsoft Visual Studio Extensibility Development Center
(http://msdn.com/vsx). When you visit this center, the download link is available right from
the home page.

 Note that there are separate versions of SDKs for the 2005, 2008, and 2010 ver-
sions of Visual Studio, and you must be sure to download the right one. Should
you have more Visual Studio versions installed on your machine, you can down-
load and install the right SDK for each of them, and they will work side - by - side.

CH004.indd 114CH004.indd 114 9/6/10 4:37:44 PM9/6/10 4:37:44 PM

 Installing VS SDK is very simple, so when you download the setup kit, you can immediately run the
setup fi le. Follow the instructions on the screen, and, in a few minutes, VS SDK is ready to work with.

 Start a new VSIX Project by selecting the appropriate template from the Extensibility subcategory
under Visual C#, as shown in Figure 4 - 22. Name it BasicCommandConsoleInstaller .

 FIGURE 4 - 22: Creating a new VSIX project

 The project template contains a few fi les, as shown in
Figure 4 - 23, viewed in Solution Explorer.

 You will not need the VSIXProject.cs fi le, so
you can remove it. There are two image fi les in
the project. You can think of them as the icon and
preview images in the case of template defi nitions.
These images are used similarly for the installation
kit when browsing in the Visual Studio Gallery. The
most important fi le of the project is extension
.vsixmanifest . As its name suggests, this is the fi le
that tells everything about the installation kit.

 You have two artifacts to put into an installation kit:
the Basic Command Console.zip fi le representing FIGURE 4 - 23: Files in the VSIX project

Deploying Templates ❘ 115

CH004.indd 115CH004.indd 115 9/6/10 4:37:55 PM9/6/10 4:37:55 PM

116 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

the template defi nition, and SimpleCommandWizard.dll holding the custom wizard logic. The
installation kit can be created by following these steps:

 1. Add the SimpleCommandWizard.dll to the project with the Add Existing Item command.
Search for this fi le in the output directory of the SimpleCommandWizard project.

 2. Create a folder named Template . By design, template archives must be put into a folder
within the .vsix fi le, and you can name this folder as you want. Create a subfolder within
 Template , and name it Console . Now, use the Add Existing Item command to add the
 Basic Command Console.zip fi le in the Console folder. Be sure to select the version you ’ ve
used, together with the SimpleCommentWizard . Rename the fi le to BasicCommandConsole
.zip by removing spaces from the original fi lename.

 3. Go to the Properties windows and set
Build Action to Content, and “ Include
in VSIX ” to True. Repeat this action
for SimpleCommandWizard.dll ,
 VSIXProject_large.png , and
 VSIXProject_small.png fi les. Omitting
this step will prevent these fi les from
being included in installation kit.

 At this point, all artifacts are added to the VSIX
project. Figure 4 - 24 shows how the structure of
your project should look when viewed in Solution
Explorer.

 You are not able to build the installation kit yet,
because you must modify the manifest to sign what
kind of content is included in this kit. Listing 4 - 12
shows the original state of the manifest fi le.

 LISTING 4 - 12: source.extension.vsmanifest

 < ?xml version=”1.0” encoding=”utf-8”? >
 < VSIX xmlns=”http://schemas.microsoft.com/developer/vsx-schema/2010” >

 < Identifier ID=”BasicCommandConsoleInstaller.Microsoft.
 a866dfe1-d5bd-4402-85ab-a44f2a45e31e” >
 < Name > BasicCommandConsoleInstaller < /Name >
 < Author > Microsoft < /Author >
 < Version > 1.0 < /Version >
 < Description > Empty VSIX Project. < /Description >
 < Locale > 1033 < /Locale >
 < Icon > VSIXProject_small.png < /Icon >
 < PreviewImage > VSIXProject_large.png < /PreviewImage >
 < SupportedVSEdition version=”10.0” >
 < Edition > VST_All < /Edition >
 < Edition > Pro < /Edition >

 FIGURE 4 - 24: Files in the VSIX project after

adding our artifacts

CH004.indd 116CH004.indd 116 9/6/10 4:37:56 PM9/6/10 4:37:56 PM

 < /SupportedVSEdition >
 < SupportedFrameworkRuntimeEdition minversion=”4.0” maxversion=”4.0” / >
 < /Identifier >

 < References >
 < !--Add References here-- >
 < /References >

 < Content >
 < !--Add Content here-- >
 < /Content >

 < /VSIX >

 Code fi le [source.extension.vsmanifest] available for download at Wrox.com

 As you can see, the manifest is an XML fi le just like a template manifest, but it has a different
schema. Use the View Code command (accessible from the context menu of extension
.vsixmanifest) and use the XML editor to take a look at the content of the fi le. Without
going too deep into the details of this fi le ’ s schema, let ’ s note a few things about it.

 The ID attribute of the < Identifier > and < Version > elements identifi es your installation
kit. These values are also used to recognize new updates for an extension already installed. The
 < SupportedVSEdition > element enumerates all Visual Studio versions supporting the extension,
which, in this case, is the Professional edition and all Team System editions.

 The < Content > element is the one where you can put the payload information for the installer. Its
child elements determine what actions to carry out during the installation. To add your artifacts to
the payload, modify the manifest as shown in Listing 4 - 13.

 LISTING 4 - 13: The modifi ed source.extension.vsixmanifest fi le

 < ?xml version=”1.0” encoding=”utf-8”? >
 < VSIX xmlns=”http://schemas.microsoft.com/developer/vsx-schema/2010” >
 < Identifier ID=”DiveDeeper.BasicCommandConsoleInstaller” >
 < Name > Basic Command Console Installer < /Name >
 < Author > DiveDeeper < /Author >
 < Version > 2.0 < /Version >
 < Description >
 This kit installs the Basic Command Console template.
 < /Description >
 < Locale > 1033 < /Locale >
 < Icon > VSIXProject_small.png < /Icon >
 < PreviewImage > VSIXProject_large.png < /PreviewImage >
 < SupportedVSEdition version=”10.0” >
 < Edition > VST_All < /Edition >
 < Edition > Pro < /Edition >
 < /SupportedVSEdition >

continues

Deploying Templates ❘ 117

CH004.indd 117CH004.indd 117 9/6/10 4:37:56 PM9/6/10 4:37:56 PM

118 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

LISTING 4 - 13 (continued)

 < SupportedFrameworkRuntimeEdition minversion=”4.0” maxversion=”4.0” / >
 < /Identifier >
 < References / >
 < Content >
 < ProjectTemplate > Template < /ProjectTemplate >
 < Assembly assemblyName=”SimpleCommentWizard, Version=1.0.0.0, Culture=Neutral,
 PublicKeyToken=641eb7314f7120d3” > SimpleCommentWizard.dll < /Assembly >
 < /Content >
 < /VSIX >

 Code fi le [source.extension.vsmanifest] available for download at Wrox.com

 As you can see, a few options have been changed
within < Identifier > , but the most important
change is in < Content > :

 The < ProjectTemplate > element
indicates that the installer will look
in the Template folder and copy it into
the Extensions folder within the local
application data of Visual Studio.

 The < Assembly > element specifi es
that SimpleCommentWizard.dll is an
assembly, and it should also be copied
to the Extensions folder.

 After you have followed these steps, the
installation kit is ready to build. Use the Build ➪
Rebuild Solution command to create the .vsix
fi le representing the kit. Close Visual Studio 2010
and open the output folder (bin\Debug under
your VSIX project folder, by default) and you
can see the BasicCommandConsoleInstaller
.vsix fi le there. Opening this fi le will start the
Visual Studio Extension Installer tool, as shown
in Figure 4 - 25.

 Click the Install button and, in a few seconds,
the utility does what you expect, as shown in
Figure 4 - 26.

➤

➤

 FIGURE 4 - 25: Visual Studio Extension Installer

 FIGURE 4 - 26: The template is installed

CH004.indd 118CH004.indd 118 9/6/10 4:37:57 PM9/6/10 4:37:57 PM

 Start Visual Studio 2010 and check the success of the installation by creating a new project. You can
see a new subcategory named Console under Visual C# in the New Project dialog, and, within this
new category, you can fi nd your template, as shown in Figure 4 - 27.

 FIGURE 4 - 27: Verifying template installation

 When you create a new project with this template, the Simple Comment Wizard is displayed, so
you can check that not only the template defi nition, but also the wizard assembly, have successfully
installed.

 Uploading Templates to the Visual Studio Gallery

 You now have an installation kit for your template that can be deployed quite easily. Copy
the BasicCommandConsoleInstalles.vsix fi le to a machine where Visual Studio 2010 is
installed, and then open it. The Visual Studio Extension Installer runs and does the rest of
the work.

 Now, let ’ s do something exciting. You can upload your template to the Visual Studio Gallery so that
community members can fi nd, download, install, and, of course, use it. In the following discussions,
you will see how easy the upload process is. These discussions include screenshots of Visual Studio
Gallery. By the time you read this book, the gallery may have another design, or even work a bit
differently, but this examination at least provides a point of reference.

 To upload your own extensions to Visual Studio Gallery, you must log in with your Live ID.
If you have used Live Messenger, Hotmail, Live Mesh, Microsoft Connect, or some other
community services from Microsoft, you have a Live ID. If you do not have one, it is very easy
to create one.

Deploying Templates ❘ 119

CH004.indd 119CH004.indd 119 9/6/10 4:37:57 PM9/6/10 4:37:57 PM

120 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 You can visit the Visual Studio Gallery by navigating to http://www.visualstudiogallery.com . You
can browse the gallery without signing in. Figure 4 - 28 shows a typical screen presented when you visit
the gallery.

 FIGURE 4 - 28: Visual Studio Gallery

 FIGURE 4 - 29: Select the type of extension to upload

 Locate the Upload button in the upper - right part of the screen, just below the search box. Click it to
start the upload process. You can upload an extension by following a few simple steps.

 The fi rst step is to select the kind of extension you want to upload, as shown in Figure 4 - 29.

CH004.indd 120CH004.indd 120 9/6/10 4:37:58 PM9/6/10 4:37:58 PM

 Click Next to move to the third step, where you can edit some more information about the template.
Visual Studio Gallery extracts basic information from the .vsix manifest and lets you edit some
other information to help to categorize your template. Figure 4 - 31 illustrates this step.

 FIGURE 4 - 30: Select the .vsix fi le to upload

 FIGURE 4 - 31: Editing basic template information

 Click Next. In the second step, you must select the .vsix fi le containing your template. Select it
directly from the output folder of the BasicCommandConsoleInstaller project, as shown in
Figure 4 - 30.

 The information page (although it is not shown in Figure 4 - 31) also contains an editable description
of the template. By using a rich text editor, you can specify information to be displayed with your
uploaded template. You must also check the “ I agree to the Contribution Agreement ” checkbox, and
then click Create Contribution to fi nish the template upload.

Deploying Templates ❘ 121

CH004.indd 121CH004.indd 121 9/6/10 4:37:59 PM9/6/10 4:37:59 PM

122 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Once you complete these steps, the template is uploaded to Visual Studio Gallery, as shown in
Figure 4 - 32. However, it is not yet published. You can edit it, if you feel you have missed something,
or you can even delete it.

 FIGURE 4 - 33: The published template

 FIGURE 4 - 32: The template is uploaded

 When you click on the “ publish ” link in the header, the template is immediately published. You
and any other users of Visual Studio Gallery will be able to fi nd it and download it. Later, you
can edit, un - publish, or delete your template when signing in to the Gallery and going to the My
Contributions page — it can be accessed directly from the home page. Figure 4 - 33 shows that the
published template can be accessed from the Visual Studio Extensions category.

CH004.indd 122CH004.indd 122 9/6/10 4:37:59 PM9/6/10 4:37:59 PM

 You have now shared your template with the community. Let ’ s look at how community members
can fi nd and install it from within the Visual Studio IDE.

 Installing Templates with the Extension Manager

 Visual Studio 2010 has a great new feature called Extension Manager to help with discovering,
downloading, and managing Visual Studio Extensions from Visual Studio Gallery. By using this
feature, community members can fi nd the template you uploaded to the gallery.

 You can go to the Tools menu and click on the Extension Manager command. The dialog has three
panes:

 The left pane shows categories of extensions. This is where you can focus on installed
extensions, browse the online gallery, or check updates for the installed components.

 The middle pane lists the extensions in the selected category.

 The right pane shows detailed information about the extension selected in the
middle pane.

 The template you have uploaded to the gallery can be found in the Visual Studio Extensions
category under the Online Gallery, as shown in Figure 4 - 34.

➤

➤

➤

 FIGURE 4 - 34: The Basic Command Console in the Online Gallery

 Any community member who decides to try the template can click on the Download button.
Extension Manager downloads the .vsix fi le representing the installation kit of the template and
asks for a confi rmation, as shown in Figure 4 - 35.

Deploying Templates ❘ 123

CH004.indd 123CH004.indd 123 9/6/10 4:37:59 PM9/6/10 4:37:59 PM

124 ❘ CHAPTER 4 VISUAL STUDIO TEMPLATES

 Clicking on Install immediately integrates the template with Visual Studio. Generally, after
installing components, Extension Manager asks you to restart Visual Studio and provides a button
to do this. However, template installation does not require a restart, and so you can instantly work
with the new template.

 Online templates do not require an explicit installation through Extension Manager. You can also
access published templates in the Gallery through the New Project and Add New Item dialogs
(you will notice that their user interface is very similar to Extension Manager). Figure 4 - 36 shows
the Basic Command Console template found among other online templates.

 FIGURE 4 - 35: The template is about to be installed.

 FIGURE 4 - 36: Online templates in the New Project dialog

CH004.indd 124CH004.indd 124 9/6/10 4:38:00 PM9/6/10 4:38:00 PM

 When you start a project from an online template, Visual Studio fi rst installs the template just as
though you installed it explicitly with Extension Manager, and then creates the project. When you
try it with the Basic Command Console template, after installation, the Simple Comment Wizard
starts instantly.

 SUMMARY

 Templates are useful concepts because they save you from the burden of writing code from the
scratch for each project and source code item. They help you avoid common mistakes by providing
you with skeletons for your frequently used artifacts, and by providing consistency among your
projects independently of who uses it and how.

 Visual Studio supports two kinds of templates: project templates and item templates. They can be
used from the New Project and Add New Item dialogs, respectively. The template system has been
designed with extensibility in mind. You can easily integrate your own templates with Visual Studio.
The easiest way of creating templates is by building the template just like a concrete project or item,
and then using the Export Template Wizard to create the template defi nition fi le.

 Template defi nitions are .zip archives containing all fi les that build up the project or the item. The
heart of the defi nition is the template manifest with the extension of .vstemplate . This manifest
contains the metadata required to place the defi nition into the right category within the IDE.

 Templates can be customized with parameters. When a new project or item is created from a template
defi nition, placeholders can be replaced with concrete values. You can also create wizards and attach
them to templates. Before creating the concrete instance from the template, the wizard collects
information from the user, and the project or item skeleton can be generated according this data.

 Because template defi nitions are simple .zip archives, it is very easy to deploy them. Visual Studio
2010 offers great improvements in this area. It has a new feature called Extension Manager that
allows you to browse and install templates from an online gallery called Visual Studio Gallery,
which is a central repository for tools, controls, and extensions related to Visual Studio. In addition
to the capability to browse this gallery, you can easily upload and publish your own templates, and
share them with the community.

 Chapter 5 provides an overview about great IDE features focusing on customization. Among others,
you will learn about window management, confi guration options, menu and toolbar customizations,
and defi ning your own keyboard shortcuts. The chapter will teach you to create custom Start Pages, and
introduces you to the Visual Studio Gallery.

Summary ❘ 125

CH004.indd 125CH004.indd 125 9/6/10 4:38:00 PM9/6/10 4:38:00 PM

CH004.indd 126CH004.indd 126 9/6/10 4:38:01 PM9/6/10 4:38:01 PM

Getting the Most Out of the IDE

 Visual Studio is a popular development tool offering more and more functions with every
new release. The IDE targets not only programmers — coders — but actually every role that
adds essential value to a software development project, including project managers, business
analysts, architects, developers, database experts, testers and deployment experts. Can you
imagine that all people in these roles will use the IDE in the same way?

 The answer is obvious — each role uses a well - defi ned set of Visual Studio ’ s functionality,
and, of course, it is different for an architect than for a tester, or for a member with another
role. But even two developers may use the IDE in different ways. Just think about the fi rst
dialog you face when you start Visual Studio the fi rst time after installation! The IDE asks you
to select the profi le you would like to use. If you select C#, you will work with a different set
of tool windows and other confi guration settings than a developer selecting the C++ profi le.

 The IDE was designed with many customization options in mind. One of the most important
goals of its design was to enable developers to create a modern, ergonomic, and productive
environment they can utilize to create the best software. In this chapter, you will learn
about many aspects of Visual Studio 2010 ’ s customization so that you can get the most out
of the IDE.

 Following is how this chapter is organized:

 Window management — Visual Studio provides great window management to help
developers establish and manage their workspace. You will learn the architecture
behind tool windows and document windows, as well as the available operations to
arrange windows on your workbench.

 Customizing menus and toolbars — Menus and toolbars in Visual Studio can be
tailored to fi t your needs. In this section of the chapter, you ’ ll learn about creating
new menus and toolbars, as well as changing and rearranging commands associated
with them.

➤

➤

 5

CH005.indd 127CH005.indd 127 9/6/10 4:41:42 PM9/6/10 4:41:42 PM

128 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 IDE confi guration — There are hundreds of options you can set to confi gure the behavior
of the IDE. In this section, you learn how to manage them with the Options dialog.
The IDE provides a mechanism to export and import these confi guration settings. This
section of the chapter also teaches you to use it with the Export and Import Settings
Wizard.

 Keyboard shortcuts — Visual Studio delivers more than a thousand commands available
in the IDE. You do not need to use the mouse to invoke them through menu or toolbar
items. You can associate keyboard shortcuts with them. In this section, you learn about this
customization process.

 Custom Start Pages — You can change the Start Page of Visual Studio. Although this
extensibility option was already available in the fi rst Visual Studio.NET version, Visual
Studio 2010 delivers essential changes and lowers the barrier for entering Start Page
customization. This section examines several samples to help you to learn how to use the
Custom Start Page Template.

 Customizing the Toolbox — The Toolbox is one of the most frequently used tool windows
in the IDE. In this section, you ’ ll learn the options to tailor the Toolbox to your needs.

 Visual Studio Gallery — This is a website that provides a catalog showcasing free and
commercial products complementing or extending Visual Studio. In this section, you learn
about browsing the Gallery, downloading components, and adding your contributions to its
repository.

 Visual Studio 2010 is extensible. When you miss a function or some features from the IDE, you can
develop and integrate your own components into the IDE. Chapter 6 is dedicated entirely to this
topic. However, before developing any new extensibility component for Visual Studio, stop for a
moment! Maybe, what you would like to solve through development can be sorted out with simple
customization. This chapter will help you with this decision.

 WINDOW MANAGEMENT

 The Visual Studio IDE was designed to provide an ergonomic workbench for its users. During
application development, many types of information are displayed on the surface of this workbench.
Today, more and more developers use two or sometimes even more monitors to place all editors,
tools, information, and message windows in order to be more productive.

 Visual Studio provides great window management to help developers establish and manage their
workspace. The IDE contains two basic window types: tool window s and document window s.
These two window types behave in slightly different ways.

 Visual Studio Window Architecture

 Visual Studio uses well - organized windows to establish a developer workspace. There is an exact
boundary of responsibilities between a window and the IDE. The IDE provides a mechanism to
maintain the list of windows, takes care of positioning and moving them, saves the layout, and so
on — all without knowing what the window contains and how it is used. In contrast, a window

➤

➤

➤

➤

➤

CH005.indd 128CH005.indd 128 9/6/10 4:41:45 PM9/6/10 4:41:45 PM

takes care of painting its client area, responding to repositioning and resizing events — all without
knowing how the IDE implements windowing logic.

 The clear separation of these responsibilities is provided by the following roles:

 The IDE uses the concept of a window frame that is responsible for hosting the client area
of the window, called a window pane . This frame integrates the pane with the IDE and
controls the visual properties and behavior of the pane.

 The window provides a window pane object that can be hosted in a window frame
instantiated by the IDE. This pane works as a controller for implementing the interaction
logic behind the UI.

 The window frame also can provide a toolbar for commands understood by the pane.
At initialization time, the pane tells the frame that a toolbar should be displayed in the
window. When a command is invoked, the frame notifi es the pane, giving it a chance to
respond to that command.

 Figure 5 - 1 helps to illustrate these concepts. There are a few windows highlighted with a border
representing how the frame and the pane form a functional window.

➤

➤

➤

 FIGURE 5 - 1: Windows in Visual Studio

 The frame hosting the pane also adds some extra decoration and behavior to the hosted pane. For
example, the “ Find and Replace ” window uses a fl oating frame that adds a title bar with a close
button, a resizable tool - window border around the pane, and a toolbar. Every control in the
window below the “ Find what ” label (including the label itself and pushbuttons at the bottom) are
managed — painted and controlled — by the pane. The Quick Find button is drawn by the frame
that is part of the toolbar.

Window Management ❘ 129

CH005.indd 129CH005.indd 129 9/6/10 4:41:45 PM9/6/10 4:41:45 PM

130 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 The Solution Explorer on the right contains a pane with the tree view of the solution structure. The
frame hosting this pane is docked at the right side of the main IDE window, and so it provides a
different border than the fl oating window. The frame also contains a pin button to turn on or off
the auto - hide property of the window.

 The Output window at the bottom is docked exactly at the same location as the Error List window,
but the latter is sent to the back. The window frame uses small tabs at the bottom for each pane in
order to allow clicking it to bring the pane to the front. Just as with the other windows, the toolbar
here is also the part of the window frame.

 The Toolbox window at the left is an example of a window that is hidden at the moment. The small
rectangle is the frame, indicating the pane is automatically hidden. As you hover the mouse over the
frame, the window pane fl ies in.

 The largest part of the screen behind the “ Find and Replace ” window is covered by two windows
representing the MyControl.xaml.cs and source.extension.vsixmanifest fi les. These are
so - called tabbed document windows. The frame provides the tabs with the names of the fi les and all
other parts of the editor window belong to the pane. The MyControl.xaml window to the left of the
 “ Find and Replace ” window is a fl oating document window.

 In the previous versions of Visual Studio, you had to choose between tabbed documents or multiple
documents. The behavior of multiple documents was very different from fl oating document
windows, as Figure 5 - 2 shows.

 FIGURE 5 - 2: Multiple documents mode in Visual Studio 2008

CH005.indd 130CH005.indd 130 9/6/10 4:41:47 PM9/6/10 4:41:47 PM

 Visual Studio 2010 now allows using both tabbed and fl oating document windows at the same time.
Developers using multiple monitors can now drag any document window to the secondary display,
which is especially helpful during debug sessions.

 Tool Windows

 Most of the windows displayed in the Visual Studio IDE are tool window s. They generally surround
document windows used to edit source code, or to design forms and web pages. The Server Explorer,
Output window, Error List, Properties window, and Solution Explorer are only a few examples of
them. Tool windows are typically single - instanced. However, they can be multi - instanced, like the
web browser window shown in Figure 5 - 3.

 FIGURE 5 - 3: Multiple instances of Web Browser tool window

 When Visual Studio runs, there are generally a number of tool windows displayed on the screen,
with a majority of them containing valuable information or resources continuously used by
developers. Tool windows can fl oat, or they can be docked to the edges of the main window
to provide a practical workbench. They also can be tabbed with other tool windows, or they
can even be put to the area of document windows. Docked tool windows can be set to hide
automatically when the mouse leaves them. Figure 5 - 4 shows a good illustration of the following
concepts:

 The “ Find and Replace ” window fl oats. Floating windows can be moved outside of the
boundaries of the Visual Studio IDE as Figure 5 - 4 illustrates.

➤

Window Management ❘ 131

CH005.indd 131CH005.indd 131 9/6/10 4:41:47 PM9/6/10 4:41:47 PM

132 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 The Solution Explorer and Properties window are docked at the right edge of the IDE ’ s main
window. The Toolbox is docked at the left edge of the IDE and is also auto - hidden.

 The Output window is docked at the bottom edge of the main window, and Error List is
tabbed with it — they share the same visual frame with a single title bar. When they are
moved by dragging the title bar, both tool windows move together. When they are dragged
by their tabs at the bottom, only the captured tool window moves.

➤

➤

 FIGURE 5 - 4: Floating tool windows can be dragged out of main window boundaries

 Figure 5 - 3 shows two instances of the Web Browser tool window that are tabbed as document
windows. They share the workspace in the center of the main window that is generally surrounded
by tool windows. In this fi gure, the Solution Explorer and Properties windows are docked to
the right. Because a Web Browser tool window generally requires a large space, it is tabbed with
document windows by default.

 Document Windows

 The other type of windows supported by the IDE is called a document window . In contrast to tool
windows, document windows are always multi - instanced. They can occupy only the middle area of
the main window, optionally surrounded by docked tool windows. Although, document windows
cannot be docked, they can fl oat, and they can also be split into horizontal and vertical groups, as
shown in Figure 5 - 5.

CH005.indd 132CH005.indd 132 9/6/10 4:41:48 PM9/6/10 4:41:48 PM

 The term “ document window ” refl ects that any instance of them is associated with a logical entity
called a document and is owned by a so - called hierarchy . The document and the hierarchy are
abstractions that can have many different physical manifestations.

 For example, the documents behind document windows in Figure 5 - 5 are the in - memory
representations of the source fi les named in the title bars. The source fi les are not the documents;
they are only the persisted forms of the abstraction called “ document. ” Should you edit a SQL
Server table within the IDE, the editor (that is, a document window) would have an in - memory
representation of the document that is persisted as a table in a SQL Server database instance.

 The hierarchy represents a collection of documents and other resources that are used to build
the artifacts of a solution composed from one or more projects. A project is the smallest unit of
related documents that can be used to build an artifact (for example, C# source fi les and referenced
assemblies that can be compiled into a class library). In Solution Explorer, each project is a
hierarchy.

 The document windows in Figure 5 - 5 are owned by the LoremIpsumQuery project (hierarchy) in
the Solution Explorer. Hierarchies in the Server Explorer can also own document windows. For
example, through data connections created in Server Explorer, you can edit the content of SQL
Server tables or modify stored procedures. Document windows used in this case are owned by the
hierarchy representing the data connection.

 The fact that document windows are owned by hierarchies and they are associated with documents
adds a lot of functionality to them out - of - the - box. For example, you can have multiple document
windows (or, with another term, views) for the same document. When you want to close the last

 FIGURE 5 - 5: Document windows in horizontal tabs

Window Management ❘ 133

CH005.indd 133CH005.indd 133 9/6/10 4:41:48 PM9/6/10 4:41:48 PM

134 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

open document window associated with the same document, Visual Studio prompts you with a
dialog asking if you want to save that document or ignore all the changes. Another example is that
document windows know if they have been modifi ed since you last opened them, and this is how the
Save All function knows which documents are to be saved.

 Arranging Windows

 Depending on the phase of the software development lifecycle you are in, or on the tasks you are
assumed to do, you may need to arrange your windows in the workspace differently. For example,
while you are writing code, you may not need to see the toolbar or Server Explorer, and you may
want to provide as much space for the code windows as you can. When you are debugging an
application, you probably move the application to the second monitor and dock many tool windows
around the code you are debugging to see local variables, the call stack, threads, and debug history.

 Visual Studio provides several ways to arrange windows in the IDE:

 You can tab - dock document or tool windows to the editing frame.

 You can dock tool windows to the edge of a frame in the IDE, or tab - dock them to the
editing frame.

 You can fl oat windows over or outside of the IDE.

 You can display windows on multiple monitors.

 You can minimize (auto - hide) tool windows along the edge of the IDE.

 At any time, you can reset window placement to the original layout with the Window ➪
Reset Window Layout command.

 Floating Windows

 If you have document or tool windows docked to the editing frame or to any other frames, you
can make them fl oat easily. Drag the title bar of the docked window and move it to another
position within or outside of the IDE. You can even move a window to another monitor. When you
double - click the title - bar, the window gets maximized on the current display. Double - clicking on a
maximized window will return it to its position, and size it as it was before it was maximized.

 When you press the Ctrl key while double - clicking the window, it is docked back to the frame it was
docked to before you undocked it — and it works independently of how many times you moved,
maximized, or resized the fl oating window.

 For example, assume that you drag the LIRecord.cs fi le in Figure 5 - 5 to a fl oating position, move
it around, and then maximize it by double - clicking on its title bar. As soon as you press Ctrl and
double - click it, LIRecords.cs will return to its original docked position exactly as you see in
Figure 5 - 5.

 When several windows are docked side - by - side (for example, Solution Explorer and Team Explorer
in Figure 5 - 5), dragging them by the title bar will move all the windows docked in the same frame.
If you move the Solution Explorer in Figure 5 - 5 by the title bar, the Team Explorer will move
together with it. If you want to move only one of the windows sharing the same frame, instead of
dragging the title bar, drag the tab of the window.

➤

➤

➤

➤

➤

➤

CH005.indd 134CH005.indd 134 9/6/10 4:41:49 PM9/6/10 4:41:49 PM

 Docking Tool Windows

 Tool windows can be fastened to one side of a frame in the IDE. When you start to move a tool
window, a guiding diamond appears in the middle of the frame where the mouse is pointing to.
The four arrows of the diamond point toward the four sides of the editing pane. An additional four
arrows point to the four edges of the IDE, showing other positions where the tool window can be
docked. As you move the window over another frame, the guide diamond changes to represent dock
positions within that frame.

 When you move the window and the mouse pointer overlays any of the guiding icons, a “ ghost
frame ” shows you the new dock position. If you want to accept this dock position, simply fi nish
dragging and release the left mouse button. Figure 5 - 6 shows what you see when the “ Find and
Replace ” tool window is dragged over the guiding icon that fastens the window to the right edge of
the editing area.

 FIGURE 5 - 6: Dragging a tool window to a new dock position

 When you start dragging a window while you keep the Ctrl key pressed, no guiding icons are
displayed. In this mode, you cannot dock the window, only move it to another fl oating position.
When you release the Ctrl key, the guiding icons are displayed again.

 Docking Document Windows

 By default, document windows (designer windows and editor windows that display documents) are
arranged on tabbed panes in the editing frame of the IDE. You can dock them only to one of the tab
groups, but not to the edges of any frames.

Window Management ❘ 135

CH005.indd 135CH005.indd 135 9/6/10 4:41:49 PM9/6/10 4:41:49 PM

136 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 When you drag document windows to a dock position, the guiding icons help you exactly the
same way as in the case of tool windows. However, because of the docking restrictions of document
windows, fewer icons are displayed.

 Auto - hiding Tool Windows

 Tool windows docked to the edge of the main window frame can be set so that they are
automatically hidden as they lose the focus. This is a very useful function to save space in the
document area. When all tool windows at a certain edge of the main window are auto - hidden, the
document window area is automatically extended to that direction as soon as tool windows docked
to that edge get hidden.

 As you move the mouse pointer over the title bar of an auto - hidden tool window, the window is
displayed, unless the pointer leaves that tool window. If you activate the tool window (for example,
click on it with the mouse) it will be displayed, unless you change the focus to any other document
or tool window.

 You can turn on the auto - hide mode for a tool window with the Window ➪ Auto Hide command,
and turn off this mode with the Window ➪ Dock command. In the title bar of tool windows docked
to any edge of the main window, you can see a pin icon. Click on it to turn on or off the auto - hide
mode. When the pin points to the bottom, it indicates that the tool window is docked. When the pin
points to the left, the window is in auto - hide mode.

 Organizing Document Tab Groups

 Although document windows cannot be docked to the edges of frames, you can organize document
windows into tab groups. Figure 5 - 5 shows you how three document windows are separated into
three horizontal tab groups.

 You can move the active document into a new group with the Window ➪ New Horizontal Tab
Group or Window ➪ New Vertical Tab Group commands, which can be also accessed from the
context menus of the document windows when you right - click on their tabs. In addition to these
menu commands, you can drag document windows. The guiding icons escorting you during the
drag - and - move operation allow you to place the window to a new vertical or horizontal group.

 You can move documents among tab groups either by dragging them to another vertical or
horizontal tab group, or using the Window ➪ Move to Next Tab Group or Window ➪ Move to
Previous Tab Group commands that are also available in document tab context menus.

 You can create either vertical or horizontal tab groups. When you divide the document area
horizontally or vertically the fi rst time, the next time only the New Horizontal Tab Group or New
Vertical Tab Group commands are offered, respectively.

 Splitting and Duplicating Document Windows

 When your source code fi les are very long, you often have to jump from one area of the fi le to
another one, and back. If these areas are quite far away from each other, you must spend a lot of
time with paging. You can make your work easier if you split the document window or duplicate it.
Figure 5 - 7 shows you three document windows demonstrating these concepts.

CH005.indd 136CH005.indd 136 9/6/10 4:41:50 PM9/6/10 4:41:50 PM

 In this fi gure, the source.extension.vsixmanifest document window is split and duplicated.

 Use the Window ➪ Split command to divide the document window area into two vertical panes.
You can scroll within the upper and lower panes independently, or even resize them by dragging the
split bar between them into a new position. The two panes cannot be moved to separate tab groups;
they always move together with the document window. You can unite the two panes with the
Window ➪ Remove Split command, or by resizing one of the panes to a zero height.

 Sometimes it is very useful to have separate document windows for the same document. That
is when the Window ➪ New Window command comes into the picture. It creates an additional
document window by cloning the active one, and indicates that by appending “ index 1 ” to the
original document window and “ index 2 ” to the new window title. You can use the New
Window command for the same window several times, so you can create more document window
instances as well. The great thing about this approach is that you can move the cloned windows
separately from the original one, even though you cannot do this operation with the panes of a
split window.

 When you split a document window or duplicate it, changes in one window (or window pane) will
instantly appear in the other windows (other window pane).

 Setting the Position of New Document Windows

 By default, when you open a new document, the related document window will be put to the
leftmost location in the current tab group. You can change this behavior on the Documents tab of
the Options dialog shown in Figure 5 - 8.

 FIGURE 5 - 7: You can split and duplicate document windows

Window Management ❘ 137

CH005.indd 137CH005.indd 137 9/6/10 4:41:50 PM9/6/10 4:41:50 PM

138 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Check the “ Insert documents to the right of existing tabs ” option and close the Options dialog with
OK. The next time you open a document, the related window will be put to the rightmost position
in the current tab group.

 CUSTOMIZING MENUS AND TOOLBARS

 The Visual Studio IDE is a complex product that offers hundreds of functions to the user. These
commands are organized into menus and toolbars so that you ’ ll be able to fi nd and launch them in
the current context. For example, you need a separate command set for writing code and debugging
your application. Even when you edit code, you may need a separate command set, depending on
the fi le type. For example, while you are working with C# fi les, several refactoring functions help
you; when you deal with XML fi les, formatting commands could provide a comfort zone for you.

 The Visual Studio IDE team spent a lot of energy on research in the last few years to establish the
menu and toolbar layout you can use with great productivity. However, one structure does not fi t for
all. Even within your team, you can fi nd developers with different opinions about a certain layout.

 The whole menu and toolbar structure was designed with extensibility and customization in mind.
If you feel you can enhance the IDE by changing this structure and create a more productive
development environment, you are free to do so. Visual Studio provides you with easy - to - use
customization functions to tailor the IDE menus and toolbars to your needs:

 You can add commands to menus and toolbars — and, of course, you can remove them.

 You can add separators between commands to provide a better grouping of them.

➤

➤

 FIGURE 5 - 8: Changing the default position of document windows

CH005.indd 138CH005.indd 138 9/6/10 4:41:51 PM9/6/10 4:41:51 PM

 If you need, you can create your own menus, or change the order of the existing ones.

 You do not have to live only with the existing toolbars. You can create your own toolbars
and fi ll them with existing commands.

 You can also reorganize the toolbars in the main docking area, and change their docking
position.

 If, at any time, you feel lost in the customization, you can reset menus and toolbars to their original
state.

➤

➤

➤

 RIBBONS IN VISUAL STUDIO

 Microsoft spent a lot of research time on establishing an intuitive user interface
(UI) for applications with hundreds of commands. The Microsoft Offi ce ribbon -
 based user interface is a good example of the results achieved. In the beginning,
this new UI was very unusual for Offi ce users, but — according to community
feedback — after learning the ribbon basics, most of them loved it.

 The fi rst CTPs of Visual Studio were met with a frequently returning question:
Why does Visual Studio not have ribbons? Well, the development team was also
thinking about introducing ribbons to Visual Studio, but, after a while, they threw
out this idea.

 Ribbons are great because they are context - sensitive and offer functionality accord-
ing to the context the user works in. For example, when you are editing a table in
Word, new ribbon tabs appear that are customized to help you changing the layout
and design of your tables. With applications that have only a few and easily identi-
fi able contexts, this approach works well.

 However, in Visual Studio, you have too many contexts. Editing the code itself is at
least as complex from this aspect as the entire Word application itself. Of course,
you do not have tables or pages, but instead you have namespaces, types, meth-
ods, and so on. Depending on where you are in the code, you would like to access
different commands — for example, different code refactoring functions or code
snippets.

 So, the development team concluded that, because of this complexity, changing the
Visual Studio menus and toolbars to ribbons would not be productive or intuitive.

 The Customize Dialog

 Visual Studio provides the Customize dialog as the central place to tailor any menus or toolbars to
your needs. You can easily access this dialog with the Tools ➪ Customize command. You do not have
to go into the Tools menu. You can right - click on the main menu bar or any toolbars, and invoke
the Customize command from the context menu popping up. (You ’ ll fi nd it at the bottom.) The
Customize dialog contains two tabs. Figure 5 - 9 shows the Toolbars tab, while Figure 5 - 10 shows
the Commands tab.

Customizing Menus and Toolbars ❘ 139

CH005.indd 139CH005.indd 139 9/6/10 4:41:51 PM9/6/10 4:41:51 PM

140 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 At the right edge of toolbars you can see a small drop - down arrow. When you click it, the Add or
Remove Buttons menu appears. When you move the mouse over this menu, it drops down a context
menu with the Customize command on it. Launching the Customize dialog from this point will
navigate directly to commands of the toolbar you invoked the customization from.

 Adding Menus and Commands

 In the Commands tab of the Customize dialog, you can easily create your
own menus or extend the existing ones with commands. The best way to
learn these options is to walk you through the creation of a custom menu.

 Let ’ s assume that you want to create a new menu named Build Tasks in
order to collect all the tasks of a simple build process in one place. You
intend to place this new menu in the main menu bar of Visual Studio, just
before the original Build menu. When you fi nish the customization, the
new menu will look like the one shown in Figure 5 - 11.

 FIGURE 5 - 9: The Toolbars tab of the Customize

dialog

 FIGURE 5 - 10: The Commands tab of the Customize

dialog

 FIGURE 5 - 11: The new

Build Tasks menu

At the bottom of the dialog, you can see the Keyboard button that can be used to
change or assign keyboard shortcuts to Visual Studio Commands. Later in this
chapter, you will learn how to reduce efforts with keyboard shortcuts.

CH005.indd 140CH005.indd 140 9/6/10 4:41:53 PM9/6/10 4:41:53 PM

 Adding a Menu to the Main Menu Bar

 To create this menu, follow these steps:

 1. Open the Customize dialog and select the Commands tab. Because you want to add the
new menu to the main bar, you are in the right place within the dialog. Under the “ Choose
menu or Toolbar to rearrange ” label, the Menu bar option is selected with the Main
Menu. In the Controls list, you can see all menus that can be displayed in the main menu
bar. This list contains many more menu bars than are displayed in the main menu. Certain
menu bars appear only in a specifi c context — for example, when you edit the code or
debug a project.

 2. Select the Refactor menu in the control list and click the Add New Menu button. This
action will insert a New Menu placeholder into the list just before the Refactor menu. Using
the Move Down button, move this placeholder before the Build menu. Of course, if you
originally selected the Build menu, the Add New Menu button would place it right at its
fi nal location.

 3. With New Menu selected, in the list click the Modify Selection drop - down button, and then
change the name to Build Tasks.

 At this point, you have a new menu that does not yet contain any commands.
You can close the Customize dialog and look at the main menu bar. As you see
(and is shown in Figure 5 - 12), the new menu is dimmed. There is no command
you can invoke from here.

 Adding Commands to a Menu

 Now, let ’ s add commands to the Build Tasks menu. Follow these steps:

 1. Open the Customize dialog, and move to the Commands tab. This time, you want to add a
command to the Build Tasks menu, so you must fi rst select it from the combo box to the
right to the Menu bar option. When you drop down the combo box, it displays all menus
and nested submenus. Scroll down to the items starting with Project, and you will fi nd
Build Tasks nearby, just before the Build menu. As soon as you select Build Tasks, the
controls list becomes empty, indicating that there are no commands associated with this
menu yet.

 2. Click the Add New Commands button to choose a command from the dialog that appears
on the screen shown in Figure 5 - 13. There are more than a thousand commands you can
choose from. The Add Command dialog helps you to fi nd the one you are looking for by
categorizing the commands.

 3. Select Build from the Categories list, then Build Solution from the Commands list, and click
OK. This new item immediately appears on the controls list.

 4. You can change the text displayed with the command. Click the Modify Selection button
and change the name to “ 1) Build ” .

 FIGURE 5 - 12: Build

Tasks is dimmed

Customizing Menus and Toolbars ❘ 141

CH005.indd 141CH005.indd 141 9/6/10 4:42:04 PM9/6/10 4:42:04 PM

142 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 When you close the Customize dialog, your fi rst command is ready to run. Of course, while you do
not have any solution or project loaded, the Build command will be disabled. However, when you
load a solution, you can immediately try the new command to see that it works as expected.

 Repeat the steps described earlier to add four more commands to the Build Tasks menu. Table 5 - 1
shows the category and command you should select in the Add Command dialog, as well as the
name of the command to display in the menu.

 TABLE 5 - 1: New Commands to Add to the Build Tasks Menu

 CATEGORY COMMAND NAME

 Test Run All Tests in Solution 2) Test

 Analyze Run Code Analysis on Selection 3) Analyze

 Analyze Calculate Code Metrics for Solution 4) Code Metrics

 Debug Start Without Debugging 5) Start

 FIGURE 5 - 13: The Add Command dialog

 When you add a command, use the Move up and Move Down buttons to rearrange the buttons so
that each of them will be in the right place.

 Now, you are almost done. To establish the fi nal form of the new menu, select the “ 2) Test ”
command, drop down the Modify Selection button, and check the Begin Group option to add
a separator line before the command. Repeat the same for the “ 5) Start ” button. Close the
Confi guration dialog. Your menu should now look similar to Figure 5 - 11.

 Removing Menus and Commands

 If you added a command or a menu to the wrong place — for example, to another menu than the
one you originally intended — you can simply remove it. Select the menu item or command in
the controls list (of course, fi rst you must select the appropriate menu that lists the command)
and use the Delete button to remove it.

CH005.indd 142CH005.indd 142 9/6/10 4:42:05 PM9/6/10 4:42:05 PM

 Adding Menus and Commands to Toolbars

 You can add new commands and menus not only to the main menu bar or to one of its submenus,
but also to toolbars and context menus. When you open the Customize dialog, on the Commands
tab, you have three options under the “ Choose a menu or toolbar to rearrange ” label:

 Menu bar — You used this option in the walkthrough to add the Build Tasks menu to the
main menu bar and commands to this menu.

 Toolbar — You can select any toolbars to customize or rearrange items. If you selected a
toolbar from here in the previous examples, the Build Task menu with all of its newly added
commands would have been added to that toolbar.

 Context menu — This option allows you to select any of the context menus to customize.

 Instead of adding the Build Tasks menu to the main menu bar, you can select the “ Project
and Solution Context Menus | Project ” item from the Context menu combo box, and place the
Build Tasks commands in the controls list — exactly the same way as you did it before.
Figure 5 - 14 shows the Build Tasks menu added to the project nodes ’ context menu in the Solution
Explorer.

➤

➤

➤

Be careful. The IDE does not ask you for confi rmation; it immediately removes
the selected item. If you delete an item by accident, you must re - create the
affected command or menu from the beginning. If you remove a predefi ned menu
or command — for example, if you delete the File menu from the main menu
bar — you can use the Reset All button to restore the original state of the menu or
toolbar.

 FIGURE 5 - 14: Adding custom commands to the Solution

Explorer context menu

Customizing Menus and Toolbars ❘ 143

CH005.indd 143CH005.indd 143 9/6/10 4:42:05 PM9/6/10 4:42:05 PM

144 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Creating and Rearranging Toolbars

 In Visual Studio, you can fi nd two types of toolbars:

 Global toolbars — These are the toolbars that belong to the entirety of the IDE, such as
the standard toolbar right below the main menu bar, the Build, Formatting, and Debug
toolbars, and many more.

 Tool window toolbars — Tool windows can have their own toolbars. For example, the
Output window has a toolbar where you can choose which output pane to display. You can
fi nd messages, navigate among them, and so on.

 The customization is available only for the global toolbars. You cannot change or rearrange the
commands in tool window toolbars. You have several options to rearrange or change the commands
assigned to toolbars:

 Go to the Customize dialog and, on the Commands page from the combo box beside
the Toolbar option, select the toolbar to change. The Controls list shows the commands
assigned to the selected toolbar. You can use the Move Up and Move Down buttons to
change the order of the commands. With the Modify
Selection drop - down button, you can change the name
of the toolbar command, set whether the text or the
icon of the command should be displayed, and, with
the Begin group option, you can place a separator item
before the command.

 When you drop down the Add or Remove Buttons
context menu of a specifi c toolbar (that is, click the
small drop - down arrow belonging to the toolbar), the
menu contains one item for each command. By clicking
on the menu items, you can show or hide the related
command on the toolbar. The tick mark to the left of
the command indicates whether it is shown or hidden.
Figure 5 - 15 shows the context menu belonging to the
Debug toolbar.

 The Toolbars tab of the Customize dialog (shown in Figure 5 - 9) displays all toolbars you can display
in Visual Studio. Each item in the list on this tab contains a checkbox that you can check or uncheck
to show or hide the related toolbar, respectively. This tab allows you more customization:

 Click the New button to add your own toolbar to the list. As soon as you type a non - blank
name for the new toolbar in the New Toolbar dialog and click OK, the toolbar will be
added to the list. You can use the Commands page to set up the command items assigned
to this toolbar. You can do this customization the same way you did earlier with menu
commands.

 Click the Delete button if you want to remove a toolbar from the list. This button is
disabled for built - in toolbars, so, fortunately, you cannot delete any of them by accident.
Before the toolbar is removed, you must confi rm your intention.

➤

➤

➤

➤

➤

➤

 FIGURE 5 - 15: The context menu of

the Debug toolbar

CH005.indd 144CH005.indd 144 9/6/10 4:42:10 PM9/6/10 4:42:10 PM

 The Modify Selection drop - down button allows you to change the name of your custom
toolbars. However, this function is not available for the pre - defi ned toolbars. This button
also provides you with options to select the edge of the main window you want to dock the
toolbar to. Choose one of the options (Top, Left, Bottom, Right), and the toolbar is set to
the new position immediately. Of course, this option is available both for predefi ned and
custom toolbars.

 You do not have to go to the Customize dialog to show or hide a toolbar. You can control visibility
through the View ➪ Toolbars menu, or with the toolbars ’ context menus.

 Context Sensitivity

 Earlier, when you added the new menu item to the main menu, you could see that the Controls list
in the Commands tab of the Customize dialog contained many items that cannot be seen when you
load Visual Studio (take a look at Figure 5 - 10). Also, when you use Visual Studio, several toolbars
are automatically displayed or hidden, depending on your activity. For example, when you start
debugging an application, the Debug toolbar is automatically shown, and when you leave the debug
mode, the toolbar is hidden.

 The visibility of predefi ned toolbars may be bound (and most of them are) to so - called UI contexts .
When the IDE enters a certain context, toolbars bound to that context are automatically displayed.
As the IDE leaves that context, the toolbars get hidden again. This is the mechanism that controls,
for example, the visibility of the Debug toolbar.

 To add some spice to this behavior, you can “ override ” it during run - time by showing or hiding
toolbars manually:

 If a toolbar is displayed when the IDE enters into a specifi c context, even if you leave the
context, the toolbar does not get hidden. Try this scenario by showing the Debug toolbar
before you start debugging. When you leave the debug mode, the Debug toolbar stays
visible.

 If the toolbar is hidden when you leave the context it is bound to, even if the IDE enters to
that context the next time, the toolbar stays hidden. Try this by hiding the Debug toolbar
while debugging an application. When you start debugging again, you must manually
enable the toolbar if you intend to use it.

 IDE CONFIGURATION

 By now, you should have a good perspective of arranging windows in the IDE, and customizing menus,
toolbars, and commands associated with them. You can confi gure many other things infl uencing
the appearance and behavior of Visual Studio and the installed extensions. All of the customization
techniques share several common mechanisms. In this section, you will learn more about them.

 The Options Dialog

 The Options dialog box is a central place in Visual Studio 2010 to access and modify settings that
infl uence the behavior of the IDE. It can be accessed from the Tools ➪ Options menu.

➤

➤

➤

IDE Confi guration ❘ 145

CH005.indd 145CH005.indd 145 9/6/10 4:42:11 PM9/6/10 4:42:11 PM

146 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 The Options dialog box is divided into two parts: a navigation pane on the left and a display area
on the right. The tree control in the navigation pane includes categories (folder nodes), such as
Environment, Projects and Solutions, Source Control, Text Editor, Debugging, and many more.
Several categories (for example, the Text Editor) include subcategories. Expand any category node to
list the pages of options it contains.

 When you select the node for a particular page, its options appear in the display area. When you select
a category node, the fi rst available page node (named General, in most cases) is displayed. Figure 5 - 16
shows the Options dialog where the General page of the Environment category is selected.

 FIGURE 5 - 16: The General page of the Environment category in the Options

dialog box

 The content of categories and pages may vary depending on the Visual Studio 2010 edition you are
using. Installed add - ins and extensibility components can also add their own categories and pages
to the Options dialog. Table 5 - 2 summarizes the most frequently used option categories. (Note that
this table is by no means complete.)

 TABLE 5 - 2: Option Categories

 CATEGORY DESCRIPTION

 Environment This category lists about a dozen pages that provide options to

infl uence the general behavior of the IDE. For example, here you can

set the fonts and colors used all around in the IDE, change how often

auto - recover information should be saved, the way the environment

should refl ect to fi le changes outside of the IDE, and options for the

 “ Find and Replace ” dialog. Of course, this category contains many

more options than enumerated here.

CH005.indd 146CH005.indd 146 9/6/10 4:42:11 PM9/6/10 4:42:11 PM

 You can navigate to any page and change any settings there. When you are ready with the
changes, click OK, and the Options dialog saves all settings on all pages. Clicking Cancel on any
page cancels all change requests, including changes made on other pages. Some changes to option
settings (such as Language settings) will only take effect after you close and restart Visual Studio.
In this case, closing the Options dialog will display a message to let you know that you need to
restart the IDE.

 Changes in Option Pages

 Visual Studio 2010 added lots of functions to the IDE compared to the Visual Studio 2008 version.
In addition to these functional enhancements, Visual Studio 2010 was built with new technologies.
For example, the IDE now uses Windows Presentation Foundation (WPF) as the UI technology for
most of the visual elements in the shell.

 This section lists a number of the most important changes in the Options dialog as a result of either
the functional enhancements or the technology improvements in Visual Studio 2010.

 CATEGORY DESCRIPTION

 Projects and Solutions This category allows you to set up project and user template folders,

as well as providing options for the Build and Run commands. You

can also specify Visual Basic defaults and general Visual C++ project

settings.

 Source Control Visual Studio can integrate with source control providers. In this

category, you can select the provider you want to work with, and you

can set up the selected provider ’ s options. Also, you can infl uence

how the environment interacts with the provider. For example, you

can defi ne whether a fi le should be automatically checked out when

you start modifying it.

 Text Editor This category provides general and language - specifi c pages to defi ne

the behavior of the text editor in a specifi c context. The All Languages

page defi nes options (such as handling tabs and indentations) that

should be used globally for all languages. Language - specifi c pages

allow you to override the global options and defi ne language - specifi c

options. For example, the Basic page lets you defi ne whether End

constructs should be automatically inserted into your code.

 Debugging This category provides six pages with almost a hundred options for

confi guring the debugging experience.

 Test Tools This category allows you confi guring tools related to testing. Among

the other options, you can set up the language of the default test

project, defi ne the test execution environment, and set the default

actions for the dialog boxes displayed while tests are running.

IDE Confi guration ❘ 147

CH005.indd 147CH005.indd 147 9/6/10 4:42:12 PM9/6/10 4:42:12 PM

148 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Visual Experience Options

 As you have learned, Visual Studio 2010 changed how document windows are handled in the IDE.
While Visual Studio 2008 allowed you to select between tabbed documents and multiple documents
mode (have a look at Figure 5 - 2), Visual Studio 2010 handles tabbed documents, and allows fl oating
document windows with multiple monitors. These options have been removed from the General
page of the Environment category.

 Because of the WPF shift, the General page contains new visual experience options, as shown in
Figure 5 - 16. These options include the following:

 Automatically adjust visual experience based on client performance — WPF is a
technology that allows a rich user experience that includes such visual effects as gradients,
animations, and media. This option specifi es whether Visual Studio sets the adjustment to
the visual experience automatically, or you set the adjustment explicitly. This adjustment
may change the display of colors from gradients to fl at colors, or it may restrict the use of
animations in menus or pop - up windows.

 Enable rich client experience — This enables the full visual experience of Visual Studio,
including gradients and animations. Clear this option when using Remote Desktop
connections or older graphics adapters, because these features may result in poor
performance in those cases.

 Use hardware graphics acceleration if available — WPF can leverage the hardware
acceleration built into graphics adapter cards. With this option, you can declare that
you want to use hardware graphics acceleration if it is available, rather than software
acceleration. As shown in Figure 5 - 16, the page always displays a message below this option
that tells you whether Visual Studio is using software or hardware acceleration.

 Extension Manager Page

 As discussed in Chapter 2, the extension installation experience in Visual Studio 2010 has been
radically changed. The new Extension Manager dialog now shows available online extensions that
are regularly updated, and these can be installed with a single click of a button.

 The Environment category contains a new page, Extension Manager, where you can set up the
behavior of this dialog.

 As shown in Figure 5 - 17, you can use the following options:

 Enable access to extensions on the Visual Studio Gallery — This option is checked by
default. It allows you to browse, download, and install extensions within the Extension
Manager dialog. If the checkbox is unchecked, you cannot browse the Gallery. Instead, a
message warns you that you must fi rst enable this option.

 Automatically check for updates to installed extensions — The VSIX deployment
mechanism used in Visual Studio 2010 recognizes that a new extension is an update of
an old one. If you check this option, the Extension Manager will automatically search the
Visual Studio Gallery to discover available updates for your installed extensions.

 Load per-user extensions when running as administrator — Extensions are installed on a
per - user basis. This option controls whether the per - user extensions should be loaded when

➤

➤

➤

➤

➤

➤

CH005.indd 148CH005.indd 148 9/6/10 4:42:12 PM9/6/10 4:42:12 PM

you start Visual Studio in elevated mode (with the “Run as Administrator” command).
If this option is unchecked, all extensions are disabled in elevated mode. The Extension
Manager will list those extensions, but does not integrate them with the IDE. This option
can be changed only in elevated mode.

 FIGURE 5 - 17: The Extension Manager options page

 Projects and Solutions

 In Visual Studio 2010, the Visual C++ project system (that is, the behavior of Visual C++ projects in
the Solution Explorer, the related functionality, such as build, confi guration, and deployment) has
been fundamentally changed. The VC++ Directories page under the “ Projects and Solutions ” category
has been deprecated. Of course, developers can still set the C++ directories, but now these options
can be accessed on a user property sheet that is added by default to all C++ projects. To access this
page, you must click on the Properties item in the context menu of a C++ project.

 Text Editor

 Because of the new Visual Studio editor, and changes in languages, there have been slight changes in
the Text Editor category. These include the following:

 Two options (“ Go to selection anchor after escape ” and “ Include insertion point movements
in Undo list ”) have been dropped from the General page. They are no longer supported in
Visual Studio 2010.

 Because F# has become a standard part of Visual Studio 2010 (assuming, of course, that
you did not uncheck the F# language option when installing Visual Studio), the Text Editor
category now contains a page for F#.

 The Basic category contains a new option in the VB Specifi c page — the “ Enable
highlighting of references and keywords ” checkbox. When you check it, the text editor can
highlight all instances of a symbol, or all of the keywords in a clause, such as If..Then ,
 While...End While , or Try...Catch...Finally . You can navigate between highlighted
references or keywords by pressing Ctrl+Shift+down arrow or Ctrl+Shift+up arrow.

➤

➤

➤

IDE Confi guration ❘ 149

CH005.indd 149CH005.indd 149 9/6/10 4:42:12 PM9/6/10 4:42:12 PM

150 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Visual Studio 2008 included several pages related to Transact - SQL scripts (SQL Script,
T - SQL, TSQL7, T - SQL80, and T - SQL90). In Visual Studio 2010, the language services
behind Transact - SQL changed, and you can confi gure them on the SQLCE, Transact - SQL,
and T - SQL90 pages.

 Visual Studio Settings

 When you tailor the IDE to fi t your needs, the current set of confi guration values is persisted. So,
the next time you launch Visual Studio, your settings are retrieved. There are many things you can
confi gure in Visual Studio, including tool windows, menus and toolbars, IDE options, keyboard
shortcuts, the Toolbox, and many more.

 Visual Studio provides several persistence mechanisms. For example, it stores the window layout
in XML fi les, as well as the toolbar and menu settings in a binary fi le. The term “ Visual Studio
Settings ” is cumbersome and has the following two interpretations:

 All settings in Visual Studio that you can confi gure anywhere in the IDE.

 The set of confi guration values that can be saved to Visual Studio Settings fi les and load
from them — that is, the confi guration you can change in the Options dialog, as shown in
Figure 5 - 18.

➤

➤

➤

 FIGURE 5 - 18: Options dialog

 In articles, whitepapers, and Visual Studio documentation, these interpretations are not explained
very well, and sometimes it is not clear what is meant by “ settings. ” This section uses the second
interpretation — and this is the one mostly used in MSDN documentation.

CH005.indd 150CH005.indd 150 9/6/10 4:42:13 PM9/6/10 4:42:13 PM

For the easiest interpretation, you can put an equals sign between “ Visual Studio
Settings ” and “ confi guration values set in the Options dialog. ” However, the
IDE allows persisting settings that you cannot fi nd in the Options dialog, such
as the Code Analysis settings. Extensions integrated with Visual Studio also can
provide persisted settings that cannot be modifi ed in the Options dialog.

 The Export and Import Settings Wizard

 Visual Studio settings can be saved to fi les, and those fi les can be loaded into Visual Studio 2010 —
even into an instance running on another machine, or into another user profi le. This functionality
allows you to manage settings, and use them for a number of purposes:

 You can back up the settings you currently use. Later, after changing the settings
intentionally or accidentally, you can import the saved settings and restore the former state.

 You can save and load a part of the current settings. For example, if you want to store (and
later restore) only the “ Fonts and Colors ” settings, you can do it.

 You can move settings from one computer to another. For example, you can manually
synchronize the Visual Studio settings between your company notebook and home computer.

 Settings can be shared among a team of Visual Studio users — for example, among team
members involved into the same software development project.

 The key to settings management is the Import and Export Setting Wizard that you can access from
the Tools menu. When the wizard starts, it offers you three options on its Welcome page, as shown
in Figure 5 - 19.

➤

➤

➤

➤

 FIGURE 5 - 19: The Welcome page of the Export and Import

Settings Wizard

IDE Confi guration ❘ 151

CH005.indd 151CH005.indd 151 9/6/10 4:42:13 PM9/6/10 4:42:13 PM

152 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 You can use the following options:

 Export all environment settings or a selected subset of them into a .vssettings fi le.

 Import all settings from a saved .vssettings fi le, or a subset of settings saved into that fi le.

 Reset all settings by selecting one from the default collections of settings shipped with
Visual Studio.

 Exporting Settings

 To save the current settings, choose the “ Export
selected environment settings ” option in the Welcome
page and click Next. The wizard moves you to the
 “ Choose Settings to Export ” page, where you can
defi ne the subset of settings to export. By default,
all settings except the “ Import and Export Settings ”
are selected, but you can change this defi nition by
checking and unchecking items in the tree view.

 You can expand the nodes in the tree and select or
unselect settings under any folder node. Figure 5 - 20
shows a confi guration where only the “ Fonts and
Colors ” settings are chosen to export.

 Once you have defi ned the settings to export, click
Next to move to the “ Name Your Settings fi le ”
page. Specify the name of your settings fi le and the
folder where you want to save that fi le. Click Finish.
The Wizard exports the fi le immediately. It creates a
default fi lename for you that contains the date, but you can overwrite it. The default extension of the
fi le is .vssettings . If you omit the extension, the Wizard appends it to the fi lename.

 Importing Settings

 You can import the saved settings by choosing the
 “ Import selected environment settings ” option on
the Welcome page. Click Next, and you get to the
Save Current Settings page, where you can specify
a folder and a fi le to save a backup of the current
settings.

 Although this page allows you to skip creating a
backup fi le (as Figure 5 - 21 shows), it is always
recommended to create a backup. Once you have
imported a .vssettings fi le, the only real rollback
option is to re - import the backup fi le. Otherwise,
you must manually confi gure each setting that
does not meet your expectations — and this
reconfi guration can be laborious and painful.

➤

➤

➤

 FIGURE 5 - 20: The “ Choose Settings to Export ” page

 FIGURE 5 - 21: The Save Current Settings page

CH005.indd 152CH005.indd 152 9/6/10 4:42:19 PM9/6/10 4:42:19 PM

 Click Next to move to the “ Choose a Collection
of Settings to Import ” page shown in Figure 5 - 22.
The tree view on this page displays the collection
of default settings fi les shipped with Visual
Studio. Under the My Settings folder node,
you see your recently used .vssettings fi les.
By clicking the Browse button, you can select
any other fi les to import. You can select any fi les
with a valid settings fi le schema, even if those
do not have the .vssettings extensions in
their names.

 When you have selected the settings fi le, click Next
to move to the “ Choose Settings to Import ” page.
This page follows the same logic as the “ Choose
Settings to Export ” page (Figure 5 - 20), but here
you can select a subset of the settings persisted in
the chosen fi le. Click Finish to create the optional
backup fi le and import the selected setting.

 Reset All Settings

 The third option you can choose in the Export and Import Settings Wizard lets you reset all
settings to one of the predefi ned profi les. The use of this option is very similar to the import
option. In the fi rst step (“ Save Current Settings page ”), you can specify an optional backup fi le.
In the second step, you can choose a default collection of settings (profi le). When you click Finish,
the backup fi le is created (assuming you have specifi ed one), and settings are reset to the selected
profi le.

 Export and Import Options

 In the Options dialog box, you can specify a few options that infl uence how Visual Studio handles
setting fi les:

 Automatically save my settings to this fi le — This textbox displays the location and name
of the .vssettings fi le you are currently using. When you close the IDE, any changes you
have made (such as environment options or debugger and text editor settings) are saved
to the current fi le. The next time you start the IDE, your settings are loaded. Change this
textbox if you want to save these settings to a different fi le or location.

 Use team settings fi le — When this checkbox is selected, you can share common
settings (which are saved to a shared network location) among team members. You can
navigate to this shared .vssettings fi le using the Browse button. This settings fi le is
automatically re - applied each time Visual Studio detects whether a newer version of
the fi le is available.

➤

➤

 FIGURE 5 - 22: The “ Choose a Collection of Settings

to Import ” page

IDE Confi guration ❘ 153

CH005.indd 153CH005.indd 153 9/6/10 4:42:20 PM9/6/10 4:42:20 PM

154 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Looking into the .vssettings Files

 By now, you can imagine what kinds of settings are stored in a .vssettings fi le. This fi le has an
XML format (unfortunately its schema is not published), and looking into it gives you hints about
how Visual Studio stores the settings you ’ ve saved. The following code snippet shows an extract
from a .vssettings fi le:

 < UserSettings >
 < ApplicationIdentity version=”10.0”/ >
 < ToolsOptions >
 < ToolsOptionsCategory name=”Environment” RegisteredName=”Environment” >
 < ToolsOptionsSubCategory name=”Documents” RegisteredName=”Documents”
 PackageName=”Visual Studio Environment Package” >
 < PropertyValue name=”ShowMiscFilesProject” > true < /PropertyValue >
 < PropertyValue name=”AutoloadExternalChanges” > false < /PropertyValue >
 < PropertyValue name=”CheckForConsistentLineEndings” > true < /PropertyValue >
 < PropertyValue name=”SaveDocsAsUnicodeWhenDataLoss” > false < /PropertyValue >
 < PropertyValue name=”InitializeOpenFileFromCurrentDocument” > true
 < /PropertyValue >
 < PropertyValue name=”ReuseSavedActiveDocWindow” > false < /PropertyValue >
 < PropertyValue name=”DetectFileChangesOutsideIDE” > true < /PropertyValue >
 < PropertyValue name=”DontShowGlobalUndoChangeLossDialog” > true
 < /PropertyValue >
 < PropertyValue name=”AllowEditingReadOnlyFiles” > true < /PropertyValue >
 < PropertyValue name=”DocumentDockPreference” > 0 < /PropertyValue >
 < PropertyValue name=”MiscFilesProjectSavesLastNItems” > 0 < /PropertyValue >
 < /ToolsOptionsSubCategory >
 < ToolsOptionsSubCategory name=”FindAndReplace” RegisteredName=
 “FindAndReplace” PackageName=”Visual Studio Environment
 Package” >
 < PropertyValue name=”ShowWarningMessages” > true < /PropertyValue >
 < PropertyValue name=”InitializeFromEditor” > true < /PropertyValue >
 < PropertyValue name=”ShowMessageBoxes” > true < /PropertyValue >
 < PropertyValue name=”HideWindowAfterMatchFromQuickFindReplace” >
 false < /PropertyValue >
 < /ToolsOptionsSubCategory >
 < !-- ... -- >
 < /ToolsOptionsCategory >
 < /ToolsOptions >
 < !-- ... -- >
 < /UserSettings >

 If you look closely, you can recognize several categories, pages, and settings in the Options dialog.
The < ToolsOptions > , < ToolsOptionsCategory > , and < ToolsOptionsSubCategory > elements
form the page hierarchy within the Options dialog. < PropertyValue > elements defi ne settings you
can manage in a page.

 You can fi nd the .vssettings fi les for predefi ned profi les under the Visual Studio 2010 installation
directory in the Common7\IDE\Profiles folder. You should take the time to examine these fi les to
get more information about settings.

CH005.indd 154CH005.indd 154 9/6/10 4:42:20 PM9/6/10 4:42:20 PM

 REDUCING EFFORTS WITH KEYBOARD SHORTCUTS

 Visual Studio has many commands that you can start from the menus or toolbars of the IDE.
Although, you can launch all commands by moving the mouse pointer and clicking the appropriate
menu or toolbar item, in many cases, this may be disturbing because you must interrupt your work.
For example, when you edit code and want to comment out a block of instructions, you must follow
these steps:

 1. Even if the caret is at the beginning of the block to uncomment, you must move the mouse to
the caret position, click the left mouse button, and hold it down while selecting the whole text.

 2. Move your mouse over the Edit main menu item, and click on it.

 3. Locate the Advanced item in the Edit menu, and move the mouse over it (or click it). The
Advanced menu items are displayed on the screen.

 4. Click the Comment Selection item.

 The real issue with these steps is that you must raise your hand from the keyboard, fi nd the mouse, look
at the screen, and press mouse buttons several times; so you are interrupted in your typing of code.

 You are not obliged to use the mouse! Press the Shift+down arrow keys and keep them pressed while
all the lines to comment out are selected. Then, simply press Ctrl+K and then Ctrl+C, and you are
ready. There is no need to remove your hands from the keyboard, and no need to use the mouse. The
Ctrl+K, Ctrl+C key sequence is a shortcut to the Edit ➪ Advanced ➪ Comment Selection command.

 This was just a very simple example of how useful keyboard shortcuts are. Many commands have
shortcuts associated with them. You may fi nd some of them are easy to remember, while some of
them are diffi cult to use — depending on how often and in which context you use them.

 The IDE allows you full control over the keyboard shortcuts assigned to commands. You can tailor
them to your fi t needs and to reduce the efforts required to carry out the most frequently used tasks.

 Command Routing and Command Contexts

 There are more than a thousand commands available in Visual Studio 2010. You can imagine how
diffi cult it is to fi nd a keyboard shortcut for each of them (and even much more challenging to learn
them by heart). There is no reason to make this full mapping, because many commands are very
rarely used. If you counted the commands you frequently use while working in the IDE, you ’ d end
up with a few dozen commands, but no more. By Pareto ’ s principle, you should assign shortcuts to
the most frequently used 20 percent of these commands to improve your productivity by 80 percent.

During installation, Visual Studio 2010 applies a default shortcut key combina-
tion scheme, depending on the settings you have selected. Visual Studio 2010 also
includes six other keyboard mapping schemes, each of which differs from the oth-
ers in the shortcut key combinations assigned by default to various UI elements.
For a list of these combinations, organized by mapping scheme, see “ Pre - defi ned
Keyboard Shortcuts ” at http://msdn.microsoft.com/en-us/library/
da5kh0wa.aspx .

Reducing Eff orts with Keyboard Shortcuts ❘ 155

CH005.indd 155CH005.indd 155 9/6/10 4:42:20 PM9/6/10 4:42:20 PM

156 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Commands in Visual Studio are tightly coupled with command targets (entities that know how
to interpret and execute a command in a certain context). For example, the Cut, Copy, and Paste
commands work differently in certain contexts. If you are in the text editor, the Copy command
copies the current selection. If you use the WPF designer, the currently selected object is copied. The
text editor and the WPF designer are both command targets , and they know what to do when the
Copy command is sent to them.

 Visual Studio uses a routing algorithm to forward commands to the command targets. Instead of
getting into all the nitty - gritty details of this algorithm, this discussion simply provides a high - level
overview.

 In the route to fi nd its command target, the command bubbles up from level to level. The current
level is called the active command scope . This scope has the chance to handle the command or to
refuse it, and then the bubble goes on its way. The routing algorithm defi nes the following scopes
from the leaves to the root:

 Present Add - ins and special extensions (Visual Studio Packages) scope — Commands
fi rst are offered to the registered and loaded add - ins, or specially registered Visual Studio
Packages.

 Context (shortcut) menus scope — If the user initiates a command from a context menu,
the command target object belonging to this menu has the fi rst chance to handle the
command. If it does not, then the normal route (starting from Present Add - Ins) is applied.

 Focus window scope — The window having the focus is the next entity that could
undertake command handling. This can be either a tool window or a document window
(for example, a window related to an editor). The management of the command is different
depending on what kind of window is focused.

 Document window scope — Document windows are composed logically from two
separate parts: a document view that is responsible for displaying the UI represent-
ing the document, and a document data object that is responsible for handling the
information set behind the document. Both the document view and the document
data can be command targets. The command fi rst goes to the document view, and
goes on to the document data if the view does not support the command.

 Tool window scope — A tool window can handle the command with its own logic.
There are tool windows that route the commands within themselves to nested
command targets. The Solution Explorer window is an example of these. Within
Solution Explorer, a command is routed according to the hierarchy composed from
the elements of the Solution Explorer where each node type (fi le, folder, project,
solution, and so on) has the capability to handle the command. This internal route
also goes from the lower hierarchy levels to the upper ones.

 Current project scope — The current project gets the opportunity to process the command. If
it does not handle it, the command goes up in the hierarchy of projects to the level of solution.
All nodes on this route can manage the command just like other command target objects.

 Global scope — If a command is not handled during the previous levels, the environment
attempts to route it to the appropriate package (Visual Studio extension). If necessary,
Visual Studio loads the appropriate package into memory.

➤

➤

➤

➤

➤

➤

➤

CH005.indd 156CH005.indd 156 9/6/10 4:42:26 PM9/6/10 4:42:26 PM

 Commands with shortcut key combinations that are part of the Global scope can be superseded by
commands in other scopes, depending on the current context of the IDE. For example, if you are
editing a fi le, commands that are part of the Text Editor scope have precedence over commands
in the Global scope that start with the same key combination. For example, if several Global
commands have key combinations that start with Ctrl + K and the Text Editor also has several
commands with key combinations that start with Ctrl + K, when you are editing code the Text
Editor key combinations will work, and the Global key combinations will be ignored.

 Working with Keyboard Shortcuts

 The Keyboard page under the Environment category in the Tools ➪ Options dialog is your starting
point for managing keyboard shortcuts. This page contains every piece of information you need to
do the following:

 Determine the shortcut key assigned to a command

 Change shortcut keys of commands

 Create new custom shortcut keys

 Figure 5 - 23 shows the Keyboard page displaying information about the Edit.CommentSelection
command.

➤

➤

➤

 FIGURE 5 - 23: The Keyboard option page

 The combo box at the top of the page lets you choose the keyboard mapping scheme to use while
working in the IDE. If you click the Reset button, you can reset the mapping schemes to their
initial state.

Reducing Eff orts with Keyboard Shortcuts ❘ 157

CH005.indd 157CH005.indd 157 9/6/10 4:42:26 PM9/6/10 4:42:26 PM

158 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 The list in the middle of the page enumerates all Visual Studio commands available for keyboard
shortcut assignment. This list is very long, so fi nding commands by scrolling would be laborious.
You can use the textbox above the list to type a part of the command name, and the list will be
fi lled only with the command names matching your search defi nition.

 Under the list box, you will see several controls that help you determine if there is any shortcut key
associated with the command, and these controls also help you to defi ne shortcuts for the selected
command.

 Determine the Shortcut Key Assigned to a Command

 The main menu of the Visual Studio IDE displays the keyboard shortcuts to the right of the menu
item names, so you can easily fi nd which shortcut to use for a specifi c command. However, there
are commands that are either not visible in the main menu, or it is diffi cult to locate them. With the
Keyboard page you can fi nd the associated shortcut for any commands.

 Type a part of the command name into the text box over the command list to help you locate
a command in the list. Figure 5 - 23 shows how the “ Comment ” word helps to locate the Edit.
CommentSelection command.

 Directly below the list box, you can see the combo box showing the keyboard shortcuts associated
with the command. You can associate zero, one, or more keyboard shortcuts with each command.
If there is no shortcut assigned to the command, the combo box is disabled. You can drop down the
combo box to display all shortcuts belonging to the command. For example, when you select the
 Edit.Paste command, the list contains two items, Ctrl+V and Shift+Ins, both defi ned in the Global
scope.

 The list shows the keys you must press to invoke the command, and shows the name of the scope the
shortcut is associated with. Figure 5 - 23 shows that the Edit.CommentSelection command has a
keyboard shortcut in the Text Editor scope (Ctrl+K, Ctrl+C). You can use up to two keystrokes for a
shortcut.

 Removing a Shortcut

 You can remove a shortcut easily. Select the one you want to delete from the combo box of
shortcuts, and click the Remove button. The selected item will be removed from the list without any
confi rmation question. When you remove every item, the combo box and the Remove button are
disabled, indicating that no more shortcuts are associated with the command.

 Creating a New Keyboard Shortcut

 In most cases, you would like to assign a new keyboard shortcut to a command because of the
following reasons:

 The command does not have any shortcuts yet.

 You would like to change an existing shortcut, or add another shortcut for the same
command.

 You would like to override the shortcut defi ned in the Global scope.

➤

➤

➤

CH005.indd 158CH005.indd 158 9/6/10 4:42:27 PM9/6/10 4:42:27 PM

 Each of these can be handled with the “ Use new shortcut in ” combo box and the “ Press shortcut
keys ” text box.

 First, select the scope from the “ Use New shortcut in ” combo. In most cases, you want to use the
Global or Text Editor scopes, but you can see that there are many other scopes to defi ne a shortcut
for. Next, click on the “ Press shortcut keys ” text box, and press one or two keys (key combinations)
to associate with the command. The keys with the modifi ers will be displayed in the text box.

 Shortcuts can contain the Shift, Alt, and/or Ctrl keys in combination with
letters, digits, function keys, or several symbols. Although you can use the
Shift+Alt+Ctrl combination with a functional key, it is not recommended,
because you must press and hold down four keys at the same time.

 The following keys cannot be assigned to a command in Global scope: Print
Scrn/Sys Rq, Scroll Lock, Pause/Break, Tab, Caps Lock, Insert, Home,
End, Page Up, Page Down, Windows logo keys, Application key, any of the
arrow keys, or Enter; Num Lock, Del, or Clear on the numeric keypad; or
Ctrl+Alt+Delete.

 You may select a key combination that is already assigned to another command (or even to more
commands in different scopes). The “ Shortcut currently used by ” combo box displays every
collision. You can fi nd all of them by dropping down the list.

 Click the Assign button to associate the new keyboard shortcut with the selected command. When
the shortcut is already assigned to another command in the same scope where you defi ne it, the
previous association is removed, and the shortcut will belong to the new command.

Generally, the Options dialog does not save any changes when you close it with
the Cancel button. However, the Keyboard page immediately saves the changes
in a keyboard scheme as soon as you click the Assign button. So, changes made
using the Assign button are not cancelled if you click the Cancel button.

 Using the Keyboard Exclusively

 Earlier in this chapter, you learned about the window management features of the IDE. Many
features (such as moving, docking, auto - hiding, and showing windows) selecting the active
document were treated there, so you may be thinking that you need the mouse for those actions.
However, you can access all features treated there by using the keyboard exclusively.

 You can move the focus to any of the tool windows or the document windows. You have two key
combinations that allow you change the active window:

 Alt+F7 — This key combination cycles the focus among tool windows.

 Ctrl+Tab — This key combination cyclically changes the active document window.

➤

➤

Reducing Eff orts with Keyboard Shortcuts ❘ 159

CH005.indd 159CH005.indd 159 9/6/10 4:42:27 PM9/6/10 4:42:27 PM

160 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Press any of the keys, and the focus goes to the next tool or document window, depending on the
key combination you use.

 You can use the following combinations in enhanced mode:

 Press one of the combinations (Alt+F7 or Ctrl+Tab), and release the functional key (F7 or
Tab), but keep the modifi er key (Alt or Ctrl) pressed.

 A pop - up window appears in the center of
the main window (shown in Figure 5 - 24)
that helps you navigate among the tool
windows and documents.

 Press F7 or Tab to move to the next window
in the list, and release the Alt or Ctrl keys
when the selection is on the window you
want the focus to move to.

 In addition to changing the focus, you can move and
dock windows. First, set the focus to the window
you want to move and/or dock, using the Alt+F7
or Ctrl+Tab key combinations as described earlier.
Then, press Alt+Space and use the arrow keys to
navigate to the Move command in the window
menu. Press Enter.

 Now you can use the arrow keys to move the fl oating window. As you move the window, the mouse
pointer follows the window. After the fi rst keystroke, the guiding icons appear on the screen. When
you move the mouse pointer over any guiding icon (of course, with the arrow keys, and not with the
mouse), you can see where the fl oating window gets docked. Press Enter to dock the window to the
indicated position (or release it in the current position).

 You can press Esc any time to abort the operation.

 Working with Keyboard Mapping Schemes

 When Visual Studio is installed, it sets up fi ve keyboard mapping scheme fi les that can be found
under the Visual Studio installation root in the Common7\IDE folder with the .vsk extension.
These are binary fi les that represent how shortcuts are associated with commands in that particular
scheme:

 Visual Basic 6.vsk

 Visual C# 2005.vsk

 Visual C++ 2.vsk

 Visual C++ 6.vsk

 Visual Studio 6.vsk

 You can fi nd these fi lenames in the combo box at the top of the Keyboard options page. When you
select a keyboard mapping scheme, the IDE uses the combinations found in the selected mapping
scheme.

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 5 - 24: Pop - up window helping navigation

among tool and document windows

CH005.indd 160CH005.indd 160 9/6/10 4:42:35 PM9/6/10 4:42:35 PM

 When you create shortcut keys for commands, they are stored as changes related to the shortcuts
defi ned in the selected scheme. Later, when you reset the scheme, the changes you have already
applied are simply removed.

 Exporting and Importing Keyboard Mapping Schemes

 Earlier in this chapter, you learned about exporting and importing settings. The shortcuts you
defi ne in the Keyboard page of the Options dialog are the part of the exported set by default. If
you want to export only the keyboard mappings, you must select only the Keyboard item on the
 “ Choose Settings to Export ” page of the Import and Export Settings Wizard.

 Keyboard Shortcuts in the Settings File

 When you export the keyboard mappings, the .vssettings fi le contains only the differences
(removed and newly created shortcuts) you have applied to the selected mapping scheme.

 Let ’ s take a look at an example to see what that means. Follow these steps:

 1. On the Keyboard options page, select the Visual C# 2005 mapping scheme and click on
Reset.

 2. Add a new Text Editor shortcut for the Edit.CommentSelection command (let ’ s say,
Ctrl+Q, Ctrl+C).

 3. Remove the Ctrl+C shortcut defi ned in the Global scope from the Edit.Copy command.

 4. Export the mapping scheme with the Export and Import Settings Wizard to a location you
can remember.

 5. Open the saved .vssettings fi le in Visual Studio 2010 to examine it.

 Listing 5 - 1 shows an extract of the .vssettings fi le.

 LISTING 5 - 1: Keyboard Settings Persisted

 < UserSettings >
 < ApplicationIdentity version=”10.0”/ >
 < ToolsOptions >
 < ToolsOptionsCategory name=”Environment” RegisteredName=”Environment”/ >
 < /ToolsOptions >
 < Category name=”Database Tools” RegisteredName=”Database Tools”/ >
 < Category name=”Environment_Group” RegisteredName=”Environment_Group” >
 < Category name=”Environment_KeyBindings”
 Category=”{F09035F1-80D2-4312-8EC4-4D354A4BCB4C}”
 Package=”{DA9FB551-C724-11d0-AE1F-00A0C90FFFC3}”
 RegisteredName=”Environment_KeyBindings”
 PackageName=”Visual Studio Environment Package” >
 < Version > 10.0.0.0 < /Version >
 < KeyboardShortcuts >
 < ScopeDefinitions >
 < !-- ... -- >
 < Scope Name=”Text Editor” ID=”{8B382828-6202-11D1-8870-0000F87579D2}”/ >

continues

Reducing Eff orts with Keyboard Shortcuts ❘ 161

CH005.indd 161CH005.indd 161 9/6/10 4:42:36 PM9/6/10 4:42:36 PM

162 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

LISTING 5 - 1 (continued)

 < !-- ... -- >
 < Scope Name=”Global” ID=”{5EFC7975-14BC-11CF-9B2B-00AA00573819}”/ >
 < Scope Name=”Class Diagram” ID=”{59B0B277-7DDF-4E36-A3ED-02DAC5B9E2FA}”/ >
 < Scope Name=”UML Activity Diagram” ID=
 “{950C3878-B510-4BC5-9051-42798A870364}”/ >
 < Scope Name=”UML Use Case Diagram” ID=
 “{FCFECC7C-3151-4B48-A85A-909F50500A70}”/ >
 < !-- ... -- >
 < /ScopeDefinitions >
 < DefaultShortcuts/ >
 < ShortcutsScheme > Visual C# 2005 < /ShortcutsScheme >
 < UserShortcuts >
 < Shortcut Command=”Edit.CommentSelection”
 Scope=”Text Editor” > Ctrl+Q, Ctrl+C < /Shortcut >
 < RemoveShortcut Command=”Edit.Copy”
 Scope=”Global” > Ctrl+C < /RemoveShortcut >
 < /UserShortcuts >
 < /KeyboardShortcuts >
 < /Category >
 < /Category >
 < /UserSettings >

 Without understanding all the details in this listing, you can immediately recognize a few elements
in this fi le. The < ShortcutsScheme > element names the keyboard mapping scheme used on the
Keyboard options page. The < UserShortcuts > element encapsulates the changes you have applied
to the scheme. In this fi le, it has two child nodes:

 < Shortcut > describes the new mapping you have added to the Edit.CommentSelection
command.

 < RemoveShortcut > names the Ctrl+C key you have removed from the Edit.Copy
command.

 The fi le contains a < ScopeDefinitions > section that enumerates all scopes you can associate a
keyboard shortcut with. Most of the defi nitions are omitted from this listing, but the remaining
ones tell you their structure. Each scope defi nition has a name displayed on the Keyboard options
page, and each has an identifi er used in the Visual Studio IDE to track the scope.

 CUSTOM START PAGES

 The fi rst Visual Studio version released in February 2002 introduced the concept of the Start Page.
When you launch Visual Studio, the Start Page appears and offers you a few options, such as
creating a new project, opening one of your recent projects, reading the latest news, getting some
guidance, and so on.

 The format and content of the Start Page changed with each new Visual Studio version. Debates
about the content of the Start Page have been ongoing in the community, with some fi nding it
useful, while others suggesting changes. The Visual Studio Start Page was customizable already in

➤

➤

CH005.indd 162CH005.indd 162 9/6/10 4:42:36 PM9/6/10 4:42:36 PM

its fi rst version. At that time, so - called Tab Defi nition fi les with a well - defi ned XML schema were
used to describe custom - defi ned portions of the page.

 Visual Studio 2010 puts more emphasis on the Start Page and its customization. For example, it
provides you two checkboxes at the bottom - left corner of the page to let you decide whether you
want to display the Start Page at all. You can declare that you always want to close the page right
after you load a project.

 Instead of simply customizing the Start Page installed with Visual Studio 2010, you can defi ne
additional Start Pages and select which one you would like to use. Start the Tools ➪ Options dialog
and go to the Startup option page under the Environment category, as shown in Figure 5 - 25.

 FIGURE 5 - 25: Selecting the Start Page to display

 Locate the Customize Start Page combo box that provides a list of installed Start Pages, and you can
see that it contains only the default one unless you add some more.

 The designers of the new Visual Studio Shell changed the internal implementation of the Start Page.
Now, the Start Page is a WPF Grid control; it is defi ned by a XAML fi le. If you want to defi ne your
own Start Page, you simply create your own XAML fi le and deploy it for Visual Studio 2010.

 Creating Your First Custom Start Page

 Creating your own Start Page requires writing a Visual Studio extension and integrating it with the
IDE — similar to the way you installed Visual Studio templates in Chapter 4. However, although
you could create templates immediately after installing Visual Studio, Start Page development
requires the Visual Studio 2010 SDK.

Custom Start Pages ❘ 163

CH005.indd 163CH005.indd 163 9/6/10 4:42:36 PM9/6/10 4:42:36 PM

164 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Microsoft created a Visual Studio project template to develop Start Pages. This template can be
found among the online templates. The fi rst time you want to create a project with this template,
select the File ➪ New ➪ Project command to display the New Project dialog. Click the Online
Templates tab and select the Visual Studio Extensions category. In this category, you can locate the
Custom Start Page Project Template, as shown in Figure 5 - 26.

Chapter 6 discusses in detail the Visual Studio SDK, and shows several examples
of its application, including Visual Studio Packages and Editor extensions. You
can download Visual Studio 2010 SDK through the Visual Studio Development
Center (http://msdn.com/vsx). It is about 12 MB. Its installation is
straightforward and takes about two minutes.

 FIGURE 5 - 26: Locating the Custom Start Page Project Template

 Name the project SimpleStartPage . When you click OK, Visual Studio downloads the project
template and starts installing it, asking you for a confi rmation. After you confi rm the installation,
the project is created. The next time you want to create a Start Page, you ’ ll fi nd the template under
the Installed Template tab, so you do not have to download it again.

 Build and run the project without debugging by pressing Ctrl+F5. When you start it, a new instance
of Visual Studio (the Experimental Instance) is launched, and it uses the default Start Page. Go to
Tools ➪ Options and select the Startup option page under the Environment category, as shown
in Figure 5 - 25. Now, drop down the Customize Start Page combo box and select the “ [Installed
Extension] SimpleStartPage ” item. When you click OK, the page is changed to the new one that is
implemented by the SimpleStartPage project, as shown in Figure 5 - 27.

CH005.indd 164CH005.indd 164 9/6/10 4:42:37 PM9/6/10 4:42:37 PM

 The new Start Page is a clone of the default one and adds a new information tab (MyControl) to the
existing ones. Close the Experimental Instance and go back to the project source code to look at its
structure.

 The Structure of the Start Page Solution

 When you develop a new Start Page, you can create it from the
scratch and use something totally different from the default one, or
(and this is the recommended way) add your own tabs to the existing
ones. The Custom Start Page Project Template uses the second
approach.

 The solution it creates contains two projects. The fi rst one
(SimpleStartPage) contains the Start Page with its XAML defi nition
and all accessories that allow it to deploy as a Visual Studio
Extension. The second project (SimpleStartPageControl) defi nes a
WPF user control that is used on the MyControl tab of the Start Page.
Figure 5 - 28 shows the entire solution structure.

 FIGURE 5 - 27: The new Start Page

 FIGURE 5 - 28: Start Page

Solution Structure

Custom Start Pages ❘ 165

CH005.indd 165CH005.indd 165 9/6/10 4:42:44 PM9/6/10 4:42:44 PM

166 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 In addition to these source fi les, the two projects of the solution reference a few assemblies.
Table 5 - 4 summarizes their roles and descriptions.

 TABLE 5 - 3: The Start Page Solution Structure Files

 FILE DESCRIPTION

 Readme.txt This fi le contains a brief explanation and description of

running and deploying the solution.

 source.extension.vsixmanifest This fi le defi nes the deployment manifest information that is

used during the installation of the extension.

 StartPage.bmp This fi le contains the icon representing the extension in the

Extension Manager, and on the Visual Studio Gallery.

 StartPage.pkgdef This fi le describes the information to be merged into the

registry during deployment.

 StartPage.xaml This XAML fi le defi nes the visual appearance of the start

page. It is a clone of the default Start Page that adds a new

MyControl information tab to be customized.

 StartPagePreview.png This fi le contains the preview image representing the

extension in the Extension Manager, and on the Visual

Studio Gallery.

 MyControl.xaml

 MyControl.xaml.cs

 These fi les can be found in the SimpleStartPageControl

project. They defi ne the WPF user control representing the

MyControl tab.

 TABLE 5 - 4: The Start Page Solution Structure Assemblies

 ASSEMBLY DESCRIPTION

 Microsoft.VisualStudio.Shell.10.0 This assembly is shipped with Visual Studio 2010

SDK. It contains types and resources related to

the new Visual Studio 2010 shell. Both projects

reference this assembly, and use it to access

shell - related resources (such as predefi ned pens

and brushes to draw the UI of the IDE).

 Microsoft.VisualStudio.Shell.StartPage This assembly is shipped with Visual Studio 2010

SDK. Types and resources defi ned here are

to be used in the Start Page. For example, this

assembly contains a defi nition for MruListBox

to display the recently used projects, or image

resources used in the Start Page.

 Table 5 - 3 summarizes the roles of the most important fi les in the solution.

CH005.indd 166CH005.indd 166 9/6/10 4:42:44 PM9/6/10 4:42:44 PM

 The Defi nition of the Start Page

 The StartPage.xaml fi le in the SimpleStartPage project defi nes the essence of the Start Page. You
can see that StartPage.xaml does not have a code - behind fi le, and its Build Action property is set
to Content. The reason is that Visual Studio will load and parse the XAML fi le on - the - fl y at startup
time, and not its binary representation from the SimpleStartPage assembly.

 Of course, that does not mean you cannot assign code to the StartPage.xaml , but you must do it
so that the page uses some user - defi ned controls implemented in external assemblies. The code you
intend to use should be placed into these external assemblies. The template follows this pattern; you
can add code to the MyControl WPF user control class located in the SimpleStartPageControl
assembly.

 Open the StartPage.xaml fi le by double - clicking it in the Solution Explorer. If you have not
compiled the solution yet, the XAML editor may warn you that it cannot display the preview of the
page in the WPF Designer. After building the solution, you can reload the page.

 The fi rst thing you can observe is that the style of the page is different from the one you can see in
the live Start Page. The cause of this phenomenon is that styles in the XAML fi le reference resources
defi ned by Visual Studio. The Start Page must be loaded in the context of a running Visual Studio
instance so that those styles can be accessed.

 The structure of the XAML defi nition is simple, as the extract in Listing 5 - 2 shows.

 LISTING 5 - 2: StartPage.xaml (Extract)

 < Grid
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sp=”clr-namespace:Microsoft.VisualStudio.PlatformUI;
 assembly=Microsoft.VisualStudio.Shell.StartPage”
 xmlns:vs=”clr-namespace:Microsoft.VisualStudio.PlatformUI;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 xmlns:vsfx=”clr-namespace:Microsoft.VisualStudio.Shell;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 xmlns:my=”clr-namespace:SimpleStartPageControl;
 assembly=SimpleStartPageControl”
 mc:Ignorable=”d”

 ASSEMBLY DESCRIPTION

 UIAutomationProvider , UIAutomationTypes These two assemblies are used to create UI

automation providers so that UI controls can be

accessed not only through human interaction,

but also through automation objects. In the

default source code generated by the Custom

Start Page Template, these assemblies are

not used.

continues

Custom Start Pages ❘ 167

CH005.indd 167CH005.indd 167 9/6/10 4:42:45 PM9/6/10 4:42:45 PM

168 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 LISTING 5 - 2 (continued)

 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 d:DesignHeight=”600”
 d:DesignWidth=”800” >

 < Grid.Resources >
 < ResourceDictionary >
 < ResourceDictionary.MergedDictionaries >
 < ResourceDictionary Source=”/Microsoft.VisualStudio.Shell.StartPage;
 component/Styles/startpageresources.xaml” / >
 < /ResourceDictionary.MergedDictionaries >
 < /ResourceDictionary >
 < /Grid.Resources >

 < Grid x:Name=”LayoutRoot”
 Background=”{DynamicResource {x:Static vsfx:VsBrushes.StartPageBackgroundKey}}”
 Style=”{DynamicResource StartPage.OuterGridStyle}” >
 < !-- Grid definition omitted -- >
 < /Grid >
 < /Grid >

 Code fi le [StartPage.xaml] available for download at Wrox.com

 The most eye - catching thing in the listing is that its root element is a Grid and not a Window , a
 Page , or a UserControl element. This Grid is a container holding the resources and defi ning the
layout of the Start Page. As you can see from the attributes of the opening Grid tag, it defi nes xmlns
tags for a few namespaces used by the referenced assemblies summarized in Table 5 - 4, and also a
tag for the SimpleStartPageControl assembly.

 The Start Page uses resources defi ned in a resource assembly of Visual Studio. The < Grid.
Resources > element makes them available for the page.

 The nested Grid with the LayoutRoot name defi nes the content of the Start Page. Visual Studio
nests this UIElement into the Start Page. You can see how the StartPageBackgroundKey property
of the VsBrushes class (defi ned in the Microsoft.VisualStudio.Shell.10.0 assembly) is used to
set up the background color of the grid.

Visual Studio places a lot of System.Windows.Media.Brush instances into the
 Application.Current.Resources collection. The VsBrushes class contains
the keys (more than 100) to reference these resources.

 The LayoutRoot grid contains more than 200 lines defi ning the UI of the page. It is worth taking
a look at a few details of this XAML code, because this will help you to understand how the Start
Page is composed.

CH005.indd 168CH005.indd 168 9/6/10 4:42:45 PM9/6/10 4:42:45 PM

 Command Button Defi nitions

 The Visual Studio 2010 Ultimate Edition ’ s Start Page contains three
command buttons in its top - left part under the logo, as shown in
Figure 5 - 29.

 These buttons are defi ned with the XAML code extract shown in
Listing 5 - 3.

 LISTING 5 - 3: StartPage.xaml (Command Button Defi nitions)

 < Grid x:Name=”commandButtonsGrid” MinWidth=”270” Grid.Row=”0”
 Margin=”0,15,0,30” HorizontalAlignment=”Left” >
 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto”/ >
 < RowDefinition Height=”3”/ >
 < RowDefinition Height=”Auto”/ >
 < RowDefinition Height=”3”/ >
 < RowDefinition Height=”Auto”/ >
 < /Grid.RowDefinitions >

 < vs:ImageButton
 x:Uid=”ConnectToTSButton”
 Margin=”15,2,15,2”
 Width=”Auto”
 Content=”Connect To Team Foundation Server”
 Visibility=”{Binding Path=TeamFoundationClientSupported,
 Converter={StaticResource boolToVisibilityConverter}}”
 Style=”{DynamicResource StartPage.ProjectCommand.ButtonStyle}”
 Command=”{x:Static sp:VSCommands.ExecuteCommand}”
 CommandParameter=”Team.ConnecttoTeamFoundationServer”
 ImageNormal=”.../ConnectToTFS.png”
 ImageHover=”.../ConnectToTFSMouseOver.png”
 ImagePressed=”.../ConnectToTFSMouseDown.png” >
 < /vs:ImageButton >

 < vs:ImageButton
 Grid.Row=”2”
 x:Uid=”NewProjectButton”
 Margin=”15,2,0,2”
 Width=”Auto”
 Content=”New Project...”
 Style=”{DynamicResource StartPage.ProjectCommand.ButtonStyle}”
 Command=”{x:Static sp:VSCommands.ExecuteCommand}”
 CommandParameter=”File.NewProject”
 ImageNormal=”.../NewProject.png”
 ImageHover=”.../NewProjectMouseOver.png”
 ImagePressed=”.../NewProjectMouseDown.png” >
 < /vs:ImageButton >

 < vs:ImageButton
 Grid.Row=”4”

 FIGURE 5 - 29: Command

buttons on the Start Page

continues

Custom Start Pages ❘ 169

CH005.indd 169CH005.indd 169 9/6/10 4:42:51 PM9/6/10 4:42:51 PM

170 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

LISTING 5 - 3 (continued)

 x:Uid=”OpenProjectButton”
 Margin=”15,2,0,2”
 Width=”Auto”
 Content=”Open Project...”
 Style=”{DynamicResource StartPage.ProjectCommand.ButtonStyle}”
 Command=”{x:Static sp:VSCommands.ExecuteCommand}”
 CommandParameter=”File.OpenProject”
 ImageNormal=”.../OpenProject.png”
 ImageHover=”.../OpenProjectMouseOver.png”
 ImagePressed=”.../OpenProjectMouseDown.png” >
 < /vs:ImageButton >
 < /Grid >

 Code fi le [StartPage.xaml] available for download at Wrox.com

 Each command button is defi ned by a vs:ImageButton type (which is implemented in the
 Microsoft.VisualStudio.Shell.10.0 assembly) and contains a few properties infl uencing its
appearance and behavior. The ImageNormal , ImageHover , and ImagePressed properties name
the image resources to be displayed for the specifi c states of command buttons. In Listing 5 - 3,
only partial paths are indicated. Look in the original StartPage.xaml fi le for the full
resource URIs.

 The x:Uid properties defi ne the unique identifi ers of buttons that can be used to access them
programmatically. Their associated Command is defi ned so that they execute the Visual Studio IDE
Shell command identifi ed with the name in the CommandParameter property. The names used here
are exactly the same you can use in the Command Window (View ➪ Other Windows Command
Window).

 As you see, the context of the Start Page contains properties to check the availability of certain
Visual Studio features. For example, the Connect To Team Foundation Server button contains the
following binding for its Visibility property:

Visibility=”{Binding Path=TeamFoundationClientSupported,
 Converter={StaticResource boolToVisibilityConverter}}”

 Here, the TeamFoundationClientSupported binding fl ag allows
showing or hiding this command button, depending on whether the
loaded Visual Studio edition supports Team Foundation integration
or not.

 The Recent Projects Defi nition

 The Start Page displays the list of recent projects below the command
button defi nitions, as shown in Figure 5 - 30.

 This list defi nes a context menu shown in Figure 5 - 30. This part of
the Start Page is defi ned by the XAML defi nition shown in
Listing 5 - 4. FIGURE 5 - 30: List of Recent

Projects

CH005.indd 170CH005.indd 170 9/6/10 4:42:51 PM9/6/10 4:42:51 PM

 LISTING 5 - 4: StartPage.xaml (Recent Project List Defi nitions)

 < StackPanel Grid.Row=”0” Margin=”0,0,0,10” Orientation=”Horizontal” >
 < TextBlock Text=”Recent Projects” VerticalAlignment=”Top”
 Style=”{DynamicResource StartPage.HeadingTextStyle}”
 x:Uid=”RecentProjects”/ >
 < Path VerticalAlignment=”Center” Margin=”6,0,0,-4” Width=”Auto”
 Height=”1” Stretch=”Fill” StrokeThickness=”1” StrokeLineJoin=”Round”
 Stroke=”{DynamicResource {x:Static vsfx:VsBrushes.StartPageSeparatorKey}}”
 Data=”F1 M 0.5,0.5L 199.5,0.5”/ >
 < /StackPanel >
 < !-- MRU List Container -- >
 < ScrollViewer Grid.Row=”1” HorizontalAlignment=”Stretch”
 Style=”{DynamicResource StartPage.ScrollViewerStyle}”
 VerticalAlignment=”Stretch” VerticalScrollBarVisibility=”Auto” >
 < sp:MruListBox
 DataContext=”{Binding RecentProjects}”
 ItemsSource=”{Binding Path=Items}”
 Background=”Transparent”
 BorderThickness=”0”
 AutomationProperties.AutomationId=”MruList”/ >
 < /ScrollViewer >

 Code fi le [StartPage.xaml] available for download at Wrox.com

 The sp:MruListBox WPF control implements the behavior shown in Figure 5 - 30. It simply
binds the list to the RecentProjects.Items property of the Start Page ’ s context.

 The MyControl User Control

 The Custom Start Page Template added a simple customization point to the Start Page — the
MyControl tab you can see in Figure 5 - 27. The StartPage.xaml fi le adds this tab to the defi nition
as a simple tab of the TabControl displaying the “ Get Started, ” “ Guidance … , ” and other tabs:

 < Grid Grid.Column=”2” Grid.Row=”1” Margin=”0,-35,15,15” >
 < TabControl Style=”{DynamicResource StartPage.TabControlStyle}”
 SelectedIndex=”{Binding SelectedTabItemIndex, Mode=TwoWay}” >
 < TabItem Header=”Get Started” Height=”Auto” ... >
 < !-- ... -- >
 < /TabItem >
 < TabItem Header=”Guidance and Resources” Height=”Auto” ... >
 < !-- ... -- >
 < /TabItem >
 < TabItem Header=”Latest News” ... >
 < !-- ... -- >
 < /TabItem >
 < TabItem Header=”MyControl” Style=”{DynamicResource StartPage.TabItemStyle}” >
 < my:MyControl/ >
 < /TabItem >
 < /TabControl >
 < /Grid >

Custom Start Pages ❘ 171

CH005.indd 171CH005.indd 171 9/6/10 4:42:52 PM9/6/10 4:42:52 PM

172 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 The MyControl tab item uses the StartPage.TabItemStyle dynamic resource just like the other
tab items to provide the predefi ned appearance. The content of this tab is set to an instance of the
 MyControl WPF user control defi ned in the SimpleStartPageControl project.

 The MyControl.xaml fi le defi nes the user control ’ s appearance, as shown in Listing 5 - 5.

 LISTING 5 - 5: MyControl.xaml

 < UserControl x:Class=”SimpleStartPageControl.MyControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:vsfx=”clr-namespace:Microsoft.VisualStudio.Shell;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”300” >

 < Grid Background=”{DynamicResource {x:Static
 vsfx:VsBrushes.StartPageBackgroundKey}}” >
 < Border Margin=”20” CornerRadius=”10” BorderThickness=”3”
 BorderBrush=”{DynamicResource {x:Static
 vsfx:VsBrushes.StartPageSeparatorKey}}” >
 < StackPanel HorizontalAlignment=”Center”
 VerticalAlignment=”Center”
 TextBlock.Foreground=”{DynamicResource {x:Static
 vsfx:VsBrushes.StartPageTextBodyKey}}” >
 < TextBlock Text=”My Start Page Control” FontSize=”18”
 HorizontalAlignment=”Center” / >
 < TextBlock Text=”{Binding Path=DTE.Name}” FontSize=”12”
 HorizontalAlignment=”Center”/ >
 < /StackPanel >
 < /Border >
 < /Grid >

 < /UserControl >

 Code fi le [MyControl.xaml] available for download at Wrox.com

 As you see from the listing, the user control defi nition intensively uses the resource keys
defi ned by the VsBrushes class to defi ne the appearance attributes. The user control encapsulates
two TextBlock elements; the second displays the name of the application (Microsoft Visual
Studio). This name is obtained through data binding. The tool window displaying the
Start Page creates a data context where a DTE object (the root object of the Visual Studio
run - time object model that can be used from extensions such as macros, add - ins, or
VSPackages) is passed through the DTE property. So, the DTE.Name binding path retrieves
the application name.

CH005.indd 172CH005.indd 172 9/6/10 4:42:52 PM9/6/10 4:42:52 PM

 Changing the StartPage.xaml File

 Although the Custom Start Page Template creates a clone of the Visual Studio Start Page so that you
can customize it through the MyControl tab, you are not obliged to do so. If you want to create a
simple Start Page and even omit the information tabs you can see there by default, you can simplify
the StartPage.xaml fi le.

 Create a new Start Page project with the Custom Start Page Template, just as you have already done
with the SimpleStartPage project. Now, name this new project ModifiedStartPage . When the
solution has been generated, remove the ModifiedStartPageControl project — you won ’ t need it
at all.

 Instead of using the user control, you will change the StartPage.xaml fi le in the SimpleStartPage
project so that all information tabs will be omitted. Instead of the original command buttons, you will
add two new ones that display the Task List and display the Add New File dialog, respectively. The
list of recent projects will be extended with a TextBlock displaying the number of items in the list.

 Listing 5 - 6 shows the modifi ed StartPage.xaml fi le. If you do not want to type it manually, just
open the ModifiedStartPage project that can be found in the downloaded source code of the book
at www.wrox.com .

 LISTING 5 - 6: StartPage.xaml (Modifi edStartPage Project)

 < Grid xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sp=”clr-namespace:Microsoft.VisualStudio.PlatformUI;
 assembly=Microsoft.VisualStudio.Shell.StartPage”
 xmlns:vs=”clr-namespace:Microsoft.VisualStudio.PlatformUI;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 xmlns:vsfx=”clr-namespace:Microsoft.VisualStudio.Shell;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 mc:Ignorable=”d”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 d:DesignHeight=”600” d:DesignWidth=”800” >

 < Grid.Resources >
 < ResourceDictionary >
 < ResourceDictionary.MergedDictionaries >
 < ResourceDictionary
 Source=”/Microsoft.VisualStudio.Shell.StartPage;
 component/Styles/startpageresources.xaml” / >
 < /ResourceDictionary.MergedDictionaries >
 < /ResourceDictionary >
 < /Grid.Resources >

 < Grid x:Name=”LayoutRoot”
 Background=”{DynamicResource {x:Static vsfx:VsBrushes.StartPageBackgroundKey}}”
 Style=”{DynamicResource StartPage.OuterGridStyle}” >
 < Grid Width=”Auto” Grid.Column=”0” Grid.Row=”1” Margin=”15,0,0,15”
 VerticalAlignment=”Stretch” >

continues

Custom Start Pages ❘ 173

CH005.indd 173CH005.indd 173 9/6/10 4:42:53 PM9/6/10 4:42:53 PM

174 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

LISTING 5 - 6 (continued)

 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto”/ >
 < RowDefinition Height=”*”/ >
 < /Grid.RowDefinitions >

 < !-- Command buttons -- >
 < Grid x:Name=”commandButtonsGrid” MinWidth=”270” Grid.Row=”0”
 Margin=”0,15,0,30” HorizontalAlignment=”Left” >
 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto”/ >
 < RowDefinition Height=”Auto”/ >
 < RowDefinition Height=”3”/ >
 < RowDefinition Height=”Auto”/ >
 < /Grid.RowDefinitions >
 < TextBlock Text=”My custom commands” VerticalAlignment=”Top”
 Style=”{DynamicResource StartPage.HeadingTextStyle}”
 x:Uid=”MyCustomCommands”/ >
 < vs:ImageButton
 Grid.Row=”1”
 x:Uid=”ViewTaskListButton”
 Margin=”15,2,0,2”
 Width=”Auto”
 Content=”View Task List”
 Style=”{DynamicResource StartPage.ProjectCommand.ButtonStyle}”
 Command=”{x:Static sp:VSCommands.ExecuteCommand}”
 CommandParameter=”View.TaskList”
 ImageNormal=”pack://application:,,,/Microsoft.
 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProject.png”
 ImageHover=”pack://application:,,,/Microsoft.
 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProjectMouseOver.png”
 ImagePressed=”pack://application:,,,/Microsoft.
 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProjectMouseDown.png” >
 < /vs:ImageButton >
 < vs:ImageButton
 Grid.Row=”3”
 x:Uid=”NewFileButton”
 Margin=”15,2,0,2”
 Width=”Auto”
 Content=”New File...”
 Style=”{DynamicResource StartPage.ProjectCommand.ButtonStyle}”
 Command=”{x:Static sp:VSCommands.ExecuteCommand}”
 CommandParameter=”File.NewFile”
 ImageNormal=”pack://application:,,,/Microsoft.
 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProject.png”
 ImageHover=”pack://application:,,,/Microsoft.
 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProjectMouseOver.png”
 ImagePressed=”pack://application:,,,/Microsoft.

CH005.indd 174CH005.indd 174 9/6/10 4:42:53 PM9/6/10 4:42:53 PM

 VisualStudio.Shell.StartPage;component/Images/StartPage/
 OpenProjectMouseDown.png” >
 < /vs:ImageButton >
 < /Grid >
 < !-- Recent Projects -- >
 < Grid Grid.Row=”1” HorizontalAlignment=”Left” Width=”779” >
 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < /Grid.RowDefinitions >
 < TextBlock Text=”Recent Projects” VerticalAlignment=”Top”
 Style=”{DynamicResource StartPage.HeadingTextStyle}”
 x:Uid=”RecentProjects”/ >
 < ScrollViewer Grid.Row=”1” HorizontalAlignment=”Stretch”
 Style=”{DynamicResource StartPage.ScrollViewerStyle}”
 VerticalAlignment=”Stretch”
 VerticalScrollBarVisibility=”Auto” >
 < sp:MruListBox
 DataContext=”{Binding RecentProjects}”
 ItemsSource=”{Binding Path=Items}”
 Background=”Transparent”
 BorderThickness=”0”
 AutomationProperties.AutomationId=”MruList”/ >
 < /ScrollViewer >
 < !-- Recent project count label -- >
 < WrapPanel Grid.Row=”5”
 TextBlock.Foreground=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageTextBodyKey}}” >
 < TextBlock Grid.Row=”2” Text=”Number of recent projects: “ / >
 < TextBlock Text=”{Binding Path=RecentProjects.Items.Count}” / >
 < /WrapPanel >
 < /Grid >
 < /Grid >
 < /Grid >
 < /Grid >

 Code fi le [StartPage.xaml] available for download at Wrox.com

 Although this listing looks long, it is much shorter than the original StartPage.xaml in the
template. Most of the code in the original fi le was related to the information tabs, and those
are removed. This listing uses the same pattern as Listing 5 - 3 to defi ne command buttons, and
the same code as written is Listing 5 - 4 to implement the recent project list. The command buttons
have been changed to invoke the View.TaskList and File.NewFile commands — have a look
at the CommandParameter properties of the vs:ImageButton elements.

 The recent project count label is composed from two TextBlock elements embedded into a
 WrapPanel . The Text property of the second element is simply bound the RecentProjects.Items
.Count path to display the counter.

 Build and run the project. Then go to the Tools ➪ Options dialog to select the “ [Installed Extension]
Modifi edStartPage ” item in the Customize Start Page combo box to display the new Start Page.
Figure 5 - 31 shows how this new page looks.

Custom Start Pages ❘ 175

CH005.indd 175CH005.indd 175 9/6/10 4:42:53 PM9/6/10 4:42:53 PM

176 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Accessing the Visual Studio Context

 The previous example showed that the Start Page accesses the current Visual Studio context. For
example, the list of recent projects was bound to its list box with the following declaration (in
Listing 5 - 4 and Listing 5 - 5):

 < sp:MruListBox
 DataContext=”{Binding RecentProjects}”
 ItemsSource=”{Binding Path=Items}”
 Background=”Transparent”
 BorderThickness=”0”
 AutomationProperties.AutomationId=”MruList”/ >

Here the DataContext property of the MruListBox control is bound to the RecentProjects data
source property of the control ’ s parent.

 You might also have noticed how the MyControl property displays the name of the application with
the following binding:

 < TextBlock
 Text=”{Binding Path=DTE.Name}”
 FontSize=”12”
 HorizontalAlignment=”Center”/ >

 FIGURE 5 - 31: The Start Page implemented in the Modifi edStartPage project

CH005.indd 176CH005.indd 176 9/6/10 4:42:54 PM9/6/10 4:42:54 PM

Here the DTE.Name property of the parent control ’ s data context provides that name.

 The Start Page is a XAML fi le that is loaded and parsed by Visual Studio at start - up time, or
when you change the current Start Page in the Options dialog. After the XAML fi le is loaded,
the LayoutRoot grid is instantiated, and its DataContext property is set to an instance of the
 Microsoft.Internal.VisualStudio.PlatformUI.DataSource class that can be found in
the Microsoft.VisualStudio.Shell.10.0.dll assembly.

 Table 5 - 5 summarizes the properties of the data context set for the LayoutRoot grid.

 TABLE 5 - 5: Visual Studio Context Properties

 PROPERTY DESCRIPTION

 CustomizationEnabled This fl ag indicates whether the customization of the Shell

(menus, toolbars) is enabled.

 ClosePageOnOpenProject This fl ag indicates whether the Start Page should be closed

when a project is opened.

 ShowPageAtStartup This fl ag indicates if the Start Page should be displayed at

Visual Studio Startup.

 Source This property shows the full fi le name of the Start Page

currently used.

 ExtensionId This string shows the identifi er of the extension defi ning

the Start Page currently used.

 WebProjectsSupported This fl ag indicates whether the Visual Studio instance

running supports web projects.

 TeamFoundationClientSupported This fl ag indicates whether the Visual Studio instance

running supports accessing Team Foundation Server

access.

 Links This data source property allows access to the links that

can be found on the Start Page tabs.

 Background This data source property allows accessing data related to

information to be painted in the background, such as the

logo bitmap and the application name.

 Rss This data source property can be used to access RSS

information displayed on the Latest News Start Page tab.

 RecentProjects This data source property can be used to access the list of

recent projects.

continues

Custom Start Pages ❘ 177

CH005.indd 177CH005.indd 177 9/6/10 4:42:54 PM9/6/10 4:42:54 PM

178 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 While you are using these properties from XAML, you can use the {Binding} markups. However,
to access them from code, you need a workaround.

 Let ’ s create a new Start Page extension so that you can see how these properties can be used
programmatically. When this extension runs, it displays information about the context properties
summarized in Table 5 - 5, as shown in Figure 5 - 32.

 PROPERTY DESCRIPTION

 SelectedTabItemIndex This integer index stores the index of the tab currently

selected on the Start Page.

 SelectedSubitem1Index,

SelectedSubitem2Index,

SelectedSubitem3Index,

SelectedSubitem4Index

 These integer properties allow providing up to four

hierarchical levels under the Start Page tabs. Each property

stores the index of the current selection at the related level.

 DTE This property allows you to access the root DTE object of

Visual Studio (the root object of the Visual Studio run - time

object model that can be used from extensions).

 TABLE 5 - 5 (continued)

 FIGURE 5 - 32: The Start Page displaying context information

 Create a new project with the Custom Start Page Template and name it ContextStartPage . Change
the name of the MyControl tab in the StartPage.xaml fi le to “ VS Context ” (you ’ ll fi nd this
 TabItem almost at the very end of the source fi le):

 < TabItem Header=”VS Context” Style=”{DynamicResource StartPage.TabItemStyle}” >
 < my:VSContextControl/ >
 < /TabItem >

CH005.indd 178CH005.indd 178 9/6/10 4:42:55 PM9/6/10 4:42:55 PM

 You are going to use a few interoperability types that can be found in the Microsoft.VisualStudio
.Shell.Interop.10.0 assembly (it ’ s deployed with Visual Studio 2010 SDK), so add a reference to
it from the ContextStartPageControl project. Instead of displaying a simple text, the Start Page
control will display information about the data context properties.

 Rename the MyControl.xaml fi le to VSContextControl.xaml and the MyControl user control
to VSContextControl . Change the body of the user control to encapsulate a ListBox control, as
shown in Listing 5 - 7.

 LISTING 5 - 7: VSContextControl.xaml

 < UserControl x:Class=”ContextStartPageControl.VSContextControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:vsfx=”clr-namespace:Microsoft.VisualStudio.Shell;
 assembly=Microsoft.VisualStudio.Shell.10.0”
 xmlns:my=”clr-namespace:ContextStartPageControl”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”300” >

 < Grid Background=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageBackgroundKey}}”
 DataContextChanged=”Grid_DataContextChanged” >
 < Border Margin=”20” CornerRadius=”10” BorderThickness=”3”
 BorderBrush=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageSeparatorKey}}” >
 < DockPanel HorizontalAlignment=”Stretch”
 VerticalAlignment=”Top”
 TextBlock.Foreground=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageTextBodyKey}}” >
 < TextBlock DockPanel.Dock=”Top” FontSize=”18”
 HorizontalAlignment=”Center” Margin=”0,8,0,16” >
 Visual Studio Context Values: < /TextBlock >
 < ListBox x:Name=”ContextValues” HorizontalAlignment=”Stretch”
 Margin=”8” BorderThickness=”0” Background=”Transparent” >
 < ListBox.ItemTemplate >
 < DataTemplate >
 < StackPanel Orientation=”Horizontal”
 TextBlock.FontSize=”14”
 TextBlock.Foreground=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageTextBodyKey}}” >
 < TextBlock Text=”{Binding Name}” / >
 < TextBlock Text=”: “ / >
 < TextBlock FontWeight=”SemiBold” FontStyle=”Italic”
 Text=”{Binding Value}” / >
 < /StackPanel >
 < /DataTemplate >
 < /ListBox.ItemTemplate >
 < /ListBox >

continues

Custom Start Pages ❘ 179

CH005.indd 179CH005.indd 179 9/6/10 4:42:55 PM9/6/10 4:42:55 PM

180 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

LISTING 5 - 7 (continued)

 < /DockPanel >
 < /Border >
 < /Grid >

 < /UserControl >

 Code fi le [VSContextControl.xaml] available for download at Wrox.com

 This code does not contain anything special. Instead of using the default ListBox appearance, this
source defi nes a simple ItemTemplate for the list box shown in Figure 5 - 32. Add the ContextItem.
cs fi le to the ContextStartPageControl project to encapsulate information about context
properties. This contains a very simple data object, as shown in Listing 5 - 8.

 LISTING 5 - 8: ContextItem.cs

namespace ContextStartPageControl
{
 public class ContextItem
 {
 public ContextItem(string name, string value)
 {
 Name = name;
 Value = value;
 }

 public string Name { get; private set; }
 public string Value { get; private set; }
 }
}

 Code fi le [ContextItem.cs] available for download at Wrox.com

 The lion ’ s share of the work is done in the code - behind fi le of the VSContextControl . It responds
to the events when the control ’ s DataContext property is set, or any of the properties behind the
current data context change. When any of these changes occurs, the content of the ListBox is
refreshed, as shown in Listing 5 - 9.

 LISTING 5 - 9: VSContextControl.xaml.cs

using System.Windows;
using System.Windows.Controls;
using Microsoft.Internal.VisualStudio.PlatformUI;
using System.Linq;

namespace ContextStartPageControl

CH005.indd 180CH005.indd 180 9/6/10 4:42:56 PM9/6/10 4:42:56 PM

{
 public partial class VSContextControl : UserControl
 {
 public VSContextControl()
 {
 InitializeComponent();
 }

 private void Grid_DataContextChanged(object sender,
 DependencyPropertyChangedEventArgs e)
 {
 var context = e.NewValue as DataSource;
 if (context == null) return;
 context.PropertyChanged += ContextPropertyChanged;
 RefreshContext(context);
 }

 void ContextPropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
 {
 var context = sender as DataSource;
 if (context != null) RefreshContext(context);
 }

 private void RefreshContext(DataSource context)
 {
 ContextValues.Items.Clear();
 AddIntrinsicPropertyValue(context, “CustomizationEnabled”);
 AddIntrinsicPropertyValue(context, “ClosePageOnOpenProject”);
 AddIntrinsicPropertyValue(context, “ShowPageAtStartup”);
 AddIntrinsicPropertyValue(context, “Source”);
 AddIntrinsicPropertyValue(context, “ExtensionId”);
 AddIntrinsicPropertyValue(context, “WebProjectsSupported”);
 AddIntrinsicPropertyValue(context, “TeamFoundationClientSupported”);
 AddDataSourcePropertyValue(context, “Links”);
 AddDataSourcePropertyValue(context, “Background”);
 AddDataSourcePropertyValue(context, “Rss”);
 AddDataSourcePropertyValue(context, “RecentProjects”);
 AddIntrinsicPropertyValue(context, “SelectedTabItemIndex”);
 AddIntrinsicPropertyValue(context, “SelectedSubitem1Index”);
 AddIntrinsicPropertyValue(context, “SelectedSubitem2Index”);
 AddIntrinsicPropertyValue(context, “SelectedSubitem3Index”);
 AddIntrinsicPropertyValue(context, “SelectedSubitem4Index”);
 }

 private void AddIntrinsicPropertyValue(DataSource source, string propName)
 {
 var prop = source.GetValue(propName);
 ContextValues.Items.Add(new ContextItem(propName, prop.ToString()));
 }

 private void AddDataSourcePropertyValue(DataSource source, string propName)
 {
 var props = source.GetValue(propName) as DataSource;

continues

Custom Start Pages ❘ 181

CH005.indd 181CH005.indd 181 9/6/10 4:42:56 PM9/6/10 4:42:56 PM

182 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

LISTING 5 - 9 (continued)

 if (props == null) return;
 var propNames = string.Concat(
 props.Properties.Select(prop = > prop.Name +”; “));
 ContextValues.Items.Add(
 new ContextItem(propName, string.Format(“Properties ({0}): {1}”,
 props.Properties.Count(), propNames)));
 }
 }
}

 Code fi le [VSContextControl.xaml.cs] available for download at Wrox.com

 The Grid_DataContextChanged method catches the event when the control ’ s data context is
set. This event is raised when Visual Studio parses the StartPage.xaml fi le and instantiates
the LayoutRoot grid. The context can be accessed through the e.NewValue property, and its
type should be an instance of the DataSource class (declared in the Microsoft.Internal
.VisualStudio.PlatformUI namespace). The method body subscribes to the PropertyChanged
event with the ContextPropertyChanged handler method. You can experiment with how the page
responds to property changes. You can check or uncheck the “ Close page after project load ” and
 “ Show page on startup ” checkboxes. On the VS Context tab, the “ CustomizationEnabled ”
and “ ClosePageOnOpenProject ” property values will change accordingly.

 If either the data context or one of its properties is changed, the RefreshContext method will set
up the list according to the current property values. The intrinsic properties (with Boolean or string
values) are handled by the AddIntrinsicPropertyValue method, while other properties with
 DataSource values are displayed with the AddDataSourcePropertyValue method.

 The DataSource class provides a GetValue method to query the value of the property named in its
argument. The value returned by this method is a System.Object that can be cast to the native type
behind the property. For all the intrinsic properties, the ToString() method retrieves the string
representation of the property value, and so it can be directly displayed.

 There are properties (for example “ Links ”) that retrieve a DataSource when querying their
values with GetValue . With the Properties enumeration — be aware, it is not a collection —
you can obtain metadata - like type and name about the properties of the DataSource instance.
As shown in Listing 5 - 9, the AddDataSourcePropertyValue simply concatenates these property
names.

 Accessing the Visual Studio Object Model

 Table 5 - 5 listed the DTE property as a part of the Start Page data context. Using this property, you
can access the object model of Visual Studio. The root of this model is the DTE object (with the same
name as its accessor property), and you can utilize it to programmatically carry out miscellaneous
tasks with Visual Studio.

CH005.indd 182CH005.indd 182 9/6/10 4:42:56 PM9/6/10 4:42:56 PM

 To have a simple example of using DTE , let ’ s create a new Start Page that lists all available Visual
Studio commands and allows the user to execute them. Figure 5 - 33 show this Start Page in action.

 The DTE object model covers more than hundred object types with more than
a thousand methods and properties. DTE is used by macros, add - ins and
VSPackages heavily. Chapter 6 provides more information about using DTE in
several scenarios.

 FIGURE 5 - 33: The Start Page displaying Visual Studio commands

 Create a new Start Page project and name it CommandListStartPage . Add the Microsoft
.VisualStudio.Shell.Interop.10.0 assembly to the CommandListStartPageControl project.
Modify the StartPage.xaml fi le to rename the MyControl tab ’ s header:

 < TabItem Header=”VS Command List” Style=”{DynamicResource StartPage.TabItemStyle}” >
 < my:MyControl/ >
 < /TabItem >

Custom Start Pages ❘ 183

CH005.indd 183CH005.indd 183 9/6/10 4:42:57 PM9/6/10 4:42:57 PM

184 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Change the Grid within the MyControl.xaml fi le to defi ne a ListBox control holding the collection
of the Visual Studio commands:

 < Grid Background=”{DynamicResource {x:Static
 vsfx:VsBrushes.StartPageBackgroundKey}}”
 DataContextChanged=”Grid_DataContextChanged” >
 < Border Margin=”20” CornerRadius=”10” BorderThickness=”3”
 BorderBrush=”{DynamicResource {x:Static
 vsfx:VsBrushes.StartPageSeparatorKey}}” >
 < DockPanel HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 TextBlock.Foreground=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageTextBodyKey}}” >
 < TextBlock DockPanel.Dock=”Top” FontSize=”18” HorizontalAlignment=”Center”
 Margin=”0,8,0,8” > Visual Studio Commands: < /TextBlock >
 < ListBox x:Name=”CommandList” HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 ScrollViewer.VerticalScrollBarVisibility=”Auto”
 Margin=”8” Background=”Transparent”
 FontSize=”14”
 Foreground=”{DynamicResource
 {x:Static vsfx:VsBrushes.StartPageTextBodyKey}}”
 MouseDoubleClick=”CommandList_MouseDoubleClick” >
 < /ListBox >
 < /DockPanel >
 < /Border >
 < /Grid >

 The application logic is defi ned in the MyControl.xaml.cs fi le, and it is very straightforward. The
 Grid_DataContextChanged method catches the moment when the data context is set, and uses it to
obtain the list of Visual Studio commands. The CommandList_MouseDoubleClick method executes
the selected command. Listing 5 - 10 shows this simple code - behind fi le.

 LISTING 5 - 10: MyControl.xaml.cs (CommandListStartPage)

using System;
using System.Windows;
using System.Windows.Controls;
using Microsoft.Internal.VisualStudio.PlatformUI;

namespace CommandListStartPageControl
{
 public partial class MyControl : UserControl
 {
 private dynamic _dte;

 public MyControl()
 {
 InitializeComponent();
 }

 private void Grid_DataContextChanged(object sender,

CH005.indd 184CH005.indd 184 9/6/10 4:43:03 PM9/6/10 4:43:03 PM

 DependencyPropertyChangedEventArgs e)
 {
 var context = e.NewValue as DataSource;
 if (context == null) return;
 _dte = context.GetValue(“DTE”);
 foreach (var command in _dte.Commands)
 {
 if (!string.IsNullOrEmpty(command.Name))
 CommandList.Items.Add(command.Name);
 }
 }

 private void CommandList_MouseDoubleClick(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
 {
 var command = CommandList.SelectedValue;
 if (command == null) return;
 try
 {
 _dte.ExecuteCommand(command);
 }
 catch (SystemException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 }
}

 Code fi le [MyControl.xaml.cs] available for download at Wrox.com

 This code uses a new feature of the C# 4.0 language called dynamic binding .
This feature allows the compiled program to resolve operations such as method
calls, property and index accessors at run - time, and provide late binding to the
COM object model. Chapter 10 provides more information about the .NET fea-
ture (Dynamic Language Runtime) that makes this behavior possible. Chapter 24
discusses how to use dynamic binding in C#.

 The Grid_DataContextChanged method obtains the DTE object through the GetValue method
of the DataSource object representing the data context, and immediately stores it into the _dte
member that was declared as dynamic . The subsequent foreach cycle uses the Commands collection
of DTE to populate the list with the command names.

 CommandList_MouseDoubleClick uses the ExecuteCommand method to carry out the command
selected in the list. Several commands can be executed only within a specifi c context (for example,
they require a solution to be loaded) or with parameters. The method catches the exceptions coming
from the command execution, and shows the related error messages.

Custom Start Pages ❘ 185

CH005.indd 185CH005.indd 185 9/6/10 4:43:03 PM9/6/10 4:43:03 PM

186 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 A Few More Points About Start Pages

 As you have seen, creating Start Page extensions is really simple with the Custom Start Page
Template. You can tailor this page to your fi t your needs in just a few minutes. Although the samples
presented here show only a few aspects of customizing the Start Page, you can add more complex
functionality to your extensions.

 Here are a few hints about what else you can do with Start Pages:

 Examine the StartPage.xaml fi le created by the template. Look at how the “ Get Started ” and
 “ Guidance and Resources ” tabs implement their functionality. You can use them as a pattern if
you want to create more tabs, thus providing information for your Visual Studio users.

 The “ Latest News ” tab is a good source to see how Visual Studio displays information
coming from RSS feeds.

 Several properties of the DataContext can be modifi ed with the SetValue method.

 If you want to change the layout and appearance of the Start Page, you can do it more
radically than you have seen with the ModifiedStartPage sample. Although, you can use
your own colors, brushes, and styles, you should use the ones defi ned by Visual Studio. You
can iterate through the content of MergeDictionaries collection in the Application
.Current.Resources object to fi nd out which resources can be used.

 CUSTOMIZING THE TOOLBOX

 The ancestor of Visual Studio Toolbox was introduced in Visual Basic 1.0, almost 20 years ago.
Developers could use it to drag a visual control to the design surface instead of manually typing code
to create an instance of that control. Over the years, this original function of the Toolbox did not
change. However, it has been improved from release to release. Today, the Toolbox is such a common
part of the IDE (like menus, toolbars, and the text editor) that developers use it almost unconsciously.

 A Lap Around the Toolbox

 The Toolbox is a dynamic tool window that adapts to the current context of the IDE. It offers
components to users that can be utilized to build an application. Most of them are related to UI. It
is displayed as a sliding tree control that behaves much like Windows Explorer, but without grid or
connection lines. Multiple segments of the Toolbox (tabs) can be expanded simultaneously, and the
entire tree scrolls inside the Toolbox window.

 Users simply pick up a component from the Toolbox and place it on the design surface, or paste it
into the text editor. The following gestures can be used:

 Select a component in the Toolbox with a mouse click. Then move the mouse to the design
surface and click to the appropriate location of the surface where you want to place the
selected component.

 Drag a Toolbox component with the mouse to the design surface, and place it at the desired
location.

 Double - click on a Toolbox component and it will be placed on the design surface at a
default location.

➤

➤

➤

➤

➤

➤

➤

CH005.indd 186CH005.indd 186 9/6/10 4:43:09 PM9/6/10 4:43:09 PM

 There is a special item named Pointer (indicated with a small mouse pointer icon) in each tab or the
Toolbox. You cannot drag it to the design surface. Click it if you previously selected a component
but you changed your mind and don ’ t want to place it on the design surface.

 Components in the Toolbox

 The Toolbox always displays a set of components that can be used in the current context. If you
are designing a WPF form, only those components appear on the Toolbox that can be added to
WPF forms. When you are creating a web page, the appropriate ASP.NET and HTML controls are
offered in the Toolbox, but no others (for example, WPF controls).

 The current set of components is determined by the following factors:

 Active document — Each document (source code, form designers, UML diagrams, and
so on) has an associated designer entity that provides the design surface with its built - in
interactions. This designer can co - operate with the Toolbox and tell which components
to offer to the user when any document (or any views belonging to the document) gets the
focus.

 Active solution — The solution loaded into Visual Studio has a hierarchy that may contain
components that can be put on the Toolbox. The designer behind the active document can
negotiate with the Toolbox that certain components in the active solution also must be
displayed.

 Figure 5 - 34 shows an example of the Toolbox displayed for the WPF Designer, where the current
solution contains several WPF user controls.

➤

➤

 FIGURE 5 - 34: Toolbox components when designing a WPF form

Customizing the Toolbox ❘ 187

CH005.indd 187CH005.indd 187 9/6/10 4:43:10 PM9/6/10 4:43:10 PM

188 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 In Figure 5 - 34, you can see four tabs, all of which are expanded, except the All WPF Controls tab
(in the lower left of the screen). The Common WPF Controls tab and the All WPF Controls tab
are displayed because the active document is a WPF form. The WpfApplication1 Controls tab is
displayed because the active solution contains two WPF user controls (MyCompoundControl and
 MyUserControl) that also can be placed on a WPF form.

 Most components displayed on Toolbox tabs are controls representing visual
UI elements. The term “ component ” is generally used for building blocks that
provide no UI, in contrast to controls. The collection of available controls also
depends on the .NET Framework version your project targets. By default, Visual
Studio 2010 projects target the .NET Framework 4 Client Profi le. This reduces
the size of deployment packages by not requiring the entire .NET Framework for
installation. If your project requires a control that is not supported by the Client
Profi le, you can set your project to target .NET Framework 4 by editing the
Application tab of project properties.

 There are several kinds of controls that can be displayed on the
Toolbox. Right - click a tab or item in the Toolbox and turn on
the Show All option in the context menu. The Toolbox displays
all tabs that contain components for any designers in the Visual
Studio IDE. You ’ ll be surprised at how many of them are there!
Figure 5 - 35 shows less than half of them.

 Of course, when you expand tabs, only those controls are
enabled that can be put to the active design surface. Turn off the
Show All option to go back to the original state.

 You can customize the Toolbox by rearranging items within a
tab or adding custom tabs. Items that can be made available as
Toolbox icons include components from the .NET Framework
class library, COM components, controls for Windows Forms,
WPF Forms and Web Forms, Silverlight, and HTML elements.
You can also add text snippets to the Toolbox so that later you
can insert them to a source code fi le.

 Using the Keyboard to Access Toolbox Functions

 While most developers interact with the Toolbox through
mouse gestures, you can use it with a keyboard exclusively. Press
Ctrl+Alt+X to display the Toolbox and receive the keyboard
focus. Use the up and down arrow keys to navigate to the control
you want to place on the design surface. Press the Ctrl key while using the up and down arrow
keys and you can move among the tabs.

 FIGURE 5 - 35: Some of the many

tabs on the Toolbox

CH005.indd 188CH005.indd 188 9/6/10 4:43:11 PM9/6/10 4:43:11 PM

 When you place the focus on the desired control, press Enter and the control is added to the design
surface. The control immediately gets the focus, so you can use the arrow keys (or any other key
combinations the designer supports) to change the location or the properties of the newly placed
control.

 You can use the Delete button to remove an item or an entire tab from the Toolbox, as explained
later in this chapter.

 Customizing Toolbox Tabs

 Components displayed in the sliding tree of the Toolbox are organized into tabs to form smaller
groups. Each tab has a triangle symbol that can be used to collapse or expand the tab. The empty
triangle represents the collapsed state of the tab; the full triangle shows the tab is expanded.

 Working with Tabs

 A tab is a unit that can be customized separately from the others. You have a few options that can
be accessed from the context menu when you right - click on a tab:

 By default, items in a tab are displayed in list view. Each control is represented by an icon
and a short name, as shown in Figure 5 - 34. You can turn this option on or off by checking
or unchecking the List View option. When it is turned off, controls in the tab are displayed
as a set of icons, as shown in Figure 5 - 36.

 Controls within a tab are enumerated in the order they
have been added. Select the Sort Items Alphabetically
option to change this order. Even if you use the alphabetical
order, the Pointer is always the top item in every tab.

 With the Move Up and Move Down commands, you can
change the location of the tab within the sliding tree.
Instead of the context menu, you can drag and drop the
tab into a new location within the Toolbox.

 You can rename the tab.

 If you do not want to use a tab at all, you can remove
it from the Toolbox with the Delete command. Because
there is no undo operation to restore a removed tab, you
must confi rm your intention.

 Rearranging Tab Items

 You are free to rearrange items in the Toolbox:

 Click on any control in any tab, and keep the left mouse button down. You can drag the item
to another location not only within the tab, but also to another tab. If you want to place the
item into a tab that is not expanded yet, drag the item over the collapsed tab, wait about one
second, and the tab is expanded. Drag the item to the desired location and drop it.

➤

➤

➤

➤

➤

➤

 FIGURE 5 - 36: Items in the Common

WPF Controls tab are displayed

with List View mode turned off

Customizing the Toolbox ❘ 189

CH005.indd 189CH005.indd 189 9/6/10 4:43:17 PM9/6/10 4:43:17 PM

190 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 With the Add Tab command (you can fi nd it in the context menu of any tab or item), you
can create a new tab. Type the name of the tab, and optionally drag it to a new location,
and then place controls in it.

 Resetting the Toolbox

 Any time you delete an item or a tab accidentally, or you get lost among tabs and controls after
rearranging them, you can invoke the Reset Toolbox command that is available in item and tab
context menus.

 This command will reset the Toolbox to its default state. It will affect not only the tabs and controls
belonging to the current designer (for example, WPF controls when your current document is a
WPF Designer), but also all other designers.

 Adding Items to the Toolbox

 There is a large ecosystem of Visual Studio
Industry Partners, Independent Software
Vendors (ISVs), community members, students,
and hobbyists who create custom components.
Most component vendors create installation kits
that add controls to the Toolbox automatically.
However, in many cases, you have only the
binaries encapsulating controls, and you must
add them manually to the Toolbox.

 The Choose Toolbox Items dialog contains
everything you need to add controls to the
Toolbox. You can access this dialog from
the Tools menu, or from the context menu
of the Toolbox. Figure 5 - 37 shows this dialog
displaying the WPF Components tab.

 This dialog has six tabs, each of which lists a well - defi ned set of components named by the tab:

 .NET Framework Components — This set includes Windows Forms, ASP.NET and mobile
components available on your local computer.

 COM Components — This tab lists a set of installed and registered COM components
contained on your computer.

 WPF Components — This tab lists components available for WPF application development.

 Silverlight Components — This set includes Silverlight controls and components contained
on your computer.

 System.Workfl ow Components , System.Activities Components — These tabs lists
components you can use in conjunction with the Workfl ow designer.

 The main part of the dialog is the grid listing the components associated with the selected tab. You
can identify the listed components according to name, namespace, and the declaring assembly ’ s

➤

➤

➤

➤

➤

➤

 FIGURE 5 - 37: The Choose Toolbox Items dialog

CH005.indd 190CH005.indd 190 9/6/10 4:43:17 PM9/6/10 4:43:17 PM

name. The Directory column also helps you to guess as to from where the specifi c assembly is
loaded. Each item in the list contains a checkbox indicating if the item is displayed on the toolbar
(checked) or not (unchecked).

 The Filter text box under the list helps you to display only the components that match the fi lter
string you type in. For example, if you type Button where you are on the WPF components tab, the
list will contain every component having “ Button ” in its name, such as Button , ButtonChrome ,
 DialogButton , RadioButton , and so on.

 The Group box under the Filter text box displays some helpful information about the component. It
shows you the icon representing the component and its language.

 Selecting a Component to Add

 Use the Browse button to select a binary fi le representing a component that fi ts into the selected
category. For example, in the COM Components category, you must select a fi le that contains a real
COM component. If you want to add a fi le that does not fi t in the selected category (for example,
you select an assembly with Silverlight components in the System.Workfl ow Components tab), that
will be refused.

 Let ’ s take a look at an example. Select the
WPF Components tab, and click Browse. If
you download the source code from this book ’ s
companion website (www.wrox.com), under the
samples belonging to this chapter you will fi nd
a folder named FluentRibbon . Open this folder
and select the Fluent.dll fi le. After you select
the fi le, the IDE checks to see if it fi ts into the
WPF category. Fluent.dll does, so the IDE then
scans the assembly to fi nd all WPF components
and extracts the metadata information associated
with them. The components found are added
to the list and checked by default, as shown in
Figure 5 - 38.

 The list may contain controls extracted from
this new assembly that cannot be seen in the grid unless you scroll down. You can click on the
column headers of the grid to order items by namespace or assembly name. Ordering generally helps
you to arrange new controls into a continuous range in the grid. You can check or uncheck items
individually.

 Blocked Components

 Today, a majority of components are downloaded from the web. Because these components can
arrive from untrusted sources, Visual Studio IDE does not allow loading them into its process space
by default. If you try to add the FluentBlocked.dll (it is in the same folder as Fluent.dll) to the
WPF Components tab, you will get a message, similar to, “ The assembly ‘ Fluent, Version= … ’ could
not be loaded. This assembly may have been downloaded from the web. ”

 FIGURE 5 - 38: Fluent.dll components

Customizing the Toolbox ❘ 191

CH005.indd 191CH005.indd 191 9/6/10 4:43:18 PM9/6/10 4:43:18 PM

192 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 If you are sure that the downloaded component is coming from a trusted source, with a few manual
steps, you can add it to the Toolbox:

 1. Open Windows Explorer and go to the folder containing the component assembly.

 2. Right - click on the assembly and view the fi le properties. At the bottom of the General tab,
you see the Unblock button, as shown in Figure 5 - 39.

 3. Click this button to resolve the block of this assembly, and then click OK.

 4. Save your work in Visual Studio and restart it. Now, when you try to add this assembly to
the Toolbox, it is not blocked any more.

 FIGURE 5 - 39: File properties show this assembly is blocked

 Adding Text Snippets to the Toolbox

 When you use the code editor to edit any source fi les with text, you can drag selected text from the
editor and drop it to the Toolbox. When you fi nish this operation, the text is put in the toolbar just
as if it were a component. Its name is created from the text you ’ ve dragged to the Toolbox, and its
icon indicates that it is a text snippet.

CH005.indd 192CH005.indd 192 9/6/10 4:43:18 PM9/6/10 4:43:18 PM

 You can move, rename, and delete text snippet items just like any other Toolbar components.
You can double - click a text snippet to insert it to the current caret position in the active text
document, or drag it from the Toolbox and drop it to the text position where you want the
snippet to insert.

 A Few More Points About Toolbox Customization

 Extending Visual Studio with controls is defi nitely out of the scope of this book. There are many
books that examine the aspects of custom control development. Some of them are about the hosting
technology (such as WPF, Silverlight, or ASP.NET), while others are dedicated entirely to that
topic. If you plan to develop your own custom components, look for the appropriate source of
information depending on the technology for which you want to create components. These sources
treat a number of topics related to Toolbox customization, including the following aspects related to
Toolbox customization:

 You can assign icons and other kinds of metadata to your components that infl uence how
they are displayed in the Toolbox.

 You can create deployment packages that integrate your components with the Toolbox.

 You can add licensing information to your components to restrict their usage to authorized
users (customers and/or developers).

 VISUAL STUDIO GALLERY

 Visual Studio 2010 was designed with extensibility in mind. Developers can add their own tools,
custom controls, templates, and add - ins to the IDE to customize their workspace. This capability
has been a part of Visual Studio since its fi rst release. Hundreds of companies, hobbyists, and
enthusiasts have been creating IDE extensions, but for a long time there was no common place to
keep them.

 At the end of February 2008, Microsoft launched the Visual Studio Gallery (http://www
.visualstudiogallery.com) website that provides a catalog that showcases free and commercial
products that complement or extend Visual Studio. The broad range of solutions you ’ ll fi nd in
the gallery will give you a sense of the momentum Microsoft is seeing around Visual Studio
Extensibility. Microsoft has a large and growing group of partners building businesses on
the Visual Studio platform, and it also has a growing developer community focused on extending
Visual Studio to create new tools.

 Since it was launched (just a few months later than Visual Studio 2008), the Visual Studio Gallery
has been growing as the one - stop shop for Visual Studio Extensions. Since that time, the Gallery
gathered more than 1,600 extensions.

 Chapter 4 describes how to upload your own Visual Studio Template to the Visual Studio Gallery.
The following discussion provides a brief overview of the Gallery, focusing on how you can fi nd
products and integrate them into the IDE.

➤

➤

➤

Visual Studio Gallery ❘ 193

CH005.indd 193CH005.indd 193 9/6/10 4:43:19 PM9/6/10 4:43:19 PM

194 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Browsing the Visual Studio Gallery

 You can visit the Gallery directly by navigating to the http://www.visualstudiogallery.com
link or clicking on the Gallery tab when you are visiting the Visual Studio Development Center on
MSDN. The homepage of the Gallery has been established so that you can easily browse among the
extensions and fi nd the ones you are interested in, as shown in Figure 5 - 40.

 FIGURE 5 - 40: Visual Studio Gallery homepage

 The left part of the page contains several options to fi lter and browse components listed in the main
part of the page. By default, this list contains the latest ten contributions added to the Gallery, but
by using the tabs above the list, you can easily navigate to see the highest ranked or most often
visited components.

 The one - click fi ltering options on the left side of the page make it easy to navigate to components
that best fi t your interest:

 Categories — Each component uploaded to Visual Studio Gallery is associated with
one of the Tools, Controls, or Templates categories. Tools are extensions that add some
functionality to the IDE. Controls are components that can be installed in the Visual Studio
Toolbox. Templates are either project or item templates that appear in the New Project or
Add New Item dialogs. By clicking on one of these categories, the appropriate components
are displayed, and also the category is drilled down into further subcategories. For example,

➤

CH005.indd 194CH005.indd 194 9/6/10 4:43:19 PM9/6/10 4:43:19 PM

when you click Controls, you ’ ll see several subcategories such as ASP.NET, SharePoint,
Silverlight, WPF, and so on.

 Visual Studio Versions — Select the version of Visual Studio in which you want to use the
component. The Gallery will list all the contributions registered as compatible with the
selected version.

 Cost Categories — You can fi nd three kinds of components on the Gallery according to how
they affect your bank account. Free components can be used free of any charge, and most of
them can be downloaded directly from the Gallery. The Free Trial category lets you access trial
versions of paid components that are constrained in their usage either by time or functionality.
 Paid components are full versions that you cannot obtain directly from the Gallery. Instead,
you are redirected to the website of the vendor where you can buy and download them.

 Affi liation — You can fi lter contributions according to their origins (vendor or author). You
can choose from Microsoft, Visual Studio Industry Partners (VSIPs), or any other vendors.

 Tags — When components are uploaded, they are associated with a number of tags. Here you
can select one from the most often visited tags to browse components uploaded with that tag.

 These fi lters can be combined. For example, you can list all free WPF controls by selecting Controls,
then clicking on the WPF subcategory, and choosing Free under Cost Categories. You will see a list
of components according to the combination of these fi lter criteria, as shown in Figure 5 - 41.

➤

➤

➤

➤

 FIGURE 5 - 41: Using a combination of fi lters

Visual Studio Gallery ❘ 195

CH005.indd 195CH005.indd 195 9/6/10 4:43:19 PM9/6/10 4:43:19 PM

196 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 By default, the list is sorted by ranking where the components with the highest rank are at the top
of the list. You can change sorting at any time. Just select the appropriate item from the Sort By
combo box.

 Each component in the list contains a short
description. You can click on the component
name to navigate to its details page that provides
you much more information. Should you click
on the author ’ s name or any of the component
tags, the components by the selected author or
the ones having the chosen tag are displayed,
respectively.

 The component details page helps you to decide
whether the component is the one you are looking
for. Each component can have a very detailed
description (for example, product sheet, feature
list, and so on) providing you the information
to learn more about the component. You can
see all reviews that visitors wrote about it and
even follow the community discussions about the
component. Figure 5 - 42 shows an example.

 Downloading and Installing Components

 Component authors and vendors can decide how you can download and install components. You
can either download components directly from the Visual Studio Gallery (as indicated by the
Download button in Figure 5 - 42), or you are redirected to the vendor ’ s (author ’ s) site for further
instructions. In the latter case, you will fi nd a Get Now button instead of Download.

 The Visual Studio Gallery supports the new VSIX deployment kit format that was established especially
for Visual Studio Extensions. When the selected component is available for direct installation, you can
click the Download button to run or save the VSIX
fi le representing the setup kit.

 Visual Studio 2010 installs the Visual Studio
Extension Installer utility that is associated with
the .vsix extension. So, if you start the VSIX fi le
downloaded from the Gallery, this utility starts
and lets you carry on, or abort the installation, as
shown in Figure 5 - 43.

 When the installation is complete, the utility warns
you to restart all open Visual Studio instances in
order for the new component to be successfully
integrated into the IDE.

 Later, if you would like to remove the component,
you can use the Extension Manager dialog (Tools ➪
Extension Manager) to uninstall or disable it.

 FIGURE 5 - 42: Details page of Visual Studio Color

Theme Editor

 FIGURE 5 - 43: The startup screen of the Visual

Studio Extension Installer utility

CH005.indd 196CH005.indd 196 9/6/10 4:43:20 PM9/6/10 4:43:20 PM

 Adding Your Own Contributions to the Gallery

 Chapter 4 provides details about uploading Visual Studio project or item templates to the Gallery. The
same simple process lets you add not only templates, but also tools or controls to the Gallery. This
process entails the following three steps:

 1. Select the category of your component (Tool, Control, or Template). This selection helps the
repository engine to understand where to include your extension on the Gallery.

 2. Select the way you want to share your component. You can either upload the VSIX instal-
lation kit directly to the Gallery (the details page will display the Download button in this
case), or provide a link to a page with more specifi c information about the component and
download instructions. When you decide to use a link, the details page will display the Get
Now button.

 3. Provide attributes and description for your component. This is where you tell the most
important information about your component (such as its title, version, summary, thumbnail,
and demo screenshot images, cost category, language, tags, supported Visual Studio versions,
and a detailed description). After checking the “ I agree to the contribution agreement ” check-
box, your component gets uploaded to the repository, but stays unpublished.

 You can review and edit the attributes of your uploaded components any time when you click the
My Contributions link. The page lists your contributions and allows you to edit, publish, unpublish,
or even to delete them, as shown in Figure 5 - 44.

 FIGURE 5 - 44: You can review your contributions

 This is the page where you can access visit and download statistics about your contributions.

Visual Studio Gallery ❘ 197

CH005.indd 197CH005.indd 197 9/6/10 4:43:20 PM9/6/10 4:43:20 PM

198 ❘ CHAPTER 5 GETTING THE MOST OUT OF THE IDE

 Working Together with the Community

 The Gallery is a central site of the Visual Studio
Extensibility community. You can help this
community by sharing your experiences through
component reviews and discussions. On the
details page of any component, you can locate
the Reviews tab where you can not only read
what others share, but also can write your own
reviews, as shown in Figure 5 - 45.

 You can discuss issues about components by
using the Discussions tab on the details page.
Authors and vendors can enable or disable the
discussion functionality when uploading their
contributions. If you do not see the Discussion
tab, it generally means the vendor has its own
discussion forum outside of Visual Studio Gallery. Use the Get Now button to get to the vendor ’ s
page and fi nd the appropriate forum there.

 SUMMARY

 The Visual IDE was designed with many customization options in mind. It provides great
window management features to allow arranging the tool windows and document windows on
your workspace, and organizing them to fi t the way you work. Visual Studio 2010 now provides
enhanced document window management that supports both tabbed and fl oating documents, and
multiple displays.

 You can use similar fl exibility to rearrange the IDE menu and toolbar items, as well as organize
commands into your own menus and toolbars.

 In addition to changing the visual properties of the IDE, you can infl uence the behavior of the
environment and specifi c modules within the IDE. The Tools ➪ Options dialog is the central place
where you can adjust these settings. The Export and Import Settings Wizard lets you store and
reload these settings, and even share them among team members working together.

 Visual Studio delivers more than a thousand commands available in the IDE. You do not need to
use the mouse to invoke them through menu or toolbar items; you can associate keyboard shortcuts
with them.

 You can change the Start Page of Visual Studio. Although this extensibility option was already
available in the fi rst Visual Studio .NET version, Visual Studio 2010 delivers essential changes and
lowers the barrier to entering to Start Page customization. With the help of the Custom Start Page
Template, you can easily develop your own Start Pages.

 FIGURE 5 - 45: You can write your own review about a

component.

CH005.indd 198CH005.indd 198 9/6/10 4:43:21 PM9/6/10 4:43:21 PM

 Visual Studio Gallery provides a catalog that showcases free and commercial products that
complement or extend Visual Studio. This site was launched just a few months later than Visual
Studio 2008, and since that time, it has become the one - stop shop for Visual Studio Extensions. You
can use this site to fi nd extensions to help in your everyday work, and it provides a repository to
share your contributions with the Visual Studio community.

 Chapter 6 provides an overview of the extensibility options of Visual Studio. You will learn how to
create your simple macros and add - ins to add new functionality to the IDE, and also dive deeper
into advanced extensibility scenarios using the Visual Studio 2010 SDK.

Summary ❘ 199

CH005.indd 199CH005.indd 199 9/6/10 4:43:21 PM9/6/10 4:43:21 PM

CH005.indd 200CH005.indd 200 9/6/10 4:43:22 PM9/6/10 4:43:22 PM

Visual Studio Extensibility

 The Visual Studio development team continuously adds new features to this great tool from
release to release. But, if you were to ask Visual Studio users if there are any features they
miss, you would fi nd only a few of them answering that they got everything. Should you ask
them if they like functions and features as they are, or if they would modify them if there were
a way, almost all of them would enumerate at least a dozen things to change.

 Different developers like to use different approaches to development, and even change their
way of working, depending on the customer or teammates they work with. You can imagine
how complex it would be for the Visual Studio team to create a tool that satisfi es everyone ’ s
needs. Instead of thinking about super - polished functions and features that ultimately solve
all development and effi ciency issues for all individuals, Visual Studio provides a great number
of extensibility points to change how the IDE works, and allows adding new functionality
created by third parties — including you.

 Visual Studio is not just a development tool. It is a real development platform that you can
customize and extend to turn it into your ultimate tool to use whether for your work or
coding for fun.

 This chapter provides an overview about Visual Studio extensibility to help you understand
how the IDE works and how you can customize it either through confi guration or
programmatically. After reading this chapter, you will be familiar with the following:

 From a high - level view, the key elements in the Visual Studio architecture are the shell
and the packages.

 Visual Studio provides a few extensibility options right out of the box, available
immediately after you ’ ve installed it. These are customization, macros, and add - ins.

 For advanced scenarios (such as package development or extending the re - architected
code editor of Visual Studio 2010), you defi nitely need the Visual Studio SDK, so you
will learn about what it is and how to start using it.

➤

➤

➤

 6

CH006.indd 201CH006.indd 201 9/6/10 4:47:18 PM9/6/10 4:47:18 PM

202 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 This chapter goes a bit deeper than just learning about the basic concepts. You ’ ll look at the
following four different types of extensibility alternatives to show you that extending Visual Studio
is within the reach of every .NET developer:

 Macro development is well known by everyone who has ever used Microsoft Word or other
Offi ce products. Visual Studio also supports macros in a very similar way. In this chapter,
you ’ ll learn about the structure of macros, and learn how to use Macro Explorer and
Macros IDE through a few samples.

 Visual Studio add - ins provide a more sophisticated way to create new functionality
for Visual Studio because developers can integrate commands and tool windows into the
IDE to imitate those as if they were the original parts of the shell. You ’ ll learn how add - ins
integrate with Visual Studio and, you will develop a basic add - in to demonstrate those
concepts.

 Visual Studio packages are the most powerful form of Visual Studio extensions. In this
chapter, you ’ ll create a very simple package that demonstrates how the most important
concepts can be implemented with the Managed Package Framework .

 Visual Studio 2010 has a brand - new editor, completely written in managed code that
leverages Windows Presentation Foundation (WPF) and .NET 4 ’ s Managed Extensibility
Framework. The editor has been designed with extensibility in mind. You will see a few
samples that demonstrate how easy it is to add custom components to the editor.

 Although you will create very simple extensions in this chapter, understanding how they live
symbiotically with Visual Studio and what their main concepts are will help you to decide which
method to use in a certain scenario. This also provides you with starting points to create your own
components.

 THE VISUAL STUDIO SHELL AND PACKAGES

 Visual Studio was designed with extensibility in mind. To develop great extensions, it is very helpful
to become familiar with the basic architecture that makes it possible to add your own functionality to
the IDE.

 Like almost all developers, you know that when you launch Visual Studio, the devenv.exe
application is started. So, you may think that devenv.exe is actually Visual Studio. If you take a
look at the properties of this fi le (you can fi nd it under the Common7\IDE folder under the Visual
Studio installation root), you will discover that the fi le size is about 1 MB. Can the functionality of
Visual Studio fi t in one megabyte? Can editors, designers, compilers, debuggers (and many tools) for
C#, VB, and C++ all fi t in this executable?

 Of course, this fi le itself cannot be the whole Visual Studio package, because so many functions
can hardly fi t into one fi le. If you browse the installation folder structure, you fi nd many fi les,
including dozens of dynamic link library (DLL) fi les that most likely are part of Visual Studio. So,
your assumption could be that Visual Studio is the devenv.exe fi le that loads a bunch of DLLs into
memory. And, you may be saying to yourself, “ Oh, creating an extension for Visual Studio must be

➤

➤

➤

➤

CH006.indd 202CH006.indd 202 9/6/10 4:47:21 PM9/6/10 4:47:21 PM

writing a .DLL that somehow integrates with the IDE. ” From physical standpoint, this assumption
is more or less correct. But, unfortunately, it does not reveal anything useful to get you started with
extending Visual Studio.

 From an architectural standpoint, Visual Studio has a key component called the Shell hosting
other components called packages . What you perceive as the behavior of the IDE is actually a
cooperation (or, perhaps, a symbiosis) of the Shell and hosted packages. The Shell provides the core
services, including generic user interface (UI) functions such as window management and command
handling, menus, hierarchy management, and so on. Packages add function - specifi c behavior to the
Shell. For example, you can design forms with the Windows Forms Designer package, as shown in
Figure 6 - 1.

Visual Studio IDE

Installed by Visual Studio

Package Package

Package Package

Package Package

Third-party extensions

Package Package

Package

Package

 FIGURE 6 - 1: The Shell hosts Packages

 The majority of IDE functions are implemented in packages, including the C# or VB project types,
testing features, the debugger, and many more — almost everything you take into account as Visual
Studio. A majority of third - party extensions loaded into Visual Studio are also implemented in
packages. Visual Studio handles all packages in the same way, independently of whether they are
shipped with the IDE or installed by a third - party.

 Package Integration

 Packages are COM objects, and the information about them is stored in the registry under the
Visual Studio key.

 You can imagine that complex packages like the C#, VB, F#, or C++ languages with all of their
 “ accessories ” could consume many system resources in terms of memory and CPU. If you do not
use them, they do not press the CPU. But they might use memory if they sit within the Visual Studio
process space. If you create a project using F#, you actually do not need services belonging to other
languages, so why load them into the memory at all?

 The Visual Studio Shell and Packages ❘ 203

CH006.indd 203CH006.indd 203 9/6/10 4:47:22 PM9/6/10 4:47:22 PM

204 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The architects of Visual Studio implemented the package load mechanism so that packages are
loaded into memory the fi rst time an event requiring the presence of the package is raised. These
events can be one of the following:

 Command activation — The user (or some running code) activates a menu or toolbar
command served by a package that has not yet been loaded. It doesn ’ t matter if the user has
clicked on a menu item or the running code has activated it with a “ virtual click ” ; the result
is the same.

 Object or service request — The Shell is about to use an object or a service in a package not
yet loaded — for example, a tool window that should be displayed, or a service function
that should be executed.

 Context change — The Shell can enter certain UI contexts. For example, when you start
debugging a project, the Shell enters into the Debugging context. When a solution with a
single project is loaded, the Shell enters into the SolutionHasSingleProject context. You
can declare that a package should be loaded as the Shell enters a certain context. Visual
Studio has a few predefi ned contexts, but you can also defi ne your own.

 So, if you do not need a package during the entire IDE session, it does not consume any memory.
Should you click on a menu item activating a command sitting in a package that has not yet been
loaded, the IDE will immediately load and initialize it. Should you ask for a tool window in a
package not yet in memory, the IDE will start loading it.

 This architecture is powerful. With packages, you can write new functionality for Visual Studio
with almost the entire set of APIs and components used by the development team at Microsoft.
The resulting binary is integrated into the Shell in the same way as any other packages created
by Microsoft or other third parties.

➤

➤

➤

 EXTENSIBILITY OUT OF THE BOX

 While the Visual Studio architecture is powerful (because it is designed with extensibility in mind),
it would be complicated to extend Visual Studio if your only choice for creating extensions were
developing packages. Of course, Visual Studio provides other mechanisms that support extension
in much easier ways, enabling you to save time and the amount of work invested.

 Extending Visual Studio by Customization

 Developers generally do not take into account customization and confi guration as methods of
extending applications — probably because none of them requires coding and building an artifact

 To create packages, install the Visual Studio Software Development Kit
(VS SDK) available for free at the Microsoft Visual Studio Extensibility
Development Center (http://msdn.com/vsx).

CH006.indd 204CH006.indd 204 9/6/10 4:47:23 PM9/6/10 4:47:23 PM

as in cases of traditional programming. However, they are great ways of adding new functionality
to any application — and so it is in the case of Visual Studio.

 The term “ customization ” here means that you can use some built - in UI to change the behavior
of the application. “ Confi guration ” means editing or adding some application - specifi c information.
A very thin line separates these two concepts, so the term “ customization ” will be used here to cover
both of them.

 Many third - party tools (for example, documentation generators, refactoring tools, and so on) allow
creating new functionality simply by customizing the tool, and Visual Studio also provides a few
great ways. One of them is the capability to use code snippets to insert frequently used code patterns
as you are editing the source.

 Just because no traditional coding is required to customize Visual Studio, you should not
underestimate the power of customization and confi guration! Let ’ s take a look at two short samples.

 Code Snippets Sample

 You are not constrained to using only the snippets that ship with Visual Studio. You are also able
(and encouraged) to develop your own. By creating a new snippet, you can add something new to
the IDE — for example, a function that was not available before you developed it.

 For example, you can create a simple C# snippet to add a fi le header comment with the following
XML fi le when you save it with a .snippet extension, and then import it in the Code Snippet
Manager:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet” >
 < CodeSnippet Format=”1.0” >
 < Header >
 < Title > File Header Comment < /Title >
 < Author > Istvan Novak (http://divedeeper.dotneteers.net) < /Author >
 < Description > This snippet provides a file header comment < /Description >
 < Keywords >
 < Keyword > File < /Keyword >
 < Keyword > Header < /Keyword >
 < Keyword > Comment < /Keyword >
 < /Keywords >
 < Shortcut > headcom < /Shortcut >
 < /Header >
 < Snippet >
 < Code Language=”CSharp” >
 < ![CDATA[
 // ==
 // $FileName$
 //
 // $Description$
 //
 // Created by: NI
 // ==
]] >
 < /Code >

Extensibility Out of the Box ❘ 205

CH006.indd 205CH006.indd 205 9/6/10 4:47:34 PM9/6/10 4:47:34 PM

206 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 < Declarations >
 < Literal >
 < ID > FileName < /ID >
 < ToolTip > Specify the name of the file < /ToolTip >
 < Default > !FileName! < /Default >
 < /Literal >
 < Literal >
 < ID > Description < /ID >
 < ToolTip > Provide a description of the file < /ToolTip >
 < Default > !FileName! < /Default >
 < /Literal >
 < /Declarations >
 < /Snippet >
 < /CodeSnippet >
 < /CodeSnippets >

 When you import the fi le, the corresponding declaration gets a part of the available C# snippets.
Figure 6 - 2 shows the dialog you see after importing the fi le.

 FIGURE 6 - 2: Code Snippet Manager with the new snippet defi nition

CH006.indd 206CH006.indd 206 9/6/10 4:47:34 PM9/6/10 4:47:34 PM

 GhostDoc Sample

 Many third - party tools also have been designed and implemented with extensibility in mind.
One favorite is GhostDoc, which helps you to intelligently generate XML comments for source
code elements like methods and properties. As shown in Figure 6 - 3, GhostDoc has a set of rules
describing how to generate the comments for a certain source code object.

 FIGURE 6 - 3: GhostDoc Rules confi guration

 Chapter 3 provides a more detailed description of how snippets can be used and
created.

 When you select the “ Default documentation ” node in the “ Constructors ” category, and then click
the Edit button, the dialog shown in Figure 6 - 4 appears, allowing you to edit the rules related
to constructor comments. Figure 6 - 4 shows how the < summary > comment rule is set up for an
instance constructor.

Extensibility Out of the Box ❘ 207

CH006.indd 207CH006.indd 207 9/6/10 4:47:35 PM9/6/10 4:47:35 PM

208 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Let ’ s say that you have an uncommented constructor like this:

public SimplePackagePackage()
{
}

GhostDoc generates the following comment according to the rule:

/// < summary >
/// Initializes a new instance of the < see cref=”SimplePackagePackage”/ > class.
/// < /summary >
public SimplePackagePackage()
{
}

 Using Macros to Automate Common Tasks

 One of the key factors in the success of the Microsoft Offi ce product family is the extensibility
they provide via macros. Without knowing anything about the internal implementation of Offi ce
products, developers (as well as users from hobbyists to enthusiasts) can program macros with
a simple Basic script using the automation model behind the scenes. The almost 20 - year - old
automation mechanism uses a simple (and great) idea. An object model is provided above the
internal functions of the product, enabling the user to exploit them. The word “ automation ” comes
from the fact that this object model allows writing simple scripts and programs to automate a
sequence of tasks, instead of carrying out those tasks manually.

 FIGURE 6 - 4: Instance Constructor Rules

CH006.indd 208CH006.indd 208 9/6/10 4:47:40 PM9/6/10 4:47:40 PM

 Visual Studio uses the same mechanism to utilize function values encapsulated in the product.
A majority of the internal entities in the core services can be accessed through a COM - based
automation object model. Just as is the case with Offi ce applications, these entities can be used in
macros that have their own user interfaces in Visual Studio — the Macro Explorer and the Macros
IDE. Automation objects are not just used only for macros, but are heavily used in extensions, and
as well as by add - ins and packages.

 Macros provide the easiest way to extend Visual Studio — you don ’ t even need to install the VS SDK. You
can automate repetitive tasks in a few minutes by using the macro recording capabilities of Visual Studio.
You can use macros in a very similar way to using them with Microsoft Offi ce applications.

 For a long time, while the .NET technology was not available, Visual Basic for Applications (VBA)
was the programming language used for macro development. The .NET era introduced a new
and really object - oriented Basic language (called Visual Basic .NET, or simply VB.NET) to the
world, and Microsoft replaced the original VBA with a new version leveraging the constructs of
VB.NET.

 Macros access the Visual Studio automation object model and easily combine Visual Studio
commands and objects to establish the desired behavior. To become a professional macro developer,
you must know the object model behind the macros, as well as a few dozen patterns about using
those objects. Visual Studio comes with a few macro samples to help you take a fl ying start. The
best way to learn macro programming is to record macros and view recording results. You can
extend this knowledge by borrowing coding patterns from the samples.

 Although macros are great for task automation, they are not the right tools to create totally new
functionality. When using macros, you should be aware of the fact that anyone can see the source
code of your macro. Later in this chapter, you will learn more about macro development, and see a
few samples.

 For simple tasks, macros are powerful enough, and you can even create forms with the macros.
However, they do not let you extend the UI or the services of Visual Studio. Generally, this
constraint is why developers look for other options like add - ins and packages.

 Visual Studio Add - Ins

 Add - in s are much more powerful than macros for developing Visual Studio extensions because
you can access the Visual Studio automation objects and add new UI elements to the IDE (such
as tool windows, menu and toolbar commands, and so on). An add - in is actually a COM object
implementing two COM interfaces. They can integrate into the IDE so that you actually do not
know that they are implemented as add - ins when you use them. The functions you add with an
add - in look as if they were part of the IDE. If you write a macro, anyone can see the code you have
written. An add - in is a compiled (managed or native) binary, so you can use the same techniques for
guarding intellectual property as for any other managed or native binaries.

 To deploy an add - in, simply create a setup project that produces an .msi fi le. Running this .msi fi le
will do all the setup and registration tasks required for your add - in, and you can immediately start
to use it with Visual Studio.

Extensibility Out of the Box ❘ 209

CH006.indd 209CH006.indd 209 9/6/10 4:47:41 PM9/6/10 4:47:41 PM

210 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 There is a project wizard in Visual Studio within the extensibility project types named Visual Studio
Add - in. It guides you through the basic steps of creating a frame for a simple add - in. The wizard
generates a great amount of code and comments to which you can add your own functionality. With
the Visual Studio Add - in wizard, you can create add - ins with both managed and unmanaged code,
but you should use managed code (Visual Basic or C#, according to your preference) unless you have
no special reason for unmanaged development. Later in this chapter, you will learn how to use this
wizard to create a simple add - in.

 EXTENSIONS WITH VISUAL STUDIO SDK

 Visual Studio ships with a number of extensibility options out - of - the - box, but for advanced
scenarios (such as creating Visual Studio packages or editor extensions), you need the Visual Studio
Software Development Kit (VS SDK). This kit is free, and you can download it from the Microsoft
Visual Studio Extensibility Development Center (http://msdn.com/vsx). When you visit this
center, the download link is available right from the home page.

 Note that there are separate versions of SDKs for the 2005, 2008, and 2010
versions of Visual Studio. Be sure to download the right one. Should you have
more Visual Studio versions installed on your machine, you can download and
install the right SDK for each of them, and they will work side - by - side. There
are no separate SDKs that depend on the edition of your specifi c Visual Studio
version, so the same SDK can be used for the Standard edition, as well as for the
Professional or the Team System editions.

 Installing the VS SDK is very simple, so when you download the setup kit, you can immediately run
the setup fi le. Follow the instructions on the screen and, in a few minutes, the VS SDK is ready to
work with.

 The Full Power of Extensibility

 After the installation of VS SDK, you will fi nd many new fi les under the VisualStudioIntegration
folder in the VS SDK root installation directory (which is Visual Studio 2010 SDK in your
 Program Files folder). Take a look at the content of VisualStudioIntegration . You will see that
the Common\Assemblies folder collects dozens of interoperability and other useful assemblies. The
VS SDK also installs a folder (Common\Source\CSharp) where you can fi nd the source fi les of the most
important tools and components of the kit, just like the Managed Package Framework source.

 To use the core services of Visual Studio, you need to cooperate with a large number of COM
objects (classes and interfaces). You have several options to do that, depending on the type of
extension you are going to create. Figure 6 - 5 illustrates the stack of components working together
to access those services.

CH006.indd 210CH006.indd 210 9/6/10 4:47:41 PM9/6/10 4:47:41 PM

 Visual Studio extension artifacts can be developed as macros, add - ins, or packages. Although this
book focuses on managed code development, both add - ins and packages can be developed with
unmanaged (native) code (for example, by using C++).

 Within Microsoft, a set of teams works on developing separate features of Visual Studio. There
are teams creating packages for Visual Studio (which are actually extensions, even if you do
not consider them as such because they ship and install together with the IDE). There are a few
APIs that are used by the internal Microsoft teams from the beginning to access the core service
functionality.

 The Package API located directly above the Core Services shown in Figure 6 - 5 is one of the native
APIs used by these teams. It is the same kind of Visual Studio API as, for example, the Kernel32
.dll and User32.dll used for the Windows operating systems. The Visual Studio team also
created an Automation API over the Core Services, as shown in Figure 6 - 5. Both APIs use the COM
technology, but while the Package API seems to be a fl at API, automation objects compose a real
object hierarchy. Although the scope of these two APIs has a relatively large intersection, there is
functionality that can be accessed only by one of them.

 Visual Studio Package Development

 For those who want to develop packages in the native way, the Visual Studio Library (VSL) provides
the foundation on which to build. The VSL is a set of template - based C++ classes used to simplify the
creation of packages in native C++. It relies on the Active Template Library (ATL) for its support of
COM objects.

 Developers using managed code cannot directly use COM - based APIs. The bridge between the two
worlds is the set of interoperability (interop) assemblies. Interop assemblies help in the physical
communication between COM and .NET. So, managed code developers can access the Automation
API and the Package API, but this does not add value on the managed world side. Programmers

Macros Add-Ins Managed Packages Native Packages

Managed Package

Framework

. NET Interop Assemblies VSL

Package APIAutomation API

Visual Studio IDE CoreCore Services

Service Access

Applications

 FIGURE 6 - 5: Extensibility components

Extensions with Visual Studio SDK ❘ 211

CH006.indd 211CH006.indd 211 9/6/10 4:47:47 PM9/6/10 4:47:47 PM

212 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

must “ manually ” handle all the COM stuff related to life - cycle management, global unique
identifi ers (GUIDs), and so on.

 Managed Package Framework (MPF) brings you a small library built on top of the interop assemblies.
It implements the most important core types to develop packages in managed code by using VB, C#,
or any other managed languages (including F# and the Iron family of languages). These core types
deal with such concepts as packages, windows and tool windows, dialog pages, commands, menus,
documents, and many more.

 When creating managed packages, you typically build your code on the MPF types and interop
assemblies. In many cases, you use both the automation objects and the Package API.

 The interop assemblies, VSL, and the MPF are all parts of the VS SDK. Visual Studio installs
only the Automation API, so you cannot develop your own packages out of the box.

 Editor Extensibility

 Visual Studio 2010 is the fi rst big movement to migrate the unmanaged code base of Visual Studio
into managed code. The best evidence of this fact is the re - architected text editor that actually
could be called a brand new editor. It is fully developed with managed code that leverages patterns
frequently used in .NET programming.

 The new editor uses WPF as its presentation technology, and it opens new opportunities over the
simple features used before Visual Studio 2010. The development team designed the new editor with
extensibility in mind and used the Managed Extensibility Framework (MEF) as the core technology
to allow a straightforward and simple way of creating custom extensions. A great evidence of this
architecture ’ s usability is the fact that many editor features are physically implemented as extensions
to a core functional set.

 Following is a short list just to show you an example of this well - thought - out architecture:

 There is a fi ne control over editor font properties . It is possible to mix font faces, font
styles, and sizes. You can alter the formatting of built - in languages, and even share the same
formatting across different languages.

 A line transformation can be applied for each editor line that translates into vertical scaling
and defi ning the space surrounding the line.

 There is a way to create classifi ers that can be assigned to the specifi ed editor content
(for example, to the text in the Output window, or to the C# source in the code editor).
Classifi ers can have their own formatting.

 You can add adornments to the text that can be actually any piece of WPF UIElement
defi nitions, including images, animations, and even video.

 If you do not like the current presentation of IntelliSense in the editor, you can change it.

 From an architectural point of view, the new editor clearly separates the roles of objects working
behind the scenes — and this is a big shift from the previous editor ’ s implementation, which was
poorly designed by means of object responsibilities and cooperation.

 The editor separates the concept called Text Model from the presentation called Text View
Model . The Text Model is responsible for handling the text buffer (a sequence of lines and

➤

➤

➤

➤

➤

CH006.indd 212CH006.indd 212 9/6/10 4:47:48 PM9/6/10 4:47:48 PM

characters) by using snapshots and versions to improve management of simultaneous (multi - thread)
changes, and provides a clear way to track changes across versions. The Text View Model is
responsible for formatting and rendering text, including a few dozen extensibility points to
programmatically set up formatting and intercept rendering.

 Later in this chapter, you will build a classifi er to demonstrate the concepts introduced here.

 CREATING VISUAL STUDIO MACROS

 This section dives a bit deeper into Visual Studio macro programming so that you can learn how to
become an advanced macro developer.

 From the standpoint of extensibility, macros are the lightest constructs used to add new functionality
to Visual Studio. The good thing about using macros is that they are really simple to use in most
scenarios when you want to automate tasks. The bad thing about using them is that you cannot
use them to create new UIs integrated with the window management system of Visual Studio (just
as you cannot add new services). So, if you want to achieve quick results and do not need to use a
sophisticated UI, macros can be the perfect choice for you.

 Macros are written in Visual Basic. Their syntax is very similar to that used with Offi ce macros.

 Understanding the Structure of Macros

 Macros are simple subroutines with no input parameters. Running a macro means running the code
sitting in that subroutine. Macros are organized into modules . Every public subroutine with no
parameters is taken into account as a macro that can be run.

 The following code represents a very simple module with four methods:

Imports System
Imports EnvDTE
Imports EnvDTE80
Imports EnvDTE90
Imports System.Diagnostics
Imports System.Windows.Forms

Public Module SimpleMacros

 Public Sub SayHello()
 Call SayHelloWithGreetings(“Hello from a macro”)
 End Sub

 Public Sub SayHelloWithGreetings(ByVal greetings As String)
 MessageBox.Show(greetings)
 End Sub

 Public Function AskQuestion(ByVal question As String)
 Return MessageBox.Show(question, “question”, MessageBoxButtons.YesNo, _
 MessageBoxIcon.Question, MessageBoxDefaultButton.Button1, _
 MessageBoxOptions.DefaultDesktopOnly, False)

Creating Visual Studio Macros ❘ 213

CH006.indd 213CH006.indd 213 9/6/10 4:47:48 PM9/6/10 4:47:48 PM

214 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 End Function

 Private Sub PrivateSayHello()
 Call SayHelloWithGreetings(“Hello from a private subroutine”)
 End Sub
End Module

 Of these methods, only SayHello is a valid macro. The others are not, because SayHelloWithGreetings
has input parameters, AskQuestion is a function, and PrivateSayHello is not public.

 Beside the modules, macros can use code sitting in classes. For example, you can move the
functionality of the SayHelloWithGreetings method into a separate class:

Imports System
Imports EnvDTE
Imports EnvDTE80
Imports EnvDTE90
Imports System.Diagnostics
Imports System.Windows.Forms

Public Class Greetings

 Public Sub ShowGreetings(ByVal Greetings As String)
 MessageBox.Show(Greetings)
 End Sub

End Class

 The SayHello method can be changed to use the Greetings class:

Imports System
Imports EnvDTE
Imports EnvDTE80
Imports EnvDTE90
Imports System.Diagnostics

Public Module SimpleMacros

 Public Sub SayHello()
 Dim greetings = New Greetings()
 greetings.ShowGreetings(“Hello from a class”)
 End Sub

End Module

 Classes also can contain macros, but, of course, they cannot be instance methods. Rather, they
use only shared (static, in C# terminology) methods with no input parameters and return values.
So, if you put the ShowSimpleGreetings method into the previous Greetings class, it can be
started as a macro:

Public Shared Sub ShowSimpleGreetings()
 MessageBox.Show(“Greetings”)
End Sub

CH006.indd 214CH006.indd 214 9/6/10 4:47:49 PM9/6/10 4:47:49 PM

 Looking for the Imports statements in the previous snippets, you can see that namespaces are used
with types declared in Visual Studio and .NET framework system assemblies (such as EnvDTE and
 System.Windows.Forms). Modules, classes, and references for the assemblies used are stored in a
unit called a macro project that is physically a binary fi le with .vsmacros extension.

 Visual Studio uses the macro project as the smallest unit of deployment. Storing all information in
a single .vsmacros fi le makes deployment easy. If you want to extract the code from macro projects,
you can export modules and classes into standard .vb fi les.

 At the highest level, Visual Studio works with zero, one, or more macro projects put into a logical
container called a macro system . It resembles a Visual Studio solution, but it is different. When
the IDE is started, the macro system ’ s projects are loaded independently of what kind of solution
and projects are opened. The macro projects are not tied to any of your concrete projects. You can
handle them as if they belonged to the IDE itself.

 Projects of the macro system are totally independent from each other. You cannot make references
among them like you can cross - reference projects in a Visual Studio solution.

 Using the Macro Explorer

 If you want to have a look at the macro system, the
easiest tool is the Macro Explorer window that can
be accessed through the Tools ➪ Macros ➪ Macro
Explorer menu function. As shown in Figure 6 - 6, this
window displays a hierarchy of projects, modules,
and classes, and, of course, macros in the system.

 As you can see, the hierarchy contains the following
two projects. (Both of them are installed with Visual
Studio 2010.)

 MyMacros is displayed in bold to illustrate
that this project is set as the recording
project . When you record a macro, it always
will be put into the recording project.

 Samples is a great source for getting started
with macro programming. It contains
more than 50 working macros with basic
explanations and comments. Examining the
samples can help a lot toward understanding
the philosophy of Visual Studio ’ s automation
model and solving common tasks.

 If you expand the project nodes, you can see modules and classes belonging to that project. Classes
and modules are not distinguished visually, but by expanding them, you can enumerate the macros
they contain. In Figure 6 - 6, you see MySamples contains the Greetings class fi le with the
 ShowSimpleGreetings macro, as well as the SimpleMacros module with the SayHello macro
from the earlier snippets.

➤

➤

 FIGURE 6 - 6: Macro system hierarchy in the

Macro Explorer

Creating Visual Studio Macros ❘ 215

CH006.indd 215CH006.indd 215 9/6/10 4:47:49 PM9/6/10 4:47:49 PM

216 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Macro Explorer is not just a simple hierarchy view of macro projects and their items. You also can
initiate actions from the context menus of items. Right - click on an item to reach its context menu,
and select the action you would like to take.

 Table 6 - 1 provides an overview of actions you can access from the quick menus.

 ACTION ITEM TYPE DESCRIPTION

 Load Macro Project . . . Root Adds a macro project to the macro system. You can

select a .vsmacros fi le representing the project. The

selected project will be added to macro system, and

remains there after closing and restarting Visual Studio,

unless you unload it.

 Unload Macro Project Project Removes the project from the macro system. The

remove operation does not delete the corresponding

 .vsmacros fi le, so later you ’ ll be able to load it again.

 New Macro Project Root While the Load Macro Project adds an existing

 .vsmacros fi le to the system, with this function you can

create a new project with its own .vsmacros fi le. You

must fi rst select a macro template and set the name

and path of the project fi le, as illustrated in Figure 6 - 7.

You should accept the default path unless you have a

good reason to put the project in another location.

 Macros IDE Root Opens the Macros IDE, allowing you to edit macros in

the project.

 New Module Project Creates a new module and adds it to the selected

project. You can select a module template and name

your module, as shown in Figure 6 - 8. Remember that

modules are not separate fi les. They are a logical part

of the project fi le, so you cannot set a physical path to

store them.

 Set Recording Project Project Sets the project to be the one into which to save

recorded macros. The project is displayed with bold

typeface in the Macro Explorer window.

 Edit Module/Macro Opens the Macros IDE and navigates to the selected

module or macro so that you can start editing its

content immediately.

TABLE 6-1: Actions Available in Macro Explorer

CH006.indd 216CH006.indd 216 9/6/10 4:47:49 PM9/6/10 4:47:49 PM

 FIGURE 6 - 7: Adding a new macro project to the macro system

 ACTION ITEM TYPE DESCRIPTION

 Rename Module/Macro Renames the selected module or macro. The Macro

Explorer does not allow you to set an invalid name that

does not comply with VB identifi er syntax.

 Delete Module/Macro After confi rmation, deletes the macro or the module.

Unlike unloading projects, deleting macros or modules

physically removes the corresponding information

from the .vsmacros fi le, so this operation cannot

be undone. Use the Macros IDE to export aff ected

modules or macros if you want to save the content

before deletion.

 New macro Module Adds a new macro to the selected module or class. In

the case of modules, the new macro will be added as a

 Public Sub . In the case of classes, the new macro will

be added as a Shared Sub . The new macro is named

 Macro < N > , where < N > represents the next available

sequence number in the module. After adding the

macro, the Macro IDE is shown with the focus set on

the body of the new macro.

 Run Macro Immediately runs the selected macro.

Creating Visual Studio Macros ❘ 217

CH006.indd 217CH006.indd 217 9/6/10 4:47:50 PM9/6/10 4:47:50 PM

218 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The actions summarized in Table 6 - 1 show you that the Macro Explorer is a central place for
launching macros and displaying the macro system hierarchy, but not for editing them. When it is
time to edit modules, classes, or macros, Macros IDE should be your tool.

 Using the Macros IDE

 You can start Macros IDE indirectly from Macros Explorer by adding a new macro or editing an existing
module or macro. By using the Tools ➪ Macros ➪ Macros IDE menu function, or using the Alt+F11 key
sequence, you can start this separate IDE directly. The UI shown in Figure 6 - 9 resembles the Visual Basic
development environment available in the Offi ce applications, and also in Visual Studio.

 FIGURE 6 - 8: Adding a new module to a macro project

 FIGURE 6 - 9: The Macros IDE in action

CH006.indd 218CH006.indd 218 9/6/10 4:47:50 PM9/6/10 4:47:50 PM

 Even the structure of Macros IDE is very similar to Visual Studio IDE, so you may guess that it is
a standalone application that can be loaded independently of Visual Studio. The macro system is a
part of Visual Studio, and Macros IDE works with the projects composing the macro system. Even
if it seems like a standalone application, it is a part of Visual Studio IDE.

 Using the Project Explorer and the Class View

 The Project Explorer contains a hierarchical list of projects and
modules just like Macro Explorer. However, here you cannot
see macros in the list. The Project Explorer contains some other
project - specifi c information not visible in the Macro Explorer,
such as the list of referenced assemblies and a module called
 EnvironmentEvents . Figure 6 - 10 shows the Project Explorer
displaying the referenced assemblies in the Samples project.

 You may fi nd it disturbing to have two separate UIs for
displaying the structure of macro projects. The logic behind this
approach is that you only need Macro Explorer to have a great
overview about what macros you have, and, if you need any of
them, you can immediately start from this tool window. The
Project Explorer is built up very similarly to Solution Explorer.
The view it provides is a development - time view where your
main focus is to edit, try, and debug macros.

 From the user experience point of view, the only thing that is
a bit disturbing is that both the Macro Explorer and Project
Explorer allow you to create new modules and macros. These
two windows are synchronized, so any changes applied in one
window will automatically appear in the other one.

 Just as you can have a class view for your source code in
Solution Explorer, you also have a Class View tool window in
Macros IDE to see your code ’ s structure. Figure 6 - 11 shows the
 MyMacros project with the methods of the Greetings class.

 You can use the Class View for browsing your own modules,
classes, and members, as well as objects in the referenced
assemblies. You can see a few objects in Figure 6 - 11 that
have names starting with an underscore (for example,
 _ApplicationObject and _Startup , _Utility). These are
hidden modules that were created along with the macro project
and are responsible for the run - time integration of macros with
the Visual Studio IDE.

 Editing Projects and Macros

 The Macros IDE provides a friendly environment to edit macro
projects and individual macros. The UI and the logic are very
similar to the user surface of Visual Studio, and functions work

 FIGURE 6 - 10: The Project Explorer

in the Macros IDE

 FIGURE 6 - 11: Class View in the

Macros IDE

Creating Visual Studio Macros ❘ 219

CH006.indd 219CH006.indd 219 9/6/10 4:47:51 PM9/6/10 4:47:51 PM

220 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

similarly, so it is easy to become familiar with this tool. However, there are a few things that work a
bit differently than for Visual Studio projects. Let ’ s take a look at the most important ones to make
your macro - editing experience better.

 In Macros IDE, you cannot add a new project to the macro system, and this function is available
only from Macro Explorer. However, here you can edit any parts of the macros project, including
the list of referenced assemblies and modules. You can also add new modules either by creating new
ones, or adding an existing one.

 As already discussed, the whole macro project is stored in a binary .vsmacros fi le. Adding an
existing module to the macro project actually means that the content of an existing .vb fi le is
imported into the .vsmacros fi le. Unlike in standard VB projects in Visual Studio where the source
fi les can be edited externally, here editing the existing fi le you ’ ve added to the macro project does
not affect your project, because a copy of the fi le content is merged into the project.

 You can explicitly add a new module or a new class to a macro project. Actually, the term module
has two meanings:

 The module is a part of a project (like a source fi le for a standard Visual Studio project).
You can edit one module as one document in the Macros IDE code editor.

 The module is a language construct. To be more precise, it would be better use the term module
defi nition to describe the language elements between the Module and End Module keywords.

 The function names (Add New Module and Add New Class) suggest that you can put either a
module defi nition or a class defi nition into a module. Do not treat this implicit suggestion as
a constraint! You can put an unlimited number of module and class defi nitions into the same
document, and classes even can be nested into modules.

 Figure 6 - 12 shows the macro editor window within the Macros IDE. It resembles the experience you
have with the VB editor in Visual Studio. You can open multiple documents (modules in your macro
project) at the same time, and select your active document with tabs.

➤

➤

 FIGURE 6 - 12: Editing a macro

CH006.indd 220CH006.indd 220 9/6/10 4:47:51 PM9/6/10 4:47:51 PM

 The two combo boxes at the top of the editor area help you with quick navigation. The combo
box on the left allows you to select a module or class defi nition, and the one on the right helps in
selecting a member within that class or module. IntelliSense is available during macro editing, and
code completion works as well.

 You can also use the familiar editing functions like fi nd and replace, bookmarks, block
commenting, code outlining, and so on.

 Recording and Developing Macros

 As mentioned previously, from a programming point of view, macros are actually subroutines
written in VB. If you want to develop a macro, sooner or later you must create its code. It sounds
easy, but as with any other kind of development, possessing the knowledge of the programming
language is generally not enough to create applications. Also, a good understanding of the context
of the programming language that should be used within is important.

 And so it is with macro programming. The context where the VB language should be used is the
Visual Studio IDE environment where services can be accessed through the automation model.

 Earlier, you learned about how macros can be edited in the Macros IDE. Let ’ s take a look at the
basics to help you in getting started with creating macros.

 Learning by Macro Recording

 The best way start discovering the elements of macro development is to record macros with the
built - in recorder tool. Any time you do a repetitive task, you can record the steps required to replay
the task. Replaying those steps is just one alternative! After you have fi nished recording those steps,
you can immediately look at the macro body to see how your activities are represented in macros.
This can help to shorten the learning process. First, try to observe shorter macros, and later you can
examine longer ones.

 The greatest thing about macro recording is that you are not obliged to accept the recorded macro
as it is. You can change it, or simply cut parts and put them in other macros. When you discover
how certain tasks are carried out, you can fi nd out how you can parameterize commands, activities,
and properties.

 Let ’ s see how macro recording works. After preparing for the task to record,
you can click on Tools ➪ Macros ➪ Record TemporaryMacro, or press
Ctrl+Shift+R. At this moment, macro recording starts. The recording toolbar
appears on the screen (as shown in Figure 6 - 13), and a small icon is displayed
on the status bar with the “ Recording macro … ” message, indicating that
your activities are saved in a temporary macro.

 Following are the three buttons of the toolbar (from left to right):

 Pause/Resume Recording — Any time you want to temporarily pause macro recording
(for example, if you ’ ve done something unintended and you want to return to a point to
continue recording), you can use this button. When you are ready to go on, click on this
button again to resume.

➤

 FIGURE 6 - 13: Macro

Recording toolbar

Creating Visual Studio Macros ❘ 221

CH006.indd 221CH006.indd 221 9/6/10 4:47:52 PM9/6/10 4:47:52 PM

222 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Stop Recording — When you ’ ve fi nished recording, click this button and your macro will
be saved into the RecordingModule of the current recording project into a macro named
 TemporaryMacro .

 Cancel Recording — Clicking this button cancels recording the macro without storing any
data into TemporaryMacro .

 After recording, you look at the freshly recorded macro, and, if you fi nd it useful, you can save
it either by moving it to another module, changing its name in the editor, or using the Tools ➪
Macros ➪ Save Temporary Macro menu item. Always save your macro, because the next recording
will override the previous one.

 Let ’ s take a look at a very simple example in practice. Let ’ s create a macro that inserts simple text
into the source code.

 1. Create a Visual C# console application project and name it RecordingConsole . When the
project has been created, the Program.cs fi le is opened.

 2. Move the cursor into the body of the Main method and enter a new line between the
opening and closing braces.

 3. Start macro recording by pressing Ctrl+Shift+R.

 4. Type in the following text:

Console.WriteLine(“Hello, world”);

 5. At the end of the line, press Enter, and then stop macro recording.

 Now, you can go into the Macros IDE to edit the recorded macro. If you followed the instructions,
you see a TemporaryMacro like this:

Option Strict Off
Option Explicit Off
Imports System
Imports EnvDTE
Imports EnvDTE80
Imports EnvDTE90
Imports System.Diagnostics

Public Module RecordingModule
 Sub TemporaryMacro()
 DTE.ActiveDocument.Selection.Text = “Console.WriteLine(“”Hello, world””);”
 DTE.ActiveDocument.Selection.NewLine()
 End Sub
End Module

 The recorder saves your activities done in Visual Studio IDE. Pressing the keyboard keys, clicking
on menu or toolbar items, closing dialog boxes with OK, all generate information that will be
persisted in the macro — and of course, typos and other unintended activities are also recorded.
For example, the following macro shows the traces of correcting typos:

Public Module RecordingModule
 Sub TemporaryMacro()

➤

➤

CH006.indd 222CH006.indd 222 9/6/10 4:47:52 PM9/6/10 4:47:52 PM

 DTE.ActiveDocument.Selection.Indent(3)
 DTE.ActiveDocument.Selection.Text = “Console.WriteLine(“”Hellow”
 DTE.ActiveDocument.Selection.DeleteLeft()
 DTE.ActiveDocument.Selection.Text = “, world””);”
 DTE.ActiveDocument.Selection.NewLine()
 End Sub
End Module

 Your recorded macro is immediately available in the Macros IDE and also in Macro Explorer,
where you can run it!

 Macro recording has an important limitation: It does not record any activities
done within modal dialogs opened from commands. For example, when using
the File ➪ New ➪ Project dialog, your settings typed there are not saved into the
macro. The macro recorder only saves the fact that you ’ ve opened the dialog.

 A Few Points About Macro Development

 There are about a dozen of books published about Visual Studio macro development. The following
discussion will not teach you every aspect, but rather highlight a few important things to help you
to understand the entire macro development life cycle.

 Building and Running Macros

 Macro projects must be built before running any macros within them. During the build process, the
macro syntax and semantics are checked, just as with standard Visual Studio projects, and debug
information can also be included to allow tracing and debugging macros. There is no partial build
for modules or individual macros. If there is any build - time discoverable error that prevents the
project from building successfully, no macro in that project can run. Macros IDE provides an error
list accessible through the View ➪ Error List menu item (as shown in Figure 6 - 9) where you can
check build issues.

 There are several ways to run macros. You have already learned that you can start them from Macro
Explorer. You can also run them from the Macros IDE, where you start them with or without
debugging after moving the cursor to the name of the macro defi nition within the code editor.
Visual Studio also allows you to customize your menus and toolbars with items running macros.

 Debugging a Macro

 When you develop macros, you suffer from the same programming mistakes as with any other
programming language, and the majority of these issues can be solved with the help of a debugger.
The Macros IDE provides the same tools for debugging as the Visual Studio IDE, and you can
use the same techniques to fi nd and remove bugs as with other languages and project types.

 Figure 6 - 14 shows debugging of a sample macro named DecreaseTextEditorFontSize that is
located in the Accessibility module. In this fi gure, you see a breakpoint placed on the fi rst statement
line of the macro, and the current execution line that is the next line after the breakpoint. At the
bottom of the screen, the Locals tool window lists the variables used in the macro where you can
drill down to the internal values of the locally declared objects.

Creating Visual Studio Macros ❘ 223

CH006.indd 223CH006.indd 223 9/6/10 4:47:53 PM9/6/10 4:47:53 PM

224 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Macro Deployment

 Visual Studio provides a few templates for creating setup projects and installation kits for your
applications. These kits can be used to copy the binaries and other content fi les, prepare shortcuts,
register components, and so on. However, you cannot directly use them to create an install kit for
a macro project.

 Fortunately, macro projects are stored in binary .vsmacros fi les that represent the unit of deployment
for macros. You can deploy a macro developed and tested on your machine by following these steps:

 1. Discover where your macro project is stored on your source machine and copy it.

 2. Check where Visual Studio stores macro projects on the destination machines, and paste
them to the appropriate location.

 3. Start Visual Studio 2010 and open the Macro Explorer.

 4. Use the Load Macro Project function in the context menu of the Macros root node to add
the freshly copied project fi le to the macro system.

 After you follow these steps, the macros are ready to use on the destination machines. Generally,
macros are stored in your user profi le in the Documents\Visual Studio 2010\Projects folder,
but this can be changed. To check where your macros are stored, open the Options dialog. Go to
the Projects and Solutions category, and select the General tab. At the top of the dialog page, the
 “ Visual Studio project location ” contains the path you are looking for.

 Responding IDE Events

 A great benefi t of macro development is that macros can run to respond to Visual Studio IDE
events. When you create a macro project, a module named EnvironmentEvents is also created that
contains auto - generated code to access system events.

 FIGURE 6 - 14: Debugging a macro

CH006.indd 224CH006.indd 224 9/6/10 4:47:58 PM9/6/10 4:47:58 PM

 When you open this module, you can use the two combo boxes at the top of the code editor to
generate event code - handling skeletons. From the left combo box, you can select the event category;
from the right combo box, you can select the specifi c event in that category. For example, if you
want to respond to an event when a solution is opened, select the SolutionEvents category from
the left combo box, and the Opened event in the right one, as shown in Figure 6 - 15.

 FIGURE 6 - 15: Adding a macro responding to a system event

 You can put your macro code into the body of the generated event handler method. After building
the macro, you can check that opening a solution triggers the event, popping up the message in the
method body.

 Macro Samples

 As discussed previously, recording macros and examining the Samples project can shorten your
macro development learning curve. Let ’ s take a look at a few code extracts and some explanations
about their behavior. These samples intensively use the DTE automation model. Patterns used here
also can support you when developing other kinds of extensibility components, such as add - ins and
VSPackages.

 Accessing IDE Options

 Macros often use Visual Studio IDE options for specifi c tasks. The IncreaseTextEditorFontSize
and DecreaseTextEditorFontSize macros in the Accessibility module are good examples to
demonstrate option usage.

Public Sub IncreaseTextEditorFontSize()
 Dim textEditorFontsAndColors As Properties

 textEditorFontsAndColors = DTE.Properties(“FontsAndColors”, “TextEditor”)
 textEditorFontsAndColors.Item(“FontSize”).Value += fontSizeIncrement
End Sub

Public Sub DecreaseTextEditorFontSize()
 Dim textEditorFontsAndColors As Properties

Creating Visual Studio Macros ❘ 225

CH006.indd 225CH006.indd 225 9/6/10 4:47:58 PM9/6/10 4:47:58 PM

226 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Dim fontSize As [Property]

 textEditorFontsAndColors = DTE.Properties(“FontsAndColors”, “TextEditor”)
 fontSize = textEditorFontsAndColors.Item(“FontSize”)
 If fontSize.Value > = minimumSupportedEditorSize Then
 fontSize.Value -= fontSizeIncrement
 End If
End Sub

 The key to accessing IDE options is the Properties collection of the DTE object. This collection
can be addressed with two indexes — the fi rst being the name of the category, and the second being
the name of the property page within that category. From the previous snippet, you can see that the
 FontsAndColors category defi nes the TextEditor property page.

 First, you obtain an object representing that property page. The page holds a collection of objects,
so go down to the one with the index of FontSize . Obviously, this is the size of the font used by the
text editor.

 Note that this produced an object and not a value. You can use the Value
property of fontSize to read and change the real value behind that object.

 Writing Output Messages

 Macros can be very useful in outputting some project - related information that you cannot directly
gain from the Visual Studio IDE. This information can be written to a pane in the output window.

 The following sample can be found in the VSDebugger module and demonstrates how to write
messages to an output pane:

Sub LastBreakReason()
 Dim outputWinPane As EnvDTE.OutputWindowPane

 outputWinPane = Utilities.GetOutputWindowPane(“Debugger”)
 Select Case DTE.Debugger.LastBreakReason
 Case dbgEventReason.dbgEventReasonBreakpoint
 outputWinPane.OutputString(“Breakpoint hit” + vbCrLf)
 Case dbgEventReason.dbgEventReasonNone
 outputWinPane.OutputString(“No reason” + vbCrLf)
 Case dbgEventReason.dbgEventReasonExceptionNotHandled
 outputWinPane.OutputString(“Exception not handled by the debuggee” _
 + vbCrLf)
 Case dbgEventReason.dbgEventReasonExceptionThrown
 outputWinPane.OutputString(“Exception thrown” + vbCrLf)
 End Select
End Sub

CH006.indd 226CH006.indd 226 9/6/10 4:47:58 PM9/6/10 4:47:58 PM

 The output window displays a set of panes. The current pane can be selected in the “ Show output
from ” combo box. When you want to write to a pane, the fi rst task is to obtain a reference to an
 EvnDTE.OutputWindowPane object, and then you can call the OutputString method to display your
message.

 The Utilities class contains a method named GetOutputWindowPane that obtains the window
pane object for you. As you can see from this method, you are not tied to using only the built - in
output panes. You can also create custom window panes by specifying a unique name:

Function GetOutputWindowPane(ByVal Name As String,
 Optional ByVal show As Boolean = True) As OutputWindowPane
 Dim window As Window
 Dim outputWindow As OutputWindow
 Dim outputWindowPane As OutputWindowPane

 window = DTE.Windows.Item(EnvDTE.Constants.vsWindowKindOutput)
 If show Then window.Visible = True
 outputWindow = window.Object
 Try
 outputWindowPane = outputWindow.OutputWindowPanes.Item(Name)
 Catch e As System.Exception
 outputWindowPane = outputWindow.OutputWindowPanes.Add(Name)
 End Try
 outputWindowPane.Activate()
 Return outputWindowPane
End Function

 The OutputWindow object is the one responsible for the output panes. The method ’ s logic is
straightforward. If it does not fi nd the specifi ed pane in the collection of existing window panes,
it creates a new one and activates (displays) it.

 Traversing the Solution Hierarchy

 With macros, you can traverse through the whole solution hierarchy, including the projects and their
items in order to process them. The Utilities module implements a macro named ListProj that
traverses through all items of the active project:

Sub ListProj()
 Dim project As Project
 Dim projectObjects As Object()
 Dim window As Window
 Dim target As Object

 window = DTE.Windows.Item(Constants.vsWindowKindCommandWindow)
 projectObjects = DTE.ActiveSolutionProjects
 If projectObjects.Length = 0 Then
 Exit Sub
 End If
 project = DTE.ActiveSolutionProjects(0)
 If (DTE.ActiveWindow Is window) Then
 target = window.Object
 Else

Creating Visual Studio Macros ❘ 227

CH006.indd 227CH006.indd 227 9/6/10 4:48:04 PM9/6/10 4:48:04 PM

228 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 target = GetOutputWindowPane(“List Project”)
 target.Clear()
 End If
 ListProjAux(project.ProjectItems(), 0, target)
End Sub

 ListProj accesses the active project through the ActiveSolutionsProject collection of the DTE
object, and invokes ListProjAux to display items in that project.

 There is another interesting feature that ListProj also implements. It checks if the macro is started
from the Command window, and, in this case, it puts the output to that window; otherwise, it
creates a “ List Project ” pane in the output window.

Sub ListProjAux(ByVal projectItems As EnvDTE.ProjectItems, _
 ByVal level As Integer, ByVal outputWinPane As Object)
 Dim projectItem As EnvDTE.ProjectItem

 For Each projectItem In projectItems
 If projectItem.Collection Is projectItems Then
 Dim projectItems2 As EnvDTE.ProjectItems
 Dim notSubCollection As Boolean

 OutputItem(projectItem, level, outputWinPane)
 projectItems2 = projectItem.ProjectItems
 notSubCollection = projectItems2 Is Nothing
 If Not notSubCollection Then
 ListProjAux(projectItems2, level + 1, outputWinPane)
 End If
 End If
 Next
End Sub

 ListProjAux is used recursively to display project items. Each item keeps a collection of nested
project items that is used as a base of a recursive approach. The OutputItem method is called for
every traversed item in order to display fi lename information.

Sub OutputItem(ByVal projectItem As EnvDTE.ProjectItem, ByVal level As Integer, _
 ByVal outputWinPane As Object)
 Dim i As Integer = 0

 While (i < level)
 outputWinPane.OutputString(“ “)
 i = i + 1
 End While
 outputWinPane.OutputString(projectItem.FileNames(1))
 outputWinPane.OutputString(Microsoft.VisualBasic.Constants.vbCrLf)
End Sub

 OutputItem fi rst writes out indenting whitespace according to the nesting level, and then displays
the item ’ s full fi lename.

CH006.indd 228CH006.indd 228 9/6/10 4:48:04 PM9/6/10 4:48:04 PM

 Dealing with User Input

 The Interaction object type in the Microsoft.VisualBasic namespace contains a method named
 InputBox that can be easily used to collect user input, as the following sample macro shows:

Sub SaveView()
 Dim name As String

 name = InputBox(“Enter the name you want to save as:”, “Save window layout”)
 If (name = “”) Then
 MsgBox(“Empty string, enter a valid name.”)
 Else
 DTE.WindowConfigurations.Add(name)
 End If
End Sub

 As its name suggests, InputBox pops up a modal dialog where you can enter an input string.
You can specify a label for the input and a caption for the dialog. The SaveView macro uses this
information to create a new window confi guration item with the specifi ed name and saves it the to
the confi guration settings.

 By using the System.Windows.Forms namespace, you can create forms dynamically at run - time,
and then show them. It may worth it to create simple modal dialogs, but if you need a more complex
UI, you ’ d be better off working with Visual Studio add - ins.

 CREATING VISUAL STUDIO ADD - INS

 As described earlier, Visual Studio has an extensibility point to integrate add - ins into the IDE.
Add - ins are great tools to gain enhanced functionality. This section examines what add - ins are, and
how you can use them. You will also build a small add - in to help you understand internal details
through source code.

 Add - In Architecture

 Add - ins are COM components that implement the following two COM interfaces:

 The IDTExtensibility2 interface is responsible for handling the life cycle of the add - in so
that it can initialize and clean up after itself appropriately in the context of the IDE and the
other add - ins.

 The IDTCommandTarget interface provides a way in which the add - in can handle
commands the IDE routes to it.

 COM components must be registered on the machine so that the IDE can work with them.
Fortunately, the manual mechanism needed before with Visual Studio 2008 has been changed to
enable you to more easily deploy your custom add - ins, without any explicit registration.

➤

➤

 Note that you can substitute OutputItem with your own custom method to
process project items.

Creating Visual Studio Add - Ins ❘ 229

CH006.indd 229CH006.indd 229 9/6/10 4:48:04 PM9/6/10 4:48:04 PM

230 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Add - ins can be developed both in managed and unmanaged code. While macros are deployed with
source code, add - ins are deployed in binaries. This book only addresses how to use managed code.

 The essential architecture is the same for native and managed implementations. The big difference
is the way COM - specifi c code (that is, the COM interface implementation and automation model
calls) is handled.

 Add - ins can be loaded by Visual Studio at startup time or on - demand when the user explicitly asks
it (using the Add - In Manager), or implicitly asks it (for example, activating a command owned
by the add - in). Add - ins also can subscribe to IDE events (that is, to all events supported by the
automation model), so that they can respond to system events of Visual Studio.

 Add - ins can be written in command - line - safe mode so that they can be utilized when devenv.exe is
started through the command line. Of course, command - line add - ins cannot pop up modal dialogs
because they would block Visual Studio from running in command - line mode.

 The integration architecture allows you to utilize the benefi ts of add - ins by not only using the
automation model, but also by enabling the add - ins to work together with other add - ins. Proper
design and documentation of your add - ins will let others use your add - in. When creating a new
add - in, always separate its presentation layer from its service layer and allow the latter one to be
used through commands.

 Creating a Simple Add - In

 The easiest way to learn about the concepts described previously is to create an add - in and look
into the source code details. The Visual Studio IDE provides a wizard to help you with the generation
of a basic add - in that will come in handy for this endeavor.

 Using the Visual Studio Add - In Wizard

 Use the File ➪ New ➪ Project menu item to select the Visual Studio Add - In project type. As shown
in Figure 6 - 16, you will fi nd it under the Other Project Types category in the Extensibility section.

 FIGURE 6 - 16: Selecting the Visual Studio Add - in project type

CH006.indd 230CH006.indd 230 9/6/10 4:48:10 PM9/6/10 4:48:10 PM

 Set the name of the project to MySimpleAddIn and click the OK button. The Visual Studio Add - In
Wizard starts and displays a welcome page. Click Next to go to the fi rst information page, where
you can select the programming language to use. As you see in Figure 6 - 17, you can select from four
alternatives — C#, VB, managed C++, and native C++/ATL.

 Select the “ Create an Add - in using Visual C# ” option and click Next. The second page of the
wizard allows you to select a host application in which to embed your add - in. As shown in
Figure 6 - 18, the add - in you create can be hosted by the Visual Studio 2010 IDE or the Macros IDE.

 You can select both options on this page. In that case, your add - in will be integrated into both host
applications. For right now, check only Microsoft Visual Studio 2010.

 FIGURE 6 - 17: Selecting the programming

language of the Add - in

 FIGURE 6 - 20: Add - in options page FIGURE 6 - 19: Basic Add - in information page

 FIGURE 6 - 18: Selecting the application host

 Click Next and you will then see the basic add - in information on the third wizard page. The information
you set here is displayed in the Add - In Manager. Use the information shown in Figure 6 - 19 to set up the
add - in.

 Click Next to move on to the page where you set up a few add - in options, as shown in Figure 6 - 20.

Creating Visual Studio Add - Ins ❘ 231

CH006.indd 231CH006.indd 231 9/6/10 4:48:10 PM9/6/10 4:48:10 PM

232 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Check the fi rst option to create a menu item in the Tools menu for this add - in. When you select
this menu item, a command is sent to your add - in, which can respond to this command. Check
the second option to load it automatically when Visual Studio 2010 starts. Leave the third option
unchecked, because this add - in will use a modal dialog (thus preventing it from being used with
command - line builds).

 Click the Next button and the wizard advances to
the last information page, where you can generate
text for the About dialog box, as shown in Figure 6 - 21.
Since, for this example, you do not want to generate
About information for this add - in, leave that option
unchecked.

 Click Next to move you to the last page that
summarizes the information the wizard uses to
generate the add - in. On this page, click Finish to
start the source code generation. In a few seconds,
the wizard creates a new project with the fi les
summarized in Table 6 - 2.

 FIGURE 6 - 21: Settings for the About dialog box

 FILE DESCRIPTION

 AssemblyInfo.cs Set of general assembly information attributes

 Connect.cs The declaration of the class responsible for the add -

 in integration with Visual Studio

 MySimpleAddin - For Testing.AddIn Confi guration fi le for the add - in used for testing

purposes

 MySimpleAddin.AddIn Confi guration fi le for the add - in used for deployment

TABLE 6-2: Source Files of the Add-In Generated with the Wizard

 The project generated by the wizard can be started immediately. However, you must make a small
modifi cation to the source code to demonstrate that the add - in really works. First, add a reference
for the System.Windows.Forms assembly to the project. Then, open Connect.cs and add a new
 using clause to the fi le, as shown here:

using System.Windows.Forms;

Modify the body of the Exec method by adding the line with the MessageBox.Show call in the
following code:

public void Exec(string commandName, vsCommandExecOption executeOption,
 ref object varIn, ref object varOut, ref bool handled)

CH006.indd 232CH006.indd 232 9/6/10 4:48:11 PM9/6/10 4:48:11 PM

{
 handled = false;
 if (executeOption == vsCommandExecOption.vsCommandExecOptionDoDefault)
 {
 if (commandName == “MySimpleAddin.Connect.MySimpleAddin”)
 {
 MessageBox.Show(“Hello from MySimpleAddIn”);
 handled = true;
 return;
 }
 }
}

 Let ’ s try the add - in with Debug ➪ Start Without
Debugging or pressing Ctrl+F5. This action will start
another instance of Visual Studio 2010 with the
command representing the add - in in the Tools menu,
as shown in Figure 6 - 22.

 When you click on MySimpleAddIn menu item, the
 “ Hello ” message you added to the Exec method
previously is popped up on the screen.

 The Connect Class

 The lion ’ s share of the work is done by the Connect class. Listing 6 - 1 shows the full content of this fi le.
(Comments have been omitted for the sake of compactness.)

 LISTING 6 - 1: Connect.cs

using System;
using Extensibility;
using EnvDTE;
using EnvDTE80;
using Microsoft.VisualStudio.CommandBars;
using System.Resources;
using System.Reflection;
using System.Globalization;
using System.Windows.Forms;

namespace MySimpleAddIn
{
 public class Connect : IDTExtensibility2, IDTCommandTarget
 {
 public Connect()
 {
 }

 public void OnConnection(object application, ext_ConnectMode connectMode,
 object addInInst, ref Array custom)
 {

 FIGURE 6 - 22: Add - in in the Tools menu

continues

Creating Visual Studio Add - Ins ❘ 233

CH006.indd 233CH006.indd 233 9/6/10 4:48:12 PM9/6/10 4:48:12 PM

234 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

LISTING 6-1 (continued)

 _applicationObject = (DTE2)application;
 _addInInstance = (AddIn)addInInst;
 if (connectMode == ext_ConnectMode.ext_cm_UISetup)
 {
 object[] contextGUIDS = new object[] { };
 Commands2 commands = (Commands2)_applicationObject.Commands;
 string toolsMenuName = “Tools”;

 Microsoft.VisualStudio.CommandBars.CommandBar menuBarCommandBar =
 ((Microsoft.VisualStudio.CommandBars.CommandBars)
 _applicationObject.CommandBars)[“MenuBar”];

 CommandBarControl toolsControl = menuBarCommandBar.Controls[toolsMenuName];
 CommandBarPopup toolsPopup = (CommandBarPopup)toolsControl;

 try
 {
 Command command = commands.AddNamedCommand2(_addInInstance,
 “MySimpleAddIn”,
 “MySimpleAddIn”,
 “Executes the command for MySimpleAddIn”,
 true,
 59,
 ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);
 if ((command != null) & & (toolsPopup != null))
 {
 command.AddControl(toolsPopup.CommandBar, 1);
 }
 }
 catch (System.ArgumentException)
 {
 }
 }
 }

 public void OnDisconnection(ext_DisconnectMode disconnectMode,
 ref Array custom)
 {
 }

 public void OnAddInsUpdate(ref Array custom)
 {
 }

 public void OnStartupComplete(ref Array custom)
 {
 }

 public void OnBeginShutdown(ref Array custom)
 {

CH006.indd 234CH006.indd 234 9/6/10 4:48:12 PM9/6/10 4:48:12 PM

 }

 public void QueryStatus(string commandName,
 vsCommandStatusTextWanted neededText,
 ref vsCommandStatus status,
 ref object commandText)
 {
 if (neededText == vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)
 {
 if (commandName == “MySimpleAddIn.Connect.MySimpleAddIn”)
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported |
 vsCommandStatus.vsCommandStatusEnabled;
 return;
 }
 }
 }

 public void Exec(string commandName, vsCommandExecOption executeOption,
 ref object varIn, ref object varOut, ref bool handled)
 {
 handled = false;
 if (executeOption == vsCommandExecOption.vsCommandExecOptionDoDefault)
 {
 if (commandName == “MySimpleAddIn.Connect.MySimpleAddIn”)
 {
 MessageBox.Show(“Hello from MySimpleAddIn”);
 handled = true;
 return;
 }
 }
 }

 private DTE2 _applicationObject;
 private AddIn _addInInstance;
 }
}

 Let ’ s dive into its details of this code. To understand every bit, you must understand a lot of
information about the command - handling mechanism of Visual Studio. Treating all those details
would at least double the length of this chapter, so let ’ s focus on a general overview of what the code
does. If you want to look deeper behind the source code, use the reference documentation for the
methods, parameters, and types.

 The Connect class implements the IDTExtensibility2 and IDTCommandTarget interfaces. Both
are COM dispatch interfaces, so, as a result, the Connect class is a COM object that can be
integrated with Visual Studio 2010. IDTExtensibility2 is responsible for the IDE integration.
 IDTCommandTarget enables the IDE to send commands to the add - in. IDTExtensibility2 defi nes
the methods summarized in Table 6 - 3. All methods have an array parameter named custom that
can be used to pass data back to the caller.

Creating Visual Studio Add - Ins ❘ 235

CH006.indd 235CH006.indd 235 9/6/10 4:48:12 PM9/6/10 4:48:12 PM

236 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 You can see in Listing 6 - 1 that only the OnConnection method defi nes behavior to initialize the
add - in. All the other methods have empty bodies. OnConnection fi rst stores the references to
the automation model root in the _applicationObject fi eld and the current add - in instance in the
 _addinInstance fi eld, because they are used later. When the IDE loads the add - in to set up its user
interface (signed with the ext_cm_UISetup connection mode), it triggers a few tasks implemented
by this method:

 In a few steps, it obtains the reference to the Tools menu bar and stores it into the
 toolsPopup variable.

 It creates a new command with the AddNamedCommand2 method passing the add - in instance
and nine other parameters. It sets up the menu item UI for this command (names, icon, and
visual properties) so that the command is enabled. As a result of the method call, when the
menu item is clicked, the IDE routes this command to the add - in.

 It adds the menu item to the Tools menu bar.

 The IDTCommandTarget interface defi nes two methods:

 The QueryStatus method is called by the Visual Studio IDE to check whether the add - in
can understand the command (that is, knows what the command means and can execute it).
The add - in also has a chance to retrieve the status of commands it supports (for example,
enabled/disabled, visible/hidden). Also, this method is used by the IDE to allow the
command to set its menu item and status bar text.

➤

➤

➤

➤

 METHOD DESCRIPTION

 OnConnection This event is raised when the add - in is loaded into the Visual Studio

IDE. The application parameter points to the root object of the DTE

automation model. addInInst refers to the AddIn instance in the

automation model describing this add - in. The connectMode parameter

defi nes the way in which the add - in is loaded into the IDE. Defi ne this code

to set up your add - in during connection time.

 OnDisconnection The Visual Studio IDE raises this event when the add - in is disconnected from the

IDE. The disconnectMode parameter specifi es the reason why the add - in has

been disconnected. Use this method to put the add - in clean - up code here.

 OnAddInsUpdate This event is raised by the IDE when the add - in is loaded or unloaded in the

IDE. You must defi ne this method when you want to check dependencies

among add - ins. For example, you want to ensure that all add - ins on which

your add - in depends are loaded.

 OnStartupComplete This event is raised when Visual Studio fi nished the startup process. At this

point, all add - ins are loaded into memory, so you can access them to fi nish

your add - in initialization. You should put all the initialization code here that

assumes any other add - ins or Visual Studio services are available.

 OnBeginShutdown The IDE sends this event to the add - in when Visual Studio starts the

shutdown process.

TABLE 6-3: IDTExtensibility2 Members

CH006.indd 236CH006.indd 236 9/6/10 4:48:13 PM9/6/10 4:48:13 PM

 The Exec method is called by the IDE when a command is about to execute and whether
 QueryStatus previously stated that the add - in supports that command.

 In the previous implementation, QueryStatus responds to the event only when the IDE is asking for
the command status (and not for command text information). It checks if the only command known
by the add - in is called, and, in this case, returns a status saying, “ I ’ m supporting the command, so
you can execute it when the user clicks on the menu item, and also it is enabled on the UI. ”

 Exec checks again if only the supported command is to execute. Then it shows the message box and
signals that the command has been handled. The handle fl ag is important. Visual Studio can send the
command to one or more add - ins (to all that support the command). If one command does not set
the handle fl ag (it can leave false intentionally), the next add - in also has the chance to handle it.

 Managing and Loading Add - Ins

 The Add - In Wizard generated two confi guration fi les with the .AddIn extension and puts them in the
project. One of them, MySimpleAddIn.AddIn , is put into the same directory as the Connect.cs fi le.
The other one is put into your user profi le under the Documents\Visual Studio 10\Addins folder.
This confi guration fi le is used by Visual Studio 2010 to obtain information about your add - in, and
create the required information in the registry to load the related COM component.

 Starting the add - in results in launching a second instance of Visual Studio with the add - in installed.
Figure 6 - 23 shows the Debug properties of the project that cause this second instance to launch:

➤

 FIGURE 6 - 23: Debug properties of the add - in

Creating Visual Studio Add - Ins ❘ 237

CH006.indd 237CH006.indd 237 9/6/10 4:48:13 PM9/6/10 4:48:13 PM

238 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 You can see the devenv.exe is started with the /resetaddin MySimpleAddIn.Connect command
line. This option set causes Visual Studio to reset all the settings for the add - in at startup time.
Visual Studio then processes the .AddIn confi guration fi les in the folders set up for add - in discovery.
You can go to the Tools ➪ Options dialog, and, in the Add - in/Macros security page of the
Environment category, all these paths are listed.

 Listing 6 - 2 shows what is in the .AddIn fi le used for testing.

 LISTING 6 - 2: MySimpleAddIn — for Testing.AddIn

 < ?xml version=”1.0” encoding=”UTF-16” standalone=”no”? >
 < Extensibility xmlns=”http://schemas.microsoft.com/AutomationExtensibility” >
 < HostApplication >
 < Name > Microsoft Visual Studio < /Name >
 < Version > 10.0 < /Version >
 < /HostApplication >
 < Addin >
 < FriendlyName > MySimpleAddIn < /FriendlyName >
 < Description > Demonstrates how a simple add-in works < /Description >
 < Assembly >
 C:\Publications\VS 2010 Six-in-One\Samples\Chapter~CA 6\MySimpleAddIn\
 MySimpleAddIn\bin\Project1.dll
 < /Assembly >
 < FullClassName > MySimpleAddIn.Connect < /FullClassName >
 < LoadBehavior > 1 < /LoadBehavior >
 < CommandPreload > 1 < /CommandPreload >
 < CommandLineSafe > 0 < /CommandLineSafe >
 < /Addin >
 < /Extensibility >

 Visual Studio can read all the settings from here to register the COM information of the add - in.
Table 6 - 4 summarizes the meaning of information nodes nested into the < HostApplication > and
 < AddIn > nodes. The schema defi ning the structure of .AddIn fi les contains other nodes, but they are
not addressed here.

 NODE DESCRIPTION

 < Name > Specifi es the name of the application hosting the add - in. “ Microsoft

Visual Studio ” means the main Visual Studio IDE, while “ Microsoft Visual

Studio Macros ” stands for the Macros IDE.

 < Version > Sets the version of the host application. Visual Studio 2010 uses the

value 10.0, while Visual Studio 2008 uses 9.0.

 < FriendlyName > This name is displayed in the Add - In Manager.

 < Description > This description appears in the Add - In Manager for the add - in.

 < Assembly > The name and full path of assembly encapsulating the add - in.

TABLE 6-4: Information Nodes in the .AddIn File

CH006.indd 238CH006.indd 238 9/6/10 4:48:14 PM9/6/10 4:48:14 PM

 Using the Automation Model

 Visual Studio has its own automation model to access functionality through COM objects. The
automation is provided through the Development Tools Extensibility (DTE) API that has been a
part of Visual Studio (but not part of the VS SDK) for a long time. The key to the extensibility of
Visual Studio is DTE. Even the fi rst version of Visual Studio .NET (released in April, 2002) had an
extensibility project type called Visual Studio Add - in that still remains in Visual Studio 2010.

 Visual Studio macros and add - ins heavily use the automation object model of DTE, and packages also
obtain value through the automation model. Having a good overview of this model and knowing where
to look it up for certain tasks is a key to add - in development (as well as for macro programming).

 The full graph of automation model hierarchy contains almost two hundred objects with many
important methods and properties. This discussion does not examine all types, or even the most
important ones. Instead of going into detail, this discussion provides starting points so that you will
be able to discover the object model yourself.

 Table 6 - 5 summarizes a functional grouping of object types, and recommends a few types and

properties to start with. Here, “ properties ” refers to the ones belonging to the DTE object type.

 NODE DESCRIPTION

 < FullClassName > This is the fully qualifi ed name of the class implementing the add - in.

Visual Studio uses this type to load the COM object, so naming your class

in the code editor also requires changing the class name here.

 < LoadBehavior > This value determines whether or not the add - in is loaded at Visual Studio

startup time. 0 specifi es that the add - in must be started manually, because

the IDE does not load it. 1 means the IDE loads the add - in at startup time.

 < CommandPreload > This fl ag specifi es whether the add - in should be loaded to set up its UI at

the fi rst time when Visual Studio starts. The value of 1 means UI setup is

requested; 0 means it is not necessary.

 < CommandLineSafe > Determines if the add - in can be loaded when Visual Studio is launched in

command - line mode. 0 means that the add - in will display modal user interface

and so may block devenv.exe . 1 means the add - in does not display UI.

 FUNCTIONAL PART DESCRIPTION

 Integrated Development

Environment

 Objects helping in the general management of the IDE.

 Properties include AddIns , ActiveWindow , CommandBars ,

 Commands , ContextAttributes , DisplayMode , Macros ,

 MainWindow , Mode , SelectedItems , StatusBar , ToolWindows ,

 WindowConfigurations , and Windows .

TABLE 6-5: Functional Parts of the Automation Model

continues

Creating Visual Studio Add - Ins ❘ 239

CH006.indd 239CH006.indd 239 9/6/10 4:48:14 PM9/6/10 4:48:14 PM

240 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 FUNCTIONAL PART DESCRIPTION

 Types include AddIn , CommandBar , Command , Macros ,

 OutputWindow , OutputWindowPanes , OutputWindowPane ,

 SelectedItems , TaskList , TaskItems , TaskItem , ToolBox ,

 ToolBoxTabs , ToolBoxTab , ToolBoxItems , ToolBoxItem ,

 StatusBar , and Window .

 Solution model

 Automation objects describing and managing the full project.

hierarchy you can see in the Solution Explorer.

 Properties include ActiveSolutionProjects , Globals , and

 Solution .

 Types include Globals , Solution , Projects , Project ,

 ProjectItems , and ProjectItem .

 Document and Editor model

 Object types managing the documents and text editors in the IDE.

 Properties include ActiveDocument .

 Types include Document , TextDocument , TextSelection ,

 TextPoint , EndPoint , TextRanges , TextRange , and

 VirtualPoint .

 Code model

 Object types helping you to work with source code fi les. By using

this type, you can access smaller parts of the source code.

 Types include CodeElements , CodeElement , FileCodeModel ,

 CodeModel , CodeType , CodeNamespace , CodeStruct ,

 CodeInterface , CodeClass , CodeEnum , CodeVariable ,

 CodeDelegate , CodeProperty , CodeFunction , and

 CodeParameter .

 Debugger model

 This part of the model allows you access to manage the debugger

and debugging environment.

 Properties include Debugger , and Frame .

 Types include BreakPoints , BreakPoint , Debugger ,

 Expressions , Expression , Processes , Process , Programs ,

 Program , Threads , Thread , StackFrames , and Stack .

 Build model

 This part of the object model helps to manage build operations

and confi gurations for projects and solutions.

 Types include SolutionBuild , BuildDependencies ,

 BuildDependency , SolutionConfigurations ,

 SolutionConfiguration , SolutionContexts , and

 SolutionContext .

TABLE 6-5 (continued)

CH006.indd 240CH006.indd 240 9/6/10 4:48:15 PM9/6/10 4:48:15 PM

 Going on with Add - In Development

 Creating add - ins is the most popular form of developing Visual Studio extensions. When you surf
the web for utilities and small tools to integrate with Visual Studio, a majority of the resulting hits
are implemented as an add - in. This book merely scratches the surface of the topic.

 To dive deeper into this kind of extensibility, you defi nitely need more knowledge and experience in
the following areas:

 Using the DTE automation model

 Understanding the command and tool window architecture of Visual Studio

➤

➤

 FUNCTIONAL PART DESCRIPTION

 IDE Events

 Objects allowing access to events in the Visual Studio IDE. By

subscribing to these events, you are able to respond to them.

 Properties include Events , TaskListEvents ,

 TextEditorEvents , and WindowEvents .

 Types include Events , BuildEvents , CommandEvents ,

 DocumentEvents , DTEEvents , FindEvents ,

 ProjectItemEvents , OutputWindowEvents , SelectionEvents ,

 SolutionEvents , and ProjectItemsEvents .

 Miscellaneous types

 Helper objects and objects not belonging to any of the previous

categories.

 Properties include ItemOperations , MacrosIDE ,

 ObjectExtenders , Properties , SourceControl , and

 UndoContext .

 Types include ItemOperations , ObjectExtenders , Properties ,

 Property , UndoContext , UIHierarchy , UIHierachyItems , and

 UIHierarchyItem .

 The types and properties in Table 6 - 5 can be used as keywords to search MSDN
to fi nd the appropriate topic. If you want to see the full graph of automation
objects, you should search MSDN with the “ Automation Object Model Chart ”
expression. Select an item from the top of the result list. Visual Studio reference
information pages are designed so that you can switch from any reference page
to the right Visual Studio/.NET Framework version with a simple click. Should
the page you clicked in the result list belong to a former Visual Studio version,
you could switch to the Visual Studio 2010/.NET 4 version.

Creating Visual Studio Add - Ins ❘ 241

CH006.indd 241CH006.indd 241 9/6/10 4:48:15 PM9/6/10 4:48:15 PM

242 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Getting familiar with the most frequently used services of Visual Studio

 Deploying add - ins

➤

➤

 If you want to get more information on add - in development, check out the
book Professional Visual Studio Extensibility by Keyvan Nayyeri (Indianapolis:
Wiley, 2008).

 If you feel you want even more than what is available with Visual Studio add - ins, and you want to
create more complex extensions, Visual Studio packages will be your best friends.

 VISUAL STUDIO PACKAGES IN A NUTSHELL

 The most powerful way to develop Visual Studio extensions is integrating Visual Studio packages
(VSPackages) into the IDE. These packages are not limited to using the automation model, or only
to a few core services, but can access the whole infrastructure of Visual Studio just like the packages
created by the development team at Microsoft.

 This book does not go into great detail about VSPackage development, but instead provides a
general overview. To examine the most important concepts in the right context, let ’ s build a very
simple functional package just to scratch the surface.

 Creating a Package with a Simple Menu Command

 A VSPackage is a class library containing the types responsible for the package infrastructure
and functionality. In order for Visual Studio to recognize the compiled class library as a
package, encapsulated types should have specifi c metadata information, and some additional
steps are required after compilation. So, even if you could start building a package from
an empty class library, it is much easier to use the VSPackage wizard installed with the
VS SDK.

 Using the VSPackage Wizard

 Start a new project with the File ➪ New ➪ Project menu function. The IDE displays the New File
dialog to select the desired project type. You can fi nd the Visual Studio Integration Package
project type under the Other Project Types category in the Extensibility folder, as shown in
Figure 6 - 24.

CH006.indd 242CH006.indd 242 9/6/10 4:48:21 PM9/6/10 4:48:21 PM

 Name the package SimplePackage so that you can follow the code details later in this chapter.
Click the OK button to start the Visual Studio Integration Package Wizard (which will be referred
to as the VSPackage wizard), which welcomes you with the dialog shown in Figure 6 - 25.

 FIGURE 6 - 24: The New Project dialog with the Extensibility project types

 If you do not fi nd this project type (or many other project types) in the
 Extensibility folder, that means that the VS SDK is not (or not properly)
installed on your machine. Install it according to the setup notes to go on with
building the package.

 FIGURE 6 - 25: The Welcome page of the VSPackage wizard

Visual Studio Packages in a Nutshell ❘ 243

CH006.indd 243CH006.indd 243 9/6/10 4:48:26 PM9/6/10 4:48:26 PM

244 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Click the Next button to continue specifying the package parameters, and you see the “ Select a
Programming Language ” page of the wizard, as shown in Figure 6 - 26.

 FIGURE 6 - 27: The wizard asks for the basic package information

 FIGURE 6 - 26: VSPackage wizard lets you select the programming language

 Let ’ s create the code in C#. Packages are strongly named assemblies, so you must sign the class
library assembly with a key. For this project, let the wizard create the signing key. Click Next to get
to the Basic VSPackage Information page, as shown in Figure 6 - 27.

CH006.indd 244CH006.indd 244 9/6/10 4:48:32 PM9/6/10 4:48:32 PM

 The information you provide here will be used in the source code generated for the package, and will
be displayed in the About dialog. The “ Company name ” will be used in the namespace of generated
types, as well as the “ VSPackage name, ” which also names the class representing the package in code.
The “ VSPackage version ” is additional information to provide a way for distinguishing separate
package releases. Text typed in the “ Detailed information ” fi eld will be displayed in the About dialog,
and can supply the user with more information than the name about what the package does.

 When you click the Next button, the wizard moves you to the VSPackage Options page (Figure 6 - 28)
to set a few more code - generation options.

 FIGURE 6 - 28: You can select a few code generation options

 In this sample, you will create only a menu command that pops up a message on the screen, so you
click the Menu Command option. If you selected the Tool Window option, the VSPackage wizard
would create some more code for a simple tool window, and code to display it on the screen. For this
exercise, leave that option and the Custom Editor option unchecked.

 Click the Next button and the wizard goes to the page where you specify a few details about the
menu command to create, as shown in Figure 6 - 29.

 The command will be added to the Tools menu of Visual Studio, and in “ Command name ” fi eld,
you specify the text to be displayed for the menu item. According to the internal command - handling
architecture, each command has an identifi er. The Command ID fi eld supplies a name for this
identifi er, and the VSPackage wizard will generate an ID value behind this name.

 When you click Next, the wizard moves to the Select Test Project Options page, as shown in
Figure 6 - 30.

Visual Studio Packages in a Nutshell ❘ 245

CH006.indd 245CH006.indd 245 9/6/10 4:48:32 PM9/6/10 4:48:32 PM

246 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The wizard can create unit tests for the package to check if functional units of the package work
properly. The wizard also can create an integration test project where packages are tested within the
context of a Visual Studio instance.

 For this example, you do not want to create any tests, so let ’ s clear these options (by default, both
are checked). Now, you have set all the parameters the wizard uses to produce the package project,
so click the Finish button.

 FIGURE 6 - 29: Command options are specifi ed here

 FIGURE 6 - 30: The VSPackage wizard asks for test project options

CH006.indd 246CH006.indd 246 9/6/10 4:48:33 PM9/6/10 4:48:33 PM

 In a few seconds, the wizard generates the package project ready to build and run. With the Build ➪
Rebuild Solution function, you can compile the package and carry out all other steps required to
prepare the package to run within Visual Studio. So, let ’ s rebuild it and start by pressing Ctrl + F5
(or selecting Debug ➪ Start Without Debugging).

 You might be surprised because a new instance
of Visual Studio is started with “ Experimental
Instance ” in its window caption. This is an instance
of Visual Studio that hosts the SimplePackage
component. The menu command implemented by this
freshly generated package can be seen in the Tools
menu, as shown in Figure 6 - 31.

 Source Code Structure

 Nothing tells more about VSPackage than its source code, so let ’ s look at what the VSPackage
wizard generated for you. The wizard generated the code according to the parameters you specifi ed,
and it performed a lot of work in the background:

 It generated a class library project in C#.

 It added references to this project for the interoperability assemblies required to access
Visual Studio functionality.

 It created resources used by the package and other resources used by the registration
process.

 It added new MSBuild targets to the project to support the build and registration process of
the package.

 It generated types responsible for implementing the package functionality.

 It set up the debug properties of the project to start Visual Studio Experimental Hive.

 Table 6 - 6 summarizes the source fi les in the SimplePackage project.

➤

➤

➤

➤

➤

➤

 FIGURE 6 - 31: The menu command item appears

in the Tools menu

 SOURCE FILE DESCRIPTION

 source.extension

.vsixmanifest

 The VSIX manifest fi le that plays vital role in the discovery and

registration mechanism of Visual Studio extensions.

 GlobalSupressions.cs Attributes used to suppress messages coming from the static code

analysis.

 Guids.cs GUID values used to identify the package and command objects

within the package.

 Key.snk The signing key used to generate the strong name for the package

assembly.

TABLE 6-6: SimplePackage Source Files Generated by the VSPackage Wizard

continues

Visual Studio Packages in a Nutshell ❘ 247

CH006.indd 247CH006.indd 247 9/6/10 4:48:33 PM9/6/10 4:48:33 PM

248 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The wizard added several assemblies to the class library project in addition the ones belonging to a
class library by default. Their names start with the Microsoft.VisualStudio prefi x, and most of
them are interoperability assemblies having Interop in their names. These contain only proxy type
defi nitions to access the core Visual Studio COM service interface and object types.

 Package Type Defi nition

 Now, let ’ s take a look at the source code of the package. The wizard added many useful comments
to the generated source fi les. In the code extracts listed here, those comments have been cut out to
make the listing shorter, and to improve the readability of the code. The indentations also have been
changed a bit for the same purpose.

 Listing 6 - 3 shows the source code of the most important fi le in the project named
 SimplePackagePackage.cs . This fi le implements the type representing the package.

 LISTING 6 - 3: SimplePackagePackage.cs

using System;
using System.Diagnostics;
using System.Globalization;
using System.Runtime.InteropServices;
using System.ComponentModel.Design;
using Microsoft.Win32;
using Microsoft.VisualStudio.Shell.Interop;
using Microsoft.VisualStudio.OLE.Interop;
using Microsoft.VisualStudio.Shell;

namespace DeepDiver.SimplePackage
{
 [PackageRegistration(UseManagedResourcesOnly = true)]
 [InstalledProductRegistration(false, “#110”, “#112”, “1.0”,
 IconResourceID = 400)]

 SOURCE FILE DESCRIPTION

 PkgCmdID.cs Constants for identifying command values.

 Resources.resx A resource fi le to store your functional package resources — resources

you use according to the functions you implement in the package.

 SimplePackage.vsct The command table fi le storing the defi nition of the menus and

commands to be merged into the Visual Studio IDE during the

registration process.

 SimplePackage.cs A class implementing the simple functionality of the package.

 VSPackage.resx A resource fi le to store package infrastructure resources — those

resources that are used by Visual Studio to integrate your package

into the IDE.

TABLE 6-6 (continued)

CH006.indd 248CH006.indd 248 9/6/10 4:48:34 PM9/6/10 4:48:34 PM

 [ProvideMenuResource(“Menus.ctmenu”, 1)]
 [Guid(GuidList.guidSimplePackagePkgString)]
 public sealed class SimplePackagePackage : Package
 {
 public SimplePackagePackage()
 {
 Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,
 “Entering constructor for: {0}”, this.ToString()));
 }

 protected override void Initialize()
 {
 Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,
 “Entering Initialize() of: {0}”, this.ToString()));
 base.Initialize();
 OleMenuCommandService mcs = GetService(typeof(IMenuCommandService))
 as OleMenuCommandService;
 if (null != mcs)
 {
 CommandID menuCommandID = new CommandID(GuidList.guidSimplePackageCmdSet,
 (int)PkgCmdIDList.cmdidExecuteSimpleCommand);
 MenuCommand menuItem = new MenuCommand(MenuItemCallback, menuCommandID);
 mcs.AddCommand(menuItem);
 }
 }

 private void MenuItemCallback(object sender, EventArgs e)
 {
 IVsUIShell uiShell = (IVsUIShell)GetService(typeof(SVsUIShell));
 Guid clsid = Guid.Empty;
 int result;
 Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(uiShell.ShowMessageBox(
 0,
 ref clsid,
 “SimplePackage”,
 string.Format(CultureInfo.CurrentCulture,
 “Inside {0}.MenuItemCallback()”, this.ToString()),
 string.Empty,
 0,
 OLEMSGBUTTON.OLEMSGBUTTON_OK,
 OLEMSGDEFBUTTON.OLEMSGDEFBUTTON_FIRST,
 OLEMSGICON.OLEMSGICON_INFO,
 0, // false
 out result));
 }
 }
}

 Code fi le [SimplePackagePackage.cs] available for download at Wrox.com

 The SimplePackagePackage class becomes a working package by inheriting the behavior defi ned
in the Package class of the Microsoft.VisualStudio.Shell namespace and by using the attributes
decorating the class defi nition.

Visual Studio Packages in a Nutshell ❘ 249

CH006.indd 249CH006.indd 249 9/6/10 4:48:34 PM9/6/10 4:48:34 PM

250 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The Package base class implements the IVsPackage interface required by Visual Studio to take an
object into account as a package. This interface provides a few methods managing the life cycle of
a package and also offers methods to access package - related objects such as tool windows, options
pages, and automation objects.

 The overridden Initialize method is called after the package has been successfully sited in the
Shell through the IVsPackage interface. This method must do all the initialization steps that
require access to services provided by the Shell or other packages. Should you move this code to the
package constructor, you probably would get a NullReferenceException because, at that point,
all attempts to access the Shell would fail because the package is not yet sited, and actually has no
contact with any Shell objects.

 In this case, the Initialize method binds the single menu command provided by the package with
its event handler method called MenuItemCallback :

protected override void Initialize()
{
 Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,
 “Entering Initialize() of: {0}”, this.ToString()));
 base.Initialize();

 // Add our command handlers for menu (commands must exist in the .vsct file)
 OleMenuCommandService mcs = GetService(typeof(IMenuCommandService))
 as OleMenuCommandService;
 if (null != mcs)
 {
 // Create the command for the menu item.
 CommandID menuCommandID = new CommandID(GuidList.guidSimplePackageCmdSet,
 (int)PkgCmdIDList.cmdidExecuteSimpleCommand);
 MenuCommand menuItem = new MenuCommand(MenuItemCallback, menuCommandID);
 mcs.AddCommand(menuItem);
 }
}

 First, you call the Initialize method of the base class — Package , in this case. Look at the call
of GetService . If you could select a method that is especially important when creating Visual
Studio packages, probably the GetService method would be your choice. This method has one type
parameter (call it service address) that retrieves a service object implementing the service interface
specifi ed by the address type.

 You obtain an OleMenuCommandService instance that you can use to bind event handlers to
 command objects . So, you create a CommandID instance to address the command you put into
the Tools menu, and then you instantiate a MenuCommand object to assign the MenuItemCallback
method as a response for the command specifi ed with the CommandID instance. The result of this
short initialization code is that the package handles the event when the user clicks on the Simple
Command menu item in the Tools menu by executing the MenuItemCallback method, which uses
the IVsUIShell service to pop up a message box from within the IDE.

 As mentioned, packages are COM objects that are registered with Visual Studio to support the
on - demand loading mechanism and allow merging menus and toolbars into the user interface of

CH006.indd 250CH006.indd 250 9/6/10 4:48:34 PM9/6/10 4:48:34 PM

the IDE. The information to be registered is created during the build process from attributes
assigned to the package class:

[PackageRegistration(UseManagedResourcesOnly = true)]
[InstalledProductRegistration(false, “#110”, “#112”, “1.0”, IconResourceID = 400)]
[ProvideMenuResource(“Menus.ctmenu”, 1)]
[Guid(GuidList.guidSimplePackagePkgString)]
public sealed class SimplePackagePackage : Package
{
 // ...
}

 Table 6 - 7 summarizes the role of the attributes used by Visual Studio to integrate the package into

the IDE.

 ATTRIBUTE DESCRIPTION

 PackageRegistration Adding this attribute to the class, the build process will

handle it as a package, and looks for other attributes

to prepare the package registration according to

your intention. In this example, this attribute sets the

 UseManagedResourcesOnly fl ag to tell that all resources

used by the package are described in the managed

package, not in a satellite DLL.

 InstalledProductRegistration This attribute is responsible for providing information to

be displayed in the Help ➪ About dialog in the IDE. The

constructor of this attribute takes parameters describing the

resources holding the information to be displayed.

These resources are defi ned in the VSPackage.resx fi le.

 ProvideMenuResource This attribute creates registry entries about menu and

toolbar items provided by the package. Visual Studio uses

the embedded resources here to merge the package menus

into the Visual Studio menus.

 Guid Packages are COM objects, and so they must have a GUID

uniquely identifying them. The Guid attribute is used by the

.NET framework to assign this GUID value to a type.

TABLE 6-7: Attributes Decorating the Package Class

 For more information about the many other registration attributes, look up the
VS SDK reference documentation to get more details about them.

Visual Studio Packages in a Nutshell ❘ 251

CH006.indd 251CH006.indd 251 9/6/10 4:48:35 PM9/6/10 4:48:35 PM

252 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The Command Table

 The wizard generated a fi le named SimplePackage.vsct . This is an XML fi le, and the fi le
extension refers to the acronym coming from the Visual Studio Command Table (VSCT) expression.
The schema of the XML fi le defi nes the command table owned by the package.

 The command table is transformed into a binary format during the build process, and is embedded
into the package assembly as a resource. During the registration phase, the ID of this resource is
put into the registry. When Visual Studio starts, it loads this binary resource information and
merges it with the menus of the IDE, including toolbars and context menus. To avoid menu merges
every time Visual Studio is launched, the IDE uses a cache mechanism, and carries out the merge
process only once for each package.

 Listing 6 - 4 shows the command table of the sample package. All comments placed into the generated
fi le have been removed from this listing to save space. You should read those comments in the
generated .vsct fi le because they will help you better understand the structure of the command table.

 LISTING 6 - 4: SimplePackage.vsct

 < ?xml version=”1.0” encoding=”utf-8”? >
 < CommandTable xmlns=”http://schemas.microsoft.com/VisualStudio/~CA
 2005-10-18/CommandTable” xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

 < Extern href=”stdidcmd.h”/ >
 < Extern href=”vsshlids.h”/ >
 < Extern href=”msobtnid.h”/ >

 < Commands package=”guidSimplePackagePkg” >
 < Groups >
 < Group guid=”guidSimplePackageCmdSet” id=”MyMenuGroup” priority=”0x0600” >
 < Parent guid=”guidSHLMainMenu” id=”IDM_VS_MENU_TOOLS”/ >
 < /Group >
 < /Groups >

 < Buttons >
 < Button guid=”guidSimplePackageCmdSet” id=”cmdidExecuteSimpleCommand”
 priority=”0x0100” type=”Button” >
 < Parent guid=”guidSimplePackageCmdSet” id=”MyMenuGroup” / >
 < Icon guid=”guidImages” id=”bmpPic1” / >
 < Strings >
 < CommandName > cmdidExecuteSimpleCommand < /CommandName >
 < ButtonText > Simple Command < /ButtonText >
 < /Strings >
 < /Button >
 < /Buttons >

 < Bitmaps >
 < Bitmap guid=”guidImages” href=”Resources\Images_32bit.bmp”
 usedList=”bmpPic1, bmpPic2, bmpPicSearch, bmpPicX, bmpPicArrows”/ >
 < /Bitmaps >
 < /Commands >

CH006.indd 252CH006.indd 252 9/6/10 4:48:40 PM9/6/10 4:48:40 PM

 < Symbols >
 < GuidSymbol name=”guidSimplePackagePkg”
 value=”{f64159de-acd9-4208-b176-068fb137557c}” / >
 < GuidSymbol name=”guidSimplePackageCmdSet”
 value=”{65a60456-eb59-4227-a8ec-d3f292cbd49f}” >
 < IDSymbol name=”MyMenuGroup” value=”0x1020” / >
 < IDSymbol name=”cmdidExecuteSimpleCommand” value=”0x0100” / >
 < /GuidSymbol >
 < GuidSymbol name=”guidImages” value=”{408845d6-7a42-48b8-8d1a-9f023317b71d}” >
 < IDSymbol name=”bmpPic1” value=”1” / >
 < IDSymbol name=”bmpPic2” value=”2” / >
 < IDSymbol name=”bmpPicSearch” value=”3” / >
 < IDSymbol name=”bmpPicX” value=”4” / >
 < IDSymbol name=”bmpPicArrows” value=”5” / >
 < /GuidSymbol >
 < /Symbols >

 < /CommandTable >

 Code fi le [SimplePackage.vsct] available for download at Wrox.com

 The .vsct fi le tells a lot about how Visual Studio is architected, how it solves the coupling of
functions (commands), and user interface elements.

 Commands (actions to execute) are separated from the user interface element triggering the
command. The same command can be assigned to different menus and toolbars. They will
use the same action.

 Commands used together can be grouped and simply merged into existing menus by using
the command group representation. It is much easier than coupling commands with hosting
menus one - by - one.

 Elements are identifi ed by symbols rather than using explicit values. This makes the
coupling less error - prone. Values of symbols must be defi ned only once, and the VSCT
compiler can check for mistyping.

 The root element of a .vsct fi le is the CommandTable element. As you can see, all related elements
are defi ned by the http://schemas.microsoft.com/VisualStudio/2005 - 10 - 18/CommandTable
namespace. No doubt, the most important element is Commands , because this node defi nes
commands, their initial layout, and behavior.

 Any command in the Visual Studio IDE must belong to the IDE itself or to a package. To assign a
command to the appropriate (owning) package, the package attribute of the Commands element must
name the GUID of the corresponding package.

 The Commands node can have a few child elements; each has a very specifi c role.

 Group elements defi ne command groups , each of which is a logical set of related commands that
visually stand together. In the preceding .vsct fi le, you have a Group element that holds only a Button .
A button represents a piece of a user interface element the user can interact with — in this case, a menu
item that can be clicked. The Parent element defi nes the relationship between elements — for example,
the Button element defi ned earlier is parented in the Group .

 Toolbars and menus would be poor without icons to help the user associate a small image with the
function. The Bitmap nodes allow defi ning the visual elements (icons) used in menus.

➤

➤

➤

Visual Studio Packages in a Nutshell ❘ 253

CH006.indd 253CH006.indd 253 9/6/10 4:48:41 PM9/6/10 4:48:41 PM

254 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The Symbols section is a central place in the command table fi le where you can defi ne the identifi ers
to be used in the other parts of the .vsct fi le. You can use the GuidSymbol element to defi ne the
 “ logical container GUID, ” and the nested IDSymbol elements to provide optional identifi ers within
the logical container. The name and the value attribute of these elements do exactly what you would
expect — associate the symbol name with its value.

 Debugging the Package

 Sooner or later, you fi nd yourself debugging a package and searching for a bug. Debugging
techniques are out of the scope of this book. However, the following discussion shows how can you
debug your package and what is going on behind the scenes.

 To debug or run a package, you should set it as the startup project. If your package is the only
project is the solution, it is already marked as such. If you have more projects in the solution, you
should mark any VSPackage project as the startup project.

 Independently of whether you run a package with or without debugging, the Visual Studio
Experimental Hive is started. You can check it on the project property pages on the Debug tab.
Figure 6 - 32 shows it for the SimplePackage project.

 FIGURE 6 - 32: Debug properties of a package

 You can see that devenv.exe is selected as the startup project, and it is launched with the
 /rootsuffix Exp command - line parameters. This command line starts the Experimental Hive.

CH006.indd 254CH006.indd 254 9/6/10 4:48:41 PM9/6/10 4:48:41 PM

 When you start the project with Start Debugging (by pressing F5), Visual Studio attaches the
debugger to the Experimental Hive instance, and so you can set breakpoints in Visual Studio. As
your package running in the Experimental Hive reaches a breakpoint, you are taken back to the
Debug view, as shown in Figure 6 - 33. In this case, a breakpoint was set within the Initialize
method of the package class.

 FIGURE 6 - 33: Debugging a package

 You can use the same techniques for debugging a VSPackage as for any other application. All
debugging features of Visual Studio are accessible. You can watch variables, evaluate expressions,
set up conditional breakpoints, and so on.

 EXTENDING THE NEW EDITOR

 The new code editor of Visual Studio 2010 is not just a piece of the Shell that is re - architected to
leverage WPF technology and managed code. It is also a great subject of extensibility. Extending
the behavior of the old code editor (built into Visual Studio 2005 or 2008) was painful because of the
lack of documentation and complex interfaces.

 This is no longer true for the new editor. Using the templates provided by the VS SDK, it takes just a
few clicks to create a working skeleton of an extensible editor component.

Extending the New Editor ❘ 255

CH006.indd 255CH006.indd 255 9/6/10 4:48:42 PM9/6/10 4:48:42 PM

256 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Extending the Editor with the Managed

Extensibility Framework

 The key technology enabling the creation of custom editor components new in .NET 4 is the
 Managed Extensibility Framework (MEF). The MEF is not a part of Visual Studio 2010. However,
Visual Studio 2010 is one of the fi rst Microsoft products that uses the MEF. The following
discussion does not go into great detail about the MEF, but does provide a very brief overview to
help you understand what it is and how it works.

 Simply said, the MEF as a technology is intended to enable greater reuse of applications and
components by turning today ’ s statically compiled applications into dynamically composed ones.

 Why is this dynamic composition so important? If you create applications from smaller independent
parts, you can architect the application so that responsibilities are better divided. According to these
responsibilities, you can separately test your parts, fi nd bugs, and correct them. It is easier to handle
these small parts individually than all of the pieces together, and (as you can imagine) it is easier to
maintain them. However, the big issue is how to roll together these individual parts to form a whole
application.

 This is what the MEF does — parts declare their intention to work together with other pieces, and
the MEF pulls all these parts together to form the application.

 In the case of extending the Visual Studio 2010 Editor, the host application is Visual Studio, and
the custom editor components are the parts to be composed dynamically with the editor within the
IDE. The intention of parts for cooperation can be one of the following:

 A part can offer some functionality to be used by the host.

 A part wants to use some services implemented by the host.

 A combination of these two.

 The MEF uses .NET attributes to express the intention for cooperation. These attributes can be
found in the System.ComponentModel.Composition namespace.

 Using Export Attributes

 The intention that a component offers a service to be consumed by other components is expressed
with the Export attribute. For example, if you have an abstract service described with the
 IGreetings interface that contains a SayHello method, a custom part accessible from other MEF -
 aware components looks like this:

[Export(typeof(IGreetings))]
class SimpleGreeting : IGreetings
{
 public string SayHello()
 {
 return “Hello from Visual Studio 2010”;
 }
}

➤

➤

➤

CH006.indd 256CH006.indd 256 9/6/10 4:48:43 PM9/6/10 4:48:43 PM

 The parameter of the Export attribute defi nes the contract the component satisfi es. When the MEF
composes the parts of the application, it uses this attribute to recognize that SimpleGreeting
satisfi es the IGreetings contract. When any other component or the host application queries the
 composition container for parts supporting the IGreetings contract, SimpleGreeting is also
retrieved. Later in this chapter, you will see concrete examples of how to use Export to proffer parts
implementing custom editor extensions.

 Accessing Services with Import Attribute

 Generally, composable parts not only offer functions to other parts, but also intend to use services
provided by other parts. This intention is expressed with the Import attribute.

 Let ’ s assume that you want to modify the SimpleGreeting component so that it can work together
with an IContextInfo contract - aware component, like UserInfo in the following declaration:

[Export(typeof(IContextInfo))]
class UserInfo: IContextInfo
{
 public IDictionary < string, string > GetContextInfo()
 {
 return new Dictionary < string, string >
 { {“UserName”, Environment.UserName } };
 }
}

 The IContextInfo is a service from SimpleGreeting ’ s point of view, and this is expressed like this:

[Export(typeof(IGreetings))]
class SimpleGreeting : IGreetings
{
 [Import(typeof(IContextInfo))]
 IContextInfo ContextInfo { get; set; }

 public string SayHello()
 {
 string userName;
 var props = ContextInfo.GetContextInfo();
 props.TryGetValue(“UserName”, out userName);
 return “Hello “ + (userName ?? “ < null > ”) + “ from Visual Studio 2010”;
 }
}

 The Import attribute here is applied on the ContextInfo property, which is used in the SayHello
method. The MEF takes care during the composition phase that ContextInfo will be set up and
does not remain uninitialized.

 The Visual Studio editor proffers about three dozen services that can be accessed using the pattern
just described. Later in this chapter, you ’ ll see a sample to learn how the editor ’ s classifi cation type
registry service is consumed.

Extending the New Editor ❘ 257

CH006.indd 257CH006.indd 257 9/6/10 4:48:43 PM9/6/10 4:48:43 PM

258 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Metadata Attributes

 In many cases, it may be necessary to associate information with proffered or consumed services.
Often, the information is used to explain the capabilities of a specifi c implementation of a common
contract. Also, this information can be used to determine which implementation of a contract
should be used during the composition phase.

 Let ’ s assume that you provided more than one service implementation for the earlier IContextInfo
contract. How can the MEF decide which one should be used? If you do not support some
other information helping the MEF in composition, it will not do the match - making between
 IContextInfo services and consumers.

 The MEF allows attaching metadata attributes to services and consumers — to owners of Export
and Import attributes. The Visual Studio editor uses these metadata attributes heavily for many
purposes, including the following:

 Providing information that is displayed in the IDE about the editor extension (for example,
in the Fonts and Colors options dialog)

 Determining the order in which competing components (that is, components implementing
the same contract) should be applied

 Where user interface elements like custom margins should be placed in the IDE

 Assigning information to the components in order to provide a way to reference them from
other components

 Just as for Export and Import attributes, you will see concrete metadata attributes in the custom
editor classifi er sample later in this chapter.

 Editor Extensibility Points

 The Visual Studio 2010 editor provides about a dozen extensibility points where developers can
add their own components to change or extend the default behavior. Although this book does not
examine editor extensions in detail, Table 6 - 8 lists the major extensibility points to help you imagine
what sorts of options you have when thinking about altering the default behavior of the code editor.

➤

➤

➤

➤

 EXTENSIBILITY POINT DESCRIPTION

 Content type defi nition

 The text behind the code editor is always associated with a content type .

The content type determines how specifi c text should be handled in the

editor. For example, diff erent syntax coloring should be used for texts

having “ CSharp ” content type than the ones having “ Basic. ” Most editor

extensions are associated with a content type to defi ne where to use them.

 Content types form a hierarchy having the “ text ” type as the root. Content

type extensibility means that developers can defi ne their own content types,

and put it into this hierarchy.

TABLE 6-8: Major Editor Extensibility Points

CH006.indd 258CH006.indd 258 9/6/10 4:48:44 PM9/6/10 4:48:44 PM

 EXTENSIBILITY POINT DESCRIPTION

 Classifi er provider

 The parts (spans) of text in the editor can be classifi ed to assign with

some special formatting, such as syntax coloring used in C# or VB. A

 classifi cation provider is a component that understands how certain parts

of the text should be assigned with classifi cation types . C# keywords and

VB comments are both good examples of classifi cation types.

 Developers can create their customized providers to classify the text

using either the built - in ones provided, or their own classifi cation types.

 Tagger providers

 The parts (spans) of text can be associated with arbitrary data called a

 text tag . Tagger providers are extensions that can analyze the text and

associate spans with tags. This mechanism is used by Visual Studio to

display code errors and text markers.

 Developers can create their own providers to add custom data (for

example, some information used for refactoring) to text spans.

 Tags are associated with the text behind the editor, and do not have a

visible eff ect on rendering. However, tags are heavily used by adornment
providers .

 Adornments

 The greatest new feature of editor extensibility is probably the support for

adornments. These defi ne visual eff ects that can be added either to the

text displayed, or to the editor ’ s text view itself. These adornments can be

any WPF UEIement instances, so you can actually create any visual eff ect

WPF supports (including shapes, animations, images, video, and so on).

 Adornments are not just “ eye candy ” that simply add some sugar to

your source code. They can be interactive, and developers can build

actions into them. Using adornments, you can extend the text editor even

with smart - tag - like elements and builders that make your code editing

experience richer and more effi cient than simply typing text.

 Margins and scrollbars

 Margins and scrollbars are the main view elements of the editor, in

addition to the text view itself. The horizontal and vertical scrollbars of

the editor and the line number margin are good examples. They are

implemented through these extension points.

 Developers can provide any number of margins in addition to the

standard margins that appear around the text view, and locate them on

any of the four sides of the text view area.

 IntelliSense extensions Visual Studio ’ s IntelliSense is a general term for a group of features that

provides information and completion for structured text. These features

include statement completion, signature help, Quick Info, and smart

tags. These features are implemented with a common architecture that

contains such roles as broker, session, controller, source, and presenter.

continues

Extending the New Editor ❘ 259

CH006.indd 259CH006.indd 259 9/6/10 4:48:45 PM9/6/10 4:48:45 PM

260 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 When you plan to create some functional editor enhancement, often it cannot be accomplished by
creating a custom component for only one of the extension points outlined previously. You may have
to create more small components working together. For example, if you have a programming library
of your own, you may want to add functions to your editor that recognize types and members of
this library in the code. Then you can add UI elements representing functions accelerating your
coding tasks related to those types and members. This kind of enhancement may require adding
custom components for the following extension points:

 Content type defi nitions representing the types and members of your programming library

 Classifi ers for the types and members (probably a few separate classifi ers, depending on
how you group them functionally or visually)

 Adornments to represent types, members, and related actions

 Optional statement completions, smart tags, and mouse processors

 To create full solutions, you may also have to use your editor extensions together with your own
custom packages (for example, if you want to provide custom options pages or tool windows).

 Creating a Simple Classifi er

 Now, it is time to show how a few of the editor extensibility concepts just discussed can be put into
practice. To illustrate how easy it is to create a custom editor component, let ’ s create a classifi er with
Visual Studio ’ s built - in template, and dig into the source code. After you understand how it works,
you will modify the classifi er so that it will highlight known fi le extensions (such as .cs , .sln ,
 .bmp , and so on) in the editor.

 The VS SDK installs a few project templates to create editor extensions. Use the File ➪ New
 ➪ Project function to start with an editor classifi er. The project template can be found in the
Extensibility category under Visual C# in the Installed Templates tab, as shown in Figure 6 - 34.

➤

➤

➤

➤

 EXTENSIBILITY POINT DESCRIPTION

 Developers can defi ne their own custom implementations for sources

(through source providers), controllers, and presenters. For example,

by creating a custom completion source provider and a presenter, you

can change the list of completions off ered on the screen, and even their

presentation, if you prefer some enhanced view to the default list.

 Mouse processors You can add special handling for mouse input. Your own event

processors can run before and/or after the default event handler, and so

you can change how the editor responds to mouse interactions.

 Drop handlers You can customize the behavior of drag - and - drop operations through

custom drop handlers. You can defi ne your drop handler to handle specifi c

formats (such as bitmaps, HTML, or CSV), or other custom formats.

TABLE 6-8 (continued)

CH006.indd 260CH006.indd 260 9/6/10 4:48:45 PM9/6/10 4:48:45 PM

 Select your solution folder, set the project name to FileAssocClassifier , and then click OK. The
new solution is generated in a few seconds, and the default classifi er is ready to build and start. Start
it with Debug ➪ Start Without Debugging, or by pressing Ctrl+F5.

 Just as in the case of VSPackages, a new Visual Studio instance, the Experimental Hive, is started. Create
a new text fi le by using the File ➪ New ➪ File function. The fi le opens in the document area of Visual
Studio. Type some text into the fi le and you will immediately see the “ magic ” that the editor classifi er
created. The text will have a dark background and the font is underlined, as shown in Figure 6 - 35.

 FIGURE 6 - 34: Creating an Editor Classifi er project

 FIGURE 6 - 35: The default behavior of an editor classifi er

Extending the New Editor ❘ 261

CH006.indd 261CH006.indd 261 9/6/10 4:48:46 PM9/6/10 4:48:46 PM

262 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 What do you see? The template you used to create an editor classifi er generates a simple classifi er
with one classifi cation type named “ ordinary, ” and declares that the full range of the text is
classifi ed as “ ordinary. ” It also creates a classifi cation format that sets the font color of “ ordinary ”
to blue violet, and changes its style be underlined.

 Table 6 - 9 lists the fi les comprising the classifi er project.

 FILE DESCRIPTION

 ClassificationFormat.cs Type defi nition describing what kind of formatting should be used

when the text with the matching classifi cation is displayed.

 ClassificationType.cs Type defi nition representing the classifi cation.

 Classifier.cs File with the classifi cation provider and classifi er defi nitions.

 Classifier_large.png ,

 Classifier_small.png

 Bitmaps used to represent the classifi er in the New Project dialog,

in Extensions Manager, and on Visual Studio Gallery.

 extension.vsmanifest The VSIX manifest fi le used for the deployment of this component.

TABLE 6-9: FileAssocClassifi er Project Files

 The Classifi cation Type

 The editor classifi er template uses only one classifi cation to describe the whole text in the editor as
an instance of this classifi cation. Listing 6 - 5 shows the source code of the static class responsible for
defi ning this singleton classifi cation type.

 LISTING 6 - 5: ClassifationType.cs

using System.ComponentModel.Composition;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;

namespace FileAssocClassifier
{
 internal static class OrdinaryClassificationDefinition
 {
 #region Type definition

 /// < summary >
 /// Defines the “ordinary” classification type.
 /// < /summary >
 [Export(typeof(ClassificationTypeDefinition))]
 [Name(“ordinary”)]
 internal static ClassificationTypeDefinition OrdinaryClassificationType = null;

 #endregion
 }
}

 Code fi le [Classifi cationType.cs] available for download at Wrox.com

CH006.indd 262CH006.indd 262 9/6/10 4:48:46 PM9/6/10 4:48:46 PM

 The OrdinaryClassificationDefinition class is a non - functional type defi nition, and it stands
only for representing metadata for the classifi cation type. The class is defi ned as static just as its only
fi eld OrdinaryClassificationType , which is decorated with the MEF attributes actually defi ning
the “ ordinary ” classifi cation.

[Export(typeof(ClassificationTypeDefinition))]
[Name(“ordinary”)]

 The Export attribute uses the ClassificationTypeDefinition type as its parameter to sign the
related member that satisfi es the contract for a classifi cation type. When composing the extensions
with the editor, this is the contract from which the editor recognizes the classifi cation type. The
 Name attribute is an MEF metadata attribute, and its value obviously is taken into account as
the name of the classifi cation type.

 The preceding code would work if the class were instantiable and not static,
because MEF would discover the classifi cation type contract even in this case.
However, making the class static signs the intention as “ this is a metadata class,
do not instantiate it. ”

 The Classifi er Provider and the Classifi er

 The key element of the classifi cation is the classifi er that bears the brunt of the work. The classifi er
is responsible for analyzing the text span provided by the editor for any classifi cation types it
recognizes. The editor uses the factory pattern to create the working instance of the classifi er
through a classifi er provider . This pattern makes the classifi er instantiation fl exible, because
appropriate classifi er type is not hard - coded, but can be decided during run - time, and allows
avoiding unnecessary instantiation of the classifi er.

 Both classes can be found in the Classifier.cs fi le shown in Listing 6 - 6.

 LISTING 6 - 6: Classifi er.cs

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.Windows.Media;
using Microsoft.VisualStudio.Text;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;

namespace FileAssocClassifier
{

 #region Provider definition
 /// < summary >

continues

Extending the New Editor ❘ 263

CH006.indd 263CH006.indd 263 9/6/10 4:48:47 PM9/6/10 4:48:47 PM

264 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

LISTING 6 - 6 (continued)

 /// This class causes a classifier to be added to the set of classifiers. Since
 /// the content type is set to “text”, this classifier applies to all text files
 /// < /summary >
 [Export(typeof(IClassifierProvider))]
 [ContentType(“text”)]
 internal class OrdinaryClassifierProvider : IClassifierProvider
 {

 /// < summary >
 /// Import the classification registry to be used for getting a reference
 /// to the custom classification type later.
 /// < /summary >
 [Import]
 internal IClassificationTypeRegistryService ClassificationRegistry = null;

 //returns an instance of the classifier
 public IClassifier GetClassifier(ITextBuffer buffer)
 {
 return buffer.Properties.GetOrCreateSingletonProperty < OrdinaryClassifier > (
 delegate { return new OrdinaryClassifier(ClassificationRegistry); });
 }
 }
 #endregion //provider def

 #region Classifier
 /// < summary >
 /// Classifier that classifies all text as an instance of the
 /// OrdinaryClassifierType
 /// < /summary >
 class OrdinaryClassifier : IClassifier
 {
#pragma warning disable 67
 // This event gets raised if a non-text change would affect the classification
 // in some way,
 // for example typing /* would cause the classification to change in C#
 // without directly affecting the span.
 public event EventHandler < ClassificationChangedEventArgs >
 ClassificationChanged;
#pragma warning restore 67

 IClassificationType _classificationType;

 internal OrdinaryClassifier(IClassificationTypeRegistryService registry)
 {
 _classificationType = registry.GetClassificationType(“ordinary”);
 }

 /// < summary >
 /// This method scans the given SnapshotSpan for potential matches for this
 /// classification.
 /// In this instance, it classifies everything and returns each span as a
 /// new ClassificationSpan.
 /// < /summary >
 /// < param name=”trackingSpan” > The span currently being classified < /param >

CH006.indd 264CH006.indd 264 9/6/10 4:48:54 PM9/6/10 4:48:54 PM

 /// < returns >
 /// A list of ClassificationSpans that represent spans identified to be of
 /// this classification
 /// < /returns >
 public IList < ClassificationSpan > GetClassificationSpans(SnapshotSpan span)
 {

 //create a list to hold the results
 List < ClassificationSpan > classifications = new List < ClassificationSpan > ();
 classifications.Add(new ClassificationSpan(new SnapshotSpan(span.Snapshot,
 new Span(span.Start, span.Length)),
 _classificationType));

 return classifications;
 }

 }
 #endregion //Classifier
}

 Code fi le [Classifi er.cs] available for download at Wrox.com

 The OrdinaryClassifierProvider is in the role of the classifi er provider, as its name suggests. The
editor recognizes it as a provider from its defi nition:

[Export(typeof(IClassifierProvider))]
[ContentType(“text”)]
internal class OrdinaryClassifierProvider : IClassifierProvider
{
 // ...
}

 The contract is defi ned by the IClassifierProvider type as the argument of the Export attribute,
and the class also must implement this interface, because it contains the responsibilities of a
classifi er provider. The ContentType metadata attribute specifi es that this provider is bound to the
 “ text ” content type. Because “ text ” is the root of the content types, this provider will be used for
any text fi le, including C#, VB, XML, XAML, and so on.

 The editor uses a classifi cation type registry to store objects defi ning classifi cations. Because the
classifi er will use it, the provider must access this service. The following declaration provides that
this service will be accessed through the ClassificationRegistry fi eld:

 [Import]
 internal IClassificationTypeRegistryService ClassificationRegistry = null;

 As you can see, this fi eld is not initialized at instantiation time. This is where the MEF comes into the
picture again. During the composition phase, the MEF will instantiate an OrdinaryClassifier
Provider and will initialize the ClassificationRegistry fi eld with the appropriate service instance.

 When it is time to use the classifi er, the editor fi rst turns to the classifi er provider by calling its
 GetClassifier method, passing the text buffer and the context information to this method.

Extending the New Editor ❘ 265

CH006.indd 265CH006.indd 265 9/6/10 4:48:54 PM9/6/10 4:48:54 PM

266 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

The text buffer keeps track of its Properties , one of which is stored with the key
 OrdinaryClassifier , and the instance behind is the custom classifi er. The GetClassifier
method ’ s body simply queries the properties of the text buffer for this instance, and, if that cannot
be found, it simply instantiates it with the delegate specifi ed.

return buffer.Properties.GetOrCreateSingletonProperty < OrdinaryClassifier > (
 delegate { return new OrdinaryClassifier(ClassificationRegistry); });

 The fi rst call to GetOrCreateSingletonProperty does the instantiation, and immediately
stores the classifi er instance among the properties. Any subsequent call will result in returning the
classifi er from the Properties collection.

 Note that the classifi cation type registry instance is passed to the classifi er ’ s
constructor.

 Now, let ’ s focus on the OrdinaryClassifier class that is responsible for classifying a span of
text. This class implements the IClassifier interface defi ning the ClassificationChanged
event and the GetClassificationSpans method. The key of the implementation is the method
that takes an immutable span of text (as an instance of SnapshotSpan) and provides a list of
 ClassificationSpan objects describing spans that could be classifi ed with the classifi er.

 The template ’ s default implementation creates one element on the result list that is the full span of
input text declared as one with the “ ordinary ” classifi cation:

public IList < ClassificationSpan > GetClassificationSpans(SnapshotSpan span)
{
 List < ClassificationSpan > classifications = new List < ClassificationSpan > ();
 classifications.Add(new ClassificationSpan(new SnapshotSpan(span.Snapshot,
 new Span(span.Start, span.Length)), _classificationType));
 return classifications;
}

 The “ ordinary ” classifi cation is represented by the _classificationType fi eld initialized in the
class constructor. The constructor uses the classifi cation type registry instance you passed in the
provider.

internal OrdinaryClassifier(IClassificationTypeRegistryService registry)
{
 _classificationType = registry.GetClassificationType(“ordinary”);
}

 As you can see, the classifi er is very simple. One more detail not yet mentioned is the Classification
Changed event. This event is raised when a change outside of a certain text span could change the
classifi cation in the text span. A good example is when you type a C# comment block token (/*). All
the text following this token might change the classifi cation, because former language elements such

CH006.indd 266CH006.indd 266 9/6/10 4:48:54 PM9/6/10 4:48:54 PM

as keywords and identifi ers can become comments. Because this example is simple, this event is not
addressed here.

 The Classifi cation Format

 The last element of the classifi er pattern is the classifi cation format defi ning how a certain
classifi cation should be formatted when the corresponding text is rendered in the editor view. This
type is declared in the ClassificationFormat.cs fi le, as shown in Listing 6 - 7.

 LISTING 6 - 7: Classifi cationFormat.cs

using System.ComponentModel.Composition;
using System.Windows.Media;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;

namespace FileAssocClassifier
{
 #region Format definition
 /// < summary >
 /// Defines an editor format for the OrdinaryClassification type that has a
 /// purple background and is underlined.
 /// < /summary >
 [Export(typeof(EditorFormatDefinition))]
 [ClassificationType(ClassificationTypeNames = “ordinary”)]
 [Name(“OrdinaryText”)]
 //this should be visible to the end user
 [UserVisible(true)]
 //set the priority to be after the default classifiers
 [Order(Before = Priority.Default)]
 internal sealed class OrdinaryFormat : ClassificationFormatDefinition
 {
 /// < summary >
 /// Defines the visual format for the “ordinary” classification type
 /// < /summary >
 public OrdinaryFormat()
 {
 this.DisplayName = “Ordinary Text”; //human readable version of the name
 this.BackgroundColor = Colors.BlueViolet;
 this.TextDecorations = System.Windows.TextDecorations.Underline;
 }
 }
 #endregion //Format definition
}

 Code fi le [Classifi cationFormat.cs] available for download at Wrox.com

 From the previous code snippets you have seen in this chapter, it may be obvious that the Export
attribute with the EditorFormatDefinition type marks the class as one defi ning a classifi cation
format. The base class provides properties that can be set to change the default editor format for the
corresponding classifi cation.

Extending the New Editor ❘ 267

CH006.indd 267CH006.indd 267 9/6/10 4:49:00 PM9/6/10 4:49:00 PM

268 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 The instance constructor simply sets the background color to blue violet, and adds underline to the
font. If you examine the ClassificationFormatDefinition class, you will fi nd other interesting
properties such BackgroundBrush , BackgroundOpacity , FontTypeFace , TextEffects , and many
more.

 In addition to the Export attribute, you can see other metadata attributes that are important for
defi ning the behavior of the classifi cation format. Let ’ s take a look at them.

 The ClassificationType attribute binds the format defi nition with the classifi cation. In this
sample, it means that this format will be assigned only with the “ ordinary ” classifi cation. The
 Name attribute assigns a name that can be used to refer to the format defi nition. The DisplayName
attribute defi nes a name for the format that can be displayed at several places in the IDE. The
 UserVisible attribute allows displaying the format in the Options dialog in the Fonts and Colors
tab, and lets the user change the format set programmatically.

 Nothing prevents a span of text from having more than one classifi cation at the same time. This
is normal, because more classifi ers work on the same text. The editor uses the corresponding
classifi cation formats in a certain order. The Order metadata attribute is used to defi ne the place
of the format in this chain. In this example, it is set so that this format will override the editor ’ s
default format.

 Because the UserVisible attribute of the format defi nition is set to true , you can fi nd and override
the defi nition in the Fonts and Colors dialog, as shown in Figure 6 - 36.

 FIGURE 6 - 36: Classifi er Format defi nition can be overridden

CH006.indd 268CH006.indd 268 9/6/10 4:49:00 PM9/6/10 4:49:00 PM

 Now, when you create a new text fi le and type in some text, you can see that the colors set
programmatically (black foreground and blue violet background) changed according to the Fonts
and Colors dialog settings, as shown in Figure 6 - 37.

 FIGURE 6 - 37: Classifi cation colors changed

 Playing with the Classifi cation

 Now, you should have a basic understanding of classifi ers. Let ’ s modify the code so that the
classifi er recognizes known fi le extensions, and highlights them in the editor. To make this sample a
bit more complex, let ’ s use a separate format for extensions with text and non - text content.

 First, let ’ s defi ne the classifi cation types. Because you want to handle two classifi cation formats, you need
at least two classifi cation types. Listing 6 - 8 shows how the ClassificationType.cs fi le is modifi ed.

 LISTING 6 - 8: The modifi ed Classifi cationType.cs fi le

using System.ComponentModel.Composition;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;

namespace FileAssocClassifier
{
 internal static class TextTypeFileAssocClassificationDefinition
 {
 [Export(typeof(ClassificationTypeDefinition))]
 [Name(“textTypeFileAssoc”)]

continues

Extending the New Editor ❘ 269

CH006.indd 269CH006.indd 269 9/6/10 4:49:01 PM9/6/10 4:49:01 PM

270 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

LISTING 6 - 8 (continued)

 internal static ClassificationTypeDefinition ClassificationType = null;
 }

 internal static class NonTextTypeFileAssocClassificationDefinition
 {
 [Export(typeof(ClassificationTypeDefinition))]
 [Name(“nonTextTypeFileAssoc”)]
 internal static ClassificationTypeDefinition ClassificationType = null;
 }
}

 Code fi le [Classifi cationType.cs] available for download at Wrox.com

 As you can see, nothing special has been done here. The “ ordinary ” type defi nition has simply been
dropped, and two new defi nitions created for the fi le associations with text and non - text types. To
create a different visual appearance for these types, two classifi cation formats should be specifi ed, as
shown in Listing 6 - 9.

 LISTING 6 - 9 The Modifi ed Classifi cationFormat.cs File

using System.ComponentModel.Composition;
using System.Windows.Media;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;

namespace FileAssocClassifier
{
 [Export(typeof(EditorFormatDefinition))]
 [ClassificationType(ClassificationTypeNames = “textTypeFileAssoc”)]
 [Name(“TextContentFormat”)]
 [DisplayName(“(Text Content)”)]
 [UserVisible(true)]
 [Order(Before = Priority.Default)]
 internal sealed class TextContentFormat : ClassificationFormatDefinition
 {
 public TextContentFormat()
 {
 this.ForegroundColor = Colors.DarkGreen;
 }
 }

 [Export(typeof(EditorFormatDefinition))]
 [ClassificationType(ClassificationTypeNames = “nonTextTypeFileAssoc”)]
 [Name(“NonTextContentFormat”)]
 [DisplayName(“(Non-Text Content)”)]
 [UserVisible(false)]
 [Order(Before = Priority.Default)]
 internal sealed class NonTextContentFormat : ClassificationFormatDefinition
 {
 public NonTextContentFormat()
 {
 this.ForegroundColor = Colors.DarkRed;

CH006.indd 270CH006.indd 270 9/6/10 4:49:02 PM9/6/10 4:49:02 PM

 this.TextDecorations = System.Windows.TextDecorations.OverLine;
 }
 }
}

 Code fi le [Classifi cationFormat.cs] available for download at Wrox.com

 The two format defi nitions are very similar to each other. Actually, they differ in their names and in
the text colors they use. You might notice one other slight difference — the NonTextContentFormat
uses a UserVisible attribute with a false value, while TextContentFormat sets it to true . This is
only for a demonstrative purpose to illustrate that NonTextContentFormat will not be displayed in
the Fonts and Colors option dialog.

 While the classifi cation provider type actually remained the same, you must rewrite the classifi er
type, as shown in Listing 6 - 10.

 LISTING 6 - 10: The Completely Changed Classifi er.cs File

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.Windows.Media;
using Microsoft.VisualStudio.Text;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Utilities;
using Microsoft.Win32;
using System.Linq;

namespace FileAssocClassifier
{
 [Export(typeof(IClassifierProvider))]
 [ContentType(“text”)]
 internal class FileAssociationClassifierProvider : IClassifierProvider
 {
 [Import]
 internal IClassificationTypeRegistryService ClassificationRegistry;

 public IClassifier GetClassifier(ITextBuffer buffer)
 {
 return buffer.Properties.
 GetOrCreateSingletonProperty < FileAssociationClassifier > (
 delegate
 {
 return new FileAssociationClassifier(ClassificationRegistry);
 });
 }
 }

 class FileAssociationClassifier : IClassifier
 {
 public event EventHandler < ClassificationChangedEventArgs >
 ClassificationChanged;

 IClassificationType _textClassification;

continues

Extending the New Editor ❘ 271

CH006.indd 271CH006.indd 271 9/6/10 4:49:03 PM9/6/10 4:49:03 PM

272 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

LISTING 6 - 10 (continued)

 IClassificationType _nonTextClassification;
 Dictionary < string, string > _fileAssociations =
 new Dictionary < string, string > ();
 int _maxAssocLength;

 internal FileAssociationClassifier(IClassificationTypeRegistryService registry)
 {
 _textClassification = registry.GetClassificationType(“textTypeFileAssoc”);
 _nonTextClassification =
 registry.GetClassificationType(“nonTextTypeFileAssoc”);
 foreach (var element in
 from item in
 (
 from name in Registry.ClassesRoot.GetSubKeyNames()
 where name.StartsWith(“.”)
 select new
 {
 Name = name,
 RegKey = Registry.ClassesRoot.OpenSubKey(name, false)
 }
)
 select new
 {
 Key = item.Name.ToLower(),
 ContentType = (item.RegKey.GetValue(“Content Type”) ?? “”).ToString()
 })
 _fileAssociations.Add(element.Key, element.ContentType);
 _maxAssocLength = _fileAssociations.Keys.Max(item = > item.Length);
 }

 public IList < ClassificationSpan > GetClassificationSpans(SnapshotSpan span)
 {
 var text = span.Snapshot.GetText(span);
 List < ClassificationSpan > classifications = new List < ClassificationSpan > ();
 int searchOffset = 0;
 do
 {
 int wordStart = text.IndexOf(“.”, searchOffset);
 if (wordStart == -1 || wordStart > = text.Length - 1) break;
 var length = text.Length - wordStart;
 if (length > _maxAssocLength) length = _maxAssocLength;
 string keyFound = null;
 for (int i = length; i > 1; i--)
 {
 var toSearch = text.Substring(wordStart, i).ToLower();
 if (_fileAssociations.ContainsKey(toSearch))
 {
 keyFound = toSearch;
 break;
 }
 }
 if (keyFound == null)
 {
 searchOffset = wordStart + 1;

CH006.indd 272CH006.indd 272 9/6/10 4:49:03 PM9/6/10 4:49:03 PM

 }
 else
 {
 var classificationType = _fileAssociations[keyFound].StartsWith(“text”)
 ? _textClassification
 : _nonTextClassification;
 int wordLength = keyFound.Length;
 classifications.Add(new ClassificationSpan(
 new SnapshotSpan(span.Snapshot,
 new Span(wordStart + span.Start, wordLength)), classificationType));
 searchOffset = wordStart + wordLength;
 }
 }
 while (true);
 return classifications;
 }
 }
}

Code fi le [Classifi er.cs] available for download at Wrox.com

 The classifi er ’ s constructor initializes the classifi cation types and the dictionary of fi le associations.
The _fileAssociations fi eld stores fi le extensions with their content types. This container is
initialized with a LINQ expression that looks up the registry and collects the interesting fi le extensions.
Here you also store the maximum length of registered extensions, because it plays an important role in
the algorithm recognizing the extensions in the text.

 The lion ’ s share of the work is done in the GetClassificationSpans method. First, it gets the text
of the snapshot span, and then looks up all extensions.

 There are many ways to do that. The algorithm used here seems a bit complicated; you may create a
simpler solution. However, there are two important things to be keep in mind when programming
the GetClassificationSpan method:

 The text spans returned must be ordered by their starting position and non - overlapping, in
order to be displayed correctly in the editor.

 The algorithm must be effi cient, because every keystroke triggers running it.

 You may think effi ciency is not so critical in this case, but that may not be the case. For example,
in one sample run, the test machine had 690 fi le extensions, and the fi rst algorithm was not quick
enough. When the tester kept a key pressed, the editor started to clog up.

 A better algorithm would start searching for the dot character incrementally. If it does not fi nd the
dot in the span, the work is done. If it is found, the algorithm extracts the maximum number of
available characters following the dot — keeping in mind the length of the longest fi le extension.
Then it looks up the extracted characters in the _fileAssociations dictionary. If that is not found,
a shorter string is searched, unless the fi le extension to search for becomes empty. This is important,
because, if you type something like fi le.csxfg , both .c and .cs are valid extensions, and, in this
case, you would like to highlight the longer one, namely .cs .

 After fi nding an extension, a new element is added to the classifi cation span list with the appropriate
type, depending on the content type stored as the value in the _fileAssociations dictionary, and
the search goes on as long as there is any new extension to fi nd.

➤

➤

Extending the New Editor ❘ 273

CH006.indd 273CH006.indd 273 9/6/10 4:49:03 PM9/6/10 4:49:03 PM

274 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

 Run the extension with Debug ➪ Start Without Debugging, and create a new text fi le. Type some
text containing fi le extensions, using both text and non - text types. Figure 6 - 38 shows how the
classifi er works.

 FIGURE 6 - 39: Text Content format is customizable

 FIGURE 6 - 38: The modifi ed classifi er at work

 You can also look up the Fonts and Colors options dialog to check that only the Text Content
format is allowed for customization, as shown in Figure 6 - 39.

CH006.indd 274CH006.indd 274 9/6/10 4:49:04 PM9/6/10 4:49:04 PM

 The UserVisible attribute of this format defi nition is used with the true parameter. Since this
attribute of the non - text format defi nition was marked with false , that cannot be customized
through this dialog.

 SUMMARY

 Visual Studio is not only a tool but a real development platform you can customize and extend to
turn it into your ultimate tool. From its fi rst version, Visual Studio was designed with extensibility
in mind, and you now have many options to change or enhance built - in functions, as well as
creating new ones.

 Although developers generally do not take into account customization and confi guration as methods
of extending applications, this is a real alternative. Many third - party tools (such refactoring tools,
document generators, and so on) provide GUIs, confi guration fi les to customize them in order to
create new functionality. Code snippet management is a good example showing that Visual Studio
itself also supports this option.

 Macros provide the easiest way to extend Visual Studio. You can automate repetitive tasks in a
few minutes by using the macro recording capabilities of Visual Studio. Macros access the Visual
Studio automation object model, and easily combine the IDE commands and objects to establish
the desired behavior. Although macros are great for task automation, they are not the right tools to
create totally new functionality. When using macros, you should be aware of the fact that anyone
can see the source code of your macro. Macros do not let you extend the UI or the services of
Visual Studio.

 Add - ins are much more powerful for developing Visual Studio extensions, because, in addition to
accessing the Visual Studio automation objects, you can add new user interface elements to the IDE
(such as tool windows, menu and toolbar commands, and so on). An add - in is actually a COM
object implementing two COM interfaces. They can integrate into the IDE so that you actually
do not know they are implemented as add - ins when you use them. The functions you add with an
add - in look as if they were part of the IDE. An add - in is a compiled (managed or native) binary, so
you can use the same intellectual property guarding techniques as for any other managed or native
binaries.

 While extensibility through macros and add - ins are built into Visual Studio out - of - the - box, by
installing the VS SDK, you can use other options.

 The most powerful way of developing Visual Studio extensions is to integrate Visual Studio
packages into the IDE. These packages are not limited to using the automation model, or only
to a few core services, but can access the whole infrastructure of Visual Studio just like the
packages created by the development team at Microsoft. The VS SDK provides the Managed
Package Framework to let you create VSPackages with managed code using either C# or VB. The
VSPackage wizard helps you to create skeleton code for your packages in a few minutes.

 Visual Studio 2010 has a brand - new code editor entirely written in managed code. This editor uses
WPF as its presentation technology, and the development team designed it with extensibility in mind.

Summary ❘ 275

CH006.indd 275CH006.indd 275 9/6/10 4:49:05 PM9/6/10 4:49:05 PM

276 ❘ CHAPTER 6 VISUAL STUDIO EXTENSIBILITY

A great technology introduced in .NET 4, the Managed Extensibility Framework (MEF),
is utilized to allow a straightforward and simple way of creating custom extensions. Writing editor
components (such as classifi ers, taggers, margins, adornments, IntelliSense presenters, and many
more) is easy with the editor extensibility templates provided by the VS SDK.

 Chapter 7 provides an overview about the .NET framework history. It includes the Windows
development technologies used before .NET, and shows how the platform evolved until version 4
was released.

CH006.indd 276CH006.indd 276 9/6/10 4:49:05 PM9/6/10 4:49:05 PM

PART II

.NET 4

CHAPTER 7: .NET Framework Version History

CHAPTER 8: Modern UI Frameworks (WPF and Silverlight)

CHAPTER 9: Windows Communication Framework (WCF)

CHAPTER 10: Enhancements to the .NET Core Framework

CHAPTER 11: Enhancements to the .NET Workfl ow Framework

CHAPTER 12: Enhancements to the .NET Data Framework

CHAPTER 13: Enhancements to the .NET Communications Framework

CHAPTER 14: .NET Charting Components

�

�

�

�

�

�

�

�

CH007.indd 277CH007.indd 277 9/6/10 4:50:47 PM9/6/10 4:50:47 PM

CH007.indd 278CH007.indd 278 9/6/10 4:50:50 PM9/6/10 4:50:50 PM

.NET Framework Version History

 The .NET Framework represents one of the most important innovations in the history of
software development. This chapter introduces you to the history of the .NET Framework,
and takes you from the very beginning to the newest version.

 First, you ’ ll learn about some antecedents, focusing on Win32 programming in C,
programming in C++, Visual Basic and Delphi, and COM programming. After that, you ’ ll
learn about the main goals of the .NET Framework.

 This chapter describes the evolution of the .NET Framework, step by step, from version 1.0
to the newest version, 4.0. Also, you ’ ll learn about the .NET Compact Framework, as well as
.NET Micro Framework.

 Finally, you ’ ll learn about the .NET Framework architecture, including Common Language
Run - time (CLR), Base Class Library (BCL), and the complete list of services of the architecture.

 BEFORE THE .NET FRAMEWORK

 It is much easier to understand what led Microsoft professionals to the vision of the .NET
Framework if you grasp a bit about the run - times used around 2000. During this period,
developers had to use a lot of tools to develop a complex system. Some of them were chosen
by way of preference and experience (for example, Delphi, Visual Basic, and C++), but others
were selected just because they were all that was available on the market.

 Let ’ s take a look at some of those tools.

 Win/Win32 Programming in C

 Before the age of the .NET Framework, the traditional programming language of Windows
was C for a long time. The book Programming Windows, Fifth Edition , by Charles Petzold

 7

CH007.indd 279CH007.indd 279 9/6/10 4:50:50 PM9/6/10 4:50:50 PM

280 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

(Redmond, WA: Microsoft Press, 1998), which primarily covered Windows APIs, was a key
reference for developers.

 The C language and its developer environment itself didn ’ t help the programmers with their work.
They had to deal with diffi cult syntaxes, manual memory handling, pointers, and so on. Despite
the fact that C is a structured language, everything was missing that could have given it an object -
 oriented environment. The ancient Windows programs ran directly on the layer of the operating
system, and directly used its services.

 C++ Programming

 Upon fi rst sight, C++ is an extension of the C language, providing a signifi cant improvement
compared to the C language — real object - oriented capabilities. But the object - oriented
programming is not only a new environment or set of new tools; it ’ s also a very new approach. An
effective use of the new capabilities is impossible without understanding that deeply.

 However, despite this new and effective object - oriented approach, C++ still didn ’ t hide the Win32
API, and programmers still had to deal with memory handling, pointers, and syntax constructs.

 The fi rst steps to take advantage of C++ were the run - time engines (MFC, ATL, VCL, and so on).
When an application was developed in one of these frameworks, the developers had to perform
signifi cant research before migrating an application to another framework.

 The C++ frameworks offered static and dynamic translation:

 In the case of static translation , the run - time was physically bound to the EXE fi les.

 In the case of dynamic translation , the EXE fi le used an external DLL.

 The DLLs of Microsoft ’ s frameworks (for example, the DLL of MFC) were gradually added to the
operating system.

 The C++ frameworks were closer to the C language than to the object - oriented approach of C++.
This has changed a lot. The functions of the Win32 API were increasingly available wrapped into
object libraries. Despite the fact that C++ frameworks were greatly improved, C++ programming
was still a diffi cult, painful experience.

 Programming in Visual Basic

 Since 1998, more and more programmers have started to use Visual Basic (VB), primarily because
of the release of Visual Studio 6.0. VB was very popular immediately from the beginning — thanks
to its simplicity of creating complex user interfaces (UIs), COM/COM+ server components, and the
accessing of data.

 VB completely hid the Win32 API from the developers. (Unfortunately, most of them didn ’ t even
know what the Win32 API was.) To do that, VB needed a lot of tools, special classes, and VB -
 centric objects. The Win32 API was hidden by the msvbvm60.dll fi le, which refers to the Microsoft
Visual Basic Virtual Machine, the run - time of VB programs. In VB, you had to use the Win32 API
to access to the operating system ’ s services. You could do that in VB, but this programming style is
very far from what VB developers were used to.

➤

➤

CH007.indd 280CH007.indd 280 9/6/10 4:50:52 PM9/6/10 4:50:52 PM

 The biggest problem with VB was that it appeared to be an object - oriented language, but, in reality,
it was only “ object - like. ” For example, although there are classes in VB, there is neither inheritance
nor constructors.

 Programming in Delphi

 Delphi is a very successful product from Borland. It has lots of users, similar to VB, and these users
are still a very active community.

 The programming language of this tool is Object Pascal, a real object - oriented language. Delphi
provided components through an extensible IDE around Object Pascal. These had capabilities
not only for developing thick and thin clients, but also for distributed systems and COM/COM+
components.

 Delphi hid the Win32 API from the programmers with its own Visual Component Library (VCL)
run - time. It doesn ’ t require (in the VB sense) a run - time because its compiler - generated EXE fi les can
be used independently (as if the run - time had been linked to the executable fi le).

 When using the Win32API for Delphi, you could use most of Win32 API features immediately.

 COM Programming

 Component Object Model (COM) programming was born as a solution for language - independent
component reusability. COM cannot be referred to only in past tense, because it ’ s still around, even
in Microsoft ’ s products, though with continuously decreasing intensity.

 COM provides an architecture for developers that promises, “ If you comply with the rules for
creating COM classes, your code will be binary reusable. ”

 One of the most important advantages of binary reusability is that the components can be reusable
independently from the language they were developed in. Unfortunately, this reusability was not
complete, because of the limitations of the developer tools.

 In contrast, one of the most frequently mentioned disadvantages of COM programming is that it is
missing real inheritance. Although COM provides some technologies for that, they are not easy
to use.

 However, COM provides a very important capability for developers — the transparency of the
location of components. A component can even be in another process, or on another computer. If
it ’ s correctly installed (that is, marked into the registry), you don ’ t have to deal the communication
of processes and computers during the use of the component.

 COM components also can be used as interfaces that are managed by the Microsoft Transaction
Server (MTS), the ancestor of the COM+ run - time that is still a part of the Windows operating
systems.

 The common reference of COM and the .NET Framework often hides COM ’ s pioneering role in the
birth of the component - based approach and developer method. There is no question that COM is
wrong, or that it is an already completely outdated technology, or that it was condemned to death

Before the .NET Framework ❘ 281

CH007.indd 281CH007.indd 281 9/6/10 4:50:52 PM9/6/10 4:50:52 PM

282 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

from its birth! Moreover, COM originated the planning and developing method in which systems of
binary reusable, fl exible, and dynamically changeable components can be developed.

 Generally, developers spend only 30 percent of their time creating code that belongs to some
business function in the software under development. These business functions provide value
directly to the end users, either on the UI, or in the expected operation of a function. In the other
70 percent of the time, developers develop code that is required for the execution of the software,
but doesn ’ t provide direct value to the business functions (for example, database transactions,
communication framework of distributed systems, diagnostic logging, confi guration management
solutions, data encryption, and so on). Let ’ s call them infrastructure code .

 This rate of 30 percent - to - 70 percent is also often similar in the number of code lines. It has effects
not only during the development, but also during the other phases of the project (such as test and
deployment).

 How much better it would be to reverse this rate — 70 percent of your time was spent
creating “ useful ” business code, and only 30 percent of your time was spent writing
infrastructure code!

 Of course, it is no coincidence that Microsoft also deemed this trend to be important. One of the
most important goals of the development of the .NET Framework was to signifi cantly reduce the
quantity of infrastructure code written by the developers themselves.

 THE ORIGIN AND GOALS OF THE .NET FRAMEWORK

 Microsoft released the fi rst version of the .NET Framework in the middle of the year 2000, but
the history of the .NET Framework goes back to the late 1990s. During the planning of the .NET
Framework, software engineers became very excited because they wanted to create a brand new
developer framework with a brand new approach, without the defi ciencies and problems of the old
platforms.

 The basic properties of the .NET Framework have been based on the team ’ s main goals as follows:

 Independent run - time environment — All .NET languages are equal. There are no running
differences, for example, between VB.NET and C#. Actually, it doesn ’ t matter which
languages are used in the applications running on the framework. The execution is the same
in all cases.

 Clean, object - oriented basics — Although the object-oriented paradigm was becoming
more and more popular, Microsoft didn ’ t offer any real object - oriented platform for
developers before releasing the .NET Framework. The object - oriented basics appeared
in the various available technologies, but they did not represent a real object - oriented
platform (for example, they didn ’ t offer real inheritance or polymorphism). One of the
main goals of the .NET Framework was to be a real object - oriented environment in terms
of run - time, architecture, and usability. The real object - oriented environment is no longer

➤

➤

CH007.indd 282CH007.indd 282 9/6/10 4:50:53 PM9/6/10 4:50:53 PM

an external must or an accessory anymore, but rather a very strong foundation of the
framework.

 Full integration between the languages — As mentioned previously, the .NET Framework
can be used independently from programming languages. It also performs as an integration
framework between these languages. Any components written on any .NET language
can be used from any other components, and even written on any other .NET language.
Moreover, components can be the ancestor of another component written on another .NET
language, and this can be the ancestor of a third component written on a third language,
and so on. As a part of the integration, there are no language borders in terms of exception
handling and debugging.

 Full interoperability with the existing programming paradigms — The .NET framework
has the capability to reuse existing dynamic link library (DLL), COM, or COM+
components. And it can also be done in the reverse order (that is, .NET components can be
used from the old ones).

 No more plumbing code required — Before the .NET Framework, developers spent a lot
of time and energy publishing the developed business functions in COM format, or using
the existing COM components. In the .NET Framework, this step is no longer required.
Developers can avoid the using of expressions GUID , IUnknown , BSTR , SAFEARRAY , and so
on, mainly because the .NET Framework provides a layer above these things.

 Simple deployment model — After developing a new .NET component, there is no
requirement to register it or any related binaries to the Windows Registry. Instead, the only
thing developers must do is compile the component and copy it to a folder where they would
like to run it. That means no more “ DLL hell. ” Developers can use more than one different
version of the same component.

 Out - of - the - box base objects — The .NET Framework contains hundreds of object types
that help the developers in management of the low - level Windows APIs. These object types
can be used the same way. It doesn ’ t matter what .NET language developers use, and they
don ’ t need to understand the language - dependent object models. Moreover, these object
types are organized into namespace hierarchies. Therefore, the functions can be found
much easier and faster.

 General security model — The .NET Framework contains the security background itself.
.NET applications can be executed in various security settings without any need to rewrite
the application. During the execution, the framework verifi es a lot of settings to prevent the
unauthorized use of code or forbidden operations (for example, modifying or deleting fi les,
editing registry entries, and so on).

 EVOLUTION OF THE .NET FRAMEWORK

 Through the years, the .NET Framework has undergone quite an evolution, as shown in
Figure 7 - 1.

➤

➤

➤

➤

➤

➤

Evolution of the .NET Framework ❘ 283

CH007.indd 283CH007.indd 283 9/6/10 4:50:53 PM9/6/10 4:50:53 PM

284 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

 Usually, all new releases of the .NET Framework provide a lot of new features and capabilities
in every logical layer. In .NET Framework 1.1 and 2.0, the infrastructure services were extended
and refi ned. Version 2.0 made the Windows Forms and ASP.NET technologies real architectural
services. In practice, .NET 3.0 provided “ only ” architectural changes, as well as the next versions of
the .NET Framework.

 Table 7 - 1 shows the evolution of the .NET Framework. Each of these versions is described in a bit
more detail in the sections following the table.

 TABLE 7 - 1: .NET Framework Versions

 VERSION RELEASE DATE NEW FEATURES

 .NET Framework 1.0

 .NET Framework 1.0 SP1 March 19, 2002

 .NET Framework 1.0 SP2 August 7, 2002

 .NET Framework 1.0 SP3 September 9, 2004

Parallel LINQ
Task Parallel

Library

ADO.NET

entity framework

WPF

Wind forms ASP.Net

Base class library

Common language run-time

3
.0

2
0

0
6

.N
E

T
 F

ra
m

e
w

o
rk

s
 2

.0
2

0
0

5

3
.5

2
0

0
7

4
.0

2
0

10
 (fu

tu
re

)

ADO.Net

WCF WF
Card

space

LINQ

 FIGURE 7 - 1: Evolution of the .NET Framework

CH007.indd 284CH007.indd 284 9/6/10 4:50:54 PM9/6/10 4:50:54 PM

 VERSION RELEASE DATE NEW FEATURES

 .NET Framework 1.1 July 10, 2003 Support for mobile ASP.NET

 Support for Open Database

Connectivity (ODBC) and

Oracle databases

 .NET Compact Framework

 Internet Protocol version 6

(IPv6) support

 .NET Framework 1.1 SP1 September 9, 2004

 .NET Framework 2.0 February 17, 2006 64 - bit support

 .NET Micro Framework

 Language support for

generics

 Partial classes

 Anonymous methods

 .NET Framework 2.0 SP1 November 19, 2007

 .NET Framework 2.0 SP2 January 16, 2009

 .NET Framework 3.0 November 21, 2006 Windows Presentation

Foundation (WPF)

 Windows Communication

Foundation (WCF)

 Windows Workfl ow

Foundation (WF)

 CardSpace

 .NET Framework 3.5 November 9, 2007 Entity Framework

 LINQ

 Extension methods

 Expression trees

 .NET Framework 3.5 SP1 August 11, 2008

 .NET Framework 4.0 Announcement: September 29, 2008

 Beta1: May 20, 2009

 Beta2: October 19, 2009

 RTM: April 12, 2010

 Parallel extensions

 Support for IronRuby,

IronPython, and F#

 Inclusion of the Oslo

modeling platform

Evolution of the .NET Framework ❘ 285

CH007.indd 285CH007.indd 285 9/6/10 4:50:54 PM9/6/10 4:50:54 PM

286 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

 .NET Framework 1.0

 The fi rst release of the .NET Framework was available for Windows 98, Me, NT 4.0, 2000, and XP.
Because it was the fi rst version of the .NET Framework, it had the power of the revolution of all the
development.

 One of the new approaches in the .NET Framework was the run - time and the execution of the
applications. The typical levels of compiling and executing an application were the following:

 1. Write the code in any .NET language

 2. .NET compiler (.DLL or .EXE)

 3. .NET run - time (mscoree.dll)

 Class Loader

 Jitter

 Native assembly code

 Execution

 4. Windows APIs

 Compiled binaries in the .NET Framework were called an assembly . The assembly contained not
only intermediate language (IL) commands, but also metadata describing the interfaces of objects,
version numbers, links to other objects, security settings, and so on.

 .NET Framework 1.1

 Published on April 3, 2003, this was the fi rst major .NET Framework upgrade. This was the fi rst
version of the .NET Framework that was included as part of the Windows operating system,
shipping with Windows Server 2003.

 Following were the main changes in version 1.1 from version 1.0:

 Provided built - in support for mobile ASP.NET controls as an elemental part of the .NET
framework

 Enabled Code Access Security (CAS) in ASP.NET applications

 Enabled Windows Forms assemblies to execute in a semi - trusted manner from the Internet

 Provided built - in support for Open Database Connectivity (ODBC) and Oracle databases

 Introduced .NET Compact Framework, a version of the .NET Framework for small devices

 Provided support for Internet Protocol version 6 (IPv6)

 Introduced a lot of API changes

 .NET Framework 2.0

 The next major version, .NET Framework 2.0, was released in the middle of February 2006 with
Visual Studio 2005, Microsoft SQL Server 2005, and BizTalk 2006.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH007.indd 286CH007.indd 286 9/6/10 4:50:55 PM9/6/10 4:50:55 PM

 Without any Service Pack, Version 2.0 was the last version with support for Windows 98 and Windows
Me. Version 2.0 with Service Pack 2 was the last version with offi cial support for Windows 2000.

 Following were the main changes in version 2.0:

 Included many API changes

 Included a new hosting API that gave a fi ne - grain control of multithreading, memory
allocation, assembly loading, and more

 Provided full 64 - bit support (both x64 and IA64)

 Provided language support for generics

 Improved ASP.NET web controls

 Introduced new data controls with declarative data binding

 Provided new personalization features for ASP.NET (themes, skins, and web parts)

 Introduced the .NET Micro Framework

 Included partial classes

 Included anonymous methods

 Included data tables

 .NET Framework 3.0

 On November 21, 2006, .NET Framework 3.0 (codenamed WinFX) was released, and included
some managed code APIs that are an integral part of the Windows Vista and Windows Server
2008 operating systems. It is also available for Windows XP SP2 and Windows Server 2003 as
a download.

 There are no major architectural changes included with this release, but .NET Framework 3.0
consists of four major new components:

 Windows Presentation Foundation (WPF) — A new user interface subsystem and API
based on XML and vector graphics.

 Windows Communication Foundation (WCF) — A service - oriented messaging system that
allows programs to interoperate locally or remotely, similar to web services.

 Windows Workfl ow Foundation (WF) — A service that allows for building task
automation and integrated transactions using workfl ows.

 Windows CardSpace — This securely stores a person ’ s digital identities and provides a unifi ed
interface for choosing the identity for a particular transaction (such as logging in to a website).

 .NET Framework 3.5

 Version 3.5 of the .NET Framework was released on November 19, 2007, but it is not included with
Windows Server 2008. As with .NET Framework 3.0, version 3.5 uses the Common Language
Run - time (CLR) version 2.0. In addition, it installs . NET Framework 2.0 SP1 (which installs .NET

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Evolution of the .NET Framework ❘ 287

CH007.indd 287CH007.indd 287 9/6/10 4:50:55 PM9/6/10 4:50:55 PM

288 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

Framework 2.0 SP2 with 3.5 SP1) and .NET Framework 3.0 SP1 (which installs .NET Framework 3.0
SP2 with 3.5 SP1). These changes do not affect applications written for version 2.0, however.

 The .NET Framework 3.5 Service Pack 1 was released on August 11, 2008. This release added new
functionality and provided performance improvements, especially with WPF where 20 to 45 percent
improvements were expected. Two new data service components were added — the ADO.NET
Entity Framework and ADO.NET Data Services.

 As with previous versions, a new .NET Compact Framework 3.5 was released with this update.
Also, the source code of the Base Class Library in this version has been partially released (for
debugging reference only) under the Microsoft Reference Source License.

 Following were the changes since version 3.0:

 Included new language features

 Added support for expression trees and lambda methods

 Included extension methods

 Included expression trees to represent high - level source code at run - time

 Included anonymous types

 Included Language Integrated Query (LINQ to Objects, LINQ to XML, LINQ to SQL)

 Included paging support for ADO.NET

 Included an ADO.NET synchronization API to synchronize local caches and server - side
data stores

 Included an asynchronous network I/O API

 Included a peer - to - peer networking stack

 Managed wrappers for Windows Management Instrumentation and Active Directory APIs

 Enhanced WCF and WF run - times

 Included support for HTTP pipelining and syndication feeds

 Included ASP.NET Ajax

 Included a new System.CodeDom namespace

 .NET Framework 4.0

 Microsoft announced .NET Framework 4.0 on September 29, 2008. The Public Beta was released
on May 20, 2009. Following were the most important focuses of this release:

 Parallel extensions to improve support for parallel computing

 Language innovations

 Full support for IronPython, IronRuby, and F#

 Support for a subset of the .NET Framework and ASP.NET with the “ Server Core ” variant
of Windows Server 2008 R2

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH007.indd 288CH007.indd 288 9/6/10 4:50:55 PM9/6/10 4:50:55 PM

 Support for code contracts

 Inclusion of the Oslo modeling platform, along with the M programming language

 On October 19, 2009, Microsoft released Beta 2 of the .NET Framework 4.0. At the same time,
Microsoft announced the expected launch date of .NET Framework 4.0 as March 22, 2010.

 In conjunction with .NET Framework 4.0, Microsoft will offer a set of enhancements, codenamed
 Dublin , for Windows Server 2008 application server capabilities. Dublin will extend IIS to be a
 “ standard host ” for applications that use either WCF or WF.

 .NET Compact Framework

 In some circumstances, many of us are forced to use resource - constrained computing devices such
as smart phones, PDAs, and so on. .NET Compact Framework (CF) a hardware - independent
environment for running .NET applications on mobile devices. CF has the same architecture as the
full CLR and managed code execution of the .NET Framework, but supports only a subset of the
.NET classes, and contains a set of classes created especially for the CF.

 .NET Micro Framework

 The .NET Micro Framework is designed for devices with very limited resources. It ’ s very special
because it can run with or without an operating system on the device. It has the following layers
directly on the hardware:

 Hardware Abstraction Layer (HAL) that hides the hardware with an abstraction layer.

 Platform Abstraction Layer (PAL) that gives the basic functionality of the missing operating
system.

 CLR, Libraries, and User Applications

 The typical memory requirement of MF is 200 - 500 KB (the next smallest .NET implementation,
.NET CF, needs around 12 MB), so it ’ s very effective on remote controllers and other small devices.

 Following is a short summary of .NET Micro Framework features:

 It has a very small memory footprint.

 It runs on the “ metal ” or on an existing operating system.

 It supports embedded peripherals and interconnects.

 It is optimized for low power consumption.

 It has multithreading support.

 Drivers can be written in C#.

 .NET FRAMEWORK ARCHITECTURE

 The Microsoft .NET Center claims, “ The .NET Framework is Microsoft ’ s platform for building
applications that have visually stunning user experiences, seamless and secure communication, and
the ability to model a range of business processes . ”

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

.NET Framework Architecture ❘ 289

CH007.indd 289CH007.indd 289 9/6/10 4:50:56 PM9/6/10 4:50:56 PM

290 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

 Following are the components of the .NET Framework:

 Common Language Run - time (CLR) — This provides an abstraction layer over the
operating system.

 Base Class Libraries — This is pre - built code for common low - level programming tasks.

 Development frameworks and technologies — These are reusable, customizable solutions
for larger programming tasks.

 Figure 7 - 2 shows the execution process of a typical .NET program, represented as the
communication paths between the main components.

➤

➤

➤

User objects

.NET base class

libirary

(mscorlib.dIl, etc.)

.NET Runtime

(mscoree.dll)

.NET Application

Windows APis

(User.exe, GDI.exe, Kernel32.dll, netapi.dll,etc.)

 FIGURE 7 - 2: .NET program execution process

 Common Language Run - time (CLR)

 As shown in Figure 7 - 3, the bottom layer of the .NET Framework is the CLR, which is directly
responsible for executing the .NET applications. Following are the main parts of the CLR:

 Common Type System (CTS) — This defi nes the basic .NET types of the CLR. All of the
type defi nitions, collaborations between them (for example, conversions), and metadata are
defi ned here.

 Common Language Specifi cation — The .NET languages do not support all of the types
defi ned in the CTS by default. The Common Language Specifi cation is the component that
defi nes rules and subsets of types that help developers to use the .NET assemblies in all
.NET languages.

➤

➤

CH007.indd 290CH007.indd 290 9/6/10 4:50:56 PM9/6/10 4:50:56 PM

 The most important part of the CLR is the mscoree.dll fi le that provides the following features:

 Finding the proper assembly

 Loading in the assembly

 Finding the proper type (with the help of the assembly ’ s metadata)

 Translating the Microsoft Intermediate Language (MSIL) code

 Base Class Library

 For the reasonable and effi cient use of the functions of the CLR and Win32 APIs, developers need
a lot of base objects wrapping the functions into well - usable objects by .NET languages. The main
goal of the Base Class Library is to provide infrastructure services to the developers — services that
provide a good and safe layer above the operating system ’ s Win31 API.

 The folder of base classes contains a lot of assemblies. The most important one is the mscorlib.dll
fi le, which contains the most - used types and useful functions for general programming. Whatever
.NET component you develop, in whatever architecture, you always use the mscorlib.dll
assembly.

➤

➤

➤

➤

Common

Language

Intermediate

J# code
VB.NET

code
C# code

Compiler Compiler

Common Language

Runtime

Common Intermediate

Language

0100111010100110011101

Compiler

 FIGURE 7 - 3: Common Layer Run - time

.NET Framework Architecture ❘ 291

CH007.indd 291CH007.indd 291 9/6/10 4:50:57 PM9/6/10 4:50:57 PM

292 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

 Services of the .NET Architecture

 The .NET Framework offers not only infrastructure, but also reliable architectural services for
developers. These parts of the .NET Framework have signifi cant value and content, helping with
the development of multi - layered architectures. With them, you can build robust and scalable
applications, while retaining the .NET Framework ’ s simplicity and fl exibility.

 The services of the .NET Framework are so wide and large that an entire book could be written
about each of them. However, the following sections provide a short summary of the most
important components.

 ASP.NET

 ASP.NET is for the development of web applications, with the capability of supporting various
architectural layers — from the UI through the processes to the web service - based business
functions. ASP.NET is one of the most complex parts of the .NET Framework.

 Windows Forms

 The dialogs, forms, user messages, simple and composite UI elements, and so on, are required for all
rich clients. The .NET Framework offers Windows Forms to achieve this goal. With the help of its
object hierarchy, it ’ s possible to manage the UI elements in a very easy way, and to create new visual
components with a simple inheritance.

 Web Services

 During the evolution of software technologies, the integration between platforms and systems
was always very important. With the .NET Framework, the web services became really popular,
as well as an easy - to - use technology in the integration between systems, even on different
platforms.

 ADO.NET

 ADO.NET is a set of .NET components that can be used to access data and data services. It ’ s
commonly used to access and modify data stored in relational databases, though it can also be used
to access other structured data sources (via ADO.NET Providers).

 Workfl ow Foundation (WF)

 Since the release of .NET Framework 3.0, Workfl ow Foundation (WF) has provided the base
infrastructure of workfl ow defi nitions and execution. With the help of the WF, developers can
defi ne the following two types of workfl ows:

 Sequence — The steps of the process are in a time sequence.

 State machine — The process is a set of states, and the steps between these states are
event - based ones.

 The WF has the capabilities for being the base of both human and automated workfl ows.

➤

➤

CH007.indd 292CH007.indd 292 9/6/10 4:50:57 PM9/6/10 4:50:57 PM

 Windows Communication Framework (WCF)

 Since the fi rst release, the .NET Framework has contained special infrastructure services
(for example, .NET remoting, web services, and message queue management) that provide
communication between the components of distributed systems. Before WCF, developers had to
decide during the implementation which service to use for a specifi c solution.

 Released in .NET 3.0, WCF provides a unifi ed solution for the communication between distributed
components, and allows changes to the behavior and run - time properties of the communication
channel, without recompiling the project.

 Windows Presentation Framework (WPF)

 With Windows Vista, the concept of a computer graphics subsystem was totally redefi ned by
Microsoft, and a brand new solution was created that maximizes the capabilities of graphic
processors. In this context, WPF was released as a part of Vista and .NET Framework 3.0.

 WPF includes a brand new UI concept and developer methodology. The WPF can physically
separate the visual design and behavior, and allows programmers to write functional code, and
designers to create the UI.

 CardSpace

 The concept of identity metasystems is the unifi ed platform of storing and handling digital IDs.
The .NET Framework 3.0 CardSpace is an important part of this concept, providing a secure store
method for using digital IDs.

 Nowadays, everyone has countless digital IDs, (for example, the various website registrations). Of
course, CardSpace not only stores these IDs, but also provides unifi ed interfaces for the operations
and transactions.

 Entity Framework

 The ADO.NET in .NET Framework 3.5 signifi cantly exceeds the former data - management
methods. Former versions of ADO.NET raised an abstraction layer over the relational databases
that provided unifi ed methods for using the data stored in various database systems.

 The Entity Framework brings this abstraction into the concept level. With the help of Object
Relational Mapping (ORM) technologies, it provides a way to manage high - level entities instead of
database tables and relations.

 MAIN BENEFITS OF THE .NET FRAMEWORK

 Following are some of the main benefi ts offered by the .NET Framework:

 Secure multi - language development platform — .NET is a powerful and reliable technology
for developers and IT professionals, because it provides enhanced capabilities in terms
of the security, management, and updates, as well as in building, testing, and deploying
reliable and secure software. .NET provides a real multi - language developer platform so

➤

Main Benefi ts of the .NET Framework ❘ 293

CH007.indd 293CH007.indd 293 9/6/10 4:50:57 PM9/6/10 4:50:57 PM

294 ❘ CHAPTER 7 .NET FRAMEWORK VERSION HISTORY

that developers can work in their preferred languages. The CLR provides support for the
static languages (for example, VB and C#), but dynamic languages (for example, IronRuby
and Managed JScript) are also supported.

 Next - generation user experiences — WPF provides a unifi ed method for building rich
applications with rich UIs. WPF offers support for two - dimensional and three - dimensional
graphics for developers, hardware accelerated effects, scalability, interactive visualization,
and excellent content readability. Moreover, designers can be the active part of the
development process with the help of the fi le format, XAML.

 Cross - browser, cross - platform, cross - device support — Another tool for a rich UI in .NET
is Silverlight, which helps developers with a cross - browser, cross - platform, cross - device
plug - in for creating the next generation of rich, interactive applications.

 Advanced web application development — .NET offers a free, advanced technology
for web development. ASP.NET can be the best tool in a developer ’ s hand from small,
personal websites to large, enterprise web applications. Moreover, ASP.NET Asynchronous
JavaScript and XML (Ajax) enables developers to create more effi cient, interactive, and rich
web UIs that work on all of the popular browsers.

 Secure and powerful web services — WCF provides many capabilities for developing
real distributed systems with extensible architecture, secure communication, messaging
patterns, and so on.

 Business processes — As a part of the .NET Framework, WF can be used for developing
powerful business processes in a more effi cient way, thus improving productivity of both
developers and end users.

 Flexible data access options — ADO.NET with Entity Framework and ADO.NET
Data Services provide a rich set of components for developing distributed, data - centric
applications. ADO.NET supports a lot of general development needs, including the creation
of real multi - tier applications over databases. Entity Framework simplifi es data access by
providing a unifi ed model for data from any database, and enables this model to refl ect
business requirements. ADO.NET Data Services provides a fi rst - class infrastructure for
the next wave of dynamic Internet applications by enabling web applications to expose
data as REST - based data services that can be consumed by client applications in corporate
networks and across the Internet.

 SUMMARY

 This chapter provided you with a glimpse at the history and evolution of the .NET Framework was
demonstrated. Early in the chapter, you learned about the most important predecessors of the .NET
Framework, including Win/Win32 programming, C++ programming, Visual Basic programming,
Delphi programming, and COM programming.

 The .NET Framework evolved as a result of the defi ciencies of previous developer tools and
languages, and added a new architecture and a lot of new capabilities. The main goals of the
.NET Framework were an independent run - time environment, clean, object - oriented basics, full

➤

➤

➤

➤

➤

➤

CH007.indd 294CH007.indd 294 9/6/10 4:50:58 PM9/6/10 4:50:58 PM

integration between languages, full interoperability with existing programming paradigms, no
requirements for plumbing code, a simple deployment model, out - of - the - box base objects, and a
general security model.

 Based on these goals, .NET Framework 1.0 was born in 2002. Since then, many new versions
have been released, with more and more new capabilities answering to the newer and newer
developer needs. This chapter took a brief look at all of the .NET Framework versions from 1.0 to
the current 4.0, and discussed the main capabilities of each of them.

 You also learned about the .NET Framework architecture and all of the .NET Framework services.

 Chapter 8 begins a detailed look at the components of .NET Framework 4.0.

Summary ❘ 295

CH007.indd 295CH007.indd 295 9/6/10 4:50:58 PM9/6/10 4:50:58 PM

CH007.indd 296CH007.indd 296 9/6/10 4:50:58 PM9/6/10 4:50:58 PM

Modern UI Frameworks
(WPF and Silverlight)

 Because software projects can allow less and less neglect when designing the user experience,
new technologies are emerging to help create a new generation of applications. This chapter
discusses the shift of focus in the software industry toward user experience (UX), and
introduces you to Silverlight and Windows Presentation Foundation (WPF) — the two
technologies that can help developer teams make this shift while enhancing development
productivity, even for traditional line - of - business (LOB) applications.

 THE IMPORTANCE OF USER EXPERIENCE

 Software development is changing. Ten years ago, the challenges developer teams faced were
mostly technical. For example, it was very diffi cult to create a client - server application.

 On the server side, functional SQL database servers already existed, but transferring data to
the business logic required writing a lot of repetitive code. The most popular programming
languages for the Microsoft platform were Visual Basic and C++ — neither of which was ideal
for expressing complex business logic. Even Visual Basic 6.0 was not a real object - oriented
language, and C++ was often too complex for the task at hand. When it came to performance
though, C++ was the clear winner.

 On the client side, things were slightly better. For a rich client, Visual Basic 6.0 was a good
rapid application development (RAD) choice to display the user interface (UI), and, with
decent tooling support, teams were fairly productive, too. However, there was a lot of
repetitive coding required — displaying data, validating data, navigation between forms — all
of which were mostly manual work, and prone to a lot of errors. Web applications were also
diffi cult to create. A simple form validation required tons of code to highlight the fi eld with
the error, and repeat the entered data so that the user didn ’ t have to.

 8

CH008.indd 297CH008.indd 297 9/6/10 4:54:20 PM9/6/10 4:54:20 PM

298 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 The real challenge was the communication between client and server. The basics were already in
place. You had socket support, and even some HTTP. You could send and receive messages. But
what these messages contained, what their communication protocol was, how they encapsulated
business entities, and how you could make sure that the message reached the recipient, all were
entirely up to the development teams. Every team had its own way of accomplishing these tasks, and
it was a mess. Only the largest companies could allow developing entire frameworks that coped with
these problems.

 This was the situation when .NET 1.0 came along in 2002. Visual Basic .NET (which was a huge
departure from Visual Basic 6.0), and the new C# language, along with the Common Language
Run - time (CLR) and it ’ s Just In Time (JIT) compiler, retained the relative simplicity of Visual
Basic, while approaching the performance of C++ code for most scenarios. Windows Forms was
a big step forward from the Visual Basic 6 UI framework, and .NET had also improved client -
 server communication with an advanced network stack, and a remoting framework that allowed
almost transparent calls between client and server. ASP.NET made a huge difference — it removed
the spaghetti code of the old ASP framework, placing the logic in the code - behind, and having the
HTML in a separate fi le.

 The .NET framework was an excellent foundation to build upon. With further versions, you
received more and more support for writing maintainable code, and common scenarios such as
object - relational mapping (ORM) and workfl ow management were implemented by Microsoft and
third parties.

 Thanks to the reliable frameworks that cover more and more areas of typical software, developer
productivity increased a lot. At the same time, the complexity of the business problems that
software systems need to solve has been increasing at a much slower pace. The net result is that the
effort required to create software solutions for the common business problems has decreased greatly
during the last decade. This trend, and the amazing amount of computing power offered by today ’ s
hardware, allows the developer teams to turn their attention to the user.

 Now, consider following trends:

 The users ’ expectations regarding the usability, aesthetics, and responsiveness of the
software they work with are increasing — They see great examples on the web, on their
phones, and grow conscious about how these applications look and behave. They begin
to appreciate the joys of using a well - designed application, and they start to criticize the
applications that were “ good enough ” a few years ago.

 User experience (UX) is becoming a key differentiating factor when making decisions
about purchasing a software system — It has already happened in the consumer space (just
think about the success of the Wii or the iPhone), and it is starting to happen in the business
sector, in the case of line - of - business (LOB) software as well.

 Software development is changing. Huge, well - designed platforms, frameworks, and tools make
previously diffi cult development tasks a lot easier. In the meantime, there is an increasing business
need for a great user experience. According to Microsoft researcher Bill Hill, there is a new target
platform emerging: “ It ’ s homo sapiens version 1.0. It shipped about 100,000 years ago, there ’ s no

➤

➤

CH008.indd 298CH008.indd 298 9/6/10 4:54:23 PM9/6/10 4:54:23 PM

upgrade in sight, but it is the one that runs everything, right? ” You must create software with the
UX in mind fi rst and foremost.

 The second part of this chapter discusses two relatively new Microsoft technologies that can help
developing software with a great UX: Microsoft Silverlight and WPF. But fi rst, let ’ s take a look at
the people who can make it happen: designers and developers.

 DEVELOPERS ARE FROM VULCAN, DESIGNERS

ARE FROM VENUS

 If you have been to any developer conferences, or seen video recordings of sessions, you probably
listened to one or more speaker showing off the latest and greatest tools for creating a website or
a desktop application — and apologizing by saying, “ As you can see, I am not a designer. ” Most
developers proudly admit that they are not good with design. It is very rare that someone is a
great developer and a great designer at the same time. This is not only because both professions take
years to master, but also because they require diametrically opposite skills and ways of thinking.

 If you are reading this book, you are probably a developer, as well. So, fi rst, let ’ s see what kind
of thinking and skills make a developer great:

 Developers think in extremes . — This usually means yes or no, 0 or 1, true or false, pass
or fail.

 Developers value logic above all else (in their work). — An application must behave in
a logical manner. It must be built from logical components that cooperate logically. A
software developer prefers that computers behave in a predictable way.

 Developers strive to write code that always behaves the same under the same
circumstances . — Consistency is good. Surprises are almost always bad.

 Developers are usually good at mathematics. — Even if their areas of work do not require
solving n - dimensional equations, chances are that they have received pretty good math
grades in high school.

 To sum up, developers think like a Vulcan from Star Trek (at least, when developing). Writing code
is an engineering science, and although it is very creative, developers learned long ago that there are
some ultimate laws they should not deviate from.

 Interestingly, these skills are usually attributed to the left side of the brain. People with left - brain
thinking are rational, analytical, logical, objective, and interested in the way things work, and
how the parts are working together. Right - brain people, on the other hand, are intuitive, holistic,
subjective, and are looking at the whole instead of the part. Yes, designers are usually right - brained
people.

 Table 8 - 1 shows a list of what functions are typically attributed to the left and right brain
hemisphere. It almost seems as though designers come from Venus because of their sense of beauty
and harmony.

➤

➤

➤

➤

Developers are from Vulcan, Designers are from Venus ❘ 299

CH008.indd 299CH008.indd 299 9/6/10 4:54:23 PM9/6/10 4:54:23 PM

300 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 When looking at the way people think, scientists found that most people use one brain hemisphere a
lot more than the other. Some are whole - brained in their thinking, but they are the minority.

 If you accept that designers are right - brained and developers are left - brained, there is no wonder
that members of the two professions have a hard time understanding each other. One reasons with
logic, the other with feeling; one appreciates facts, the other possibilities; one looks at the details,
the other at the big picture.

 The car industry found out in the early twentieth century that you must merge form and function
to be really successful. The car not only must work, but it must be a pleasure to drive, to look at,
and to travel in. It is time for the software industry to follow the lead and get designers and
developers to work together.

 There are two Microsoft technologies that promise to bring forth this cooperation between
designers and developers. WPF and Silverlight are both built from the ground up to allow for a
never - before - seen level of designer - developer cooperation. Taking the old “ separate presentation and
functionality ” software development mantra to a new level, Silverlight and WPF allow developers

 TABLE 8 - 1: Functions of Left and Right Brain

 LEFT - BRAIN FUNCTIONS RIGHT - BRAIN FUNCTIONS

 Uses logic Uses feeling

 Detail oriented “ Big picture ” oriented

 Facts rule Imagination rules

 Words and language Symbols and images

 Present and past Present and future

 Math and science Philosophy and religion

 Can comprehend Can “ get it ” (that is, meaning)

 Knowing Believes

 Acknowledges Appreciates

 Order/pattern perception Spatial perception

 Knows object name Knows object function

 Reality based Fantasy based

 Forms strategies Presents possibilities

 Practical Impetuous

 Safe Risk taking

Source: http://www.viewzone.com/bicam.html

CH008.indd 300CH008.indd 300 9/6/10 4:54:23 PM9/6/10 4:54:23 PM

and designers to work separately. Developers ensure that data gets to the client and back to the
server, and designers can independently create the data visualization and entry mechanisms for
Homo Sapiens 1.0.

 The rest of this chapter gives a quick overview of Silverlight and WPF. Because the basic concepts
are almost the same for both technologies, Silverlight will be examined fi rst. The second part of the
chapter discusses the differences between Silverlight and WPF, and provides guidelines for choosing
between the two. Finally, you will return to the designer - developer cooperation and learn about
how these tools can help this cooperation become a reality.

 A NEW GENERATION OF PRESENTATION FRAMEWORKS

 In 2001, Microsoft founder Bill Gates created a new team tasked with researching and developing a
new presentation layer. .NET 1.0 wasn ’ t even released at this point. At that time, there were at least
four different, but overlapping, UI technologies within Microsoft: Windows Forms, GDI32, Visual
Basic, and Internet Explorer ’ s Trident rendering engine. The technology to be created by the new
group was codenamed “ Avalon. ”

 The Avalon team aimed to merge the best of the web and the desktop, to integrate fi rst - class
multimedia with documents and UI, to streamline the designer - developer workfl ow, and to create
a rich presentation platform that could utilize the increasing power of graphics hardware.

 The fi rst public appearance of Avalon was in 2003, at the Professional Developers Conference
(PDC). Later, Avalon was renamed Windows Presentation Foundation (WPF), and it appeared in
version 3.0 of the .NET Framework. WPF was still a novelty at the time. With limited (and buggy)
support in Visual Studio 2005, and a nonexistent designer tool support, many were reluctant to
climb the rather steep learning curve. Still, the most important thing was already there: a solid,
well thought - out architecture and foundation that could be built upon. The pillars of WPF are the
Extensible Application Markup Language (XAML), graphics processing unit (GPU) rendering,
a layout system, data binding, styling, templating, animations, media, and document handling.
Together, these formed an amazing toolset for building the rich applications most developers didn ’ t
even think they needed.

 With the release of .NET Framework 3.5 and Visual Studio 2008, WPF gained some new features
and performance enhancements, such as improved internationalization support and the capability to
map two - dimensional elements onto a three - dimensional surface in an interactive manner.

 However, the big feature push came with .NET Framework 3.5 SP1. Despite the Service Pack
name, for WPF, this was more like a whole version step up. Client profi le reduced the installation

 You can learn more about the history and goals of Avalon in Chris Anderson ’ s
book, Essential Windows Presentation Foundation (Reading, MA: Addison -
 Wesley, 2007).

A New Generation of Presentation Frameworks ❘ 301

CH008.indd 301CH008.indd 301 9/6/10 4:54:24 PM9/6/10 4:54:24 PM

302 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

footprint to 25 MB for computers that didn ’ t need the full .NET Framework. GPU - accelerated
shaders allowed for interesting UI effects. DirectX integration allowed CAD software to have the
context presented with Direct3D, as well as the controls and data display with WPF. An Offi ce
ribbon control was also added. Finally, Visual Studio 2008 could be used with WPF, as well as with
Windows Forms.

 In April 2007, Expression Blend 1.0 was released. Expression Blend (or simply “ Blend ”) was
designed to be the tool for the intermediary — the integrator who gets data, behavior, and
presentation together. Blend alienated a lot of developers with its “ designer - ish ” look and feel,
but with versions 2 and 3, it became an invaluable tool for anyone seriously working with WPF
or Silverlight. Blend was the fi rst “ big ” Microsoft application created in WPF. The largest
WPF application is probably Visual Studio 2010. The entire UI of Visual Studio 2010 is created
in WPF. Many of the performance and feature enhancements in WPF 4 were driven by the need
of the Visual Studio team.

 In the meantime, WPF ’ s cousin, Silverlight (originally called WPF Everywhere, or WPF/E), began to
take shape. The goal was to create a trimmed - down version of the Windows - only WPF, and take the
same key principles over to the web, other operating systems, and devices.

 Silverlight 1.0 was released in September 2007, and focused on media playback, utilizing some
of the WPF XAML syntax, but programmable via the browser ’ s JavaScript engine. The real
revolution came with Silverlight 2.0, which launched one year later, in October 2008. In a mere
4 MB download, Silverlight 2.0 included a trimmed - down version of the full .NET Framework,
dozens of controls, XAML and media support, deep zoom, and most of the WPF pillars
mentioned previously.

 Silverlight 3 came only nine months later, in July 2009, with H.264 video codec support, pixel
shaders, limited GPU acceleration, perspective transform, out - of - browser support, touch support,
and a brand new navigation framework, just to mention a few key enhancements. Silverlight
is offi cially supported on Windows and Intel - based Mac OS X computers, in Firefox, Internet
Explorer, and Safari.

 Silverlight 4 launched in April 2010 (exactly 3 years after Silverlight 1 was introduced), and focuses
on line - of - business (LOB) applications, media and advanced out - of - browser scenarios. A Linux
version of Silverlight is also in the works. Novell ’ s Mono project is developing Moonlight, an Open
Source version of Silverlight. However, Moonlight was lagging behind as of this writing, still not
having released Moonlight 3, which promises Silverlight 3 compatibility.

 WPF 4.0 brings a handful of enhancements to the table. The entire text stack has been replaced
to make text faster to render, and be sharper, more legible. New controls (such as a Silverlight -
 compatible Datagrid, Calendar, and DatePicker) have been added. Silverlight ’ s Visual State Manager
is now offi cially part of WPF. Touch and manipulation APIs to handle Windows 7 ’ s new multitouch
capabilities are borrowed from the Surface SDK. WPF also borrowed Silverlight 3 ’ s GPU caching
and layout rounding features, and added Pixel Shader 3 support.

 Silverlight keeps running ahead with version 4. Out - of - browser applications get elevated support for
Common Object Model (COM) interoperability, direct fi le access, and full network access. HTML
hosting allows Silverlight applications to display HTML pages out - of - the - browser. Enhanced digital

CH008.indd 302CH008.indd 302 9/6/10 4:54:34 PM9/6/10 4:54:34 PM

rights management (DRM) helps to keep Hollywood studios happy. Webcam and microphone
support introduce new ways of interacting with your applications. Printing helps LOB scenarios.
Styling and data binding enhancements eliminate the biggest pain points when comparing WPF and
Silverlight.

 In March 2010, Microsoft revealed its plans for its brand new mobile platform, Windows Phone 7.
Windows Phone 7 is a clean start for Microsoft, leaving everything behind that Windows Mobile 6.5
had. Windows Phone 7 development will be done exclusively in managed code, either using
Silverlight, or XNA (for graphics - heavy apps, mostly games). WP7 ’ s Silverlight is initially going
to be a highly optimized version of Silverlight 3.

 It is no secret that WPF and Silverlight are converging, and down the road, there may be a single
codebase for the two. More and more scenarios are possible with both Silverlight and WPF. Later in
this chapter, you will see some pointers on which one to choose.

 THE TEN PILLARS OF SILVERLIGHT

 What may be most amazing about Silverlight and WPF is how the core concepts or pillars work
together to create a whole that is much bigger than its parts. Although space does not permit the
discussion in this chapter to go into any reasonable depth into either Silverlight or WPF, a good
alternative is to examine Silverlight ’ s features (or “ pillars ”), and give some pointers as to how these
pillars can be combined. Hopefully, this will be enough to pique your interest and encourage you to
look for more information.

 Following are the ten pillars of Silverlight:

 XAML — This is the declaration language that describes the UI and resources.

 Tools — These are the tools of the trade.

 Layout — This involves putting controls on the screen in the right size, and in the right
place.

 Data binding — This involves connecting the data and the UI.

 Styles — This involves changing the look of controls.

 Templates — This involves separating data, logic, and presentation.

 Animations — This is not just for eye candy. Animations and transitions can greatly
enhance UX.

 Media — This involves creating a premium multimedia experience.

 Networking — This involves communication with the server and the cloud.

 Others — This includes features that may not be pillars, but that are important
nevertheless.

 Let ’ s take a look at these in a bit more detail.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

The Ten Pillars of Silverlight ❘ 303

CH008.indd 303CH008.indd 303 9/6/10 4:54:35 PM9/6/10 4:54:35 PM

304 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 XAML

 To fully appreciate the relationship between XAML and Silverlight, a sample application would
be most helpful.

 FIGURE 8 - 1: Creating a new Silverlight project in Visual Studio 2010

 Visual Studio 2010 allows you to create both Silverlight 3 and Silverlight 4
applications. However, out - of - the - box, only Silverlight 3 support is provided.
To enable Silverlight 4 development, you must download and install “ Silverlight 4
Tools for Visual Studio 2010 ” from http://www.silverlight.net/
getstarted . If you plan to follow the samples on your own computer, it is
recommended that you perform this installation now.

 Silverlight Hello World Application

 Let ’ s fi re up Visual Studio 2010 and create your fi rst Silverlight application. In the New Project
dialog shown in Figure 8 - 1, choose Silverlight Application. (You can use the handy new template
search function on the top right to fi nd it quickly.)

 After providing the name and directory for the solution (call it HelloWorld), Visual Studio asks
whether you want to “ Host the Silverlight application in a new website. ” Keep the checkbox ticked,

CH008.indd 304CH008.indd 304 9/6/10 4:54:35 PM9/6/10 4:54:35 PM

and ensure that the Silverlight Version is set to Silverlight 4. For now,
don ’ t enable WCF RIA Services (formerly known as .NET RIA Services).

 After the project has been created, examine the Solution Explorer. There
should be a new solution, with two projects. The fi rst is the Silverlight
project, containing two .xaml fi les (and .xaml.cs fi les behind them). The
second project is the hosting website you asked the wizard to create. It
contains the HelloWorldTestPage.aspx and the HelloWorldTestPage
.html web pages, a Silverlight.js JavaScript library, the usual
 Web.config , and a ClientBin directory. If you build the solution
now, you will see that the ClientBin folder has one item in it: the
 HelloWorld.xap fi le, which is the actual Silverlight application that
gets downloaded and run in the browser. Figure 8 - 2 shows how the
fi les are laid out for this sample Silverlight solution.

 You can also see that, after creating the solution, Visual Studio has
opened up the MainPage.xaml fi le for editing, as shown in Figure 8 - 3.
Just as with the split screen view of ASP.NET, you should see a split screen, with the empty Silverlight
screen on top, and the XAML code at the bottom. If you don ’ t have a split screen, click on the little
horizontal line button at the bottom edge of the document editing window.

 FIGURE 8 - 2: The fi le

 structure of a new

Silverlight solution

 FIGURE 8 - 3: The Visual Studio 2010 workspace

The Ten Pillars of Silverlight ❘ 305

CH008.indd 305CH008.indd 305 9/6/10 4:54:41 PM9/6/10 4:54:41 PM

306 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 So, what is XAML code? If you are familiar with XML, you can immediately see that XAML is
basically XML. As a fi rst approach, you can think of XAML as a way of serializing CLR object
trees to XML. XAML has some additional syntax that helps with data binding, and other
UI - related tasks.

 Just like in the case of HTML, in Silverlight applications, XAML is mostly used to describe the UI
of an application. Let ’ s examine the contents of the MainPage.xaml fi le shown in Listing 8 - 1.

 LISTING 8 - 1: MainPage.xaml

 < UserControl x:Class=”HelloWorld.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >

 < Grid x:Name=”LayoutRoot” Background=”White” >

 < /Grid >
 < /UserControl >

 Code fi le [MainPage.xaml] available for download at Wrox.com

 As with any XML fi le, you have one root element. In this case, this is a UserControl , with the type
name and namespace HelloWorld.MainPage . There are a couple of XML namespaces also defi ned,
including xmlns:d . This is a designer namespace, used by tools like Expression Blend and Visual
Studio for specifying design - time properties such as the d:DesignHeight and d:DesignWidth
properties of the UserControl . These properties do not play any role while running the application,
but give a design - time width and height for the UserControl to use in the visual designer.

 Within the UserControl , MainPage.xaml has a Grid . The Grid is a layout control. Its task is to
arrange and display its children in rows and columns. The Grid has the name LayoutRoot , and has
a white background color.

 Change the XAML by inserting a TextBlock control in the Grid . The MainPage.XAML should now
read as shown in Listing 8 - 2.

 LISTING 8 - 2: MainPage.xaml, with a Hello World TextBlock

 < UserControl x:Class=”HelloWorld.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”

CH008.indd 306CH008.indd 306 9/6/10 4:54:42 PM9/6/10 4:54:42 PM

 d:DesignHeight=”300” d:DesignWidth=”400”

 xmlns:my=”clr-namespace:HelloWorld” >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < TextBlock Text=”Hello, World!” / >
 < /Grid >
< /UserControl >

 Code fi le [MainPage.xaml] available for download at Wrox.com

 As you would expect, the text “ Hello, World! ” now appears in the top - left corner. If you change the
line with the TextBlock to include the HorizontalAlignment and VerticalAlignment properties,
you can see that the text has moved to the center of the Grid .

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < TextBlock Text=”Hello, World!”
 HorizontalAlignment=”Center” VerticalAlignment=”Center” / >
 < /Grid >

 Now, build and run the solution by pressing F5. If everything went well, you should see your fi rst
Silverlight application in the browser, as shown in Figure 8 - 4.

 FIGURE 8 - 4: Running the HelloWorld Silverlight

application

 Sample code in this chapter is available for download at this book ’ s companion
website (www.wrox.com).

The Ten Pillars of Silverlight ❘ 307

CH008.indd 307CH008.indd 307 9/6/10 4:54:42 PM9/6/10 4:54:42 PM

308 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 If you resize the browser, you will notice that the greeting text stays in the center, just as you
would expect. Looking at the source code of the web page displayed in the browser reveals that the
Silverlight plug - in is displayed via an HTML < object > tag. If the visitor does not have Silverlight
plug - in installed, there is some HTML within the < object > tag that points to Microsoft ’ s
Silverlight download site. This HTML section can be customized as you wish — there are even
some Search Engine Optimization (SEO) techniques that utilize this area (discussed later in this
chapter). The most important parameter of the < object > tag is the “ source ” parameter that points
to “ ClientBin/HelloWorld.xap ” . This is the compiled HelloWorld Silverlight application,
automatically put within the ClientBin directory by the build process.

 As you can see, XAML is a great way to describe the object hierarchy of the UI. XAML was
designed to be the UI description language of WPF, but it is also used elsewhere in the .NET
Framework, such as describing workfl ows in Workfl ow Foundation, or being the base language of
XPS. When the WPF team (or, as it was called at the time, the Avalon team) designed XAML, they
had the following goals in mind (among others):

 XAML is based on XML — This means that it is easily digestible for both computers and
humans, and it is easy to validate.

 XAML is Toolable — When using design tools to create a UI, creating and interpreting
XAML code is much easier than HTML because XAML does not allow non - closed tags.
It is case - sensitive and is generally stricter. With XAML, you don ’ t see the “ Designer
Generated Code — do not modify ” warnings hidden in C# or Visual Basic fi les. You can
easily modify the XAML, and the visual designer will immediately refl ect your changes.

 XAML can be both compiled and interpreted — WPF compiles XAML, but it is also
possible to load/create XAML on - the - fl y, and load it into the application.

 XAML is extensible — You can defi ne your own controls, or business classes, and have
them within the XAML object hierarchy.

➤

➤

➤

➤

 For more information on the goals of XAML, see http://blogs.windowsclient
.net/rob_relyea/archive/2009/05/28/our-7-goals-for-xaml.aspx .
For more information on the benefi ts of XAML, see http://blogs
.windowsclient.net/rob_relyea/archive/2008/11/06/the-8-benefi ts-

of-xaml-for-ui-and-beyond.aspx .

 Adding Event Handlers

 Having “ Hello, World ” in the middle of the browser window is nice, but for a real application, you
probably want some interaction. Let ’ s replace the TextBlock with a Button within the XAML:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Press me” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” />
</Grid>

CH008.indd 308CH008.indd 308 9/6/10 4:54:48 PM9/6/10 4:54:48 PM

 You may have noticed that while the TextBlock had a Text property, the Button has a Content
property. The reason is that buttons are not restricted to display only text — they can display
any Silverlight element or element tree. Remember how diffi cult it is to have anything other than
an image and text on a button in Windows Forms? Remember how you must re - create the entire
button logic, along with mouseover effects, click effects, event handlers in HTML and JavaScript if
you want something more than just text or image within a button?

 With Silverlight, this is very easy. Here is how you would put a video inside the button:

<Button HorizontalAlignment=”Center” VerticalAlignment=”Center”>
 <Button.Content>
 <MediaElement Width=”100” Height=”75”
 Source=”http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/
 SL3Expression3Launch_ch9.wmv” />
 </Button.Content>
</Button>

 The result appears in Figure 8 - 5.

 FIGURE 8 - 5: Button with a video

as its content

 By the way, the referenced video is a fun little clip of how designers and
developers can ’ t get along, and how the Expression Studio and Silverlight can
help them to change that.

The Ten Pillars of Silverlight ❘ 309

 Notice that the Content property is not an attribute within the < Button > tag anymore. You moved
it outside of the opening tag of the Button element, but it is still inside the Button . The Button is
still fully functional with the video inside. It reacts when the mouse is hovered over it, when it is
depressed, or when it is released.

CH008.indd 309CH008.indd 309 9/6/10 4:54:53 PM9/6/10 4:54:53 PM

310 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 To actually capture the Click event, select the Button , and use the Property Browser. Activate the
Events tab within the Property Browser, and locate the Click event handler. Note that you can even
search for a property or event — this is very handy because there are tons of properties or events for
most controls. Double - click on the empty drop - down next to the “ Click ” text, and a Button_Click
event handler will be created for you within the code - behind fi le (MainPage.xaml.cs). The XAML
fi le will have the wiring for the new event handler:

 < Button HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Click=”Button_Click” >

 Just as in ASP.NET, Silverlight controls can have their own code - behind fi les. Let ’ s have a look at
the code - behind you just opened (Listing 8 - 3).

 LISTING 8 - 3: MainPage.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace HelloWorld
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {

 }
 }
}

 Code fi le [MainPage.xaml] available for download at Wrox.com

 The MainPage class is a partial class — the other part of the class is created from the MainPage
.xaml fi le. (You can inspect it by right - clicking on the InitializeComponent call in the
constructor, and selecting “ Go To Defi nition ” from the context menu.) The class is inherited from

CH008.indd 310CH008.indd 310 9/6/10 4:54:58 PM9/6/10 4:54:58 PM

 UserControl. The constructor only has one instruction — it calls the InitializeComponent
method, which builds up the control tree described in the XAML, and then creates and assigns the
fi elds for the named elements (such as the LayoutRoot grid).

 Let ’ s put some logic within the Click event handler of the button:

private void Button_Click(object sender, RoutedEventArgs e)
{
 LayoutRoot.Background = new SolidColorBrush(Colors.Yellow);
}

 Notice that you have not created a fi eld or property called LayoutRoot — Visual Studio took care
of that. The InitializeComponent method call found the proper element within the visual tree
created from the XAML fi le, and assigned it to the LayoutRoot fi eld.

 If you run the application now, clicking the button should change the background of the entire
application to yellow. If you come from an ASP.NET background, it is important to realize that
there has been no postback — the event handler ran on the client, within the Silverlight plug - in
itself.

 Code Versus XAML

 As mentioned previously, XAML is basically an XML - based description of an object hierarchy.
This means that what you can express in XAML, you should be able to express in C# or Visual
Basic .NET as well. So, let ’ s look the code - only equivalent of the MainPage user control shown
in Listing 8 - 4.

 LISTING 8 - 4: CodeOnly.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace HelloWorld
{
 public partial class CodeOnly : UserControl
 {

 internal Grid LayoutRoot;

 public CodeOnly()

continues

The Ten Pillars of Silverlight ❘ 311

CH008.indd 311CH008.indd 311 9/6/10 4:54:59 PM9/6/10 4:54:59 PM

312 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

LISTING 8-4 (continued)

 {
 InitializeComponent();

 //Build the visual tree from code
 LayoutRoot = new Grid
 {
 Background = new SolidColorBrush(Colors.White)
 };

 var button = new Button
 {
 HorizontalAlignment = System.Windows.HorizontalAlignment.Center,
 VerticalAlignment = System.Windows.VerticalAlignment.Center,
 Content = new MediaElement
 {
 Width = 100,
 Height = 75,
 Source = new Uri(
“http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/SL3Expression3Launch_ch9.wmv”,
 UriKind.Absolute)
 }
 };

 button.Click += new RoutedEventHandler(button_Click);

 LayoutRoot.Children.Add(button);
 this.Content = LayoutRoot;
 }

 void button_Click(object sender, RoutedEventArgs e)
 {
 LayoutRoot.Background = new SolidColorBrush(Colors.Yellow);
 }
 }
}

 Code fi le [CodeOnly.xaml.cs] available for download at Wrox.com

 The LayoutRoot Grid is also removed from the CodeOnly.xaml fi le, leaving only the UserControl
there, as shown in Listing 8 - 5.

 LISTING 8 - 5: CodeOnly.xaml

 < UserControl x:Class=”HelloWorld.CodeOnly”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” / >

 Code fi le [CodeOnly.xaml] available for download at Wrox.com

CH008.indd 312CH008.indd 312 9/6/10 4:54:59 PM9/6/10 4:54:59 PM

 To prove that the two methods are equal, open up the App.xaml.cs fi le, and fi nd the Application_
Startup method, where RootVisual is set to a new instance of the MainPage class. Replace this
with the following:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new CodeOnly();
}

 If you run the application now, you will see exactly the same behavior. It seems like whatever
you can do in XAML, you can do it in C# as well. The code approach is less readable, and more
verbose, but certainly equivalent with the declarative.

 But there is one very important exception: Coding the UI effectively makes the designer - developer
cooperation impossible . There is no designer - friendly way to change the size or position of the
button within CodeOnly.xaml.cs . There is no way a designer can add animations or change colors,
replace controls without messing with your code — and probably neither of you want to do that.

 So, the best practice is to keep everything you can in XAML. As you learn to appreciate the power
of Silverlight and WPF, you will see that almost any design can be expressed in XAML. With
proper architecture, the task of the developer is “ simply ” to acquire the data and send it back to
the server, and the task of the designer is to display it and ensure that the user experience is fl uid
and fun to use. XAML, Visual Studio, and Expression Blend provide unparalleled basis for both
developers and designers to do their ends of the work.

 Tools for Working with Silverlight (and WPF)

 You may fi nd it strange that tools are included as a pillar for Silverlight and WPF development.
However, tooling is as important as the underlying technology — and, in the case of Silverlight and
WPF, the tooling story is great with Visual Studio 2010 and Expression Blend. Knowing both of
these tools is essential in achieving great productivity and fully harnessing the power of Silverlight
and WPF.

 First, there is Visual Studio 2010, arguably the best development tool out there. While Visual
Studio 2008 was lacking big time with WPF, and especially Silverlight development (Silverlight 3
didn ’ t even have a read - only visual XAML preview like Silverlight 2 had), Cider (the name of the
Silverlight and WPF designer) really put its act together for Visual Studio 2010. Cider ’ s main goal is
to allow for RAD WPF and Silverlight development; thus, it focuses on things developers do — and
completely ignores fancy things like animation, visual states, and even templates.

 For these tasks, Microsoft has created Expression Design (a vector graphics drawing program),
and especially Expression Blend. Blend is the tool for the interactive designer. It helps with creating
the UI (including animations, wiring data, and business logic to the UI) and changing the look and
feel of controls. Although Expression Blend gives access and even Intellisense for both XAML and
C#/Visual Basic code, most of what the WPF and Silverlight platforms can do in terms of UI can be
done in Blend without writing any code.

 Take a look at Figure 8 - 6, which shows Visual Studio 2010 with the previous HelloWorld
sample open.

The Ten Pillars of Silverlight ❘ 313

CH008.indd 313CH008.indd 313 9/6/10 4:55:00 PM9/6/10 4:55:00 PM

314 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 The central area displays the artboard on the top, and
the XAML on the bottom. This split view is an excellent
learning tool. Any change to the top area (like moving the
button, changing colors, adding new controls, and so on) is
immediately refl ected on the bottom, and vice versa. If the
XAML is changed, the end result can be seen on the top
in a second. On the bottom right, the Property Browser has
a very useful feature — the properties can be searched, as
shown in Figure 8 - 7.

 There is also a handy document outline window. Because
XAML trees can get pretty huge, this helps fi nding the right
element in the document.

 For some developers, the dark, “ designer - ish ” look of Blend
is a little scary. They may not feel at home with it. However,
Blend is an indispensable tool for a developer who deals
with XAML — unfortunately, some features that even gray
LOB applications need didn ’ t make it to Visual Studio ’ s Cider (such as ItemTemplate editing,
which is discussed later in this chapter). The same HelloWorld application opened in Blend
(preview for .NET 4) is shown in Figure 8 - 8.

 FIGURE 8 - 7: The VS2010 Property

Browser

 FIGURE 8 - 6: Visual Studio with the HelloWorld application

CH008.indd 314CH008.indd 314 9/6/10 4:55:00 PM9/6/10 4:55:00 PM

 Again, the artboard and the split XAML view occupy most of the screen. The Property Editor panel
looks fancier (and is easier to navigate because of the different value editors), and the numerical
values can be changed by dragging over the property value display. The properties can be fi ltered in
Blend, just like in Visual Studio. The toolbox is replaced by zooming, panning, manipulation tools,
and basic controls — the rest of the controls can be found (and searched for) in the Assets panel.
The Objects and Timeline panel is central for working in Blend. Unlike Cider ’ s Document Outline,
it is interactive, supports drag - and - drop for re - arranging controls, right - clicking for additional
actions, and can be expanded with a timeline to create and edit animations.

 Layout

 Layout means the way the controls are sized and placed on the screen. The Silverlight layout system
is very fl exible. It is easy to create layouts that automatically adapt to the following factors:

 Available screen size

 Number of items displayed

 Size of the displayed elements

 Magnifi cation factor

 Silverlight ’ s layout strategy is different from what you may be used to in Windows Forms or ASP.NET.
The key to understanding Silverlight ’ s layout system is to understand the concept of containers.

 There are two kinds of containers in Silverlight. ContentControl s can have only one child. You can
access the child of the ContentControl via the Content property. Examples for ContentControl

➤

➤

➤

➤

 FIGURE 8 - 8: The HelloWorld application in Expression Blend

The Ten Pillars of Silverlight ❘ 315

CH008.indd 315CH008.indd 315 9/6/10 4:55:01 PM9/6/10 4:55:01 PM

316 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

descendants are Button , Checkbox , and ScrollViewer . You used the Content property of the
 Button earlier in the HelloWorld sample. But what if you want to place more than just one element
within the Button ?

 The trick is that you can place a Panel as the Content of a ContentControl . Panel s can have more
than one child in the Children property. The Grid (which is a default panel when you create a new
 UserControl in Visual Studio) is an example of such a Panel . So, how do you place text next to the
video in the button from the HelloWorld application?

<Button HorizontalAlignment=”Center” VerticalAlignment=”Center”>
 <Button.Content>
 <StackPanel>
 <TextBlock Text=”I am a button!” HorizontalAlignment=”Center” Margin=”5” />
 <MediaElement Width=”100” Height=”75”
 Source=”http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/
 SL3Expression3Launch_ch9.wmv” />
 </StackPanel>
 </Button.Content>
</Button>

 The Content of Button is now a StackPanel . The StackPanel has two children — a centered
 TextBlock , and the MediaElement that plays the video. By default, the StackPanel arranges its
children so that they are below each other. So, the Button described with the previous XAML looks
like Figure 8 - 9.

 FIGURE 8 - 9: Button with text and video

 If you want to change the layout so that the text is to the left of the video, you must change the
 StackPanel itself, and add an Orientation attribute, as shown here:

<Button HorizontalAlignment=”Center” VerticalAlignment=”Center”>
 <Button.Content>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”I am a button!” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” Margin=”5” />

CH008.indd 316CH008.indd 316 9/6/10 4:55:02 PM9/6/10 4:55:02 PM

 <MediaElement Width=”100” Height=”75”
Source=”http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/
 SL3Expression3Launch_ch9.wmv” />
 </StackPanel>
 </Button.Content>
</Button>

 In this code snippet, the TextBlock has also received a new, VerticalAlignment attribute. If it is
omitted, the TextBlock will have the same height as the MediaElement next to it, and thus, the text
will be displayed on the top instead of in the middle.

 This sample shows how Silverlight layout works. It is not the controls that determine where and
how they will be displayed, but rather their containing control. The StackPanel arranges
its children to be below each other (if the Orientation property is set to the default value of
 Orientation.Vertical), or the children can be next to each other (if the Orientation property
is Orientation.Horizontal).

 The actual layout algorithm is a little bit more complicated. The children have their say in what size
they would prefer to be. This allows for adapting the layout to the size of the content. As the fi rst step
of the layout algorithm, starting from the top of the visual tree, Silverlight asks every element how big it
would like to be ideally by calling the MeasureOverride method. Composite controls, such as Panels or
 ContentContainer s calculate their answers by invoking the MeasureOverride method of their children.

 In the second step, the ArrangeOverride method is called throughout the entire visual tree in a
similar manner. In this case, the parents tell their children the actual amount of space available
for them — and it is the responsibility of the children to fi t in. If the available space is smaller than
what the control ideally could fi ll, the controls can add a scroll bar, scale their content to a smaller
size (such as an image or a video), or simply perform a crop. The ultimate limit for how big the root
element can be is the size given to the HTML < object > tag — or, in the case of an out - of - browser
(OOB) application, the size of the hosting window.

 Layout Containers in Silverlight

 Layout containers in Silverlight include the following:

 Border

 Canvas

 StackPanel

 Grid

 Viewbox

 Border

 Border s can have only one child. (But, as in the previous Button example, this can be another
layout container.) As its name implies, Border puts a border around its content.

 < Border HorizontalAlignment=”Center” VerticalAlignment=”Center”
 BorderBrush=”Black” BorderThickness=”3” CornerRadius=”5” >
 < TextBox Text=”TextBox with a lot of text” Background=”LightGray” / >
 < /Border >

➤

➤

➤

➤

➤

The Ten Pillars of Silverlight ❘ 317

CH008.indd 317CH008.indd 317 9/6/10 4:55:02 PM9/6/10 4:55:02 PM

318 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 This code creates a Border around the TextBox . As you can see in Figure 8 - 10,
the border has a thickness of 3 pixels, and its corners are also rounded with a
radius of 5 pixels. But what is more interesting is that the size of the textbox
and the border are both determined by the size of the text within the textbox.
This is the result of the adaptive layout algorithm described earlier. During the
layout phase, Border asks the TextBox to measure itself, and TextBox does so
by measuring its own content elements — mainly the text and the decorators
around it.

 Because Border does not have any specifi c size set (this is why the
 HorizontalAlignment and the VerticalAlignment properties are set), it sizes itself around its
content, the TextBox . If you run the previous sample, you can see that if you change the text within
the TextBox , the Border resizes itself accordingly.

 You can also control the space between the borders of the Border and the TextBox by modifying the
 Border ’ s Padding property. The Padding property is defi ned on quite a few controls in Silverlight. For
example, in a TextBox , Padding controls the space between the text and the bounds of the control.

 Canvas

 Canvas is the simplest Panel , and it is the simplest layout container
that can have more than one child. On a Canvas , you simply put items
on absolute coordinates. The top - left corner is “ 0,0. ” Canvas allows its
children to be of any size. If the children do not fi t the Canvas , they are
still shown outside the Canvas . (In WPF, you can clip the content to the
bounds to the Canvas using the ClipToBounds property). The size of
the Canvas itself does not depend on its children. This simplicity makes
it the fastest layout control, and thus, the best choice, when adaptive
layout is not needed.

 The following code places a Rectangle and an Ellipse in the Canvas .
The Ellipse extends outside the Canvas , as shown in Figure 8 - 11. The
 Rectangle is above the Ellipse , as it is later in the XAML. If you want
to place the Ellipse above the Rectangle , you can use the Canvas
.ZIndex property.

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < Canvas Width=”200” Height=”300” Background=”Gray” >
 < Ellipse Width=”150” Height=”100”
 Canvas.Left=”100” Canvas.Top=”100” Fill=”Black” / >
 < Rectangle Width=”150” Height=”100”
 Canvas.Left=”20” Canvas.Top=”33” Fill=”White” / >
 < /Canvas >
 < /Grid >

 Earlier, you learned that the controls are not responsible for their own placement. So, how is it that
you can see left and top coordinates on the Ellipse and the Rectangle in the XAML? The trick is
that these coordinates (Canvas.Left and Canvas.Top) are provided via a construct called attached

 FIGURE 8 - 11: Canvas with

Ellipse and Rectangle

 FIGURE 8 - 10: Border

resizes around

TextBox

CH008.indd 318CH008.indd 318 9/6/10 4:55:02 PM9/6/10 4:55:02 PM

dependency properties . Any child control of the Canvas in the visual tree can set these properties.
Even though they are set within the children, handling these properties is still the responsibility of
the Canvas , and the properties themselves are defi ned in the Canvas .

 StackPanel

 As you ’ ve seen previously, StackPanel arranges its children either horizontally or vertically. Here is
a slightly more complicated example:

 < StackPanel Orientation=”Horizontal” Background=”Black” >
 < StackPanel Orientation=”Vertical” >
 < Button Content=”Button 1”/ >
 < Button Content=”Button 2” Width=”100” / >
 < Button Content=”Button 3 with long text” / >
 < /StackPanel >
 < StackPanel Orientation=”Horizontal” Background=”Gray” >
 < Button Content=”Button 4”/ >
 < Button Content=”Button 5” Height=”40” / >
 < Button Content=”Button 6 with long text” / >
 < /StackPanel >
 < /StackPanel >

 This renders as shown in Figure 8 - 12.

 The fi rst, black StackPanel is set to a horizontal
orientation, and has two more StackPanel s as its children.
Both children have three buttons — StackPanel A
arranges them vertically, StackPanel B horizontally (this
one has a gray background). In the case of the vertical
 StackPanel , its width is determined by the width of its
biggest child — Button 3 , which has the most text in it.
The StackPanel resizes Button 1 to fi ll the horizontal
width of the panel. Button 2 has a specifi ed width, so
it does not get resized by the StackPanel .

 In the case of StackPanel s with horizontal orientation,
the panel dictates the height of its children. The gray
 StackPanel ’ s height is specifi ed by the height of the outermost, black StackPanel — just like the
height of Button 4 and Button 6 . The Height property of Button 5 is set, so the setting takes
precedence.

 Grid

 Grid is the most complex, but also the most versatile layout control. It is somewhat similar to
an HTML table. As the name implies, it allows its children to be placed in rows and columns.
Following is an example. (Figure 8 - 13 shows the Grid in Visual Studio.)

 < Grid x:Name=”LayoutRoot” Background=”Gray” >
 < Grid.RowDefinitions >
 < RowDefinition Height=”1*” / >

 FIGURE 8 - 12: Three StackPanels

The Ten Pillars of Silverlight ❘ 319

CH008.indd 319CH008.indd 319 9/6/10 4:55:03 PM9/6/10 4:55:03 PM

320 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 < RowDefinition Height=”2*” / >
 < /Grid.RowDefinitions >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”136” / >
 < ColumnDefinition Width=”264” / >
 < /Grid.ColumnDefinitions >
 < Ellipse Stroke=”Black” StrokeThickness=”1” Fill=”White” / >
 < Ellipse Stroke=”Black” StrokeThickness=”3” Fill=”White” Grid.Column=”1”
 Margin=”10,10,0,0” / >
 < Ellipse Stroke=”Black” StrokeThickness=”5” Fill=”White” Grid.Row=”1”
 Grid.ColumnSpan=”2” / >
 < /Grid >

 FIGURE 8 - 13: Grid as a layout container

 This XAML snippet creates a Grid with gray background. The Grid has two rows: the second one
is twice as big as the fi rst one. This means that if the Grid is 300 pixels high, the fi rst row will be
100 pixels, and the second 200 pixels high. The Grid also has two columns; they have a fi xed size
of 136 and 264 pixels. It is also possible to have a row or column auto - sized. In this case, the size of
the content and the remaining space from the other rows or columns determine the size of the row
or column.

 The Grid has three Ellipse s in it. The fi rst one is in Column 0 and Row 0 (if no Grid.Row or
 Grid.Column attributes are specifi ed, 0 is the default). The size of the fi rst Ellipse is determined by
the size of the top - left cell.

 The Grid.Column= ” 1 ” attribute of the second Ellipse puts it in the second column of the fi rst
row. This Ellipse also has a Margin of “ 10,10,0,0 ” , meaning that the top and left margins are

CH008.indd 320CH008.indd 320 9/6/10 4:55:04 PM9/6/10 4:55:04 PM

10 pixels. The size of the second ellipse is also determined by the size of the top - right cell, minus the
specifi ed Margin .

 The third Ellipse is placed in the second row. It also has a ColumnSpan attribute set to 2 , so that it
will occupy both cells in the second row.

 If the intention is for the contents of a Cell to not occupy the entire available space, you must
change the HorizontalAlignment and VerticalAlignment properties. These properties default to
 Stretch , but can also take on the value of HorizontalAlignment.Left , HorizontalAlignment
.Center , HorizontalAlignment.Right , or VerticalAlignment.Top , VerticalAlignment.Center ,
 VerticalAlignment.Bottom , respectively. In this case, you can use the Margin property to set the
distance from the edges of the cell.

 Viewbox

 Viewbox is a new addition to the Silverlight core framework. It was part of the Silverlight Toolkit
before Silverlight 4.0. (Silverlight Toolkit is a set of Open Source controls developed by Microsoft
that is not part of the Silverlight core platform.) Just like Border , Viewbox can have only one child.
The goal of the Viewbox control is to provide resizing strategies if the content does not exactly fi t in
the available space.

 The following sample has a Grid with four equally sized cells; every cell has a Viewbox in it. The
most important property if a Viewbox is the Stretch property. The Stretch property defi nes how
the content of the Viewbox is resized.

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < Grid.RowDefinitions >
 < RowDefinition Height=”150” / >
 < RowDefinition Height=”150” / >
 < /Grid.RowDefinitions >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”200” / >
 < ColumnDefinition Width=”200” / >
 < /Grid.ColumnDefinitions >
 < Viewbox Stretch=”None” >
 < Button Content=”Stretch:None” / >
 < /Viewbox >
 < Viewbox Stretch=”Fill” Grid.Column=”1” >
 < Button Content=”Stretch:Fill” / >
 < /Viewbox >
 < Viewbox Stretch=”Uniform” Grid.Row=”1” >
 < Button Content=”Stretch:Uniform” / >
 < /Viewbox >
 < Viewbox Stretch=”UniformToFill” Grid.Column=”1” Grid.Row=”1” >
 < Button Content=”Stretch:UniformToFill” / >
 < /Viewbox >
 < /Grid >

The Ten Pillars of Silverlight ❘ 321

CH008.indd 321CH008.indd 321 9/6/10 4:55:04 PM9/6/10 4:55:04 PM

322 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Custom Layout Panels

 With creative nesting of the previously described
layout panels, most common scenarios for a
rectangular adaptive layout can be expressed.
Still, if you need more, you can fi nd some
additional layout controls (such as Accordion ,
 LayoutTransformer , WrapPanel , and Expander)
in the Silverlight Toolkit. Because the layout model
of Silverlight is completely open, you can also write
your own panels. This book cannot go into detail,
but the keys for writing your own layout containers
are to inherit from Panel or ContentControl ,
and override the ArrangeOverride and
 MeasureOverride methods.

 Data Binding

 Data binding is used to connect elements of the UI to data, or other UI elements. Silverlight ’ s data
binding works in cooperation with styles, templates, layouts, and even animation. Data binding
allows for two - way synchronization and validation, and automatically ensures that the UI and the
underlying data are consistent. You can use data binding techniques for data display and data entry
as well. Data binding is a key element in making the separation between the UI and the logic possible.

 Simple Data Binding

 The simplest form of data binding is when you connect a single UI element to a data property.
Listing 8 - 6 shows a Clock application using data binding. Listing 8 - 7 shows the
 ClockViewModel.cs fi le.

 TABLE 8 - 2: Viewbox.Stretch Property

 STRETCH VALUE VIEWBOX ACTION

 None The content does not get resized. Viewbox behaves like a Border with

 BorderThickness = 0 .

 Fill The content fi lls the Viewbox entirely. If the aspect ratio (the width divided

by the height) of the content is not the same as the aspect ratio of the

 Viewbox , the content may get distorted.

 Uniform The content is enlarged or reduced to fi ll as much of the Viewbox as

possible while maintaining the aspect ratio.

 UniformToFill The content is enlarged or reduced to fi ll the entire Viewbox , while

maintaining the aspect ratio. If the aspect ratio of the content and the

 Viewbox are not equal, some clipping will occur.

 FIGURE 8 - 14: Viewbox with StretchMode None,

Fill, Uniform, and UniformToFill

 Table 8 - 2 examines values for Stretch , and Figure 8 - 14 shows how the Stretch property works.

CH008.indd 322CH008.indd 322 9/6/10 4:55:04 PM9/6/10 4:55:04 PM

 LISTING 8 - 6: ClockSample.xaml

<UserControl x:Class=”DatabindingDemo.ClockSample”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:local=”clr-namespace:DatabindingDemo”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”
 xmlns:dataInput=”clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Data.Input”>
 <UserControl.DataContext>
 <local:ClockViewModel />
 </UserControl.DataContext>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”{Binding Path=CurrentTime}”
 HorizontalAlignment=”Center” VerticalAlignment=”Center” />
 </Grid>
</UserControl>

 Code fi le [ClockSample.xaml] available for download at Wrox.com

 LISTING 8 - 7: ClockViewModel.cs

using System;
using System.ComponentModel;
using System.Windows.Threading;

namespace DatabindingDemo
{
 public class ClockViewModel : INotifyPropertyChanged
 {
 private DispatcherTimer timer;
 public ClockViewModel()
 {
 timer = new DispatcherTimer();
 timer.Interval = TimeSpan.FromSeconds(1);
 timer.Tick += timer_Tick;
 timer.Start();
 }

 void timer_Tick(object sender, EventArgs e)
 {
 NotifyPropertyChanged(“CurrentTime”);
 }

 private void NotifyPropertyChanged(string propertyName)

continues

The Ten Pillars of Silverlight ❘ 323

CH008.indd 323CH008.indd 323 9/6/10 4:55:05 PM9/6/10 4:55:05 PM

324 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

LISTING 8-7 (continued)

 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }

 public DateTime CurrentTime
 {
 get { return DateTime.Now; }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

 Code fi le [ClockViewModel.cs] available for download at Wrox.com

 At fi rst, the Clock sample application seems to be a bit overcomplicated. After all, you could have
simply created a timer in the code - behind, and updated the context of the TextBlock whenever the
timer fi res. However, with complex master - detail relationships and multiple objects, the advantages
of the separate data object and data binding become obvious.

 Remember how XAML is nothing but a way to describe an object hierarchy? Here, you use this
XAML feature to create an instance of the ClockViewModel class, and assign it to the DataContext
property of the UserControl . The XML namespace local refers to the assembly that contains the
 ClockViewModel . When the XAML is executed by the Silverlight run - time, the ClockViewModel
object is created, which, in turn, starts its timer.

 The DataContext property is inherited down the visual tree (but it can be changed on any element).
This means that the LayoutRoot grid and its children also have their DataContext set to the same
 ClockViewModel instance. The DataContext is also inherited by the TextBlock that is used to
display the time.

 The Text property of the TextBlock contains a data binding expression: Text= “ {Binding
Path=CurrentTime} “ . This connects the Text property to the CurrentTime property

 There is also a popular architecture pattern, called Model - View - ViewModel
(MVVM) that relies heavily on the data binding. MVVM allows for UI
logic testability and complete separation of the UI and the application logic.
Discussing MVVM in depth is beyond the scope of this book, but you can
fi nd some pointers at the end of this chapter. If you are planning to develop
serious applications with Silverlight or WPF, you should defi nitely get yourself
acquainted with the pattern.

CH008.indd 324CH008.indd 324 9/6/10 4:55:05 PM9/6/10 4:55:05 PM

of the DataContext . At every tick of the timer, the PropertyChanged event is fi red. The
 INotifyPropertyChanged interface (which only defi nes the PropertyChanged event) is how
the Silverlight run - time learns about changes in the data binding source objects. Firing the
 PropertyChanged event instructs the Silverlight run - time to update all properties that have been
bound to the data object property in question. From this point on, the display is automatic and
handled by the Silverlight run - time.

 The {Binding} clause within XAML has several additional options to make data binding more
powerful. Following are some of the most important ones:

 Converter — This allows you to create custom display logic and to convert any entered
data to something a backing fi eld can more easily understand. (For example, if you want
to display and enter a property of a size as “ 24x48 ” in a TextBox , you can implement the
 IValueConverter interface and write the converter code.)

 Mode — This can be set to OneTime (does not do further updates), OneWay (default), and
 TwoWay .

 Source — This specifi es the data source for the binding. Source can be omitted, and, in
this case, the DataContext will be the source object, just like in the earlier Clock sample.

 Path — This can be omitted as a shorthand. The binding expression in the Clock sample
can also be written as Text= “ {Binding CurrentTime} “ .

 Data Binding Between Two UI Elements

 You can also data - bind two UI elements. Here is a small sample that binds a TextBox to a Slider :

 < Slider HorizontalAlignment=”Center” x:Name=”slider1” Width=”100”
 Margin=”0,109,0,0” VerticalAlignment=”Top” / >
 < TextBox HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Text=”{Binding Path=Value, Mode=TwoWay, ElementName=slider1,
 ValidatesOnException=True}” Width=”40” / >

 As you can see, you have a two - way binding here. You can move the Slider , and the TextBox
automatically updates. Similarly, you can enter a number in the TextBox , and the Slider updates.
This automatic binding is done via dependency properties instead of the INotifyPropertyChanged
interface, which is more suited for business data objects. Dependency properties are essentially
control properties that can participate in data binding, styling, and animation, and are managed by
the Silverlight (or WPF) run - time.

 The binding update is triggered when the TextBox loses focus. (You can use the Tab key for this.) The
input controls in Silverlight are prepared to display validation errors. If the value entered in
the TextBox is invalid (for example, it contains a letter), an exception
will be raised. Because you set the ValidatesOnExceptions
property of the Binding to True , the exception actually appears
as a user - friendly notifi cation, as shown in Figure 8 - 15. Further
binding validation options include ValidatesOnDataErrors and
 ValidatesOnNotifyDataErrors .

➤

➤

➤

➤

 FIGURE 8 - 15: TextBox showing a

Validation error

The Ten Pillars of Silverlight ❘ 325

CH008.indd 325CH008.indd 325 9/6/10 4:55:11 PM9/6/10 4:55:11 PM

326 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Data Binding to a List of Objects

 Most of the time, the task is to display multiple objects at the same time — for example, in a
 ListBox , DataGrid , or even a DropDownList . Suppose the application has to list the authors of this
book. The Author object is very simple:

public class Author
{
 public string Name { get; set; }
 public string Chapters { get; set; }
}

 To display a list of Author objects in a DataGrid , simply declare a DataGrid in XAML (DataGrid
is part of the Silverlight Toolkit, so you will have to install Silverlight Toolkit from http://
silverlight.codeplex.com , and add a project reference to the System.Windows.Controls
namespace):

 < data:DataGrid Name=”myGrid” / >

 And, in the code - behind, assign the ItemsSource property of the DataGrid like this:

myGrid.ItemsSource = authors;

 If authors is of type IEnumerable < Author > (or something similar, like a List < Author >), and it has
any data, the Author objects will be displayed as shown in Figure 8 - 16.

 FIGURE 8 - 16: Displaying Author objects in a DataGrid

 Notice that the DataGrid object was intelligent enough to determine the columns of the Grid based
on the Author object. Of course, this behavior can be overridden with the AutoGenerateColumns
property. DataGrid is an extremely powerful control, with features like grouping, sorting, fi ltering,
rearranging columns, templating, in - place editing, and validation, just to name a few.

 The important thing to note here is that Silverlight and WPF data binding works directly with
the displayed objects. There is no need to explicitly create ListItem s and put references to the
contained object in Tag s, or fi nd the selected item via an indexed array. The developer can keep
working with the objects of the business domain, and the XAML will take care of the display.

 If a new Author is added to the list, the UI is expected to immediately show it. For simplicity ’ s sake,
create a simple Button that adds a new author to the authors list:

 < Button Content=”Add new author” Click=”AddAuthor_Click” / >

CH008.indd 326CH008.indd 326 9/6/10 4:55:11 PM9/6/10 4:55:11 PM

 The event handler looks like this:

private void AddAuthor_Click(object sender, RoutedEventArgs e)
{
 authors.Add(new Author {
 Name = “New Author”,
 Chapters = “New Author Chapters”
 });
}

 However, clicking the Button does not update the DataGrid . Setting the ItemsSource property
of the DataGrid to null , and then back to the authors fi eld, works, but this is a downright ugly
solution. There surely must be a better way.

 The better way is the INotifyCollectionChanged interface. Just like INotifypropertyChanged
can get your property changes to show up in the UI, the INotifyCollectionChanged interface
helps with automatically propagating changes to a list in the UI. The simplest way to take advantage
of the INotifyCollectionChanged interface is to use the built - in ObservableCollection < Author >
instead of List < Author > . Now, pressing the Button adds a new item to the list, which immediately
shows up in the DataGrid . Listing 8 - 8 shows the entire DatabindingList.cs fi le.

 LISTING 8 - 8: DatabindingList.cs

using System.Windows;
using System.Windows.Controls;
using System.Collections.ObjectModel;

namespace DatabindingDemo
{
 public partial class ListDatabinding : UserControl
 {
 private ObservableCollection < Author > authors;

 public ListDatabinding()
 {
 InitializeComponent();
 authors = new ObservableCollection < Author >
 {
 new Author { Name = “Andras Velvart”, Chapters = “Modern UI Frameworks” },
 new Author { Name = “Agnes Molnar”,
 Chapters = “History of Visual Studio and Current Editions,
 .NET Framework Version History,
 ASP.NET Version History” },
 new Author { Name = “Istvan Novak”,
 Chapters = “Visual Studio Snippets, Visual Studio Templates,
 Extendind Visual Studio, Enhancements to the
 .NET Core Framework, C# History,
 C#4 Language Improvements” }

continues

The Ten Pillars of Silverlight ❘ 327

CH008.indd 327CH008.indd 327 9/6/10 4:55:12 PM9/6/10 4:55:12 PM

328 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

LISTING 8-8 (continued)

 //Other authors...
 };

 myGrid.ItemsSource = authors;
 }

 private void AddAuthor_Click(object sender, RoutedEventArgs e)
 {
 authors.Add(new Author { Name = “New Author”,
 Chapters = “New Author Chapters” });
 }
 }

 public class Author
 {
 public string Name { get; set; }
 public string Chapters { get; set; }
 }
}

 Master - Detail Data Binding

 It is easy to create a master - detail interface using UI - to - UI binding. Listing 8 - 9 shows the entire
XAML code that extends the previous sample with a detail panel.

 LISTING 8 - 9: ListDatabinding.xaml

 < UserControl x:Class=”DatabindingDemo.ListDatabinding”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”
 xmlns:data=”clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Data” >

 < UserControl.Resources >
 < !-- Give TextBlocks a bit more space-- >
 < Style TargetType=”TextBlock” >
 < Setter Property=”Padding” Value=”8,8,8,8” / >
 < /Style >
 < /UserControl.Resources >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < StackPanel >
 < TextBlock HorizontalAlignment=”Center” Text=”Book Authors” / >
 < Button Content=”Add new author” Click=”AddAuthor_Click” / >
 < data:DataGrid Name=”myGrid” / >
 < !-- The details panel -- >

CH008.indd 328CH008.indd 328 9/6/10 4:55:12 PM9/6/10 4:55:12 PM

 <Border CornerRadius=”10” BorderBrush=”Black”
 BorderThickness=”1” Margin=”10”>
 <StackPanel DataContext=”{Binding ElementName=myGrid, Path=SelectedItem}”>
 <TextBlock HorizontalAlignment=”Center”
 Text=”{Binding Path=Name, StringFormat=Name: \{0\}}”
 FontWeight=”Bold” />
 <TextBlock HorizontalAlignment=”Center”
 Text=”{Binding Path=Chapters, StringFormat=Chapter: \{0\}}”
 TextWrapping=”Wrap” />
 </StackPanel>
 </Border>
 </StackPanel>
 </Grid>
</UserControl>

 Code fi le [ListDatabinding.xaml] available for download at Wrox.com

 The code - behind has not changed at all. Running this sample and selecting a row in the DataGrid
displays the details of the selected author in a nice rounded border, as shown in Figure 8 - 17.

 FIGURE 8 - 17: Typical master - details UI

 So, how does the details panel work? The root of the details panel is a Border . The DataContext
of the Border is bound to the SelectedItem property of the DataGrid , which (as its name implies)
points to the currently selected item in the DataGrid . If the DataGrid displays objects of the Author
type, the SelectedItem will also contain an instance of the Author type (or null , if nothing is
selected).

 The trick here is to again utilize the inheriting nature of the DataContext property. If the Border ’ s
 DataContext is set to the selected Author , then all its descendants in the visual tree will have the
same DataContext . Consequently, the two TextBlock s will also display the Name and Chapter
properties of the selected Author . Note that the bindings have a very handy StringFormat binding
that uses the same String.Format formatter syntax as the core run - time.

The Ten Pillars of Silverlight ❘ 329

CH008.indd 329CH008.indd 329 9/6/10 4:55:12 PM9/6/10 4:55:12 PM

330 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Styles

 You have already seen how you can change the look of controls via the Background , Stroke ,
and other properties. For example, you can change how a TextBlock looks and behaves with the
following XAML:

 < TextBlock Text=”I am stylish, am I not?” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” FontFamily=”Comic Sans MS”
 FontSize=”20” FontStyle=”Italic”
 FontWeight=”Bold” TextTrimming=”WordEllipsis” Width=”199” >
 < TextBlock.Foreground >
 < LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0” >
 < GradientStop Color=”Black” Offset=”0” / >
 < GradientStop Color=”Gray” Offset=”1” / >
 < /LinearGradientBrush >
 < /TextBlock.Foreground >
 < TextBlock.Effect >
 < BlurEffect Radius=”2” / >
 < /TextBlock.Effect >
 < /TextBlock >

 When rendered, this XAML looks like Figure 8 - 18.

 When the styles are specifi ed within the element, they are called inline
styles . There are several problems with inline styles. The fi rst problem
is that they are verbose, and make it diffi cult to read the XAML and concentrate on the actual
control tree. The second one is that they cannot be reused easily — you must repeat the styles
for every control. The third problem is that if you want to change the look and feel of the entire
application, there is no one central place where you can do it.

 Luckily, the Silverlight styling features go way beyond inline styles or property setters. You can
create resources that contain brushes, styles, templates, or even entire objects. Resources can be
local to a control, or they can be placed into an external fi le. Listing 8 - 10 extracts some of the styles
to a resource within the parent UserControl .

 LISTING 8 - 10: Font, Blur Eff ect, and Foreground Brush Extracted to a UserControl Resource

 < UserControl x:Class=”Styles.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” FontStretch=”Normal” >
 < UserControl.Resources >
 < FontFamily x:Key=”FontFamily1” > Comic Sans MS < /FontFamily >
 < BlurEffect x:Key=”Effect1” Radius=”2” / >
 < LinearGradientBrush x:Key=”ForegroundBrush” EndPoint=”0.5,1”
 StartPoint=”0.5,0” >
 < GradientStop Color=”Black” Offset=”0” / >

 FIGURE 8 - 18: Text with style

CH008.indd 330CH008.indd 330 9/6/10 4:55:13 PM9/6/10 4:55:13 PM

 < GradientStop Color=”Gray” Offset=”1” / >
 < /LinearGradientBrush >
 < /UserControl.Resources >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < TextBlock Text=”I am stylish, am I not?” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” FontFamily=”{StaticResource FontFamily1}”
 FontSize=”20” FontStyle=”Italic” FontWeight=”Bold”
 TextTrimming=”WordEllipsis” Width=”199”
 Effect=”{StaticResource Effect1}”
 Foreground=”{StaticResource ForegroundBrush}” >
 < /TextBlock >
 < /Grid >
 < /UserControl >

 Now, you can reuse the resources in any other control. For example, the resource with the key
 ForeGroundBrush can be reused in another TextBlock , or even to specify the stroke brush of a
 Rectangle :

 < Rectangle Fill=”White” Height=”63” Width=”121”
 Stroke=”{StaticResource ForegroundBrush}” StrokeThickness=”5”/ >

 Of course, the Rectangle can only refer to the resource — if it is within the same UserControl .
If you want to reuse the resource throughout your entire project, you can create a new resource
dictionary and move it there, or make it truly global by putting it into the App.xaml resource
directory.

 Still, even with resources, if you want all your TextBlock s to look the same, you must set all
the important properties to the proper resources. Styles to the rescue! A style is nothing more
than a set of property setters. For example, you can collect the properties of the TextBlock
into a style:

 < Style x:Key=”TextBlockStyle1” TargetType=”TextBlock” >
 < Setter Property=”Foreground” Value=”{StaticResource ForegroundBrush}” / >
 < Setter Property=”Effect” Value=”{StaticResource Effect1}” / >
 < Setter Property=”FontFamily” Value=”{StaticResource FontFamily1}” / >
 < Setter Property=”TextTrimming” Value=”WordEllipsis” / >
 < Setter Property=”FontSize” Value=”20” / >
 < Setter Property=”FontStyle” Value=”Italic” / >
 < Setter Property=”FontWeight” Value=”Bold” / >
 < /Style >

 The Style defi nition is placed inside a resource dictionary — either within the UserControl , or an
external one (such as the App.xaml). Using the previous style, the TextBlock defi nition is reduced
to the following:

 < TextBlock Text=”I am stylish, am I not?” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” Width=”199”
 Style=”{StaticResource TextBlockStyle1}” / >

The Ten Pillars of Silverlight ❘ 331

CH008.indd 331CH008.indd 331 9/6/10 4:55:13 PM9/6/10 4:55:13 PM

332 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Just like with HTML, instead of named styles, you can defi ne a default style for a control since
Silverlight 4. If you want to make all TextBlocks have the same default style, just remove the x:Key
attribute from the Style defi nition:

 < Style TargetType=”TextBlock” >
 . . .
 < /Style >

 Now, you can also remove the Style resource reference from the TextBlock , and still have
exactly the same result as the fi rst sample. Of course, just like with HTML cascading styles,
the default styles can be overridden by providing implicit values, or within another resource
dictionary.

 Using BasedOn styles, the previous style can be decomposed to two styles:

 < Style TargetType=”TextBlock” x:Key=”TextBlockFontSetterStyle” >
 < Setter Property=”FontFamily” Value=”{StaticResource FontFamily1}” / >
 < Setter Property=”FontSize” Value=”20” / >
 < Setter Property=”FontStyle” Value=”Italic” / >
 < Setter Property=”FontWeight” Value=”Bold” / >
 < /Style >
<Style TargetType=”TextBlock” BasedOn=”{StaticResource TextBlockFontSetterStyle}”>
 <Setter Property=”Foreground” Value=”{StaticResource ForegroundBrush}” />
 <Setter Property=”Effect” Value=”{StaticResource Effect1}” />
 <Setter Property=”TextTrimming” Value=”WordEllipsis” />
</Style>

 Templates

 Separating logic and presentation is a key design principle for Silverlight and WPF. Styles are
perfect for making small changes to one or more controls, such as setting colors, fonts, and so on.
Templates allow the designer to go further, and replace the entire visual tree of a control, or change
how data is displayed or laid out in a ListBox .

 While Visual Studio 2010 has no support for editing templates described in
this section, this is one of those areas where Blend really shines. You should use
Blend for template - related tasks.

 Control Templates

 Control templates redefi ne the template or visual tree for a control. Listing 8 - 11 shows a very simple
 ControlTemplate for a Button .

CH008.indd 332CH008.indd 332 9/6/10 4:55:14 PM9/6/10 4:55:14 PM

 LISTING 8 - 11: ButtonTemplating.xaml

 < UserControl x:Class=”TemplateDemos.ButtonTemplating”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >
 < UserControl.Resources >
 < ControlTemplate x:Key=”ButtonControlTemplate1” TargetType=”Button” >
 < Grid >
 < Ellipse Fill=”White” Stroke=”Black”/ >
 < ContentPresenter Margin=”10” Content=”{TemplateBinding Content}”/ >
 < /Grid >
 < /ControlTemplate >
 < /UserControl.Resources >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < Button Content=”Button” HorizontalAlignment=”Center”
 VerticalAlignment=”Center”
 Template=”{StaticResource ButtonControlTemplate1}” / >
 < Button Content=”Button with looong text” HorizontalAlignment=”Center”
 VerticalAlignment=”Top” Template=”{StaticResource ButtonControlTemplate1}”
 Margin=”0,79,0,0” / >

 < /Grid >
 < /UserControl >

 Code fi le [ButtonTemplating.xaml] available for download at Wrox.com

 The ControlTemplate is stored as a resource; thus, it can be moved into an external resource
dictionary. The template itself is very simple. It contains of a Grid , an Ellipse that fi lls the Grid ,
and a ContentPresenter control. The latter uses TemplateBinding to bind itself to the Content
property of the Button . This technique can be used to wire up the internals of a control to the
settings and properties that the control ’ s user (the developer or designer) sets.

 Thanks to the amazing adaptive layout capabilities of Silverlight and WPF,
the previous Button already resizes itself to the size of the content. Since
there is no explicit size set for the Grid , it takes on the size of its biggest
child, the ContentPresenter — which is the size of the content set in the
 Button ’ s properties, plus a 10 - pixel margin in every direction. In the next
step, the Ellipse gets sized to the Grid , and, thus, the entire button is
sized according to the size of the content, as shown in Figure 8 - 19.

 Even though the entire visual tree has been completely replaced, the new
 Button works as expected. Click events fi re (as they should), but there is no visual indicator of
clicking the mouse, or even hovering over the Button .

 To allow complete separation between logic and appearance, Silverlight introduced the concept of
 visual states , which are basically sets of changes to the properties within the template, controlled

 FIGURE 8 - 19: Templating

a Button

The Ten Pillars of Silverlight ❘ 333

CH008.indd 333CH008.indd 333 9/6/10 4:55:19 PM9/6/10 4:55:19 PM

334 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

by the control ’ s logic. Visual states can defi ne animations (for example, the size of the button can
pulse while the mouse is over it), transitions (for example, smoothly change the background color
when mouse is hovered), or just plain property setters (for example, make the border wider when the
button is focused).

 Visual states are controlled by the VisualStateManager . To transition between two states from
within your code, you can use the GotoState method, as shown here:

VisualStateManager.GoToState(control, stateName, useTransitions);

 This moves the control control to the state specifi ed by the string parameter stateName . The
 useTransitions parameter is Boolean — setting it to false skips the transition animations
between the states.

 So, the logic determines the transitions between states. But how do you defi ne the states themselves?
Listing 8 - 12 shows an example that has transitions and property setters.

 LISTING 8 - 12: ButtonTemplating.xaml

<UserControl x:Class=”TemplateDemos.ButtonTemplating”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <UserControl.Resources>
 <ControlTemplate x:Key=”ButtonControlTemplate1” TargetType=”Button”>
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name=”CommonStates”>
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration=”0:0:0.3”/>
 </VisualStateGroup.Transitions>
 <VisualState x:Name=”Normal”/>
 <VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(Shape.Fill).(SolidColorBrush.Color)”
 Storyboard.TargetName=”ellipse”>
 <EasingColorKeyFrame KeyTime=”0” Value=”#FFF9FF00”/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name=”Disabled”/>
 <VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(Shape.Fill).(SolidColorBrush.Color)”
 Storyboard.TargetName=”ellipse”>
 <EasingColorKeyFrame KeyTime=”0” Value=”#FFFDFFB3”/>
 </ColorAnimationUsingKeyFrames>

CH008.indd 334CH008.indd 334 9/6/10 4:55:19 PM9/6/10 4:55:19 PM

 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name=”FocusStates”>
 <VisualState x:Name=”Unfocused”/>
 <VisualState x:Name=”Focused”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(Shape.StrokeThickness)”
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”2”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Ellipse x:Name=”ellipse” Fill=”White” Stroke=”Black”/>
 <ContentPresenter Margin=”10” Content=”{TemplateBinding Content}”/>
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Button” HorizontalAlignment=”Center”
 VerticalAlignment=”Center”
 Template=”{StaticResource ButtonControlTemplate1}” />
 <Button Content=”Button with looong text” HorizontalAlignment=”Center”
 VerticalAlignment=”Top” Template=”{StaticResource
 ButtonControlTemplate1}” Margin=”0,79,0,0” />
 </Grid>
</UserControl>

 Code fi le [ButtonTemplating.xaml] available for download at Wrox.com

 This is the same sample as shown previously, with the added visual state features. The visual
states are grouped in VisualStateGroup s. There are two VisualStateGroup s for a Button :
 CommonStates (Normal , Pressed , Disabled , and MouseOver) and FocusedStates (Focused and
 Unfocused). There is also an implicit Base state that essentially represents the visual tree as set
within the ControlTemplate .

 Only one state can be active at a certain time within a VisualStateGroup . Note that Pressed also
implies MouseOver , so there is no contradiction here — but the designer may have to copy some
settings from MouseOver to Pressed if the two states change different properties, in order to keep
the consistency of the “ feel. ”

 While there can be only one active state within a VisualStateGroup , the VisualStateGroups
themselves are independent. A Button can be in the Focused and the MouseOver states at the same
time. If the two states change the same properties over the Base state, the resulting behavior is
undefi ned. Luckily, Blend warns about this, as shown in Figure 8 - 20.

The Ten Pillars of Silverlight ❘ 335

CH008.indd 335CH008.indd 335 9/6/10 4:55:20 PM9/6/10 4:55:20 PM

336 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Here is the code snippet again for the Focused state:

<VisualState x:Name=”Focused”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(Shape.StrokeThickness)”
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”2”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</VisualState>

 This code snippet simply sets the StrokeThickness property for the Ellipse within the Button
to 2 , in the Focused state. The properties themselves are set via Storyboard s. A Storyboard is an
animation feature, so it may seem like an overkill for simply setting properties, but Storyboard s
allow for advanced (and, if misused, very annoying) features — such as pulsating the color of the
button within the MouseOver state indefi nitely.

 The XAML for the MouseOver and Pressed states look pretty similar to the previous one. The
difference is that there is a transition defi ned for the entire state group:

<VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration=”0:0:0.3”/>
</VisualStateGroup.Transitions>

 This instructs Silverlight that when the properties change within the VisualStateGroup , the
change should occur as a smooth linear animation, and last 0.3 seconds. Easings can also
be applied to make the transition non - linear, or even bouncy. Visual states can also have more
specifi c transitions. Separate transitions can be defi ned for entering or exiting a state, or even
between two specifi c states.

 FIGURE 8 - 20: Blend warns about confl icting Visual State settings.

 Visual states can also be used to represent the states of a user control, or even an
entire application.

CH008.indd 336CH008.indd 336 9/6/10 4:55:20 PM9/6/10 4:55:20 PM

 A Style can also be defi ned to apply this template to all Button s. After all, the ControlTemplate is
nothing more than a property, and properties can be set from styles:

 < Style TargetType=”Button” >
 < Setter Property=”Template” Value=”{StaticResource ButtonControlTemplate1}”/ >
 < /Style >

 After including this code snippet in the Resources part of the UserControl (or an external resource fi le,
along with the referenced ButtonControlTemplate1 resource), the Template attributes of the Button s
can be removed. The style applies for all Button s, so the look and feel of your little application will stay
the same, with the additional benefi t of new buttons automatically skinned similarly.

 Templates for Data Binding

 Templates are cool for re - skinning controls, but where they really shine is data binding. For
example, apart from its control template, a ListBox has three more templates to defi ne:

 ItemTemplate — This defi nes how a ListBox item should look.

 ItemsPanel — This defi nes the layout panel that contains the items.

 ItemContainerStyle — Although it is not strictly a template, the style (and, therefore, the
template) of the ListItem s can be changed via ItemContainerStyle .

 Suppose you want to list the authors from the earlier data binding sample in a nice horizontal
 Listbox . The code - behind is the same as the Author sample was earlier (ListDatabinding.cs) —
the only difference is that this time the items will be displayed in a ListBox , so the ItemsSource
of the ListBox called myListBox must be set at the end of the constructor.

 myListBox.ItemsSource = authors;

 The XAML is pretty simple so far, as shown in Listing 8 - 13.

 LISTING 8 - 13: DatabindingTemplates.xaml

 < UserControl x:Class=”TemplateDemos.DatabindingTemplates”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < ListBox x:Name=”myListBox” Height=”88” Margin=”8,8,8,0”
 VerticalAlignment=”Top”/ >

 < /Grid >
 < /UserControl >

 Code fi le [DatabindingTemplates.xaml] available for download at Wrox.com

➤

➤

➤

The Ten Pillars of Silverlight ❘ 337

CH008.indd 337CH008.indd 337 9/6/10 4:55:26 PM9/6/10 4:55:26 PM

338 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 However, running the code results in a rather
disappointing screen display, as shown in Figure 8 - 21.

 What happened? The ListBox had no idea what to display
for each Author , so it called (via the ContentPresenter
control) the ToString() method for each Author object,
and displayed all of the results below each other. To display
the Author s themselves, the ItemTemplate must be defi ned. Listing 8 - 14 shows one way to do it.

 LISTING 8 - 14: DatabindingTemplates.xaml

 < UserControl x:Class=”TemplateDemos.DatabindingTemplates”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >
 < UserControl.Resources >
 <DataTemplate x:Key=”AuthorTemplate”>
 <StackPanel Width=”100”>
 <TextBlock Text=”{Binding Name}” x:Name=”tbName” />
 <TextBlock Text=”{Binding Chapters}” TextTrimming=”WordEllipsis” />
 </StackPanel>
 </DataTemplate>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <ListBox x:Name=”myListBox” Height=”160” Margin=”8,8,8,0”
 VerticalAlignment=”Top”
 ItemTemplate=”{StaticResource AuthorTemplate}”/>
 </Grid>
</UserControl>

 Code fi le [DatabindingTemplates.xaml] available for download at Wrox.com

 Just as in the case of a ControlTemplate , a visual tree is defi ned within the DataTemplate . In this
case, a 100 - pixel - wide StackPanel hosts two
 TextBlock s, one for the Name , and the other
for the Chapter property. This visual tree is
created for every item in the ListBox , with the
 DataContext of the DataTemplate s set to the
current Author . Running the code now gets a
slightly better result, as shown in Figure 8 - 22.

 The items look okay now, but they are
still arranged vertically. This is where ItemsPanelTemplate helps. If nothing is defi ned, the
 ListBox uses a VirtualizingStackPanel to arrange its items. VirtualizingStackPanel is
like a StackPanel , except that it performs better with high item - count scenarios by creating the

 FIGURE 8 - 21: First try at binding to a

ListBox

 FIGURE 8 - 22: Using DataTemplates in a ListBox

CH008.indd 338CH008.indd 338 9/6/10 4:55:26 PM9/6/10 4:55:26 PM

visual tree only for those items that are visible in the current scroll window. By redefi ning the
 ItemsPanelTemplate , the default VirtualizingStackPanel can be replaced with any container
item — such as a WrapPanel , or even a RadialPanel that arranges the items in a circle. However,
for this example, a StackPanel with a horizontal layout will do.

 < UserControl.Resources >
 < DataTemplate x:Key=”AuthorTemplate” >
 < StackPanel Width=”100” >
 < TextBlock Text=”{Binding Name}” x:Name=”tbName” / >
 < TextBlock Text=”{Binding Chapters}” TextTrimming=”WordEllipsis” / >
 < /StackPanel >
 < /DataTemplate >
 <ItemsPanelTemplate x:Key=”ItemsPanelTemplate1”>
 <StackPanel Orientation=”Horizontal”/>
 </ItemsPanelTemplate>
</UserControl.Resources>

 And to reference the newly created ItemsPanelTemplate , the declaration of the ListBox changes to
the following:

 < ListBox x:Name=”myListBox” Height=”160” Margin=”8,8,8,0” VerticalAlignment=”Top”
 ItemTemplate=”{StaticResource AuthorTemplate}”
 ItemsPanel=”{StaticResource ItemsPanelTemplate1} ”/ >

 The result can be seen on Figure 8 - 23.

 The selected item still retains the default
selection border. This is where the
 ItemsContainer style comes into the scene.
The default style defi nes the following
 VisualStateGroup s:

 CommonStates for mouseover and disabled

 FocusStates for focused/unfocused look

 LayoutStates for adding fancy transitions when an item is loaded or unloaded (that is,
removed)

 SelectionStates for handling selections

 The sample to demonstrate ItemContainerStyle rotates the selected item 180 degrees with a little
bouncy effect. It is fun, but not something to use in a business application. Listing 8 - 15 shows the
fi nal XAML illustrating ItemTemplate , ItemsPanelTemplate , and ItemContainerStyle .

 LISTING 8 - 15: DatabindingTemplates.xaml

 < UserControl x:Class=”TemplateDemos.DatabindingTemplates”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

➤

➤

➤

➤

 FIGURE 8 - 23: Using ItemsPanelTemplate to place

items horizontally

continues

The Ten Pillars of Silverlight ❘ 339

CH008.indd 339CH008.indd 339 9/6/10 4:55:27 PM9/6/10 4:55:27 PM

340 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

LISTING 8-15 (continued)

 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >
 < UserControl.Resources >
 < DataTemplate x:Key=”AuthorTemplate” >
 < StackPanel Width=”100” >
 < TextBlock Text=”{Binding Name}” x:Name=”tbName” / >
 < TextBlock Text=”{Binding Chapters}” TextTrimming=”WordEllipsis” / >
 < /StackPanel >
 < /DataTemplate >
 < ItemsPanelTemplate x:Key=”ItemsPanelTemplate1” >
 < StackPanel Orientation=”Horizontal”/ >
 < /ItemsPanelTemplate >
 < Style x:Key=”ListBoxItemStyle1” TargetType=”ListBoxItem” >
 < Setter Property=”Padding” Value=”3”/ >
 < Setter Property=”HorizontalContentAlignment” Value=”Left”/ >
 < Setter Property=”VerticalContentAlignment” Value=”Top”/ >
 < Setter Property=”Background” Value=”Transparent”/ >
 < Setter Property=”BorderThickness” Value=”1”/ >
 < Setter Property=”TabNavigation” Value=”Local”/ >
 < Setter Property=”Template” >
 < Setter.Value >
 < ControlTemplate TargetType=”ListBoxItem” >
 < Grid Background=”{TemplateBinding Background}” >
 < VisualStateManager.VisualStateGroups >
 < VisualStateGroup x:Name=”SelectionStates” >
 < VisualStateGroup.Transitions >
 < VisualTransition GeneratedDuration=”0:0:0.5” >
 < VisualTransition.GeneratedEasingFunction >
 < ElasticEase EasingMode=”EaseOut”/ >
 < /VisualTransition.GeneratedEasingFunction >
 < /VisualTransition >
 < /VisualStateGroup.Transitions >
 < VisualState x:Name=”Unselected”/ >
 < VisualState x:Name=”Selected” >
 < Storyboard >
 < DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=
 “(UIElement.RenderTransform).(TransformGroup.Children)[2].
 (RotateTransform.Angle)”
 Storyboard.TargetName=”contentPresenter” >
 < EasingDoubleKeyFrame KeyTime=”0” Value=”180”/ >
 < /DoubleAnimationUsingKeyFrames >
 < /Storyboard >
 < /VisualState >
 < /VisualStateGroup >
 < /VisualStateManager.VisualStateGroups >
 < ContentPresenter x:Name=”contentPresenter”
 ContentTemplate=”{TemplateBinding ContentTemplate}”
 Content=”{TemplateBinding Content}”
 HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”

CH008.indd 340CH008.indd 340 9/6/10 4:55:27 PM9/6/10 4:55:27 PM

 Margin=”{TemplateBinding Padding}”
 RenderTransformOrigin=”0.5,0.5” >
 < ContentPresenter.RenderTransform >
 < TransformGroup >
 < ScaleTransform/ >
 < SkewTransform/ >
 < RotateTransform/ >
 < TranslateTransform/ >
 < /TransformGroup >
 < /ContentPresenter.RenderTransform >
 < /ContentPresenter >
 < /Grid >
 < /ControlTemplate >
 < /Setter.Value >
 < /Setter >
 < /Style >
 < /UserControl.Resources >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < ListBox x:Name=”myListBox” Height=”55” Margin=”8,8,8,0”
 VerticalAlignment=”Top” ItemTemplate=”{StaticResource AuthorTemplate}”
 ItemsPanel=”{StaticResource ItemsPanelTemplate1}”
 ItemContainerStyle=”{StaticResource ListBoxItemStyle1}”/ >

 < /Grid >
 < /UserControl >

 Code fi le [DatabindingTemplates.xaml] available for download at Wrox.com

 The running application looks like Figure 8 - 24.
Notice how the code - behind stayed the same,
but the look and feel of the application has
completely changed.

 Animations

 Although animations are often considered useless eye candy and unnecessary bling, when designed
by professionals and in a discrete manner, animations play a vital part in enhancing the overall
user experience of a product. In the real world, transitions don ’ t happen instantaneously (with
a few exceptions, such as in the case of turning on a lamp). They have speed, acceleration and
deceleration. Animations and transitions can also help direct the attention of the user, explain why
things happen (for example, when you minimize a window to the taskbar, the short animation
shows where the window disappeared to), and generally make the virtual experience feel smoother
and better by bringing it closer to the real world.

 In Silverlight, animations are technically nothing more than a gradual change of properties over
time. Silverlight (and WPF) animations are time - based instead of frame - based. This means that if an
animation is set to last 2 seconds, it will take exactly 2 seconds, even if the computer is very busy,
and can only display a few frames while the animation runs. In addition to the fact that a time -
 based animation is more predictable, it also allows the Silverlight run - time to continuously adapt to
the computer ’ s performance by skipping or interpolating animation frames.

 FIGURE 8 - 24: The Selected Item is now displayed

upside down

The Ten Pillars of Silverlight ❘ 341

CH008.indd 341CH008.indd 341 9/6/10 4:55:28 PM9/6/10 4:55:28 PM

342 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Storyboards and Animations

 The best tool for creating complex animations is Blend. However, to understand how animations
work, it is enough to start with a simple example in XAML, as shown in Listing 8 - 16.

 LISTING 8 - 16: BouncingCircle.xaml

 < UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 xmlns:i=”clr-namespace:System.Windows.Interactivity;assembly=
 System.Windows.Interactivity”
 xmlns:im=”clr-
 namespace:Microsoft.Expression.Interactivity.Media;
 assembly=Microsoft.Expression.Interactions”
 x:Class=”AnimationDemo.BouncingCircle”
 d:DesignHeight=”300” d:DesignWidth=”400” >

 < UserControl.Resources >
 < Storyboard x:Name=”Storyboard1” >
 < DoubleAnimation Storyboard.TargetProperty=”(Canvas.Left)”
 Storyboard.TargetName=”ellipse” To=”320” / >
 < DoubleAnimation Storyboard.TargetProperty=”(Canvas.Top)”
 Storyboard.TargetName=”ellipse” To=”230” / >
 < /Storyboard >
 < /UserControl.Resources >
 < Canvas x:Name=”LayoutRoot” >
 < !-- This Action launches the storyboard when the left mouse button
 is pressed in the Canvas -- >
 < i:Interaction.Triggers >
 < i:EventTrigger EventName=”MouseLeftButtonDown” >
 < im:ControlStoryboardAction Storyboard=”{StaticResource Storyboard1}”/ >
 < /i:EventTrigger >
 < /i:Interaction.Triggers >
 < Ellipse x:Name=”ellipse” Fill=”Black” Height=”50” Canvas.Left=”20”
 Canvas.Top=”20” Width=”50” / >
 < /Canvas >
 < /UserControl >

 Code fi le [BouncingCircle.xaml] available for download at Wrox.com

 This code generates the animation as illustrated in Figure 8 - 25. To start the animation, you need
to click on the ellipse. The click is handled by a ControlStoryboardAction . The Action requires
the Microsoft.Expression.Interactions assembly, which you can add via the Add Reference
dialog, on the .NET tab. The assembly is part of the Blend SDK. If you do not have Blend or the

CH008.indd 342CH008.indd 342 9/6/10 4:55:28 PM9/6/10 4:55:28 PM

Blend SDK installed, you can still launch the Storyboard
from code - behind by adding Storyboard1.Begin(); to
the end of the constructor. You ’ ll learn more about triggers,
actions and behaviors later in this chapter.

 The root animation entity is called a Storyboard . The
 Storyboard has one or more child Animation s that, in turn,
animate a single property on a single element. In the previous
sample, Storyboard1 has two animations that control the
 Canvas.Left and Canvas.Top properties of the Ellipse .
A single Storyboard can have child animations that affect
properties of different elements.

 Child animations share the same clock. This means that starting the animations happens
simultaneously. A Storyboard can also be repeated, reversed, seeked, paused, or the common
clock ’ s speed can be changed (via the SpeedRatio property), thus making the entire Storyboard
run slower or faster.

 Animations can change properties of any type. However, they only work with dependency
properties. There are different animations for different property types:

 DoubleAnimation for animating double properties (such as position and opacity).

 ColorAnimation for animating colors (Brush es).

 PointAnimation for Point s.

 ObjectAnimation for changing properties of other types. ObjectAnimation does not
support interpolation, though, because you cannot only set 30 percent of the Visibility
property to Collapsed .

 Another important aspect of Silverlight and WPF animations is that the From property can be
omitted. In this case, the value will navigate from its current value to the specifi ed To value. This
feature helps a lot in situations when an animation must start before another one is fi nished — as in
the case of a panel sliding out when hovered over, and sliding in when the mouse leaves it. Without
relative animations, extra code would have to be written to stop the panel from jumping when the
mouse is moved off it before it fully opens.

 To make animations even more natural, Silverlight has keyframe and easing functionality.
 Keyframes help in cases when a simple value - to - value animation is not enough, and several,
precisely controlled in - between points are needed. Keyframes can also be used for discrete jumps
between values, without interpolation.

 Easings can make an animation slow down, bounce, or even behave spring - like. For example, by
adding BounceEase easing function to the previous Canvas.Top animation, you can achieve the
bouncing ball effect, as shown in Figure 8 - 26. Here is the part of the XAML that has changed:

 < DoubleAnimation Storyboard.TargetProperty=”(Canvas.Top)”
 Storyboard.TargetName=”ellipse” To=”230” >
 < DoubleAnimation.EasingFunction >

➤

➤

➤

➤

 FIGURE 8 - 25: Simple animation

The Ten Pillars of Silverlight ❘ 343

CH008.indd 343CH008.indd 343 9/6/10 4:55:28 PM9/6/10 4:55:28 PM

344 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 < BounceEase EasingMode=”EaseOut” Bounces=”4”/ >
 < /DoubleAnimation.EasingFunction >
 < /DoubleAnimation >

 Easings can be applied to the beginning of the animation
(EaseIn), end (EaseOut) of the animation, or to both
(EaseInOut). There are a lot of built - in easings available for
Silverlight. Figure 8 - 27 shows how they appear in Blend. Just
like the built - in layout containers, these cover most of what
a “ normal ” application needs. However, if these don ’ t satisfy
the needs of the designer, new easings can easily be created by
inheriting from the EasingFunctionBase class.

 Transformations

 Transformations allow moving, rotating, scaling (changing the size), and
skewing any UI element. Silverlight 3 also introduced a PlaneProjection
transform that can rotate two - dimensional elements in three - dimension.

 The animation sample shown earlier is created for easy understanding,
but is not ideal in terms of performance. The reason for this is that the
bouncing circle sample animates the Canvas.Left and Canvas.Top
properties. This, in turn, triggers a recalculation of the layout for the
 Canvas and the Ellipse .

 Even though it is probably not noticeable in the sample, layout recalculation
is an expensive operation — the affected part of the visual tree must be
traversed with the MeasureOverride and ArrangeOverride methods. It
is easy to imagine that in the case of a complicated scene, this will take
considerable amount of time, making the animation jerky.

 Here is the revised Storyboard of the bouncing circle sample, using
 TranslateTransform to move the Ellipse :

 < UserControl.Resources >
 < Storyboard x:Name=”Storyboard1” >
 < DoubleAnimation Storyboard.TargetProperty=”X”
 Storyboard.TargetName=”ellipseTranslate” To=”320” / >
 < DoubleAnimation Storyboard.TargetProperty=”Y”
 Storyboard.TargetName=”ellipseTranslate” To=”230” >
 < DoubleAnimation.EasingFunction >
 < BounceEase EasingMode=”EaseOut”/ >
 < /DoubleAnimation.EasingFunction >
 < /DoubleAnimation >
 < /Storyboard >
 < /UserControl.Resources >

 FIGURE 8 - 26: BounceEase applied to

the animation

 FIGURE 8 - 27: Built - in

animation easings in

Blend

CH008.indd 344CH008.indd 344 9/6/10 4:55:29 PM9/6/10 4:55:29 PM

 The animations refer to the element ellipseTranslate , which is defi ned within the Ellipse tag:

<Ellipse x:Name=”ellipse” Fill=”Black” Height=”50”
 Canvas.Left=”20” Canvas.Top=”20” Width=”50” >
 <Ellipse.RenderTransform>
 <TranslateTransform x:Name=”ellipseTranslate” />
 </Ellipse.RenderTransform>
</Ellipse>

 Changing the size, position, rotation, or other transform
properties via Silverlight ’ s render transformations does
not trigger a layout recalculation. This results in much
less work for the CPU to do; therefore, more complex
animations can be performed before the performance
starts to degrade. WPF has the notion of layout
transformations that do affect the layout — this can be
very useful in certain cases. For Silverlight, the Silverlight
Toolkit has a LayoutTransformer that does pretty much
the same thing.

 Figure 8 - 28 shows the available transformations in
Silverlight, except TranslateTransform , which simply
relocates the element.

 Media

 Media in Silverlight includes playing back audio and video fi les, access to the microphone and the
webcam on the computer, DRM, and Deep Zoom. This section describes the basics of Silverlight
media.

 Audio and Video Playback

 Just playing an audio or video fi le is very simple when using the MediaElement control. When
compiled and run, this code plays back a Designer - versus - Developer video from Channel9:

 < UserControl x:Class=”MediaDemos.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < MediaElement Source=”http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/
 SL3Expression3Launch_ch9.wmv”
 Stretch=”Uniform” / >
 < /Grid >
 < /UserControl >

 FIGURE 8 - 28: Render transformations in

Silverlight

The Ten Pillars of Silverlight ❘ 345

CH008.indd 345CH008.indd 345 9/6/10 4:55:29 PM9/6/10 4:55:29 PM

346 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 The MediaElement can play both audio and video fi les. It supports a number of delivery methods
(including progressive download, Windows Media Streaming over HTTP, ASX, Server Side Playlist,
or a custom MediaStreamSource , where the developer can implement his or her own way of
delivering content to a decoder).

 As for the encoding format, Windows Media Audio (WMA) Standard and Professional, as well as
Windows Media Video 7, 8, and 9, are supported from the Microsoft codec family. For audio, MP3
is also supported, and Silverlight can handle H.264 (which is the most widespread high - quality
online video format) as well.

 FIGURE 8 - 29: Text with a VideoBrush

 MediaElement can Play , Pause , and Seek media, or Stop playing it. It fi res events to track playing
status, buffering, and current position within the media fi le. It is also possible to change the Volume .
The Stretch property behaves exactly as in the case of Viewbox .

 MediaElement is a rectangular UI element. Silverlight has a VideoBrush that can be associated with
a MediaElement using the SourceName property. If a VideoBrush is used to fi ll an element, or even
as the Stroke of a shape, the video will play within the element. Here is an interesting effect when
the VideoBrush is used as the Foreground brush for a TextBlock :

 < UserControl.Resources >
 < VideoBrush x:Key=”myVideoBrush”
 SourceName=”myMediaElement” Stretch=”UniformToFill”/ >
 < /UserControl.Resources >
 < Grid x:Name=”LayoutRoot” Background=”White” >
 < MediaElement Visibility=”Collapsed” x:Name=”myMediaElement”
 Source=”http://mschnlnine.vo.llnwd.net/d1/ch9/0/8/7/7/7/4/
 SL3Expression3Launch_ch9.wmv”
 Stretch=”Uniform” / >
 < TextBlock Text=”Text with a VideoBrush”
 Foreground=”{StaticResource myVideoBrush}”
 FontFamily=”Arial Black” FontWeight=”Bold”
 FontSize=”72” / >
 < /Grid >

 Figure 8 - 29 shows the output.

 For a complete reference of supported delivery methods, containers, and codecs,
check the Silverlight SDK documentation.

CH008.indd 346CH008.indd 346 9/6/10 4:55:30 PM9/6/10 4:55:30 PM

 Another sample that shows off the power of the VideoBrush is the video puzzle game that can be
reached at http://demo.themsteam.com/videopuzzle/ . Figure 8 - 30 shows the game.

 FIGURE 8 - 30: The Silverlight Video puzzle developed by MS Team LLC. (Copyright

2004 - 2008, MS Team LLC)

 Deep Zoom

 Silverlight ’ s unique Deep Zoom capability (it is
not available in WPF) enables visitors to browse
through hundreds of high - resolution images
very quickly and smoothly. “ High resolution ”
here means giga - or even terrapixels. The new
Bing Maps (Figures 8 - 31 and 8 - 32) uses Deep
Zoom to provide a smooth zooming experience,
starting from the whole World, and zooming in
to a level where license plates and people ’ s faces
could be recognized if they weren ’ t blurred for
privacy reasons.

 FIGURE 8 - 31: The Earth on Bing maps

The Ten Pillars of Silverlight ❘ 347

CH008.indd 347CH008.indd 347 9/6/10 4:55:35 PM9/6/10 4:55:35 PM

348 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Deep Zoom is based on the Seadragon technology acquired by Microsoft. A key attribute of the
technology is that the performance and required bandwidth only depends on the amount of pixels
on the screen, not on the size of the images displayed. Seadragon performs its magic by creating
small tiles of the images at different resolutions, and utilizing advanced heuristics that only
downloads the required tiles of those images that are on the screen.

 Deep Zoom (or rather, the MultiScaleImage control) can also handle lots of SubImages at the same
time. Approximately 1,000 images is where the performance starts to degrade with Silverlight 3.
These SubImages can be moved around the viewport, faded out, and fi ltered with code, thus creating
a truly unique experience for fi nding and browsing images on the web. Figure 8 - 33 shows an example.

 FIGURE 8 - 32: Bing Maps after zooming in to Streetside view

 FIGURE 8 - 33: Zoomery (www.zoomery.com) displaying 223 images out

of a 5,684 - image database, using Deep Zoom.

CH008.indd 348CH008.indd 348 9/6/10 4:55:36 PM9/6/10 4:55:36 PM

 Smooth Streaming

 Smooth streaming (or adaptive streaming) is one of the most interesting delivery methods for video
on the web. As the bandwidth available at people ’ s homes grows bigger and bigger, user demand
for really high - quality video increases. Silverlight aims to be the best solution for high - quality
online video.

 There are several problems with online video today that smooth streaming set out to solve. One
such problem is network bandwidth. While HD quality video can be transmitted on 2 - 3 megabits
per second, and a lot of Internet connections exceed this bandwidth, there are tons of broadband
connections out there that are slower. If the available bandwidth is not enough for the stream being
played, there are constant interruptions while buffering occurs. Also, the actual bandwidth between
the player and the media server can vary greatly — the media server can be overwhelmed, or the end
user may have a fraction of his or her previous bandwidth when others on the same network (same
household, for example) are also downloading huge fi les.

 Another important factor that contributes to the end user ’ s playback experience is the computing
power of the computer used. Decoding and displaying HD video is a very computationally intensive
task — the color value of millions of pixels must be calculated at least 30 times per second. Any
time the computer is not up to this task (for example, the CPU is busy with something else, or the
computer was not powerful enough to begin with), the glitch is noticeable.

 It is also diffi cult to seek within a movie. Certain players using progressive download don ’ t even
allow seeking to the end of the movie, until the entire fi le has been downloaded. This not only
frustrates the user, but wastes the bandwidth of the content provider, as well if the user only wants
to see the last fi ve minutes.

 To solve these problems, content producers encode the video for different bandwidths. However, in
order to choose the optimal bandwidth, the user must know a lot of technical details, and maybe
switch between the “ high bandwidth ” and “ low bandwidth ” versions manually several times during
a movie.

 Smooth streaming also requires the content to be encoded with multiple bitrates. The big advantage
is that smooth streaming continuously monitors the available bandwidth and the CPU load — and,
if any of those factors indicate that a slower bandwidth version is needed, the smooth streaming
player automatically and seamlessly switches to the lower - quality version. The end result is that
users get the best possible continuous playback, even during rough bandwidth and CPU conditions.

 Another advantage is that buffering is virtually eliminated. When a movie starts, or a seek is
performed, the player automatically switches to the lowest possible bitrate. This makes seeking
pretty much instantaneous — fi nding the right spot in the movie is just like doing it with a DVD
player. After the movie has been playing for a few seconds with the low quality, the heuristics
automatically increase the quality as long as the network and the CPU can handle it.

 In the case of a live broadcast, smooth streaming users can pause and rewind the live video, while
retaining the previously mentioned advantages. Live encoding is, however, much more diffi cult than
encoding for a video - on - demand service. Expression Encoder 4 can perform live smooth streaming,
but you will need a 6 - 8 core CPU to perform live encoding, and even then you have to switch off a

The Ten Pillars of Silverlight ❘ 349

CH008.indd 349CH008.indd 349 9/6/10 4:55:37 PM9/6/10 4:55:37 PM

350 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

lot of quality optimizations and limit the broadcast to just a few bandwidths. The best bet today is
to have a dedicated hardware encoder.

 Webcam and Microphone Access

 Silverlight 4 introduced a much - requested feature: webcam and microphone access. A simple Webcam
application has the XAML fi le shown in Listing 8 - 17 and the .cs fi le shown in Listing 8 - 18.

 LISTING 8 - 17: Webcam.xaml

 < UserControl x:Class=”MediaDemos.Webcam”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400” >

 < Grid x:Name=”LayoutRoot” Background=”White” >
 < Button Content=”Enable Camera” Click=”Button_Click” / >
 < Ellipse x:Name=”ellipse” Stroke=”Black” StrokeThickness=”1” / >
 < /Grid >
 < /UserControl >

 Code fi le [Webcam.xaml] available for download at Wrox.com

 LISTING 8 - 18: Webcam.cs

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;

namespace MediaDemos
{
 public partial class Webcam : UserControl
 {

 private VideoBrush webcamBrush;

 public Webcam()

 To experience smooth streaming yourself, go to http://www.iis.net/media/
experiencesmoothstreaming .

CH008.indd 350CH008.indd 350 9/6/10 4:55:37 PM9/6/10 4:55:37 PM

 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 if (!CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 MessageBox.Show(“In that case, I won’t show anything for you”);
 return;
 }

 var videoDevice = CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
 var cs = new CaptureSource();
 cs.VideoCaptureDevice = videoDevice;
 webcamBrush = new VideoBrush();
 webcamBrush.SetSource(cs);
 ellipse.Fill = webcamBrush;
 cs.Start();
 }
 }
}

 Code fi le [Webcam.cs] available for download at Wrox.com

 Figure 8 - 34 shows how running the application
uncovers the face of yours truly.

 To start using the webcam, the user must
allow access to the capture devices. For privacy
reasons, access can only be requested from a
user - initiated action. Thus, you need a button
and have its Click event handled. If the request
is successful, the default video device is used,
and a CaptureSource object is set up. Finally, a
 VideoBrush is created with the CaptureSource
object, and capturing is started.

 Silverlight can also enumerate all the video
and audio capture devices on the system
with the CaptureDeviceConfiguration
. GetAvailableVideoCaptureDevices and
 GetAvailableAudioCaptureDevices methods.
The result of these method calls can be
presented to the user, who can choose the video or audio capture device to use.

 Silverlight also allows access to the captured video and audio data via the VideoSink and
 AudioSink abstract classes. Inheriting from these classes and overriding the OnSample method

 FIGURE 8 - 34: Testing out the Webcam application

The Ten Pillars of Silverlight ❘ 351

CH008.indd 351CH008.indd 351 9/6/10 4:55:43 PM9/6/10 4:55:43 PM

352 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

or the OnSamples method gets the raw video and audio data. Silverlight does not provide any
built - in feature to encode or transfer the captured media — it is up to the developer to create this
functionality.

 Networking

 Because Silverlight is a client - side technology that (mostly) lives in the browser, it must connect to
the server (or the cloud) for data to work with. Silverlight offers a range of communication tools —
from low - level sockets, through HTTP connections, to WCF and WCF RIA Services. These
networking stacks work similar to what .NET developers are used to from the “ big ” framework.
However, there are two key differences because of the lightweight, sandboxed, and browser - based
nature of Silverlight.

 The fi rst difference is security . By default, Silverlight (just like Flash or JavaScript) only allows
connections back to the server it was downloaded from. The reason for this restriction is to mitigate
threats like denial of service (DoS) attacks, domain name server (DNS) attacks, reverse - tunnel
attacks, cross - site attacks, and so on. If a server wants to allow a Silverlight (or Flash) application
to use its resources, it can have a policy fi le that controls the access. Silverlight also takes Flash ’ s
 crossdomain.xml fi les into account, therefore making those sites available to Silverlight that have
only been allowed to be accessed via the Flash crossdomain.xml fi le. Policy fi les can also be used
by socket connections, but, in this case, the policy fi les will be downloaded from a different
socket port.

 The second important difference between standard .NET and Silverlight network access is that
in Silverlight, every server communication is asynchronous . This may seem a bit restrictive,
but synchronous server communication would block the UI thread most of the time, stopping
animations or even freezing the browser — so a background thread and callback mechanism would
have to be created for most cases anyway.

 Communicating via HTTP

 Apart from the familiar WebClient class, there are two completely separate network stacks for
HTTP communication: BrowserHttpStack and ClientHttpStack .

 As the name implies, BrowserHttpStack utilizes the hosting browser to make HTTP calls to
the web. This means that browser restrictions (such as maximum number of connections to
a given server, cookies, and so on) are in effect for the browser stack. Also, the browser stack
only allows GET and POST for the HTTP method — PUT or any other verbs are result in a
 NotSupportedException . To create a WebRequest object that uses the browser stack, use the
 WebRequestCreator.BrowserHttp class:

WebRequest rq = WebRequestCreator.BrowserHttp.Create(new Uri
 (“http://www.response.hu”));

 ClientHttpStack (introduced in Silverlight 3) allows customizing response status codes, request
methods, authentication, bodies and headers, and sending HTTP XML requests such as messages

CH008.indd 352CH008.indd 352 9/6/10 4:55:44 PM9/6/10 4:55:44 PM

to SOAP and REST services. ClientHttpStack also allows manipulation of cookies. Creating a
 WebRequest for the client stack is very similar to how the WebRequest for the browser stack is
created:

WebRequest rq = WebRequestCreator.ClientHttp.Create(new Uri
 (“http://www.response.hu”));

 WCF

 Silverlight supports connecting to Windows Communication Foundation (WCF) endpoints.
Note that Silverlight (at least as of version 3) only supports BasicHttpBinding and
 PollingDuplexHttpBinding . Connecting a Silverlight application to a WCF service is similar to
what you are used to within Visual Studio, as shown in Figure 8 - 35.

 FIGURE 8 - 35: Consuming a WCF Service in Silverlight

The Ten Pillars of Silverlight ❘ 353

CH008.indd 353CH008.indd 353 9/6/10 4:55:44 PM9/6/10 4:55:44 PM

354 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 As with other Silverlight networking methods, WCF only provides asynchronous calls to the server.
Here is a very simple WCF service call:

 var sc = new ServiceReference1.Service1Client();
 sc.DoWorkCompleted += (obj, args) = > { MessageBox.Show
 (“Do work completed!”); };
 sc.DoWorkAsync();

 WCF RIA Services

 WCF RIA Services (formerly called .NET RIA Services) builds on top of WCF, and aims to make
data transfer between a .NET server and a Silverlight client as transparent as possible. WCF RIA
Services addresses common CRUD (Create - Read - Update - Delete) scenarios while retaining type
safety through all the layers. Middle - tier entities have corresponding client - side code generated,
along with domain contexts that allow transparent access to server data through Language
Integrated Query (LINQ). Service methods can also be invoked. The middle tier can connect to
any database provider, including Entity Framework, LINQ - To - SQL, and POCO (Plain Old CLR
Objects). RIA Services can transfer the client - side LINQ query to the server, and translate it to
T - SQL for the database layer.

 A common problem with client - server scenarios is that part of the application logic (such as
validation) must be duplicated. The validation should run on the client for immediate feedback to
the user — but also on the server to ensure that the validation cannot be skipped with a malicious
client. WCF RIA Services addresses this situation by using attributes and code sharing. This is
possible because the same framework runs on the client and the server (but the Silverlight client does
not have all the .NET libraries, of course), thus source code can be shared.

 WCF RIA Services also integrates with the pluggable ASP.NET membership - provider models. This
makes it easy to add a Silverlight application to an existing website with authentication, authorization,
and profi le requirements, or re - use the proven ASP.NET membership infrastructure — including the
management tools — for the Silverlight application.

 Essentially, it is possible to write LINQ queries using Intellisense in Silverlight
to access the database layer, without breaking the architectural integrity, or
introducing hand - composed SQL queries that pose serious security problems.

 If you want to learn more about WCF RIA Services, visit Brad Abrams ’ blog at
 http://blogs.msdn.com/brada , or look for the WCF RIA Services section in
 www.silverlight.net for tutorials, videos, and in - depth articles.

CH008.indd 354CH008.indd 354 9/6/10 4:55:44 PM9/6/10 4:55:44 PM

 Other Features

 There are a lot of Silverlight features not yet examined. However, because this chapter is just an
introduction to WPF and Silverlight, these features will only get a few paragraphs of coverage,
despite the fact that entire chapters (or even books) could be written about some of them.

 Out - of - Browser (OOB) Applications

 Silverlight applications mostly live in the browser as plug - ins. However, Silverlight supports taking
applications out of the browser, and onto the desktop. Installing out - of - browser (OOB) applications
is always a user - initiated process — either by right - clicking the Silverlight application and choosing
 “ Install < appname > Application onto this computer, ” or by clicking on a developer - created piece
of UI that calls the Application.Install method. Either way, the user is prompted whether he or
she really wants to install the application, and whether the installer should create a shortcut on the
desktop or the Start menu.

 By default, the OOB applications run within the same sandbox as in the browser, so no user account
control (UAC) prompts are necessary. OOB applications work on OS X as well, so here is a great
way to create OS X desktop applications without even owning a Mac!

 Some features are only available in OOB
mode. These include the WebBrowser control
and the HtmlBrush class. The WebBrowser is
a full - featured web browser that can be used
as a rectangular frame within the Silverlight
application, and display any web page or
HTML content (including websites that have
other Silverlight, or even Flash, plug - ins). The
 HTMLBrush is similar to VideoBrush . When
attached to a WebBrowser control, it can be
used as a brush for any UI element. However,
while the WebBrowser control remains
interactive and accepts keyboard and mouse
input, the VideoBrush loses the interactivity.

 OOB applications can also be installed with
elevated privileges. (Figure 8 - 36 shows OOB
settings in Visual Studio 2010.) Elevated
privileges eliminate the need from cross - domain
policy fi les, and allow reading from or sending
information to any website; give access to fi les
and directories within the My Documents folder;
and allow a level of COM interoperability, so
that Offi ce automation can be done. FIGURE 8 - 36: Silverlight OOB Settings in Visual Studio

The Ten Pillars of Silverlight ❘ 355

CH008.indd 355CH008.indd 355 9/6/10 4:55:55 PM9/6/10 4:55:55 PM

356 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Printing

 Printing is by far Silverlight 4 ’ s most requested feature. Printing in Silverlight is based on a callback
model:

PrintDocument pd = new PrintDocument();
pd.DocumentName = “My Silverlight document”;
pd.PrintPage += (obj, args) = >
{
 args.PageVisual = LayoutRoot; args.HasMorePages = false;
};

pd.Print();

 In the PrintPage event handler, a UIElement element can be defi ned that will be rasterized and
sent to the printer. The UIElement does not necessarily have to be in the visual tree; it can be
constructed on - the - fl y, and in - memory. The HasMorePages property tells the print engine whether
there will be more pages to print — if so, the PrintPage event handler gets called again for the
next page.

 Bitmap Eff ects

 Bitmap effects (or shader effects, or shaders) originate from computer graphics and gaming, and
are usually tied to graphics processors (GPUs). In Silverlight, the same language can be used to
create shaders: High level Shader Language 2.0 (HLSL2.0). However, adding shaders to a Silverlight
application comes with a performance penalty. Even though the shader program gets “ JIT - ed ” and
is run on all available processor cores, it still can slow down the application considerably. (WPF 4
supports HLSL 3.0, and can run the shaders on the GPU.)

 Silverlight has two built - in shader effects: Blur and DropShadow . Both have properties that allow
fi ne - tuning them, and, along with the capability to create custom effects using HLSL2.0, they can
really add to the visual appeal of an application — again, when not overused.

 Local Messaging

 If several Silverlight applications or plug - ins are running on the same computer, local messaging
enables communication between the Silverlight applications — even if they are not running on the
same web page or the same browser or even if some of them are running OOB. Local messaging
works with named message channels, and has a fairly simple API.

 For sending messages, create a LocalMessageSender object with the name of the messaging channel,
and call its SendAsync(string) method. For receiving messages, a LocalMessageReceiver object
must be created the same way, and the MessageReceived event is fi red when a message arrives.
The receiver can also return a reply using the MessageReceivedEventArgs.Response property
that the sender can receive in the SendAsyncCompleted event. If a bidirectional communication
is required, the two applications can set up two communication channels — one for each
direction.

CH008.indd 356CH008.indd 356 9/6/10 4:55:55 PM9/6/10 4:55:55 PM

 GPU Acceleration

 Silverlight 3 and later versions support limited GPU acceleration. GPU acceleration can be turned
on for the entire plug - in via the < object > tag in the HTML fi le that hosts the plug - in, by adding the
following parameter:

 < param name=”enableGPUAcceleration” value=”true” / >

 On Mac OS X, GPU acceleration only works in full screen because of technical limitations. Another
requirement is having a DirectX9 - compatible video card or and OpenGL2 - compatible card for
the Mac.

 GPU acceleration can only help in certain situations. Unlike WPF (where GPU composition is the
default), Silverlight doesn ’ t try to be very clever on when and where to use the GPU. Instead, the
developer must mark the UIElement by setting the CacheMode property to BitmapCache .

 The key to understanding how GPU acceleration works in Silverlight is that it is nothing more
than transferring the rendered bitmap for the specifi ed UIElement into the memory of the graphics
card, and doing the rest of the composition there. GPU acceleration can help when the pixels of the
rendered UIElement (along with its children) are rarely changing and, thus, the cache does not need
to be invalidated after.

 Composition on the GPU can offl oad the work of translation, scale, rectangular clipping, or
rotation animations and alpha blending to the GPU, thus freeing the CPU to do other tasks, and
increasing the performance of the entire application. Silverlight also has special mechanisms in place
for GPU - accelerating video, making full - screen HD video possible even with today ’ s high - resolution
monitors. GPU can help accelerate perspective transforms, but in Silverlight 4, pixel shader effects
are still performed by the CPU.

 For a more in - depth look at Silverlight ’ s GPU Acceleration, read the
Andr á s Velv á rt blog post at http://dotneteers.net/blogs/vbandi/
archive/2009/07/30/discovering-silverlight-3-deep-dive-into-

gpu-acceleration.aspx .

 Isolated Storage

 Isolated storage is a local storage on the user ’ s computer that can be used as a local cache, store
user preferences, or any other data. Every application has a quota of 1 MB per application, which
increases to 25 MB when the application is installed as an OOB application. The quota can be
increased if needed with user consent. Even though the physical storage on the computer where the
isolated storage fi les are stored is hidden, the actual content is not obfuscated, thus it is not suitable
for storing private data such as passwords. However, additional encryption can be applied to the
fi les that can help with storing sensitive data.

The Ten Pillars of Silverlight ❘ 357

CH008.indd 357CH008.indd 357 9/6/10 4:55:56 PM9/6/10 4:55:56 PM

358 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Isolated storage can be thought of as a virtual fi le system, even a complete tree of directories and
fi les. It also allows for storing settings in a key - value combination via the application - scoped
 IsolatedStorageSettings.ApplicationSettings or the site - scoped IsolatedStorageSettings
.SiteSettings .

 Navigation and Search Engine Optimization

 As Silverlight (and other RIA technologies) merge the web with the desktop experience, some
important usability questions arise. The way you use web and desktop applications is different.
Do you want to enable the back and forward buttons in the browser for Silverlight? How can you
bookmark the current status of an application (such as the currently displayed item in a web shop)
or send the link over to a friend? What about search engines? How will they index the content and
drive traffi c to the site?

 Whether to choose a desktop - like or a web - like experience (or merge the two) is, of course, up
to the UX designer. But, if deep linking and back button support is needed, Silverlight ’ s built - in
Navigation Framework can help.

 Visual Studio 2010 includes an application template called Silverlight Navigation Application.
Creating a project based on this template results in an application with a few pages (Home and
About). Clicking on the navigation links behaves just like clicking on a browser link — the program
switches to another “ page, ” and the URL changes (for example, the About page ’ s URL adds a “ #/
About ” text to the end).

 The important difference between this and the conventional browser navigation is that the page
does not get reloaded — the Silverlight application keeps running, and no intermediate white page is
shown, as is the case between two HTML pages. Back and forward buttons work in the navigation
application, just like bookmarking and deep linking. The key to the navigation API is the System
.Windows.Controls.Frame class. Frame loads and hosts Pages , handles navigation, and can
integrate with the browser ’ s history. There are also facilities to extract information from the query
string (NavigationContext), and URL mapping (UriMapper class).

 What about Search Engine Optimalization (SEO)? It is not too practical to build up a full website
using Silverlight if search engines cannot read the information and, therefore, visitors won ’ t come
to the site. The two - sentence version of the SEO trick is to build a “ mirror ” page in ASP.NET that
feeds from the same database, and outputs the relevant content and navigation within the fallback
part of the Silverlight ’ s < object > tag in the HTML hosting page. The ASP.NET application can
also dynamically generate the robots.txt and sitemap XML fi le to direct the search engines ’ spider
to the right content. This approach also helps when the user does not (or cannot) have Silverlight
installed, but needs to access the content of the site.

 To see the Silverlight SEO for yourself, go to your favorite search engine, and
search for “ silverlight store mouse. ” The results will take you to a Silverlight web
shop that demonstrates the SEO techniques described here.

CH008.indd 358CH008.indd 358 9/6/10 4:56:01 PM9/6/10 4:56:01 PM

 WINDOWS PRESENTATION FOUNDATION

 While Silverlight is a trimmed down, smaller version of WPF and the .NET Framework, WPF
aims to be complete. In Silverlight, there is usually only one way to do things; WPF offers several
different approaches to the same problem.

 The HelloWorld application in WPF looks very similar to the Silverlight version at the beginning of
this chapter. Listing 8 - 19 shows the XAML for the WPF version:

 LISTING 8 - 19: MainWindow.xaml

 < Window x:Class=”WpfHelloWorld.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”350” Width=”525” >
 < Grid >
 < TextBlock Text=”Hello, World!” HorizontalAlignment=”Center”
 VerticalAlignment=”Center” / >
 < /Grid >
 < /Window >

 Code fi le [MainWindow.xaml] available for download at Wrox.com

 The Grid control and its TextBlock content are
exactly the same as in the Silverlight version.
Even the XAML namespaces are the same. The
only difference is with the root element; with
WPF, it is Window .

 The other key difference occurs when running
the application. Instead of a browser and a
plug - in, you get a full desktop application, as
shown in Figure 8 - 37.

 WPF applications can also run within the
browser. This is called XBAP deployment .
However, running a WPF application in the
browser requires the entire .NET Framework to
be installed on the user ’ s computer, and, thus, only works in Windows (while Silverlight works on
other platforms, and only needs the Silverlight plug - in).

 To create an XBAP application, you must choose WPF Browser Application in the New Project
dialog of Visual Studio 2010, as shown in Figure 8 - 38.

 FIGURE 8 - 37: The WPFHelloWorld application

Windows Presentation Foundation ❘ 359

CH008.indd 359CH008.indd 359 9/6/10 4:56:06 PM9/6/10 4:56:06 PM

360 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Figure 8 - 39 shows what a HelloWorld WPF XBAP application looks like in the browser.

 FIGURE 8 - 39: An XBAP application in the Browser

 FIGURE 8 - 38: Creating a WPF Browser (XBAP) Application in Visual Studio

CH008.indd 360CH008.indd 360 9/6/10 4:56:07 PM9/6/10 4:56:07 PM

 WPF 4 also introduced running XBAP applications in full - trust mode, and access to the HTML
Document Object Model (DOM) via the BrowserInteropHelper class.

 As you can see from the previous sample, the key principles and pillars of Silverlight also apply
to WPF. The most important features that Silverlight has and WPF does not (at least in version 4)
are smooth streaming, Deep Zoom, easy webcam and microphone access, and, of course, cross -
 platform compatibility.

 WPF Features not Available in Silverlight

 This section introduces some of the unique WPF features not found in Silverlight. This examination
is by no means complete, because the WPF platform is a lot more comprehensive than Silverlight.
Rather, this discussion merely provides just a subjective selection.

 Rich Document Presentation with Flow Documents

 Flow documents allow displaying rich document content in an adaptive way. Flow documents
can adapt to changes in view window size and font size to suit many different viewing scenarios.
In Figure 8 - 40, you can how see the SDK viewer demo from the MSDN Library (http://msdn
.microsoft.com/en-us/library/aa972141.aspx) adapts.

 FIGURE 8 - 40: In a narrow window, FlowDocument displays one column; in a wider window

two columns; and in a wide window with big font size it reverts back to one column

 The children of the FlowDocument class are usually paragraphs, lists, sections, tables, and so on. A
 FlowDocument can also contain any WPF UIElement , such as buttons, images, or even media players.

 When a FlowDocument is placed within a FlowDocumentReader , UI for paging, search, changing
viewing mode, and zooming content are also displayed. Of course, these features can be customized
or even turned off. Here is a simple FlowDocument XAML code snippet:

 < FlowDocumentReader >
 < FlowDocument >
 < Paragraph > Hello, World! < /Paragraph >
 < Paragraph > This is the Flow Document demo. < /Paragraph >
 < Paragraph >
 This is an inline calendar:
 < Calendar / >
 And the text goes on here...
 < /Paragraph >
 < /FlowDocument >
 < /FlowDocumentReader >

Windows Presentation Foundation ❘ 361

CH008.indd 361CH008.indd 361 9/6/10 4:56:07 PM9/6/10 4:56:07 PM

362 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Figure 8 - 41 shows this code running.

 FIGURE 8 - 41: FlowDocument sample with an interactive

Calendar control inline

 Combined with the new font - rendering capabilities of WPF 4, fl ow documents can provide an
excellent reading experience.

 Additional Layout Containers and Controls

 While WrapPanel has made its way into the Silverlight Toolkit, and Viewbox is now in the core
Silverlight run - time, WPF still has a few more layout containers up its sleeve — ListView ,
 DockPanel , and UniformGrid .

 ListView allows listing its items in a list or grid
(or custom) layout, displaying its items similarly
to Windows Explorer.

 DockPanel ’ s children have a DockPanel.Dock
attached property that instructs DockPanel
where to dock the specifi ed child. The order
of the children is important, because docking
the next child happens in the remaining area of
the DockPanel . For example, if the fi rst child
is docked to the top, and the next one to the
left, the fi rst occupies the entire width of the
top part. Thus, the second can only occupy
the entire height of the remaining area of the
 DockPanel . The DockPanel ’ s LastChildFill
property indicates whether the last child should
fi ll the entire remaining area. Figure 8 - 42 shows
 DockPanel within the Visual Studio 2010
Designer.

 FIGURE 8 - 42: DockPanel in Visual Studio

CH008.indd 362CH008.indd 362 9/6/10 4:56:08 PM9/6/10 4:56:08 PM

 UniformGrid is used to display more similar
items in a grid - like layout. UniformGrid tries
to determine the optimal number of rows and
columns for a given number of items, and
size them uniformly. The number of rows or
columns can also be specifi ed via the Rows and
 Columns properties. Figure 8 - 43 shows how a
 UniformGrid arranges 5 or 35 buttons.

 WPF also supports menu and toolbar
functionality through the Menu , ToolBar ,
 ToolBarPanel , and ToolBarTray controls.
Another interesting interoperability scenario is
made possible through the WindowsFormsHost control that can host any Windows Forms control
within WPF. This mixing of technologies is also possible from the other direction — a Windows
Forms application can host a WPF control via the ElementHost control.

 Windows 7 integration

 WPF 4 introduces several new features to take advantage of Windows Vista and Windows 7, such
as Aero glass, multitouch, and integration with Windows 7 ’ s new taskbar.

 Aero Glass

 To make parts of the WPF window look
 “ glassy, ” the application must access some
unmanaged API. Microsoft ’ s Adam Nathan
has blogged about how to enable Aero glass
functionality at http://blogs.msdn.com/
adam_nathan/archive/2006/05/04/589686

.aspx . Using his GlassHelper class, you can
get the result displayed in Figure 8 - 44.

 Touch

 Touch and multitouch are supported via
the manipulation API. Any UIElement can
have its IsManipulationEnabled property
set to True . This allows the UIElement
to receive manipulation events, such as ManipulationStarted , ManipulationStarting ,
 ManipulationDelta , ManipulationCompleted , and ManipulationInertiaStarting . Handling
these events and changing the manipulated element ’ s translate, scale, and rotation transforms
accordingly allows for surface - like moving, rotating, and scaling. In fact, the most complex control
in the Surface SDK, the ScatterView control that encapsulates the “ classic ” element rotation, as
well as tossing functionality, is also available in the Microsoft Surface Toolkit for Windows Touch
touch - enabled WPF applications.

 FIGURE 8 - 43: UniformGrid with 5 and 35 buttons

 FIGURE 8 - 44: Aero glass in WPF

Windows Presentation Foundation ❘ 363

CH008.indd 363CH008.indd 363 9/6/10 4:56:08 PM9/6/10 4:56:08 PM

364 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Taskbar Integration

 To access the new Windows 7 shell ’ s features (such as jump lists, progress bar, overlay icons,
thumbnail toolbars, and so on), you must reference the System.Windows.Shell namespace. For
example, the following code adds a new JumpList item that starts the application with a special
command - line parameter:

var jl = new JumpList();
jl.ShowFrequentCategory = true;
jl.ShowRecentCategory = true;

var jt = new JumpTask();
jt.CustomCategory = “My Jumplist items”;
jt.Description = “My item’s description”;
jt.Title = “My Jumplist item”;
jt.Arguments = “/startedfromjumplist”;
jt.ApplicationPath = System.Reflection.Assembly.GetExecutingAssembly().
 GetName().CodeBase;
jl.JumpItems.Add(jt);
jl.Apply();

 To create icon overlays and thumbnail buttons, the Window.TaskbarItemInfo property can be
used, as shown in Listing 8 - 20.

 LISTING 8 - 20: MainWindow.xaml for Win 7 Feature Demos

 < Window x:Class=”Win7FeatureDemo.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”350” Width=”525” >
 < Window.TaskbarItemInfo >
 < TaskbarItemInfo x:Name=”Button1” Overlay=”rectangle.bmp”
 Description=”Button1” >
 < TaskbarItemInfo.ThumbButtonInfos >
 < ThumbButtonInfo x:Name=”ThumbButton1” Click=”ThumbButtonInfo_Click”
 ImageSource=”ellipse.bmp” Description=”I am a thumb button!” / >
 < /TaskbarItemInfo.ThumbButtonInfos >
 < /TaskbarItemInfo >
 < /Window.TaskbarItemInfo >
 < Grid >
 < Ellipse IsManipulationEnabled=”True” HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Fill=”Gray” / >
 < /Grid >
 < /Window >

 Code fi le [MainWindow.xaml] available for download at Wrox.com

CH008.indd 364CH008.indd 364 9/6/10 4:56:09 PM9/6/10 4:56:09 PM

 When running this application, the taskbar looks like what is
shown on Figure 8 - 45. The rectangle is the icon overlay, and the
little black - and - white face on the thumbnail is the ThumButton .
There can be more than one thumb button. For example,
Windows Media Player uses thumb buttons to allow quick
access to previous, next, and pause functionality.

 Programs performing long - running operations and running
on Windows 7 can indicate the status of their progress on the
taskbar. This allows the user to determine the status of the
operation without bringing the application to the front, just by
looking at the taskbar.

 To use this feature in your application, set the
 TaskbarItemInfo.ProgressValue to a value between 0 and 1 , and TaskbarItemInfo
.ProgressState to Normal . The ProgressState can also be set to Indeterminate (to display an
indeterminate animation), Error (to make the progress bar red, indicating an error in the progress),
 None (to clear any progress bar display), and Paused (to make the progress bar yellow).

 A Diff erent Control Templating Model

 WPF only introduced Silverlight ’ s Visual State Manager (VSM) in WPF 4. Because of this, WPF
controls are based on a different templating model than Silverlight ones. Here is a snippet from the
template of a WPF TextBox :

 < Setter Property=”Template” >
 < Setter.Value >
 < ControlTemplate TargetType=”{x:Type TextBox}” >
 < Microsoft_Windows_Themes:ListBoxChrome x:Name=”Bd”
 SnapsToDevicePixels=”true” Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”
 RenderFocused=”{TemplateBinding IsKeyboardFocusWithin}”
 RenderMouseOver=”{TemplateBinding IsMouseOver}” >
 < ScrollViewer x:Name=”PART_ContentHost”
 SnapsToDevicePixels=”{TemplateBinding SnapsToDevicePixels}”/ >
 < /Microsoft_Windows_Themes:ListBoxChrome >
 < ControlTemplate.Triggers >
 < Trigger Property=”IsEnabled” Value=”false” >
 < Setter Property=”Background” TargetName=”Bd”
 Value=”{DynamicResource {x:Static SystemColors.ControlBrushKey}}”/ >
 < Setter Property=”Foreground”
 Value=”{DynamicResource {x:Static SystemColors.GrayTextBrushKey}}”/ >
 < /Trigger >
 < /ControlTemplate.Triggers >
 < /ControlTemplate >
 < /Setter.Value >
 < /Setter >

 FIGURE 8 - 45: Icon Overlay and

Thumb Button

Windows Presentation Foundation ❘ 365

CH008.indd 365CH008.indd 365 9/6/10 4:56:09 PM9/6/10 4:56:09 PM

366 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 There are several interesting things in this template. One is that the look and feel of WPF controls are
coherent with the current Windows theme. The other one is that instead of visual states, the template
operates with triggers. For example, the IsEnabled property automatically triggers two setters to
change the colors accordingly — in the VSM model, you had a state group controlled by the logic.

 Similarly, the mouse hover states can be expressed as property triggers based on the IsMouseOver
property. The WPF 4 controls also implement the VSM states for Silverlight compatibility, but the
default control states are based on the trigger model.

 VisualBrush

 VisualBrush is very much like the Silverlight VideoBrush introduced earlier, but instead of video,
its source can be any WPF control. This allows for cool effects, like the ever - so - popular refl ection
effect, with minimal performance overhead.

 WPF 3D

 WPF sports a fairly sophisticated three - dimensional engine that is integrated with the rest of the
visual tree that is sophisticated for a UI framework — don ’ t try to write your next CAD or Quake
game using WPF 3D. WPF 3D supports models, lights, materials, and cameras. Two - dimensional
elements can also be mapped to three - dimensional models.

 For example, it is possible to put a DataGrid on a sphere, and it will stay interactive. However,
three - dimension in WPF does not support three - dimensional primitives like spheres, cubes, or
teapots — only the most basic three - dimensional building block, a triangle, is supported. Therefore,
creating even the simplest three - dimensional scene is quite a lot of work. There is no simple access
to the third dimension, like the perspective transform of Silverlight.

 CHOOSING BETWEEN WPF AND SILVERLIGHT

 With WPF being able to run in the browser with the XBAP deployment model, and Silverlight
running OOB, even with elevated trust since version 4, the number of requirements that only one
or the other technology can satisfy is rapidly decreasing. Still, when creating a new project in
Visual Studio, you must make a distinct decision on which project type to choose.

 Table 8 - 3 shows some scenarios when one or the other technology is clearly a better choice as of
WPF4 and Silverlight 4 Beta versions.

 TABLE 8 - 3: Silverlight and WPF Scenarios

 SILVERLIGHT RECOMMENDED WPF RECOMMENDED

 The application is to be run inside the browser. Windows is the target platform.

 The application is to be run on non - Windows

operating systems or even mobile devices.

 Tight Windows 7 integration is required (such as

taskbar, jump lists, and so on).

CH008.indd 366CH008.indd 366 9/6/10 4:56:10 PM9/6/10 4:56:10 PM

 To sum up, if Silverlight satisfi es your needs, go for it, because your application will run on
more platforms and will be easier to migrate to mobile or even WPF in the long run. But, if you
only need to run on Windows, and need the full power of WPF and the .NET Framework, along
with native code integration and hardware access, jump onto the WPF bus without hesitation.
Whichever path you take, you most certainly will have a fun and fruitful ride with these exciting
technologies!

 DESIGNER - DEVELOPER COOPERATION

IN SILVERLIGHT AND WPF

 This chapter started by describing the importance of UX, and the idea that designers and developers
must work together in order to achieve a great UX. After looking at the most important pillars
(features) of Silverlight and WPF, it is time to return to that thought and investigate how Visual
Studio 2010 and Expression Blend can help designers and developers to cooperate and create great
applications together.

 The key to a successful designer - developer workfl ow is total separation between logic, data, and UI.
As illustrated earlier, Silverlight and WPF do a great job as a platform in this regard. Let ’ s see how
the tools and some architectural considerations can support the cooperation.

 A Common Solution Format

 Visual Studio and Expression Blend share a common solution fi le format. This means that a project
created with Visual Studio 2010 can be opened with Expression Blend 4, and vice versa. The people
working on the project can be sure that they are using exactly the same project, editing the same

 SILVERLIGHT RECOMMENDED WPF RECOMMENDED

 Silverlight - specifi c media functionality is used

(such as smooth streaming or Deep Zoom).

 Access to the full .NET Framework is needed.

 You don ’ t need any WPF - specifi c functionality. Access to the full computer is needed (such as

in the case of a CD burner application).

 The web deployment model is preferred.

 You must integrate with native code where

Silverlight ’ s COM interop is not enough.

 Basic three - dimensional or DirectX integration

is needed.

 Displaying complex documents is required.

 You need the full, no - compromise .NET

Framework.

Designer - Developer Cooperation in Silverlight and WPF ❘ 367

CH008.indd 367CH008.indd 367 9/6/10 4:56:10 PM9/6/10 4:56:10 PM

368 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

fi les, and seeing what the other team sees. Of course, it is
good practice to use a source control in order to do check -
 ins, and avoid editing the same physical fi le. Subversion
or Team Foundation Server both work great — Team
Foundation Server is even integrated into Blend to help
with source control.

 Even if there is only a single person working on a project,
both Visual Studio and Expression Blend offer hooks
to easily switch to the other tool, and continue working
there. For example, right - clicking an XAML fi le in the
Solution Explorer of Visual Studio offers the option to
open the XAML (and the entire solution) in Blend — and
similarly, Blend can open the project in Visual Studio, as
shown in Figure 8 - 46. If a project is already open in the
other tool, switching between the two tools with Alt+Tab
prompts for loading the changes.

 Blendability

 Even though Blend can use the same project as Visual
Studio, it does not automatically mean that the project
is editable in Blend. For example, there may be a user
control or a data object that accesses the server for some data in its constructor. Because the server
may not be available in design time, but property accessors and bindings are run when initializing
the visual designer, this will result in an error, even if running the project works perfectly. Both
Blend and Visual Studio 2010 display useful error information in this case, as shown in Figure 8 - 47
and Figure 8 - 48.

 FIGURE 8 - 46: Right - clicking on a fi le in

Blend off ers to open the solution in Visual

Studio

 FIGURE 8 - 47: Design time error in Visual Studio

CH008.indd 368CH008.indd 368 9/6/10 4:56:11 PM9/6/10 4:56:11 PM

 The designer surface will become read - only until the problem is corrected. While the XAML can
still be edited, this effectively renders the designer unable to work with the project. Ensuring that
the visual designers and Blend always work is called blendability . There are other cases when
run - time and design time behave differently. For example, neither Blend nor Cider call the
constructor of the UserControl currently displayed. Therefore, some properties may not be set
in design mode.

 To differentiate between design time and run - time, developers can use the DesignerProperties
.IsInDesignMode Boolean property. If this value is true , the design code can be switched to a
design - time behavior, and provide dummy data in the data object, instead of trying to reach a live
database. This dummy data can be used by the designer to set up bindings in a what - you - see - is -
 what - you - get (WYSIWYG) manner.

 Design Time Sample Data in Blend

 Designers do not have to rely on developers to create sample data for their bindings or to experiment
with different ways of presenting data. Blend offers a feature called sample data . This is essentially
an XML “ database ” that can be created visually in Blend, and used as a data - binding source with
simple drag - and - drop operations.

 The cool thing about sample data is that the number of records can be changed very easily, and
there are tons of built - in sample data types that create random lorem ipsum text, company names,
person names, prices, email addresses, images, and so on. Figure 8 - 49 shows how design - time data
is used in Blend to create a list of chairs with designer ’ s names and prices.

 FIGURE 8 - 48: Design time error in Expression Blend

Designer - Developer Cooperation in Silverlight and WPF ❘ 369

CH008.indd 369CH008.indd 369 9/6/10 4:56:11 PM9/6/10 4:56:11 PM

370 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 The sample data can also be used as a real data source for simple applications or parts of an
application that display some data but do not need server functionality. The sample “ database ” can
be set up, and then the randomly generated data can be changed manually.

 SketchFlow

 SketchFlow is a dynamic prototyping tool, built into Expression Blend (Figure 8 - 50). Dynamic prototypes
are much more than wireframes that most developer shops use to mock - up screens. Prototypes are
interactive, can contain sample (or even live) data, and have the navigation functionality in place.

 FIGURE 8 - 49: Using sample data in Blend

 FIGURE 8 - 50: Editing SketchFlow prototypes in Expression Blend. The design of the

UI intentionally looks like a paper drawing to direct the attention to the content and

layout, instead of the subtle things like shades of color and precise placement.

CH008.indd 370CH008.indd 370 9/6/10 4:56:12 PM9/6/10 4:56:12 PM

 The big advantage of dynamic prototypes is that it allows the end user to role - play his or her day
using the prototype and give immediate feedback if some information is not displayed or hard to
reach. Dynamic prototypes are cheap to create and modify, and, thus, allow experimenting with
different approaches to the UI. Once accepted by the client, prototypes can also serve as part of the
developer ’ s specifi cation, showing the general layout, fi elds to display, and interactivity to implement
in a self - explaining way.

 SketchFlow is available for both WPF and Silverlight, and uses the styling and templating features
of these platforms to achieve its sketchy look. End users can view the sketches in the SketchFlow
Player. The SketchFlow Player also allows the customer to provide feedback by adding textual
comments, and drawing on the sketch UI with the mouse.

 Triggers, Actions, and Behaviors

 Triggers and actions can be thought of as reusable, customizable, designer - friendly event handlers.

 An action is a piece of .NET code that does something — changes a property, starts a Storyboard,
moves something around, plays a sound, opens a link — basically anything a piece of code can do.
 Action s can also have parameters that further enhance their reusability.

 A trigger is the “ event ” that activates the action. The built - in triggers include EventTrigger (fi res
when a specifi c event occurs), TimerTrigger (fi res at specifi c intervals), and KeyTrigger (fi res when
a specifi ed key is pressed). There are other triggers available in the Expression Blend Gallery (such as
the MouseGestureTrigger that fi res when the mouse is moved in a pre - specifi ed way, or a double -
 click trigger).

 To apply an action to a piece of UI in Blend, the action can be dragged from the Assets panel
to the “ Objects and Timeline ” panel, or the UI element itself on the design surface. A trigger
is automatically added, but its parameters can be changed, or the entire trigger replaced in the
property inspector for the action.

 Actions and triggers are attached to a Dependency Object by default. If a trigger or action only
makes sense on a specifi c element (such as an action that selects the next or previous item in a
 ListBox), the action can be constrained when specifying the generic base class, and Blend will not
allow using it on the wrong element.

 Behavior s are useful when simple triggers actions are not enough. Just like an action, it is attached
to a target element (AssociatedObject), and provides two methods to override — OnAttached and
 OnDetached . In these methods, the event handlers can be hooked up to the AssociatedObject ,
and, basically, any other functionality can be coded up. A good Behavior example is the
 MouseDragElementBehavior that makes the associated object “ draggable ” without any further
code — obviously it handles the MouseLeftButtonDown , MouseMove , and MouseLeftButtonUp
events in one single package.

 There is no limit to what actions and behaviors can do. You can fi nd a whole physics engine
embedded in behaviors that move UI elements around and handle gravity and collision, and one of
the built - in Blend samples is a breakout - style game called “ Beehive, ” where the entire logic of the
game is coded using triggers, actions, and behaviors.

Designer - Developer Cooperation in Silverlight and WPF ❘ 371

CH008.indd 371CH008.indd 371 9/6/10 4:56:13 PM9/6/10 4:56:13 PM

372 ❘ CHAPTER 8 MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)

 Model - View - ViewModel Pattern

 Even though Behavior s can be used to do amazing things, it is probably not be the best
architectural pattern to follow for building applications that need total designer - developer
separation. An emerging pattern, called Model - View - ViewModel (MVVM) seems to be the
ideal solution. Blend itself has been built with MVVM, as well as tons of other complex WPF
or Silverlight projects.

 MVVM may sound familiar — it has a lot to do with the Model - View - Controller (MVC) pattern.
MVVM is designed to take full advantage of the advanced data - binding capabilities of WPF and
Silverlight. Following are the goals of the MVVM pattern:

 Separate logic and data from presentation

 Make the UI logic testable by itself

 Avoid spreading UI logic into too many, hard - to - fi nd places (such as event handlers of user
controls)

 Following are the main components of MVVM:

 Model — The Model represents business data (such as books, authors, orders, and so on).
In some implementations, the Model also “ knows ” how to send itself back to the server, or
retrieve additional model objects.

 View — The View is essentially the UI. In the case of WPF and Silverlight, it is the XAML
code. MVVM purists insist on no code - behind for the View — UI - specifi c coding should be
done with behaviors. However, sometimes it is more effi cient and cost - effective to put some
code in the code - behind, but you have to know and understand the rules to see when to
break them.

 ViewModel — The ViewModel is the data that represents the View. It connects the View
with the Model, while storing the status of the View (such as whether the user has logged
in). The ViewModel is wired to the View via data binding — the ViewModel is set as
the DataContext in XAML. The View can inform the ViewModel of events via a loose
commanding mechanism. For example, if the user clicks the “ Delete record ” button, a
corresponding command is invoked.

 There are a lot of different MVVM approaches and implementations to be found on the web —
probably too many to decide which one to use. Some only work with WPF, some prefer Silverlight,
and some work with both. They all have their strengths and weaknesses. Following are some
recommendations, but feel free to fi nd (or even create) your own preferred frameworks:

 Laurent Bugnion ’ s MVVM Light Toolkit (http://www.galasoft.ch/mvvm/getstarted)

 Microsoft ’ s Patterns and Practices Group develops Prism, that also helps with
composite applications (http://msdn.microsoft.com/en-us/library/dd458809
.aspx?rssCatalogv2.1)

 Caliburn (http://www.codeplex.com/caliburn) with additional UI patterns

 Silverlight FX (http://projects.nikhilk.net/SilverlightFX) also goes beyond
MVVM

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH008.indd 372CH008.indd 372 9/6/10 4:56:13 PM9/6/10 4:56:13 PM

 SUMMARY

 In this chapter, you learned about how the focus of software development is shifting from technical
problems to the user experience (UX). The key to building applications with a modern UX is
to bring together the developer with the designer — the Designer with capital “ D, ” who is not
just good with graphics tools, but is able to design a usable, productive, and enjoyable UI for the
customer ’ s problem at hand.

 Silverlight and WPF are two technologies can bring the worlds of the designer and developer closer,
through the power XAML, layout, data binding, styling, templating, media, and the Expression
Blend and Visual Studio 2010 tools.

 Chapter 9 takes a closer look at Windows Communication Foundation (WCF).

Summary ❘ 373

CH008.indd 373CH008.indd 373 9/6/10 4:56:13 PM9/6/10 4:56:13 PM

CH008.indd 374CH008.indd 374 9/6/10 4:56:14 PM9/6/10 4:56:14 PM

Windows Communication
Foundation (WCF)

 Based on the Service Oriented Architecture (SOA), Windows Communication Foundation (WCF)
is a framework used to design applications with the capability to inter - communicate. WCF was
initially named “ Indigo, ” and was introduced as part of .NET Framework 3.0 in 2006. According
to MSDN (http://msdn.microsoft.com/en-us/library/ms735119.aspx .), “ Windows
Communication Foundation (WCF) is Microsoft ’ s unifi ed programming model for building
service - oriented applications. It enables developers to build secure, reliable, transacted solutions
that integrate across platforms and interoperate with existing investments. ”

 SOA is an architectural paradigm where you have a collection of loosely coupled and
extensible services, with each service having the capability to be modifi ed independently
of one another in such a way that the integration of the services remains intact. WCF is a
framework from Microsoft that facilitates designing and developing SOA applications within
the managed environment.

 This chapter takes a look at how WCF fi ts into the greater .NET toolset, as well as the basics
of SOA using WCF. In this chapter, you will learn how to implement a WCF service using
Visual Studio 2010.

 Before digging into the details, let ’ s do a quick review of WCF in comparison to ASMX
Web Services.

 WCF VERSUS ASMX WEB SERVICES

 One of the most common descriptions of WCF is to say that it is web service. Although you
can use WCF to create web services that match the traditional model of web services, there are
a lot more possibilities with WCF.

 9

CH009.indd 375CH009.indd 375 9/6/10 4:58:07 PM9/6/10 4:58:07 PM

376 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 It is important to consider the way that WCF and ASMX Web Services are related, because both
are currently supported in the .NET development stack. A common analogy is used to describe the
overall differences between WCF and ASMX Web Services is to metaphorically consider them as
an aircraft. ASMX Web Services are the Cessna of services, with a simple confi guration interface,
and a limited number of options. They are something easy for anyone to grasp and understand. On
the other hand, WCF Services are like commercial jets. They have a lot more options, confi guration
settings, switches, and knobs available, but with that comes a steeper learning curve and time
investment.

 WCF will not necessarily replace ASMX Web Services because of the simple setup process to
confi gure ASMX Web Services. But, when looking at more robust or secure communications
between applications, WCF will become the solution of choice.

 A QUICK LOOK AT SOA

 SOA is a very popular architectural paradigm that enables an excellent integration of loosely
coupled distributed applications and services over a network. Web services and similar application
services are an example of SOA implementations. Service - oriented designs will typically be
characterized by providing the following:

 Platform independence

 Loose coupling

 Location transparency and reduced cost of maintenance

 Support for seamless updates over time

 Easier maintenance and seamless deployment

 When implementing a solution using SOA, the resulting solution will contain the following
elements:

 Service

 Service provider

 Service consumer(s)

 Service registry

 Service contract

 Service proxy

 Service lease

 Message

 Service description

 Advertising and discovery

 Let ’ s take a look at each of these in a bit more detail.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH009.indd 376CH009.indd 376 9/6/10 4:58:10 PM9/6/10 4:58:10 PM

 Service

 A service may be defi ned as an implementation of a stateless, well - defi ned, self - contained,
independent business functionality that has the capability of accepting one or multiple requests
and returning one or multiple responses using a well - defi ned, standard interface. A service is
independent of the technology on which it is implemented; so the interface to the service should be
platform - independent. A service should also have the capability to be dynamically discovered and
called at run - time.

 Service Provider

 The service provider is a network - addressable entity that provides the service. This would typically be
the hosted Internet/intranet location that is hosting the specifi c service solution for the consumer(s).

 Service Consumer(s)

 The service consumer is the entity that consumes (or uses) the services provided by the service
provider by locating the service in the service registry, binding to the service, and then executing
the service methods. It is very common for multiple service consumers to be within a specifi c
service - oriented application.

 An example of this would be individual workstation clients that consume web services data
provided through a single service provider.

 Service Registry

 The service registry is a network - based repository of published services. This registry is used by the
service consumers at run - time to locate a service and bind to it.

 The advantages of using a service registry include the following:

 Scalability

 Loose coupling

 Hot updates

 Dynamic service lookup

 Using a service registry rather than hard - coding service provider locations allows for a more
dynamic service environment, widespread service distribution, and redundancy.

 Service Contract

 The service contract is a specifi cation that denotes how the service consumer will interact with the
service provider for a particular service. A service contract defi nes the various types of communications,
message formats, and input/output data specifi cations for all interactions.

➤

➤

➤

➤

A Quick Look at SOA ❘ 377

CH009.indd 377CH009.indd 377 9/6/10 4:58:10 PM9/6/10 4:58:10 PM

378 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 Service Proxy

 The service proxy is a reference to the service at the service consumer ’ s end. It is provided by the
service provider to facilitate the service method calls.

 Service Lease

 The service lease is a predefi ned duration that denotes the lifetime of a service. This implies a time
after which the service will no longer be valid. Note that, as and when this time period elapses,
the service consumer should request the service registry to grant a fresh, new service lease so
that the service consumer can regain access to the service and execute the service methods.

 Message

 Service providers and service consumers communicate through the use of messages . So, messages
are the medium of communication between service providers (that is, the providers of the services)
and service consumers (that is, the consumers of the services). Note that such messages are in
predefi ned XML format.

 The service contract(s) discussed previously are used to defi ne the specifi c formats of the individual
messages transferred between the client and server.

 Service Description

 The service description is a specifi cation that contains the necessary information to invoke a service.
Such information may include the parameters, the constraints, and the policies that defi ne how the
service should be invoked.

 This is a more detailed overview of the actual service contract that defi nes all interactions.
Typically, this would be in the form of a published document or specifi cation that shows example
service communications and provides information for easy discovery. A common example here
would be something similar to the “ Test ” page that .NET automatically generates for ASMX Web
Services.

 Advertising and Discovery

 Advertising and discovery are two of the most essential properties in SOA. While the former
relates to the capability of a service to publish its description so as to be located by the service
consumers, the latter relates to the capability of the service consumers to discover the published
services from the service registry, and then invoke them as needed.

 BUILDING BLOCKS OF THE WCF ARCHITECTURE

 As mentioned, WCF is a framework from Microsoft used to design and implement applications
that can have the capability to inter - communicate. Unifi cation of the existing .NET technologies,
support for cross - platform interoperability, security, service - oriented development, and reliability
are some of the key advantages of designing applications using WCF. WCF runs on top of .NET ’ s

CH009.indd 378CH009.indd 378 9/6/10 4:58:10 PM9/6/10 4:58:10 PM

Common Language Run - time (CLR), and helps you build service - oriented applications by
leveraging the benefi ts of .NET ’ s managed environment.

 WCF provides a great platform for unifying Microsoft ’ s distributing technologies (web services,
remoting, COM+, and so on) under one umbrella. The three most important concepts related to
WCF architecture include services, clients, and messages. This section examines the building blocks
of the WCF architecture, as shown in Figure 9 - 1.

 FIGURE 9 - 1: WCF and .NET Framework

SOAP
WCF Client

WCF

Microsoft .NET

Framework

WCF Service

WCF

Microsoft .NET

Framework

 You can have three contracts in WCF — a service contract , a data contract , and a message contract .
Any WCF Service class implements at least one service contract — an interface that is used to
defi ne the operations that are exposed by the WCF Service class. Such operations may also include
data operations — exposed using data contracts.

 Actually, a WCF Service class is just like any other class, except that it is marked with the
 ServiceContract attribute. Individual methods within the Service class are marked with an
 OperationContract attribute that defi nes it as an externally visible operation of the service.
A message contract may be defi ned in a way that allows you to change the format of the messages.
Note that the ServiceContract , DataContract , and other related attributes are defi ned in the
 System.ServiceModel namespace.

 Given the use of the OperationContract attribute, it is possible to have methods within a Service
class that are not marked with the attribute. This will hide the method from consumption within a
WCF service. Keep in mind that, for DLL references and so on, the access modifi er of the method
will still control the availability to external callers.

 In WCF, a binding denotes how a particular service can communicate with other services of its
kind, and also with other clients. Each service can be made available via one or more binding at
any given time.

Building Blocks of the WCF Architecture ❘ 379

CH009.indd 379CH009.indd 379 9/6/10 4:58:11 PM9/6/10 4:58:11 PM

380 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 TABLE 9 - 1: WCF Predefi ned, Built - in Bindings

 BINDING PURPOSE

 basicHttpBinding This binding is used to provide backward compatibility support

for ASMX - based clients. This binding uses Simple Object Access

Protocol (SOAP) 1.1 messages, and is used when a WCF service

must communicate to non - WCF based system.

 wsHttpBinding This binding sends SOAP 1.2 messages and implements WS*

specifi cations to support security, reliability, ordered delivery, and

transactions.

 netTCPBinding This binding sends SOAP 1.2 messages and uses binary encoding

and optimized communications between WCF clients and

services on a Windows network. This binding can only be used

when working with WCF - to - WCF communication, but is the fastest

communications process possible. This can be used to replace

COM+ and .NET remoting models.

 netNamedPipeBinding This binding provides secure, reliable named pipe

communications between WCF services and WCF clients that

are stored on the same machine. This communication should be

used for communications between processes that exist on the

same server.

 netPeerTcpBinding This binding is used to set up peer - to - peer communications,

for full information. (See the MSDN article at http://technet

.microsoft.com/en-us/library/bb726971.aspx .)

 msmqIntegrationBinding This binding is used to enable applications to send and receive

messages using Microsoft Message Queuing (MSMQ), and allows

integration with applications already using MSMQ.

 wsDualHttpBinding This binding is used to allow two - way communications between a

client and service. Although similar in nature to wsHttpBinding ,

this method exposes the client ’ s IP address to the service, and

requires that the client be reachable via a public URI.

 wsFederationHttpBinding This binding provides a communication system that allows for

seamless passing of identities between systems by implementing

support for the WS - Federation protocol.

 netMsmqBinding This binding provides a method to allow an application the

capability to send messages via an MSMQ queue. This allows

for disconnected message communication and various

options for security.

 Table 9 - 1 shows the predefi ned, built - in bindings in WCF.

CH009.indd 380CH009.indd 380 9/6/10 4:58:11 PM9/6/10 4:58:11 PM

 Endpoints in WCF are used to associate a service contract with its address. Channels are actually a
bridge between a service and its client. Following are the types of supported channels in WCF:

 Simplex Input

 Simplex Output

 Request - reply

 Duplex

 To help put the concept of endpoints and channels into perspective, let ’ s use a common problem to
describe the functionality provided by endpoints and channels.

 Let ’ s say you are going on a trip where you are driving to a destination. To get to your end
destination, you would follow a simple process. You would get into your vehicle and take the
necessary roads/highways to get to the fi nal destination.

 Using this scenario as an example, the location that you are going to is the endpoint, your vehicle
is the request being sent, and the roads are the channel in which the message is communicated. An
endpoint is simply a physical address that a user can call (for example, http://www.mydomain.com/
service/svc/get), and the channel is responsible for the reception and transmission of the data
between the client and the endpoint.

 GETTING STARTED WITH WCF

 A typical WCF implementation would have a WCF service and a WCF client . The WCF client
would consume the services provided by the WCF service. A WCF service is based on three
concepts — address, binding, and contract. And, as mentioned, a WCF service and a WCF client
communicate using messages, as shown in Figure 9 - 2.

➤

➤

➤

➤

 FIGURE 9 - 2: WCF Service and WCF Client

WCF Services and WCF Clients

Communicate using Messages

WCF Service WCF Client

 This section examines how you can get started using WCF in your applications. You will implement
a simple WCF service and then use ASP.NET Ajax to consume the service.

 The service that is created will be used to provide employee information to the ASP.NET web
application.

Getting Started with WCF ❘ 381

CH009.indd 381CH009.indd 381 9/6/10 4:58:12 PM9/6/10 4:58:12 PM

382 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 Creating the WCF Service

 Note that a WCF service contains the following:

 A Service class

 A hosting environment

 One or more endpoints

 The Service class is written using a language targeted at the managed environment of the .NET
CLR. The hosting environment is the environment inside the context of which the WCF service would
execute. The endpoints enable the clients or the service consumers to access the WCF service.

 WCF services can be hosted in a couple of different ways — via Internet Information Services (IIS),
similar to that of ASMX services, or as individual process hosts within a standard executable.

 There are two templates that you can choose from to create WCF services: the Visual Studio WCF
Service Library template and the Visual Studio Service Application template.

 Let ’ s fi rst use the Visual Studio WCF Service Library template to create a WCF Service. To do this,
follow these steps:

 1. Open Visual Studio 2010.

 2. Click on File ➪ New ➪ Project.

 3. Select WCF Service Application from the list of the templates displayed, as shown in
Figure 9 - 3.

 4. Provide a name for your project and click OK to save.

➤

➤

➤

 FIGURE 9 - 3: Creating the WCF Service Application

CH009.indd 382CH009.indd 382 9/6/10 4:58:13 PM9/6/10 4:58:13 PM

 A WCF Service Application project is then created. At fi rst glance, the Service class looks as
follows:

using System;
namespace MyDataService
{
 // NOTE: You can use the “Rename” command on the “Refactor” menu to change
 // the class name “Service1” in code, svc and config file together.
 public class Service1 : IService1
 {
 public string GetData(int value)
 {
 return string.Format(“You entered: {0}”, value);
 }

 public CompositeType GetDataUsingDataContract(CompositeType composite)
 {
 if (composite == null)
 {
 throw new ArgumentNullException(“composite”);
 }
 if (composite.BoolValue)
 {
 composite.StringValue += “Suffix”;
 }
 return composite;
 }
 }
}

 The Service class in the previous code snippet implements the interface IService1 , as shown here:

using System.Runtime.Serialization;
using System.ServiceModel;
namespace MyDataService
{
 // NOTE: You can use the “Rename” command on the “Refactor” menu
 // to change the interface name “IService1” in both code
 // and config file together.
 [ServiceContract]
 public interface IService1
 {

 [OperationContract]
 string GetData(int value);

 [OperationContract]
 CompositeType GetDataUsingDataContract(CompositeType composite);

 // TODO: Add your service operations here
 }

 // Use a data contract as illustrated in the sample below
 // to add composite types to service operations.

Getting Started with WCF ❘ 383

CH009.indd 383CH009.indd 383 9/6/10 4:58:14 PM9/6/10 4:58:14 PM

384 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 [DataContract]
 public class CompositeType
 {
 bool boolValue = true;
 string stringValue = “Hello “;

 [DataMember]
 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }

 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
 }
}

 Creating the Service Interface

 Any WCF Service class implements at least one service contract. In this example, the service
contract that the Service class would implement is IEmployeeDataService .

 Right - click on the project in the Solution Explorer and create a new fi le called
 EmployeeDataService.cs . Place the following code there:

[ServiceContract]
 public interface IEmployeeDataService
 {
 List < String > GetData();
 [OperationContract]
 List < String > GetEmployeeList();
 }

 This is the service contract that will be extended by a Service class you will create later. Note
that there are two method declarations in this interface — the GetData() method and the
 GetEmployeeList() method. While the former is not marked with the OperationContract
attribute, the latter is. This implies that, of these two methods, only the GetEmployeeList()
method will be exposed for client - callable operations. This is because any method that isn ’ t marked
with the OperationContract attribute is not included in the service contract.

 Given the use of interfaces to defi ne a service, since the GetData method is not needed for service
implementation, it would most often be a best practice to omit the method from the interface
defi nition to prevent any service implementers from creating methods that are not needed.

CH009.indd 384CH009.indd 384 9/6/10 4:58:14 PM9/6/10 4:58:14 PM

 Creating the Service Class

 The Service class in this example is EmployeeDataService . It implements the interface
 IEmployeeDataService . Open the EmployeeDataService.cs fi le and place the following code
beneath the service contract created earlier:

public class EmployeeDataService : IEmployeeDataService
 {
 public List < String > GetData()
 {
 List < String > lstEmployee = new List < string > ();
 lstEmployee.Add(“Joydip”);
 lstEmployee.Add(“Peter”);
 lstEmployee.Add(“Michael”);
 lstEmployee.Add(“Sandry”);
 lstEmployee.Add(“Albert”);
 lstEmployee.Add(“Russell”);
 return lstEmployee;
 }

 public List < String > GetEmployeeList()
 {
 List < String > lstEmployee = new List < string > ();
 lstEmployee.Add(“Joydip”);
 lstEmployee.Add(“Peter”);
 lstEmployee.Add(“Michael”);
 lstEmployee.Add(“Sandry”);
 lstEmployee.Add(“Albert”);
 lstEmployee.Add(“Russell”);
 return lstEmployee;
 }
 }

 Here ’ s how the complete source code of the EmployeeDataService.cs fi le should look:

using System.ServiceModel;
using System.Collections.Generic;
using System;

namespace MyDataService
{
 [ServiceContract]
 public interface IEmployeeDataService
 {
 List < String > GetData();
 [OperationContract]
 List < String > GetEmployeeList();
 }

 public class EmployeeDataService : IEmployeeDataService
 {
 public List < String > GetData()

Getting Started with WCF ❘ 385

CH009.indd 385CH009.indd 385 9/6/10 4:58:14 PM9/6/10 4:58:14 PM

386 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 {
 List < String > lstEmployee = new List < string > ();
 lstEmployee.Add(“Joydip”);
 lstEmployee.Add(“Peter”);
 lstEmployee.Add(“Michael”);
 lstEmployee.Add(“Sandry”);
 lstEmployee.Add(“Albert”);
 lstEmployee.Add(“Russell”);
 return lstEmployee;
 }

 public List < String > GetEmployeeList()
 {
 List < String > lstEmployee = new List < string > ();
 lstEmployee.Add(“Joydip”);
 lstEmployee.Add(“Peter”);
 lstEmployee.Add(“Michael”);
 lstEmployee.Add(“Sandry”);
 lstEmployee.Add(“Albert”);
 lstEmployee.Add(“Russell”);
 return lstEmployee;
 }
 }
}

 It is important to note that, in this example, the interface and concrete implementations were
completed in the same fi le within the same assembly. In many cases, this might not be the situation.
The concrete service implementation might be in another fi le or in an entirely different project.

 Defi ning Data Contracts

 Similar to service contracts, you can also defi ne data contracts. If the operations defi ned as part of
the service contract return simple types (that is, primitive types), you do not need to declare a data
contract. However, data contracts are required if the service contract defi nes operations that return
instances of complex types.

 As an example, if the GetEmployeeList() method were to return an instance of a class type,
you must defi ne a data contract. Data contracts are used to defi ne how in - memory types can be
converted to a serializable format so that the data can be transmitted across the wire. A data
contract is defi ned using the [DataContract] attribute, which can be applied to a struct or class.
Individual members of a data contract are then defi ned using the DataMember attribute.

 Data contracts in WCF are defi ned using the DataContract attribute. Here is an example:

using System.Runtime.Serialization;
[DataContract]
class EmployeeData
{
[DataMember] public int employeeID {get; set;}
[DataMember] public String firstName {get; set;}
[DataMember] public String lastName {get; set;}
}

CH009.indd 386CH009.indd 386 9/6/10 4:58:15 PM9/6/10 4:58:15 PM

 In this example, the EmployeeData class is defi ned as a data contract, and each of the members
within the class is offered as a DataMember . If you have a property that is calculated or otherwise
shouldn ’ t be passed across the communication wire, you can omit the DataMember attribute.

 Specifying the Binding Information

 Now that you have created the service contract, data contract, and the service implementation, you
must specify the binding information for the service to make it accessible by service consumers or
clients. In order for a WCF service to be accessed by the clients, the service must expose at least one
endpoint. An endpoint denotes the address, binding, and contract information for the service.

 To specify the binding information for the service, open the App.Config fi le and insert the
following code inside the < system.serviceModel > tags:

 < system.serviceModel >
 < bindings >
 < basicHttpBinding >
 < binding name=”BasicHttpBinding_IEmployeeDataService”
 closeTimeout=”00:01:00”
 openTimeout=”00:01:00” receiveTimeout=”00:10:00” sendTimeout=”00:01:00”
 allowCookies=”false” bypassProxyOnLocal=”false”
 hostNameComparisonMode=”StrongWildcard”
 maxBufferSize=”65536” maxBufferPoolSize=”524288”
 maxReceivedMessageSize=”65536”
 messageEncoding=”Text” textEncoding=”utf-8” transferMode=”Buffered”
 useDefaultWebProxy=”true” >
 < readerQuotas maxDepth=”32” maxStringContentLength=”8192”
 maxArrayLength=”16384”
 maxBytesPerRead=”4096” maxNameTableCharCount=”16384” / >
 < security mode=”None” >
 < transport clientCredentialType=”None” proxyCredentialType=”None”
 realm=”” / >
 < message clientCredentialType=”UserName” algorithmSuite=”Default” / >
 < /security >
 < /binding >
 < /basicHttpBinding >
 < /bindings >
 < client >
 < endpoint address=”http://myserver/MyDataService/Service1.svc”
 binding=”basicHttpBinding”
 bindingConfiguration=”BasicHttpBinding_IEmployeeDataService”
 contract=”IEmployeeDataService”
 name=”BasicHttpBinding_IEmployeeDataService” / >
 < /client >
 < /system.serviceModel >

 This creates a basicHttpBinding for the example service specifying many additional properties
on the binding (such as the openTimeout , receiveTimeout , sending timeout, bufferSize , and
maximum message size). Additional confi guration on the binding specifi es that no security is being
used for the transport. The endpoint is defi ned with an address that represents where the svc fi le

Getting Started with WCF ❘ 387

CH009.indd 387CH009.indd 387 9/6/10 4:58:15 PM9/6/10 4:58:15 PM

388 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

will be hosted by IIS, notes that the endpoint should use the confi guration defi ned earlier in the
confi guration, and that the contract for the service is IEmployeeDataService .

 This declarative method for defi ning service endpoints is not the only way to confi gure your service.
It is also possible to confi gure a service programmatically using the .NET API methods to creating
the service host, endpoint, and binding. A simpler implementation using this method is as follows:

public static void Main()
{
ServiceHost serviceHost = new ServiceHost
 (typeof(MyDataService.EmployeeDataService));
serviceHost.AddEndpoint
 (typeof(MyDataService.EmployeeDataService),
 new BasicHttpBinding(),
 “http://myserver/MyDataService/Service1.svc”);
serviceHost.Open();
Console.Writeline(“Press the ENTER key to stop the service”);
Console.Readline();
s.Close();
}

 Hosting the WCF Service

 A WCF service can be hosted using IIS, or by using Windows Activation Service (WAS). To host
your WCF service in IIS, you must simply create a virtual directory, and make it point to the
directory where your service is located. WCF services hosted in IIS can be accessed using SOAP
over HTTP.

 Here ’ s what you can specify in the App.Config fi le in the hosting application to access your WCF
service hosted in IIS:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < behaviors >
 < serviceBehaviors >
 < behavior >
 < serviceMetadata httpGetEnabled =”true”/ >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < protocolMapping >
 < add binding=”wsHttpBinding” scheme =”http”/ >
 < /protocolMapping >
 < /system.serviceModel >
 < /configuration >

 This confi guration information notes that it is possible for the service to publish metadata
information using the Get method of the HTTP protocol. The second section maps the HTTP
protocol to the wsHttpBinding . Note that your endpoint confi gurations must still be completed and
have been omitted from this example for brevity.

CH009.indd 388CH009.indd 388 9/6/10 4:58:15 PM9/6/10 4:58:15 PM

 Just like with the confi guration of bindings and endpoints, you can use the APIs to set up the service
host. Similar to the previous example, the following assumes that all bindings and endpoints have
been properly confi gured:

using System;
using System.ServiceModel;
namespace MyHostingApp
{
 class Program
 {
 static void Main()
 {
 ServiceHost serviceHost = new
 ServiceHost(typeof(MyDataService.EmployeeDataService));
 serviceHost.Open();
 Console.WriteLine(“Press the ENTER to stop the service”);
 Console.ReadLine();
 serviceHost.Close();
 }
 }
}

 Creating the Service Proxy

 To create a WCF client, all you must do is create a proxy that can be used to connect to a particular
endpoint on the service, and then call the operations via the proxy created earlier. You can use the
command - line tool called svcutil to create a WCF service proxy, as shown here:

svcutil http://localhost/MyDataService/Service1.svc/out:MyDataServiceProxy.cs

 When you execute the svcutil command - line tool with the parameters shown in Figure 9 - 4, the
tool generates a client confi guration fi le, and a proxy class for the WCF service would be generated
in the output path specifi ed.

 FIGURE 9 - 4: Generating the service proxy

Getting Started with WCF ❘ 389

CH009.indd 389CH009.indd 389 9/6/10 4:58:15 PM9/6/10 4:58:15 PM

390 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 The proxy class looks like this:

 System.CodeDom.Compiler.GeneratedCodeAttribute(“System.ServiceModel”, “4.0.0.0”)]
[System.ServiceModel.ServiceContractAttribute
 (ConfigurationName=”IEmployeeDataService”)]
public interface IEmployeeDataService
{ [System.ServiceModel.OperationContractAttribute
 (Action=”http://tempuri.org/IEmployeeDataService/GetEmployeeList”,
 ReplyAction=”http://tempuri.org/IEmployeeDataService/
 GetEmployeeListResponse”)]
 string[] GetEmployeeList();
}
[System.CodeDom.Compiler.GeneratedCodeAttribute(“System.ServiceModel”, “4.0.0.0”)]
public interface IEmployeeDataServiceChannel : IEmployeeDataService,
 System.ServiceModel.IClientChannel
{
}
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute(“System.ServiceModel”, “4.0.0.0”)]
public partial class EmployeeDataServiceClient :
 System.ServiceModel.ClientBase < IEmployeeDataService > , IEmployeeDataService
{
 public EmployeeDataServiceClient()
 {
 }
 public EmployeeDataServiceClient(string endpointConfigurationName) :
 base(endpointConfigurationName)
 {
 }
 public EmployeeDataServiceClient(string endpointConfigurationName,
 string remoteAddress) :
 base(endpointConfigurationName, remoteAddress)
 {
 }
 public EmployeeDataServiceClient(string endpointConfigurationName,
 System.ServiceModel.EndpointAddress remoteAddress) :
 base(endpointConfigurationName, remoteAddress)
 {
 }
 public EmployeeDataServiceClient
 (System.ServiceModel.Channels.Binding binding,
 System.ServiceModel.EndpointAddress remoteAddress) :
 base(binding, remoteAddress)
 {
 }
 public string[] GetEmployeeList()
 {
 return base.Channel.GetEmployeeList();
 }
}

 Similar to the way that ASMX web service proxy classes are created, it is typically not necessary to
modify the methods that are automatically generated by the svcutil application. You will notice
that the created proxy class will contain methods for each OperationContract defi ned within the
 ServiceContract .

CH009.indd 390CH009.indd 390 9/6/10 4:58:16 PM9/6/10 4:58:16 PM

 Now that you have properly created the proxy class, it is time to create the client that will use the
proxy to consume the service.

 Creating the Service Client — The Service Consumer

 Let ’ s create a WCF service client that will use the WCF service proxy class created earlier to connect
to the WCF service and invoke its exposed operations. The WCF service client simply must instantiate
the WCF service proxy, and then use this instance to call the GetEmployeeList() method. The
returned employee names are stored in a string list and displayed on the console.

using System;
namespace MyDataServiceClient
{
 class Program
 {
 static void Main()
 {
 EmployeeDataServiceClient client = new EmployeeDataServiceClient();
 string[] lstEmployee = client.GetEmployeeList();
 Console.WriteLine(“Displaying the Employee Names:\n”);
 for (int index = 0; index < lstEmployee.Length; index++)
 Console.WriteLine(lstEmployee[index].ToString());
 Console.Read();
 client.Close();
 }
 }
}

 You must be sure that you also add all confi guration items to the application confi guration as
output from the svcutil application. It is important to note here that, when working with the
auto - generated proxy classes, specifi cs of the WCF implementation are not needed, and coding
can be done just as in any other application.

 When you execute the application, the output is similar to what is shown in Figure 9 - 5.

 FIGURE 9 - 5: Displaying the Employee Names

Getting Started with WCF ❘ 391

CH009.indd 391CH009.indd 391 9/6/10 4:58:16 PM9/6/10 4:58:16 PM

392 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 WORKING WITH AN AJAX - ENABLED WCF SERVICE

 You can easily create an Ajax - enabled WCF service using Visual Studio 2010 that will allows you
to call a WCF service using client - side JavaScript. To create one, you right - click on the Solution
Explorer, navigate to Add ➪ New Project, and then select “ AJAX enabled WCF Service ” from the
list of the project templates displayed. Your Ajax - enabled WCF service would initially look like this:

using System.ServiceModel;
using System.ServiceModel.Activation;
namespace MyDataService
{
 [ServiceContract(Namespace = “”)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class MyAjaxEnabledService
 {
 // To use HTTP GET, add [WebGet] attribute. (Default ResponseFormat
 // is WebMessageFormat.Json)
 // To create an operation that returns XML,
 // add [WebGet(ResponseFormat=WebMessageFormat.Xml)],
 // and include the following line in the operation body:
 // WebOperationContext.Current.OutgoingResponse.ContentType =
 // “text/xml”;
 [OperationContract]
 public void DoWork()
 {
 // Add your operation implementation here
 return;
 }

 // Add more operations here and mark them with [OperationContract]
 }
}

 You must replace the default operation called DoWork() with your custom method. In the case of
this example, you see a different implementation of the ServiceContract and OperationContract
attributes where they are applied directly to a class and its methods, rather than to an interface that
later has a concrete implementation. From this, you can start to see some of the fl exibility provided
with the WCF system.

 When you create a new Ajax - enabled WCF service, Visual Studio 2010 also automatically inserts
the necessary confi guration information in your application ’ s web.config fi le. The default additions
to the confi guration fi le will look similar to the following:

 < system.serviceModel >
 < serviceHostingEnvironment aspNetCompatibilityEnabled=”true” / >
 < services >
 < service name=”MyDataService.MyAjaxEnabledService” >
 < endpoint address=”” behaviorConfiguration=

CH009.indd 392CH009.indd 392 9/6/10 4:58:16 PM9/6/10 4:58:16 PM

 “MyDataService.MyAjaxEnabledServiceAspNetAjaxBehavior”
 binding=”webHttpBinding” contract=”MyDataService.MyAjaxEnabledService” / >
 < /service >
 < /services >
 < behaviors >
 < endpointBehaviors >
 < behavior name=”MyDataService.MyAjaxEnabledServiceAspNetAjaxBehavior” >
 < enableWebScript / >
 < /behavior >
 < /endpointBehaviors >
 < serviceBehaviors >
 < behavior name=”” >
 < serviceMetadata httpGetEnabled=”true” / >
 < serviceDebug includeExceptionDetailInFaults=”false” / >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >

 You can see from this example that a service is defi ned, and the service endpoint is set up with a
base address using the webHttpBinding and the specifi c service contract defi ned by the application.

 Consuming this service is easy — just drag and drop a ScriptManager control in your web form
and specify the service reference path, as shown here:

 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < Services >
 < asp:ServiceReference Path=”~/MyAjaxEnabledService.svc” / >
 < /Services >
 < /asp:ScriptManager >

 With this completed, you can now reference the service by name within JavaScript for you application.
For example, if MyAjaxEnabledService contained a method for GetWeatherInformation that
returned a string, you could use the following code to display the information to the user.

 < script type=”text/javascript” >
function GetWeather()
{
 MyAjaxEnabledService.GetWeatherInformation(onSuccess);
}

function onSuccess(result)
{
 document.getElementById(‘myelement’).value = result;
}
 < /script >

 As you can see, this is very simple because the ScriptManager has completed most of the heavy
lifting and created function calls with callbacks and other forms of management.

Working with an Ajax - Enabled WCF Service ❘ 393

CH009.indd 393CH009.indd 393 9/6/10 4:58:17 PM9/6/10 4:58:17 PM

394 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 REST AND WCF

 Representational State Transfer (REST) is a style of accepting requests where information is put
into the URI for the request. The basic advantages of RESTful services are simplicity, support for
caching endpoints, and support for interoperability. Also, REST is lightweight when compared to
SOAP, because it doesn ’ t need too much XML markup code.

 Note that REST is, in itself, a combination of standards, including the following:

 HTTP

 URL

 HTML

 XML

 WCF provides excellent support for designing and implementing REST - based services through
the use of a new binding called WebHttpBinding . Support for REST - based services is was initially
provided in the 3.5 release of WCF.

 Following is an example that illustrates how you can use WCF to implement RESTful services in
your applications:

[ServiceContract]
interface IEmployeeDataService
{
[OperationContract]
[WebGet]
int GetEmployeeID(string employeeName);
}

 It is simple to add the [WebGet] attribute to your method to make it available via a REST format.
WCF 4.0 provides greater control over the structure/format of the URL structure by expanding the
 WebGet attribute to allow for a UriTemplate to be specifi ed.

 For example, to defi ne a UriTemplate for subtraction with two values being passed, you could use
something similar to the following:

[WebGet(UriTemplate = “Sub?x={x} & y={y}”)]

 If you are creating a WCF service that should be accepting values via a HTTP Post request, you
would use the WebInvoke attribute rather than the WebGet . Both attributes are contained in the
 System.ServiceModel.Web namespace.

 IMPLEMENTING A WCF SERVICE DECLARATIVELY

 A declarative WCF service is one that you can implement using a confi guration - based, fl exible,
extensible model. You typically use XML to store a declarative WCF service. Declarative services
are those that are defi ned declaratively in XAML. You can defi ne what you would want your service

➤

➤

➤

➤

CH009.indd 394CH009.indd 394 9/6/10 4:58:17 PM9/6/10 4:58:17 PM

to do, rather than how it is to be done. Also, you can defi ne the service operations and even the
implementation of the service operations declaratively.

 Defi ning the Service Contract

 Consider the following service contract implemented programmatically:

public interface IWCFService
{
 String GetAddress(String customerID);
}

 You can now use declarative programming in WCF .NET 4 and defi ne the same service contract, as
shown in the following code snippet:

 < ServiceContract Name=”IWCFService” >
 < OperationContract Name=”GetAddress” >
 < OperationArgument Name=”input” Type=”p:String” / >
 < OperationArgument Direction=”Out” Name=”Result”
 Type=”p:String” / >
 < /OperationContract >
 < /ServiceContract >

 Note that the < ServiceContract > element shown in this code snippet is used to specify the name of
the service contract. The < OperationContract > element is used to expose one or more operations.
In essence, it is used to specify one or more operations that are exposed by the service.

 Now, you can have parameters for your operations, right? The GetAddress() method accepts a
string argument — the customerID . The method returns the address of the customer represented by
the customerID passed as parameter to the method.

 To represent the parameters or arguments of an operation, you must use the < OperationArgument >
element. Essentially, you would have one service contract element with one or more operation
contracts, with the operation contracts, in turn, having one or more operation argument elements.
Note that the direction attribute denotes whether the argument is an input or an output.

 Once you have defi ned the service contract, you must defi ne how the contract would be projected —
that is, what protocols should the consumers of the service contract use, and so on. Here is how you
can do this for the service contract defi ned earlier:

 < Service.KnownProjections >
 < SoapContractProjection x:Name=”IWCFServiceSoapProjection” >
 < ServiceContract x:Name=”IWCFService” >
 < OperationContract Name=”GetAddress” x:Name=”GetAddress” >
 < OperationArgument Name=”customerID” Type=”p:String” / >
 < OperationArgument Direction=”Out” Name=”Result”
 Type=”p:String” / >
 < /OperationContract >
 < /ServiceContract >
 < /SoapContractProjection >
 < /Service.KnownProjections >

Implementing a WCF Service Declaratively ❘ 395

CH009.indd 395CH009.indd 395 9/6/10 4:58:17 PM9/6/10 4:58:17 PM

396 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 Hosting the Service

 To host the declarative service created earlier in this section, you can use the following code:

class Program
{
 static Service service;
 static void Main()
 {
 using (TextReader textReader = File.OpenText(“IWCFService.xml”))
 {
 service = (Service)XamlServices.Load(textReader);
 }
 Uri address = new Uri(“http://localhost:8000/IWCFService”);
 WorkflowServiceHost host = new WorkflowServiceHost (service, address);
 try
 {
 host.Open();
 Console.WriteLine(“Service started...press any key to stop...);
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(“Error occured: “+ex.Message);
 }
 finally
 {
 host.Close();
 }
 }
}

 Note in the previous code snippet that the XAML fi le called IWCFService.xml is loaded using the
 File.OpenText() method. Next, an instance of WorkflowServiceHost is created, and it is used to
start the service by making a call to the Open() method. Note that the WorkflowServiceHost class
extends the ServiceHostBase class, and can be used to host workfl ow - based services. You can use
this class to confi gure and expose a workfl ow as a service so that it can be consumed by clients.

 Implementing the Service Logic Declaratively

 The following code snippet illustrates how you can implement the service logic in XAML
declaratively for the service created earlier:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Service
 xmlns=”clr-namespace:System.ServiceModel;
 assembly=System.WorkflowServiceModel”
 xmlns:wsm=”clr-namespace:System.WorkflowServiceModel;
 assembly=System.WorkflowServiceModel”
 xmlns:wsma=”clr-namespace:System.WorkflowServiceModel.
 Activities;assembly=System.WorkflowServiceModel”
 xmlns:wm=”clr-namespace:System.WorkflowModel;

CH009.indd 396CH009.indd 396 9/6/10 4:58:17 PM9/6/10 4:58:17 PM

 assembly=System.WorkflowModel”
 xmlns:wma=”clr-namespace:System.WorkflowModel.
 Activities;assembly=System.WorkflowModel.Activities”
 xmlns:b=”clr-namespace:BasicService;assembly=BasicService”
 xmlns:s=”clr-namespace:System;assembly=mscorlib”
 xmlns:ss=”clr-namespace:System.ServiceModel;
 assembly=System.ServiceModel”
 xmlns:sss=”clr-namespace:System.ServiceModel.Security;
 assembly=System.ServiceModel”
 xmlns:sx=”clr-namespace:System.Xml;
 assembly=System.Runtime.Serialization”
 xmlns:p=”http://schemas.microsoft.com/netfx/2008/
 xaml/schema”xmlns:p1=”http://tempuri.org”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:x2=”http://schemas.microsoft.com/netfx/2008/xaml”
 xmlns:con=”http://schemas.contoso.com/order/2008” >
 < Service.KnownProjections >
 < SoapContractProjection x:Name=”IWCFServiceSoapProjection” >
 < ServiceContract x:Name=”IWCFServiceContract” >
 < OperationContract Name=”GetMessage” x:Name=”GetMessage” >
 < OperationArgument Name=”customerID” Type=”p:String” / >
 < OperationArgument Direction=”Out” Name=”Result”
 Type=”p:String” / >
 < /OperationContract >
 < /ServiceContract >
 < /SoapContractProjection >
 < /Service.KnownProjections >
 < Service.Implementation >
 < WorkflowServiceImplementation Name=”WCFService”
 xmlns=”clr-namespace:System.WorkflowServiceModel;
 assembly=System.WorkflowServiceModel” >
 < WorkflowServiceImplementation.Body >
 < ServiceOperation OperationContract=”{x2:Reference
 IWCFService.GetMessage}” CanCreateInstance=”true”
 xmlns=”clr-namespace:System.WorkflowServiceModel.
 Activities;assembly=System.WorkflowServiceModel” >
 < ServiceOperation.Body >
 < DynamicActivityAction
 xmlns=”clr-namespace:System.WorkflowModel;
 assembly=System.WorkflowModel” >
 < DynamicActivityAction.InVariables >
 < Variable x:Name=”customerID” x:TypeArguments=”p:String” / >
 < /DynamicActivityAction.InVariables >
 < DynamicActivityAction.OutVariables >
 < Variable x:Name=”Result”
 x:TypeArguments=”p:String” / >
 < /DynamicActivityAction.OutVariables >
 < wma:Assign x:TypeArguments=”p:String” To=”out
 [Result]” Value=”Result” / >
 < /DynamicActivityAction >
 < /ServiceOperation.Body >
 < /ServiceOperation >
 < /WorkflowServiceImplementation.Body >
 < /WorkflowServiceImplementation >

Implementing a WCF Service Declaratively ❘ 397

CH009.indd 397CH009.indd 397 9/6/10 4:58:18 PM9/6/10 4:58:18 PM

398 ❘ CHAPTER 9 WINDOWS COMMUNICATION FOUNDATION (WCF)

 < /Service.Implementation >
 < Service.Endpoints >
 < Endpoint Uri=”http://localhost:8080/GetMessage” >
 < Endpoint.Binding >
 < ss:BasicHttpBinding / >
 < /Endpoint.Binding >
 < Endpoint.ContractProjection >
 < SoapContractProjection >
 < SoapContractProjection.Contract >
 < ServiceContract x:Name=”IWCFService” >
 < OperationContract Name=”GetMessage”
 x:Name=”IWCFService.GetMessage” >
 < OperationArgument Name=”customerID” Type=”p:String” / >
 < OperationArgument Name=”Result”
 Type=”p:String” Direction=”Out” / >
 < /OperationContract >
 < /ServiceContract >
 < /SoapContractProjection.Contract >
 < /SoapContractProjection >
 < /Endpoint.ContractProjection >
 < /Endpoint >
 < /Service.Endpoints >
 < /Service >

 SUMMARY

 Windows Communication Foundation (WCF) is a framework from Microsoft that provides a
simplifi ed approach to designing and implementing applications that can inter - communicate. It
provides a seamless integration of a number of enterprise technologies under a single umbrella. This
chapter looked at the fundamentals of WCF, as well as how you can implement a WCF service and
then consume it.

 Chapter 10 focuses on enhancements to the .NET core framework, items mostly contained only
inside the System namespace.

CH009.indd 398CH009.indd 398 9/6/10 4:58:18 PM9/6/10 4:58:18 PM

Enhancements to the .NET
Core Framework

 Changes in a release of a new .NET Framework version may affect the core run - time engine
(including Common Language Run - time and the Common Type System), the Base Class
Library (BCL), Framework services (such as ASP.NET, WPF, WCF and so on), and connected
tools and utilities.

 While changes in .NET 3.0, 3.5, and 3.5 SP1 targeted mainly the Framework services
part and the BCL, the .NET 4 release touched the Common Language Run - time (CLR)
signifi cantly and added brand new services (and related BCL types) to shift toward new
programming paradigms. This chapter and the following ones (closing with Chapter 21) detail
all the new technologies, paradigms, services, and tools that are new in .NET 4.

 This chapter covers fundamental enhancements and improvements to the core .NET
Framework. You can use them in your managed applications independently of whether you
are using Windows Forms, ASP.NET, Windows Presentation Foundation (WPF), Windows
Workfl ow Foundation (WF), Windows Communication Foundation (WCF), Silverlight, Azure,
SQL Server, SharePoint, or whatever other technology you use with .NET.

 Here ’ s what you ’ ll discover in this chapter:

 Changes in the CLR — This .NET framework version got a new CLR that has
many great enhancements. Now a native process is able to host more CLR versions
side - by - side. As an important improvement to Component Object Model (COM)
interoperability and version resiliency, the CLR can handle type equivalence.
Programming language changes in this version are primarily about dynamic
capabilities, based on a new component called Dynamic Language Run - time (DLR).

 Parallel computing — Using the Task Parallel Library (TPL) and Parallel Language
Integrated Query (PLINQ), you can turn your sequential algorithms into concurrent
ones without having to write tremendous plumbing code for threading infrastructure.

➤

➤

 10

CH010.indd 399CH010.indd 399 9/6/10 5:01:50 PM9/6/10 5:01:50 PM

400 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

When you can split your algorithm into tasks that can run parallel, TPL undertakes the
challenge to execute them concurrently, while entirely hiding low - level constructs (such as
threads, semaphores, locks, and so on) from you.

 Code contracts — Contracts allow you to express preconditions, postconditions, and object
invariants in your code for run - time checking, static analysis, and documentation.

 Managed Extensibility Framework (MEF) — .NET 4 contains a new technology that
allows you to shift your statically compiled applications into dynamically composed ones.
With MEF, you have a fl exible plug - in system where the composition is based on declarative
syntax, practically free from any plumbing code.

 CHANGES IN COMMON LANGUAGE RUN - TIME

 Admittedly the soul of the .NET Framework is the CLR. At the beginning of the .NET history, each
of the .NET 1.0, .NET 1.1, and .NET 2.0 versions had their own CLRs. The .NET 3.0, .NET 3.5,
and .NET 3.5 SP1 Framework versions used CLR 2.0, because these versions were about extending
the BCL and adding architecture services (like WF, WCF, WPF, and Cardspace) to the framework.

 After almost fi ve years, .NET 4 ships with a new CLR, consistently having the version number 4.0.
In this section, you will learn the following important core features of CLR 4.0:

 Now a native process is able to host more CLR versions side - by - side.

 DLR is an organic part of the .NET Framework.

 A type equivalence feature implemented in the CLR helps deploying applications accessing
COM objects without deploying Primary Interop Assemblies (PIAs).

➤

➤

➤

➤

➤

 This section contains sample code using the C# 4.0 syntax, mainly the feature
called dynamic binding , but also named and optional parameters. You may not
be familiar with these syntax elements. Chapter 25 gives you a detailed overview
of them with many useful code snippets.

 You can go on reading this chapter without being aware of these constructs,
because they are intuitive enough. If you fi nd something in the source code
where you suspect a syntax error or a typo, note that it ’ s probably not an error
but rather the use of C# 4.0 syntax.

 In - Process Side - By - Side Execution

 The CLR development team at Microsoft invested a lot of resources to provide compatibility among
CLRs, so that each new version would be highly compatible with the old versions. Theoretically,
each new version of the .NET Framework could have been developed so that it was completely

CH010.indd 400CH010.indd 400 9/6/10 5:01:53 PM9/6/10 5:01:53 PM

compatible with older versions, and a concrete CLR could run applications developed with any of
the preceding versions. In this way, old .NET Framework versions could be seamlessly updated to a
newer one so that only one (the latest) version is installed on a computer, while being able to run the
applications originally targeting an old framework version.

 Understanding Side - By - Side Execution

 This approach has serious limitations. Aiming at full compatibility would mean that any design
issues, naming mistakes, or paradigm decisions should stay in the framework forever. This simply
does not work, because it is a very strict limitation for future innovations! Full compatibility means
not only that all source code will compile with all new framework versions, but also all documented
and undocumented behaviors remain the same. It would mean, for example, that even if you
have multiple CPU cores in your machine, any existing framework implementation would not be
allowed to leverage on this capability implicitly, because of backward compatibility issues, as .NET
Framework 1.0 BCL was designed with single CPU core in mind.

 The CLR team avoided the “ one - CLR - rules ” scenario and designed the .NET Framework from the
very fi rst version with the capability to run separate versions side - by - side on the same computer.
This is a good approach from the point of view that it prevents the “ innovation bottleneck. ”
However, the side - by - side scenario opens up an important question of which CLR version an
application or a component should use from the ones installed on the machine.

 Issues Before CLR 4.0

 .NET Framework was designed to run the application using the CLR with which it was built.
Well, this idea works well for managed applications. The CLR loads into the process space of the
application, and that simply works. However, when the original CLR is not present, the application
must run with another version of the CLR that is automatically the latest version installed on the
computer.

 There are issues with managed COM components used by native applications (like Word, Excel,
Outlook, or other applications expecting COM extensions). If the native application tries to load
two managed COM components with separate CLRs, it simply cannot be done. Only one CLR
version can be loaded into an operating system process, which always happens to be the latest
installed on the machine.

 .NET 4 Changes in CLR Hosting

 CLR 4.0 provides a new approach to side - by - side hosting. The installation of a new .NET
Framework has no effect on existing applications. Managed applications and the add - ins they load
run against the version of the .NET Framework with which they were built and tested. In contrast
to the preceding versions, the applications do not automatically use the latest .NET Framework
installed on the machine, unless explicitly directed to do so.

 Native applications now can host managed COM components built and tested with separate
CLRs. The process can host more CLR versions side - by - side, and so each COM component can
run with the CLR version with which it was registered.

Changes in Common Language Run - time ❘ 401

CH010.indd 401CH010.indd 401 9/6/10 5:02:04 PM9/6/10 5:02:04 PM

402 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Using .NET 4, the situation presented earlier with the Excel add - in developed by Agnes goes away.
While the appropriate .NET Frameworks are installed on the customer ’ s machines, Excel ’ s process
will host all the CLRs required for running the set of add - ins. Microsoft promises to keep this
feature in all new .NET Framework versions.

 DLR Integration

 Most developers are familiar with the fact that types and operations are strictly checked during the
compilation process. The compiler generates Microsoft Intermediate Language (MSIL) code that
explicitly carries out those operations by invoking methods.

 There are programming languages that behave adversely — for example, the dynamic languages . The
compiler makes only a few checks upon types and their operations. The majority of them are postponed
to the execution of the corresponding operation at run - time. In addition to the dynamic languages,
there are script languages and object models (for example, COM objects over the Microsoft Offi ce
functionality, the DTE object model in Visual Studio, the HTML DOM in Internet Explorer, and so on)
that also check operations at run - time.

 For a long time, .NET was unable to handle the interoperability between static and dynamic languages
in a straightforward and easy - to - use way. It simply did not fi t into the compiling approach, and the
CLR itself was designed entirely with a static type system in mind.

 Expression Trees in .NET 3.5

 .NET Framework 3.5 added a little twist that targeted dynamism. Related to LINQ query expressions,
a new feature was added to the language compilers — the capability to create expression trees.

 Expression trees are data structures representing expressions that can be evaluated at run - time.
The compiler supports creating code that assembles an expression tree instead of compiling
instructions to calculate the expression value. For example, the developer can declare a lambda
expression like this:

Expression < Func < int, bool > > exprTree = value = > value > 42;

 Behind the scenes, the compiler creates MSIL instructions representing the following code:

ParameterExpression valueParam = Expression.Parameter(typeof(int), “value”);
ConstantExpression fortyTwo = Expression.Constant(42, typeof(int));
BinaryExpression valueGreaterThanFortyTwo =
 Expression.LessThan(valueParam, fortyTwo);
Expression < Func < int, bool > > exprTree =
 Expression.Lambda < Func < int, bool > > (
 valueGreaterThanFortyTwo,
 new ParameterExpression[] { valueParam });

 At run - time, an expression tree can be evaluated with concrete parameter values. For example, you
can print out the result like this:

Console.WriteLine(exprTree.Compile().Invoke(25));

CH010.indd 402CH010.indd 402 9/6/10 5:02:04 PM9/6/10 5:02:04 PM

 This “ small ” compiler feature in .NET 3.5 was an important step toward supporting dynamic
language integration. The compiler creates code to represent an operation, and allows the run - time
to determine how to carry out the operation. This feature makes it possible to translate a LINQ
query expression into a SQL query to be executed at the database backend.

 DLR to the Rescue

 .NET 4 has a set of services that add dynamic programming capabilities to the CLR and allow
interoperation between .NET objects and dynamic languages. The DLR solves the problem of
dynamically typed languages like Python and Ruby not easily running directly on top of the CLR
(because the CLR is primarily designed for statically typed languages). The DLR has the services to
help plug this hole and allow dynamically typed languages to run on top of the CLR (by working
through the DLR).

 Following are the main advantages of the DLR:

 The DLR helps language implementers port their dynamic languages to .NET. — With
the traditional approach, language implementers needed to emit code (of course, in
addition to implementing lexers, parsers, semantic analysis, and so on). Virtual machines
allowed the languages to emit a higher - level intermediate language instead of fully
optimized machine code. With the DLR, they do not need to emit code. Instead, they can
produce an abstract semantic tree (.NET expression trees) and some run - time helpers if
needed. The DLR and CLR do the rest of the work of running the operation represented
by the semantic tree.

 Languages implemented using the DLR still benefi t from improvements in the CLR. —
The CLR is designed to support a wide variety of programming languages, and it contains
shared services to this purpose such as garbage collection, just - in - time (JIT) compilation,
a sandboxed security model, and many more. When a new CLR version is released (for
example, with performance improvements), languages automatically benefi t from these
enhancements.

 In the DLR, Microsoft provides common language interoperability with fast dynamic
invocations. — The interoperability is based on common protocol for objects implemented
in one language to be used by other languages. Dynamic typing means that the object can
decide (at run - time) if it supports a particular operation with the specifi ed parameters or
not. The DLR enables dynamic objects to participate in this protocol for negotiating how
to perform abstract operations on any object. The DLR also provides a call site caching
mechanism that allows fast dynamic invocations without the performance penalties of the
CLR ’ s refl ection model.

 Applications can use any language supporting the DLR hosting model. — The DLR
provides multiple script run - time environments per AppDomain , as well as remote script
run - times in other AppDomain s. Host applications can execute script fi les or snippets of code
in the context of those bindings — by injecting variables into the context, and extracting
variable values after executing the code.

➤

➤

➤

➤

Changes in Common Language Run - time ❘ 403

CH010.indd 403CH010.indd 403 9/6/10 5:02:04 PM9/6/10 5:02:04 PM

404 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Strongly typed languages (such as Visual Basic and C#) use the CLR directly to execute applications.
Dynamically typed languages (such as Python and Ruby) can ’ t easily run directly on top of the
CLR, because the CLR is primarily designed for statically typed languages. The DLR provides this
missing layer for dynamically typed languages, and also helps statically typed languages access
objects and services developed in a dynamic way.

 Following are the fundamental services of the DLR (of course, there are others):

 Call sites — These provide a caching mechanism per operation in dynamic code. Every time
you execute an operation such as MyOp(A, B) , the DLR would have to analyze what MyOp
means with A and B as operation parameters. For example, when MyOp is addition, A is a
fl oating - point number, and B is an integer, MyOp(A, B) results in a fl oating - point number
representing A+B . Without having a cache, the analysis could take much longer than the A+B
operation itself. With caching, this performance penalty can be signifi cantly reduced.

 Expression trees — These are the extensions of expression trees introduced in .NET 3.5
with LINQ providers. They are key players in the lowering of the bar for porting (dynamic)
languages to .NET, and so are absolutely one of the core pillars of the DLR. Expression
trees are compiled (the DLR ships this compiler as a part of its services), and the result is a
delegate for invoking the code represented by the tree.

 Dynamic object interoperability — As a core principle of dynamic operations, objects receive
messages describing operations with their actual parameters. Dynamic object interoperability
is about providing service types to create objects that can translate these messages to explicit
operations.

 Depending on the physical type of the object to be accessed dynamically, separate communication
models can be used. For example, to access CLR - hosted objects, some mechanism built over .NET
refl ection can be used. For COM objects, the standard COM IDispatch - based mechanism can be

➤

➤

➤

Common Language Runtime

Dynamic Language Runtime

OthersPython Ruby

Statically-typed languages Dynamically-typed languages

OthersVBC#

 FIGURE 10 - 1: Utilizing the DLR

 Figure 10 - 1 shows how strongly typed and dynamic languages can use the DLR.

CH010.indd 404CH010.indd 404 9/6/10 5:02:05 PM9/6/10 5:02:05 PM

applicable. For other types of object provider environments, some other run - time binding could
work. This kind of job is the responsibility of run - time binders. Figure 10 - 2 shows an architectural
overview of how languages, DLR services, and run - time environments work together.

IronPython IronRuby C# Visual Basic Others

Languages and DLR Clients

Runtime
Binders

Runtime
Environments

Dynamic Language Runtime

Office Silverlight

Expression Trees

.NET
Your

Custom
Environment

Call Site Caching

IronPython IronRuby

Dynamic Object Interop

 FIGURE 10 - 2: DLR high - level architecture diagram

 The DLR encourages you to interact with dynamic languages and also to create your own dynamic
objects. In the remaining discussion of the DLR, you ’ ll learn how easy these tasks are — by going
through examples.

 Invoking IronPython Code Example

 In this example, you write a very simple IronPython program and access it from a C# console
application. It will be very simple, so you should
be able to understand it without any Python
background. To use IronPython, you must
download and install the run - time from the
Downloads tab of the IronPython project ’ s
home page on CodePlex at http://ironpython
.codeplex.com .

 Create a new C# console application project and
name it IronPythonRunner . Use the Browse tab
of the Add reference dialog to navigate to the
IronPython run - time ’ s installation folder, and add
the selected assemblies shown in Figure 10 - 3
to the project. FIGURE 10 - 3: IronPython run - time assemblies

Changes in Common Language Run - time ❘ 405

CH010.indd 405CH010.indd 405 9/6/10 5:02:05 PM9/6/10 5:02:05 PM

406 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Add a new text fi le item and name it Calculate.py , where .py is the standard extension for
IronPython program fi les. This fi le should be in the same folder from where the console application
is started, so set the Build Action property of Calculate.py to Content, and the “ Copy to Output
Directory ” property to Copy Always.

 Enter the following short program into the Calculate.py fi le:

def Add(A, B):
 return A + B

 This small Python code snippet adds A and B , and retrieves the result of this operation. What is less
obvious if you ’ re not familiar with Python is that A and B can be any objects, and the operation will
be successful while the “ + ” operator is defi ned on their types.

 Copy the code in Listing 10 - 1 into the Program.cs fi le to invoke the Python code snippet.

 LISTING 10 - 1: Program.cs File of IronPythonRunner

using System;
using IronPython.Hosting;

namespace IronPythonRunner
{
 class Program
 {
 static void Main(string[] args)
 {
 var ipy = Python.CreateRuntime();
 dynamic calculator = ipy.UseFile(“Calculate.py”);
 Console.WriteLine(calculator.Add(“Welcome in IronPython on “,
 DateTime.Now.ToShortDateString()));
 for (int i = 1; i < 4; i++)
 for (int j = 5; j < 8; j++)
 Console.WriteLine(“{0} + {1} = {2}”, i, j,
 calculator.Add(i, j));
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 You will fi nd this folder directly under your operating system ’ s Program Files
folder (on 64 - bit systems, under the Program Files (x86) folder) in a folder
with an IronPython prefi x.

CH010.indd 406CH010.indd 406 9/6/10 5:02:06 PM9/6/10 5:02:06 PM

 The code is really simple. The Python object located in the Python.Hosting namespace is
responsible for managing the run - time environment. You can obtain a reference for an object
(named calculator in this C# context) to access the operations defi ned by the Calculate.py
mini - program:

var ipy = Python.CreateRuntime();
dynamic calculator = ipy.UseFile(“Calculate.py”);

 You can invoke the Add operation defi ned in the Python code snippet through the calculator
object:

calculator.Add(“Welcome in IronPython on “,
DateTime.Now.ToShortDateString())calculator.Add(i, j)

 As a benefi t of dynamic behavior, you can pass two strings or two integers to Add , and it
dynamically maps the call to string concatenation or integer addition, respectively. Of course,
there are many other type combinations accepted by Add . Figure 10 - 4 shows the output of the
console application.

 FIGURE 10 - 4: Output of the application

 ExpandoObject Example

 The DLR defi nes an interesting type called ExpandoObject in the System.Dynamic namespace.
This is a great type to demonstrate the power of the DLR when used together with C# 4.0, which
now supports dynamic operations (operations resolved at run - time). Instead of telling you what this
type is about, let ’ s fi rst see an example.

 The IronPython run - time comes with a brief language tutorial. Open the
 Tutorial\Tutorial.htm fi le under the installation folder, and play with
the language by modifying the Calculate.py and Program.cs fi les.

Changes in Common Language Run - time ❘ 407

CH010.indd 407CH010.indd 407 9/6/10 5:02:11 PM9/6/10 5:02:11 PM

408 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Create a C# console application and name it ExpandoObjectDemo . Listing 10 - 2 shows the code
to copy into the Program.cs fi le.

 LISTING 10 - 2: Program.cs File of ExpandoObjectDemo

using System;
using System.Dynamic;

namespace ExpandoObjectDemo
{
 class Program
 {
 static void Main(string[] args)
 {
 dynamic customer = new ExpandoObject();
 customer.Id = 116;
 customer.Name = “John Doe”;
 Console.WriteLine(“Customer: ({0}), {1}”,
 customer.Id, customer.Name);

 dynamic address = new ExpandoObject();
 address.Id = “SHIP”;
 address.Line1 = “xxxx 7th Street”;
 address.Line2 = “My Great Company”;
 address.City = “Los Angeles”;
 address.State = “CA”;
 Console.WriteLine(“Address type and State: ({0}), {1}”,
 address.Id, address.State);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 Reading this code, the fi rst question developers might ask is, “ Does this code compile at all? ” This
example creates two ExpandoObject instances. The fi rst time it is used as a Customer object with
 Id and Name properties; the second time as an Address object with properties such as Id , Line1 ,
 State , and so on. Is this object so fl exible?

 The answer is that the preceding code compiles and runs without errors or warnings, because of the
dynamic behavior of ExpandoObject . Moreover, the following code snippet is also valid. You could
insert it into Listing 10 - 2.

dynamic triangle = new ExpandoObject();
triangle.A = new { X = 0, Y = 0, Z = 0 };
triangle.B = new { X = 100, Y = 100, Z = 0 };
triangle.C = new { X = 0, Y = 100, Z = 100 };

 ExpandoObject is a dynamic “ jolly joker ” whose members can be dynamically added and removed
at run - time. The only public member defi ned by this type is its default constructor, and, of course, it

CH010.indd 408CH010.indd 408 9/6/10 5:02:17 PM9/6/10 5:02:17 PM

inherits public methods from System.Object . Figure 10 - 5
shows all of them as shown in the IntelliSense list when
editing your code.

 The key to this behavior is the dynamic type used to
declare the variables referencing ExpandoObject instances.
This is a new type in C# that instructs the compiler to
treat all operations on the referenced object dynamically,
using the DLR.

 For the statements setting ExpandoObject properties,
instead of compiling MSIL instructions directly to set
those properties, the compiler emits code that sends messages to the object, such as, “ Set the
property named Id to 116. ” (Regardless, MSIL property setter instructions could not be emitted
because an ExpandoObject does not have an Id property.)

 The DLR sends the message to the object at run - time, and that stores the name and value of
property in a dictionary. When the Id property is about to read, a “ Get the value of the property
named Id ” message is sent to the ExpandoObject , and that uses its dictionary to look up and
retrieve the value.

 DynamicObject Example

 The DLR provides you with utility types you can use to create your own dynamic objects. At
run - time, a dynamic operation is dispatched to the target object with the following steps:

 1. If the target is a COM object, the operation is dispatched dynamically through the COM
 IDispatch interface.

 2. If the target object type implements the IDynamicMetaObjectProvider interface of the
 System.Dynamic namespace, that interface is used, and the target itself is asked to perform
the operation.

 3. Otherwise, the target is a standard .NET object, and the operation will be dispatched
using refl ection on its type, and a C# “ run - time binder ” that implements a C# lookup and
overload resolution semantics at run - time.

 The IDynamicMetaObjectProvider interface contains about a dozen methods to implement. The
DLR provides the DynamicObject type to implement this interface as a base class for your dynamic
objects.

 Let ’ s create a simple dynamic class to resolve environment variables with property syntax. For
example, you do not have to write something like this:

Environment.GetVariable(“Path”)

Instead, you can use a dynamic shortcut such as this:

envObject.Path

 FIGURE 10 - 5: ExpandoObject public

members in IntelliSense

Changes in Common Language Run - time ❘ 409

CH010.indd 409CH010.indd 409 9/6/10 5:02:17 PM9/6/10 5:02:17 PM

410 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Start with a C# console application, and name it DynamicObjectDemo . Add a new class item fi le
with the name DynamicEnvironment.cs to the project. Listing 10 - 3 shows the code you should
copy to this fi le.

 LISTING 10 - 3: DynamicEnvironment.cs

using System;
using System.Dynamic;

namespace DynamicObjectDemo
{
 public class DynamicEnvironment: DynamicObject
 {
 private EnvironmentVariableTarget _TargetEnv;
 private bool _IgnoreMissingProperty;

 public DynamicEnvironment(
 EnvironmentVariableTarget targetEnv = EnvironmentVariableTarget.User,
 bool ignoreMissingProperty = false)
 {
 _TargetEnv = targetEnv;
 _IgnoreMissingProperty = ignoreMissingProperty;
 }

 public override bool TryGetMember(GetMemberBinder binder, out object result)
 {
 result = Environment.GetEnvironmentVariable(binder.Name, _TargetEnv);
 return result != null || _IgnoreMissingProperty;
 }
 }
}

 Code fi le [DynamicEnvironment.cs] available for download at Wrox.com

 The constructor allows you to pass an optional EnvironmentVariableTarget to set if you want
to bind the object to the machine or to the user environment. The ignoreMissingProperty
parameter ’ s true value allows you to retrieve a null value for non - existing environment variables
instead of raising run - time exception.

 The property name resolution is handled by the overridden TryGetMember method. It accepts two
parameters. The binder represents the operation message sent by the DLR. In this case, it holds
the name of the property to resolve. The result should be set to the object to be retrieved from the
operation, and, in this case, it will be the value of the property. The return value of the method is set
to true if the operation message can be handled by this method; otherwise it is false .

 The logic of the method is simple. If the property name refers to an existing environment variable, the
resolution is successful, and retrieves the variable value; otherwise, it retrieves null , or fails, depending
on the value of _IgnoreMissingProperty .

 Listing 10 - 4 shows the Program.cs fi le demonstrating DynamicEnvironment .

CH010.indd 410CH010.indd 410 9/6/10 5:02:18 PM9/6/10 5:02:18 PM

 LISTING 10 - 4: Program.cs File of DynamicObjectDemo

using System;

namespace DynamicObjectDemo
{
 class Program
 {
 static void Main(string[] args)
 {
 dynamic env = new DynamicEnvironment(ignoreMissingProperty: true);
 Console.WriteLine(env.Path);
 Console.WriteLine(env.Temp);
 Console.WriteLine(env.NonExisting ?? “ < null > ”);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 This program runs as expected. Because there is no environment variable with name NonExisting ,
the third output line will be “ < null > “ . Set the ignoreMissingProperty value to false to ask
 DynamicEnvironment to raise an exception when an unknown property is used. Running the
program now will raise a RuntimeBinderException (shown in Figure 10 - 6) telling you that
 NonExisting property could not be resolved.

 FIGURE 10 - 6: RuntimeBinderException raised

 Type Equivalence

 .NET 4 has greatly improved COM interoperability. From the CLR ’ s point of view, the most
important feature is type equivalence. It is required to deploy applications without deploying PIAs
for the COM components with which the application cooperates. This feature is implemented at the

 This example is very simple, and not really robust. For example, it cannot
resolve USERNAME or MACHINENAME , because those are not available through the
 Environment.GetEnvironmentVariable method. Play with this example and
try to make it more useful by extending it with the missing features!

Changes in Common Language Run - time ❘ 411

CH010.indd 411CH010.indd 411 9/6/10 5:02:18 PM9/6/10 5:02:18 PM

412 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

CLR level, and, in addition to the support for “ No - PIA Deployment, ” it also provides the capability
for you to create applications with loose type - coupling and version resiliency.

 To interoperate with a certain COM interface, you must use a .NET type wrapping the functionality
of that interface. Building these wrapper types manually is very laborious, especially when you have
hundreds of COM interfaces (for example, in the case of using the Microsoft Offi ce automation
model). PIAs are .NET assemblies generated from COM interfaces to facilitate strongly typed
interoperability. For large object models, the related PIAs are large as well, so these assemblies
can easily bloat the size of your application. They can also cause versioning issues when they are
distributed independently of your application.

 The No - PIA feature allows you to continue to use PIAs at design time without having them around
at run - time. Instead, the C# compiler will append the small part of the PIA that a program actually
uses directly to its assembly. At run - time, the PIA does not have to be loaded.

 No - PIA Example Featuring Type Equivalence

 Let ’ s create a simple example to help understand the
concept of type equivalence. This application will
create a Word document and insert some text and
a table into it.

 Start Visual Studio 2010 and create a new C#
Console Application project with the name
 TypeEquivalenceDemo . Add a new C# Class
Library project with the name WordHelper to
the solution, and a reference to this project from
 TypeEquivalenceDemo .

 This example will use Word automation, so you
must add a reference for the Microsoft.Office
.Interop.Word interoperability assembly (PIA
for Word) to both projects. When using the Add
Reference dialog, you may see more instances of
this assembly. Select one with the version number
 12.0.0.0 . When you select the referenced assembly
in Solution Explorer, you can see its Embed Interop
Types property set to true , as shown in Figure 10 - 7.

 This property value is the key to using the No - PIA
feature. During build time, the compiler examines the Microsoft.Office.Interop.Word assembly,
collects all types directly or indirectly touched by the callers, and bakes them into the application
assemblies.

 Rename the Class1.cs in WordHelper to TableHelper.cs and copy the code in Listing 10 - 5 into
this fi le.

 FIGURE 10 - 7: Embed Interop Types is set to True

CH010.indd 412CH010.indd 412 9/6/10 5:02:24 PM9/6/10 5:02:24 PM

 LISTING 10 - 5: TableHelper.cs

using System;
using Word = Microsoft.Office.Interop.Word;

namespace WordHelper
{
 public static class TableHelper
 {
 public static void InsertTable(Word.Application wordApp, int rows, int columns)
 {
 wordApp.ActiveDocument.Tables.Add(
 Range: wordApp.Selection.Range,
 NumRows: rows,
 NumColumns: columns,
 DefaultTableBehavior: Word.WdDefaultTableBehavior.wdWord9TableBehavior,
 AutoFitBehavior: Word.WdAutoFitBehavior.wdAutoFitFixed);
 }

 public static Type WordType
 {
 get { return typeof(Word.Application); }
 }
 }
}

 Code fi le [TableHelper.cs] available for download at Wrox.com

 Change the content of the Program.cs fi le in the TypeEquivalenceDemo project to the one you see in
Listing 10 - 6.

 LISTING 10 - 6: Program.cs

using System;
using WordHelper;
using Word = Microsoft.Office.Interop.Word;

namespace TypeEquivalenceDemo
{
 class Program
 {
 static void Main(string[] args)
 {
 var word = new Word.Application();
 word.Visible = true;
 word.Documents.Add();
 word.Selection.TypeText(Text: “This is a table”);
 TableHelper.InsertTable(word, 3, 2);
 Console.WriteLine(“Equality: {0}”,
 typeof(Word.Application) == TableHelper.WordType);

continues

Changes in Common Language Run - time ❘ 413

CH010.indd 413CH010.indd 413 9/6/10 5:02:25 PM9/6/10 5:02:25 PM

414 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

LISTING 10-6 (continued)

 Console.WriteLine(“Equivalence: {0}”,
 typeof(Word.Application).IsEquivalentTo(TableHelper.WordType));
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 When you run this application, it does exactly what you assume according to the source code — it
creates a Word document and inserts the “ This is a table ” text, followed by a table of three rows and
two columns. The interesting thing is how this task is done. Because of the No - PIA mode, a few types are
added to both the TypeEquivalenceDemo and WordHelper assemblies representing Word interoperability
types in the Microsoft.Office.Interop.Word assembly. Such a type is Word.Application .

 But, if there are two Word.Application type declarations (created by the compiler) in two
separate assemblies, the .NET Framework ’ s Common Type System handles them as separate,
unrelated types. In this case, how do you pass a Word.Application instance defi ned in the
 TypeEquivalenceDemo assembly when calling TableHelper.InsertTable that is defi ned in
the WordHelper assembly and expecting a Word.Application type also defi ned there?

 Equivalence Instead of Equality

 Accomplishing the aforementioned task would not be possible in any CLR prior to CLR 4.0. But,
it ’ s available in CLR 4.0, because of the type equivalence feature. Behind the scenes, you can run the
following line of code:

TableHelper.InsertTable(word, 3, 2);

This results in the following code compiling:

TableHelper.InsertTable((Word.Application)word, 3, 2);

 In this code, the Word.Application cast uses the type generated in the WordHelper assembly. The
type equivalence feature means that the CLR is able to successfully carry out the specifi ed cast.

 The last two statements of the Main method in Listing 10 - 6 compare the two Word.Application
types for equality (using the “ equals ” operator) and for equivalence (using the Type.IsEquivalentTo
method). The fi rst comparison results in false , and the second results in true , as shown in Figure 10 - 8.

 FIGURE 10 - 8: Results of equality comparisons

CH010.indd 414CH010.indd 414 9/6/10 5:02:25 PM9/6/10 5:02:25 PM

 Equivalence in the CLR

 As discussed previously, CLR 4.0 supports embedding type information for COM types directly
into managed assemblies, instead of obtaining that type information from interoperability
assemblies. The compiler generates concise code, and the embedded type information includes only
the types and members that are actually used by the managed assembly. Because of this behavior,
two assemblies might have very different views of the same COM type. Each assembly has a
different System.Type object to represent its view of that COM type.

 From the CLR ’ s perspective, type equivalence means a COM object that is passed from one
assembly to another can be cast to the appropriate managed type in the receiving assembly.

 The CLR supports equivalence only for COM types, and, as a limitation, only for interfaces,
structures, enumerations, and delegates. So, classes are not subject to this behavior. Two COM
types are taken into account as equivalent ones, where the following criteria are met:

 The types are both interfaces or both structures or both enumerations or both delegates.

 Both types are COM import types.

 If they are interfaces, they should be decorated with the ComImportAttribute and
GuidAttribute attributes.

 The assemblies in which they are defi ned (that are generally two separate ones) have
either the ImportedFromTypeLibAttribute or the PrimaryInteropAssembly
Attribute attribute.

 The GuidAttribute values of these types are equal.

 During the build process, the compiler detects if a type is used in a context where type equivalence
is assumed. In this case, it checks if the criteria are met. In cases when there are issues, the compiler
raises appropriate error messages.

 The compiler decorates the compiled type declarations with the TypeIdentifierAttribute and the
 CompilerGeneratedAttribute attributes.

➤

➤

➤

➤

➤

 As of this writing, the Beta 2 version of the .NET Framework and Visual
Studio 2010 are available. There are some contradictions between the MSDN
documentation and the real operation of type equivalence, mainly about the role
of the TypeIdentifierAttribute . The criteria described previously are subject
to change. Check the current MSDN documentation for “ Type Equivalence and
Embedded Interop Types. ”

 PARALLEL COMPUTING

 In the last 15 years, computer CPUs evolved quite fast, and, according to Moore ’ s law, their
computing capacity was doubled every 18 months. This was especially eye - catching for graphics
cards and GPUs, where the performance improvements exceeded even Moore ’ s law. For a long time,

Parallel Computing ❘ 415

CH010.indd 415CH010.indd 415 9/6/10 5:02:26 PM9/6/10 5:02:26 PM

416 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

this amazing progress has been achieved by increasing the clock speed of CPUs, and, of course,
processor architectures evolved also.

 This increase of clock speed meant that performance of applications also increased (almost linearly),
without the need to change the software architecture.

 The Challenge of Many - core Shift

 In accordance with Moore ’ s law, the tendency to double the number of transistors placed on a unit
of chip surface continues. However, this is not true for the CPU clock speed! Every further increase of
clock speed implicates more caloric to dissipate, and cooling processors is becoming a big issue for
manufacturers. Also, there are some hard physical limits — light isn ’ t getting any faster.

 Although the speed of CPUs cannot be increased signifi cantly, the number of transistors per unit of
area still can be. Manufacturers will put two or four CPU cores in the chip with the same area they
used to put only one before. So, even if the clock speed of CPUs cannot be improved according to
Moore ’ s law, their processing capacities can!

 Figure 10 - 9 shows an example of Windows Task Manager displaying 128 fully loaded CPU cores
in a single computer. It ’ s not a trick — it ’ s a real server machine!

 FIGURE 10 - 9: 128 CPU cores in a server computer

 And here is another interesting fact: Microsoft ’ s Windows 7 can be scaled up to 256 CPU cores.
The many - core shift is not about the future; it ’ s already here!

 Software: The Weakest Link

 Improving the computing capacity by increasing the number of CPU cores can be utilized quite well
with web applications. The architecture of web servers easily allows assigning separate user requests
to separate processors. Developers do not have to do any very special coding to allow the web to
server scale up when adding new cores. However, putting a bottleneck in the database layer of web
applications can put the brakes on scaling.

CH010.indd 416CH010.indd 416 9/6/10 5:02:31 PM9/6/10 5:02:31 PM

 Even if you do not have this kind of a database bottleneck, there is one thing that cannot be solved
without changing architecture. Although you may have a large number of processors, the response
time of one user request cannot be decreased below a certain threshold. If the algorithm serving the
user request runs sequentially (it can run only on a single thread), even having a hundred CPUs can ’ t
reduce the response time below that threshold.

 The advantages of multiple (many - core) CPUs cannot be utilized in the case of desktop applications,
where the architectural constraints allow only sequential execution. Of course, having multiple
cores means that multiple applications can run in parallel, but that won ’ t help to decrease the
running time of slow sequential applications. These kinds of applications can ’ t benefi t from putting
two, four, or even more CPU cores into the desktop machine.

 So, it ’ s often not worth it to use multiple cores with applications designed and implemented with
 “ sequential - style. ” The multi - core shift opens new horizons — but requires software architected
with enabling parallelism in order to achieve the potential performance benefi ts.

 From this aspect, a majority of today ’ s software is the weakest link.

 Issues with Multi - Threading

 Today, if you want to develop an application supporting concurrent execution of certain parts
of algorithms, you cannot avoid directly using threads. Managing multiple threads is defi nitely
challenging. You ’ re faced with several tasks to be solved correctly in order to build a properly
running and bug - free application. Multiple threads introduce situations where you have to handle
variable and resource synchronization, fl ow control that utilizes data structures designed with
sequential usage in mind, race - conditions, deadlocks, live - locks, and many more.

 The literature discussing concurrent programming is vast, handles all aspects, and even suggests
design patterns for certain problem contexts — but it does not simplify multi - threading. Even if you
fi nd a simple principle or pattern to transform a sequential task into a parallel one, you still must
cope with a few more diffi culties, including the following:

 The aspect of parallelism will spread through the entire task. You must fi nd the principle to
split the sequential task into smaller independent parallelizable parts. You must wrap these
parts into threads, and take care of managing common resources, synchronizing their
access. The fl ow control among tasks should be managed carefully — for example, at
the end, tasks should wait while each of them fi nishes its work.

 In the fi nal code that enables your algorithm to benefi t from parallelism, the real business
code (that is, the code implementing the business functionality) will be mixed up with
the code originating from the parallel aspect. The latter can signifi cantly balloon the size
of business code by a number of code lines. Any further change in the code requires extra
development resources, because the entire code is longer. You have a greater likelihood to be
lost in the code, or touch a part of the infrastructure code, instead of the business code.

 Testing this code is more challenging and resource - wasting. To keep the level of test code
coverage at a certain point, you defi nitely must write more unit test cases. The correctness
of parallelism infrastructure (for example, avoiding race conditions) also requires additional
test cases.

➤

➤

➤

Parallel Computing ❘ 417

CH010.indd 417CH010.indd 417 9/6/10 5:02:32 PM9/6/10 5:02:32 PM

418 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 After development, these multi - threaded applications generate more work during their support
phase. If it happens that the application does not work according to the requirements, or some
bugs are caught (for example, a suspect of race condition), parallelism adds some extra tasks to
troubleshooting, including the following:

 You must guess as to whether the issue is in the design or in the implementation.

 Debuggers and tracing tools do not provide enough help to step through multi - thread programs.
Just think about placing a breakpoint in a code line used by several threads! Sometimes it is
not easy to tell the debugger that you want to stop only when a certain thread reaches that
breakpoint.

 Once you have a few years of experience with concurrent programming, you may be able to avoid
some common pitfalls. Unfortunately, many developers do not have this kind of background.

 The Microsoft Approach

 There are many approaches to help the shift from sequentially running applications toward parallel
ones. These include specialized programming languages, pattern libraries, and tools examining the
code and restructuring it, parallelism - aware compilers, and so on.

 Microsoft has a different approach that is based on the “ rule of 80/20. ” Its own solution (called
 Parallel Computing Platform) provides a technology effi ciently targeting the issues coming from
the use of multiple CPU cores. Instead of the sophistication in threading models, or automating
parallelism and hiding it from developers, this uses a declarative approach. It provides a simple
model to allow developers to explicitly declare that certain parts of their programs can be executed
in parallel. The platform takes care of the implementation.

 The Parallel Computing Platform builds on the following simple design goals:

 Developers should be freed from the complexity of parallel coding tasks to focus on solving
business issues, and so their productivity could improve.

 The process of creating properly working, maintainable, and scalable parallel applications
must be signifi cantly simplifi ed.

 Expectations both from native and managed code developers must be taken into account.

 These are three main pillars (features) of this approach:

 High - level parallel programming concepts and abstractions allow leveraging values of
parallel programming with minimal change in existing code.

 The approach lowers the entry barriers developers need to start dealing with parallel
programming.

 The approach provides tools that, in addition to expressing parallelism, ensure great
support (debugging, profi ling, and so on) for developers.

 Tools, Programming Models, Run - times

 Microsoft ships fundamental elements of its Parallel Computing Platform with .NET 4 and
Visual Studio 2010. Figure 10 - 10 shows the stack of these elements.

➤

➤

➤

➤

➤

➤

➤

➤

CH010.indd 418CH010.indd 418 9/6/10 5:02:32 PM9/6/10 5:02:32 PM

Programming Models

PLINQ

Task Parallel Library

Concurrency Runtime

ThreadPool

Task Scheduler

Resource Manager

D
a

ta
 S

tru
c
tu

re
s
 fo

r C
o

o
rd

in
a

tio
n

Integrated

Tooling

Profiler

Concurrency

Analysis

Parallel

Debugger Tool

windows

HPC MPI

Debugger

Operating System

Threads

C
o

n
c
u

rr
e

n
t

D
a

ta
 S

tr
u

c
tu

re
s Parallel Pattern

Library

Agents

Library

Task Scheduler

Resource Manager

Managed Code Stack Native Code Stack

 FIGURE 10 - 10: Stack of Parallel Computing Platform elements

 The two main blocks (represented by Programming Models and Concurrency Run - time) are shipped
with .NET Framework and with the Visual C++ 2010 Run - time, while the Integrated Tools are
the part of Visual Studio 2010. As you can see, there are separate (but very similar) stacks for
managed code (in the middle part of Figure 10 - 10) and native code (the right part of the fi gure).
This discussion addresses only the managed stack.

 Contrary to the thread - based model developers have used for a long time, the new programming
model is declarative. Developers can split up their algorithms and longer code into smaller tasks,
and can declare control fl ow among them. For example, they can declare that certain tasks can run
concurrently, while others should run in a certain, well - defi ned order. Executing tasks according to
the defi ned control fl ow is the responsibility of the run - time. Thread management, synchronization,
and recovery from exceptions are all done by the run - time.

 Following are key components of the Managed Code stack:

 Task Parallel Library (TPL) — This is the run - time element providing this functionality
with its high - level programming concepts.

 Parallel Language Integrated Query (PLINQ) — This utilizes TPL for data parallelism.
Standard LINQ expressions can be easily marked for concurrent execution (even a degree of
parallelism can be set up), and so data can be processed in a multithreaded fashion without
knowing anything about threads or TPL concepts.

 The Concurrency Run - time — This is responsible for translating the concept using tasks
into threading. It uses the ThreadPool as its fundamental tool to manage .NET Framework -
 level and operating system - level threads.

➤

➤

➤

Parallel Computing ❘ 419

CH010.indd 419CH010.indd 419 9/6/10 5:02:32 PM9/6/10 5:02:32 PM

420 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Task Scheduler — Having thousands of tasks that can run simultaneously does not mean
that thousands of threads will be started. The Task Scheduler is responsible for assigning
tasks to threads, taking into account the degree of parallelism that can be achieved.

 Data Structures for Coordination — This includes high - performance collection classes
that are lock - free and thread - safe, and also includes other lightweight objects for
synchronization and lazy initialization.

 Overview of Parallel Programming Architecture

 While Figure 10 - 10 is a very good overview of the Parallel Computing Platform ’ s elements, it does
not refl ect how the intentions of developers are manifested in parallel execution. Figure 10 - 11
provides another view of the architecture that helps you understand the role of specifi c elements.

➤

➤

Threads

PLINQ Execution Engine

Data Partitioning
.NET Standard

Query Operators
Data Merging

Query Analysis

Task Parallel Library

Parallel Constructs

Tasks and Tasks

Scheduling

Data Structures for

Coordination

Concurrent Collections

Synchronization Types

Coordination Types

.NET Programs

Declarative

Parallel Queries

Imperative

Parallel

Algorithms

Compiler

C#, VB, F#, Other

.NET compiler

IL Code

Queries

Algorithms

 FIGURE 10 - 11: Parallel Programming Architecture

 Your applications developed with the .NET 4 Framework may contain code parts that you intend to
run in parallel. You can write PLINQ queries that are query expression declarations extended with
small instructions signifying them for parallel execution. Also, you can write imperative algorithms
where you explicitly declare the parts (called tasks) that can run concurrently.

 At the end of the day, parallel constructs are executed by threads. The TPL provides the constructs
and task scheduling. Data structures for coordination provide you with concrete types (such as
 ConcurrentBag , ConcurrentQueue , Barrier , CountdownEvent , and many more) to help you in
resource management and synchronization of your tasks.

 Using any of the .NET compilers, the resulting intermediate - language code will target either the
TPL layer (imperative algorithms) or use the PLINQ Execution Engine (declarative queries). Parallel
query expressions will use the TPL layer during query execution.

CH010.indd 420CH010.indd 420 9/6/10 5:02:34 PM9/6/10 5:02:34 PM

 Parallel LINQ

 LINQ expressions are great for shifting imperative data processing algorithms to declarative ones.
Instead of requiring the developer to lay down the algorithm in the form of cycles, fi lters, or result
aggregations using standard programming language instructions, a query expression is used to
defi ne the developer ’ s intention.

 PLINQ is a new technology that allows executing LINQ expressions concurrently in machines
with more CPU cores. The main purpose of PLINQ is to enable speedup of query execution on
in - memory data through more effi cient use of system resources, especially on multicore hardware.
 “ Speedup ” in this context means the difference in execution time between a query ’ s sequential
execution, and its execution either wholly or in part in parallel mode. Later in this chapter, you will
learn that using PLINQ is really easy.

 Figure 10 - 11 shows you what PLINQ adds to the execution of standard LINQ expressions. Parallel
execution is based on partitioning the original data among multiple tasks so that they are able to
run parallel with the least overhead of locking and other coordination. The standard .NET query
operators are implemented in the PLINQ execution engine so that they support parallelism. After
the query has been carried out on each partition, the partial results should be merged into the fi nal
aggregated result.

 The LoremIpsumQuery Example

 PLINQ does a great job of transforming sequential queries into parallel ones. The best way to
demonstrate this is to show you an example that clearly points out the benefi ts of PLINQ against
imperative programming. When downloading the source code for Chapter 10 from this book ’ s
companion web site (www.wrox.com), you will fi nd a sample named LoremIpsumQuery that is used
here to introduce PLINQ benefi ts.

 LoremIpsumQuery is a small WPF application that allows you to query word occurrences in texts
generated by the Lorem Ipsum generator (http://www.lipsum.com), and shows statistics indicating
the distribution of a specifi ed word. The program
works on 32 pre - generated text fi les, each of
them containing more than 10,000 words
generated. The input database consolidates the
generated text into single - line records with two
fi elds defi ning the index of the generated text
fi le (called book) and the word in the fi le. This
database is the LIRecords.txt fi le containing
the single - line records in tab - separated entries.

 The result of the queries is represented by an
 IEnumerable < LIResult > , where LIResult is
a simple structure composed from two integer
fi elds, Book and WordCount . Figure 10 - 12 shows
the application querying statistics for the word
 “ ipsum. ”

 FIGURE 10 - 12: Sample screenshot of

 LoremIpsumQuery

Parallel Computing ❘ 421

CH010.indd 421CH010.indd 421 9/6/10 5:02:35 PM9/6/10 5:02:35 PM

422 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Without LINQ, you could program the query by simply iterating through records and counting
the occurrences of the specifi ed word in a book using a Dictionary object. Listing 10 - 7 shows one
possible implementation.

 LISTING 10 - 7: Manual Query Defi nition

private IEnumerable < LIResult > ManualQuery(string wordToSearch)
{
 var result = new Dictionary < int, LIResult > ();
 foreach (var record in LIRecords)
 {
 if (String.Compare(record.Word, wordToSearch, true) == 0)
 {
 LIResult book;
 if (result.TryGetValue(record.Book, out book))
 book.WordCount++;
 else
 result.Add(record.Book, new LIResult(record.Book, 1));
 }
 }
 return result.Values;
}

 Code fi le [MainWindow.xaml.cs] available for download at Wrox.com

 This code is not complex, but reading it, you need time to guess what it does. The implementation
using LINQ is much more straightforward, and immediately tells you what the intention of the
query is. Listing 10 - 8 shows the LINQ implementation.

 LISTING 10 - 8: Query Defi nition with LINQ

private IEnumerable < LIResult > UsingLinq(string wordToSearch)
{
 return from record in LIRecords
 where String.Compare(record.Word, wordToSearch, true) == 0
 group record by record.Book into book
 select new LIResult(book.Key, book.Count());
}

 Code fi le [MainWindow.xaml.cs] available for download at Wrox.com

 The LINQ solution is great, but it is still sequential, and so it uses only one CPU core. For a
moment, let ’ s forget that you have PLINQ. The manual query in Listing 10 - 7 can be transformed
into a multithread query using the threading architecture built into .NET.

 There are several strategies to do that, and Listing 10 - 9 shows one of them. The basic idea of this
parallel algorithm is to partition the work according to the number of CPU cores in your machine.

CH010.indd 422CH010.indd 422 9/6/10 5:02:35 PM9/6/10 5:02:35 PM

Each thread picks up one record from the database, and processes the partial result locally in the
thread. When a thread fi nishes its job (that is, there are no more records to process), it merges the
partial result into the aggregated one.

 LISTING 10 - 9: Parallel Query Implemented Manually

private IEnumerable < LIResult > ManualParallelQuery(string wordToSearch)
{
 var result = new Dictionary < int, LIResult > ();
 int partitionsCount = Environment.ProcessorCount;
 int remainingCount = partitionsCount;
 IEnumerator < LIRecord > enumerator = LIRecords.GetEnumerator();
 // --- Resource protection block for enumerator
 try
 {
 // --- Synchronization of partitions
 using (var done = new ManualResetEvent(false))
 {
 // --- Each partition has its own thread
 for (int i = 0; i < partitionsCount; i++)
 {
 ThreadPool.QueueUserWorkItem((obj) = >
 {
 var partialResult = new Dictionary < int, LIResult > ();
 while (true)
 {
 LIRecord record;
 // --- Lock (inefficient) to access the next element
 lock (enumerator)
 {
 if (!enumerator.MoveNext()) break;
 record = enumerator.Current;
 }
 if (String.Compare(record.Word, wordToSearch, true) == 0)
 {
 LIResult book;
 // --- Lock (indefficient) to aggregate result
 lock (partialResult)
 {
 if (partialResult.TryGetValue(record.Book, out book))
 book.WordCount++;
 else
 partialResult.Add(record.Book,
 new LIResult(record.Book, 1));
 }
 }
 }
 // --- Merge partial result to the aggregated result
 lock (result)

continues

Parallel Computing ❘ 423

CH010.indd 423CH010.indd 423 9/6/10 5:02:36 PM9/6/10 5:02:36 PM

424 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

LISTING 10-9 (continued)

 {
 foreach (var item in partialResult.Values)
 {
 LIResult book;
 if (result.TryGetValue(item.Book, out book))
 book.WordCount += item.WordCount;
 else
 result.Add(item.Book, item);
 }
 }
 // --- Sign that job is ready when last partition finished
 if (Interlocked.Decrement(ref remainingCount) == 0) done.Set();
 });
 }
 // --- Wait for partitions to finish their job
 done.WaitOne();
 }
 }
 finally
 {
 enumerator.Dispose();
 }
 return result.Values;
}

 Code fi le [MainWindow.xaml.cs] available for download at Wrox.com

 The fi rst thing you notice is that this code is really complex, and, despite the comments,
understanding it is not really easy. Only a little part of this code deals with the real calculation
logic. All other parts are required to synchronize threads, and coordinate resource access.

 With PLINQ, this coding nightmare is as simple as the LINQ implementation. Listing 10 - 10 shows
the code, which removes all the pain points from the manual parallel query implementation.

 LISTING 10 - 10: Query Defi nition with PLINQ

private IEnumerable < LIResult > UsingParallelLinq(string wordToSearch)
{
 return from record in LIRecords.AsParallel()
 where String.Compare(record.Word, wordToSearch, true) == 0
 group record by record.Book into book
 select new LIResult(book.Key, book.Count());
}

 Code fi le [MainWindow.xaml.cs] available for download at Wrox.com

CH010.indd 424CH010.indd 424 9/6/10 5:02:36 PM9/6/10 5:02:36 PM

 This query defi nition is almost the same as the PLINQ solution in Listing 10 - 8. The only difference
is the AsParallel() method that tells operations on LIRecords can be executed using multiple
CPU cores. This simple extension causes the Parallel LINQ provider to plan the execution so that
the whole query is divided into independent chunks capable of running concurrently, and merges the
partial results together forming the fi nal result. Behind the scenes, PLINQ has many strategies to
execute the query. Sometimes it requires more than one pass to produce the results.

 Comparing LoremIpsumQuery Implementations

 Table 10 - 1 shows a comparison of the four approaches used in LoremIpsumQuery . The table
contains the execution times and the performance ratio (in percentages) related to the imperative
query in Listing 10 - 7.

 TABLE 10 - 1: Query Implementations

 IMPLEMENTATION TYPE EXECUTION TIME (IN MS) PERFORMANCE

 Imperative query 7.386 100 percent

 Query declaration with LINQ 7.580 97 percent

 Imperative multi - thread query 12.985 57 percent

 Query declaration with PLINQ 2.171 340 percent

 This table indicates that LINQ produces almost the same result (3 percent slower) as that of the
manual imperative query implementation. Results also show that the manual multithread strategy
used in Listing 10 - 9 was counterproductive. Instead of accelerating the query, the ineffi cient locking
solution made is slower than the original one.

 The last row of the table clearly shows that PLINQ really did a great job. The machine it was
running on had four CPU cores, and a real 340 percent performance. PLINQ has a defi nitely better
strategy that was used in Listing 10 - 9!

 Infl uencing PLINQ Behavior

 The AsParallel() method transforming a sequential query into a parallel one retrieves a
 ParallelQuery < TSource > object, where TSource represents the type of object on which to execute
the query. ParallelQuery < TSource > defi nes standard query operators as extension methods, and
so the compiler uses them to replace the where , select , group by , orderby , and other clauses with
those methods (with full accordance of the C# language specifi cation of query expressions).

 There are a few extension methods having a With prefi x that can be used to infl uence how a parallel
query is executed. Table 10 - 2 describes these methods.

Parallel Computing ❘ 425

CH010.indd 425CH010.indd 425 9/6/10 5:02:37 PM9/6/10 5:02:37 PM

426 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 TABLE 10 - 2: Extension Methods Infl uencing PLINQ Behavior

 METHOD DESCRIPTION

 WithDegreeOfParallelism Sets the degree of parallelism to use in a query. Degree of
parallelism is the maximum number of concurrently executing tasks

that will be used to process the query. The method accepts one

integer parameter that sets this degree. As of this writing, it is not

documented how the query works when this value is greater than

the number of CPU cores.

 WithExecutionMode

 Sets the execution mode of the query. The method accepts a

 ParallelExecutionMode enumeration parameter that has two

values with the following meaning:

 Default — By default, the system will use algorithms for queries

that are ripe for parallelism, and will avoid algorithms with high

overheads that will likely result in slowdowns for parallel execution.

 ForceParallelism — Parallelizes the entire query, even if that

means using high - overhead algorithms. PLINQ is designed to

exploit opportunities for parallelization. However, not all queries

benefi t from parallel execution. For example, when a query

contains a single user delegate that does very little work, the query

will usually run faster sequentially. This is because the overhead

involved in enabling parallelizing execution is more expensive than

the speedup that is obtained.

 WithMergeOptions

 Sets the merge options for this query, which specify how the query

will buff er output. The method accepts a ParallelMergeOptions

enumeration parameter that has the following four values:

 Default — Use the default merge type, which is AutoBuffered .

 NotBuffered — This option causes each processed element to be

returned from each thread as soon as it is produced. This behavior

is analogous to “ streaming ” the output. If the AsOrdered()

operator (described later) is present in the query, NotBuffered

preserves the order of the source elements. Although

 NotBuffered starts yielding results as soon as they are available,

the total time to produce all the results might still be longer than

using one of the other merge options.

 AutoBuffered — This option causes the query to collect elements

into a buff er, and then periodically yield the buff er contents all at

once to the consuming thread. This is analogous to yielding the

source data in “ chunks, ” instead of using the “ streaming ” behavior of

 NotBuffered . AutoBuffered may take longer than NotBuffered

to make the fi rst element available on the consuming thread.

CH010.indd 426CH010.indd 426 9/6/10 5:02:37 PM9/6/10 5:02:37 PM

 METHOD DESCRIPTION

 FullyBuffered — This option causes the output of the whole

query to be buff ered before any of the elements are yielded. When

you use this option, it can take longer before the fi rst element is

available on the consuming thread, but the complete results might

still be produced faster than by using the other options.

 WithCancellation Sets the CancellationToken to associate with the query.

 CancellationToken is a new concept in.NET 4. Its role is to

propagate notifi cations that operations should be cancelled. The

token accepted by this method is used by LINQ to recognize that

the operation encapsulating this query is cancelled.

 To restrict the query in Listing 10 - 10 to use up to three threads, you can write the following code:

return from record in LIRecords.AsParallel().WithDegreeOfParallelism(3)
 where String.Compare(record.Word, wordToSearch, true) == 0
 group record by record.Book into book
 select new LIResult(book.Key, book.Count());

 In PLINQ, the goal is to maximize performance, while maintaining correctness. A query should run
as fast as possible, but still produce the correct results. In some cases, correctness requires the order
of the source sequence to be preserved. However, ordering can be computationally expensive. Let ’ s
assume that you have the following query:

var animalQuery = (from animal in animals.AsParallel()
 where animal.Age > 10
 select animal)
 .Take(100);

 Despite the intention that you would like to get the fi rst 100 animals over the age of 10 years, this
query does not necessarily produce what you expect. Because of the parallel execution, it instead
retrieves some set of 100 animals that meet the condition.

 You can change this behavior with the AsOrdered() operator to meet the original expectation:

var animalQuery = (from animal in animals.AsParallel().AsOrdered()
 where animal.Age > 10
 select animal)
 .Take(100);

 When order preservation is no longer required, use AsUnordered() to turn it off. It could be
useful when composing queries, as shown in this example:

var animalQuery = (from animal in animals.AsParallel().AsOrdered()
 where animal.Age > 10

Parallel Computing ❘ 427

CH010.indd 427CH010.indd 427 9/6/10 5:02:37 PM9/6/10 5:02:37 PM

428 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 select animal)
 .Take(100);
var filteredResult = from animal in animalQuery.AsUnordered()
 where animal.LivesInWater == true
 select animal

 You do not have to use AsOrdered() for a sequence produced by order - imposing operators, because
PLINQ preserves their ordering. So, operators such as OrderBy() and ThenBy() are treated as if
they were followed by a call to AsOrdered() .

 Sometimes you want to combine PLINQ queries with sequential ones, for preserving order or
for performance reasons. You can transform a parallel query into a sequential one with the
 AsSequential() operator. For example, the following query is composed from a parallel one
retrieving an ordered set, followed by a sequential one retrieving the fi rst three elements:

var custInvoices = from invoice in invoices.AsParallel()
 orderby invoices.CustomerID
 select new
 {
 Details = invoice.InvoiceDetails,
 Date = invoide.DeliveryDate,
 Total = invoice.Total
 };
var topThreeInvoice = custInvoices.AsSequential().Take(3);

 Because custInvoices is a parallel query, topThreeInvoice also would be a parallel one by
default. Getting the fi rst three elements sequentially is defi nitely faster than using a parallel query.

 There were great presentations about parallel computing at Microsoft ’ s
Professional Developers Conference (PDC) 2009. If you would like to
understand how PLINQ works behind the scenes, the “ PLINQ: LINQ, but
Faster ” presentation provides you with interesting details. You can watch or
download the session video from http://microsoftpdc.com/Sessions/FT21 .

 Task Parallel Library

 After so many years of the thread - oriented multitasking in .NET, TPL is a real revolution.
The mission of TPL is to help you parallelize your code so that you can focus on the work your
code is designed to accomplish — in other words, TPL is to turn your time spent on building
multi - threading infrastructure into creating valuable business functions.

 TPL is a set of public types and APIs in the System.Threading and System.Threading.Tasks
namespaces that allows a great shift to code based on a high - level concept called tasks . Without
enumerating a list of features, a few code snippets can convince you of the power of TPL. Here is
the fi rst snippet:

CH010.indd 428CH010.indd 428 9/6/10 5:02:38 PM9/6/10 5:02:38 PM

Parallel.Invoke(
 () = > TaskA(),
 () = > TaskB(),
 () = > TaskC());

 The static Invoke method of the Parallel class takes three tasks represented by TaskA , TaskB , and
 TaskC , and invokes them to run concurrently. Invoke also waits until each task completes, and then
passes back the control. Remember the code in Listing 10 - 9 where 90 percent of the code was the
multithreading infrastructure? Here, you won ’ t fi nd any infrastructure code! This snippet contains
only declarative code, and is as concise as it can be.

 Each argument of Invoke is turned into a Task object that can be found in the System.Threading
.Tasks namespace. Task is the basic unit of code that is scheduled to be executed by a thread.

 The next code snippet should also tell its intention to you:

Parallel.For(0, 10, counter = >
 {
 var rnd = new Random((int)(DateTime.Now.Ticks + counter));
 Console.WriteLine(“Task {0} started.”, counter);
 Thread.Sleep(100 + rnd.Next(20));
 Console.WriteLine(“Task {0} finished.”, counter);
 });

 Parallel.For defi nes a for cycle where the body of the cycle is a set of independent tasks having a
 counter parameter. Because these tasks are independent, they can be executed in parallel.

 When you put this code snippet into a console application and run it, you can clearly see that the
tasks forming the cycle body run independently. Figure 10 - 13 shows a sample.

 FIGURE 10 - 13: Sample of running the Parallel.For code snippet

 This screenshot was taken on a quad - core computer where the default degree of parallelism is
four, according to the number of cores, so TPL runs up to four threads that can be active at the
same time. From this screenshot, you can see that the fi rst fi ve rows are started messages, as if

Parallel Computing ❘ 429

CH010.indd 429CH010.indd 429 9/6/10 5:02:43 PM9/6/10 5:02:43 PM

430 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

fi ve threads were run at the same time. This is because the Thread.Sleep() calls in the middle of
the tasks allow the scheduler to start other threads. Sleeping threads are treated as passive ones.

 The Parallel Class

 Probably the best point at which to start with parallel programming with the .NET Framework is
the Parallel class. Using the 80/20 rule metaphor, this class possesses the 20 percent of all parallel
functionality that helps you transform your sequential application into a parallel one, while achieving
the 80 percent of possible performance gain. You can see how easy it is to use the Parallel.Invoke
or Parallel.For method. The aim of the Parallel class is to provide support for parallel loops and
regions, and it is supported by three methods having many overloads:

 Parallel.Invoke — Executes a set of actions (methods with no input parameters and no
return value) in parallel

 Parallel.For — Executes a for loop, in which iteration may run in parallel

 Parallel.Foreach — Executes a foreach operation on a strongly typed collection
(implementing IEnumerable < T >) in which iterations may run in parallel

 Let ’ s dive into these methods a bit deeper.

 Each method has one or more overloads accepting a parameter with type ParallelOptions . The
role of this class is to provide a few options infl uencing the execution of the specifi ed parallel
operation. These options can be accessed through the properties of the class:

 CancellationToken — This sets the token that can be used to check if the operation must
be cancelled.

 MaxDegreeOfParallelism — This limits the number of concurrent operations run by
 Parallel method calls that are passed this ParallelOptions instance to the set value, if it
is positive. If this property is - 1 , then there is no limit placed on the number of concurrently
running operations.

 TaskScheduler — This allows you to associate a task scheduler with this ParallelOptions
instance (or get the current scheduler). Setting this property to null indicates that the current
scheduler should be used.

 Parallel.Invoke

 The Invoke method has only two overloads. One of the method signatures accepts only actions,
while the other allows specifying ParallelOptions . Listing 10 - 11 shows the Program.cs fi le of a
console application demonstrating these method overloads.

 LISTING 10 - 11: Program.cs Demonstrating Parallel.Invoke Overloads

using System;
using System.Threading.Tasks;

namespace ParallelInvoke

➤

➤

➤

➤

➤

➤

CH010.indd 430CH010.indd 430 9/6/10 5:02:43 PM9/6/10 5:02:43 PM

{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“*** Invoke with default ParallelOptions”);
 var start = DateTime.Now;
 Parallel.Invoke(
 () = > { CPUWastingAction(“Task A”, start); },
 () = > { CPUWastingAction(“Task B”, start); },
 () = > { CPUWastingAction(“Task C”, start); },
 () = > { CPUWastingAction(“Task D”, start); }
);
 Console.WriteLine();
 Console.WriteLine(“*** Invoke with manual ParallelOptions”);
 var maxTwoCPUs = new ParallelOptions { MaxDegreeOfParallelism = 2 };
 start = DateTime.Now;
 Parallel.Invoke(maxTwoCPUs,
 () = > { CPUWastingAction(“Task A”, start); },
 () = > { CPUWastingAction(“Task B”, start); },
 () = > { CPUWastingAction(“Task C”, start); },
 () = > { CPUWastingAction(“Task D”, start); }
);
 }

 static void CPUWastingAction(string message, DateTime start)
 {
 Console.WriteLine(“{0,6:0} {1} started”,
 (DateTime.Now - start).TotalMilliseconds, message);
 long sum = 0;
 for (int i = 0; i < 10000000; i++)
 {
 if (Environment.ProcessorCount > 0)
 {
 sum += i;
 }
 }
 Console.WriteLine(“{0,6:0} {1} finished”,
 (DateTime.Now - start).TotalMilliseconds, message);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The fi rst Invoke call uses the default options, while the second one passes a ParallelOptions
instance, setting it up so that up to two concurrent operations can be executed at the same time.
For demonstration purposes, the CPUWastingAction method is invoked, which runs a cycle just for
consuming CPU resources to emulate a long computation. Having a look at Figure 10 - 14, you can
recognize the degree of parallelism changing.

Parallel Computing ❘ 431

CH010.indd 431CH010.indd 431 9/6/10 5:02:44 PM9/6/10 5:02:44 PM

432 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 The numbers before task messages are the time in milliseconds elapsed from the start of the Invoke
call. The fi rst Invoke started all the four parallel tasks (the demo was run on a quad - core machine).
The second Invoke call started only two tasks (because of the maximum degree of parallelism
specifi ed), and the other two had to wait while a thread became free for the task.

 Parallel.For

 While Parallel.Invoke has only two overloads, Parallel.For offers a dozen methods that fall
into two categories: For and the generic For < TLocal > method. For has the following overloads:

ParallelLoopResult For(int fromInclusive, int toExclusive, Action < int > body);

ParallelLoopResult For(int fromInclusive, int toExclusive,
 Action < int, ParallelLoopState > body);

ParallelLoopResult For(int fromInclusive, int toExclusive,
 ParallelOptions options,
 Action < int > body);

ParallelLoopResult For(int fromInclusive, int toExclusive, ParallelOptions options,
 Action < int, ParallelLoopState > body);

ParallelLoopResult For(long fromInclusive, long toExclusive, Action < long > body);

ParallelLoopResult For(long fromInclusive, long toExclusive,
 Action < long, ParallelLoopState > body);

ParallelLoopResult For(long fromInclusive, long toExclusive,
 ParallelOptions options,
 Action < long > body);

ParallelLoopResult For(long fromInclusive, long toExclusive,
 ParallelOptions options,
 Action < long, ParallelLoopState > body);

 As you see, the fi rst four methods use int parameters, while the second four mirror them with long
arguments.

 FIGURE 10 - 14: Parallel.Invoke calls with diff erent degrees of parallelism

CH010.indd 432CH010.indd 432 9/6/10 5:02:44 PM9/6/10 5:02:44 PM

 The cycle iterates from the fromInclusive value to the one before toExclusive . When you
use the values 0 and 3 , the iteration body will be executed for 0 , 1 , and 2 , but not for 3 . When you
set fromInclusive greater than or equal to toExclusive , the cycle won ’ t execute the body.

 Just as in the case of Parallel.Invoke , you can use a ParallelOptions instance during the execution.

 You can run two kinds of bodies with the For method. The fi rst, represented by an Action < int >
or Action < long > instance, simply takes the iteration counter that can be used in the bodies.
When your logic requires that, in certain conditions, you break the cycle, use the Action < int,
ParallelLoopState > or Action < long, ParallelLoopState > instances. In this case, the body
code will get a ParallelLoopState instance, letting you break a cycle, or be aware of the fact that
one of the body methods has already requested a break.

 ParallelLoopState instances will be created by the Parallel.For method for each thread. You
must not instantiate this class, or pass an instance among the threads. Within the iteration body you
are allowed to call the loop state instance ’ s Stop or Break method, or read its properties. Table 10 - 3
describes the semantics of ParallelLoopState members.

 TABLE 10 - 3: ParallelLoopState Members

 MEMBER DESCRIPTION

 Break

 This method communicates that the parallel loop should cease

execution (at the system ’ s earliest convenience) of iterations

beyond the current iteration.

 You may use Break to communicate to the loop that no

other iterations after the current iteration need to be run. For

example, if Break is called from the third iteration of a for

loop iterating in parallel from 0 to 10 , all iterations less than 3

should still be run, but the iterations from 4 through to 10 are

not necessary.

 The loop does not start iterations with indices greater

than the index of iteration invoking Break , but does not abort

iterations already started. It may happen that any iteration

with an index that is not assumed to run after Break has

already been started.

 Instead, the LowestBreakIteration property is set to the

iteration index calling Break . Iterations already started can

check for this property to decide whether to break the cycle

or not.

 More iterations can call Break . In this case,

 LowestBreakIteration is set to the current iteration ’ s

index, if that index is less than the current value of

 LowestBreakIteration .

continues

Parallel Computing ❘ 433

CH010.indd 433CH010.indd 433 9/6/10 5:02:44 PM9/6/10 5:02:44 PM

434 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Each method retrieves a ParallelLoopResult instance that provides a completion status on the
execution of the loop. The IsCompleted property of the structure tells you whether the loop has
fi nished, or interrupted before all iterations could run. The LowestBreakIteration property tells
you the index of the lowest iteration from which Break was called.

 Let ’ s demonstrate these concepts with a simple example searching for a specifi c byte in an array
of blobs. Listing 10 - 12 shows the source code of the Program.cs fi le in the example ’ s console
application.

 LISTING 10 - 12: Program.cs Demonstrating Parallel.For with ParallelLoopState

using System;
using System.Threading.Tasks;

namespace ParallelFor
{
 class Program
 {
 static void Main(string[] args)
 {
 const int ByteSeries = 100000;
 const int BlobSize = 100;

TABLE 10 - 3 (continued)

 MEMBER DESCRIPTION

 Stop

 This method communicates that the parallel loop should cease

execution at the system ’ s earliest convenience.

 You may use Stop to communicate to the loop that no

other iterations need to be run. Invoking Stop will halt starting

new iterations. However, it does not abort iterations already

started. Instead, it sets the IsStopped property to true .

 IsExceptional This property tells whether any iteration of the loop has thrown

an exception that went unhandled by that iteration.

 IsStopped The true value of this property indicates that one of the

iterations has called Stop .

 LowestBreakIteration This property retrieves a Nullable < long > value that represents

the lowest iteration of the loop from which Break was called. If

no iteration of the loop called Break , it will return null .

 ShouldExitCurrentIteration The true value of this property indicates that the current

iteration of the loop should exit based on requests made by

this or other iterations. It may be either because a Stop was

invoked, or a Break , where the breaking iteration ’ s index

was less than the current iteration index.

CH010.indd 434CH010.indd 434 9/6/10 5:02:45 PM9/6/10 5:02:45 PM

 const byte ToSearch = 123;
 byte[][] DumpInfo = new byte[ByteSeries][];

 Parallel.For(0, ByteSeries, index = >
 {
 var blob = new byte[BlobSize];
 new Random((int)DateTime.Now.Ticks).NextBytes(blob);
 lock (DumpInfo) { DumpInfo[index] = blob; }
 });

 Parallel.For(0, ByteSeries, (index, state) = >
 {
 if (state.ShouldExitCurrentIteration) return;

 Console.WriteLine(“Search in blob #{0}”, index);
 foreach (byte b in DumpInfo[index])
 {
 if (b == ToSearch)
 {
 Console.WriteLine(“Halt request in #{0}”, index);
 state.Stop();
 break;
 }
 }
 });
 Console.WriteLine(“Press Enter to exit...”);
 Console.ReadLine();
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The DumpInfo two - dimensional array holds 100,000 blobs, each of them having a size of 100 bytes. The
fi rst Parallel.For loop initializes the blobs with random bytes, and this loop does not use
 ParallelLoopState . The second Parallel.For loop iterates through blobs and searches for a byte
with a value of 123 . In the iteration body, state represents the ParallelLoopState instance. When
 123 is found, the Stop method signs the loop is about to be halted. Because, at the entry of the iteration
body the ShouldExitCurrentIteration property is checked, any iteration bodies starting after Stop
will immediately return without searching the blob. Figure 10 - 15 shows an output of this example.

 FIGURE 10 - 15: Output of the Parallel.For example

Parallel Computing ❘ 435

CH010.indd 435CH010.indd 435 9/6/10 5:02:45 PM9/6/10 5:02:45 PM

436 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 A consequence of iterations running concurrently is that the Stop request may occur in many
iteration bodies, in even more than the maximum degree of parallelism! This output was generated
on a quad - core machine, and shows that fi ve iterations invoked Stop while the whole loop halted.

 In the example, you could use IsStopped instead of ShouldExistCurrentIteration without
changing the behavior.

 Parallel.For < TLocal >

 The Parallel.For < TLocal > method allows the loop to pass data (an instance of TLocal type)
among the iteration bodies. The method has the following overloads:

ParallelLoopResult For < TLocal > (int fromInclusive, int toExclusive,
 Func < TLocal > localInit, Func < int, ParallelLoopState, TLocal, TLocal > body,
 Action < TLocal > localFinally);

ParallelLoopResult For < TLocal > (long fromInclusive, long toExclusive,
 Func < TLocal > localInit, Func < long, ParallelLoopState, TLocal, TLocal > body,
 Action < TLocal > localFinally);

ParallelLoopResult For < TLocal > (int fromInclusive, int toExclusive,
 ParellelOptions options, Func < TLocal > localInit,
 Func < int, ParallelLoopState, TLocal, TLocal > body, Action < TLocal > localFinally);

ParallelLoopResult For < TLocal > (long fromInclusive, long toExclusive,
 ParallelOptions options, Func < TLocal > localInit,
 Func < long, ParallelLoopState, TLocal, TLocal > body, Action < TLocal > localFinally);

 The semantics of fromInculsive , toExclusive and options are exactly the same as in the case of
 For . However, the iteration body handling is extended with a thread - local state - variable instance.
You must pass three delegates (localInit , body , and localFinally) to the methods with the
following meaning:

 localInit — This delegate represents a function retrieving an instance of TLocal . This
is called exactly once for each thread, before any iterations would run on that thread. You
must use this method to set up the initial value of the TLocal instance.

 body — This delegate does the iteration. In addition to the iteration index and the
 ParallelLoopState instance, it accepts the TLocal instance of the thread running
the current iteration. Your iteration should do its work, and retrieve a TLocal instance to
be passed to the next iteration that will run on the same thread.

 localFinally — This delegate is called exactly once for each thread, passing the last
state of the thread ’ s TLocal state - variable. This is the best place to consolidate thread - level
results into an accumulated loop result. Of course, this delegate is called after all iterations
running on the current thread are completed.

 An example tells the story much more clearly. Let ’ s modify the algorithm in Listing 10 - 12 so that all
occurrences of the byte value searched are counted and the blob with the lowest index containing
that value is also recorded. Listing 10 - 13 shows the modifi ed code.

➤

➤

➤

CH010.indd 436CH010.indd 436 9/6/10 5:02:46 PM9/6/10 5:02:46 PM

 LISTING 10 - 13: Program.cs Demonstrating Parallel.For < TLocal >

using System;
using System.Threading.Tasks;

namespace ParallelForTLocal
{
 class Program
 {
 static void Main(string[] args)
 {
 const int ByteSeries = 100000;
 const int BlobSize = 100;
 const byte ToSearch = 123;
 byte[][] DumpInfo = new byte[ByteSeries][];

 Parallel.For(0, ByteSeries, index = >
 {
 var blob = new byte[BlobSize];
 new Random((int)DateTime.Now.Ticks).NextBytes(blob);
 lock (DumpInfo) { DumpInfo[index] = blob; }
 });

 var result = new SearchInfo { FirstBlobNo = ByteSeries };

 Parallel.For < SearchInfo > (0, ByteSeries,
 // --- Thread-level initializer
 () = > new SearchInfo { FirstBlobNo = ByteSeries },

 // --- Iteration body
 (index, state, searchInfo) = >
 {
 var counter = 0;
 foreach (byte b in DumpInfo[index])
 if (b == ToSearch) counter++;
 if (counter > 0)
 {
 searchInfo.Count += counter;
 if (searchInfo.FirstBlobNo > index)
 searchInfo.FirstBlobNo = index;
 }
 return searchInfo;
 },

 // --- Thread-level finalizer
 (searchInfo) = >
 {
 lock (result)
 {
 result.Count += searchInfo.Count;
 if (searchInfo.FirstBlobNo < result.FirstBlobNo)

continues

Parallel Computing ❘ 437

CH010.indd 437CH010.indd 437 9/6/10 5:02:46 PM9/6/10 5:02:46 PM

438 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

LISTING 10-13 (continued)

 {
 result.FirstBlobNo = searchInfo.FirstBlobNo;
 }
 }
 });

 Console.WriteLine(“Value {0} found {1} times, first in DumpInfo[{2}]”,
 ToSearch, result.Count, result.FirstBlobNo);
 Console.WriteLine(“Press Enter to exit...”);
 Console.ReadLine();
 }
 }

 class SearchInfo
 {
 public int FirstBlobNo { get; set; }
 public int Count { get; set; }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 In the code, SearchInfo represents the TLocal instance passed to the iteration bodies. The
 Parallel.For < SearchInfo > call takes three delegates implemented as lambda functions (each
is marked with a comment). The fi rst delegate initializes this SearchInfo instance. The second
delegate is the iteration body. When the byte value searched is found in the current blob, the
 SearchInfo instance is modifi ed accordingly. Notice that this delegate returns the modifi ed (if there
were any modifi cations) version of this instance; and it will be passed to the next iteration on the
same thread.

 When a thread fi nishes, the thread - level SearchInfo instance ’ s Count property shows the number of
byte value matches, while FirstBlobNo is the lowest iteration index that has a matching byte — and
these property values are for the iterations running on that thread.

 The third delegate is about consolidating the thread local results into the accumulated result, which
is displayed at the end.

 The Parallel.For < SearchInfo > () could be used without the < SearchInfo >
generic parameter, because the C# compiler could infer the type from the
delegates passed as arguments. However, it is a good practice to indicate it,
especially when you are using lambda functions for delegates, because it helps
reading and understanding.

CH010.indd 438CH010.indd 438 9/6/10 5:02:47 PM9/6/10 5:02:47 PM

 Parallel.ForEach

 The Parallel.ForEach method is very similar to the Parallel.For method. It allows executing
iteration bodies concurrently. The ForEach method also resembles For , because it has two main
branches. ForEach < TSource > provides the functionality similar to For , while ForEach < TSource,
TLocal > implements the construct allowing communication among iteration bodies.

 However, there is an essential difference between For and ForEach . While For iterates through a range
of integral values (int or long), ForEach iterates through elements of an IEnumerable < TSource > .
The ForEach method has more overloads than For — actually, each variant of For has the matching
variant of ForEach . Consider the following method signatures of For :

ParallelLoopResult For(int fromInclusive, int toExclusive, ParallelOptions options,
 Action < int, ParallelLoopState > body);

ParallelLoopResult For < TLocal > (int fromInclusive, int toExclusive,
 ParallelOptions options,
 Func < TLocal > localInit, Func < int, ParallelLoopState, TLocal, TLocal > body,
 Action < TLocal > localFinally);

You can fi nd the matching versions of ForEach overloads as shown in the following code snippet:

ParallelLoopResult ForEach < TSource > (IEnumerable < TSource > source,
 ParallelOptions parallelOptions, Action < TSource, ParallelLoopState > body)

ParallelLoopResult ForEach < TSource, TLocal > (IEnumerable < TSource > source,
 ParallelOptions parallelOptions, Func < TLocal > localInit,
 Func < TSource, ParallelLoopState, TLocal, TLocal > body,
 Action < TLocal > localFinally)

 The semantics for how the ParallelLoopState value, the localInit , body , and localFinally
delegates are used is exactly the same as introduced earlier when treating the For methods. A slight
difference is that the body delegate takes an instance of TSource instead of an iteration index. There
are method overloads where you can pass both a TSource instance and a long index to the body
delegate with the following signature:

Func < TSource, ParallelLoopState, long, TLocal, TLocal > body

 When you think about how to implement a parallel For or ForEach cycle, you ’ ll recognize that
the work should somehow be partitioned, so that it may be distributed among the CPU cores
(or threads). It ’ s very easy to partition a range of integers as represented by the fromInclusive and
 toExclusive parameters. However, partitioning an IEnumerable < T > is more diffi cult, because its
length is unknown, and it can be traversed only sequentially.

 The TPL uses an abstraction represented by the Partioner < T > for partitioning strategies of
 IEnumerable < T > collections. In several scenarios, when the data in the collection is orderable
(for example, items in a Dictionary can be ordered by item keys), partitioning should be done
with ordering. The OrderingPartitioner < T > class is an abstraction for this.

 ForEach has overloads where the source parameter of the methods can be represented by a
 Partitioner < T > or OrderedPartitioner < T > , instead of IEnumerable < T > .

Parallel Computing ❘ 439

CH010.indd 439CH010.indd 439 9/6/10 5:02:52 PM9/6/10 5:02:52 PM

440 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Working with Tasks

 The Parallel class provides uniquely simple declarative units of work to be run concurrently. The
 Invoke method and loops are really useful in many situations, but there are scenarios where algorithms
cannot be composed so easily. This is where tasks come into the picture.

 The name “ Task Parallel Library ” obviously refers to a task as the most important abstraction
in the approach to parallelism. Developers using traditional multi - threading have to think in “ path
of execution ” when programming parallel algorithms. A majority of their efforts tend to be spent
on organizing a large amount of plumbing code wrapping around relatively small amount of real
code related to the algorithm itself. The mission of tasks is to free developers from the “ path of
execution ” thinking, and change their mindset toward the “ unit of work ” paradigm.

 “ Unit of work ” means that algorithms are gradually decomposed into smaller pieces (units)
that run their bodies sequentially. Dependencies among these units are mapped, so that units
available for parallel working could be discovered. Figure 10 - 16 shows an example for this
decomposition.

Task A

Task A1 Task A2

Task A3

Task A4

Task B

Task B3 Task B4

Task B1

Task B5

Task B2

Initialization

Task I1 Task I2

Consolidation

Task C1 Task C2

 FIGURE 10 - 16: Decomposing a task to units

CH010.indd 440CH010.indd 440 9/6/10 5:02:52 PM9/6/10 5:02:52 PM

 The algorithm shown in Figure 10 - 16 can be decomposed to an Initialization task at the beginning
and Consolidation task at the end. The body of the algorithm uses two calculations, Task A and
Task B, that are independent and their partial results are combined to the fi nal result in the
Consolidation task. These high - level tasks are individually split into smaller units. Arrows show
the control fl ow among them.

 When you see this net of tasks, you simply fi nd those that can run parallel. It ’ s obvious that
Task A and Task B can run side - by - side, but even within them (just as in Initialization and in
Consolidation), you can easily discover the units that are good candidates for concurrent execution
(such as Task I1 and Task I2, Task A1 and Task A2, and the others).

 The concept of a task in TPL allows you to make the same kind of decomposition programmatically.

 Sometimes it is not obvious how to transform a sequential algorithm into a
parallel one, especially in cases when sequential algorithms contain loops where
iterations depend on the preceding one. If you do not have the appropriate
background in algorithm theory, you can use the web to search for parallel
solutions. Once you have a concurrent version of an algorithm, you can use the
 “ unit of work ” approach to describe it with TPL.

 Creating and Starting Tasks

 The TPL is very strong in describing tasks and control fl ow. Listing 10 - 14 demonstrates this
statement by programmatically defi ning the task visualized in Figure 10 - 16. You will get a detailed
explanation about this code and the concepts used within, but before getting to that, examine
the code listing thoroughly, compare it with Figure 10 - 16, and try to understand it. You ’ ll see it ’ s
intuitive.

 LISTING 10 - 14: Describing Tasks in Figure 10 - 15 with TPL

using System;
using System.Threading.Tasks;

namespace DecompositionSample
{
 class Program
 {
 static void Main(string[] args)
 {
 // --- Initialization
 var taskInitialization = Task.Factory.StartNew(() = >
 {
 Console.WriteLine(“Prepare to run ‘Initialization’”);

continues

Parallel Computing ❘ 441

CH010.indd 441CH010.indd 441 9/6/10 5:02:53 PM9/6/10 5:02:53 PM

442 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

LISTING 10-14 (continued)

 var taskI1 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task I1’”); },
 TaskCreationOptions.AttachedToParent);
 var taskI2 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task I2’”); },
 TaskCreationOptions.AttachedToParent);
 });
 taskInitialization.Wait();
 Console.WriteLine(“’Initialization’ finished.”);

 // --- Task A and Task B running concurrently
 var taskA = Task.Factory.StartNew(() = >
 {
 // --- Describe the control flow of Task A
 Console.WriteLine(“Prepare to run ‘Task A’”);
 var taskA1 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task A1’”); },
 TaskCreationOptions.AttachedToParent);
 var taskA2 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task A2’”); },
 TaskCreationOptions.AttachedToParent);
 Task.WaitAll(taskA1, taskA2);
 Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task A3’”); },
 TaskCreationOptions.AttachedToParent).Wait();
 Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task A4’”); },
 TaskCreationOptions.AttachedToParent);
 });
 var taskB = new Task(() = >
 {
 // --- Describe the control flow of Task B
 Console.WriteLine(“Prepare to run ‘Task B’”);
 var taskB1 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task B1’”); },
 TaskCreationOptions.AttachedToParent);
 var taskB2 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task B2’”); },
 TaskCreationOptions.AttachedToParent);
 var taskB3 = taskB1.ContinueWith((task) = >
 { Console.WriteLine(“ Executing ‘Task B3’”); });
 var taskB4 = taskB2.ContinueWith((task) = >
 { Console.WriteLine(“ Executing ‘Task B4’”); });
 Task.WaitAll(taskB3, taskB4);
 Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task B5’”); },
 TaskCreationOptions.AttachedToParent);
 });

CH010.indd 442CH010.indd 442 9/6/10 5:02:58 PM9/6/10 5:02:58 PM

 taskB.Start();
 Task.WaitAll(taskA, taskB);
 Console.WriteLine(“’Task A’ and ‘Task B’ finished.”);

 // --- Consolidation
 var taskConsolidation = Task.Factory.StartNew(() = >
 {
 Console.WriteLine(“Prepare to run Task Consolidation”);
 var taskC1 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task C1’”); },
 TaskCreationOptions.AttachedToParent);
 var taskC2 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task C2’”); },
 TaskCreationOptions.AttachedToParent);
 });
 taskConsolidation.Wait();
 Console.WriteLine(“’Consolidation’ finished.”);
 Console.WriteLine(“Press Enter to exit...”);
 Console.ReadLine();
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 When you run this code, it generates output similar to Figure 10 - 17.

 FIGURE 10 - 17: Output of running the code of Listing 10 - 14

 In Figure 10 - 17, you can see that Task A and Task B run concurrently, because child tasks belonging
to Task A and Task B are combed. According to the control fl ow defi nition, the last running child
of Task A is Task A4, and the last running child of Task B is Task B5.

 Now, let ’ s dive into the details of the code.

Parallel Computing ❘ 443

CH010.indd 443CH010.indd 443 9/6/10 5:02:58 PM9/6/10 5:02:58 PM

444 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 The most important type in this declaration is the Task class. An instance of this class can be used
to represent a task, or its static Factory property can be used to instantiate tasks. With a few
exceptions in the sample code, all the tasks are instantiated with the Task.Factory.StartNew()
method:

var taskA = Task.Factory.StartNew(() = >
{
 Console.WriteLine(“Prepare to run ‘Task A’”);
 // ...
});

 StartNew takes an Action as its input parameter (the code uses lambda expressions to represent
these Action instances), creates a Task instance, and immediately starts it. This method has a
few overrides accepting other parameters like a CancellationToken , a TaskScheduler , or a
 TaskCreationOptions instance — these overrides mirror the variety of Task constructors.

 Instantiating and starting a task can be separated into two steps:

var taskB = new Task(() = >
{
 Console.WriteLine(“Prepare to run ‘Task B’”);
 // ...
});
taskB.Start();

 Defi ning Control Flow

 TPL uses the concept of parent task and child tasks to describe a task hierarchy. “ Hierarchy ” means
that a parent task is terminated only when all children complete their activities. You can attach
a task to its parent by passing TaskCreationOptions.AttachedToParent to the construction
method instantiating a task:

var taskA = Task.Factory.StartNew(() = >
{
 // ...
 var taskA1 = Task.Factory.StartNew(() = >
 { Console.WriteLine(“ Executing ‘Task A1’”); },
 TaskCreationOptions.AttachedToParent);
 // ...
}

 TaskCreationOptions also has two other fl ags infl uencing how the scheduler should handle
the related task (PreferFairness and LongRunnning), and those can be combined with
 AttachedToParent .

 It is very important to use the AttachedToParent value to mark a child task. Should you miss this
markup, the task will be a simple task created within the body of another task. In this case, the
wrapping task can be fi nished without waiting for the fi nalization of the task created in its body.
Listing 10 - 15 shows a sample where this parent - child relation is not set up.

CH010.indd 444CH010.indd 444 9/6/10 5:02:58 PM9/6/10 5:02:58 PM

 LISTING 10 - 15: Tasks without Parent - Child Relationship

using System;
using System.Threading;
using System.Threading.Tasks;

namespace DecompositionSample
{
 class Program
 {
 static void Main(string[] args)
 {
 var taskInitialization = Task.Factory.StartNew(() = >
 {
 Console.WriteLine(“Prepare to run ‘Initialization’”);
 var taskI1 = Task.Factory.StartNew(() = >
 {
 Thread.Sleep(100);
 Console.WriteLine(“ Executing ‘Task I1’”);
 });
 var taskI2 = Task.Factory.StartNew(() = >
 {
 Thread.Sleep(100);
 Console.WriteLine(“ Executing ‘Task I2’”);
 });
 });
 taskInitialization.Wait();
 Console.WriteLine(“’Initialization’ finished.”);
 Thread.Sleep(1000);
 Console.WriteLine(“Press Enter to exit...”);
 Console.ReadLine();
 }
 }
}

 When you run this code, you can see that taskInitialization is fi nished before taskI1
and taskI2 . Figure 10 - 18 shows this scenario.

 FIGURE 10 - 18: Main tasks fi nishes before its subtasks

 Moreover, if you omit the last Thread.Sleep(1000) statement from the code, you will not see
 taskI1 and taskI2 execute, because the main task terminates, and the application closes while the
two incomplete tasks are waiting.

 At a certain point, concurrently running tasks must meet before going on. For example, both Task
A and Task B must be fi nished before Consolidation can run; or fi nishing both Task A1 and

Parallel Computing ❘ 445

CH010.indd 445CH010.indd 445 9/6/10 5:02:59 PM9/6/10 5:02:59 PM

446 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

Task A2 is a prerequisite before Task A3 is allowed to run. These scenarios can be handled by the
 Wait method of a Task instance, or the static WaitAll and WaitAny methods. For example, before
Consolidation can run, the following code is used:

var taskA = Task.Factory.StartNew(() = > { ... });
var taskB = new Task(() = > { ... });
taskB.Start();
Task.WaitAll(taskA, taskB);

 Task 3 uses the Wait method before Task 4 is run:

Task.Factory.StartNew(() = >
{ Console.WriteLine(“ Executing ‘Task A3’”); },
 TaskCreationOptions.AttachedToParent).Wait();
Task.Factory.StartNew(() = >
{ Console.WriteLine(“ Executing ‘Task A4’”); },
 TaskCreationOptions.AttachedToParent);

 Looking back at Listing 10 - 14 you can see that neither the Initialization nor the Consolidations
tasks have an explicit Wait or WaitAll for their concurrently running Task I1, Task I2 and TaskC1,
Task C2 pairs. Because they are child tasks, their parents will implicitly wait for their completion.

 The sequential relationship between tasks (or among a chain of tasks) can be handled with the
 ContinueWith method. For example, the synchronization between B1 and B3 is described in
this way:

var taskB1 = Task.Factory.StartNew(() = >
{ Console.WriteLine(“ Executing ‘Task B1’”); },
 TaskCreationOptions.AttachedToParent);
// ...
var taskB3 = taskB1.ContinueWith((task) = >
{ Console.WriteLine(“ Executing ‘Task B3’”); });

 Of course, you could use Wait instead of ContinueWith :

var taskB1 = Task.Factory.StartNew(() = > { ... });
// ...
taskB1.Wait();
var taskB3 = Task.Factory.StartNew(() = > { ... });

 However, ContinueWith has a few advantages. First of all, it ’ s declarative against the imperative
approach represented by Wait . You can pass the preceding task to ContinueWith , and that provides
you more control, because your continuation logic can utilize the result and status of that task.
Although you can explicitly use the status of the preceding task with the Wait pattern, it is a static
approach, because you must know that task at compile - time. ContinueWith allows you to assemble
a chain (or net) of your tasks at run - time.

 Tasks with Results

 In many cases, tasks are to compute a certain value or even a complex structure — for example a
customer account report. You can use the Task < TResult > type for this purpose. Task < TResult > is

CH010.indd 446CH010.indd 446 9/6/10 5:02:59 PM9/6/10 5:02:59 PM

derived from Task , so you can substitute a Task instance with a Task < Result > instance anywhere.
Of course, the delegates representing task bodies must be instances of Func < TResult > instead of
instances of Action , because they must retrieve a TResult . This computed value (object) can be
queried through the Task < TResult > .Result instance property.

 Result has a nice behavior. If the task is not fi nished, Result will wait for the completion
before retrieving the property value. Be aware that Result does not start the task, so, in case
of a non - running task, you should wait infi nitely for its Result .

 Listing 10 - 16 shows a short example demonstrating Task < Result > concepts.

 LISTING 10 - 16: Using Task < Result >

using System;
using System.Threading;
using System.Threading.Tasks;

namespace TasksWithResults
{
 class Program
 {
 static void Main(string[] args)
 {
 var task1 = Task.Factory.StartNew < int > (() = >
 {
 int result = 0;
 for (int i = 0; i < 10000000; i++) result += i + i%10;
 return result;
 });
 var task2 = Task.Factory.StartNew < double > (() = >
 {
 double result = Math.PI;
 for (int i = 0; i < 10; i++)
 {
 Thread.Sleep(10);
 result *= (i+1.1)*Math.E;
 }
 return result;
 });
 var task3 = Task.Factory.StartNew < string > (() = > “The result is: “);
 Console.WriteLine(task3.Result + (task1.Result + task2.Result));
 Console.WriteLine(“Press Enter to exit...”);
 Console.ReadLine(); }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The three task instances (task1 , task2 , and task3) are used to calculate a string used by the
 Console.WriteLine call in the last statement. They do dummy calculations, but these are good
for demonstration purposes. All tasks are started right after their instantiation. When the control

Parallel Computing ❘ 447

CH010.indd 447CH010.indd 447 9/6/10 5:02:59 PM9/6/10 5:02:59 PM

448 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

fl ow reaches the Console.WriteLine call, there is a high likelihood that task1 and task3 fi nish,
but task2 does not (because it has a Thread.Sleep(10) call within). However, you do not have
to handle this situation. The Result properties will take care that each particular factor gets
calculated before the fi nal result is computed.

 Executing Tasks

 After you have started tasks, TPL takes care of executing them. At the end of the day, each task is
executed on a working thread with the help of the System.Threading.ThreadPool and System
.Threading.TaskScheduler classes. TPL does not create a thread for each task. It uses a lighter
mechanism to provide concurrency.

 It may be easier to understand the essence of this mechanism through a simple example. Let ’ s
assume that a console application creates two tasks, Task 1 and Task 2, in this order. Later, when
Task 2 runs, it creates three more tasks, namely Task 2A, Task 2B, and Task 2C, also in this order.

 The CLR uses its own thread pool to delegate user work items to worker threads. These items are
added to the Global Queue of the CLR Thread Pool with the static QueueUserWorkItem method of
the ThreadPool class. When a working thread becomes available, it gets the next work item waiting
in this queue. After processing the item, the working thread becomes available again to process
another work item.

 TPL wraps tasks into work items so that each working thread implements its own thread - local
queue. So, when Task 1 and Task 2 are started, they are put into the Global Queue as work items.
Let ’ s assume that Task 1 is delegated to Working Thread #1 (denoted as WT#1) and Task 2 to
Working Thread #N (denoted as WT#N). Figure 10 - 19 shows this scenario.

Task#1

CLR Thread Pool

Main Program

Thread

Worker

Thread #1

Global Queue Local Queue

Worker

Thread #N

Local Queue

Task#1

Task#2

Task#2A

Task#2B

Task#2C

Task#2

 FIGURE 10 - 19: Working threads have their own local queue

CH010.indd 448CH010.indd 448 9/6/10 5:03:00 PM9/6/10 5:03:00 PM

 Now, when Task 2 creates new tasks, those go into the local queue of WT#N, and not into the
Global Queue. Let ’ s assume that WT#N fi rst fi nishes with processing Task 2, and then, a bit later,
WT#1 with processing Task 1. The working threads do not stop at this point and so they do not
become available for other work items! Figure 10 - 20 shows what happens next.

CLR Thread Pool

Main Program

Thread

Worker

Thread #1

Global Queue Local Queue

Worker

Thread #N

Local Queue

Task#2A

Task#2B

Task#2C

Task#2C Task#2A

2

1

 FIGURE 10 - 20: Work - stealing

 Now, the Local Queue of WT#N is not empty; there are three tasks waiting for execution. The
thread picks up Task 2C from the queue (as if the queue were a stack) and starts executing it. But
Task 2C is the latest task created, and it was put to the Local Queue after Task 2A and 2C! Why
does WT#N take this one and not Task 2A? The reason is performance — because Task 2C was
created later then task 2A, there is a greater likelihood that more resources of Task 2C are cached
into the memory than resources for Task 2A.

 When WT#1 fi nishes (a bit later than WT#N), it sees its Local Queue is empty. However, it also
looks at other Local Queues and discovers that WT#N has two tasks in its queue. WT#1 picks
up (“ steals ”) Task 2A from the Local Queue of WT#N and starts executing it. This is called work -
 stealing with TPL terminology. “ Stolen ” tasks are picked up from the beginning of the queue,
intentionally, because of performance reasons.

 Should WT#N fi nish Task 2C earlier than WT#1 fi nishes Task 2A, WT#N would grab Task 2B for
execution; otherwise, WT#1 would steal it.

 Task - Related Types

 There are several types that can help you with task - related activities; most of them can be found in
the System.Threading.Tasks namespace. Table 10 - 4 lists them with a brief description of their
functionality.

Parallel Computing ❘ 449

CH010.indd 449CH010.indd 449 9/6/10 5:03:00 PM9/6/10 5:03:00 PM

450 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Coordination Data Structures

 .NET Framework 4.0 introduces several new types that are useful in parallel programming. These
types are heavily used by the TPL and the PLINQ execution engine. They are not for internal use
only. Moreover, you are encouraged to build them into your concurrent algorithms.

 TABLE 10 - 4: Concurrent Collection Classes

 TYPE NAME DESCRIPTION

 Task This class represents an asynchronous operation, and

implements the abstraction of “ task ” as discussed

earlier in this chapter.

 Task < TResult > This class represents a Task that retrieves a result of

type TResult .

 TaskCancelledException This exception class can be used to communicate that

a task is cancelled. Through its Task property, you

can access the cancelled task instance. If no task is

assigned to the exception, Task is null .

 TaskCompletionSource < TResult >

 This type acts as the producer for a Task < TResult >

and its completion, without bounding the class instance

to a delegate.

 You can use this class to create your own

asynchronous operation that provides the interface

of a Task < Result > instance for the consumers. The

 Task property retrieves the Task < Result > instance

for the consumers, which hides the asynchrony used

internally. There are a few methods (such as SetResult ,

 SetException , SetCancelled , and a few more) that

communicate the status of the asynchrony mechanism

back to the Task property.

 TaskFactory , TaskFactory < Result > These classes provide support for creating and

scheduling Task objects. Their methods such as

 StartNew , ContinueWhenAll , ContinueWhenAny ,

 FromAsync (and their generic forms) provide you a

notation for task instantiation, which lets you feel as if

you ’ re using task - specifi c declarative language.

 TaskScheduler This class represents a scheduler object responsible for

the low - level work of queuing tasks onto threads.

CH010.indd 450CH010.indd 450 9/6/10 5:03:01 PM9/6/10 5:03:01 PM

 These types can be grouped into the following categories:

 Concurrent Collection Classes — The collection classes in the System.Collections.
Concurrent namespace provide thread - safe add and remove operations with sophisticated
locking mechanisms.

 Synchronization Primitives — The System.Threading namespace has new synchronization
primitives that enable fi ne - grained concurrency and faster performance by avoiding
expensive locking mechanisms found in legacy multithreading code.

 Lazy Initialization Classes — These classes help you to wrap your custom types into “ lazy ”
classes that allow you to postpone the memory and resource allocation for an object until it
is needed.

 Cancellation Primitives — One of the most diffi cult things with multiple - threads is the
proper cancellation of them. Cancellation primitives help you to simplify this scenario.

 Concurrent Collection classes

 Collection classes introduced in .NET Framework 1.0 and 2.0 require user code to take any
locks when it accesses items. This behavior has been changed with the new concurrent collection
classes, which do not require any user code. You simply use their methods, and can be sure that no
concurrent issues (such as race conditions or deadlocks) will occur.

 Earlier in this chapter, the LorumIpsumQuery sample showed you that an ineffi cient locking
pattern may lead to poor performance. The concurrent collection classes can signifi cantly improve
performance over types generally used with your own locking - scheme (such as ArrayList and
 List < T >) in scenarios where multiple threads add, insert, modify, and remove items from a
collection. These new classes are optimized for these scenarios, and provide thread - safe add
and remove operations that avoid locks wherever possible, and use fi ne - grained locking where
locks are necessary.

 Table 10 - 5 lists these new concurrent collection classes.

➤

➤

➤

➤

 TABLE 10 - 5: Concurrent Collection Classes

 TYPE NAME DESCRIPTION

 BlockingCollection < T >

 This class provides blocking and bounding capabilities for

thread - safe collections. BlockingCollection < T > allows

removal attempts from the collection to block until data is

available to be removed.

 Also, you can use BlockingCollection < T > to enforce an

upper - bound on the number of data elements allowed in the

collection. Addition attempts to the collection may then block

until space is available to store the added items.

continues

Parallel Computing ❘ 451

CH010.indd 451CH010.indd 451 9/6/10 5:03:01 PM9/6/10 5:03:01 PM

452 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Except ConcurrentDictionary < TKey, TValue > , all other classes implement the IProducer
ConsumerCollection < T > interface, which represents a collection that allows for thread - safe adding
and removing of data.

 Synchronization Primitives

 The System.Threading namespace contains new types that avoid expensive locking mechanisms
found in legacy multithreading code. Most of these types are lightweight, and enable fi ne - grained
concurrency and faster performance than predecessors in the .NET Framework.

 Table 10 - 6 lists these new synchronization primitives.

 TABLE 10 - 6: Synchronization Primitives

 TYPE NAME DESCRIPTION

 Barrier

 This class is new, and it does not have a predecessor in the previous

.NET Framework versions. Barrier enables multiple tasks to

cooperatively work on an algorithm in parallel through multiple phases.

 You can use this class to manage a group of tasks to cooperate by

moving through a series of phases, where each in the group signals it

has arrived at the Barrier in a given phase, and implicitly waits for all

others to arrive.

 TYPE NAME DESCRIPTION

 ConcurrentBag < T > This class represents a thread - safe, unordered collection of

objects. You can use ConcurrentBag < T > where the same

thread will be both producing and consuming data stored in the

bag, because ConcurrentBag < T > performance is optimized for

these scenarios.

 ConcurrentDictionary < TKey,

TValue >

 This class represents a thread - safe collection of key - value

pairs that can be accessed by multiple threads concurrently.

You can use the class instead of Dictionary < TKey, TValue >

easily, because it implements the same semantics. The internal

implementation of this class provides a much better scaling for

multiple threads in both for small and large size dictionaries

than you can achieve with Dictionary < TKey, TValue > .

 ConcurrentQueue < T > This class represents a thread - safe First - In - First - Out (FIFO)

collection.

 ConcurrentStack < T > This class represents a thread - safe Last - In - First - Out (LIFO)

collection.

TABLE 10-5 (continued)

CH010.indd 452CH010.indd 452 9/6/10 5:03:02 PM9/6/10 5:03:02 PM

 TYPE NAME DESCRIPTION

 A real - life example is when company cars are driven across the U.S.

from Seattle to Miami. The drivers do not drive in a convoy, but agree

on several points (let ’ s say Denver and Houston) where they wait for

each other. When everyone arrives at these barriers, they start the

next section of the route.

 The same Barrier instance can be used for multiple phases.

 CountdownEvent

 This class represents a synchronization primitive that is signaled when

its count reaches zero.

 You can use this class in fork - and - join scenarios, because it provides

an easy rendezvous mechanism.

 CountdownEvent allows a thread to wait until one or more threads

fi nish some other operation. An instance of this class is initialized

with an integral count, typically greater than 0. Threads can block

waiting on the event until the count reaches 0, at which point the

 CountdownEvent will be set. The count is decremented using

 CountdownEvent ’ s Decrement method, which is typically called by a

worker thread completing a unit of work being tracked by the event.

 ManualResetEventSlim

 This type is a slimmed down and lighter - weight version of its

predecessor, ManualResetEvent , and can be used to notify one or

more waiting threads that an event has occurred.

 The price of slimming is that you can use an instance of

 ManualResetEventSlim only for intra - process communication.

 SemaphoreSlim This lightweight class can be used to limit the number of threads

that can access a resource or pool of resources concurrently. It has

a predecessor named Semaphore that was introduced by .NET

Framework 2.0. However, while Semaphore leverages on Windows

kernel semaphores, SemaphoreSlim does not.

 SpinLock , SpinWait

 These synchronization primitives enable a thread to wait. They can

improve performance when the wait time is expected to be short, by

avoiding expensive sleeping and blocking operations.

 SpinLock is a mutual - exclusion lock primitive that causes the thread

that is trying to acquire the lock to wait in a loop (or spin) for a period

of time before yielding its quantum. SpinLock is a value type, for

performance reasons, so if you need to pass a SpinLock instance

around, it should be passed by reference, rather than by value.

 SpinWait is a small, lightweight type that will spin for a specifi ed time and

eventually put the thread into a wait state if the spin count is exceeded.

 SpinWait is a value type; its members are not thread - safe. If multiple

threads must spin, each should use its own instance of SpinWait .

Parallel Computing ❘ 453

CH010.indd 453CH010.indd 453 9/6/10 5:03:02 PM9/6/10 5:03:02 PM

454 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 These synchronization primitives play an important role in TPL implementation. They are heavily
used, and signifi cantly contribute to the great performance of TPL.

 Lazy Initialization Classes

 Postponing initialization of type members until they are needed is a frequently used programming
pattern. It is especially useful when initialization is expensive by means of consumed CPU cycles,
memory, or other resources. Lazy initialization classes listed in Table 10 - 7 can help you in these
scenarios.

 TABLE 10 - 7: Lazy Initialization Types

 TYPE NAME DESCRIPTION

 System.Lazy < T >

 This class provides support for lazy initialization of a

 T instance. When you create an instance of Lazy < T > ,

it does not instantiate T . You can access the instance

behind Lazy < T > using its Value property.

 Lazy initialization occurs the fi rst time the Lazy < T >

.Value property is accessed, or the Lazy < T >

.ToString method is called.

 System.Threading.LazyInitializer

 This static class provides lazy initialization routines.

With .NET Framework 4.0, you can use a few overloads

of the EnsureInitialized method. In the future, the

class may be extended with more helper methods.

 In scenarios where you must lazy - initialize a large

number of objects, you might decide that wrapping

each object in a Lazy < T > requires too much memory,

or too many computing resources. Or, you might have

stringent requirements about how lazy initialization

is exposed. In such cases, you can use the static

 EnsureInitialized methods to lazy - initialize each

object without wrapping it in an instance of Lazy < T > .

 System.Threading.ThreadLocal < T >

 This class provides thread - local storage of data with

type T . Although this class uses lazy initialization in its

implementation, “ laziness ” isn ’ t its main functionality.

By providing an instance of ThreadLocal < T > , you

can be sure that the T instance accessed through

the Value property is shared within the thread it was

created.

 Its role is similar as the role of the ThreadStatic

attribute used to decorate static fi elds in order to have

thread - local behavior. However, ThreadLocal < T >

provides better performance.

CH010.indd 454CH010.indd 454 9/6/10 5:03:03 PM9/6/10 5:03:03 PM

 Cancellation Primitives

 If you have ever tried to solve the cancellation of a work carried out by several threads running in
parallel, you know how complex it could be, especially for blocking calls. TPL provides a few types
that simplify the complexity of cancellation. The primitives listed in Table 10 - 8 can be used in your
parallel applications using tasks, PLINQ expression, or Parallel loops.

 TABLE 10 - 8: Cancellation Primitives

 TYPE NAME DESCRIPTION

 CancellationToken This structure propagates notifi cation that operations should be

cancelled. You can pass an instance of CancellationToken

to blocking calls such as BlockingCollection.Add(...) ,

 BlockingCollection.Take(...) , ManualResetEventSlim.

Wait(...) , Task.Wait(...) , and Task.WaitAll(...) . These

methods have overloads that accept a CancellationToken

instance, and fi nish their operation when a cancellation occurs.

 CancellationTokenSource This class signals to a CancellationToken that is should be

cancelled. You can use this class as a conductor in cooperative

cancellation scenarios. You can pass the Token property of a

 CancellationTokenSource instance to methods accepting

it. When the Cancel method is called, all instances having the

token belonging to this CancellationTokenSource instance

will be notifi ed.

 CODE CONTRACTS

 Modern software architecture uses layers and components with exact boundaries and well - defi ned
responsibilities. Without this kind of approach, it is diffi cult to write testable software with good
quality. The cooperation among these components is generally defi ned by contracts . For many
developers, contracts are the defi nitions of interfaces (interface classes) and related data transfer
objects or entities the components use to defi ne the communication surface. For example, let ’ s
assume that you develop warehouse stock management software where one of the interface classes
is WarehouseService and a related entity is Order :

public class WarehouseService
{
 public void QueueOrder(Order order)
 {
 // ...
 }
}

public class Order

Code Contracts ❘ 455

CH010.indd 455CH010.indd 455 9/6/10 5:03:03 PM9/6/10 5:03:03 PM

456 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

{
 public string CustomerName { get; set; }
 public int ProductId { get; set; }
 public int Quantity { get; set; }
}

 Unfortunately, these two classes leave many issues. When you see their defi nitions and want to use
them, you must ask the architect (or even the developer) some questions about these classes to
use them successfully. Here are a few questions you may ask:

 What happens if a null value is passed to the QueueOrder method? You may assume, it
raises an ArgumentNullException , but you cannot be sure.

 What if the CustomeName property in the Order instance is null , or an empty string? Is the
order valid in this case?

 What if the Quantity property of Order is negative? Does it mean that actually a product is
returned to the warehouse? Can this value be zero?

 These questions would not be necessary if there were a way to describe the behavior of the
 QueueOrder method in such an unambiguous way as the signature of the method. Actually, the
answers to these questions should be the part of the contract defi ning the WarehouseService
behavior.

 This is where a new .NET Framework feature, programming with code contracts , comes into the
picture. The basic idea behind code contracts is that classes and methods should explicitly state
what they require, and what they guarantee if those requirements are met. This practice was fi rst
introduced by Bertrand Meyer with the Eiffel programming language, and Microsoft Research also
has a project called Spec#, that covers a formal language for API contracts (infl uenced by Eiffel,
JML, and AsmL languages). These contracts are not only human - readable but can also be picked
up by tooling that can perform run - time checking or static verifi cation, or perhaps include them in
generated documentation.

 Understanding the Code Contracts System

 There are two basic parts that are involved in using code contracts in the .NET Framework 4.0. The
fi rst part is the code contract library . Contracts are encoded using static method calls defi ned in
the Contract class of the System.Diagnostics.Contracts namespace. Contracts are declarative,
and these static calls at the beginning of your methods can be thought of as part of the method
signature. For example, the QueueOrder method treated earlier could be extended with a few
declarative contracts:

public void QueueOrder(Order order)
{
 Contract.Requires(order != null);
 Contract.Requires(order.Quantity > 0);
 // ...
}

➤

➤

➤

CH010.indd 456CH010.indd 456 9/6/10 5:03:03 PM9/6/10 5:03:03 PM

 Generally, in the .NET Framework, attributes are used to express declarative elements for types
and members. However, code contracts are methods, and not attributes, because attributes are very
limited in what they can express. Just think about how to describe order != null with attributes.

 The second part of the code contract system is the set of tools that adds a great value to the code
contract library. This set contains three tools that can be accessed from a command line and can
also be integrated with Visual Studio 2010:

 Ccrewrite.exe — This tool modifi es the MSIL instructions of an assembly to place the
contract checks into the physical code stream. With the library, you declare your contracts
at the beginning of the method. This is the tool that enables run - time checking of contracts
to help you debug your code. Without it, contracts are simply documentation, and shouldn ’ t
be compiled into your binary.

 Cccheck.exe — This tool examines code without executing it, and tries to prove that all
of the contracts are satisfi ed. There are attributes in the contract library that let you specify
which assemblies, types, or members should be checked.

 Ccrefgen.exe — This tool creates separate contract reference assemblies that contain only
the contracts. The rewriter and static checker will then make use of any contract assemblies
when they are doing their instrumentation and analysis.

 While the code contract library is a part of .NET Framework 4.0, tools are not. You can download
them from the Code Contracts site on DevLabs (http://msdn.microsoft.com/en-us/devlabs/
dd491992.aspx).

➤

➤

➤

 Declaring Code Contracts

 Code contracts can be used to defi ne three types of conditions:

 Preconditions — These express what program state is required for a method to run
successfully.

 Postconditions — These tell you what you can rely upon at the completion of the method.

 Object invariants — These are guarantees about conditions that will always be true for an
object.

 Because code contracts are used primarily to help fi nd bugs in code, they are conditionally compiled
when you defi ne the symbol CONTRACTS_FULL . This means that, without this symbol, your contracts
will not be checked at run - time. If you want to ensure that code contracts do not change your
business logic, all conditions that are checked must be side - effect free.

➤

➤

➤

 As of this writing, Code Contract Tools come with Academic License. It is not
clear what kind of license you will need to use the tools with the fi nal version of
Visual Studio 2010.

Code Contracts ❘ 457

CH010.indd 457CH010.indd 457 9/6/10 5:03:04 PM9/6/10 5:03:04 PM

458 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Code contracts will result in code running within the encapsulating method, and so contracts are
inherited. If you have a class, let ’ s say MyClass , code contracts defi ned and checked there will also
be checked in direct or indirect descendants of MyClass .

 Preconditions

 Preconditions describe a particular condition that must be true upon entry to the method (checking
the method input). In other words, preconditions are contracts on the state of the world when a
method is invoked.

 Preconditions are expressed using Contract.Requires or Contract.Requires < TException >
methods. Here are a few examples:

Contract.Requires(customer.Name != null);
Contract.Requires(order.TotalAmount > = 0, “Amount cannot be a negative number”);

Contract.Requires < ArgumentNullException > (customer.Name != null);
Contract.Requires < ArgumentException > (order.ItemID.Length == 6,
 “ID must be exacly 6 characters”);

 The arguments of Requires are a predicate defi ning the precondition, and an optional message to
use at run - time when the condition is not met. There is an important restriction on the predicate —
all members mentioned in preconditions must be at least as accessible as the method itself. When
you use the generic form of Requires < TException > , a TException is raised at run - time if the
precondition is evaluated to false .

 Your legacy code (any code written before .NET 4) may contain many preconditions by means of
checking method inputs. Tools also can use if statements and recognize them as legacy forms
of code contracts, if you help with the EndContractBlock method call, as the sample shows:

public void QueueOrder(Order order)
{
 if (order == null)
 throw new ArgumentNullException(“order”);
 if (order.CustomerName == null)
 throw new ArgumentNullException(“order.CustomerName”);
 Contract.EndContractBlock();
 if (order.CustomerName.Length == 0)
 order.CustomerName = “ < noname > ”;
 // ...
}

 Requires < TException > is always compiled (even if you do not use the
 CONTRACTS_FULL symbol), so use of this method entails a hard dependency on
the tools. You should decide if you want that before using this method.

CH010.indd 458CH010.indd 458 9/6/10 5:03:09 PM9/6/10 5:03:09 PM

 In this case, tools (for instance Cccheck.exe) take the fi rst two if statements into account as a negated
precondition, but not the third one, because it is preceded by the Contract.EndContractBlock
method. However, this form of precondition is highly restricted. It must be written as shown here.
There are no else clauses, and the body of the then clause must be a single throw statement.

 Postconditions

 Postconditions are contracts on the state of a method when it terminates. In other words, the
condition is checked just prior to exiting a method. Unlike preconditions, members with less
visibility may be mentioned in a postcondition. There are two kinds of postconditions:

 Normal — These express a condition that must hold on normal termination of the method.

 Exceptional — These express a condition when a particular exception is raised by the
method, as a part of its contract.

 These conditions can be described by the Contract.Ensures and Contract.EnsuresOnThrow
 < TException > , respectively. In the latter case, TException is the type of exception thrown
(the exception can also be a subtype of TException). Here are a few examples:

Contract.Ensures(order.CustomerID != 0);
Contract.EnsuresOnThrow < ArgumentException > (!transactionCompleted);

 Because of the nature of postconditions, it is normal to make conditions for the return value or
output values of a method. The Contract class provides several special methods that may be used to
access these values. There is no language element in C# or Visual Basic to refer to the return value,
so you can refer to it in a postcondition with the Contract.Result < T > method, where T is the type
of the return value. For example, you can express that the returned integer should be between 100
and 200 :

Contract.Ensures(Contract.Result < int > () > = 100 & & Contract.Result < int > () < = 200);

 Output parameters may not be set before the code contract line where they are used in a
postcondition; otherwise, the compiler would raise an error. To avoid this situation, you can use
the Contract.ValueAtReturn < T > (out T t) method, where T is the type of the output value. For
example, you can express that the output string cannot be longer than 64 characters:

public void HashText(string text, out string hash)
{
 Contract.Ensures(Contract.ValueAtReturn < string > (out hash).Length < = 64);
 // ...
}

➤

➤

 You can also use the Contract.OldValue < T > method to refer to a pre - state in a
postcondition, and two quantifi ers (Contract.Exists < T > , Contract
.ForAll < T >) are also supported. You can read details of using them in the
reference documentation of the Contract class.

Code Contracts ❘ 459

CH010.indd 459CH010.indd 459 9/6/10 5:03:14 PM9/6/10 5:03:14 PM

460 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Object Invariants

 Object invariants are object - wide contracts about a condition that is guaranteed to always hold.
They can be thought of as postconditions on every single public member of the object.

 Because invariants characterize the object type, related contracts should be put into a separate
method. This method must not have any parameters, and should return void . You can use any
name for this method (a suggested practice is to use the ObjectInvariant name), and it must
be marked with the ContractInvariantMethod attribute. Here is an example:

public class Stock
{
 public int ProductId { get; set; }
 public int InStock { get; set; }
 // ...
 [ContractInvariantMethod]
 protected void ObjectInvariant()
 {
 Contract.Invariant(InStock > = 0);
 // ...
 }
}

 As you can see, individual invariants within invariant methods are specifi ed using the
 Contract.Invariant method. The method can contain no other code than a sequence of calls
to Contract.Invariant .

 Interface Contracts

 Many design patterns use interfaces as contracts among communicating components, and obviously
that is the place where code contracts should be put. However, many programming languages
(including C# and Visual Basic) do not allow putting method bodies into the interface defi nition.
Writing contracts for interface methods requires creating a separate contract class to hold them,
and linking the contract class with the interface by a pair of attributes.

 The contract class must exactly mirror the signatures of members, as the following example shows:

[ContractClass(typeof(IStockHandlerContract))]
interface IStockHandler
{
 void AddToStock(int amount);
 int CurrentStock { get; }
}

[ContractClassFor(typeof(IStockHandler))]
sealed class IStockHandlerContract : IStockHandler
{
 void IStockHandler.AddToStock(int amount)
 {
 Contract.Requires(amount > = 0);
 }

 int IStockHandler.CurrentStock
 {
 get

CH010.indd 460CH010.indd 460 9/6/10 5:03:19 PM9/6/10 5:03:19 PM

 {
 Contract.Ensures(Contract.Result < int > () > = 0);
 return default(int);
 }
 }
}

 The original interface must be marked with the ContractClass attribute pointing to the class
describing the code contracts, and this class must point back to the interface type with the
 ContractClassFor attribute. The contract class is expected to use explicit implementation of
the contracted interface. Within the members, you can describe code contracts just as if they
belonged to the class.

 The contract class is intended to be used only for contract checks. It is always a good practice to
declare it as an internal sealed class. For non - void methods and properties, the contract class must
return values; otherwise, the code would not compile. The best practice is to return a dummy value
with the default operator.

 Code Contract Tools in Visual Studio

 As mentioned earlier, Code Contract tools are not the part of either .NET Framework 4.0 or
Visual Studio 2010. They can be downloaded from the Code Contracts site on DevLabs (http://
msdn.microsoft.com/en-us/devlabs/dd491992.aspx). After downloading, you can immediately
install the tools. It is very easy, and takes only a few minutes.

 The next time you start Visual Studio 2010, you will see a new Code Contracts property page
accessible by right - clicking on Properties in the Solution Explorer when a project node is selected.
Figure 10 - 21 shows this new page.

 FIGURE 10 - 21: Code Contracts property page

Code Contracts ❘ 461

CH010.indd 461CH010.indd 461 9/6/10 5:03:20 PM9/6/10 5:03:20 PM

462 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Without going through all options available in the property page, here are the most important
settings you may use:

 You can turn on or off run - time checking (Ccrewite.exe), and tune checks with a few knobs.

 You can turn on or off static checking (Cccheck.exe) and defi ne what kind of checks to
carry on. When static checking is turned on, Cccheck.exe will run as a part of your build,
and will generate warnings and errors related to code contracts (or the lack of them).

 You can also create contract reference assemblies with Ccrefgen.exe as the part of the
build process.

 The static code checker utility is very useful. It helps to highlight issues in your code that may lead
to bugs — you can even use it with your legacy code.

 Run - time Behavior

 Code contracts and related tools can be used in several ways:

 You can use the Contract class for documentation purposes only.

 With the tools, you can perform static code analysis and use code contracts to respond to
the issues coming from the analysis.

 You can create full contracts for your fundamental types and methods (even for all of them)
and use the contracts during the debug build process.

 You may fi nd code contracts so important and useful that you want to also use them in the
production releases.

 While, in the fi rst two cases, code contracts are “ decorations ” only, in the latter two cases, code
contracts should infl uence the run - time behavior of types they are attached to.

 When you turn on run - time checking (set the Perform Runtime Contract Checking checkbox shown
in Figure 10 - 21), Ccrewrite.exe will change the MSIL code of the types with code contracts in the
assemblies generated by the compiler.

 By default, Contract methods are not compiled into the fi nal code, except Contract.Requires
 < TException > , and so they do not infl uence the run - time behavior of the code. However, when the
run - time checking is turned on, Ccrewrite.exe examines code contracts in your code and makes a
lot of changes in the fi nal code:

 Code representing preconditions is placed at the entry of the related methods directly before
the method body.

 Code contracts for postconditions are declared in the code at the beginning of members.
The code for checking postconditions is moved to the exit section of the method, after the
result, and all output variables are already calculated.

 Object invariants are checked at the end of each public method. If an invariant calls a public
method in the same class, then the invariant check is disabled and checked only at the
end of the outermost method call to that class. This also happens if the class is re - entered
because of a call to a method on another class.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH010.indd 462CH010.indd 462 9/6/10 5:03:20 PM9/6/10 5:03:20 PM

 When a condition is not met, the run - time will raise a ContractException . The Contract class has
a ContractFailed event you can subscribe to in order to be notifi ed about contract violations. This
event allows you to access a ContractFailedEventArgs instance that tells you everything about
the context of failure.

Managed Extensibility Framework ❘ 463

 If you are interested in the changes Ccrewrite.exe makes with your code, use
the .NET Refl ector utility that allows you to disassemble the code after it has
been instrumented by Ccrewrite.exe .

 MANAGED EXTENSIBILITY FRAMEWORK

 The Managed Extensibility Framework (MEF) is a new technology that is being shipped as a part
of .NET Framework 4.0, and you can consider it as a new part of the BCL. MEF as a technology
is intended to enable greater reuse of applications and components by turning today ’ s statically
compiled applications into dynamically composed ones.

 This section addresses the following topics:

 The challenge of dynamic software composition

 A simple example to demonstrate what the shift to dynamically composed applications
means

 The basic concepts of MEF illustrated with code snippets

 Directions you should follow to dive deeper into MEF

 The Challenge

 The mission of MEF is to solve the old problem of maintaining a piece of statically compiled software
that continuously changes (let ’ s say it “ evolves ”) during its lifetime. Writing package software or
enterprise applications — with all mandatory dances such as unit and user acceptance testing,
documentation, and so on — is generally the easiest (and almost the most amusing) part.

 Should the time to extend (or change) the software come, the amusement is over. Even if you do
not have problems coming from the architecture — that is, functions that were changed or added
still work perfectly — you still must compile and deploy the application. Quite often, that means
removing the previous software version from client and server machines, and then installing the new
software.

 Separating a statically compiled application into smaller physical units (assemblies) can help this
situation, especially when these smaller units are loaded dynamically. Using a tool for confi guration
(for example, a fi le describing which components to load) and creating a plug - in model defi nitely
helps you.

➤

➤

➤

➤

CH010.indd 463CH010.indd 463 9/6/10 5:03:21 PM9/6/10 5:03:21 PM

464 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 The situation gets more and more complex if you have several confi gurations of the application
that should be deployed differently to client machines. From the efforts point of view, it means that
developers spend approximately 20 percent of their effort developing the original application and
about 80 percent maintaining it through the years. If you could turn at least a part of that painful
80 percent into something more useful (for example, investing in creating better business value or an
improved user experience), both your customers and your boss would be happier, and probably you
would be better paid. That is where MEF comes into the picture.

 Dynamic Composition

 Why is this dynamic composition so important? If you create applications from smaller independent
components, you can architect the application so that responsibilities are better divided, and
boundaries are more obvious. According to these responsibilities, you can test your components
separately, fi nd bugs, and correct them. It is easier to handle these small parts individually than
all the pieces together, and it is easier to maintain them. However, the question is how do you roll
together these individual parts to form an entire application?

 Well, this is what MEF does — parts declare their intention to work together with other parts,
and MEF pulls all of them together to form the application. Instead of a monolithic and statically
compiled piece of software, you could have a dynamically composed one, where you could even
have the possibility to “ drop into ” a new part (such as inserting a new LEGO brick to an existing
composition). One of the fi rst Microsoft applications that utilizes MEF is Visual Studio 2010,
where the code editor is actually built with MEF.

 The Open/Closed Principle

 You may think the design methodologies of dynamically composed and statically compiled
applications are very different. You cannot say one of them is easier while the other is more
complex. They are simply different. However, there is a primary design principle from the aspect
of dynamism that should be your guiding star.

 This is the Open/Closed Principle that is credited to Bertrand Meyer in his book Object Oriented
Software Construction (Upper Saddle River, New Jersey: Prentice - Hall, 2000). This principle says
that you should create your software entities (components) so that they are open for extensibility,
but closed for modifi cations. It can be translated so that if you create software entities, you
should create objects so that they possess the opportunity to be extended without changing their
source code.

 One example of applying this principle is when you create a base class with virtual methods as
extensibility points. When it ’ s time to modify the behavior, you keep the base class untouched,
and write a derived class overriding the virtual methods.

 The reason behind this principle is that modifying the source code of an existing (even tested)
component introduces risks with a relatively high mitigation cost. You can introduce new bugs,
change the expected logic, or even break existing interfaces. The Open/Closed Principle actually
says that you can modify a system without changing existing code. Instead, you add new (and,
of course, tested) code.

CH010.indd 464CH010.indd 464 9/6/10 5:03:26 PM9/6/10 5:03:26 PM

 For applications composed dynamically from smaller parts, this principle suggests creating software
components that do not allow changing their source code, but allow loading parts that change the
behavior.

 A Simple MEF Example

 The best way to grasp the concept of how MEF can respond to the challenge of dynamic software
composition is to create a short example.

 Start Visual Studio and create a C# console application with the name MefGreetings . This
application will be a refactored form of the “ Hello, World ” example with extensibility in mind.
You are going to create a separate component responsible for greeting the user. Add two code fi les
to the project, and name them IGreetings.cs and SimpleGreeting.cs . Copy the source code from
Listing 10 - 17 to IGreeting.cs , and from Listing 10 - 18 to SimpleGreeting.cs .

 LISTING 10 - 17: IGreetings.cs

namespace MefGreetings
{
 interface IGreetings
 {
 string SayHello();
 }
}

 Code fi le [IGreetings.cs] available for download at Wrox.com

 LISTING 10 - 18: SimpleGreeting.cs

namespace MefGreetings
{
 class SimpleGreeting : IGreetings
 {
 public string SayHello()
 {
 return “Hello from Visual Studio 2010”;
 }
 }
}

 Code fi le [SimpleGreetings.cs] available for download at Wrox.com

 Change the Program.cs fi le as shown in Listing 10 - 19, and the example application is ready to build
and run.

Managed Extensibility Framework ❘ 465

CH010.indd 465CH010.indd 465 9/6/10 5:03:26 PM9/6/10 5:03:26 PM

466 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 LISTING 10 - 19: Program.cs

using System;

namespace MefGreetings
{
 class Program
 {
 static void Main(string[] args)
 {
 var greetings = new SimpleGreeting();
 Console.WriteLine(greetings.SayHello());
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 Run the application, and it does exactly what you expect — it displays the “ Hello from Visual
Studio 2010 ” message. Despite of the refactoring of the application, the SimpleGreeting and
 Program are still tightly coupled. Although, the greeting text is decoupled from the console class
through the IGreetings interface, the SimpleGreeting class is directly instantiated. Now, let ’ s
turn your application to a “ MEFish ” one!

 Getting MEF into the Game

 To utilize MEF, add a reference to the System.ComponentModel.Composition assembly, because
MEF types and attributes are declared here. You are going to turn this application to a dynamically
composed one in few simple steps.

 Decorate the SimpleGreeting class with the Export attribute. This attribute will signify that
 SimpleGreeting is a composable part that has a service offered to the external world. The attribute
has a typeof(IGreetings) parameter, which is the identifi er of the contract SimpleGreeting is
about to export. Listing 10 - 20 shows SimpleGreetings.cs after this change.

 LISTING 10 - 20: SimpleGreeting with the Export Attribute

using System.ComponentModel.Composition;

namespace MefGreetings
{
 [Export(typeof(IGreetings))]
 class SimpleGreeting : IGreetings
 {
 public string SayHello()
 {
 return “Hello from Visual Studio 2010”;
 }
 }
}

 Code fi le [SimpleGreetings.cs] available for download at Wrox.com

CH010.indd 466CH010.indd 466 9/6/10 5:03:27 PM9/6/10 5:03:27 PM

 In the Main method, you must tell the application that a component implementing the IGreetings
service contract should be used instead of instantiating the SimpleGreetings class. With MEF, it is
a few lines of code, as shown in Listing 10 - 21.

 LISTING 10 - 21: Composing the Application From Parts

using System;
using System.Reflection;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition;

namespace MefGreetings
{
 class Program
 {
 [Import]
 private IGreetings Greetings { get; set; }

 static void Main(string[] args)
 {
 var program = new Program();
 program.Run();
 }

 private void Run()
 {
 var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
 var container = new CompositionContainer(catalog);
 container.ComposeParts(this);

 Console.WriteLine(Greetings.SayHello());
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 When you run this code, you can see that it still displays the “ Hello from Visual Studio 2010 ”
message. Let ’ s see how this program works!

 To access the component (an instance of SimpleGreeting), a private property named Greeting is
set up with the Import attribute. Any time the program wants to use a service of the component,
this property can be used to invoke the functionality. The Run method shows how to use it:

Console.WriteLine(Greetings.SayHello());

 But, as you see, there is no code in the application that explicitly initializes the Greetings property.
So, you might expect a NullReferenceException when running the program, although it does not

Managed Extensibility Framework ❘ 467

CH010.indd 467CH010.indd 467 9/6/10 5:03:27 PM9/6/10 5:03:27 PM

468 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

happen. MEF takes care of binding the Greeting property with a component instance via the three
 “ magic ” lines in the Run method:

var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var container = new CompositionContainer(catalog);
container.ComposeParts(this);

 The fi rst line creates an assembly catalog using the current console application ’ s assembly. In
MEF, a catalog is a collection of composable parts that can be composed with a host to form an
application. An assembly catalog contains all parts that can be found in the specifi ed assembly.
In this example, SimpleGreeting is a part that can be found in the catalog represented by an
assembly.

 The second line instantiates a composition container using the assembly catalog. This container
is a matchmaker. It looks in the catalogs for the parts offering services (this is what the Export
attribute marks), and for those that are requesting services (the Import attribute signifi es that fact).
The container uses its own logic to match the offers with the requests. The third line calling the
 ComposeParts method does this match - making.

 As a result, the composition container creates a SimpleGreeting instance and assigns it to the
 Greetings property. So, calling the SayHello method does not raise an exception. It works and
writes out the message.

 Multiple Parts

 Add another part implementing the IGreetings service contract to the application by creating a
new class with the UserGreeting name. Copy the source code in Listing 10 - 22 into the fi le.

 LISTING 10 - 22: UserGreeting.cs

using System;
using System.ComponentModel.Composition;

namespace MefGreetings
{
 [Export(typeof(IGreetings))]
 class UserGreeting: IGreetings
 {
 public string SayHello()
 {
 return “Hello “ + Environment.UserName;
 }
 }
}

 Code fi le [UserGreetings.cs] available for download at Wrox.com

 When you build and run the application, it stops working with a ChangeRejectedException . What
could be wrong? You have not actually changed anything, just added a new class! Well, that new

CH010.indd 468CH010.indd 468 9/6/10 5:03:28 PM9/6/10 5:03:28 PM

class is the source of the problem. When the composition container wants to make matches, it is
faced with the issue of having two components implementing the IGreetings contract. One of them
is SimpleGreeting ; the other is the new UserGreeting class. Which one is the one to bind with the
 Greetings property having the Import attribute? The composition container cannot decide, and
that ’ s why it raises an exception.

 Change the application logic so that all components supporting the IGreetings interface can
write their messages. Modify the Greetings property to allow it to handle a collection of parts
implementing IGreeting :

[ImportMany]
private IEnumerable < IGreetings > Greetings { get; set; }

 The ImportMany attribute expresses this intention. Note the IEnumerable < IGreetings > type of
this property! It allows MEF to retrieve a collection of parts, and you can allow all of them to write
out their messages:

foreach (var grt in Greetings)
{
 Console.WriteLine(grt.SayHello());
}

 With this change the application can run, and, this time, two messages are put to the console.

 Using Host Services

 Up until now, in the example, only the host application accessed the services of the “ plugged - in ”
components. In the real world, components would also use the services of the host application. With
a few modifi cations, you can change the application to refl ect this situation.

 Create a new fi le named IContextInfo.cs with the source code in Listing 10 - 23.

 LISTING 10 - 23: IContextInfo.cs

using System.Collections.Generic;

namespace MefGreetings
{
 public interface IContextInfo
 {
 IDictionary < string, string > GetContextInfo();
 }
}

 Code fi le [IContextInfo.cs] available for download at Wrox.com

 The GetContextInfo method provides a dictionary of key and value pairs where — just for the sake
of simplicity — keys and values are both strings. Create a type named AppInfo that implements this
contract, and mark it with the Export attribute, as shown in Listing 10 - 24.

Managed Extensibility Framework ❘ 469

CH010.indd 469CH010.indd 469 9/6/10 5:03:28 PM9/6/10 5:03:28 PM

470 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 LISTING 10 - 24: AppInfo.cs

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;

namespace MefGreetings
{
 [Export(typeof(IContextInfo))]
 class AppInfo : IContextInfo
 {
 public IDictionary < string, string > GetContextInfo()
 {
 return new Dictionary < string, string >
 {
 { “UserName”, Environment.UserName },
 { “MachineName”, Environment.MachineName }
 };
 }
 }
}

 Code fi le [AppInfo.cs] available for download at Wrox.com

 AppInfo is a service object in the application that can be accessed through the IContextInfo contract
identity. Listing 10 - 25 shows how the UserGreeting class should be modifi ed to utilize this contract.

 LISTING 10 - 25: The Modifi ed UserGreeting.cs File

using System;
using System.ComponentModel.Composition;

namespace MefGreetings
{
 [Export(typeof(IGreetings))]
 class UserGreeting: IGreetings
 {
 [Import]
 IContextInfo ContextInfo { get; set; }

 public string SayHello()
 {
 string userName;
 var props = ContextInfo.GetContextInfo();
 props.TryGetValue(“UserName”, out userName);
 return “Hello “ + userName ?? “ < None > ”;
 }
 }
}

 Code fi le [UserGreeting.cs] available for download at Wrox.com

CH010.indd 470CH010.indd 470 9/6/10 5:03:29 PM9/6/10 5:03:29 PM

 The UserGreeting class does not know where it gets an IContextInfo - aware service object from.
If you decorate the ContextInfo property with the Import attribute, the composition container
binds the right object to the property.

 When you build and run the application, it will work as you expect — binding the application and
its dynamic parts, as shown in Figure 10 - 22.

Managed Extensibility Framework ❘ 471

 FIGURE 10 - 22: Application with dynamic parts

 This simple example has shown just a taste of how MEF helps in composing applications. To
understand what ’ s behind the scenes, it ’ s time to dive a bit deeper into MEF concepts.

 Basic MEF Concepts

 As you have just seen, programming with MEF is easy. However, architecting your applications
so that they can easily leverage the potential that MEF provides requires an understanding of the
primary concepts.

 The fundamental concept of MEF is parts . An application is built of parts. During construction,
you do the following:

 Export the services parts offer to be utilized by other parts

 Import the services your parts intend to use

 Compose the parts so that they provide the functionality you want to achieve

 Parts and Contracts

 Parts export services other parts may need, and optionally import services offered by other parts.
MEF ’ s default discovery mechanism to identify parts is based on standard .NET attributes defi ned
in the System.ComponentModel.Composition namespace. Parts are decorated with the Export or
 Import attributes. To be recognized as a part, the corresponding entity should contain at least one
export. Entities containing only imports are not taken into account as parts.

 The loosely coupled nature of dynamic applications works with the idea that parts do not depend
directly on one another. The thing that determines this dependency between parts is called a
 contract . Parts explicitly mark their intentions to be bound with other parts using contracts.
Exported parts say, “ Hey, I implement the contract named Foo. If there is anyone wanting to use
Foo, here I am. ” Parts having Import attributes say, “ In order to work, I need a part supporting the
contract named Foo. Is there anyone who could provide an implementation for me? ”

➤

➤

➤

CH010.indd 471CH010.indd 471 9/6/10 5:03:29 PM9/6/10 5:03:29 PM

472 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Contracts are identifi ed by two properties: a contract name and a contract type (that is a System.
Type instance). To match an exported and an imported contract, both the name and the type must
be equal. The mechanism discovering parts can infer the name and the type of the contract where the
 Export and Import attributes are used. For example, let ’ s say that you defi ne the import like this:

[Import]
IContextInfo ContextInfo { get; set; }

The name of the contract becomes the full name of the IContextInfo type (MefGreetings
.IContextInfo), while its type will be inferred from the type of the property and becomes
 IContextInfo .

 You can play with the contract matching mechanism. Try to decorate the
 SimpleGreeting , UserGreeting classes with the following combinations of
their Export attributes:

[Export]

[Export(“ IGreetings “ , typeof(IGreetings))]
[Export(“ MefGreetings.IGreetings “ , typeof(IGreetings))]

 Build and run the MefGreetings sample to understand how they work! In
addition, you can play with the ContextInfo property ’ s Import attribute of the
 UserGreeting class.

 As a convention, wherever possible, use only types in contract defi nitions.

 Exports and Imports

 By now, you can see that the Export attribute can be used to mark an entity as a part. As a great
design feature of MEF, an Export attribute can decorate an entire class, a fi eld, or a property, and,
moreover, a method of a class. At fi rst, it is not obvious why it is useful, so let ’ s have a look at each
of these cases.

 When you apply Export for an entire class, the exported object is an instance of that class.
However, if you do not own the source code of a class (for example, it is in a third - party assembly),
and you cannot mark it as a part, this approach does not work.

 In this case, you can decorate a fi eld or a property with Export . Have a look at the following
code snippet:

public class DalParameters
{
 [Export(“MaxRowsToRetrieve”)]
 public static int MaxRows = 1000;

 [Export(“CustomerTable”)]

CH010.indd 472CH010.indd 472 9/6/10 5:03:30 PM9/6/10 5:03:30 PM

 public string CustomerTable
 {
 get { return “Customer_”; }
 }
}

 The DalParameters class has two imported parts represented by the static MaxRows fi eld and the
 CustomerTable instance property. Their corresponding types (int and string) are intrinsic CLR
types, so there is no way to add an Export attribute to the class representing them. Using named
contracts, you can import these parts:

[Import(“MaxRowsToRetrieve”)]
public int MaxRows { get; private set; }

[Import(“CustomerTable”)]
public string CustomerTableName { get; private set; }

 If Export is applied on fi elds or properties, MEF uses the value of the property or fi eld at composition
time. This approach has several benefi ts:

 You can have one or more related exports within the same type.

 You can import sealed types, CLR intrinsic, and third - party types.

 You can decouple the export from how the export was created.

 Moreover, MEF goes beyond properties and fi elds — you can export methods! In this case, methods
are exported as delegates indicated by the contract type.

 Assume that you have a Customer class with string properties of Name and State . You can defi ne a
part that can fi lter customers:

public class CustomerFilter
{
 [Export(“CustomerFilter”, typeof(Func < Customer, bool >))]
 bool LivesInCA(Customer customer)
 {
 return customer.State == “CA”;
 }
}

 Note that the Export attribute explicitly declares the delegate type representing the contract.
Without it, MEF would not be able to infer the type of the delegate as the default contract type.
You can bind this part to a service wanting to fi lter customers easily:

[Export]
class CustomerProcessor
{
 [Import(“CustomerFilter”)]
 Func < Customer, bool > Filter { get; set; }

 public void ProcessCustomers(IEnumerabe < Customer > customers)

➤

➤

➤

Managed Extensibility Framework ❘ 473

CH010.indd 473CH010.indd 473 9/6/10 5:03:35 PM9/6/10 5:03:35 PM

474 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 {
 foreach (var customer in customers.Where(Filter))
 {
 Console.WriteLine(customer.Name);
 }
 }
}

 This time, the contract was specifi ed with the name CustomerFilter and type of Func < Customer,
bool > . Because Func < Customer, bool > is a type that might be used frequently, it is more specifi c
to use a distinguishing name for the contract. MEF is capable of inferring the contract type from the
delegate property defi nition, and so you must declare only the contract name in the Import attribute.

 Right now, there is a limitation in the framework — method exports cannot have more than four
arguments.

 Method exports provide you with an opportunity you cannot get with other exports — lightweight
code generation. With the .NET Framework, you can generate types and methods on - the - fl y, and
call these methods from the exported one.

 You can decorate fi elds and properties with the Import attribute — the examples showed how easy it
is. At composition time, MEF takes care of setting the values of those properties and fi elds. You are
not obliged to use the public modifi er. You can also signify the members with the other modifi ers,
and so you can use private fi elds and methods. However, do not forget about the fact that, at the
end of the day, MEF must be able to set the member values. It has a few consequences you must
take into account when designing your components:

 In medium or partial trust environments, non - public members cannot be set by MEF.

 If you use read - only properties (a property with only the get accessor), MEF has no way to
set the property value, and composition will fail.

 Composition Containers and Catalogs

 Exported and imported parts must meet to be composed into a working application. This role
is undertaken by the composition container . Its name tells exactly what it is assumed to do. It is
a container, because it contains composable parts that declare their intention to share services
(exports) with other components and their willingness to consume services (imports) provided by
other parts. The composition container is the matchmaker that binds together parts selling services
with parts buying them.

 The composition container is the entity with which you must interact to control the composition
process, or query composition information (for example, a list of parts implementing a certain contract).

 You can add parts directly to the composition container. For example, the parts building up the
 MefGreetings sample could be composed together with the following code:

var container = new CompositionContainer();
container.ComposeParts(this,
 new SimpleGreeting(),
 new UserGreeting(),
 new AppInfo());

➤

➤

CH010.indd 474CH010.indd 474 9/6/10 5:03:35 PM9/6/10 5:03:35 PM

 There is a signifi cant issue with this solution — it ’ s static. This approach explicitly enumerates the
parts composing the application. It uses types that should be known at compile time, and lacks
dynamic discovery of parts.

 Instead, the MefGreetings sample builds up the composition container utilizing a catalog:

var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var container = new CompositionContainer(catalog);
container.ComposeParts(this);

 A catalog in MEF is an abstraction of an inventory that contains parts. The great thing about a
catalog is the fact that it has dynamic behavior. Its content is established at run - time, and so it can
be used for dynamic discovery. For example, the AssemblyCatalog used in the code snippet is an
inventory for all composable parts contained in a concrete physical assembly.

 MEF is shipped with a number of catalogs out - of - the - box. Table 10 - 9 describes them.

 TABLE 10 - 9: MEF Catalogs

 TYPE NAME DESCRIPTION

 TypeCatalog This catalog is a container for types. During the discovery, all exports are

collected that are exploited by the types in the catalog. You can use this

catalog when you know exactly the types providing exports — for example,

when you create unit tests.

 AssemblyCatalog This catalog discovers all exports in a specifi ed assembly. You can

use this catalog when you know which assemblies contain exports. With

 AssemblyCatalog , you can put dynamism into your application. You

can separate the static (not aff ected by changes) and dynamic (subject to

changes) partitions of the application into diff erent assemblies. Creating

an AssemblyCatalog on the dynamic partition allows you better change

management.

 DirectoryCatalog This catalog discovers all the exports in all the assemblies in a

directory. You can set an absolute or a relative path when creating a

 DirectoryCatalog . If you specify a relative path, it is relative to the

base directory of the current AppDomain. With this catalog, you can add

enormous fl exibility to an application! Just drop an assembly into the folder

of the catalog, restart your application, and it can immediately use the

exports in the newly dropped assembly.

 AggregateCatalog As the name of this type suggests, it combines multiple catalogs into

a single catalog. A common pattern is that you aggregate several

 DirectoryCatalog instances to aggregate all folders where you allow/

expect extension assemblies into a combined catalog. (Visual Studio 2010

internally utilizes this.)

Managed Extensibility Framework ❘ 475

CH010.indd 475CH010.indd 475 9/6/10 5:03:35 PM9/6/10 5:03:35 PM

476 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 MEF allows you to create your own catalogs. For example, when you store parts in a database, you
can create a DatabaseCatalog type to discover them.

 Parts and Metadata

 In many cases, you must associate information with exports, to provide a more granulated control
over the composition mechanism. Here is a short list of reasons why this control can be important:

 Contracts can have capabilities that certain implementations provide, while others do not.
For example, a part can work only when the computer running the application has specifi c
software installed (for example, Microsoft Word).

 A part intends to tell some information about itself that is used by its potential consumers.
For example, a part implementing a new user control may tell its host window that it must
be docked at the bottom.

 A part can tell information about itself that determines how its services are processed on the
consumer side. Assume your part represents a step in a pipeline handled by a processor.
The processor executes those steps in a specifi c order, and so you must assign the correct
order information to your part.

 MEF allows attaching metadata to the exports. This information can be used by the composition
engine during the matchmaking, and is accessible by the consumers of parts so that they may utilize
this data.

 The ExportMetaData attribute provides the easiest way to add this information to a part. For
example, you can sign that your component is able to be involved in a database transaction:

[Export(typeof(IDatabaseTask))]
[ExportMetadata(“SupportsTransaction”, true)]
[ExportMetadata(“PMC”, “Remove_Customer”)]
public class RemoveCustomerTask: IDatabaseTask
{
 // ...
}

[Export(typeof(IDatabaseTask))]
[ExportMetadata(“SupportsTransaction”, false)]
public class CalculateBonusTask: IDatabaseTask
{
 // ...
}

 The parameters of ExportMetadata are name and value pairs. You can attach as many metadata
attributes to an export as you need. However, as you can see, this kind of metadata is weakly typed.
MEF allows you to attach strongly typed metadata to exports — moreover, it encourages you to do
so. You can create your own metadata attributes. The following code snippet is an example of using
this feature:

 [MetadataAttribute]
 [AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
 public class DalMetadataAttribute: Attribute

➤

➤

➤

CH010.indd 476CH010.indd 476 9/6/10 5:03:36 PM9/6/10 5:03:36 PM

 {
 public bool SupportsTransaction { get; set; }
 public bool AllowsNestedTransaction { get; set; }
 }

 Create your own attribute and decorate it with MetadataAttribute . Add properties to the attribute
to represent the strongly typed information to which you intend to attach exports. Now, you can
attach this attribute to the export:

[Export(typeof(IDatabaseTask))]
[DalMetadata(SupportsTransaction = true, AllowsNestedTransaction = false)]
public class RemoveCustomerTask: IDatabaseTask
{
 // ...
}

 You can derive the metadata attribute from ExportAttribute and, in this case, you have a more
compact form to describe your export:

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
public class DalExportAttribute: ExportAttribute
{
 public DalExportAttribute(): base(typeof(IDatabaseTask)) { }
 public bool SupportsTransaction { get; set; }
 public bool AllowsNestedTransaction { get; set; }
}

// ...

[DalExport(SupportsTransaction = true, AllowsNestedTransaction = false)]
public class RemoveCustomerTask: IDatabaseTask
{
 // ...
}

 Metadata attached to exports can be queried and used during composition and later, when a part is
about to be used.

 Composition

 Parts only declare their intention to be exported. Composition is the mechanism that makes the
matching among the parts. This matchmaking is triggered by any of the parts — primarily by
the MEF host — either explicitly or implicitly.

 When you have a large number of parts with complex connections among them — by means
of exports and imports — the composition process can be expensive. The default composition
container is frugal with these costs, and joins only the dependencies of the part triggering the
matchmaking process.

Managed Extensibility Framework ❘ 477

CH010.indd 477CH010.indd 477 9/6/10 5:03:36 PM9/6/10 5:03:36 PM

478 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Explicit and Implicit Composition

 Earlier, in Listing 10 - 21, explicit composition was used:

class Program
{
 [ImportMany]
 private IEnumerable < IGreetings > Greetings { get; set; }

 // ...

 private void Run()
 {
 var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
 var container = new CompositionContainer(catalog);
 container.ComposeParts(this);
 // ...
 }
}

 The ComposeParts call on a container explicitly triggered the composition for the current Program
instance, and, as a result, the Greetings property ’ s value was set — in MEF terms, “ the import was
satisfi ed. ”

 You could have used implicit composition by querying the composition container for a specifi c part:

class Program
{
 // ...

 private void Run()
 {
 var catalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
 var container = new CompositionContainer(catalog);
 var greetings = container.GetExportedValues < IGreetings > ();
 // ...
 }
}

 In this pattern, the Program class does not have the Greetings imported property, instead, the
 GetExportedValues < > generic method is used to retrieve all parts implementing the IGreetings
contract.

 As these small examples show, the matchmaking can be started with a concrete part (explicit
composition) or with a contract type (implicit composition). During this process, the dependencies
of the initiating contract or part are resolved. If necessary, this resolution traverses through the
graph of all direct and indirect dependencies.

 Part Instantiation

 When exports and imports are resolved, the composition container may need to create new object
instances for a variety of reasons:

CH010.indd 478CH010.indd 478 9/6/10 5:03:36 PM9/6/10 5:03:36 PM

 An entire class is an exported part, and an import referencing a related contract must be satisfi ed.
In this case, the exported class is instantiated, and this instance is assigned to the import.

 A property (or fi eld) of a class is exported. To satisfy a related import, this class is instantiated,
and then the appropriate property ’ s value (or fi eld value) is assigned to the import.

 A method of a class is exported. In this case, the hosting class is created, and a delegate to
the exported method is assigned to the import.

 Of course, if exported parts are members of static classes, no instantiation takes place.

 Because this instantiation occurs behind the scenes, you do not have the same control, as in the
case when you are the one who explicitly creates those instances. By default, MEF uses the default
constructor of the class (the constructor with no parameters). If there is no default constructor,
MEF looks for exactly one constructor decorated with the ImportingConstructor attribute. If
there is such a constructor, its parameters are taken into account as imports. MEF satisfi es those
imports, and uses them as parameters with which to call the constructor. If there is no such
constructor, MEF raises an exception, because it cannot create an instance.

 Earlier, in Listing 10 - 25, the import of an IContextInfo part was implemented in this way:

 [Export(typeof(IGreetings))]
 class UserGreeting: IGreetings
 {
 [Import]
 IContextInfo ContextInfo { get; set; }

 public string SayHello()
 {
 string userName;
 var props = ContextInfo.GetContextInfo();
 props.TryGetValue(“UserName”, out userName);
 return “Hello “ + userName ?? “ < None > ”;
 }
 }

 With ImportingConstructor , it also could be done as follows:

 [Export(typeof(IGreetings))]
 class UserGreeting: IGreetings
 {
 IContextInfo ContextInfo { get; set; }

 [ImportingConstructor]
 public UserGreeting(IContextInfo contextInfo)
 {
 ContextInfo = contextInfo;
 }

 public string SayHello()
 {
 // ... Omitted for the sake of brevity
 }
 }

➤

➤

➤

Managed Extensibility Framework ❘ 479

CH010.indd 479CH010.indd 479 9/6/10 5:03:37 PM9/6/10 5:03:37 PM

480 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 You may wonder why it is useful to have two constructs for the same task. Well, there is an
important difference between the Import property and ImportingConstructor approach.

 When you use the Import property, fi rst the declaring class is instantiated with the default
constructor, and then MEF assigns the imported value to the property. This means that you cannot
use the property ’ s value in the constructor body. Contrast this to instantiating the class with an
 ImportingConstructor . This means you are able to use the imported values, because those are
passed as constructor parameters.

 Lazy Instantiation

 As you learned earlier, during composition of a part, an import will trigger the instantiation of a
part (or parts) that expose the necessary exports required for the original requested part. In the
case of imported properties and fi elds, this means that their values are set before they are used.
In many situations, it may happen that the properties are not used at all, or are used later after their
original construction. If the instantiation of property values is expensive (takes a relatively long time,
consumes many CPU cycles, holds a large amount of resources, and so on), it is a good approach to
delay this instantiation — and prevent the recursive composition down the graph.

 MEF supports a feature called lazy instantiation . To use it, all you must do is to import a type
 System.Lazy < T > instead of T directly. For example, the UserGreetings class in Listing 10 - 25 could
be implemented with lazy instantiation:

[Export(typeof(IGreetings))]
class UserGreeting : IGreetings
{
 [Import]
 Lazy < IContextInfo > ContextInfo { get; set; }

 public string SayHello()
 {
 string userName;
 var props = ContextInfo.Value.GetContextInfo();
 props.TryGetValue(“UserName”, out userName);
 return “Hello “ + userName ?? “ < None > ”;
 }
}

 As you can see from the SayHello method, in this case, the imported part behind ContextInfo is
accessed through the Value property. The actual instantiation of the part is carried out when Value
is fi rst queried, and subsequent queries use that cached instance.

 Import Notifi cation

 There are situations where you need an explicit notifi cation about the fact that all imports have
been satisfi ed and you can safely use them (such a situation is known as recompostion , and will be
discussed shortly). In this case, you must implement the IPartImportsSatisfiedNotification
interface that has only one method named OnImportsSatisfied .

CH010.indd 480CH010.indd 480 9/6/10 5:03:37 PM9/6/10 5:03:37 PM

 The next code snippet is an example about dynamically pumping data into a WPF window ’ s
data grid:

[Export]
public partial class WindowWithDataGrid : Window,
 IPartImportsSatisfiedNotification
{
 [Import]
 ICustomerList CustomerRepository { get; set; }

 public ListingsWindow()
 {
 InitializeComponent();
 }

 public void OnImportsSatisfied()
 {
 Dispatcher.Invoke(new Action(() = >
 {
 dataGrid.ItemsSource = CustomerRepository.GetAllCustomers();
 }
));
 }
}

 WindowWithDataGrid is an exported part, and when it is assigned to an import by MEF, the default
constructor is called. At that moment, CustomerRepository is a null reference, because MEF has
not yet satisfi ed this import. As soon as it is done, the OnImportsSatisifed method is called that
sets the grid ’ s ItemSource on the main UI thread with the help of the Dispatcher class.

 Recomposition

 Many applications are designed to dynamically change at run - time. For example, you can download
a new component from a web site, and that component goes functional without restarting your
application. Or, a rule system can be extended by components describing new or changed rules just
by dropping an assembly to a folder holding the rule repository.

 MEF was designed with these scenarios in mind, and it is prepared to handle them. This concept is
called recomposition , which is changing values of imports after the initial composition.

 Depending on your application logic, recomposition can be explicit (you explicitly tell MEF to
recompose bindings among parts), or event - driven (a catalog recognizes changes — for example,
a new assembly has been copied to a watched folder). You can imagine that parts supporting
recomposition may need to be implemented differently from those that support only an initial
composition. To let MEF know your component can handle recomposition, you can set the
 AllowRecomposition property of the Import attribute to true . The WindowWithDataGrid sample
you ’ ve seen earlier is a great candidate to demonstrate this:

[Export]
public partial class WindowWithDataGrid : Window,
 IPartImportsSatisfiedNotification

Managed Extensibility Framework ❘ 481

CH010.indd 481CH010.indd 481 9/6/10 5:03:37 PM9/6/10 5:03:37 PM

482 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

{
 [Import(AllowRecomposition=true)]
 ICustomerList CustomerRepository { get; set; }

 public ListingsWindow()
 {
 InitializeComponent();
 }

 public void OnImportsSatisfied()
 {
 Dispatcher.Invoke(new Action(() = >
 {
 dataGrid.ItemsSource = CustomerRepository.GetAllCustomers();
 }
));
 }
}

 When you have more imports in your exported part, you can restrict recomposition to a subset of
them by setting AllowRecomposition to true only for the relevant imports. Just as for the initial
composition, the OnImportSatisfied method of IPartImportSatisfiedNotification will be
fi red every time a recomposition occurs. In the previous sample, this notifi cation causes the data
grid be refreshed.

 When you prepare your application to support this type of dynamic behavior, you must be aware
of the following facts:

 When recomposition occurs, imported properties and fi elds are replaced. For arrays and
collections, that means, instead of updating the existing array or collection, it is replaced
with a new array or collection instance.

 Recomposition is not supported with the ImportingConstructor pattern.

 As a best practice, it is worth designing your exported parts with recomposition in mind, even if
you do not allow this behavior. It will adorn your application with fl exibility.

 Part lifetime

 Once an application ships, the authors of that application won ’ t have control over the set of parts.
After deployment, third - party extensions also come into play. So, it ’ s very important that you
understand a part ’ s lifetime, and its implications.

 MEF parts are living in a composition container. This container is the owner entity of these parts,
and is responsible for instantiating and disposing of them. This control is never transferred to any
actor requesting the part from the container, or working with it indirectly (through an import). Both
developers of exported parts, and developers of consumers importing that specifi c part, should be
able to control the part ’ s lifecycle by means of “ shareability. ” When an exported part is shared, at
most, one instance of that part may exist per container. If an export is non - shared, each request for
that specifi c part is served by a new instance.

➤

➤

CH010.indd 482CH010.indd 482 9/6/10 5:03:37 PM9/6/10 5:03:37 PM

 Exported parts can control their shareability with the PartCreationPolicy attribute that takes an
argument with the type of CreationPolicy , as shown in the following example:

[PartCreationPolicy(CreationPolicy.NonShared)]
[Export(typeof(IGreetings))]
public class MyNonSharedGreeting: IGreetings
{
 // ...
}

 The CreationPolicy enumeration has three values. Shared and NonShared have the meaning as
discussed earlier, and Any means the part author allows the part to be used as either Shared or
 NonShared . The attribute in the sample declares that every request for the MyNonSharedGreeting
part should retrieve a new instance of this part.

 Imports can also constrain the creation policy of parts used to supply the import values. The Import
and ImportMany attributes have a property called RequiredCreationPolicy , and you can specify
its value from the CreationPolicy enumeration type, as shown in the following example:

[Export]
class Program
{
 [ImportMany(RequiredCreationPolicy = CreationPolicy.NonShared)]
 private IEnumerable < IGreetings > Greetings { get; set; }
}

 The behavior of the composition container is determined by the part creation policies of the export
and the related imports. Table 10 - 10 summarizes this behavior.

 TABLE 10 - 10: Part Creation Behavior

 IMPORT BEHAVIOR PART: ANY PART: SHARED PART: NONSHARED

 Any Shared Shared Non - shared

 Shared Shared Shared No match

 NonShared Non - shared No match Non - shared

Managed Extensibility Framework ❘ 483

 When any of the import and export part creation policies are set to Shared while the other is set to
 NonShared , the composition container does not make a match between the exported part and the
import.

 The composition container that is responsible for creating parts holds references for shared parts
and for all non - shared parts that implement IDisposable , or are used in an import confi gured to
allow recomposition. When the container is disposed, all references to parts held by the container
will be cleaned up. For parts implementing IDisposable , the Dispose method is called.

CH010.indd 483CH010.indd 483 9/6/10 5:03:38 PM9/6/10 5:03:38 PM

484 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 Non - shared parts that do not have references in the container are not disposed together with the
container. Continuously requesting non - shared parts from the container may lead to memory issues,
so you must use them very carefully.

 Accessing Metadata

 You can decorate exported parts with metadata attributes holding additional custom properties
about the part. This metadata is used by the composition container for implicit fi ltering — to decide
whether an import matches the export or not. You can also access this metadata and utilize it in the
program control logic.

 Let ’ s assume you develop parts implementing the ILoggerTask contract:

interface ILoggerTask
{
 void WriteLog(LogItemType type, object message);
}

 You want to be able to fi lter parts according to the log entry item type they accept, and you also
want to know if they support transactional behavior or not. You also would like to assign names to
the parts for diagnostic purposes. When these exported parts are ready, they look like these sample
classes:

[LogChannelExport(ItemType = LogItemType.Error, IsTransactional = false)]
[ExportMetadata(“Name”, “Local Errors”)]
public class LocalErrorsChannel: ILoggerTask
{
 public void WriteLog(LogItemType type, object message) { /* .. */ }
}

[LogChannelExport(ItemType = LogItemType.All, IsTransactional = true)]
[ExportMetadata(“Name”, “All Log Messages”)]
public class GeneralLogChannel : ILoggerTask
{
 public void WriteLog(LogItemType type, object message) { /* .. */ }
}

[Export(typeof(ILoggerTask))]
[ExportMetadata(“Name”, “Simple Channel”)]
public class SimpleChannel : ILoggerTask
{
 public void WriteLog(LogItemType type, object message) { /* .. */ }
}

 The export defi nitions use both weakly typed metadata specifi ed with the ExportMetadata
attribute and strongly typed metadata defi ned by the LogChannelExport attribute:

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class LogChannelExportAttribute: ExportAttribute

CH010.indd 484CH010.indd 484 9/6/10 5:03:38 PM9/6/10 5:03:38 PM

{
 public LogChannelExportAttribute() : base(typeof(ILoggerTask)) { }
 public bool IsTransactional { get; set; }
 public LogItemType ItemType { get; set; }
}

 You can access the metadata of your parts in a weakly typed fashion with the following Import
pattern:

[ImportMany]
public Lazy < ILoggerTask, IDictionary < string, object > > []
 AllChannelsWithMetadata { get; set; }

 The second generic argument of the Lazy < , > type allows you access the part metadata properties
through the Metadata collection:

foreach (var item in AllChannelsWithMetadata)
{
 Console.WriteLine(“{0} {1}”, item.Metadata[“Name”],
 item.Metadata.ContainsKey(“ItemType”)
 ? item.Metadata[“ItemType”] : “ < none > ”);
}

 When you intend to access the metadata in a strongly typed fashion, or you want to use it for
implicit fi ltering, you must use a separate approach. You defi ne a metadata view interface with
read - only properties matching with your metadata property names, as shown in the following
example:

public interface ILogChannelProperties
{
 LogItemType ItemType { get; }
 [DefaultValue(false)]
 string Name { get; }
 [DefaultValue(false)]
 bool IsTransactional { get; }
}

 As you can see, this metadata view contains all properties. While ItemType and IsTransactional
were assigned to the exported part in a strongly typed manner, Name was used in a weakly typed
way. In the Import defi nitions, use the following pattern:

[ImportMany]
public Lazy < ILoggerTask, ILogChannelProperties > [] Channels { get; set; }

 The second type argument of the Lazy < , > type provides you access to the metadata through view
properties:

foreach (var item in Channels)
{
 Console.WriteLine(“{0}: {1}”, item.Metadata.Name, item.Metadata.ItemType);
}

Managed Extensibility Framework ❘ 485

CH010.indd 485CH010.indd 485 9/6/10 5:03:38 PM9/6/10 5:03:38 PM

486 ❘ CHAPTER 10 ENHANCEMENTS TO THE .NET CORE FRAMEWORK

 The MEF run - time is part of .NET Framework 4.0. The MEF samples and tools
are not. They can be found on CodePlex, primarily in the MEF (http://MEF
.codeplex.com) and MEFContrib (http://MEFContrib.codeplex.com) projects.

 The metadata view interface also provides a way for the composition container to perform implicit
fi ltering. The ILogChannelProperties type contains three read - only properties. The container
checks if the exported parts defi ne a metadata property for those that are defi ned by the view.
If they do, the import is satisfi ed; otherwise, it is not.

 If you want to avoid fi ltering by a metadata view property, you can do so by decorating it with the
 DefaultValue(false) attribute. You can see the ILogChannelProperties view defi nes implicit
fi ltering only for the ItemType property. From the three parts implementing the ILoggerTask contract
(LocalErrorsChannel , GeneralLogChannel , SimpleChannel), the Channels property container
contains only two. The SimpleChannel part is implicitly fi ltered out, because it does not have an
 ItemType metadata property.

 A Few More Points on MEF

 From the concepts and patterns introduced in this section you can see that MEF provides you with
sophisticated tools for composing your application from smaller and pluggable parts. Under the
covers, MEF provides many more features and design principles to enable you to tailor it to your
custom need. Following are a few of them (without the need for completeness) to give you further
direction to dive in deeper into MEF:

 MEF itself was designed with extensibility in mind. All elements in MEF (parts, catalogs,
and composition containers) can be tailored to your custom needs. The Export and Import
attributes and all related notations are a concrete implementation — called the Attributed
Programming Model — of an abstract mechanism. Instead of using attributes, you can
create your own programming model — for example, utilizing confi guration fi les — to
represent exports and imports.

 From the examples presented earlier, you can see only some very simple ways to query
the composition container for parts. You can look up the reference documentation of
 GetExport , GetExportedValue , GetExportedValueOrDefault , and related methods
in the CompositionContainer class to obtain more information about other ways to
query the container.

 You can have much more control handling changes (even dynamically) in catalogs.
More information and samples can be obtained through the CompositionBatch and
 PartCreator < > types. You can event write your own dynamic catalogs triggering the
change of context and recomposing your application — for example, responding to
the event when the network becomes unavailable or an online connection is restored.

 Although the samples in this chapter used only console applications, you can use MEF in all
application or component types, including Windows Forms or WPF applications, ASP.NET,
or ASP.NET MVC web sites.

 MEF is also available for Silverlight 3 and Silverlight 4 applications.

➤

➤

➤

➤

➤

CH010.indd 486CH010.indd 486 9/6/10 5:03:39 PM9/6/10 5:03:39 PM

 SUMMARY

 .NET Framework 4.0 contains fundamental enhancements to the core functionality related to the
preceding version. In this chapter, you learned about those features that you can use independently
of whether you are using Windows Forms, ASP.NET, WPF, WF, WCF, Silverlight, or any other
.NET technology.

 After almost fi ve years, .NET 4 ships with a new CLR that has important new core improvements.
In CLR 4.0, a native process is able to host more CLR versions side - by - side. .NET 4 supports
deploying applications accessing COM objects without deploying PIAs, and it is possible through a
new CLR feature called type equivalence.

 .NET 4 has a set of services that add dynamic programming capabilities to the CLR, and allow
interoperation between .NET objects and dynamic languages. DLR allows dynamically typed
languages like Python and Ruby to run on top of the CLR. DLR is also the base of the new dynamic
features in C# and Visual Basic.

 The many - core shift (using CPUs with multiple cores) has already happened. However, today,
software is the weakest link, because most applications are designed to run sequentially. Microsoft
provides a great technology in .NET 4 that effi ciently targets issues coming from the use of multiple
CPU cores. Instead of the sophistication in threading models, or automating parallelism, and hiding
it from developers, this uses a declarative approach built on TPL. It allows developers to explicitly
declare that certain parts of their program can be executed in parallel. The platform takes care of
the implementation.

 Now, LINQ is also multi - core enabled. PLINQ queries can use all CPUs in your computer
concurrently to execute in - memory queries that were previously carried out sequentially.

 Modern software architecture uses the concept of contracts to describe responsibilities of
components and communication through boundaries. The most frequently used .NET programming
languages (such as C# and Visual Basic) do not give you tools beyond type and interface defi nitions.
Code contracts in .NET 4 provide a contract library to describe preconditions, postconditions, and
object invariants. Related tools allow you static code analysis, contract document generation,
and instrumenting your code with run - time contract checks.

 The MEF ships with .NET 4. This new technology helps you to shift statically compiled applications
into dynamically composed ones. You can signify your components that export services offered
to other parts, and sign the intention to use imported services provided by other parts or a host
application. MEF uses the concept of a composition container that makes the matching among your
parts in run - time. With MEF, you can easily implement scenarios where parts of your applications
or services can be easily changed without following the “ remove/reinstall ” deployment pattern.

 In Chapter 11, you will learn about the enhancements of the .NET Workfl ow Framework (WF 4.0),
which is not just an updated version of WF 3.5, but has been totally redesigned and rewritten.

Summary ❘ 487

CH010.indd 487CH010.indd 487 9/6/10 5:03:40 PM9/6/10 5:03:40 PM

CH010.indd 488CH010.indd 488 9/6/10 5:03:40 PM9/6/10 5:03:40 PM

Enhancements to the .NET
Workfl ow Framework

 In the “ good old days ” of application programming, the imperative approach ruled the world
of software development. Today, you can fi nd a number of other paradigms as replacements
(or augmentations) to the traditional imperative model. The .NET family of languages is
moving toward functional programming support (not only F#, but also C# and Visual Basic).
The .NET run - time supports the declarative approach from the beginning — just think about
attributes decorating types, members, and parameters. There are also several tools helping
developers to apply aspect - oriented programming.

 From the release of .NET 3.0 in 2006, workfl ow - based development appeared in the palette
of paradigms supported by the framework — and, of course, by Visual Studio. The Windows
Workfl ow Foundation (WF) was the run - time library that put workfl ows into the hands of
developers. In contrast to the traditional imperative approach, this new paradigm manages
work coordination and operations differently:

 Workfl ows use a declarative model of writing applications by linking together
building blocks called activities rather than line - by - line coding.

 Workfl ows usually have a visual counterpart that allows a fl owchart - like description
of their logic.

 Instead of keeping units of work in memory, workfl ows can handle long - running work
by persisting themselves to a durable storage (such as a database) when idle, and by
loading them again once there is some work to be performed.

 Business rules for workfl ows can be defi ned separately from other code (infrastructure
code, UI code, and so on), making it easier to modify them.

 Since its fi rst release, WF went through a number of essential changes. The new version
(Workfl ow Foundation 4.0, or simply WF 4.0) saw enormous changes relative to the previous
versions — actually, it was totally redesigned and rewritten.

➤

➤

➤

➤

 11

CH011.indd 489CH011.indd 489 9/6/10 5:08:16 PM9/6/10 5:08:16 PM

490 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 There are so many great things in WF 4.0 that there is no reason to focus only on new features. This
chapter provides a detailed overview about the new workfl ow framework, and points out the main
differences when treating concrete features. This overview covers the following topics:

 An introduction to WF 4.0 — You will learn about the basics of the new workfl ow designer
workspace in the IDE. To experience a few activities and the use of this new design surface,
you will build a simple workfl ow using input and output arguments.

 Flowcharts and coded workfl ows — While WF 3.5 offered sequential and state machine
workfl ows, WF 4.0 uses only one kind of workfl ow. However, with the Flowchart activity,
you can create fl owchart - like workfl ows where you can create a fl ow of activities by
connecting elements. This section of the chapter introduces you to this feature, and also
teaches you how to create workfl ows from code.

 Workfl ow architecture — In this section of the chapter, you learn about the essential
concepts behind WF 4.0, such as workfl ow instances, hosts, activities, and extensions.
This section also helps you understand the major differences between WF 3.5 and WF 4.0
programming models.

 Workfl ow activity library — You will learn about 40 built - in activities shipped with .NET 4.
Most of them are totally new, while others already existed in WF 3.0 and WF 3.5. In this
section, you ’ ll see an overview of all WF 4.0 built - in activities.

 Using the compensation transaction model — In this section, you will create a sample
application to learn about the transaction and error - handling activities of WF 4.0.

 Persistence and human interactions — Many workfl ows implement human interactions,
such as providing additional data or making decisions. In this section, you learn about the
features of WF 4.0 used to manage these interactions with the help of persistence.

 Workfl ow services — WF 4.0 leverages Windows Communication Foundation (WCF)
features, and provides a great design - time and run - time support for web service based
workfl ows. In this section, you learn the basics of creating and using workfl ow services.

 AN INTRODUCTION TO WF 4.0

 With the multi - targeting feature of Visual Studio, you can create not only WF 4.0 applications,
but also WF 3.0 or WF 3.5 workfl ows. WF 4.0 is a completely new design; it has been totally
rewritten. However, you can still take advantage of your knowledge of previous versions of WF
(including concepts), but you cannot directly use code from applications with versions prior
to WF 4.0.

 The primary concept (that is, you can assemble a workfl ow from building blocks called activities)
has not changed, but designers, tools, and the internal architecture have been improved signifi cantly.

 If you have WF 3.0 or WF 3.5 code, you can still maintain that code in Visual Studio 2010, but
WF 3.0 and 3.5 activities (and other services) are not interchangeable with WF 4.0. If you have

➤

➤

➤

➤

➤

➤

➤

CH011.indd 490CH011.indd 490 9/6/10 5:08:19 PM9/6/10 5:08:19 PM

custom activities created in previous WF versions, those can be reused — generally without any
modifi cations — in WF 4.0 with the help of the Interop activity.

 The Workfl ow Design Surface

 As a part of the redesign process, the WF team at Microsoft listened to the feedback related to the
WF 3.5 designer, and created a new designer with a much better user experience than the former
one. The improvement is so great that it can hardly be explained in words. Figure 11 - 1 shows the
Visual Studio environment you can use to develop workfl ows.

 FIGURE 11 - 1: The new workfl ow development environment in Visual Studio 2010

 The main part of the workspace is occupied by the designer surface. At the top, you see a navigation
bar that allows you to zoom in and out among the levels of workfl ow hierarchy. You can nest
activities into workfl ows and into compound activities and establish a workfl ow with several logical
layers. In Figure 11 - 1, you see the details of a ForEach activity of a bigger workfl ow containing
other elements.

 At the bottom of the design surface, you see a command bar where you can edit Arguments,
Variables, and Imports, as well as zoom within the design surface. The activities you can build into
your workfl ows are located in the Toolbox on the left side. The new workfl ow design surface is
based on WPF technology, and, as you can see, the Properties window in the lower right is similar
to the one used by the WPF designer.

An Introduction to WF 4.0 ❘ 491

CH011.indd 491CH011.indd 491 9/6/10 5:08:19 PM9/6/10 5:08:19 PM

492 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Contrast this screenshot with Figure 11 - 2 that shows the WF 3.5 designer workspace. The old
designer is built on the same concepts as Windows Forms, and it uses GDI+ technology.

 FIGURE 11 - 2: The designer supported by WF 3.5

 Compared to Figure 11 - 1, you can see that the old designer used a different layout approach
that resembled a fl owchart, rather than the new one that is closer to a component diagram.
Another eye - catching difference is the grouping of controls in the Toolbox. Although, you can
customize the Toolbox content and group controls into tabs by yourself, the WF 4.0 design
surface offers you a predefi ned grouping, in contrast to WF 3.5, where controls were poured into
one tab.

 The Hello Workfl ow Application

 To discover a few nice features of WF 4.0, let ’ s build a simple “ Hello, World ” style application
using the Workfl ow Console Application template so that the application can accept a string
parameter to display. Navigate to File ➪ New ➪ Project, and select the Workfl ow subcategory
under C#. Take care that .NET Framework 4 is selected as the target framework (as shown in
Figure 11 - 3); otherwise, you create a WF 3.0 or WF 3.5 application. Select the Workfl ow Console
Application, name the project HelloWorkflow , and click OK.

CH011.indd 492CH011.indd 492 9/6/10 5:08:19 PM9/6/10 5:08:19 PM

 The newly created project skeleton is very similar to a standard console application, but you can
fi nd two additional fi les added to the project. An App.config fi le is prepared to indicate that your
project requires WF 4.0. The Workflow1.xaml fi le is an empty workfl ow that is started in the Main
method of Program.cs .

 FIGURE 11 - 3: New project with the Workfl ow Console Application template

With WF 3.0 and WF 3.5, the workfl ow is defi ned in a .cs fi le having a
 .designer.cs fi le in the back, similar to Windows Forms applications. WF 4.0
uses a simple .xaml fi le without any code - behind fi le to declare a workfl ow.

 From the Toolbox, drag a Sequence activity to the design surface where it says “ Drop Activity
here. ” You can fi nd this component in the Control Flow category. This activity will be responsible
for creating a sequence of other child activities you will add soon. In the Properties window, change
the DisplayName property to “ Hello Workfl ow ” .

 Adding an Input Argument

 This workfl ow accepts an input parameter, but
you still must defi ne it. At the bottom of the
designer surface, locate the Arguments link.
Click it to display the pane to add the input
argument the workfl ow expects. Create a new
argument with the name Message . Specify its
direction as In, and leave the default String
argument type. The Arguments pane in Figure 11 - 4 shows this argument.

 FIGURE 11 - 4: The Arguments pane showing the

Message workfl ow argument

An Introduction to WF 4.0 ❘ 493

CH011.indd 493CH011.indd 493 9/6/10 5:08:20 PM9/6/10 5:08:20 PM

494 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Adding Activities to the Workfl ow

 Now, drag three WriteLine activities (you can fi nd them in the Primitives category) into the drop
area of the Sequence activity. Each of them has a Text property displayed in the design surface (and
also available in the Properties window). Set the Text property of the fi rst WriteLine activity to the
 “ The workfl ow has started ” string, and the Text of the third one to “ The workfl ow has fi nished ” .
Include the opening and closing quotes in the Text property values! Text expects an expression,
and here you specify literal text constants delimited by quotes.

 Set the second WriteLine activity to “ Message: “ + Message . This activity will display the
 Message workfl ow argument you pass before starting the workfl ow instance. When you are typing
the Text property, IntelliSense is working, and you can select the argument from the displayed
continuation list.

 When setting up the Text properties, you can see that both the designer surface
and the Properties window display the “ Enter a VB expression ” hint, although,
you work with a C# project. Before you think it is a bug, you should know that
all expressions in WF 4.0 use the Visual Basic syntax.

 These expressions do not compile into Microsoft Intermediate Language (MSIL) code
when you build your project. They are evaluated at run - time by the workfl ow activities
using them. This is why the expression syntax is independent of the programming
language implementing the workfl ow — and it is the Visual Basic syntax.

 The fi nished workfl ow should look like Figure 11 - 5.

 At this point, your workfl ow is ready to run. Start it by pressing Ctrl+F5.
It displays the following output:

The workflow has started
Message:
The workflow has finished

 Passing Input Arguments to the Workfl ow

 You can see from the second line that the workfl ow used the default
 Message argument (empty string), because the application had not set a
concrete value. Let ’ s change Program.cs to specify a concrete argument.

 Open the Program.cs fi le and look into the Main method:

static void Main(string[] args)
{
 WorkflowInvoker.Invoke(new Workflow1());
}

 The code is really simple. The static WorkflowInvoker class provides an Invoke method to start
a Workflow1 instance. Now, change the Main method to the one shown in Listing 11 - 1 to pass the
 Message argument.

 FIGURE 11 - 5: The fi nished

workfl ow in the design

surface

CH011.indd 494CH011.indd 494 9/6/10 5:08:21 PM9/6/10 5:08:21 PM

 LISTING 11 - 1: Program.cs (HelloWorkfl ow)

using System;
using System.Collections.Generic;
using System.Activities;

namespace HelloWorkflow
{
 class Program
 {
 static void Main(string[] args)
 {
 var arguments = new Dictionary < string, object >
 {
 {“Message”, “Hello from WF 4.0”}
 };
 WorkflowInvoker.Invoke(new Workflow1(), arguments);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 Arguments are passed to the workfl ow in a Dictionary object holding name - and - value pairs. The
workfl ow will match the workfl ow arguments by their names. The dictionary of arguments is
passed to the Invoke method.

 When you run the modifi ed application, it produces the output you expect:

The workflow has started
Message: Hello from WF 4.0
The workflow has finished

 Adding an Output Argument

 Workfl ows can return output arguments that can be used by host applications. For example, output
of a workfl ow can be passed to another workfl ow. Let ’ s modify the “ Hello Workfl ow ” application
so that it creates an output argument composed from the message written to the console by the
second WriteLine activity and the current time.

 Click the Arguments link and add a second string argument named Result . The direction of this
argument should be Out, as shown in Figure 11 - 6.

 FIGURE 11 - 6: Defi ne the Result output parameter

An Introduction to WF 4.0 ❘ 495

CH011.indd 495CH011.indd 495 9/6/10 5:08:34 PM9/6/10 5:08:34 PM

496 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Adding a Variable

 The output message will be generated in two steps. First, the message part is composed before
executing the WriteLine activity. Second, the timestamp is added. Workfl ow variables are the
constructs you can use to store values and use them within the workfl ow. You can take a workfl ow
variable for a workfl ow into account just like a local method variable for the declaring method.

 Select the “ Hello Workfl ow ” sequence, click the Variables link in the design surface, and add a new
variable. Name it temp and leave its type of String . The Scope of the variable will be set to “ Hello
Workfl ow, ” which means that this variable is available within this activity. Figure 11 - 7 shows how the
Variables pane should look after adding temp .

 Creating the Output Value

 Add an Assign activity (found in the Primitives category) between the
fi rst and second WriteLine activity. On the design surface, it displays two
text boxes — the fi rst one names the target variable to store the expression
represented by the second one. In the Property window, these text boxes
are covered by the To and Value properties, respectively.

 Set the fi rst text box (To property) to temp , and the second one (Value
property) to “ Message: “ + Message . Now, the value of temp contains
the message the second WriteLine activity is about to display, so set its
 Text property to temp . Add another Assign activity between the second
and third WriteLine and set the To and Value properties to temp and temp
+ “ (” + DateTime.Now.ToString(“ HH:mm:ss “) + “) “ , respectively.

 Add a third Assign activity after the third WriteLine and set it to
assign the value of temp to the Result output argument. Now the
workfl ow should look like the design surface shown in Figure 11 - 8.

 Extracting the Workfl ow Output

 This workfl ow produces the output you would expect, but somehow it should be extracted from the
workfl ow. Modify the Main method in the Program.cs fi le as shown in Listing 11 - 2.

 LISTING 11 - 2: The Modifi ed Program.cs File (HelloWorkfl ow)

using System;
using System.Collections.Generic;
using System.Activities;

namespace HelloWorkflow
{

 FIGURE 11 - 7: Defi ne the temp workfl ow variable

 FIGURE 11 - 8: The modifi ed

workfl ow

CH011.indd 496CH011.indd 496 9/6/10 5:08:35 PM9/6/10 5:08:35 PM

 class Program
 {
 static void Main(string[] args)
 {
 var arguments = new Dictionary < string, object >
 {
 {“Message”, “Hello from WF 4.0”}
 };
 IDictionary < string, object > output =
 WorkflowInvoker.Invoke(new Workflow1(), arguments);
 Console.WriteLine(“Workflow output:”);
 Console.WriteLine(output[“Result”]);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The output arguments of the workfl ow are returned in an IDictionary < string, object >
instance, so you can easily access arguments by their names. When you run the application by
pressing Ctrl+F5, you see the following output:

The workflow has started
Message: Hello from WF 4.0
The workflow has finished
Workflow output:

Message: Hello from WF 4.0 (08:15:54)

You could implement this workfl ow without using variables at all. You could
assign values directly to the Result output argument. However, choosing this
way demonstrated variables that are essential concepts in WF 4.0.

 The Workflow1.xaml fi le is a declarative description of the workfl ow. Right - click the design
surface and invoke the View Code command (or simply press F7) to see the XAML code behind the
designer, as shown in Listing 11 - 3.

 LISTING 11 - 3: Workfl ow1.xaml (Code View)

 < Activity mc1:Ignorable=”sap” x:Class=”HelloWorkflow.Workflow1”
 xmlns=”http://schemas.microsoft.com/netfx/2009/xaml/activities”
 xmlns:mc=”clr-namespace:Microsoft.CSharp;assembly=System”
 xmlns:mc1=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:mcr=”clr-namespace:Microsoft.CSharp.RuntimeBinder;
 assembly=Microsoft.CSharp”
 xmlns:mv=”clr-namespace:Microsoft.VisualBasic;assembly=System”
 xmlns:mva=”clr-namespace:Microsoft.VisualBasic.Activities;
 assembly=System.Activities”
 xmlns:s=”clr-namespace:System;assembly=mscorlib”

continues

An Introduction to WF 4.0 ❘ 497

CH011.indd 497CH011.indd 497 9/6/10 5:08:36 PM9/6/10 5:08:36 PM

498 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

LISTING 11-3 (continued)

 xmlns:s1=”clr-namespace:System;assembly=System”
 xmlns:s2=”clr-namespace:System;assembly=System.Xml”
 xmlns:s3=”clr-namespace:System;assembly=System.Core”
 xmlns:s4=”clr-namespace:System;assembly=System.ServiceModel”
 xmlns:sa=”clr-namespace:System.Activities;assembly=System.Activities”
 xmlns:sad=”clr-namespace:System.Activities.Debugger;
 assembly=System.Activities”
 xmlns:sap=”http://schemas.microsoft.com/netfx/2009/xaml/
 activities/presentation”
 xmlns:scg=”clr-namespace:System.Collections.Generic;assembly=System”
 xmlns:scg1=”clr-namespace:System.Collections.Generic;
 assembly=System.ServiceModel”
 xmlns:scg2=”clr-namespace:System.Collections.Generic;assembly=System.Core”
 xmlns:scg3=”clr-namespace:System.Collections.Generic;assembly=mscorlib”
 xmlns:sd=”clr-namespace:System.Data;assembly=System.Data”
 xmlns:sl=”clr-namespace:System.Linq;assembly=System.Core”
 xmlns:ss=”clr-namespace:System.Security;assembly=System.Core”
 xmlns:ss1=”clr-namespace:System.Security;assembly=mscorlib”
 xmlns:st=”clr-namespace:System.Text;assembly=mscorlib”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < x:Members >
 < x:Property Name=”Message” Type=”InArgument(x:String)” / >
 < x:Property Name=”Result” Type=”OutArgument(x:String)” / >
 < /x:Members >
 < sap:VirtualizedContainerService.HintSize >
 304,721
 < /sap:VirtualizedContainerService.HintSize >
 < mva:VisualBasic.Settings >
 Assembly references and imported namespaces for internal implementation
 < /mva:VisualBasic.Settings >
 < Sequence DisplayName=”Hello Workflow”
 sad:XamlDebuggerXmlReader.FileName=”C:\Publications\VS 2010 Six-in-One\
 Chapter 11\Samples\HelloWorkflow\HelloWorkflow\Workflow1.xaml”
 sap:VirtualizedContainerService.HintSize=”264,681” >
 < Sequence.Variables >
 < Variable x:TypeArguments=”x:String” Name=”temp” / >
 < /Sequence.Variables >
 < sap:WorkflowViewStateService.ViewState >
 < scg3:Dictionary x:TypeArguments=”x:String, x:Object” >
 < x:Boolean x:Key=”IsExpanded” > True < /x:Boolean >
 < /scg3:Dictionary >
 < /sap:WorkflowViewStateService.ViewState >
 < WriteLine sap:VirtualizedContainerService.HintSize=”242,61”
 Text=”The workflow has started” / >
 < Assign sap:VirtualizedContainerService.HintSize=”242,58” >
 < Assign.To >
 < OutArgument x:TypeArguments=”x:String” > [temp] < /OutArgument >
 < /Assign.To >
 < Assign.Value >
 < InArgument x:TypeArguments=”x:String” > [“Message: “ + Message] < /InArgument >
 < /Assign.Value >
 < /Assign >
 < WriteLine sap:VirtualizedContainerService.HintSize=”242,61” Text=”[temp]” / >

CH011.indd 498CH011.indd 498 9/6/10 5:08:42 PM9/6/10 5:08:42 PM

 < Assign sap:VirtualizedContainerService.HintSize=”242,58” >
 < Assign.To >
 < OutArgument x:TypeArguments=”x:String” > [temp] < /OutArgument >
 < /Assign.To >
 < Assign.Value >
 < InArgument x:TypeArguments=”x:String” > [temp + “ (“ +
 DateTime.Now.ToString(“HH:mm:ss”) + “)”] < /InArgument >
 < /Assign.Value >
 < /Assign >
 < WriteLine sap:VirtualizedContainerService.HintSize=”242,61”
 Text=”The workflow has finished” / >
 < Assign sap:VirtualizedContainerService.HintSize=”242,58” >
 < Assign.To >
 < OutArgument x:TypeArguments=”x:String” > [Result] < /OutArgument >
 < /Assign.To >
 < Assign.Value >
 < InArgument x:TypeArguments=”x:String” > [temp] < /InArgument >
 < /Assign.Value >
 < /Assign >
 < /Sequence >
 < /Activity >

 The root element of the XAML description is the < Activity > element that defi nes about two
dozen namespaces used in the rest of the declaration. You can recognize the workfl ow arguments
nested into the < x:Members > node. It is also easy to identify the Sequence , WriteLine , and Assign
activities with their properties.

 The XAML description also contains elements and attributes defi ning the visual properties used
by the designer to arrange the workfl ow layout on the design surface. For example, occurrences
of the sap:VirtualizedContainerService.HintSize attribute tell the size of the bounding
rectangle belonging to a layout element. You can also fi nd the < sap:WorkflowViewStateService
.ViewState > element nested into < Sequence > , indicating that this activity is expanded on the screen.

 CREATING FLOWCHARTS AND CODED WORKFLOWS

 With previous WF versions, you could create two basic kinds of workfl ows:

 Sequential workfl ows — The control fl ow of a workfl ow starts from the fi rst activity
and executes other activities in the defi ned sequence. Activities can include control fl ow
activities such as IfElse , Parallel , While , and so on, but there is no way to use something
like a Goto activity to change the sequential order. When the last activity in the sequence is
fi nished, the workfl ow completes.

 State - machine workfl ows — The control fl ow follows the transitions of a state - machine.
As the current state changes, the activities assigned to the specifi c transition are executed.
When a fi nal state is reached, the workfl ow completes.

 WF 4.0 does not make such a separation among workfl ows. It provides a composite activity called
 Sequence . With the nested child activities, it offers you the same model as a sequential workfl ow in
versions prior to WF 4.0. However, it does not provide an activity like “ StateMachine ” to support
the other model. Instead, you can use a composite activity named Flowchart . You can nest child
activities into Flowchart and connect them together to form a fl ow.

➤

➤

Creating Flowcharts and Coded Workfl ows ❘ 499

CH011.indd 499CH011.indd 499 9/6/10 5:08:42 PM9/6/10 5:08:42 PM

500 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Flowcharts in WF 4.0

 Now, let ’ s create a fl owchart - based workfl ow that checks whether an integer number is a prime
number. Although this is not a typical application of a workfl ow, this example can be helpful when
learning about the Flowchart activity.

 Create a new Workfl ow Console Application and name it PrimeWorkflow . Add a new code fi le to
the project, name it TestResult.cs , and defi ne the following enumerated type:

namespace PrimeWorkflow
{
 public enum TestResult
 {
 NotTested,
 Prime,
 NonPrime
 }
}

 The algorithm will return NotTested if the input argument is greater than 1 billion. If it is less,
 Prime or NonPrime will be returned according to the test. Build the project right now — it will be
important in a future step.

 The check is very simple. Let ’ s try to divide the number with a few prime numbers (from 2 to 31).
If the number can be divided with the prime number without a remainder, it cannot be a prime
number. For demonstration purposes, the workfl ow will be extended to count the number of
different primes that divide the argument, and it will display a few messages according this counter.

 Adding a Flowchart to the Workfl ow

 Open the Workflow1.xaml fi le and drag a Flowchart activity (located in the Flowchart tab) to the
design surface. This activity will display a simple Start state representing the entry point of this activity.

 Add an Int32 input argument to the workfl ow and name it NumberToTest . Add an output
argument, and name it IsPrime . Click the Argument Type column and, in the drop - down list, select
 “ Browse for Types. ” A new dialog pops up. Expand the < Current project > node and its children
unless you fi nd the TestResult node, then select it and close the dialog. If you had not built the
project earlier, you would not be able to fi nd the TestResult type there.

 The algorithm will use two variables. Add the dividersCount variable with a type of Int32 , and
another one, primeDividers , with the type of Int32[] . For the latter variable, select the “ Array of
[T] ” from the Variable type column, and then select Int32 from the dialog that pops up.

 Adding a FlowDecision Activity

 Drag a FlowDecision activity to the Flowchart beneath the Start point. Set its properties to the
following values:

 Condition: NumberToTest > 1000000000

 FalseLabel : Testable

 TrueLabel : Too big to test

➤

➤

➤

CH011.indd 500CH011.indd 500 9/6/10 5:08:43 PM9/6/10 5:08:43 PM

 Drop two Assign activities to the Flowchart and set their corresponding properties to these values:

 (First activity) To : IsPrime ; Value : TestResult.NotTested

 (Second activity) To : IsPrime ; Value : TestResult.Prime

 Now, you can draw the fl ows among the Start point, the FlowDecision , and the two Assign
activities. When you move the mouse over the Start point, four handles will appear on each side of
this activity. Move the mouse to the handle beneath the Start point, click the mouse, and drag the
line over the FlowDecision activity. When the handles belonging to FlowDecision appear, release
the mouse button over one of these handles. An arrow will be drawn connecting the Start point
with the FlowDecision . This is how you can draw the connection among activities dropped to the
design surface of a Flowchart .

 When you move the mouse over the FlowDecision , the handles display their own labels (you set
them through the FalseLabel and TrueLabel properties earlier). Connect the Too big to test
label with the fi rst Assign activity, and then the Testable label with the second Assign activity.

 Figure 11 - 9 shows the Flowchart activity. Your drawing should have a similar topology.

➤

➤

 FIGURE 11 - 9: FlowDescision is connected with the Start point and the two Assign activities

 Now, add two more Assign activities and three more WriteLine activities to the Flowchart .
Table 11 - 1 summarizes how their properties should be set up.

 TABLE 11 - 1: Activity Properties

 ACTIVITY PROPERTY VALUES

 Assign DisplayName : Init Primes Array

 To: primeDividers

 Value: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}

continues

Creating Flowcharts and Coded Workfl ows ❘ 501

CH011.indd 501CH011.indd 501 9/6/10 5:08:43 PM9/6/10 5:08:43 PM

502 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Adding a ForEach < T > Activity

 Add a ForEach < T > activity to the design surface. This activity iterates through a collection of
elements. The T type parameter represents the type of elements in the collection. By default, it is
 System.Int32 , and now you need exactly this type. Set the DisplayName property of this activity to
 “ Check Each Divider ” .

 Connect the Assign activity at the Testable branch of the FlowDecision to Init Prime Arrays ,
then this activity to Reset Counter and then this one to Check Each Divider . The topology of the
workfl ow should look like Figure 11 - 10.

 FIGURE 11 - 10: More activities added to the workfl ow

 TABLE 11 - 1 (continued)

 ACTIVITY PROPERTY VALUES

 Assign DisplayName : Reset Counter

 To: dividersCount

 Value: 0

 WriteLine Text: “ This number has only one prime divider! “

 WrileLine Text: “ This number must be a prime number! “

 WriteLine Text: “ This number has several prime dividers! “

CH011.indd 502CH011.indd 502 9/6/10 5:08:44 PM9/6/10 5:08:44 PM

 Now, double - click the Check Each Divider activity to edit its properties and nested activities.
The design surface changes and zooms into this activity. At the top of the design pane, you can
see the Workfl ow → Prime Number Test → Check Each Divider path indicating where you are in
the current workfl ow.

 In the text box near to the ForEach label, set the cycle variable name to divider , then the collection
expression in the next text box to primeDividers . (You can set this latter fi eld through the Values
property as well.) As a result, this activity will iterate through the elements of primeDividers and
makes the current value accessible through the divider variable in body activities.

 Drag an If activity to the body of the ForEach and set the Condition to (NumberToTest Mod
divider = 0) And (NumberToTest < >

divider) . This condition will check if
 NumberToTest can be divided with the current
 divider , and this number is not the divider
itself (in this latter case, NumberToTest is a
prime number).

 Drag a Sequence to the Then branch of the If
activity, and add two Assign activities to its
body with the following properties:

 (First activity) To : IsPrime ; Value :
 TestResult.NonPrime

 (Second Activity) To : dividersCount ;
 Value : dividersCount + 1

 The Check Each Divider activity now
should look like Figure 11 - 11. This activity
will observe when NumberToTest is not a
prime number, and it counts the number of its
different prime dividers.

 Adding a FlowSwitch Activity

 Go back to the Prime Number Test activity (click the related link, which is labeled Flowchart, at
the top of the designer pane). Drag a FlowSwitch activity from the Toolbox and drop it somewhere
into the empty place among the Check Each Divider and the WriteLine activities. This activity
is a representation of a switch statement in C# (Case in Visual Basic). In the popup that appears,
leave the default value Int32 , then set its Expression property to dividersCount . This activity
will branch according to the current value of this expression.

 Connect Switch to the WriteLine where text is “ This number must be a prime Number. ” Click
the connection arrow and look at its properties. Uncheck the IsDefaultCase property and set
 Case to 0 . Now, Connect the Switch to the WriteLine activity saying “ This number has only one
prime divider! ” and set the link ’ s Case property to 1 . And, fi nally, connect the Switch to the third
 WriteLine activity and, in this case, leave the IsDefaultCase property checked. As a result, if
the dividersCount variable is different from 0 and 1 , this branch — this WriteLine activity — is
executed. Figure 11 - 12 shows the completed workfl ow.

➤

➤

 FIGURE 11 - 11: The Check Each Divider activity

Creating Flowcharts and Coded Workfl ows ❘ 503

CH011.indd 503CH011.indd 503 9/6/10 5:08:44 PM9/6/10 5:08:44 PM

504 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Running the Flowchart Workfl ow

 Change the Program.cs fi le of the PrimeWorkflow project as shown in Listing 11 - 4.

 LISTING 11 - 4: Program.cs (PrimeWorkfl ow)

using System;
using System.Activities;
using System.Collections.Generic;

namespace PrimeWorkflow
{

 class Program
 {
 static void Main(string[] args)
 {
 var arguments = new Dictionary < string, object >
 {

 FIGURE 11 - 12: The completed workfl ow

CH011.indd 504CH011.indd 504 9/6/10 5:08:45 PM9/6/10 5:08:45 PM

 {“NumberToTest”, 24}
 };
 IDictionary < string, object > output =
 WorkflowInvoker.Invoke(new Workflow1(), arguments);
 Console.WriteLine(“Test result for {0}: {1}”,
 arguments[“NumberToTest”],
 output[“IsPrime”]);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 As you can see from this listing, fl owchart workfl ows are managed exactly the same way as
sequential workfl ows are. From the outside, you cannot notice any difference; you do not see how
the workfl ow is internally implemented.

 Run the application by pressing Ctrl+F5, and you see the output:

This number has several prime dividers!
Test result for 24: NonPrime

 When you run the workfl ow with the “ NumberToTest ” argument set to 7 , 4 , and 459 , you ’ ll see the
following output:

This must be a prime number!
Test result for 7: Prime

This number has only one prime divider!
Test result for 4: NonPrime

This number has several prime dividers!
Test result for 459: NonPrime

 Code - Only Workfl ows

 Earlier, you learned that WF 4.0 describes workfl ows with XAML. When the run - time behind
WF 4.0 reads a XAML workfl ow, it is represented in memory as a tree of object instances. The
workfl ow execution uses this in - memory set of objects. The XAML fi le is a declarative description
of the object set representing the workfl ow. You can produce this object set without XAML using
only code — just as you can assemble a WPF form with code instead of the XAML markup.

 In this section, you will learn about this kind of workfl ow declaration by reproducing the “ Hello
Workfl ow ” application in pure code without using the workfl ow designer.

 Create a new C# console application project (ensure that you are using .NET Framework 4.0) and
name it CodedHelloWorkflow . Add a reference to the System.Activities assembly that contains
the WF 4.0 types the coded workfl ow application is going to use. Copy the code in Listing 11 - 5 to
 Program.cs .

Creating Flowcharts and Coded Workfl ows ❘ 505

CH011.indd 505CH011.indd 505 9/6/10 5:08:45 PM9/6/10 5:08:45 PM

506 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 LISTING 11 - 5: Program.cs (CodedHelloWorkfl ow)

using System;
using System.Activities;
using System.Activities.Statements;
using System.Collections.Generic;

namespace CodedHelloWorkflow
{
 class Program
 {
 static void Main(string[] args)
 {
 var arguments = new Dictionary < string, object >
 {
 {“Message”, “Hello from WF 4.0”}
 };
 IDictionary < string, object > output =
 WorkflowInvoker.Invoke(new HelloWorkflow(), arguments);
 Console.WriteLine(“Workflow output:”);
 Console.WriteLine(output[“Result”]);
 }
 }

 internal class HelloWorkflow : Activity
 {
 public InArgument < String > Message { get; set; }
 public OutArgument < String > Result { get; set; }

 public HelloWorkflow()
 {
 var temp = new Variable < string > (“temp”);
 Implementation = () = >
 new Sequence
 {
 DisplayName = “Hello Workflow”,
 Variables = { temp },
 Activities =
 {
 new WriteLine { Text = “The workflow has started” },
 new Assign < string >
 {
 To = new OutArgument < String > (temp),
 Value = new InArgument < string > (ctx = > “Message: “ +
 Message.Get(ctx))
 },
 new WriteLine { Text = new InArgument < string > (ctx = >
 temp.Get(ctx)) },
 new Assign < string >
 {
 To = new OutArgument < String > (temp),
 Value = new InArgument < string > (ctx = > temp.Get(ctx) +
 “ (“ + DateTime.Now.ToString(“HH:mm:ss”) + “)”)
 },

CH011.indd 506CH011.indd 506 9/6/10 5:08:46 PM9/6/10 5:08:46 PM

 new WriteLine { Text = “The workflow has finished”},
 new Assign < string >
 {
 To = new OutArgument < string > (ctx = > Result.Get(ctx)),
 Value = new InArgument < string > (ctx = > temp.Get(ctx))
 },
 }
 };
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 When you run this application, you see that it produces similar output to HelloWorkflow . When
you take a look at the Main method, you can see that here the Invoke method instantiates an
internal workfl ow class named HelloWorkflow . Input arguments are passed, while output
arguments are extracted exactly the same way as in the graphically designed workfl ow.

 It may be surprising, but the workfl ow itself is an activity — that is why HelloWorkflow derives
from the Activity class:

internal class HelloWorkflow : Activity
{
 // ...
}

 The activities the workfl ow is assumed to execute are defi ned in a declarative fashion. Look at the
constructor of the class:

public HelloWorkflow()
{
 var temp = new Variable < string > (“temp”);
 Implementation = () = >
 new Sequence
 {
 // ...
 }
}

 The Implementation property is a type of Func < Activity > and the lambda expression used here
declares the Sequence activity with all nested activities. Because it is just a declaration, creating this
lambda expression is a cheap operation. When the workfl ow is about to be executed, the method
represented by the lambda expression behind Implementation is called.

 Declaring Workfl ow Arguments

 Workfl ow arguments are declared as simple read - write properties:

public InArgument < String > Message { get; set; }
public OutArgument < String > Result { get; set; }

Creating Flowcharts and Coded Workfl ows ❘ 507

CH011.indd 507CH011.indd 507 9/6/10 5:08:46 PM9/6/10 5:08:46 PM

508 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Obviously, the generic InArgument < > and OutArgument < > types defi ne the input and output
arguments, respectively. The type parameters tell the type of the arguments — in this case, both of
them are strings. When you run the workfl ow, the HelloWorkflow class is instantiated, and input
arguments are matched with the appropriate property by the names in the dictionary passed to the
 Invoke method.

Try to pass a wrong argument name in the Main method — for example, Msg
instead of Message . You ’ ll receive a System.ArgumentException with the
message, “ The values provided for the root activity ’ s arguments did not satisfy
the root activity ’ s requirements. ”

 Declaring Variables

 The HelloWorkflow constructor defi nes the temp local variable that is used as a workfl ow variable:

var temp = new Variable < string > (“temp”);

 Although it contains string data, it is not declared as a native string variable, but rather as
 Variable < string > . The “ temp ” argument used here tells the name of the variable. You may
wonder why this kind of workaround is required instead of using a native variable.

 The reason is that workfl ow instances can be persisted to storage when they are idle (for example,
waiting for user input). In this case, their state represented by their variables should be persisted.
Without going into detail, this persistence requires that workfl ow variables can be referenced. The
 Variable generic type provides this requirement. The .NET refl ection does not provide a way to
retrieve local variable information for a method, so the “ temp ” name passed to the argument helps
the workfl ow run - time to manage the distinction of variables.

 Building Activities

 The Sequence activity is defi ned like this:

new Sequence
{
 DisplayName = “Hello Workflow”,
 Variables = { temp },
 Activities =
 {
 // ...
 }
}

 The DisplayName property is the one you can set in the Properties window when using the
workfl ow designer. The Variables container contains those Variable < > instances that are taken
into account as variables constituting the state of a workfl ow instance. The Activities container
enumerates the nested activities of Sequence to execute in the order as they are listed.

CH011.indd 508CH011.indd 508 9/6/10 5:08:47 PM9/6/10 5:08:47 PM

 Using Expressions

 The properties of WriteLine and Assign are a great representation of using arguments and variables
in expressions. You can see strange constructs using the Get method of workfl ow arguments and
variables like these:

To = new OutArgument < String > (temp)
// ...
Value = new InArgument < string > (ctx = > “Message: “ + Message.Get(ctx))
// ...
Text = new InArgument < string > (ctx = > temp.Get(ctx))

 To get the actual data from a Variable instance, you must use the Get method. The workfl ow
itself does not store any data elements; you must obtain the data from the context of a concrete
workfl ow instance. This is why the lambda expressions are used in the earlier code snippets. The
 ctx expression parameter is an instance of the ActivityContext class. You must pass the context
to the Get method of the Variable instance to extract the value of the variable.

 The properties of the Activity class are actually workfl ow parameters that can be represented
by InArgument < T > or OutArgument < T > instances. The Text property of WriteLine and Value
property of Assign are input arguments, while the To property of Assign is an output argument.

 Be sure to put the entire expression into the constructor of InArgument or OutArgument . If you ’ d
write the following

Value = “Message: “ + new InArgument < string > (ctx = > Message.Get(ctx))

instead of the following

Value = new InArgument < string > (ctx = > “Message: “ + Message.Get(ctx))

the output would be

Message: System.Activities.InArgument`1[System.String]

instead of

Message: Hello from WF 4.0

 WORKFLOW ARCHITECTURE

 By now, you have seen several examples of using the workfl ow designer to create a workfl ow,
and you have also learned that you can defi ne code - only workfl ows. Several concepts were also
mentioned, such as workfl ow instances, activities, variables, arguments, workfl ow persistence,
and so on.

 This section provides an overview of the workfl ow architecture so that you can understand how
these concepts fi t into the entire picture. Figure 11 - 13 shows an overview of this architecture with its
essential elements.

Workfl ow Architecture ❘ 509

CH011.indd 509CH011.indd 509 9/6/10 5:08:53 PM9/6/10 5:08:53 PM

510 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Workfl owApplication and Hosts

 The WorkflowApplication class of the System.Activity namespace is a core element of the
workfl ow architecture. This class provides a host for a single workfl ow instance. It is a proxy
to the actual workfl ow instance that is managed by the workfl ow run - time. Each workfl ow
instance is put into a separate WorkflowApplication instance. When running workfl ow instances,
it may get idle — for example, while waiting for user input. A WorkflowApplication takes care
of persisting the workfl ow instance, unloading it from the memory, and later reloading and
resuming it.

 A WorkflowApplication must be instantiated, set up, and executed within a host application.
It can be a simple console application (the examples treated thus far have demonstrated this), a
Windows Forms or WPF application, a Windows service, and any other form of executable
artifacts. The host application should not only create the WorkflowApplication instance,
but also have to set up its context (including arguments), create and confi gure extensions, and
start it.

 In many cases, a workfl ow should start as a response to a specifi c message received from the
network, or from another process. When the workfl ow is completed, the response message
should be transferred back to the sender. WF 4.0 provides a WorkflowServiceHost class that
listens for WCF messages to process them. When a message arrives, it instantiates and starts a
 WorkflowApplication instance hosting the requested workfl ow instance.

 During the lifecycle of a workfl ow, the host application can communicate with the workfl ow.

WorkflowApplication

Host Application

Workflow Context

Arguments
Activity

(Variables)

Activity

(Variables)

Activity

(Variables)
...

ExtensionExtensionExtensionExtension ...

W
o

rk
fl
o

w
S

e
rv

ic
e

H
o

s
t

B
e

h
a

v
io

r
B

e
h

a
v
io

r
..
.

P
a

s
s
in

g
 a

n
d

E
x
tr

a
c
ti

n
g

A
rg

u
m

e
n

ts

A
c
c
e

s
s
in

g
 H

o
s
t

A
p

p
li
c
a

ti
o

n

S
e

rv
ic

e
s

S
e

tt
in

g

B
o

o
k
m

a
rk

s

E
v
e

n
t

N
o

ti
fi
c
a

ti
o

n
s

E
x
te

n
s
io

n
s
 A

c
c
e

s
s

 FIGURE 11 - 13: Overview of workfl ow architecture

CH011.indd 510CH011.indd 510 9/6/10 5:08:54 PM9/6/10 5:08:54 PM

 It can pass input arguments to the workfl ow, and retrieve output arguments produced by
the workfl ow. The earlier samples showed you several examples handling arguments.

 The host application can access extensions (you will learn about this concept later)
belonging to the workfl ow. In addition to other features, extensions provide a way to pass
data from the host to the workfl ow (or back), and they can be accessed by any activities in
the workfl ow.

 The workfl ow generates events (for example, when it starts, gets idle, or completes). The
host application can respond to these events. For example, when a workfl ow completes, it
can notify the user or clean up UI resources.

 The workfl ow can get into an idle state when it is expected to wait for the user (for example,
the user must make a decision). The host application can resume the workfl ow when the
expected user interaction (for example, the user made the decision) is done. This mechanism
is handled with bookmarks that specify a resume point and pass data (for example, the
decision of the user) to the workfl ow.

 The workfl ow has the opportunity to access host application services.

 Although there might be multiple instances of a workfl ow executing simultaneously (for example,
one instance for each request), they do not interact with each other. There is no mechanism within
the workfl ow to communicate with other instances, and an instance is unaware of the fact that
other instances may exist.

 Activities

 A workfl ow (and so a WorkflowApplication) executes a single activity. This activity can be a
composite activity encapsulating a collection of other activities, so a workfl ow actually executes a
tree (or set) of activities. In the earlier samples, you saw examples of activities such as WriteLine ,
 Assign , Sequence , Flowchart , ForEach , and so on.

 WF 4.0 provides a large set of predefi ned activities. The whole framework was designed with
extensibility in mind, so you can easily add your own custom activities to the existing ones. The
developer community also provides activity components, so, before developing activity components,
check whether you can use existing ones.

 One of the key features of WF 4.0 is the explicit defi nition of arguments and variables. In
the earlier samples, you saw that workfl ows and activities can have arguments, and that activities
can defi ne and use variables. Arguments are used just like variables, except they can be passed
into and out of a workfl ow or an activity. Like workfl ows, activities are stateless. Their state is
maintained by the workfl ow context through arguments and variables. Of course, activities can
access them.

 Activities are derived directly or indirectly from the abstract Activity class of the System
.Activities namespace and form a tree of object types. Table 11 - 2 summarizes the most
important abstract Activity classes that are used by concrete activity components.

➤

➤

➤

➤

➤

Workfl ow Architecture ❘ 511

CH011.indd 511CH011.indd 511 9/6/10 5:08:55 PM9/6/10 5:08:55 PM

512 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 All classes in Table 11 - 2 derive directly from Activity . All activities except Activity have derived
generic classes with results, such as, NativeActivity < TResult > , CodeActivity < TResult > , AsyncC
odeActivity < TResult > , and ActivityWithResult < TResult > , respectively. They all have a Result
property that retrieves an output argument with a type of TResult .

 Extensions

 Extensions are object instances that can be accessed by both workfl ow activities and the host
application. Extensions provide services to all the activities used in a workfl ow. Generally, these
extensions are created and confi gured by the host and added to the WorkflowApplication instance
managing the workfl ow. A typical application of extensions is sharing data among activities. For
example, when several activities in a workfl ow use a database, the connection string information
can be shared among activities through an extension. Extensions can be used to inject information
into workfl ows (that is, can be used to implement the Dependency Injection design pattern for
workfl ows). Connection string sharing is an example.

 Extension classes do not have to be derived from a specifi c class like activities have to; any class can
be an extension.

 InstanceStore (declared in the System.Runtime.Persistence namespace) is used to
persist the current state of the workfl ow and retrieve it from the store when needed. This
extension plays a key role in the scalability of workfl ows. The workfl ow state can be
persisted to a store, and the workfl ow instance can be unloaded from the memory while
it is idle. If there is a massive amount of workfl ow instances, WF 4.0 can save system

➤

 TABLE 11 - 2: Abstract Activity Classes

 CLASS DESCRIPTION

 Activity The root class of the activity hierarchy. Its main responsibility is to

provide an activity instance (and so workfl ow instance) identifi cation,

and support composite activity creation.

 NativeActivity This class is a base class for custom activities that implement execution

logic using the Execute(ActivityExecutionContext) method,

which has full access to the run - time ’ s features.

 CodeActivity This class is a base class for creating a custom activity with imperative

behavior defi ned with the Execute(CodeActivityContext)

method, which gives access to variable and argument resolution and

extensions.

 AsyncCodeActivity This class is a base class for asynchronous operations, and manages

code activity execution from start to completion through the

 BeginExecute and EndExcute methods.

 ActivityWithResult These classes retrieve the value or type of an activity output argument.

This argument can be accessed through the Result property.

CH011.indd 512CH011.indd 512 9/6/10 5:08:56 PM9/6/10 5:08:56 PM

resources by sweeping out inactive workfl ows from memory and provide resources for active
workfl ows only.

 PersintenceParticipant (declared in the System.Activities.Persistence namespace)
derived classes can take part in the persistence process. In addition to the arguments
and variables, these extensions can collect a dictionary of values that also should be
persisted.

 TrackingParticipant (declared in the System.Activities.Tracking namespace) derived
classes can access the workfl ow - tracking infrastructure and access tracking records.

 Workfl ow Activity Model Changes

 The WF programming model has been totally redesigned to make it both simpler and more
robust. The key change in this model is that Activity is the core base type in the programming
model, and it represents both workfl ows and activities. The model becomes fully declarative.
Remember the CodedHelloWorkflow sample where the workfl ow declaration was about setting up
activities and properties using object and collection initializers with lambda expressions.

 With WF 3.5, you had to create a WorkflowRuntime instance to invoke a workfl ow. In WF 4.0, you
can simply create a workfl ow instance (that is, an Activity - derived instance) and execute it. This
behavior simplifi es unit testing and application scenarios where you do not want to go through the
trouble of setting up a specifi c environment.

 To demonstrate how the WF 4.0 programming model has changed, let ’ s compare two simple
workfl ows, one of them written with WF 3.5 and the other one with WF 4.0. Both workfl ows
defi ne a custom activity that receives a string in its Message argument and displays it on
the console.

 In this section, only a part of the source code is listed, but you can download the full source code
from the book ’ s website at www.wrox.com .

 SimpleHelloWF35

 This sample project has been created with the Sequential Workfl ow Console
Application project using .NET Framework 3.5 — and so, it uses WF 3.5.
The project contains a custom activity named CustomWriteLineWF35 . The
designer of this activity is shown in Figure 11 - 14.

 The code declaring this custom activity is shown in Listing 11 - 6.

 LISTING: 11 - 6: CustomWriteLineWF35.cs

using System;
using System.ComponentModel;
using System.Workflow.ComponentModel;
using System.Workflow.Activities;

namespace SimpleHelloWF35
{

➤

➤

 FIGURE 11 - 14: The

CustomWriteLineWF35

activity in design view

continues

Workfl ow Architecture ❘ 513

CH011.indd 513CH011.indd 513 9/6/10 5:08:56 PM9/6/10 5:08:56 PM

514 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

LISTING 11-6 (continued)

 public partial class CustomWriteLineWF35 : SequenceActivity
 {
 public CustomWriteLineWF35()
 {
 InitializeComponent();
 }

 public static DependencyProperty MessageProperty =
 DependencyProperty.Register(“Message”, typeof(string),
 typeof(CustomWriteLineWF35));
 [DescriptionAttribute(“Message”)]
 [BrowsableAttribute(true)]
 [DesignerSerializationVisibilityAttribute(
 DesignerSerializationVisibility.Visible)]
 public string Message
 {
 get
 {
 return ((string)(GetValue(MessageProperty)));
 }
 set
 {
 SetValue(MessageProperty, value);
 }
 }

 private void codeActivity1_ExecuteCode(object sender, EventArgs e)
 {
 Console.WriteLine(Message);
 }
 }
}

 Code fi le [CustomWriteLineWF35.cs] available for download at Wrox.com

 The largest part of this code defi nes the Message property using a
 DependencyProperty . In order for this code to write a message to
the console, a CodeActivity is used, and its ExecuteCode event
handler method writes the message to the console.

 The workfl ow uses this custom activity shown in Figure 11 - 15.

 The code representing this workfl ow is two C# fi les with about
70 lines.

 The Program.cs fi le that runs this workfl ow is shown in
Listing 11 - 7. FIGURE 11 - 15: The

SimpleHelloWF35 workfl ow

CH011.indd 514CH011.indd 514 9/6/10 5:08:57 PM9/6/10 5:08:57 PM

 LISTING 11 - 7: Program.cs (SimpleHelloWF35)

using System;
using System.Threading;
using System.Workflow.Runtime;

namespace SimpleHelloWF35
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var workflowRuntime = new WorkflowRuntime())
 {
 var waitHandle = new AutoResetEvent(false);
 workflowRuntime.WorkflowCompleted += (sender, e) = > waitHandle.Set();
 workflowRuntime.WorkflowTerminated += (sender, e) = >
 {
 Console.WriteLine(e.Exception.Message);
 waitHandle.Set();
 };
 var instance = workflowRuntime.CreateWorkflow(typeof(Workflow1));
 instance.Start();
 waitHandle.WaitOne();
 }
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 From this listing, you can see the compulsory dances with the WorkflowRuntime instance and the
 AutoResetEvent to start the workfl ow and wait for its completion.

 SimpleHelloWF4

 The second project is created from the Workfl ow Console Application template with .NET
Framework 4.0, and so it uses WF 4.0. In contrast to the SimpleHelloWF35 application, the custom
activity writing to the console does not require a design surface, its code shown in Listing 11 - 8 is
really simple.

 LISTING 11 - 8: CustomWriteLineWF4.cs

using System;
using System.Activities;

namespace SimpleHelloWF4
{
 public sealed class CustomWriteLineWF4 : CodeActivity

continues

Workfl ow Architecture ❘ 515

CH011.indd 515CH011.indd 515 9/6/10 5:08:57 PM9/6/10 5:08:57 PM

516 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

LISTING 11-8 (continued)

 {
 public InArgument < string > Message { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 Console.WriteLine(context.GetValue(Message));
 }
 }
}

 Code fi le [CustomWriteLineWF4.cs] available for download at Wrox.com

 Compare the declaration of the Message input argument with the implementation in Listing 11 - 6.
The declaration used by WF 4.0 is short and very intuitive. Also, the custom activity itself is a
 CodeActivity . Its Execute method is an overridden virtual method and not an event handler
method as used in Listing 11 - 6.

 The defi nition of this workfl ow uses a simple XAML fi le that is about 18 lines long, as shown in
Listing 11 - 9. Remember, the WF 3.5 solution used about 70 lines in C#.

 LISTING 11 - 9: Workfl ow1.xaml (SimpleHelloWF4)

 < Activity mc:Ignorable=”sap”
 x:Class=”SimpleHelloWF4.Workflow1”
 sap:VirtualizedContainerService.HintSize=”240,240”
 mva:VisualBasic.Settings=”Assembly references and imported namespaces
 for internal implementation”
 xmlns=”http://schemas.microsoft.com/netfx/2009/xaml/activities”
 xmlns:local=”clr-namespace:SimpleHelloWF4”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:mva=”clr-namespace:Microsoft.VisualBasic.Activities;
 assembly=System.Activities”
 xmlns:sad=”clr-namespace:System.Activities.Debugger;assembly=System.Activities”
 xmlns:sap=”http://schemas.microsoft.com/netfx/2009/xaml/activities/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < local:CustomWriteLineWF4
 sad:XamlDebuggerXmlReader.FileName=”C:\Publications\VS 2010 Six-in-One\
 Chapter 11\Samples\SimpleHelloWF4\SimpleHelloWF4\Workflow1.xaml”
 sap:VirtualizedContainerService.HintSize=”200,200”
 Message=”Hello from WF 4.0” / >
 < /Activity >

 Code fi le [Workfl ow1.xaml] available for download at Wrox.com

 The Program.cs fi le of this project is very simple, as shown in Listing 11 - 10.

CH011.indd 516CH011.indd 516 9/6/10 5:08:58 PM9/6/10 5:08:58 PM

 LISTING 11 - 10: Program.cs (SimpleHelloWF4)

using System.Activities;

namespace SimpleHelloWF4
{

 class Program
 {
 static void Main(string[] args)
 {
 WorkflowInvoker.Invoke(new Workflow1());
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 Here, the WorkflowInvoker static class does everything in contrast to Listing 11 - 7. You can fi nd
this kind of simplicity almost everywhere in the WF 4.0 programming model.

 As you see, the programming style used is very different from the one applied in WF 3.5 — and
makes your programs shorter, easier to test (the shorter they are, the more testable they are),
and very straightforward.

 WORKFLOW ACTIVITY LIBRARY

 You can choose from a wide variety of predefi ned activities when designing your workfl ows. The
Toolbox offers about 40 activities by default, and you can add more activities using the “ Choose
items ” command from the Toolbox context menu.

 This section provides an overview of these predefi ned activities. Most of them can be found in the
 System.Activities.Statements , System.Activities , and System.ServiceModel.Activities
namespaces.

 You have already seen that workfl ows and activities have a common root class, the System
.Activities.Activity class. As a consequence of this great design, activities (like workfl ows) can
have input and output arguments. These arguments can be set (and their value can be get) through
public properties of classes representing activities. While previous sections of this chapter used
the term “ arguments, ” this section will use the term “ properties ” to point out that arguments are
represented in code with properties.

 Some activities are simple ones executing a well - defi ned operation. The majority of these are
composite activities encapsulating other activities. Generally, you can access these constituting
activities in code through the Body property of their parents.

 All activities are new in WF 4.0, because all of them have been redesigned and rewritten.
This section provides a short overview of each of them. However, there are WF 4.0 activities

Workfl ow Activity Library ❘ 517

CH011.indd 517CH011.indd 517 9/6/10 5:08:58 PM9/6/10 5:08:58 PM

518 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

with matching semantics of a particular WF 3.5 activity. The overview indicates this functional
matching.

 Primitive Activities

 These activities provide you with primitive operations such as assignment, method invocation, delay,
output messages, and so on.

 Table 11 - 3 summarizes the primitive activities you can fi nd in the activity library.

 TABLE 11 - 3: Primitive Activities

 ACTIVITY DESCRIPTION

 Assign This activity sets workfl ow argument or variable values from within a workfl ow.

 Use the To property to defi ne the argument or variable to set, and the Value

property to specify the value.

 Assign < T > This is the generic form of the Assign activity. You can specify the type of

argument or variable to set.

 Delay

 This activity creates a timer for a specifi c duration. When the activity ’ s timer

expires, the Delay activity completes its execution.

 You can use the Duration property to set the TimeSpan of the timer.

 InvokeMethod This activity calls a public method of a specifi ed object or type. You can use the

 TargetType , TargetObject and MethodName properties to set up the object

and method to invoke. You can pass GenericTypeArguments and Parameters

to the method. Set the RunAsynchronously fl ag to true to run the method in a

background thread.

 WriteLine This activity writes a specifi ed string to a specifi ed TextWriter object. Use the

 Text property to set the string to write to the output. Leave the TextWriter

property empty if you want to write the string to the default output; otherwise,

set it to the intended TextWriter object.

 Except for Delay , all activities in Table 11 - 3 are new. In WF 3.5 you can implement the other
activities simply by defi ning CodeActivity instances.

 In WF 4.0 you can easily defi ne your own primitive activities by creating new activities inheriting
from System.Activity.CodeActivity .

 Flow Control Activities

 All activities belonging to this category are composite activities nesting child activities in their body.
The parent activity has a predefi ned control fl ow determining how child activities are executed.

 Table 11 - 4 summarizes the fl ow control activities defi ned in WF 4.0, describing their semantics.

CH011.indd 518CH011.indd 518 9/6/10 5:08:59 PM9/6/10 5:08:59 PM

 TABLE 11 - 4: Flow Control Activities

 ACTIVITY DESCRIPTION

 DoWhile

 This class represents a looping activity that executes contained activities

at least once, until a condition is no longer true.

 First, the body activity of DoWhile is executed, and then the Condition

property is checked. While this condition is met, the body is executed

cyclically.

 ForEach < T > This activity executes its body activity action once for each value

provided in the Values collection. T defi nes the type of the values

provided in the Values collection.

 If

 This activity models an If - Then - Else statement with a Boolean

 Condition . When it is evaluated to true , the activity set in the Then

property is executed; otherwise, the activity set in the Else property is

carried out. You can leave either Then or Else empty.

 This property is semantically the same as IfElse in WF 3.5.

 Parallel

 This activity executes all child activities simultaneously and

asynchronously. The activity operates by simultaneously scheduling each

 Activity in its Branches collection at the start. It completes when all

of its Branches complete, or when its CompletionCondition property

evaluates to true . While all the Activity objects run asynchronously,

they do not execute on separate threads, so each successive activity only

executes when the previously scheduled activity completes or goes idle.

If none of the child activities of this activity go idle, this activity executes

them in the same way as a Sequence activity (see more about this later in

this table) does.

 This activity has the same name as the Parallel activity in WF 3.5, but

semantically is diff erent.

 ParallelForEach < T > This activity enumerates the elements of a collection and executes

an embedded statement for each element of the Values collection in

parallel. You can imagine it as using the Parallel activity where the

 Branches property is set up dynamically according to the body of the

corresponding ForEach < T > activity. All the execution semantics treated

for Parallel are the same for this activity.

 Pick This activity behaves similarly to Switch (see more on this later in this

table) in that it executes only one of several activities in response to

events. The Branches property contains a collection of PickBranch

events. Only one of these PickBranch activities is executed — the fi rst

one that signs that its trigger event has been fi red. Other PickBranch

activities are ignored.

continues

Workfl ow Activity Library ❘ 519

CH011.indd 519CH011.indd 519 9/6/10 5:08:59 PM9/6/10 5:08:59 PM

520 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 TABLE 11 - 4 (continued)

 ACTIVITY DESCRIPTION

 PickBranch This activity is a potential path of execution within a Pick activity. A

 PickBranch contains a Trigger and an Action . At the beginning of a Pick

element ’ s execution, all the trigger activities from all PickBranch elements

are scheduled. When the fi rst trigger activity completes, the corresponding

action activity is scheduled, and all other trigger activities are canceled.

 Sequence

 This activity executes a set of child activities according to a single,

defi ned ordering. The Activities collection defi nes the activities

to be executed. They are carried out in the order they are added to

the collection. When the last activity in the collection completes, the

 Sequence activity completes.

 In WF 3.5 the Sequence activity has the same semantics as in WF 4.0.

 Switch < T > This activity selects one choice from a number of activities to execute,

based on the value of a given expression of the type specifi ed in this

object ’ s type specifi er. Each case in the Cases dictionary consists of a

value (serving as the key for the dictionary) and an activity (serving as

the value for the dictionary). The Expression property of Switch is

evaluated and compared against the keys in the Cases dictionary. If a

match is found, the corresponding activity is executed.

 While

 This activity executes a contained workfl ow element while a condition

evaluates to true . First, the Condition property is evaluated, and if it ’ s

 true , the Body of the activity is executed. This cycle goes on while the

condition is met.

 The While activity in WF 3.5 has the same semantics as in WF 4.0.

 Workfl ow Run - Time Activities

 There are a few activities infl uencing the behavior of the workfl ow run - time. These activities are
described in Table 11 - 5.

 TABLE 11 - 5: Workfl ow Run - Time Activities

 ACTIVITY DESCRIPTION

 Persist

 Persistence is a key issue related to long - running workfl ows and, of

course, to scalability. You can create extensions that persist your own

custom information in addition to the default workfl ow state (including

arguments and variables). You may have reasons to persist the workfl ow

information at certain points when the run - time would not save this

information automatically (for example, if your business logic requires it).

 This activity requests the run - time to persist the workfl ow instance.

CH011.indd 520CH011.indd 520 9/6/10 5:09:00 PM9/6/10 5:09:00 PM

 Flowchart - Specifi c Activities

 As you have seen earlier, WF 4.0 supports creating fl owchart - like workfl ows. Other composite
activities such as Sequence , Foreach < T > , Parallel , Pick , and so on, declare simple control fl ow
strategy. For example, a Sequence activity executes nested activities in the order they are added to
the Activities collection.

 In contrast, Flowchart allows you to drop several activities to the design surface and draw
connections describing the control fl ow among the nested activities.

 Table 11 - 6 describes the activities that allow you to create fl owchart - like workfl ows.

 ACTIVITY DESCRIPTION

 TerminateWorkflow

 In many workfl ows (especially the ones with human interaction) there

may be some exceptional branches that require terminating your

workfl ow, either with success or failure.

 This activity terminates the running workfl ow instance, raises the

 Completed event in the host, and reports error information. Once the

workfl ow is terminated, it cannot be resumed.

 In WF 3.5 you can use the Terminate activity with the same semantics.

 Interop This activity manages the execution of an activity developed in WF 3.0

or WF 3.5 (System.Workflow.ComponentModel.Activity derived

type) within a WF 4.0 workfl ow. The Interop activity will not appear

in the workfl ow designer Toolbox unless the workfl ow ’ s project has

its Target Framework setting set to .NET Framework 4, (generally,

the default setting is .NET Framework 4 Client Profi le). Use the

 ActivityProperties and ActivityType properties of the Interop

class to parameterize the WF 3.0 or WF 3.5 activity to execute.

 TABLE 11 - 6: Flowchart - Specifi c Activities

 ACTIVITY DESCRIPTION

 Flowchart This activity models workfl ows using the familiar fl owchart paradigm. It

uses the Nodes collection to describe all activities within the fl owchart. This

collection contains FlowNode instances. The StartNode property describes

the fi rst activity in the workfl ow, and each FlowNode instance is capable of

defi ning the next activity to execute.

 FlowNode This class is the abstract base class for all the diff erent node types that can be

contained within a Flowchart activity. You can develop your own fl owchart -

 aware activities inheriting from this class.

continues

Workfl ow Activity Library ❘ 521

CH011.indd 521CH011.indd 521 9/6/10 5:09:00 PM9/6/10 5:09:00 PM

522 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Of course, you can nest any other activities into a Flowchart activity. However, FlowNode - derived
activities such as FlowDecision and FlowSwitch < T > can be used only within a Flowchart .

 Error - Handling Activities

 Most workfl ows can (must) handle errors and exceptions either as a standard branch of a process
(for example, an item is out of stock), or as an occasional event (for example, the inventory system
is temporarily out of order). The error - handling activities help you defi ne how certain errors and
exceptions should be managed in your workfl ows.

 While WF 3.5 used fault handlers, WF 4.0 uses the try - catch - finally exception - handling pattern.

 Table 11 - 7 describes the activities you can use.

 TABLE 11 - 6 (continued)

 ACTIVITY DESCRIPTION

 FlowStep This class is a FlowNode - derived class that executes a specifi ed Action and

has a Next pointer to the FlowNode to be executed as the next step of the

workfl ow. When you drop a non - FlowNode activity to the design surface of a

 Flowchart , that activity is wrapped into a FlowStep instance.

 FlowDecision This activity is a specialized FlowNode that provides the capability to model

a conditional node with two outcomes. The condition is evaluated by the

workfl ow run - time, and its true or false outcome determines the next action

to take.

 FlowSwitch < T > This activity is a specialized FlowNode that allows modeling a switch construct,

with one expression and one outcome for each match. The expression is

evaluated by the workfl ow run - time and the outcome determines the next

action to take.

 TABLE 11 - 7: Error - Handling Activities

 ACTIVITY DESCRIPTION

 TryCatch This activity contains a Try activity to be executed by the workfl ow run - time

within an exception handling block. It contains a Catches collection composed

from Catch elements that describe exception - handling branches. The Finally

property defi nes workfl ow element to be executed when the Try and any

necessary activities in the Catches collection complete execution.

 Throw This activity throws an exception.

 Rethrow This activity throws a previously thrown exception from within a Catch activity. It

can only be used within a Catch block of a TryCatch activity.

 Later in this chapter, you will see an example that demonstrates how to use these activities.

CH011.indd 522CH011.indd 522 9/6/10 5:09:01 PM9/6/10 5:09:01 PM

 Transaction - Handling Activities

 One of the key success factors of modern workfl ow applications is the capability to manage long -
 running transactions. Long - running transactions are those transactions where you cannot use
either the begin - commit - rollback pattern generally implemented by database management systems,
or the two - phase commit pattern used by distributed systems. There might be many reasons why
these patterns can ’ t be applied, the most frequent being that one (or more) of the parties involved in
the transaction do not support any of the two previously described patterns.

 WF 4.0 uses a transaction model named compensating transaction . This model does not ensure
atomicity (that is, your transaction is either entirely executed or rolled back to the starting point as
if nothing happened). Instead, it provides that the transaction is either entirely done (committed) or,
in the case when it cannot be entirely committed, changes are compensated.

 A common example is when you register for a conference and separately book an airline ticket and
hotel. If everything ’ s okay, all fees are withdrawn from your credit card account. If the conference
is cancelled, your registration fee is returned, and, in many cases, other fees are also put back to
your account. However, if you buy tickets with special conditions or you cancel your hotel too close
to the check - in date, a part of the fee is withheld as a cancellation fee. In this case, your original
transaction is not rolled back — you do not get all your money back, only a part of it. You are
compensated, albeit partially.

 Table 11 - 8 describes the activities WF 4.0 uses to implement the compensating transaction model.

 TABLE 11 - 8: Transaction - Handling Activities

 ACTIVITY DESCRIPTION

 CompensableActivity

 This activity is the core compensation activity in WF 4.0. Any

activities that perform work that may need to be compensated are

placed into the Body of a CompensableActivity . It also allows the

developer to optionally specify a compensation and confi rmation

activity to schedule appropriate business logic in the event of

errors or successful completion of the Body . Compensation and

confi rmation of a CompensableActivity is invoked by using the

 CompensationToken returned by the CompensableActivity .

 If the Body activity is cancelled before it has completed,

the CancellationHandler activity is executed. The

 CompensationHandler activity is executed when subsequent

workfl ow activities fail and the workfl ow is aborted, and it is used to

undo the work of the Body activity if the Body has completed.

 The ConfirmationHandler activity is executed when the activity has

been confi rmed. By default, confi rmation happens automatically when

the workfl ow instance has completed.

continues

Workfl ow Activity Library ❘ 523

CH011.indd 523CH011.indd 523 9/6/10 5:09:01 PM9/6/10 5:09:01 PM

524 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Later in this chapter, you will learn more about the compensating transaction model used by WF 4.0
through a sample.

 Collection - Handling Activities

 WF 4.0 provides some predefi ned activities that enable you to manipulate collections in your
workfl ow. You can declare collection arguments and variables, as the following declarations show:

Variable < ICollection < Customer > > customerList =
 new Variable < ICollection < Customer > > ();
// ...
InArgument < ICollection < Order > > Orders { get; set; }

 There are several primitive activities allowing you to work with collections. All of them have a type
parameter defi ning the type of elements in the collection, and a Collection property containing
a reference to the collection argument or variable that is the subject of the operation. The Item
property — where the operation has this argument — specifi es the collection item used by the
operation.

 Table 11 - 9 summarizes these collection - handling activities.

 TABLE 11 - 8 (continued)

 ACTIVITY DESCRIPTION

 CancellationScope This activity associates cancellation logic with the main path of

execution. The work that may need to be cancelled is placed into the

 Body of a CancellationScope . The CancellationHandler property

contains the activity that is executed in the event of cancellation.

 Compensate This activity can be used to explicitly invoke the compensation

handler of a CompensableActivity . When the Target property is

specifi ed, the Compensate activity explicitly invokes the compensation

handler of the target CompensableActivity . When Target is not

specifi ed, the Compensate activity invokes the default compensation

for any child CompensableActivity activities in the reverse order of

successful completion.

 Confirm This activity can be used to explicitly invoke the confi rmation handler

of a CompensableActivity . When the Target property is specifi ed,

the Confirm activity explicitly invokes the confi rmation handler of

the target CompensableActivity . When Target is not specifi ed,

the Confirm activity executes the default confi rmation for any child

 CompensableActivity activities in the reverse order of successful

completion.

CH011.indd 524CH011.indd 524 9/6/10 5:09:02 PM9/6/10 5:09:02 PM

 Messaging Activities

 Most workfl ows involve different people and systems having well - defi ned roles in a workfl ow.
Often, the whole business workfl ow (a business process) is divided technically into smaller ones
composing the entire process. For example, from your point of view, the whole process of ordering
a book from a web shop is one business workfl ow that completes when you receive the book. From
the web shop point of view, this process must be divided into smaller workfl ows (order placement,
shipment scheduling, payment collection, delivery, and so on), and, generally, third - party service
providers are also involved.

 When you create distributed workfl ows (either simple or complex ones), those workfl ows must
communicate. In many cases, workfl ows are built on inhomogeneous back - end systems (ERP, CRM,
inventory, enterprise directory, and so on) that provide services for the business processes. WF 4.0
provides a more sophisticated model for inter - workfl ow communication and accessing external
services than WF 3.5 had. It seamlessly integrates with Windows Communication Foundations
(WCF), and provides more activities than WF 3.5.

 Table 11 - 10 summarizes the built - in messaging activities of WF 4.0.

 TABLE 11 - 9: Collection - Handling Activities

 ACTIVITY DESCRIPTION

 AddToCollection < T > Adds an item to the specifi ed collection.

 ClearCollection < T > Clears a specifi ed collection of all items.

 ExistsInCollection < T > Indicates whether a given item is present in a given collection. Its

 Result property is true if the item is in the collection; otherwise,

it is false .

 RemoveFromCollection < T > Removes an item from a specifi ed collection. Its Result property

is true if the item has been removed from the collection (because

it was present in the collection); otherwise, it is false .

 TABLE 11 - 10: Messaging Activities

 ACTIVITY DESCRIPTION

 Send This activity sends a message to a service. It has about a dozen

of properties to set up the message to send, including Content ,

 EndPointAddress , ServiceContractName , OperationName , and

many others.

 Receive This activity receives a message. When the message has arrived, it

can be accessed through the Content property.

continues

Workfl ow Activity Library ❘ 525

CH011.indd 525CH011.indd 525 9/6/10 5:09:02 PM9/6/10 5:09:02 PM

526 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 While most of the activities treated by now are contained in the System.Activities and
 System.Activities.Statements namespaces, messaging activities are declared within
the System.ServiceModel.Activities namespace.

 TABLE 11 - 10 (continued)

 ACTIVITY DESCRIPTION

SendReply This activity sends the reply message as part of a request/response

message exchange pattern on the service side.

ReceiveReply This activity receives a message as part of a request/response

message exchange pattern.

CorrelationScope This activity provides implicit message correlation -

 management services for child messaging activities. Through a

 CorrelationHandle instance messages, such a request and

the related response can be correlated. For example, when the

 CorrelationScope contains a Send and a ReceiveReply activity,

the workfl ow will correlate the response message with the correct

workfl ow instance.

InitializeCorrelation This activity initializes correlation without sending or receiving a

message. Typically, correlation is initialized by sending or receiving a

message. If correlation must be initialized before a message is sent or

received, this activity can be used to initialize the correlation.

TransactedReceiveScope This activity enables you to fl ow a transaction into a workfl ow or

dispatcher - created server - side transactions. This wasn ’ t possible

in WF 3.5. You could have transactions on the client, and you could

have transactions on the server, but they would not be able to

cooperate. With the TransactedReceiveScope activity, WF 4.0

provides a great solution.

 Using messaging in workfl ows requires a deep understanding of messaging
patterns and WCF. It is defi nitely out of the scope of this chapter to dive into
this topic deeper. In this chapter, you ’ ll fi nd an example demonstrating the
 WorkflowServiceHost class, where a few messaging activities will be used.

 Microsoft has released many samples for demonstrating messaging in WF 4.0.
You can download these samples from http://www.microsoft.com/
downloads/details.aspx?FamilyID=35ec8682-d5fd-4bc3-a51a-d8ad115a

8792 & displaylang=en , or you can search for “ WCF WF Samples .NET 4 ” on
MSDN.

CH011.indd 526CH011.indd 526 9/6/10 5:09:03 PM9/6/10 5:09:03 PM

 USING THE COMPENSATING TRANSACTION MODEL

 Although Table 11 - 8 summarizes the activities related to transaction handling, it ’ s diffi cult to
imagine how the compensating transaction pattern works in practice. Because it is an essential part
of WF 4.0, understanding the concepts behind it helps you develop more robust workfl ows.

 Let ’ s create an example that helps you understand how this pattern works with WF 4.0. This
example also demonstrates error - handling concepts through a TryCatch activity.

 The ConferenceWorkfl ow Example

 This example will demonstrate a very simplifi ed case of a conference registration when you also
arrange travelling and book a hotel reservation.

 Create a new Workfl ow Console Application,
and name it ConferenceWorkflow . Drag and
drop a TryCatch activity to the design surface of
 Workflow1 , and then a Sequence activity to the Try
block. Set its DisplayName property to Conference
Preparations . Add a WriteLine activity to
 Conference Preparations with the Text property
set to “ Conference preparations started. ” Click the
 “ Add an activity ” link of the Finally block, and drop
a WriteLine there with the “ Conference preparations
completed ” text. Click the Conference Preparations
link of the Try block.

 Figure 11 - 16 shows the workfl ow you ’ ve created.

 As you would expect, when you run this workfl ow by
pressing Ctrl+F5, it generates the following output:

Conference preparations started
Conference preparations completed

 Add a Parallel activity to Conference Preparations below WriteLine and set its DisplayName
to “ Registration and Travelling. ” Drop two Compensable activities to the Parallel activity
and set their DisplayName to “ Registration ” and “ Travelling, ” respectively. Add a Sequence
property to the body of Registration , and another one to the body of Travelling , respectively.
Drop a WriteLine to the Sequence in Registration with Text and set it to “ (Body) Pay
$1.500 registration fee. ” Add a Delay after this WriteLine with its Duration set to TimeSpan
.FromSeconds(2) .

 Add a WriteLine to the Sequence in Travelling with Text set to “ (Body) Pay $1.000 for
travelling and hotel ” , and then a Delay with Duration set to TimeSpan.FromSeconds(1) .

 Now, the Registration and Travelling activities should look like Figure 11 - 17.

 FIGURE 11 - 16: The TryCatch activity of the

ConferenceWorkfl ow example

Using the Compensating Transaction Model ❘ 527

CH011.indd 527CH011.indd 527 9/6/10 5:09:09 PM9/6/10 5:09:09 PM

528 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Now the workfl ow generates the following output when you run it:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
Conference preparations completed

 Implementing Cancellation, Confi rmation,

and Compensation

 As you can see in Figure 11 - 17, the CompensableActivity instances (Registration , Travelling)
have three sections with no actions specifi ed yet. The CancellationHandler is executed
when the Body action is cancelled. The CompensationHandler is executed when the Body
action is successfully executed, but any subsequent errors or exceptions prevent the workfl ow
from completing successfully. The ConfirmationHandler is executed when the workfl ow
completes.

 FIGURE 11 - 17: Registration and Travelling activity

CH011.indd 528CH011.indd 528 9/6/10 5:09:10 PM9/6/10 5:09:10 PM

 Add six WriteLine activities to the empty handler sections with their Text property set according
to Table 11 - 11, respectively.

 CANCELLATION IS NOT A FAILURE

 Do not mix the concepts of cancellation and failure! “ Failure ” means that some
error happened, or an exception is raised. “ Cancellation ” means that an activity
has been scheduled to run, but it was cancelled before it was completed. For
example the Parallel and ParallelForEach < T > activities schedule the activities
in their body to run. Every time when a branch completes, these activities evaluate
their CompletionCondition property. If this shows true , all the branches
scheduled, but not run, are cancelled.

 Of course, failures can be caught and handled, so that they will cause activities
to be cancelled.

 TABLE 11 - 11: Text Properties of WriteLine Activities

 ACTIVITY DESCRIPTION

 CompensationHandler (Registration) “ (Compensation) $1.500 registration fee paid back “

 CompensationHandler (Travelling) “ (Compensation) $800 travelling and hotel fee paid

back “

 ConfirmationHandler (Registration) “ (Confi rmation) See you in Vegas! “

 ConfirmationHandler (Travelling) “ (Confi rmation) Enjoy your fl ight! “

 CancellationHandler (Registration) “ (Cancellation) Your registration has not been done “

 CancellationHandler (Travelling) “ (Cancellation) Your hotel reservation has not been

done “

 Run the workfl ow by pressing Ctrl+F5. All CompensableActivity bodies run, and the workfl ow
completes successfully, so there is no surprise that the following output is displayed:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
Conference preparations completed
(Confirmation) See you in Vegas!
(Confirmation) Enjoy your flight!

 However, one thing in the output is worth mentioning. Note, that the confi rmation messages are
preceded with the “ Conference preparations started ” message coming from the Finally block
of the TryCatch activity. Confi rmation handlers run only after all workfl ow activities completed
successfully.

Using the Compensating Transaction Model ❘ 529

CH011.indd 529CH011.indd 529 9/6/10 5:09:10 PM9/6/10 5:09:10 PM

530 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Cancellation

 Let ’ s see how cancellation works by setting the CompletionCondition property of the
 Registration and Travelling activity to True . When you run the workfl ow, it produces the
following output:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
(Cancellation) Your registration has not been done
Conference preparations completed
(Confirmation) Enjoy your flight!

 This output shows that the Registration activity is cancelled and Travelling is confi rmed. How
can that be? Both the Registration and the Travelling activities have a Delay activity that
suspends them for a while. Travelling resumes after one second and that branch completes at this
point. The CompletionCondition of the Parallel activity is evaluated to true , so Registration
(it is still suspended) is cancelled. When you change the Delay activities so that Travelling resumes
slower, you get the following output:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
(Cancellation) Your hotel reservation has not been done
Conference preparations completed
(Confirmation) See you in Vegas!

 Compensation

 Compensation is not as easy to implement as cancellation because the failure triggering
the compensation happens at a point in the workfl ow where you are outside of
 CompensableActivity to compensate. You do not even have information about what activities
within that CompensableActivity are cancelled. Generally, however, a cancelled action does not
need compensation (although, in certain cases, it might).

 The key to establishing the right compensation model for a concrete workfl ow is the
 CompensationToken type. A CompensationToken instance can be set as a result of a
 CompensableActivity . By checking these tokens, you can make decisions about what activities
need to be compensated (and how).

 Let ’ s modify the ConferenceWorkflow example to use CompensationToken instances.

 Add two variables with the TryCatch scope. Name them registrationToken and
 travellingToken , and set their types to System.Activities.Statements.CompensationToken .
(Select “ Browse for Types ” from the Variable Type column and drill down to the
 CompensationToken type in the System.Activities assembly). Select the Registration and
then the Travelling activities, and set their Result property to registrationToken and
 travellingToken , respectively.

CH011.indd 530CH011.indd 530 9/6/10 5:09:11 PM9/6/10 5:09:11 PM

 Drop a Throw activity into the Conference Preparations Sequence after the Registration and
 Travelling activity. Set its Exception property to New System.InvalidOperationException() .
This activity will raise an exception.

Here, the System.InvalidOperationException is used just for demonstration
purposes to mimic a business exception. In real workfl ows, always defi ne your
own exception types and raise them to signal failures your workfl ow is prepared
to handle.

 Now, click the “ Add new catch ” link in the
 Catches section of the TryCatch activity,
then set the Exception fi eld to System.
InvalidOperationException by browsing
for this type. This will catch the exception you
raise with the Throw activity. Drop a Sequence
activity to this Catch block, and then add
two If activities to this Sequence . Set the
 Condition properties of the two If activities
to Not registrationToken Is Nothing
and to Not travellingToken Is Nothing ,
respectively. Add one Compensate activities to
the Then blocks, and set their Target property
to registrationToken and travellingToken ,
respectively.

 The Catches block of TryCatch should be
similar to the one shown in Figure 11 - 18.

 Set the Duration property of the Delay
activities embedded into Registration
and Travelling , so that the one for the
 Registration is 2 seconds, the one for
 Travelling is 1 second. Run the application,
and you receive the following output:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
(Cancellation) Your registration has not been done
(Compensation) $800 travelling and hotel fee paid back
Conference preparations completed

 What happened?

 Because the CompletionCondition property of the Conference Preparations activity is set
to True , the Travelling activity fi nishes before Registration and causes it to be cancelled.

 FIGURE 11 - 18: The Catches block after adding

Compensate activities

Using the Compensating Transaction Model ❘ 531

CH011.indd 531CH011.indd 531 9/6/10 5:09:12 PM9/6/10 5:09:12 PM

532 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

Because Travelling completes and its Result property is set to travellingToken , the token will
be assigned a concrete CompensationToken instance. Registration is cancelled, so although its
 Result property is set to registrationToken , this variable remains null (Nothing in Visual Basic).

 The exception raised by the Throw activity is caught, but because only travellingToken has a non -
 null value, only the related Compensate activity will be executed. The travellingToken variable
holds the information about the related CompensableActivity , and because it is set as the Target
property of Compensate , the appropriate compensation handler is invoked. If you modify the Delay
activities so that Registration fi nishes fi rst, the output will change:

Conference preparations started
(Body) Pay $1.000 for travelling and hotel
(Body) Pay $1.500 registration fee
(Cancellation) Your hotel reservation has not been done
(Compensation) $1.500 registration fee paid back
Conference preparations completed

This workfl ow is quite far away from being complete or correct. It does not
handle many issues that you must manage in real workfl ows. However, it shows
you the WF 4.0 implementation of the compensating transaction pattern. Play
with this example and try to modify it to refl ect real - world situations.

 PERSISTENCE AND HUMAN INTERACTIONS

 In a real business environment, workfl ows are not as simple as in the examples you ’ ve seen thus far
in this chapter:

 In most cases, there are thousands of workfl ow instances running in an hour (or even in a
minute).

 Although many workfl ows are automated, there are almost always human interactions —
human decisions — involved in workfl ows.

 Workfl ows are distributed. Several activities are done by external systems, or by humans
working with their special applications.

 By now, all the examples used WorkflowApplication instances kept in the operational memory
of the computer where the workfl ow application ran. Imagine what would happen if hundreds of
thousands of workfl ow instances were kept in memory! If humans are involved in the workfl ows,
maybe most of the running workfl ows were sitting and waiting for human interaction.

 In this section, you will learn how WF 4.0 copes with the situations similar to these. The related
concepts are presented through a sample project named DomainNameWorkflow that you can
download from the book ’ s companion website (www.wrox.com).

➤

➤

➤

CH011.indd 532CH011.indd 532 9/6/10 5:09:18 PM9/6/10 5:09:18 PM

 The DomainNameWorkfl ow Project

 The project demonstrating these concepts is simple. In the real world, it would be more complex. It
is a WPF application that demonstrates two human roles. First, it allows customers placing domain
name requests. Second, a decision - maker at the service provider company can approve or deny
this request. The application uses a back - end
database to store domain name requests.

 Of course, using one client application for
demonstrating two separate roles is not very
realistic, but it ’ s easy enough to follow. When
you use the application, its user interface looks
like Figure 11 - 19.

 The main part of Figure 11 - 19 is occupied by a
list box displaying the domain name requests
having been placed. Each item of the list shows
the name ant the status of the request that can
be one of the New , Approved , or Denied values.

 The top of the form contains the controls used
by the customer to place a domain name request. The two buttons at the bottom are used by the
decision - maker to either approve or deny the request.

 The Structure of the Project

 The WPF application is represented by the RequestClient project that has only a few fi les, as
summarized in Table 11 - 12.

 TABLE 11 - 12: RequestClient Project Files

 FILE DESCRIPTION

 ApproveDomainNameRequest.cs A CodeActivity saving the status (Approved

or Denied) back to the database.

 CreateDomainNameRequest.cs A CodeActivity saving a new domain name

request into the database.

 ProcessDomainNameRequest.cs The main workfl ow of the entire domain name

request procedure.

 WaitForApproval.cs An activity waiting for the approval of a placed

domain name request.

 App.config The application confi guration fi le storing

connection string information to back - end

databases.

 FIGURE 11 - 19: Domain Name Request workfl ow in action

continues

Persistence and Human Interactions ❘ 533

CH011.indd 533CH011.indd 533 9/6/10 5:09:26 PM9/6/10 5:09:26 PM

534 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 The project stores two kinds of data in its back - end database. While it waits for the request
approval, the states of workfl ow instances representing new requests are persisted into the database
with the built - in SqlWorkflowInstanceStore extension. When a workfl ow instance completes,
the related information is removed from the database. The requests are also stored in a user table
(DNRequest). This table persists the request data even after the related workfl ow instance completes.

 The Main Workfl ow

 The main workfl ow of the domain request process is implemented as a code - only workfl ow. It
contains only a few activities constituting a sequence, as shown in Listing 11 - 11.

 LISTING 11 - 11: ProcessDomainNameRequest.cs

using System.Activities;
using System.Activities.Statements;
using DomainNameDAL;

namespace RequestClient.Activities
{
 public sealed class ProcessDomainNameRequest: Activity
 {
 public InArgument < string > DomainName { get; set; }
 public ProcessDomainNameRequest()
 {
 var request = new Variable < DNRequest > (“request”);
 var status = new Variable < string > (“status”);
 Implementation =
 () = >
 new Sequence
 {
 DisplayName = “Process Domain Name Request”,
 Variables =
 {
 request,

 FILE DESCRIPTION

 App.xaml, App.xaml.cs The main fi le of the WPF application, and its

code - behind fi le.

 DNRequest.edmx, DNRequest.Designer.cs The ADO .NET entity data model of the request

database.

 MainWindow.xaml, MainWindow.xaml.cs The main form of the application and its

code - behind fi le.

 RequestClientProxy.cs A proxy class allowing the workfl ow instance

access to the main form ’ s functions.

TABLE 11-12 (continued)

CH011.indd 534CH011.indd 534 9/6/10 5:09:26 PM9/6/10 5:09:26 PM

 status
 },
 Activities =
 {
 new CreateDomainNameRequest
 {
 DomainName = new InArgument < string > (ctx = > DomainName.Get(ctx)),
 Request = new OutArgument < DNRequest > (ctx = > request.Get(ctx))
 },
 new InvokeMethod
 {
 TargetType = typeof (RequestClientProxy),
 MethodName = “AddDNRequestToList”,
 Parameters =
 {
 new InArgument < DNRequest > (ctx = > request.Get(ctx))
 }
 },
 new WaitForApproval
 {
 BookmarkName = “ApproveRequest”,
 Status = new OutArgument < string > (ctx = > status.Get(ctx))
 },
 new InvokeMethod
 {
 TargetType = typeof (RequestClientProxy),
 MethodName = “UpdateDNRequest”,
 Parameters =
 {
 new InArgument < int > (ctx = > request.Get(ctx).RequestID),
 new InArgument < string > (ctx = > status.Get(ctx))
 }
 }
 }
 };
 }
 }
}

 Code fi le [ProcessDomainNameRequest.cs] available for download at Wrox.com

 This workfl ow is instantiated and started when the customer clicks the Send Request button (see
Figure 11 - 19). It invokes the following activities:

 1. The CreateDomainNameRequest wraps the request into a DNRequest record, and saves it
into the database.

 2. The fi rst InvokeMethod activity calls the AddDNRequestToList method that appends the
new request into the list of request (that is, the list in the middle of Figure 11 - 19).

 3. The WaitForApproval activity suspends the current workfl ow instance and forces the
workfl ow run - time to persist it to the database. After the decision - maker approves or

Persistence and Human Interactions ❘ 535

CH011.indd 535CH011.indd 535 9/6/10 5:09:27 PM9/6/10 5:09:27 PM

536 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

denies the request, the workfl ow instance is reloaded from the database, and the workfl ow
is resumed.

 4. The second InvokeMethod activity calls the UpdateDNRequest method that updates the
state of the request in the list.

 Preparing the Workfl ow Database

 The workfl ow will save its state in a SQL Server database using the SqlWorkflowInstanceStore
built - in extension. This extension assumes that you set up the expected database schema (tables,
views, and stored procedures). You must access a SQL Server database where you have rights to
create a database. The easiest way is to install SQL Server 2008 Express on your computer.

 Open the Server Explorer (View ➪ Server Explorer).
Right - click on Data Connections and invoke the Create
New SQL Server Database. Specify the server name you
intend to use, and the database name (use, for example,
 DomainNameData). Figure 11 - 20 shows the dialog to set
up the new database information.

 Open the SqlWorkflowInstanceStoreSchema.sql
fi le. (You can locate it in the SqlScripts folder of
the RequestClient project.) In the code editor, right -
 click and start the Execute SQL command. Specify
the database login parameters, and, in the Connection
Properties tab, type DomainNameData (or the name
of the database you ’ ve created) into the “ Connect to
database ” fi eld, and then click Connect. When the script
completes, in Server Explorer, you can check the tables,
views, and stored procedures created.

 In addition to the tables the script created, the
 DomainNameWorkflow will use a custom table (DNRequest) to store entity state information about
domain name requests. Run the DNRequest.sql script (it ’ s also located in the SqlScripts folder)
with the Execute SQL command to create this table.

 Storing a New Request into the Database

 When the user clicks the Send Request button, the fi rst step of the workfl ow saves it
into the DNRequest table of the database. This step is executed by an instance of the
 CreateDomainNameRequest activity, as shown in Listing 11 - 12.

 LISTING 11 - 12: CreateDomainNameRequest.cs

using System.Activities;
using DomainNameDAL;

namespace RequestClient.Activities

 FIGURE 11 - 20: The Create New SQL Server

Database dialog

CH011.indd 536CH011.indd 536 9/6/10 5:09:27 PM9/6/10 5:09:27 PM

{
 public sealed class CreateDomainNameRequest: CodeActivity
 {
 public InArgument < string > DomainName { get; set; }
 public OutArgument < DNRequest > Request { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 using (var dataContext = new DomainNameDataEntities())
 {
 var request = new DNRequest
 {
 WorkflowID = context.WorkflowInstanceId,
 RequestedName = DomainName.Get(context),
 Status = “New”
 };
 dataContext.AddToDNRequest(request);
 dataContext.SaveChanges();
 Request.Set(context, request);
 }
 }
 }
}

 Code fi le [CreateDomainNameRequest.cs] available for download at Wrox.com

 This activity is a CodeActivity , and its Execute method does the job. It accepts an input argument
with DomainName of the requested domain, and it returns back a DNRequest entity representing the
request. The record is created and stored with the Entity Framework 4.0, where the related data
context and the DNRequest entity are defi ned in DNRequest.edmx .

 There is an especially important code line in Listing 11 - 12:

WorkflowID = context.WorkflowInstanceId

It saves the identifi er of the current workfl ow instance into the WorkflowID fi eld of the DNRequest
record. The instance identifi er is a GUID, and, later in this example, it will be used to resume the
appropriate workfl ow instance when someone approves or denies the domain name request.

 Communicating with the Host Application

 Two steps in the workfl ow are simple InvokeMethod activities that update the user interface. The
fi rst is run as soon as the request is queued; the second, when it is approved or denied. The workfl ow
somehow must communicate with the UI. It sounds easy, but there are two issues to solve:

 The workfl ow instance must know the main window of the application (that is a singleton)
in order to communicate with it.

 Any UI updates should happen in the UI thread.

➤

➤

Persistence and Human Interactions ❘ 537

CH011.indd 537CH011.indd 537 9/6/10 5:09:28 PM9/6/10 5:09:28 PM

538 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 There are several alternatives for solving the fi rst issue. In this example, this is it is done by a
static class named RequestClientProxy that forwards requests to the main application window.
Listing 11 - 13 shows the implementation of this class.

 LISTING 11 - 13: RequestClientProxy.cs

using DomainNameDAL;

namespace RequestClient
{
 public static class RequestClientProxy
 {
 public static MainWindow AppInstance { get; set; }

 public static void AddDNRequestToList(DNRequest request)
 {
 AppInstance.AddDNRequestToList(request);
 }

 public static void UpdateDNRequest(int requestId, string status)
 {
 AppInstance.UpdateDNRequest(requestId, status);
 }
 }
}

 Code fi le [RequestClientProxy.cs] available for download at Wrox.com

 As you can see, the AppInstance property of this class accepts an instance of the main window, and
both method calls (AddDNRequestToList and UpdateDNRequest) are forwarded to that instance.
The following extract from MainWindow.xaml.cs shows how these methods are implemented:

public partial class MainWindow
{
 public ObservableCollection < DNRequest > Requests { get; set; }
 // ...
 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // ...
 RequestClientProxy.AppInstance = this;
 // ...
 }

 public void AddDNRequestToList(DNRequest request)
 {
 Dispatcher.BeginInvoke(
 new Action(() = > Requests.Add(request)));
 }

 public void UpdateDNRequest(int requestId, string status)

CH011.indd 538CH011.indd 538 9/6/10 5:09:29 PM9/6/10 5:09:29 PM

 {
 Dispatcher.BeginInvoke(new Action(
 () = >
 {
 for (var i = 0; i < Requests.Count; i++)
 {
 if (Requests[i].RequestID != requestId) continue;
 var request = Requests[i];
 request.Status = status;
 Requests[i] = request;
 RequestList.SelectedIndex = i;
 RequestList.Focus();
 break;
 }
 }));
 }
 // ...
}

 The Window_Loaded event handler method sets the AppInstance property of the RequestClientProxy
to the window instance created by the application. The methods updating the UI use the Dispatcher
.BeginInvoke method, because the AddDNRequestToList and UpdateDNRequest methods are called
from the threads of the workfl ow instances and not from the UI thread.

 Suspending the Workfl ow Instance

 The most exciting part of the workfl ow is where its execution is suspended unless the appropriate
user makes the decision about the requested domain name. In a simple application, you could
implement it as a method call that is blocked until the user specifi es the required input. But in the
world of workfl ows, that ’ s an improper solution.

 This request workfl ow simply suspends the workfl ow instance, sweeps it out from memory, and
releases resources held by the instance — and, of course, persists the workfl ow so that it could be
resumed later. This step in the workfl ow is defi ned with the WaitForApproval custom activity:

new WaitForApproval
{
 BookmarkName = “ApproveRequest”,
 Status = new OutArgument < string > (ctx = > status.Get(ctx))
}

 Suspending and resuming a workfl ow instance is done with a concept called a bookmark . A
bookmark is a point in the workfl ow to remember. The WaitForApproval activity allows the
workfl ow developer to set the name of this bookmark (BookmarkName property). However, it could
even be hard - coded into the activity. The Status output argument will retrieve the expected user
input when that is provided and the workfl ow is resumed.

 Listing 11 - 14 shows the defi nition of WaitForApproval .

Persistence and Human Interactions ❘ 539

CH011.indd 539CH011.indd 539 9/6/10 5:09:29 PM9/6/10 5:09:29 PM

540 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 LISTING 11 - 14: WaitForApproval.cs

using System.Activities;

namespace RequestClient.Activities
{
 public class WaitForApproval: NativeActivity
 {
 public string BookmarkName { get; set; }
 public OutArgument < string > Status { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 context.CreateBookmark(BookmarkName,
 (ctx, bookmark, obj) = > Status.Set(ctx, obj.ToString()));
 }

 protected override bool CanInduceIdle { get { return true; } }
 }
}

 Code fi le [WaitForApproval.cs] available for download at Wrox.com

 This simple defi nition does a lot behind the scenes. The CanInduceIdle property ’ s value is set to
 true . This setting is very important, because it allows the workfl ow to enter the idle state while
waiting for the bookmark to resume.

 The Execute method calls the context ’ s CreateBookmark method, passing the bookmark
name and a delegate to call when the bookmark is resumed. This delegate — here it is
implemented with a lambda expression — accepts three parameters. The fi rst, ctx , is a
 NativeActivityContext . Bookmark is a Bookmark object (not used here), and obj is an
object representing the user input. When the workfl ow is resumed, the input provided by
the user is passed and here the delegate receives it in obj . As you can see, this object is
simply stored into the output parameter of this activity.

 Confi guring SqlWorkfl owInstanceStore

 Executing the WaitForApproval method causes the workfl ow instance not only to be suspended,
but also persisted. This is done with the SqlWorkflowInstanceStore object that is a special
built - in workfl ow extension. (You can look at it as a plug - in component for the workfl ow.)
Activities can check if a certain extension is assigned with the workfl ow, and they can use the
services of the extensions.

 SqlWorkflowInstanceStore is derived from InstanceStore defi ned in the System.Runtime
.DurableInstancing namespace. You can derive your own persistence class from InstanceStore
to save the workfl ow state to another durable storage (for example, into an XML fi le).

 The following extract from MainWindow.xaml.cs shows how the InstanceStore is prepared,
confi gured, and used:

CH011.indd 540CH011.indd 540 9/6/10 5:09:29 PM9/6/10 5:09:29 PM

public partial class MainWindow
{
 public ObservableCollection < DNRequest > Requests { get; set; }
 private string _PersistenceConnStr;
 private InstanceStore InstanceStore { get; set; }

 public MainWindow()
 {
 InitializeComponent();
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 var config = ConfigurationManager.
 OpenExeConfiguration(ConfigurationUserLevel.None);
 _PersistenceConnStr = ((ConnectionStringsSection)config.
 GetSection(“connectionStrings”)).
 ConnectionStrings[“Persistence”].ConnectionString;
 InstanceStore = new SqlWorkflowInstanceStore(_PersistenceConnStr);

 var view = InstanceStore.Execute(InstanceStore.CreateInstanceHandle(),
 new CreateWorkflowOwnerCommand(),
 TimeSpan.FromSeconds(30));
 InstanceStore.DefaultInstanceOwner = view.InstanceOwner;
 // ...
 RequestClientProxy.AppInstance = this;
 // ...
 }

 private void OnRequestButtonClick(object sender, RoutedEventArgs e)
 {
 var parameters = new Dictionary < string, object >
 {
 {“DomainName”, DomainNameBox.Text}
 };
 DomainNameBox.Text = string.Empty;
 var wkf = new WorkflowApplication (new ProcessDomainNameRequest(),
 parameters);
 ConfigureWorkflow(wkf);
 wkf.Run();
 }

 private void ConfigureWorkflow(WorkflowApplication wkf)
 {
 wkf.InstanceStore = InstanceStore;
 wkf.PersistableIdle = e = > PersistableIdleAction.Unload;
 }

 // ...
}

 The Window_Loaded method is responsible for preparing a SqlWorkflowInstanceStore object that
is to be used by all workfl ow instances. Window_Loaded fi rst queries the application confi guration
fi le to obtain the connection string used by the SQL database, and passes it to the newly created

Persistence and Human Interactions ❘ 541

CH011.indd 541CH011.indd 541 9/6/10 5:09:30 PM9/6/10 5:09:30 PM

542 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 SqlWorkflowInstanceStore instance, which is immediately stored in the InstanceStore fi eld.
The next statement registers the application as a workfl ow service host, which acts as a lock owner
in the persistence database.

 The OnRequestButtonClick event handler method creates a new workfl ow instance and
passes the workfl ow parameters. However, before calling the Run method that synchronously
executes the workfl ow, it calls the ConfigureWorkflow method to pass the prepared
 InstanceStore extension to this workfl ow instance:

wkf.InstanceStore = InstanceStore;
wkf.PersistableIdle = e = > PersistableIdleAction.Unload;

 The PersistableIdle event property is called by the workfl ow when it is about to be
persisted. You can add your own custom persistence actions here. This delegate simply returns
a PersistableIdleAction.Unload . It causes the workfl ow to be unloaded from memory (and
release resources) after its state has been persisted.

 You can check the effects of these settings. Figure 11 - 19 shows three domain name requests in New
state, so they are waiting for approval. The persistence database stores the state information about
these workfl ow instances. You can easily query them, as shown in Figure 11 - 21.

 FIGURE 11 - 21: Querying the workfl ow persistence database

 The query result shows that all the three workfl ow instances are in an idle state and their blocking
bookmark is the ApproveRequest bookmark of the WaitForApproval activity. There are two
important things this fi gure should implicitly suggest to you.

 The LastMachineRunOn column tells the name of the last computer on which this workfl ow
instance had run before it went idle. WF 4.0 entirely supports resuming a workfl ow instance
on another machine than the one on which it was frozen. For example, you could run a
separate client application on another machine for approving requests.

 The column name BlockingBookmarks implicitly tells that you can have more than one
bookmark for a workfl ow instance. A workfl ow can have several activities running in
parallel, and each of them may have a bookmark.

➤

➤

CH011.indd 542CH011.indd 542 9/6/10 5:09:30 PM9/6/10 5:09:30 PM

 Resuming the Workfl ow Instance

 When there is a decision about the domain name request, the workfl ow can be resumed. This
example demonstrates that, in the real world, you can encapsulate a child workfl ow (or even more
child workfl ows) into a parent workfl ow. The approval part is implemented as a child workfl ow
that has only a simple activity named ApproveDomainNameRequest . This activity is implemented as
shown in Listing 11 - 15.

 LISTING 11 - 15: ApproveDomainNameRequest.cs

using System.Activities;
using DomainNameDAL;
using System.Linq;

namespace RequestClient.Activities
{
 class ApproveDomainNameRequest: CodeActivity
 {
 public InArgument < string > Status { get; set; }
 public InArgument < int > RequestId { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 var requestId = RequestId.Get(context);
 using (var dataContext = new DomainNameDataEntities())
 {
 var request = dataContext.DNRequest.
 First(rq = > rq.RequestID == requestId);
 request.Status = Status.Get(context);
 dataContext.SaveChanges();
 }
 }
 }
}

 Code fi le [ApproveDomainNameRequest.cs] available for download at Wrox.com

 This activity uses the DNRequest entity to store the new state of the request that is passed to this
activity through the Status input argument. To update the appropriate request, the identifi er of
the request also should be passed.

 The most interesting part of the code is located in the MainWindow.xaml.cs fi le, as the following
extract shows:

public partial class MainWindow
{
 private void OnApproveButtonClick(object sender, RoutedEventArgs e)
 {
 ChangeRequestStatus(“Approved”);
 }

 private void OnDenyButtonClick(object sender, RoutedEventArgs e)

Persistence and Human Interactions ❘ 543

CH011.indd 543CH011.indd 543 9/6/10 5:09:31 PM9/6/10 5:09:31 PM

544 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 {
 ChangeRequestStatus(“Denied”);
 }

 private void ChangeRequestStatus(string newStatus)
 {
 var request = RequestList.SelectedItem as DNRequest;
 if (request == null) return;
 var parameters = new Dictionary < string, object >
 {
 {“Status”, newStatus},
 {“RequestId”, request.RequestID}
 };
 var wkf = new WorkflowApplication(new ApproveDomainNameRequest(), parameters);
 ConfigureWorkflow(wkf);
 wkf.Run();
 var toResumeWkf = new WorkflowApplication(new ProcessDomainNameRequest());
 ConfigureWorkflow(toResumeWkf);
 toResumeWkf.Load(request.WorkflowID);
 toResumeWkf.ResumeBookmark(“ApproveRequest”, newStatus);
 }
}

 The work is done in the ChangeRequestStatus method that accepts the status sting (“ Approved ” or
 “ Denied ”) as an input parameter. From the currently selected list box item, it obtains the identifi er
of the request and starts the ApproveDomainNameRequest workfl ow that saves the status back to
the database. After the approval, the idle workfl ow must be resumed. First, a new instance of the
workfl ow is created, but instead of starting it with the Run method, something different happens.
The Load method is called with the identifi er of the workfl ow instance. (This is why a DNRequest
entity stores a WorkflowID fi eld.) It retrieves the status of the instance from the database.

 The key is the ResumeBookmark method that specifi es the bookmark to resume, and passes the
status of the request that is used by the WaitForApproval activity.

 As a result, the main workfl ow is resumed, and the InvokeMethod activity following
 WaitForApproval runs and updates the UI with the new request state.

 Workfl ow Tracking

 The workfl ow run - time provides you with special built - in extensions that you can use to track a
workfl ow ’ s execution. These are very useful for both diagnostics and the recording of an audit
trail. In this section, you will examine WF 4.0 tracking extensions through an enhanced version of
 DomainNameWorkflow . This project is named DomainNameWorkflowTracking , and its source code
is among the others that you can download from this book ’ s companion website (www.wrox.com).
Before turning to the source code of this project, let ’ s explore an overview of the tracking pattern
used by WF 4.0.

 Tracking Records

 The workfl ow run - time raises tracking events when something changes in the state of a workfl ow
instance. You can also add your own events to a workfl ow. Events are represented by classes

CH011.indd 544CH011.indd 544 9/6/10 5:09:31 PM9/6/10 5:09:31 PM

derived from the TrackingRecord abstract class of the System.Activities.Tracking namespace.
Table 11 - 13 summarizes these classes.

 TABLE 11 - 13: TrackingRecord Derived Types

 TYPE DESCRIPTION

 ActivityStateRecord This class describes a tracking record for an activity. The

workfl ow run - time creates a record when the state of a specifi c

activity in a workfl ow instance changes.

 ActivityScheduledRecord This class represents a tracking record of an activity being

scheduled for execution.

 WorkflowInstanceRecord This class describes a tracking record for a workfl ow instance.

The run - time creates a record when the state of workfl ow

instance changes. This class has several derived classes

associated with special workfl ow instance events, such as

aborting, suspending, terminating an instance, or observing

unhandled exception.

 BookmarkResumptionRecord This class contains tracking information about a resumed

bookmark.

 CustomTrackingRecord This class contains activity - specifi c or user - defi ned tracking

information. Its three built - in derived classes include

 InteropTrackingRecord , ReceiveMessageRecord , and

 SendMessageRecord .

 Tracking records contain useful information about the event; you can access them through
their properties. You can also create your own TrackingRecord derived classes. Use
 CustomTrackingRecord as the base class for events belonging to your custom activities.

 Participating in the Tracking Process

 The run - time uses special extensions inherited from the TrackingParticipant abstract class of the
 System.Activities.Tracking namespace to allow catching of the tracking events. Add one or more
extensions to a workfl ow instance, and those are notifi ed when a tracking event happens. Then your
extensions can process the tracking records generated by the events.

 WF 4.0 implements only one built - in tracking participant. It is EtwTrackingParticipant that
emits an Event Tracking for Windows (ETW) event to an ETW session that contains the data from
the tracking record.

 When you add a tracking participant extension to a workfl ow instance, you can assign it with
a tracking profi le. The profi le tells the run - time the set of events the participant is interested in.
The tracking profi le is assembled by several tracking queries that help the developer to set up a
profi le. For example, the participant ’ s profi le can defi ne a query saying that it is interested only in

Persistence and Human Interactions ❘ 545

CH011.indd 545CH011.indd 545 9/6/10 5:09:31 PM9/6/10 5:09:31 PM

546 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

activity state changes where the state is either “ New ” or “ Closed. ” The run - time won ’ t forward any
other kind of events to the participant.

 Later in this chapter, you will see a concrete example of creating a tracking profi le with the help of
tracking queries.

 Persisting Tracking Information

 So, now you have enough information to dive into the source code. Open the source code of the
DomainNameWorkflowTracking project so that you can examine it. This project has exactly
the same functionality as DomainNameWorkflow , except that it implements a tracking participant
that stores tracking event information in a SQL Server database table.

 In order for you to see how this sample works, run the DNRequestTracking.sql script fi le in
the SqlScripts folder against the DomainNameData database. Open the fi le, right - click, and
start Execute SQL. When the Connect dialog appears, click Options, select the DomainNameData
database in the Connection Properties tab, and click Connect.

 This script creates a table called DNRequestTracking , and the DNRequest.edmx fi le defi nes the
entity to manipulate this table.

 The key type of this application is DNRequestTrackingParticipant that implements a custom
tracking participant, as shown in Listing 11 - 16.

 LISTING 11 - 16: DNRequestTrackingParticipant.cs

using System;
using System.Activities.Tracking;

namespace RequestClient.Extensions
{
 internal class DNRequestTrackingParticipant: TrackingParticipant
 {
 protected override void Track(TrackingRecord record, TimeSpan timeout)
 {
 using (var dataContext = new DomainNameDataEntities())
 {
 var wtr = record as WorkflowInstanceRecord;
 if (wtr != null)
 {
 var tr = new DNRequestTracking
 {
 WorkflowID = wtr.InstanceId,
 Type = “W”,
 EventDate = DateTime.UtcNow,
 Data = wtr.State
 };
 dataContext.AddToDNRequestTracking(tr);
 }
 var brtr = record as BookmarkResumptionRecord;
 if (brtr != null)

CH011.indd 546CH011.indd 546 9/6/10 5:09:32 PM9/6/10 5:09:32 PM

 {
 var tr = new DNRequestTracking
 {
 WorkflowID = brtr.InstanceId,
 Type = “B”,
 EventDate = DateTime.UtcNow,
 Data = brtr.BookmarkName
 };
 dataContext.AddToDNRequestTracking(tr);
 }
 var astr = record as ActivityStateRecord;
 if (astr != null)
 {
 var tr = new DNRequestTracking
 {
 WorkflowID = astr.InstanceId,
 Type = “A”,
 EventDate = DateTime.UtcNow,
 Data = astr.Activity.Name + “(“ + astr.State + “)”
 };
 dataContext.AddToDNRequestTracking(tr);
 }
 var ctr = record as CustomTrackingRecord;
 if (ctr != null)
 {
 var tr = new DNRequestTracking
 {
 WorkflowID = ctr.InstanceId,
 Type = “C”,
 EventDate = DateTime.UtcNow,
 Data = ctr.Data[“Message”].ToString()
 };
 dataContext.AddToDNRequestTracking(tr);
 }
 dataContext.SaveChanges();
 }
 }
 }
}

 Code fi le [DNRequestTrackingParticipant.cs] available for download at Wrox.com

 Although the source code for this class seems long, its functionality and logic is easy to understand.
The DNRequestTrackingParticipant class is derived from the TrackingParticipant class. The
overridden Track method accepts two arguments:

 record is a TrackingRecord holding the properties of event raised.

 timeout is a TimeSpan to defi ne the maximum time span that can be spent in this method
body. Theoretically, you should implement this method to meet this timeout expectation.

 The body of Track checks the type of the TrackingRecord passed, initializes, and then saves a
 DNRequestTracking entity accordingly.

➤

➤

Persistence and Human Interactions ❘ 547

CH011.indd 547CH011.indd 547 9/6/10 5:09:32 PM9/6/10 5:09:32 PM

548 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Confi guring the Tracking Participant

 Before using the DNRequestTrackingParticipant extension, you must confi gure it, and also add it
to the workfl ow instance that is assumed to use it. The following extract from MainWindow.xaml.cs
shows how you can do this:

public partial class MainWindow
{
 // ...
 private DNRequestTrackingParticipant _TrackingParticipant;

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // ...
 InitTrackingParticipant();
 // ...
 }

 private void InitTrackingParticipant()
 {
 var profile =
 new TrackingProfile
 {
 Name = “DNRequestTrackingProfile”,
 Queries =
 {
 new WorkflowInstanceQuery {States = { “*” } },
 new BookmarkResumptionQuery { Name = “*” },
 new ActivityStateQuery
 {
 ActivityName = “*”,
 States = { “*” }
 },
 new CustomTrackingQuery
 {
 Name = “*”,
 ActivityName = “*”
 }
 }
 };
 _TrackingParticipant =
 new DNRequestTrackingParticipant { TrackingProfile = profile };
 }

 private void ConfigureWorkflow(WorkflowApplication wkf)
 {
 wkf.InstanceStore = InstanceStore;
 wkf.PersistableIdle = e = > PersistableIdleAction.Unload;
 wkf.Extensions.Add(_TrackingParticipant);
 }
}

 When the application ’ s main window is loaded, the InitTrackingParticipant method creates
a TrackingProfile and passes it to the newly created DNRequestTrackingParticipant

CH011.indd 548CH011.indd 548 9/6/10 5:09:33 PM9/6/10 5:09:33 PM

instance. As you can see, the TrackingProfile is composed from four TrackingQuery - derived
instances (WorkflowInstanceQuery , BookmarkResumptionQuery , ActivityStateQuery
and CustomTrackingQuery). The queries use properties to set up fi lters for specifi c tracking
record instances. The profi le with the settings in the listing accepts any tracking records.

 The last line in ConfigureWorkflow adds the newly created tracking participant extension to the
workfl ow instance. Remember, ConfigureWorkflow is called when a new workfl ow instance is
created, but before it is started. If the last line were not in this method, the workfl ow instance would
not use the tracking participant.

 Custom Tracking Events

 In addition to the tracking events raised by the run - time, you can also defi ne other tracking points and
events in your custom activities. The ApproveDomainNameRequest and CreateDomainNameRequest
activities have been extended with a custom tracking event. Listing 11 - 17 shows how it is implemented
for ApproveDomainNameRequest .

 LISTING 11 - 17: ApproveDomainNameRequest.cs

using System.Activities;
using System.Activities.Tracking;
using System.Linq;

namespace RequestClient.Activities
{
 class ApproveDomainNameRequest: CodeActivity
 {
 public InArgument < string > Status { get; set; }
 public InArgument < int > RequestId { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 var requestId = RequestId.Get(context);
 using (var dataContext = new DomainNameDataEntities())
 {
 var request = dataContext.DNRequest.
 First(rq = > rq.RequestID == requestId);
 request.Status = Status.Get(context);
 dataContext.SaveChanges();
 // --- Custom tracking point
 var userRecord =
 new CustomTrackingRecord(“Custom”)
 {
 Data = { { “Message”, “DNRequest updated” } }
 };
 context.Track(userRecord);
 }
 }
 }
}

 Code fi le [ApproveDomainNameRequest.cs] available for download at Wrox.com

Persistence and Human Interactions ❘ 549

CH011.indd 549CH011.indd 549 9/6/10 5:09:33 PM9/6/10 5:09:33 PM

550 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 The Data property of the CustomTrackingRecord instance is a dictionary of key and value pairs.
Here a “ Message ” key is passed. When the tracking participant persists a CustomTrackingRecord
(see Listing 11 - 16), it extracts the value belonging to the “ Message ” key.

 Running the DomainNameWorkfl owTracking Application

 Now, you can try this tracking participant to see how it works. Run the application, send a request
for a domain name (let ’ s say WF4Rocks.org), and approve this request. Close the application and
run the following query against the database:

SELECT WorkflowID, [Type], [Data]
 FROM [DomainNameData].[dbo].[DNRequestTracking]

 This query produces results similar to the following:

WorkflowID Type Data
------------------------------------ ---- ----------------------------------
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Started
6DA4292C-F675-4714-AEA6-23D9D5287C72 A ProcessDomainNameRequest(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A Process Domain Name Request(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A CreateDomainNameRequest(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 C DNRequest created
6DA4292C-F675-4714-AEA6-23D9D5287C72 A CreateDomainNameRequest(Closed)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A InvokeMethod(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A InvokeMethod(Closed)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A WaitForApproval(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Idle
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Unloaded
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Resumed
6DA4292C-F675-4714-AEA6-23D9D5287C72 B ApproveRequest
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF W Started
6DA4292C-F675-4714-AEA6-23D9D5287C72 A WaitForApproval(Closed)
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF A ApproveDomainNameRequest(Executing)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A InvokeMethod(Executing)
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF C DNRequest updated
6DA4292C-F675-4714-AEA6-23D9D5287C72 A InvokeMethod(Closed)
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF A ApproveDomainNameRequest(Closed)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A Process Domain Name Request(Closed)
6DA4292C-F675-4714-AEA6-23D9D5287C72 A ProcessDomainNameRequest(Closed)
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF W Completed
9E3BB17D-2B43-4EA6-A9A4-1623B2D51FEF W Deleted
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Completed
6DA4292C-F675-4714-AEA6-23D9D5287C72 W Deleted

 In the list, you can see the workfl ow instance and activity state changes. You can also see two
different WorkflowID values. The one beginning with 6 belongs to the workfl ow started when you
clicked the Send Request button; the other one is triggered by the Approve button.

CH011.indd 550CH011.indd 550 9/6/10 5:09:33 PM9/6/10 5:09:33 PM

 WORKFLOW SERVICES

 Earlier in this chapter, you learned how to host a workfl ow within a console application, or within
a WPF application. Workfl ows also can be hosted in a web service, which provides an ideal way to
expose workfl ow solutions to clients. WF 4.0 leverages WCF features and provides a great design -
 time and run - time support for web service based workfl ows. In this section, you will learn the basics
of creating and using workfl ow services.

 Creating a Workfl ow Service

 WF 4.0 has a very strong integration with WCF. As you learned earlier, there are several activities
handling WCF messages and managing important techniques such as message correlation.
Workfl ow services are the result of marrying workfl ows with WCF web services.

 Create a new project with the WCF Service Workfl ow Application template and name the project
 SimpleWorkflowService . Figure 11 - 22 shows that you can fi nd this template within the Workfl ow
category in the New Project dialog.

 FIGURE 11 - 22: Select the WCF Workfl ow Service Application template

 The project is a special WCF web service that hosts a workfl ow. (You ’ ll recognize the Web.config
fi le). The serviced workfl ow is defi ned in the Service1.xamlx fi le, and when you open it, you can

Workfl ow Services ❘ 551

CH011.indd 551CH011.indd 551 9/6/10 5:09:34 PM9/6/10 5:09:34 PM

552 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

see a small Sequence activity already prepared for you. Figure 11 - 23
shows the designer surface, and you can see that the workfl ow service
contains a Receive and a Send activity.

 Workfl ow services do not have input and output arguments.
You won ’ t fi nd the Arguments link at the bottom of the designer
surface. Of course, workfl ow services can have inputs and outputs,
but those are not implemented as InArgument or OutArgument
instances. A workfl ow services receives messages. It extracts the
input parameters and processes them according to the required
functionality. When the result is prepared, it uses messages to send
back the result to the caller.

 You can handle input and output parameters of workfl ow services in
two ways:

 They can be standard WCF message classes with the
 MessageContract (and related) attributes.

 You can handle them as individual parameters.

 In this example, you are going to use parameters. The input and output parameters are stored in
workfl ow variables, so fi rst declare them. When you click the Variables link in the designer, the
Variables pane shows two variables named handle and data . Do not touch handle , but rename
 data to operand . Add a new Int32 variable, and name it result . Figure 11 - 24 shows the Variables
pane with these declarations.

➤

➤

 FIGURE 11 - 23: The basic

workfl ow created by the

template

 FIGURE 11 - 24: Workfl ow service variables

 Rename the OperationName property of ReceiveRequest to GetSquare and click the View
Message link beside Content. Select the Parameters option and add a new Operand parameter as an
 Int32 to the grid, assign it to the operand variable as Figure 11 - 25 shows, and click OK.

 Now, click the View Message link of the SendResponse activity and select the Parameters
option. Defi ne Result as a new Int32 parameter. Assign it to the result variable, as shown in
Figure 11 - 26.

CH011.indd 552CH011.indd 552 9/6/10 5:09:34 PM9/6/10 5:09:34 PM

 The workfl ow service now can receive input
parameters and send back the result. Add an
 Assign activity between the Receive and
 Send activities to declare the processing step.
Set its To property to result , and its Value
property to operand*operand .

 This simple service is ready to run! Set
 Service1.xamlx as the start page and run
the project by pressing Ctrl+F5. The WCF
Test client application starts. Double - click
on the GetSquare method in the tree view,
specify an operand value (let ’ s say 123), and
click the Invoke button. The Response pane
displays the result. Figure 11 - 27 shows the
XML request and response data.

 Using Workfl owServiceHost

 In many cases, you may host workfl ow services in your special web applications, maybe in Windows
services. You are not obliged to use the WCF Workfl ow Service Application template. You can place
the workfl ow services in any other kind of host applications.

 FIGURE 11 - 25: Defi ne the input parameter of the workfl ow service

 FIGURE 11 - 26: Defi ne the output parameter of the workfl ow service

 FIGURE 11 - 27: The WCF Test Client in action

Workfl ow Services ❘ 553

CH011.indd 553CH011.indd 553 9/6/10 5:09:35 PM9/6/10 5:09:35 PM

554 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 WF 4.0 provides you the WorkflowServiceHost class in the System.ServiceModel.Activities
namespace so that you can easily exploit your workfl ows through web service interfaces. WCF
workfl ow services also utilize WorkflowServiceHost .

 In this section, you will learn how to use WorkflowServiceHost . Instead of creating an application
from scratch, you will examine a prebuilt sample named DomainNameWorkflowWithHost . As you
may guess from the name, this sample is a modifi ed version of the DomainNameWorkflowTracking
application, and you can fi nd this project in the source code that you can download from this book ’ s
companion website (www.wrox.com). The application modifi es the original workfl ow so that instead
of manual domain name request approval, it uses a web service. This web service will be hosted by
the same client application that is used to create requests.

 Start Visual Studio 2010 with Administrator privileges (that is, using the “ Run as administrator ”
command).

 Because of the enhanced security in Windows Vista and Windows 7, your
application might not work. The workfl ow may generate an exception that
indicates you do not have access to the specifi ed port. You have two alternatives
to resolve this situation. First, you can run Visual Studio with administrative
privileges. Second, you can grant your Windows login access to the desired
ports. To do this, start a command window with administrator privileges and
execute the following command:

netsh http add urlacl url=http://+:8765/ user= Domain\UserName

 The 8765 port here is the one used in this sample application.

 Changing the Main Workfl ow

 The domain name request workfl ow is defi ned in the ProcessDomainNameRequest activity. The
previous version of this workfl ow had the four activities in a sequence:

public ProcessDomainNameRequest()
{
 // ...
 Implementation =
 () = >
 new Sequence
 {
 DisplayName = “Process Domain Name Request”,
 Variables = { ... },
 Activities =
 {
 new CreateDomainNameRequest { ... },
 new InvokeMethod { ... },

CH011.indd 554CH011.indd 554 9/6/10 5:09:36 PM9/6/10 5:09:36 PM

 new WaitForApproval { ... },
 new InvokeMethod { ... }
 }
 };
}

 The WaitForApproval activity was used to wait while the user approves the request. This activity
has been replaced to send a message to the hosted workfl ow that processes the request and sends
back the approval message. Listing 11 - 18 shows how the ProcessDomainNameRequest class has
been changed.

 LISTING 11 - 18: ProcessDomainNameRequest.cs (extract)

using System;
using System.Activities;
using System.Activities.Statements;
using System.ServiceModel;
using System.ServiceModel.Activities;

namespace RequestClient.Activities
{
 public sealed class ProcessDomainNameRequest: Activity
 {
 public InArgument < string > DomainName { get; set; }
 public ProcessDomainNameRequest()
 {
 var request = new Variable < DNRequest > (“request”);
 var status = new Variable < string > (“status”);
 var send = new Send
 {
 OperationName = “Approve”,
 ServiceContractName = “ApproveDNRequest”,
 Content = new SendParametersContent
 {
 Parameters =
 {
 { “request”, new InArgument < DNRequest > (ctx = > request.Get(ctx)) }
 }
 },
 EndpointAddress = new InArgument < Uri >
 (env = > new Uri(“http://localhost:8765/ApproveDNRequest”)),
 Endpoint = new Endpoint
 {
 Binding = new BasicHttpBinding()
 }
 }; // Define the SendRequest workflow
 Implementation =
 () = >
 new Sequence
 {
 DisplayName = “Process Domain Name Request”,
 Variables = { request, status },

 continues

Workfl ow Services ❘ 555

CH011.indd 555CH011.indd 555 9/6/10 5:09:41 PM9/6/10 5:09:41 PM

556 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

LISTING 11-18 (continued)

 Activities =
 {
 // --- Not changed, body omitted for clarity
 new CreateDomainNameRequest { ... },
 // --- Not changed, body omitted for clarity
 new InvokeMethod { ... },
 // --- WaitForApproval removed
 new CorrelationScope
 {
 Body = new Sequence
 {
 Activities =
 {
 send,
 new ReceiveReply
 {
 Request = send,
 Content = new ReceiveParametersContent
 {
 Parameters = {{“status”, new OutArgument < string > (status)}}
 }
 }
 }
 }
 },
 // --- Not changed, body omitted for clarity
 new InvokeMethod { ... }
 }
 };
 }
 }
}

 Code fi le [ProcessDomainNameRequest.cs] available for download at Wrox.com

 The WaitForApproval activity has been replaced with a CorrelationScope activity. It sends a
message defi ned in the send activity, and waits while the correlated response comes back from the
approval workfl ow. Then, it puts the value of the “ status ” element of the response into the status
workfl ow variable (it is used by subsequent activities).

 The request message is defi ned by a Send activity. It is instantiated before the Implementation
part of the workfl ow, because it must be passed to be the fi rst activity in the sequence of the
 CorrelationScope . The ServiceContractName and the OperationName specifi ed here must be
exactly the same as used at the service side (examined in more detail later) so that the service can
understand the message. The requested domain name is passed in the “ request ” message parameter
(its value is taken from the request variable).

 The Send activity sets up the service endpoint address and the bindings to access the approval
service.

CH011.indd 556CH011.indd 556 9/6/10 5:09:42 PM9/6/10 5:09:42 PM

 The Approval Workfl ow

 The WorkflowServiceHost will host the ApprovementWorkflow activity that listens to incoming
requests, makes the decision about approving or denying the domain name, and sends back the
result in a message. Listing 11 - 19 shows the source code of this activity.

 LISTING 11 - 19: ApprovementWorkfl ow.cs

using System;
using System.Activities;
using System.Activities.Statements;
using System.ServiceModel.Activities;

namespace RequestClient.Activities
{
 public class ApprovementWorkflow: Activity
 {
 public ApprovementWorkflow()
 {
 var request = new Variable < DNRequest > (“request”);
 var status = new Variable < string > (“status”);
 var receive = new Receive
 {
 OperationName = “Approve”,
 ServiceContractName = “ApproveDNRequest”,
 CanCreateInstance = true,
 Content = new ReceiveParametersContent
 {
 Parameters = { {“request”, new OutArgument < DNRequest > (request)} }
 }
 };

 Implementation =
 () = >
 new Sequence
 {
 DisplayName = “Approvement Workflow”,
 Variables = { request, status },
 Activities =
 {
 receive,
 new Delay { Duration = TimeSpan.FromSeconds(10) },
 new ApproveDomainNameRequest
 {
 Request = new InArgument < DNRequest > (ctx = > request.Get(ctx)),
 Status = new OutArgument < string > (ctx = > status.Get(ctx))
 },
 new SendReply
 {
 Request = receive,
 Content = new SendParametersContent

 continues

Workfl ow Services ❘ 557

CH011.indd 557CH011.indd 557 9/6/10 5:09:42 PM9/6/10 5:09:42 PM

558 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

LISTING 11-19 (continued)

 {
 Parameters = { {“status”, new InArgument < string > (status)} }
 }
 }
 }
 };
 }
 }
}

 Code fi le [ApprovementWorkfl ow.cs] available for download at Wrox.com

 Here, a Receive activity is instantiated that sets up its ServiceContractName name and
 OperationName properties to the same as used by the Send activity in Listing 11 - 18. The
 CanCreateInstance property is set to true , indicating that a new workfl ow instance is created
to process the message if the message does not correlate to an existing workfl ow instance. These
settings provide that the approval workfl ow receives the message sent by the client. It extracts
the “ request ” message parameter and puts it into the request variable.

 The workfl ow is simple. After it receives the request message, it delays for 10 seconds, emulating
a long process. Then the ApproveDomainNameRequest activity is invoked to approve or deny the
domain name. The result is sent back to the caller by the SendReply activity.

 You can see that SendReply sets its Request property to the message received. It is the key of the
correlation mechanism. When sending the response message back to the caller, SendReply extracts
the correlation information from the received message and puts it into the response. The caller side
will use this information to correlate the appropriate request with the matching response.

 You can also see that the Receive activity does not specify either a service endpoint address or a
binding. The activity obtains these settings from the hosting WorkflowServiceHost instance.

 The ApproveDomainNameRequest ’ s logic is very simple. It approves all domain names ending with
 “ .org ” and denies any other requests. Listing 11 - 20 shows the source code of this activity.

 LISTING 11 - 20: ApproveDomainNameRequest.cs

using System.Activities;
using System.Activities.Tracking;
using System.Linq;

namespace RequestClient.Activities
{
 class ApproveDomainNameRequest: CodeActivity
 {
 public InArgument < DNRequest > Request { get; set; }
 public OutArgument < string > Status { get; set; }

 protected override void Execute(CodeActivityContext context)

CH011.indd 558CH011.indd 558 9/6/10 5:09:42 PM9/6/10 5:09:42 PM

 {
 using (var dataContext = new DomainNameDataEntities())
 {
 var requestId = Request.Get(context).RequestID;
 var request = dataContext.DNRequest.
 First(rq = > rq.RequestID == requestId);
 request.Status = request.RequestedName.EndsWith(“.org”)
 ? “Approved” : “Denied” ;
 dataContext.SaveChanges();
 Status.Set(context, request.Status);
 var userRecord =
 new CustomTrackingRecord(“Custom”)
 {
 Data = { { “Message”, “DNRequest updated” } }
 };
 context.Track(userRecord);
 }
 }
 }
}

 Code fi le [ApproveDomainNameRequest.cs] available for download at Wrox.com

 Confi guring Workfl owServiceHost

 The last step to put the things together is creating and confi guring the WorkflowServiceHost
instance encapsulating the ApprovementWorkflow . It is done in the Window_Loaded method of
the main window where InitServiceHost is called:

public partial class MainWindow
{
 // ...
 private WorkflowServiceHost _ApproveWorkflowHost;
 // ...

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // ...
 InitServiceHost();
 // ...
 }

 private void Window_Unloaded(object sender, RoutedEventArgs e)
 {
 _ApproveWorkflowHost.Close();
 }

 private void InitServiceHost()
 {
 var approveService =
 new WorkflowService
 {
 Name = “ApproveDNRequest”,

Workfl ow Services ❘ 559

CH011.indd 559CH011.indd 559 9/6/10 5:09:43 PM9/6/10 5:09:43 PM

560 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 Body = new ApprovementWorkflow(),
 Endpoints =
 {
 new Endpoint
 {
 ServiceContractName = “ApproveDNRequest”,
 AddressUri = new Uri(“http://localhost:8765/ApproveDNRequest”),
 Binding = new BasicHttpBinding(),
 }
 }
 };
 _ApproveWorkflowHost = new WorkflowServiceHost(approveService);
 var trackingBehavior = new DNRequestTrackingBehavior();
 _ApproveWorkflowHost.Description.Behaviors.Add(trackingBehavior);
 _ApproveWorkflowHost.Open();
 }
}

 The InitServiceHost method creates an instance of WorkflowService , and this instance is
passed to the constructor of WorkflowServiceHost . The WorkflowService instance creates a new
 ApprovementWorkflow as the Body of the host, and encapsulates the service endpoints the host
is listening to. The code confi guring the host does not stop here. The WorkflowServiceHost is
extended with a DNRequestTrackingBehaivor .

 As the last step of the confi guration, the Open method starts the host. It listens to messages and
processes them unless the application is closed. In this case, the Window_Unloaded event handler
method closes the host and stops it from responding to any more messages.

 Workfl ow Behaviors

 You can add behaviors to the WorkflowServiceHost class when you confi gure the host instance.
In the previous versions of the DomainNameWorkflow , you instantiated a workfl ow instance
programmatically as a response for a button ’ s Click event, and you were able to add extensions (for
example, the DNRequestTrackingParticipant) to that instance. The WorkflowServiceHost does
not allow you direct instantiation, so another mechanism is required to inject extensions into the
workfl ow instances.

 This is where behaviors enter into the picture. Where a WorkflowServiceHost instantiates a
new workfl ow, it goes through all its defi ned behaviors, generates and confi gures the associated
extension, and then adds it to the workfl ow instance before that is started.

 The DomainNameWorkflowWithHost project uses the DNRequestTrackingBehavior to extend the
workfl ows with the following:

var trackingBehavior = new DNRequestTrackingBehavior();
_ApproveWorkflowHost.Description.Behaviors.Add(trackingBehavior);

 This behavior allows the approval workfl ow to use the same tracking extension as the request
workfl ow. Listing 11 - 21 shows the defi nition of this tracking behavior.

CH011.indd 560CH011.indd 560 9/6/10 5:09:43 PM9/6/10 5:09:43 PM

 LISTING 11 - 21: DNRequestTrackingBehavior Defi nition

 internal sealed class DNRequestTrackingBehavior: IServiceBehavior
 {
 public void ApplyDispatchBehavior(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 var workflowServiceHost = serviceHostBase as WorkflowServiceHost;
 if (workflowServiceHost == null) return;
 var tracker = new DNRequestTrackingParticipant();
 workflowServiceHost.WorkflowExtensions.Add(tracker);
 }

 public void AddBindingParameters(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase,
 Collection < ServiceEndpoint > endpoints,
 BindingParameterCollection bindingParameters)
 {
 }

 public void Validate(ServiceDescription serviceDescription,
 ServiceHostBase serviceHostBase)
 {
 }
 }

 Code fi le [DNRequestTrackingParticipant.cs] available for download at Wrox.com

 The class implements the IServiceBehavior interface of the System.ServiceModel.Description
namespace. This interface can be found in the System.ServiceModel.dll assembly, so it is the
part of WCF. This behavior uses only the ApplyDispatchBehavior method that explicitly adds a
 DNRequestTrackingParticipant to the WorkflowExtensions collection of the service host. The
host will inject this extension into any new workfl ow instances.

 Running the Application

 The application is ready to run. When you
start it, you can add new requests. Because
the approval process takes about 10 seconds,
it takes about 10 seconds while a new request
goes to either Approved or Denied state.
Figure 11 - 28 shows the application in action.

 You can try to send more than one
request. Later, when you query the
 DNRequestTracking table, you can
observe that each approval workfl ow takes
a separate workfl ow instance, and workfl ow
instances processing overlapping requests
also overlap. FIGURE 11 - 28: The application in action

Workfl ow Services ❘ 561

CH011.indd 561CH011.indd 561 9/6/10 5:09:44 PM9/6/10 5:09:44 PM

562 ❘ CHAPTER 11 ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK

 SUMMARY

 WF 4.0 is not just a simple enhancement of WF 3.5. It has been totally redesigned and rewritten. It
now uses a XAML description of workfl ows, and provides a WPF - based designer that can handle
larger workfl ows than its predecessor.

 WF 4.0 uses a new architecture where workfl ows and activities have a common root object
(System.Activities.Activity). With this model, you can describe sequential and fl owchart - like
workfl ows, or even mix them. The activity library shipped with .NET Framework 4.0 contains
about 40 new activities, and you can also develop your own custom activities easily.

 WF 4.0 provides a great support for the compensating transaction model, and allows you to create
workfl ow services in a few minutes. The workfl ow model is extensible. You can create extensions
for workfl ow persistence and tracking, and also inject your own custom extensions to workfl ows.

 Chapter 12 focuses on enhancements to the .NET Data Framework, including Language Integrated
Query (LINQ), Entity Framework, and the Entity Data Source Control.

CH011.indd 562CH011.indd 562 9/6/10 5:09:44 PM9/6/10 5:09:44 PM

Enhancements to the .NET
Data Framework

 This chapter focuses on enhancements to the .NET Data Framework. The .NET Data
Framework is an important component of the .NET Framework because it provides the key
pieces of functionality to get, manipulate, and update data to various data persistence stores.
Microsoft has added a vast amount of functionality in this space, starting with the .NET 3.0
release and with the introduction of Language Integrated Query (LINQ). In this chapter, you
will learn about the following:

 Language Integrated Query (LINQ)

 Parallel LINQ (PLINQ)

 Entity Framework

 Entity Data Source Control

 LANGUAGE INTEGRATED QUERY (LINQ)

 As mentioned, LINQ is a query translation pipeline that was introduced as part of the .NET
Framework 3.0.

 According to Microsoft, “ The LINQ Project is a codename for a set of extensions to the
.NET Framework that encompasses language - integrated query, set, and transform operations.
It extends C# and Visual Basic with native language syntax for queries and provides class
libraries to take advantage of these capabilities. ”

 LINQ provides an Object Relational Mapping (ORM) among business objects and the
underlying data source(s) in your application. LINQ allows you to integrate your queries right
into the object model. In essence, it provides a simplifi ed framework for accessing relational
data in an object - oriented way. LINQ queries are strongly typed, and you can detect errors in
your queries at compile time itself. You can also debug your LINQ queries easily.

➤

➤

➤

➤

 12

CH012.indd 563CH012.indd 563 9/6/10 5:16:01 PM9/6/10 5:16:01 PM

564 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 In addition to the benefi ts of LINQ when used as an ORM tool, LINQ can also be benefi cial when
using any in - memory operations working with arrays or collections for searching, fi ltering, and
ordering of records.

 Note that any language targeted at the Common Language Run - time (CLR) has
built - in support for LINQ. So, you can use C#, F#, and Visual Basic (VB) 9 to
write your LINQ queries.

 LINQ Operators

 An operator is a symbol that works on an operand to perform a specifi c operation. There are a
number of operators in LINQ to facilitate query operations.

 The System.Query.Sequence static class in the System.Query namespace is comprised of a set of
static methods. These methods, commonly known as standard query operators , are of the following
two types:

 Standard query operators for IEnumerable(T) operate on objects that implement the
 IEnumerable(T) interface

 Standard query operators for IQueryable(T) operate on objects that implement the
 IQueryable(T) interface

 Table 12 - 1 shows the LINQ operators and their categories.

➤

➤

 OPERATOR TYPE OPERATORS

 Aggregation Aggregate

 Average

 Count

 LongCount

 Max

 Min

 Sum

 Conversion Cast

 OfType

 ToArray

 ToDictionary

 ToList

 ToLookup

 ToSequence

TABLE 12-1: LINQ Operators

CH012.indd 564CH012.indd 564 9/6/10 5:16:05 PM9/6/10 5:16:05 PM

 OPERATOR TYPE OPERATORS

 Element DefaultIfEmpty

 ElementAt

 ElementAtOrDefault

 First

 FirstOrDefault

 Last

 LastOrDefault

 Single

 SingleOrDefault

 Equality EqualAll

 Generation

 Empty

 Range

 Repeat

 Grouping GroupBy

 Joining

 GroupJoin

 Join

 Ordering

 OrderBy

 ThenBy

 OrderByDescending

 ThenByDescending

 Reverse

 Partitioning

 Skip

 SkipWhile

 Take

 TakeWhile

 Quantifying

 All

 Any

 Contains

 Restriction Where

 Selection

 Select

 SelectMany

continues

Language Integrated Query (LINQ) ❘ 565

CH012.indd 565CH012.indd 565 9/6/10 5:16:21 PM9/6/10 5:16:21 PM

566 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 Using LINQ, you can easily query and organize items in a list, fi lter for a specifi c list item or items,
or even transpose objects into other objects. The following samples show a few of these concepts:

String[] cities = {“London”, “New York”, “New Delhi”, “Tokyo”, “Paris”};
//Sort items by name
var sortedResults = from x in cities
 orderby x
 select x;
//Find cities that start with New
var newCities = from x in cities
 where x.StartsWith(“New”)
 select x;

//output results
Console.WriteLine(“Sorted”)
foreach (var city in sortedResults)
Console.WriteLine(city);
Console.Writeline(“Filtered”)
foreach (var city in newCities)
Console.WriteLine(city);

 From these examples you can see that the basic structure of a LINQ query starts with from __ in __ .
You defi ne an alias to represent an item in the collection being queried. In these examples, x was used
to represent an individual city. For the rest of the LINQ query, Visual Studio provides full IntelliSense
support for the properties and methods made available by the queried object. The next portion of the
sample queries are either a limiting where clause or a orderby clause used to re - order the lists.

 This is just taste of the power of LINQ and how it can simplify actions when working with objects
in memory.

 LINQ Implementations

 LINQ has been implemented to work against a number of data and object sources. The most
common implementations include the following.

 LINQ to Objects

 LINQ to XML

 LINQ to DataSet

➤

➤

➤

 OPERATOR TYPE OPERATORS

 Set

 Concat

 Distinct

 Except

 Intersect

 Union

TABLE 12.1 (continued)

CH012.indd 566CH012.indd 566 9/6/10 5:16:21 PM9/6/10 5:16:21 PM

 LINQ to SQL

 LINQ to Entities

 LINQ to Objects

 LINQ to Objects is an implementation of LINQ that can be used to query the in - memory objects or
in - memory collections of objects. Note that such objects or collections of such objects should be of
type T:System.Collections.IEnumerable or T:System.Collections.Generic .

 Let ’ s take a look at how you can use LINQ to Objects to query an in - memory collection of objects.
Consider the following class:

public class Product
{
public int ProductID { get; set; }
public string ProductName { get; set; }
public string ProductType { get; set; }
public int Quantity { get; set; }
}

 The following code snippet illustrates how you can populate a generic List of type Product and return it:

static List < Product > PopulateData()
 {
 List < Product > products = new List < Product > ();
 products.Add(new Product { ProductID = 1, ProductName =
 “Lenovo”, ProductType = “Laptop”, Quantity = 100 });
 products.Add(new Product { ProductID = 2, ProductName =
 “Compaq”, ProductType = “Laptop”, Quantity = 150 });
 products.Add(new Product { ProductID = 3, ProductName =
 “DELL”, ProductType = “Laptop”, Quantity = 200 });
 products.Add(new Product { ProductID = 4, ProductName =
 “HCL”, ProductType = “Laptop”, Quantity = 150 });
 products.Add(new Product { ProductID = 5, ProductName =
 “Acer”, ProductType = “Laptop”, Quantity = 200 });
 return products;
 }

 You could then use LINQ to Objects to order this listing based on the product name and then
output the list for review:

 List < Product > products = PopulateData();
 var sortedResults = from x in products
 orderby x.ProductName
 select x;
 foreach (var p in sortedResults)
 {
 Console.WriteLine(p.ProductName);
 }

 As you can see here, this is a simple extension to the previous example using LINQ against the array
of strings. This time, the alias of x allows access to the individual properties of the class, which can
then be used to fi lter, order, or otherwise process the collection.

➤

➤

Language Integrated Query (LINQ) ❘ 567

CH012.indd 567CH012.indd 567 9/6/10 5:16:22 PM9/6/10 5:16:22 PM

568 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 LINQ to XML

 Previously known as XLINQ, LINQ to XML is an API that can be used to query data from XML
data sources. It can be used to map your LINQ queries to XML data sources.

 The following code snippet shows an XML document called Products.xml :

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Products >
 < Product >
 < ProductID > 1 < /ProductID >
 < ProductName > Lenovo < /ProductName >
 < ProductType > Laptop < /ProductType >
 < Quantity > 100 < /Quantity >
 < /Product >
 < Product >
 < ProductID > 2 < /ProductID >
 < ProductName > Compaq < /ProductName >
 < ProductType > Laptop < /ProductType >
 < Quantity > 150 < /Quantity >
 < /Product >
 < Product >
 < ProductID > 3 < /ProductID >
 < ProductName > DELL < /ProductName >
 < ProductType > Laptop < /ProductType >
 < Quantity > 200 < /Quantity >
 < /Product >
 < Product >
 < ProductID > 4 < /ProductID >
 < ProductName > HCL < /ProductName >
 < ProductType > Laptop < /ProductType >
 < Quantity > 150 < /Quantity >
 < /Product >
 < Product >
 < ProductID > 5 < /ProductID >
 < ProductName > Acer < /ProductName >
 < ProductType > Laptop < /ProductType >
 < Quantity > 200 < /Quantity >
 < /Product >
 < /Products >

 Using LINQ to XML, it is possible for you to load and query this document like any other object.
This provides for a simple interface for working with XML documents without the need for XPATH
and other techniques.

 The following snippet loads the XML document and shows items with a Quantity greater than 150 :

XDocument productDocument = XDocument.Load(“myFile.xml”);
var result = from x in productDocument.Descendants(“Products”);
 where (int)x.Element(“Quantity”) > 150
 select (string)x.Element(“ProductType”) + “ “ +
 (string)x.Element(“ProductName”);
foreach(string element in result)
 Console.WriteLine(element);

CH012.indd 568CH012.indd 568 9/6/10 5:16:22 PM9/6/10 5:16:22 PM

 This example might look at bit complex at fi rst, but if you look at the multiple components, it
should be easy to digest. The fi rst line of the code is used to load the static fi le myFile.xml into an
 XDocument object. The XDocument object allows LINQ to query the input XML.

 The second line of code is a three - part LINQ query. The fi rst line defi nes the individual element
alias of x and instructs the query to work with the Descendents of “ Products ” . This ensures that
the rest of the query will operate on each individual product node within the document.

 The third line of code defi nes the where clause using the Element method to retrieve the Quantity
element, and converts it to an integer then ensures that it is greater than 150 . The conversion to
integer is needed because the type of the element is not known.

 The fourth line of code then defi nes the result of the query, which is the ProductType , followed by a
space, and then the ProductName . This results in an array of strings that indicate the matching elements.

 The fi nal lines of code are used to output the results.

 In the case of working with documents that include attributes, you can use the Attribute method
to get access to specifi c attributes, as shown in the previous example. If you need to walk up or
down a complex document structure, you can chain together calls to the Element method.

 Consider the following example:

x.Element(“MyElement”).Element(“MyChild”)

This would get access to the “ MyChild ” node contained within the MyElement node of the document.

 LINQ to DataSet

 LINQ to DataSet is a LINQ implementation that you can use to query data from DataSet or DataTable
instances. For example, assume that you have the following code that loads information to a DataTable :

static DataTable PopulateData()
 {
 DataTable products = new DataTable();
 products.Columns.Add(“ProductID”, typeof(Int32));
 products.Columns.Add(“ProductName”, typeof(String));
 products.Columns.Add(“ProductType”, typeof(String));
 products.Columns.Add(“Quantity”, typeof(Int32));
 products.Rows.Add(1, “Lenovo”, “Laptop”, 100);
 products.Rows.Add(1, “Compaq”, “Laptop”, 150);
 products.Rows.Add(1, “DELL”, “Laptop”, 200);
 products.Rows.Add(1, “HCL”, “Laptop”, 150);
 products.Rows.Add(1, “Acer”, “Laptop”, 200);
 products.Rows.Add(1, “Test”, “TV”, 200);
 return products;
 }

 By using LINQ to DataSet, you can query this DataTable to return only the Laptop s using the
following snippet:

 var queryableDs = PopulateData().AsEnumerable();
 var result = from record in queryableDs
 where record[“ProductType] == “Laptop”

Language Integrated Query (LINQ) ❘ 569

CH012.indd 569CH012.indd 569 9/6/10 5:16:22 PM9/6/10 5:16:22 PM

570 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 select record;
 foreach (var product in result)
 Console.WriteLine(product[“ProductName”]);

 The process to query a DataTable / DataSet is slightly different because of the need to call
 AsEnumerable() to get the results to a format that can be interacted with by the LINQ system. In
the previous example, the fi rst two lines are divided out to more accurately illustrate this concept.
However, it would be perfectly valid to do PopulateData().AsEnumerable() after the in keyword
in the fi rst line of the LINQ statement.

 For the remainder of the LINQ statement, the syntax should be familiar because you use the
standard array accessors to get access to individual fi elds — fi rst you have the where clause to select
product type, then a select that returns the entire object.

 LINQ to SQL

 Previously known as DLINQ, LINQ to SQL is an implementation of LINQ that can be used to
query data from SQL Server databases. It is just like any other ORM tool that can be used to
retrieve data from SQL Server databases.

 To work with LINQ to SQL, you must create a DataContext . A DataContext is actually a
gateway to LINQ to SQL queries. It accepts the LINQ queries as input, and then processes those
queries to produce corresponding SQL statements.

 To create a DataContext in LINQ to SQL, follow these steps:

 1. Right - click on the project in the Solution Explorer and select Add ➪ New Item.

 2. From the list of the templates displayed, select “ LINQ to SQL Classes, ” as shown
in Figure 12 - 1.

 FIGURE 12 - 1: Creating a new LINQ data context

CH012.indd 570CH012.indd 570 9/6/10 5:16:23 PM9/6/10 5:16:23 PM

 3. Provide a name to the DataContext and click OK.

 4. Drag and drop the table(s) you need (in this example, it ’ s the Product table of the
 AdventureWorks database, as shown in Figure 12 - 2).

 FIGURE 12 - 2: The Server Explorer

 Once the DataContext has been created, you can use LINQ to query data, as shown in the
following code snippet:

 WroxDataContext dataContext = new WroxDataContext();
 var result = from p in dataContext.Products select p;
 foreach (var v in result)
 Console.WriteLine(v.Name);

 Working with LINQ from a SQL context is very simple because the generated data context is
strongly typed, just as if you were working with manually created objects. So, all query functions
can be completed as if public properties existed for each column within the database.

 One important item to note that is specifi c to LINQ to SQL is that the query itself is not actually
executed until you start the enumeration of the results. So, if you have a LINQ statement followed
by ten lines of code before you work with the results, the execution of the database query will be

Language Integrated Query (LINQ) ❘ 571

CH012.indd 571CH012.indd 571 9/6/10 5:16:23 PM9/6/10 5:16:23 PM

572 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

delayed until the time of query. Also, given this behavior, each iteration of results will result in a
new database query being executed.

 In the following example, the entire contents of the Products table is returned twice, once for each
 foreach statement:

WroxDataContext dataContext = new WroxDataContext();
 var result = from p in dataContext.Products select p;
 foreach (var v in result)
 Console.WriteLine(v.Name);
 foreach (var v in result)
 Console.WriteLine(v.Name);

 You can get around this limitation by converting the results to a list or an array. This will execute
the query and put the results in memory. The following example only executes the query once:

WroxDataContext dataContext = new WroxDataContext();
 var result = from p in dataContext.Products select p;
 var list = result.ToList();
 foreach (var v in list)
 Console.WriteLine(v.Name);
 foreach (var v in list)
 Console.WriteLine(v.Name);

 The fi nal thing to note here is that, because of the deferred execution model of LINQ to SQL, it is
possible to perform a complex, conditional query, and ensure that the actual execution contains the
proper data.

 For example, consider the following:

var result = from p in dataContext.products select p;
if(orderbyProduct) //Variable declared elsewhere
 result - from r in result orderby r.ProductName select r;
if(onlyActive) //Variable declared elsewhere
 result = from r in result where r.Active select r;
foreach(var item in result)
 Console.WriteLine(item.Name)

If you did not consider deferred execution when looking at this example, it would be assumed that
three different database queries would be completed. However, given the way that LINQ fi lters, the
database query is executed once, during the foreach loop. This allows you to actually build out
a dynamic fi lter/order condition. This can be especially helpful when working with an advanced
search or other confi gurable search process.

 PARALLEL LINQ (PLINQ)

 Parallel LINQ (PLINQ), which is part of the Parallel Extensions Library, is a concurrency execution
engine that is used to execute LINQ queries. It was previously known as Parallel Framework
Extensions (PFX), and is a managed concurrency library. According to MSDN (http://msdn
.microsoft.com/en-us/magazine/cc163329.aspx), “ PLINQ is a query execution engine

CH012.indd 572CH012.indd 572 9/6/10 5:16:24 PM9/6/10 5:16:24 PM

Entity Framework ❘ 573

that accepts any LINQ - to - Objects or LINQ - to - XML query and automatically utilizes multiple
processors or cores for execution when they are available. ”

 PLINQ is composed of the following:

 Task Parallel Library (TPL) — This is a task parallelism component.

 Parallel LINQ (PLINQ) — This is a concurrency execution engine built on top of the
managed environment of the CLR.

 Following is an example of a typical PLINQ query:

var myList = Enumerable.Range(1, 50);
var result = from i in myList.AsParallel() where i < = 10 select i;
 foreach (var x in result)
 {
 Console.WriteLine(x);
 }

 The AsParallel() extension method is defi ned as follows:

public static class System.Linq.ParallelEnumerable {
 public static IParallelEnumerable < T > AsParallel < T > (
 this IEnumerable < T > source);
//Other Standard Query Operators
}

 ENTITY FRAMEWORK

 The Entity Framework is an extended ORM from Microsoft that is used to reduce the impedance
mismatch between the relational and the object model in an application. It makes this possible
through the Entity Data Model (EDM), an extended Entity Relational Model that allows you to
work with domain - specifi c properties, rather than being concerned about how the data is actually
represented and stored in the underlying database.

 The Entity Framework is called an extended ORM because it provides the following additional
features over and above an ORM:

 Change tracking

 Entity inheritance

 Entity Framework Architecture

 Following are the architectural components of the Entity Framework:

 The Entity Data Model (EDM)

 LINQ to Entities

 Entity Client

 Object Services

 Entity SQL

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH012.indd 573CH012.indd 573 9/6/10 5:16:24 PM9/6/10 5:16:24 PM

574 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 The Entity Data Model

 The EDM is an Entity Relationship Model in the Entity Framework, and has the following
three layers:

 The Conceptual or the C - Space Layer — This is modeled using Conceptual Schema
Defi nition Language (CSDL), and is used to defi ne the entities and their relationships. You
can query data from this layer using Entity SQL (which will be discussed shortly).

 The Conceptual - Storage or the C - S Mapping Layer — This is modeled using Mapping
Specifi cation Language (MSL), and is used to map the conceptual layer to the logical layer.

 The Logical or the Storage Layer or the S - Space — This is modeled using Store Schema
Defi nition Language (SSDL), and is used to represent the storage schema of the underlying
database in use.

 Accordingly, the EDM uses .CSDL , .MSL , or .SSDL fi les to represent each of these layers.

 You can create an EDM using the Entity Data Model Wizard included with Visual Studio 2010. To
do this, follow these steps:

 1. Right - click on the project in the Solution Explorer and click on Add ➪ New Item.

 2. From the list of the templates displayed, select ADO.NET Entity Data Model, as shown in
Figure 12 - 3. Click Add.

➤

➤

➤

 FIGURE 12 - 3: Creating a new ADO.NET Entity Data Model

 3. The Entity Data Model Wizard is shown next. Select “ Generate from database, ” as shown
in Figure 12 - 4. Click Next.

 4. Now, specify the connection properties, as shown in Figure 12 - 5. Click Next.

CH012.indd 574CH012.indd 574 9/6/10 5:16:25 PM9/6/10 5:16:25 PM

Entity Framework ❘ 575

 5. Next, select the database objects you need in your model, as shown in Figure 12 - 6.
Click Finish.

 FIGURE 12 - 4: The Entity Data Model Wizard FIGURE 12 - 5: Specifying the database

 connection properties

 FIGURE 12 - 6: Select the database objects

 The EDM is then created and saved in a fi le having an extension of .dbml .

CH012.indd 575CH012.indd 575 9/6/10 5:16:26 PM9/6/10 5:16:26 PM

576 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 Listing 12 - 1 shows what a portion of a typical EDM would look like in its XML view. Note that all
additional properties have been removed from the EDM example.

 LISTING 12 - 1: EDM in XML

 < ?xml version=”1.0” encoding=”utf-8”? >
 < edmx:Edmx Version=”2.0” xmlns:edmx=”http://schemas.microsoft.com/ado/
 2008/10/edmx” >
 < !-- EF Runtime content -- >
 < edmx:Runtime >
 < !-- SSDL content -- >
 < edmx:StorageModels >
 < Schema Namespace=”WroxModel.Store” Alias=
 “Self” Provider=”System.Data.SqlClient”
 ProviderManifestToken=”2008” xmlns:store=
 “http://schemas.microsoft.com/ado/2007/12/edm/
 EntityStoreSchemaGenerator” xmlns=”http://schemas.microsoft.com/
 ado/2009/02/edm/ssdl” >
 < EntityContainer Name=”WroxModelStoreContainer” >
 < EntitySet Name=”Product” EntityType=
 “WroxModel.Store.Product” store:Type=
 “Tables” Schema=”Production” / >
 < /EntityContainer >
 < EntityType Name=”Product” >
 < Key >
 < PropertyRef Name=”ProductID” / >
 < /Key >
 < Property Name=”ProductID” Type=”int” Nullable=”false”
 StoreGeneratedPattern=”Identity” / >
 < Property Name=”ModifiedDate” Type=”datetime” Nullable=”false” / >
 < /EntityType >
 < /Schema >
 < /edmx:StorageModels >
 < !-- CSDL content -- >
 < edmx:ConceptualModels >
 < Schema Namespace=”WroxModel” Alias=”Self”
 xmlns:annotation=
 “http://schemas.microsoft.com/ado/2009/02/edm/annotation”
 xmlns=”http://schemas.microsoft.com/ado/2008/09/edm” >
 < EntityContainer Name=”WroxEntities” annotation:LazyLoadingEnabled=”true” >
 < EntitySet Name=”Products” EntityType=”WroxModel.Product” / >
 < /EntityContainer >
 < EntityType Name=”Product” >
 < Key >
 < PropertyRef Name=”ProductID” / >
 < /Key >
 < Property Name=”ProductID” Type=”Int32” Nullable=”false”
 annotation:StoreGeneratedPattern=”Identity” / >
 < /EntityType >
 < /Schema >
 < /edmx:ConceptualModels >
 < !-- C-S mapping content -- >
 < edmx:Mappings >

CH012.indd 576CH012.indd 576 9/6/10 5:16:27 PM9/6/10 5:16:27 PM

Entity Framework ❘ 577

 < Mapping Space=”C-S” xmlns=
 “http://schemas.microsoft.com/ado/2008/09/mapping/cs” >
 < EntityContainerMapping StorageEntityContainer=”WroxModelStoreContainer”
 CdmEntityContainer=”WroxEntities” >
 < EntitySetMapping Name=”Products” > < EntityTypeMapping TypeName=
 “WroxModel.Product” > < MappingFragment StoreEntitySet=”Product” >
 < ScalarProperty Name=”ProductID” ColumnName=”ProductID” / >
 < /MappingFragment > < /EntityTypeMapping > < /EntitySetMapping >
 < /EntityContainerMapping >
 < /Mapping >
 < /edmx:Mappings >
 < /edmx:Runtime >
 < !-- EF Designer content (DO NOT EDIT MANUALLY BELOW HERE) -- >
 < Designer xmlns=”http://schemas.microsoft.com/ado/2008/10/edmx” >
 < Connection >
 < DesignerInfoPropertySet >
 < DesignerProperty Name=”MetadataArtifactProcessing” Value=
 “EmbedInOutputAssembly” / >
 < /DesignerInfoPropertySet >
 < /Connection >
 < Options >
 < DesignerInfoPropertySet >
 < DesignerProperty Name=”ValidateOnBuild” Value=”true” / >
 < DesignerProperty Name=”EnablePluralization” Value=”True” / >
 < DesignerProperty Name=”IncludeForeignKeysInModel” Value=”True” / >
 < /DesignerInfoPropertySet >
 < /Options >
 < !-- Diagram content (shape and connector positions) -- >
 < Diagrams >
 < Diagram Name=”WroxModel” ZoomLevel=”73” >
 < EntityTypeShape EntityType=”WroxModel.Product” Width=
 “2.625” PointX=”0.75” PointY=”0.75” Height=
 “5.0436002604166656” IsExpanded=
 “true” / > < /Diagram > < /Diagrams >
 < /Designer >
 < /edmx:Edmx >

 LINQ to Entities

 The LINQ to Entities implementation of LINQ is an API that you can use to query data exposed by
the EDM in a strongly typed way.

 The following code snippet is an example of a LINQ to Entities query:

WroxModel.WroxEntities context = new WroxModel.WroxEntities();
 var result = from product in context.Products
 select product;
 foreach (var p in result)
Console.WriteLine (p.ProductName);

 As you can see from this example, once the EDM is created, the process to query the entities is just
the same as other types of LINQ queries.

CH012.indd 577CH012.indd 577 9/6/10 5:16:27 PM9/6/10 5:16:27 PM

578 ❘ CHAPTER 12 ENHANCEMENTS TO THE .NET DATA FRAMEWORK

 Entity Client

 Entity Client is a provider that acts as a gateway to entity - level queries in the Entity Framework.
You can use this provider to write your queries using Entity SQL, and perform CRUD (Create,
Read, Update, Delete) operations on the data exposed by the EDM.

 Entity SQL

 Like T - SQL, Entity SQL is a data store - independent, text - based query language that you can use to
perform CRUD operations on data exposed by the EDM. It is not strongly typed like LINQ, but
you can use it to compose or build your own dynamic queries, and then execute them.

 The following code snippet illustrates how you can use Entity SQL in your application:

using (EntityConnection entityConnection =
 new EntityConnection(“Name=WroxEntities”))
 {
 try
 {
 entityConnection.Open();
 EntityCommand entityCommand = entityConnection.CreateCommand();
 entityCommand.CommandText = “WroxEntities.AddNewProduct”;
 entityCommand.CommandType = CommandType.StoredProcedure;
 entityCommand.Parameters.AddWithValue(“ProductID”, 2);
 entityCommand.Parameters.AddWithValue(“ProductName”, “DELL”);
 entityCommand.Parameters.AddWithValue(“ProductType”, “Laptop”);
 entityCommand.Parameters.AddWithValue(“Quantity”, 150);
 entityCommand.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Console.WriteLine(“Error: “+ex.ToString());
 }
 }

 Object Services

 Object Services is an API that allows you to work with your entities exposed by the EDM as
in - memory objects, or a collection of in - memory objects. You can use this API to query data from
any data source. Also, the Object Services Layer provides the following features:

 Change tracking and identity resolution

 Lazy loading

 Inheritance

 Optimistic concurrency

 You can also use the Object Services API to query data exposed by the EDM using Entity SQL or
LINQ to Entities.

➤

➤

➤

➤

CH012.indd 578CH012.indd 578 9/6/10 5:16:27 PM9/6/10 5:16:27 PM

 The following code snippet shows how you can use Object Services to retrieve data exposed
by the EDM:

using (ObjectContext context = new ObjectContext(“Name=WroxEntities”))
 {
 var result = from p in context.CreateQuery < WroxModel.Product >
 (“WroxEntities.Product”) select p;
 foreach (WroxModel.Product product in result)
 {
 Console.WriteLine(product.ProductName);
 }
 }

 THE ENTITY DATA SOURCE CONTROL

 The Entity Data Source control is a new data source control introduced in Visual Studio 2008 Beta 1. It
is now available as part of Visual Studio 2010, and can be used to retrieve data exposed by the EDM.

 Following is an example of how the Entity Data Source control looks in markup code:

 < asp:EntityDataSource ID=”EntityDataSource1” runat=”server”
 ConnectionString=”name=WroxEntities” DefaultContainerName=
 “WroxEntities” EntitySetName=”Product” > < /asp:EntityDataSource >

 CHOOSING BETWEEN LINQ TO ENTITIES AND LINQ TO SQL

 Both the Entity Framework and LINQ to SQL provide ORM functionality. Deciding which of the
two is more appropriate for you can be a complicated decision - making process that depends on your
specifi c implementation.

 For example, LINQ to SQL is a solution that is designed to go against Microsoft SQL Server
directly. If your needs require communication with another data store, the Entity Framework is a
much more appropriate solution.

 The Entity Framework also supports much more complex data mapping and query processes. For
example, LINQ to SQL provides a one - to - one mapping of tables, views, and stored procedures. The
Entity Framework has the capability to handle many - to - many relationships and other more complex
situations, or it allows for a single class to map to data within multiple tables.

 You might consider LINQ to SQL as the predecessor (or “ little brother ”) to the more robust and
powerful Entity Framework. Various online sources indicate that Microsoft is recommending the
Entity Framework as the “ going forward ” technology.

 SUMMARY

 This chapter provided an overview of enhancements to the .NET Data Framework. Two ORM
technologies, LINQ to SQL and Entity Framework, were discussed and appropriate applications
provided for each. A broader overview of the LINQ was provided with several examples.

 Chapter 13 takes a look into the enhancements that have been introduced to .NET Communication
Foundation.

Summary ❘ 579

CH012.indd 579CH012.indd 579 9/6/10 5:16:28 PM9/6/10 5:16:28 PM

CH012.indd 580CH012.indd 580 9/6/10 5:16:28 PM9/6/10 5:16:28 PM

Enhancements to the .NET
Communication Framework

 You learned about the details of Windows Communication Foundation (WCF) in Chapter 9,
which provided an overview of what WCF is and how it can be leveraged. Given how new
WCF is, major improvements and enhancements have been added, with major functionality
added in both the .NET 3.5 and .NET 4 releases, all of which have occurred shortly after the
initial WCF release with .NET 3.0.

 This chapter focuses on the changes that have been introduced, and provides readers who have
used older versions of WCF with some insight into new functionality that results from these
new implementations.

 ENHANCEMENTS IN WCF FRAMEWORK 3.5

 The WCF Framework was fi rst introduced in 2006 as part of .NET Framework 3.0. As part
of the .NET 3.5 release, a lot of effort was put forth to make WCF the true “ going - forward ”
technology for building out solutions created with a focus on Service Oriented Architecture
(SOA). So, key additions with .NET 3.5 included the following:

 Support for Ajax - enabled WCF services

 Improved support for WCS standards

 A new WCF designer

 New WCF Tools (WcfSvcHost and WcfTestClient)

 Support for REST - based WCF services

 Support for WCF and Windows Forms (WF) interactivity

➤

➤

➤

➤

➤

➤

 13

CH013.indd 581CH013.indd 581 9/6/10 5:24:45 PM9/6/10 5:24:45 PM

582 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 These enhancements to WCF expanded the usability of WCF to include working with Ajax - enabled
web applications, as well as providing diagnostic tools to help developers more quickly diagnose and
resolve confi guration and setup issues with their WCF services.

 One great addition to WCF with the .NET 3.5 release was the addition of the
 UserNamePasswordValidator class contained in the System.IdentityModel.Selectors
namespace. With this class, it is possible for developers to extend an implementation of this class to
specify their own user - verifi cation systems. The following example “ WroxValidator ” class validates
that the calling user provided a username of user and a password of password1! :

using System;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.ServiceModel;
namespace Wrox
{
 public class WroxValidator : UserNamePasswordValidator
 {
 public override void Validate(String userName, String password)
 {
 if (!userName.Equals(“user”)) || !password.Equals(“password1!”))
 {
 throw new SecurityTokenException(“User Name and/or
 Password incorrect...!”);
 }
 }
 }
}

 From a programming perspective, this is simple: Inherit from the UserNamePasswordValidator
class and override the Validate method. The only note here is that, rather than having a Boolean
return value, if a user fails validation, you must throw an exception. The proper exception type to
throw is SecurityTokenException .

 Once a custom validator has been confi gured, you can update the service behavior to require a
service credential, and then specify your specifi c type for validation. Following is an example
confi guration that defi nes basic transport level security and utilizes the custom WroxValidator
created previously:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.web >
 < compilation debug=”true” / >
 < /system.web >
 < system.serviceModel >
 < services >
 < bindings >
 < wsHttpBinding >
 < binding name=”WroxAuthentication” >

CH013.indd 582CH013.indd 582 9/6/10 5:24:48 PM9/6/10 5:24:48 PM

 < security mode=”Transport” >
 < transport clientCredentialType=”Basic” / >
 < /security >
 < /binding >
 < /wsHttpBinding >
 < /bindings >

 < behaviors >
 < serviceBehaviors >
 < behavior name=”WroxValidator.ServiceBehavior” >
 < serviceCredentials >
 < userNameAuthentication
 userNamePasswordValidationMode=”Custom”
 customUserNamePasswordValidatorType=”Wrox.WroxValidator, Wrox”/ >
 < /serviceCredentials >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 ENHANCEMENTS IN WCF FRAMEWORK 4.0

 Although a certain amount of time elapsed between the release of .NET 3.5 and 4.0, another round
of major enhancements was added to WCF with this release. Following is a quick list of the items
that are discussed throughout the remainder of this chapter:

 Simplifi ed confi guration

 Standard endpoints

 Discovery

 REST improvements

 Routing service

 Simplifi ed Confi guration

 Confi guration in WCF 4.0 is much simpler compared to its earlier counterparts. In WCF 3.x, you
needed to specify the endpoints, behavior, and so on, for the service host. With WCF 4.0, default
endpoints, binding information, and behavior are provided by default. In essence, WCF 4.0 eliminates
the need for any WCF confi guration when you are implementing a particular WCF service.

 A few standard endpoints and default binding/behavior confi gurations are created for any WCF
service in WCF 4.0. This makes it easy to get started with WCF, because the tedious confi guration
details of WCF 3.x are no longer required.

➤

➤

➤

➤

➤

Enhancements in WCF Framework 4.0 ❘ 583

CH013.indd 583CH013.indd 583 9/6/10 5:24:48 PM9/6/10 5:24:48 PM

584 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 Consider the following WCF service:

using System;
using System.ServiceModel;
namespace WroxService
{
 [ServiceContract]
 public interface ITestService
 {
 [OperationContract]
 String DisplayMessage();
 }

 public class TestService : ITestService
 {
 public String DisplayMessage()
 {
 return “Hello World!”;
 }
 }
}

 In WCF 4.0, you can use ServiceHost to host the WCF service without the need for any
confi guration information whatsoever. Following is all the code you need to host your WCF
service and display the address, binding, and contract information:

using System.ServiceModel;
using System;
using System.ServiceModel.Description;
namespace WroxClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost serviceHost = new ServiceHost
 (typeof(WroxService.TestService));
 serviceHost.AddServiceEndpoint
 (typeof(WroxService.TestService),
 new BasicHttpBinding(),
 “http://localhost:1607/
 TestService.svc”);
 serviceHost.Open();
 foreach (ServiceEndpoint serviceEndpoint
 in serviceHost.Description.Endpoints)
 Console.WriteLine(“Address: {0}, Binding: {1},
 Contract: {2}”, serviceEndpoint.Address,
 serviceEndpoint.Binding.Name,
 serviceEndpoint.Contract.Name);
 Console.ReadLine();

CH013.indd 584CH013.indd 584 9/6/10 5:24:48 PM9/6/10 5:24:48 PM

 serviceHost.Close();
 }
 }
}

 You can refer to the examples in Chapter 9 of this book for an example of the long - hand
confi guration setup that is needed to confi gure WCF prior to the 4.0 release.

 Client consumption confi guration has also been greatly simplifi ed, with the following items being
the only necessary confi guration:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < behaviors >
 < serviceBehaviors >
 < behavior >
 < serviceMetadata httpGetEnabled =”true”/ >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 This confi gures everything using the default confi guration, which uses a BasicHttpBinding .
If you need to do any further confi guration, or use a more secure binding protocol (such as
 wsHttpBinding), you only need to add an additional protocolMapping code to your confi guration,
similar to the following:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < behaviors >
 < serviceBehaviors >
 < behavior >
 < serviceMetadata httpGetEnabled =”true”/ >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < protocolMapping >
 < add binding=”wsHttpBinding” scheme =”http”/ >
 < /protocolMapping >
 < /system.serviceModel >
 < /configuration >

 Standard Endpoints

 Standard endpoints are items provided by the .NET framework that can be used to more quickly
confi gure standard endpoints for common application functions. Table 13 - 1 shows the standard
endpoints for WCF 4.0.

Enhancements in WCF Framework 4.0 ❘ 585

CH013.indd 585CH013.indd 585 9/6/10 5:24:49 PM9/6/10 5:24:49 PM

586 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 You can use any of the endpoints shown in Table 13 - 1 by referencing them in the < configuration >
element using the endpoint name. Following is an example:

 < configuration >
 < system.serviceModel >
 < services >
 < service name=”WroxService” >
 < endpoint kind=”basicHttpBinding” contract=”IMyService”/ >
 < endpoint kind=”mexEndpoint” address=”mex” / >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 Discovery

 There are two modes of operation:

 Ad - hoc mode — In this mode, there is no centralized server, and all service announcements
and client requests are sent in a multicast manner.

 Managed mode — In this mode, you have a centralized server. Such a server is known as
a discovery proxy , where the services are published centrally, and the clients who need to
consume such published services connect to this to retrieve the necessary information.

➤

➤

 TABLE 13 - 1: Standard Endpoints in WCF 4.0

 STANDARD ENDPOINT PURPOSE

 announcementEndpoint This endpoint has a fi xed contract. It is only necessary to specify

the binding and the address.

 discoveryEndpoint This endpoint is used to set up WCF discovery messages.

 mexEndpoint This endpoint is used to allow metadata exchange for your

service.

 workflowControlEndpoint This endpoint is used to allow for the calling of control

operations on a Windows Workfl ow instance.

 webHttpEndpoint This endpoint automatically adds a fi xed webHttpBinding for

the application with the webHttpBehavior .

 webScriptEndpoint This endpoint sets up a WCF service to allow calling from an

Ajax - enabled web application.

 udpAnnouncementEndpoint This endpoint is used to send announcements over a User

Datagram Protocol (UDP) binding.

 udpDiscoveryEndpoint This endpoint is used to send discovery messages over a UDP

binding.

CH013.indd 586CH013.indd 586 9/6/10 5:24:49 PM9/6/10 5:24:49 PM

 You can just add the standard “ udpDiscoveryEndpoint ” endpoint and also enable the
 < serviceDiscovery > behavior to enable service discovery in the ad - hoc mode. Here is
an example:

 < configuration >
 < system.serviceModel >
 < services >
 < service name=”TestService” >
 < endpoint binding=”wsHttpBinding” contract=”ITestService” / >
 < !-- add a standard UDP discovery endpoint-- >
 < endpoint name=”udpDiscovery” kind=”udpDiscoveryEndpoint”/ >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”TestService.MyServiceBehavior” >
 < !-- To avoid disclosing metadata information, set the
 value below to false and remove the metadata
 endpoint above before deployment -- >
 < serviceMetadata httpGetEnabled=”true”/ >
 < !-- To receive exception details in faults for debugging
 purposes, set the value below to true. Set to false
 before deployment to avoid disclosing exception
 information -- >
 < serviceDebug includeExceptionDetailInFaults=”false”/ >
 < serviceDiscovery / >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 Note in the previous code snippet how a new EndPoint has been added to discover the service.
Also, the ServiceDiscovery behavior has been added. You can use the DiscoveryClient class to
discover your service and invoke one of its methods.

 You must create an instance of the DiscoveryClient class and pass UdpDiscoveryEndPoint to
the constructor of this class as a parameter to discover the service. Once the endpoint has been
discovered, the discovered endpoint address can then be used to invoke the service. The following
code snippet illustrates this:

using System;
using System.ServiceModel;
using System.ServiceModel.Discovery;
namespace WroxConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 DiscoveryClient discoverclient = new DiscoveryClient(new
 UdpDiscoveryEndpoint());
 FindResponse findResponse = discoverclient.Find(new

Enhancements in WCF Framework 4.0 ❘ 587

CH013.indd 587CH013.indd 587 9/6/10 5:24:49 PM9/6/10 5:24:49 PM

588 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 FindCriteria(typeof(ITestService)));
 EndpointAddress endpointAddress =
 findResponse.Endpoints[0].Address;
 MyServiceClient serviceClient = new MyServiceClient(new
 WSHttpBinding(), endpointAddress);
 Console.WriteLine(serviceClient.DisplayMessage());
 }
 }
}

 WCF 4.0 also enables you to confi gure services to announce their endpoints as soon as they are
started. Here is how you can confi gure your service to announce endpoints at start time:

 < configuration >
 < system.serviceModel >
 < services >
 < service name=”TestService” >
 < endpoint binding=”wsHttpBinding” contract=”ITestService”/ >
 < endpoint kind=”udpDiscoveryEndpoint”/ >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior >
 < serviceDiscovery >
 < announcementEndpoints >
 < endpoint kind=”udpAnnouncementEndpoint”/ >
 < /announcementEndpoints >
 < /serviceDiscovery >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >
 < /system.serviceModel >
 < /configuration >

 REST Improvements

 WCF 4.0 comes with improved support for REST - based features. You now have support for an
automatic Help page that describes the REST - based services available for the service consumers or
clients. This feature is turned on by default, though you can also manually confi gure the property,
as shown in the following code listing:

 < configuration >
 < system.serviceModel >
 < serviceHostingEnvironment aspNetCompatibilityEnabled=”true” / >
 < behaviors >
 < endpointBehaviors >
 < behavior name=”WroxTestHelpBehavior” >
 < webHttp helpEnabled=”true” / >
 < /behavior >
 < /endpointBehaviors >
 < /behaviors >

CH013.indd 588CH013.indd 588 9/6/10 5:24:50 PM9/6/10 5:24:50 PM

 < services >
 < service name=”WroxSampleWCFService” >
 < endpoint behaviorConfiguration=”WroxTestHelpBehavior”
 binding=”webHttpBinding”
 contract=”WroxSampleWCFService” / >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 WCF 4.0 also comes with support for HTTP caching using the AspNetCacheProfile attribute.
Note that the AspNetCacheProfile support actually uses the standard ASP.NET output caching
mechanism to provide you with caching features in your WCF service.

 To use this attribute, you should add a reference to the System.ServiceModel.Web.Caching
namespace. You can apply this attribute in a WebGet operation, and specify the cache duration of
your choice. The following code snippet can be used in your service contract method to make
use of this feature:

using System.ServiceModel.Web.Caching;
[OperationContract]
[WebGet]
[AspNetCacheProfile(“WroxCache”)]
String GetProductName();

 Accordingly, you should set the cache profi le in your application ’ s web.config fi le, as shown here:

 < caching >
 < outputCacheSettings >
 < outputCacheProfiles >
 < add name=”WroxCache” duration=”60” varyByParam=”format”/ >
 < /outputCacheProfiles >
 < /outputCacheSettings >
 < /caching >

 This functionality allows you to signifi cantly reduce the load on a web server for standard web
 Get requests. It is not possible to cache requests when used with a HTTP Post submission process.
Similar to the output cache confi guration of ASP.NET, you use the varyByParams option to
confi gure the specifi c parameters that will cause different cache keys to be created.

 Routing Service

 Routing is a feature in WCF 4.0 that is used to determine how a message should be forwarded, and
when a request from the client comes in. Filters determine how the routing service redirects the
requests that come in from the client to a particular WCF service. These fi lters are mapped with the
corresponding WCF service endpoints using a routing table. Following are the available fi lter types:

 Action

 Address

 AddressPrefix

➤

➤

➤

Enhancements in WCF Framework 4.0 ❘ 589

CH013.indd 589CH013.indd 589 9/6/10 5:24:50 PM9/6/10 5:24:50 PM

590 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 And

 Custom

 Endpoint

 MatchAll

 XPath

 In WCF 4.0, you have the RoutingService class that you can use to implement generic WCF
routing mechanisms in your application. Following is how the RoutingService class looks:

[ServiceBehavior(AddressFilterMode = AddressFilterMode.Any,
 InstanceContextMode = InstanceContextMode.PerSession,
 UseSynchronizationContext = false, ValidateMustUnderstand = false)]
public sealed class RoutingService : ISimplexDatagramRouter, ISimplexSessionRouter,
 IRequestReplyRouter, IDuplexSessionRouter
{
 ... // implementation omitted
}

 Hosting a RoutingService is as simple as hosting a WCF service. You must simply create an
instance of the ServiceHost , and then specify the RoutingService for the service type. Here is an
example:

public static void Main()
{
 ServiceHost serviceHost = new ServiceHost(typeof(RoutingService));
 try
 {
 serviceHost.Open();
 Console.WriteLine(“Routing Service started...”);
 Console.WriteLine(“Press < ENTER > to stop the Routing Service.”);
 Console.ReadLine();
 serviceHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine(ce.Message);
 serviceHost.Abort();
 }
}

 Once the RoutingService has been started by making a call to the Open() method on the
 ServiceHost instance, it can route messages as needed. Following is an example of a typical
confi guration you would use to specify the routing information for your routing service:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < system.serviceModel >
 < services >
 < service name=”System.ServiceModel.Routing.RoutingService”

➤

➤

➤

➤

➤

CH013.indd 590CH013.indd 590 9/6/10 5:24:50 PM9/6/10 5:24:50 PM

 behaviorConfiguration=”TestBehavior” >
 < host >
 < baseAddresses >
 < add baseAddress=”http://localhost:1809/TestService”/ >
 < /baseAddresses >
 < /host >
 < endpoint
 address=””
 binding=”wsHttpBinding” name=”TestRoutingEndpoint”
 contract=”System.ServiceModel.Routing.
 IRequestReplyRouter”/ >
 < /service >
 < /services >
 < behaviors >
 < serviceBehaviors >
 < behavior name=”TestBehavior” >
 < serviceMetadata httpGetEnabled=”True”/ >
 < serviceDebug includeExceptionDetailInFaults=”True”/ >
 < routing routingTableName=”ServiceRouterTable”/ >
 < !--The Router Table Contains Entries for services-- >
 < /behavior >
 < /serviceBehaviors >
 < /behaviors >

 < !--Define Services Here-- >
 < client >
 < endpoint
 name=”WroxService” binding=”wsHttpBinding”
 address=”http://localhost:2709/Services/WroxService.svc”
 contract=”*” >
 < /endpoint >
 < /client >
 < !--Routing Defination-- >
 < routing >
 < !--Filter For Detecting Messages Headers to redirect-- >
 < filters >
 < filter name=”TestFilter” filterType=”MatchAll”/ >
 < /filters >
 < !--Define Routing Table, This will Map the service with Filter-- >
 < routingTables >
 < table name=”ServiceRouterTable” >
 < entries >
 < add filterName=”TestFilter” endpointName=”WroxService”/ >
 < /entries >
 < /table >
 < /routingTables >
 < /routing >
 < /system.serviceModel >
 < /configuration >

 Note that the routing service shown in the previous code snippet is hosted at http://
localhost:1809/TestService . It uses wsHttpBinding .

Enhancements in WCF Framework 4.0 ❘ 591

CH013.indd 591CH013.indd 591 9/6/10 5:24:51 PM9/6/10 5:24:51 PM

592 ❘ CHAPTER 13 ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK

 SUMMARY

 This chapter provided an introduction to major changes that have been introduced in Windows
Communication Foundation (WCF). In this chapter, you learned about enhanced support for
RESTful application development, discovery improvements, and methods to make developing and
using WCF easier for both the novice and experienced programmer.

 Chapter 14 takes a close look at .NET charting components.

CH013.indd 592CH013.indd 592 9/6/10 5:24:51 PM9/6/10 5:24:51 PM

.NET Charting Components

 In Chapter 8, you learned why the overall user experience is important for your applications.
If the users of your software can handle it intuitively and easily, they will have a positive
experience. If the application is tedious and laborious to work with, or it does not give the
expected feedback, users won ’ t use it — or, at least, they won ’ t be happy.

 For applications that work with numbers (or with a large set of numbers), the experience
users perceive is more important. Charts are great tools for improving this experience.
Displaying charts for a certain set of numbers offers a nicer experience than a simple table
of data, and, in one look, charts will convey the same information than can be represented
in a complex table.

 For a long time, no chart controls were shipped with Visual Studio. If you wanted to use
them, you had to buy one from a user interface (UI) component vendor, or download an
Open Source component with the appropriate license. Visual Studio 2010 and .NET 4 change
all this. Two kinds of sophisticated chart controls are the part of the framework — one for
Windows Forms applications, and one for ASP.NET Web applications.

 The two chart controls share the same concepts, and they differ only in technology - dependent
features. This chapter focuses on using the Windows Forms chart control, and Chapter 16
examines the ASP.NET charting improvements.

 In this chapter, you will learn the following things about charts:

 Creating charts — You will create a simple chart, customize it, and bind data from a
Language Integrated Query (LINQ) expression.

 Using charts — The Chart control supports more than 30 types of charts, and more
than a hundred properties that can be used to customize them. You ’ ll learn about the
most important chart elements and their customization opportunities.

 Advanced chart manipulations — Utilizing some more advanced features of the Chart
control requires more than setting up properties at design time. You will learn about
these advanced features, including annotations and data manipulations.

➤

➤

➤

 14

CH014.indd 593CH014.indd 593 9/6/10 5:39:04 PM9/6/10 5:39:04 PM

594 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 CREATING CHARTS

 .NET Framework 4.0 has a great charting solution for Windows Forms
applications. Types related to charting components can be found in the
 System.Windows.Forms.DataVisualization assembly in the System
.Windows.Forms.DataVisualization.Charting namespace. The
most important type is the Chart control shown in Figure 14 - 1, which
can be dragged from the Toolbox to your forms. As you can see, this
control is located under the Data tab in the Toolbox.

 Adding a simple chart to your application generally entails the
following three steps:

 1. Prepare the data you want to visualize with the chart.

 2. Design and set up the visual properties of the chart.

 3. Bind your data to the chart.

 Let ’ s start this discussion by jumping ahead to Step 2 so that you can use manually entered data to
get a better overview of the chart ’ s visual elements. After you are familiar with how to set up chart
properties, the discussion will take you back to Step 1 to add programmatically computed data to
the chart.

 Creating a Simple Chart

 Working with a Windows Forms chart is easy, because most of the design can be done visually by
setting up various chart properties. To see this in action, create a C# Windows Forms application
and name it ProcessInfoChart . Rename Form1.cs to MainForm.cs. Click OK on the dialog that
appears when you have changed the forms name. Set the Text property of MainWindow to “ Process
Information Chart. ”

 Adding a Chart Control to a Form

 Drag a Chart control to the design surface of MainWindow and set
its Dock property to Fill . The chart is immediately shown with
sample design time data so that you can immediately check its visual
properties. If you run the application at this point, the chart will
be empty.

 Turn on the Categorized view in the Properties window and scroll
down to the Chart category, as shown in Figure 14 - 2. Here, you can
fi nd those collection properties that are, in most cases, the starting
points of chart setup activities.

 Manually Adding Data to the Chart

 Often, you create chart data programmatically as a result of
calculation or report generation. However, when you design the chart

 FIGURE 14 - 1: Windows

Forms Chart control in the

Toolbox

 FIGURE 14 - 2: Chart properties

CH014.indd 594CH014.indd 594 9/6/10 5:39:14 PM9/6/10 5:39:14 PM

and set up its visual properties, it is very useful to check how your data would look. To do this, you
can manually add your sample data to the chart.

 The smallest unit of data in a chart is the data
point . Data points are organized into series ,
and a chart can show one or more series.
Let ’ s set up a single series containing fi ve
data points.

 In the Property window, click the Series
collection and click the ellipsis button. The
Series Collection Editor opens with Series1
shown on the left side and the Series1
properties on the right side of the dialog. Scroll
down to the Data category in the property grid,
and click the Points collection, as shown in
Figure 14 - 3.

 This property holds the data points belonging
to the series. Click the ellipsis button to
open the DataPoint Collection Editor, which
is empty when it opens. Click the Add button
fi ve times to create fi ve data points for the
series.

 As you add data points, the design surface
of the chart is automatically updated to display
the points. Data points are indexed from 0 to 4.
Select the point with index 0, and scroll down
to the Data categories in the property grid,
as shown in Figure 14 - 4. Set XValue to 0 and
 YValues to 1 . As the name suggests, you can
have multiple Y values for a data point. You ’ ll
learn about using these later in this chapter.
However, for now, just set this to the single
value of 1 .

 Repeat the setting of the XValue and YValues property
pairs for the other DataPoint instances in ascending
order of their indices. Use the values from 1 to 4 for
 XValue and 2 to 5 for YValues . As you set the data
points, the chart updates its design - time view.

 At this point, you ’ ve set up the charts with real data that
will be displayed when you run the application, as shown
in Figure 14 - 5. Close all open editors and press Ctrl + F5
to start the chart application.

 FIGURE 14 - 3: Series Collection Editor dialog

 FIGURE 14 - 4: DataPoint Collection Editor dialog

 FIGURE 14 - 5: Running the chart application

Creating Charts ❘ 595

CH014.indd 595CH014.indd 595 9/6/10 5:39:16 PM9/6/10 5:39:16 PM

596 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 As you resize the application window, the chart automatically updates its view to the new window
size. Close the application.

 Adding a New Chart Area

 In the form designer, select the chart and again display
the Series Collection Editor (which, as you recall, is the
 Series property under the Chart category). This time,
add a new series in this editor with the Add button, and
set up fi ve data points (use the DataPoints Collection
Editor). This time, use the range from 0 to 4 for XValue
and the decreasing range from 5 to 1 for YValues .

 When you run the application again, you ’ ll see two data
series displayed in the chart, as shown in Figure 14 - 6.

 A chart can contain one or more chart areas that can be
used to simultaneously display several views of the data
behind the chart. For example, you can display the series
in Figure 14 - 6 in separate chart areas.

 In the form designer, select the chart and launch the ChartArea Collection Editor by clicking the
ellipsis button belonging to the ChartAreas property under the Chart category. Use the Add button
to add a new chart area, (which will be named ChartArea2), and close the editor. You ’ ll notice
that the design area of the chart is split into two vertical
panes. The chart you ’ ve prepared before went to the
upper pane, while the bottom pane stays empty. The
empty area is reserved for ChartArea2 , but right now,
that does not contain any data to display.

 Go to the Series Collection Editor again. Select Series2
and set its ChartArea property (you can fi nd it under
the Chart category) to ChartArea2 . Now, your second
area also contains a view with data. When you run your
application, as shown in Figure 14 - 7, you can see that the
two series are displayed in separate chart areas.

 Your chart is simple and nice, but does not tell anything
about what you can see in it.

 Setting up Titles and Legends

 Adding a title to a chart can help the user understand what data he or she sees there. The Chart
control allows you to add one or more titles to the chart that can be assigned to either the chart,
or one of its chart areas. Setting up chart titles is very simple.

 Launch the Title Collection Editor by clicking the ellipsis button belonging to the Titles
property under the Chart category. Use the Add button to create a new Title, and then set its
 Text property — you ’ ll fi nd it with name “ (Text) ” right under the Appearance category — to

 FIGURE 14 - 6: Two series displayed in

the chart

 FIGURE 14 - 7: Two chart areas with their own

series

CH014.indd 596CH014.indd 596 9/6/10 5:39:17 PM9/6/10 5:39:17 PM

 My Secret Data . Expand the Font property and set Size to 12 . You can immediately see the newly
created title in the design view, located at the top of the chart.

 Now, add two more titles and set their Text properties to Increasing Trend and Decreasing
Trend , respectively. Select Title2 , and scroll down to the Docking category in the property grid.
Here you fi nd fi ve properties that determine where the title is displayed and how it is aligned.

 Set the DockedToChartArea to ChartArea1 . The “ Increasing Trend ” is displayed within the fi rst
chart area. Set the IsDockedInsideChartArea to False and the title moves outside of the chart
area, docked at the top. Change the Docking property to Bottom , and the title moves below the
chart area.

 Change Title3 similarly as Title2 , but set
 DockedToChartArea to ChartArea2 in this case. When
you run the application, you will see all the three titles in
the chart, as shown in Figure 14 - 8.

 When you create a chart, a legend is automatically
added to it. You can see this legend in Figure 14 - 8 at the
top - right area of the window containing Series1 and
 Series2 . The default legend is docked to the chart, but
you can attach legends to chart areas.

 Start the Legend Collection Editor by clicking the
ellipsis button belonging to the Legends property under
the Chart category, and click the Add button to create
a new Legend. The new Legend2 is also docked to the chart, and is placed on the left side of the
existing Legend1 . Right now, no series is associated with the legend, so it is empty, as its placeholder
indicates on the design surface. Close the Legend Collection Editor, and go to Edit Chart Series.

 Select Series1 , scroll down to the Chart category, and set the Name property to Revenue . Changing
the series name immediately updates the legend using the new name instead of Series1 . Similarly,
rename Series2 to Cost . You can attach a series to a legend to be displayed there. By default,
all series are attached to Legend1 . Scroll down to the
 Legend property of Cost (you ’ ll fi nd in under the Legend
category) and change it to Legend2 . Now, the Cost series
is moved from the fi rst legend to the new one, as the
designer surface immediately refl ects.

 Now, go back to edit Legends . A legend has a set of
properties under the Docking category that determine
how those displayed in the chart control. Select Legend1
and scroll down to the Docking property category. Set
the DockedToChartArea to ChartArea1 . Change the
same property for Legend2 to ChartArea2 , and also set
the IsDockedInsideChartArea to False . This set of
actions moves each legend to the right of its chart area,
as shown in Figure 14 - 9.

 FIGURE 14 - 8: Titles assigned to the chart

 FIGURE 14 - 9: Each chart area has its own

legend

Creating Charts ❘ 597

CH014.indd 597CH014.indd 597 9/6/10 5:39:17 PM9/6/10 5:39:17 PM

598 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Adding a Three - Dimensional Eff ect to the Chart

 In many cases, a three - dimensional effect may offer a trendier look to your charts. With the Chart
control, it ’ s very easy to change your chart to have this modern look.

 Launch the ChartArea Collection Editor and select
 ChartArea1 . At the top of the property grid, fi nd
the Area3DStyle property, and extend it to access
its sub - properties. Change the (Enable3D) property
to True , set PointDepth to 40 , PointGapDepth to
 10 and WallWidth to 0 .

 The fi rst chart area displays the data in a
three - dimensional fashion. When you build
and run your application, you can check it, as
shown in Figure 14 - 10.

 Now, your chart seems to give more information to
the user than its fi rst version, when only data points
could be seen. There are many other customization
opportunities for the chart. You can change
how chart axes look, or you can add labels and
annotations to the chart element. Of course, alignments, fonts, colors, and gradients can be adjusted
for each element. Later in this chapter, you will learn more about these customization options.

 Now, let ’ s turn to programmatically adding data to the chart.

 Adding Data to the Chart Programmatically

 By now, in the sample application, all data points have been set up manually. In real applications,
data is generated at run - time; series and data points are set up according to results of calculations
or reports.

 The Chart control supports two models to set up data points at run - time:

 You can use the appropriate chart properties to add data points one - by - one in a program.
This is the traditional imperative approach.

 You can bind a data source to the chart, and declare how series and data points should be
extracted from the data source. This approach is the declarative approach. You can easily
bind data coming from databases, LINQ expressions, or in - memory objects — without
having to program any cycle to create and set data points.

 This section provides a short overview of these approaches.

 Adding Data Points Programmatically

 The data you ’ ve added manually can also be created programmatically.

➤

➤

 FIGURE 14 - 10: Three - dimensional eff ect added

to the chart

CH014.indd 598CH014.indd 598 9/6/10 5:39:18 PM9/6/10 5:39:18 PM

 Start the Series Collection Editor to clear the data points you ’ ve added. Select the Revenue series.
Go to the Points property and click the ellipsis button to display the DataPoints Collection Editor.
Select all data points (click the fi rst DataPoint, and then click the last DataPoint while pressing the
Shift key), and click Remove. Repeat the same action for the Cost series.

 In the design surface, select the MainForm and click the Events button in the Properties window to
list the form events. Double - click on Load to create an event handler method to run when the form
is loaded. You ’ ll use this method to set up data points. Listing 14 - 1 shows the full source code of
 MainForm.c s (the unused using clauses have been removed).

 LISTING 14 - 1: MainForm.cs of ProcessInfoChart

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace ProcessInfoChart
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 var revnSeries = chart1.Series[“Revenue”];
 var costSeries = chart1.Series[“Cost”];
 for (int i = 0; i < 5; i++)
 {
 revnSeries.Points.Add(new DataPoint(i, i + 1));
 costSeries.Points.Add(new DataPoint(i, 5-i));
 }
 }
 }
}

 Code fi le [MainForm.cs] available for download at Wrox.com

 You can access a series through the Series property of the chart. You can then index either by the
series name or its position. In the sample, the name is used. The data points of the series can be
manipulated through the Points property. In the list, new DataPoint instances are added with
the XValue and YValues properties specifi ed in the constructor.

 When you build and run the application, you ’ ll see that the chart looks the same as shown in
Figure 14 - 10.

Creating Charts ❘ 599

CH014.indd 599CH014.indd 599 9/6/10 5:39:19 PM9/6/10 5:39:19 PM

600 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Binding a Data Source to the Chart

 A more natural (and simpler) method is to bind the chart to a data source. Let ’ s bind the chart to
the result of a LINQ expression that retrieves the top ten processes by means of consumed memory.
Add a new code fi le to the ProcessInfoChart project with name ProcessInfo.cs . Listing 14 - 2
shows the content you should copy into this fi le.

 LISTING 14 - 2: ProcessInfo.cs

using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

namespace ProcessInfoChart
{
 public class ProcessInfo
 {
 public string Name { get; set; }
 public long WorkingSet { get; set; }
 public long PeakWorkingSet { get; set; }
 }

 public class ProcessList
 {
 public static IEnumerable < ProcessInfo > GetTopWorkingSet(int topN)
 {
 return (from process in Process.GetProcesses()
 orderby process.WorkingSet64 descending
 select new ProcessInfo
 {
 Name = process.ProcessName,
 WorkingSet = process.WorkingSet64,
 PeakWorkingSet = process.PeakWorkingSet64
 }
).Take(topN);
 }
 }
}

 Code fi le [ProcessInfo.cs] available for download at Wrox.com

 One instance of the ProcessInfo class describes a data point in the chart. The ProcessList
static class encapsulates the GetTopWorkingSet method that returns a collection of data points
representing the processes.

 The next step is creating a data source with Visual Studio. Build the project so that later you can
select ProcessInfo as the type of data source object.

 Select chart1 in the design surface of MainForm and scroll down to the Data category in the
Properties window. Click the DataSource property. Click the arrow to the right of the property
value. In the drop - down list, click the Add Project Data Source link to start setting up a data source.

CH014.indd 600CH014.indd 600 9/6/10 5:39:20 PM9/6/10 5:39:20 PM

 When the Data Source Confi guration Wizard appears, choose the Object data source type and click
Next. Expand ProcessInfoChart . Mark the ProcessInfo class as shown in Figure 14 - 11.

 FIGURE 14 - 11: Selecting the data source object type

 Click Finish. The wizard generates the
 processInfoBindingSource object for you,
and sets it as the data source of the chart. Of
course, this object does not yet know the real
data, but knows the “ shape ” of the data that is
represented by the ProcessInfo type. In order
to display chart data, you must declare how to
extract series from the data source.

 Start the Series Collection Editor to set up data
source binding information for each series. Select
 Revenue and rename it by changing the Name
property to Working Set . Scroll down to the
DataSource category and set the XValueMember
property to Name , and set YValueMembers to
 WorkingSet . You can select these values from
the drop - down list, as shown in Figure 14 - 12.

 Change the Cost series name to Top Working Set . Set XValueMember to Name and YValueMembers
to PeakWorkingSet .

 The chart application contains false titles, so it ’ s time to fi x them. Start the Titles Collection editor and
change the (Text) properties of Title1 , Title2 , and Title3 to Process Information Charts , Top
10 Processes by Working Set , and Top 10 Processes by Peak Working Set , respectively.

 FIGURE 14 - 12: You can use drop - down list to select

value members

Creating Charts ❘ 601

CH014.indd 601CH014.indd 601 9/6/10 5:39:20 PM9/6/10 5:39:20 PM

602 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 At this point, the chart ’ s visual properties are set up. The only thing that remains is to bind the
data coming from the ProcessList.GetTopWorkingSet() method to the chart. It ’ s simple. In
the MainForm_Load event, you can set up this binding as shown in Listing 14 - 3.

 LISTING 14 - 3: MainForm.cs Modifi ed for Data Binding

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace ProcessInfoChart
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 processInfoBindingSource.DataSource = ProcessList.GetTopWorkingSet(10);
 }
 }
}

 Code fi le [MainForm.cs] available for download at Wrox.com

 Build and run the application to see the results. Figure 14 - 13 shows the chart with the two chart
areas showing process information.

 FIGURE 14 - 13: Chart showing process information

CH014.indd 602CH014.indd 602 9/6/10 5:39:21 PM9/6/10 5:39:21 PM

 When you see this chart, you ’ ll note a few issues. For example, only every second process name is
displayed, and chart areas have different sizes. Later in this chapter, you will make more changes
and customizations with charts, and will discover the answers for these issues.

 Adding Charts to WPF Applications

 Unfortunately, Microsoft did not package a Windows Presentation Foundation (WPF) chart control
with .NET Framework 4.0. However, that does not mean you must surrender using the Chart
control in WPF applications. Let ’ s create a simple WPF application using a Windows Forms chart.

 Start a new WPF Application project and name it WpfSimpleChart . Add a reference to the
 WindowsFormsIntegration assembly. The main windows of this application will host a Windows
Forms user control, so change the MainWindow.xaml fi le as shown in Listing 14 - 4.

 LISTING 14 - 4: MainWindow.xaml

 < Window x:Class=”WpfSimpleChart.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”350” Width=”525” Loaded=”Window_Loaded” >
 < DockPanel >
 < WindowsFormsHost HorizontalAlignment=”Stretch” Name=”ChartHost”
 VerticalAlignment=”Stretch” / >
 < /DockPanel >
 < /Window >

 Code fi le [MainWindow.xaml] available for download at Wrox.com

 The WindowsFormHost control named ChartHost will
embed the user control encapsulating the chart.
This user control will be assigned to the host
control in the Window_Loaded event.

 Create a new Windows Forms User Control and
name it SimpleChart . Drag a Chart control
from the Toolbox to the design surface of the
user control, and keep its default chart1 name.
Set the Dock property of chart1 to Fill , and
you ’ ll see the user control resembles the one
shown in Figure 14 - 14.

 You do not need to set any other properties
of the chart manually. Go to the code view of
 SimpleChart.cs and copy the initialization
code shown in Listing 14 - 5. FIGURE 14 - 14: Chart control at design time

Creating Charts ❘ 603

CH014.indd 603CH014.indd 603 9/6/10 5:39:21 PM9/6/10 5:39:21 PM

604 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 LISTING 14 - 5: SimpleChart.cs

using System.Drawing;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using System;

namespace WpfSimpleChart
{
 public partial class SimpleChart : UserControl
 {
 public SimpleChart()
 {
 InitializeComponent();
 SetupChart();
 }

 private void SetupChart()
 {
 var title = new Title(“This is a Windows Forms chart in WPF”);
 title.Font = new System.Drawing.Font(“Calibri”, 18F, FontStyle.Bold);
 chart1.Titles.Add(title);
 var datapoints = chart1.Series[0].Points;
 for (int i = 0; i < = 10; i++)
 datapoints.Add(new DataPoint(i,
 Math.Pow(Math.Abs(5-i), 2.5)));
 }
 }
}

 Code fi le [SimpleChart.cs] available for download at Wrox.com

 The initialization code sets up fi ve data points in the chart and adds a title. When you
instantiate SimpleChart , it will show up in the chart. The last step to allow this chart to be
displayed in a WPF window is to embed it into the ChartHost control. Listing 14 - 6 shows
you how easy it is.

 LISTING 14 - 6: MainWindow.xaml.cs

using System.Windows;

namespace WpfSimpleChart
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();

CH014.indd 604CH014.indd 604 9/6/10 5:39:22 PM9/6/10 5:39:22 PM

 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 ChartHost.Child = new SimpleChart();
 }
 }
}

 Code fi le [MainWindow.xaml.cs] available for download at Wrox.com

 Your chart is now hosted in the WPF MainWindow , and your application is ready to run.
Figure 14 - 15 shows that it works as expected.

 FIGURE 14 - 15: Chart hosted in a WPF window

 USING CHART CONTROLS

 Earlier in this chapter, you read an overview of chart creation, and you became familiar with a few
chart elements (such as chart areas, series, data points, titles, and so on). Now, let ’ s dive deeper into
the use of chart controls.

 Although the chart is hosted in a WPF window, it uses GDI+ technology to
render the chart. Right now, Microsoft does not ship a WPF chart with Visual
Studio 2010. When you need to use one, you can buy one from your preferred
UI control vendor or examine free WPF chart solutions.

Using Chart Controls ❘ 605

CH014.indd 605CH014.indd 605 9/6/10 5:39:23 PM9/6/10 5:39:23 PM

606 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 TABLE 14 - 1: Chart Elements

 ELEMENT DESCRIPTION

 Chart picture This is the entire image that is produced, and corresponds to the root Chart

class.

 Series This is a related group of data points. Each series has an associated chart

type. The number of series that a chart can display, as well as how it displays

the series, depends on the chart type you specify. This element corresponds

to the Series class.

 Chart area This is a rectangular area that is used to draw the series, labels, axes, grid

lines, tick marks, and so on. Depending on the chart type, multiple series can

be plotted in one chart area. This element corresponds to the ChartArea

class.

 Plot area This is the rectangular area in a chart area that is used to plot the chart

series and grid lines. Labels, tick marks, and axes titles are drawn outside

of the plotting area, but inside the chart area. The plot area can be set using

the InnerPlotPosition property of the hosting ChartArea .

 Title This is a title on the chart picture. You can add any number of titles to a chart

picture. This element corresponds to the Title class, an item in the chart ’ s

 Titles collection.

 Axis label This is a label on an axis. It is generated automatically if no custom labels are

supplied. This element corresponds to the Label class.

 Axis title This is the title of an axis, which describes what the axis represents.

 Legend This is a legend for the chart picture. There can be more than one legend in

a chart picture. This element corresponds to an item in the chart ’ s Legends

collection.

 Grid lines These are the horizontal and vertical grid lines, which usually occur in

conjunction with tick marks. This element corresponds to the Grid class.

 Tick marks These are marks on the axes, which usually occur in conjunction with grid

lines. This element corresponds to the TickMark class.

 Data label This is a label that describes a data point.

 Elements of a Chart

 A chart has many elements, each playing a specifi c role in rendering the fi nal view of the chart.
Table 14 - 1 describes various chart elements, as shown in Figure 14 - 16.

CH014.indd 606CH014.indd 606 9/6/10 5:39:41 PM9/6/10 5:39:41 PM

 The Chart Class

 The Chart class is a Windows Forms control class. When you intend to add charting functionality
to your applications, you must add one or more Chart controls to your forms, and set up their
properties. The Chart control has dozens of properties, many of which are the common Windows
Forms control properties (such as the ones in the Behavior, Design, and Layout categories), while
others infl uence the appearance of chart elements.

 The Chart class has a few properties that you can use to set up the data and the structure of the
chart, they can be found under the Chart and Data categories. Table 14 - 2 describes them.

Chart Picture

Data Labels

Legend

Grid Lines

Plot Area

Series

Marker

Titles

Axis Title

Axis Labels

Chart Areas

An Overview of Chart Elements

Alvin Simon

Chipmunk

Theodore

Alvin Simon

Axis Title Tick Marks

Chipmunk

Theodore

58
80

140
120
100
80
60
40
20

0

60

40

20

0
#

 o
f

 S
e

e
d

s
#

 o
f

 S
e

e
d

s

Acorn Nut

All

72

123
118 144

67
65 6156Historical

Current

 FIGURE 14 - 16: Overview of chart elements

 TABLE 14 - 2: Properties Defi ning the Structure and Data of a Chart

 PROPERTY DESCRIPTION

 Annotations You can add annotations to the chart or to the data points in the chart. The

chart control comes with 13 types of annotations, including lines, arrows, texts,

rectangles, borders, and many more.

 ChartAreas Each chart may contain one or more chart areas. A chart area is a rectangular

area where you can plot a specifi c chart type for one or more data series

belonging to a chart. Earlier in this chapter, Figure 14 - 6 showed a chart with

one chart area displaying the two data series of the chart. Figure 14 - 7 showed

how these series were assigned to separate chart areas.

continues

Using Chart Controls ❘ 607

CH014.indd 607CH014.indd 607 9/6/10 5:39:42 PM9/6/10 5:39:42 PM

608 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Figure 14 - 17 shows a simplifi ed Unifi ed Modeling Language (UML) class diagram of the entities
related to the Chart class. This fi gure helps you visualize the relations among the entities described
in Table 14 - 2.

 FIGURE 14 - 17: Class diagram of Chart - related entities

 PROPERTY DESCRIPTION

 Legends Each chart can have zero, one, or more legends that may belong either to the

chart, or to a specifi c chart area. Earlier in this chapter, Figure 14 - 8 showed a

single legend assigned with the chart. Figure 14 - 9 showed how this legend was

split into two, each associated with one chart area.

 Series Series are sets of data points from which the entire data content of the chart

is composed. One chart may have one or more series. Each series can

be assigned to exactly one chart area, and can be shown in one legend

or without a legend. The series also should be assigned to exactly one

chart area.

 Titles Titles are text decorations that can belong either to the chart, or to one of the

chart areas. You can add an unlimited number of titles to the chart, and you can

dock, align, and position them relatively to the chart or chart area to which they

belong.

 DataSource You can bind the chart to a data source, just like any other data - aware controls.

The DataSource property defi nes the source from which the chart obtains

its data.

TABLE 14-2 (continued)

CH014.indd 608CH014.indd 608 9/6/10 5:39:43 PM9/6/10 5:39:43 PM

 Chart Types

 The Chart control can display more than 30 types of charts. Some of them are general - purpose
chart types — like Column, Bar, and Area charts — but there are a few of them that have special
applications — such as Stock, Polar, or Radar charts. You can set the chart type separately for each
series, and one series has exactly one chart type.

 The ChartType property of a Series instance holds the chart type defi ning how the specifi c series
should be displayed. It gets its value from the SeriesChartType enumeration. One chart area may
contain one or more series, and each series within a chart area may use separate chart types.

 However, not all chart types are compatible with each other — they cannot be shown in the same
chart area. If you try to use incompatible chart types together, you will get the following error
messages:

 In design mode, the chart disappears and the following message is displayed in the chart
placeholder: “ Chart Preview is not available. An action that you have performed has caused
failure in Chart Preview. ”

 At run - time, an InvalidOperationException is raised with the following message:
 “ The chart area contains incompatible chart types. ”

 When you add data points to a series, each DataPoint instance may have exactly one X value
(defi ned by the XValue property) and one or more Y values (defi ned by the YValues property).
Earlier in this chapter, you saw samples that utilized only one Y value per data point, but there are
chart types (for example Range, Bubble, Candlestick, and Stock charts) that require more (two
or four) Y values.

 Series has a property named YValuesPerPoint with a default value of 1 . When you select the chart
type, this value will be automatically updated to the required number of Y values for the selected
chart type. When you declare a data point manually, you can set a comma - separated list of double
values in the YValues property of a DataPoint . If you set the values programmatically, YValues is
represented as a double array (double[] , in C#), so you can use an array to set this property.

 Series and their DataPoint instances have custom properties that vary with chart types. For
example, column and bar charts have a
 DrawStyle property defi ning how the column
or bar should be drawn (fl at, cylinder, emboss,
and so on).

 Let ’ s take a closer look at chart types, and how
you should set up data points depending on the
chart type used for a specifi c series.

 Column and Bar Charts

 The most frequently used charts are column
chart s representing each value as a column.
This is the default type for a series. Figure 14 - 18
shows a column chart with two series.

➤

➤

 FIGURE 14 - 18: Column chart example

Using Chart Controls ❘ 609

CH014.indd 609CH014.indd 609 9/6/10 5:39:43 PM9/6/10 5:39:43 PM

610 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 When you use more than one series in a column
chart, you can display them with a stacked
column chart . This kind of chart is very good
when you combine data values from sub - values
represented by separate series. For example,
when you have sales numbers for two or more
products represented by data series, the stacked
column chart can also display the sum of sales
numbers, as shown in Figure 14 - 19.

 Stacked column charts have a custom property
with the name StackedGroupName . You can
use this property to set which series should be
put in a common stack. Series having the same
 StackedGroupName are collected to form one stack. For example, when you have eight series, you
can form three stacks holding three, three, and two data points, respectively.

 Another option is to use a 100 percent stacked column chart. It works with the same logic as the
stacked column chart, but the sum of data points in one stack are normalized to 100 percent, and
data points are displayed as percentages. Figure 14 - 20 shows the same data as in Figure 14 - 19, but
with a 100 percent stacked chart.

 Bar chart s are very similar to column charts, but they permute the X and Y axes. Figure 14 - 21 shows
how the column chart in Figure 14 - 18 looks when you transform it to a bar chart.

 FIGURE 14 - 19: Stacked column chart example

 FIGURE 14 - 20: 100 percent stacked column chart

example

 FIGURE 14 - 21: Bar chart example

 Bar charts can also be stacked just as column charts. You can select a stacked bar chart and a 100
percent stacked bar chart as the chart type for your series.

CH014.indd 610CH014.indd 610 9/6/10 5:39:44 PM9/6/10 5:39:44 PM

 Line Charts

 Line charts are also very popular because they
can express trends, and also suggest how you
have interpolated values. A line chart simply
connects data points with straight lines, as
shown in Figure 14 - 22.

 In Figure 14 - 22 you have data points only with
integer X - coordinates from 1 to 8, but you can
easily interpolate Y values for non - existing data
points. For example, the Y value for X � 1.5 is
about 40, as you see from the chart, and it
is 37.5 when you calculate it.

 Another kind of line chart is called a spline
chart . This chart is similar to a line chart,
except that it connects the different data points
using splines instead of straight lines. Spline
charts are compatible with line charts, and that
means you can add line and spline charts to the
same chart area. Figure 14 - 23 shows an example
of merging a line and a spline chart.

 Spline charts are also good for visual
interpolation. Because, unlike line charts, they
do not have breaks at the data points; when you
look at a spline chart, you have a feeling that
you have lots of data points instead of merely a
few ones.

 Point Charts

 Point charts are very simple. They show data
points by drawing a visible marker having a
center point with (X, Y) coordinates coming
from the data point. When you use point charts
instead of line charts or column charts, they do
not provide you with the same “ visual value ” as
lines or columns, as shown in Figure 14 - 24.

 Point charts are more useful in situations when
your data has two orthogonal dimensions, and
so can be plotted as a set of points in a two -
 dimensional coordinate system. For example,
you can use a point chart to show how a group

 FIGURE 14 - 22: Line chart example

 FIGURE 14 - 23: A line chart and a spline chart in the

same chart area

 FIGURE 14 - 24: Point chart example

Using Chart Controls ❘ 611

CH014.indd 611CH014.indd 611 9/6/10 5:39:45 PM9/6/10 5:39:45 PM

612 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

of people solved two tasks. The X - axis shows the result of task #1, while the Y - axis refl ects the
result of task #2. Figure 14 - 25 shows a point chart demonstrating this scenario.

 FIGURE 14 - 25: Point chart with two - dimensional data points

 Area Charts

 An area chart graphically displays quantitative
data. It is based on the line chart. The
area between axis and line are commonly
emphasized with colors, textures, and hatchings.
Commonly, you use an area chart to compare
two or more quantities. Figure 14 - 26 shows an
example of an area chart with two series.

 You have two kinds of area charts: one based on
a line chart, and the other based on a spline chart
(which is named SplineArea). While putting
more series to a line chart generally does not
deteriorate the view of individual series, putting
more series on the same area chart can debase
the value of the chart. In Figure 14 - 26, Series #2 enshrouds a large portion of Series #1. You can use
transparent coloring to get rid of this situation. Figure 14 - 27 shows another view of the area chart
with a spline - based area and semi - transparent coloring.

 FIGURE 14 - 26: Area chart with two series

CH014.indd 612CH014.indd 612 9/6/10 5:39:45 PM9/6/10 5:39:45 PM

 Just as you can stack column and bar charts,
you can stack area charts. Figure 14 - 28 shows
a stacked area chart . You can also use
 100 percent stacked area chart s.

 Pie and Doughnut Charts

 A pie chart is a circular chart divided into
sectors, illustrating percentages. In a pie chart,
the arc length of each sector (and, consequently,
its central angle and area) is proportional to the
quantity it represents. The pie chart is perhaps
the most ubiquitous statistical chart in the
business world and in the mass media. Pie charts
can be an effective way of displaying information, in particular if the intent is to compare the size
of a slice with the whole pie, rather than comparing the slices among each other.

 When you display a pie chart, you generally
put only one series in a chart area. Although
you can put more series in a pie chart, the
 Chart control will render only the fi rst series.
Figure 14 - 29 shows a pie chart example. When
you display pie charts, the legend contains the
explanation for the data points, and not for
the series, as refl ected in Figure 14 - 29.

 Doughnut charts provide a very similar view to
pie charts. They have a hole in the pie, and thus
resemble a doughnut. Both pie and doughnut
charts can be spectacular in three - dimensional

 FIGURE 14 - 27: Area chart with semi - transparent coloring

 FIGURE 14 - 28: Stacked area chart example

 FIGURE 14 - 29: Pie chart example

Using Chart Controls ❘ 613

CH014.indd 613CH014.indd 613 9/6/10 5:39:46 PM9/6/10 5:39:46 PM

614 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

views. You can even put more emphasis on certain slices by rotating the chart, or by exploding the
related data point. Figure 14 - 30 shows a doughnut chart in a three - dimensional view.

 FIGURE 14 - 30: A three - dimensional doughnut chart example

 Range Charts

 As their name suggests, range chart s can display data points representing ranges (“ from ” and “ to ”
values). If you change a chart type to one of the range charts, the YValuePerPoints property of the
corresponding Series instance changes to 2. This property value indicates that you must provide
two numbers for the YValues properties of data points in the series.

 You can use four different types of range charts. You can use range column charts and range
bar chart s (as shown in Figure 14 - 31) that are very similar to column and bar charts, except that
columns and bars are not drawn from the zero point of the Y axis to the data point ’ s Y value, but
rather between the two YValues provided.

 You can also display range charts based on line charts (the name “ range chart ” covers this idea) or
spline charts (as shown in Figure 14 - 32), which are called spline range chart s.

 FIGURE 14 - 32: Spline range chart example FIGURE 14 - 31: Range bar chart example

CH014.indd 614CH014.indd 614 9/6/10 5:39:47 PM9/6/10 5:39:47 PM

 Just like area charts, using multiple series with range charts and spline range charts can result in
series covering each other, so you must be careful with them, or use semi - transparent coloring.

 Special Chart Types

 The Chart control implements a few chart types for special purposes (for example, statistical and
fi nancial scenarios). Let ’ s take a look at a few of them.

 Step line chart s are special forms of line charts
that use horizontal and vertical lines to connect
data points, resulting in a step - like progression.
Figure 14 - 33 shows an example of a step line
chart.

 A candlestick chart is a style of bar chart
used primarily to describe, over time, price
movements of a security (fi nance), derivative, or
currency. It is a combination of a line chart and
a bar chart, in that each bar represents the range
of price movement over a given time interval. It
is most often used in technical analysis of equity
and currency price patterns.

 The candlestick chart type uses four Y values
(high, low, open, and close values) related
to stock information. The size of the line is
determined by the high and low values, while
the size of the bar is determined by the open
and close values. The open and close bars are
displayed using different colors. The color used
depends on whether the stock ’ s price has gone
up or down. Figure 14 - 34 shows an example
of a candlestick chart.

 When specifying Y values for data points, be
careful, because you can specify inconsistent
Y values for a data point. For example, in
Figure 14 - 34 the data point with X value of 4
has lower open and close values than the low
value, and, obviously, it cannot be so in reality.

 A candlestick chart is actually a special form of
a stock chart . A stock chart uses the same four
Y values (high, low, open and close), but the
markers for open and close values can be lines,
triangles, or candlestick bars. Figure 14 - 35
shows a stock chart with data points customized
so that you can see all available styles for
markers.

 FIGURE 14 - 33: Step line chart example

 FIGURE 14 - 34: Candlestick chart example

 FIGURE 14 - 35: Stock chart example

Using Chart Controls ❘ 615

CH014.indd 615CH014.indd 615 9/6/10 5:39:47 PM9/6/10 5:39:47 PM

616 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 You can customize the stock chart so that you
can enable or disable open and closing price
values. The data point with X value of 6 is
displayed with a disabled close value.

 The polar chart type is a circular graph on
which data points are displayed using the angle,
and the distance from the center point —
according to the polar coordinate system. The
X axis is located on the boundaries of the circle,
and the Y axis connects the center of the circle
with the X axis. Figure 14 - 36 shows an example
of this chart type.

 The radar chart is used to display multivariate data
in the form of a two - dimensional chart of three or
more quantitative variables represented on axes
starting from the same point. The relative position
and angle of the axes is typically uninformative.
It is also known as web chart , spider chart , and
 star chart . Unlike most other chart types, the radar
chart type uses the circumference of the chart as the
X axis. Figure 14 - 37 shows you an example of this
chart type.

 More About Custom Properties

 Most chart types have a few custom properties
you can use to customize chart rendering.
When you set the ChartType property
of a Series instance, you ’ ll fi nd a
 CustomProperties category that holds special
properties interpreted in the context of the
selected chart type. In Figure 14 - 38 you can see
the custom properties of a column chart (on the
left) and a stock chart (on the right) side by side.

 If a custom property is applicable to both the
chart ’ s Series and DataPoint objects, any
custom property that is set for a series is applied
to all data points contained within that series.
Data points belonging to the series inherit these
custom properties, but you can change them on
a data - point basis. Custom properties that apply to DataPoint objects have a higher priority than
those that apply to Series objects. If the same custom property is set for a Series object and one
of its DataPoint objects, the setting for the DataPoint object takes precedence.

 For example, this feature was used when creating Figure 14 - 35, where a few data points have
different rendering style from the others.

 FIGURE 14 - 36: Polar chart example

 FIGURE 14 - 37: Radar chart example

 FIGURE 14 - 38: Custom properties of a column chart

and a stock chart

CH014.indd 616CH014.indd 616 9/6/10 5:39:48 PM9/6/10 5:39:48 PM

 Chart Coordinate System

 The Chart control uses a coordinate system to position titles, legends, annotations, and chart areas
in the chart picture. To do this, it uses each element ’ s Position property. The chart coordinate
system has the following characteristics:

 The chart coordinate system has its origin (0, 0) in the upper - left corner of the chart
picture.

 In the (X, Y) coordinates, the X value points to the horizontal axis, and the Y value points
to the vertical axis.

 The unit of measure is a percentage of the chart picture ’ s width and height. Coordinate values must
be between 0 and 100. Relative coordinates ensure that objects remain relative to one another when
the chart is resized.

 A chart area positions each of its elements using a similar coordinate system. Coordinates (0, 0)
represent the upper - left corner of the chart area, and coordinates (100, 100) represent the lower -
 right corner of the chart area. When a legend is docked to a chart area, it is positioned using the
chart area ’ s coordinate system.

 Understanding how the coordinate system works is especially useful when you want to
implement custom drawing or user interactions (for example, mouse hit testing). To perform
custom drawing using GDI+ functions in your code, you must convert the relative coordinates
to absolute pixel coordinates. The ChartGraphics class contains methods for absolute - to -
relative and relative - to - absolute conversion of PointF , RectangleF , and SizeF structures.
To demonstrate these concepts, you can change the WpfSimpleChart sample program to add
custom drawings.

 Open the WpfSimpleChart project, and then open the SimpleChart.cs user control in design view.
In the Properties window, add an event handler method for the PostPaint event, and write the
method body as shown in Listing 14 - 7.

 LISTING 14 - 7: SimpleChart.cs (chart1_PostPaint Method Added)

using System.Drawing;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using System;

namespace WpfSimpleChart
{
 public partial class SimpleChart : UserControl

➤

➤

 There are many properties and custom properties you can use to tailor chart
types to your needs. You can read more about them in the MSDN documentation
of the Chart control at http://msdn.microsoft.com/en-us/library/
dd489233(VS.100).aspx .

Using Chart Controls ❘ 617

continues

CH014.indd 617CH014.indd 617 9/6/10 5:39:49 PM9/6/10 5:39:49 PM

618 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

LISTING 14-7 (continued)

 {
 public SimpleChart()
 {
 InitializeComponent();
 SetupChart();
 }

 private void SetupChart()
 {
 var title = new Title(“This is a Windows Forms chart in WPF”);
 title.Font = new System.Drawing.Font(“Calibri”, 18F, FontStyle.Bold);
 chart1.Titles.Add(title);
 var datapoints = chart1.Series[0].Points;
 for (int i = 0; i < = 10; i++)
 datapoints.Add(new DataPoint(i,
 Math.Pow(Math.Abs(5-i), 2.5)));
 }

 private void chart1_PostPaint(object sender, ChartPaintEventArgs e)
 {
 // --- Uncomment this code to see how custom paint works
 if (e.ChartElement is ChartArea)
 {
 var chartArea = e.ChartElement as ChartArea;
 var areaRect = new RectangleF(10.0F, 10.0F, 80.0F, 80.0F);
 var absAreaRect = e.ChartGraphics.GetAbsoluteRectangle(areaRect);
 var rect = new Rectangle((int)absAreaRect.X, (int)absAreaRect.Y,
 (int)absAreaRect.Width, (int)absAreaRect.Height);
 e.ChartGraphics.Graphics.DrawRectangle(System.Drawing.Pens.Red, rect);
 }
 else if (e.ChartElement is Series)
 {
 var series = e.ChartElement as Series;
 foreach (DataPoint point in series.Points)
 {
 var position = new PointF();
 position.X = (float)e.ChartGraphics.GetPositionFromAxis(
 “ChartArea1”, AxisName.X, point.XValue);
 position.Y = (float)e.ChartGraphics.GetPositionFromAxis(
 “ChartArea1”, AxisName.Y, point.YValues[0]);
 position = e.ChartGraphics.GetAbsolutePoint(position);
 for (int rad = 5; rad < = 35; rad += 10)
 {
 e.ChartGraphics.Graphics.DrawEllipse(System.Drawing.Pens.Purple,
 position.X - rad / 2, position.Y - rad / 2, rad, rad);
 }
 }
 }
 }
 }
}

 Code fi le [SimpleChart.cs] available for download at Wrox.com

CH014.indd 618CH014.indd 618 9/6/10 5:39:56 PM9/6/10 5:39:56 PM

 This code draws a bounding rectangle around
the chart area defi ned by the areaRect
rectangle and leaves 10 percent padding within
the chart area. The GetAbsoluteRectangle
method of the ChartGraphics class is used to
translate relative coordinates to absolute ones
stored in absAreaRect .

 The cycle that iterates through data points
draws concentric circles around data points.
This cycle uses the GetPositionFromAxis
method to translate the X value and Y value
of a data point to absolute coordinates.

 When you build and run the application,
you can see the result of custom drawing, as shown in Figure 14 - 39.

 Three - Dimensional Charts

 As you have seen, the Chart control supports displaying three - dimensional charts. The ChartArea
class has a property named Area3DStyle with the type of ChartArea3DStyle . This is the property
you can use to set up and customize how the specifi c chart area should display a three - dimensional
chart. Figure 14 - 40 shows how the properties in ChartArea.Area3DStyle correspond to the
appearance of the three - dimensional chart area.

 FIGURE 14 - 39: Custom drawings

Using Chart Controls ❘ 619

IsClustered

InclinationWallWidth

20

Rotation

PointDepth

PointGapDepth

0

0

2

4

6

 FIGURE 14 - 40: Three - dimensional style properties

CH014.indd 619CH014.indd 619 9/6/10 5:39:57 PM9/6/10 5:39:57 PM

620 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Table 14 - 3 summarizes the properties you can use to customize the three - dimensional view.

 PROPERTY DESCRIPTION

 Enable3D Gets or sets a fl ag that toggles the three - dimensional rendering on and off for a

chart area.

 Inclination Gets or sets the angle of rotation around the horizontal axes for three -

 dimensional chart areas.

 IsClustered Gets or sets a fl ag that determines whether the data series for a bar or column

chart are clustered (that is, displayed along distinct rows). For example, in Figure

14 - 40, you can see three series. Two of them use a column chart, the third one

uses a spline area chart. The IsClustered fl ag is set to true , and so the two

column charts share the same cluster. Should you set this fl ag to false , you

would see the chart as shown in Figure 14 - 41.

 IsRightAngleAxes Gets or sets a fl ag that determines whether a chart area is displayed using an

isometric projection. Isometric views are not actually three - dimensional, because

the displayed angles of rotation may not match the actual angles of rotation

around the vertical and horizontal axes. The actual angles are controlled using

the Rotation and Inclination properties, respectively.

 LightStyle Gets or sets the style of lighting for a three - dimensional chart area. Use

the LightStyle.None value when you want no lighting to be applied.

 LightStyle.Simplistic provides you with a simple lightening where the hue

of all chart area elements is fi xed. When LightStyle.Realistic is applied, the

hue of all chart area elements changes, depending on the amount of rotation.

 Perspective Gets or sets the percent of perspective for a three - dimensional chart area. The

allowable range is 0 to 100 percent, and the default is 0 percent. If you set the

 Perspective property, the IsRightAngleAxes property will be automatically

set to false , because these properties are mutually exclusive.

 PointDepth Gets or sets the depth of data points displayed in a three - dimensional chart

area. The PointDepth property can be applied to the depth of bar, column,

line, pie, and spline chart data points only. If you set this property for other chart

types (for example, bubble and point charts) that cannot have their point depths

 “ stretched, ” it will reserve extra space for the data points, but will not increase

their depths.

 PointGapDepth Gets or sets the distance between series rows in a three - dimensional chart area.

The unit of measurement is expressed as a percentage of the distance between

data points in one row.

 Rotation Gets or sets the angle of rotation around the vertical axes for three - dimensional

chart areas.

 WallWidth Gets or sets the width of the walls displayed in a three - dimensional chart area.

The allowable range is 0 to 30 pixels.

TABLE 14-3: ChartArea3DStyle Properties

CH014.indd 620CH014.indd 620 9/6/10 5:39:58 PM9/6/10 5:39:58 PM

 The three - dimensional chart coordinate system has the added
Z coordinate (X, Y, Z). It is also a percentage of the chart area ’ s
depth. The chart area ’ s back wall has a Z value of 0, and the
front end of the chart area has a Z value of 100.

 Appearance of Chart Elements

 In the Chart control, you can customize the appearance of all chart
elements using their appearance properties. Each chart element
contains a rich set of appearance properties, which enables you to
control the Chart control ’ s appearance to very fi ne granularities.
The best way to know what you can control in an element is to look
into the Appearance category in the Properties window. Table 14 - 4
describes the properties that can be used for most line - type elements.

 FIGURE 14 - 41: Three - dimensional

chart rendered with IsClustered

set to false

 PROPERTY DESCRIPTION

 LineColor , BorderColor Gets or sets the line color of a line (border).

 LineDashStyle ,

 BorderDashStyle

 Gets or sets the line style of a line (border).

 LineWidth , BorderWidth Gets or sets the line (border) width.

 StartCap Gets or sets a style for the cap at the start of a line.

 EndCap Gets or sets a style for the cap at the end of the line.

 ShadowColor Gets or sets the color of a line ’ s shadow.

 ShadowOffset Gets or sets the size of a line ’ s shadow.

 PROPERTY DESCRIPTION

 BackGradientStyle Gets or sets the background gradient style.

 BackHatchStyle Gets or sets the background hatching style.

 BackImage Gets or sets the background image.

 BackImageAlignment Gets or sets the alignment of the background image, which is

used with the Unscaled drawing mode.

TABLE 14-4: Properties Infl uencing the Appearance of Line-Type Elements

TABLE 14-5: Properties Determining the Appearance of Line-Type Elements

 Table 14 - 5 summarizes the properties that can be used with surfaces, including data points,
markers, and annotations. Of course, if surfaces have lines or borders, they also have properties
shown in Table 14 - 4.

continues

Using Chart Controls ❘ 621

CH014.indd 621CH014.indd 621 9/6/10 5:39:58 PM9/6/10 5:39:58 PM

622 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 There are many other properties determining the appearance of chart elements. Most of them are
refreshed in the design view as soon as you set or change them. Sometimes, the easiest way to fi nd
out what they do is to try them in design mode. If you are not sure what they are for, position to the
specifi c property in the Properties window and press F1 to obtain the help for them.

 Instead of setting series and data point colors individually, you can use Palette objects that defi ne
a set of colors. The Chart.Palette property defi nes a set of default colors to use for series and
data points. The Series.Palette property likewise defi nes a set of default colors to use for its data
points. Use these properties to give your series and data points a specifi c look. To specify a custom
palette for the Chart control, use the Chart.PaletteCustomColors property. This property takes
precedence over Chart.Palette . Likewise, to specify a custom palette for a series, use the Series
.PaletteCustomColors property.

 The Chart control can smooth the sharp color gradients by using anti - aliasing. This makes the chart
image much more pleasing to the viewer ’ s eyes. To do this, set the Chart.AntiAliasing property
to AntiAliasingStyles.Text , AntiAliasingStyles.Graphics , or AntiAliasingStyles.All .

 PROPERTY DESCRIPTION

 BackImageTransparentColor Gets or sets a color that will be replaced with a transparent

color when the background image is drawn.

 BackImageWrapMode Gets or sets the drawing mode of the background image.

 BackSecondaryColor Gets or sets the secondary background color. This property is

used when the background uses a gradient style.

TABLE 14-5 (continued)

 You can control text elements with additional properties summarized in Table 14 - 6.

 PROPERTY DESCRIPTION

 Font Gets or sets the font for the text.

 ForeColor Gets or sets the color of the text element.

 ShadowColor Gets or sets the color of the text shadow. This property can be set to any

valid ARGB (alpha, red, green, blue) value. The alpha value can be used to

achieve a “ realistic ” shadowing eff ect.

 ShadowOffset Gets or sets the shadow off set, in pixels, of the text.

 TextOrientation Gets or sets the orientation of the text.

 TextStyle Gets or sets the style of the text. The fi ve possible styles are TextStyle

.Default , TextStyle.Shadow , TextStyle.Emboss , TextStyle.Embed ,

and TextStyle.Frame .

TABLE 14-6: Properties Controlling Text Element Appearance

CH014.indd 622CH014.indd 622 9/6/10 5:39:59 PM9/6/10 5:39:59 PM

When shadows are displayed for any chart element, you can also smooth the shadows by setting the
 Chart.IsSoftShadows property to True .

 Figure 14 - 42 shows the effect of anti - aliasing with a zoom factor of two.

 FIGURE 14 - 42: Using anti-aliasing with text and graphics

 The top part of the fi gure turns all antialiasing options off, while the bottom part turns them on.

 Axes and Related Chart Elements

 You can customize the appearance and behavior of axes belonging to your chart. A ChartArea
instance contains a property called Axes that is an array of Axis . The defi nition of Axes suggests
that you can read and write this property, but you should use it as read - only. You can index the
element of Axes with the AxisName enumeration, which has the values summarized in Table 14 - 7.

 VALUE DESCRIPTION

 POSITION FOR BAR AND STACKED

BAR CHARTS OTHER CHARTS

 X Primary X - axis Left vertical axis Bottom horizontal axis

 Y Primary Y - axis Bottom horizontal axis Left vertical axis

 X1 Secondary X - axis Right vertical axis Top horizontal axis

 Y1 Secondary Y - axis Top horizontal axis Right vertical axis

TABLE 14-7: Values of the AxisName Enumeration

Using Chart Controls ❘ 623

CH014.indd 623CH014.indd 623 9/6/10 5:39:59 PM9/6/10 5:39:59 PM

624 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 There are a few charts (polar, pie, doughnut, and radar) where polar - like axes are used. Of course,
their axis positions are different than those indicated in Table 14 - 6.

 An Axis can be customized with dozens of properties. Table 14 - 8 describes the most frequently
used ones.

 PROPERTY DESCRIPTION

 ArrowStyle Gets or sets the arrow style of a two - dimensional axis. This style is

not applied to three - dimensional chart areas. The possible styles

are defi ned with the values of the AxisArrowStyle enumeration

(None , Triangle , SharpTriangle , Lines).

 InterlacedColor Gets or sets the color of interlaced strip lines.

 IsInterlaced Gets or sets a fl ag that determines if interlaced strip lines are

displayed for an axis.

 StripLines Gets a StripLinesCollection object that holds the strip lines

for an axis. Strip lines are used to draw rectangular strips across a

 ChartArea object, and are always drawn across the entire area.

 MajorGrid Gets or sets a Grid object used to set the major grid line properties

for an axis. Major grid lines are always drawn in conjunction with a

data point. That is, they will occur at the same point along an axis

as a data point, for categorical axis tick marks. For value axes, major

grid lines by default are drawn wherever labels occur.

 MajorTickMark Gets or sets a TickMark object used to set the major tick mark

properties of an axis. Major tick marks are always drawn in

conjunction with a data point. Categorical axis tick marks will occur

at the same point along an axis as a data point. For value axes,

major tick marks are drawn by default wherever labels occur.

 MinorGrid Gets or sets a Grid object used to specify the minor grid line

attributes of an axis. Minor grid lines are drawn in between the

major grid lines.

 MinorTickMark Gets or sets a TickMark object used to set the minor tick mark

properties of an axis.

 Interval Gets or sets the interval of an axis. This property determines how

often the labels, major tick marks, and grid lines associated with

the axis are drawn.

 IntervalAutoMode Gets or sets a fl ag that determines if a fi xed number of intervals

is used on the axis, or if the number of intervals depends on the

axis size. You can use the values of the IntervalAutoMode

enumeration (FixedCount , VariableCount).

TABLE 14-8: Axis Properties

CH014.indd 624CH014.indd 624 9/6/10 5:40:00 PM9/6/10 5:40:00 PM

 PROPERTY DESCRIPTION

 IntervalOffset Gets or sets the interval off set of an axis. This value is used as

the interval off set of the labels of an axis, as well as the major tick

marks and grid lines associated with the axis.

 IntervalOffsetType This property determines the interval off set type of an axis, and is

used for the interval off set type of the labels, major tick marks, or

major grid lines of an axis.

 IntervalType This property determines the interval type of an axis, and is used

for the interval type of the labels, major tick marks, or major grid

lines of an axis.

 CustomLabels Gets a CustomLabelsCollection object used to store

 CustomLabel objects.

 IsLabelAutoFit Gets or sets a fl ag that determines whether axis labels are

automatically fi tted.

 LabelAutoFitMinFontSize Gets or sets the minimum font size that can be used by the label

auto - fi tting algorithm.

 LabelAutoFitMaxFontSize Gets or sets the maximum font size that can be used by the label

auto - fi tting algorithm.

 LabelAutoFitStyle Gets or sets the allowable label changes that can be made to

enable the label to be fi t along an axis.

 LabelStyle Specifi es the style, formatting, and so forth, of axis labels.

 If the IsLabelAutoFit property is true , the font size, font angle,

and the use of off set labels are determined automatically. If you set

any one of the LabelStyle.Font.Size , Angle , or IsStaggered

properties, the IsLabelAutoFit property will be set to false .

 MaximumAutoSize Gets or sets the maximum size of the axis, measured as a percentage

of the chart area. This value is used by the automatic layout algorithm.

 Enabled

 Gets or sets a value that indicates whether an axis is enabled.

 If an axis is not enabled, the axis, along with its attributes (tick

marks, strip lines, labels, and so forth), will not be displayed. If an

axis is enabled, the axis, along with all its attributes (tick marks,

strip lines, labels, and so forth), will be displayed, regardless of

whether or not it is being used to plot a Series .

 If a value of Auto is used, an axis may or may not be displayed,

depending on whether it is being used to plot a Series . The axes

that are used to plot data are determined by the XAxisType and

 YAxisType property settings.

continues

Using Chart Controls ❘ 625

CH014.indd 625CH014.indd 625 9/6/10 5:40:01 PM9/6/10 5:40:01 PM

626 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 PROPERTY DESCRIPTION

 Crossing Setting this property for a primary axis will determine where

the other primary axis crosses it, and, similarly, setting it for a

secondary axis will determine where the other secondary axis

crosses it. For example, setting the Crossing property of the

primary X - axis determines where the primary Y - axis will cross it.

 IsLogarithmic Gets or sets a fl ag that indicates whether the axis is logarithmic.

Zeros or negative data values are not allowed on logarithmic charts.

 IsMarginVisible Gets or sets a fl ag that determines whether to add a margin to the axis.

 IsReversed Gets or sets a fl ag that indicates whether the axis is reversed. If set

to reversed, the values on the axis are in reversed sort order, and

the direction of values on the axis is fl ipped.

 IsStartedFromZero Gets or sets a fl ag that indicates whether the minimum value of

the axis will be automatically set to zero if all data point values are

positive. If there are negative data point values, the minimum value

of the data points will be used.

 LogarithmBase Gets or sets a value for the logarithm base for the logarithmic axis.

 Minimum Gets or sets the minimum value of an axis. Note that, if you set this

value explicitly, the X - values of data elements must be taken into

account. If all data points have X - values of zero, the Chart control

will assume the fi rst data point occurs at zero. Also, if the Minimum

value is explicitly set, the IsStartedFromZero property will be

ignored. The Minimum value must be less than the Maximum value.

 Maximum Gets or sets the maximum value of an axis.

 ScaleBreakStyle Gets or sets the axis scale break style. Scale breaks are intentional

discontinuities on the Y - axis that are most often used to redistribute

the data points in a series on a chart. This feature improves

readability when there are large diff erences between the high and

low values of the data in one series being plotted. Scale breaks are

not drawn for diff erences between data in multiple series.

 TextOrientation Gets or sets the orientation of the text in the axis title. This property

takes its value from the TextOrientation enumeration (Auto ,

 Horizontal , Rotated90 , Rotated270 , Stacked).

 Title Gets or sets the title of the axis.

 TitleAlignment Gets or sets the alignment of an axis title. This property takes its value

from the StringAlignment enumeration (Near , Center , Far).

 TitleFont Gets or sets the title font properties of an axis.

 TitleForeColor Gets or sets the text color of an Axis object title. You can use any

valid ARGB (alpha, red, green, blue) color.

TABLE 14-8 (continued)

CH014.indd 626CH014.indd 626 9/6/10 5:40:01 PM9/6/10 5:40:01 PM

 Most properties can be used very easily. When you change their values, the design surface refreshes
immediately, and so you can check the effect of changes. However, there are a few properties that
need further explanation.

 Strip Lines

 Strip lines are used to draw rectangular strips across a ChartArea object, and are always drawn
across the entire area. You can draw unlimited numbers of strip lines in a chart area. Listing 14 - 8
shows an example of setting up strip lines.

 LISTING 14 - 8: Windows Forms Code Setting Up Strip Lines

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using System.Drawing;

namespace StripLinesSample
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // --- Set up data points
 var series = chart1.Series[0];
 series.Color = Color.Red;
 series.BorderColor = Color.DimGray;
 series.BorderWidth = 2;
 for (int i = 0; i < 6; i++)
 {
 series.Points.Add(new DataPoint(10 * i + 10, 5 * i + 5));
 }

 // --- Set up X-axis
 var xAxis = chart1.ChartAreas[0].Axes[(int)AxisName.X];
 xAxis.MinorGrid.Enabled = true;
 xAxis.MinorGrid.Interval = 5;
 xAxis.MinorTickMark.Enabled = true;
 xAxis.MinorTickMark.Interval = 5;

 // --- Set up strip line #1
 var stripLine1 = new StripLine();
 stripLine1.BackColor = Color.LightSalmon;
 stripLine1.Interval = 10;
 stripLine1.IntervalOffset = 6;
 stripLine1.StripWidth = 3;
 stripLine1.Text = “#1”;

continues

Using Chart Controls ❘ 627

CH014.indd 627CH014.indd 627 9/6/10 5:40:01 PM9/6/10 5:40:01 PM

628 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

LISTING 14-8 (continued)

 stripLine1.TextOrientation = TextOrientation.Horizontal;

 // --- Set up strip line #2
 var stripLine2 = new StripLine();
 stripLine2.BackColor = Color.LightSteelBlue;
 stripLine2.Interval = 10;
 stripLine2.IntervalOffset = 1;
 stripLine2.StripWidth = 3;
 stripLine2.Text = “#2”;

 xAxis.StripLines.Add(stripLine1);
 xAxis.StripLines.Add(stripLine2);
 }
 }
}

 Code fi le [Form1.cs] available for download at Wrox.com

 This listing demonstrates how to set up axis and strip line properties. The Form1_Load event
handler method starts with setting up the series colors, and creates six data points. Then it obtains a
reference for the primary X - axis with the following variable declaration:

var xAxis = chart1.ChartAreas[0].Axes[(int)AxisName.X];

 With setting up MinorGrid and MinorTickMark properties, a secondary gridline is added to the
X - axis. You can recognize the minor grid lines shown in Figure 14 - 43.

 FIGURE 14 - 43: Grid lines and strip lines

CH014.indd 628CH014.indd 628 9/6/10 5:40:02 PM9/6/10 5:40:02 PM

 The sample sets up two strip lines that are also shown in Figure 14 - 43. In the code, a few properties
are used to set up the characteristics of strip lines. BackColor defi nes their color. Interval sets the
frequency the strip lines are drawn along the axis. IntervalOffset sets the position of the fi rst
strip line; StripWidth defi nes the width of strip line to be drawn. You can set a Text for the strip
line that is shown near to the secondary X - axis at the top of the plot area.

 Custom Axis Labels

 Axis labels are automatically created when you set up data points, they are coming from either the
 XValue property of the data point, or according to the XValueMember binding property specifi ed for
the series.

 You can add custom labels to any axis that can substitute the default labels, or can be additions.
The CustomLabels property of an Axis instance holds CustomLabel objects that describe how a
custom axis label should be displayed.

 Custom labels are displayed in rows that can be indexed from 0 to 10. This index can be accessed through
the RowIndex property. Index value 0 is the label closest to the axis, while value 10 signs the farthest
label row. When you add any custom label in row 0, the default labels are not displayed. You can also set
 FromPosition and ToPosition values to defi ne where to put the label on the specifi ed axis.

 Listing 14 - 9 shows a small application ’ s code that changes the default custom labels and sets up a
few additional ones.

 LISTING 14 - 9: Adding Custom Labels to an Axis

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace CustomLabelSample
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // --- Obtain X-axis
 var xAxis = chart1.ChartAreas[0].Axes[(int)AxisName.X];

 // --- Set up data points
 var series = chart1.Series[0];
 for (int i = 0; i < 6; i++)
 {
 series.Points.Add(new DataPoint(10 * i + 10, 5 * i + 5));
 // --- Custom label for data points
 var label = new CustomLabel(10*i, 10*i + 20, “#” + i, 0,

continues

Using Chart Controls ❘ 629

CH014.indd 629CH014.indd 629 9/6/10 5:40:02 PM9/6/10 5:40:02 PM

630 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

LISTING 14-9 (continued)

 LabelMarkStyle.None);
 xAxis.CustomLabels.Add(label);
 }

 // --- Further custom labels
 var lowerLabel = new CustomLabel(0, 30, “Lower part”, 1,
 LabelMarkStyle.LineSideMark);
 lowerLabel.ForeColor = Color.Red;
 xAxis.CustomLabels.Add(lowerLabel);

 var upperLabel = new CustomLabel(30, 70, “Upper part”, 1,
 LabelMarkStyle.LineSideMark);
 upperLabel.ForeColor = Color.Green;
 xAxis.CustomLabels.Add(upperLabel);

 var domainLabel = new CustomLabel(0, 70, “Entire domain”, 3,
 LabelMarkStyle.None);
 domainLabel.ForeColor = Color.Blue;
 xAxis.CustomLabels.Add(domainLabel);
 }
 }
}

 Code fi le [Form1.cs] available for download at Wrox.com

 The CustomLabel constructor takes
fi ve arguments. The fi rst two set the
 FromPosition and ToPosition values,
and the third specifi es the text of the label.
The fourth parameter sets the RowIndex of
the label, while the fi fth defi nes how label
marks should be drawn. Figure 14 - 44
shows the chart with the specifi ed
custom labels.

 You can see from Listing 14 - 9 that, in the
cycle creating the data points, all default
labels are changed with custom ones. When
you want to replace default labels, you should
add custom labels with RowIndex 0.

 Data Points

 You can add a lot of customizations to your data points. You can even set each data point in your
chart to have a different style. Customization is much more than just setting colors, borders, fonts,
and styles. Listing 14 - 10 shows you the code of a simple application that decorates four data points
with different adornments.

 FIGURE 14 - 44: Custom labels

CH014.indd 630CH014.indd 630 9/6/10 5:40:03 PM9/6/10 5:40:03 PM

 LISTING 14 - 10: Data Point Customization

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace DataPointSample
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 var series = chart1.Series[0];

 var dp1 = new DataPoint(0.0, 15.0);
 dp1.BorderColor = Color.Black;
 dp1.BorderWidth = 3;
 dp1.Color = Color.LightGreen;
 series.Points.Add(dp1);

 var dp2 = new DataPoint(1.0, 10.0);
 dp2.Color = Color.Red;
 dp2.CustomProperties = “DrawingStyle=Cylinder”;
 dp2.MarkerStyle = MarkerStyle.Diamond;
 dp2.MarkerSize = 20;
 dp2.MarkerColor = Color.PaleGoldenrod;
 dp2.MarkerBorderColor = Color.Black;
 series.Points.Add(dp2);

 var dp3 = new DataPoint(2.0, 20.0);
 dp3.BackHatchStyle = ChartHatchStyle.DiagonalBrick;
 dp3.BackSecondaryColor = Color.DarkBlue;
 dp3.AxisLabel = “Pos: #VALX”;
 series.Points.Add(dp3);

 var dp4 = new DataPoint(3.0, 18.0);
 dp4.CustomProperties = “DrawingStyle=Wedge”;
 dp4.Font = new Font(“Calibri”, 18F);
 dp4.Label = “[#VALX, #VAL]”;
 series.Points.Add(dp4);
 }
 }
}

 Code fi le [Form1.cs] available for download at Wrox.com

Using Chart Controls ❘ 631

CH014.indd 631CH014.indd 631 9/6/10 5:40:04 PM9/6/10 5:40:04 PM

632 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Figure 14 - 45 shows how the customized data points are displayed in a bar chart.

 FIGURE 14 - 45: Customized data points

 The code adds four data points (dp1 , dp2 , dp3 , and dp4) to the single series of the chart. The dp1
point is customized so that only the border and the bar ’ s color are changed. The second data point
(dp2) changes its drawing style by setting the DrawingStyle custom property to the value
 Cylinder , and it also adds a diamond - shape marker.

 The label of a data point can be simply customized by changing the AxisLabel property as dp3
does. The label can use tokens that are replaced by their values at run - time. The #VALX token represents
the XValue of the data point. You can see in Figure 14 - 45 that dp3 has an axis label (Pos: 2) with a
different format than the other data points. When you edit the AxisLabel property, it provides you a
keyword editor (shown in Figure 14 - 46) that helps you with inserting these special tokens.

 FIGURE 14 - 46: Keyword editor

CH014.indd 632CH014.indd 632 9/6/10 5:40:04 PM9/6/10 5:40:04 PM

 The fourth data point adds a custom label to the data point. The Label property can use the same
tokens as used for the AxisLabel property.

 ADVANCED CHART MANIPULATION

 By now, you ’ ve learned to create great charts with the new Chart control, and you are familiar
with chart elements and most customization options. The Chart control has many properties you
can use to change its visual properties and behavior, and they are generally very simple to use. The
 Chart control ’ s designer is a great tool to use to understand the meaning and effects of setting those
properties to specifi c values, because changes are immediately refl ected in the design surface. You
can also write simple and straightforward programs to set these properties from code.

 For most cases, when you intend to use the Chart control, what you ’ ve learned is enough to
encapsulate spectacular charts into your applications. However, there are some more advanced
features of the Chart control, so let ’ s look at some of them.

 Annotations

 The great advantage of charts over the use of tables is that they could provide a better representation
of data — especially when you deal with dozens or hundreds of numbers — and they can catch your
eye in a moment, unlike tables. A few words, arrows, or other decorations can be invaluable to help
you focus on the essential data visualized by the chart.

 Chart annotations allow you to create these small decorations. The Chart control has a collection
property named Annotations , and you can add an unlimited number of Annotation instances to it.

 Annotation Types

 There are several annotation types shipped with the Chart control. They form a type hierarchy with
 Annotation class as a root. Table 14 - 9 summarizes these classes, and describes their most essential
properties.

 ANNOTATION TYPE DESCRIPTION

 Annotation This abstract class defi nes properties and methods common to all

annotations. By default, annotations are positioned using relative

coordinates, with (0, 0) representing the top - left corner, and (100,

100) representing the bottom - right corner of the chart image. It

is also possible to switch from this relative coordinate system to

a system that uses axis values. With an axis coordinate system,

X and Y (which represent the position of the top - left corner of

an annotation) are set using X axis and Y axis values, instead of

values that range from 0 to 100.

TABLE 14-9: Annotation Types

continues

Advanced Chart Manipulation ❘ 633

CH014.indd 633CH014.indd 633 9/6/10 5:40:05 PM9/6/10 5:40:05 PM

634 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 ANNOTATION TYPE DESCRIPTION

 LineAnnotation This represents a line annotation. You can use the StartCap and

 EndCap properties to set the cap styles for the line ’ s ends.

 HorizontalLineAnnotation This represents a horizontal line annotation, and derives from

 LineAnnotation .

 VerticalLineAnnotation This represents a vertical line annotation, and derives from

 LineAnnotation .

 TextAnnotation This represents a text annotation. Use the Text property to

defi ne the text you would like to show in the annotation. You can

use data point value tokens such as #VALX , #VAL , #TOTAL , and

so on. (Listing 14 - 10 and the related comments treat them.) The

 IsMultiline property can get or set the fl ag indicating whether

the annotation text is multi - line.

 RectangleAnnotation This represents a rectangle with text annotation, and derives from

 TextAnnotation . It allows you to enclose the text in a rectangle,

and provides about a dozen properties to customize the rectangle

border and fi ll area.

 EllipseAnnotation This represents an ellipse with text annotation, and derives from

 TextAnnotation . It allows you to enclose the text in an ellipse,

and provides about a dozen properties to customize the ellipse

border and fi ll area.

 ArrowAnnotation This represents an arrow annotation. Arrow annotations can be

used to connect to points on the chart, or to highlight a single

chart area. You can defi ne the style and size of the arrow with the

 ArrowStyle and ArrowSize properties, respectively.

 Border3DAnnotation This represents an annotation with a three - dimensional border,

and derives from RectangleAnnotation . Use the BorderSkin

compound property to set the attributes of the border.

 CalloutAnnotation This represents a callout with text annotation, and derives from

 TextAnnotation . You can set the style of the callout line anchor

cap and the annotation callout style with the CalloutAnchorCap

and CalloutStyle properties, respectively.

 PolylineAnnotation This represents a polyline annotation. You can use the StartCap

and EndCap properties to set the cap styles for the polyline ’ s

ends. There are two properties to set the path points of a polyline

annotation. GraphicsPath can be used only at run - time, and

 GraphicsPathPoints is available only at design - time.

TABLE 14-9 (continued)

CH014.indd 634CH014.indd 634 9/6/10 5:40:05 PM9/6/10 5:40:05 PM

 Figure 14 - 47 shows a simple chart with a few annotations.

 ANNOTATION TYPE DESCRIPTION

 PolygonAnnotation This represents a polygon annotation, and derives from

 PolyLineAnnotation . You can use the standard properties to set

the fi ll area of the polygon.

 ImageAnnotation This represents an image annotation. The Image property tells the

name of the image to be used. ImageWrapMode sets the drawing

mode of the images. You can use the ImageTransparentColor

property to defi ne a color that will be replaced with a transparent

color when the image is drawn.

 AnnotationGroup This represents a group of annotations, and implements the

 composite design pattern . Add the nested decorations to

the Annotations collection property.

 FIGURE 14 - 47: Chart decorated with annotations

 There are four annotations in this fi gure. There is a RectangleAnnotation for the chart area with
the “ Does not tell. . . ” text within it. The other three annotations are anchored to data points. The
Visual Basic data point holds a CalloutAnnotation while the F# data point has two of them — an
 ArrowAnnotation and a TextAnnotation .

Advanced Chart Manipulation ❘ 635

CH014.indd 635CH014.indd 635 9/6/10 5:40:06 PM9/6/10 5:40:06 PM

636 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Anchoring Annotations

 Annotations can belong to the chart area, or be anchored with one of the data points. There are
two ways to use axis values when you specify the position and size of an annotation:

 Set the AxisX , AxisY , or both of these annotation properties to the AxisX and AxisY
property values of a ChartArea object.

 Use the AnchorDataPoint property to anchor the annotation to a data point. In this case,
its positioning is automatically calculated. At design time, the Property grid lets you select
the data point from those you have already added to the chart series.

 Table 14 - 10 describes a set of properties starting with the Anchor prefi x that defi ne how the
annotation should be anchored.

➤

➤

 PROPERTY DESCRIPTION

 AnchorAlignment Gets or sets the alignment of an annotation to the anchor point. The

annotation must be anchored by either using the AnchorDataPoint

property, or by setting the AnchorX and AnchorY properties. Its X and Y

properties must be set to NaN (NotSet in design mode).

 AnchorDataPoint

 Gets or sets the data point to which an annotation is anchored. The

annotation is anchored to the X and Y values of the specifi ed data point,

and automatically uses the same axes coordinates as the data point.

 To automatically position the annotation relative to the anchor point, ensure

that its X and Y properties are set to NaN . The AnchorAlignment property

can be used to change the automatic position alignment of the annotation

to the anchor point. The AnchorOffsetX and AnchorOffsetY properties

may be used to add extra spacing.

 When you use this property, ensure that the AnchorX and AnchorY

properties are set to Double.NaN , because they have precedence. Set this

value to a null reference (Nothing in Visual Basic) to disable annotation

anchoring to a data point.

 AnchorOffsetX Gets or sets the off set from the anchor point for the X position of an annotation.

 AnchorOffsetY Gets or sets the off set from the anchor point for the Y position of an annotation.

 AnchorX Gets or sets the X coordinate to which the annotation is anchored. To

automatically position an annotation relative to an anchor point, ensure that its X

property is set to NaN . The AnchorAlignment property can be used to change

the automatic position alignment of the annotation to the anchor point. The

 AnchorOffsetX and AnchorOffsetY properties may be used to add extra

spacing. Set this value to NaN to disable annotation anchoring to the value.

 This property has a higher priority than the AnchorDataPoint property.

 AnchorY Gets or sets the Y coordinate to which the annotation is anchored.

TABLE 14-10: Anchor Properties

CH014.indd 636CH014.indd 636 9/6/10 5:40:07 PM9/6/10 5:40:07 PM

 Moving Annotations

 By default, annotations are fi xed to the chart area. Because they
use a relative coordinate system, you can resize the chart and
the annotations also resize, keeping their relative positions.

 With a few properties, you can allow the user to select, resize,
and move annotations with the mouse. This is a great feature,
because you can create applications that allow adding and
placing of annotations in your chart at run - time.

 Figure 14 - 48 shows how a RectangleAnnotation in Figure 14 - 47
has been selected, resized, and moved.

 In Figure 14 - 48, you can see that the anchor point can be
separately moved from the annotation. Once the user has fi nished moving the annotation, you can
write code to query the anchor properties in Table 14 - 9, and you can save the design.

 Table 14 - 11 describes the properties infl uencing how the user can interact with annotations at
run - time.

 FIGURE 14 - 48: Annotations can be

selected, resized and moved

 PROPERTY DESCRIPTION

 AllowAnchorMoving Specifi es whether the end user is allowed to move the annotation anchor

using a mouse.

 AllowMoving Specifi es whether the end user is allowed to move an annotation using

a mouse.

 AllowPathEditing Specifi es whether the end user is allowed to move the points of a polygon

annotation using a mouse.

 AllowResizing Specifi es whether the end user is allowed to resize an annotation using

a mouse.

 AllowSelecting Specifi es whether the end user is allowed to select an annotation using

a mouse.

 AllowTextEditing Specifi es whether the text in an annotation may be edited when the end

user double - clicks the text.

TABLE 14-11: Anchor Properties

 If you plan to resize the annotation or edit polyline paths, you must also set AllowSelecting
to true .

Advanced Chart Manipulation ❘ 637

CH014.indd 637CH014.indd 637 9/6/10 5:40:07 PM9/6/10 5:40:07 PM

638 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 All events except AnnotationPositionChanging accept EventArgs arguments. The sender object
passed to the event handler holds a reference to the affected annotation instance.

 Binding Data to Series

 Earlier in this chapter, you saw examples (Listing 14 - 2 and Listing 14 - 3) that used the chart ’ s
 DataSource property to bind data from a LINQ expression. The DataSource property accepts
many types as data sources for binding, including the following:

 DataView

 Data Readers (SQL, OleDB).

 DataSet

 Arrays

 Lists

 SqlCommand / OleDbCommand

 SqlDataAdapter / OleDbDataAdapter

 All IEnumerable objects

 You can bind data to a series by setting the XValueMember and YValueMember properties. Data
binding also can be used to bind information coming from the data source to other properties of
a Chart instance. Go to the Data property category of the chart and expand the (DataBinding)
property to see what chart properties can be bound to a data source.

➤

➤

➤

➤

➤

➤

➤

➤

 EVENT DESCRIPTION

 AnnotationPlaced Occurs when the end - user places an annotation on the chart.

 AnnotationPositionChanged Occurs when the annotation position is changed.

 AnnotationPositionChanging Occurs when the annotation position is about to change. This

event uses the AnnotationPositionChangingEventArgs

argument that allows checking the new position before the

change is committed.

 AnnotationSelectionChanged Occurs when a selection of the annotation is changed.

 AnnotationTextChanged Occurs when the annotation text is changed.

TABLE 14-12: Class Events Handling Annotations

 Table 14 - 12 describes several events for the Chart class to handle user actions related to
annotations.

CH014.indd 638CH014.indd 638 9/6/10 5:40:08 PM9/6/10 5:40:08 PM

 You can modify the ProcessInfoChart sample to use DataBindTable method instead of the
 DataSource property set up at design - time. Change the code in MainForm.cs to that shown in
Listing 14 - 11.

 LISTING 14 - 11: MainForm.cs Using the DataBindTable Method

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using System.Collections.Generic;

namespace ProcessInfoChart

 Data binding is a general technology in the .NET framework that has several
fl avors. For example, Windows Forms, ASP.NET, and WPF technologies have a
slightly different implementation for data binding — according to the differences
in the base technologies behind them.

 The Chart control treated in this chapter uses the Windows Forms technology.
To see a detailed description of Windows Forms data binding in .NET 4,
visit the MSDN page at http://msdn.microsoft.com/en-us/library/
ef2xyb33(VS.100).aspx .

 METHOD DESCRIPTION

 DataBind This method binds the Chart control to the specifi ed data source.

 In cases where a data source is set to a chart, and no other data

operations are required, the DataBind method does not have to be

explicitly called. In these cases, the Chart itself will bind the data to the

data source prior to being rendered.

 DataBindTable This method automatically creates and binds series data to the specifi ed

data table, and optionally populates X - values. Each column of the table

becomes a Y - value for a series, with one series per column. The X - value

fi eld of the series can also be provided.

 DataBindCrossTable Data binds a chart to the table, with one series created per unique value

in a given column.

TABLE 14-13: Data-Binding Methods of the Chart Control

continues

Advanced Chart Manipulation ❘ 639

 While, at design - time, you can bind data to the chart only through the DataSource property, the
 Chart control has a few methods that allow you more control over this mechanism. Table 14 - 13
describes these methods.

CH014.indd 639CH014.indd 639 9/6/10 5:40:09 PM9/6/10 5:40:09 PM

640 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

LISTING 14-11 (continued)

{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 chart1.DataSource = null;
 var processes = new List < ProcessInfo > (ProcessList.GetTopWorkingSet(10));
 chart1.Series.Clear();
 chart1.DataBindTable(processes, “Name”);
 chart1.Series[1].ChartArea = “ChartArea2”;
 chart1.Series[1].Legend = “Legend2”;
 }
 }
}

 Code fi le [MainForm.cs] available for download at Wrox.com

 Because DataBindTable creates a new series, the code fi rst clears the Series collection, and then up
to Series[1] to use the second chart area and the related legend.

 You can directly bind data through the Series.Points property. (It has a type of DataPoint
Collection .) Table 14 - 14 describes the data - binding methods available for a DataPointCollection
instance.

 METHOD DESCRIPTION

 DataBind Data binds the X - value, Y - value(s), and property values of the data points (such as

 Tooltip or LabelStyle) to the data source.

 DataBindXY Data binds the X - value and Y - value(s) of the data points in the collection to the

specifi ed columns of the specifi ed data sources.

 DataBindY Data binds the Y - value(s) of the data points to the specifi ed columns of the specifi ed

data source.

TABLE 14-14: Data - binding Methods of DataPointCollection

 You can modify the ProcessInfoChart sample to use the DataBindXY method of the series. Change
the code in MainForm.cs to that shown in Listing 14 - 12.

CH014.indd 640CH014.indd 640 9/6/10 5:40:16 PM9/6/10 5:40:16 PM

 LISTING 14 - 12: MainForm.cs Using the DataBindXY Method

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using System.Collections.Generic;

namespace ProcessInfoChart
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void MainForm_Load(object sender, EventArgs e)
 {
 chart1.DataSource = null;
 var processes = new List < ProcessInfo > (ProcessList.GetTopWorkingSet(10));
 var series1 = chart1.Series[0];
 series1.Points.DataBindXY(processes, “Name”, processes, “WorkingSet”);
 var series2 = chart1.Series[1];
 series2.Points.DataBindXY(processes, “Name”, processes, “PeakWorkingSet”);
 }
 }
}

 Code fi le [MainForm.cs] available for download at Wrox.com

Methods in Table 14 - 13 and Table 14 - 14 have several restrictions on the data source
types they can accept. They also have several advantages and disadvantages. You can
check them out in the MSDN documentation at http://msdn.microsoft.com/
en-us/library/dd456766(VS.100).aspx .

 The DataManipulator class

 The Chart control has a property named DataManipulator that exposes an instance of a class also
called DataManipulator . You can use this class to perform data - manipulation operations at run -
 time. These operations include copying values, fi ltering, grouping and sorting data, exporting data
to a DataSet object, and applying a fi nancial formula to data.

 You can download the source code for the DataManipulatorSample application to check out how
the data manipulations treated in this section can be implemented. This application contains a
simple chart with two chart areas. The primary area is generally the input the DataManipulator
class works with, while the secondary area displays the results. The code snippets shown in this
section are extracted from the MainForm.cs fi le of the source code; most of them are simple menu
item event handler methods.

Advanced Chart Manipulation ❘ 641

CH014.indd 641CH014.indd 641 9/6/10 5:40:16 PM9/6/10 5:40:16 PM

642 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Filtering Data

 DataManipulator supports the following three kinds of fi ltering:

 You can fi lter for the top N values in a series.

 You can fi lter out data points matching a very simple condition.

 You can create your own data point fi lter class to apply more complex criteria.

 You can use the FilterTopN method for getting the top N values from a series, as the following
code snippet shows:

private void FilterTop10MenuItem_Click(object sender, EventArgs e)
{
 chart1.DataManipulator.FilterSetEmptyPoints = true;
 chart1.DataManipulator.FilterTopN(10, “Series1”, “Series2”);
}

 The fi rst argument of FilterTopN is the number of data points to fi lter. The other two string
parameters name the input and output series, respectively. Setting the FilterSetEmptyPoints to
 true causes the DataManipulator to create empty points for those data points that are left from
 Series1 as a result of fi ltering. Running this application displays the results in the secondary area,
as shown in Figure 14 - 49.

➤

➤

➤

 FIGURE 14 - 49: Filtering for the top 10 values

 In this section, you will fi nd an overview of DataManipulator features. There are
a few more features not treated here. For more details, see the DataManipulator
documentation in MSDN at http://msdn.microsoft.com/en-us/library/
system.windows.forms.datavisualization.charting.datamanipulator_

members(VS.100).aspx .

CH014.indd 642CH014.indd 642 9/6/10 5:40:23 PM9/6/10 5:40:23 PM

 There is another method called Filter where you can use a CompareMethod enumeration to
defi ne the operation to use for fi ltering. Be aware of the fact that the condition is defi ned for those
data points that should be omitted from the result set. The following snippet demonstrates this:

private void FilterLessThan50MenuItem_Click(object sender, EventArgs e)
{
 chart1.DataManipulator.FilterSetEmptyPoints = true;
 chart1.DataManipulator.Filter(CompareMethod.MoreThan, 50.0,
 “Series1”, “Series2”);
}

 The intention is to display only those data points in the result that have a Y value less than 50, so
you must use the CompareMethod.MoreThan enumeration value to refl ect this reverse logic.

 When you need more complex fi ltering logic (for example, criteria not supported by the Compare
Method enumeration), you can create a data point fi lter class and pass that class to the Filter method.
A data point fi lter class must implement the IDataPointFilter interface, as the following code
snippet shows:

private class BetweenFilter : IDataPointFilter
{
 private double lowerValue;
 private double upperValue;

 public BetweenFilter(double lower, double upper)
 {
 lowerValue = lower;
 upperValue = upper;
 }

 bool IDataPointFilter.FilterDataPoint(DataPoint point, Series series,
 int pointIndex)
 {
 return point.YValues[0] > upperValue || point.YValues[0] < lowerValue;
 }
}

 The BetweenFilter class implements a data point fi lter that will put those data points into the
result set that are within the specifi ed range. The FilterDataPoint method retrieves true if
the data point should be omitted from the result set; otherwise, it is false . As you can see, the
reverse condition is applied in this method — the condition defi nes the data point that should
be omitted from the result set.

 You can use the data point fi lter class as shown in the following code snippet:

private void CustomFilterMenuItem_Click(object sender, EventArgs e)
{
 chart1.DataManipulator.FilterSetEmptyPoints = true;
 chart1.DataManipulator.Filter(new BetweenFilter(10.0, 60.0),
 “Series1”, “Series2”);
}

Advanced Chart Manipulation ❘ 643

CH014.indd 643CH014.indd 643 9/6/10 5:40:29 PM9/6/10 5:40:29 PM

644 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Sorting Data

 The DataManipulator provides a Sort method that orders your data points in ascending or
descending order. Ordering uses the Y value data of the specifi ed series by default, and orders the
 Series.Points collection accordingly. However, ordering your data points does not change
the X values of your data points. For most chart types, you will not see that the data points are
ordered! The chart output remains the same because rendering uses only the X value and Y value
properties of a data point, and ignores their physical order within the Series.Points collection.

 To cope with this situation, you must align the data points so that their X values refl ect the sort
position. The following code extract shows how you can implement sorting:

private void SortDataMenuItem_Click(object sender, EventArgs e)
{
 var series2 = chart1.Series[1];
 chart1.DataManipulator.Sort(PointSortOrder.Descending, series2);
 AlignSeries(series2);
}
// ...
private void AlignSeries(Series series)
{
 for (int i = 0; i < series.Points.Count; i++)
 {
 series.Points[i].XValue = i;
 series.Points[i].IsEmpty = false;
 }
}

 After calling the Sort method, the AlignSeries method resets the X values of the series. Because
 Series.Points contains data points in descending order, aligning the X values will cause the
secondary chart to be displayed correctly, as shown in Figure 14 - 50.

 FIGURE 14 - 50: Data points are sorted

CH014.indd 644CH014.indd 644 9/6/10 5:40:30 PM9/6/10 5:40:30 PM

 Copying Values

 You can easily copy series data to another series with the CopySeriesValues method. However,
you must ensure that source and destination data series are aligned — that is, they have the same
number of data points and the same data in their corresponding X values. Here is a short code
extract to demonstrate this:

private void CopyValuesMenuItem_Click(object sender, EventArgs e)
{
 AlignSeries(chart1.Series[1]);
 chart1.DataManipulator.CopySeriesValues(“Series1:Y”, “Series2:Y”);
 chart1.Invalidate();
}

 The DataManipulatorSample application contains fi ltering functions that may change the number
of data points during these operations. The AlignSeries method ensures that Series2 will be
aligned to Series1 — this is the same method used for data sorting. The input strings address the
Y values to be copied from Series1 to Series2 .

 You can play with copying values. In the design surface, change the chart type of Series2 to
 SplineRange , and modify the CopySeriesValues call:

chart1.DataManipulator.CopySeriesValues(“Series1:Y”, “Series2:Y2”);

 Now, the code copies the Y values of Series1 to the Y2 values (second Y value) of Series2 .
Because a SplineRange chart uses two Y values, you now have real range values in the secondary
area, as shown in Figure 14 - 51.

 Do not forget to change the CopySeriesValue call ’ s arguments back to the
original values, and also reset the chart type of Series2 to Column .

 FIGURE 14 - 51: Copying Y2 values

Advanced Chart Manipulation ❘ 645

CH014.indd 645CH014.indd 645 9/6/10 5:40:30 PM9/6/10 5:40:30 PM

646 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 Export Data to a DataSet Object

 A great feature of DataManipulator is that it can export chart data to a DataSet object. You
can use this feature for saving chart data, or passing it to other controls that work with DataSet
instances.

 The DataManipulatorSample application demonstrates this feature by passing the exported
 DataSet to a form that displays a DataGridView object. The following code implements this task:

private void ExportToDataSetMenuItem_Click(object sender, EventArgs e)
{
 var dataSet = chart1.DataManipulator.ExportSeriesValues();
 var exportForm = new ExportedDataForm(dataSet);
 exportForm.ShowDialog();
}

 The essential work is done by the ExportSeriesValues method that produces a DataSet
instance holding all chart data. Each series is put in a separate table within the data set. The
 ExportedDataForm class gets this data in its constructor and sets up the ExportedDataGrid object:

 public partial class ExportedDataForm : Form
 {
 public ExportedDataForm()
 {
 InitializeComponent();
 }

 public ExportedDataForm(DataSet dataSet): this()
 {
 ExportedDataGrid.DataSource = dataSet;
 ExportedDataGrid.DataMember = “Series1”;
 }
 }

 The ExportedDataGrid object can display only one table at a time. The code sets it through the
 DataMember property to Series1 .

 Apply Statistical Formula to Data

 Through the Statistics property of the DataManipulator class, you can access statistical
operations such as mean, covariance, correlation calculations, and many more. The following code
snippet shows how to calculate and display the correlation value between Series1 and Series2 :

private void ApplyStaticticsMenuItem_Click(object sender, EventArgs e)
{
 var corrValue = chart1.DataManipulator.Statistics.
 Correlation(“Series1”, “Series2”);
 MessageBox.Show(String.Format(“Correlation between the series is: {0}”,
 corrValue));
}

CH014.indd 646CH014.indd 646 9/6/10 5:40:36 PM9/6/10 5:40:36 PM

 Apply Financial Formula to Data

 To perform fi nancial analysis on one or more Series objects, use the FinancialFormula method of
the DataManipulator class. FinancialFormula has many overloads, all of them having the same
parameter structure:

 Formula name — Specify the type of the formula here with a FinancialFormula enumeration
value. The number of parameters, input, and output, as well as the requirements for each
parameter, change based on the formula you choose here.

 Parameters — Some formulas require parameters, and some enable you to optionally supply
them. A few formulas do not use parameters. If a formula takes multiple parameters,
specify them as a comma - separated string (for example, “ 3, 5 ”).

 Input values — Specify in a comma - separated string the names of instantiated Series
objects to which you wish to apply the formula.

 Optional output values — Specify in a comma - separated string the name of instantiated
 Series objects to which you want to save the output. If you do not specify output values,
the formula stores the fi rst output value in the fi rst listed input value, and so on. In this
case, the method throws an exception if the number of input values is less than the number
of output values.

 The following code snippet calculates a moving average from Series1 , and puts the results in
 Series2 :

private void ApplyFormulaMenuItem_Click(object sender, EventArgs e)
{
 chart1.DataManipulator.FinancialFormula(
 FinancialFormula.MovingAverage,
 “5”,
 “Series1”,
 “Series2”);
}

 The second argument, 5 , defi nes the number of samples to use to calculate the moving average.
Figure 14 - 52 shows the result of the operation.

➤

➤

➤

➤

 Statistical operations generally result in scalar values, or very simple structures.
Check out the MSDN documentation of the StatisticFormula class (this is the
type behind the Statistics property) for operations you can use with chart data
at http://msdn.microsoft.com/en-us/library/system.windows.forms
.datavisualization.charting.statisticformula_members(VS.100).aspx .

Advanced Chart Manipulation ❘ 647

CH014.indd 647CH014.indd 647 9/6/10 5:40:36 PM9/6/10 5:40:36 PM

648 ❘ CHAPTER 14 .NET CHARTING COMPONENTS

 For detailed information about fi nancial formulas supported by the DataManipulator
class, visit the MSDN page at http://msdn.microsoft.com/en-us/library/
dd489253(VS.100).aspx .

 You can see that the secondary area does not contain data points for the 0 - 3 range of X values.
When you use a formula that involves moving averages, the formula ignores the starting data points
until it has enough data points to calculate the moving average. In this case, if you want to calculate
a fi ve - day moving average, the formula ignores the fi rst four data points, since there are not enough
data points to calculate a fi ve - day moving average until the fi fth day.

 You can change this kind of operation by setting the DataManipulator ’ s StartFromFirst property.
By default, it is set to false . However, if StartFromFirst is set to true , the formula calculates the
moving average for the beginning points, even though there are not enough data points yet. This
gives you the advantage of having one moving average for each input data point in the series.

 FIGURE 14 - 52: Applying a moving average fi nancial formula

 More Chart Manipulations

 You can do a few more things with charts in your application. Here is a short list of these
opportunities without the need of completeness. URLs in parentheses are links to the related MSDN
documentation with more details.

 Chart data serialization — You can convert your charts into a format that you can save or
transmit. You typically use this to save chart properties, but you can also use it to retrieve
data and load it into an existing chart control. (http://msdn.microsoft.com/en-us/
library/dd456693(VS.100).aspx)

 Chart printing — In the Chart control for Windows Forms, you can print the chart picture.
(http://msdn.microsoft.com/en-us/library/dd456718(VS.100).aspx)

➤

➤

CH014.indd 648CH014.indd 648 9/6/10 5:40:42 PM9/6/10 5:40:42 PM

 Chart interactivity — In the Chart control for Windows Forms, you use mouse events and
the HitTest method to enable chart interactivity. You can also use cursors, scrolling, and
zooming. (http://msdn.microsoft.com/en-us/library/dd456772(VS.100).aspx)

 Customize chart drawing — In the Chart control, you can use events to customize chart
behavior, such as performing custom drawing with the PrePaint and PostPaint event
handler methods. (http://msdn.microsoft.com/en-us/library/dd456617(VS.100).
aspx)

 SUMMARY

 Using charts in your application can signifi cantly improve the user experience. For a long time, no
chart controls were shipped with Visual Studio. If you wanted to use them, you had to buy one from
a UI component vendor, or download one Open Source component with the appropriate license.
Visual Studio 2010 changes this situation. It provides you a great Windows Forms Chart control
that you can simply drag from the Toolbox to your forms.

 You can easily set up the Chart control through the dozens of properties it exploits. It has a great
design - time support — when you change a property, the design - time view changes accordingly.

 You can choose from more than 30 chart types, and customize them through general and chart type
specifi c properties. The Chart control supports data binding and many manipulations, including
fi ltering, sorting values, and applying fi nancial formulas.

 Chapter 15 begins the discussion of ASP.NET 4 with an overview of the evolution of this important
environment.

➤

➤

Summary ❘ 649

CH014.indd 649CH014.indd 649 9/6/10 5:40:48 PM9/6/10 5:40:48 PM

CH014.indd 650CH014.indd 650 9/6/10 5:40:49 PM9/6/10 5:40:49 PM

 PART III

 ASP.NET 4.0

 CHAPTER 15: ASP.NET Version History

 CHAPTER 16: ASP.NET Charting Controls

 CHAPTER 17: ASP.NET Dynamic Data

 CHAPTER 18: ASP.NET Model-View-Controller (MVC)

 CHAPTER 19: ASP.NET Ajax Improvements

 CHAPTER 20: Ajax Control Toolkit, jQuery, and More

�

�

�

�

�

�

CH015.indd 651CH015.indd 651 9/6/10 6:06:03 PM9/6/10 6:06:03 PM

CH015.indd 652CH015.indd 652 9/6/10 6:06:08 PM9/6/10 6:06:08 PM

 ASP.NET Version History

 As the fi rst chapter of the ASP.NET part of the book, this chapter traces the history of
ASP.NET, and provides information on all the different versions that have evolved through
the years. To understand the evolution of ASP.NET, a good starting point might be where it
all began — the birth of the World Wide Web.

 DEVELOPMENT OF THE WEB AND WEB DEVELOPMENT

 Today, most people are unable to imagine their everyday lives without cell phones and the
Internet. But life was very different even just a few years ago, when neither the Internet nor
cell phones were around. Effective long - distance communication has always been important.
Some people may remember stories about letters wandering weeks or months en route from
the sender to the recipient, sometimes being carried by homing pigeons or stagecoaches.
Even the dissemination of news and messages was a diffi cult thing to do effi ciently — cave
paintings, posters, newspapers, town criers, and so on, all attempted to spread the news and
information to all people.

 Ancient civilizations had their own unique ways of communicating with one another. The
fi rst concept of an “ Information Highway ” in Europe was conceived by a surgeon who
wanted to create a process to teach and share new medical techniques in the Middle Ages.
Unfortunately, the concept was thought of as blasphemy by the Church, and the surgeon
was beheaded for witchery.

 In the modern ages, Tim Berners - Lee, an independent contractor of the European
Organization for Nuclear Research (CERN), was the fi rst person who built an early software
project (ENQUIRE) that was similar to today ’ s World Wide Web.

 A few years later, he realized that physicists needed to share data around the world. After
some unsuccessful attempts, he fi nally got support from his CERN bosses, Mike Sendall and
Robert Cailliau. They began to implement a new system on a NeXT workstation that fi nally
got the name World Wide Web (WWW).

15

CH015.indd 653CH015.indd 653 9/6/10 6:06:08 PM9/6/10 6:06:08 PM

654 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 The birth of the WWW as a publicly available service on the Internet occurred on August 6, 1991,
the day when Berners - Lee posted a short message about his project on a newsgroup:

 “ The WorldWideWeb (WWW) project aims to allow all links to be made to
any information anywhere. [. . .] The WWW project was started to allow high
energy physicists to share data, news, and documentation. We are very interested
in spreading the web to other areas, and having gateway servers for other data.
Collaborators welcome! ”

 Since then, the WWW has been one of the fastest evolving industries in history. More and
more easy - to - use web developer software tools have been born with better and better developer
effi ciency, as well as the WYSIWYG (what you see is what you get) experience. Moreover, with
these tools, knowledge about Hypertext Markup Language (HTML) or any other programming
language is not required for creating basic web pages. (But, of course, it is generally recommended
for professional results.)

 The next generation of web development tools uses the strong growth in Microsoft .NET, Java, or
other similar technologies to utilize the web as a way to run applications online. Instead of running
executable code on a local computer, users interact with online applications to consume content,
create new content, or use some services. They are now able to interact with applications from any
location around the world, instead of being tied to a specifi c computer or workstation for their
application environment.

 ENTER ASP

 The standardized markup language for developing web pages has been HTML. The original goal
of this markup language was to make available to developers those parts of simple page documents
that can point to other pages (hyperlink). The fi rst version of HTML contained only a few elements
(for example, headings, quotations, and lists), but over time, a lot of elements have been added,
including frames, images, formatting and font styles, and so on.

 HTML has evolved a lot in another area, too. Instead of the need to create constant, unchanged
documents, there were more and more frequently changing HTML pages that required dynamic
changes to their content.

 The two available ways to achieve this goal were client - side and server - side solutions. But client -
 side scripting has some problems with that, one of them being that the server must send the entire
content to the client to be processed. Another main issue is that there is no guarantee that all clients
can process the content received from the server.

 For these reasons, server - side solutions became much more popular. The server - side engines send
the ready HTML code to the client, but the content of this HTML is dynamic, meaning that it
can change from one request to another. Eventually, the purpose of the server - side engines was to
generate HTML code and send it to the clients as an answer to their requests.

CH015.indd 654CH015.indd 654 9/6/10 6:06:10 PM9/6/10 6:06:10 PM

 Active Server Pages (ASP), which is also known as Classic ASP, is Microsoft ’ s answer to these
new requirements. Overall, ASP is not a programming language, but rather a programming
framework. It ’ s a special programming method embedded in HTML pages. During the processing
of the ASP page, the web engine parses the content of the page. It displays the HTML code parts
and runs the embedded ASP scripts. Finally, IIS sends the code made from the HTML and ASP
result to the client.

 Following is an example:

 < HTML >
 < HEAD > < TITLE > Visual Studio 2010 Welcome Page < /TITLE > < /HEAD >
 < BODY >
 < % Response.Write(“ < h1 > Hello Visual Studio 2010! < /h1 > ”) % >
 < /BODY >
 < /HTML >

 The language of most ASP pages is JScript or VBScript, but other third - party active scripting
languages have evolved as well (for example, PerlScript).

 ENTER ASP.NET

 ASP was a good solution for server - side active scripting, but it experiences a problem. The
presentation and content are mixed together. In 1997, Microsoft began realizing how to solve
this problem. The task of developing the new model was given to two young professionals, Mark
Anders (a manager of IIS team) and Scott Guthrie (who joined Microsoft in 1997, and is currently
the Corporate Vice President of .NET Developer Platform).

 Guthrie offered the following description of the birth of ASP.NET:

 “ We actually started the ASP.NET project in late 1997 and early 1998. At the
time, ASP was still relatively new, and we initially weren ’ t sure whether there was
anything left to do in the web space. (Little did we know!) We then spent a lot of
time talking with developers and customers using ASP, and quickly realized that
there were a lot of things left to resolve.

 “ Some specifi c issues/requests came up again and again from customers —
provide the ability to write much cleaner code that provided good code/content
separation (rather than mixing code up in the HTML), provide the ability to
write applications using a variety of coding languages (and not just VBScript
and JScript), deliver a more robust execution environment (avoiding memory
leaks and crashes that could bring down the server), provide a much cleaner
confi guration/code deployment model, deliver a built - in security architecture,
enable built - in output caching support to improve scalability, and more.

Enter ASP.NET ❘ 655

CH015.indd 655CH015.indd 655 9/6/10 6:06:11 PM9/6/10 6:06:11 PM

656 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 “ A colleague of mine (Anders) and I spent about two months brainstorming
ideas about how we could build a programming model that delivered all of
this. Eventually, we decided we needed to put together a prototype to try out
the concepts, and I ended up coding it up over the Christmas and New Year ’ s
holiday in 1997/1998 (I was a hardcore geek then.) We showed off the prototype
to a lot of people within the company, built a lot of excitement, and got the
go - ahead to build a team to deliver it. ”

 The name of the initial prototype was “ XSP. ” Guthrie explained in a 2007 interview that, “ People
would always ask what the ‘ X ’ stood for. At the time, it really didn ’ t stand for anything. XML
started with that; XSLT started with that. Everything cool seemed to start with an ‘ X, ’ so that ’ s
what we originally named it. ”

 The fi rst initial prototype of XSP used Java, but it was soon decided to try to build it on the top of
the .NET Common Language Run - time (CLR) because of its benefi ts. Guthrie said in an interview
with the New York Times that this decision was an extremely huge risk, because the success of the
new XSP platform would be dependent on the success of the CLR that was still in its infancy. So,
the fi rst real target of CLR was the XSP team in the Microsoft itself.

 With this decision, the XSP prototype was re - developed in C# (known internally as “ Project Cool ”)
that was also kept secret from the public. At the same time, it was renamed to “ ASP+ ” because this
new platform was seen as the successor of ASP, and the easy migration from ASP was an important
goal of the project.

 The fi rst demonstration of ASP+ was at the ASP Connections Conference in Phoenix on May 2,
2000, by Anders. The very fi rst public demonstration was made at the Professional Developer
Conference (PDC) on July 11, 2000, in Orlando, Florida. In Bill Gates ’ keynote presentation,
ASP+ was demonstrated with COBOL, but support of other languages (Visal Basic .NET
and C#) was also announced. Python and Perl support was announced as part of third - party
interoperability tools.

 The fi nal name of ASP.NET was decided when the “ .NET ” branding was introduced by Microsoft
in the second half of 2000. Anders explained:

 “ The .NET initiative is really about a number of factors. It ’ s about delivering
software as a service; it ’ s about XML and web services and really enhancing the
Internet in terms of what it can do ... we really wanted to bring its name more in
line with the rest of the platform pieces that make up the .NET framework. ”

 According to Microsoft ’ s offi cial ASP.NET website, “ Microsoft ASP.NET is a free technology that
allows programmers to create dynamic web applications. ASP.NET can be used to create anything
from small, personal websites through to large, enterprise - class web applications. All you need to
get started with ASP.NET is the free .NET Framework and the free Visual Web Developer. ”

 One of ASP.NET ’ s main goals was to simplify the learning path of developers from Windows
application development to web development.

CH015.indd 656CH015.indd 656 9/6/10 6:06:11 PM9/6/10 6:06:11 PM

 ASP.NET VERSION HISTORY

 Through the years, the various versions of ASP.NET have provided new features and functionalities.
Before reading about the version history of ASP.NET, take a look at the summary capsules of
ASP.NET shown in Table 15 - 1 for each of the versions to be examined in this chapter.

 BETTER THAN THE CLASSIC

 Following are main improvements offered by ASP.NET over Classic ASP:

 ASP.NET enables faster developing and is less error - prone.

 It separates business logic and presentation by using the code - behind
development method.

 With compiled code, applications run faster with less design - time and
develop - time errors.

 Run - time error handling can be signifi cantly improved by try - catch blocks
in the code.

 With the wide set of controls and class libraries, applications can be built
very rapidly. User - defi ned controls allow creating and using web templates
(such as menus). Moreover, most of these controls can be built visually with
most editors.

 ASP.NET pages can be coded in the languages of VB.NET, C#, J#, and so
on, because ASP.NET leverages the multi - language capabilities of .NET
Framework CLR.

 ASP.NET offers metaphors similar to Microsoft Windows applications (for
example, controls and events).

 ASP.NET is capable of caching the parts of the page or the whole page, to
improve performance.

 Session state can be saved to a Microsoft SQL Server database, or in a
separate process. That way, session values are kept after a reset of the
web server, or when the ASP.NET worker process is recycled.

 Depending on the site confi guration, all ASP.NET controls have
generated valid HTML 4.0, XHTML 1.0, or XHTML 1.1 output since
version 2.0.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

ASP.NET Version History ❘ 657

CH015.indd 657CH015.indd 657 9/6/10 6:06:11 PM9/6/10 6:06:11 PM

658 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 TABLE 15 - 1: ASP.NET Versions

 VERSION DATE NEW FEATURES

 ASP.NET 1.0

 January 16, 2002

 Standard object - oriented features were supported

 Early - binding and type safety

 Use of dynamic link library (DLL) class libraries and

other features of the web server

 ASP.NET 1.1

 April 24, 2003

 Support of mobile devices

 Automatic input validation

 ASP.NET 2.0

 November 7, 2005

 Support for 64 - bit processors

 New data controls (GridView , FormView ,

 DetailsView)

 Declarative data access techniques

(SqlDataSource , ObjectDataSource ,

 XmlDataSource)

 Navigation controls

 Master pages

 Login controls

 Themes and skins

 Web parts

 Personalization services

 Pre - compilation

 Localization

 Provider class model

 ASP.NET 3.0

 November 21, 2006

 Windows Communication Foundation

 Windows Cardspace

 ASP.NET 3.5

 November 19, 2007

 New data controls (ListView , DataPager)

 ASP.NET Ajax

 Support for HTTP pipelining and syndication feeds

 Windows Communication Foundation (WCF) support

for RSS, JSON, POX, and partial trust

 Other .NET Framework 3.5 features, for example

LINQ

CH015.indd 658CH015.indd 658 9/6/10 6:06:13 PM9/6/10 6:06:13 PM

 ASP.NET 1.0

 Microsoft had been developing the fi rst version of ASP.NET for four years, and released a series of
beta versions in 2000 and 2001. Also, dozens of books promoted by Microsoft had been written
about ASP.NET before the fi rst version. Finally, ASP.NET 1.0 was released on January 16, 2002, as
part of the .NET Framework 1.0.

 Following were the main features of ASP.NET 1.0:

 The standard object - oriented features were supported (inheritance, polymorphism, and so on)

 Early - binding and type safety were possible, with no more need to use Server
.CreateObject(...) .

 Developers could use DLL class libraries and other features of the web server to build more
robust applications, while not only rendering HTML pages, but also doing much more (for
example, exception handling).

 ASP.NET 1.1

 ASP.NET 1.1 was released on April 24, 2003, together with Windows Server 2003 and Visual
Studio .NET 2003.

 This version focused on improving support of mobile devices. The other important improvement
was automatic input validation.

 ASP.NET 2.0

 ASP.NET 2.0 (codenamed “ Whidbey ”) was released on November 7, 2005, with Visual Studio
2005, Visual Web Developer Express, and SQL Server 2005.

 This version offered several important improvements, including the following:

 Support for 64 - bit processors

 New data controls

➤

➤

➤

➤

➤

 VERSION DATE NEW FEATURES

 ASP.NET 3.5 SP1

 August 11, 2008

 ASP.NET dynamic data

 Controlling browser history in ASP.NET Ajax

 Capability to combine more JavaScript fi les into a

single fi le

 New namespaces

 ASP.NET 4.0

 2010

 ASP.NET Web Forms Framework

 ASP.NET Model - View - Controller (MVC) Framework

ASP.NET Version History ❘ 659

CH015.indd 659CH015.indd 659 9/6/10 6:06:13 PM9/6/10 6:06:13 PM

660 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 New techniques for declarative data access

 Navigation controls

 Master pages

 Login controls

 Themes and skins

 Web parts

 Personalization services

 Full pre - compilation

 New localization technique

 Provider class model

 Let ’ s take a look at each of these in a bit more detail.

 Support for 64 - Bit Processors

 Obviously, 64 - bit architecture processors can handle more memory and larger fi les than 32 - bit
CPUs. The 64 - bit architecture allows systems to address up to 1 TB (1,000 GB) of memory, while
the 32 - bit CPUs can handle only 4 GB of memory. Most benefi ts of 64 - bit processors are unnoticed
without a 64 - bit operating system, software, and drivers that are able to take advantage of the
64 - bit CPU features.

 The version 2.0 of ASP.NET was capable of supporting 64 - bit architectures, with all of their
benefi ts.

 New Data Controls

 New data controls introduced in this version included the following:

 GridView — Displays the values of a data source in a table where columns represent the
fi elds, and rows represent the records. The GridView control enables the users to select,
sort, and edit the items.

 FormView — Displays the values of a single record from a data source using user - defi ned
templates. The FormView control allows the users to edit, delete, and insert records.

 DetailsView — Displays the values of a single record from a data source in a table, where
the rows represent the fi elds of the record. The DetailsView control allows the users to
edit, delete, and insert records.

 New Techniques for Declarative Data Access

 Following are the new techniques for declarative data access introduced in this version:

 SqlDataSource — This is for using a SQL database as the data source in data - bound
controls.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH015.indd 660CH015.indd 660 9/6/10 6:06:13 PM9/6/10 6:06:13 PM

 ObjectDataSource — This is for using business objects as the data source in data - bound
controls of multi - tier web application architectures.

 XmlDataSource — This represents an XML data source to data - bound controls.

 Navigation Controls

 The ASP.NET navigation controls can be used to enhance the user experience, as well as to help
with consistent site navigation and fi nding information around the site. As the sites grow and
contain more and more content, and this content is moved around in the site, it becomes more and
more diffi cult to manage all of the links.

 With the help of ASP.NET site navigation, you are able to store links to all pages of the site in a
central location, and display these links in lists or navigation menus on all of your pages in the same
way, including a web server navigation control.

 Following are the navigation features introduced in ASP.NET 2.0:

 Site maps

 ASP.NET controls

 Programmatic controls

 Access rules

 Custom site map providers

 Master Pages

 In ASP.NET, not only can you create consistent navigation for your sites but also a consistent layout
with the help of master pages. Master pages defi ne the look and feel, as well as the behavior of the
pages in the application. You can create content pages that contain the content you want to display
separated from master pages, and assign the proper master page to them. When users request a
page, the content from the page will merge with the layout of the master page to produce output.

 Login Controls

 With the help of the ASP.NET login controls, you can build a robust login solution for your web
applications without writing any program code. Login controls can be integrated with ASP.NET
membership and forms authentication by default to help automate user authentication.

 Themes and Skins

 Themes allow you to defi ne the look of pages by way of a property settings collection. These
settings can be consistently applied to the pages of a web application, to the entire web application,
or to all web applications of the server. Themes are the collection of the following elements:

 Skins

 Cascading style sheets (CSS)

 Images

 Other resources

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

ASP.NET Version History ❘ 661

CH015.indd 661CH015.indd 661 9/6/10 6:06:14 PM9/6/10 6:06:14 PM

662 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 The themes assign a set of personalization styles and attributes to the site elements to be
customized, including control properties, page stylesheets, images, templates, and so on.

 A special directory is used to store all themes for a website or for the web server.

 All themes contain at least one skin. Skin fi les contain property settings for controls such as Label ,
 TextBox , Button , or Calendar . Control skin settings are similar to the control markup, but contain
only the properties.

 Following are the types of control skins:

 Default skin — When a theme is applied to a page, all of its controls of the same type will
use the default skin defi ned by the theme. For example, if you create a TextBox default skin,
all TextBox controls on your page will use this default skin.

 Named skin — When a control skin has a SkinID property set, it ’ s a named skin. These are
not automatically applied to the controls with the same type. You must explicitly assign the
named skin to the controls. This can be done by setting the control ’ s SkinID property. In
that way, you ’ re able to set different skins for different instances of the same control.

 Web Parts

 Web parts are units of a page that contain an integrated set of controls and information as a unit
and enable users to build their pages out of web parts (like using building blocks) and modify
properties of the web parts directly from a browser. Web parts can be shared (which means that
their appearance and behavior is the same for all users) or personalized (which means a user can
modify properties in his or her personal view of the page).

 The main benefi t of the ASP.NET web parts is that the end users are able to personalize and edit the
web pages without needing the help of a developer or administrator. Moreover, web parts can be
exported from a site and imported to another application, so the quantity of confi guration tasks can
be also reduced.

 One other powerful capability of the web parts is their connectivity. Users can set connections
between them, so, for example, the child web part can display the details of the item chosen on the
parent web part.

 These capabilities make the ASP.NET web parts very powerful, and capable of being the base of
various ASP.NET - based server applications (for example, SharePoint).

 Personalization Services

 ASP.NET has a lot of personalization features available for all authenticated users, including the
following:

 User profi les — ASP.NET user profi les are persistent collections of information fi elds
about the individual user. These allow you to manage user properties without creating and
maintaining a custom database.

 Themes — Themes allow you to defi ne the look of pages by way of a property settings
collection.

➤

➤

➤

➤

CH015.indd 662CH015.indd 662 9/6/10 6:06:14 PM9/6/10 6:06:14 PM

 Custom error pages — ASP.NET provides various ways to display user - friendly messages in
case an error occurs. You can trap errors either on the page or application level.

 With personalization features, your application defi nes its own collection of personalized data, and the
ASP.NET run - time parses and compiles that. Personalized data is completely transparent to end users.

 Full Pre - Compilation

 When users request a page for the fi rst time, ASP.NET web pages and code fi les are compiled
dynamically. Then, the compiled resources will be cached, so that the next request to the same page
is quick and effi cient.

 The pre - compilation of full sites is also available in ASP.NET.

 This provides many benefi ts for the users, including the following:

 The response is faster.

 The compile - time bugs and errors can be identifi ed early.

 The source code doesn ’ t need to be deployed to the production server.

 Localization

 By using localization, you can customize your application for a given culture and locale.
ASP.NET 2.0 improved the localization process, and had a lot of new features that included
the following:

 The auto - detection of the HTTP header fi eld (Accept - Language) by the browser confi gures
the set of languages preferred in the response to the request.

 Resources can be accessed programmatically.

 RESX or RESOURCE fi les are compiled and linked into run - time assemblies.

 Controls and their properties can be tied to the resources in a declarative way.

 The creation of resources has design - time support.

 The most important benefi t of using multilingual web applications with language - separated site
structures is that you need much less maintenance during the site ’ s lifecycle.

 Provider Class Model

 As stated on MSDN, “ A provider is a software module that provides a uniform interface between
a service and a data source. ” The main goals during the design of the ASP.NET 2.0 provider model
were fl exibility and extensibility, and providing a simple way to write custom providers.

 Following were the default providers in ASP.NET 2.0:

 Membership provider

 Role management provider

 Site map provider

 Profi le provider

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

ASP.NET Version History ❘ 663

CH015.indd 663CH015.indd 663 9/6/10 6:06:14 PM9/6/10 6:06:14 PM

664 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 Session state provider

 Web events provider

 Web parts personalization provider

 Protected confi guration provider

 ASP.NET 3.0

 ASP.NET 3.0 (which was released on November 21, 2006, with .NET Framework 3.0) contained
some brand new basic components:

 Windows Communication Foundation (WCF)

 Windows Presentation Foundation (WPF)

 Windows Workfl ow Foundation (WF)

 From the perspective of ASP.NET, the most important new components in .NET Framework 3.0
were WCF and Windows CardSpace (WCS).

 Windows Communication Foundation (WCF)

 WCF (codenamed “ Indigo ”) is a standardized, service - oriented communication infrastructure
on the top of web services protocols that enables connecting to other services, even on platforms
other than the .NET Framework. WCF provides a standard programming model to developers,
so they can use the same environment whether they are developing web services or .NET remote
applications. Basically, developers can create Service - Oriented Architectures (SOA) by using WCF,
but WCF is capable of communicating with binary information or XML, as well as realizing peer -
 to - peer communication.

 WCF is a real framework, with a lot of benefi ts that include the following:

 Security

 Transaction management

 Secure message transfer

 Logging

 Trace

 Performance counters

 In WCF, there are two roles: the service provides one or more end points, and the clients connect to
this service, send requests to, and get responses from that.

 All endpoints contain three basic things:

 Address — The URL of the endpoint where clients can connect

 Binding — The mode of the communication (for example, HTTP, TCP/IP, and so on)

 Contract — The interface that defi nes the supported operations of the service

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH015.indd 664CH015.indd 664 9/6/10 6:06:15 PM9/6/10 6:06:15 PM

 Windows CardSpace (WCS)

 WCS is a new, secure, and comfortable way of managing identities, instead of the classic username -
 password method. Following are the main benefi ts of using WCS:

 It provides a simple way of creating and maintaining digital authentication.

 It can be also a local authentication provider that can generate secure personal tokens.

 WCS - based solutions are one of the most modern browser - based applications and web services.

 ASP.NET 3.5

 ASP.NET 3.5 was released on November 19, 2007. It was released with Visual Studio 2008 and
Windows Server 2008, and its main new features were the following:

 New data controls

 ASP.NET Ajax

 Support for HTTP pipelining and syndication feeds

 WCF Support for RSS, JSON, POX and Partial Trust

 New Data Controls

 Following were new data controls introduced with this version of ASP.NET:

 ListView — The ASP.NET ListView control binds and displays the items of a connected
data source. You can defi ne views and custom templates and styles, with the capability of
displaying individual items or groups of them. Users can edit, insert, and delete data, as well
as sort and page through displayed data.

 DataPager — The DataPager control provides paging functionality for ASP.NET data
controls that implement the IPageableItemContainer interface (for example ListView).

 ASP.NET Ajax

 Ajax (Asynchronous JavaScript and XML) is a web development technique used to build
interactive web applications. Ajax web applications can be more interactive, usable, and faster.
They don ’ t require the user to reload the full page after sending or receiving small data pieces
from the database server.

 Ajax is the combination of the following techniques:

 XHTML (or HTML) and CSS

 DOM

 XMLHttpRequest

 XML

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

ASP.NET Version History ❘ 665

CH015.indd 665CH015.indd 665 9/6/10 6:06:15 PM9/6/10 6:06:15 PM

666 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 ASP.NET Ajax is Microsoft ’ s free framework to give Ajax capabilities to the developers both on the
server and client sites. It contains the following components:

 ASP.NET Ajax Extensions with client - side JavaScript packages

 Server - side ASP.NET Ajax

 ASP.NET Ajax Control Toolkit

 jQuery Library

 With these components, developers can create their applications through either client - side or
server - side development, or a combination of both. On the client side, you have the Microsoft Ajax
Library, which includes the following:

 Visual and non - visual components, behaviors

 Browser compatibility

 Networking

 Core services

 On the server side, you have ASP.NET Ajax Extensions, which include the following:

 Script support

 Web services

 Server controls

 Support for HTTP Pipelining and Syndication Feeds

 After caching an ASP.NET request by IIS, a web server assigns a unique token based on the
authentication model (Windows, Basic or Digest) to that. This token is alive during the session and
is tied with the whole worker process.

 The account used in the request depends on the impersonation confi gured in the ASP.NET
application. The default setting is that the impersonation is disabled, but, in this case, the thread
runs under the default account of the worker process, which is not good, because it opens up a lot of
attack capabilities.

 The ASP.NET worker process has one main task. It hands the request over to the HTTP pipeline,
which is a chain of managed objects activated by creating a new instance of the HttpRuntime class.

 WCF Support for RSS, JSON, POX, and Partial Trust

 Instead of running a WCF application in full trusted environments, version 3.5 of ASP.NET enables
WCF applications also to run in partial trusted environments. Because WCF applications can be
deployed to medium trust IIS environments, shared hosting became available, too.

 Thanks to the extensible model of WCF, a lot of web standards (such as RSS, JSON and POX) are
also supported in ASP.NET 3.5.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH015.indd 666CH015.indd 666 9/6/10 6:06:15 PM9/6/10 6:06:15 PM

 ASP.NET 3.5 SP1

 Version 3.5 SP1 of ASP.NET was released on August 11, 2008, together with the Visual Studio 2008
Service Pack 1. New features included the following:

 Incorporation of ASP.NET dynamic data

 Support for managing the browser history from the ASP.NET Ajax applications

 The capability to combine multiple JavaScript fi les into a single fi le so that downloading can
be faster

 New namespaces (System.Web.Abstraction, System.Web.Routing)

 ASP.NET 4.0

 When Visual Studio 2010 and .NET 4 arrived, ASP.NET developers were provided with two
mature frameworks for building web applications — the ASP.NET Web Forms framework and the
ASP.NET Model - View - Controller (MVC) framework. Both build on top of the core ASP.NET
run - time, and both are getting some new features to start the next decade.

 Web Forms Framework

 ASP.NET Web Forms Framework enables quick - and - easy development of web applications.
Web Forms are similar to Windows Forms because they have similar properties, methods, and
events, but the web user interface (UI) elements also can render themselves to the markup language
requested by the client.

 Following are the main enhancements of the Web Forms in ASP.NET 4.0:

 Capability to set metatags

 Closer work with browsers on the client side

 Support for ASP.NET routing in Web Forms

 More control of view state

 More control of automatically generated IDs

 More control of the HTML generated by FormView and ListView

 Data source controls fi ltering

 Selected rows can be persisted in data controls

 MVC Framework

 The MVC pattern is very popular in architectures of modern
applications. As shown in Figure 15 - 1, applications with MVC
architecture can be separated into the following three main layers:

 Model — This layer implements the business logic for the
application ’ s data domain.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Model

View Controller

 FIGURE 15 - 1: MVC architecture

ASP.NET Version History ❘ 667

CH015.indd 667CH015.indd 667 9/6/10 6:06:16 PM9/6/10 6:06:16 PM

668 ❘ CHAPTER 15 ASP.NET VERSION HISTORY

 View — This layer displays the application ’ s UI.

 Controller — This layer controls user interaction, works with the Model, and selects the
appropriate View to render and display the UI.

 The fi rst MVC version in ASP.NET was released as an add - on framework for ASP.NET 3.5 SP1. The
second release of ASP.NET MVC is shipped with Visual Studio 2010. It focuses on better developer
productivity, and providing the infrastructure for handling large, enterprise web developer projects.

 MVC 2 is included in ASP.NET 4 Beta 2 and includes the following new features and capabilities:

 Areas — With the help of areas, controllers and views can be grouped to building subsets of
a large application. You can implement each area as a separate ASP.NET MVC project so
that the complexity of the application can be easier to maintain.

 Data Annotation Attribute validation support — This lets you add validation logic to a
model by adding metadata attributes to a class property. This provides a metadata - driven
validation of user inputs.

 Templated helpers — These help you associate display and edit templates with data types.
With the help of them, you can reduce the amount of typing of HTML code.

 Dynamic data — Dynamic data simplifi es the creation of data - driven web applications
by discovering the LINQ - to - SQL or Entity Framework data model, and determining the
appropriate rendering method of the UI.

 Following are the main benefi ts of the MVC architecture:

 It ’ s capable of building strongly layered applications so that business functions can be
separated from data accessing and displaying.

 Web applications with MVC architecture are easy to maintain.

 Creating unit tests for the application is easy.

 One more important benefi t of ASP.NET 4.0 that is particularly liked by many professional
developers is the capability in ASP.NET 4.0 to create pages optimized for search engines. Search
Engine Optimization (SEO) is the process of site and page optimization for search engines that
results in higher relevance and ranking.

 ASP.NET 4.0 provides some new capabilities designed to improve your sites and pages for SEO. The
most relevant new capabilities are the support of manipulating the metadata headers and search
engine friendly routing.

 SUMMARY

 As you have seen in this chapter, ASP.NET has experienced a huge amount of improvement over the
last eight years. It has evolved from a basic web development language to a very powerful, modern,
and impressive environment.

 In Chapter 16, you ’ ll learn more about charting controls in ASP.NET.

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH015.indd 668CH015.indd 668 9/6/10 6:06:16 PM9/6/10 6:06:16 PM

 ASP.NET Charting Controls

 For a long time, no Chart controls were shipped with Visual Studio. If you wanted to use
them, you had to buy one from a user interface (UI) component vendor, or download Open
Source charting components with the appropriate license. With Visual Studio 2010 and .NET
Framework 4.0, Microsoft ships two Chart controls — one for Windows Forms applications,
and another one for ASP.NET applications. In Chapter 14, you learned about the features of
the Windows Forms Chart control.

 Although ASP.NET and Windows Forms are very different in their UI principles, the two
 Chart controls share the same concepts. After you have learned one of them, you can start
using the other one in a few minutes.

 With Visual Studio 2010, you can drag a Chart control directly from the Toolbox to your
design surface. You can easily set up both Chart controls through the dozens of properties
they exploit. Charts have great design - time support. When you change a property, the
design - time view changes accordingly.

 You can choose from more than 30 chart types and customize them through general and chart
type - specifi c properties. The Chart control supports data binding and many manipulations,
including fi ltering, sorting values, and applying fi nancial formulas.

 Most concepts of the Windows Forms Chart control treated in Chapter 14 are the same for
the ASP.NET Chart control, including the chart elements and their structure, most property
and method names, chart types, three - dimensional chart handling, customization, data
manipulations, and many more. If you have skipped Chapter 15, you can still understand
how to use the ASP.NET Chart control. However, you won ’ t have the overview of charting
concepts that you would after reading that chapter.

16

CH016.indd 669CH016.indd 669 9/6/10 6:09:21 PM9/6/10 6:09:21 PM

670 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 In this chapter, you will learn about the specifi c features and behaviors for the ASP.NET Chart
control:

 Creating charts — You will learn about the basic steps of creating ASP.NET charts,
handling postback events, and binding your data to a chart.

 Rendering ASP.NET charts — Although, when using Windows Forms charts, you do not
have to deal with their rendering, because of the distributed nature of web applications,
with ASP.NET charts, you have several rendering options. You will learn about them in
this chapter.

 Chart state management — State management is a fundamental concept for all web
applications. In this chapter, you will learn how the ASP.NET Chart control implements
this concept.

 User interactivity — A chart itself is “ only ” a static fi gure conveying to you a thousand
words. Adding interactivity to a chart improves the user experience your customers can
have when facing their data. In this chapter, you ’ ll discover how you can use the ASP.NET
 Chart control to provide interactivity for the user.

➤

➤

➤

➤

 In this chapter, you will build and analyze simple ASP.NET Web Application
projects. Most code samples in this chapter can be found in the PetShopCharts
sample ASP.NET application. You can download the source code fi les from the
book ’ s download site at www.wrox.com . The focus is on the ASP.NET Chart
control and not on ASP.NET development in general. You do not need to set up
Internet Information Services (IIS) on your computer. All samples work with
the ASP.NET Development Server installed with Visual Studio 2010. You ’ ll be
able to build these samples even if you ’ re a novice web developer.

 CREATING CHARTS

 Chapter 14 examined many details surrounding the creation and use of Windows Forms Chart
controls, and discussed how to use them to create simple applications. Although the ASP.NET
 Chart control shares the same concepts as the Windows Forms control, you must follow
different guidelines when creating charts in web applications — because of the distributed
nature of the web. In this section, you create a few samples to learn how to start using charts
in ASP.NET.

 Adding a Chart Control to a Page

 Create a new ASP.NET Empty Web Application and name it SimpleAspNetChart . Add a new Web
Form item with the name Default.aspx . It becomes the default startup page of the application. Use
the Source view of Default.aspx page by clicking the Source tab at the bottom of the document
window — unless you are not already in this view. On the Toolbox, expand the Data tab, drag a

CH016.indd 670CH016.indd 670 9/6/10 6:09:25 PM9/6/10 6:09:25 PM

 Chart control, and drop it between the < div > and < /div > HTML tags. The chart automatically
creates Series and ChartArea elements, as you can see in Listing 16 - 1.

 LISTING 16 - 1: Default.aspx after Adding the Chart Control

 <%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=
 “Default.aspx.cs”
 Inherits=”SimpleAspNetChart.Default” % >

 < %@ Register assembly=”System.Web.DataVisualization, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35”
 namespace=”System.Web.UI.DataVisualization.Charting”
 tagprefix=”asp” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:Chart ID=”Chart1” runat=”server” >
 < Series >
 < asp:Series Name=”Series1” >
 < /asp:Series >
 < /Series >
 < ChartAreas >
 < asp:ChartArea Name=”ChartArea1” >
 < /asp:ChartArea >
 < /ChartAreas >
 < /asp:Chart >
 < /div >
 < /form >
 < /body >
 < /html >

 As the < %@ Register % > directive shows, the Chart control can be found in the System.Web
.DataVisualization assembly.

 When you turn to Design view, you can see the chart displays sample data. But when you run the
application, only an empty chart is displayed. You can add data points to the chart in the Design
view by editing the Points property of Series1 in the Series Collection Editor or manually typing
data points in the Source view.

 < asp:Chart ID=”Chart1” runat=”server” Width=”490px” >
 < Series >
 < asp:Series Name=”Series1” >

Creating Charts ❘ 671

CH016.indd 671CH016.indd 671 9/6/10 6:09:39 PM9/6/10 6:09:39 PM

672 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 < Points >
 < asp:DataPoint XValue = “0” YValues = “15” / >
 < asp:DataPoint XValue = “1” YValues = “20” / >
 < asp:DataPoint XValue = “2” YValues = “28” / >
 < asp:DataPoint XValue = “3” YValues = “13” / >
 < asp:DataPoint XValue = “4” YValues = “7” / >
 < /Points >
 < /asp:Series >
 < /Series >
 < ChartAreas >
 < asp:ChartArea Name=”ChartArea1” >
 < /asp:ChartArea >
 < /ChartAreas >
 < /asp:Chart >

 Now, when you run the application, you can see a chart containing fi ve data points, as shown
in Figure 16 - 1.

 FIGURE 16 - 1: A simple Chart control with fi ve data points

 You can set up data points in the ASP.NET Chart control exactly as you do it
with the Windows Forms control. Select the Chart control in the Design view,
and, in the Properties window, scroll down to the Series property that can be
found under the Chart category. Click the ellipsis button of the Series property
to display the Series Collection Editor, and fi nd the Points property for Series1 .

CH016.indd 672CH016.indd 672 9/6/10 6:09:39 PM9/6/10 6:09:39 PM

 Of course, you can set up a Chart from code. You can carry out the initialization in the Page_Load
event, as Listing 16 - 2 shows.

 LISTING 16 - 2: Default.aspx . cs with Simple Chart Initialization Codeusing System;

using System.Drawing;
using System.Web.UI.DataVisualization.Charting;

namespace SimpleAspNetChart
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // --- Set up chart title
 var title = new Title(“This is an ASP.NET Chart control”);
 title.Font = new System.Drawing.Font(“Calibri”, 24F, FontStyle.Bold);
 Chart1.Titles.Add(title);

 // --- Set up chart type
 var series1 = Chart1.Series[0];
 series1.Points.Clear();
 series1.ChartType = SeriesChartType.SplineRange;

 // --- Create data points
 for (int i = 0; i < = 10; i++)
 Chart1.Series[0].Points.Add(new DataPoint(i,
 Math.Pow(Math.Abs(5 - i), 2.5)));
 }
 }
}

 The ASP.NET Chart control and all related types can be found in the System.Web.UI
.DataVisualization.Charting namespace. The Page_Load event handler method sets up
the chart title and the Series1 chart type to SplineRange and then creates data points using a
simple formula.

 Because you create data points programmatically in the Page_Load event, you should remove the
previously added data points from Default.aspx . You can also change the size of the chart.

 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:Chart ID=”Chart1” runat=”server” Height=”400px” Width=”600px” >
 < Series >
 < asp:Series Name=”Series1” >
 < /asp:Series >
 < /Series >
 < ChartAreas >
 < asp:ChartArea Name=”ChartArea1” >
 < /asp:ChartArea >
 < /ChartAreas >

Creating Charts ❘ 673

CH016.indd 673CH016.indd 673 9/6/10 6:09:45 PM9/6/10 6:09:45 PM

674 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 < /asp:Chart >
 < /div >
 < /form >
 < /body >

 Figure 16 - 2 shows the chart created with
this code.

 Setting up Charts in an Event

Handler Method

 Just as with other controls, charts can be set
up in event handler methods. Let ’ s change the
formula in Listing 16 - 2 so that the user can
specify the number of points to display and
the exponent used in the Math.Pow function.
Listing 16 - 3 shows how the Default.aspx
fi le is changed to provide input fi elds for these
two arguments.

 LISTING 16 - 3: Default.aspx with New Input Fields for User - Specifi ed Arguments

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”SimpleAspNetChart.Default” % >

 < %@ Register assembly=”System.Web.DataVisualization, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35”
 namespace=”System.Web.UI.DataVisualization.Charting”
 tagprefix=”asp” % >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 Number of data points:
 < asp:TextBox ID=”PointsNumBox” runat=”server” > < /asp:TextBox >
 < br / >
 Exponent in formula:
 < asp:TextBox ID=”ExponentBox” runat=”server” > < /asp:TextBox >
 < br / > < br / >
 < asp:Button ID=”DrawChartButton” runat=”server”
 Text=”Draw the Chart!” onclick=”DrawChartButton_Click” / >
 < br / >
 < asp:Chart ID=”Chart1” runat=”server” Height=”400px” Width=”600px” >
 < Series >
 < asp:Series Name=”Series1” >
 < /asp:Series >
 < /Series >

 FIGURE 16 - 2: Chart control initialized in code - behind

CH016.indd 674CH016.indd 674 9/6/10 6:09:45 PM9/6/10 6:09:45 PM

 < ChartAreas >
 < asp:ChartArea Name=”ChartArea1” >
 < /asp:ChartArea >
 < /ChartAreas >
 < Titles >
 < asp:Title Font=”Calibri, 24pt” Name=”Title1” >
 < /asp:Title >
 < /Titles >
 < /asp:Chart >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [Default.aspx] available for download at Wrox.com

 The two input parameters are represented by the PointsNumBox and ExponentBox controls. When the
user clicks DrawChartButton , the DrawChartButton_Click event handler method is executed, and it
sets up the chart ’ s data points, as Listing 16 - 4 shows.

 LISTING 16 - 4: Default.aspx.cs Implementing the DrawChartButton_Click Handler

using System;
using System.Drawing;
using System.Web.UI.DataVisualization.Charting;

namespace SimpleAspNetChart
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 var series1 = Chart1.Series[0];
 series1.ChartType = SeriesChartType.SplineRange;
 SetTitleForInvalidState();
 }

 protected void DrawChartButton_Click(object sender, EventArgs e)
 {
 // --- Process input parameters
 int numberOfPoints;
 double exponent;
 if (!Int32.TryParse(PointsNumBox.Text, out numberOfPoints) ||
 !Double.TryParse(ExponentBox.Text, out exponent))
 {
 SetTitleForInvalidState();
 return;
 }
 // --- Create data points
 for (int i = 0; i < numberOfPoints; i++)
 Chart1.Series[0].Points.Add(new DataPoint(i,
 Math.Pow(Math.Abs(numberOfPoints / 2 - i), exponent)));

Creating Charts ❘ 675

continues

CH016.indd 675CH016.indd 675 9/6/10 6:09:46 PM9/6/10 6:09:46 PM

676 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-4 (continued)

 // --- Set title
 var title = Chart1.Titles[0];
 title.Text = String.Format(“{0} points with exponent {1}”,
 numberOfPoints, exponent);
 title.ForeColor = Color.Black;
 }

 private void SetTitleForInvalidState()
 {
 var title = Chart1.Titles[0];
 title.Text = “No valid chart data specified yet...”;
 title.ForeColor = Color.Maroon;
 }
 }
}

 Code fi le [Default.aspx.cs] available for download at Wrox.com

 DrawChartButton_Click checks if the input
parameters can be parsed as numbers. If they
cannot, the chart title is modifi ed to signal this
fact; otherwise, data points are calculated and
the chart title is changed. Figure 16 - 3 shows the
chart after the DrawChartButton_Click event
handler has been executed.

 Binding Data to the Chart

 Most charts use data points as result of a report
or query against a database. ASP.NET controls
support the standard .NET data binding
mechanism, and the Chart control also utilizes
this to provide you with a convenient and easy
way to set up your data points. In Chapter 14,
you built a simple data - bound chart using a
LINQ expression, and also saw an overview
of several data binding methods supported by
the Chart control.

 The ASP.NET Chart control supports the same
mechanisms as the Windows Forms Chart control. This section examines another data binding
sample utilizing the Chart.DataBindCrossTable method that provides a great support to obtain
data points for multi - series charts.

 Download the PetShopCharts sample application and open its solution fi le in Visual Studio 2010.
Open the DataBindCrossTable.aspx fi le in Code view. This page connects to a Microsoft Access

 FIGURE 16 - 3: Chart after the “ Draw the Chart! ” button

was clicked

CH016.indd 676CH016.indd 676 9/6/10 6:09:46 PM9/6/10 6:09:46 PM

database representing the Enterprise Resource Planning (ERP) system of a company managing a
network of small pet shops, and creates a sales history chart. Listing 16 - 5 shows how the page binds
the sales information coming from the database to the chart.

 LISTING 16 - 5: DataBindCrossTable.aspx.cs

using System;
using System.Data.OleDb;
using System.Data;
using System.Web.UI.DataVisualization.Charting;

namespace PetShopCharts
{
 public partial class DataBindCrossTable : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT Period, Total, Category from SalesByYearAndPetKind”;
 var command = new OleDbCommand(commandStr, connection);
 command.Connection.Open();
 var reader = command.ExecuteReader(CommandBehavior.CloseConnection);
 Chart1.DataBindCrossTable(
 reader,
 “Category”,
 “Period”,
 “Total”,
 “”);
 reader.Close();
 connection.Close();
 foreach (var series in Chart1.Series)
 {
 series.ChartType = SeriesChartType.Spline;
 series.BorderWidth = 4;
 }
 }
 }
}

 Code fi le [DataBindCrossTable.aspx.cs] available for download at Wrox.com

 The page uses the standard pattern to set up a connection to an Access database and prepares a
 reader object to execute a query. The GetChartDataConnection method of the Helpers.Utility
static class is responsible for preparing this connection, and its source code is very short:

public static OleDbConnection GetChartDataConnection(Page page)
{
 string fileNameString = page.MapPath(“.”) + “\\App_Data\\PetShopData.mdb”;
 string myConnectionString = “PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source=”
 + fileNameString;
 return new OleDbConnection(myConnectionString);
}

Creating Charts ❘ 677

CH016.indd 677CH016.indd 677 9/6/10 6:09:47 PM9/6/10 6:09:47 PM

678 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 The lion ’ s share of the work is done by the DataBindCrossTable method:

Chart1.DataBindCrossTable(
 reader,
 “Category”,
 “Period”,
 “Total”,
 “”);

 This method reads the content represented by the reader object and groups the records into a
series according to the fi eld name passed in the second argument. The third and fourth arguments
defi ne the fi elds providing the values for the XValue and YValues properties of data points,
respectively. The fi fth argument allows setting up data bindings for any other data point properties.
So, this sample creates separate data series according to the Category fi eld using Period as the
X value and Total as the Y value of data points.

 Because DataBindCrossTable creates a new series, you must defi ne the visual properties of
these newly instantiated series. This is why the DataBindCrossTable invocation is followed by
a foreach cycle:

foreach (var series in Chart1.Series)
{
 series.ChartType = SeriesChartType.Spline;
 series.BorderWidth = 4;
}

 The DataBindCrossTable.aspx fi le contains several other visual properties for the chart, but
those do not infl uence data binding. When you run the application and navigate to the sample page,
you can see that fi ve series are created as a result of the DataBindCrossTable call, as shown in
Figure 16 - 4.

 FIGURE 16 - 4: Chart created with DataBindCrossTable

CH016.indd 678CH016.indd 678 9/6/10 6:09:47 PM9/6/10 6:09:47 PM

 RENDERING ASP.NET CHARTS

 Thus far, you have learned how to create simple ASP.NET charts using the designer, how to set up
data points manually and programmatically, and how to bind information coming from a database
to your chart.

 Although when using Windows Forms charts you do not have to deal with the rendering of
charts, because of the distributed nature of web applications, with ASP.NET charts, you have
several rendering options. This section examines a few scenarios and how to choose the appropriate
rendering option in a certain scenario.

 There is no HTML tag for describing a chart or any of the chart elements. When you run the
page that generates the output shown in Figure 16 - 4, very simple HTML content is generated, as
Listing 16 - 6 shows.

 LISTING 16 - 6: Output HTML Content for Figure 16 - 4

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title >
 Data binding with the DataBindCrossTable method
 < /title >
 < /head >
 < body >
 < form method=”post” action=”DataBindCrossTable.aspx” id=”form1” >
 < div class=”aspNetHidden” >
 < input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
 value=”/wEPDwUJNDI2M...” / >
 < /div >
 < div >
 < img id=”Chart1” src=”/ChartImg.axd?i=chart_7cf32...” alt=””
 style=”height:400px;width:800px;border-width:0px;” / >
 < /div >
 < /form >
 < /body >
 < /html >

 The chart is represented by an image as the < img > HTML tag signs it. The source of the image is a
URL, like this:

=”/ChartImg.axd?i=chart_7cf323be4363473f9b87dbb136452ccd_0.png &
 g=751de08f64274dc0a8e4ab40b116ae51

 The chart images are managed by an HttpHandler that is accessed with the /ChartImg.axd
address. The i and g request arguments identify the image to be retrieved. The ASP.NET Chart
control has several properties to defi ne how chart images are rendered. You can fi nd them under the

Rendering ASP.NET Charts ❘ 679

CH016.indd 679CH016.indd 679 9/6/10 6:09:48 PM9/6/10 6:09:48 PM

680 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

Image category in the Properties window, as shown in
Figure 16 - 5.

 Image URL Rendering

 By default, the RenderType property of a Chart
control is set to ImageTag (as Figure 16 - 5 shows).
The ImageLocation and ImageStorageMode
properties determine how images are stored
and retrieved when the HTML page is about
to display them. ImageStorageMode is set to
 UseHttpHandler by default, but you can change it
to use UseImageLocation to specify a folder where
the generated chart images should be put.

 You can also defi ne the type of image used for the chart
picture by setting up the ImageType property to one
of the Bmp , Jpeg , Png (this is the default), or Emf values. When you select the Jpeg format, you can
also set the Compression property to a value between 0 and 100, where 0 provides the best picture
quality and 100 the worst.

 Changing Image Location

 When you render a chart picture as an image, it is automatically saved to a fi le. The ImageLocation
property determines the absolute or relative location and name of this fi le, and the fi le extension is
automatically added, depending on the image type specifi ed.

 Open the SimpleAspNetChart project again to play with the image rendering options. Create
a new folder under the project root in Solution Explorer and name it ChartImages . Change the
 ImageStorageMode property to UseImageLocation . This will cause the image to be stored in
a well - defi ned folder on the web server. Set the ImageLocation property to /ChartImages/
ChartPic_#SEQ(4,3) . This value tells the chart control the location of where the rendered chart
picture fi les should be stored. The #SEQ(4,3) formatter instructs the chart to create a sequential
number as the part of the chart picture fi lename, where 4 is the maximum sequential number and 3
is the image fi le time to live (in seconds).

 Start the application by pressing Ctrl+F5 and click the “ Draw the Chart! ” button three times
with different input parameters. Without closing the application, go back to Visual Studio. In the
Solution Explorer, right - click on the ChartImages folder and then click the Open Folder command
in Windows Explorer. You can see all chart images rendered since the application was launched, as
shown in Figure 16 - 6.

 You can recognize the four chart pictures already rendered. The fi rst holds only a chart title.
Now, click the “ Draw the Chart! ” button again with a new set of parameters and look back to
the ChartImages folder. It still has four image fi les, but the fi rst picture was overridden with the
fi le representing the last chart — as a result of 4 in #SEQ(4,3) . You can see the folder content in
Figure 16 - 7.

 FIGURE 16 - 5: Chart properties for image

handling

CH016.indd 680CH016.indd 680 9/6/10 6:09:48 PM9/6/10 6:09:48 PM

 FIGURE 16 - 7: The new picture fi le overrides an old one.

 FIGURE 16 - 6: Chart pictures rendered in the ChartImages folder

Rendering ASP.NET Charts ❘ 681

CH016.indd 681CH016.indd 681 9/6/10 6:09:49 PM9/6/10 6:09:49 PM

682 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 When you look at the HTML source of the chart ’ s page, you can see that now the < img > tag uses a
direct reference to the picture fi le:

 < img id=”Chart1” src=”/ChartImages/ChartPic_000001.png?06b79a20-fae8-47f7-
 a1c2-2e55a3c9b3d9” alt=”” style=”height:400px;width:600px;border-width:0px;” / >

 Changing the Image File Format

 You can change ImageType property to defi ne the fi le type of the image to be rendered for the chart.
This property takes its value from the ChartImageType enumeration. You do not have too many
options, and there is no way to select any subtype for a selected image type. Table 16 - 1 summarizes
the types you can choose from, and gives you several hints for which scenarios to use them in.

 TABLE 16 - 1: ImageType Property Values

 IMAGETYPE VALUE DESCRIPTION

 BMP

 This is an uncompressed BMP format with 32 - bit pixel depth. An image

with 600x400 pixels takes about 938 KB. This format requires much

more bandwidth than the others to transfer the picture over the network.

However, on the server side, it may require fewer CPU cycles to render

than the others, because of the lack of compression.

 Use this format only when you explicitly need a BMP format on the

client — or on the server side for further processing.

 JPEG

 The well - known JPEG format produces a high picture quality by default.

You can use the Compression property to defi ne the JPEG compression

value (between 0 and 100, where 0 provides the best picture quality,

100 the worst). For the 600x400 pixels picture shown in Figure 16 - 3, it

provides the size of 58 KB and 15 KB with Compression set to 0 and 80,

respectively. This format can produce the smallest fi les in size — for the

price of quality degradation.

 You can eff ectively use this format for charts with few colors and large

areas having the same color and tone.

 PNG

 As the default format for chart images, the PNG format is the best in most

scenarios. It provides a lossless compression for chart images, and so

it keeps their quality high with a relatively small size. The compression

algorithm used by PNG is especially great for chart - like bitmaps, and often

produces smaller fi les than JPEG .

 The picture in Figure 16 - 3 produces a PNG fi le with a size of 18 KB. In

contrast, the JPEG fi le takes 58 KB. Unless you have some special reason,

use the PNG format type.

CH016.indd 682CH016.indd 682 9/6/10 6:09:49 PM9/6/10 6:09:49 PM

 If you have situations where it ’ s diffi cult to choose the appropriate fi le type, defi ne test scenarios,
execute, and evaluate them. Using the default Png format works in most scenarios.

 Using Charts with Legacy Web Sites

 Often, you must integrate your web pages into legacy websites. You can embed your charts created
with the ASP.NET Chart control in the same way as any other ASP.NET pages. One solution is to
use the HTML < iframe > tag that defi nes an inline frame that contains another document.

 The PetChartsSample project has a sample page named HtmlPageWithIFrame.html that represents
a legacy website ’ s page. The source code of the page is really simple, as Listing 16 - 7 shows.

 LISTING 16 - 7: HtmlPageWithIFrame.html

 < html >
 < head >
 < title > Leagcy HTML Page using an IFRAME tag < /title >
 < /head >
 < body >
 < h3 >
 This sample demonstrates how to use the ASP.NET Chart control
 within an & lt;iframe & gt; tag of an existing Legacy web page.
 < /h3 >
 < iframe style=”WIDTH: 800px; HEIGHT: 400px” marginWidth=”0”
 marginHeight=”0” src=”DataBindCrossTable.aspx” frameBorder=”YES”
 width=”800” height=”400”
 scrolling=”no” / >
 < iframe style=”WIDTH: 200px; HEIGHT: 400px” marginWidth=”10”
 marginHeight=”0” src=”LegacyHtmlPage.htm” frameBorder=”NO”
 width=”800” height=”400”
 scrolling=”no” / >
 < /body >
 < /html >

 Code fi le [HtmlPageWithIFrame.html] available for download at Wrox.com

 IMAGETYPE VALUE DESCRIPTION

 EMF This format produces images with the Enhanced Metadata Format

(EMF). This format records the graphical primitives used to draw a picture,

and so it is a vector format combined with the capability to also store

bitmaps. Pictures with this format often have the smallest size, mainly

for line charts. However, the same EMF fi les can be displayed diff erently,

depending on the browser type or other application opening the fi les,

unlike the other formats.

Rendering ASP.NET Charts ❘ 683

CH016.indd 683CH016.indd 683 9/6/10 6:09:50 PM9/6/10 6:09:50 PM

684 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 The page contains two < iframe > tags. The fi rst encapsulates the DataBindCrossTable.aspx page
that produces the chart shown in Figure 16 - 4. You do not have to change that page at all to embed the
chart into a legacy website. The second < iframe > embeds another HTML page from the same legacy
site. Figure 16 - 8 shows what you see when displaying the HtmlPageWithIFrame.htm page.

 FIGURE 16 - 8: Adding a Chart to a legacy site

 Binary Stream Rendering

 When binary streaming is used, the chart image is sent directly to the client. When the browser
requests the image of the chart, it does this in the same manner as when it requests a static image
from the web server. This is particularly useful when the chart image is frequently modifi ed at run -
 time, or when a web form is used. The binary stream rendering method is fast because it does not
require any disk space or security rights for writing data to the temporary image fi les.

 You can implement binary chart streaming easily with two pages:

 First page — A page that creates the Chart control. This is a simple .aspx page, where the
 Chart control ’ s RenderType property is set to BinaryStreaming . On this page, all HTML
tags are removed, leaving only the Chart defi nition in XML. Of course, you can still use
code - behind to initialize the chart dynamically.

 Second page — Another page that makes reference to the fi rst page with the Chart control.
This page contains an < img > tag (or an < asp:Image > element) with its src (or ImageUrl)
attribute set to the name of the fi rst page.

 Open the PetShopCharts project, were you can fi nd an example for binary rendering. The Chart
control is defi ned in the DogSalesChart.aspx fi le, as shown in Listing 16 - 8.

➤

➤

CH016.indd 684CH016.indd 684 9/6/10 6:09:50 PM9/6/10 6:09:50 PM

 LISTING 16 - 8: DogSalesChart.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”DogSalesChart.aspx.cs”
 Inherits=”PetShopCharts.DogSalesData” % >

 < asp:chart id=”Chart1” runat=”server” height=”500px” width=”800px”
 rendertype=”BinaryStreaming” BackColor=”Khaki” BackGradientStyle=”DiagonalLeft”
 BackSecondaryColor=”DarkGoldenrod” >
 < ChartAreas >
 < asp:ChartArea Name=”ChartArea1” >
 < AxisY Title=”Sales Number” TitleFont=”Calibri, 14.25pt, style=Bold” >
 < MinorGrid Enabled=”True” Interval=”100” LineColor=”Silver” / >
 < /AxisY >
 < AxisX Interval=”1” IsLabelAutoFit=”False” LabelAutoFitMaxFontSize=”12”
 LabelAutoFitMinFontSize=”12” >
 < MajorGrid LineColor=”Silver” / >
 < LabelStyle Font=”Calibri, 12pt, style=Bold” / >
 < /AxisX >
 < /asp:ChartArea >
 < /ChartAreas >
 < Legends >
 < asp:Legend BackColor=”PapayaWhip” BorderColor=”DimGray”
 DockedToChartArea=”ChartArea1” Name=”Legend1” >
 < /asp:Legend >
 < /Legends >
 < /asp:chart >

 Code fi le [DogSalesChart.aspx] available for download at Wrox.com

 As you see, this chart does not contain any HTML elements, only the < asp:Chart > element.
Fortunately, the designer still supports editing all the chart properties just as if it were embedded in
a usual .aspx page. The RenderType property of the chart is set to BinaryStream .

 The DogSalesChart.aspx.cs contains the logic that obtains chart data with the DataBindCrossTable
methods using the same pattern as shown in Listing 16 - 6. The code - behind fi le uses the region page
parameter to query the sales statistics for the specifi ed region, as the following code extract shows:

protected void Page_Load(object sender, EventArgs e)
{
 var region = Request[“region”];
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT PetName, Total, ShopName from DogSalesData where” +
 “ Region = ‘” + region + “’;”;
 var command = new OleDbCommand(commandStr, connection);
 // . . .
}

 Listing 16 - 9 shows the BinaryStreamRendering.aspx fi le that references DogSalesChart.aspx .

Rendering ASP.NET Charts ❘ 685

CH016.indd 685CH016.indd 685 9/6/10 6:09:51 PM9/6/10 6:09:51 PM

686 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 LISTING 16 - 9: BinaryStreamRendering.asxp

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”BinaryStreamRendering.aspx.cs”
 Inherits=”PetShopCharts.BinaryStreamRendering” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Sales Data through binary stream rendering < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < table >
 < tr >
 < td colspan=2 >
 < h2 > Dog Sales in the Western Region < /h2 >
 < asp:Image ID=”ImageWest”
 ImageUrl=”DogSalesChart.aspx?region=West”
 runat=”server” Height=”500px” Width=”800px” / >
 < /td >
 < /tr >
 < tr >
 < td >
 < h4 > Dog Sales in the Eastern Region < /h4 >
 < asp:Image ID=”ImageEast”
 ImageUrl=”DogSalesChart.aspx?region=East”
 runat=”server” Height=”250px” Width=”400px” / >
 < /td >
 < td >
 < h4 > Dog Sales in the Northern Region < /h4 >
 < asp:Image ID=”ImageNorth”
 ImageUrl=”DogSalesChart.aspx?region=North”
 runat=”server” Height=”250px” Width=”400px” / >
 < /td >
 < /tr >
 < /table >
 < /form >
 < /body >
 < /html >

 Code fi le [BinaryStreamRendering.aspx] available for download at Wrox.com

 This fi le contains three < asp:Image > elements referencing DogSalesChart.aspx , with three
different region settings. Of course, you can set any other parameters of the Image element.
The second and third images display the original image in half size. Figure 16 - 9 shows a part
of the BinaryStreamRendering.aspx page as you see it in the browser.

CH016.indd 686CH016.indd 686 9/6/10 6:09:51 PM9/6/10 6:09:51 PM

 The binary stream rendering is another simple solution to embed chart images into a legacy website.
You do not have to touch the .aspx page. You create the referencing page with an HTML < img >
tag. Listing 16 - 10 shows an example.

 LISTING 16 - 10: BinaryStreamRendering.htm

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Chart in a legacy web site with binary streaming < /title >
 < /head >
 < body >
 < h2 > Dog Sales in the Southern Region < /h2 >
 < img src=”DogSalesChart.aspx?region=South” height=”500px” width=”800px”
 alt=”Southern Region” / >
 < /body >
 < /html >

 Code fi le [BinaryStreamRendering.htm] available for download at Wrox.com

 FIGURE 16 - 9: Chart embedded with binary stream rendering

Rendering ASP.NET Charts ❘ 687

CH016.indd 687CH016.indd 687 9/6/10 6:09:52 PM9/6/10 6:09:52 PM

688 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 CHART STATE MANAGEMENT

 View state is used by the ASP.NET page framework to automatically save the page and its control
values prior to rendering the page, and state management is accomplished using view state. When an
ASP.NET page is processed, the current state of the page and its controls are converted into a string
and saved in the page as a hidden fi eld with a __VIEWSTATE name. When the page is posted back
to the server (such as through a postback event when a server - side control is clicked), the page parses
the view state string at page initialization, and restores property information in the page.

 Charts generally obtain their data from persisted information — for example, from a fi le or a
database — and their state information is not necessarily stored in the view state string. By default,
the Chart control does not use view state. Its EnableViewState property is set to false .

 However, there are situations when using the view state provides better performance. If you expect
many postbacks to the page with a chart, and the chart data is expensive to reproduce, using the
view state can help you to be frugal with system resources and provide a better response time. Also,
you can benefi t from state management when you create the chart information on - the - fl y.

 When using state management, you should consider the increase in the amount of data sent from the
server to the client. Using state management on appearance settings causes a relatively small increase
in network traffi c, while using state management on several hundred or thousand data points causes
a large increase in network traffi c.

 This section examines a few chart samples to demonstrate state management.

 Saving Chart State

 When you work with chart data that is
expensive to produce (or is unrepeatable)
and you expect postbacks to the chart
page, one possible way to persist the data
between postbacks is enabling chart state
management. There is a sample in the
 PetShopCharts project representing this
scenario.

 The BasicChartStateManagement.aspx
page generates a random series in the
 Page_Load method, as shown in
Figure 16 - 10.

 The page contains two checkboxes that
allow you to add or remove an upper and a lower bounding spline series to the chart as soon as you
check or uncheck them. Every time you change the Checked property of any checkbox control, a
postback occurs. If you cannot save the state of the chart between postbacks, you lose the random
series generated in the Page_Load method.

 Listing 16 - 11 shows the code - behind fi le for the page that allows you to store series information in
the page ’ s view state.

 FIGURE 16 - 10: Random series on the BasicChartState

Management.aspx page

CH016.indd 688CH016.indd 688 9/6/10 6:09:53 PM9/6/10 6:09:53 PM

 LISTING 16 - 11: BasicChartStateManagement.aspx.cs

using System;
using System.Web.UI.DataVisualization.Charting;

namespace PetShopCharts
{
 public partial class BasicChartStateManagement : System.Web.UI.Page
 {
 protected void Form_Init(object sender, EventArgs e)
 {
 Chart1.EnableViewState = true;
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 GenerateRandomData(Chart1.Series[0]);
 if (UpperSpline.Checked)
 AddNewSeries(“UpperSpline”, 5.0);
 else RemoveSeries(“UpperSpline”);
 if (LowerSpline.Checked)
 AddNewSeries(“LowerSpline”, -5.0);
 else RemoveSeries(“LowerSpline”);
 }

 private void GenerateRandomData(Series series)
 {
 const double MaxStep = 5.0;
 series.Points.Clear();
 var rand = new Random((int)DateTime.Now.Ticks);
 var lastValue = 5.0;
 for (int i = 0; i < 50; i++)
 {
 series.Points.AddXY(i + 1, lastValue);
 lastValue += MaxStep * rand.NextDouble() - MaxStep/2;
 series.Points[i].YValues[0] = lastValue;
 }
 }

 private void AddNewSeries(string name, double distance)
 {
 RemoveSeries(name);
 var baseSeries = Chart1.Series[“Default”];
 var newSeries = new Series(name);
 newSeries.ChartType = SeriesChartType.Spline;
 newSeries.BorderWidth = baseSeries.BorderWidth;
 Chart1.Series.Add(newSeries);
 foreach (var point in baseSeries.Points)
 {
 newSeries.Points.AddXY(point.XValue, point.YValues[0] + distance);
 }
 }
 continues

Chart State Management ❘ 689

CH016.indd 689CH016.indd 689 9/6/10 6:09:53 PM9/6/10 6:09:53 PM

690 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-11 (continued)

 private void RemoveSeries(string name)
 {
 var index = Chart1.Series.IndexOf(name);
 if (index > = 0) Chart1.Series.RemoveAt(index);
 }
 }
}

 Code fi le [BasicChartStateManagement.aspx.cs] available for download at Wrox.com

 The key to the solution is the Form_Init method that turns on chart state management by setting the
 EnableViewState property to true . The Page_Load method checks whether the current request
for the page is a postback. If it is the fi rst
call, the random series is generated. After
the default series is either generated or
loaded from the view state, the upper and
lower splines are drawn according to the
state of checkboxes.

 When a bounding spline is selected, the
 AddNewSeries method can iterate through
the data points of the existing series and
create the points for the selected bounding
series. Figure 16 - 11 shows what happens
when you check both splines. As you can
see, the line enclosed between the upper and
lower lines is exactly the same as the one
drawn in Figure 16 - 10.

 The HTML page generated for this chart (excluding the chart picture) is about 16 KB when state
management is turned on, and about 3 KB when turned off. The difference is 13 KB, and this space
is used by 150 data points (3 series and 50 data points in each).

 Advanced Chart State Management

 The BasicChartStateManagement.aspx page saves more state information than required, because
it saves the state of the additional series that can be calculated (and it ’ s cheap) from the data
generated for the base series. If there were a way you could tell the chart to save only the base series,
you could save resources reserved by about a hundred data points. This is especially important
when your chart contains more — let ’ s says a few hundred or thousand — data points.

 Chart Serialization Basics

 The Chart control is designed to provide you with fl exibility in its state management. You can
set the ViewStateContent property of the chart to infl uence what kind of data is to be saved into
the view state. The values of ViewStateContent are taken from the SerializationContents
enumeration. Table 16 - 2 summarizes the enumeration values you can use.

 FIGURE 16 - 11: The chart preserves its state between

postbacks.

CH016.indd 690CH016.indd 690 9/6/10 6:09:54 PM9/6/10 6:09:54 PM

 The Chart control has a Serializer property with a ChartSerializer object instance behind
it. Using the properties of ChartSerializer , you can control how the chart data is serialized.
By setting the SerializableContent property, you can exactly set the string value representing
the chart ’ s view state.

 Using Serialization in State Management

 In the PetShopCharts project, you can fi nd the AdvancedChartStateManagement.aspx page that
demonstrates these view state serialization concepts. The UI of the page is exactly the same as for
the BasicChartStateManagement.aspx page. Listing 16 - 12 shows the source code of the code -
 behind fi le. A few methods have not changed, and their body is omitted for the sake of brevity.

 LISTING 16 - 12: AdvancedChartStateManagement.aspx.cs

using System;
using System.Web.UI.DataVisualization.Charting;
using System.IO;

namespace PetShopCharts
{
 public partial class AdvancedChartStateManagement : System.Web.UI.Page
 {
 protected void Form_Init(object sender, EventArgs e)
 {
 Chart1.EnableViewState = true;
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 var content = SerializationContents.Default;
 if (!IsPostBack)

 TABLE 16 - 2: SerializationContents Values

 VALUE DESCRIPTION

 Default Serialize all chart content with non - default property values. This includes

appearance properties, series and their data points, axis minimums/maximums,

and so forth.

 Data Serialize data values from all chart series. This does not include appearance

properties.

 Appearance Serialize all appearance properties (such as color or line style) if they have

non - default values.

 All Serialize all chart information. This includes all appearance properties and data

point values.

continues

Chart State Management ❘ 691

CH016.indd 691CH016.indd 691 9/6/10 6:09:54 PM9/6/10 6:09:54 PM

692 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-12 (continued)

 {
 GenerateRandomData(Chart1.Series[0]);
 var sw = new StringWriter();
 Chart1.Serializer.Content = content;
 Chart1.Serializer.Save(sw);
 Chart1.ViewStateData = sw.ToString();
 }
 else
 {
 var sr = new StringReader(Chart1.ViewStateData);
 Chart1.Serializer.Content = content;
 Chart1.Serializer.Load(sr);
 }

 if (UpperSpline.Checked)
 AddNewSeries(“UpperSpline”, 5.0);
 else RemoveSeries(“UpperSpline”);
 if (LowerSpline.Checked)
 AddNewSeries(“LowerSpline”, -5.0);
 else RemoveSeries(“LowerSpline”);
 }

 private void GenerateRandomData(Series series)
 {
 // --- No change
 }

 private void AddNewSeries(string name, double distance)
 {
 // --- No change
 }

 private void RemoveSeries(string name)
 {
 // --- No change
 }
 }
}

 Code fi le [AdvancedChartStateManagement.aspx.cs] available for download at Wrox.com

 The Page_Load method is the one that has changed to implement this advanced view state
management. It starts with setting the content variable to SerializationContents.Default
that will be used later to defi ne what chart properties should be serialized. If the page is about to
be loaded the fi rst time, the base series data points are generated and immediately saved into the
 Chart ’ s view state:

GenerateRandomData(Chart1.Series[0]);
var sw = new StringWriter();

CH016.indd 692CH016.indd 692 9/6/10 6:09:55 PM9/6/10 6:09:55 PM

Chart1.Serializer.Content = content;
Chart1.Serializer.Save(sw);
Chart1.ViewStateData = sw.ToString();

 The Serializer property provides you with additional properties and methods to create the view
state data. The Save method serializes all chart content with non - default property values (as a
result of setting the Content property to SerializationContents.Default through the content
variable). Setting the ViewStateData property tells the chart that all important state information
has been already created. The chart does not serialize its state information, but accepts the content
of ViewStateData as its state to be persisted.

 At this time, only the default series has data points, and so no other data points get serialized.

 When the Page_Load method is called as a result of a postback, the view state data of the base series
is deserialized from the ViewStateData property of the chart:

var sr = new StringReader(Chart1.ViewStateData);
Chart1.Serializer.Content = content;
Chart1.Serializer.Load(sr);

 The last section of Page_Load creates the additional series from the base series data that either was
just generated or reloaded from the view state.

 As a result of this tuning, the size of the generated HTML page decreases from 13 KB to about 8 KB.

 Playing with the Serialization Content

 Listing 16 - 12 sets the Content property of the chart ’ s Serializer to SerializationContents
.Default , and so not only the data, but also the appearance information is saved for the default
series generated in the Page_Load method.

 Change the fi rst line of the method to the following so that only series data would be saved:

var content = SerializationContents.Data;

When you run the page and set any of the
additional series to be displayed, the result
will not be exactly what you expect, as
Figure 16 - 12 shows.

 The base series is shown as a column
chart instead of a line chart. The cause of
this behavior is simple. The ChartType
property of the base series was not serialized
because the content was set to Data , and
so no appearance information was saved
in the view state. When the base series gets
deserialized, the ChartType property is set to
 Column , because this is its default value.

 FIGURE 16 - 12: Unexpected result

Chart State Management ❘ 693

CH016.indd 693CH016.indd 693 9/6/10 6:09:55 PM9/6/10 6:09:55 PM

694 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 You can fi x this issue by setting the missing series properties right after deserializing the view state:

protected void Page_Load(object sender, EventArgs e)
{
 var content = SerializationContents.Data;
 if (!IsPostBack)
 {
 // ...
 }
 else
 {
 var sr = new StringReader(Chart1.ViewStateData);
 Chart1.Serializer.Content = content;
 Chart1.Serializer.Load(sr);
 // --- Add this:
 Chart1.Series[“Default”].ChartType = SeriesChartType.Line;
 Chart1.Series[“Default”].BorderWidth = 4;
 }
 // ...
}

 Although you can do this, it makes your code less readable.

 USER INTERACTIVITY

 A well - designed chart helps you visualize data to analyze the past, to display present or future
trends, and to understand the background of certain behaviors or phenomena. The chart itself is
 “ only ” a static fi gure telling you a thousand words. Adding interactivity to a chart improves the user
experience your customers can have when faced with their data.

 The Chart control was designed with interactivity in mind. This section examines a few ways that
help you add interactivity to your chart.

 Using Tooltips

 The simplest interaction you can add to a
chart is providing tooltips for data points and
legend items. As you move the mouse over
any data point or legend item, a tooltip is
displayed.

 The TooltipValuesSample.aspx page in
 PetChartsSample demonstrates how easy it is
to set up tooltips. This chart allows you to run
arthropod sales statistics against the pet shop
database by selecting a region. When you
move the mouse over a data point, a tooltip is
displayed, as shown in Figure 16 - 13. Moving
the mouse over legend items also displays a
tooltip. FIGURE 16 - 13: Displaying a tooltip for data points

CH016.indd 694CH016.indd 694 9/6/10 6:09:55 PM9/6/10 6:09:55 PM

 Listing 16 - 13 shows the code enabling the chart data to be displayed with tooltips.

 LISTING 16 - 13: TooltipValuesSample.aspx.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.DataVisualization.Charting;

namespace PetShopCharts
{
 public partial class TooltipValuesSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 var region = RegionList.SelectedValue;
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT PetName, Total from PetSalesFor2007 where” +
 “ Region = ‘” + region + “’ and Kind=5;”; // --- Arthropods
 var command = new OleDbCommand(commandStr, connection);
 command.Connection.Open();
 var reader = command.ExecuteReader(CommandBehavior.CloseConnection);
 var points = Chart1.Series[0].Points;
 points.DataBindXY(reader, “PetName”, reader, “Total”);

 // --- Set legend texts
 foreach (var point in points)
 {
 point.LegendText = point.AxisLabel;
 point.AxisLabel = “”;
 }
 reader.Close();
 connection.Close();

 // --- Set up series
 var series = Chart1.Series[0];
 series.ToolTip = “#LEGENDTEXT sold: #VAL{D} pieces\n” +
 “#PERCENT of total #TOTAL”;
 series.LegendToolTip = “#PERCENT”;
 }
 }
}

 Code fi le [TooltipValuesSample.aspx.cs] available for download at Wrox.com

 The Page_Load method uses a data reader object to obtain the sales statistics from the database. This
time, the data points are bound to the chart with the Series.Points.DataBindXY method. The cycle
following the DataBindXY call sets the legend text for data points, and removes their axis labels.

 The most important statements of this sample are at the end of the method body setting the
 ToolTip and LegendToolTip properties. The tokens in the property values (starting with a #
character) are substituted with the concrete values at run - time.

User Interactivity ❘ 695

CH016.indd 695CH016.indd 695 9/6/10 6:09:56 PM9/6/10 6:09:56 PM

696 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 When the server renders the chart image, it assigns a < map > element to the < img > tag, as the
following short extract shows:

 < img id=”Chart1” src=”/ChartImg.axd?i=chart_4bfd...” alt=””
 usemap=”#Chart1ImageMap” style=”height:400px;width:500px;border-width:0px;” / >
 < map name=”Chart1ImageMap” id=”Chart1ImageMap” >
 < area shape=”poly” coords=”176,207,241,309,241,...” title=””
 alt=”Blind-beetle sold: 127 pieces
16,26 % of total 781” / >
 < !-- ... -- >
 < /map >

 Handling Clicks on Data Points

 The Chart control makes it very easy to respond to events when you click on a data point or a
legend item. The ClickOnDataPointsSample.aspx page shows you how to do that. It improves the
 TooltipValuesSample.aspx page so that when you click on one of the doughnut chart slices,
the slides are exploded. There are only a few changes in the code - behind fi le related to Listing 16 - 13.
These modifi cations are shown in Listing 16 - 14.

 LISTING 16 - 14: ClickOnDataPointsSample.aspx.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;

namespace PetShopCharts
{
 public partial class ClickOnDataPointsSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // ...
 // --- Added to the Page_Load method
 series.PostBackValue = “#INDEX”;
 series.LegendPostBackValue = “#INDEX”;
 if (!IsPostBack)
 {
 series.Points[0].CustomProperties += “Exploded=true”;
 }
 }

 protected void Chart1_Click(object sender, ImageMapEventArgs e)
 {
 int pointIndex = int.Parse(e.PostBackValue);
 var series = Chart1.Series[0];
 if (pointIndex > = 0 & & pointIndex < series.Points.Count)

CH016.indd 696CH016.indd 696 9/6/10 6:09:56 PM9/6/10 6:09:56 PM

 {
 series.Points[pointIndex].CustomProperties += “Exploded=true”;
 }
 }
 }
}

 Code fi le [ClickOnDataPointsSample.aspx.cs] available for download at Wrox.com

 Setting either the PostBackValue or the
 LegendPostBackValue property of a series
instance will initiate a postback when any
of the series ’ data points (or any legend item
associated with the series) is clicked. The code
in Listing 16 - 14 sets these property values to
 #INDEX so that the data point index is posted
back when the click event occurs. The chart ’ s
 OnClick event is set to Chart1_Click that
parses the postback value to obtain the index
of the data point clicked, and sets the Exploded
custom property of the slice clicked to true .
Figure 16 - 14 shows what happens when you
click on the Tumblebug slice.

 You can also click on the legend items to
explode the appropriate data point slice.

 Interactivity With Ajax

 Ajax (Asynchronous JavaScript and XML) is a group of interrelated web development techniques
used on the client - side to create interactive web applications. With Ajax, web applications can
retrieve data from the server asynchronously in the background without interfering with the display
and behavior of the existing page.

 This section explores how easy it is to combine a chart ’ s interactivity features with Ajax to improve
the user experience.

 This chapter is defi nitely not about Ajax and related techniques. You can read a
more detailed overview about Ajax and its improvements in .NET Framework 4.0
in Chapter 19. Chapter 20 introduces you to the Ajax Control Toolkit.
This chapter only examines a few examples that may whet your appetite, but
defi nitely won ’ t present you with the full menu Ajax offers.

 FIGURE 16 - 14: A slice of the doughnut chart is clicked

User Interactivity ❘ 697

CH016.indd 697CH016.indd 697 9/6/10 6:09:57 PM9/6/10 6:09:57 PM

698 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 Handling Click Events

 With Ajax, you can post - back a message to the web page in a separate asynchronous communication
channel using an XMLHttpRequest object at the background. When the page processes the
request, it sends back the results, and only a well - defi ned part of the page is refreshed according
to the results returned. This communication is asynchronous, so it does not prevent the user from
interacting with the page.

 The PetShopCharts project contains a page named AjaxClickEvent that allows you to click
any point on the chart and refresh the chart ’ s subtitle with information about what has been
clicked. Figure 16 - 15 shows how the subtitle changes when you click on the third data point in
the second series.

 FIGURE 16 - 15: Using Ajax to handle click events

 To allow using Ajax communication on your page, you must add an < asp:ScriptManager > and an
 < asp:UpdatePanel > control to your page:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”AjaxClickEvent.aspx.cs”
 Inherits=”PetShopCharts.AjaxClickEvent” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax Click event sample < /title >
 < /head >
 < body >

CH016.indd 698CH016.indd 698 9/6/10 6:10:03 PM9/6/10 6:10:03 PM

 < form id=”form1” runat=”server” >
 < div >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” / >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:Chart ... >
 < !-- Chart details omitted -- >
 < /asp:Chart >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 The ScriptManager is responsible for managing ASP.NET Ajax script libraries and script fi les,
partial - page rendering, and client proxy class generation for web and application services. The
 UpdatePanel control enables a section of a page to be partially rendered without a postback.
The < ContentTemplate > element encapsulates the page section updated by the UpdatePanel .

 Listing 16 - 15 shows how the Ajax controls work together with the page in an asynchronous manner.

 LISTING 16 - 15: AjaxClickEvent.aspx.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Web.UI;
using System.Web.UI.DataVisualization.Charting;
using System.Web.UI.WebControls;

namespace PetShopCharts
{
 public partial class AjaxClickEvent : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // --- Initialize chart from database
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT PetName, Total, ShopName from DogSalesData “ +
 “where Region = ‘East’;”;
 var command = new OleDbCommand(commandStr, connection);
 command.Connection.Open();
 var reader = command.ExecuteReader(CommandBehavior.CloseConnection);
 Chart1.DataBindCrossTable(reader, “ShopName”, “PetName”, “Total”, “”);
 reader.Close();
 connection.Close();
 foreach (var series in Chart1.Series)
 {
 series.ChartType = SeriesChartType.StackedColumn;
 series.IsValueShownAsLabel = true;
 }
 continues

User Interactivity ❘ 699

CH016.indd 699CH016.indd 699 9/6/10 6:10:03 PM9/6/10 6:10:03 PM

700 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-15 (continued)

 // --- Set up Ajax event handling
 Chart1.Click += new ImageMapEventHandler(Chart1_Click);
 foreach (Series series in this.Chart1.Series)
 {
 series.PostBackValue = “Series:” + series.Name + “, #INDEX”;
 }
 Chart1.Attributes[“onclick”] =
 ClientScript.GetPostBackEventReference(this.Chart1, “@”).
 Replace(“’@’”, “’Chart:’ +_getCoord(event)”);
 Chart1.Style[HtmlTextWriterStyle.Position] = “relative”;
 ClientScript.RegisterClientScriptBlock(
 typeof(Chart),
 “Chart”,
 @”function _getCoord(event){if(typeof(event.x)==’undefined’)” +
 “{return event.layerX+’, ‘+event.layerY;}” +
 “return event.x+’,’+event.y;}”,
 true);
 }

 protected void Chart1_Click(object sender, ImageMapEventArgs e)
 {
 Chart1.Titles[“MessageTitle”].Text = “Nothing”;
 string[] input = e.PostBackValue.Split(‘:’);
 if (input.Length == 2)
 {
 string[] seriesData = input[1].Split(‘,’);
 if (input[0].Equals(“Series”))
 {
 Chart1.Titles[“MessageTitle”].Text = “Last Clicked Element: “ +
 seriesData[0] + “ - Data Point #” + seriesData[1];
 }
 else if (input[0].Equals(“Chart”))
 {
 var hit = this.Chart1.HitTest(
 Int32.Parse(seriesData[0]),
 Int32.Parse(seriesData[1]));
 if (hit != null)
 {
 Chart1.Titles[“MessageTitle”].Text =
 “Last Clicked Element: “ + hit.ChartElementType.ToString();
 }
 }
 }
 }
 }
}

 Code fi le [AjaxClickEvent.aspx.cs] available for download at Wrox.com

CH016.indd 700CH016.indd 700 9/6/10 6:10:03 PM9/6/10 6:10:03 PM

 After the Page_Load method adds data points using the DataBindCrossTable method, it sets up
Ajax event handling with the following steps:

 1. Subscribes to the Chart1_Click event handler method.

 2. Sets the postback values of each series sending back the series name and index.

 3. Sets the Chart control ’ s onclick event to do a postback using the _getCoord JavaScript
function in its arguments.

 4. Injects the _getCoord JavaScript function into the scripts of the page.

 As a result of this setup, any time the user clicks on any chart element, an asynchronous postback
occurs that will activate the Chart1_Click event handler at the server side. This receives an
 ImageMapEventArgs instance and uses its PostBackValue property to parse which chart element
was clicked.

 If a data point was clicked, PostBackMessage contains the series name and the data point
number. If the any other chart element was clicked, PostBackMessage holds its coordinates.
In this case, the chart ’ s HitTest method tells which chart element was hit.

 At the end, the chart ’ s subtitle is updated at the server side and the chart control encapsulated
within the UpdatePanel is sent back asynchronously. At the browser side, the image representing
the chart is updated, while the rest of the page (that is, the rest of the HTML document model)
remains intact.

 When you run the sample, open the source code of the page. You can see the
chart ’ s onclick event (in the < img > tag representing the chart), the _getCoord
function, and the __doPostBack calls of < area > tags with the appropriate
postback values.

 Triggering Chart Events

 By default, any postback control inside an UpdatePanel control causes an asynchronous postback
and refreshes the panel ’ s content. However, you can also confi gure other controls on the page to
refresh an UpdatePanel control.

 You do this by defi ning a trigger for the UpdatePanel control. A trigger is a binding that specifi es
which postback control and event cause a panel to update. When the specifi ed event of the trigger
control is raised (for example, a button ’ s Click event), the update panel is refreshed.

 This mechanism is very useful for charts. Clicking a data point or a legend item in a Chart control
can trigger updating other parts of the page — for example, it can refresh a table telling you details
about the data point you ’ ve clicked.

 The AjaxTriggerSample page in the PetShopCharts project utilizes this mechanism to display two
related charts. The fi rst stacked column chart shows details about year 2009 ’ s sales statistics, where
data is organized into series by regions. When you click any of the data points in this chart, the
second chart is updated asynchronously by a trigger to show sales detail drill - downs. Figure 16 - 16
shows these charts in action.

User Interactivity ❘ 701

CH016.indd 701CH016.indd 701 9/6/10 6:10:04 PM9/6/10 6:10:04 PM

702 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 To achieve the result you see in Figure 16 - 16, you must wrap the second chart into an UpdatePanel
and defi ne an AsynchPostBackTrigger for it, as shown in Listing 16 - 16. The Chart controls ’
details are omitted from this listing for the sake of readability.

 LISTING 16 - 16: AjaxTriggerSample.asxp

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”AjaxTriggerSample.aspx.cs”
 Inherits=”PetShopCharts.AjaxTriggerSample” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > AJAX trigger sample < /title >
 < /head >

 FIGURE 16 - 16: Charts of the AjaxTriggerSample page

CH016.indd 702CH016.indd 702 9/6/10 6:10:10 PM9/6/10 6:10:10 PM

 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” / >
 < asp:Chart ID=”Chart1” runat=”server”
 OnClick=”Chart1_Click” ... >
 < !-- Chart details omitted -- >
 < /asp:Chart >
 < br / >
 < br / >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:Chart ID=”Chart2” runat=”server” BackColor=”LightSkyBlue” ... >
 < !-- Chart details omitted -- >
 < /asp:Chart >
 < /ContentTemplate >
 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”Chart1” / >
 < /Triggers >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [AjaxTriggerSample.aspx] available for download at Wrox.com

 The ControlID attribute of AsynchPostBackTrigger defi ned in the < Triggers > element enables
 Chart1 to be a trigger for the wrapping UpdatePanel control. The code - behind fi le of the page (in
Listing 16 - 17) shows how Chart1 triggers the update of Chart2 .

 LISTING 16 - 17: AjaxTriggerSample.aspx.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.DataVisualization.Charting;
using System.Web.UI.WebControls;

namespace PetShopCharts
{
 public partial class AjaxTriggerSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT Region, KindName, Total from SalesByYearAndRegion”
 + “ where Year=2009”;
 var command = new OleDbCommand(commandStr, connection);
 command.Connection.Open();
 var reader = command.ExecuteReader(CommandBehavior.CloseConnection);

continues

User Interactivity ❘ 703

CH016.indd 703CH016.indd 703 9/6/10 6:10:10 PM9/6/10 6:10:10 PM

704 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-17 (continued)

 Chart1.DataBindCrossTable(reader, “Region”, “Kindname”, “Total”, “”);
 reader.Close();
 connection.Close();
 foreach (var series in Chart1.Series)
 {
 series.ChartType = SeriesChartType.StackedColumn100;
 series.CustomProperties = “DrawingStyle=Cylinder”;
 series.IsValueShownAsLabel = true;
 series.PostBackValue = “#AXISLABEL;” + series.Name;
 series.ToolTip = “#AXISLABELs sold in “ + series.Name + “: #VAL{D}”;
 }
 }

 protected void Chart1_Click(object sender, ImageMapEventArgs e)
 {
 var pars = e.PostBackValue.Split(‘;’);
 var connection = Helpers.Utility.GetChartDataConnection(this);
 var commandStr = “SELECT Petname, ShopName, Total “
 + “from YearlyAccumulatedSales “
 + “where Year=2009 and “
 + “KindName=’” + pars[0] + “’ and “
 + “Region=’” + pars[1] + “’;”;
 var command = new OleDbCommand(commandStr, connection);
 command.Connection.Open();
 var reader = command.ExecuteReader(CommandBehavior.CloseConnection);
 Chart2.DataBindCrossTable(reader, “ShopName”, “PetName”, “Total”, “”);
 reader.Close();
 connection.Close();
 Chart2.Titles[0].Text = “2009 “ + pars[0] + “ Sales in Region “ + pars[1];
 foreach (var series in Chart2.Series)
 {
 series.ChartType = SeriesChartType.Column;
 series.ToolTip = “#AXISLABELs sold by “ + series.Name + “: #VAL{D}”;
 }
 }
 }
}

 Code fi le [AjaxTriggerSample.aspx.cs] available for download at Wrox.com

 The Page_Load event initializes a chart series with the DataBindCrossTable method that creates a
series for each region. The foreach cycle following the data binding part is responsible for setting
up the visual series properties, and PostBackValue , which is the key in this scenario. The following
assignment sets the postback value so that the axis label and the series name is passed back when
the user click a data point:

series.PostBackValue = “#AXISLABEL;” + series.Name;

CH016.indd 704CH016.indd 704 9/6/10 6:10:11 PM9/6/10 6:10:11 PM

When you comment out this line and run the sample, no postback happens, because setting
 PostBackValue triggers rendering postback scripts.

 So, when the user clicks a data point, the Chart1_Click event handler method is invoked as a result
of the asynchronous postback. It obtains the PostBackValue sent by Chart1 as a property of its
 ImageMapEventArgs parameter. Chart1_Click splits this value into two parts that will be used as
input parameters for the query being carried out as the data source of Chart2 . After binding the
query results to Chart2 , the foreach cycle sets up the series ’ properties.

 This kind of master - detail chart solution is very powerful. If it takes time (let ’ s say a few seconds)
while the second chart gets updated, you can use an Ajax UpdateProgress control. While the
chart is being updated, the user is not prevented from examining the fi rst chart. Of course, you can
use any controls instead of the second chart, and with this mechanism, you can also cascade more
controls in a master - detail scenario.

 Real Time Charts

 The asynchronous nature of Ajax is a great candidate for displaying real - time charts where data is
queried periodically, and a chart is updated with the new data regularly. The AjaxRealTimeSample
page of the PetShopCharts project demonstrates this scenario.

 The page contains a chart that displays real - time stock exchange data of fi ctitious indexes so that the
information is refreshed every second. Figure 16 - 17 shows the chart after several asynchronous
refreshes.

 FIGURE 16 - 17: Real - time chart after several refreshes

User Interactivity ❘ 705

CH016.indd 705CH016.indd 705 9/6/10 6:10:11 PM9/6/10 6:10:11 PM

706 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 The page uses an Ajax Timer control that periodically executes asynchronous postback to the page.
Listing 16 - 18 shows how the page is defi ned using the Ajax controls. The < asp:Chart > details are
omitted for the sake of brevity.

 LISTING 16 - 18: AjaxRealTimeSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”AjaxRealTimeSample.aspx.cs”
 Inherits=”PetShopCharts.AjaxRealTimeSample” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax with real time chart data < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” / >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:Chart ID=”Chart1” runat=”server” ...
 EnableViewState=”True” >
 < !-- Chart details omitted -- >
 < /asp:Chart >
 < asp:Timer ID=”Timer1” runat=”server” Interval=”1000”
 OnTick=”Timer1_Tick” / >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [AjaxRealTimeSample.aspx] available for download at Wrox.com

 The Timer control is in the same UpdatePanel as the chart, so, after each OnTick event, the
chart will be updated. The Timer control ’ s Interval property is set to 1,000 milliseconds, so
the chart is refreshed in every second. The real - time chart works so that every OnTick event
creates new data points and appends these to the existing ones. Because OnTick generates
postbacks, the chart state should be saved between them, so the EnableViewState property of
the chart is set to true .

 Listing 16 - 19 shows how the Page_Load method and the Timer1_Tick event handler method work
together to form the solution.

CH016.indd 706CH016.indd 706 9/6/10 6:10:11 PM9/6/10 6:10:11 PM

 LISTING 16 - 19: AjaxRealTimeSample.aspx.cs

using System;

namespace PetShopCharts
{
 public partial class AjaxRealTimeSample : System.Web.UI.Page
 {
 const int NewPoints = 10;
 const int MaxPoints = 100;
 const int LowerBound = 10;
 const int UpperBound = 100;
 const int StepBack = 20;
 const int SingleStep = 5;

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 var rand = new Random((int)DateTime.Now.Millisecond);
 foreach (var series in Chart1.Series)
 {
 series.Points.AddXY(0, rand.Next(LowerBound, UpperBound));
 }
 Timer1_Tick(this, EventArgs.Empty);
 }
 }

 protected void Timer1_Tick(object sender, EventArgs e)
 {
 var rand = new Random((int)DateTime.Now.Ticks);
 foreach (var series in Chart1.Series)
 {
 var lastYValue = series.Points[series.Points.Count - 1].YValues[0];
 var lastXValue = series.Points[series.Points.Count - 1].XValue + 1;
 for (int index = 0; index < NewPoints; index++)
 {
 lastYValue += rand.Next(1 - SingleStep, SingleStep);
 if (lastYValue > = UpperBound)
 lastYValue -= StepBack;
 else if (lastYValue < = LowerBound)
 lastYValue += StepBack;
 series.Points.AddXY(lastXValue++, lastYValue);
 }
 }
 // --- Remove points from the left chart side if number of
 // --- points exceeds the maximum number.
 while (this.Chart1.Series[0].Points.Count > MaxPoints)
 {
 foreach (var series in this.Chart1.Series)

User Interactivity ❘ 707

continues

CH016.indd 707CH016.indd 707 9/6/10 6:10:12 PM9/6/10 6:10:12 PM

708 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

LISTING 16-19 (continued)

 series.Points.RemoveAt(0);
 }
 // --- Adjust scale
 double axisMinimum = Chart1.Series[0].Points[0].XValue - 1.0;
 if (axisMinimum < 0.0) axisMinimum = 0.0;
 Chart1.ChartAreas[0].AxisX.Minimum = axisMinimum;
 Chart1.ChartAreas[0].AxisX.Maximum = axisMinimum + MaxPoints;
 }
 }
}

 Code fi le [AjaxRealTimeSample.aspx.cs] available for download at Wrox.com

 The page class defi nes a few constant values used during the data generation. The Page_Load event
takes care of generating the initial random data points for the series — each of which represents a
specifi c stock exchange index. When Page_Load is executed the fi rst time, it also calls Timer1_Tick
to generate the fi rst set of data points.

 The whole data - generation logic is implemented in the Timer1_Tick method. It is not enough
to generate new data points. The method also should take care of removing obsolete data — for
example, data points shifting out of the chart ’ s time window. If the method did not remove the old
data, after a while, there would be too many data points. They would require extra time to render
and consume too much network bandwidth because of transferring the chart ’ s view state through
the network.

 After new data points are generated, Timer1_Click removes the obsolete data (it keeps open a time
window for 100 data points) with the following simple cycle:

while (this.Chart1.Series[0].Points.Count > MaxPoints)
{
 foreach (var series in this.Chart1.Series)
 series.Points.RemoveAt(0);
}

 The XValue property of data points is continuously increasing as new information is generated. It is
not enough to delete old data points, but the X - axis also should be kept in synch with data points.
The last few lines of Timer1_Click are responsible for this:

double axisMinimum = Chart1.Series[0].Points[0].XValue - 1.0;
if (axisMinimum < 0.0) axisMinimum = 0.0;
Chart1.ChartAreas[0].AxisX.Minimum = axisMinimum;
Chart1.ChartAreas[0].AxisX.Maximum = axisMinimum + MaxPoints;

 Figure 16 - 18 shows how the X - axis is shifted after about a half minute.

CH016.indd 708CH016.indd 708 9/6/10 6:10:12 PM9/6/10 6:10:12 PM

 A Few More Points on User Interactivity

 This section has just scratched the surface of user interactivity opportunities. There are many other
alternatives that enable coding interactions with charts. Here is a short list of them:

 You can use Ajax controls such as UpdateProgress , ScriptManager , and
 ScriptManagerProxy for advanced scenarios.

 You can customize legend items, and respond to events when legend items are clicked.

 You can use JavaScript code and binary image streaming combined with Ajax to show other
charts in tooltips and overlay panels.

 You can capture mouse events with client - side scripts.

 It is worth exploring these opportunities on your own, because they may help you to create more
attractive charts with fascinating user experiences.

 SUMMARY

 The ASP.NET Chart control shipped with .NET Framework 4.0 and Visual Studio 2010 shares the
charting concepts with the Windows Forms Chart control (detailed in Chapter 14). You can easily
set up the ASP.NET Chart control through the dozens of properties it exploits. Charts have a great
design - time support; when you change a property, the design - time view changes accordingly. You
can choose from more than 30 chart types, and customize them through general and chart type -
 specifi c properties. The Chart control supports data binding and many manipulations, including
fi ltering, sorting values, and applying fi nancial formulas.

➤

➤

➤

➤

 FIGURE 16 - 18: Axis minimum and maximum values are modifi ed.

Summary ❘ 709

CH016.indd 709CH016.indd 709 9/6/10 6:10:12 PM9/6/10 6:10:12 PM

710 ❘ CHAPTER 16 ASP.NET CHARTING CONTROLS

 Because of the distributed nature of the web, you have several options to render charts. You can use
them as images (with a number of format and storage options) or as binary streams. Chart controls
can be easily integrated with legacy websites.

 The Chart control has a smart state management implementation that lets you fi ne - tune which
chart properties (and how) to save into the view state. With a few lines of code, you can balance
among performance, used processing capacity, and network bandwidth, and establish solutions that
are frugal with resources.

 The Chart control has great user interactivity support, starting with handling tooltips, to using
sophisticated asynchronous and real - time charting solutions with Ajax.

 Chapter 17 provides an overview about the new Dynamic Data feature of ASP.NET 4.0, and you
will learn how to create a functional data - driven web application leveraging the Dynamic Data
framework.

CH016.indd 710CH016.indd 710 9/6/10 6:10:13 PM9/6/10 6:10:13 PM

ASP.NET Dynamic Data

 To create a functional data - driven web application, you must combine many complex
components. ASP.NET Dynamic Data was introduced in ASP.NET 3.5 SP1, and ASP.NET 4
improved its features. It offers an excellent starting point for creating data - driven web
applications following some simple steps.

 This chapter examines ASP.NET Dynamic Data and the possibilities it offers to create data -
 driven web applications from an existing data model. This chapter starts with a simple data
model and then upgrades to a more complex data model to show the most interesting features
offered by Dynamic Data. You will also fi nd many step - by - step instructions and examples
throughout the chapter.

 CREATING A NEW DYNAMIC DATA WEB SITE

 By taking advantage of ASP.NET Dynamic Data, it is possible to create a data - driven website
with little or no coding. Also, once you create a Dynamic Data web application, you can
customize its behavior to fi t particular requirements. In real - world data - driven websites,
you must always add some code to tailor a Dynamic Data application. Therefore, it is very
important to learn the most common customization features offered by Dynamic Data ’ s
powerful framework and its scaffolding mechanism .

 Working Against a Data Model

 A Dynamic Data web application requires one of the following registered data contexts:

 A LINQ to SQL class

 An ADO.NET Entity Framework class

 Visual Studio 2010 provides the Dynamic Data Web Site template, which allows you to create
an ASP.NET Dynamic Data website. However, the fi rst step is to have a data model prepared
for a functional data - driven website.

➤

➤

 17

CH017.indd 711CH017.indd 711 9/6/10 6:12:47 PM9/6/10 6:12:47 PM

712 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 You can work with a single table to help
understand the basic CRUD (short for
Create, Read, Update, and Delete) operations
automatically generated based on a very
simple data model, working with a LINQ to
SQL class. Then, you can work with a more
complex data model with many tables and
different kinds of relationships between them.
Figure 17 - 1 shows the structure of a very
simple Game table.

 It has an auto - increment primary key,
 GameId , and two fi elds:

 Name

 ReleaseDate

 The Game table is part of the RetroGames SQL Server 2008 database. You can create a new database
with a similar table in order to run this example. The goal is to understand the basic structure of an
ASP.NET Dynamic Data website.

 Creating the Website Using a Template

 Once you have created the aforementioned table, follow these steps to create a Dynamic Data
website using a website template:

 1. Create a new website in Visual Studio 2010. Select File ➪ New ➪ Web Site in the main
menu (or press Shift + Alt + N).

 2. Select Visual C# under Installed Templates and “ Dynamic Data LINQ to SQL Web Site ”
in the New Web Site dialog box. Select File System in the “ Web location ” combo box and
enter RetroGamesWeb1 as the solution ’ s name.

➤

➤

 FIGURE 17 - 1: A simple table named Game

 The default folder in which Visual Studio 2010 creates the folder for the
solution that contains the new website in the fi le system is the Visual Studio
2010\WebSites folder in your Documents folder. Considering the example, if
your Documents folder is C:\Users\Gaston\Documents , the IDE will create
the new website structure in C:\Users\Gaston\Documents\Visual Studio
2010\WebSites\RetroGamesWeb1 .

 3. Click OK, and Visual Studio will generate a new website based on the specifi ed template,
with dozens of fi les organized in many folders, as shown in Figure 17 - 2.

 In this case, you are working with a LINQ to SQL model. However, it is very important to
remember that you can also use an ADO.NET Entity Framework model if you choose “ Dynamic
Data Entities Web Site ” in the New Web Site dialog box.

CH017.indd 712CH017.indd 712 9/6/10 6:12:51 PM9/6/10 6:12:51 PM

 Adding the Data Model and Registering the Data Context

 Now, it is necessary to add the link to the data that the Dynamic Data framework must consider to
generate the website. To do this, you must do the following:

 Create a data context, or the classes that represent database entities.

 Register the aforementioned data context with Dynamic Data. This way, the framework
will be able to use it.

 First, in this case, follow these steps to create a copy of the database fi le in the project. However, in
other cases, you may wish to use other methods to link the database.

 1. Right - click on the App_Data folder in the Solution Explorer and select Add Existing Item in
the context menu that appears. A fi le selection dialog box will appear.

 2. Select Data Files in the fi le type combo box. (It shows Web Files by default.)

 3. Navigate to the folder that contains the SQL Server database fi le (RetroGames.mdf),
select it, and click Add. It will appear in the App_Data folder, as shown in Figure 17 - 3.
Additionally, you will be able to access it through Data Connections in the Server Explorer.

➤

➤

 FIGURE 17 - 2: Organization of

fi les in folders

 FIGURE 17 - 3: Adding the

SQL Server database fi le to

the App_Data folder

 Now, follow these steps to create a data model using LINQ to SQL:

 1. Right - click on the project ’ s name (C:\...\RetroGamesWeb1\)
in the Solution Explorer and select Add ASP.NET Folder ➪
App_Code in the context menu that appears. The IDE will add
an App_Code folder in the website, as shown in Figure 17 - 4. FIGURE 17 - 4: App_Code

folder added

Creating a New Dynamic Data Web Site ❘ 713

CH017.indd 713CH017.indd 713 9/6/10 6:13:03 PM9/6/10 6:13:03 PM

714 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 2. Right - click on the new App_Code folder in the Solution Explorer and select Add New Item
in the context menu that appears. A template selection dialog box will appear.

 3. Select “ LINQ to SQL Classes for Visual C# ” under Installed Templates.

 4. Enter the name for the database model, RetroGames.dbml , and click Add. The IDE will
display the Object Relational Designer (O/R Designer) for App_Code/RetroGames.dbml .

 5. Go to Server Explorer. Expand the database fi le node under Data Connections and then
the Tables node. Drag the Game table into the O/R Designer ’ s left panel. It will appear as an
entity with the same name, as shown in Figure 17 - 5.

 FIGURE 17 - 5: Entity appearing in O/R Designer

 After following the aforementioned steps, the App_Code/Retrogrames.dbml node in the Solution
Explorer will contain two fi les:

 RetroGames.dbml.layout

 RetroGames.designer.cs

 The RetroGames.designer.cs fi le contains the defi nition for the RetroGamesDataContext class,
an implementation of System.Data.Linq.DataContext that represents the database:

[global::System.Data.Linq.Mapping.DatabaseAttribute(Name=”RetroGames”)]
public partial class RetroGamesDataContext : System.Data.Linq.DataContext

 Its parameterless constructor reads the connection string from the Web.config XML confi guration
fi le:

public RetroGamesDataContext() :
 base(global::System.Configuration.ConfigurationManager.ConnectionStrings
 [“ RetroGamesConnectionString ”].ConnectionString, mappingSource)

{
 OnCreated();
}

➤

➤

CH017.indd 714CH017.indd 714 9/6/10 6:13:03 PM9/6/10 6:13:03 PM

 The RetroGamesConnectionString parameter is defi ned in the following Web.config XML lines:

 < ?xml version=”1.0”? >
 < configuration >

 < connectionStrings >
 < add name=”RetroGamesConnectionString” connectionString=
 ”Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|
 \RetroGames.mdf;Integrated Security=
 True;User Instance=True”
 providerName=”System.Data.SqlClient” / >
 < /connectionStrings >

 Additionally, the RetroGames.designer.cs fi le contains the defi nition for the entity classes (that
is, the tables previously dropped into the O/R Designer). In this case, it is just one entity class, Game ,
which is an implementation of INotifyPropertyChanging and INotifyPropertyChanged :

[global::System.Data.Linq.Mapping.TableAttribute(Name=”dbo.Games”)]
public partial class Game : INotifyPropertyChanging, INotifyPropertyChanged

 Finally, follow these steps to register the data context with Dynamic Data.

 1. Open the Global.asax fi le.

 2. Find the following commented lines in the RegisterRoutes static method:

public static void RegisterRoutes(RouteCollection routes) {
 // IMPORTANT: DATA MODEL REGISTRATION
 // Uncomment this line to register a LINQ to SQL model for
 // ASP.NET Dynamic Data.
 // Set ScaffoldAllTables = true only if you are sure that you
 // want all tables in the
 // data model to support a scaffold (i.e. templates) view.
 // To control scaffolding for
 // individual tables, create a partial class for the table and apply the
 // [ScaffoldTable(true)] attribute to the partial class.
 // Note: Make sure that you change “YourDataContextType” to the name
 // of the data context
 // class in your application.
 // DefaultModel.RegisterContext(typeof(YourDataContextType),
 // new ContextConfiguration() { ScaffoldAllTables = false });

 3. Uncomment the previously bolded code that registers the data context based on a LINQ
to SQL model. Replace YourDataContextType with the name of the implementation
of System.Data.Linq.DataContext that represents the database (in this case,
 RetroGamesDataContext). Also, enable automatic scaffolding for the data model assigning
 true to ScaffoldAllTables instead of the default false value. The following snippet
shows the new uncommented code:

DefaultModel.RegisterContext(typeof(RetroGamesDataContext),
 new ContextConfi guration() { ScaffoldAllTables = true });

 4. Save the changes to the Global.asax fi le.

Creating a New Dynamic Data Web Site ❘ 715

CH017.indd 715CH017.indd 715 9/6/10 6:13:04 PM9/6/10 6:13:04 PM

716 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 If you don ’ t want to make all tables viewable by using Dynamic Data, you can set the
 ScaffoldTableAttribute to true in each partial class that represents the table that you want to be
displayed. Another alternative is to set the ScaffoldTableAttribute to false in each partial class
that represents the table that you don ’ t want to be part of the Dynamic Data website.

 For example, if you have many tables and you don ’ t want the Game table to be part of the Dynamic
Data website, you must include the following namespace in the RetroGames.designer.cs fi le:

using System.ComponentModel.DataAnnotations;

 Then, you can set the false value to the ScaffoldTableAttribute adding the following boldfaced
line before the Game public partial class defi nition:

[global::System.Data.Linq.Mapping.TableAttribute(Name=”dbo.Game”)]
 [ScaffoldTable(false)]
public partial class Game : INotifyPropertyChanging, INotifyPropertyChanged

 However, the code for RetroGames.designer.cs is automatically generated by the O/R Designer.
If the model changes in the future, you could lose the changes made to this fi le. Therefore, there is
another alternative — create a partial class, use an attribute to defi ne an associated class to defi ne
metadata, and keep it in a different fi le. This way, you can refresh the code generated by the O/R
Designer and the metadata information will be safe in a different fi le. You will learn how to defi ne
an associated class to defi ne metadata in an independent fi le later in this chapter.

 Displaying Data from Existing Tables

 So far, you ’ ve just made very small changes to the code provided by the template. Therefore, the
Dynamic Data website will use the built - in data validation, as well as provide default CRUD
operations and scaffolding behavior.

 Follow these steps to display data from the Game table and test the simple Dynamic Data website:

 1. Right - click on the Default.aspx page in the Solution Explorer and select “ View in
Browser ” in the context menu that appears. Your default web browser will display a page
with the list of tables available in the data model — in this case, the Game table (Games
hyperlink), as shown in Figure 17 - 6.

 It is very important to understand that it is not convenient to enable scaffolding
in all cases because it can pose a security risk — the resulting website will expose
all the tables in the data model for the CRUD operations. Therefore, you should
understand how Dynamic Data works with a simple model, and then you can
use it in a more complex scenario, considering the necessary customizations. The
forthcoming examples are focused on the core Dynamic Data features and don ’ t
explain the potential security risks. However, you should take that into account
before deploying a website generated with the Dynamic Data framework.

CH017.indd 716CH017.indd 716 9/6/10 6:13:04 PM9/6/10 6:13:04 PM

 2. Now, click the hyperlink for the desired table listed under “ My tables ” (Games for
the Game table). The web browser will display a page (http://localhost:2952/
RetroGamesWeb1/Games/List.aspx) with the data from the selected table. It will
provide buttons on the left, with three operations for each record — Edit, Delete, and
Details. Additionally, an “ Insert new item ” button will appear at the bottom of the page, as
shown in Figure 17 - 7.

 FIGURE 17 - 6: List of available tables

 FIGURE 17 - 7: Table options and “ Insert new item ” button

 3. Click the Details button for one of the records and the web browser will display a new page
(http://localhost:2952/RetroGamesWeb1/Games/Details.aspx?GameId=1) with

Creating a New Dynamic Data Web Site ❘ 717

CH017.indd 717CH017.indd 717 9/6/10 6:13:10 PM9/6/10 6:13:10 PM

718 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

the corresponding entry of the table using a detailed
view, and offering the Edit and Delete operations at
the bottom, as shown in Figure 17 - 8.

 You can go back to the previous grid view of the data
from the selected table by clicking on “ Show all items ”
(a link to http://localhost:2952/RetroGamesWeb1/
Games/List.aspx) at the bottom of the page.

 If the table has too many records to display in just one
page, the page that displays the data from the table will
automatically split the grid into many pages, and provide
page numbers to navigate through them, as shown in
Figure 17 - 9.

 FIGURE 17 - 8: Details view

 FIGURE 17 - 9: Page navigation tools

 You can also sort the data in the grid by clicking on the desired fi eld name ’ s column header. This
works by calling a JavaScript postback for the GridView control that is displaying the data from the
table. If you click on the Name column header, the following JavaScript code is executed:

javascript:__doPostBack(‘ctl00$ContentPlaceHolder1$GridView1’,’Sort$Name’)

 By following a few steps, you can create a Dynamic Data website capable of
navigating the records from existing tables and buttons for CRUD operations.
This kind of rapid web application is also useful in a development environment
when it is necessary to query and populate tables in a database.

 Creating Simple CRUD Applications

 Go back to the detailed list view for the Game table (Games link) and click the “ Insert
new item ” button at the bottom of the web page. The web browser will display a new page

CH017.indd 718CH017.indd 718 9/6/10 6:13:11 PM9/6/10 6:13:11 PM

(http://localhost:2952/RetroGamesWeb1/
Games/Insert.aspx) with data entry fi elds.
You can enter data for each fi eld and click the
Insert button to add a new record, as shown in
Figure 17 - 10.

 Once you insert the new record or cancel the
addition, the web browser will go back to the
detailed list view for the table.

 The Insert button works by calling a JavaScript
postback for the FormView control that is
displaying the fi eld names and edit controls for the
new record. For example, in the aforementioned
case, the following JavaScript code will be
executed:

javascript:WebForm_DoPostBackWithOptions
 (new WebForm_PostBackOptions
 (“ctl00$ContentPlaceHolder1$FormView1$ctl02”,
 “”, true, “”, “”, false, true))

 Now, click the Edit button at the left of one of the
records. The web browser will display a new page
(http://localhost:2952/RetroGamesWeb1/
Games/Edit.aspx?GameId=1) with data edition
fi elds. You can edit the data for each fi eld and click
the Update button to commit the changes to the
database table, as shown in Figure 17 - 11.

 Once you update the record or cancel the edition,
the web browser will go back to the detailed list view
for the table. Remember that you can also access the
record edition page by clicking Edit while displaying
the details for the record.

 The Update button also works by calling a JavaScript
postback for the FormView control that is displaying
the fi eld names and edit controls for the record being edited.

 Now, click the Delete button at the left of one of the records. The web browser will display a dialog
box asking for a confi rmation in order to proceed with the removal. If you click OK, the record will
be deleted from the table, and the web browser will go back to the detailed list view for the table.
The Delete button also works by calling a JavaScript postback.

 Understanding the Default URLs

 Table 17 - 1 shows the relative URLs for each of the CRUD operations for the Game table, considering
 http://localhost:2952/RetroGamesWeb1 as the website main ’ s location for this case.

 FIGURE 17 - 10: Page with fi elds for adding data

 FIGURE 17 - 11: Page with fi elds for editing data

Creating a New Dynamic Data Web Site ❘ 719

CH017.indd 719CH017.indd 719 9/6/10 6:13:17 PM9/6/10 6:13:17 PM

720 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 As you can see in Table 17 - 1, the URLs are composed of the entity name (Games for the Game table),
followed by the operation ’ s name. If the operation requires a record, it adds the primary key to
identify the record as a parameter, and it names the parameter with the primary key fi eld ’ s name
(for example, GameId).

 Therefore, if you add a Manufacturer table, using the same templates, you will be able to edit
the data for the manufacturer with the ManufacturerId = 50 entering the following URL in your
web browser:

http://localhost:2952/RetroGamesWeb1/ Manufacturers /Edit.aspx? ManufacturerId=50

 You will also be able to list all the records for this new table by entering the following URL in your
web browser:

http://localhost:2952/RetroGamesWeb1/ Manufacturers / List.aspx

 TABLE 17 - 1: Default Relative URLs for the Diff erent Operations on the Game Table

 OPERATION RELATIVE URL

 Create (insert a new record) Games/Insert.aspx

 Update (edit an existing record) Games/Edit.aspx?GameId=GameIdToEdit

 View details Games/Details.aspx?GameId=GameIdToView

 List (show all the record from the table) Games/List.aspx

 As you can see, the Dynamic Data website exposes a lot of information about
the underlying database model in the URLs. Therefore, as previously explained,
it is very important to consider security issues before publishing an ASP.NET
website using the Dynamic Data framework.

 The Global.asax fi le contains the route defi nition that enables the previously explained separate -
 page mode , where different pages perform the List, Detail, Insert, and Update tasks. The following
lines (inside the RegisterRoutes static method) defi ne the dynamic data route with a table,
followed by an action as a pattern for the four possible actions:

routes.Add(new DynamicDataRoute(“ {table} / {action} .aspx”) {
 Constraints = new RouteValueDictionary(new { action =
 “List|Details|Edit|Insert” }),
 Model = DefaultModel
});

CH017.indd 720CH017.indd 720 9/6/10 6:13:17 PM9/6/10 6:13:17 PM

 The code in the Application_Start method in the Global.asax fi le calls the RegisterRoutes
method when the Dynamic Data web application starts, as shown in the following lines:

void Application_Start(object sender, EventArgs e) {
 RegisterRoutes(RouteTable.Routes);
}

 A DynamicDataRoute instance (System.Web.DynamicData.DynamicDataRoute) represents a route
that is used by ASP.NET Dynamic Data.

 Customizing Dynamic Data ’ s URL Routing

 You can change the default URL routing. You can do it by editing the previously shown lines for
the RegisterRoutes static method, in order to replace the pattern for the dynamic data route. For
example, if you want the route to show the action followed by the table, the following lines will
produce the results shown in Table 17 - 2.

routes.Add(new DynamicDataRoute(“ {action} / {table} .aspx”) {
 Constraints = new RouteValueDictionary(new { action =
 “List|Details|Edit|Insert” }),
 Model = DefaultModel
});

 TABLE 17 - 2: New Relative URLs for the Diff erent Operations on the Game Table

 OPERATION RELATIVE URL

 Create (insert a new record) Insert/Games.aspx

 Update (edit an existing record) Edit/Games.aspx?GameId=GameIdToEdit

 View details Details/Games.aspx?GameId=GameIdToView

 List (show all the record from the table) List/Games.aspx

 Another alternative provided by the Dynamic Data templates is the combined - page mode , where a
single page performs the List, Detail, Insert, and Update tasks. To enable this mode, comment the
previously shown lines that added the dynamic routes and uncomment the route defi nitions in
the separate - page mode section. Listing 17 - 1 shows the resulting code in the RegisterRoutes static
method, defi ning two dynamic routes with the table, followed by the ListDetails.aspx page and
the following actions for each new DynamicDataRoute instance:

 PageAction.List

 PageAction.Details

➤

➤

Creating a New Dynamic Data Web Site ❘ 721

CH017.indd 721CH017.indd 721 9/6/10 6:13:23 PM9/6/10 6:13:23 PM

722 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 LISTING 17 - 1: Code for the Combined - Page Mode in the Global.asax File

public static void RegisterRoutes(RouteCollection routes) {
 DefaultModel.RegisterContext(typeof(RetroGamesDataContext),
 new ContextConfiguration() { ScaffoldAllTables =
 true });
 // Original URL routing
 //routes.Add(new DynamicDataRoute(“{table}/{action}.aspx”) {
 // Constraints = new RouteValueDictionary(new { action =
 // “List|Details|Edit|Insert” }),
 // Model = DefaultModel
 //});

 // Customized URL routing
 //routes.Add(new DynamicDataRoute(“{action}/{table}.aspx”)
 //{
 // Constraints = new RouteValueDictionary(new { action =
 // “List|Details|Edit|Insert” }),
 // Model = DefaultModel
 //});

 // Combined-page mode
 routes.Add(new DynamicDataRoute(“{table}/ListDetails.aspx”)
 {
 Action = PageAction.List,
 ViewName = “ListDetails”,
 Model = DefaultModel
 });

 routes.Add(new DynamicDataRoute(“{table}/ListDetails.aspx”)
 {
 Action = PageAction.Details,
 ViewName = “ListDetails”,
 Model = DefaultModel
 });
}

 Code fi le [RetroGamesWeb1/Global.asax] available for download at Wrox.com

 After making the aforementioned changes, all the operations work on the same URL,
 http://localhost:2952/RetroGamesWeb1/Games/ListDetails.aspx .

 Notice that ListDetails is the combination of List and Details. The template page is different than
the List template used in the previous cases.

 Performing CRUD Operations on the Same Page

 The behavior of the Dynamic Data website will be slightly different because all the CRUD
operations are going to run on the same page. Thus, a new selection mechanism is available to
choose the active record, and different buttons provide access to the different operations.

CH017.indd 722CH017.indd 722 9/6/10 6:13:23 PM9/6/10 6:13:23 PM

 Follow these steps to display data from the Game table and test the new behavior of the Dynamic
Data website:

 1. Display the Default.aspx page in your default web browser.

 2. Click the hyperlink for the desired table listed under “ My tables ” (Games for the Game
table). Now, the web browser displays the page that will allow you to perform all the
operations, including listing the data from the selected table, http://localhost:2952/
RetroGamesWeb1/Games/ListDetails.aspx . The fi rst row appears with a yellow
background, the selected record, and the detailed view for this selected record will appear
at the bottom of the page. It will provide buttons on the left with three operations for each
record — Edit, Delete, and Select. There is no need to show a Details button, because the
detailed view is already visible for the selected record. Also, three buttons will appear at the
bottom of the detailed view for the selected record — Edit, Delete, and New — as shown in
Figure 17 - 12.

 FIGURE 17 - 12: Detailed view with three buttons

 3. Click the Select button for a different row. The corresponding record appears with a yellow
background and its detailed view will appear at the bottom of the page. It works by calling
a JavaScript postback for the GridView control that is displaying the data from the table:

javascript:__doPostBack(‘ctl00$ContentPlaceHolder1$GridView1’,’Select$1’)

Creating a New Dynamic Data Web Site ❘ 723

CH017.indd 723CH017.indd 723 9/6/10 6:13:24 PM9/6/10 6:13:24 PM

724 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 4. Click the Edit button at the left of one of the rows. The grid will enable an in - place editing
of the record and will provide Update and Cancel buttons, as shown in Figure 17 - 13.

 FIGURE 17 - 14: Updating fi elds through the

detailed view

 FIGURE 17 - 13: Update and Cancel buttons

 5. Click the Edit button at the bottom of the page. This button enables the capability to update
each fi eld using the detailed view instead of the aforementioned in - place editing, as shown
in Figure 17 - 14.

 By commenting and uncommenting a few lines of code, you can provide in - line
editing capabilities and perform all the operations in a single page working with
the combined - page mode. You can select the desired Dynamic Data ’ s URL
routing according to the applications ’ requirements.

CH017.indd 724CH017.indd 724 9/6/10 6:13:24 PM9/6/10 6:13:24 PM

 Creating a Dynamic Data Application for

Master - Detail Relationships

 So far, you have learned about the basics for Dynamic Data with a single table. Before diving deeper
into Dynamic Data ’ s templates structure, let ’ s move to a more complex data model, with many
tables and different kinds of relationships between them.

 Figure 17 - 15 shows the structure of the following new tables related to the Game table:

 GameCategory

 Gender

 Player

 PlayerScore

 Also, the Game table has a new Boolean fi eld, Played , and a GameCategoryId that represents a
many - to - one relationship with GameCategory .

➤

➤

➤

➤

 FIGURE 17 - 15: Structure of new tables

 Each game must have a category. Each time a game is played by a player, the score is saved in the
 PlayerScore table. Each player must have a gender (male or female, defi ned in the Gender table).

 The fi ve tables are part of a new version of the RetroGames SQL Server 2008 database. You can
create a new database with a similar structure to run this example. The goal is to use a data model
with many kinds of relationships in an ASP.NET Dynamic Data website.

 Follow the previously described steps to create a new ASP.NET Dynamic Data LINQ to SQL
website with the new data model. Use RetroGamesWeb2 as the solution ’ s name. Remember to add
the data model and to register the data context. The O/R Designer ’ s left panel will display the fi ve
entities and their relationships, as shown in Figure 17 - 16.

Creating a New Dynamic Data Web Site ❘ 725

CH017.indd 725CH017.indd 725 9/6/10 6:13:30 PM9/6/10 6:13:30 PM

726 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 Filtering Data from Many Related Tables

 As happened with the previous database, you just made very small changes to the code provided by
the template. However, in this case, there are many complex relationships that the Dynamic Data
must decode to provide really useful CRUD operations and scaffolding behavior.

 Follow these steps to display data from the different related tables and test the default fi lters offered
by a more complex Dynamic Data website:

 1. Display the Default.aspx page in your default web browser. It will display a page with
the list of tables available in the data model — in this case, the fi ve tables, as shown in
Figure 17 - 17.

 2. Now, click the Games hyperlink under “ My tables ” (Games for the Game table). The web
browser will display the Games/List.aspx page with the data from the selected table. In
this case, it also shows the Name for the GameCategory and a “ View PlayerScores ” button
for each row. Because the Played fi eld is of the Boolean type (bit type in SQL Server), it
uses a checkbox to display its value. Also, it displays two fi lter combo boxes, Played and
 GameCategory , as shown in Figure 17 - 18.

 FIGURE 17 - 16: Entities and their relationships

CH017.indd 726CH017.indd 726 9/6/10 6:13:31 PM9/6/10 6:13:31 PM

 FIGURE 17 - 18: Page with data from a selected table

 FIGURE 17 - 17: List of tables

 The default behavior of Dynamic Data is to add fi lters to Boolean fi elds,
enumerations, and each foreign key. However, you can also customize the
default templates to add more fi lters.

 3. Select a GameCategory in the corresponding combo box at the top of the grid, and the grid
will be updated to display the games that correspond to the selected category. You can also

Creating a New Dynamic Data Web Site ❘ 727

CH017.indd 727CH017.indd 727 9/6/10 6:13:31 PM9/6/10 6:13:31 PM

728 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

click a GameCategory link in a row
and the detailed view for this entity
will display a View Games link to
show all the games that correspond
to the this category, as shown in
Figure 17 - 19 and Figure 17 - 20. In
fact, by clicking the View Games
link, the website shows the list with a
 GameCategory fi lter applied, Games/
List.aspx?GameCategoryId=1 .

 FIGURE 17 - 21: Detailed view

 FIGURE 17 - 20: Viewing all games in a selected game category

 FIGURE 17 - 19: Selecting a game category

 4. Now, click on “ View PlayerScores ” in one row and the detailed view for this entity will
display the scores registered for many players for this game. Both the Game and the Player
columns will show links to their corresponding detailed views, as shown in Figure 17 - 21.
This way, the Dynamic Data framework is capable of creating web pages for a table with
many relationships, such as PlayerScores .

CH017.indd 728CH017.indd 728 9/6/10 6:13:37 PM9/6/10 6:13:37 PM

 5. Click the “ Insert new item ” button at the bottom of the web page. The web browser
will display a new page with data entry fi elds. The Game and the Player fi elds are going
to be represented by combo boxes that allow you to choose from the available values in
the corresponding tables. In this case, because the button was clicked while displaying the
scores registered for a specifi c game, the Game will show it as the default value for
the Game fi eld. You can enter data for each fi eld and click the Insert button to add a new
record, and choose the values for the foreign keys using the combo boxes, as shown in
Figure 17 - 22.

 FIGURE 17 - 22: Using the combo boxes

 By following a few steps, you can create a Dynamic Data website capable of
navigating the records from tables with many complex one - to - many
relationships and buttons for CRUD operations. The default templates use
combo boxes to allow the user to select data from related tables, and offer a very
simple navigation scheme.

 Performing Complex CRUD Operations on the Same Page

 You can also follow the previously described steps to switch to the combined - page mode.

Creating a New Dynamic Data Web Site ❘ 729

CH017.indd 729CH017.indd 729 9/6/10 6:13:38 PM9/6/10 6:13:38 PM

730 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 In this case, the in - line editing capabilities will also display combo boxes for the Game and the
 Player fi elds in the grid, as shown in Figure 17 - 23.

 FIGURE 17 - 23: Combo boxes for fi elds in a table

 WORKING TO MODIFY IMPLEMENTATION

TO FIT BUSINESS NEEDS

 So far, you have been working with the default behavior offered by the Dynamic Data framework
and its associated templates. In real - world situations, you must usually modify the implementation
to fi t business needs. Thus, let ’ s dive deeper into Dynamic Data ’ s structure to understand the
different pieces that make it possible to generate this kind of web application.

 Understanding Dynamic Data ’ s Structure

 Figure 17 - 24 shows all the folders and fi les that compose the resulting Dynamic Data website.
Table 17 - 3 describes the fi les at the root level and Table 17 - 4 describes the sub - folders inside the
 DynamicData folder.

CH017.indd 730CH017.indd 730 9/6/10 6:13:44 PM9/6/10 6:13:44 PM

Working to Modify Implementation to Fit Business Needs ❘ 731

 TABLE 17 - 4: Folders Found Inside the DynamicData Folder in an ASP.NET Dynamic Data Website

 FOLDER DESCRIPTION

 Content This contains the Images sub - folder and the GridViewPager control. The

 Images sub - folder contains all the GIF images used as icons in the page

control responsible for allowing the user to switch between multiple pages.

 CustomPages This folder is empty by default. It allows defi ning custom page templates

used to override the default page templates found in the PageTemplates

folder for a specifi c table.

 EntityTemplates This contains the entity templates that are responsible for creating the UI to

view, edit, and insert data.

 FieldTemplates This contains the user controls used to create the UI to view and edit the

data for each diff erent fi eld type.

 Filters This contains the user controls used to create the UI to fi lter the data rows

being displayed. As previously explained, there are three fi lter templates.

 PageTemplates This contains the page templates that create the UI for all the operations

supported by Dynamic Data. This folder contains the page templates that

you were using during the diff erent examples; Details.aspx ; Edit.

aspx , Insert.aspx , List.aspx , and ListDetails.aspx . As previously

discussed, the URL routing defi ned in the Global.asax fi le defi nes which

page to call for each action.

 TABLE 17 - 3: Root Level Files in an ASP.NET Dynamic Data Website

 FILE DESCRIPTION

 Default.aspx This ASP.NET page displays the tables and views registered in the associated

meta - model. As previously explained, each table or view appears rendered as

a HyperLink control, and when the user clicks on it, the selected table lists its

contents.

 Global.asax This registers an instance of the MetaModel class (System.Web

.DynamicData.MetaModel), representing one or multiple databases, and

adds routes to the RouteCollection object as previously described.

 Site.css This is the cascading style sheet (CSS) used by all the Dynamic Data page

templates and controls.

 Site.master This is the master page for the website. Both Default.aspx and all the

Dynamic Data page templates use this master page.

 Web.config This is the XML - based confi guration fi le for the website.

CH017.indd 731CH017.indd 731 9/6/10 6:13:44 PM9/6/10 6:13:44 PM

732 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 The System.Web.DynamicData namespace and assembly contains the
classes that provide the core functionality for the Dynamic Data framework,
extensibility features, and customization capabilities. The tag prefi x asp: is
registered for this namespace. For example, the following lines defi ne a Sytem
.Web.DynamicData.DynamicDataManager using asp:DynamicDataManager :

<asp:DynamicDataManager ID=”DynamicDataManager1” runat=”server”
 AutoLoadForeignKeys=”true”>
 <DataControls>
 <asp:DataControlReference ControlID=”FormView1” />
 <asp:DataControlReference ControlID=”GridView1” />
 </DataControls>
</asp:DynamicDataManager>

 To make it possible to work with the Dynamic Data framework, both the
 DetailsView and GridView controls have been extended to display fi elds by
using templates instead of hard - coded rules. Both the FormView and ListView
controls also implement a similar behavior by using a DynamicControl
object (System.Web.DynamicData.DynamicControl) in their templates and
specifying which fi eld to display in the row. The Dynamic Data framework
builds the UI for all these controls considering the specifi ed templates.

 The default validation considers the metadata read in the data model
(including the data types and their limitations) as the number of characters
for a char - style column and the null acceptance.

 Customizing the Look and Feel

 The Site.css fi le contains the defi nitions for the styles used by the
Dynamic Data page template and controls. Thus, you can use it to change
the look and feel for the pages and control when a style is involved.

 For example, the default style for a row selected in a grid (used in the
combined - page mode) is the following:

.DDSelected
{
 background-color: #fdffb8;
}

 The following new version applies a black border color with a double style
and uses a bold font to emphasize the selected row:

.DDSelected
{
 background-color: #fdffb8;
 border-color: Black;
 border-style: double;
 font-weight: bold;
}

 Figure 17 - 25 shows the results of this change.

 FIGURE 17 - 24: Folders

and fi les of the website

CH017.indd 732CH017.indd 732 9/6/10 6:13:45 PM9/6/10 6:13:45 PM

 You can also check the CssClass used by a specifi c control in a template. For example, the
following code corresponds to the ForeignKey.ascx fi lter template, in the DynamicData/Filters
folder. It uses the DDFilter CSS class.

 < %@ Control Language=”C#” CodeFile=”ForeignKey.ascx.cs”
 Inherits=”ForeignKeyFilter” % >

 < asp:DropDownList runat=”server” ID=”DropDownList1” AutoPostBack=”True”
 CssClass=”DDFilter”
 OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged” >
 < asp:ListItem Text=”All” Value=”” / >
 < /asp:DropDownList >

 The default defi nition for this class is as follows:

.DDFilter
{
 font: .95em Tahoma, Arial, Sans-serif;
 color:#666;
}

 The following new version for the code that defi nes the aforementioned class in the Site.css fi le
applies an aqua background color and uses a bold font to emphasize the combo box:

.DDFilter
{
 font: .95em Tahoma, Arial, Sans-serif;
 color:#666;
 font-weight: bold;
 background-color: Aqua;
}

 FIGURE 17 - 25: Changing the default style

 You can check the CssClass used by the different controls in the templates and
make the necessary changes to adapt the look and feel of the website to your needs.

Working to Modify Implementation to Fit Business Needs ❘ 733

CH017.indd 733CH017.indd 733 9/6/10 6:13:45 PM9/6/10 6:13:45 PM

734 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 The default title and header for all the pages that compose a Dynamic Data website is Dynamic
Data Site , and this is defi ned in the Site.master fi le. You can change this fi le to customize the
title and the header.

 For example, Listing 17 - 2 shows a customized version of the fi le with Retro - gamers championship
as the new title and header. The code that was changed appears in bold.

 LISTING 17 - 2: A New Title and Header in the Site.master File

 < %@ Master Language=”C#” CodeFile=”Site.master.cs” Inherits=”Site” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
 EN” “http://www.w3.org/TR/xhtml1/DTD/
 xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 <title>Retro-gamers championship</title>
 <link href=”~/Site.css” rel=”stylesheet” type=”text/css” />
 <asp:ContentPlaceHolder id=”head” runat=”server”>
 </asp:ContentPlaceHolder>
</head>
<body>
 <h1 class=”DDMainHeader”>Retro-gamers championship</h1>
 <div class=”DDNavigation”>
 <img alt=”Back to home page”
 runat=”server” src=”DynamicData/Content/Images/back.gif”
 />Back to home page
 </div>

 <form id=”form1” runat=”server”>
 <div>
 <%-- TODO: Enable partial rendering by setting the
 EnablePartialRendering attribute to “true” to
 provide a smoother browsing experience.
 Leaving partial rendering disabled will provide a better
 debugging experience while the application is
 in development. --%>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”
 EnablePartialRendering=”false”/>

 <asp:ContentPlaceHolder id=”ContentPlaceHolder1” runat=”server”>
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

 Code fi le [RetroGamesWeb2/Site.master] available for download at Wrox.com

CH017.indd 734CH017.indd 734 9/6/10 6:13:51 PM9/6/10 6:13:51 PM

 Also, the default title before displaying the available tables and views is My Tables , and this is
defi ned in the Default.aspx fi le. You can change this fi le to customize this header.

 For example, Listing 17 - 3 shows a customized version of the fi le with Click on the desired
entity name as the new header. The code that was changed appears in bold.

 LISTING 17 - 3: A New Header in the Default.aspx File

 < %@ Page Language=”C#” MasterPageFile=”~/Site.master”
 CodeFile=”Default.aspx.cs” Inherits=”_Default” % >

 < asp:Content ID=”headContent” ContentPlaceHolderID=”head” Runat=”Server” >
 < /asp:Content >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
 Runat=”Server” >
 < asp:ScriptManagerProxy ID=”ScriptManagerProxy1” runat=”server” / >

 <h2 class=”DDSubHeader”>Click on the desired entity name</h2>

 <asp:GridView ID=”Menu1” runat=”server” AutoGenerateColumns=”false”
 CssClass=”DDGridView” RowStyle-CssClass=”td”
 HeaderStyle-CssClass=”th” CellPadding=”6”>
 <Columns>
 <asp:TemplateField HeaderText=”Table Name” SortExpression=”TableName”>
 <ItemTemplate>
 <asp:DynamicHyperLink ID=”HyperLink1” runat=”server”>
 <%# Eval(“DisplayName”) %></asp:DynamicHyperLink>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
</asp:Content>

 Code fi le [RetroGamesWeb2/Default.aspx] available for download at Wrox.com

 Of course, you will surely want to customize the CSS styles used for each element. Figure 17 - 26
shows the results of the changes in the two fi les.

 Working with Page Templates

 In the example just shown, the web browser is using the ListDetails.aspx page template to
display the combined - page mode with in - line editing capabilities. You can make the necessary
changes to this page template, found in the DynamicData/PageTemplates folder.

Working to Modify Implementation to Fit Business Needs ❘ 735

CH017.indd 735CH017.indd 735 9/6/10 6:13:51 PM9/6/10 6:13:51 PM

736 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 For example, you can make the necessary changes to use alternating background colors by following
these steps:

 1. Open the Site.css fi le.

 2. Add a new style to defi ne an aqua background color for an alternating row style, tars :

table.DDGridView .tars
{
 background-color: Aqua;
}

 3. Now, open the ListDetails.aspx page template and switch to the Design view.

 4. Click on the grid control, asp:GridView#GridView1 . Go to its properties and enter
 tars in Styles ➪ AlternatingRowStyle ➪ CssClass. This way, the GridView will apply
the previously defi ned style to alternate styles in the different rows. The design view will
display an aqua background alternating in the different rows of the grid, as shown in
Figure 17 - 27.

 FIGURE 17 - 26: Page with new title and header

CH017.indd 736CH017.indd 736 9/6/10 6:13:52 PM9/6/10 6:13:52 PM

 Figure 17 - 28 shows the results of applying the new CSS style in the grid when the website displays
the data from the PlayerScores table.

 FIGURE 17 - 27: Applying a previously defi ned style to alternate styles

 FIGURE 17 - 28: Applying the new CSS style in the grid

Working to Modify Implementation to Fit Business Needs ❘ 737

CH017.indd 737CH017.indd 737 9/6/10 6:13:52 PM9/6/10 6:13:52 PM

738 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 Table 17 - 5 describes the fi ve page templates provided by Dynamic Data.

 It is possible to edit the other page templates to customize the presentation of the
different controls and their behavior as explained in the previous example.
However, it is very important to keep the necessary basic structure to make it
possible for these templates to work with the Dynamic Data framework.

 TABLE 17 - 5: Page Templates

 FILE DESCRIPTION

 Details.aspx Shows the detailed view of a single record. It uses a DetailsView

control.

 Edit.aspx Allows the user to edit a single record. It uses a DetailsView control.

 Insert.aspx Lets the user insert a new record. It uses a DetailsView control.

 List.aspx Displays a list of records from a table using a grid and provides combo

boxes to allow users to fi lter data. It uses GridView , GridViewPager ,

and DropDownList controls.

 ListDetails.aspx Displays a list of records from a table using a grid, provides combo boxes

to allow users to fi lter data and enables in - line editing and visualization

of details in the same page. It uses GridView , GridViewPager , and

 DropDownList controls.

 Working with Field Templates

 ASP.NET Dynamic Data uses fi eld templates to render the data in the data - bound controls.
They are user controls derived from the FieldTemplateUserControl class (System.Web
.DynamicData.FieldTemplateUserControl) that maps fi elds in the data - bound controls
to data types in the data model. The Dynamic Data framework infers the data type for the
related fi eld at run - time, and then it checks for the appropriate fi eld template to render the data
in the data - bound control.

 The fi eld template to be used in each case depends on the data type and the mode — display,
edit, or insert. Some fi eld templates provide a specifi c edit or insert template different than
the one used for the display mode. For example, the DateTime.ascx template is used for
displaying a DateTime data type. However, when editing or inserting, the DateTime_Edit.ascx
is used.

CH017.indd 738CH017.indd 738 9/6/10 6:13:53 PM9/6/10 6:13:53 PM

 You can make the necessary changes to an existing fi eld template, found in the DynamicData/
FieldTemplates folder. For example, you can change the default CSS class for the DataTime fi eld
template when it is running in the edit mode by following these steps:

 1. Open the Site.css fi le.

 2. Add a new style to defi ne an aqua background color for the control, DDTextBoxEdit :

.DDTextBoxEdit
{
 background-color: #0000FF;
 color: #FFFFFF;
 font-weight: bold;
}

 3. Now, open the DateTime_Edit.ascx
fi eld template and replace
 CssClass= “ DDTextBoxEdit “ with
 CssClass= “ DDTextBoxEdit “ , as shown in
Listing 17 - 4. This way, the textbox displayed
when editing a DateTime data type will
apply the previously defi ned style to use a
different background. You can check it by
editing a row from the Game table, as shown
in Figure 17 - 29.

 LISTING 17 - 4: A Customized DateTime_Edit.ascx.

 < %@ Control Language=”C#” CodeFile=”DateTime_Edit.ascx.cs”
 Inherits=”DateTime_EditField” % >

<asp:TextBox ID=”TextBox1” runat=”server” CssClass=”DDTextBoxEdit”
 Text=’<%# FieldValueEditString %>’ Columns=”20”></asp:TextBox>

<asp:RequiredFieldValidator runat=”server” ID=”RequiredFieldValidator1”
 CssClass=”DDControl DDValidator” ControlToValidate=”TextBox1”
 Display=”Dynamic” Enabled=”false” />
<asp:RegularExpressionValidator runat=”server”
 ID=”RegularExpressionValidator1” CssClass=
 “DDControl DDValidator” ControlToValidate=”TextBox1”
 Display=”Dynamic” Enabled=”false” />
<asp:DynamicValidator runat=”server” ID=”DynamicValidator1”
 CssClass=”DDControl DDValidator” ControlToValidate=
 “TextBox1” Display=”Dynamic” />
<asp:CustomValidator runat=”server” ID=”DateValidator” CssClass=”DDControl
 DDValidator” ControlToValidate=”TextBox1” Display=”Dynamic”
 EnableClientScript=”false” Enabled=”false”
 OnServerValidate=”DateValidator_ServerValidate” />

 Code fi le [RetroGamesWeb2/FieldTemplates/DateTime_Edit.ascx] available for download at Wrox.com

 FIGURE 17 - 29: Editing a row

Working to Modify Implementation to Fit Business Needs ❘ 739

CH017.indd 739CH017.indd 739 9/6/10 6:13:58 PM9/6/10 6:13:58 PM

740 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 Table 17 - 6 describes the 18 fi eld templates provided by Dynamic Data.

 TABLE 17 - 6: Field Templates

 FILE DESCRIPTION

 Boolean.ascx Uses a CheckBox control to display Boolean data.

 Boolean_Edit.ascx Uses a CheckBox control to enable users to edit a Boolean value.

 Children.ascx Uses a HyperLink control to display the fi elds that have a one -

 to - many relationship, and off ers a redirection to the relation entity

detailed view.

 Children_Insert.ascx This control has the functionality to prevent the insertion of a child

fi eld value while the fi eld is being added.

 DateTime.ascx Uses a Literal control to display DataTime data.

 DateTime_Edit.ascx Uses a TextBox control to enable users to edit a DataTime value. It

supports the Regex class.

 Decimal_Edit.ascx Uses a TextBox control to enable users to edit decimal and numeric

values. It supports the Regex class.

 Enumeration.ascx Displays enumeration values.

 Enumeration_Edit.ascx Uses a DropDownList control to enable users to select from a list of

enumeration values in a combo box.

 ForeignKey.ascx Uses a HyperLink control to display the fi elds that have a many - to -

 one relationship and off ers a redirection to the relation entity

detailed view.

 ForeignKey_Edit.ascx Uses a DropDownList control to enable users to edit fi elds that have

a many - to - one relationship, selecting from a list of related values in a

combo box.

 Integer_Edit.ascx Uses a TextBox control to enable users to edit integer values. It

supports the Regex class.

 Multiline_Edit.ascx Uses a TextBox control (with its MultiLine property set to

 true) to enable users to edit a text block. It also renders a

 RegularExpressionValidator control when the data model

defi nes a RegularExpression attribute.

 ManyToMany.ascx Displays many - to - many fi elds, when the table is a pure join one and

the application ’ s data model is based on ADO.NET Entity Framework.

LINQ to SQL doesn ’ t support many - to - many relationships.

CH017.indd 740CH017.indd 740 9/6/10 6:13:59 PM9/6/10 6:13:59 PM

 By default, Dynamic Data uses the edit - mode fi eld templates for the insert mode when is doesn ’ t fi nd
a user control defi ned with the _Insert.ascx suffi x.

 Working with Entity Templates

 Entity templates are user controls that allow you to customize the layout for a table. They are
user controls derived from the EntityTemplateUserControl class (System.Web.DynamicData.
EntityTemplateUserControl). The default entity templates display the fi elds in a two - column
table — one column for the fi eld names, and the other for the fi eld values.

 Dynamic Data provides three entity templates, found in the DynamicData/EntityTemplates folder.
They are included in the page templates that defi ne the different operations, as shown in Table 17 - 7.

 FILE DESCRIPTION

 ManyToMany_Edit.ascx Enables users to edit fi elds that have a many - to - many relationship in

a pure join table and the application ’ s data model is based on ADO.

NET Entity Framework. LINQ to SQL doesn ’ t support many - to - many

relationships.

 Text.ascx Uses a Literal control to display string and many numeric data

types.

 Text_Edit.ascx Uses a TextBox control (with its TextMode property set to

 SingleLine) to enable users to edit single - line text. It also renders

a RegularExpressionValidator control when the data model

defi nes a RegularExpression attribute. The MaxLength property

for the TextBox control is enforced according to the maximum length

defi ned in the fi eld in the data model.

 Url.ascx Uses a HyperLink control to display URLs.

 TABLE 17 - 7: Entity Templates

 FILE INCLUDED IN THE PAGE TEMPLATE

 Default.ascx Details.aspx

 Default_Edit.ascx Update.aspx

 Default_Insert.ascx Insert.aspx

 The combined - page mode ListDetails.aspx page template will also use the three entity templates.

 The entity templates use the previously explained fi eld templates to display the fi elds. The page
templates display the corresponding entity template using the DynamicEntity control and replacing
it with the appropriate entity template at run - time.

Working to Modify Implementation to Fit Business Needs ❘ 741

CH017.indd 741CH017.indd 741 9/6/10 6:14:00 PM9/6/10 6:14:00 PM

742 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 If you want to display the fi elds with a different organization, you can defi ne a new entity template for
the desired table. Follow these steps to create a new customized entity template for the Game table:

 1. Right - click on the EntityTemplates sub - folder located in the DynamicData folder, and
select Add New Item in the context menu that appears. A template selection dialog box will
appear.

 2. Select “ Web User Control for Visual C# ” under Installed Templates and activate the “ Place
code in separate fi le ” checkbox.

 3. Enter the name for the entity set representing the table (Games.ascx), and click Add.

 By default, the entity set representing the table will have a plural form because
both LINQ to SQL and ADO.NET Entity Framework pluralize the generated
object names. For example, Games represents the Game table. However, it is
always convenient to check the data model for the name of the entity set
representing the table.

 4. Enter the markup shown in Listing 17 - 5 in the Games.ascx fi le. This markup creates a new
layout of the Game table displaying its fi eld names and values.

 5. Open the class fi le for the page (Games.ascx.cs) and replace the base class from
 UserControl to System.Web.DynamicData.EntityTemplateUserControl , as shown in
the following defi nition:

public partial class DynamicData_EntityTemplates_Games :
 System.Web.DynamicData.EntityTemplateUserControl

 LISTING 17 - 5: A Customized Entity Template, Games.ascx.

 < %@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”Games.ascx.cs”
 Inherits=”DynamicData_EntityTemplates_Games” % >
 < tr >
 < td class=”DDLightHeader” >
 < asp:Label ID=”Label1” runat=”server” Text=”Name” / >
 < /td >
 < td >
 < asp:DynamicControl ID=”DynamicControl1” runat=”server”
 DataField=”Name” / >
 < /td >
 < td class=”DDLightHeader” >
 < asp:Label ID=”Label3” runat=”server”
 Text=”Game’s category” / >
 < /td >
 < td >
 < asp:DynamicControl ID=”DynamicControl4” runat=”server”

CH017.indd 742CH017.indd 742 9/6/10 6:14:00 PM9/6/10 6:14:00 PM

 DataField=”GameCategory” / >
 < /td >
 < /tr >
 < tr >
 < td class=”DDLightHeader” >
 < asp:Label ID=”Label2” runat=”server” Text=”Release date” / >
 < /td >
 < td >
 < asp:DynamicControl ID=”DynamicControl3” runat=”server”
 DataField=”ReleaseDate” / >
 < /td >
 < /tr >
 < tr >
 < td class=”DDLightHeader” >
 < asp:Label ID=”Label4” runat=”server” Text=”Was it played?” / >
 < /td >
 < td >
 < asp:DynamicControl ID=”DynamicControl5” runat=”server”
 DataField=”Played” / >
 < /td >
 < /tr >

 Code fi le [RetroGamesWeb2/DynamicData/EntityTemplates/Games.ascx] available for download at Wrox.com

 Now, when you select a record from the Games
entity set, the layout for its detailed view at
the bottom of the grid will be as shown in
Figure 17 - 30 because it will use the previously
defi ned Games.ascx entity template to display
its fi eld names and values.

 The markup code shown in Listing 17 - 5 is very
easy to understand. It defi nes a Label control
for each fi eld and a DynamicControl control
to render the fi eld using the corresponding fi eld
template at run - time.

 The following lines defi ned the label and the dynamic control for the Played fi eld. In this case, the
label displays the text Was it played? instead of the default fi eld name:

 < td class=”DDLightHeader” >
 <asp:Label ID=”Label4” runat=”server” Text=”Was it played?” />
</td>
<td>
 <asp:DynamicControl ID=”DynamicControl5” runat=”server”
 DataField=”Played” />
</td>

 FIGURE 17 - 30: New layout in detailed view

Working to Modify Implementation to Fit Business Needs ❘ 743

CH017.indd 743CH017.indd 743 9/6/10 6:14:06 PM9/6/10 6:14:06 PM

744 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 The Game table has a foreign key, GameCategoryId . However, you don ’ t want to display the
numeric value; you want to show the value of the Name fi eld in the related GameCategory table.
Therefore, you must specify GameCategory , the foreign table, for the DataField property, instead
of GameCategoryId , as shown in the following lines:

 < td class=”DDLightHeader” >
 < asp:Label ID=”Label3” runat=”server”
 Text=”Game’s category” / >
 < /td >
 < td >
 <asp:DynamicControl ID=”DynamicControl4” runat=”server”
 DataField=”GameCategory” />
 </td>

 Working with Filter Templates

 ASP.NET Dynamic Data uses fi lter templates to render the UI for data fi ltering. They are user
controls derived from the QueryableFilterUserControl class (System.Web.DynamicData
.QueryableFilterUserControl). As previously described, data fi ltering allows the user to
display the rows based on a value in a selected column, using a DropDownList control. Dynamic
Data provides three fi lter templates, found in the DynamicData/Filters folder, as shown in
Table 17 - 8.

 TABLE 17 - 8: Filter Templates

 FILE DESCRIPTION

 Boolean.ascx Displays the following values: All , True , and False .

 Enumeration.ascx Displays the string representations of the enumeration values. It also

off ers the All value to remove the fi lter.

 ForeignKeys.ascx Displays the values from the related table. It also off ers the All value to

remove the fi lter.

 If the associated fi eld value accepts nulls, all the fi lters also provide a [Not set] value.

 If you want to display Yes and No instead of True and False for the Boolean fi lters in a Dynamic
Data website, you can make a few changes to the default fi lter template.

 Follow these steps to customize the Boolean.ascx fi lter template:

 1. Listing 17 - 6 shows the code for Boolean.ascx . Add the Label control writing the
boldfaced line of code. This way, the text (yes/no/all filter) will appear before the
fi eld name and the combo box (DropDownList control).

CH017.indd 744CH017.indd 744 9/6/10 6:14:06 PM9/6/10 6:14:06 PM

 2. Open the class fi le for the page (Boolean.ascx.cs) and replace the following two lines
that add the Yes and No elements to the DropDownList control, DropDownList1 , in the
 Page_Init method, with the boldfaced ones shown in Listing 17 - 7:

DropDownList1.Items.Add(new ListItem(“ Yes ”, Boolean.TrueString));
DropDownList1.Items.Add(new ListItem(“ No ”, Boolean.FalseString));

 LISTING 17 - 6: A Customized Filter Template, Boolean.ascx

 < %@ Control Language=”C#” CodeFile=”Boolean.ascx.cs” Inherits=”BooleanFilter” % >

<asp:Label ID=”Label1” runat=”server” Text=” (yes/no/all filter) “ ></asp:Label>
<asp:DropDownList runat=”server” ID=”DropDownList1” AutoPostBack=
 “True” CssClass=”DDFilter”
 OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”>
</asp:DropDownList>

 Code fi le [RetroGamesWeb2/DynamicData/Filters/Boolean.ascx] available for download at Wrox.com

 LISTING 17 - 7: The New Code for the Page_Init Method in the Customized Filter Template,

Boolean.ascx.cs

protected void Page_Init(object sender, EventArgs e) {
 if (!Column.ColumnType.Equals(typeof(bool))) {
 throw new InvalidOperationException(String.Format(“A boolean
 filter was loaded for column ‘{0}’ but the column has
 an incompatible type ‘{1}’.”, Column.Name,
 Column.ColumnType));
 }

 if (!Page.IsPostBack) {
 DropDownList1.Items.Add(new ListItem(“All”, String.Empty));
 if (!Column.IsRequired) {
 DropDownList1.Items.Add(new ListItem(“[Not Set]”, NullValueString));
 }
 DropDownList1.Items.Add(new ListItem(“Yes”, Boolean.TrueString));
 DropDownList1.Items.Add(new ListItem(“No”, Boolean.FalseString));
 // Set the initial value if there is one
 string initialValue = DefaultValue;
 if (!String.IsNullOrEmpty(initialValue)) {
 DropDownList1.SelectedValue = initialValue;
 }
 }
}

 Code fi le [RetroGamesWeb2/DynamicData/Filters/Boolean.ascx.cs] available for download at Wrox.com

Working to Modify Implementation to Fit Business Needs ❘ 745

CH017.indd 745CH017.indd 745 9/6/10 6:14:07 PM9/6/10 6:14:07 PM

746 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 Now, when you display the data
from the Game table that contains
the Played Boolean fi eld, its fi lter
displays Yes and No options, and
it displays more information to the
user about its fi ltering possibilities,
as shown in Figure 17 - 31.

 Creating Custom Pages

 Sometimes, a custom entity template
isn ’ t enough, and it is necessary to create a custom page template for a specifi c table. Dynamic Data
provides the DynamicData/CustomPages folder that allows you to create a sub - folder with the entity
set names in order to hold their custom page templates.

 Follow these steps to create a customized ListDetails.aspx page template for the Player table
(Players entity set):

 1. Create a new sub - folder, Players , in the CustomPages sub - folder, located in the
 DynamicData folder.

 2. Now, copy the ListDetails.aspx page template found in the PageTemplates sub - folder to
the new Players sub - folder.

 3. Open the previously copied page template, DynamicData/CustomPages/Players/
ListDetails.aspx , and switch to the Design view.

 4. Click on the grid control, asp:GridView#GridView1 . Go to its properties and enter 100 in
Paging ➪ PageSize. This way, the GridView will display 100 rows per page for the Player
table.

 5. Switch to the Source view. Add a new label before the label that displays the table name:

 < h2 class=”DDSubHeader” >
 < asp:Label ID=”Label1” runat=”server” Text=”Hall of fame” > < /asp:Label >
 < /h2 >

 6. Add another label before the DetailsPanel Panel control:

 < h2 class=”DDSubHeader” >
 < asp:Label ID=”Label3” runat=”server” Text=”Details for the
 selected player:” > < /asp:Label >
 < /h2 >

 Now, when you select the Player table, Dynamic Data will use the customized ListDetails.aspx
page template in the combined - page mode, and the previously added labels will appear, as shown in
Figure 17 - 32.

 FIGURE 17 - 31: Display after fi lter has been applied

CH017.indd 746CH017.indd 746 9/6/10 6:14:07 PM9/6/10 6:14:07 PM

 Customizing Validations

 The default Dynamic Data validation considers the metadata and includes the following three rules:

 Required fi elds

 Maximum fi eld length

 Type enforcement

 You can include additional validation information in the data model by creating validation methods
and by using System.ComponentModel.DataAnnotations attributes. You can also create your own
customized attributes.

➤

➤

➤

 FIGURE 17 - 32: Customized template with labels added

 In this simple example, the new customized page added just two labels.
However, you can combine your ASP.NET experience with the different
customization possibilities offered by Dynamic Data in order to create data -
 driven web applications prepared to fi t even the most complex business needs.

Working to Modify Implementation to Fit Business Needs ❘ 747

CH017.indd 747CH017.indd 747 9/6/10 6:14:08 PM9/6/10 6:14:08 PM

748 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 However, you must also add specifi c validation code overriding the OnValidate method or handling
the Validate event to enforce more complex business rules that involve multiple fi elds.

 It is possible to include additional validation information to the RetroGames.designer.cs fi le.
However, it is more convenient to create a new partial class to keep this information safe from the
code generated by the O/R Designer.

 Follow these steps to create a new class that adds a simple range validation for the Score fi eld in the
 PlayerScore table:

 1. Create a new class in the App_Code folder. Use the name of the entity that needs metadata
information, PlayerScore.cs .

 2. Add the following two using declarations:

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

 3. Add the partial keyword to the class defi nition and remove its constructor.

 4. Add a new class with the entity name (PlayerScore) as a prefi x and MetaData as a
suffi x — in this case, PlayerScoreMetaData .

 5. Add a new public object property to the PlayerScoreMetaData class for each fi eld found in
the PlayerScore entity. Listing 17 - 8 shows the new PlayerScoreMetaData class with the
public object properties.

 6. Add a MetadataType attribute to the partial class (PlayerScore) that represents the
extension of the entity class. Specify the metadata defi nition class PlayerScoreMetaData ,
as shown in the following line:

[MetadataType(typeof(PlayerScoreMetaData))]

 7. Add the following lines before the Score property defi nition. Listing 17 - 8 shows the com-
plete property defi nition in PlayerScore.cs with the new line:

[Range(1, 100000000,
 ErrorMessage = “Value for {0} must be between {1} and {2}.”)]

 LISTING 17 - 8: The Code for the Score Property Defi nition with the Range Validation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
// Added
 using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

CH017.indd 748CH017.indd 748 9/6/10 6:14:14 PM9/6/10 6:14:14 PM

 FIGURE 17 - 33: Validation text being displayed

[MetadataType(typeof(PlayerScoreMetaData))]
public partial class PlayerScore
 {

}

 public class PlayerScoreMetaData
{
 public object PlayerScoreId { get; set; }
 public object PlayerId { get; set; }
 public object GameId { get; set; }
 [Range(1, 100000000,
 ErrorMessage = “Value for {0} must be between {1} and {2}.”)]
 public object Score { get; set; }
 public object ScoreDate { get; set; }
 public object Game { get; set; }
 public object Player { get; set; }
}

 Code fi le [RetroGamesWeb2/App_Code/PlayerScore.cs] available for download at Wrox.com

 Now, if you try to insert a new record in the
 PlayerScore table and enter an out - of - range
score value, the validation text specifi ed will
appear at the right side of the fi eld ’ s value, as
shown in Figure 17 - 33.

 The new metadata code applied the
 RangeAttribute (System.ComponentModel
.DataAnnotations.RangeAttribute) to
the Score property. This way, it specifi es a
minimum, 1 , and maximum value, 100000000 ,
for this property. If the value of the property is not within the minimum and maximum values, the
code raises a validation exception considering the ErrorMessage string.

 You can also apply a RangeAttribute with the RangeAttribute(Type, String, String)
constructor, as shown in the following line for a Decimal fi eld:

[Range(typeof(Decimal),”200”, “15000”)]

 It is very important to master data model validations in order to take full
advantage of Dynamic Data capabilities. The previously shown example is just a
simple case of a range validation. You will usually need to combine many
different kinds of validations in complex models.

Working to Modify Implementation to Fit Business Needs ❘ 749

CH017.indd 749CH017.indd 749 9/6/10 6:14:15 PM9/6/10 6:14:15 PM

750 ❘ CHAPTER 17 ASP.NET DYNAMIC DATA

 SUMMARY

 There are many other advanced topics related to ASP.NET Dynamic Data. This chapter just
scratched the surface of the features offered by its powerful templates and framework. This chapter
also discussed many of the customization possibilities offered by ASP.NET Dynamic Data and how
it relates to other ASP.NET components and the data models.

 Following are some key points from this chapter:

 You can create a data - driven application following many simple steps using the Dynamic
Data templates.

 You can create simple and complex CRUD applications based on Dynamic Data.

 You must create a robust data model to take full advantage of Dynamic Data ’ s features.

 You must combine Dynamic Data ’ s features with the validation capabilities offered by the
underlying data model.

 You can work with customized templates for fi elds, entities, and fi lters.

 You have the capability of defi ning CSS styles to customize the look and feel of the rendered
web pages.

 You can create custom pages for specifi c entities when the templates aren ’ t enough.

 Chapter 18 takes a look at the ASP.NET Model View Controller (MVC).

➤

➤

➤

➤

➤

➤

➤

CH017.indd 750CH017.indd 750 9/6/10 6:14:21 PM9/6/10 6:14:21 PM

ASP.NET Model View
Controller (MVC)

 In Chapter 17, you read about the ASP.NET Dynamic Data feature, which became mature
with .NET Framework 4. This chapter introduces the ASP.NET Model - View - Controller
(MVC) technology that recently reached its 2.0 version, which is a built - in component of
Visual Studio 2010. ASP.NET MVC 1.0 was an out - of - band release for Visual Studio 2008.
Although the MVC team made ASP.NET MVC 2 available for Visual Studio 2008, too, the
version shipping with Visual Studio 2010 utilizes several new features that are released with
the ASP.NET 4.0 platform.

 After reading this chapter, you will be familiar with the following:

 Introduction to MVC — You will learn about MVC and similar design patterns to
understand how ASP.NET MVC differs from the ASP.NET Web Forms approach.

 Creating an MVC 2 application — You will create a very simple web application with
MVC 2, and learn about the structure of MVC web projects. In contrast to the fi le -
 based request routing, MVC uses a different routing model. As you progress through
the example, you will learn about the new routing approach.

 Adding new MVC 2 pages — You will extend the simple web site with a few pages
using the cornerstones of MVC applications: models, views, and controllers.

 Customization in MVC 2 — MVC was designed with easy extensibility and
customization in mind. Here you will discover that customizing your controllers and
the way views render the user interface (UI) is incredibly simple.

 Routing details — One of the keys to MVC ’ s simplicity is the routing model it uses.
You will learn more about the routing model in this chapter.

 Testing with MVC 2 — MVC has been designed and implemented with Test Driven
Development (TDD) in mind. In this chapter, you will learn how to refactor an MVC
application ’ s architecture to support unit testing.

➤

➤

➤

➤

➤

➤

 18

CH018.indd 751CH018.indd 751 9/6/10 6:18:59 PM9/6/10 6:18:59 PM

752 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 You do not need any previous experience with ASP.NET MVC to understand MVC 2. This chapter
provides enough detail to dive into this topic.

 INTRODUCTION TO MVC

 MVC is an architectural pattern frequently used in software development. The roots of this pattern
go back to 1979, when Trygve Reenskaug described this pattern during his work on SmallTalk - 80 at
Xerox Palo Alto Research Center (PARC).

 The MVC pattern helps to separate the data (model), the application logic (controller), and
the UI (view) concerns from each other, which leads to properly decoupled components
within the application.

 One of the advantages of this decoupling is that it makes the application more testable, and, thus,
helps developers to implement an application with the TDD approach. Of course, if you are not a
fan of TDD, or you are following another development method, using TDD with ASP.NET MVC
is not mandatory. It is a great option, however, because ASP.NET MVC itself is implemented with
TDD in mind. This is evidenced by the fact that the source code (which is Open Source) contains
thousands of unit tests.

 The model is domain - specifi c data on which the user and the application operate. These are mostly
Plain Old CLR Object (POCO) classes without any additional behavior. These classes are used to
transport input from the user through one or more views to the application to process, or to display
some data (for example, in a tabular form) for the user.

 The application logic (also called the domain or business logic) is the application code that adds
functionality or behavior to the model. A domain logic function usually takes parameters from the
user, or takes a model fi lled with data. After receiving the model, the data usually goes through
some kind of validation procedure. If everything is valid, the data gets processed, and the user
gets back another model representing the result. Keeping these things moving according to the
application logic is the responsibility of the controller .

 The view is a representation of the UI, which is an HTML page in an ASP.NET MVC application. The
view provides the surface to display the model (a model can have several views to show the model in
different forms), and also allows the user to interact with
the data. For example, a model provides a user name,
email address, and password; and a registration form
represents a related view.

 Figure 18 - 1 shows how the previously described
components interact with each other.

 As you can see from Figure 18 - 1, the view can reference
the model directly, but the model has no knowledge
about views using it. The model and the view do not
know anything about controllers manipulating them. FIGURE 18 - 1: MVC component interaction

ViewModel

Controller

CH018.indd 752CH018.indd 752 9/6/10 6:19:02 PM9/6/10 6:19:02 PM

 Similar Design Patterns

 MVC is not the only design pattern that solves the software engineering problem of decoupling the
data from the UI and from the user interaction logic. There are several other design patterns that are
very similar to MVC. Let ’ s take a look at two other frequently used design patterns.

 Model - View - Presenter

 The Model - View - Presenter (MVP) pattern is a derivative pattern of MVC. MVP is a user interface
design pattern, and its goal is to help the automated testing of the presentation layer.

 In MVC, the controller controls the view and operates on the data, and the view does not know
about entities controlling it. In MVP, the view itself holds a reference to a presenter (which is
the controller ’ s counterpart in MVP), and when an interaction happens in the view, it delegates the
handling of that interaction to its presenter.

 Microsoft implemented the MVP pattern in the Web Client Software Factory, which can be found at
 http://www.codeplex.com/websf .

 Model - View - ViewModel

 The Model - View - ViewModel (MVVM) pattern originates from Microsoft and is based on Martin
Fowler ’ s Presentation Model design pattern. However, this pattern was established by Microsoft,
primarily for Windows Presentation Foundation (WPF) when it was in its early design phase. Today,
WPF 4.0 and Microsoft Silverlight 4.0 also have their own components that help developers use this
pattern in their applications.

 The model in MVVM has the same role as in MVC. View is also the same as in the MVC pattern.
ViewModel can be also matched to the controller in MVC, but with “ extras. ” The ViewModel
is responsible for binding and converting the data from the model to the view through WPF ’ s
sophisticated data binding subsystem. The ViewModel exposes commands to the view, which can
be bound to UI controls (for example, to buttons). When the user clicks the button, a command is
triggered that is executed in the ViewModel.

 Microsoft and the Web Platform

 Microsoft ’ s fi rst approach to the web platform was the classic Active Server Pages (ASP) in 1996.
It was like VBScript for the web. Because of the way VBScript was architected, there was no type
checking, just run - time type determination.

 When the Microsoft .NET Framework 1.0 was released in 2002, it brought something totally
new to the web developers: ASP.NET 1.0. One of the great things about ASP.NET was that
web developers were able to choose their favorite programming language to implement a web
application. ASP.NET leveraged the dynamic compilation feature of the .NET Framework and
provided a full set of controls ready for rapid development.

 ASP.NET 1.0 was implemented an event - based model to the web platform, which was very similar
to the one familiar to desktop application developers. Web applications should be stateless by the
nature of how HTTP request - responses work, but ASP.NET 1.0 brought a “ not - so - stateless ” hybrid

Introduction to MVC ❘ 753

CH018.indd 753CH018.indd 753 9/6/10 6:19:02 PM9/6/10 6:19:02 PM

754 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

model with its ViewState feature. ViewState was used to carry the state back and forth between the
client ’ s browser and the web server.

 Although it provided a lot of web platform features that were previously not available for
developers, ASP.NET 1.0 had some drawbacks. The view was the aspx page, and the controller
was the code - behind fi le for the page. You could not call it really decoupled . Because of this,
testing the code — at least the UI tier — was a real challenge. The huge size of the ViewState for a
complex page could become very frustrating in cases where you had a strong customer requirement
stating that you had to provide a fast response from an application.

 When ASP.NET 2.0 was released in 2005, it was not just a new version of the framework.
Developers noticed a lot of rework, and it was clearly visible that Microsoft (which had learned
from feedback) modifi ed and extended the platform in a great way. A full - blown web part
framework had been added, with all controls rendered in XHTML 1.1 compliant HTML. Adaptive
rendering supported device - or browser - specifi c output for the same control. Developers got a full
suite of security classes that helped to implement user authentication and role - based authorization
for web applications.

 Microsoft ASP.NET MVC 1.0 was launched in December 2007 in a form of a Community
Technology Preview (CTP). Until it was released to manufacturing (RTM) in March 2009,
Microsoft released fi ve preview releases, one Beta release, and two Release Candidates (RCs).
Many developers thought MVC 1.0 was not mature enough for enterprise application development,
because it was missing some frequently used features, one of the most important of which was
client - side validation.

 The developer team actively listened to feedback from the community and engineered the framework
to address the community needs. In 2010 (almost exactly one year later), ASP.NET MVC 2 was
released, together with .NET Framework 4 and a complete toolset for MVC development in Visual
Studio 2010.

 ASP.NET MVC 2 is Open Source — just as MVC 1.0. You can download the
source code from http://aspnet.codeplex.com .

 What Is Microsoft ASP.NET MVC 2?

 For developers creating software for the Microsoft ASP.NET platform — and who are not familiar
with the MVC design pattern — one obvious question is, “ What ’ s in this for me? ” Answering this
question mostly begins with a sort of comparison.

 ASP.NET MVC is not a replacement for ASP.NET Web Forms; it ’ s a brand - new thing. Microsoft
does not plan to cancel the development and support for Web Forms. These two technologies
will be maintained near to each other, and they share a common base ASP.NET architecture
and services.

CH018.indd 754CH018.indd 754 9/6/10 6:19:03 PM9/6/10 6:19:03 PM

 Web Forms is suitable for Rapid Application Development (RAD) scenarios where developers either
do not have the knowledge of how to output XHTML - compliant HTML by hand, or they are not
required to do so. One thing is for sure. When going with Web Forms, the heavy lifting of input
gathering and output creation will be done for the developer by the framework, and he or she will
not have to think about that. Web Forms will provide a stateful UI solution.

 One introductory video (http://www.asp.net/mvc/videos/why-aspnet-mvc-3-
minute-overview-video-for-decision-makers) uses the motorbike (MVC)
versus car (Web Forms) comparison for describing how MVC relates to
Web Forms. It says that Web Forms have a lot of abstraction levels over the
technology (HTML) used to render them, while MVC is “ closer to the metal
and is a much more hands - on experience. ”

 ASP.NET MVC 2 overcomes some limitations of Web Forms and provides other ways to deal with
code complexity, such as separation of concerns, extensibility, and mapping requests to methods
instead of fi les. MVC 2 brings several new design patterns, development methodologies, and
components on board to help web developers be more productive.

 MVC is used in conjunction with several technologies (best practices), as well as with a few design
patterns. In this chapter, you will develop a sample application that utilizes some of them. So, let ’ s
take a look at some of them.

 From here on in this chapter, the term “ MVC ” is used instead of ASP.NET
MVC 2. The terms “ MVC 1.0 ” or “ MVC 2 ” are used to highlight the version -
 specifi c context.

 Test Driven Development (TDD)

 TDD is not a testing methodology. It has nothing to do with your test team. TDD is an approach; it
is about how you write your code.

 For TDD, you need a Unit Testing Framework such as MbUnit, xUnit, nUnit, or you can use the
great built - in framework provided by Microsoft as part of Visual Studio 2010.

 Another often - used component of successful TDD is a mocking framework that helps you to
mock your different classes and layers (such as a controller class or a data access layer). Mock
objects simulate the functionality and behavior of a given class, but you are in control. TDD is
often used to create fake data persistence classes to be able to execute unit tests that need data
persistence functionality without connecting to a real data store (like a relational database or a
set of XML fi les).

Introduction to MVC ❘ 755

CH018.indd 755CH018.indd 755 9/6/10 6:19:14 PM9/6/10 6:19:14 PM

756 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Keep in mind that developing with TDD is different from regular software development. To
understand this, take a look at the steps of the usual development process shown in Figure 18 - 2.

 During regular development, you write your code based on some kind of specifi cation, and
afterward, you write your unit and integration tests to see whether the application functionality
runs without errors and meets the functional requirements.

 In TDD, the process works differently, as you can see in Figure 18 - 3.

 FIGURE 18 - 2: Regular development steps

Write Code

Write Unit Tests

Check If Test Runs

Fix Code and Tests

Done

Success

Failure

 FIGURE 18 - 3: TDD steps

Write Unit Tests

Check If Test Runs

Write Code

Fix Code

Repeat

 First, you write your unit tests for a function within the application, generating empty application
classes and stub methods — and, of course, the tests will fail if you run them, because, at the
moment, there is no implementation behind. The second step is to implement the functionality
within the tests, and if everything is in its place, you ’ ll see green lights in your test manager, which
means that your code fulfi lls the requirements of the tests you wrote before.

 Whenever you add new functionality to the application, you must write the unit tests fi rst and then
repeat the same procedure.

 As discussed in Chapter 2, Visual Studio 2010 helps using the TDD pattern with its new “ Generate
Code from Usage ” feature.

 Interface - Based Development

 Another good practice is interface - based development . It ’ s especially useful when developing with
TDD, or implementing a decoupled system where you want to separate the defi nition of an entity
from its implementation. The key to this separation is (wherever it ’ s required and possible) is to
encapsulate defi nitions into interfaces.

 Interface - based development results in more maintainable, reusable, and testable code. In real - world
scenarios, when you develop with interface - based design, you can develop a large portion of the

CH018.indd 756CH018.indd 756 9/6/10 6:19:25 PM9/6/10 6:19:25 PM

application with the interface defi nitions without writing any concrete code. Listing 18 - 1 shows an
example of using an interface in a fi ctitious banking system.

 LISTING 18 - 1: Interface Defi nitions for a Banking System

public interface IAccountingService
{
 IAccountDetails GetAccountDetails(ICustomer customer);
 ITransaction TransferMoney(ICustomer sender,
 ICustomer receiver,
 ITransferDetails details);
}

public interface IAccountDetails
{
 // Account detail properties
}

public interface ICustomer
{
 // Customer properties
}

public interface ITransferDetails
{
 // Transfer details
}

public interface ITransaction
{
 // Transaction data
}

 As you see, with interfaces, you can describe functionality without sticking it to the implementation
details of concrete classes. Both input arguments and results are handled with interfaces. This
design makes it possible to have different IAccountService implementations for different banking
systems, but with the same functionality.

 Repository Design Pattern

 Most applications have a need to store and retrieve data from some kind of data store, which is
usually a relational database management system (RDBMS) such as SQL Server, Oracle, or DB2.

 The Repository Design Pattern acts as a mediator between the relational store and your
applications logic. By using well - designed repository classes, it ’ s the developers choice where and
how to store the data. Repository Design Pattern adds another level of decoupling to your system by
encapsulating the data store - specifi c implementation details into its own classes.

 Listing 18 - 2 shows a book repository interface with functions defi ned for fi nding, retrieving, and
storing book data.

Introduction to MVC ❘ 757

CH018.indd 757CH018.indd 757 9/6/10 6:19:26 PM9/6/10 6:19:26 PM

758 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 LISTING 18 - 2: IBookRepository Interface Defi nition

using System.Linq;

namespace AcmeDomain
{
 public interface IBookRepository
 {
 IQueryable < IBook > GetBooks();
 IBook GetBookById(int id);
 IBook CreateBook();
 void InsertBook(IBook book);
 void SaveBook(IBook book);
 void DeleteBook(int id);
 }
}

 As you see in Listing 18 - 2, the IBookRepository interface defi nes the operations that can be
performed on a Book entity, and it does not contain any persistence technology implementation
details.

 Listing 18 - 3 shows an extract from an implementation of the BookRepository class that uses .NET
Entity Framework as its persistence technology. The advantage of this design is that this class can be
swapped, for example, to a LINQ to SQL implementation later.

 LISTING 18 - 3: BookRepository Concrete Implementation

using System;
using System.Linq;
using AcmeDomain;

namespace AcmeLibrary.Models
{
 public class BookRepository: IBookRepository
 {
 public IBook GetBookById(int id)
 {
 // --- Method body omitted
 }

 public void InsertBook(IBook book)
 {
 var newBook = book as Book;
 if (newBook == null)
 throw new ArgumentException(“AcmeLibrary.Model.Book expected.”, “book”);
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);

CH018.indd 758CH018.indd 758 9/6/10 6:19:26 PM9/6/10 6:19:26 PM

 context.SaveChanges();
 }
 }

 // --- Other methods omitted from this listing
 }
}

 The BookRepository class implements the operations defi ned in the IBookRepository interface.

 Dependency Injection

 Dependency Injection (DI) is an architectural pattern that helps keep components decoupled within
the system, and provides a unifi ed access to it. The DI pattern is not new. Implementations have
been around for a long time in the Java platform, and some of them have been ported and new ones
have been written for the .NET Framework (for example, Ninject, Spring.Net, Castle/Windsor,
Unity, and Structured Map). Throughout this chapter, you will use Microsoft ’ s Unity component.

 Dependency Injection is sometimes called Inversion of Control (IoC). There are
community discussions about which naming is better, because IoC is a more
generic pattern than DI. Throughout this chapter, DI is used, because it refl ects
the intention of the pattern better than IoC.

 As its name says, DI is changing the way that different classes and interfaces are controlled, as
well as how they are instantiated and accessed. The instantiation is not done by the function that
is currently executing. Instead, instantiation is carried out by an external component (from the
perspective of the executing code) — the container.

 When you ask for a concrete instance from a DI container, you get an instance where dependencies
(for example, references to a parent instance, or other linked instances) are resolved by the
container.

 There are different injection techniques that can be used by a DI container to inject dependencies of
an entity:

 Constructor Injection — The entity gets the dependent objects in its constructor parameter
or parameters (assuming it has more than one dependent object). Some or all parameters of
a constructor are injected by the DI container when the given class is instantiated (and so its
constructor is executed).

 Property (Setter) Injection — The entity gets its dependent object (or objects) through a
property (or through several properties).

 Method Call Injection — The dependent objects of an entity are set by one or more methods
calls where the dependencies are passed in method parameters. This kind of injection is
frequently used in the initialization of parent - child class hierarchies.

➤

➤

➤

Introduction to MVC ❘ 759

CH018.indd 759CH018.indd 759 9/6/10 6:19:27 PM9/6/10 6:19:27 PM

760 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 A DI container behaves like a registry of interface - class associations, named class instances. Before
using the container to resolve a specifi c interface, you must fi rst register that interface with a
concrete implementation.

 Service Locator Pattern

 The Service Locator Pattern centralizes distributed service object lookups, provides a centralized
point of control, and may act as a cache that eliminates redundant lookups. It used in software
development to encapsulate the processes involved in obtaining a service with a strong abstraction
layer.

 In a decoupled system, you do not always have the knowledge of the environment in which
your code will run, or you may want to create a component that must be able to run in several
environments. For example, you may need a component that can be used both in a web
application and also in a Windows service. In the latter case, you don ’ t have access to a valid
 HttpApplication instance, but you can have a dependency on some interface implementation like
an IEmailSenderService .

 A Service Locator implementation provides a singleton instance of itself, and it requires only a
one - time registration of the DI container that holds the registry data.

 Listing 18 - 4 shows how a service can be resolved when using a ServiceLocator implementation for
Unity.

 LISTING 18 - 4: BookService Class Using ServiceLocator to Resolve Another Service

public class BookService
{
 public SendMailAboutNewBooks ()
 {
 var emailSenderService = ServiceLocator.Current.
 GetInstance < IEmailSenderService > ();
 }
}

 Extensibility in MVC

 The MVC framework was designed with extensibility in mind. The design patterns play an
important role in the extensibility features of MVC. With these features, you can customize the
whole framework to your taste.

 Internally, MVC is built as a coherent set of independent components that can be replaced by other
components. You have a default implementation of MVC components that you can use with your
application. However, if you need something more sophisticated than the default implementation,
you have two options:

 You can inherit from the classes representing MVC components and implement your own
components with more control — or on the contrary, simplify them (for example, using
default values).

➤

CH018.indd 760CH018.indd 760 9/6/10 6:19:32 PM9/6/10 6:19:32 PM

 All components in the framework derive from abstract base classes or implement interfaces.
You can replace the original components to create your own ones deriving from the
appropriate abstract classes or implementing the interfaces.

 You have many extension points in MVC. Instead of discussing them separately, you will meet them
later in this chapter in the context where they are used.

 CREATING AN MVC 2 APPLICATION

 Visual Studio 2010 ships with MVC 2 out - of - the - box. You can start developing an MVC 2
application with the File ➪ New ➪ Project command. The New Project dialog contains two
templates (ASP.NET MVC 2 Web Application and ASP.NET MVC 2 Empty Web Application)
for both the C# and Visual Basic languages. Figure 18 - 4 shows these templates. (You can display
them by typing MVC into the search box of the dialog.)

➤

 FIGURE 18 - 4: MVC project templates in Visual Studio 2010

 In this chapter, you will learn about MVC application development through a sample called
 AcmeLibrary . In this section, you will create this project and learn how its structure supports the
MVC pattern. You will also discover how the model, view, and controller work together to establish
the expected behavior.

 Display the New Project dialog (File ➪ New ➪ Project) and select the ASP.NET MVC 2 Web
Application template that can be found under Visual C# in the Web category. Set the name of the
project to AcmeLibrary and click OK.

Creating an MVC 2 Application ❘ 761

CH018.indd 761CH018.indd 761 9/6/10 6:19:32 PM9/6/10 6:19:32 PM

762 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Visual Studio displays a dialog shown in
Figure 18 - 5 that asks whether you would
like to create a unit test project for this
application. As mentioned earlier, MVC
leverages the TDD approach, and this dialog
emphasizes this intention. In this example,
you will not create unit tests, so select the
second option in the dialog (as shown in
Figure 18 - 5) and click OK.

 In a few seconds, Visual Studio 2010 creates
the project skeleton that immediately can be
built and run. Use the Debug ➪ Start Without
Debugging command (or press Ctrl+F5) to
build and run the AcmeLibrary application.
The ASP.NET Development Server starts and displays the home page of AchmeLibrary , as shown in
Figure 18 - 6.

 FIGURE 18 - 5: The Create Unit Test Project dialog

 FIGURE 18 - 6: Running the AcmeLibrary application

 As you can see in Figure 18 - 6, the application provides a link from the Home page to an About page
and also has a Log On link. Close the application page in the web browser and go back to Visual
Studio.

CH018.indd 762CH018.indd 762 9/6/10 6:19:33 PM9/6/10 6:19:33 PM

 The Project Structure

 When you created the AcmeLibrary project, Visual Studio
generated several folders and fi les. You can follow this structure in
the Solution Explorer tool window, as shown in Figure 18 - 7.

 The fi rst important folder from the web application ’ s perspective
is the Content folder. It contains the cascading style sheet (CSS)
fi les for the application. Usually, an Images folder under Content
holds the images utilized in the web site. You can change the
overall design of your site by modifying Site.css fi le or changing
it to another CSS fi le (and, of course, replacing Site.css
references in the appropriate master pages).

 The second important folder is the Scripts folder. It contains
about a dozen JavaScript fi les used by the project. It is worth
mentioning that the project created for you has built - in support
for jQuery client - side scripting, and includes a jQuery validation
plug - in to support model validation in HTML forms without an
additional round - trip to the server.

 As their names suggest, the three other folders (Controllers ,
 Models , and View) are closely related to the MVC pattern. The
 Controllers folder contains the classes that play the controller
role in project. Figure 18 - 7 shows that Visual Studio created two
controllers, one for the Home page (HomeController.cs) and another one for the About page
(AccountController.cs).

 The Views folder is the container for all classes playing the view role in the MVC pattern. Classes
representing views and their helper types are grouped into subfolders. The Account subfolder
holds views related to the logon and account - handling functionality; Home encapsulates the views
related the About and Home pages. (This one is in the Index.aspx fi le, and later this name
will be explained.) The Shared folder holds helper pages and type, such as the Error.aspx ,
 LogOnUserControl.ascx and Site.Master fi les.

 FIGURE 18 - 7: Solution Structure

 When you look at the .aspx , .ascx , and .Master fi les, you can recognize that
they do not have corresponding code - behind fi les in contrast to the fi les with
similar extensions in ASP.NET web projects. Many functions handled by the
code - behind fi les in ASP.NET projects (such as, for example, collecting form
data, validation, and navigation) are managed in a totally different way in
ASP.NET MVC, with no need for a code - behind fi le.

 The Models folder is a container for fi les defi ning model types in the MVC pattern. The Home page
and About page do not reference any model class — or you could even say they use an empty model

Creating an MVC 2 Application ❘ 763

CH018.indd 763CH018.indd 763 9/6/10 6:19:33 PM9/6/10 6:19:33 PM

764 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

with no properties or operations. The AccountModel.cs fi le in this
folder contains model classes for the account - handling functions.

 The Models , Controllers , and Views folders are not just for
simply organizing fi les in the project. They provide role - specifi c
context menu functions. For example, when you right - click the
 Controllers folder and, in the context menu, click the Add
submenu, you can see the “ Controller . . . ” command, as shown in
Figure 18 - 8. This command allows you to add a new controller
class to your website.

 Similarly, you will fi nd a “ View . . . ” command under the Add submenu when you right - click the
 Views folder. If you rename the folders, you can still build your application, but it won ’ t run (or at
least not as you expect). You also will lose the folder - specifi c commands in the context menus. Keep
the folder names as they are.

 The Global.asax fi le and the Web.config fi le play the same role in MVC 2 as in the traditional
ASP.NET web projects.

 How Does it Work?

 When you create a web application with ASP.NET, at the end of the day, requests are mapped
to .aspx fi les (or simply to HTML fi les). For example, when the request is represented by the
 http://MySuperWebSite.org/KnowledgeBase/WindowsIssues.aspx URL, the WindowsIssues
.aspx fi le under the KnowledgeBase folder will be rendered to generate the HTML output shown
in the browser.

 The MVC framework resolves requests differently. Let ’ s look at the Site.Master fi le located in the
 Shared subfolder under Views . Listing 18 - 5 shows this fi le. (Line breaks and a few comments after
 < /div > tags are inserted for the better readability.)

 LISTING 18 - 5: Site.Master

 < %@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >

 < head runat=”server” >
 < title >
 < asp:ContentPlaceHolder ID=”TitleContent” runat=”server” / >
 < /title >
 < link href=”../../Content/Site.css” rel=”stylesheet” type=”text/css” / >
 < /head >

 < body >
 < div class=”page” >
 < div id=”header” >

 FIGURE 18 - 8: Controller - specifi c

context menu commands

CH018.indd 764CH018.indd 764 9/6/10 6:19:39 PM9/6/10 6:19:39 PM

 < div id=”title” >
 < h1 >
 My MVC Application
 < /h1 >
 < /div > < !-- Title -- >
 < div id=”logindisplay” >
 < % Html.RenderPartial(“LogOnUserControl”); % >
 < /div >
 < div id=”menucontainer” >
 < ul id=”menu” >
 < li > < %: Html.ActionLink(“Home”, “Index”, “Home”)% > < /li >
 < li > < %: Html.ActionLink(“About”, “About”, “Home”)% > < /li >
 < /ul >
 < /div >
 < /div > < !-- Header -- >
 < div id=”main” >
 < asp:ContentPlaceHolder ID=”MainContent” runat=”server” / >
 < div id=”footer” >
 < /div >
 < /div >
 < /div > < !-- Page -- >
 < /body >
 < /html >

 Code fi le [Site.Master] available for download at Wrox.com

 While an ASP.NET web project master page inherits from the code - behind class that derives directly
from the System.Web.UI.MasterPage type, this page (as you see here in the < @% Master % > tag)
inherits from the System.Web.Mvc.ViewMasterPage class that derives from System.Web.UI
.MasterPage . The structure of the page is very similar to master pages in ASP.NET web projects.

 The Site.Master page contains a < div > tag with the menucontainer identifi er, which seems weird:

 < div id=”menucontainer” >
 < ul id=”menu” >
 < li > < %: Html.ActionLink(“Home”, “Index”, “Home”)% > < /li >
 < li > < %: Html.ActionLink(“About”, “About”, “Home”)% > < /li >
 < /ul >
 < /div >

 These few lines represent the rectangular Home and About menu items shown in Figure 18 - 6. An
ASP.NET master page uses web controls to represent the menu, like this:

 < asp:Menu ID=”NavigationMenu” runat=”server” CssClass=”menu”
 EnableViewState=”false”
 IncludeStyleBlock=”false” Orientation=”Horizontal” >
 < Items >
 < asp:MenuItem NavigateUrl=”~/Default.aspx” Text=”Home”/ >
 < asp:MenuItem NavigateUrl=”~/About.aspx” Text=”About”/ >
 < /Items >
 < /asp:Menu >

Creating an MVC 2 Application ❘ 765

CH018.indd 765CH018.indd 765 9/6/10 6:19:40 PM9/6/10 6:19:40 PM

766 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 The main difference between the two representations is not about using ASP.NET controls or plain
HTML, but the way the user is directed to the link. When you look after the HTML code fragment
that the navigation menus render, you will see difference. The following HTML snippet is rendered
by the ASP.NET master page:

 < ul class=”level1” >
 < li > < a class=”level1” href=”Default.aspx” > Home < /a > < /li >
 < li > < a class=”level1” href=”About.aspx” > About < /a > < /li >
 < /ul >

 The HTML snippet for the MVC master page is different:

 < ul id=”menu” >
 < li > < a href=”/” > Home < /a > < /li >
 < li > < a href=”/Home/About” > About < /a > < /li >
 < /ul >

 While the ASP.NET master page uses fi lenames in the requests belonging to the link, the MVC
master page uses folder names.

 To understand what is happening in an MVC application, let ’ s examine the lifecycle of the request
from the beginning. To use this technology effi ciently, you must know how the MVC platform
works. ASP.NET MVC 2 is based on the routing component of ASP.NET, which became available
with .NET Framework 3.5 SP1. The routing component is responsible for mapping an incoming
HTTP request to a controller ’ s action within the application.

 Figure 18 - 9 provides a high - level overview of
the lifecycle of an HTTP request that comes
from a user ’ s browser.

 The request goes through the routing
component and reaches a Controller .
The Controller invokes the appropriate
actions and retrieves an ActionResult sent
back to the user.

 Routing

 Request handling within MVC applications
is based on routing information provided
by the developer during the initialization of
the application. Listing 18 - 6 shows how this
initial setup is done in the Global.asax.cs fi le.

 LISTING 18 - 6: Global.asax.cs

using System;
using System.Collections.Generic;
using System.Linq;

 FIGURE 18 - 9: High - level view of an HTTP request ’ s

lifecycle

HttpRequest

Routing ControllerFactory

ActionInvoker

Controller

Action

ActionResult

CH018.indd 766CH018.indd 766 9/6/10 6:19:40 PM9/6/10 6:19:40 PM

using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace AcmeLibrary
{
 // Note: For instructions on enabling IIS6 or IIS7 classic mode,
 // visit http://go.microsoft.com/?LinkId=9394801

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);
 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL with parameters
 new // Parameter defaults
 {
 controller = “Home”,
 action = “Index”,
 id = UrlParameter.Optional
 }
);
 }

 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

 Code fi le [Global.asax.cs] available for download at Wrox.com

 When the web application starts, the Application_Start method is called that registers areas and
then invokes the RegisterRoutes method that sets up the routing table.

 There are two different kinds of routes:

 You can specify a route that should be ignored by the MVC framework, and use the
default ASP.NET request routing instead. The URL pattern used in the call of the
 IgnoreRoute method says that request for fi les with .axd extensions should not be
handled by the MVC routing.

 You can map a route to a controller ’ s action within the application. An action is the
executable code within a controller class processing the input from the incoming
request and generating an action result. The call of the MapRoute method sets the
pattern for the default route, and also specifi es the default parameters for the default
controller, action, and ID to be used in the case when the request would not specify them.

➤

➤

Creating an MVC 2 Application ❘ 767

CH018.indd 767CH018.indd 767 9/6/10 6:19:40 PM9/6/10 6:19:40 PM

768 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 IgnoreRoute and MapRoute are extension
methods for the RouteCollection class
and provided by the MVC framework.
Figure 18 - 10 show how an HTTP request
is forwarded to the entity responsible for
processing it after the request is sent from
a client ’ s browser through the routing
component.

 The fi rst entry point within IIS for the
request is the UrlRoutingModule , provided
by ASP.NET. Its task is to forward the
request to the UrlRoutingHandler .
The UrlRoutingHandler checks the
incoming URL within its RouteCollection
and, if a match is found, it forwards the
request to the appropriate handler.

 The IgnoreRoute method creates a route
associated with the StopRoutingHandler ,
which means that ASP.NET stops processing that URL and forwards it to the other handlers
registered with IIS.

 The MapRoute method creates a route associated with the MvcHandler , which is the fi rst real entry
point to an MVC application. From this point, you can use a RequestContext instance to all data
required to fulfi ll the request. RequestContext contains the current HttpContext and the matched
 RouteData .

 Now, with this short explanation, you can see how the menu links in the HTML representation of
 AcmeLibrary ’ s Home and About menu items work:

 < ul id=”menu” >
 < li > < a href=”/” > Home < /a > < /li >
 < li > < a href=”/Home/About” > About < /a > < /li >
 < /ul >

 When the request is for “ / ” (for example, the URL is “ http://AcmeLibrary.com/ ”), no controller
and no action name is provided, so the default “ Home ” controller is used with the default “ Index ”
action. The ControllerFactory component shown in Figure 18 - 9 resolves the “ Home ” name to the
 HomeController class, and the ActionInvoker component resolves the “ Index ” name to the Index
public method.

 When the request is for “ /Home/About ” (for example, the URL is “ http://AcmeLibrary.com/Home/
About ”), the “ Home ” controller is used with the “ About ” action that is mapped to the About public
method of the HomeController class.

 FIGURE 18 - 10: HTTP request fl ow in MVC

Browser
URL Routing

Module

URL Routing

Handler

StopRoutingHandler MvcRouteHandler

MvcHandler

HTTP Request

Forward request to
handler

Creates MvcHandler

CH018.indd 768CH018.indd 768 9/6/10 6:19:41 PM9/6/10 6:19:41 PM

 The Controller Class

 Let ’ s have a look at the HomeController class that holds the code responsible for executing the
 Index and About actions. Listing 18 - 7 shows the source code of this class, which is surprisingly
compact.

 LISTING 18 - 7: HomeController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace AcmeLibrary.Controllers
{
 [HandleError]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData[“Message”] = “Welcome to ASP.NET MVC!”;
 return View();
 }

 public ActionResult About()
 {
 return View();
 }
 }
}

 Code fi le [HomeController.cs] available for download at Wrox.com

 HomeController derives from the Controller class of the System.Web.Mvc namespace. The
 HandleErrorAttribute decorating this class declares that this controller should handle errors in
the default way by redirecting them to the Error.aspx page.

 The two public methods, Index and About , represent the actions and return an ActionResult
instance. Both methods call the View method that retrieves a ViewResult instance — where
 ViewResult inherits from ActionResult .

 The View method returns the view that matches the action result name from the Views
subfolder that, in turn, matches the controller name. So, in this case, View returns an instance
pointing to the Views/Home/Index.aspx or Views/Home/About.aspx for the Index and About
actions, respectively. The ViewData member set in the Index method is a dictionary — its type
is ViewDataDictionary — that holds entries with a string key and a System.Object value.
The Index method sets the entry with the Message key to the welcome string.

Creating an MVC 2 Application ❘ 769

CH018.indd 769CH018.indd 769 9/6/10 6:19:41 PM9/6/10 6:19:41 PM

770 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 When the action method retrieves the ActionResult instance, the controller interprets the result and
decides what activity to take. In the case of the Index and About actions, the result is a ViewResult
instance, so the controller navigates to the view implicitly or explicitly named by this result.

 The View

 The Index and About views defi ned in the Index.aspx and About.aspx pages in the Views/Home
folder are really simple, as shown in Listing 18 - 8 and Listing 18 - 9.

 LISTING 18 - 8: Index.aspx

 < %@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Home Page
 < /asp:Content >

 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 > < %: ViewData[“Message”] % > < /h2 >
 < p >
 To learn more about ASP.NET MVC visit
 < a href=”http://asp.net/mvc”
 title=”ASP.NET MVC Website” > http://asp.net/mvc < /a > .
 < /p >
 < /asp:Content >

 Code fi le [Index.aspx] available for download at Wrox.com

 LISTING 18 - 9: About.aspx

 < %@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage” % >

 < asp:Content ID=”aboutTitle” ContentPlaceHolderID=”TitleContent” runat=”server” >
 About Us
 < /asp:Content >

 < asp:Content ID=”aboutContent” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 > About < /h2 >
 < p >
 Put content here.
 < /p >
 < /asp:Content >

 Code fi le [About.aspx] available for download at Wrox.com

 As you can see, both pages provide the < asp:Content > tags that match with the appropriate
 < asp:ContentPlaceHolder > tags in the master page (Site.Master). Index.aspx in Listing 18 - 8
uses the ViewData member to extract the “ Message ” property encapsulated into the view.

CH018.indd 770CH018.indd 770 9/6/10 6:19:42 PM9/6/10 6:19:42 PM

 AUTO - ENCODING SYNTAX

 You may recognize a new < %: ... % > syntax element in Listing 18 - 8 rendering the
 ViewData[“ Message “] expression. This syntax automatically HTML - encodes the
expression specifi ed in its body. Automatic encoding is a method that dramatically
reduces the risk of cross - site scripting (XSS) vulnerabilities.

 This syntax is new in .NET 4. As mentioned earlier in this chapter, ASP.NET
MVC 2 can be used together with .NET 3.5 (in Visual Studio 2010 and in Visual
Studio 2010), but, in this case, you cannot use the auto - encoding syntax. You
should use the old < %= ... % > element.

 ADDING NEW MVC 2 PAGES

 The AcmeLibrary application created with the ASP.NET MVC 2 Web Application project template
does not provide any real functions yet. In this section, you add functions to the application that
allow you to list and edit books. The application will persist all information in a SQL Server
database. The components you create here are a great demonstration of MVC ’ s strength. You can
establish a clear architecture with short and simple source code.

 Create a Database

 The AcmeLibrary application will manage a list of books that are stored in a database. So, fi rst you
must create this database and defi ne its structure.

 In Solution Explorer, right - click the App_Data folder. In the context menu, select the Add ➪ New
Item command. When the dialog appears, select the SQL Server Database item in the Data category,
and set its name to AcmeLibraryData.mdf , as shown in Figure 18 - 11.

 FIGURE 18 - 11: Adding a new database to the project

Adding New MVC 2 Pages ❘ 771

CH018.indd 771CH018.indd 771 9/6/10 6:19:43 PM9/6/10 6:19:43 PM

772 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Double - click the new AcmeLibraryData.mdf fi le in
Solution Explorer to display the Server Explorer tool
window. Then, right - click the Tables node and select
the Add New Table command. Add the fi elds shown
in Figure 18 - 12 to the table. Set the Id fi eld as the
primary key of the table and set its (Is Identity)
property in the Column Properties tab to Yes .

 When you are fi nished, press Ctrl+S to save the table,
and name it Book .

 Create a Model

 Now, you must add a model for the Book table. Select
the Models folder in Solution Explorer, and, with
the Add ➪ New Item command in its context menu,
add a new ADO.NET Entity Data Model item with
 AcmeLibraryModel.edmx name to the folder. When
you click OK in the Add New Item dialog, the Entity
Data Model Wizard starts with the “ Choose Model
Contents ” page. Select the Generate from database
option and click Next.

 In the “ Choose your data ” connection
page, select AcmeLibraryData.mdf
from the connection combo box. Select
the “ Save entity connection settings
in Web.Confi g as ” checkbox and type
 AcmeLibraryDataEntities in the text box
below the checkbox. Click Next to move
to the next wizard page.

 In the Choose Your Database Objects page
(shown in Figure 18 - 13), select the Book
table and check both checkboxes below
the database objects ’ list. Set the Model
Namespace to AcmeLibraryDataModel and
click Finish.

 The ADO.NET entity model is created
for you. Build your project so that the
ASP.NET MVC 2 tools can observe
the new classes in the model.

 FIGURE 18 - 12: Add a new table to the

database

 FIGURE 18 - 13: The Choose Your Database Objects page

CH018.indd 772CH018.indd 772 9/6/10 6:19:43 PM9/6/10 6:19:43 PM

 Listing Books

 You now have a database and have defi ned a model using EF 4.0. To display a list of books, you
need a view that represents this list, and also a controller connecting the model and the view.
Reading the letters in “ MVC ” from left to right, you may think the next step is to create a view,
and then you can start building a controller. Although that can be done, creating a controller fi rst
has some advantages over the “ create - view - fi rst ” approach.

 When dealing with books, you probably want to have views (pages) provide functions like adding
a new book to the list, or modifying the attributes of an existing book. In most cases, you want
the links (buttons or other kind of UI elements) to these functions to be available from the page
displaying the list of books, which means that those pages would have a shared controller with
actions such as Create, Edit, Delete, and so on.

 So, let ’ s create the controller responsible for manipulating books.

 Creating the BookController Class

 Select the Controllers folder in Solution
Explorer. Right - click, and choose Add ➪
Controller from the context menu. The
Add Controller dialog pops up, as shown
in Figure 18 - 14.

 Type BookController into the Controller
Name text box and set the checkbox to add
actions to the controller for Book operations
such as Create, Edit, Delete, and Details.
If you leave the checkbox empty, the controller is generated only with a single Index action.
Listing 18 - 10 shows the source code of the BookController class.

 Providing a detailed overview about Entity Framework 4.0 (EF 4.0 — the
 AcmeLibraryModel.edmx fi le generates code using this framework) is
beyond the scope of this chapter. The examples used here are intuitive enough
so that you can understand them with no EF 4.0 experience, assuming you
have used .NET data access technologies such as ADO.NET or LINQ to
SQL before.

 If you are novice using EF 4, you will fi nd great resources in MSDN when you
search for “ Beginner ’ s Guide to the ADO.NET Entity Framework. ”

 FIGURE 18 - 14: The Add Controller dialog

Adding New MVC 2 Pages ❘ 773

CH018.indd 773CH018.indd 773 9/6/10 6:19:44 PM9/6/10 6:19:44 PM

774 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 LISTING 18 - 10: BookController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using AcmeLibrary.Models;

namespace AcmeLibrary.Controllers
{
 public class BookController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult Details(int id)
 {
 return View();
 }

 public ActionResult Create()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Create(FormCollection collection)
 {
 try
 {
 // TODO: Add insert logic here
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
 }

 public ActionResult Edit(int id)
 {
 return View();
 }

 [HttpPost]
 public ActionResult Edit(int id, FormCollection collection)
 {
 try

CH018.indd 774CH018.indd 774 9/6/10 6:19:50 PM9/6/10 6:19:50 PM

 {
 // TODO: Add update logic here
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
 }

 public ActionResult Delete(int id)
 {
 return View();
 }

 [HttpPost]
 public ActionResult Delete(int id, FormCollection collection)
 {
 try
 {
 // TODO: Add delete logic here
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
 }
 }
}

 Code fi le [BookController.cs] available for download at Wrox.com

 For the sake of brevity and improved readability, this listing omits action header
comments. The original source code contains header comments for each action,
telling you the request URL to access it.

 Notice that there are three actions — Create , Edit , and Delete — that have overloaded methods
decorated with HttpPost attribute and accepting a FormCollection parameter. The HttpPost
attribute is used to restrict an action method so that the method handles only HTTP POST requests.
The FormCollection instance represents a form value provider. When the user fi lls in a form
(for example, the one required to create a new Book instance), it is passed to the actions handling
them as a FormCollection .

 The BookController class is just an empty skeleton that does not integrate actions with the model
or with the appropriate views.

Adding New MVC 2 Pages ❘ 775

CH018.indd 775CH018.indd 775 9/6/10 6:19:50 PM9/6/10 6:19:50 PM

776 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Add the following using clause to the existing using clauses in the fi le header:

using AcmeLibrary.Models;

 Integrate the Index action with the model by changing its body to the following code:

public ActionResult Index()
{
 var context = new AcmeLibraryDataEntities();
 var books = context.Books;
 return View(books);
}

 This code retrieves all books and passes data to the View method that interprets the books
collection as the model.

 Creating the Index View

 Although the Index action accesses the model, there is no view yet that displays the list of books.
The MVC 2 tools integrated with Visual Studio 2010 makes it very simple to create a new view.

 Open the BookController.cs fi le if it ’ s closed, and click into the body of the Index method to
place the caret cursor there. Right - click the code editor and select the Add View command from
the context menu.

 There is a small bug in the RTM version of Visual Studio 2010. In some cases,
it pops up context menus so that you must scroll (even if there is enough space
on the screen). To access the Add View command, you must scroll up to the
top of the context menu.

 The Add View dialog pops up, allowing you to specify
parameters for the new view to create. Figure 18 - 15
shows this dialog in action.

 Set the View Name to Index . Check the “ Create a
strongly - typed view ” option and select AcmeLibrary
.Models.Book from the “ View data class ” combo box.
The “ View content ” combo box allows you to set the
type of the view you want to generate. You can choose
from the following items:

 Create — A view to enter data for a new item.

 Delete — A view to confi rm a deletion of an
item.

 Details — A view to browse the details
(attributes) of an item.

➤

➤

➤
 FIGURE 18 - 15: The Add View dialog

CH018.indd 776CH018.indd 776 9/6/10 6:19:56 PM9/6/10 6:19:56 PM

 Edit — A view to edit the details (attributes) of an item.

 Empty — An empty view that you must manually edit after its skeleton has been generated.

 List — A view listing the model items in a collection.

 Select List, because you are going to create a view that lists books in the database.

 The “ Select master page ” checkbox allows you to defi ne the master page attributes (that is, which
master page to use, and the identifi er of the content placeholder the view will be nested in). Leave
the checkbox checked, and also leave the master page attributes with their default values.

 You can check the “ Create a partial view (.ascx) ” checkbox to create a view as an ASP.NET user
control, but for now, uncheck this option.

 When you click the Add button, the view is generated for you, and it is automatically put into the
 Book folder under Views , according to the controller action. Listing 18 - 11 shows the generated
source code of the view.

 LISTING 18 - 11: Book/Index.aspx

 < %@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage < IEnumerable < AcmeLibrary.Models.Book > > ” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Index
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 >
 Index
 < /h2 >
 < table >
 < tr >
 < th > < /th >
 < th > Id < /th >
 < th > Author < /th >
 < th > Title < /th >
 < th > ISBN < /th >
 < th > Published < /th >
 < th > Publisher < /th >
 < /tr >
 < % foreach (var item in Model)
 { % >
 < tr >
 < td >
 < %: Html.ActionLink(“Edit”, “Edit”, new { id=item.Id }) % >
 |
 < %: Html.ActionLink(“Details”, “Details”, new { id=item.Id })% >
 |
 < %: Html.ActionLink(“Delete”, “Delete”, new { id=item.Id })% >
 < /td >
 < td > < %: item.Id % > < /td >
 < td > < %: item.Author % > < /td >
 < td > < %: item.Title % > < /td >

 continues

➤

➤

➤

Adding New MVC 2 Pages ❘ 777

CH018.indd 777CH018.indd 777 9/6/10 6:20:01 PM9/6/10 6:20:01 PM

778 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

LISTING 18-11 (continued)

 < td > < %: item.ISBN % > < /td >
 < td > < %: String.Format(“{0:g}”, item.Published) % > < /td >
 < td > < %: item.Publisher % > < /td >
 < /tr >
 < % } % >
 < /table >
 < p >
 < %: Html.ActionLink(“Create New”, “Create”) % >
 < /p >
 < /asp:Content >

 Code fi le [Book/Index.aspx] available for download at Wrox.com

 As you can see, the code is very simple. The list is represented by an HTML < table > , where the fi rst
column contains links for the available actions like Edit, Details, and Delete.

 Select the AcmeLibrary project in Solution Explorer. Build and run the project by pressing Ctrl+F5.
When the application starts, it goes to the home page. Append the Book/Index request path to the
current URL in your browser ’ s address line to navigate to the list of books. Figure 18 - 16 shows
the page with an empty list of books.

 FIGURE 18 - 16: The empty list of books

 The page is currently not available from the home page of the application, but you can easily put
a link there by modifying the Site.Master fi le. Insert the following line between the two existing
links in the < ul id= “ menu “ > tag:

 < li > < %: Html.ActionLink(“Book”, “Index”, “Book”)% > < /li >

CH018.indd 778CH018.indd 778 9/6/10 6:20:02 PM9/6/10 6:20:02 PM

 Using the Server Explorer, open the Book table with the Show Table Data context menu command,
and add a few records to the table. Build and run your application and click the Book link. Your
browser navigates to the Book/Index pages and lists the books you ’ ve recently added directly to the
 Book table, as shown in Figure 18 - 17.

 FIGURE 18 - 17: The list of books can be accessed through a link

 When you try to click to any of the Edit, Details, Delete, or Create New links, you ’ ll receive a server
error because the views of actions represented by these links have not yet been implemented.

 Adding Book Actions

 Creating the controller actions and views for manipulating books is really simple and
straightforward — thanks to the great tools and architecture behind MVC 2. First, let ’ s create
the Details action.

 Adding the Details View

 The Details action displays the attributes of the model instance, and does not provide controls
to edit them. Change the body of the Details method in the BookController class to the
following code:

public ActionResult Details(int id)
{
 var context = new AcmeLibraryDataEntities();

Adding New MVC 2 Pages ❘ 779

CH018.indd 779CH018.indd 779 9/6/10 6:20:02 PM9/6/10 6:20:02 PM

780 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 var book = context.Books.First(b = > b.Id == id);
 return View(book);
}

 This code created an AcmeLibraryDataEntities context and used it to query the Book instance
having the identifi er received by the Details method. This identifi er comes from the third
parameter of the ActionLink representing the action in the Index.aspx fi le:

 < %: Html.ActionLink(“Details”, “Details”, new { id=item.Id })% >

 The Details action retrieves a view
encapsulating the Book instance with the
specifi ed identifi er. Right - click the body
of the Details method in the code editor,
and start the Add View context menu
command. Confi gure the Add View dialog
as shown in Figure 18 - 18.

 The content of the dialog is very similar
to the one used for creation of the Index
view (shown in Figure 18 - 15), but this time,
the name of the view is set to Details, and the
 “ View content ” combo is set to the Details type.
Click Add, and the Details.aspx page is
generated in the Views/Book folder. The source
code of this new view is simple, as shown in
Listing 18 - 12.

 LISTING 18 - 12: Book/Details.aspx

 < %@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage < AcmeLibrary.Models.Book > ” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Details
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 >
 Details
 < /h2 >
 < fieldset >
 < legend > Fields < /legend >
 < div class=”display-label” > Id < /div >
 < div class=”display-field” > < %: Model.Id % > < /div >
 < div class=”display-label” > Author < /div >
 < div class=”display-field” > < %: Model.Author % > < /div >
 < div class=”display-label” > Title < /div >
 < div class=”display-field” > < %: Model.Title % > < /div >
 < div class=”display-label” > ISBN < /div >
 < div class=”display-field” > < %: Model.ISBN % > < /div >
 < div class=”display-label” > Published < /div >

 FIGURE 18 - 18: Creating the Details view

CH018.indd 780CH018.indd 780 9/6/10 6:20:03 PM9/6/10 6:20:03 PM

 < div class=”display-field” >
 < %: String.Format(“{0:g}”, Model.Published) % > < /div >
 < div class=”display-label” > Publisher < /div >
 < div class=”display-field” > < %: Model.Publisher % > < /div >
 < /fieldset >
 < p >
 < %: Html.ActionLink(“Edit”, “Edit”, new { id=Model.Id }) % >
 |
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /p >
 < /asp:Content >

 Code fi le [Book/Details.aspx] available for download at Wrox.com

 Build the project and start it by pressing Ctrl+F5. From the home page, navigate to the list of books,
and click on the Details link of any book displayed in the list. The page with the book attributes
appears in your browser, as shown in Figure 18 - 19.

 FIGURE 18 - 19: The details of a book

Adding New MVC 2 Pages ❘ 781

CH018.indd 781CH018.indd 781 9/6/10 6:20:04 PM9/6/10 6:20:04 PM

782 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Notice the /Book/Details/3 request string in the URL of the page. The identifi er at the end of the
request is received by the Details action method.

 Adding the Edit View

 From the controller ’ s point of view, editing a book requires two actions:

 When the user selects the Edit link of a book in the list, the book information should be
read from the database and displayed in a view that allows editing.

 When the user has edited the book ’ s properties, the information submitted should be saved
into the database.

 The two Edit methods of the BookController class are dedicated to these actions:

public ActionResult Edit(int id)
{
 // ...
}

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 // ...
}

 The fi rst Edit method is called when the Edit link of a book is clicked; the second is invoked
when the edited book information is submitted. Both methods receive the identifi er of the
book; the second method receives a FormCollection instance containing the new values
for book properties.

 Notice the HttpPost attribute decorating the second Edit method. When the form with edited
book information is submitted, an HTTP POST is used, and the routing algorithm will forward
the request to this Edit method.

 Now, implement these methods with the following code:

public ActionResult Edit(int id)
{
 var context = new AcmeLibraryDataEntities();
 var book = context.Books.First(b = > b.Id == id);
 TempData[“context”] = context;
 TempData[“book”] = book;
 return View(book);
}

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 try
 {
 var context = TempData[“context”] as AcmeLibraryDataEntities;
 var book = TempData[“book”] as Book;
 if (context != null & & book != null)

➤

➤

CH018.indd 782CH018.indd 782 9/6/10 6:20:04 PM9/6/10 6:20:04 PM

 {
 book.Author = collection[“Author”];
 book.Title = collection[“Title”];
 book.ISBN = collection[“ISBN”];
 DateTime published;
 if (DateTime.TryParse(collection[“Published”], out published))
 {
 book.Published = published;
 }
 book.Publisher = collection[“Publisher”];
 context.SaveChanges();
 context.Dispose();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
}

 The fi rst method reads the selected book from the database — exactly the same way as the Details
method does — and passes it to the view returned. However, it stores the context and book
variables into the TempData collection so that those can be retrieved in the second edit method.
The reason behind this activity is that the context and the book instances can be reused later when
saving the information back to the database.

 The second method extracts the context and the book information from the TempData collection
and changes each book property according to the values stored in the collection passed to the
method. The data context is notifi ed every time a book property is set, so the SaveChanges method
recognizes that the book instance should be saved back to the database, and persists it. You do not
need the context instance any more for this operation, so it is disposed. After the successful save
operation, the user is redirected to the page with the list of books.

 You still need to create the Edit view. Use the Add View context menu command from the code
editor within any of the Edit methods. This time, name the view Edit , and select the Edit content
type in the View content dialog. Listing 18 - 13 shows the source code of the new view created in the
 Book folder.

 LISTING 18 - 13: Book/Edit.aspx

 < %@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage < AcmeLibrary.Models.Book > ” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Edit
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 >
 Edit
 < /h2 >

 continues

Adding New MVC 2 Pages ❘ 783

CH018.indd 783CH018.indd 783 9/6/10 6:20:04 PM9/6/10 6:20:04 PM

784 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

LISTING 18-13 (continued)

 < % using (Html.BeginForm())
 {% >
 < %: Html.ValidationSummary(true) % >
 < fieldset >
 < legend > Fields < /legend >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Id) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.Id) % >
 < %: Html.ValidationMessageFor(model = > model.Id) % >
 < /div >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Author) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.Author) % >
 < %: Html.ValidationMessageFor(model = > model.Author) % >
 < /div >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Title) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.Title) % >
 < %: Html.ValidationMessageFor(model = > model.Title) % >
 < /div >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.ISBN) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.ISBN) % >
 < %: Html.ValidationMessageFor(model = > model.ISBN) % >
 < /div >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Published) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.Published,
 String.Format(“{0:g}”, Model.Published)) % >
 < %: Html.ValidationMessageFor(model = > model.Published) % >
 < /div >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Publisher) % >
 < /div >
 < div class=”editor-field” >
 < %: Html.TextBoxFor(model = > model.Publisher) % >
 < %: Html.ValidationMessageFor(model = > model.Publisher) % >
 < /div >
 < p >
 < input type=”submit” value=”Save” / >
 < /p >
 < /fieldset >

CH018.indd 784CH018.indd 784 9/6/10 6:20:05 PM9/6/10 6:20:05 PM

 < % } % >
 < div >
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /div >
 < /asp:Content >

 Code fi le [Book/Edit.aspx] available for download at Wrox.com

 The Edit view is as simple as the Details and List views discussed previously. Each attribute
of the book has three associated HTML tags: one for the label, another one for the input fi eld to
edit the attribute, and a third one to validate the fi eld content. You will learn about fi eld validation
later in this chapter.

 The Id fi eld is bound to an Identity column in the database, so its value is automatically generated
at the SQL Server side. You do not need this fi eld, so you can remove the associated HTML tags
from the view. Also, you can rename the < legend > tag from “ Fields ” to “ Book Attributes. ”

 Figure 18 - 20 shows the Edit view in action after running your application and selecting the Edit link
of a book from the list.

 FIGURE 18 - 20: Editing a book

Adding New MVC 2 Pages ❘ 785

CH018.indd 785CH018.indd 785 9/6/10 6:20:05 PM9/6/10 6:20:05 PM

786 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Adding the Create View

 Similar to the Edit view, the Create view has also two actions in the controller class:

public ActionResult Create()
{
 // ...
}

[HttpPost]
public ActionResult Create(FormCollection collection)
{
 // ...
}

 Their semantics resemble the Edit actions. The fi rst method is called when you are about to
provide the view for editing a new Book entity. The second is invoked when the new Book
instance is to be saved into the database. You can use the following code to defi ne the body of
these action methods:

public ActionResult Create()
{
 var context = new AcmeLibraryDataEntities();
 var book = new Book
 {
 Author = “(Author)”,
 Title = “(Title)”,
 ISBN = “(ISBN)”
 };
 context.AddToBooks(book);
 TempData[“context”] = context;
 TempData[“book”] = book;
 return View(book);
}

[HttpPost]
public ActionResult Create(FormCollection collection)
{
 return Edit(-1, collection);
}

 You can see that the implementation of Create action methods is very similar to the Edit methods.
Actually, the second Create method reuses the appropriate Edit method, passing the collection
and - 1 as a placeholder of the id parameter that is unused within Edit .

 The fi rst Create method simply creates a new Book instance, initializes a few fi elds, and adds it
to the context. The context and book variables are put into the TempData collection as they are
utilized in the Edit method called from the second Create method.

 You could probably now guess how to generate the Create view. Use the Add View context menu
command while your cursor is within one of the Create methods. Name the view Create and
choose Create in the “ View content ” combo box. The code for the Create view will be almost

CH018.indd 786CH018.indd 786 9/6/10 6:20:05 PM9/6/10 6:20:05 PM

exactly the same as for Edit (as shown in Listing 18 - 13). However, the value attribute of the Submit
button is set to “ Create ” (it ’ s “ Save ” in the Edit.aspx fi le).

 Remove the HTML tags related to the Id fi eld and change the < legend > tag to “ New Book
Attributes. ” You can now run your application. Click the Create New link at the bottom of the
book list and edit the attributes of a new book, as shown in Figure 18 - 21.

 FIGURE 18 - 21: Create a new book

 When you click the Create button, the new book will be added to the list of books.

 Adding the Delete View

 Now that you have worked with the Create and Edit views, there is no surprise that the BookController
class has two Delete actions. Copy the following code into the Delete action methods:

public ActionResult Delete(int id)
{
 var context = new AcmeLibraryDataEntities();
 var book = context.Books.First(b = > b.Id == id);
 TempData[“context”] = context;

Adding New MVC 2 Pages ❘ 787

CH018.indd 787CH018.indd 787 9/6/10 6:20:06 PM9/6/10 6:20:06 PM

788 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 TempData[“book”] = book;
 return View(book);
}

[HttpPost]
public ActionResult Delete(int id, FormCollection collection)
{
 try
 {
 var context = TempData[“context”] as AcmeLibraryDataEntities;
 var book = TempData[“book”] as Book;
 if (context != null & & book != null)
 {
 context.DeleteObject(book);
 context.SaveChanges();
 context.Dispose();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
}

 The fi rst Delete action is used when the book information is about to be shown in a view where
the user can confi rm the delete operation. The second Delete action is invoked when the operation
is confi rmed. Now, you can most likely fi gure out how these methods work without any further
explanation.

 Use the Add View command invoked from within one of the Delete methods and use Delete both
for the view name and for the View content selection. The structure of the generated Delete.
aspx fi le resembles to the Details.aspx fi le. You do not need to display all book attributes in the
confi rmation page. Let ’ s keep only the Author, Title, and ISBN fi elds. Remove the HTML tags
associated with other fi elds. Your Delete view should look like the code in Listing 18 - 14.

 LISTING 18 - 14: Book/Delete.aspx

 < %@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
 Inherits=”System.Web.Mvc.ViewPage < AcmeLibrary.Models.Book > ” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Delete
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 >
 Delete
 < /h2 >
 < h3 >
 Are you sure you want to delete this book?
 < /h3 >
 < fieldset >
 < legend > Fields < /legend >
 < div class=”display-label” > Author < /div >

CH018.indd 788CH018.indd 788 9/6/10 6:20:06 PM9/6/10 6:20:06 PM

 < div class=”display-field” > < %: Model.Author % > < /div >
 < div class=”display-label” > Title < /div >
 < div class=”display-field” > < %: Model.Title % > < /div >
 < div class=”display-label” > ISBN < /div >
 < div class=”display-field” > < %: Model.ISBN % > < /div >
 < /fieldset >
 < % using (Html.BeginForm())
 { % >
 < p >
 < input type=”submit” value=”Delete” / >
 |
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /p >
 < % } % >
 < /asp:Content >

 Code fi le [Book/Delete.aspx] available for download at Wrox.com

 Build and run AcmeLibrary and create a few fake books. In the book list, click the Delete link of a
fake book. You will see a confi rmation screen similar to Figure 18 - 22.

 FIGURE 18 - 22: Confi rm the delete operation

 Click the Delete button and the book will be deleted immediately.

Adding New MVC 2 Pages ❘ 789

CH018.indd 789CH018.indd 789 9/6/10 6:20:07 PM9/6/10 6:20:07 PM

790 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 CUSTOMIZATION IN MVC 2

 Thus far, you have learned that the MVC 2 tools shipped with Visual Studio 2010 (such as the Add
Controller and Add View commands) help you to create functional web pages in a few minutes.
MVC provides many customization opportunities to tailor your web site ’ s UI and behavior to fi t
your needs. This section examines a few features that make this customization possible.

 Model Binding

 The BookController class ’ s Edit action used the following code to write back the edited book data
to the database:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 try
 {
 var context = TempData[“context”] as AcmeLibraryDataEntities;
 var book = TempData[“book”] as Book;
 if (context != null & & book != null)
 {
 book.Author = collection[“Author”];
 book.Title = collection[“Title”];
 book.ISBN = collection[“ISBN”];
 DateTime published;
 if (DateTime.TryParse(collection[“Published”], out published))
 {
 book.Published = published;
 }
 book.Publisher = collection[“Publisher”];
 context.SaveChanges();
 context.Dispose();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
}

 The largest part of this code converts the form properties stored in collection into the book
variable. MVC has a mechanism called model binding that can populate model attributes by
matching key/value pairs with the names of properties on a concrete .NET type. With model
binding, you can shorten the previous code and remove the need of dealing with each property
in a Book instance:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 try

CH018.indd 790CH018.indd 790 9/6/10 6:20:07 PM9/6/10 6:20:07 PM

 {
 var context = TempData[“context”] as AcmeLibraryDataEntities;
 var book = TempData[“book”] as Book;
 if (context != null & & book != null)
 {
 UpdateModel(book, collection.ToValueProvider());
 context.SaveChanges();
 context.Dispose();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
}

 The UpdateModel method has several overloads. The one used in the example updates the book
variable (representing the model) from the controller ’ s value provider. The FormCollection
instance passed to the method can be converted to a value provider with the ToValueProvider
method. All the mechanic work is done by this simple method call — like parsing the string form of
properties, and converting them to the appropriate types (such as handling the DateTime value of
the Published property).

 With model binding, you can go even further. Let ’ s see the original implementation of the Create
actions in the controller:

public ActionResult Create()
{
 var context = new AcmeLibraryDataEntities();
 var book = new Book
 {
 Author = “(Author)”,
 Title = “(Title)”,
 ISBN = “(ISBN)”
 };
 context.AddToBooks(book);
 TempData[“context”] = context;
 TempData[“book”] = book;
 return View(book);
}

[HttpPost]
public ActionResult Create(FormCollection collection)
{
 return Edit(-1, collection);
}

 The fi rst Create method instantiated an AcmeLibraryDataEntities context so that the second
 Create method can simply call the Edit action. This context creation is not really required by the
time the Create view is displayed, because it will have an active role only in the second Create
method.

Customization in MVC 2 ❘ 791

CH018.indd 791CH018.indd 791 9/6/10 6:20:07 PM9/6/10 6:20:07 PM

792 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Let ’ s change the implementation of these methods:

public ActionResult Create()
{
 var book = new Book
 {
 Author = “(Author)”,
 Title = “(Title)”,
 ISBN = “(ISBN)”
 };
 return View(book);
}

[HttpPost]
public ActionResult Create(Book newBook)
{
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View();
 }
}

 Now, the fi rst Create method creates a Book instance just to set a few default values. Look at
the signature of the second method. It has been changed so that now it accepts a Book instance.
Knowing that the Create action method is being invoked via an HTTP POST request, and that Book
is a .NET type that is totally unknown to HTTP, how can an HTTP request and routing handle the
method call and supply a Book instance?

 The answer again lies with the model binding. The incoming data is parsed and used to populate the
method action parameters. With this solution, the Create actions look more natural, and they do
not need the entity context be passed through TempData .

 Using the model binding feature, you can change the actions of the entire BookController class, as
shown in Listing 18 - 15.

 LISTING 18 - 15: Updated BookController class

using System.Linq;
using System.Web.Mvc;
using AcmeLibrary.Models;

namespace AcmeLibrary.Controllers

CH018.indd 792CH018.indd 792 9/6/10 6:20:08 PM9/6/10 6:20:08 PM

{
 public class BookController : Controller
 {
 public ActionResult Index()
 {
 var context = new AcmeLibraryDataEntities();
 var books = context.Books;
 return View(books);
 }

 public ActionResult Details(int id)
 {
 var context = new AcmeLibraryDataEntities();
 var book = context.Books.First(b = > b.Id == id);
 return View(book);
 }

 public ActionResult Create()
 {
 var book = new Book
 {
 Author = “(Author)”,
 Title = “(Title)”,
 ISBN = “(ISBN)”
 };
 return View(book);
 }

 [HttpPost]
 public ActionResult Create(Book newBook)
 {
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View(newBook);
 }
 }

 public ActionResult Edit(int id)
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 var book = context.Books.First(b = > b.Id == id);
 context.Detach(book);

 continues

Customization in MVC 2 ❘ 793

CH018.indd 793CH018.indd 793 9/6/10 6:20:08 PM9/6/10 6:20:08 PM

794 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

LISTING 18-15 (continued)

 return View(book);
 }
 }

 [HttpPost]
 public ActionResult Edit(Book editedBook)
 {
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.Books.Attach(editedBook);
 context.Books.ApplyOriginalValues(
 new Book { Id = editedBook.Id });
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View(editedBook);
 }
 }

 public ActionResult Delete(int id)
 {
 return Edit(id);
 }

 [HttpPost]
 public ActionResult Delete(Book bookToDelete)
 {
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.Books.Attach(bookToDelete);
 context.Books.DeleteObject(bookToDelete);
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch
 {
 return View(bookToDelete);
 }
 }
 }
}

 Code fi le [BookController.cs] available for download at Wrox.com

CH018.indd 794CH018.indd 794 9/6/10 6:20:08 PM9/6/10 6:20:08 PM

 Validation

 There is a serious issue with the AcmeLibrary application — validation . When you create a new
book and leave the title or ISBN information empty when clicking the Create button, you will see
validation messages to the right of the invalid fi elds. However, when you edit an existing book,
something different happens. If you set an invalid fi eld value and save the book, the invalid fi eld ’ s
value is reverted to its original value without any notifi cation. Try to set an ISBN number longer
than 13 characters, and you ’ ll be given an exception.

 It ’ s time to deal with validation. In MVC, the model is validated according to its metadata. The
model (for example, the Book) has implicit metadata such as the type and nullability of a property
used during the validation. For example, the Published property of the Book class is a DateTime .
So, you cannot type any kind of string data into the text box representing this property, only data
that can be parsed as DateTime .

 The implicit metadata information is rarely enough for providing full validation for model objects.
For example, the ISBN number used in AcmeLibrary should be exactly 13 characters long, and
each character can be only a decimal digit. The MVC engine is not aware of this fact unless you
declare it.

 Validation Attributes

 The .NET base class library has a namespace called System.ComponentModel.DataAnnotations
that includes attributes you can use to defi ne validation rules declaratively. For a moment,
forget that the Book class is automatically generated from the ADO.NET entity model. If you
created it manually, you could decorate its properties with data annotation attributes, as shown
in Listing 18 - 16.

 LISTING 18 - 16: Data Annotation Attributes Applied for the Book class

public class Book
{
 public int Id { get; set; }

 [Required(ErrorMessage = “Please provide the author(s) name”)]
 public string Author { get; set; }

 [Required(ErrorMessage = “Please provide a title”)]
 public string Title { get; set; }

 [RegularExpression(@”[0-9]{13}$”,
 ErrorMessage = “ This must be exactly 13 digits”)]
 public string ISBN { get; set; }

 public DateTime Published { get; set; }

 public string Publisher { get; set; }
}

Customization in MVC 2 ❘ 795

CH018.indd 795CH018.indd 795 9/6/10 6:20:09 PM9/6/10 6:20:09 PM

796 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Table 18 - 1 summarizes the attributes that the System.ComponentModel.DataAnnotations
namespace provides you for validation.

 TABLE 18 - 1: Validation Attributes

 ATTRIBUTE DESCRIPTION

 RequiredAttribute This attribute specifi es that when a fi eld on a form is

validated, the fi eld must contain a value. A validation

exception is raised if the property is null , contains

an empty string (” “), or contains only white - space

characters.

 In the case of strings, by setting the AllowEmptyStrings

property to true , you can tell the attribute that empty is a

valid value. By default, this property is false .

 StringLengthAttribute This attribute can be used to validate the length of a string.

You can specify MinimumLength and MaximumLength

values, too.

 The error message of this attribute supports localization

also. Its default value is “ The field {0} must be a

string with a maximum length of {1} ” . The fi rst

placeholder is the name of the fi eld in most cases; the

second one is the maximum length of the fi eld. The same

rule applies to the minimum - length error message.

 RangeAttribute This attribute can be used to validate a numeric value to

be within a range. The value itself does not have to be

numeric, but it must be convertible to a numeric value

via a TypeConverter . If these conditions are met, then

the attribute will do the automatic type conversion during

validation. For the type conversion, you can give the type

of the value in the OperandType property.

 RegularExpressionAttribute This attribute can be used to match the value of the

property against a regular expression. It can include

formatted phone number validation, for example, but

the possibilities are limitless because of the nature of

regular expressions.

 DataTypeAttribute This attribute is not a real validation attribute, but derives

from ValidationAttribute . This attribute can be used

to specify what kind of data the given property holds

internally (for example, when the .NET type of the property

is string).

CH018.indd 796CH018.indd 796 9/6/10 6:20:09 PM9/6/10 6:20:09 PM

 ATTRIBUTE DESCRIPTION

 Following are the valid data types, the members of the

 DataType enumeration:

 DateTime

 Date

 Time

 Duration

 PhoneNumber

 Currency

 Text

 Html

 MultilineText

 EmailAddress

 Password

 Url

 ImageUrl

 Custom

 If Custom is specifi ed as a DataType , then the

 CustomDataType property should be set to the name of

the type.

 CustomValidationAttribute This attribute is used to perform custom validation. The

 IsValid method is invoked to perform validation. It

then redirects the call to the method that is identifi ed by

the Method property, which, in turn, performs the actual

validation.

 The attribute can be applied to types, properties, fi elds,

methods, and method parameters. When it is applied to

a property, the attribute is invoked whenever a value is

assigned to that property. When it is applied to a method,

the attribute is invoked whenever the program calls that

method. When it is applied to a method parameter, the

attribute is invoked before the method is called.

Customization in MVC 2 ❘ 797

CH018.indd 797CH018.indd 797 9/6/10 6:20:09 PM9/6/10 6:20:09 PM

798 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Extending the Model with Validation Metadata

 The Book class is automatically generated by the ADO.NET Entity model class. You could
theoretically decorate the model classes with the attributes in Table 18 - 1, but when you change the
model, these attributes will be lost.

 Automatic code generation is a frequently used technique in software development, and many Visual
Studio item types also use this technique. MVC is prepared for this situation, and allows you to
assign metadata to model classes through an associated metadata provider class.

 Add a new code fi le to the Models folder and name it BookMetadata.cs . Listing 18 - 17 shows the
code you should put into this new fi le.

 LISTING 18 - 17: BookMetadata.cs

using System;
using System.ComponentModel.DataAnnotations;

namespace AcmeLibrary.Models
{
 [MetadataType(typeof(BookMetadata))]
 public partial class Book
 {
 // --- Augmentation of the Book class in the model
 }

 public class BookMetadata
 {
 public int Id { get; set; }

 [Required(ErrorMessage = “Please provide the author(s) name”)]
 public string Author { get; set; }

 [Required(ErrorMessage = “Please provide a title”)]
 public string Title { get; set; }

 [RegularExpression(@”[0-9]{13}$”,
 ErrorMessage = “ISBN must be exactly 13 digits”)]
 public string ISBN { get; set; }

 public DateTime Published { get; set; }

 public string Publisher { get; set; }
 }
}

 Code fi le [BookMetadata.cs] available for download at Wrox.com

 The partial Book class in Listing 18 - 17 is the same class as generated by the ADO.NET entity
model fi le (AcmeLibraryModel.edmx). Thanks to the partial defi nition, the code fragment in this

CH018.indd 798CH018.indd 798 9/6/10 6:20:10 PM9/6/10 6:20:10 PM

listing decorates this class with a MetadataType attribute telling that BookMetadata contains
data annotation attributes for Book . BookMetadata defi nes placeholder properties having the
same name and type as the ones in Book . As a result of this defi nition, attributes decorating
the BookMetadata properties are considered by the MVC framework as if those attributes were
added directly to Book properties.

 Preparing the Controller for Validation

 The current implementations of controller actions execute the related database transactions
and let the database operation raise an exception. This approach is not correct for the following
reasons:

 There is no use wasting resources on database operations if the properties are invalid. This
check can be done before talking to the database.

 It might be that the database transactions are alright, because the action does not
hurt the consistency of data. However, the current state of the model — the set of its
properties — may hurt business rules.

 You can check the validity of the model before executing the action expecting valid data. The key
is the ModelState property of the controller that is a ModelStateDictionary instance. Using
the IsValid property of ModelState , you can avoid starting an operation with invalid data. For
example, you can modify the Create action to avoid creating a new book with wrong data:

[HttpPost]
public ActionResult Create(Book newBook)
{
 if (ModelState.IsValid)
 {
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch (Exception)
 {
 return View(newBook);
 }
 }
 return View(newBook);
}

 The ModelState property contains a detailed state describing model properties and related
validation errors based on the data annotations and implicit metadata belonging to the model
class. If your controller has more business rules to check, you can do further validation checks.

➤

➤

Customization in MVC 2 ❘ 799

CH018.indd 799CH018.indd 799 9/6/10 6:20:10 PM9/6/10 6:20:10 PM

800 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

For example, when the publication date cannot be ahead of the current calendar date by more than
180 days, you can add the following check to the Create method:

[HttpPost]
public ActionResult Create(Book newBook)
{
 if (newBook.Published != null & &
 (newBook.Published.Value - DateTime.Now).TotalDays > 180)
 {
 ModelState.AddModelError(“Published”,
 “A future publication date cannot be ahead more than 180 days”);
 }
 if (ModelState.IsValid)
 {
 try
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);
 context.SaveChanges();
 }
 return RedirectToAction(“Index”);
 }
 catch (Exception)
 {
 return View(newBook);
 }
 }
 return View(newBook);
}

 As you see, the validation check precedes checking for ModelState.IsValid .

 Displaying Validation Issues

 By default, the view generated with the Add View command contains a placeholder for a validation
summary, as the following code extract (Create.aspx) shows:

 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 > Create < /h2 >
 < % using (Html.BeginForm())
 {% >
 < %: Html.ValidationSummary(true) % >
 < fieldset >
 < legend > New Book Attributes < /legend >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Author) % >
 < /div >
 < !-- ... -- >
 < /fieldset >
 < % } % >

CH018.indd 800CH018.indd 800 9/6/10 6:20:11 PM9/6/10 6:20:11 PM

 < div >
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /div >
 < /asp:Content >

 The true argument passed to Html.ValidationSummary prevents the validation errors belonging
to model properties from being displayed. Change it to false and add optional message to display
validation information summary:

 < %: Html.ValidationSummary(false, “There are some invalid input data:”) % >

 Now, when you build and run AcmeLibrary , you can see how the Create action works when you
provide invalid book properties. Figure 18 - 23 shows several validation errors.

 FIGURE 18 - 23: Validation errors shown in the Create view

 You see that invalid properties are marked with a shaded background, and a message that is
repeated in the validation summary.

 Managing Business Rules

 The check for the future publication date you have added recently is a rule that should also be
checked for the Edit action. One option is to copy and paste the validation code into the Edit

Customization in MVC 2 ❘ 801

CH018.indd 801CH018.indd 801 9/6/10 6:20:11 PM9/6/10 6:20:11 PM

802 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

method. However, when you have many rules to check, you can become confused and forget about
checking each rule at both in the Create and Edit actions. The best solution is to raise validation to
the model level.

 There are several ways to solve this, depending on the architecture pattern — and style — you
intend to use in your application. Here is one solution that adds a validation method to the Book
entity class:

 Add a new fi le named BookValidation.cs to the Models folder. Extend the Book entity class with a
 Validate method, as shown in Listing 18 - 18.

 LISTING 18 - 18: BookValidation.cs

using System;
using System.Web.Mvc;

namespace AcmeLibrary.Models
{
 public partial class Book
 {
 public void Validate(ModelStateDictionary modelState)
 {
 if (Published != null & &
 (Published.Value - DateTime.Now).TotalDays > 180)
 {
 modelState.AddModelError(“Published”,
 “A future publication date cannot be ahead more than 180 days”);
 }
 }
 }
}

 Code fi le [BookValidation.cs] available for download at Wrox.com

 This code is really simple, and now you can invoke Validate in the Create and Edit actions:

[HttpPost]
public ActionResult Create(Book newBook)
{
 newBook.Validate(ModelState);
 if (ModelState.IsValid)
 {
 // ...
 }
 return View(newBook);
}

[HttpPost]
public ActionResult Edit(Book editedBook)

CH018.indd 802CH018.indd 802 9/6/10 6:20:11 PM9/6/10 6:20:11 PM

{
 editedBook.Validate(ModelState);
 if (ModelState.IsValid)
 {
 // ...
 }
 return View(editedBook);
}

 Client - Side Validation

 In many cases, most of the simple validation rules can be checked at the client side without a
round - trip to the server. It ’ s very easy to use JavaScript - based client - side validation with MVC 2.
When you created the ASP.NET MVC 2 web application, the required JavaScript fi les were
copied into the Scripts folder. You can easily add client - side validation support to your views.
For example, you can modify the main content of the Create.aspx fi le, as the following code
extract shows:

 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript” > < /script >
 < script src=”/Scripts/MicrosoftMvcValidation.js” type=”text/javascript” > < /script >
 < % Html.EnableClientValidation(); % >
 < h2 > Create < /h2 >
 < % using (Html.BeginForm())
 {% >
 < %: Html.ValidationSummary(false, “There are some invalid input data:”) % >
 < fieldset >
 < legend > New Book Attributes < /legend >
 < div class=”editor-label” >
 < %: Html.LabelFor(model = > model.Author) % >
 < /div >
 < !-- Other fields are omitted from this listing -- >
 < /fieldset >
 < % } % >
 < div >
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /div >
 < /asp:Content >

 You must add only the two < script > tags and use the < % Html.EnableClientValidation % > tag.
The next time you run the application, model rules defi ned by the Book metadata are validated at
the client side.

 However, there are two important things you should be aware of when using the client - side
validation:

 The custom validation code you implemented explicitly at the server side (for example,
the rule checking of future publication dates) is not checked — and so its failure is not
indicated — at the client side. When client - side validation rules succeed, then the model
data is sent to the server, and the server - side validation happens there.

➤

Customization in MVC 2 ❘ 803

CH018.indd 803CH018.indd 803 9/6/10 6:20:12 PM9/6/10 6:20:12 PM

804 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 Even if you implement all validation at the client side, you must not trust only client - side
validation. Robust business logic should check all business rules at the server (service)
side as well.

 UI Customization

 The Add View command (available in the context menu of the code editor, or from the Solution
Explorer) helps you to generate a view in a few seconds. This view may be short, simple, and
easy to work with, but not necessarily the one you would like to put into the live version of your
application. The ASP.NET MVC 2 Framework provides you many ways to defi ne the UI according
to your style and using the standard design of your company or your customers.

 In the Views/Shared folder, you can see that the Site.Master page and the Content folder hold
the Site.css fi le. You can use the same techniques as for any other ASP.NET application to change
your application ’ s general outlook by changing/adding master fi les and CSS fi les. Because of the
perspicuous structure of these fi les, a practiced web designer can create awesome and attractive web
sites for your MVC 2 application.

 However, there are some other ways you can easily customize the views in your application.

 Using Templated Helpers

 MVC 2 has a new feature called templated helpers , probably the most important new feature for
developer productivity. Earlier in this chapter, in the source code listings of views, you saw several
rendering tags that were not explained there, such as the following ones:

 < % using (Html.BeginForm()) {% >

 < %: Html.LabelFor(model = > model.Author) % >

 < %: Html.TextBoxFor(model = > model.Title) % >
 < %: Html.ValidationMessageFor(model = > model.Title) % >

 < %: Html.ActionLink(“Back to List”, “Index”) % >

 The magical Html object that the LabelFor , TextBoxFor , and other methods are invoked on is
defi ned in the System.Web.Mvc.ViewPage class the views derive from. Its type is HtmlHelper ,
which has many methods and extension methods (defi ned in about a dozen classes). With these
extensions, you can get rid of creating HTML tags on your own. Actually, these HtmlHelper
methods help you with the following services:

 They know how to generate HTML output for native or compound HTML controls,
including their attributes.

 They can query the metadata belonging to your model, and use this information when
generating the code for the view.

 These methods work a bit trickier than they look. For example, the LabelFor method accepts a
function that projects a model to a property. In the previous code snippet, a lambda expression

➤

➤

➤

CH018.indd 804CH018.indd 804 9/6/10 6:20:12 PM9/6/10 6:20:12 PM

is used to project model to model.Author . The value of this expression is retrieved as a LINQ
 Expression (defi ned in the System.Linq.Expressions namespace) and not as a simple reference
to the property value. The Expression class is a special class (it is beyond the scope of these book to
explain why), and it provides access to the metadata of properties.

 So, the LabelFor method can access the metadata of properties and render the HTML output
according to it.

 The views generated for the AcmeLibrary project are strongly typed views.
Their < @Page > tag has an Inherits attribute with the value System.Web.Mvc
.ViewPage < AcmeLibrary.Models.Book > . The type parameter of the ViewPage
determines the type of the model the view works with, and that ’ s how the
model ’ s metadata can be accessed.

 Display and Edit Templates

 There are two major template types within MVC: display templates and edit templates .
 HtmlHelper provides a separate set of methods available at model and at property levels to help
the rendering of these templates.

 These helper methods for model properties are available in two fl avors. One accepts a string literal
that contains the name of the property, and another one accepts an expression, as you have already
seen with the LabelFor method. The following code snippet shows the different versions of the
 Display method rendering the Title property:

 < %: Html.Display (“Title”) % >
 < %: Html.DisplayFor (model = > model.Title) % >

 When you ’ re using the string literal based Display method, it looks for the given property in your
model class, and also in the ViewData property belonging to the view instance.

 If you want to output the editor for the same property, you can use the Editor method as follows:

 < %= Html.Editor (“Title”) % >
 < %= Html.EditorFor (model = > model.Title) % >

 You have helper methods to display a read - only representation view or an editor view for the entire
model. These are the DisplayForModel and EditorForModel methods:

 < %= Html.DisplayForModel () % >
 < %= Html.EditorForModel () % >

Customization in MVC 2 ❘ 805

CH018.indd 805CH018.indd 805 9/6/10 6:20:12 PM9/6/10 6:20:12 PM

806 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 For example, you can change the Edit.aspx fi le in the Views/Book folder for a shorter version
using the EditorForModel method:

 < %@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage < AcmeLibrary.Models.Book > ” % >

 < asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server” >
 Edit
 < /asp:Content >
 < asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server” >
 < h2 >
 Edit
 < /h2 >
 < % using (Html.BeginForm()) {% >
 < %: Html.ValidationSummary(true) % >
 < fieldset >
 < legend > Fields < /legend >
 < %: Html.EditorForModel() % >
 < p >
 < input type=”submit” value=”Save” / >
 < /p >
 < /fieldset >
 < % } % >
 < div >
 < %: Html.ActionLink(“Back to List”, “Index”) % >
 < /div >
 < /asp:Content >

 When you build and run AcmeLibrary , the rendered editor page is almost the same as the one you
saw in Figure 18 - 20. However, in the latter case, you can edit the Id fi eld as well. It ’ s very easy to
correct this behavior. Add the HiddenInput attribute to the Id property of the BookMetadata class:

// --- Add this using clause
using System.Web.Mvc;

namespace AcmeLibrary.Models
{
 // ...
 public class BookMetadata
 {
 [HiddenInput]
 public int Id { get; set; }
 // ...
 }
}

 This attribute results in the view rendering the Id property in a label, so you cannot edit it. You can
easily hide the Id (even from displaying it) by changing the HiddenInput attribute:

[HiddenInput(DisplayValue = false)]
public int Id { get; set; }

CH018.indd 806CH018.indd 806 9/6/10 6:20:18 PM9/6/10 6:20:18 PM

 What is happening behind the scenes?

 ASP.NET MVC 2 ships with a default set of code - only templates for different data types. Template
rendering is that part of MVC where the metadata associated with model controls the HTML
output.

 Each property is rendered with two parts: a label and a fi eld. The default templates assign
predefi ned CSS classes to the HTML tags, and it makes much easier to put together a website with
great design. Listing 18 - 19 shows the HTML content rendered from Edit.aspx .

 LISTING 18 - 19: HTML Rendered from Edit.aspx

 < h2 > Edit < /h2 >
 < form action=”/Book/Edit/3” method=”post” >
 < fieldset >
 < legend > Fields < /legend >
 < input id=”Id” name=”Id” type=”hidden” value=”3” / >
 < div class=”editor-label” > < label for=”Author” > Author < /label > < /div >
 < div class=”editor-field” >
 < input class=”text-box single-line” id=”Author” name=”Author”
 type=”text” value=”Barry Dorrans” / >
 < /div >
 < div class=”editor-label” > < label for=”Title” > Title < /label > < /div >
 < div class=”editor-field” >
 < input class=”text-box single-line” id=”Title” name=”Title”
 type=”text” value=”Beginning ASP.NET Security” / >
 < /div >
 < div class=”editor-label” > < label for=”ISBN” > ISBN < /label > < /div >
 < div class=”editor-field” > < input class=”text-box single-line”
 id=”ISBN” name=”ISBN” type=”text” value=”9780470743652” / >
 < /div >
 < div class=”editor-label” >
 < label for=”Published” > Published < /label >
 < /div >
 < div class=”editor-field” >
 < input class=”text-box single-line” id=”Published”
 name=”Published” type=”text” value=”2010.04.12. 0:00:00” / >
 < /div >
 < div class=”editor-label” >
 < label for=”Publisher” > Publisher < /label >
 < /div >
 < div class=”editor-field” >
 < input class=”text-box single-line”
 id=”Publisher” name=”Publisher” type=”text” value=”Wrox” / >
 < /div >
 < p > < input type=”submit” value=”Save” / > < /p >
 < /fieldset >
 < /form >
 < div >
 < a href=”/Book” > Back to List < /a >
 < /div >

Customization in MVC 2 ❘ 807

CH018.indd 807CH018.indd 807 9/6/10 6:20:19 PM9/6/10 6:20:19 PM

808 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 You can clearly recognize the class attributes such as editor - label , editor - field , text - box ,
 single - line , and so on.

 Metadata Attributes

 Earlier in this chapter in Table 18 - 1, you saw a few data annotation attributes that provide
validation metadata to a model. MVC provides data annotations that provide metadata for
rendering a view. MVC 2 introduced many new metadata types. Figure 18 - 24 shows two data
annotation hierarchies. The left side shows annotations in MVC 1.0, and the right side shows
them in MVC 2.

 FIGURE 18 - 24: Data annotations in MVC and MVC 2

 Let ’ s take a look at the most important attributes decorating a model.

 DisplayColumnAttribute

 This attribute can be used on properties represented by .NET classes or child models. (You could
even call them compound properties.) When MVC renders a property with this attribute, it will
display the given property values of the class behind the property. Let ’ s take a look at an example in
the form of a partial model code snippet:

CH018.indd 808CH018.indd 808 9/6/10 6:20:19 PM9/6/10 6:20:19 PM

public class MoneyTransfer
{
 // other model properties

 [DisplayColumn (“FullName”)]
 public Person Customer { get; set; }
}

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string FullName
 {
 get { return FirstName + “ “ + LastName; }
 }
}

 When you create a view for MoneyTransfer , the Customer property will display the FullName of
the related Person instance.

 DisplayFormatAttribute

 This attribute allows you to control how the given property is formatted during the rendering
process. Possible uses include Date , DateTime , Time , and Currency formatting. This attribute
supports the standard .NET formatting characters and placeholders.

 If a DataTypeAttribute also decorates a specifi c property, DisplayFormat is overridden by
 DataTypeAttribute . In real - world scenarios, these two attributes are rarely used with the same
model properties.

 Scaff oldColumnAttribute

 If you add this attribute to a property with the value of false , the model level template render
helper within MVC will not render the given property.

 Scaffolding is the mechanism for generating web page templates based on
database schemas. ASP.NET Dynamic Data uses scaffolding to generate a
Web - based UI that lets a user view and update a database. This class uses the
 Scaffold property to enable scaffolding in a Dynamic Data Web Site.
Scaffolding enhances the ASP.NET page framework by dynamically displaying
pages based on the data model with no physical pages required. You can fi nd
more details about scaffolding in Chapter 17.

 UIHintAttribute

 When the template is rendered for a model, the type of the property or the decorating
 DataTypeAttribute determines the HTML control used to represent the property. In many cases,

Customization in MVC 2 ❘ 809

CH018.indd 809CH018.indd 809 9/6/10 6:20:19 PM9/6/10 6:20:19 PM

810 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

it does not provide enough control over rendering. The UIHintAttribute allows specifying the
template or user control to display a data fi eld (model property).

 Later in this chapter, you will see an example of using this attribute.

 DisplayAttribute

 This is a general - purpose attribute that lets you specify localizable strings for types and members of
entities used in models. DisplayAttribute has a single default constructor, and several properties.
These properties are summarized in Table 18 - 2.

 TABLE 18 - 2: DisplayAttribute Properties

 PROPERTY DESCRIPTION

 AutoGenerateField Sets a value that indicates whether the UI should be generated

automatically in order to display this fi eld.

 AutoGenerateFilter Sets a value that indicates whether a fi ltering UI is automatically

displayed for this fi eld.

 Description Sets a value that is used to display a description in the UI. This property

is typically used as a tooltip or description UI element that is bound to

the member using this attribute.

 GroupName Sets a value that is used to group fi elds in the UI.

 Name Sets a value that is used for display in the UI. The name is typically used

as the fi eld label for a UI element that is bound to the property that is

annotated with this attribute.

 Order Sets the order weight of the column. Columns are sorted in increasing

order based on the order value. Columns without this attribute have an

order value of 0. Negative values are valid and can be used to position

a column before all non - negative columns. If an order is not specifi ed,

presentation layers should consider using the value 10,000. This value

lets explicitly ordered fi elds be displayed before and after the fi elds that

do not have a specifi ed order.

 Prompt Sets a value that will be used to set the watermark for prompts in the UI.

 ResourceType Gets or sets the type that contains the resources for the ShortName ,

 Name , Prompt , and Description properties. If this value is null , the

 ShortName , Name , Prompt , and Description properties are assumed

to be literal, non - localized strings. If this value is not null , the string

properties are assumed to be the names of public static properties that

return the actual string value.

 ShortName Gets or sets a value that is used for the grid column label.

CH018.indd 810CH018.indd 810 9/6/10 6:20:25 PM9/6/10 6:20:25 PM

 Although all properties in Table 18 - 2 have getter and setter accessors, do not use the properties
to access values behind them. Instead, use the appropriate Get method suffi xed with the
property name. For example, you can access the value of the Description property with
the GetDescription method. The only exceptions are ResourceType and ShortName , where
you can use both accessors.

 HiddenInputAttribute

 By adding this attribute to a property, you can tell the default template rendering helper to
render the property in edit mode as an < input > HTML tag with hidden type. Or, if you set its
 DisplayValue property to false , it will not render anything in display mode.

 DisplayNameAttribute

 This attribute is not a data annotation. It is a member of the System.ComponentModel namespace
and it is used by .NET UI frameworks since .NET 2.0. MVC also utilizes this attribute during
rendering the views. You can defi ne labels of properties with it. For example, you can change the
default “ Author ” label with the following code snippet:

public class BookMetadata
{
 // ...
 [DisplayName(“Author(s) name:”)]
 public string Author { get; set; }
 // ...
}

 Custom Templates

 The Add View command you used to generate view classes uses default templates that are
very useful for creating a simple application. However, you, your company, or your customer
probably have different conventions for creating a website, including design, layout, behavior,
and many other things. You can write your own templates to customize the exact rendering of
all your data types. Handling them is very easy, because these templates are partial views stored
within your project.

 Table 18 - 3 summarizes the locations where your templates can be stored.

 TABLE 18 - 3: Custom Template Locations

 LOCATION DESCRIPTION

 /Views/Shared/Displaytemplates This folder holds all the shared templates used by the

display helpers. Shared templates can be used by any

controller defi ned in your MVC 2 project.

 /Views/Shared/EditorTemplates This folder contains the shared templates used by the

editor helpers.

continues

Customization in MVC 2 ❘ 811

CH018.indd 811CH018.indd 811 9/6/10 6:20:26 PM9/6/10 6:20:26 PM

812 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 To demonstrate how easy UI customization is with templates, let ’ s change AcmeLibrary . You have
probably noticed that sometimes the title information and author names do not fi t into the textbox
displayed in the Edit view. You can change the rendering of these textboxes, and this could be useful
for other controllers as well.

 Create a new folder under Views/Shared and name it EditorTemplates . This is the location to
place the editor templates shared among views. Add a new MVC 2 View User Control item into this
folder (with the Add ➪ New Item command in the context menu), and name it LongerText.ascx .
Type the very short source code shown in Listing 18 - 20 into this fi le.

 LISTING 18 - 20: LongerText.ascx

 < %@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl < string > ” % >
 < %: Html.TextBox(String.Empty, Model, new { style=”width: 240pt”}) % >

 Code fi le [LongerText.cs] available for download at Wrox.com

 The user control is derived from the ViewUserControl < > class of the System.Web.Mvc
namespace, and it is a strongly typed view using string , as the type parameter of the class
indicates. Here the TextBox helper method is used to render the HTML output. The second
parameter, Model , is the object representing the property used as the model for this user
control. Now, the fi rst parameter is an empty string, signaling that the Model directly holds
the information to show. But you could use a non - empty string here to name a specifi c property
to be used by the control. The third parameter is an anonymous object instance that instructs the
 Htm.TextBox method to render the input control with the specifi ed style attribute that is used to
set the width of the textbox.

 Create an EditorTemplates folder under Views/Book to create a template for displaying
the Publisher fi eld as a drop - down list. Any templates in this folder can be used only by the
 BookController class. Add a new MVC 2 View User Control into this folder with the name
 Publisher.ascx , and copy the code shown in Listing 18 - 21 into this fi le.

 LOCATION DESCRIPTION

 /Views/ Controller /

 DisplayTemplates

 This folder holds controller - specifi c templates used

by the display helpers. The Controller tag in the

path is the name of the controller the templates

belong to.

 /Views/ Controller /EditorTemplates This folder contains the controller - specifi c templates

used by the editor helpers.

TABLE 18-3 (continued)

CH018.indd 812CH018.indd 812 9/6/10 6:20:26 PM9/6/10 6:20:26 PM

 LISTING 18 - 21: Publisher.ascx

 < %@ Control Language=”C#” Inherits=”System.Web.Mvc.ViewUserControl < string > ” % >
 < %: Html.DropDownList(“”, new SelectList(new []
 {
 new {name=”Self-Published”},
 new {name=”Wrox” },
 new {name=”Wiley”},
 new {name=”(unknown)”}
 },
 “name”, “name”,
 Model),
 “Select a publisher”) % >

 Code fi le [Publisher.ascx] available for download at Wrox.com

 This user control uses the DropDownList helper method. It passes an instance of SelectList
initialized with a collection of objects to be shown in the lists. The two “ name ” literals passed to
the SelectList constructor signal that both the identifi er of a list item and its displayed content
is the value of the name property.

 You must tell the template generator that these custom templates should be used when generating
the Edit view for the BookController class. It is very easy; you simply add UIHint attributes
to the BookMetadata class. You can also add several DisplayName properties to change the label
of the properties.

 Listing 18 - 22 shows how to change the BookMetadata class.

 LISTING 18 - 22: BookMetadata.cs (extract)

public class BookMetadata
{
 [HiddenInput(DisplayValue = false)]
 public int Id { get; set; }

 [Required(ErrorMessage = “Please provide the author(s) name”)]
 [DisplayName(“Author(s) name:”)]
 [UIHint(“LongerText”)]
 public string Author { get; set; }

 [Required(ErrorMessage = “Please provide a title”)]
 [DisplayName(“Title of the book:”)]
 [UIHint(“LongerText”)]
 public string Title { get; set; }

 [RegularExpression(@”[0-9]{13}$”,
 ErrorMessage = “ISBN must be exactly 13 digits”)]
 [DisplayName(“ISBN-13:”)]
 public string ISBN { get; set; }

 continues

Customization in MVC 2 ❘ 813

CH018.indd 813CH018.indd 813 9/6/10 6:20:27 PM9/6/10 6:20:27 PM

814 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

LISTING 18-22 (continued)

 [DisplayName(“Date of publication:”)]
 public DateTime Published { get; set; }

 [DisplayName(“Published by:”)]
 [UIHint(“Publisher”)]
 public string Publisher { get; set; }
}

 Code fi le [BookMetadata.cs] available for download at Wrox.com

 Build and run the AcmeLibrary project and select a
book to edit. You can immediately see the changes, as
shown in Figure 18 - 25.

 The Publisher fi eld now uses a drop - down list. The
Author and Title properties have a longer textbox,
and all properties have new labels.

 View Engines

 The view engine is the component that is responsible
for rendering the content of a view. Out of the box,
Microsoft ASP.NET MVC 2 provides a Web Forms -
 based view engine implementation. However, this
does not mean that using Web Form - esque is the only
way to represent your views.

 MVC uses the IViewEngine interface to defi ne the
responsibilities of a view engine, and its default
implementation is WebFormViewEngine (both types
are in the System.Web.Mvc namespace). So, if you are
familiar with ASP.NET development, constructing
the views for an MVC application will be easy.

 The defi nition of the IViewEngine interface is as follows:

namespace System.Web.Mvc
{
 public interface IViewEngine
 {
 ViewEngineResult FindPartialView(
 ControllerContext controllerContext,
 string partialViewName,
 bool useCache);

 ViewEngineResult FindView(

 FIGURE 18 - 25: The Edit view using custom

templates

CH018.indd 814CH018.indd 814 9/6/10 6:20:27 PM9/6/10 6:20:27 PM

 ControllerContext controllerContext,
 string viewName,
 string masterName,
 bool useCache);

 void ReleaseView(
 ControllerContext controllerContext,
 IView view);
 }
}

 The default WebFormViewEngine implementation derives from the VirtualPathProviderViewEngine
abstract class that is an ASP.NET - based implementation, but is not Web Forms - specifi c. This class is
using ASP.NET ’ s virtual path provider - based support for view discovery.

 There are other alternative view engine implementations you can use with MVC, as shown in
Table 18 - 4.

 TABLE 18 - 4: Alternative View Engines

 VIEW ENGINE DESCRIPTION

 Spark View

Engine

 The Spark View Engine is a full - blown view engine with its own text template

engine behind it. The goal of this engine is to reduce the clutter in your views,

and provide a cleaner HTML. (See http://dev.dejardin.org .)

 Brail View

Engine

 This view engine is a .NET port from MonoRail. The template language used

for this engine is Boo. The reason behind this is that, when using the MonoRail

framework, you can write your code in Boo, too, so you don ’ t have to learn a

new template language for authoring your views.

 This project is available within the popular MVCContrib project on CodePlex at

 http://mvccontrib.codeplex.com .

 Sharp Tiles

View Engine

 This view engine uses a JavaServer Pages Standard Tag Library (JSTL) syntax -

 based template engine. In this way, it brings the JSTL syntax to ASP.NET MVC

applications. (See http://sharptiles.org .)

 NHaml View

Engine

 This view engine is a .NET port of the popular Haml view engine available

on Rails. The design goal of this markup language is to make it possible to

write clean XHTML - compatible HTML without the inline usage of code blocks.

(See http://code.google.com/p/nhaml .)

 NDjango View

Engine

 Django (which is the base of the .NET implementation of this engine) is a

template language for Python developers. NDjango is the .NET port and

out - of - the - box it has a view engine implementation for ASP.NET MVC.

(See http://ndjango.org .)

Customization in MVC 2 ❘ 815

CH018.indd 815CH018.indd 815 9/6/10 6:20:28 PM9/6/10 6:20:28 PM

816 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 As you can see, you have plenty of choices to author your views, and it almost does not matter what
developer background you have. With the different available view engines, you probably will fi nd
one that you can use to begin to work with.

 ROUTING DETAILS

 The routing component is the soul of the MVC framework. It provides an intuitive way of mapping
requests to controller classes and action methods. Its implementation is very sophisticated, letting
you declaratively control how action methods are executed, and allowing you to handle aspects
such as authorization, request and result fi ltering. As with all components in the MVC framework,
routing is also extensible.

 This section provides important details about routing.

 Controller Factory

 Earlier in this chapter during the discussion of the routing algorithm (take another look at
Figure 18 - 9 and Figure 18 - 10), you learned that, after MvcHandler receives a request, it needs to
look for a controller that is associated with the RouteData of the request. To achieve this task,
the handler extracts the mandatory “ controller ” parameter from the associated RouteData and
uses the Controller Factory component that knows how to instantiate the controller.

 The Controller Factory ’ s responsibility is described by the IControllerFactory interface:

namespace System.Web.Mvc
{
 using System.Web.Routing;

 public interface IControllerFactory
 {
 IController CreateController(
 RequestContext requestContext,
 string controllerName);

 void ReleaseController(IController controller);
 }
}

 As you see, the interface has only two methods: CreateController (which instantiates) and
 ReleaseController (which destroys the controller). Of course, in the MVC framework, you have
a default implementation, the DefaultControllerFactory class. This class uses refl ection - based
type resolution by searching the default namespaces for a class that has the given name with the
 Controller suffi x and implements the IController interface.

 Because the Controller Factory is the component that knows how to instantiate a specifi c controller,
in TDD scenarios, you can use a factory that is capable of injecting the appropriate domain model
(data access) layer into your controllers.

CH018.indd 816CH018.indd 816 9/6/10 6:20:28 PM9/6/10 6:20:28 PM

 In the examples for this chapter, all controllers (HomeController , AboutController , and
 BookController) are defi ned in the same assembly and in the same namespace, so the MVC engine
can easily fi nd the appropriate controller class by names such as “ Home ” , “ About, ” and “ Book. ”
However, you may have controllers in external assemblies where the classes are in a separate
namespaces. So, how can the name of the controller be resolved?

 The Controller Factory can handle this scenario. You have a few ways to declare the external
namespaces where the DefaultControllerFactory searches for the controller classes. One
place is to describe the external namespace defi nition is the MapRoute method (remember,
the RegisterRoutes method utilizes MapRoute in the Global.asax.cs fi le), as shown here:

routes.MapRoute(
 “RouteWithNamespaceTag”,
 “/{controller}/{action}”,
 new
 {
 controller = “ControllerInExternalAssembly”,
 action = “Index”
 },
 new[]
 {
 “MyApp.ExternalControllers.Controllers”
 }
);

 The DefaultControllerFactory implementation looks for controller types in an application - level
namespace registry within the ControllerBuilder class. The previous namespace can be added to
the namespace registry with the following statement:

ControllerBuilder.Current.DefaultNamespaces.
 Add(“MyApp.ExternalControllers.Controllers”);

 Infl uencing the Execution Flow

 After the controller type is resolved and the controller instance is created, the
 DefaultControllerFactory invokes the Execute method of the controller.

 The responsibility of a controller is defi ned by the IController interface. MVC defi nes a
 ControllerBase abstract class to be the base class for all MVC controllers, and derives the
 Controller class from it. Controller provides methods that respond to HTTP requests sent
to an ASP.NET MVC web site.

 The action execution logic is much more fl exible than simply invoking the Execute method, as
shown in Figure 18 - 26.

Routing Details ❘ 817

CH018.indd 817CH018.indd 817 9/6/10 6:20:29 PM9/6/10 6:20:29 PM

818 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 MVC 2 makes this fl ow extensible. It allows you to infl uence the fl ow in an aspect - oriented manner.
You can use .NET attributes to inject these aspects into your code.

Execute

IExceptionFilters

IController

IActionInvoker

Execute all

IAuthorizationFilter

Execute all

IActionFilter.

OnExecuting

Execute Action

Execute all

IActionFilter.

OnExecuted

Execute

IResultFilter.

OnExecuting

Execute

IResultFilter.

OnExecuted

Cancelled

Not Authorized.

Return status 401

Creates IActionInvoker

 FIGURE 18 - 26: Action execution fl ow

CH018.indd 818CH018.indd 818 9/6/10 6:20:29 PM9/6/10 6:20:29 PM

 Authorization

 Before executing any action, the controller check attributes implementing the
 IAuthorizationFilter interface:

public interface IAuthorizationFilter
{
 void OnAuthorization(AuthorizationContext filterContext);
}

 If the invocation of OnAuthorization signals that authorization fails, an HttpUnauthorizedResult
is set for the current context, and the further execution is interrupted. There are a few
attributes implementing IAuthorizationFilter . Let ’ s take a look at a few of them. Of course,
you can create your own IAuthorizationFilter attributes.

 AuthorizationAttribute

 By default, any user can execute an action. However, you can restrict the scope of authorized
users by decorating an action with the AuthorizeAttribute :

[Authorize(Users=”Joe, Zana”, Roles=”Admins, Managers”)]
public ActionResult CheckAccount ()
{
}

 This example shows how easy it is to use this attribute. You can defi ne the users allowed to execute
an action by their user name or the names of roles they are in. CheckAccount can be executed by all
users that are named Joe or Zana , or all users having at least one of the Admins and Managers roles.

 AuthorizeAttribute allows authorization based on the logged - in user ’ s name or role membership.
This attribute can be applied at class or method level; multiple defi nitions are allowed at one place.

 ChildActionOnlyAttribute

 You can create an action whose sole purpose is to be invoked from other actions as a child action.
In this case, it doesn ’ t make sense for anyone to invoke that action directly through an HTTP
request. The ChildActionOnlyAttribute blocks an action ’ s execution if it is not a child action of
another action. This means that, from a URL, this action is not callable, but it ’ s callable during the
rendering of a view through the HtmlHelper class ’ s Action or RenderAction methods.

[ChildActionOnly]
public ActionResult RenderSiteStatistics ()
{
}

 If someone does navigate to a URL that maps to RenderSiteStatistics , the fi lter will block the
request by throwing an InvalidOperationException , saying, “ The action ‘ RenderSiteStatistics ’ is
accessible only by a child request. ”

Routing Details ❘ 819

CH018.indd 819CH018.indd 819 9/6/10 6:20:30 PM9/6/10 6:20:30 PM

820 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 RequireHttpsAttribute

 This attribute checks the current HTTP request ’ s IsSecureConnection property, and only
allows the action to execute it when the request was done through a secure connection (such as
the HTTPS protocol).

[RequireHttps]
public ActionResult LoginUser (string username, string clearTextPassword)
{
}

 ValidateAntiForgeryTokenAttribute

 This attribute checks the presence of a specially formatted cookie and hidden form fi eld ’ s value. If
all the required data is there and is valid, the action can be executed.

 This attribute tries to prevent an action from getting executed during a cross - site scripting (XSS)
attack. ValidateAntiForgeryAttribute should be only applied to an action that is allowed to
execute during an HTTP POST request. As a prerequisite, a call must be made to the HtmlHelper
class ’ s AntiForgeryToken method, which puts the required data into the action ’ s result.

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult XSSProtectedAction ()
{
}

 The related view should look like this:

 < % using(Html.BeginForm()) { % >
 < %: Html.AntiForgeryToken() % >
 < !-- Form field definitions -- >
 < % } % >

 This view will be rendered something like the following HTML fragment:

 < form action=”/Book/Edit” method=”post” >
 < input name=”__RequestVerificationToken” type=”hidden” value=”Ac/
 +BHd54K-/as67G...” / >
 < !-- Form field definitions -- >
 < /form >

 ValidateInputAttribute

 If you want to disable validation either for a specifi c action method or across a specifi c controller,
you can use the ValidateInputAttribute :

[ValidateInput (EnableValidation=false)]
public ActionResult ThisMethodCanNotContainDangerousRequestData ()
{
}

CH018.indd 820CH018.indd 820 9/6/10 6:20:30 PM9/6/10 6:20:30 PM

 Unfortunately, to use ValidateInputAttribute with .NET 4, you must also make a further
confi guration change. To successfully disable request validation, you must add the following to
your web.config fi le:

 < configuration >
 < system.web >
 < httpRuntime requestValidationMode=”2.0”/ >
 < /system.web >
 < /configuration >

 This is because the request processing pipeline was changed in .NET 4.

 Action and Result Filtering

 When the user is authorized to execute an action (all attributes implementing IAuthorizationFilter
allowed to go on with the execution), the real action execution is wrapped by objects implementing
 IActionFilter :

public interface IActionFilter
{
 void OnActionExecuting(ActionExecutingContext filterContext);
 void OnActionExecuted(ActionExecutedContext filterContext);
}

 The objects implementing these two interface methods should be attributes decorating the action
method. The MVC framework provides the abstract ActionFilterAttribute class to derive your
own fi lter attributes.

 First, all OnActionExecuting methods are called. This method receives the execution context
information as its argument. It can return an ActionResult or a null value if the fi lter does not
want to alter the result. A Cancel property is defi ned in the ActionExecutingContext class so that
the method can fl ag the cancellation of the action to prevent it from being executed.

 If the fi lter does not cancel the action and an exception is raised, the body of the action method is
executed.

 After the execution of the action, the OnActionExecuted method is invoked — in the reverse
order as OnActionExecuting methods were called. At this point of execution, there is some
kind of ActionResult available.

 Before returning the result to the user, the next step of the processing pipeline is to use the
 IResultFilter interface:

public interface IResultFilter
{
 void OnResultExecuting(ResultExecutingContext filterContext);
 void OnResultExecuted(ResultExecutedContext filterContext);
}

Routing Details ❘ 821

CH018.indd 821CH018.indd 821 9/6/10 6:20:31 PM9/6/10 6:20:31 PM

822 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 You can use the ActionFilterAttribute class to derive your own result fi ltering attributes, just as
in the case of action fi ltering. The execution logic of OnResultExecuting and OnResultExecuted
methods is exactly the same as the logic for OnActionExecuting and OnActionExecuted . The
 Cancel property or the ResultExecutingContext passed to these methods can be set to true to
prevent the other fi lters in the row from being invoked.

 Both the OnActionExecuted and OnResultExecuted methods can receive the exception thrown by
the action, and they can process them.

 Exception Filtering

 If an exception was thrown during the execution, it ’ s available for examination in the
 OnActionExecuted and OnResultExecuted methods. If an exception can be handled,
the ExceptionHandled property of the executing context can be set to true . If it does not
happen, the exception will be propagated up in the execution chain.

 If there is an unhandled exception raised during the action, the IExceptionFilter interface gets
the role:

public interface IExceptionFilter
{
 void OnException(ExceptionContext filterContext);
}

 The framework invokes the OnException method of all attributes implementing
 IExceptionFilter . The MVC framework provides you the HandleErrorAttribute class
with the default behavior of redirecting you to an error page that displays the exception raised.
Of course, you may create your own exception fi lters if you need them.

 ActionResult

 You have already met the ViewResult class, which is the one generally retrieved by action methods
in the BookController class. There are a plethora of classes representing the results (outcomes)
of actions. All these classes inherit the abstract ActionResult class having the following simple
defi nition:

public abstract class ActionResult
{
 public abstract void ExecuteResult(ControllerContext context);
}

 MVC 2 ships with about a dozen classes deriving from ActionResult , as shown in
Table 18 - 5.

CH018.indd 822CH018.indd 822 9/6/10 6:20:31 PM9/6/10 6:20:31 PM

 TABLE 18 - 5: ActionResult Derived Classes

 TYPE DESCRIPTION

 EmptyResult This class represents a result instructing the controller to take

no action. Returning an EmptyResult.Instance from your

action is like returning a null from a method. In this case,

nothing will be written into the HTTP response. You may have

several reasons to use this type. For example, it can be a result

of a security - related action where you don ’ t want to expose

anything to the end user.

 HttpUnauthorizedResult This class represents the result of an unauthorized HTTP request.

If you return a new instance of this class, it will end up in an

HTTP status 401 message (which is the standard status code for

unauthorized access). Usually, this result is returned from a class

implementing the IAuthorizationFilter interface.

 ContentResult This class represents a user - defi ned content type that

is the result of an action method. You can have arbitrary

content and set it through the Content , ContentType ,

and ContentEncoding properties.

 JavaScriptResult The name of the class speaks for itself, as it retrieves JavaScript

content. You can use its Script property to set the script to

return.

 JsonResult This class is suitable to serialize a .NET class for client - side script

consumption (for example, as a result of an Ajax call). With the

properties this class provides, you can be in total control of how

the data should be serialized to the client.

 This class has a property named JsonRequestBehavior that, by

default, denies the execution of an action for the HTTP GET verb.

If you want to allow an action to return JavaScript Object Notation

(JSON) content for a GET request, you should set this property to

 JsonRequestBehavior.AllowGet .

 RedirectResult This result can be used to redirect the user to another URL at the

end of the action. One of the examples is when you have fi nished

editing a book selection and you ’ re redirecting the user to the

Book list view.

 RedirectToRouteResult This result is similar to RedirectResult , but instead of a hard -

 coded URL, you can refer to one of the registered routes within

the application.

continues

Routing Details ❘ 823

CH018.indd 823CH018.indd 823 9/6/10 6:20:31 PM9/6/10 6:20:31 PM

824 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 TESTING WITH MVC 2

 As mentioned earlier in this chapter, MVC 2 was designed and implemented with TDD in mind. This
chapter would not be complete if you could not see how great MVC is when combined with TDD.

 Of course, it is beyond the scope of this book to thoroughly examine TDD. However, you can learn
how to create unit tests in conjunction with MVC, and this is the most important step if you want
to deal with TDD.

 In this section, you ’ ll learn about a version of AcmeLibrary that has been refactored to support unit
testing. You do not have to carry out every step to change the application; you can download the
source code from the book ’ s companion web site (www.wrox.com).

 Refactoring AcmeLibrary

 A good testing approach is where you can test the concerns (the model, the view, and the controller)
separately from each other. When testing an MVC application, the most challenging part is the
controller.

 TYPE DESCRIPTION

 FileResult This type is an abstract class and serves as a base class for

returning a HTTP response with the Content - Disposition

HTTP header value.

 FileContentResult This FileResult derived class can supply a byte array, and that

array will be written as a fi le into the response stream.

 FilePathResult This FileResult derived class can provide a server - side

fi lename with an absolute path, and the contents of the fi le will be

written into the response stream.

 FileStreamResult This FileResult derived class can supply an opened Stream

object, and that stream will be written into the response

stream. The content of the stream will be written in 4,096 - byte

long chunks.

 ViewResultBase This abstract class serves as a base class for returning rendered

HTML content to the user.

 PartialViewResult This result type is returning a partial view to the user. It derives

from ViewResultBase .

 ViewResult This class represents the most commonly used ActionResult

type. It returns the complete rendered HTML pages to the user.

TABLE 18-5 (continued)

CH018.indd 824CH018.indd 824 9/6/10 6:20:32 PM9/6/10 6:20:32 PM

 The model generally can be tested separately from other parts of the application — with the well -
 known unit testing techniques — because it is independent from the view and from the controller.
The view is just plain UI, and the only logic behind it is the one that simply binds the element of the
model to the elements of the UI.

 However, testing a controller is tougher, because it has a dependency on the underlying model that
generally uses some kind of persistence. If you want to test a controller separately from the model,
your model must be mocked, and there also must be a way to inject a model into the controller.
When your live application runs, the controller gets the real model instance; when it is unit tested, a
fake model can be injected into it.

 Using a fake model is important from the TDD perspective. Even if you do not have your model
implemented, you must be able to test a controller — and that is where you are going to use the
fake model.

 What Needs to Be Changed?

 There are several ways to satisfy controller testing requirements, and one possibility is demonstrated
here. This approach applies the following refactoring steps on the AcmeLibrary MVC web
application to support writing unit tests for the BookController class:

 The application uses the interface - based development pattern to defi ne the responsibilities of
the model (Book) as an interface (IBook).

 With the help of the repository pattern, the model operations executed by the
 BookController class have been extracted into a repository interface (IBookRepository).

 The BookController class has been refactored so that it can accept an injected model.

 A new unit test project has been added to the solution.

 The classes defi ning the domain model of the AcmeLibrary application (entity interface,
repository interface) have been moved to a separate assembly that can be referenced by both
the web application ’ s assembly and from the unit test ’ s assembly.

 A fake model class (fake repository) has been defi ned for unit test purposes.

 A few unit test method has been coded.

 You may think that these steps generate a lot of work. Yes that ’ s true — however, it ’ s not so much.
But there are a few arguments that are worth mentioning:

 If you start designing and implementing your MVC application with testing in mind, you do
not need to change the application. You can build it right in the proper way.

 With refactoring tools, you can automate most of the refactoring work. For example, you
can extract the model and repository interfaces from the current implementation classes.

 Tests applied from the beginning of the implementation give you confi dence and mitigate
the risk of bugs discovered too late — assuming they run successfully, and bugs discovered
are fi xed.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Testing with MVC 2 ❘ 825

CH018.indd 825CH018.indd 825 9/6/10 6:20:32 PM9/6/10 6:20:32 PM

826 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 So, let ’ s see how these changes have been applied to the
 AcmeLibrary application.

 New Project Structure

 The AcmeLibrary solution treated by now in this
chapter contains only one project — the one created as
an ASP.NET MVC 2 web application. It has been
changed to include two more projects, as shown in
Figure 18 - 27.

 Most of the code still remains in the AcmeLibrary project,
but the interfaces representing the domain model (IBook
and IBookRepository) have been extracted into a separate
 AcmeDomain assembly. The AcmeLibraryTest project is a
container for unit tests. FIGURE 18 - 27: The new AcmeLibrary

solution structure

 When you create a new ASP.NET MVC 2 project, Visual Studio lets you create a
test project immediately, as shown earlier in Figure 18 - 5.

 Setting Up the Domain Model

 The AcmeLibrary application works with Book as the most important entity. BookController
defi nes the interaction logic and also invokes the persistence services provided by the
 AcmeLibraryDataEntities class generated from the entity model. To separate the BookController
class from the persistence services — using the Repository Pattern — the IBookResository
interface has been extracted, as shown in Listing 18 - 23.

 LISTING 18 - 23: IBookRepository.cs

using System.Linq;

namespace AcmeDomain
{
 public interface IBookRepository
 {
 IQueryable < IBook > GetBooks();
 IBook GetBookById(int id);
 IBook CreateBook();
 void InsertBook(IBook book);
 void SaveBook(IBook book);
 void DeleteBook(int id);
 }
}

 Code fi le [IBookRepository.cs] available for download at Wrox.com

CH018.indd 826CH018.indd 826 9/6/10 6:20:33 PM9/6/10 6:20:33 PM

 This interface defi nes operations used by the action methods in BookController . This defi nition is
simple. Only two things require further explanation:

 The Book class is defi ned in the AcmeLibrary project (and it is automatically generated),
so it cannot be moved to a separate assembly. A great solution could be to extract an
abstract BookBase class from Book , but that does not work because Book must be
derived from EntityObject . So, the properties of a book are represented as an IBook
interface.

 The GetBooks method retrieves an IQueryable < IBook > instance to leverage the query
composition features of LINQ.

 Listing 18 - 24 shows the IBook interface representing the main entity used by the repository.

 LISTING 18 - 24: IBook.cs

using System;
using System.Collections.Generic;

namespace AcmeDomain
{
 public interface IBook
 {
 // --- Attributes
 int Id { get; set; }
 string Author { get; set; }
 string Title { get; set; }
 string ISBN { get; set; }
 DateTime? Published { get; set; }
 string Publisher { get; set; }

 // --- Entity operations
 IDictionary < string, object > Validate();
 }
}

 Code fi le [IBook.cs] available for download at Wrox.com

 Notice the Validate method that can be used to check the integrity of an IBook instance.

 Implementing the Repository

 The data persistence operations can easily be refactored from the BookController class. The
 BookRepository class in the Models folder implements the IBookRepository interface, as
the code extract in Listing 18 - 25 shows.

➤

➤

Testing with MVC 2 ❘ 827

CH018.indd 827CH018.indd 827 9/6/10 6:20:34 PM9/6/10 6:20:34 PM

828 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 LISTING 18 - 25: BookRepository.cs (extract)

using System;
using System.Linq;
using AcmeDomain;

namespace AcmeLibrary.Models
{
 public IBook GetBookById(int id)
 {
 using (var context = new AcmeLibraryDataEntities())
 {
 var book = context.Books.First(b = > b.Id == id);
 if (book != null) context.Detach(book);
 return book;
 }
 }

 public void InsertBook(IBook book)
 {
 var newBook = book as Book;
 if (newBook == null)
 throw new ArgumentException(“AcmeLibrary.Model.Book expected.”, “book”);
 using (var context = new AcmeLibraryDataEntities())
 {
 context.AddToBooks(newBook);
 context.SaveChanges();
 }
 }
 // --- Other methods are omitted from this listing
 }
}

 Code fi le [BookRepository.cs] available for download at Wrox.com

 The BookController class does not consume BookRepository directly. Instead, it uses the
repository interface, as the shown in the code extract in Listing 18 - 26.

 LISTING 18 - 26: BookController.cs (extract)

using System;
using System.Web.Mvc;
using AcmeDomain;
using AcmeLibrary.Models;

namespace AcmeLibrary.Controllers
{
 public class BookController : Controller

CH018.indd 828CH018.indd 828 9/6/10 6:20:34 PM9/6/10 6:20:34 PM

 {
 private readonly IBookRepository _BookRepository;

 public BookController()
 {
 _BookRepository = ServiceLocator.GetInstance(
 typeof(IBookRepository)) as IBookRepository;
 }

 public BookController(IBookRepository repository)
 {
 _BookRepository = repository;
 }

 public ActionResult Index()
 {
 return View(_BookRepository.GetBooks());
 }

 [HttpPost]
 public ActionResult Create(Book newBook)
 {
 ValidateBook(newBook);
 if (ModelState.IsValid)
 {
 try
 {
 _BookRepository.InsertBook(newBook);
 return RedirectToAction(“Index”);
 }
 catch (Exception)
 {
 return View(newBook);
 }
 }
 return View(newBook);
 }

 private void ValidateBook(IBook book)
 {
 var result = book.Validate();
 if (result == null) return;
 foreach (var item in result)
 {
 ModelState.AddModelError(item.Key, item.Value.ToString());
 }
 }
 // --- Other methods are omitted from this listing
 }
}

 Code fi le [BookController.cs] available for download at Wrox.com

Testing with MVC 2 ❘ 829

CH018.indd 829CH018.indd 829 9/6/10 6:20:35 PM9/6/10 6:20:35 PM

830 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 The class utilizes the _BookRepository fi eld to store a reference to the IBookRepository used in
persistence operations. The default constructor uses the ServiceLocator static class to inject the
appropriate repository instance into the controller. There is another constructor where you can
inject a custom repository instance into BookController .

 The BookRepository class is injected into BookController in the Application_Start method
of the Global.asax.cs fi le:

protected void Application_Start()
{
 ServiceLocator.RegisterInstance < IBookRepository > (
 typeof(BookRepository));
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
}

 The ServiceLocator class is a very lightweight implementation of the Service
Locator pattern. (Its source code is available for download at www.wrox.com .)
It does not use a Dependency Injection container behind it, just for the sake of
simplicity. In real life, it is always worth it to use a Dependency Injection
container, because it adds a lot of value as you extend your application.

 You can also implement a different pattern. You may leave the default
constructor of the BookController class and create a custom controller factory
that injects the repository instance into the controller.

 Attaching Book to IBook

 In the domain model, the IBook interface represents the properties and validation behavior of a
book. The real persistence model is defi ned by the AcmeLibraryModel.edmx fi le that automatically
generates the Book class. Listing 18 - 27 shows how to declare that the automatically generated Book
is an implementation of IBook .

 LISTING 18 - 27: BookValidation.cs

using System;
using System.Collections.Generic;
using AcmeDomain;

namespace AcmeLibrary.Models
{
 public partial class Book: IBook
 {
 public IDictionary < string, object > Validate()
 {
 return Published == null ||

CH018.indd 830CH018.indd 830 9/6/10 6:20:35 PM9/6/10 6:20:35 PM

 (Published.Value - DateTime.Now).TotalDays < = 180
 ? null
 : new Dictionary < string, object >
 {
 { “Published”,
 “A future publication date cannot be ahead more than 180 days”}
 };
 }
 }
}

 Code fi le [BookValidation.cs] available for download at Wrox.com

 This fi le contains a partial class defi nition, so the Book class fragment here is merged with the
fragment defi ned by the AcmeLibraryModel.edmx.cs fi le. Because of the specifi cation of partial
classes in C#, you can “ inject ” the IBook interface implementation into Book . The IBook properties
are already implemented by Book . This fi le adds the defi nition of the Validate method.

 Creating and Running Unit Tests

 The structural changes of AcmeLibrary make it easy to create unit tests for the BookController
class. You can create a fake repository that emulates the behavior of the persistence layer
(BookRepository). There are several solutions for implementing such a fake class. Listing 18 - 28
shows a simple solution persisting books in memory.

 LISTING 18 - 28: TestBookRepository.cs

using System.Collections.Generic;
using System.Linq;
using AcmeDomain;
using AcmeLibrary.Models;

namespace AcmeLibraryTest
{
 public class TestBookRepository: IBookRepository
 {
 private static readonly Dictionary < int, Book > _Books =
 new Dictionary < int, Book > ();

 public static void Reset()
 {
 _Books.Clear();
 }

 public IQueryable < IBook > GetBooks()
 {
 return _Books.Values.AsQueryable();
 }

 public IBook GetBookById(int id)

 continues

Testing with MVC 2 ❘ 831

CH018.indd 831CH018.indd 831 9/6/10 6:20:36 PM9/6/10 6:20:36 PM

832 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

LISTING 18-28 (continued)

 {
 Book book;
 return _Books.TryGetValue(id, out book)? book : null;
 }

 public IBook CreateBook()
 {
 return new Book();
 }

 public void InsertBook(IBook book)
 {
 book.Id = _Books.Count + 1;
 _Books.Add(book.Id, book as Book);
 }

 public void SaveBook(IBook book)
 {
 _Books[book.Id] = book as Book;
 }

 public void DeleteBook(int id)
 {
 _Books.Remove(id);
 }
 }
}

 Code fi le [TestBookRepository.cs] available for download at Wrox.com

 As you see, this in - memory implementation is very simple. It uses a Dictionary < , > instance where
the identifi er of a book is used as the key, and a Book instance as the value. Because this dictionary
is static, you can share the repository among unit tests instantiating the TestBookRepository class.

 Listing 18 - 29 shows an extract from the BookControllerTest.cs fi le implementing a few unit
tests.

 LISTING 18 - 29: BookControllerTest.cs (Extract)

 [TestClass]
public class BookControllerTest
{
 [ClassInitialize()]
 public static void MyClassInitialize(TestContext testContext)
 {
 TestBookRepository.Reset();
 ServiceLocator.RegisterInstance < IBookRepository > (

CH018.indd 832CH018.indd 832 9/6/10 6:20:36 PM9/6/10 6:20:36 PM

 typeof(TestBookRepository));
 }

 [TestMethod]
 public void InsertValidBooksOk()
 {
 for (int i = 1; i < = 10; i++)
 {
 var book = new Book
 {
 Author = “Author” + i,
 Title = “Title” + i,
 ISBN = “0123456789012”,
 Published = new DateTime(1998, 1, 1),
 Publisher = “Wrox”
 };
 var bc = new BookController();
 var result = bc.Create(book) as RedirectToRouteResult;
 Assert.IsNotNull(result);
 Assert.AreEqual(result.RouteValues[“action”], “Index”);
 }
 var list = new BookController().Index() as ViewResult;
 Assert.IsNotNull(list);
 var model = list.ViewData.Model as IEnumerable < IBook > ;
 Assert.AreEqual(model.Count(), 10);
 }
}

 Code fi le [BookControllerTest.cs] available for download at Wrox.com

 The MyClassInitialize method injects the TestBookRepository class into BookController , so
when you instantiate a BookController , the test repository is used.

 The InsertValidBooksOk test method emulates the insertion of ten books. After each insertion,
it checks whether the result of the action is a RedirectToRouteResult , forwarding the user to the
 “ Index ” — this is the sign of proper operation. When all books are inserted, it checks that the book
list contains exactly ten elements.

 The test project contains another test case
(not listed here) to check what happens when
a book with a wrong publishing date is about
to be inserted.

 With the Test ➪ Run ➪ “ All Tests in
Solution ” command, you can run all
 AcmeLibrary unit test cases. The checkmarks
(as shown in Figure 18 - 28) indicate successful
test cases. FIGURE 18 - 28: Successful test cases

Testing with MVC 2 ❘ 833

CH018.indd 833CH018.indd 833 9/6/10 6:20:36 PM9/6/10 6:20:36 PM

834 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

 A FEW MORE POINTS ON MVC 2

 By now, you have learned about the most important things regarding ASP.NET MVC. You know
how to create and customize applications, and you also have a good understanding about how to
prepare your projects to support testing scenarios. However, MVC 2 has so many great features that
this chapter is not long enough to cover everything. Following are a few more exciting capabilities of
the framework.

 Areas

 An ASP.NET MVC project organizes source fi les into folders — one for models, another one for
controllers, and another folder for views, and so on. If you have dozens of them, you can feel that
your development environment is getting messy. It becomes quite diffi cult to keep track of how each
item relates to a specifi c area of application functionality.

 To reduce this diffi culty, ASP.NET MVC lets you organize your project into areas , where each area
represents a functional group of your application (for example, reporting, site administration, social
functions, asset management, and so on).

 Metadata Providers

 MVC heavily uses metadata associated with your models. If the data annotations attributes
defi ned in the System.ComponentModel.DataAnnotations namespace don ’ t meet
your needs, you can create your own custom metadata provider by creating a class that
inherits from one of the ModelMetadataProvider , AssociatedMetadataProvider , or
 DataAnnotationsModelMetadataProvider classes.

 Value Providers

 ASP.NET MVC has a concept called value providers to help you extract data coming from different
sources into model properties. You can implement your own IValueProvider interface - based
implementation to create a custom value provider, or use one of the following value providers
available out - of - the - box:

 QueryStringValueProvider — This value provider extracts values from the query string
part of the incoming URL.

 RouteDataValueProvider — This value provider extracts values from the route data of the
matched route.

➤

➤

 In real life, you should create many more unit tests. You should cover all
normal and expected exceptional cases for each action. You can play with the
downloaded source code and create more tests.

CH018.indd 834CH018.indd 834 9/6/10 6:20:37 PM9/6/10 6:20:37 PM

 FormValueProvider — This value provider extracts values from the form fi elds of a HTML
form. Obviously, this can work only for HTTP POST actions.

 HttpFileCollectionValueProvider — This value provider extracts values from a posted
forms submitted fi le collection, the values from INPUT type FILE tags.

 Model Binders

 When your controller is about to invoke one of its action methods and is trying to fi nd
suitable values for the method ’ s parameters, it uses value providers and model binders. While
value providers represent the supply of data items available to your controller, model binders
are responsible for taking all these data items and trying to map them onto whatever type of
parameter your method takes.

 You can create your own model binders by implementing the IModelBinder interface, or using
(reusing) one of the available model binders (ByteArrayModelBinder , LinqBinaryModelBinder , or
 HttpPostedFileBaseModelBinder).

 Child Actions

 MVC 2 has a new concept called a child action , which is an action that can be invoked from inside
a view, utilizing the Html.RenderAction helper method. RenderAction retrieves a result, and this
is rendered inside the view that invoked it.

 Child actions are very useful for componentizing your application. With their help, you can create
reusable widgets with application logic.

 Asynchronous Controllers

 By the nature of IIS, when a request arrives, it is processed by a thread picked up from the thread
pool. Until the request is processed, the associated thread is blocked. Long - running requests may
cause the thread pool to run out of available threads, and incoming requests to be queued. An
asynchronous controller (that is, a controller derived from the AsynchController class) resolves
this situation by using two separate methods for each action:

 The fi rst method receives the input and then launches the body belonging to the action
asynchronously on a separate thread.

 The second method (callback method) is invoked automatically by the MVC framework
when the asynchronous operation started by the fi rst method completes. This method takes
care of sending the response back to the caller of the action.

 SUMMARY

 In this chapter, you learned about the Model - View - Controller (MVC) design pattern, and saw how
Microsoft implemented it based on its ASP.NET 4.0 platform. The fi rst version of ASP.NET MVC
was an out - of - band release for Visual Studio 2008, but it is an out - of - the - box feature in Visual

➤

➤

➤

➤

Summary ❘ 835

CH018.indd 835CH018.indd 835 9/6/10 6:20:38 PM9/6/10 6:20:38 PM

836 ❘ CHAPTER 18 ASP.NET MODEL VIEW CONTROLLER (MVC)

Studio 2010 — with the name MVC 2. Simultaneously, you can use MVC 2 in Visual Studio 2008
with .NET 3.5 SP1.

 MVC 2 comes with great tooling that helps you easily create controllers and views using predefi ned
templates. When you have your model class ready, you can create controller and view skeletons in
a few seconds. MVC uses its own routing model to resolve requests to public action methods in
controller classes — in contrast to ASP.NET Web Forms, which resolves requests to fi les.

 MVC was designed with customization and extensibility in mind. With a few changes, you
can totally change the outlook of your MVC application ’ s UI, and you can easily customize the
templates used for rendering views. With templated helpers, you can get rid of the nitty - gritty details
of rendering HTML markup. There are many extensibility points in MVC that you can utilize to
improve your application ’ s architecture with injecting aspects (cross - cutting concerns).

 MVC fully supports the TDD approach; it also has been implemented with TDD.

 In Chapter 19, you will learn about the Asynchronous JavaScript and XML (Ajax) technology, and
its improvements shipped with Visual Studio 2010 and .NET 4 Framework.

CH018.indd 836CH018.indd 836 9/6/10 6:20:38 PM9/6/10 6:20:38 PM

ASP.NET Ajax Improvements

 If you hit the Wikipedia website and search for the term “ Ajax, ” you will fi nd that it may refer
to more than 50 things in mythology, sports, vehicles, fi ction, and music. The name itself is
not new (Homer fi rst mentioned it in his Iliad). However, as we use it today in the scope of IT,
the term characterizes this decade ’ s revolution in the history of web programming.

 In its current context, the term “ Ajax ” (which is actually an acronym for Asynchronous
JavaScript and XML) was coined by Jesse James Garrett in 2005. It refers not to a single
technology , but rather to a group of technologies that existed well before the dawn of Web 2.0
and rich internet applications (RIAs). Nevertheless, new interactive web applications have
incorporated these technologies into a single programming approach, and with that came the
need for a better user experience.

 Because the overall user experience is one of the features that can help to make a website
unique and to beat the competition, over the last few years, AJAX - enabled websites have
become so mainstream that even the word “ Ajax ” now appears in the English language.
This chapter provides details about how Ajax works under the hood, and how you can use
ASP.NET to control it with a high - level programming approach.

 After reading this chapter, you will be familiar with the following:

 Using the ASP.NET Ajax server controls — Originally, ASP.NET targeted server - side
developers, and so it is not a surprise that, although Ajax is primarily a client - side
technology, Microsoft added full support for it also on the server side. If you are a
server - side developer, this chapter explains how you can use ASP.NET web controls to
add Ajax functionality to your pages.

 Using the Microsoft Ajax Library — If you want to utilize the full power of Ajax,
whether you like it or not, you must write JavaScript code, and Microsoft helps you
with a fully featured JavaScript library. This chapter guides you through the Microsoft
Ajax Library, and you will learn how you can access Document Object Model (DOM)
elements, handle events, and use declarative data binding on the client side, even for
server - side data.

➤

➤

 19

CH019.indd 837CH019.indd 837 9/6/10 6:23:52 PM9/6/10 6:23:52 PM

838 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 If you (like many other web developer all over the world) are primarily creating managed code for
web applications, you probably enjoy the .NET environment, and try to keep yourself away from
JavaScript. This chapter helps you recognize similar concepts on the client, and make you feel
comfortable in JavaScript.

 UNDERSTANDING AJAX

 Imagine an e - commerce website where you can browse the products on the Product Catalog page, and
you can click on a big fancy Buy button that drops the current item into your basket. The product list
is displayed on the left, and the content of the basket (with the total amount due for the purchase) is
displayed on the right side of the page. From a user ’ s perspective, there are two expectations from this
page — all pieces of the page must be always up to date, and it must work fast. From the developer ’ s
point of view, it is important that the server be notifi ed every time a user clicks on the Buy button, so
the basket management cannot be completely performed on the client side.

 Let ’ s see what happens in the background. When the user clicks on the Buy button, the browser
sends a request to the web server that processes the request, updates the user ’ s basket in the
database, and creates the HTML response. The HTML response is then transmitted back to
the client, and is displayed in the browser. This is called a round - trip , and you can see that,
depending on the network latency and the application complexity, it may take a long time.

 The more important thing is that, while the browser waits for a response, the user interface (UI) is
locked, so the user cannot do anything else but watch the hourglass and the progress bar. What ’ s
more, after the response is received by the browser, the whole page is refreshed (to update the
content of the basket) and scrolled to the top.

 As you can see in Figure 19 - 1, the user and the
browser are completely synchronized with
the server. While the server processes the
request, the user waits, and while the user
works on the page, the server waits. These long
wait states and the loss of the scroll context
result in a very poor user experience.

 If you could decouple the client and the server,
and let them work asynchronously, the user
experience could be much better, as shown
in Figure 19 - 2. While the server processes a
previous Buy request, the user would be able to
browse other products.

 However, this approach completely differs from
the classic use of the web — you do not want
to send a URL to the server and you do not
want to refresh the whole page. You just want to send the selected product ’ s ID, expect an HTML
fragment as a response, and update only the corresponding part of the page. Because browsers were

Server side

processing

Server side

processing

User action User action User action

 FIGURE 19 - 1: Synchronous user interface

Server side

processing

Server side

processing

User action User action User action

 FIGURE 19 - 2: Asynchronous user interface

CH019.indd 838CH019.indd 838 9/6/10 6:23:56 PM9/6/10 6:23:56 PM

not originally designed for this type of architecture, web developers called out for a new hero, and
 XMLHttpRequest was born.

 The XMLHttpRequest Object

 The user interface created by the engineers of the Outlook web Access for Microsoft Exchange
Server 2000 faced the same challenge, and the engineers decided to create a new object called
 XMLHTTPRequest that could be accessed via ActiveX from Internet Explorer 5.0. Later, the Gecko
layout engine implemented a native JavaScript object called the XMLHttpRequest that followed the
original Microsoft implementation. However, neither the name nor the syntax was 100 percent the
same, which resulted in a serious incompatibility problem among various browser versions that
still persists today. The solution to the problem was discovered in many Ajax wrapper libraries
over the years.

 The XMLHttpRequest object acts as a mini - browser in the browser. It can send HTTP requests
to the server and asynchronously receive the responses, and all that can be driven and handled in
JavaScript.

 The following code example shows the use of the XMLHttpRequest object on a page that displays the
current time of the server, while other parts of the page are not updated. First, you create the server - side
component as an ASPX page that returns the current server time in a HTML fragment:

 < %@ Page Language=”C#” % >
 < script runat=”server” >
 protected void Page_Load(object sender, EventArgs e)
 {
 // Simulate server side processing.
 System.Threading.Thread.Sleep(1500);

 this.Response.Clear();
 this.Response.Write(
 “ < b > Server time is “ + DateTime.Now.ToLongTimeString() + “ < /*b > ”);
 this.Response.Expires = -1; // Disable client cache.
 this.Response.End();
 }
 < /script >

 Code fi le [1 - XMLHttpRequest\Time.aspx] available for download at Wrox.com

 Then, you create a simple HTML page that contains a button:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > XMLHttpRequest sample < /title >
 < script type=”text/javascript” >
 var oXmlHttp;

 function getServerTime()

Understanding Ajax ❘ 839

CH019.indd 839CH019.indd 839 9/6/10 6:23:57 PM9/6/10 6:23:57 PM

840 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 {
 oXmlHttp = new XMLHttpRequest();
 oXmlHttp.open(“GET”, “time.aspx”);
 oXmlHttp.onreadystatechange = onStateChanged;
 oXmlHttp.send();
 document.getElementById(“divResult”).innerHTML +=
 “Request sent... < br / > ”;
 }

 function onStateChanged()
 {
 if (oXmlHttp.readyState == 4) // 4 = READYSTATE_COMPLETE
 {
 if(oXmlHttp.status == 200) // 200 = HTTP_OK
 {
 document.getElementById(“divResult”).innerHTML +=
 “Response from server: “ +
 oXmlHttp.responseText + “ < br / > ”;
 }
 }
 }
 < /script >
 < /head >
 < body >
 < h1 > XMLHttpRequest sample < /h1 >
 < input type=”button”
 value=”Get server time” onclick=”getServerTime()” / >
 < div id=”divResult” / >
 < /body >
 < /html >

 Code fi le [1 - XMLHttpRequest\Default.htm] available for download at Wrox.com

 When the user clicks on the “ Get server time ” button, the getServerTime JavaScript function is
called, which initializes the XMLHttpRequest object and sends an asynchronous GET request to
 time.aspx . The readyState property of the oXmlHttp object continuously signals the current state
of the round - trip, and, whenever it changes, the onStateChanged method is called. In this event
handler, the response is displayed only if the whole response is received without error.

 This sample does not seem to be at all complicated, but it is not cross - browser. If you code the same
functionality cross - browser in pure JavaScript, the result is at least three times longer (or more). In
practice, it is not uncommon for multiple parts of the page to use Ajax in more complex scenarios
and implement them with raw JavaScript, and this would be very time - consuming work. The need
for productivity brought Ajax libraries into life.

 ASP.NET and Ajax

 The calendar showed June 2005, and most of the ASP.NET team was focused on delivering
ASP.NET 2.0 and Visual Studio 2005. A small group was founded inside the team and started
to work on a new project codenamed “ Atlas. ” The goal of Atlas was to add the Ajax functionality to
the ASP.NET architecture, and support asynchronous UI programming on the server, as well as the
client side.

CH019.indd 840CH019.indd 840 9/6/10 6:23:57 PM9/6/10 6:23:57 PM

 The initial release of Atlas was in January 2007 under the brand of ASP.NET AJAX, and was
released as an extension to ASP.NET 2.0. The next major milestone was version 3.5 that
was released as part of ASP.NET 3.5, and received designer support in Visual Studio 2008.
ASP.NET 4.0 contains ASP.NET Ajax 4.0, and the Visual Studio 2010 integrated development
environment (IDE) adds some nice designer features to help with client - side development.

The ASP.NET team continually publishes previews of the next version of
ASP.NET Ajax that you can access at http://aspnet.codeplex.com . As of this
writing, a Beta version is available for download.

 ASP.NET Ajax has the following pillars:

 ASP.NET Ajax Extensions — This is a server - side framework that adds new Ajax functionality to
existing server - side code with new web controls such as the ScriptManager , the UpdatePanel ,
and the UpdateProgress .

 Microsoft Ajax Library — This is a client - side JavaScript framework that does not depend
on ASP.NET on the server, so it can be used with other server - side technologies. Using
(or even modifying) the Library source code for free is permitted by the New BSD License .

 ASP.NET Ajax Control Toolkit — This is an Open Source project built on top of the
Microsoft Ajax Library that provides more than 40 reusable controls and control extenders.
It is a joint effort between Microsoft and the community, and new controls are continually
added to the Toolkit.

 Visual Studio — This provides design - time support and project templates to create Ajax
components and Ajax - enabled web applications in a productive manner.

 The ASP.NET Ajax technology was designed to be cross - browser and a Browser Compatibility
Layer ensures that this goal is achieved by every component built on top of it. ASP.NET Ajax
supports Internet Explorer 6.0+, Mozilla Firefox 1.5+, Opera 9.0+, Safari 2.0+, and Google
Chrome.

 USING THE ASP.NET AJAX SERVER CONTROLS

 Ajax can drastically boost the user experience of most web applications — that is, Ajax is friendly
with the end users. However, when you try to implement it with the XMLHttpRequest object and
pure JavaScript, you fi nd that it is completely different from what you are used to on server side —
that is, Ajax is not so friendly with the developers.

 If you have chosen ASP.NET (because you liked the higher abstraction level it gives you to create a
server - side web application) and Visual Studio (because you liked its productivity features), using
the XMLHttpRequest object makes you feel like being thrown back to the Stone Age. Microsoft felt
that pain, and created the ASP.NET Ajax Extensions component (that later became an integral
part of ASP.NET) to provide the same high - level control - centric approach for the basic (but most
common) Ajax scenarios in ASP.NET.

➤

➤

➤

➤

Using the ASP.NET Ajax Server Controls ❘ 841

CH019.indd 841CH019.indd 841 9/6/10 6:23:58 PM9/6/10 6:23:58 PM

842 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 The ASP.NET Ajax Extensions contains a set of server - side controls that contain not only server
code, but also script code that runs on the client. However, you probably do not even notice that,
because the scripts are “ automagically ” managed by the run - time and the controls — you use these
controls just like any other web control in the designer and code behind.

 The fl agship is the ScriptManager control that is responsible for managing script resources for
client components, partial page rendering, localization, web services, and can even manage your
custom scripts. You must drop the ScriptManager control onto the page in order to use Ajax
features on the page.

 The most notable control in the set is the UpdatePanel that enables you to refresh selected parts of
the page. You can take almost any existing ASP.NET control, embed it into an UpdatePanel , and
it will work asynchronously. As a server - side developer, you do not have to worry about client side
scripts; it will just work for most scenarios.

 If you want to notify the user that an asynchronous request is currently running in the background,
you can use the UpdateProgress control. The UpdateProgress contains a placeholder that you
can fi ll with a static message or a progress image, and it will be automatically displayed when the
associated UpdatePanel control executes a request in the background.

 Sometimes you want to send the whole page or content of an UpdatePanel to the server at defi ned
intervals. You can use the Timer control that triggers an event on the client that you can process on
the server.

 To see a simple scenario with these controls, create an ASPX page with a GridView and a
 SqlDataSource control that retrieves records from the Customer table of the Northwind database.
Enable the sorting and paging for the GridView and set the PageSize to 30 to display so many
items on the page that the user must scroll down to access the pager and go to the next page.

 < asp:GridView runat=”server”
 DataSourceID=”NorthwindDS”
 AllowPaging=”True” PageSize=”30”
 AllowSorting=”True” / >

 < asp:SqlDataSource ID=”NorthwindDS” runat=”server”
 ConnectionString=” < %$ ConnectionStrings:Northwind % > ”
 SelectCommand=”SELECT [CompanyName], [ContactName] FROM [Customers]” / >

 Code fi le [2 - ServerControls\Default.aspx] available for download at Wrox.com

 If you compile and try this in a browser, you fi nd that it works as expected — the records are
displayed on pages and you can sort them. However, every time you click on a column header or a
page number, the whole page is refreshed. You will notice the quick fl icker and that you lose your
scroll context.

 Let ’ s use the UpdatePanel to Ajax - enable this page!

 Your fi rst step should always be to drag the ScriptManager from the Ajax Extensions group of
the Toolbox, and drop it onto the top of the page. Without the ScriptManager , the magic will not
happen, so do not forget it! Next, drag the UpdatePanel from the same group of the Toolbox and

CH019.indd 842CH019.indd 842 9/6/10 6:24:10 PM9/6/10 6:24:10 PM

drop it onto the page. Then, select the GridView and the SqlDataSource control, and move it into
the grey content placeholder of the UpdatePanel . If you prefer to do it in markup, here is the code
that the designer generates:

 < asp:ScriptManager runat=”server” / >

 < asp:UpdatePanel runat=”server” id=”up” >
 < ContentTemplate >
 < asp:GridView runat=”server”
 DataSourceID=”NorthwindDS”
 AllowPaging=”True” PageSize=”30”
 AllowSorting=”True” / >

 < asp:SqlDataSource ID=”NorthwindDS” runat=”server”
 ConnectionString=” < %$ ConnectionStrings:Northwind % > ”
 SelectCommand=”SELECT [CompanyName], [ContactName] FROM [Customers]” / >
 < /ContentTemplate >
 < /asp:UpdatePanel >

 Code fi le [2 - ServerControls\Default.aspx] available for download at Wrox.com

 As you can see, there is nothing special in it. The UpdatePanel is a standard server - side control
with a ContentTemplate child element that can contain any additional controls, and those controls
are automatically Ajax - enabled by the UpdatePanel . You can build and try it in a browser, and you
will see the much more user - friendly behavior of the page.

 To further enhance the user experience, you can drop an UpdateProgress control onto the page
and enter any text as its content. Then, do not forget to go to the Properties window and set the
 AssociatedUpdatePanelD property to point to the previously used UpdatePanel , or do the same
in markup like this:

 < asp:UpdateProgress runat=”server” AssociatedUpdatePanelID=”up” >
 < ProgressTemplate >
 Refreshing...
 < /ProgressTemplate >
 < /asp:UpdateProgress >

 Code fi le [2 - ServerControls\Default.aspx] available for download at Wrox.com

 However, if you try it now, the UpdateProgress is not displayed, because the response from the
server returns quickly. You can simulate network latency or slow response rendering by adding
the following sleep to the Page_Load event handler on the server:

protected void Page_Load(object sender, EventArgs e)
{
 System.Threading.Thread.Sleep(3000);
}

 Code fi le [2 - ServerControls\Default.aspx] available for download at Wrox.com

Using the ASP.NET Ajax Server Controls ❘ 843

CH019.indd 843CH019.indd 843 9/6/10 6:24:11 PM9/6/10 6:24:11 PM

844 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 You can even set the DisplayAfter property of the UpdateProgress to 0 to force to display its
content immediately when an asynchronous request begins.

 This is the basic use of the ScriptManager , the UpdatePanel , and the UpdateProgress controls.
However, all these controls have additional properties (not covered here) that enable you to
address more complex scenarios with them (such as calling web services or connecting multiple
 UpdatePanel s to each other). Because they are standard ASP.NET web controls, you can modify
their properties, subscribe to their events, and call their methods from code behind. Additionally,
these controls rely heavily on client scripts, and the client framework is written with extensibility in
mind, so you can handle events or modify properties on the client side as well.

 Refactoring the Framework Libraries

 Let ’ s change focus for a moment and look into the rendered HTML code that is sent to the client in
the previous example. If you compare the markup of the original page in the View Source dialog
of the browser with the Ajax - enabled version, you can clearly see that a bunch of < script > tags are
added to the page. These script references are added automatically by the ScriptManager control.

 In previous versions of the Framework, the default behavior of the ScriptManager was to
automatically add references to the Microsoft Ajax Library, and although the ScriptManager can
be very handy even if you do not use the client - side Library, you had no opt - out of this feature.
Because the Library was implemented in monolithic (and relatively large) JavaScript fi les, the side
effect was a signifi cantly larger page size, even if the application did not use the client library.

 In the new 4.0 version, both of these pain points are addressed. The Microsoft Ajax Library is now
implemented in the form of split script fi les, and you can choose which subset of the framework
your code relies on. You can fi ne - tune the ScriptManager via its new MicrosoftAjaxMode
property. This property can have one of the following values:

 Enabled — All scripts of the Microsoft Ajax Library are included. For compatibility
reasons, this is the default behavior.

 Disabled — If you do not use the Microsoft Ajax Library, you can set the
 MicrosoftAjaxMode property to Disabled , and the ScriptManager will not render any
script reference into the page.

 Explicit — If you set the MicrosoftAjaxMode property to Explicit , you must manually
add all references. Because dependencies are not automatically resolved, you must ensure
that you include all scripts that have dependencies to each other in the order they reference
each other.

 In Explicit mode, the following script names are available:

 MicrosoftAjaxCore.js

 MicrosoftAjaxComponentModel.js

 MicrosoftAjaxSerialization.js

 MicrosoftAjaxGlobalization.js

 MicrosoftAjaxHistory.js

➤

➤

➤

➤

➤

➤

➤

➤

CH019.indd 844CH019.indd 844 9/6/10 6:24:12 PM9/6/10 6:24:12 PM

 MicrosoftAjaxNetwork.js

 MicrosoftAjaxWebForms.js

 MicrosoftAjaxWebServices.js

 MicrosoftAjaxApplicationServices.js

 MicrosoftAjaxTemplates.js (new for ASP.NET Ajax 4)

 MicrosoftAjaxAdoNet.js (new for ASP.NET Ajax 4)

 Figure 19 - 3 shows the dependencies between the split script fi les.

➤

➤

➤

➤

➤

➤

Templates

(AdoNetDataContext)

Templates
(DataContext)

Templates Network

History

ComponentModel Serialization

Core

Globalization

AppServicesAdoNet

WebForms WebServices

 FIGURE 19 - 3: Microsoft Ajax Library scripts and their dependencies

 As an example, if you would like to call the TimeService.asmx web service, but you do not use
templates, globalization, history, and so on, then you can confi gure the ScriptManager like this:

 < asp:ScriptManager ID=”ScriptManager1” runat=”server”
 EnablePartialRendering=”False”
 MicrosoftAjaxMode=”Explicit” >
 < CompositeScript >
 < Scripts >
 < asp:ScriptReference Name=”MicrosoftAjaxCore.js” / >
 < asp:ScriptReference Name=”MicrosoftAjaxSerialization.js” / >
 < asp:ScriptReference Name=”MicrosoftAjaxNetwork.js” / >
 < asp:ScriptReference Name=”MicrosoftAjaxWebServices.js” / >
 < /Scripts >

Using the ASP.NET Ajax Server Controls ❘ 845

CH019.indd 845CH019.indd 845 9/6/10 6:24:12 PM9/6/10 6:24:12 PM

846 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 < /CompositeScript >
 < Services >
 < asp:ServiceReference Path=”TimeService.asmx” / >
 < /Services >
 < /asp:ScriptManager >

 Microsoft recommends the use of split script fi les only for those developers who are concerned
about the performance of their web applications. If you do, you can also see in this code an example
of how to further optimize your website performance by using the CompositeScript element to
merge the selected split script fi les into a single composite fi le to minimize the number of requests
from the browser to the server.

 Using the Microsoft CDN

 As previously discussed, if you use the client - side features of ASP.NET Ajax, you introduce a
dependency on the JavaScript fi les of the Ajax Library. Although the Microsoft Ajax Library is
published under the New BSD License that allows even the modifi cation of the source code, most
applications and developers do not take advantage of this opportunity, and use the script fi les
because they are provided by Microsoft.

 If you have more than one web application referencing the Ajax Library, or you access websites on
the Internet that are built using ASP.NET Ajax, your browser will download the same JavaScript
fi les from every domain, and maintain a client - side cache for them independently from each other. If
you and many other sites are using the same script fi les, then why not share and reference them from
a single common location? However, if you set up a single server and connect millions of clients to
it, it will be overloaded, and the overall client experience will be signifi cantly worse. This is where
the Ajax Content Delivery Network (CDN) comes into the picture.

 A CDN is a system of strategically placed “ edge cache ” servers containing copies of the same data to
maximize bandwidth for access to the data from clients. The system is architected so that the clients
access a copy of the data near the clients, thus minimizing the network latency without causing
a bottleneck on a single central server. That means that a web page can reference a resource on a
well - known external domain name, and the request is routed to the nearest replica of that content
without the browser noticing the redirection. If you have a resource that you publish on a CDN, you
no longer must worry about network latency and local bandwidth, even if you have clients all over
the world.

 Microsoft decided to publish the JavaScript fi les of the Microsoft Ajax Library, the jQuery Library,
and the jQuery Validation Library to its own CDN. Applications that are built on top of these
libraries no longer must host their script fi les on their own servers, but can reference them via the
 ajax.microsoft.com domain. Currently, Microsoft Ajax version 0911 (beta), jQuery version 1.3.2,
and jQuery Validate version 1.5.5 are available this way. Because more and more web applications
(not only that are built with ASP.NET, but also with PHP or other technologies) will reference these
fi les on that CDN location, the browser will more likely already have a copy of those fi les in its
cache when the user accesses a new website.

 To use the Microsoft Ajax CDN, all you must do is change your script references to point to
 http://ajax.microsoft.com , as shown in the following example. (The 0911 here means the
November 2009 beta, the latest version available as of the writing this chapter.)

CH019.indd 846CH019.indd 846 9/6/10 6:24:13 PM9/6/10 6:24:13 PM

 < script type=”text/javascript”
 src=”http://ajax.microsoft.com/ajax/beta/0911/MicrosoftAjax.js” > < /script >

 Note that you can also use the debug version of the scripts by adding a debug.js suffi x to the end
of the URL:

 < script type=”text/javascript”
 src=”http://ajax.microsoft.com/ajax/beta/0911/

 MicrosoftAjax.debug.js” > < /script >

The full list of the fi les, along with the corresponding URLs, is available at
 http://www.asp.net/ajax/cdn .

 If your application references the script fi les via the ScriptManager control, you can add the
 EnableCdn= ” true ” attribute, which forces the application to download all script fi les (including
those that are used by the Web Forms infrastructure) from the Microsoft CDN.

 Following are the advantages of using the Microsoft CDN:

 The client request is processed much faster. Because it is targeting a server in another
domain, the browser can parallelize the requests.

 The fi les might not even need to be downloaded, because they are cached on the client
across multiple websites.

 You no longer have to pay for the bandwidth of these fi les because the CDN is operated by
Microsoft.

 Following are the disadvantages of using the Microsoft CDN:

 By using the Microsoft CDN, you are introducing an external dependency into your
application architecture. Although it is very unlikely that the Microsoft CDN will be
temporarily down (or will be permanently shut down), if that happens, your application
will be unusable.

 The external domain must be accessible by the clients, even if your application targets the
intranet. The good news is that the script fi les can be easily cached on your local proxy
server, so you can still minimize the external bandwidth usage.

 Because it is a microsoft.com domain, all cookies you received from other Microsoft sites
are sent to the Microsoft CDN as well. Although you cannot know what these cookies actu-
ally do, they may allow tracking the users, and that might raise privacy issues. (Note that
other players in this business face the same issue.)

➤

➤

➤

➤

➤

➤

Before you decide to use the Microsoft CDN, be sure to read the fi ve - page Terms
of Use agreement at http://www.asp.net/ajaxlibrary/CDNTermsOfUse.ashx .

Using the ASP.NET Ajax Server Controls ❘ 847

CH019.indd 847CH019.indd 847 9/6/10 6:24:13 PM9/6/10 6:24:13 PM

848 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 As you can see from this examination, the risks of using the Microsoft CDN are highly exceeded by
its advantages. Because more and more applications will be built on top of it, you can expect a much
better end - user experience.

 USING THE MICROSOFT AJAX LIBRARY

 Now that you are familiar with the JavaScript fi les that constitute the Microsoft Ajax Library, let ’ s
get a quick overview of what features you already had in the 3.5 version, and then a glimpse at the
details of the enhancements you receive in ASP.NET 4.0.

 The heart of the Microsoft Ajax Library is a component offi cially called Core Services, which
is a set of JavaScript functions that simulates object - oriented programming (OOP) on the client.
The word “ simulate ” is used here because JavaScript is not an object - oriented language. However,
thanks to this component, you can create namespaces, classes, interfaces, enums, and you have
inheritance, event handling, refl ection, and so on.

 Core Services is implemented in the MicrosoftAjax.js fi le, so you must import it into your page,
as shown here:

 < script type=”text/javascript” src=”MicrosoftAjax.js” > < /script >

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 After importing this script fi le, you can create your own namespace:

Type.registerNamespace(‘Book’);

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 The syntax may seem strange at fi rst, but don ’ t forget that you are still in JavaScript, and your
hands are tied by the language. The syntax of a class declaration is more unusual to a server - side
developer, although it is a well - known JavaScript approach.

 First, you create a function that is essentially the constructor of your class:

Book.MessageBox = function(initialMessage)
{
 this._message = initialMessage;
}

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 After that, you use the prototype syntax to create your class members. Unfortunately, there are
no properties in JavaScript (at least not in the sense that you have in .NET with getter and setter

CH019.indd 848CH019.indd 848 9/6/10 6:24:25 PM9/6/10 6:24:25 PM

methods). Therefore, all class members are implemented as methods. However, the recommended
naming convention is to use the get_ and set_ prefi x for property getters and setters. You can
implement your MessageBox class with a message property and a show function like this:

Book.MessageBox.prototype =
{
 get_message: function()
 {
 return this._message;
 },

 set_message: function(value)
 {
 this._message = value;
 },

 show: function()
 {
 alert(this._message);
 }
}

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 The last step is to register this class to the Microsoft Ajax run - time . Without this step, you are able
to instantiate your class and call its methods, but you cannot inherit from this class. If your class
implements an interface such as Sys.IDisposable , or inherits from a base class, you can specify
that also in the registerClass function call.

Book.MessageBox.registerClass(‘Book.MessageBox’);

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 Now, you have a MessageBox class in your Book namespace, and you are free to use it anywhere in
your code to display a pop - up message to the user:

var msgBox = new Book.MessageBox(‘Hello World!’);
msgBox.show();

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 Built on top of this type system, the Core Services component also contains a set of classes that
extend the built - in JavaScript Array , Boolean , Date , Error , Number , Object , and String types.
The most notable is probably the String class extension that gives you methods with which you
are already familiar on the server - side: endsWith , format , localeFormat , startsWith , trim ,

Using the Microsoft Ajax Library ❘ 849

CH019.indd 849CH019.indd 849 9/6/10 6:24:26 PM9/6/10 6:24:26 PM

850 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 trimStart , and trimEnd . The String.format method supports the same placeholder syntax in
JavaScript that you can use in C#:

var name = ‘John Doe’;
var today = new Date();
var message = String.format(‘Hello {0}, have a nice {1:dddd}!’, name, today);
var msgBox = new Book.MessageBox(message);

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 For more complex scenarios, you can even switch to the Sys.StringBuilder class, and call its
 append or appendLine methods.

 If you try the previous example, you probably get the name of the day displayed in English.
However, the Microsoft Ajax Library fully supports script localization and globalization via the
 Sys.CultureInfo class that is used by the localeFormat method added to the Date , Number and
 String types.

 Core Services also extends the debugging and error - handling capabilities on the client. With the
 Sys.Debug class, you can trace messages, use assertions, or even break into the debugger. To
standardize error handling, the Sys namespace contains a set of predefi ned exception types, and the
 Error class is extended with static methods to raise these types with minimal coding.

 For example if you want to throw a Sys.InvalidOperationException if the show method is called
without setting the message to display, you can use the Error.invalidOperation method:

show: function()
{
 if (this._message === undefined)
 {
 throw Error.invalidOperation(“The ‘message’ must be set
 before calling ‘show’.”);
 }
 alert(this._message);
}

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 In addition to the Core Services, the Microsoft Ajax Library contains a Networking Layer that
is responsible for hiding the details of asynchronous requests and serialization. If you want to
download a fi le that contains JavaScript Object Notation (JSON) data from the server, you no
longer have to use the down - level XMLHttpRequest object. You can build your browser - agnostic
logic on top of the Sys.Net.WebRequest class like this:

var request = new Sys.Net.WebRequest();
request.set_url(‘authors.txt’);
request.add_completed(function(executor)
{

CH019.indd 850CH019.indd 850 9/6/10 6:24:27 PM9/6/10 6:24:27 PM

 var authors = eval(‘(‘ + executor.get_responseData() + ‘)’);
 // Process the authors array here...
});
request.invoke();

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 You probably want to allow the user to manually initiate this request (by clicking on a button, for
example) and display the result on the page. That means you need access to the DOM of the page. By
using the Microsoft Ajax Library, you can access DOM elements and manage events with browser -
 independent code. The Component Services layer of the library allows you to create non - visual
components, behaviors, and controls in a structured and standardized way.

 To access a DOM element, you can use the $get function that is a shortcut for the static
 getElementyById method of the Sys.UI.DomElement class. The Sys.UI.DomElement is essentially
a wrapper around the raw DOM element, and you can read or write any of its properties via this
wrapper.

 Another often - used shortcut is the $addHandler function that points to the addHandler method of
the Sys.UI.DomEvent class. This method provides a standard way to subscribe an event handler to
an event exposed by a DOM element.

 For example, if you want to refactor the previous code to send the WebRequest when the user
clicks on a button and display the results on the page, you need an HTML input and a div
element:

 < input id=”btnGet” type=”button” value=”Display author” / >
 < div id=”divResult” / >

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 You can get a reference to the btnGet button and subscribe to its click event in the pageLoad
method with the btnGetClick event handler:

$addHandler($get(‘btnGet’), “click”, btnGetClick);

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 In the btnGetClick function, you can send the request to the server and display the results on the
 divResult placeholder via its innerHTML property:

function btnGetClick()
{
 var request = new Sys.Net.WebRequest();
 request.set_url(‘authors.txt’);
 request.add_completed(function(executor)
 {

Using the Microsoft Ajax Library ❘ 851

CH019.indd 851CH019.indd 851 9/6/10 6:24:28 PM9/6/10 6:24:28 PM

852 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 var authors = eval(‘(‘ + executor.get_responseData() + ‘)’);
 var msg = String.format(‘This sample is written by {0} {1}.’,
 authors[0].FirstName, authors[0].LastName);
 $get(‘divResult’).innerHTML = msg;
 });
 request.invoke();
}

 Code fi le [3 - AjaxLibrary\01 - Basics.htm] available for download at Wrox.com

 If you want to manage events, it is important to know the order of the client life - cycle events. The
full page life cycle is out of the scope of this book. However, let ’ s touch on this topic because there
are some minor (but important) changes in this area.

 The fi rst event that is fi red is the init event of the Sys.Application class that is raised after all
scripts have been loaded, but before any objects are created. This event is raised only one time when
the page is fi rst rendered, and gives you a point in the life cycle to add your custom component
to the page. To handle this event, you must subscribe to it with the Sys.Application.add_init
method.

 If you are not a component developer, you should use the load event that is raised after all scripts
have been loaded, and all objects are created and initialized. You do not have to explicitly bind a
handler to this event. Instead, you can create a function with the reserved name pageLoad . In
ASP.NET 4, you can also use the Sys.onReady function to register a function that is called when
the DOM is ready and when all required resources have been loaded.

 In earlier versions of the Ajax Library, if you wanted the pageLoad method to be called before the
 window.onload event was raised, you had to manually call the Sys.Application.initialize
method at the bottom of the page. From ASP.NET 4.0, this call is no longer required, because the
 pageLoad method is called immediately after the DOM content is fi nished loading and before
the window.onload event.

 Working with DOM Elements

 Earlier in this chapter, you saw examples of how to use the $get function to get a reference to a
DOM element by its ID. While the $get function is very useful, modern Web 2.0 applications more
and more often need more fl exibility over how DOM elements are selected. The Microsoft Ajax
Library 4 introduces a new helper function (named Sys.get) that allows selecting elements not only
by their IDs, but also by their names or CSS classes. Sys.get is also capable of returning references
to Ajax Library components.

 The Sys.get function expects two parameters:

 selector — This is used to defi ne what you are looking for.

 context — This is essentially the scope of the search.

If you omit the second parameter, the function searches the entire DOM.

➤

➤

CH019.indd 852CH019.indd 852 9/6/10 6:24:29 PM9/6/10 6:24:29 PM

 The format (or, to be more precise, the fi rst character of the selector parameter) determines
how the function performs the search. The selector can be in one of the following formats:

 $componentname — If you use the $ prefi x, the function will look for a component (for
example, DataView) with the specifi ed name. In this case, the Sys.get function behaves
like the $find method.

 #id — If you use the # prefi x, the method will behave like the $get function. Internally, the
 $get function delegates the call to the Sys.get function, and adds the # prefi x to the ID.

 .class — If you use the . prefi x, the function will search for an element with the specifi ed
CSS class.

 elementname — If you do not use a prefi x, the Sys.get function will return an element
with the specifi ed name (for example, < div >).

 For example, to create a static unordered list of continents on a page, you would use the following:

 < ul id=”continents” class=”list” >
 < li class=”item” > Asia < /li >
 < li class=”item” > Africa < /li >
 < li class=”item” > North America < /li >
 < li class=”item” > South America < /li >
 < li class=”item” > Antarctica < /li >
 < li class=”item” > Europe < /li >
 < li class=”item” > Australia < /li >
 < /ul >

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

 To get a reference to the fi rst element in the document with the ID of “ continents ” , you can use
the following function call:

Sys.get(‘#continents’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

 At fi rst, it seems a bit longer than using $get , but you will quickly get used to it, because this
function is much more powerful. For example, you can get the fi rst element that has the “ item ” CSS
class attached to it:

Sys.get(‘.item’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

➤

➤

➤

➤

Using the Microsoft Ajax Library ❘ 853

CH019.indd 853CH019.indd 853 9/6/10 6:24:29 PM9/6/10 6:24:29 PM

854 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

Or, you can get the fi rst li element in the document:

Sys.get(‘li’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

 You can also use the context parameter to scope the search, and get the fi rst element within a
parent element that has the ID of “ continents ” :

Sys.get(‘li’, Sys.get(‘#continents’))

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

 As you may have noticed, the method always returns a single element (the fi rst match), and not
an element set. Another thing to note is that the different types of searches (by component name,
by ID, by class, or by element name) are not combined in a single selector. Both may seem to be a
very strict limitation of the Sys.get method, especially if you are familiar with the capabilities of
the jQuery Library. The good news is that, if the jQuery Library is loaded into the page, and the
selector is not in one of the previously mentioned formats, the call will be automatically
forwarded to jQuery. That means that you do not have to know whether the Microsoft Ajax
Library or the jQuery Library resolves the query; you just use any syntax you want, and you work
with the results.

 Continuing the previous example, if you have jQuery, you can get not only the fi rst, but also the last
continent with Sys.get :

Sys.get(‘#continents .item:last’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

Or you can also get the fourth continent:

Sys.get(‘#continents .item:eq(3)’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

Or you can even get the fi rst “ America ” continent:

Sys.get(‘#continents .item:contains(“America”)’)

 Code fi le [3 - AjaxLibrary\02 - Selector.htm] available for download at Wrox.com

CH019.indd 854CH019.indd 854 9/6/10 6:24:30 PM9/6/10 6:24:30 PM

 As you can see, jQuery integrates pretty well with the Microsoft Ajax Library. As a result, you can
use the advantages of both worlds in your application.

 The Script Loader

 Earlier in this chapter, you saw how Microsoft split up the JavaScript fi les loaded by the
 ScriptManager to optimize the page load time. The same split script fi les can also be used in pure
client - side code if you are using the Microsoft Ajax Library in the browser and no ASP.NET Ajax
on the server. However, in this case, it is your responsibility to ensure that all the required fi les are
loaded before you want to use them, and also that they are loaded in the correct order. This is where
the new Script Loader can make your life easier.

 Because the Microsoft Ajax Library consists of JavaScript fi les, the natural way of incorporating
them into a web page is by using the declarative script tag in the page header:

 < script type=”text/javascript” src=”MicrosoftAjax.js” > < /script >

 However, JavaScript enables you to download external script fi les with imperative code, and the
Script Loader of the Microsoft Ajax Library wraps this functionality and extends it with additional
features. The Script Loader is implemented in the Sys.loader type that resides in the very small
(11 KB) Start.js fi le. The Start.js fi le is designed to be a bootstrapper for the whole Library, and
that is the only script fi le you have to reference in a script tag. Because the Microsoft Ajax Library
is available via the Microsoft Ajax CDN, you can also load it from there:

 < script src=”http://ajax.microsoft.com/ajax/beta/0911/Start.js”
 type=”text/javascript” > < /script >

 After the Script.js fi le is downloaded and parsed on the client, you can use the Sys.require
method to defi ne on which standard script fi les your code depends. For example, if you need history
and jQuery support, you can load them like this:

 < script src=”Start.js” type=”text/javascript” > < /script >
 < script type=”text/javascript” >
 Sys.require(
 [Sys.scripts.History, Sys.scripts.jQuery],
 function()
 {
 // History and jQuery available here
 }
);
 < /script >

 The Sys.require method accepts three parameters, but, in most cases, you will probably call it
with only two. In the fi rst parameter, you can defi ne the features that should be loaded. Table 19 - 1
shows the available split script fi le features, and you can use the Sys.scripts (which acts like an
enum) value to reference them.

Using the Microsoft Ajax Library ❘ 855

CH019.indd 855CH019.indd 855 9/6/10 6:24:31 PM9/6/10 6:24:31 PM

856 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 Features may also include components. So, for example, if you use the DataView and the Watermark
components on the page, you do not have to know which script fi les contain them. You just load
them via a single Sys.require call:

Sys.require([Sys.components.dataView, Sys.components.watermark]);

 Because the Sys.require function loads the scripts asynchronously, you may fi nd the second
parameter useful, which is a callback that is called when all the features are available.

 The Script Loader relies on metadata about every feature defi ned in the Start.js fi le via the Sys.
loader.defineScripts method. Because you can also use this method to describe your custom
script fi les, it is worth taking a look at how Microsoft did it (code fragment from Start.js):

loader.defineScripts
(
 {
 releaseUrl: “%/MicrosoftAjax” + “{0}.js”,
 debugUrl: “%/MicrosoftAjax” + “{0}.debug.js”,
 executionDependencies: [“Core”]
 },
 [
 {
 name: “Core”,
 executionDependencies: null,
 isLoaded: !!window.Type

 TABLE 19 - 1: Available Split Script Files

 SCRIPT FILE NAME SYS.SCRIPTS VALUE

 MicrosoftAjaxAdoNet.js AdoNet

 MicrosoftAjaxApplicationServices.js ApplicationServices

 MicrosoftAjaxComponentModel.js ComponentModel

 MicrosoftAjaxCore.js Core

 MicrosoftAjaxDataContext.js DataContext

 MicrosoftAjaxGlobalization.js Globalization

 MicrosoftAjaxHistory.js History

 MicrosoftAjaxNetwork.js Network

 MicrosoftAjaxSerialization.js Serialization

 MicrosoftAjaxTemplates.js Templates

 MicrosoftAjaxWebServices.js WebServices

 jquery - 1.3.2.min.js jQuery

 jquery.validate.min.js jQueryValidate

CH019.indd 856CH019.indd 856 9/6/10 6:24:31 PM9/6/10 6:24:31 PM

 },
 {
 name: “Serialization”,
 isLoaded: !!Sys.Serialization
 },
 {
 name: “Network”,
 executionDependencies: [“Serialization”],
 isLoaded: !!(Sys.Net & & Sys.Net.WebRequest)
 },
 {
 name: “WebServices”,
 executionDependencies: [“Network”],
 isLoaded: !!(Sys.Net & & Sys.Net.WebServiceProxy)
 }
 // Additional lines omitted for clarity [...]
]
);

 As you can see, the metadata description does not follow the object - oriented approach. Instead, it
uses JavaScript literals to minimize to code needed. The second parameter of the function contains
the set of scripts to defi ne with custom metadata, and the fi rst parameter contains a default set of
properties that are applied to each defi ned script.

 With every script, you can set the following properties:

 A unique name used to identify the script. The name is automatically added to the Sys.
scripts collection as an alias, and you can use it to reference the script.

 A releaseUrl and a debugUrl that point to the minifi ed and the verbose versions of the
fi le. The loader automatically uses the correct version based on the URL of itself (Start
.js or Start.debug.js), and the Sys.debug property. In addition to that, if you load the
 Start.js fi le from the Microsoft Ajax CDN, the subsequent fi les are also downloaded from
the CDN instead of your server — except jQuery and jQuery Validate, which are always
downloaded from the CDN. The % token is replaced with the value of the Sys.loader
.basePath property, and the {0} token is replaced with the name of the script.

 A Boolean expression (in the isLoaded property) can be used to test if the script is already
successfully loaded.

 A list of other scripts that should be loaded before the current script is loaded
(dependencies property) or before the current script is executed (executionDependencies
property).

 A list of other scripts (in the contains property) built into the script fi le. This is only used
by composite scripts.

 Plugins , components , and behaviors that are implemented in the script.

 Note the executionDependencies property, because this gives the real power to the Loader.
Because the Loader has information about the script dependencies, you no longer have to worry
about them! You just reference a feature, and you can be sure that all the required script fi les will be
loaded at the time you want to use it.

➤

➤

➤

➤

➤

➤

Using the Microsoft Ajax Library ❘ 857

CH019.indd 857CH019.indd 857 9/6/10 6:24:32 PM9/6/10 6:24:32 PM

858 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 Because you only need the dependencies to be satisfi ed at run - time (that is what the
 executionDependencies are used for), the Loader can even parallelize the download of the fi les.
If you want to ensure that the dependencies are already available when the script fi le is loaded, you
must force the Loader to switch to serial downloading, and use the dependencies property just like
the jQuery and jQuery Validate Library do (code snippet copied from Start.debug.js):

loader.defineScripts(
 null,
 [
 {
 name: “jQuery”,
 releaseUrl: ajaxPath + “jquery/jquery-1.3.2.min.js”,
 debugUrl: ajaxPath + “jquery/jquery-1.3.2.js”,
 isLoaded: !!window.jQuery
 },
 {
 name: “jQueryValidate”,
 releaseUrl: ajaxPath + “jquery.validate/1.5.5/jquery.validate.min.js”,
 debugUrl: ajaxPath + “jquery.validate/1.5.5/jquery.validate.js”,
 dependencies: [“jQuery”],
 isLoaded: !!(window.jQuery & & jQuery.fn.validate)
 }
]
);

 Because you are already familiar with the concept of the split script fi les, you know that this
granular approach can reduce the total byte size of the scripts downloaded to the client. On the
other hand, if there are quite a lot of individual fi les that should be downloaded, the separate HTTP
connections may cause a notable delay at page load time, and may degrade the overall performance.
Many JavaScript experts recommend using fewer (but larger) scripts fi les to minimize the overhead
added by the HTTP transport. As always, you must balance between the two approaches based on
your unique needs.

 If you use script combining on the server, you can use the contains property in the metadata to
inform the Script Loader that a single fi le contains multiple features, like Microsoft does with the
 MicrosoftAjax.js (code snippet copied from Start.debug.js):

{
 name: “MicrosoftAjax”,
 releaseUrl: “%/MicrosoftAjax.js”,
 debugUrl: “%/MicrosoftAjax.debug.js”,
 executionDependencies: null,
 contains: [“Core”, “ComponentModel”, “History”,
 “Serialization”, “Network”,
 “WebServices”, “Globalization”]
}

 If you have a page that requires the Core , the ComponentModel , the History , the Serialization , the
 Network , the WebServices , and also the Globalization features, and you reference all of them in
a single Sys.require call. The Script Loader realizes that it is better to download the same content
in a single composite script, and downloads only MicrosoftAjax.js , instead of downloading seven

CH019.indd 858CH019.indd 858 9/6/10 6:24:32 PM9/6/10 6:24:32 PM

individual fi les. This script - combining feature is managed automatically by the Loader; all you have to
do is to describe the composite scripts with the contains property for your custom scripts.

 Note the following two things with script combining:

 The Script Loader is a client - side component. It can download only what is already available
on the server. It is still your responsibility to combine and publish the composite scripts on
the server.

 The Loader chooses the composite script fi le only if all the scripts that it contains are
required on the page, and only if you load them with a single Sys.require call.

 You can use composite scripts and single scripts mixed in a page. If you have a single Sys.require
call with the seven components mentioned earlier, plus the jQuery Library, the Loader will
download the composite script with a single HTTP request, and the jQuery Library with another
request.

 The Script Loader also supports loading scripts on demand. You can use the script tag or Sys.
require calls to load the scripts required by most of your users at page load time, and delay loading
those scripts that are needed for specifi c features and a smaller number of users. For example, if you
have a Print button on the page, you can use its event handler to download the script fi les required
for the print functionality with the Sys.loader.loadScripts function. This will defi nitely cause a
small delay for those users who clicked the Print button (but only the fi rst time, because the browser
will cache the script fi le), but will provide better page load time for all users.

 As you have probably already realized, the Script Loader is a really smart component. It supports
script dependencies, composite scripts, parallel download, lazy loading, the Microsoft Ajax CDN,
and so on. All the features of the Script Loader are available not only for the Microsoft Ajax
Library and the jQuery Library, but also for your custom scripts. However, if you want to integrate
your own scripts, you should take a look at the Sys.loader.registerScript function, and the
recommended implementation pattern that supports this architecture.

 Client - Side Data Binding with Templates

 Let ’ s suppose you have an object array, and your task is to display the objects in an unordered list
on the page. For this example, let ’ s consider an array of country data in a local variable named
 countries . You can fi ll this array from the server or initialize it locally:

var countries = [
 { Name: ‘Austria’, Code: ‘at’, Capital: ‘Vienna’ },
 { Name: ‘Hungary’, Code: ‘hu’, Capital: ‘Budapest’ },
 { Name: ‘United States’, Code: ‘us’, Capital: ‘Washington, D.C.’ }
 // ...
];

 Code fi le [3 - AjaxLibrary\03 - MixCodeAndMarkup.htm] available for download at Wrox.com

 You can also have a set of image fi les that are named by the country code and contain the fl ags
of the countries. To complete the task, you must render HTML markup of the unordered list

➤

➤

Using the Microsoft Ajax Library ❘ 859

CH019.indd 859CH019.indd 859 9/6/10 6:24:33 PM9/6/10 6:24:33 PM

860 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

(< ul > ... < /ul > tags), the list items (< li > ... < /li >), the country name in bold (< b > ... < /*b >), and
the fl ag image (< img ... >). Because you have an array, you can write a for loop and iterate through
all items in the array, and generate the HTML markup by concatenating the HTML tags and the
country data, and, fi nally, display the result string in the innerHTML of a div :

var s = ‘ < ul > ’;
for (var i = 0; i < countries.length; i++)
{
 s += ‘ < li > < b > ’;
 s += countries[i].Name;
 s += ‘ < /*b > - ‘;
 s += countries[i].Capital;
 s += ‘ < img src=”../images/’;
 s += countries[i].Code;
 s += ‘.gif” / > < /li > ’;
}
s += ‘ < /ul > ’;
$get(‘divResult’).innerHTML = s;

 Code fi le [3 - AjaxLibrary\03 - MixCodeAndMarkup.htm] available for download at Wrox.com

 Although this code is fairly simple, it is neither short nor easy to maintain. If you must change
the design or restructure your page, you cannot do that only in a CSS style sheet or in the HTML
markup — you must modify the code. This also means that a JavaScript developer is required every
time, even if the modifi cation is minor and related to the design, and not to the logic of the page.
Writing or maintaining this kind of code is a fully manual task. Your developer environment can
give you IntelliSense and syntax highlighting, but you have a fairly good chance that you will not
get any designer support for it.

 The root of the problem lies in mixing the code and the design. You have already seen this problem
on the server side with classic ASP. It is solved by the separation of code and markup in ASP.NET,
and an additional layer of abstraction was also introduced with data binding. Unfortunately, the
HTML markup and the JavaScript language do not support this declarative approach. But, thanks
to the new client - side DataView control and the Sys.Binding class, you can transform your data to
HTML markup with imperative (and also in declarative) code in ASP.NET 4.0.

 Using the DataView Control

 The coding nightmare of client - side data binding is solved by adding template functionality to the
Microsoft Ajax Library in the form of the Sys.UI.DataView class. The DataView class acts as
a client control, and behaves similarly to the server - side ListView control — it can have a
data source, multiple templates, rendering, and user action events, and is capable of displaying
either a single record or multiple records. Because you are used to it on server side, this control
can be confi gured in declarative markup on the client, or can also be instantiated in
JavaScript code.

 To use the Microsoft Ajax templating engine on your page, you must fi rst load the MicrosoftAjax
Templates.js fi le that itself relies on Serialization , ComponentModel , and the Core script fi les — so
do not forget to add them as well, and be careful with the order of the script references:

CH019.indd 860CH019.indd 860 9/6/10 6:24:33 PM9/6/10 6:24:33 PM

 < script type=”text/javascript” src=”MicrosoftAjaxCore.js” > < /script >
 < script type=”text/javascript” src=”MicrosoftAjaxComponentModel.js” > < /script >
 < script type=”text/javascript” src=”MicrosoftAjaxSerialization.js” > < /script >
 < script type=”text/javascript” src=”MicrosoftAjaxTemplates.js” > < /script >

 Code fi le [3 - AjaxLibrary\04 - DataViewDeclarative.htm] available for download at Wrox.com

 With the DataView control, you can solve the previously described task to display the countries and
their fl ags in an unordered list in the following way:

 < body xmlns:sys=”javascript:Sys” xmlns:dv=”javascript:Sys.UI.DataView” >
 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}” >
 < li >
 {{ Name }} ({{ Capital }})
 < img sys:src=”{{ ‘../images/’ + Code + ‘.gif’ }}” / >
 < /li >
 < /ul >
 < /body >

 Code fi le [3 - AjaxLibrary\04 - DataViewDeclarative.htm] available for download at Wrox.com

 This code may seem a bit familiar and also a bit strange at fi rst. You can recognize the standard
XHTML tags (body , ul , li , img) and their attributes (class , src). However, you probably have not
seen the sys: and dv: prefi xes before. Don ’ t forget that this code is essentially XML, so you can
add any new prefi xes with their namespace declarations just when they are needed. In this code, the
 sys and the dv namespaces are declared at the body level — and this is the recommended practice.

 The sys:attach system attribute is recognized by the templating engine, and means that an
instance of the DataView class (referenced with the dv alias) should be attached to the current
XHTML element (ul). DataView will automatically repeat the child element of the current element
(in this case, the li tag) and its content as many times as required by the data source. Therefore, for
simple scenarios, you do not have to explicitly mark an item placeholder or an item template.

 Because the DataView will take care of rendering the HTML markup, the elements that the
 DataView is attached to should not be displayed by the browser. That is specifi ed by hiding the ul
element with the sys - template CSS class that contains only the following setting:

 < style type=”text/css” >
 .sys-template
 {
 display: none;
 }
 < /style >

 Code fi le [3 - AjaxLibrary\04 - DataViewDeclarative.htm] available for download at Wrox.com

Using the Microsoft Ajax Library ❘ 861

CH019.indd 861CH019.indd 861 9/6/10 6:24:34 PM9/6/10 6:24:34 PM

862 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 Although, theoretically, you could choose any name for this CSS class, the sys - template is not
only a naming convention, it is mandated by the template engine.

 Any attribute that begins with the dv: prefi x sets a property of the DataView control. The data
property is set to the bound data that is to be rendered by the control. (It is very similar to the
 DataSource property of server - side controls.)

 Within the template, you can use the {{ }} syntax to mark the placeholders where the values should
be rendered. Between the double curly braces, you can write any expression that can be evaluated
in JavaScript. The expression will be evaluated in the context of the data item. As a result, you can
directly refer to any properties of the current record in the data source. You can add the {{ }}
expression directly to the markup without wrapping it into an HTML tag, but you can also bound
to an attribute of a tag. If you bound to an HTML attribute, you must prepend the sys: prefi x to it,
as you can see at the sys:src attribute of the img tag in the previous example.

 For an ASP.NET developer, the {{ Name }} expression is very similar
to the < %# Eval(‘ Name ’) % > server - side expression. However, later
in this chapter, you will see that the client version is more powerful
because it imitates the more mature data - binding features of Windows
Presentation Foundation (WPF) .

 This declarative markup renders a bulleted list in the browser, as shown
in Figure 19 - 4.

 The previous code shows the declarative way of using the DataView
control. If you want to strictly separate the markup and the logic, you have
the option of creating the DataView imperatively from code. In this case,
you can clean up the markup and remove all the DataView - related settings:

 < body xmlns:sys=”javascript:Sys” >
 < ul class=”sys-template” >
 < li >
 {{ Name }} ({{ Capital }})
 < img sys:src=”{{ ‘../images/’ + Code + ‘.gif’ }}” / >
 < /li >
 < /ul >
 < /body >

 Code fi le [3 - AjaxLibrary\04 - DataViewDeclarative.htm] available for download at Wrox.com

 The DataView can be instantiated, confi gured, and attached with a single line of code — for
example, in the pageLoad event handler:

function pageLoad()
{
 Sys.create.dataView(“ul”,
 {
 data: countries
 });
}

 Code fi le [3 - AjaxLibrary\05 - DataViewFromCode.htm] available for download at Wrox.com

 FIGURE 19 - 4: Bulleted list

rendered by the DataView

control

CH019.indd 862CH019.indd 862 9/6/10 6:24:35 PM9/6/10 6:24:35 PM

 The Sys.create.dataView method attaches a new DataView instance to the specifi ed element.
To specify an element, you use a selector that can point to an HTML element (in this case, the
single ul tag), an ID, or a CSS class. To refer to an ID, use the “ # ” prefi x (for example, “ #myid ”).
To select elements by their CSS class, use the “ . ” prefi x (for example, “ .myclass ”) in the selector.
Furthermore, if you loaded the jQuery Library into the page, you could use the full jQuery selector
syntax. In the second parameter, this method allows you to confi gure the DataView — in this case,
only the data property is set.

 Using Pseudo - Columns in a Template

 In addition to the properties of the records in the data source, the template engine provides two
additional pseudo - columns that you can access in your data - binding expressions. The fi rst one is
 $index that contains the zero - based numerical index of your current record, and the second one
is $dataItem that is basically the current record rendered.

 The following code shows an example of how to use these pseudo - columns:

 < body xmlns:sys=”javascript:Sys” xmlns:dv=”javascript:Sys.UI.DataView” >
 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}” >
 < li sys:class-altRow=”{{ $index % 2 == 1 }}” >
 {{ Name }} ({{ Capital }})
 < img sys:src=”{{ ‘../images/’ + Code + ‘.gif’ }}” / >
 < a sys:href=”{{ getUrl($dataItem) }}” > Open webpage < /a >
 < /li >
 < /ul >
 < /body >

 Code fi le [3 - AjaxLibrary\06 - DataViewPseudoColumns.htm] available for download at Wrox.com

 This code uses the $index pseudo - column to conditionally apply the .altRow CSS class to every
second list item. The syntax to accomplish this is again strange — you must use the sys:class -
attribute (yes, the ending dash is part of the attribute name) and append the name of your CSS class
after the dash. After that, it is up to you to defi ne the CSS class in your style sheet.

 < style type=”text/css” >
 .altRow
 {
 background-color: rgb(252,254,203);
 }
 < /style >

 Code fi le [3 - AjaxLibrary\06 - DataViewPseudoColumns.htm] available for download at Wrox.com

 If you want to modify a single CSS property, and not apply a complete stylesheet class, you can do
that with the sys:style - attribute (again, the dash is part of the attribute name). For example, to

Using the Microsoft Ajax Library ❘ 863

CH019.indd 863CH019.indd 863 9/6/10 6:24:36 PM9/6/10 6:24:36 PM

864 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

change the font size of a span based on the position of the item in the DataView , you can use the
 sys:style - font - size attribute:

 < span sys:class-altRow=”{{ $index % 2 == 1 }}”
 sys:style-font-size=”{{ $index * 2 + ‘pt’ }}” >
 {{ Capital }}
 < /span >

 Code fi le [3 - AjaxLibrary\06 - DataViewPseudoColumns.htm] available for download at Wrox.com

 Another practical use of the $index attribute is to set the client id attribute of an HTML tag with
unique values, as shown in the following example:

 < input type=”button” sys:id=”{{ ‘btn’ + $index }}” ... / >

 The $dataItem pseudo - column is used to pass the current record to the custom getUrl function that
is responsible for calculating the URL of the “ Open web page ” link. The getUrl function receives the
complete record. Therefore, you can access any properties of the current country within the function:

function getUrl(country)
{
 return String.format(“http://www.{0}.{1}”, country.Capital, country.Code);
}

 Code fi le [3 - AjaxLibrary\06 - DataViewPseudoColumns.htm] available for download at Wrox.com

 Both the $index and the $dataItem are basically shortcuts to access the most important properties
of a variable called $context . In addition to the index and the dataItem , the $context variable
provides additional useful properties and methods. For example, you can use the containerElement ,
the nodes , and the template properties, and the get method, to retrieve information about the
rendered markup, or the data property to access all records in the data source.

 The following example shows how you can display the next country for every record with the
 $context variable:

The next country is {{ getNextCountry($context) }}
function getNextCountry(context)
{
 if(context.index + 1 < context.data.length)
 {
 return context.data[context.index + 1].Name;
 }
}

 Code fi le [3 - AjaxLibrary\06 - DataViewPseudoColumns.htm] available for download at Wrox.com

 You can also query or set properties of the current HTML element in an expression using the
 $element variable.

CH019.indd 864CH019.indd 864 9/6/10 6:24:36 PM9/6/10 6:24:36 PM

 Running Code Inside a Template

 It sometimes happens that the declarative syntax is not powerful enough to express the required
functionality. In this case, you have no other option than adding some code to the template. One of
the most - required scenarios is to render or not render a specifi c element based on a return value of a
JavaScript expression. This is where the sys:if attribute comes into the picture.

 In one of the previous examples, you saw how to display a value from the next record in the current
template by calling a custom function (getNextCountry). Using the sys:if attribute, you can
implement the same functionality without the external function:

 < span sys:if=”$index + 1 !== $context.data.length” / >
 The next country is {{ $context.data[$index + 1].Name }}.
 < /span >

 Code fi le [3 - AjaxLibrary\07 - DataViewConditionals.htm] available for download at Wrox.com

 Here you can see how to use the $index and $context pseudo - columns to access the next record.
The new part is the sys:if attribute that can contain arbitrary code that will be evaluated every
time a data item is rendered. If you add the sys:if attribute to an HTML element, that tag will
be rendered only if the specifi ed JavaScript expression evaluates to true . In this example, a span is
rendered for every record except the last one.

 Another common scenario is to render a tag only for the fi rst record, or before the fi rst record.
The following code snippet renders a drop - down list box with the countries and a default “ Select a
country ” item before the fi rst record:

 < select
 class=”sys-template”
 sys:attach=”dv”

 FIGURE 19 - 5: Result of using pseudo columns in a template

 If you combine all these tricks into a single page, you will get the result shown in Figure 19 - 5.

Using the Microsoft Ajax Library ❘ 865

CH019.indd 865CH019.indd 865 9/6/10 6:24:37 PM9/6/10 6:24:37 PM

866 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 dv:data=”{{ countries }}” >
 < option sys:if=”$index == 0” value=”” selected=”selected” >
 Select a country
 < /option >
 < option sys:value=”{{ Code }}” > {{ Name }} < /option >
 < /select >

 Code fi le [3 - AjaxLibrary\07 - DataViewConditionals.htm] available for download at Wrox.com

 The sys:if attribute can also be used to render a separator item between the data items. In
the following example, the list bullets are turned off, and a horizontal rule is rendered between the
countries:

 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}”
 style=”list-style-type: none” >
 < li >
 < hr sys:if=”$index !== 0” / >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >

 Code fi le [3 - AjaxLibrary\07 - DataViewConditionals.htm] available for download at Wrox.com

 Figure 19 - 6 shows the rendered page.

 FIGURE 19 - 6: Using conditional expressions

CH019.indd 866CH019.indd 866 9/6/10 6:24:38 PM9/6/10 6:24:38 PM

 Although the sys:if attribute allows you to execute any code, its primary purpose is to allow you
to evaluate an expression that should return with a true or a false value. If you want to execute
some custom code before or after an item is rendered, you can do that in the sys:codebefore and
in the sys:codeafter attributes.

The sys:if , sys:codebefore , and sys:codeafter attributes provide great
fl exibility to the template engine. However, be careful, because the result is that
the declarative template skeleton gets mixed with imperative code.

 Adding Interaction with Events Inside the Template

 All the examples you have seen rendered the data for the user, and the user could do nothing else
except read it. In addition to reading the data, probably the most - often performed user action is
to select a record, and then do something with it. Fortunately, the DataView control supports user
events and the Select event natively.

 Events are raised when the user clicks on an HTML tag rendered by the template. To specify the
name of the command, you can use the sys:command attribute on any HTML tag you want to
support events. The Select command is handled specially, because it works without setting any
additional properties, and the DataView control provides property wrapper methods to retrieve the
selected item.

 In the following example, you can see the previous country example refactored, so the user is able
to select a single country, and then click on the “ Get country details ” link that displays additional
information about the selected country in a pop - up window, as shown in Figure 19 - 7.

 < body xmlns:sys=”javascript:Sys” xmlns:dv=”javascript:Sys.UI.DataView” >
 < ul
 id=”countryList”
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}”
 dv:initialselectedindex=”7”
 dv:selecteditemclass=”selected” >
 < li sys:command=”Select” style=”cursor: pointer” >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >
 < a href=”#” onclick=”getDetails()” > Get country details < /a >
 < /body >

 Code fi le [3 - AjaxLibrary\08 - DataViewSelectCommand.htm] available for download at Wrox.com

Using the Microsoft Ajax Library ❘ 867

CH019.indd 867CH019.indd 867 9/6/10 6:24:39 PM9/6/10 6:24:39 PM

868 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 As you can see, the same unordered list is used as before. The only difference is that now the user
can click on any item to select it. This selectability feature is added to the li element with the sys:
command= ” Select ” attribute, and the cursor is changed with the style attribute to provide a visual
clue for the user.

 The DataView is able to automatically add a CSS class to the currently selected element if the name
of this class is defi ned in the selectedItemClass property. You can use this CSS class to highlight
the selected data item. Note that even if you move the sys:command and the style attributes to a
child element inside the template, the selectedItemClass will be added to the whole list item. That
means that although you can raise the Select event from any part of the data item, only the whole
data item can be selected, not parts of it.

 This code also shows that you can specify the item selected when the control is fi rst rendered by
setting its zero - based index in the dv:initialselectedindex property.

 After the user successfully selects a record, he or she can click on the “ Get country details ” link
that calls the getDetails custom JavaScript function. Note that this function call is outside the
template, and, because no context parameters are passed to the function, the selection information
must be queried from the DataView .

 The following code snippet shows the implementation of the getDetails method:

function getDetails()
{
 var dv = $find(“countryList”);
 var country = dv.get_selectedData();
 var msg = String.format(“You selected #{0}, {1} is the capital of {2}.”,
 dv.get_selectedIndex(),

 FIGURE 19 - 7: Handling events within a template

CH019.indd 868CH019.indd 868 9/6/10 6:24:45 PM9/6/10 6:24:45 PM

 country.Capital,
 country.Name);
 alert(msg);
}

 Code fi le [3 - AjaxLibrary\08 - DataViewSelectCommand.htm] available for download at Wrox.com

 Here you can see how you can use the $find function to get a reference to an existing DataView
instance by specifying the unique id of the wrapping HTML element. After you have a Sys.
UI.DataView instance in the dv variable, you can query its selectedData and selectedIndex
properties via their getter methods using the get_ naming convention. These are writable properties.
Therefore, by calling their set_ methods, you can change the selection in the DataView .

 Just like server - side controls, the DataView control supports multiple commands on a single
data item. The way you implement this is the same that you ’ re used to on the server side. Declare
a generic event handler method on the control level; then, when you raise the event inside the
template, you specify the command name and a command argument. These two parameters are
passed to your event handler and help you determine where the user clicked.

 The following code snippet shows how you can raise multiple events from a single data item:

 < ul
 id=”countryList”
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}”
 dv:initialselectedindex=”7”
 dv:selecteditemclass=”selected”
 dv:oncommand=”{{ onCommand }}” >
 < li >
 < span sys:command=”Select” style=”cursor: pointer” >
 {{ Name }}
 < /span >
 ({{ Capital }})
 < img
 style=”cursor: pointer”
 sys:alt=”{{ ‘Flag of ‘ + Name }}”
 sys:src=”{{ ‘../images/’ + Code + ‘.gif’ }}”
 sys:command=”ShowFlag”
 sys:commandargument=”{{ $dataItem }}” / >
 < /li >
 < /ul >
 < img id=”imgLargeFlag” / >

 Code fi le [3 - AjaxLibrary\09 - DataViewCustomCommand.htm] available for download at Wrox.com

 This code renders an unordered list of country names, capitals, and a small image that displays the
fl ag of the country. The sys:command attribute is added to the country name and the image, so
the user is able to click on these elements, but not on the capital. When the user clicks on the country
name, the built - in Select command is raised. As a result, the selected list item is highlighted with
the selected class specifi ed in the dv:selecteditemclass property.

Using the Microsoft Ajax Library ❘ 869

CH019.indd 869CH019.indd 869 9/6/10 6:24:45 PM9/6/10 6:24:45 PM

870 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 However, when the user clicks on the image, the custom onCommand event handler function
(that is assigned in the dv:oncommand attribute) is called, and the ShowFlag command name and the
current data item are passed to it as a command argument. Here you can see how this custom event
handler is implemented:

function onCommand(sender, e)
{
 switch(e.get_commandName())
 {
 case “Select”:
 // Let the DataView handle selection.
 return;
 case “ShowFlag”:
 var country = e.get_commandArgument();
 var img = $get(“imgLargeFlag”);
 img.src = String.format(“../images/flag_{0}.gif”, country.Code);
 img.alt = country.Name;
 }
}

 Code fi le [3 - AjaxLibrary\09 - DataViewCustomCommand.htm] available for download at Wrox.com

 This method is called when the user clicks on a country name or a fl ag thumbnail. That means this
method is called even for the built - in Select command, so you must write your code to prepare
to handle multiple types of events. Just like on the server side, the event handler receives two
parameters: the sender that contains a reference to the DataView control, and the e that contains
event specifi c parameters. The e is of type Sys.CommandEventArgs that inherits from Sys.
CancelEventArgs , and has the following properties:

 cancel

 commandName

 commandArgument

 commandSource

 If you set the cancel property to true (via its set_cancel wrapper method) in the “ Select ”
case branch, you can prevent the default behavior, and the clicked item will not be selected
and highlighted. The commandName and commandArgument behave just like their server - side
counterparts. You can get the values you set with the sys:command and sys:commandargument
attributes. The commandSource contains a reference to a Sys.UI.DomElement that wraps the
HTML element that is clicked by the user.

 In this example, if the user clicks on a country name or a thumbnail image, the onCommand event
handler is called for both cases. In the event handler, the command name is queried, and custom
code is executed only for the ShowFlag event. In this case, you get the current record (that is passed
as $dataItem in the commandArgument property) and use its values to display the large fl ag in the
 imgLargeFlag image outside the DataView .

 In addition to the command event, the DataView raises additional events while the content is being
rendered:

 The fetchSucceeded and the fetchFailed events are raised when the DataView
successfully loaded the source data, or if the loading failed.

➤

➤

➤

➤

➤

CH019.indd 870CH019.indd 870 9/6/10 6:24:46 PM9/6/10 6:24:46 PM

 The itemRendering and itemRendered events are raised before and after each item is
rendered.

 The rendering and rendered events are raised before and after the whole dataset is rendered
in the control.

 Using External Templates

 By default, the template engine repeats the fi rst child item of the HTML element to which the
 DataView is attached. For most cases, this is a very convenient behavior. However, sometimes you
may want to add a non - data - bound fi rst item, or a header, or even a footer item manually.

 On the server side, this problem is solved with the itemplaceholder and the itemtemplate
properties of the ListView control, and you can fi nd similar concepts on the client side as well. You
can mark an HTML element within your DataView as an item placeholder, and you can mark an
external element as an item template. The DataView will repeat the external element as many times
as required by the data source, and will substitute the item placeholder with it.

 The following example generates an unordered list with manual header and footer items. Figure 19 - 8
shows the rendered page.

 < ul
 sys:attach=”dv”
 dv:data=”{{ countries }}”
 dv:itemplaceholder=”#itemPlaceholder”
 dv:itemtemplate=”#itemTemplate” >
 < li > < a href=”Add.aspx” > Click here to add a new country to the list < /a > < /li >
 < li id=”itemPlaceholder” > < /li >
 < li > < a href=”More.aspx” > More... < /a > < /li >
 < /ul >
 < div id=”itemTemplate” class=”sys-template” >
 < li >
 {{ Name }} ({{ Capital }})
 < /li >
 < /div >
 < /ul >

 Code fi le [3 - AjaxLibrary\10 - ExternalTemplates.htm] available for download at Wrox.com

 The item template is defi ned in an external div container, its
child item is repeated (when the DataView is rendered), and,
fi nally, the result overwrites the placeholder in the DataView .
It is worth pointing out that if you use external templates,
the sys - template class should not be attached to the host
element of the DataView but rather to the external template
container.

 In this example, the DataView is attached to the ul element,
and the itemplaceholder and itemtemplate properties are
used to point to the placeholder and the template. You can
utilize the selector syntax for both properties by using the #
sign to point to an HTML element.

➤

➤

 FIGURE 19 - 8: Creating header and

footer items with external templates

Using the Microsoft Ajax Library ❘ 871

CH019.indd 871CH019.indd 871 9/6/10 6:24:46 PM9/6/10 6:24:46 PM

872 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 Advanced Data - Binding Scenarios

 Earlier in this chapter, you learned about the templating engine of the Microsoft Ajax Library,
and learned how to display data on the client. All the examples demonstrated one - time, one - way
bindings . That means the template was evaluated only once, and the data was rendered on the client
when the page loaded, or when an event was raised. But when the data was modifi ed by a client - side
script, the page was not updated. Fortunately, the Microsoft Ajax Library supports not only one -
 way, one - time bindings , but it is also capable of building a continuous connection between the data
source and the controls on the UI.

 Live Binding

 If one - time binding does not suit your needs because you want to automatically update the UI when
the data changes, then you must switch to live binding . Live binding requires that the template
engine be notifi ed when a value of a variable or a property changes. When the template engine
receives these notifi cations, it refreshes the rendered markup.

 The only problem is that the JavaScript language itself does not natively support raising notifi cations
when a value changes. Therefore, a manual workaround is needed.

 If you already looked into the Ajax Library or created custom client components, you have probably
met the raisePropertyChanged method of the Sys.Component class. You can invoke this method
in a property set accessor to raise the propertyChanged event. However, your class will have this
event only if it inherits from the Sys.Component , Sys.UI.Behavior , or the Sys.UI.Control base
class. With this approach, if you have a simple object array bound to a DataView control, you would
have to wrap it inside a component to build your code using the propertyChanged event.

 Fortunately, a new class in Microsoft Ajax Library 4, Sys.Observer , drastically makes your life
easier by fully implementing the observer pattern . The primary purpose of this class is to make any
object observable by providing helper methods to modify the object. If you use these methods, the
 Sys.Observer class will take care of raising all the notifi cation events.

 To make the previous countries collection observable, all you have to do is call the Sys.Observer.
makeObservable method:

Sys.Observer.makeObservable(countries);

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

 The makeObserver function adds a bunch of new methods to the target object that can be used to
modify it in an observable manner. If the object is an array, additional array modifi cation methods
are added as well.

 For example, you can add a new item to the array so that subscribers will be notifi ed about it by
calling the insert method:

countries.insert(0, { Name: ‘Switzerland’, Capital: ‘Bern’ });

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

CH019.indd 872CH019.indd 872 9/6/10 6:24:47 PM9/6/10 6:24:47 PM

 Also, you can remove the fi rst item from the collection by calling the removeAt method:

countries.removeAt(0);

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

 You can also call the original functions of the Sys.Observer class, but, in this case, you must pass
the observable target as well:

Sys.Observer.removeAt(countries,0);

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

 It is also possible to modify a property of the target object with the setValue method. However,
if you modify multiple properties and you do not want to raise the propertyChanged event until
all the properties are updated (for example, to avoid UI fl ickering and displaying partially updated
records), you can suspend the notifi cation, and then send them all when you are done:

countries.beginUpdate();
Sys.Observer.setValue(countries[0], ‘Name’, ‘ Ö sterreich’);
Sys.Observer.setValue(countries[0], ‘Capital’, ‘Wien’);
Sys.Observer.setValue(countries[5], ‘Name’, ‘Suomi’);
Sys.Observer.setValue(countries[7], ‘Name’, ‘Magyarorsz á g’);
countries.endUpdate();

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

 The DataView control is smart enough to recognize if a data source is observable, and is capable
of handling the collection or property changed event automatically. Still, you must slightly modify
your data - binding syntax to indicate which parts of the template should be updated when the data
source changes:

 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}” >
 < li >
 < span > { binding Name } < /span > -
 < span > { binding Capital } < /span >
 < /li >
 < /ul >

 Code fi le [3 - AjaxLibrary\11 - LiveBinding.htm] available for download at Wrox.com

 As you can see in this example, you must use the binding markup extension, and then the name of
the property you want to display. These placeholders will be automatically updated when the source
data changes. However, note that you must always modify your data source via the Sys.Observer
methods. If you modify the data source directly, without going through the interface, notifi cation
events will not be raised.

Using the Microsoft Ajax Library ❘ 873

CH019.indd 873CH019.indd 873 9/6/10 6:24:48 PM9/6/10 6:24:48 PM

874 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 Top - Level Binding

 The live - binding syntax supports not only specifying the name of the property you want to bind to,
but also additional optional parameters. One of the additional parameters is the source that points
to the object that property should be bounded to the target control. Using the source parameter
allows you to create top - level bindings, which means that you can defi ne data - binding expressions
outside of a DataView .

 You can create a global object, and you can bind one of its properties to a span . What ’ s more, if you
make your global object observable and use the live binding syntax, updates are immediately
displayed on the UI:

 < head >
 < script type=”text/javascript” >
 var country = { Name: ‘Magyarorsz á g’, Code: ‘hu’, Capital: ‘Budapest’ };
 Sys.Observer.makeObservable(country);

 function translate()
 {
 Sys.Observer.setValue(country, ‘Name’, ‘Hungary’);
 }
 < /script >
 < /head >
 < body xmlns:sys=”javascript:Sys” >
 The country of the day is
 < span sys:innertext=”{ binding Name, source={{ country }} }” > < /span >
 < a href=”#” onclick=”translate()” > Translate name < /a >
 < /body >

Code fi le [3 - AjaxLibrary\12 - TopLevelBinding.htm] available for download at Wrox.com

 You can also point the source property to the window object to access global variables:

var today = new Date().format(‘D’);
 < span sys:innertext=”{ binding today, source={{ window }} }” > < /span >

 Code fi le [3 - AjaxLibrary\12 - TopLevelBinding.htm] available for download at Wrox.com

 After clicking the “ Translate name ” link, the page gets
updated, and the image shown in Figure 19 - 9 is rendered.

 Two - Way Binding

 It often happens that you not only want to display data on the UI, but also want to enable the
user to change the data, and you want to write it back to the data source. Fortunately, the live
binding syntax supports two - way data binding , which means that you do not have to write code
to implement this feature. You can express it declaratively. The behavior can be set on the mode
parameter of the binding expression using the Sys.BindingMode enumeration:

 < input type=”text” sys:value=”{ binding Name, source={{ data }}, mode=oneWay }”/ >

 FIGURE 19 - 9: Using top - level binding

CH019.indd 874CH019.indd 874 9/6/10 6:24:49 PM9/6/10 6:24:49 PM

 Remember that the default behavior is for Sys.BindingMode.auto to use two - way binding if
the target is an input , select , or textarea element, or a component that implements the Sys.
INotifyPropertyChanged interface; otherwise it is one - way . Because you most likely create input
controls to query input from the user, and you need two - way binding for that, in most cases, you
will not change the default, which means that you can omit the mode parameter.

 Using two - way data binding, you can load the value of a textbox into a global variable (username)
and then display the global variable with a span :

Please enter your name:
 < input type=”text”
 sys:value=”{ binding username, source={{ window }} }” / >
 < br / >
Hello
 < span sys:innertext=”{ binding username, source={{ window }} }” > < /span >

 Code fi le [3 - AjaxLibrary\13 - TwoWayBinding.htm] available for download at Wrox.com

 Two - way data binding also opens the door for many useful data - binding scenarios. For example, you
can bind a UI element ’ s property to another UI element ’ s property. In the following example, you can
see a textbox and a checkbox, and the checked property of the checkbox is bound directly to the
 disabled property of the textbox, so the user must clear the checkbox to enable editing:

 < input type=”text”
 id=”txt”
 sys:value=”{ binding username, source={{ window }} }”
 sys:disabled=”{ binding checked, source={{ chk }} }” / >
 < input type=”checkbox” id=”chk” / >
 < label for=”chk” > Disable editing < /label >

 Code fi le [3 - AjaxLibrary\13 - TwoWayBinding.htm] available for download at Wrox.com

 The entered name is displayed on the page when the
user navigates away from the textbox (the input
control loses focus), as shown in Figure 19 - 10.

 Custom Converters

 If you are familiar with Windows Presentation Foundation (WPF), you have probably realized the
similarities between the WPF data - binding syntax and the live binding in the Ajax Library. Another
common point is the concept of converters .

 If you have a data source and you want to bind its value to a UI element ’ s property, it can happen
that they have different types. If it happens anywhere else in code and not in a declarative
expression, you would probably cast your data value to the property ’ s type, or call a helper
function to resolve the data type mismatch. The concept of converters helps you to implement this
functionality in a standardized way with a maximum level of code reuse.

 In addition to the source and the mode parameters, the live binding syntax lets you specify a
 convert and a convert back function . The convert function is called when the data fl ows from

 FIGURE 19 - 10: Binding properties to each other

Using the Microsoft Ajax Library ❘ 875

CH019.indd 875CH019.indd 875 9/6/10 6:24:49 PM9/6/10 6:24:49 PM

876 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

the data source to the UI element, and the convert back function is called when the UI element ’ s
property value is loaded back to the data source. Both functions receive two parameters — the
value that is about to be converted, and a Sys.Binding instance that you can use to query any
information about the source and the target of the binding. Although this feature also works with
global functions, it is recommended that you implement the converter methods as members of the
 Sys.converters object.

 The following markup renders a textbox and a disabled button. The goal is to enable the button
only if the user enters “ I Accept. ”

If you accept the agreement please type “I Accept” here:
 < input type=”text”
 sys:value=”{ binding disabled,
 source={{ btn }},
 mode=oneWayToSource,
 convertBack=disableConverter,
 expectedResult=I Accept }” / >
 < br / >
 < input type=”button”
 id=”btn”
 value=”Submit registration” / >

 Code fi le [3 - AjaxLibrary\14 - Converters.htm] available for download at Wrox.com

 As you can see from the syntax, the button ’ s disabled property (source) is bound to the value of
the textbox (target). By default, the live binding would be two - way, but the behavior is changed to
 oneWayToSource , because you probably do not want to display the value of the disabled property
(true or false) in the textbox. This way, you ensure that the data fl ows only from the textbox to
the button.

 However, there is still a type mismatch between the string value and the Boolean disabled
properties. Therefore, a custom converter function called disableConverter is created. This is
confi gured as a convertBack method, so the template engine will call it when the value of the
target (textbox) is transferred to the source (button) — and that is exactly what is needed now. The
 disableConverter function is implemented with nothing special about this situation, so you can
easily reuse it anywhere else in your code.

Sys.converters.disableConverter = function(value, binding)
{
 return (value !== binding.expectedResult);
}

 Code fi le [3 - AjaxLibrary\14 - Converters.htm] available for download at Wrox.com

 Figure 19 - 11 shows the result page.

 One thing to note is that the “ I Accept ” value is not
hard - coded into the converter, but rather it is passed as a
parameter. You can add additional parameters to your binding
syntax, and all of them will be added as expando properties

 FIGURE 19 - 11: The button is disabled

with live binding

CH019.indd 876CH019.indd 876 9/6/10 6:24:50 PM9/6/10 6:24:50 PM

to the Sys.Binding instance. You do not have to register these additional properties. Just confi gure
them in the binding expression, and the converter will receive their values. Just be careful, because
a typo (even in casing) can create additional properties, and your converter will fail to work.

 If you must convert a value when it is transferred from the data source to the UI element, you can
write a similar function (the signature is the same), but you must change the binding expression to
use the convert keyword instead of the convertBack .

 The templating engine provides strong support for converters. However, there is currently no built -
 in converter in the Microsoft Ajax Library.

 Master - Detail Binding

 The DataView control and the live binding feature of the Microsoft Ajax Library supports master -
 detail scenarios. In a master - detail scenario, you defi ne two DataView controls and connect them to
each other. When the user selects a record in the master DataView that shows only some top - level
fi elds from the record, the details DataView is automatically updated to display the additional fi elds.
As you may guess, this feature heavily relies on the select command in the master view, and the
trick is how you defi ne the data source of the details view.

 The following example displays the list of countries, and when the user selects a country, the
name, the capital, and the fl ag of the country is displayed below the list.

Please select a country:
 < ul
 id=”master”
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{{ countries }}”
 dv:selecteditemclass=”selected” >
 < li sys:command=”Select” style=”cursor: pointer” >
 {{ Name }}
 (< span > { binding Capital } < /span >)
 < /li >
 < /ul >
 < div
 class=”sys-template”
 sys:attach=”dv”
 dv:data=”{ binding selectedData,
 source={{ $find(‘master’) }} }” >
 < img
 sys:src=”{ binding Code,
 convert=stringConverter,
 format=../images/flag_{0}.gif }”
 sys:alt=”{{ Name }}”
 style=”float: left; margin-right: 10px; “/ >
 < h2 > {{ Name }} < /h2 >
 < label for=”txtCapital” > Capital: < /label >
 < input type=”text” id=”txtCapital”
 sys:value=”{ binding Capital }” / >
 < /div >

 Code fi le [3 - AjaxLibrary\15 - MasterDetail.htm] available for download at Wrox.com

Using the Microsoft Ajax Library ❘ 877

CH019.indd 877CH019.indd 877 9/6/10 6:24:51 PM9/6/10 6:24:51 PM

878 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 In Figure 19 - 12, you can see what is rendered by the browser
after the user clicks on the United States record.

 Let ’ s analyze this code step by step. The master view is
the HTML ul element, and the details view is the div
underneath. Both HTML elements have the DataView
attached, because the DataView is able to display a single
record and also multiple records. In the master view,
the select command is implemented with the default
behavior without any custom event handler. Only the
 selecteditemclass property is defi ned to highlight the
selected country on the UI.

 As you saw before, when the user selects a record, its data
item is loaded into the selectedData property of the
 DataView . This is the value the details view is bound to
by using the $find method to get the Sys.UI.DataView instance attached to the master HTML
element, and use it as the data source object. If you want to write more compact code, you can
express the same by using the $ prefi x and the ID of the HTML element:

dv:data=”{ binding selectedData, source={{ $master }} }”

 Code fi le [3 - AjaxLibrary\15 - MasterDetail.htm] available for download at Wrox.com

 The selectedData property will contain a country record. Therefore, you can bind to its Name ,
 Capital , and Code properties. This code also utilizes a custom stringConverter to get the fl ag
image URL based on the country code using the String.format method:

Sys.converters.stringConverter = function(value, binding)
{
 return String.format(binding.format, value);
}

 Code fi le [3 - AjaxLibrary\15 - MasterDetail.htm] available for download at Wrox.com

 Because live binding is used, the changes to the selectedData property are propagated to the
details view that will refresh itself automatically. In addition to that, because the data is bound to
an input element in the details view, and that is, by default, a two - way binding, if the user changes
the capital name in the textbox, the new value appears in the master view after the textbox loses the
focus. Note that this can happen because the master and the details view essentially use the same
data source, the countries object array.

 Working with Server - Side Data

 Earlier, you saw examples of how to use the client - side DataView control to display and manage
data that comes from a local data source. However, in real - world scenarios, the data is stored on the
server, so you must add additional steps to download it to the client, and then upload the changes

 FIGURE 19 - 12: Master - detail view

CH019.indd 878CH019.indd 878 9/6/10 6:24:51 PM9/6/10 6:24:51 PM

back to the server. The Microsoft Ajax Library fully supports interoperating with web services,
Ajax - enabled WCF services, and ADO.NET Data Services on the server.

 To port the country example to the server, fi rst create a Country class in C# that encapsulates all
country - related data:

public class Country
{
 public string Name;
 public string Code;
 public string Capital;

 public Country()
 {}

 public Country(string name, string code, string capital)
 {
 this.Name = name;
 this.Code = code;
 this.Capital = capital;
 }
}

 Code fi le [App_Code\Country.cs] available for download at Wrox.com

 Then, create a new ASMX web service called CountryService with a private static countries
list, and initialize it with country data:

 [WebService(Namespace = “http://balassy.spaces.live.com/Samples/”)]
[System.Web.Script.Services.ScriptService]
public class CountryService : System.Web.Services.WebService
{
 private static List < Country > countries = new List < Country > ()
 {
 new Country(“Austria”, “at”, “Vienna”),
 new Country(“Australia”, “au”, “Canberra”),
 new Country(“Brasil”, “br”, “Bras í lia”)
 // Add more countries here...
 };
}

 Code fi le [App_Code\CountryService.cs] available for download at Wrox.com

 You may notice that the ScriptService attribute is added to the web service class. This attribute is
required if you want to access the web service from JavaScript, and, actually, that is all you have to
add to your code to Ajax - enable your web service.

 Finally, add the web service methods you want to publish for your clients.

 [WebMethod]
public Country[] GetCountriesByName()
{
 return this.GetCountries(“Name”, true);

Using the Microsoft Ajax Library ❘ 879

CH019.indd 879CH019.indd 879 9/6/10 6:24:52 PM9/6/10 6:24:52 PM

880 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

}

[WebMethod]
public Country[] GetCountries(string orderby, bool asc)
{
 Func < Country, string > keySelector;
 switch(orderby)
 {
 case “Name”:
 keySelector = new Func < Country, string > (c = > c.Name);
 break;
 case “Code”:
 keySelector = new Func < Country, string > (c = > c.Code);
 break;
 case “Capital”:
 keySelector = new Func < Country, string > (c = > c.Capital);
 break;
 default:
 keySelector = new Func < Country, string > (c = > c.Name);
 break;
 }
 IEnumerable < Country > result = asc ?
 CountryService.countries.OrderBy(keySelector) :
 CountryService.countries.OrderByDescending(keySelector);
 return result.ToArray();
}

Code fi le [App_Code\CountryService.cs] available for download at Wrox.com

 In this scenario, two methods are added to the service class, and both return the list of countries.
The GetCountries is a universal method that allows the client to specify the sorting and direction
of the result array. The GetCountriesByName is simpler, because it does not accept any parameters
and always returns the countries ordered by their names.

 At this point, you can just press Ctrl+F5 in Visual Studio and test your web service in the browser.
Note that Visual Studio opens the CountryService.asmx URI directly, and a test page is generated
automatically. On the test page, you can fi nd a link (CountryService.asmx?WSDL) to the Service
Description required by the service clients to build their client side proxies.

 However, if you want to call this web service from JavaScript, the ASP.NET run - time can generate
for you a fully featured client - side proxy in JavaScript on - the - fl y. To get this proxy, all you have to
do is change the URI to CountryService.asmx/jsdebug . By adding /jsdebug , you get the more
readable debug version of the proxy; by adding /js you can get the minifi ed release version.

 It worth stopping for a moment and exploring the generated script proxy that contains two classes:

...
CountryService.registerClass(‘CountryService’,Sys.Net.WebServiceProxy);
...
Country.registerClass(‘Country’);
...

CH019.indd 880CH019.indd 880 9/6/10 6:24:53 PM9/6/10 6:24:53 PM

 Because the server - side Country class is used in the web service interface, a similar class is also
generated for the client. To call the web service, you get a class called CountryService that derives
from the Sys.Net.WebServiceProxy base class.

 Now, that you have a fully featured proxy class that hides the details of the web service SOAP call, you
can display the countries on the client. First, create a DataView without specifying the data source:

 < ul
 id=”countryList”
 class=”sys-template”
 sys:attach=”dv”
 < li >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >

 Code fi le [4 - ServerSideData\1 - WebService.htm] available for download at Wrox.com

 To access the proxy class, add a script reference to the /js or /jsdebug URL:

 < script type=”text/javascript” src=”CountryService.asmx/jsdebug” > < /script >

 Code fi le [4 - ServerSideData\1 - WebService.htm] available for download at Wrox.com

 With the proxy class, call the web service when the page is fully loaded. Before that, take a moment
to reconsider what is happening under the hood.

 The only way to initiate an HTTP request from the client is to use the XMLHttpRequest object
in the browser, and that is what the Sys.Net.WebServiceProxy class uses as well. However, the
 XMLHttpRequest calls are asynchronous. Therefore, all service proxy methods accept a success and
a failure callback method reference. That means that, although the GetCountriesByName method
does not have any parameter on the server, when you call it on the client, you must pass at least a
success callback reference to process the results:

function pageLoad()
{
 CountryService.GetCountriesByName(onSuccess);
}

function onSuccess(results)
{
 $find(‘countryList’).set_data(results);
}

 Code fi le [4 - ServerSideData\1 - WebService.htm] available for download at Wrox.com

 The success callback receives the return value of the web method as a parameter. Because you know
that it is the country list you want to display, you can get the DataView component by using the
 $find method, and set the data property of it.

Using the Microsoft Ajax Library ❘ 881

CH019.indd 881CH019.indd 881 9/6/10 6:24:53 PM9/6/10 6:24:53 PM

882 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 And that ’ s all! With only two lines of code, you called a SOAP web service from JavaScript and
displayed the results with a declarative template. It ’ s not complicated at all, right?

 Sure it ’ s not. Nevertheless, it is a so often used scenario that every line counts, and, therefore,
the DataView control provides direct support for it. You can strip out the < script > tag, the web
service call, and the success callback, and confi gure the web service URI directly on the
 DataView .

 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:autofetch=”true”
 dv:dataprovider=”../Services/CountryService.asmx”
 dv:fetchoperation=”GetCountriesByName”
 < li >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >

 Code fi le [4 - ServerSideData\2 - DataFromService.htm] available for download at Wrox.com

 The dataProvider property of the DataView class can point to a JSON Web Service URI, or to
an instance of a Sys.Net.WebServiceProxy object, or to any class that implements the Sys.Data
.IDataProvider interface. In the fetchOperation property, you can
defi ne the name of the web method that you want to call. By setting the
 autoFetch property to true , you can ensure that you do not have to
update the DataView manually. It will retrieve the data immediately from
the data source when the page loads, or when the dataProvider or the
 fetchOperation property is changed.

 If you want to call a web method that expects parameters, you must set
the fetchParameters property as well:

 < ul
 id=”countryList”
 class=”sys-template”
 sys:attach=”dv”
 dv:autofetch=”true”
 dv:dataprovider=”../Services/CountryService.asmx”
 dv:fetchoperation=”GetCountries”
 dv:fetchparameters=”{{ { orderby: ‘Capital’, asc: false } }}”
 < li >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >

 Code fi le [4 - ServerSideData\3 - DataFromServiceWithParameters.htm] available for download at Wrox.com

 Of course, you can even let the user select the ordering of the countries, as shown in Figure 19 - 13.

 FIGURE 19 - 13: The user

can select the order of the

records

CH019.indd 882CH019.indd 882 9/6/10 6:24:54 PM9/6/10 6:24:54 PM

 First, provide a drop - down list box, and display the available orderings:

 < select onchange=”onSort(this.value)” >
 < option value=”Name” > Name < /option >
 < option value=”Capital” > Capital < /option >
 < /select >

 Code fi le [4 - ServerSideData\4 - DataFromServiceWithParametersBinding1.htm] available for download at Wrox.com

 The onSort event handler is called when the user selects a new value from the list. Here you can
update the fetchParameters , and then re - fetch the data from the server:

function onSort(orderby)
{
 var dv = $find(“countryList”);
 dv.get_fetchParameters().orderby = orderby;
 dv.fetchData();
}

Code fi le [4 - ServerSideData\4 - DataFromServiceWithParametersBinding1.htm] available for download at Wrox.com

 As you can see, it is very easy to call a web service and display the results on the client with
templates. This covers a large portion of server - side data scenarios, though it is often required for
the modifi ed data to be uploaded to the server.

 Updating the Data on the Server

 If you want to implement a read - write scenario, you must delegate all data management to the
new Sys.Data.DataContext class. This class encapsulates everything required to retrieve
the data from the server, track changes on the client, and then load the modifi ed data back to the
server. DataContext implements the IDataProvider interface, which means that you can use a
 DataContext instance directly as a data source for your DataView controls:

 < ul
 class=”sys-template”
 sys:attach=”dv”
 dv:autofetch=”true”
 dv:dataprovider=”{{ dataContext }}”
 dv:fetchoperation=”GetCountriesByName”
 < li >
 {{ Name }} ({{ Capital }})
 < /li >
 < /ul >

Code fi le [4 - ServerSideData\6 - DataContextRead.htm] available for download at Wrox.com

 As you can see, the dataProvider property does not point to the web service directly any more.
Instead, it is wrapped by a DataContext instance that is created when the page loads. (You will see
that in a minute.)

Using the Microsoft Ajax Library ❘ 883

CH019.indd 883CH019.indd 883 9/6/10 6:24:55 PM9/6/10 6:24:55 PM

884 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 You may notice that, although the service URI is encapsulated by the DataContext , the name of the
web method is still defi ned on the DataView instance. If you fi nd this a bit confusing, you are not
alone, and this will likely change in the next previews or the RTM release.

 The only thing missing is the DataContext instance. The DataContext resides in the
 MicrosoftAjaxDataContext.js fi le, and, because that relies on a bunch of other fi les, it is best to
use the new Script Loader to load the required fi les in the right order:

 < script src=”Start.debug.js” type=”text/javascript” > < /script >
 < script type=”text/javascript” >
 var dataContext;
 Sys.require([Sys.components.dataView, Sys.components.dataContext]);
 Sys.onReady(function()
 {
 dataContext = Sys.create.dataContext(
 { serviceUri: “../Services/CountryService.asmx” }
);
 }
);
 < /script >

Code fi le [4 - ServerSideData\6 - DataContextRead.htm] available for download at Wrox.com

 After the required scripts are downloaded and initialized, a new Sys.Data.DataContext instance is
created, and its serviceUri property is set to the web service URI.

 If you test the code you have at this point, you will not notice any change in the browser. The
data is downloaded and displayed on the page; nothing fancy so far. However, if you change your
 DataView and provide input controls for the users, you can utilize the benefi ts of the DataContext
class.

 So, fi rst rewrite the DataView template to display textboxes instead of static texts, and use live
bindings that are, by default, two - way to notify the data source — in this case, the DataContext —
if the data is modifi ed by the user:

 < div
 id=”countryList”
 class=”sys-template”
 sys:attach=”dv”
 dv:autofetch=”true”
 dv:dataprovider=”{{ dataContext }}”
 dv:fetchoperation=”GetCountriesByName”
 < div >
 Name:
 < input type=”text” sys:value=”{ binding Name }” / >
 Capital:
 < input type=”text” sys:value=”{ binding Capital }” / >
 < /div >
 < /div >

Code fi le [4 - ServerSideData\7 - DataContextReadWrite.htm] available for download at Wrox.com

CH019.indd 884CH019.indd 884 9/6/10 6:24:56 PM9/6/10 6:24:56 PM

 The browser will render textboxes as shown in Figure 19 - 14.

 FIGURE 19 - 14: Using two - way binding to

update data

Using the Microsoft Ajax Library ❘ 885

 To support updates, you must set the name of the update web method in the saveOperation
property:

dataContext = Sys.create.dataContext(
 {
 serviceUri: “../Services/CountryService.asmx”,
 saveOperation: “UpdateCountries”
 }
);

 Code fi le [4 - ServerSideData\7 - DataContextReadWrite.htm] available for download at Wrox.com

 In this case, the UpdateCountries web method is used for updating countries. However, its
signature is still not known. The DataContext automatically takes care of all change tracking in the
background by using the Sys.Observer class and is able to provide a changeset that contains only
the inserted, modifi ed, and updated items. If you want to send this changeset to the server, you can
call the saveChanges method that will call the saveOperation web method. The only question is,
exactly what is posted by the client to the server?

 Add a button to the GUI to let the user post the changes back to the server:

 < input type=”button” value=”Save changes”
 onclick=”dataContext.saveChanges()” / >

 Code fi le [4 - ServerSideData\7 - DataContextReadWrite.htm] available for download at Wrox.com

 At this point, you can run the page in the browser, modify any record, and then click on the “ Save
changes ” button to initiate an update in the background, which will obviously fail, because you still
do not have the web method on the server. However, you can use Fiddler or Firebug to examine the
body of this POST request.

CH019.indd 885CH019.indd 885 9/6/10 6:24:57 PM9/6/10 6:24:57 PM

886 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 For example, if you change “ United Kingdom ” to “ UK, ” and “ United States ” to “ US, ” the
 DataContext will send the following JSON data to the server (the code has been broken into more
lines to make it more readable):

{
 “changeSet”:
 [
 {
 “action”:1,
 “item”:
 {
 “__type”:”Country”,
 “Name”:”UK”,
 “Code”:”uk”,
 “Capital”:”London”
 }
 },
 {
 “action”:1,
 “item”:
 {
 “__type”:”Country”,
 “Name”:”US”,
 “Code”:”us”,
 “Capital”:”Washington, D.C.”
 }
 }
]
}

 The client sends a single changeSet object to the server that is an array of change objects. Every
change object has two properties:

 action — This property describes what happened to the specifi ed item. This property has one of
the following Sys.Data.ChangeOperationType values: insert (0), update (1) or remove (2).

 item — This property carries the modifi ed records. As you can see, there is no explicit identity
or previous value column. It is up to you to determine on the server which was the original
item and how the properties are changed.

 Actually, the changeset contains Sys.Data.ChangeOperation instances that can have more
properties, but, in this scenario, only the action and the item properties are used.

 Now that you know what is sent by the client, you can prepare to receive it on the server. First,
mirror the ChangeOperationType enum in C#:

public enum ChangeOperationType { insert, update, remove }

Code fi le [App_Code\Change.cs] available for download at Wrox.com

 Then, create a generic Change class to mimic the change records sent by the client, with an action
and an item property:

➤

➤

CH019.indd 886CH019.indd 886 9/6/10 6:24:58 PM9/6/10 6:24:58 PM

public class Change < T >
{
 public ChangeOperationType action;
 public T item;
}

Code fi le [App_Code\Change.cs] available for download at Wrox.com

 Now, you have everything to implement the UpdateCountries method that is set as the
 saveOperation for the DataContext :

 [WebMethod]
public void UpdateCountries(List < Change < Country > > changeSet)
{
 foreach(Change < Country > change in changeSet)
 {
 switch(change.action)
 {
 case ChangeOperationType.insert:
 // Implement insert here...
 break;
 case ChangeOperationType.update:
 this.UpdateCountry(change.item);
 break;
 case ChangeOperationType.remove:
 // Implement remove here...
 break;
 }
 }
}

Code fi le [App_Code\CountryService.cs] available for download at Wrox.com

 Because the client sends an array, you can use a generic list as a method parameter, iterate through
all the records, and examine what happened with them. The previous code snippet implements
only the update operation case branch, because the client supports only updating so far. Updating a
country is delegated to the private UpdateCountry method:

private void UpdateCountry(Country newCountry)
{
 Country oldCountry = CountryService.countries.Where(
 c = > c.Code == newCountry.Code).First();
 oldCountry.Name = newCountry.Name;
 oldCountry.Capital = newCountry.Capital;
}

Code fi le [App_Code\CountryService.cs] available for download at Wrox.com

 Remember, the server - side “ data store ” is implemented as a private static list in the CountryService
.countries fi eld. So, in this simple case, it is very easy to persist the changes. In real - world scenarios,
you would probably do some database operation here.

Using the Microsoft Ajax Library ❘ 887

CH019.indd 887CH019.indd 887 9/6/10 6:24:58 PM9/6/10 6:24:58 PM

888 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 In addition to updating, the DataContext also supports tracking insertions and deletions. To add
a new item on the client, you can call the insertEntity method, and the removeEntity method
to remove one. In these cases, the changeset will contain Sys.Data.ChangeOperationType.insert
and Sys.Data.ChangeOperationType.remove actions. DataContext also supports identity
generation for insertions with its getIdentityMethod and getNewIdentityMethod properties.

 It is often requested that the client be able to refresh the data from the server, and you can complete
this by calling the fetchData method of the DataView object — for example, in a click event
handler of a button:

 < input type=”button” value=”Refresh from server”
 onclick=”$find(‘countryList’).fetchData(
 null,
 null,
 Sys.Data.MergeOption.overwriteChanges)” / >

Code fi le [4 - ServerSideData\7 - DataContextReadWrite.cs] available for download at Wrox.com

 The DataView forwards this call to the DataContext , which also has a fetchData method, because
it implements the Sys.Data.IDataProvider interface.

 However, because the data on the client is already being tracked for changes, it is important to
defi ne how the data on the client and the data from the server should be merged. This is what you
can set with a Sys.Data.MergeOption value in the third parameter. If you set MergeOption.
appendOnly , then unsaved changes are preserved on the client, and will not be overwritten with
the data from the server. If you set MergeOption.overwriteChanges , then values obtained from
the server will overwrite the values on the client.

 As you can see, the DataContext is a very complex object with very convenient usage. You can use
it even in simpler client - only scenarios. Just pass your object to it via its trackData method, and the
full power of the change tracking engine is added to your object.

 Working with ADO.NET Data Services

 Earlier, you saw how easy is to access a web service on the server, even from JavaScript, because
script proxy generation and JSON serialization is automatically provided by the run - time. However,
it may happen that you need a more lightweight, more fl exible, and fully RESTful interface, and
Microsoft recommends ADO.NET Data Services (formerly codenamed Astoria) for this purpose.
ADO.NET Data Services has some specialties on the server, and the Microsoft Ajax Library
contains classes to support these features.

 The Sys.Data.AdoNetServiceProxy is a low - level class that inherits from Sys.Net.
WebServiceProxy , implements the Sys.Data.IDataProvider interface, and provides methods
and properties for interacting with ADO.NET Data Services. It supports the query, insert,
update, and remove REST operations, and also optimistic concurrency. Although you can use the
 WebServiceProxy class to call an ADO.NET Data Service, it is much more convenient with this
class, because it manages the HTTP commands and the HTTP headers automatically. Under the
hood, it uses the Sys.Data.AdoNetQueryBuilder class for creating data service queries. However,
if you want, you can use this class directly from your code.

CH019.indd 888CH019.indd 888 9/6/10 6:24:59 PM9/6/10 6:24:59 PM

 If you have a read - write scenario, you can use the Sys.Data.AdoNetDataContext class that relies
on AdoNetServiceProxy, inherits from DataContext , and provides support for ADO.NET - specifi c
features (such as identity management, hierarchical data, links between entity sets, and optimistic
concurrency).

 Retrieving Cross - Domain Data

 Now that you have learned how to use Ajax and JavaScript to query data asynchronously from
the server, you are probably tempted to try to use this technology with the numerous data sources
already available all over the web. Why not? All these web service calls rely on the underlying
 XMLHttpRequest object (that is essentially a mini - browser), so theoretically it should work.
However, in practice, it probably won ’ t, and the reason is security.

 Every modern user agent enforces a security concept called the Same Origin Policy that was
originally designed for Netscape Navigator 2.0, and since then, all major browsers have adopted
it. The Same Origin Policy is a protection mechanism that helps to isolate web applications coming
from different domains.

 From the Ajax perspective, the policy means that a script running on a page can connect with
 XMLHttpRequest only to its originating server (with the same protocol, domain name, and port) and
cannot connect to other servers on the network. In practice, it means that, if you host a page, the
script running on it will not be able to connect to web services offered by Google, Microsoft, Flickr,
Twitter, and so on, because they reside in other domains.

 Fortunately (or unfortunately if you see it from the end - user ’ s or the security expert ’ s point of view),
there are ways to bypass the Same Origin Policy. For example, if you add a < script > tag to the
 < head > of your HTML page, you can load an external JavaScript from another domain, and that
will behave as an exception from the policy. The question is how to use this trick to simulate cross -
 domain Ajax requests that return a value.

 In most cases, regular Ajax requests return a JSON value such as this:

{ firstName: ‘Gy ö rgy’, lastName: ‘Bal á ssy’ }

 However, if you return this object structure in a script that is loaded with a < script > tag in the
header, the JSON expression will be evaluated, but there is no way to pass the result to the caller.
Luckily, the downloaded script can contain not only a static object, but also a function call:

MyCallback({ firstName: ‘Gy ö rgy’, lastName: ‘Bal á ssy’ });

 This expression is also evaluated. Thus, if there is a MyCallback function on the page, it will be
called, and the JSON object is passed to it as an input parameter. To make this trick work, the
server must know the name of the callback function already available on the page, and the client is
responsible for passing this prefi x as an input parameter of the call itself.

 This extension of the JSON format is called JSONP (which stands for “ JSON with padding, ”) or
simply “ cross - domain JSON. ” As you can see, JSONP is really simple (it doesn ’ t even require an
 XMLHttpRequest call), but because it bypasses the Same Origin Policy, it can also be extremely

Using the Microsoft Ajax Library ❘ 889

CH019.indd 889CH019.indd 889 9/6/10 6:24:59 PM9/6/10 6:24:59 PM

890 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

dangerous. On the other hand, it breaks a really painful limit of Web 2.0 applications, so it is not a
surprise that the Microsoft Ajax Library fully supports JSONP.

 In the next example, you will see how you can incorporate Twitter into your web page with
JSONP and the Microsoft Ajax Library. After importing the MicrosoftAjax.js and the
 MicrosoftAjaxTemplates.js fi les, create a DataView that will display the Tweets of a given user:

 < ul
 id=”dvResults”
 class=”sys-template”
 sys:attach=”dv” >
 < li >
 < b > {{ text }} < /*b >
 < br / >
 {{ created_at }}
 < /li >
 < /ul >

Code fi le [4 - ServerSideData\8 - JSONP.htm] available for download at Wrox.com

 You can even create an input textbox and a button to ask the user for a Twitter account to query:

 < input type=”text” id=”txtUserName” / >
 < input type=”button” value=”Get tweets” onclick=”getTweets();” / >

Code fi le [4 - ServerSideData\8 - JSONP.htm] available for download at Wrox.com

 When the user clicks on the button, the following getTweets function is called:

function getTweets()
{
 var userName = $get(‘txtUserName’).value;
 var uri =
 String.format(“http://twitter.com/status/user_timeline/{0}.json?count=5”,
 encodeURI(userName));
 Sys.Net.WebServiceProxy.invoke(uri, null, true, null, onComplete);
}

Code fi le [4 - ServerSideData\8 - JSONP.htm] available for download at Wrox.com

 In this function, the username is fi rst read from the textbox, then the Twitter service URI is
constructed. Next, the static invoke method of the WebServiceProxy class is called with the service
URI and the callback method. The third true parameter means that the service should be called
with an HTTP GET request.

 After the successful web service call, the Ajax Library calls the specifi ed callback function
 onComplete , in which you can set the result data as the data source of the DataView :

CH019.indd 890CH019.indd 890 9/6/10 6:25:00 PM9/6/10 6:25:00 PM

function onComplete(results)
{
 $find(‘dvResults’).set_data(results);
}

Code fi le [4 - ServerSideData\8 - JSONP.htm] available for download at Wrox.co

 The DataView is rendered by the browser, as
you can see in Figure 19 - 15.

 That ’ s very straightforward — but, wait a
minute, how is the callback function required
by JSONP passed to the web service?

 The Sys.Net.WebServiceProxy class has
two properties that support switching from
JSON to JSONP, but, for most cases, you do
not have to set them manually:

 By setting the enableJsonp property
to true , you can indicate that the
web service supports JSONP, and
the WebServiceProxy should use JSONP instead of JSON. The default value of this property
is false . However, the invoke method examines the service URI and defaults to JSONP
when it detects a cross - domain request.

 In the jsonpCallbackParameter , you can set the name of the query string variable that
is expected by the web service to contain the name of the callback function. The default
value is “ callback ” that is appropriate for most JSONP web services. However, if your
web service differs from the de facto standard, you can override the default here.

 You can use Fiddler to examine the communication between the client and the remote server to see
how these properties work. The request contains the following headers (in addition to others that
are omitted here for clarity):

GET /status/user_timeline/wrox.json?count=3 & callback=Sys._jsonp1 HTTP/1.1
Host: twitter.com

 As you can see, the WebServiceProxy class automatically added the callback parameter and
generated an internal callback function called Sys._jsonp1 . As expected, the response contains a
call for this function, and the result JSON object array is passed as an input parameter:

HTTP/1.0 200 OK
Content-Type: application/json; charset=utf-8

Sys._jsonp1(JSON object array omitted);

 The auto - generated Sys._jsonp1 will then pass the service result to the onComplete callback
function, where it is displayed with the DataView .

➤

➤

 FIGURE 19 - 15: Using JSONP to query Twitter

Using the Microsoft Ajax Library ❘ 891

CH019.indd 891CH019.indd 891 9/6/10 6:25:01 PM9/6/10 6:25:01 PM

892 ❘ CHAPTER 19 ASP.NET AJAX IMPROVEMENTS

 From this example, you can see that the Microsoft Ajax Library supports cross - domain requests
with JSONP, and the transition is completely transparent.

 SUMMARY

 Ajax has played an important role in web user experience, and revolutionized web applications by
making them more responsive and more interactive. Unfortunately, the technologies that are covered
by this umbrella name are not so developer - friendly, and you must incorporate helper libraries to
implement Ajax - based features effectively.

 The .NET Framework provides full support to Ajax - enable your existing applications, and you
can use the well - known web control architecture to add Ajax features to your website. The
 ServerManager control hides all the details of script management, and just by wrapping a part of
your page with an UpdatePanel control, you can make it refresh itself asynchronously.

 If you are familiar with the basic concepts of JavaScript, and want to write browser - agnostic (but
short) code, you can write your client - side code on top of the Microsoft Ajax Library. This Library
not only contains a browser compatibility layer, but also adds OOP - like features to the JavaScript
language. The new DataView control, the client - side data - binding feature, and the templating engine
echo the similar functions long existing on the server.

 As you saw in this chapter, the Microsoft Ajax Library hides the browser - specifi c details for basic
client - side programming tasks. However, to be more productive, additional libraries can be built
on top of this layer. The Microsoft Ajax Toolkit and the jQuery Libraries are integrated with the
Microsoft Ajax Library, and, in Chapter 20, you will learn how to use them to perform client - side
programming on a higher abstraction layer.

CH019.indd 892CH019.indd 892 9/6/10 6:25:01 PM9/6/10 6:25:01 PM

ASP.NET Ajax Control Toolkit
and jQuery

 In Chapter 19, you learned about the new Ajax improvements and saw several examples of
using the ASP.NET Ajax Library. You also read about jQuery library and used jQuery in a
few samples.

 Ajax and jQuery are primarily client - side technologies. They are built on JavaScript. If you
do not have any server - side technologies, but rather just a simple web server with standard
HTTP/HTTPS protocol, you can still use both of them. However, most applications work
with information, and the nature of these applications is that they store and handle data at the
server side — somewhere in the Internet cloud — and not at the client.

 This chapter dives deeper into the ASP.NET Ajax Control Toolkit and the jQuery technology.
These are two important pieces of the full toolset that you can use together with your
ASP.NET applications to improve the user experience.

 This chapter covers the following main topics:

 First look at the Ajax Control Toolkit — You are going to change an ASP.NET Web
Application using “ fl ickering ” postbacks to an improved one using the Ajax Control
Toolkit.

 Using the Controls of the Toolkit — This section provides a detailed overview of most
server - side controls and extenders shipped with the Toolkit. You learn more about
them through many small samples.

 The jQuery library — In this section, you will learn about the jQuery JavaScript
library that is designed to make it easier to navigate a document, select document
object model (DOM) elements, create animations, handle events, and develop Ajax
applications.

➤

➤

➤

 20

CH020.indd 893CH020.indd 893 9/6/10 6:30:05 PM9/6/10 6:30:05 PM

894 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 FIRST LOOK AT THE AJAX CONTROL TOOLKIT

 The ASP.NET Ajax Control Toolkit contains a rich set of ASP.NET server - side controls that you
can use to build highly responsive and interactive Ajax - enabled Web applications. It is often referred
to as simply the Ajax Control Toolkit, and this chapter often refers to it simply as the “ Toolkit. ”

 The Toolkit contains more than 40 frequently used controls, including the AutoCompleteExtender ,
 CollapsiblePanelExtender , ComboBox , MaskedEditExtender , Accordion , and many more. Most
of them add simple, but powerful, functionality to your websites, and improve the user experience,
all of which increases the value of the user experience. Although, at the end of the day, JavaScript
is used at the client side, the controls in the Toolkit remove the majority of JavaScript - related
programming challenges from your task list.

 Using the Ajax Control Toolkit, you can build Ajax - enabled ASP.NET Web Forms applications by
dragging and dropping controls from the Visual Studio Toolbox onto a Web Forms page and then
using them just like other ASP.NET server - side controls.

 The ASP.NET Ajax Control Toolkit started its life as an Open Source project in May 2006,
and it is still a very active project. You can fi nd it on CodePlex (http://www.codeplex.com/
AjaxControlToolkit). It is a joint effort between Microsoft and the ASP.NET Ajax community.
Controls provided by the project are built on top of the Microsoft ASP.NET Ajax framework.
The Toolkit was designed to support not only Internet Explorer, but also Firefox, Safari, Opera,
and Google Chrome. Most controls work seamlessly and independently of the browser you use.
However, there are a few compatibility issues. The project team tracks them and provides service
releases on a regular basis.

 Installing the Ajax Control Toolkit

 You can download the latest version of the ASP.NET Ajax Control Toolkit from its home on
CodePlex by clicking on the Downloads tab. As of this writing, the freshest version was the ASP.NET
Ajax Library Beta 0911 (released on November 18, 2009). As the name of download indicates, this
is not only the Ajax Control Toolkit, but also the ASP.NET Ajax Library that now includes all the
ASP.NET Web Forms server controls that were included in the original Ajax Control Toolkit.

 When you download and extract the library, you can fi nd the Ajax Control Toolkit in the
 AjaxNetLibrary\WebForms folder under the root where you extracted the downloaded fi le. You
will also fi nd there the Release subfolder with the AjaxControlToolkit.dll fi le, as shown in

 Chapter 19 provides a very good overview of using the ASP.NET Ajax Library,
and includes many examples and code snippets. It also explains the basic
concepts of Ajax. If you are new to Ajax programming, or you are not an
experienced developer in this fi eld, it ’ s highly recommended that you read
Chapter 19 to fully understand concepts treated here.

CH020.indd 894CH020.indd 894 9/6/10 6:30:11 PM9/6/10 6:30:11 PM

Figure 20 - 1. The Debug folder also contains
the Debug build of this assembly.

 You can easily integrate the Toolkit with
Visual Studio by adding the controls to the
Toolbox. Open an ASP.NET Web Application
project in Visual Studio 2010, or create an
ASP.NET Empty Web Application project.
Add a new Web Form to it and name it, for
example, Default.aspx .

 Open an .aspx fi le (for example, Default
.aspx) so that you can display Visual Studio ’ s Toolbox. Right - click on
any toolbox tab (for example, the AJAX Extensions tab) and run the
Add Tab command. A new empty tab appears. Name it “ Ajax Control
Toolkit. ” This tab is just a placeholder for controls, since it does not
yet contain any controls. Right - click on this tab and run the Choose
Items command.

 When the Choose Toolbox Items dialog appears, select the .NET
Frameworks Components tab. Click the Browse button and select
the AjaxControlToolkit.dll from the Release folder shown in
Figure 20 - 1. Visual Studio will warn you that you are going to add a fi le
downloaded from a network location, and it can potentially harm your
computer. Confi rm that you really want to load it. The new controls
found in the AjaxControlToolkit.dll will be selected in the dialog,
and marked to be added to the tab. Close the dialog by clicking the OK
button, and Visual Studio adds all the controls found in the assembly to
the tab, as shown in Figure 20 - 2.

 Of course, in Figure 20 - 2 you can see only a part of the controls added.
The Ajax Control Toolkit provides more than 40 controls you can add
to your web pages.

 Controls Installed with the Toolkit

 When you look at the names of controls, you fi nd two kinds:

 Standard controls — These have a simple name, such as Rating , Accordion , Editor ,
 TabContainer , and so on. These are simple controls that work just like any other standard
ASP.NET controls. You can drag them from the Toolbox onto an ASP.NET page in either
Design view or Source view.

 Control extenders — These can be easily recognized because their names ends with
 “ Extender ” by convention (with only a few exceptions). As the names suggest, a
control extender extends the functionality of an existing control. For example, the
 ConfirmButtonExtender extends the standard ASP.NET Button control. It changes
the Button control ’ s behavior so that the Button displays a confi rmation dialog when
you click it.

➤

➤

 FIGURE 20 - 1: Ajax Control Toolkit in the folder structure

of ASP.NET Ajax Library

 FIGURE 20 - 2: Ajax Control

Toolkit tab with the newly

added controls

First Look at the Ajax Control Toolkit ❘ 895

CH020.indd 895CH020.indd 895 9/6/10 6:30:25 PM9/6/10 6:30:25 PM

896 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 Upgrading to a New Version

 If you have already installed an older version of the Toolkit, or you have downloaded a new one and
you want to change your projects using this latter version, you can avoid annoying versioning issues
with a few recommended steps:

 1. Open the ASP.NET web project (or solution) you intend to upgrade and remove all
references to the AjaxControlToolkit.dll assembly.

 2. Right - click on the project in Solution Explorer, and run the Open Folder command
from Windows Explorer. When the Explorer opens, go into the bin folder and delete
 AjaxControlTookit.dll .

 3. Add a new Dummy.aspx fi le to your project. Go to the Toolbox and right - click the Ajax
Control Toolkit tab. Run the Delete Tab command to remove all Toolkit controls previously
added.

 4. Follow the steps described earlier to add the controls of the new Toolkit version to the
Toolbox again.

 5. Temporarily drag a simple control (for example, ComboBox) from the Ajax Control Toolkit
tab to Dummy.aspx . Visual Studio will add the reference to the AjaxControlToolkit
assembly (of course, to the new version you have just installed).

 6. Delete Dummy.aspx .

 If you have more than one ASP.NET Web Application project in your solution, repeat these steps for
each project. Of course, you must remove the Ajax Control Toolkit tab from the Toolbox and then
add the new controls only once.

 Creating a Simple Web Application with the Toolkit

 The best way to get started with the Toolkit is to create a simple application. In this section, you will
change the FindAnExpertDemo sample project that you can download from this book ’ s companion
website (www.wrox.com).

 The FindAnExpertDemo Project

 FindAnExpertDemo is a very simple ASP.NET
application that displays information about
selected experts. You have two drop - down lists
on the page. The fi rst allows you to select an
expertise. The second drop - down list is fi lled
up with names of people who have the selected
expertise. As you select one of them, a photo and
a short description of the expert is displayed.
Figure 20 - 3 shows this application at work.

 FIGURE 20 - 3: A Screenshot of FindAnExpertDemo

CH020.indd 896CH020.indd 896 9/6/10 6:30:25 PM9/6/10 6:30:25 PM

 Every time you select a new expertise from the fi rst drop - down list, a postback is initiated to fi ll the
list with experts who have the selected expertise.

 Start Visual Studio 2010 and open the FindAnExpertDemo project. The user interface (UI) of the
application is very simple. It uses only a few standard ASP.NET controls, as shown in Listing 20 - 1.

 LISTING 20 - 1: Default.aspx of the FindAnExpertDemo Project

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”FindAnExpertDemo.Default” % >

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Find an Expert Demo < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < div >
 < table >
 < tr >
 < td >
 Select an expertise:
 < /td >
 < td >
 < asp:DropDownList ID=”ExpertiseList” runat=”server” AutoPostBack=”true”
 OnSelectedIndexChanged=”ExpertiseList_SelectedIndexChanged” >
 < /asp:DropDownList >
 < /td >
 < /tr >
 < tr >
 < td >
 Select the expert:
 < /td >
 < td >
 < asp:DropDownList ID=”ExpertList” runat=”server” AutoPostBack=”true”
 OnSelectedIndexChanged=”ExpertList_SelectedIndexChanged” >
 < /asp:DropDownList >
 < /td >
 < /tr >
 < /table >
 < br / >
 < table >
 < tr >
 < td >
 < asp:Label ID=”Description” runat=”server” Text=”” > < /asp:Label >
 < /td >
 < td >
 < asp:Image ID=”Photo” runat=”server” / >

First Look at the Ajax Control Toolkit ❘ 897

continues

CH020.indd 897CH020.indd 897 9/6/10 6:30:26 PM9/6/10 6:30:26 PM

898 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

LISTING 20-1 (continued)

 < /td >
 < /tr >
 < /table >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [Default.aspx] available for download at Wrox.com

 The content of the drop - down lists is read from a database through the DataAccess class, which
has the blueprint shown in Listing 20 - 2. You can examine the method bodies omitted from the
listing by opening the DataAccess.cs fi le.

 LISTING 20 - 2: DataAccess.cs (Code Extract)

using System.Collections.Generic;
using System.Data;
using System.Data.OleDb;
using System.Web;

namespace FindAnExpertDemo
{
 public class Expertise
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

 public class Expert
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int ExpertiseId { get; set; }
 public string Description { get; set; }
 public string Photo { get; set; }
 }

 public class DataAccess
 {
 private HttpServerUtility _Server;

 public DataAccess(HttpServerUtility server)
 {
 _Server = server;
 }

CH020.indd 898CH020.indd 898 9/6/10 6:30:26 PM9/6/10 6:30:26 PM

 public IEnumerable < Expertise > GetExpertiseList()
 {
 // ...
 }

 public IEnumerable < Expert > GetExpertList(string expertise)
 {
 // ...
 }

 private OleDbConnection GetDataConnection()
 {
 // ...
 }
 }
}

 Code fi le [DataAccess.cs] available for download at Wrox.com

 The UI logic can be found in the Default.aspx.cs fi le. This logic is very simple. Only three event
handler methods are defi ned, as shown in Listing 20 - 3.

 LISTING 20 - 3: Default.aspx.cs

using System;
using System.Collections.Generic;
using System.Web.UI.WebControls;

namespace FindAnExpertDemo
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 var da = new DataAccess(Server);
 foreach (var item in da.GetExpertiseList())
 {
 ExpertiseList.Items.Add(new ListItem(item.Name, item.Id.ToString()));
 }
 Photo.Visible = false;
 if (ExpertiseList.Items.Count > 0)
 {
 ExpertiseList.SelectedIndex = 0;
 ExpertiseList_SelectedIndexChanged(ExpertiseList, EventArgs.Empty);
 }
 }
 }

First Look at the Ajax Control Toolkit ❘ 899

continues

CH020.indd 899CH020.indd 899 9/6/10 6:30:27 PM9/6/10 6:30:27 PM

900 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

LISTING 20-3 (continued)

 protected void ExpertiseList_SelectedIndexChanged(object sender, EventArgs e)
 {
 var experts = new Dictionary < int, Expert > ();
 ExpertList.Items.Clear();
 experts.Clear();
 var da = new DataAccess(Server);
 foreach (var item in da.GetExpertList(ExpertiseList.SelectedValue))
 {
 ExpertList.Items.Add(new ListItem(item.Name, item.Id.ToString()));
 experts.Add(item.Id, item);
 }
 Session[“Experts”] = experts;
 if (ExpertList.Items.Count > 0)
 {
 ExpertList.SelectedIndex = 0;
 ExpertList_SelectedIndexChanged(ExpertList, EventArgs.Empty);
 }
 }

 protected void ExpertList_SelectedIndexChanged(object sender, EventArgs e)
 {
 var experts = Session[“Experts”] as Dictionary < int, Expert > ;
 Expert expert;
 if (experts.TryGetValue(Int32.Parse(ExpertList.SelectedValue),
 out expert))
 {
 Description.Text = expert.Description;
 Photo.ImageUrl = “/Photos/” + expert.Photo + “.png”;
 Photo.Visible = true;
 }
 }
 }
}

 Code fi le [Default.aspx.cs] available for download at Wrox.com

 Improving FindAnExpertDemo with Ajax Control Toolkit

 There are a few issues with the FindAnExpertDemo solution. The fi rst is that every time you select
an item from the expertise or expert drop - downs, a page postback occurs and the page fl ickers.
The second is that you do not have a value similar to “ Select an expertise ” or “ Select an expert ”
in the drop - downs.

 You can use the Ajax Control Toolkit to solve these issues. The Toolkit contains a control named
 CascadingDropDown that can be attached to an ASP.NET DropDownList control to get automatic
population of a set of DropDownList controls. CascadingDropDown also enables a common scenario
in which the contents of one list depend on the selection of another list, and does so without having
to embed the entire data set in the page, or transfer it to the client.

CH020.indd 900CH020.indd 900 9/6/10 6:30:27 PM9/6/10 6:30:27 PM

 Adding a ToolkitScriptManager to the Page

 When you work with Ajax in ASP.NET, you must add a ScripManager object to your page that is
responsible for managing script libraries and script fi les, partial - page rendering, and client proxy
class generation for web and application services. If you try to use ScriptManager with the Ajax
Control Toolkit, you ’ ll get some error messages that depend on what kind of control you use from
the Toolkit.

 You should use the ToolkitScripManager object (you can drag it from the Ajax Control Toolkit
tab to your page) instead of ScriptManager . The ToolkitScriptManager class derives from
 ScriptManager and enables the automatic combination of multiple script fi les in the corresponding
web page.

 So, drag and drop the ToolkitScriptManager control from the Toolbox to your page somewhere
within the < form > element. After you drop it the source code should look like this:

 < body >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < !-- ... -- >
 < /form >
 < /body >

 If you simply type the ToolkitScriptManager declaration, the project will not
contain the necessary references, and you will get an error about the unknown
control.

 Adding CascadingDropDown Extenders

 There are two drop - down lists on the page, so you must add a CascadingDropDown extender for
each of them. You can add these controls anywhere within the form. Let ’ s add it directly before the
closing < /form > element:

 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < !-- Form content comes here... -- >
 < asp:CascadingDropDown ID=”ccdExpertise” runat=”server”
 TargetControlID=”ExpertiseList”
 Category=”Expertise”
 PromptText=”Please select an Expertise”
 LoadingText=”Loading...”
 ServicePath=”ExpertiseService.asmx”
 ServiceMethod=”GetDropDownContent” / >
 < asp:CascadingDropDown ID=”ccdExpert” runat=”server”
 TargetControlID=”ExpertList”
 Category=”Expert”
 ParentControlID=”ExpertiseList”

First Look at the Ajax Control Toolkit ❘ 901

CH020.indd 901CH020.indd 901 9/6/10 6:30:27 PM9/6/10 6:30:27 PM

902 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 PromptText=”Please select an Expert”
 LoadingText=”Loading...”
 ServicePath=”ExpertiseService.asmx”
 ServiceMethod=”GetDropDownContent” / >
 < /form >

 As can you see from this code snippet, there are many properties used by CascadingDropDown .
 TargetControlID tells the extender which DropDownList to extend. The PrompText property
tells the control what text to use for the default item in the list representing that no real item is
selected. While the control ’ s content is being loaded, the text defi ned by LoadingText is displayed
in the control.

 The content of the DropDownList may hold different content depending on the UI logic. For
example, at the beginning of a use case, it may contain vehicle categories, or later concrete car
models. Category is the logical name of the content the DropDownList should be populated with.

 The second extender with the ccdExpert identifi er contains a property name ParentControlID . This
represents the identifi er of the DropDownList that is used as the parent control. As the parent ’ s selected
value changes, this control is re - populated according to the value selected in the parent control. For
example, in the FindAnExpertDemo , when the user changes the Expertise drop - down list to “ Visual
Basic, ” the Expert drop - down list is populated with the name of Visual Basic experts.

 The CascadingDropDown extender uses ASP.NET web services to populate the content of the
attached DropDownList . The ServicePath property refers to the web service responsible for the
population, while ServiceMethod holds the name of the method to be called. This method should
have the following signature:

public CascadingDropDownNameValue[] ServiceMethodName(string knownCategoryValues,
 string category);

 The knownCategoryValues argument contains an empty string when the service method is called
for a DropDownList that is not parented (its ParentControlID is not set), or a combination of
the parent control ’ s Category property and its selected value. The category argument is set
for the control ’ s Category property. For example, when the ExpertiseList control is populated,
 knownCategoryValues is an empty string, while category is set to “ Expertise. ” When you
select “ Visual Basic ” in the ExpertiseList control, the service method is called to populate the
 ExpertList control with knownCategoryValues set to Expertise;1 and category to Expert .

 Adding the ExpertiseService Class to the Project

 So, in order for you to populate the lists, add a new web service item to the project and name it
 ExpertiseService . Listing 20 - 4 shows the code you should copy into this new web service fi le.

 LISTING 20 - 4: ExpertiseService.asmx.cs

using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Web.Script.Services;

CH020.indd 902CH020.indd 902 9/6/10 6:30:33 PM9/6/10 6:30:33 PM

using System.Web.Services;
using AjaxControlToolkit;

namespace FindAnExpertDemo
{
 [ScriptService]
 public class ExpertiseService : WebService
 {
 [WebMethod]
 public CascadingDropDownNameValue[] GetDropDownContent(
 string knownCategoryValues,
 string category)
 {
 var result = new List < CascadingDropDownNameValue > ();
 var da = new DataAccess(Server);
 if (category.Equals(“Expertise”))
 {
 foreach (var item in da.GetExpertiseList())
 {
 result.Add(
 new CascadingDropDownNameValue(item.Name, item.Id.ToString()));
 }
 }
 else if (category.Equals(“Expert”))
 {
 var values = CascadingDropDown.
 ParseKnownCategoryValuesString(knownCategoryValues);
 foreach (var item in da.GetExpertList(values[“Expertise”]))
 {
 result.Add(
 new CascadingDropDownNameValue(item.Name,
 String.Format(“{0}${1}${2}”,
 item.Id, item.Photo, item.Description)));
 }
 }
 return result.ToArray();
 }
 }
}

 Code fi le [ExpertiseService.asmx.cs] available for download at Wrox.com

 The web service class is decorated with the ScriptService attribute, indicating that
 ExpertiseService can be invoked from scripts. The interesting thing is that both
 CascadingDropDown controls use the GetDropDownContent service method. The category
argument is used to branch according to the control to be populated. Both controls use the
 DataAccess component introduced in Listing 20 - 2.

 When the ExpertList control is populated, you must query only the experts possessing
the expertise represented by the selected value of the ExpertiseList drop - down. The
 ParseKnownCategoryValuesString method helps in with creating the StringDictionary held by
the values variable. When you select “ Visual Basic ” in ExpertiseList , the Expertise;1 is put
into this dictionary so that you can address it with Expertise to retrieve the value 1 .

First Look at the Ajax Control Toolkit ❘ 903

CH020.indd 903CH020.indd 903 9/6/10 6:30:34 PM9/6/10 6:30:34 PM

904 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 Discovering the Eff ect of CascadingDropDown

 You are almost ready to try the effect of CascadingDropDown extenders. Because you do not
need to make an explicit postback when the ExpertiseList control is populated with values or
its selection is changed, the code - behind fi le of Default.aspx gets very simple. This time, the
code is not ready to respond when you select a concrete expert, so the body of the ExpertList_
SelectedIndexChanged method should be commented out. Listing 20 - 5 shows the fi le after these
modifi cations.

 LISTING 20 - 5: Default.aspx.cs Modifi ed

using System;
using System.Collections.Generic;
using System.Web.UI.WebControls;

namespace FindAnExpertDemo
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 Photo.Visible = false;
 }
 }

 protected void ExpertList_SelectedIndexChanged(object sender, EventArgs e)
 {
 //var experts = Session[“Experts”] as Dictionary < int, Expert > ;
 //Expert expert;
 //if (experts.TryGetValue(Int32.Parse(ExpertList.SelectedValue),
 // out expert))
 //{
 // Description.Text = expert.Description;
 // Photo.ImageUrl = “/Photos/” + expert.Photo + “.png”;
 // Photo.Visible = true;
 //}
 }
 }
}

 Code fi le [Default.aspx.cs] available for download at Wrox.com

 Of course, you must change the declaration of the ExpertiseList control in the Default.aspx fi le
so that it won ’ t make any more explicit postbacks:

 < table >
 < tr >
 < td > Select an expertise: < /td >
 < td > < asp:DropDownList ID=”ExpertiseList” runat=”server” / > < /td >
 < /tr >

CH020.indd 904CH020.indd 904 9/6/10 6:30:34 PM9/6/10 6:30:34 PM

 < tr >
 < td > Select the expert: < /td >
 < td >
 < asp:DropDownList ID=”ExpertList” runat=”server” AutoPostBack=”true”
 OnSelectedIndexChanged=”ExpertList_SelectedIndexChanged” / >
 < /td >
 < /tr >
 < /table >

 The CascadingDropDown attached to the ExpertList control initiates a postback as soon as you
select an item. For security purposes, it is verifi ed that arguments to postback or callback events
originate from the server control that originally rendered them. In the case of CascadingDropDown
control, this verifi cation would fail unless you turn off event validation:

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”FindAnExpertDemo.Default” EnableEventValidation=”false” % >

 Setting the EnableEventValidation property to false is not recommended
because of security reasons. However, to be able to use the CascadingDropDown
extender in Ajax Control Toolkit Beta 0911, this is the easiest way to allow a
postback from the extender. Hopefully, this issue will be solved in one of the
next releases.

 Now, you can build and run the modifi ed application. Do not
forget to set Default.aspx as the startup page. As shown in
Figure 20 - 4, when you start the application, you see both drop -
 down lists contain the “ Please Select an . . . ” value, and the
second list is disabled, because before you can select an expert,
you must select an expertise.

 When you select a real item in the expertise list, the expert list is
populated accordingly, as shown in Figure 20 - 5.

 When you select an item, the postback is executed. But because
the ExpertList_SelectedIndexChanged method ’ s body is
commented out, nothing is changed on the page as a result of the
postback. This postback could also be done asynchronously using
the UpdatePanel control, which is part of the standard ASP.NET
Ajax Extensions and not part of the Toolkit.

 Using an UpdatePanel

 There is a < table > element in Default.aspx that holds a Label and an Image control to show
the description and the photo of the selected expert, respectively. You can wrap this table into an
 UpdateTable control and defi ne a trigger for it so that any events related to the ExpertList control
will be handled asynchronously. These events also will refresh the content within the UpdatePanel .
Listing 20 - 6 shows the full source of the Default.aspx fi le after adding the UpdatePanel .

 FIGURE 20 - 4: CascadingDropDown

controls in action

 FIGURE 20 - 5: The expert list is

populated according the selected

expertise.

First Look at the Ajax Control Toolkit ❘ 905

CH020.indd 905CH020.indd 905 9/6/10 6:30:35 PM9/6/10 6:30:35 PM

906 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 LISTING 20 - 6: Default.aspx Modifi ed with an UpdatePanel Control

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
 Inherits=”FindAnExpertDemo.Default” EnableEventValidation=”false” % >

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Find an Expert Demo < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < table >
 < tr >
 < td > Select an expertise: < /td >
 < td > < asp:DropDownList ID=”ExpertiseList” runat=”server” / > < /td >
 < /tr >
 < tr >
 < td > Select the expert: < /td >
 < td >
 < asp:DropDownList ID=”ExpertList” runat=”server” AutoPostBack=”true”
 OnSelectedIndexChanged=”ExpertList_SelectedIndexChanged” / >
 < /td >
 < /tr >
 < /table >
 < br / >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < table >
 < tr >
 < td >
 < asp:Label ID=”Description” runat=”server” Text=”” > < /asp:Label >
 < /td >
 < td > < asp:Image ID=”Photo” runat=”server” / > < /td >
 < /tr >
 < /table >
 < /ContentTemplate >
 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”ExpertList” / >
 < /Triggers >
 < /asp:UpdatePanel >
 < /div >
 < asp:CascadingDropDown ID=”ccdExpertise” runat=”server”
 TargetControlID=”ExpertiseList”
 Category=”Expertise” PromptText=”Please select an Expertise”

CH020.indd 906CH020.indd 906 9/6/10 6:30:38 PM9/6/10 6:30:38 PM

 LoadingText=”Loading...”
 ServicePath=”ExpertiseService.asmx” ServiceMethod=”GetGetDropDownContent” / >
 < asp:CascadingDropDown ID=”ccdExpert” runat=”server” TargetControlID=”ExpertList”
 Category=”Expert” ParentControlID=”ExpertiseList”
 PromptText=”Please select an Expert”
 LoadingText=”Loading...” ServicePath=”ExpertiseService.asmx”
 ServiceMethod=”GetGetDropDownContent” / >
 < /form >
 < /body >
 < /html >

 Code fi le [Default.aspx] available for download at Wrox.com

 The < Triggers > element within the UpdatePanel contains an AsynchPostBackTrigger attached
to the ExpertList control. When the user selects an expert from the list, an asynchronous
postback is sent to the server that can set the description and the photo of the expert. As soon
as the asynchronous call is completed, the controls within the update panel are refreshed
with the description text and photo. Of course, you must write the body of the ExpertList_
SelectedIndexChanged event handler method, as shown in Listing 20 - 7.

 LISTING 20 - 7: Default.aspx.cs After Handling the ExpertList Events

using System;

namespace FindAnExpertDemo
{
 public partial class Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 Photo.Visible = false;
 }
 }

 protected void ExpertList_SelectedIndexChanged(object sender, EventArgs e)
 {
 var fields = ExpertList.SelectedValue.Split(‘$’);
 Description.Text = fields[2];
 Photo.ImageUrl = “/Photos/” + fields[1] + “.png”;
 Photo.Visible = true;
 }
 }
}

 Code fi le [Default.aspx.cs] available for download at Wrox.com

First Look at the Ajax Control Toolkit ❘ 907

CH020.indd 907CH020.indd 907 9/6/10 6:30:38 PM9/6/10 6:30:38 PM

908 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The body of ExpertList_SelectedIndexChanged is short, and it uses a simple serialization
trick. In the ExpertiseService.asmx.cs fi le, the information about experts was added to the
 ExpertList control as a part of its value:

foreach (var item in da.GetExpertList(values[“Expertise”]))
{
 result.Add(
 new CascadingDropDownNameValue(item.Name,
 String.Format(“{0}${1}${2}”,
 item.Id, item.Photo, item.Description)));
}

The content of the selected item ’ s value is split, and the Description and Photo controls are set
according to the value fi elds.

 Now, build and run the FindAnExpertDemo application. As you can see, it provides you the same
functionality as the original implementation, but there is no fl ickering when you change the
selection of any drop - down lists.

 The application ’ s code preserved the original architecture (there is still a separate data access layer),
and the UI code became shorter and turned many imperative elements into declarations.

 USING THE CONTROLS OF THE TOOLKIT

 When you look at the Toolbox, you can count more than 40 controls on the Ajax Control Toolkit
tab. Earlier, you examined the CascadingDropDown extender that can be attached to ASP.NET
 DropDownList controls. There are many other useful controls that improve the user experience of
your websites and provide a simple programming model. This section provides a detailed overview
of most of them.

 Table 20 - 1 summarizes the controls shipped with the Beta 0911 version of the Ajax Control
Toolkit. As you have seen, there are server controls in the Toolkit that can be used individually,
and extender controls that extend the functionality of other controls to which they are attached.
Extender controls are marked with an italic font in Table 20 - 1.

 TABLE 20 - 1: Controls Shipped with Ajax Control Toolkit Beta 0911

 CONTROL DESCRIPTION

 Accordion This control lets you defi ne multiple panes and display

them one at a time. The Accordion control contains one

or more AccordionPane controls. Each AccordionPane

control has a template for its header and its content. The

selected pane is automatically persisted across postbacks.

 AlwaysVisibleControlExtender This control extends any ASP.NET control and lets you

pin it to the page so that it appears to fl oat over the

background body content when it is scrolled or resized.

The extender keeps the position of the control a

specifi ed distance from the horizontal and vertical sides.

CH020.indd 908CH020.indd 908 9/6/10 6:30:39 PM9/6/10 6:30:39 PM

 CONTROL DESCRIPTION

 AnimationExtender This class lets you use a powerful animation framework

with existing pages in an easy, declarative fashion. It

plays animations whenever a specifi c event like OnLoad ,

 OnClick , OnMouseOver , or OnMouseOut is raised by

the target control.

 AsyncFileUpload This is an ASP.NET Ajax control that allows you

asynchronously upload fi les to the server. The fi le -

 uploading results can be checked both in the server

and client sides.

 AutoCompleteExtender This control extends any ASP.NET TextBox control. It

associates that control with a pop - up panel to display

words that begin with the prefi x that is entered into the

text box. When the user has entered more characters

than a specifi ed minimum length, a popup displays

words or phrases that start with that value.

 CalendarExtender This control enables you to display date picker when

focus is moved to an input element.

 This extender can be attached to any ASP.NET

 TextBox control. It provides client - side date - picking

functionality with customizable date format and UI in a

pop - up control. You can interact with the calendar by

clicking on a day to set the date, or the “ Today ” link to

set the current date.

 CascadingDropDown This is an extender that can be attached to an ASP.NET

 DropDownList control to get automatic population

of a set of DropDownList controls. Each time the

selection of one the DropDownList controls changes,

the CascadingDropDown makes a call to a specifi ed

web service to retrieve the list of values for the next

 DropDownList in the set.

 CollapsiblePanelExtender This extender adds collapsible sections to a web page.

 CollapsiblePanelExtender targets any ASP.NET

 Panel control. You specify which control or controls on

the page should act as the open and close controllers

for the panel. Alternatively, the panel can be set to

automatically expand and collapse when the mouse

cursor moves in or out of it.

continues

Using the Controls of the Toolkit ❘ 909

CH020.indd 909CH020.indd 909 9/6/10 6:30:39 PM9/6/10 6:30:39 PM

910 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 CONTROL DESCRIPTION

 ColorPickerExtender This extender enables you to display a pop - up color

picker when the focus is moved to an input element.

You can attach the ColorPickerExtender to any

ASP.NET TextBox control. It provides client - side

color - picking functionality with UI in a pop - up control.

Optionally, you can specify a button to display the

color - picker popup and a control that previews a color

from the color palette.

 ComboBox This is a control that, like AutoCompleteExtender ,

combines the fl exibility of a TextBox with a list of

options that users are able to choose from. It borrows

many of its properties, behaviors, and naming

conventions from the Windows Forms ComboBox

control, and is derived from the same base class as

the ListBox , BulletedList , and DropDownList web

controls.

 ConfirmButtonExtender This extender catches clicks on a button (or on any

instance of a type that is derived from Button) and

displays a message to the user. If the user clicks

OK, the button or link functions normally. If the user

does not click OK, the click event is trapped and the

button does not perform its default submit behavior.

Optionally, you can specify client script to execute

when the buttons are clicked in the confi rm dialog box.

 DragPanelExtender This extender allows users to easily add “ draggability ”

to their controls. The DragPanelExtender targets any

ASP.NET Panel and takes an additional parameter that

signifi es the control to use as the “ drag handle. ” Once

initialized, the user can freely drag the panel around the

web page using the drag handle.

 DropDownExtender This extender can be attached to almost any ASP.NET

control to provide a SharePoint - style drop - down menu.

The displayed menu is merely another panel or control.

In the previous sample, the drop - down is a Panel that

contains LinkButtons . The drop - down is activated

by left - or right - clicking the attached control. If the

behavior is attached to a Hyperlink or LinkButton ,

clicking on the link itself will operate normally.

TABLE 20-1 (continued)

CH020.indd 910CH020.indd 910 9/6/10 6:30:40 PM9/6/10 6:30:40 PM

 CONTROL DESCRIPTION

 DropShadowExtender This extender applies a drop shadow to an ASP.NET

 Panel control. The extender allows you to specify

how wide the shadow is, how opaque it is, and

whether the shadow should have rounded corners.

For pages that let the user move or resize the panel,

the DropShadowExtender has a mode that will resize

and reposition the shadow to match the target panel at

run - time.

 DynamicPopulateExtender This extender replaces the contents of a control with

the result of a web service or page method call. The

method call returns a string of HTML that is inserted as

a child of the target element.

 FilteredTextBoxExtender This is an extender that lets users enter only characters

that you defi ne into a text box or that prevents users

from entering characters that you specify.

 HoverMenuExtender

 This is an extender that can be attached to any ASP.

NET WebControl , and will associate that control with a

pop - up panel to display additional content. When the

user moves the mouse cursor over the main control,

two things happen.

 The pop - up panel is displayed at a position specifi ed

by the page developer (at the left, right, top, or bottom

of the main control).

 Optionally, a CSS style is applied to the control to

specify it as “ hot. ”

 Editor This control allows you to easily create and edit HTML

content. Various buttons in the toolbar are used for

content editing. You can see generated HTML markup

and a preview document.

 ListSearchExtender This extender lets you search for items in a ListBox

or DropDownList by typing. The extender performs

an incremental search within the ListBox based on

what has been typed so far. The prompt message that

is displayed when you click the list can be customized,

along with its CSS class and position.

continues

Using the Controls of the Toolkit ❘ 911

CH020.indd 911CH020.indd 911 9/6/10 6:30:40 PM9/6/10 6:30:40 PM

912 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 CONTROL DESCRIPTION

 MaskedEditExtender This extender attaches to a TextBox control

to restrict the kind of text that can be entered.

 MaskedEditExtender applies a “ mask ” to the input

that permits only certain types of characters to be

entered. The supported data formats are Number , Date ,

 Time , and DateTime . MaskedEditExtender uses the

culture settings specifi ed in the CultureName property.

If none is specifi ed, the culture setting will be the same

as the page.

 ModalPopupExtender This extender allows you to display content in an

element that mimics a modal dialog box, which prevents

the user from interacting with the rest of the page. The

modal content can contain any hierarchy of controls.

It is displayed above a background (in z - order) that can

have a custom style applied to it.

 MultiHandleSliderExtender This extender provides a feature - rich extension to

a regular Textbox control. It allows you to choose a

single value, or multiple values in a range, through a

graphical slider interface. It supports one handle, dual

handles, or any number of handles bound to the values

of TextBox or Label controls. It also provides options

for read - only access, custom graphic styling, hover and

drag handle styles, as well as mouse and keyboard

support for accessibility.

 MutuallyExclusiveCheckBoxExtender This extender can be attached to any CheckBox

control. By adding a number of checkboxes to the

same “ Key, ” only one checkbox with the specifi ed

key can be checked at a time. This extender is useful

when a number of choices are available, but only

one can be chosen (similar to a radio button). The

use of checkboxes, however, allows you to choose to

uncheck a value, which is normally not possible with

radio buttons. This also provides a more consistent and

expected interface than using JavaScript to allow the

de - selection of a RadioButton item.

TABLE 20-1 (continued)

CH020.indd 912CH020.indd 912 9/6/10 6:30:40 PM9/6/10 6:30:40 PM

 CONTROL DESCRIPTION

 NoBot This control attempts to provide CAPTCHA - like

bot/spam prevention without requiring any user

interaction. This approach is easier to bypass than

an implementation that requires actual human

intervention, but NoBot has the benefi t of being

completely invisible. NoBot is probably most relevant

for low - traffi c sites where blog/comment spam is a

problem and 100 percent eff ectiveness is not required.

 NumericUpDownExtender This is an extender that can be attached to a

 TextBox control to add “ up ” and “ down ” buttons that

increment and decrement the value in the TextBox .

The increment and decrement can be simple +1/ - 1

arithmetic. They can cycle through a provided list of

values (like the months of the year), or they can call a

web service to determine the next value. Page authors

can also provide custom images to be used instead of

the default up/down button graphics.

 PagingBulletedListExtender This extender can be attached to a BulletedList

control and provide client - side sorted paging. It is

very fl exible and lets you specify either the number

of characters used in the heading indices, or the

maximum number of items to display per index.

 PasswordStrength This is an extender that can be attached to a

 TextBox control used for the entry of passwords.

The PasswordStrength extender shows the strength

of the password in the TextBox , and updates itself

as the user types the password. The indicator can

display the strength of the password as a text message

or with a progress bar indicator.

 PopupControlExtender This extender can be attached to any control in order to

open a pop - up window that displays additional content.

This pop - up window will probably be interactive, and

will probably be within an Ajax UpdatePanel , so it will

be able to perform complex server - based processing

(including postbacks) without aff ecting the rest of the

page. The pop - up window can contain any content,

including ASP.NET server controls, HTML elements,

and so on.

continues

Using the Controls of the Toolkit ❘ 913

CH020.indd 913CH020.indd 913 9/6/10 6:30:41 PM9/6/10 6:30:41 PM

914 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 CONTROL DESCRIPTION

 Rating This control provides an intuitive rating experience

that allows users to select the number of stars that

represents their ratings. The page designer can specify

the initial rating, the maximum rating to allow, the

alignment and direction of the stars, and custom styles

for the diff erent states a star can have. Rating also

supports a ClientCallBack event that allows custom

code to run after the user has rated something.

 ReorderList This control implements a bulleted, data - bound list with

items that can be reordered interactively. To reorder

the items in the list, the user simply drags the item ’ s

control bar to its new location. Graphical feedback is

shown where the item will be placed as it is dragged by

the user. The data source is updated after the item is

dropped in its new location.

 ResizableControlExtender This is an extender that attaches to any element on a

web page, and allows the user to resize that control

with a handle that attaches to lower - right corner of

the control. The resize handle lets the user resize the

element as if it were a window. The appearance of

the resize handle can be specifi ed by the page

designer with a CSS style.

 RoundedCornersExtender This extender applies rounded corners to existing

elements. To accomplish this, it inserts elements before

and after the element that is selected, so the overall

height of the element will change slightly. You can

choose which corners of the target panel should be

rounded by setting the Corners property.

 SeaDragon This control can be used for interactively viewing

images. Use your mouse to pan and zoom around

the image.

 SliderExtender This extender allows upgrading a TextBox to a

graphical slider that allows the user to choose a

numeric value from a fi nite range. The Slider ’ s

orientation can be horizontal or vertical, and it can

also act as a “ discrete ” slider, allowing only a specifi ed

number of values within its range.

TABLE 20-1 (continued)

CH020.indd 914CH020.indd 914 9/6/10 6:30:41 PM9/6/10 6:30:41 PM

 CONTROL DESCRIPTION

 SlideShowExtender This is an extender that targets image controls. You can

provide it with buttons to hit Previous, Next, and Play.

You can confi gure the slide show to play automatically

on render, allow it loop through the images in a

round - robin fashion, and also set the interval for slide

transitions. You can use a page method to supply

images to the slide show or use a web service.

 TabContainer This is a control that creates a set of tabs that can be

used to organize page content. A TabContainer is a

host for a number of TabPanel controls.

 TextBoxWatermarkExtender This extender can be attached to a TextBox control

to get “ watermark ” behavior. When a watermarked

 TextBox is empty, it displays a message to the user

with a custom CSS style. Once the user has typed some

text into the TextBox , the watermarked appearance

goes away. The typical purpose of a watermark is to

provide more information to the user about the TextBox

itself without cluttering up the rest of the page.

 ToggleButtonExtender This extender can be attached to a CheckBox control.

 ToggleButtonExtender enables the use of custom

images to show the state of the CheckBox . The

behavior of the CheckBox is unaff ected.

 UpdatePanelAnimationExtender This is a simple extender that allows you to utilize the

powerful animation framework with existing pages in an

easy, declarative fashion. It is used to play animations

both while an UpdatePanel is updating, and after it has

fi nished updating.

 ValidationCalloutExtender This extender enhances the functionality of existing

ASP.NET validators. To use this control, add an input

fi eld and a validator control as you normally would, and

attach a ValidationCalloutExtender to it.

 As you can see from Table 20 - 1, most controls in the Ajax Control Toolkit are extenders that can
be attached to an existing ASP.NET control. Later in this section you ’ ll learn about most new Ajax
server - side controls, and then you will learn more about extenders.

 New Server Controls

 The AjaxControlToolkit.dll adds several ASP.NET controls to the Toolbox. Most of them are
very simple and intuitive to use. However, they have many properties and methods you can use.

Using the Controls of the Toolkit ❘ 915

CH020.indd 915CH020.indd 915 9/6/10 6:30:41 PM9/6/10 6:30:41 PM

916 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

An examination of all of them would not fi t into this chapter. Instead of showing all the nitty - gritty
details, this section focuses on getting started with these controls, and helps you to discover them
on your own.

 The best way to become familiar with the new server controls is to learn them through example.
You can download the ActControlSamples project from this book ’ s companion website
(www.wrox.com) and try the samples introduced here.

 The ComboBox Control

 The ComboBox control of the Toolkit is very similar
to the ComboBox control you can use with Windows
Forms. But, of course, you can use it with ASP.NET
applications. It can be described as a DropDownList
that can be typed directly into like a TextBox . The
semantics of ComboBox are also very similar to an
ASP.NET DropDownList .

 Open the ActControlSamples project. There
you ’ ll fi nd a page named ComboBoxSample.aspx .
This page contains a DropDownList control to set
the AutoCompleteMode property of the other two
 ComboBox controls on the page. The fi rst ComboBox
instance is initialized in the .aspx fi le; the second
picks up values from a database. When you run the
sample, you see the page shown in Figure 20 - 6.

 Listing 20 - 8 shows the source code of the UI.

 LISTING 20 - 8: ComboBoxSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”ComboBoxSample.aspx.cs”
 Inherits=”ActControlSamples.ComboBoxSample” % >

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax ComboBox sample < /title >
 < /head >
 < body >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < p >
 Select < code > AutoCompleteMode < /code > value from this

 FIGURE 20 - 6: ComboBoxSample.aspx page

CH020.indd 916CH020.indd 916 9/6/10 6:30:42 PM9/6/10 6:30:42 PM

 < code > DropDownList < /code > : < /p >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:DropDownList ID=”AutoCompleteModeList” runat=”server”
 AutoPostBack=”true”
 OnSelectedIndexChanged=”AutoCompleteModeList_SelectedIndexChanged” >
 < asp:ListItem Value=”None” / >
 < asp:ListItem Value=”Append” / >
 < asp:ListItem Value=”Suggest” / >
 < asp:ListItem Value=”SuggestAppend” / >
 < /asp:DropDownList >
 < p >
 Simple < code > ComboBox < /code > filled with numbers: < /p >
 < asp:ComboBox ID=”SimpleComboBox” runat=”server”
 AutoPostBack=”true”
 OnSelectedIndexChanged=”SimpleComboBox_SelectedIndexChanged”
 OnItemInserted=”SimpleComboBox_ItemInserted”
 OnItemInserting=”SimpleComboBox_ItemInserting” >
 < asp:ListItem Value=”0” > Please select a value < /asp:ListItem >
 < asp:ListItem Value=”1” > One < /asp:ListItem >
 < asp:ListItem Value=”2” > Two < /asp:ListItem >
 < asp:ListItem Value=”3” > Three < /asp:ListItem >
 < asp:ListItem Value=”4” > Four < /asp:ListItem >
 < /asp:ComboBox >
 & nbsp;
 < asp:Label ID=”SimpleComboLabel” runat=”server” Text=”” / > < br / >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < p >
 < code > ComboBox < /code > filled from a database: < /p >
 < asp:ComboBox ID=”DataBoundComboBox” runat=”server”
 AutoPostBack=”True”
 OnSelectedIndexChanged=”DataBoundComboBox_SelectedIndexChanged”
 DataSourceID=”ExpertDataSource”
 DataTextField=”Name”
 DataValueField=”ID”
 MaxLength=”0” >
 < /asp:ComboBox >
 < asp:AccessDataSource ID=”ExpertDataSource” runat=”server”
 DataFile=”~/App_Data/ExpertData.mdb”
 SelectCommand=”SELECT * FROM [Expertise]” >
 < /asp:AccessDataSource > & nbsp;
 < asp:Label ID=”DataBoundComboLabel” runat=”server” Text=”” / > < br / >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [ComboBoxSample.aspx] available for download at Wrox.com

 You can encapsulate the ComboBox controls into an UpdatePanel . However, it is not required to
make them work. You can see that the SimpleComboBox is wrapped in an UpdatePanel , while

Using the Controls of the Toolkit ❘ 917

CH020.indd 917CH020.indd 917 9/6/10 6:30:42 PM9/6/10 6:30:42 PM

918 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 DataBoundComboBox is not. The two ComboBox instances raise a few events that let you examine
how they work. Both of them respond to the SelectedIndexChanged event, and display the current
selection. Listing 20 - 9 shows the code behind the UI.

 LISTING 20 - 9: ComboBoxSample.aspx.cs

using System;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
using AjaxControlToolkit;

namespace ActControlSamples
{
 public partial class ComboBoxSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void AutoCompleteModeList_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 var autoComplete = (ComboBoxAutoCompleteMode)Enum.Parse(
 typeof(ComboBoxAutoCompleteMode),
 AutoCompleteModeList.SelectedValue);
 SimpleComboBox.AutoCompleteMode = autoComplete;
 DataBoundComboBox.AutoCompleteMode = autoComplete;
 }

 protected void SimpleComboBox_SelectedIndexChanged(object sender, EventArgs e)
 {
 SimpleComboLabel.Text = String.Format(“{0}: {1}”,
 SimpleComboBox.SelectedValue, SimpleComboBox.SelectedItem);
 }

 protected void SimpleComboBox_ItemInserted(object sender,
 ComboBoxItemInsertEventArgs e)
 {
 SimpleComboLabel.Text = String.Format(“{0}: {1}”,
 SimpleComboBox.SelectedValue, SimpleComboBox.SelectedItem);
 }

 protected void SimpleComboBox_ItemInserting(object sender,
 ComboBoxItemInsertEventArgs e)
 {
 if (e.Item.Text.StartsWith(“Q”))
 {
 e.Cancel = true;
 return;
 }

CH020.indd 918CH020.indd 918 9/6/10 6:30:43 PM9/6/10 6:30:43 PM

 if (e.Item.Text.StartsWith(“E”))
 e.InsertLocation = ComboBoxItemInsertLocation.OrdinalText;
 else if (e.Item.Text.StartsWith(“N”))
 {
 e.InsertLocation = ComboBoxItemInsertLocation.Append;
 e.Item.Value = SimpleComboBox.Items.Count.ToString();
 }
 }

 protected void DataBoundComboBox_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 DataBoundComboLabel.Text = String.Format(“{0}: {1}”,
 DataBoundComboBox.SelectedValue, DataBoundComboBox.SelectedItem);
 }
 }
}

 Code fi le [ComboBoxSample.aspx.cs] available for download at Wrox.com

 The AutoCompleteModeList allows you to select the value of the AutoCompleteMode property. This
determines how the ComboBox automatically completes the text that is typed into it:

 When Suggest is specifi ed, the ComboBox will show the list, highlight the fi rst matched
item, and, if necessary, scroll the list to show the highlighted item.

 When Append is specifi ed, the ComboBox will
append the remainder of the fi rst matched
item to the user - typed text, and highlight the
appended text.

 When SuggestAppend is specifi ed, both of
these behaviors are applied.

 When None (the default value) is specifi ed,
the ComboBox ’ s auto - complete behaviors are
disabled.

 Figure 20 - 7 shows how the SimpleComboBox behaves
when the SuggestAppend mode is selected.

 The most interesting method in Listing 20 - 9 is
 SimpleComboBox_ItemInserting that is invoked
when a text value is about to be inserted into the
combo box. This method cancels the insertion for any
text starting with the letter Q . By default, the new text
is appended at the end of the list. But this code changes
this behavior so that, when you insert a text starting
with E , it will be inserted into the list according the
new text ’ s ordinal (alphabetical) position.

➤

➤

➤

➤

 FIGURE 20 - 7: ComboBox using

AutoCompleteMode set to SuggestAppend

Using the Controls of the Toolkit ❘ 919

CH020.indd 919CH020.indd 919 9/6/10 6:30:43 PM9/6/10 6:30:43 PM

920 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The new text is inserted with the same value
as the text. However, you can change it.
 SimpleComboBox_ItemInserting changes this
logic so that, for any text starting with N , the value
will be changed to an integer sequential number. In
Figure 20 - 8, you can see the results.

 Type the following text into the fi rst ComboBox
and enter each by pressing Tab (use this order):
 Five , Quarter , Six , Seven , Eight , Nine . “ Quarter ”
starts with Q , so it is not inserted at all. All numbers
are appended at the end of the list, except “ Eight ”
because it starts with E . All numbers have the
same value and text (check the text of the label to
the right of the combo) except “ Nine, ” because it
starts with N .

 There are a few other properties of ComboBox you
can use to change the control ’ s behavior. Table 20 - 2
summarizes them. FIGURE 20 - 8: Checking the insertion logic

of SimpleComboBox

 TABLE 20 - 2: ComboBox Properties

 PROPERTY DESCRIPTION

 DropDownStyle Determines whether the user is allowed to enter text that does not

match an item in the list, and whether the list is always displayed.

If DropDownList is specifi ed, users are not allowed to enter text

that does not match an item in the list. When DropDown (the default

value) is specifi ed, any text is allowed. If Simple is specifi ed, any

text is allowed and the list is always displayed, regardless of the

 AutoCompleteMode property value.

 CaseSensitive Specifi es whether user - typed text is matched to items in the list in

a case - sensitive manner. The default is false .

 RenderMode Specifi es whether the ComboBox is rendered as an Inline or

 Block level HTML element. The default is Inline .

 ItemInsertLocation Determines whether to Append or Prepend new items when they

are inserted into the list, or whether to insert them in an Ordinal

manner (alphabetically) based on the item Text or Value . The

default is Append .

 ListItemHoverCssClass When specifi ed, replaces the default styles applied to highlighted

items in the list with a custom CSS class.

CH020.indd 920CH020.indd 920 9/6/10 6:30:44 PM9/6/10 6:30:44 PM

 Open the TabContainerSample.aspx page to look at its details. The page uses UpdatePanel control
to refresh the TabContainer content triggered by the selection changes in the drop - down list you
can see at the top of Figure 20 - 9. Listing 20 - 10 shows the structure of the TabContainer control.

 LISTING 20 - 10: TabContainerSample.asxp (Code Extract)

 < asp:TabContainer ID=”TabContainer1” runat=”server”
 AutoPostBack=”true”
 onactivetabchanged=”TabContainer1_ActiveTabChanged” >
 < asp:TabPanel ID=”DataPanel” HeaderText=”Data” runat=”server” >
 < ContentTemplate >
 < table >
 < tr valign=”top” >
 < td > Expertise: < /td >
 < td >
 < asp:Label ID=”ExpertiseLabel” runat=”server” Text=”” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < td > Description: < /td >

 The TabContainer Control

 You can use the TabContainer control to organize a page into several panels. A TabContainer
is a host for a number of TabPanel controls. The ActControlSamples project contains
a TabContainerSample page that provides a similar view of experts, as you ’ ve built it in
the FindAnExpertDemo project. Figure 20 - 9 and Figure 20 - 10 shows the two tabs of the
 TabContainer used by the page.

 FIGURE 20 - 9: The Data tab of

TabContainerSample.aspx

 FIGURE 20 - 10: The Photo tab of

TabContainerSample.aspx

Using the Controls of the Toolkit ❘ 921

continues

CH020.indd 921CH020.indd 921 9/6/10 6:30:44 PM9/6/10 6:30:44 PM

922 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 LISTING 20-10 (continued)

 < td >
 < asp:Label ID=”DescriptionLabel” runat=”server” Text=”” / >
 < /td >
 < /tr >
 < /table >
 < /ContentTemplate >
 < /asp:TabPanel >
 < asp:TabPanel ID=”PhotoPanel” HeaderText=”Photo” runat=”server” >
 < ContentTemplate >
 < br / >
 < asp:Image ID=”Photo” runat=”server”
 Height=”128px” Width=”128px” / >
 < br / >
 < /ContentTemplate >
 < /asp:TabPanel >
 < /asp:TabContainer >

 Code fi le [TabContainerSample.aspx] available for download at Wrox.com

 You can embed zero, one, or more TabPanel control instances into a TabContainer . Each
 TabPanel can defi ne a number of child controls within its < ContentTemplate > element. You can
also catch the event when the active tab has been changed. Listing 20 - 11 shows the code belonging
to TabContainerSample.aspx .

 LISTING 20 - 11: TabContainerSample.aspx.cs

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ActControlSamples
{
 public partial class TabContainerSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void ExpertList_SelectedIndexChanged(object sender, EventArgs e)
 {
 var fields = ExpertList.SelectedValue.Split(‘$’);
 var expLabel =
 Page.FindControl(“TabContainer1$DataPanel$ExpertiseLabel”) as Label;
 expLabel.Text = fields[0];
 var descrLabel =
 Page.FindControl(“TabContainer1$DataPanel$DescriptionLabel”) as Label;
 descrLabel.Text = fields[1];
 var photo =
 Page.FindControl(“TabContainer1$PhotoPanel$Photo”) as Image;
 photo.ImageUrl = “/Photos/” + fields[2] +”.png”;

CH020.indd 922CH020.indd 922 9/6/10 6:30:45 PM9/6/10 6:30:45 PM

 }

 protected void TabContainer1_ActiveTabChanged(object sender, EventArgs e)
 {
 ActiveTabLabel.Text = TabContainer1.ActiveTab.ID;
 }

 protected void ExpertList_DataBound(object sender, EventArgs e)
 {
 ExpertList_SelectedIndexChanged(ExpertList, EventArgs.Empty);
 TabContainer1_ActiveTabChanged(ExpertList, EventArgs.Empty);
 }
 }
}

 Code fi le [TabContainerSample.aspx.cs] available for download at Wrox.com

 The ExpertList_SelectedIndexChanged event handler method splits the SelectedValue string
that contains the expert data, (such as Expertise , Description , and Photo) separated by dollar
signs, and sets the appropriate label and image control properties with these values. Note that the
controls within TabPanes cannot be accessed directly, because they do not have member fi elds
within the class representing the page. You can address them with the Page.FindControl method.
For example, the control with the identifi er Photo within the PhotoPanel tab can be accessed with
the address TabContainer1$PhotoPanel$Photo .

 The TabContainer1_ActiveTabChanged event handler displays the identifi er of the selected
tab. The ExpertList control is a data - bound control. As soon as its content is read and set up, the
 ExpertList_DataBound method is called, and the information within the TabContainer is refreshed.

 Although Listing 20 - 10 does not show it, the TabContainer and the label displaying the active tab
is wrapped with an UpdatePanel , so all event handling happens asynchronously.

 The TabContainer control contains several interesting properties summarized in Table 20 - 3.

 TABLE 20 - 3: TabContainer Properties

 PROPERTY DESCRIPTION

 ActiveTabChanged This event is fi red on the server side when a tab is changed

after a postback.

 OnClientActiveTabChanged The name of a JavaScript function to attach to the client - side

 tabChanged event.

 CssClass A CSS class override used to defi ne a custom look and feel for

the tabs.

 ActiveTabIndex The index of the TabPanel to show.

 Height Sets the height of the body of the tabs (does not include the

 TabPanel headers).

Using the Controls of the Toolkit ❘ 923

continues

CH020.indd 923CH020.indd 923 9/6/10 6:30:45 PM9/6/10 6:30:45 PM

924 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The TabPanel controls can be customized through the properties described in Table 20 - 4.

 PROPERTY DESCRIPTION

 Width Sets the width of the body of the tabs.

 ScrollBars Sets the mode to display scrollbars in the body of the

 TabContainer . The values are taken from the ScrollBars

enumerated type (None , Horizontal , Vertical , Both , Auto).

 TabStripPlacement Tells whether to render the tabs on top of the container or below

(Top , Bottom).

TABLE 20-3 (continued)

 TABLE 20 - 4: TabPanel Properties

 PROPERTY DESCRIPTION

 Enabled This fl ag tell whether to display the Tab for the TabPanel by default. This

can be changed on the client.

 OnClientClick The name of a JavaScript function to attach to the client - side click event

of the tab.

 HeaderText The text to display in the tab.

 HeaderTemplate A single - instance template to use to render the header.

 ContentTemplate A single - instance template to use to render the body.

 The Accordion Control

 The Accordion control lets you defi ne multiple panes and display them one at a time. It is like
having several CollapsiblePanelExtender controls, where only one can be expanded at a time.
The Accordion control contains one or more AccordionPane controls. Each AccordionPane
control has a template for its header and its content. The control can also be data - bound.

 It ’ s very easy to create an Accordion control. The AccordionSample.aspx page of the
 ActControlSamples project is a good demonstration of an Accordion control with three
 AcordionPanes . Listing 20 - 12 shows the control ’ s defi nition.

 LISTING 20 - 12: AccordionSample.aspx (Code Extract)

 < asp:Accordion ID=”Accordion1” runat=”server”
 Width=”300px”
 HeaderCssClass=”header”
 HeaderSelectedCssClass=”selectedheader”

CH020.indd 924CH020.indd 924 9/6/10 6:30:46 PM9/6/10 6:30:46 PM

 ContentCssClass=”content”
 AutoSize=”None” >
 < Panes >
 < asp:AccordionPane ID=”AccordionPane1” runat=”server” >
 < Header > Expert #1 < /Header >
 < Content >
 This expert has been chief programmer at several enterprise
 projects building business applications with Visual Basic.
 He’s especially strong in developing middleware components.
 < /Content >
 < /asp:AccordionPane >
 < asp:AccordionPane ID=”AccordionPane2” runat=”server” >
 < Header > Expert #2 < /Header >
 < Content >
 He works as a solution architect at GigaSystems Co. He
 published a number of books in the last five years treating
 C# architecture patterns.
 < /Content >
 < /asp:AccordionPane >
 < asp:AccordionPane ID=”AccordionPane3” runat=”server” >
 < Header > Expert #3 < /Header >
 < Content >
 She started her own company named VBToTheTop in 2003 and now
 she’s a well-known mentor for Visual Basic developers
 working in Europe.
 < /Content >
 < /asp:AccordionPane >
 < /Panes >
 < /asp:Accordion >

 Code fi le [AccordionSample.aspx] available for download at Wrox.com

 By default, the Accordion control does not assign any specifi c
styles to the elements of the control. And, without styles, the
control works, but when you see it in a web page, you would not
think it is interactive at all. Figure 20 - 11 shows how the control
looks like with its default style.

 You can set up the HeaderCssClass , HeaderSelectedCssClass ,
and ContentCssClass properties to provide a more attractive (and
intuitive) look for the control, as shown in Figure 20 - 12.

 When you click one of the headers, the control provides a smooth
animation to show the content behind the clicked header. The
 TransitionDuration property allows setting the length of time
to use to transition between Accordion panes in milliseconds;
the default value is 250. You can set the FramesPerSecond
property to defi ne the number of steps per second in the transition
animations; the default value is 30. With the FadeTransitions
fl ag, you can infl uence whether to fade the accordion panes when
transitioning.

 FIGURE 20 - 11: The default style

of the Accordion control

 FIGURE 20 - 12: Providing custom

style for the Accordion control

Using the Controls of the Toolkit ❘ 925

CH020.indd 925CH020.indd 925 9/6/10 6:30:47 PM9/6/10 6:30:47 PM

926 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 You will fi nd another page named AccordionWithDataSample.aspx in the sample project that
demonstrates how easy it is to bind an Accordion control with a data source. Listing 20 - 13 shows
the full source code of this fi le.

 LISTING 20 - 13: AccordionWithDataSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”AccordionWithDataSample.aspx.cs”
 Inherits=”ActControlSamples.AccordionSample” % >

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax Accordion control sample < /title >
 < link rel=”Stylesheet” href=”/Styles/Accordion.css” / >
 < /head >
 < body style=”font-family:verdana;font-size:12px” >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < p >
 Select experts to list in the < code > Accordion < /code > control < /p >
 < asp:DropDownList ID=”ExpertiseList” runat=”server”
 AutoPostBack=”true”
 DataSourceID=”ExpertiseDataSource”
 DataTextField=”Name” DataValueField=”ID” >
 < /asp:DropDownList >
 < br / > < br / >
 < asp:AccessDataSource ID=”ExpertiseDataSource” runat=”server”
 DataFile=”~/App_Data/ExpertData.mdb”
 SelectCommand=”SELECT [ID], [Name] FROM [Expertise]” > < /asp:AccessDataSource >
 < asp:AccessDataSource ID=”ExpertDataSource” runat=”server”
 DataFile=”~/App_Data/ExpertData.mdb”
 SelectCommand=”SELECT * FROM [Expert] WHERE ([Expertise] = ?)” >
 < SelectParameters >
 < asp:ControlParameter ControlID=”ExpertiseList”
 Name=”Expertise” PropertyName=”SelectedValue”
 Type=”Int16” / >
 < /SelectParameters >
 < /asp:AccessDataSource >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:Accordion ID=”Accordion1” runat=”server”
 Width=”300px”
 HeaderCssClass=”header”
 HeaderSelectedCssClass=”selectedheader”
 ContentCssClass=”content”
 AutoSize=”None”

CH020.indd 926CH020.indd 926 9/6/10 6:30:47 PM9/6/10 6:30:47 PM

 DataSourceID=”ExpertDataSource” >
 < HeaderTemplate >
 < asp:Label ID=”Label1” runat=”server”
 Text=’ < %# HttpUtility.HtmlEncode(Convert.ToString(Eval(“Name”))) % > ’ / >
 < /HeaderTemplate >
 < ContentTemplate >
 < table >
 < tr >
 < td >
 < asp:Label ID=”Label1” runat=”server”
 Text=’ < %# HttpUtility.HtmlEncode(Convert.ToString(
 Eval(“Description”))) % > ’ / >
 < /td >
 < td >
 < asp:Image ID=”Image1” runat=”server” Width=”128px” Height=”128px”
 ImageUrl=’ < %# “/Photos/” + HttpUtility.HtmlEncode(
 Convert.ToString(Eval(“Photo”))) + “.png” % > ’ / >
 < /td >
 < /tr >
 < /table >
 < /ContentTemplate >
 < /asp:Accordion >
 < /ContentTemplate >
 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”ExpertiseList” / >
 < /Triggers >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [AccordionWithDataSample.aspx] available for download at Wrox.com

 This fi le defi nes two data sources: one for the ExpertiseList
control, and one for the Accordion . These data sources are
bound, so, when you select a new item in the ExpertiseList ,
the Accordion ’ s data source is refreshed with the experts
having the specifi ed expertise — with no extra coding.
The DataSourceID property of the Accordion is set to this
data source. However, you must explicitly call the DataBind
method:

protected void Page_Load(object sender, EventArgs e)
{
 Accordion1.DataBind();
}

 The data is displayed according to the HeaderTemplate and
 ContentTemplate defi nitions. Figure 20 - 13 shows the page
in action.

 FIGURE 20 - 13: Accordion control

using data binding

Using the Controls of the Toolkit ❘ 927

CH020.indd 927CH020.indd 927 9/6/10 6:30:47 PM9/6/10 6:30:47 PM

928 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The control has several other properties not examined here, yet which are also very useful when
customizing the Accordion control. Table 20 - 5 describes them.

 TABLE 20 - 5: Accordion Properties

 PROPERTY DESCRIPTION

 AutoSize This value specifi es how to restrict the layout of the Accordion

control:

 None — The control grows and shrinks without restriction.

 Limit — The Accordion control never grows larger than the value

specifi ed by its Height property. This causes the content to scroll if

the content is too long to be displayed in the allotted space.

 Fill — The control is a fi xed size, as specifi ed in its Height

property. This causes the content to expand or shrink if the content

does not fi t exactly into the allotted space.

 RequireOpenedPane This value specifi es that the currently opened pane does not close

when its header is clicked (which ensures one pane is always open).

The default is true .

 SuppressHeaderPostbacks This fl ag specifi es whether the client - side click handlers of elements

inside a header are called. This is useful when you want to include

hyperlinks in the headers for accessibility.

 The AsyncFileUpload Control

 The standard ASP.NET FileUpload control does not work within an Ajax UpdatePanel . If you
want to place it in an update panel, then a postback trigger is also required to upload the fi le. The
Toolkit ’ s AsyncFileUpload control allows you to upload the fi le in an asynchronous manner, and
it works with UpdatePanel . A great advantage of this control is that it uploads the fi le without any
postback, and provides both client - side and server - side events.

 The control provides different coloring options for fi le uploads. For example, it can have a green
background when the fi le is uploaded successfully and a red one when upload fails. You can also
show a “ progress ” image while fi le uploading is in progress.

 You can fi nd the AsyncFileUploadSample.aspx page in the ActControlSamples project to
examine how this control works. This page contains client - side scripts, as shown in Listing 20 - 14.

 LISTING 20 - 14: AsynchFileUploadSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”AsynchFileUploadSample.aspx.cs”
 Inherits=”ActControlSamples.AsynchFileUploadSample” % >

CH020.indd 928CH020.indd 928 9/6/10 6:30:48 PM9/6/10 6:30:48 PM

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax AsynchFileUpload control sample < /title >
 < script type=”text/javascript” language=”javascript” >
 function onStartUpload(sender, args) {
 document.getElementById(‘StatusLabel’).innerText =
 ‘File is being uploaded.’;
 }

 function onUploadError(sender, args)
 {
 var fileName = args.get_fileName();
 var errorMessage = args.get_errorMessage();
 document.getElementById(‘StatusLabel’).innerHTML = fileName +
 “ & nbsp; < span style=’color:red;’ > ” + errorMessage + “ < /span > ”;
 }

 function onUploadComplete(sender, args)
 {
 var fileName = args.get_fileName();
 var contentType = args.get_contentType();
 var text = fileName + “ is uploaded. < br/ > Size: “ +
 args.get_length() + “ bytes”;
 if (contentType.length > 0)
 {
 text += “, content type: ‘” + contentType + “’.”;
 }
 document.getElementById(‘StatusLabel’).innerHTML = text;
 }
 < /script >
 < /head >
 < body style=”font-family: verdana; font-size: 12px” >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < p >
 Select a file to upload < /p >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < asp:AsyncFileUpload ID=”AsyncFileUpload1” runat=”server”
 Width=”400px”
 OnClientUploadError=”onUploadError”
 OnClientUploadStarted=”onStartUpload”
 OnClientUploadComplete=”onUploadComplete”
 CompleteBackColor=”Lime”
 UploaderStyle=”Traditional” ErrorBackColor=”#FF5050”
 ThrobberID=”Throbber”
 OnUploadedComplete=”AsyncFileUpload1_UploadedComplete”
 UploadingBackColor=”LightBlue” / >

Using the Controls of the Toolkit ❘ 929

continues

CH020.indd 929CH020.indd 929 9/6/10 6:30:48 PM9/6/10 6:30:48 PM

930 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

LISTING 20-14 (continued)

 < asp:Label ID=”Throbber” runat=”server” Style=”display: none” >
 < img src=”Images/UploadIndicator.gif” align=”absmiddle”
 alt=”loading” / >
 < /asp:Label >
 < br / >
 < br / >
 < asp:Label ID=”StatusLabel” runat=”server” / >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [AsynchFileUploadSample.aspx] available for download at Wrox.com

 The AsyncFileUpload control in the page sets up several properties. Table 20 - 6 summarizes the
properties you can use with the control.

 TABLE 20 - 6: AsyncFileUpload Properties

 PROPERTY DESCRIPTION

 CompleteBackColor The control ’ s background color to set when upload has

completed.

 ContentType Gets the MIME content type of a fi le sent by a client.

 ErrorBackColor The control ’ s background color to set when an upload error

occurs.

 FileContent Gets a Stream object that points to an uploaded fi le to prepare

for reading the contents of the fi le.

 FileName Gets the name of a fi le on a client to upload using the control.

 HasFile Gets a fl ag indicating whether the control contains a fi le.

 OnClientUploadComplete The name of a JavaScript function executed on the client side

after the fi le is successfully uploaded.

 OnClientUploadError The name of a JavaScript function executed on the client side if

the fi le uploading failed.

 OnClientUploadStarted The name of a JavaScript function executed on the client side on

the fi le uploading started.

 PostedFile Gets an HttpPostedFile object that provides access to the

uploaded fi le.

CH020.indd 930CH020.indd 930 9/6/10 6:30:49 PM9/6/10 6:30:49 PM

 The control in Listing 20 - 14 uses a multi - frame GIF image to signal the progress of the update. This
image is bound to the AsyncFileUpload control through the ThrobberID property:

 < asp:AsyncFileUpload ID=”AsyncFileUpload1” runat=”server” ...
 ThrobberID=”Throbber” ... / >
 < asp:Label ID=”Throbber” runat=”server” Style=”display: none” >
 < img src=”Images/UploadIndicator.gif” align=”absmiddle” alt=”loading” / >
 < /asp:Label >

 The onStartUpload , onUploadError and onUploadComplete JavaScript functions are
associated with the client event properties. You can call the get_fileName , get_errorMessage ,
 get_contentType , get_length , and get_path methods of the args event parameter to access the
corresponding properties of the fi le uploaded. For example, onUploadComplete uses this to display
information about the fi le:

function onUploadComplete(sender, args)
{
 var fileName = args.get_fileName();
 var contentType = args.get_contentType();
 var text = fileName + “ is uploaded. < br/ > Size: “ +
 args.get_length() + “ bytes”;
 if (contentType.length > 0)
 {
 text += “, content type: ‘” + contentType + “’.”;
 }
 document.getElementById(‘StatusLabel’).innerHTML = text;
}

 Figure 20 - 14 shows an example how fi le information is displayed when the control successfully
completes the upload process.

 When there is any problem during the upload, the onUploadError client function displays the
status, as shown in Figure 20 - 15.

 PROPERTY DESCRIPTION

 ThrobberID The ID of the control that is shown while the fi le is uploading.

 UploaderStyle The control ’ s appearance style (Traditional or Modern).

 UploadingBackColor The control ’ s background color when uploading is in progress.

The default value is White .

 Width The control ’ s width.

 FIGURE 20 - 14: A fi le has been successfully

uploaded.

 FIGURE 20 - 15: The fi le upload failed.

Using the Controls of the Toolkit ❘ 931

CH020.indd 931CH020.indd 931 9/6/10 6:30:49 PM9/6/10 6:30:49 PM

932 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The AsyncFileUpload control sends a postback to the page when the fi le upload is successfully
completed. You can respond to this event and save the fi le, as shown in Listing 20 - 15.

 LISTING 20 - 15: AsynchFileUpload.aspx.cs

using System;
using System.IO;
using AjaxControlToolkit;

namespace ActControlSamples
{
 public partial class AsynchFileUploadSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void AsyncFileUpload1_UploadedComplete(object sender,
 AsyncFileUploadEventArgs e)
 {
 if (AsyncFileUpload1.HasFile)
 {
 string strPath = MapPath(“~/Uploads/”) + Path.GetFileName(e.filename);
 AsyncFileUpload1.SaveAs(strPath);
 }
 }
 }
}

 Code fi le [AsynchFileUpload.aspx.cs] available for download at Wrox.com

 Although the AsyncFileUpload control is very easy to use, there are some issues
with it. Once the fi le is uploaded, there is no way to clear the content of fi le
upload control. There is no way to cancel the upload or to monitor the progress
of uploading. Uploading starts as soon as you select the fi le. It stores the fi les in
the session.

 The Editor Control

 The Editor control of the Ajax Control Toolkit (formerly named HtmlEditor) provides rich
editor functionality to easily create and edit HTML content. With the editor, you can use many
formatting functions, including fonts, color, indentations, bulleted and numbered lists, hyperlinks,
and many more. The functions can be accessed through toolbar items and keyboard shortcuts. The
control provides a view of the generated HTML markup and a preview of the edited document.

CH020.indd 932CH020.indd 932 9/6/10 6:30:50 PM9/6/10 6:30:50 PM

 The EditorSample.aspx page of the sample project provides an example of using the Editor
control. You can edit your content in the editor, and, by clicking the Submit button, you can post it
back to display the content on the page. Figure 20 - 16 shows this example in action.

 FIGURE 20 - 16: EditorSample.aspx in action

 Although you can see a complex UI with toolbars and lots of buttons, the source code declaring the
page is really simple, as shown in Listing 20 - 16.

 LISTING 20 - 16: EditorSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”EditorSample.aspx.cs”
 Inherits=”ActControlSamples.EditorSample” % >

 < %@ Register Assembly=”AjaxControlToolkit”
 Namespace=”AjaxControlToolkit.HTMLEditor”
 TagPrefix=”asp” % >
 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >

Using the Controls of the Toolkit ❘ 933

continues

CH020.indd 933CH020.indd 933 9/6/10 6:30:53 PM9/6/10 6:30:53 PM

934 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

LISTING 20-16 (continued)

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax Editor control sample < /title >
 < /head >
 < body style=”font-family:verdana;font-size:12px” >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >
 < p > Use the editor to create a text: < /p >
 < asp:Editor ID=”Editor1” runat=”server”
 OnContentChanged=”Editor1_ContentChanged” / >
 < asp:Label ID=”ChangedLabel” runat=”server” ForeColor=”Red”
 Text=”The content has been changed since the last submit.”
 Visible=”False” / >
 < br / >
 < br / >
 < asp:Button id=”SubmitButton” runat=”server”
 Text=”Submit”
 Onclick=”SubmitButton_Click” / >
 & nbsp;
 < hr / >
 < p > The following text has been entered into the editor: < /p >
 < asp:Literal id=”EditorContentLiteral” Runat=”server” / >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [EditorSample.aspx] available for download at Wrox.com

 As you see from the code, the only real property set after dragging the Editor control from the
Toolbox to the page is OnContentChanged . The logic of the page checks if the content has changed
since the last time it was submitted, and signals it on the screen with the ChangedLabel control.

 Not only is the UI defi nition simple, but the code behind the UI is simple as well, as shown in
Listing 20 - 17.

 LISTING 20 - 17: EditorSample.aspx.cs

using System;

namespace ActControlSamples
{
 public partial class EditorSample : System.Web.UI.Page

CH020.indd 934CH020.indd 934 9/6/10 6:30:54 PM9/6/10 6:30:54 PM

 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void SubmitButton_Click(object sender, EventArgs e)
 {
 EditorContentLiteral.Text = Editor1.Content;
 var changed = Session[“EditorContentChanged”];
 if (changed != null)
 ChangedLabel.Visible = (bool)changed;
 Session[“EditorContentChanged”] = false;
 }

 protected void Editor1_ContentChanged(object sender, EventArgs e)
 {
 Session[“EditorContentChanged”] = true;
 }
 }
}

 Code fi le [EditorSample.aspx.cs] available for download at Wrox.com

 The control does not need any special initialization, so the Page_Load method is empty. Both the
 SubmitButton_Click and the Editor1_ContentChanged methods are fi red when the page is posted
back as a result of clicking the Submit button. First, the Editor1_ContentChanged runs then
 SubmitButton_Click .

 The HTML content of the editor is accessed through the Content property. Because it is an HTML
string, you can directly assign it to the Text property of the EditorContentLiteral control. The
 Session stores whether or not the content was changed from the last submit, and ChangedLabel
visibility is set accordingly.

 Table 20 - 7 summarizes the properties you can use with the Editor control.

 TABLE 20 - 7: Editor Properties

 PROPERTY DESCRIPTION

 ActiveMode Sets the active editing panel (Design , Html , Preview) to

use when the control is loaded. The default is Design .

 AutoFocus If this fl ag is set to true , the editing panel is focused and

the cursor is set inside it (Design or HTML view) on initial

load or editing panel change.

 Content Gets or sets the HTML content of the Editor .

 CssClass A CSS class override that is used to defi ne a custom look

and feel for the Editor .

Using the Controls of the Toolkit ❘ 935

continues

CH020.indd 935CH020.indd 935 9/6/10 6:30:54 PM9/6/10 6:30:54 PM

936 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The richness of functionality that the Editor control provides may be an issue when you want to
constrain the available formatting options. You have no properties to enable or disable specifi c
editor features. However, it does not mean that you cannot solve this issue. You can derive a new
custom ASP.NET control from Editor , customize it, and use this derived editor in your pages.

 The ActControlSamples project contains an example of this customization. There is a page named
 CutomEditorSample.aspx that is an exact copy of EditorSample.aspx you ’ ve seen earlier — it
uses an Editor - derived class instead of the original control. Listing 20 - 18 shows how easy is to
carry out the customization.

 PROPERTY DESCRIPTION

 DesignPanelCssPath Sets the path of additional CSS fi le used for Editor ’ s

content rendering in Design panel. If not set, the default

CSS fi le is used, which is embedded as a WebResource

and is a part of the Toolkit assembly.

 DocumentCssPath Sets the path of CSS fi le used for Editor ’ s content

rendering in Design and Preview panels. If not set,

the default CSS fi le is used, which is embedded as a

 WebResource and is a part of the Toolkit assembly.

 Height Sets the height of the body of the Editor .

 HtmlPanelCssClass A CSS class override used to defi ne a custom look for the

 Editor ’ s HTML mode panel.

 IgnoreTab If this fl ag is set to true , Tab key navigation is suppressed

inside the Editor control.

 InitialCleanUp If true , the Editor ’ s content is cleaned up on initial load.

Microsoft Word - specifi c tags are removed.

 NoScript If true , JavaScript code is suppressed in Editor ’ s

content.

 NoUnicode If true , all Unicode characters in HTML content are

replaced with & #code;.

 OnClientActiveModeChanged This is the client - side script that executes after active

mode (editing panel) has changed.

 OnClientBeforeActiveModeChanged The client - side script that executes before active mode

(editing panel) has changed.

 SuppressTabInDesignMode If true , no white spaces are inserted on Tab key press

in Design mode. The default Tab key navigation is

processing in this case.

 Width Sets the width of the body of the editor.

TABLE 20-7 (continued)

CH020.indd 936CH020.indd 936 9/6/10 6:30:55 PM9/6/10 6:30:55 PM

 LISTING 20 - 18: CustomEditor.cs

using AjaxControlToolkit.HTMLEditor;
using ToolbarButton = AjaxControlToolkit.HTMLEditor.ToolbarButton;

namespace ActControlSamples
{
 public class CustomEditor : Editor
 {
 protected override void FillTopToolbar()
 {
 TopToolbar.Buttons.Add(new ToolbarButton.Undo());
 TopToolbar.Buttons.Add(new ToolbarButton.Redo());
 TopToolbar.Buttons.Add(new ToolbarButton.HorizontalSeparator());
 TopToolbar.Buttons.Add(new ToolbarButton.Bold());
 TopToolbar.Buttons.Add(new ToolbarButton.Italic());
 TopToolbar.Buttons.Add(new ToolbarButton.Underline());
 TopToolbar.Buttons.Add(new ToolbarButton.StrikeThrough());
 TopToolbar.Buttons.Add(new ToolbarButton.SubScript());
 TopToolbar.Buttons.Add(new ToolbarButton.SuperScript());
 TopToolbar.Buttons.Add(new ToolbarButton.HorizontalSeparator());
 TopToolbar.Buttons.Add(new ToolbarButton.Cut());
 TopToolbar.Buttons.Add(new ToolbarButton.Copy());
 TopToolbar.Buttons.Add(new ToolbarButton.PasteText());
 }

 protected override void FillBottomToolbar()
 {
 }
 }
}

 Code fi le [CustomEditor.cs] available for download at Wrox.com

 The AjaxControlToolkit.HTMLEditor
.ToolbarButton class has several nested
classes representing editor buttons on the
toolbar. With overriding of the FillTopToolbar
and FillBottomToolbar methods, you
can defi ne your own buttons — and so
you can constrain the functionality of
your editor.

 The CustomEditor class keeps the bottom
toolbar empty, and so allows you to use
only the Design edit panel. The top toolbar
contains only font formatting buttons.
Figure 20 - 17 shows this custom editor
in action.

 FIGURE 20 - 17: Customized Editor control in action

Using the Controls of the Toolkit ❘ 937

CH020.indd 937CH020.indd 937 9/6/10 6:30:55 PM9/6/10 6:30:55 PM

938 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 Control Extenders

 A majority of controls in the Ajax Control Toolkit are extenders. They cannot be used as individual
controls. They are always attached to another ASP.NET control to add value by extending
that control ’ s behavior. This section examines almost all extender controls in the Toolkit.

 All extenders have a TargetControlID property that can be used to identify the control to which
the extender is attached. Consider the following example:

 < asp:Button ID=”DisableButton” runat=”server”
 Text=”Disable this CheckBox”
 OnClick=”DisableButton_Click” / >
 < asp:ConfirmButtonExtender ID=”ConfirmButtonExtender1” runat=”server”
 TargetControlID=”DisableButton”
 ConfirmText=”Are you sure you want to do that?” / >

 This structure implicitly tells you that an extender can have exactly one control to which it is
attached. However, a control may have zero, one, or more extenders extending it.

 Most of extenders have many more properties than introduced and demonstrated in
this section ’ s samples. For a complete reference of properties visit the Ajax Control
Toolkit Sample site (http://www.asp.net/ajax/ajaxcontroltoolkit/samples).

 Button and Checkbox Extenders

 Two extenders can be attached to CheckBox controls:

 ToggleButtonExtender enables the use of custom images to show the state of the CheckBox
without affecting the attached CheckBox ’ s behavior.

 With MutuallyExclusiveCheckBoxExtender , you can add a number of checkboxes to the
same “ Key, ” and only one CheckBox with the specifi ed key can be checked at a time.

 The third control, ConfirmButtonExtender ,
catches clicks on a button (or on any instance
of a type that is derived from Button , such as
a LinkButton) and displays a message to the
user. If the user clicks OK, the button or link
functions normally.

 The ButtonExtendersSample.aspx page
in the sample project demonstrates these
concepts. Figure 20 - 18 shows the example
page in action.

 Each checkbox in the page has an
attached ToggleButtonExtender .
A ConfirmButtonExtender close to
the top of the page disables or enables

➤

➤

 FIGURE 20 - 18: ButtonExtendersSample.aspx in action

CH020.indd 938CH020.indd 938 9/6/10 6:30:56 PM9/6/10 6:30:56 PM

the checkbox on its left side. The six checkboxes at the bottom part form two groups with attached
 MutuallyExclusiveCheckBoxExtender instances. All controls in the page are wrapped with an
 UpdatePanel . The code defi ning the UI part above the horizontal bar is shown in Listing 20 - 19.

 LISTING 20 - 19: ButtonExtendersSample.aspx (Code Extract, Part 1)

 < asp:CheckBox ID=”CheckBox1” Checked=”true”
 Text=”Click on me to try ToggleButtonExtender!”
 runat=”server” / >
 < asp:ToggleButtonExtender ID=”ToggleExt1” runat=”server”
 TargetControlID=”CheckBox1”
 ImageWidth=”16” ImageHeight=”16”
 CheckedImageUrl=”Images/Checked.png”
 CheckedImageOverUrl=”Images/Checked-Hovered.png”
 DisabledCheckedImageUrl=”Images/Checked-Disabled.png”
 CheckedImageAlternateText=”Checked”
 UncheckedImageUrl=”Images/Unchecked.png”
 UncheckedImageOverUrl=”Images/Unchecked-Hovered.png”
 DisabledUncheckedImageUrl=”Images/Unchecked-Disabled.png”
 UncheckedImageAlternateText=”UnChecked” / >
 < asp:CheckBox ID=”CheckBox2” Checked=”true”
 Text=”Try me also with ToggleButtonExtender!”
 runat=”server” / >
 < asp:ToggleButtonExtender ID=”ToggleExt2” runat=”server”
 TargetControlID=”CheckBox2”
 ImageWidth=”16” ImageHeight=”16”
 CheckedImageUrl=”Images/Checked.png”
 CheckedImageOverUrl=”Images/Checked-Hovered.png”
 DisabledCheckedImageUrl=”Images/Checked-Disabled.png”
 CheckedImageAlternateText=”Checked”
 UncheckedImageUrl=”Images/Unchecked.png”
 UncheckedImageOverUrl=”Images/Unchecked-Hovered.png”
 DisabledUncheckedImageUrl=”Images/Unchecked-Disabled.png”
 UncheckedImageAlternateText=”UnChecked” / >
 < asp:Button ID=”DisableButton” runat=”server”
 Text=”Disable this CheckBox”
 OnClick=”DisableButton_Click” / >
 < asp:ConfirmButtonExtender ID=”ConfirmButtonExtender1” runat=”server”
 TargetControlID=”DisableButton”
 ConfirmText=”Are you sure you want to do that?”
 ConfirmOnFormSubmit=”true” / >

 Code fi le [ButtonExtendersSample.aspx] available for download at Wrox.com

 As you see, you can defi ne images for all CheckBox state combinations. Unfortunately, when
you want to declare more ToggleButtonExtender instances, you must set all the image - related
properties separately for each extender. With ImageHeight and ImageWidth , you defi ne the height
and width, respectively, of the image that will be displayed.

 The defi nition of the ConfirmButtonExtender is much shorter. You can initialize the ConfirmText
property to tell the extender the text to show in the confi rmation message.

Using the Controls of the Toolkit ❘ 939

CH020.indd 939CH020.indd 939 9/6/10 6:31:03 PM9/6/10 6:31:03 PM

940 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 You can also defi ne a JavaScript function with the OnClientCancel property to run when the user cancels
the confi rmation. Setting the ConfirmOnFormSubmit property to true can be useful if the page contains
ASP.NET validator controls, and the confi rm dialog box should be displayed only after all validation
checks pass. You can also set up the DisplayModalPopupID so that the ConfirmButtonExtender works
together with a ModalPopupExtender control. (You will learn about this later in this chapter.)

 The code defi ning the checkboxes at the bottom part of the page forming the Color and Size
groups is shown in Listing 20 - 20.

 LISTING 20 - 20: ButtonExtendersSample.aspx (Code Extract, Part 2)

 < table >
 < tr >
 < td valign=”top” > Select Color: < /td >
 < td >
 < asp:Panel ID=”ColorPanel” runat=”server” >
 < asp:CheckBox ID=”Red” runat=”server” Text=”Red” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt1” runat=”server” TargetControlID=”Red”
 Key=”Color” / >
 < asp:CheckBox ID=”Green” runat=”server” Text=”Green” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt2” runat=”server” TargetControlID=”Green”
 Key=”Color” / >
 < asp:CheckBox ID=”Blue” runat=”server” Text=”Blue” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt3” runat=”server” TargetControlID=”Blue”
 Key=”Color” / >
 < /asp:Panel >
 < /td >
 < /tr >
 < tr >
 < td valign=”top” > Select Size: < /td >
 < td >
 < asp:Panel ID=”SizePanel” runat=”server” >
 < asp:CheckBox ID=”Small” runat=”server” Text=”Small” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt4” runat=”server” TargetControlID=”Small”
 Key=”Size” / >
 < asp:CheckBox ID=”Medium” runat=”server” Text=”Medium” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt5” runat=”server” TargetControlID=”Medium”
 Key=”Size” / >
 < asp:CheckBox ID=”Large” runat=”server” Text=”Large” / >
 < asp:MutuallyExclusiveCheckBoxExtender
 ID=”MutExt6” runat=”server” TargetControlID=”Large”
 Key=”Size” / >
 < /asp:Panel >
 < /td >
 < /tr >
 < /table >

 Code fi le [ButtonExtendersSample.aspx] available for download at Wrox.com

CH020.indd 940CH020.indd 940 9/6/10 6:31:03 PM9/6/10 6:31:03 PM

 The Key property of the MutuallyExclusiveCheckBoxExtender names the logical group to which
the attached CheckBox instance belongs. The extender takes care that only one checkbox in that
logical group (the one checked the last time) can remain checked.

 There is a simple logic behind the .aspx fi le, as shown in Listing 20 - 21.

 LISTING 20 - 21: ButtonExtendersSample.aspx.cs

using System;
using System.Web.UI.WebControls;
using AjaxControlToolkit;

namespace ActControlSamples
{
 public partial class ButtonExtendersSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 CreateToggleButtonExtender(Red, ColorPanel);
 CreateToggleButtonExtender(Green, ColorPanel);
 CreateToggleButtonExtender(Blue, ColorPanel);
 CreateToggleButtonExtender(Small, SizePanel);
 CreateToggleButtonExtender(Medium, SizePanel);
 CreateToggleButtonExtender(Large, SizePanel);
 }

 protected void DisableButton_Click(object sender, EventArgs e)
 {
 CheckBox2.Enabled = !CheckBox2.Enabled;
 DisableButton.Text =
 (CheckBox2.Enabled ? “Disable” : “Enable”) + “ this CheckBox”;
 }

 private void CreateToggleButtonExtender(CheckBox checkBox, Panel panel)
 {
 var ext = new ToggleButtonExtender();
 ext.TargetControlID = checkBox.ID;
 ext.ImageWidth = ToggleExt1.ImageWidth;
 ext.ImageHeight = ToggleExt1.ImageHeight;
 ext.CheckedImageUrl = ToggleExt1.CheckedImageUrl;
 ext.CheckedImageOverUrl = ToggleExt1.CheckedImageOverUrl;
 ext.DisabledCheckedImageUrl = ToggleExt1.DisabledCheckedImageUrl;
 ext.UncheckedImageUrl = ToggleExt1.UncheckedImageUrl;
 ext.UncheckedImageOverUrl = ToggleExt1.UncheckedImageOverUrl;
 ext.DisabledUncheckedImageUrl = ToggleExt1.DisabledUncheckedImageUrl;
 panel.Controls.Add(ext);
 }
 }
}

 Code fi le [ButtonExtendersSample.aspx.cs] available for download at Wrox.com

Using the Controls of the Toolkit ❘ 941

CH020.indd 941CH020.indd 941 9/6/10 6:31:04 PM9/6/10 6:31:04 PM

942 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The majority of this logic is about attaching ToggleButtonExtender instances to the
checkboxes organized into the Color and Size logical groups. Without this code, you must
create six < asp:ToggleButtonExtender > elements with their ten properties (nine of them
having the same values) in the .aspx fi le. That would be laborious and error - prone. The
 CreateToggleButtonExtender method solves this problem by copying the properties of
 ToggleExt1 when Page_Load runs.

 TextBox Extenders

 Ajax Control Toolkit implements ten extenders that can be attached to TextBox controls. These
extenders can improve the user experience with fi lling in data forms. Using them, you can transform
your simple (and maybe boring) data entry pages to sexy ones. You can fi nd the following TextBox -
 related extenders in the Toolkit:

 The AutoCompleteExtender provides a pop - up panel to display words that begin
with the prefi x that is entered into the text box. When the user has entered more
characters than a specifi ed minimum length, a popup displays words or phrases
that start with that value.

 CalendarExtender provides client - side date - picking functionality with customizable date
format and UI in a pop - up control.

 ColorPickerExtender enables you to display a pop - up color picker when the focus is
moved to an input element. It provides client - side color - picking functionality with a UI in a
pop - up control.

 FilteredTextBoxExtender lets users enter into a text box only characters that you defi ne,
or prevents users from entering characters that you specify.

 MaskedEditExtender applies a “ mask ” to the input that permits only certain types of
characters/text to be entered. The supported data formats are Number , Date , Time , and
 DateTime .

 MultiHandleSliderExtender allows you to choose a single value, or multiple values in
a range, through a graphical slider interface. It supports one handle, dual handles, or any
number of handles bound to the values of TextBox or Label controls.

 NumericUpDownExtender adds “ up ” and “ down ” buttons that increment and decrement the
value in the TextBox . The increment and decrement can be simple +1/ - 1 arithmetic. They
can cycle through a provided list of values (like the months of the year), or they can call a
web service to determine the next value.

 The PasswordStrength extender shows the strength of the password in the TextBox and
updates itself as the user types the password. The indicator can display the strength of the
password as a text message, or with a progress bar indicator.

➤

➤

➤

➤

➤

➤

➤

➤

CH020.indd 942CH020.indd 942 9/6/10 6:31:04 PM9/6/10 6:31:04 PM

 SliderExtender allows upgrading a
 TextBox to a graphical slider that enables
the user to choose a numeric value from a
fi nite range. The Slider ’ s orientation can be
horizontal or vertical, and it can also act as
a “ discrete ” slider, allowing only a specifi ed
number of values within its range.

 The TextBoxWatermarkExtender provides
 “ watermark ” behavior for the attached
 TextBox . When a watermarked TextBox is
empty, it displays a message to the user with
a custom CSS style.

 The TextBoxExtendersSample.aspx page
of the ActControlSamples project shows you
examples of how to use the TextBox extenders
just described. This sample allows you to fi ll
in a fi ctitious registration page, as shown in
Figure 20 - 19.

➤

➤

 FIGURE 20 - 19: TextBoxExtendersSample.aspx

 This sample does not demonstrate the use of the AutoCompleteExtender
control. You can fi nd a great video about it at http://www.asp.net/learn/
ajax-videos/video-122.aspx .

 The Full Name fi eld is defi ned in the code as shown here:

 < tr >
 < td > Full Name: < /td >
 < td >
 < asp:TextBox ID=”FullName” runat=”server” / >
 < asp:TextBoxWatermarkExtender ID=”WmExt” TargetControlID=”FullName”
 WatermarkText=” & lt;your name & gt;”
 WatermarkCssClass=”watermarked”
 runat=”server” / >
 < /td >
 < /tr >

 As you can see in Figure 20 - 19, the text specifi ed in the WatermarkText attribute is shown when
the FullName text box does not have the focus. You can also specify the CSS class to be used for the
watermark (WatermarkCssClass property) that uses a simple CSS entry in this sample:

 < style type=”text/css” >
 .watermarked { color: Gray }
 < /style >

Using the Controls of the Toolkit ❘ 943

CH020.indd 943CH020.indd 943 9/6/10 6:31:05 PM9/6/10 6:31:05 PM

944 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The Requested Login Name fi eld uses a FilteredTextBoxExtender that accepts letters, numbers,
and the dot character:

 < tr >
 < td > Requested Login Name: < /td >
 < td >
 < asp:TextBox ID=”LoginName” runat=”server” / >
 < asp:FilteredTextBoxExtender ID=”FtbExt” TargetControlID=”LoginName”
 FilterType=”Custom, Numbers, LowercaseLetters, UppercaseLetters”
 ValidChars=”.”
 runat=”server” / >
 < /td >
 < /tr >

 The FilterType property defi nes the keys that should be accepted by the control. You can
enumerate one or more of the Custom , Numbers , LowercaseLetters , and UppercaseLetters
values. When Custom is defi ned, you can set additional characters to accept in the ValidChars
property.

 The Password and Confi rm Password fi elds are each attached to a PasswordStrenghth
extender. The only difference between them is that Password displays all characters you type in,
while Confi rm Password hides them. The Password fi eld is defi ned with the following code:

 < tr >
 < td > Password: < /td >
 < td >
 < asp:TextBox ID=”Password” runat=”server” / >
 < asp:PasswordStrength ID=”PwStrength” TargetControlID=”Password”
 DisplayPosition=”RightSide”
 StrengthIndicatorType=”Text”
 PreferredPasswordLength=”10”
 PrefixText=”Strength:”
 MinimumNumericCharacters=”1”
 MinimumSymbolCharacters=”1”
 RequiresUpperAndLowerCaseCharacters=”false”
 TextStrengthDescriptions=”Very Poor;Weak;Average;Strong;Excellent”
 CalculationWeightings=”50;15;15;20”
 runat=”server” / >
 < /td >
 < /tr >

 Most properties have very intuitive names, and they tell what they are used for.
 TextStrengthDescriptions contains a semicolon - separated list of descriptions to be used for
the password strength levels. CalculationWeightings lists semicolon - separated numeric values
used to determine the weighting of a strength characteristic. There must be 4 values specifi ed that
must total 100. The format is A;B;C;D , where A
equals the length weighting, B equals the numeric
weighting, C equals the casing weighting, and D
equals the symbol weighting. Figure 20 - 20
shows you the run - time behavior of the
 PasswordStrength extender.

 FIGURE 20 - 20: The PasswordStrength extender

in action

CH020.indd 944CH020.indd 944 9/6/10 6:31:11 PM9/6/10 6:31:11 PM

 The Birth Date fi eld uses a CalendarExtender that is displayed when you click the button to the
right of the text box. Its behavior is defi ned with this code:

 < tr >
 < td > Birth Date: < /td >
 < td >
 < asp:TextBox ID=”BirthDate” runat=”server” / >
 < asp:Button ID=”PopupButton” runat=”server” Height=”24” Width=”28”
 Text=”...” / >
 < asp:CalendarExtender ID=”CalExt” TargetControlID=”BirthDate”
 Format=”MMMM d, yyyy”
 PopupButtonID=”PopupButton”
 runat=”server” / >
 < /td >
 < /tr >

 With the PopupButtonID property, you can defi ne the
control that pops up the calendar pane. When you leave
it empty, the calendar pane is displayed on the page
as soon as the attached TextBox receives the focus.
Figure 20 - 21 shows the CalendarExtender control
in action.

 The Your Page ’ s Color fi eld uses a ColorPickerExtender
so that, while the user moves the mouse over the color
palette, the background of the fi eld ’ s label is set to
show the color under the mouse pointer. Figure 20 - 22
shows this.

 This behavior is defi ned with the following code snippet
where the SampleControlID property binds the color under
the mouse pointer to the fi eld label:

 < tr >
 < td >
 < asp:Panel ID=”SamplePanel” runat=”server” >
 Your Page’s Color:
 < /asp:Panel >
 < /td >
 < td >
 < asp:TextBox ID=”PageColor” runat=”server” / >
 < asp:ColorPickerExtender ID=”CpExt” TargetControlID=”PageColor”
 SampleControlID=”SamplePanel”
 runat=”server” / >
 < /td >
 < /tr >

 FIGURE 20 - 21: CalendarExtender in

action

 FIGURE 20 - 22: ColorPickerExtender in

action

Using the Controls of the Toolkit ❘ 945

CH020.indd 945CH020.indd 945 9/6/10 6:31:11 PM9/6/10 6:31:11 PM

946 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The Number of Drives fi eld demonstrates how to attach a NumericUpDownExtender to a TextBox :

 < tr >
 < td > Number of Drives: < /td >
 < td >
 < asp:TextBox ID=”DriveNumber” runat=”server” / >
 < asp:NumericUpDownExtender ID=”NumExt” TargetControlID=”DriveNumber”
 Width=”40”
 Minimum=”0”
 Maximum=”3”
 runat=”server” / >
 < /td >
 < /tr >

 The extender adds up and down buttons to the right of the TextBox , and lets you move the values
between 0 and 3 . With the RefValue properties, you can defi ne non - numeric values as a semicolon -
 separated list. NumericUpDownExtender also can use web services to provide the subsequent
values when clicking the up or down buttons. You can also provide your own buttons with the
 TargetButtonDownID and TargetButtonUpID properties.

 The Capacity fi eld ’ s TexBox is attached to a SliderExtender that
lets you choose a value between 0 and 500 . The extender binds the
current slider value to a label control, as shown in Figure 20 - 23.

 The following very simple code sets up this behavior:

 < tr >
 < td > Capacity: & nbsp;
 < asp:Label ID=”SliderValue” runat=”server” Text=””/ >
 < /td >
 < td >
 < asp:TextBox ID=”Capacity” runat=”server” / > & nbsp;
 < asp:SliderExtender ID=”SliderExt” TargetControlID=”Capacity”
 Minimum=”0”
 Maximum=”500”
 BoundControlID=”SliderValue”
 EnableHandleAnimation=”true”
 runat=”server” / >
 < /td >
 < /tr >

 FIGURE 20 - 23: Using the

SliderExtender control

 There is another slider extender, MultiHandleSliderExtender , that (as its
name suggests) allows you to use more than one handle. The
 TextBoxExtendersSample.aspx does not contain any demonstration of this
control. You can fi nd a demo and more information about this slider extender at
 http://www.asp.net/AJAX/AjaxControlToolkit/Samples/
MultiHandleSlider/MultiHandleSlider.aspx .

CH020.indd 946CH020.indd 946 9/6/10 6:31:12 PM9/6/10 6:31:12 PM

 The Employee ID fi eld demonstrates the use of the MaskedEditExtender control. The following
code sets up this extender to allow typing only employee IDs with LLL - 99 - 99 format, where L
stands for letters and 9 for numbers:

 < tr >
 < td > Employee ID: < /td >
 < td >
 < asp:TextBox ID=”EmpID” runat=”server” / >
 < asp:MaskedEditExtender ID=”MeExt” TargetControlID=”EmpID”
 Mask=”LLL-99-99”
 ErrorTooltipEnabled=”True”
 runat=”server” / >
 < /td >
 < /tr >

 This extender has many properties you can use for culture - specifi c format settings. Look at the
reference of this extender to discover the large set of properties you can use to customize it.

 List Extenders

 There are three extenders in the Ajax Control Toolkit that can be attached to ASP.NET list controls:

 CascadingDropDown can be attached to an ASP.NET DropDownList control to get
automatic population of a set of DropDownList controls. When you modifi ed the
 FindAnExpertDemo sample application, you learned
a lot about using this extender.

 ListSearchExtender lets you search for items in a
 ListBox or DropDownList by typing. The extender
performs an incremental search within the ListBox
based on what has been typed so far.

 PagingBulletedListExtender can be attached
to a BulletedList control and provide client -
 side sorted paging. It is very fl exible, and lets you
specify either the number of characters used in the
heading indices, or the maximum number of items
to display per index.

 The ListExtendersSample.aspx page demonstrates the
use of the latter two extenders. This sample binds the list of
experts from the database you ’ ve already used several times
in the listings appearing in this chapter. Figure 20 - 24 shows
this page in action.

 Listing 20 - 22 shows the defi nition of the UI shown in
Figure 20 - 24.

➤

➤

➤

 FIGURE 20 - 24: The ListExtendersSample

.aspx page in action

Using the Controls of the Toolkit ❘ 947

CH020.indd 947CH020.indd 947 9/6/10 6:31:18 PM9/6/10 6:31:18 PM

948 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 LISTING 20 - 22: ListExtendersSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”ListExtendersSample.aspx.cs”
 Inherits=”ActControlSamples.ListExtendersSample” % >

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”act” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax List extenders sample < /title >
 < style type=”text/css” >
 .searchprompt { color: red; font-size: 10px; }
 .selectedIndex { background-color: Yellow; }
 < /style >
 < /head >
 < body style=”font-family: verdana; font-size: 12px” >
 < form id=”form1” runat=”server” >
 < act:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < p >
 This list box is attached to a ListSearchExtender: < /p >
 < br / >
 < asp:ListBox ID=”ExpertList” runat=”server”
 DataSourceID=”AccessDataSource1”
 DataTextField=”Name”
 DataValueField=”ID”
 Rows=”8” / >
 < asp:AccessDataSource ID=”AccessDataSource1” runat=”server”
 DataFile=”~/App_Data/ExpertData.mdb”
 SelectCommand=”SELECT [ID], [Name] FROM [Expert]” / >
 < act:ListSearchExtender ID=”ListSearchExtender1”
 TargetControlID=”ExpertList”
 PromptText=”Type to search”
 PromptCssClass=”searchprompt”
 PromptPosition=”Bottom”
 runat=”server” / >
 < br / >
 < br / >
 < hr / >
 < p > The following list is decorated with PgingBuletedListExtender. < /p >
 < asp:BulletedList ID=”BulletedExpertList” runat=”server”
 DataSourceID=”AccessDataSource1”
 DataTextField=”Name”
 DataValueField=”ID” / >
 < act:PagingBulletedListExtender ID=”PagingExt”
 TargetControlID=”BulletedExpertList”
 ClientSort=”True”
 IndexSize=”1”
 Separator=” | “

CH020.indd 948CH020.indd 948 9/6/10 6:31:18 PM9/6/10 6:31:18 PM

 SelectIndexCssClass=”selectedIndex”
 runat=”server” / >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [ListExtendersSample.aspx] available for download at Wrox.com

 The PrompText property of the ListSearchExtender control sets the message to display when the
 ListBox or DropDownList is given focus (as you see in Figure 20 - 24). The PromptText is replaced
by the search text typed by the user. You can set the location of the prompt with PromptPosition .

 The PagingBulletedListExtender can sort the items you provide at the client side (assuming those
are not sorted at the server side) by setting ClientSort to True . The extender can work so that you
either set the IndexSize property or MaxItemPerPage . The fi rst defi nes the number of characters in
the index headings; the second sets the maximum number of items per page. With Separator , you
can specify a string to separate links to pages.

 Panel Extenders

 Following are extenders in the Ajax Control Toolkit that can be attached to panels to provide nice
visual effects:

 CollapsiblePanelExtender adds collapsible sections to a web page. This extender targets
any ASP.NET Panel control. You specify which control or controls on the page should act
as the open and close controllers for the panel.

 The DragPanelExtender targets any ASP.NET Panel and takes an additional parameter
that signifi es the control to use as the “ drag handle. ” Once initialized, the user can freely
drag the panel around the web page
using the drag handle.

 DropShadowExtender applies a drop
shadow to an ASP.NET Panel control.
The extender allows you to specify how
wide the shadow is, how opaque it is,
and whether the shadow should have
rounded corners. For pages that let
the user move or resize the panel, the
 DropShadowExtender has a mode that
will resize and reposition the shadow to
match the target panel at run - time.

 Figure 20 - 25 shows how these extenders are
used in the PanelExtendersSample.aspx page.

 This page contains two main panels. At the
top of the page, you can see a panel attached
to a CollapsiblePanelExtender . As you
see, this panel also has a shadow, because a

➤

➤

➤

 FIGURE 20 - 25: PanelExtendersSample.aspx in action

Using the Controls of the Toolkit ❘ 949

CH020.indd 949CH020.indd 949 9/6/10 6:31:18 PM9/6/10 6:31:18 PM

950 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 DropShadowExtender is also attached to the control. The second rectangular panel is decorated
with a DragPanelExtender . In Figure 20 - 25, it is moved from its original position to a new location
partially overlapping with the collapsible panel.

 Listing 20 - 23 shows the code of the page.

 LISTING 20 - 23: PanelExtendersSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”PanelExtenders.aspx.cs”
 Inherits=”ActControlSamples.PanelExtenders” % >

 < %@ Register Assembly=”AjaxControlToolkit”
 Namespace=”AjaxControlToolkit” TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax Panel extenders sample < /title >
 < /head >
 < body style=”font-family: verdana; font-size: 12px” >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < asp:Panel ID=”Panel2” runat=”server” Height=”30px” >
 < div style=”padding: 5px; cursor: pointer; vertical-align: middle;” >
 < div style=”float: left;” > Dynamics in C#? < /div >
 < div style=”float: left; margin-left: 20px;” >
 < asp:Label ID=”Label1” runat=”server” > (Show Details...) < /asp:Label >
 < /div >
 < div style=”float: right; vertical-align: middle;” >
 < asp:ImageButton ID=”Image1” runat=”server”
 ImageUrl=”~/Images/ShowDetails.png”
 AlternateText=”(Show Details...)” / >
 < /div >
 < /div >
 < /asp:Panel >
 < asp:Panel ID=”CSharpPanel” runat=”server”
 Style=”padding: 12px; background-color: Yellow”
 Height=”0” >
 < p >
 For a long time, C# could not compete with the flexibility of
 these languages and tools. But, that is no longer the case.
 < /p >
 < /asp:Panel >
 < asp:CollapsiblePanelExtender ID=”cpeDemo” runat=”Server”
 TargetControlID=”CSharpPanel”
 ExpandControlID=”Panel2”
 CollapseControlID=”Panel2”
 Collapsed=”True”
 TextLabelID=”Label1”
 ImageControlID=”Image1”

CH020.indd 950CH020.indd 950 9/6/10 6:31:19 PM9/6/10 6:31:19 PM

 ExpandedText=”(Hide Details...)”
 CollapsedText=”(Show Details...)”
 ExpandedImage=”~/Images/HideDetails.png”
 CollapsedImage=”~/Images/ShowDetails.png”
 SuppressPostBack=”true” / >
 < asp:DropShadowExtender ID=”DropShadowExtender1” runat=”server”
 TargetControlID=”CSharpPanel”
 Width=”8”
 Rounded=”true”
 Radius=”6”
 Opacity=”.25”
 TrackPosition=”true” / >
 < br / >
 < hr / >
 < div style=”height: 300px; width: 250px; float: left; padding: 5px;” >
 < asp:Panel ID=”DraggablePanel” runat=”server” Width=”250px”
 style=”z-index: 20;” >
 < asp:Panel ID=”HandlePanel” runat=”server” Width=”100%” Height=”20px”
 BorderStyle=”Dotted” BorderWidth=”1px” BorderColor=”black” >
 < div style=”cursor:move” > Drag Me < /div >
 < /asp:Panel >
 < asp:Panel ID=”InfoPanel” runat=”server” Width=”100%” Height=”200px”
 Style=”overflow:auto; padding: 8px” BackColor=”#4B4BCC”
 ForeColor=”whitesmoke” BorderWidth=”2px” BorderColor=”black”
 BorderStyle=”Solid” >
 < div >
 < p >
 The new version of C# provides dynamic binding as a unified
 approach to selecting and carrying out operations dynamically.
 Operations can be uniformly applied on various objects
 independently of whether a specific object comes from COM
 (through interoperability), IronRuby, IronPython, the HTML
 DOM, or from any other dynamic context.
 < /p >
 < /div >
 < /asp:Panel >
 < /asp:Panel >
 < /div >
 < div style=”clear: both;” > < /div >
 < asp:DragPanelExtender ID=”DragPanelExtender1” runat=”server”
 TargetControlID=”DraggablePanel”
 DragHandleID=”HandlePanel” / >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [PanelExtendersSample.aspx] available for download at Wrox.com

 You can set separate controls to expand and collapse the panel through the ExpandControlID and
 CollapseControlID properties of the CollapsiblePanelExtender , respectively. You can also
specify the text and images for the states of the panel with the ExpandedText , CollapsedText ,
 ExpandedImage , and CollapsedImage properties. When you set the SuppressPostBack property to
 True , no postbacks are initiated when you expand or collapse the panel.

Using the Controls of the Toolkit ❘ 951

CH020.indd 951CH020.indd 951 9/6/10 6:31:19 PM9/6/10 6:31:19 PM

952 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The DropShadowExtender has a few properties to specify how the shadow should be applied
for the panel. Width lets you set the size of the shadow, which can be Rounded with the specifi ed
 Radius . Shadow Opacity also can be set. When your panel is movable or resizable, setting the
 TrackPosition to True will cause the shadow to follow the panel.

 DragPanelExtender requires only specifying the DragHandleID property that points to the control
that serves as the handle to move the panel.

 Popup Extenders

 Two extender controls help you to display pop - up panels (or other pop - up controls) on the page:

 PopupControlExtender can be attached to any control in order to open a pop - up window
that displays additional content. This pop - up window will probably be interactive and will
probably be within an Ajax UpdatePanel , so it will be capable performing complex server -
 based processing (including postbacks) without affecting the rest of the page.

 ModalPopupExtender allows you to display content in an element that mimics a modal
dialog box, which prevents the user from interacting with the rest of the page.

 When you open the ActControlsSample project, the PopupExtenderSample.aspx page shows you
how you can use these controls. This sample uses a PopupControlExtender to display a ListBox
fi lled up with expert names. This is bound to a TextBox so that, when it receives the focus, the
 ListBox is immediately popped up. Figure 20 - 26 shows you this situation.

 Selecting an item from the ListBox will close the pop - up panel and use the selected expert ’ s name
to create the TextBox ’ s content. When you click the Send Message button, a modal pop - up panel is
displayed, allowing you to confi rm message sending, as shown in Figure 20 - 27.

➤

➤

 FIGURE 20 - 26: The ListBox is automatically

popped up when the TextBox receives the focus

 FIGURE 20 - 27: Modal pop - up panel in the page

CH020.indd 952CH020.indd 952 9/6/10 6:31:20 PM9/6/10 6:31:20 PM

 Listing 20 - 24 shows the source code of PopupExtendersSample.aspx .

 LISTING 20 - 24: PopupExtendersSample.aspx

 < %@ Page Language=”C#” AutoEventWireup=”true”
 CodeBehind=”PopupExtenderSample.aspx.cs”
 Inherits=”ActControlSamples.PopupExtenderSample” % >

 < %@ Register Assembly=”AjaxControlToolkit” Namespace=”AjaxControlToolkit”
 TagPrefix=”asp” % >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head runat=”server” >
 < title > Ajax PopupExpender sample < /title >
 < style type=”text/css” >
 .modalBackground
 {
 background-color:Gray;
 filter:alpha(opacity=70);
 opacity:0.7;
 }
 < /style >
 < /head >
 < body style=”font-family: verdana; font-size: 12px” >
 < form id=”form1” runat=”server” >
 < asp:ToolkitScriptManager ID=”ToolkitScriptManager1” runat=”server” / >
 < div >
 < asp:UpdatePanel runat=”server” ID=”up2” >
 < ContentTemplate >
 Message Title:
 < asp:TextBox ID=”MessageTextBox” runat=”server” Width=”200”
 AutoComplete=”off” / >
 < br / >
 < br / >
 < asp:Panel ID=”ExpertPanel” runat=”server” CssClass=”popupControl” >
 < div style=”border: 1px outset white; width: 140px” >
 < asp:ListBox ID=”ExpertList” runat=”server” Width=”140px”
 DataSourceID=”ExpertDataSource”
 DataTextField=”Name”
 DataValueField=”Name”
 AutoPostBack=”True”
 Rows=”8”
 OnSelectedIndexChanged=”ExpertList_SelectedIndexChanged” / >
 < asp:AccessDataSource ID=”ExpertDataSource” runat=”server”
 DataFile=”~/App_Data/ExpertData.mdb”
 SelectCommand=”SELECT [ID], [Name] FROM [Expert]” / >
 < asp:PopupControlExtender ID=”ExpertPopupExt” runat=”server”
 TargetControlID=”MessageTextBox”
 PopupControlID=”ExpertPanel”
 CommitProperty=”value”

Using the Controls of the Toolkit ❘ 953

continues

CH020.indd 953CH020.indd 953 9/6/10 6:31:20 PM9/6/10 6:31:20 PM

954 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

LISTING 20-24 (continued)

 Position=”Bottom”
 CommitScript=”e.value = ‘Your expert is: ‘ + e.value;” / >
 < /div >
 < /asp:Panel >
 < asp:Button ID=”SendButton” runat=”server” Text=”Send Message” / >
 & nbsp; & nbsp;
 < asp:Label ID=”MessageStatus” runat=”server” Text=”” / >
 < asp:Panel ID=”PopupPanel” runat=”server”
 Style=”display:none; padding: 8px; background-color: #DDDDDD;
 border : solid 1px Gray; color: Black” >
 < p > Are you sure, you want to send a message to the expert? < /p >
 < div >
 < p style=”text-align: center;” >
 < asp:Button ID=”OkButton” runat=”server” Text=”OK”
 OnClick=”OkButton_Click”
 UseSubmitBehavior=”False”/ >
 < asp:Button ID=”CancelButton” runat=”server” Text=”Cancel”
 OnClick=”CancelButton_Click”
 UseSubmitBehavior=”False”/ >
 < /p >
 < /div >
 < /asp:Panel >
 < asp:ModalPopupExtender ID=”ModalPopupExtender” runat=”server”
 TargetControlID=”SendButton”
 PopupControlID=”PopupPanel”
 BackgroundCssClass=”modalBackground”
 OkControlID=”OkButton”
 CancelControlID=”CancelButton”
 DropShadow=”true” / >
 < /ContentTemplate >
 < /asp:UpdatePanel >
 < /div >
 < /form >
 < /body >
 < /html >

 Code fi le [PopupExtendersSample.aspx] available for download at Wrox.com

 The PopupControlExtender ’ s TargetControlID property points to MessageTextBox — to the
control that pops up the panel when receiving the focus. Its PopupControlID property refers to
the control to be popped up. CommitProperty specifi es the property on the control being extended
that should be set with the result of the popup. CommitScript specifi es additional script to run
after setting the result of the popup. In this case, these properties result in the host TextBox being
set to the “ Your Expert is . . . ” text when you select an item from the popup ListBox .

 The ModalPopupExtender control binds the panel to also show up with its PopupControlID
property. It specifi es the controls representing the OK and Cancel buttons with the OkControlID
and CancelControlID properties, respectively.

 The PopupControlExtender does not know when to hide the panel popped up. You must manually
signal that event. Listing 20 - 25 shows the code behind the UI.

CH020.indd 954CH020.indd 954 9/6/10 6:31:21 PM9/6/10 6:31:21 PM

 LISTING 20 - 25: PopupExtendersSample.aspx.cs

using System;

namespace ActControlSamples
{
 public partial class PopupExtenderSample : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void ExpertList_SelectedIndexChanged(object sender, EventArgs e)
 {
 ExpertPopupExt.Commit(ExpertList.SelectedValue);
 MessageStatus.Text = “”;
 }

 protected void OkButton_Click(object sender, EventArgs e)
 {
 MessageStatus.Text = “Message sent.”;
 }

 protected void CancelButton_Click(object sender, EventArgs e)
 {
 MessageStatus.Text = “Message sending cancelled.”;
 }
 }
}

 Code fi le [PopupExtendersSample.aspx.cs] available for download at Wrox.com

 ExpertList_SelectedIndexChanged responds to the event when you select an expert from the list.
You must call the Commit method of the PopupControlExtender with the value to commit — in
this case, the name of the expert. You can also respond to the event when the modal pop - up panel ’ s
buttons are clicked. The previous code uses them to set a label telling you the result of the modal
pop - up dialog.

 The ValidatorCalloutExtender Control

 The ValidatorCalloutExtender adds nice
callouts to your controls having validators.
The great thing is that you do not have to
change anything with your existing forms;
just add ValidatorCalloutExtender
instances to them. The ValidatorCallout
ExtenderSample.aspx page of the
 ActControlSamples project demonstrates
how easy is to do that. Figure 20 - 28 shows
this sample in action.

 FIGURE 20 - 28: ValidatorCalloutExtenderSample.aspx in

action

Using the Controls of the Toolkit ❘ 955

CH020.indd 955CH020.indd 955 9/6/10 6:31:21 PM9/6/10 6:31:21 PM

956 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 This page has two validator controls, one for the Full Name fi eld and another one for the Confi rm
Password fi eld. Listing 20 - 26 shows an extract of the page defi nition.

 LISTING 20 - 26: ValidatorCalloutExtenderSample.aspx (Code Extract)

 < table >
 < tr >
 < td > Full Name: < /td >
 < td >
 < asp:TextBox ID=”FullName” runat=”server” / >
 < asp:TextBoxWatermarkExtender ID=”WmExt” TargetControlID=”FullName”
 WatermarkText=” & lt;your name & gt;”
 WatermarkCssClass=”watermarked”
 runat=”server” / >
 < asp:RequiredFieldValidator ID=”RequiredFieldValidator1” runat=”server”
 ErrorMessage=”Full name is required.”
 ControlToValidate=”FullName” Display=”Dynamic” / >
 < asp:ValidatorCalloutExtender runat=”Server” ID=”ReqValExt”
 TargetControlID=”RequiredFieldValidator1”
 HighlightCssClass=”validatorCalloutHighlight” / >
 < /td >
 < /tr >
 < tr >
 < !-- Password field omitted -- >
 < /tr >
 < tr >
 < td > Confirm Password: < /td >
 < td >
 < asp:TextBox ID=”Password2” runat=”server” TextMode=”Password” / >
 < !-- PasswordStrength control omitted -- >
 < asp:CompareValidator ID=”CompareValidator1” runat=”server”
 ErrorMessage=”The two password fields must be equal!”
 ControlToCompare=”Password”
 ControlToValidate=”Password2” Display=”Dynamic” / >
 < asp:ValidatorCalloutExtender runat=”Server” ID=”CompareValExt”
 TargetControlID=”CompareValidator1”
 HighlightCssClass=”validatorCalloutHighlight”
 CloseImageUrl=”~/Images/Close.png”
 WarningIconImageUrl=”~/Images/Warning.png”/ >
 < /td >
 < /tr >
 < /table >

 Code fi le [ValidatorCalloutExtendersSample.aspx] available for download at Wrox.com

 You must specify the validator control in the TargetControlID property of
 ValidatorCalloutExtender — and not the control to which the validator is attached. With the
 HighlightCssClass property, you can set the style to apply to the callout when that is shown. You
can also change the images used to display the warning sign and the close glyph of the callout with
the WarningIconImageUrl and CloseImageUrl properties, respectively.

CH020.indd 956CH020.indd 956 9/6/10 6:31:22 PM9/6/10 6:31:22 PM

 Animations

 While the Ajax Control Toolkit primarily focuses on providing great Ajax controls and extenders,
it also includes a powerful animation framework that you can use to add awesome visual effects on
your pages.

 Although the animations are implemented in JavaScript and you can easily use them from client -
 side code, the Toolkit provides several classes to make it very easy to use the animation framework
without writing any JavaScript. You can declare animations via XML markup.

 Extenders with animation support (such as AnimationExtender and UpdatePanelExtender)
expose various events (such as OnClick) that can be associated with a generic XML animation
declaration.

 The AnimationSample.aspx page of the ActControlSamples project demonstrates the basic
concepts of using the AnimationExtender class with animation markup. When you run this
page, you will fi nd six images that are animated when you move the mouse over them. When you
move the mouse away from them, they are reset to their original look with reverse animations.
Figure 20 - 29 shows this sample in action, when the mouse is dragged over the second image and
that is resized with the animation framework.

 FIGURE 20 - 29: AnimationSample.aspx in action

Using the Controls of the Toolkit ❘ 957

CH020.indd 957CH020.indd 957 9/6/10 6:31:22 PM9/6/10 6:31:22 PM

958 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 All images have an AnimationExtender attached to them. This extender contains the XML
markup that describes the animation. The leftmost image and the related animation are declared
with this code:

 < asp:Image ID=”Image1” runat=”server” Width=”128” Height=”128”
 ImageUrl=”~/Photos/Arhus.png” / >
 < !-- ... -- >
 < asp:AnimationExtender ID=”AnimExt1” runat=”server”
 TargetControlID=”Image1” >
 < Animations >
 < OnMouseOver >
 < FadeOut Duration=”.5” Fps=”20” / >
 < /OnMouseOver >
 < OnMouseOut >
 < FadeIn Duration=”.5” Fps=”20” / >
 < /OnMouseOut >
 < /Animations >
 < /asp:AnimationExtender >

 The < Animations > element is the root of the XML markup. It contains animation description for
two events: OnMouseOver is triggered when the user moves the mouse over the attached control,
and OnMouseOut animation is started when the mouse leaves that control. FadeOut and FadeIn
are simple animations, and they do exactly what their names suggest. The Duration attribute
specifi es the length in seconds of the animation, while Fps defi nes the number of frames to be
created in one second.

 You can use other animation primitives. For example, the second image from the left is resized with
the following code:

 < asp:Image ID=”Image2” runat=”server” Width=”128” Height=”128”
 ImageUrl=”~/Photos/Chiang.png” / >
 < !-- ... -- >
 < asp:AnimationExtender ID=”AnimExt2” runat=”server”
 TargetControlID=”Image2” >
 < Animations >
 < OnMouseOver >
 < Resize Width=”256” Height=”256” / >
 < /OnMouseOver >
 < OnMouseOut >
 < Resize Width=”128” Height=”128” / >
 < /OnMouseOut >
 < /Animations >
 < /asp:AnimationExtender >

 You can trigger animations with several events. These are summarized in Table 20 - 8.

CH020.indd 958CH020.indd 958 9/6/10 6:31:23 PM9/6/10 6:31:23 PM

 Within the events, you can use simple animation primitives or composite animation declarations.
You can use the < Parallel > and < Sequence > composition elements to allow the declared animation
primitives run in parallel or in their specifi ed sequence, respectively. The third image demonstrates
using fade and resize animation primitives fi red in parallel.

 < asp:Image ID=”Image3” runat=”server” Width=”128” Height=”128”
 ImageUrl=”~/Photos/Jonah.png” / >
 < !-- ... -- >
 < asp:AnimationExtender ID=”AnimExt3” runat=”server”
 TargetControlID=”Image3” >
 < Animations >
 < OnMouseOver >
 < Parallel >
 < FadeOut Duration=”.5” Fps=”20” / >
 < Resize Width=”256” Height=”256” / >
 < /Parallel >
 < /OnMouseOver >
 < OnMouseOut >
 < Parallel >
 < FadeIn Duration=”.5” Fps=”20” / >
 < Resize Width=”128” Height=”128” / >
 < /Parallel >
 < /OnMouseOut >
 < /Animations >
 < /asp:AnimationExtender >

 You can check the animation of the fourth image in the AnimationSample.aspx fi le. It replaces the
 < Parallel > composition element with < Sequence > . You can use many other animations besides the
fade and resize animations, as shown in Table 20 - 9.

 TABLE 20 - 8: Events Triggering Animations

 EVENT DESCRIPTION

 OnLoad The animation is played as soon as the page is loaded.

 OnClick The animation is played when the target control is clicked.

 OnMouseOver The animation is triggered to play when the mouse moves over the target

control.

 OnMouseOut The animation is started when the mouse moves out of the target control.

 OnHoverOver An animation similar to the one for OnMouseOver , except it will stop the

 OnHoverOut animation before it plays.

 OnHoverOut An animation similar to the one for OnMouseOut , except it will stop the

 OnHoverOver animation before it plays.

Using the Controls of the Toolkit ❘ 959

CH020.indd 959CH020.indd 959 9/6/10 6:31:23 PM9/6/10 6:31:23 PM

960 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 TABLE 20 - 9: Animations

 ANIMATION DESCRIPTION

 Condition This is used as a control structure to play a specifi c child animation, depending

on the result of executing the conditionScript . If the conditionScript

evaluated to true , the fi rst child animation is played. If it evaluates to false ,

the second child animation is played (although nothing is played if the second

animation is not present).

 Case This animation is used as a control structure to play a specifi c child animation,

depending on the result of executing the selectScript , which should

evaluate to the index of the child animation to play. If the provided index is

outside the bounds of the child animations (or if nothing was returned), then it

will not play anything.

 FadeIn This animation performs a fade in from the current opacity to the

 maximumOpacity .

 FadeOut This animation performs a fade out from the current opacity to the

 minimumOpacity .

 Pulse This animation fades an element in and out repeatedly to create a pulsating

eff ect. The iterations determine how many pulses there will be. The

 duration property defi nes the length of each fade in or fade out, not the

length of the animation as a whole.

 Interpolated This animation assigns a range of values between startValue and endValue

to the designated property.

 Color This animation transitions the value of a property between two colors

(although it does ignore the alpha channel). The colors must be seven -

 character hex strings (such as #33AA44).

 Length This is identical to Interpolated , except that it adds a unit to the value before

assigning it to the property.

 Move This animation is used to move the target element. If the relative fl ag is

set to true , then it treats the horizontal and vertical properties as off sets

to move the element. If the relative fl ag is false , then it will treat the

 horizontal and vertical properties as coordinates on the page where the

target element should be moved.

 Resize This animation changes the size of the target from its current values to the

specifi ed width and height .

 Scale This animation scales the size of the target element by the given

 scaleFactor . If scaleFont is true , the size of the font will also scale with

the element. If center is true , then the element ’ s center will not move as

it is scaled.

CH020.indd 960CH020.indd 960 9/6/10 6:31:23 PM9/6/10 6:31:23 PM

 You can use actions as animation primitives. For example, with the EnableAction primitive, you
can disable or enable other animation actions (events) while an animation is in progress. For
example, the fi fth image (the fi rst in the second row) does not allow you to carry out any other
actions on it while the animations are not entirely played:

 < asp:Image ID=”Image5” runat=”server” Width=”128” Height=”128”
 ImageUrl=”~/Photos/Ebenezer.png” / >
 < !-- ... -- >
 < asp:AnimationExtender ID=”AnimExt5” runat=”server”
 TargetControlID=”Image5” >
 < Animations >
 < OnHoverOver >
 < Sequence >
 < EnableAction Enabled=”false” / >
 < Resize Width=”256” Height=”256” / >
 < EnableAction Enabled=”true” / >
 < /Sequence >
 < /OnHoverOver >
 < OnHoverOut >
 < Sequence >
 < EnableAction Enabled=”false” / >
 < Resize Width=”128” Height=”128” / >
 < EnableAction Enabled=”true” / >
 < /Sequence >
 < /OnHoverOut >
 < /Animations >
 < /asp:AnimationExtender >

 You can also use other actions, as described in Table 20 - 10.

 TABLE 20 - 10: Animation Actions

 ANIMATION DESCRIPTION

 EnableAction This action changes whether or not the target is disabled.

 HideAction This action simply hides the target from view (by setting its style ’ s display

attribute to “ none ”).

 StyleAction This action is used to set a particular attribute of the target ’ s style.

 OpacityAction This action will set the opacity of the target.

 ScriptAction The action is used to execute arbitrary JavaScript code.

 The AnimationExtender can describe animations that can be executed on other targets
than the control attached to the extender through the TargetControlID property. You can
set the AnimationTarget property of any primitives to involve other controls into the animation.

Using the Controls of the Toolkit ❘ 961

CH020.indd 961CH020.indd 961 9/6/10 6:31:24 PM9/6/10 6:31:24 PM

962 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

For example, the sixth image carries out animations on the fi rst image with the following
declarations:

 < asp:Image ID=”Image6” runat=”server” Width=”128” Height=”128”
 ImageUrl=”~/Photos/Omar.png” / >
 < !-- ... -- >
 < asp:AnimationExtender ID=”AnimExt6” runat=”server”
 TargetControlID=”Image6” >
 < Animations >
 < OnMouseOver >
 < FadeOut AnimationTarget=”Image1” Duration=”.5” Fps=”20” / >
 < /OnMouseOver >
 < OnMouseOut >
 < FadeIn AnimationTarget=”Image1” Duration=”.5” Fps=”20” / >
 < /OnMouseOut >
 < /Animations >
 < /asp:AnimationExtender >

 In addition to the AnimationExtender control, you can use the UpdatePanelAnimationExtender
control. This latter one is a non - visual control, so it has different events that trigger animations.
The OnUpdating event starts the animation when the UpdatePanel begins updating; OnUpdated
plays the animation after the UpdatePanel has fi nished updating (but only if the UpdatePanel
was changed).

 You can fi nd detailed reference information about using Ajax Control Toolkit
animations at http://www.asp.net/AJAX/AjaxControlToolkit/Samples/
Walkthrough/AnimationReference.aspx .

 THE JQUERY LIBRARY

 In addition to the Ajax Control Toolkit, jQuery — a lightweight, cross - browser, JavaScript
library — is another great tool for improving the user experience of your ASP.NET websites.
This library emphasizes interaction between JavaScript and HTML, because jQuery is designed
to make it easier to navigate a document, select DOM elements, create animations, handle events,
and develop Ajax applications. It was released in January 2006 by John Resig, and is now used by
many big websites. jQuery is one of the most popular JavaScript libraries in use today.

 jQuery makes JavaScript code easier and quicker to write. The library provides helper functions
that dramatically increase your productivity while decreasing your frustration. The resulting code
is easier to read and more robust because the higher level of abstraction hides a number of checks
and error - handling procedures. As you have already seen in Chapter 19, jQuery works together
seamlessly with the ASP.NET Ajax Library.

 This section describes jQuery. You can fi nd the samples treated here in the jQuerySamples project
that can be downloaded from the book ’ s companion website (www.wrox.com).

CH020.indd 962CH020.indd 962 9/6/10 6:31:24 PM9/6/10 6:31:24 PM

 “ Hello, World ” with jQuery

 To get closer to jQuery, let ’ s have a look at how a “ Hello, World ” sample can be written with this
library. Listing 20 - 27 shows a sample where you can click a link to get a message popped up on the
screen.

 LISTING 20 - 27: jQueryHello.htm

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Hello from jQuery sample < /title >
 < script type=”text/javascript”
 src=”http://ajax.microsoft.com/ajax/beta/0911/Start.js” > < /script >
 < script type=”text/javascript” >
 Sys.require(
 [Sys.scripts.Templates, Sys.scripts.jQuery]
);
 < /script >
 < script type=”text/javascript” >
 function pageLoad() {
 $(‘a’).click(function (event) {
 alert(“Hello from jQuery!”);
 event.preventDefault();
 });
 }
 < /script >
 < /head >
 < body >
 < a href=”” > Click here for a welcome message! < /a >
 < /body >
 < /html >

 Code fi le [jQueryHello.htm] available for download at Wrox.com

 The sample uses the script loader mechanism you learned about in Chapter 19. The body of this
HTML fi le contains a link (< a > element). When the page is loaded, the pageLoad function runs and
defi nes the code to handle the event when the link is clicked.

 The $(‘a’) represents the jQuery function with the ‘ a ’ expression (the $ function is an alias for
 jQuery). The jQuery function is the root of jQuery library, defi ned as follows:

var jQuery = window.jQuery = window.$ = function(selector, context) {
 return new jQuery.fn.init(selector, context);
};

The jQuery Library ❘ 963

CH020.indd 963CH020.indd 963 9/6/10 6:31:30 PM9/6/10 6:31:30 PM

964 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 So, $(‘a’) takes a selector and returns a wrapped array of HTML elements, called a wrapped set .
In this case, it will return the DOM object represented by the < a > element in the page. The click
method of the jQuery object takes a callback to a function to be called when the object behind the
selector is clicked.

 As a result, the following code runs when you click the link:

alert(“Hello from jQuery!”);
event.preventDefault();

 The alert method displays the “ Hello ” message. The event.preventDefault() function is also
called to prevent the default event handler method from running.

 The previous script could be written in a more verbose form like this:

function pageLoad() {
 jQuery(‘a’).click(onClick);
}
function onClick(event) {
 alert(“Hello from jQuery!”);
 event.preventDefault();
}

 jQuery Library and jQuery Object

 The word “ query ” in the library ’ s name tells exactly its essence. It refers to running queries over the
DOM of the page. Your tools to query and fi nd elements within the DOM are quite limited when
you are using the standard methods of the document ’ s DOM elements. For example, you can obtain
the element by its identifi er:

var elem = document.getElementById(“dataTable”);

 Unlike in ASP.NET, in the HTML DOM, multiple elements can share the same ID. If a set of
elements match the identifi er passed, then method getElementById would only return the fi rst
matching element, while getElementsByName would return the whole collection.

 jQuery is much more powerful. It provides an amazing interface for selecting DOM elements in a
fashion that resembles querying data in SQL rather than obtaining elements by identifi ers. The root
object of the library (also named jQuery) is not just for querying DOM objects. It has functionality
that goes far beyond this:

 jQuery is chainable. The jQuery object itself, as well as most of the functions and fi lters,
return a jQuery object. The returned object contains the original wrapped set as modifi ed
by the function itself.

 jQuery provides an abstract eventing model that allows cross - browser compatibility. You
can trigger events programmatically, and you have about a dozen helper methods to simplify
the binding of handlers to common events.

➤

➤

CH020.indd 964CH020.indd 964 9/6/10 6:31:30 PM9/6/10 6:31:30 PM

 Through the jQuery object, you can access the built - in engine for visual effects. In the
library, you fi nd an effective engine for building custom animations, plus a few facilities for
quickly implementing common effects such as fading and sliding.

 jQuery has strong Ajax support (based on the ajax function), through which you can
control all aspects of a web request.

 Most nontrivial JavaScript code uses some kind of client - side cache. You do not have to
create your own, because jQuery provides one.

 Selectors and Filters

 Just as the WHERE clause is the key for a
SQL statement to select records matching
specifi ed conditions, selectors and fi lters
are the essence of jQuery to access DOM
elements. With selectors, you can position to
specifi c elements in the DOM. Filters specify
additional conditions to include or exclude
the element in the wrapped set as the result
of the jQuery operation.

 The jQuerySelectors.htm fi le in the
 jQuerySamples project contains several
sample queries. This fi le contains a table
with bulleted lists in each cell, as shown in
Figure 20 - 30.

 Each button at the bottom of the page
represents an operation based on a jQuery
wrapped set. For example, the “ First Album
to Red ” button changes the fi rst < li > item
in the page to have a red color with the
following script:

function firstToRed() {
 $(“li:first”).addClass(“red”);
}

 In this sample, li is a selector (“ select all li elements in the page ”), and :first is a fi lter (“ select
the fi rst item from the selector ”). The combination of them results in “ select the fi rst li item
in the page. ” The addClass is a jQuery method that adds the specifi ed CSS class to the items in
the wrapped set.

 There are several selectors, as shown in Table 20 - 11.

➤

➤

➤

 FIGURE 20 - 30: jQuerySelectors.htm in action

The jQuery Library ❘ 965

CH020.indd 965CH020.indd 965 9/6/10 6:31:31 PM9/6/10 6:31:31 PM

966 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 Most queries selectors are composed with fi lters. Table 20 - 12 summarizes the fi lters you can use in
jQuery.

 TABLE 20 - 11: Selectors Supported by jQuery

 SELECTOR DESCRIPTION

 #id Returns the fi rst element, if any, in the DOM with a matching id

attribute.

 element Returns all elements with a matching element name.

 .class Returns all elements with a matching CSS class .

 * Returns all elements in the page.

 selector1, ..., selectorN Applies all given basic selectors, and returns the combined

results.

 parent > child Given a selector, returns the collection of all child elements that

match the child selector.

 ancestor descendant Given an ancestor selector, returns the collection of all descendant

elements that match the descendant selector. The descendant

does not have to be a child of the ancestor. It can be a grandchild

or even a more derived element in the hierarchy.

 prev + next Given a selector, returns the collection of all sibling elements

that match the next selector and are located next to the prev

selector.

 prev ~ sibling Given a selector, returns the collection of all sibling elements

that match the sibling selector and follows the prev selector.

 TABLE 20 - 12: Filters in jQuery

 FILTER DESCRIPTION

 :first Returns the fi rst element of the selected collection of elements.

 :last Returns the last element of the selected collection of elements.

 :not(selector) Filters out all elements matching the specifi ed selector .

 :even Returns all even elements in the selected collection.

 :odd Returns all odd elements in the selected collection.

 :nth - child(expr) Returns all child elements of any parent that match the given expression.

The expression can be an index or a math sequence (for example, 4n+3),

including standard sequences (such as odd and even).

CH020.indd 966CH020.indd 966 9/6/10 6:31:31 PM9/6/10 6:31:31 PM

 Let ’ s take a look at a few examples. The jQuerySelectors.htm fi le has a sample that marks all
albums containing “ Tubular Bells ” in their titles. This operation is carried out with the following
code snippet:

function markTubularBells() {
 $(“ul li:contains(‘Tubular Bells’)”).attr(“class”, “item red”);
}

 This query takes all ul elements and then all of their li descendants that contain “ Tubular Bells ”
in their text. The attr method sets their class attribute to “ item red ” that changes their font
color to red. Because li elements are always descendants of ul elements, you could simply write
the query as follows:

$(“li:contains(‘Tubular Bells’)”)

Because of the parent - child relationship between ul and li , the following expression also works:

$(“ul > li:contains(‘Tubular Bells’)”)

 The :nth - child fi lter is very powerful. You can mark every third album within an era represented
by a table cell with the following function:

function thirdToGreen() {
 $(“li:nth-child(3n)”).attr(“class”, “item green”);
}

Here the 3n argument of :nth - child refers to “ every third. ”

 FILTER DESCRIPTION

 :first - child Returns all elements that are the fi rst child of their parent.

 :last - child Returns all elements that are the last child of their parent.

 :only - child Returns all elements that are the only child of their parent.

 :contains(text) Returns all elements that contain the specifi ed text.

 :empty Returns all elements with no children. (Text is considered a child node.)

 :has(selector) Returns all elements that contain at least one element that matches the

given selector.

 :parent Returns all elements that have at least one child. (Text is considered a child

node.)

 :hidden Returns all elements that are currently hidden from view. Input elements of

type “ hidden ” are added to the list.

 :visible Returns all elements that are currently visible.

The jQuery Library ❘ 967

CH020.indd 967CH020.indd 967 9/6/10 6:31:32 PM9/6/10 6:31:32 PM

968 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 You can combine selectors and fi lters. For example, you can set the background of table cells that do
not have any albums with “ Bells ” in the album name with the following code:

function bckToYellow() {
 $(“td:not(:contains(‘Bells’))”).attr(“class”, “yellowBack”);
}

Here, the td selector selects all table cells. The :contains(‘Bells’) fi lter select those that
have “ Bells ” somewhere in their text, and the :not fi lters out the ones that match with the
 :contains(‘Bells’) expression. The affected table cells have a yellow background.

 Another interesting query expression is implemented behind the “ Second paragraphs to Green ”
button. It sets the color of the second paragraphs in the table cells (the paragraphs containing the
years) only when there is “ 19 ” in the paragraph text. The code behind the function is very simple:

function secondParagraph() {
 $(“p+p:contains(‘19’)”).attr(“class”, “green”);
}

 The fi rst p in the query selects all paragraphs (< p > elements). The +p expression selects the next
sibling paragraphs. The :contains(‘19’) expression fi lters out only those that contain 19 in their
text. Let ’ s say that you insert some non - paragraph text between the < p > elements, like this:

 < td valign=”top” >
 < p > Early albums < /p >
 < h3 > very early < /h3 >
 < p > (1973-1979) < /p >
 < ul id=”earlyAlbums” class=”list” >
 < li class=”item” > Tubular Bells < /li >
 < li class=”item” > Hergest Ridge < /li >
 < li class=”item” > Ommadawn < /li >
 < li class=”item” > Incantations < /li >
 < li class=”item” > Exposed < /li >
 < /ul >
 < /td >

The p+p expression will not match the “ (1973 - 1979) ” paragraph because it not subsequent with
 “ Early albums. ” However, p~p would match with it.

 You can also fi lter by attribute values adding power to the query capabilities. Table 20 - 13
summarizes the attribute fi lters supported by jQuery.

 TABLE 20 - 13: Attribute Filters Supported by jQuery

 ATTRIBUTE FILTER DESCRIPTION

 [attribute] Returns all elements that have the specifi ed attribute.

 [attribute = value] Returns all elements that have the specifi ed attribute set to the

specifi ed value.

 [attribute != value] Returns all elements whose specifi ed attribute (if present) has a value

diff erent from the given one.

CH020.indd 968CH020.indd 968 9/6/10 6:31:32 PM9/6/10 6:31:32 PM

 The “ All non - red albums to Blue ” button uses attribute fi ltering to mark the albums that do not
have the “ red ” class in their style:

function nonRedToBlue() {
 $(“li:not([class*=’red’])”).attr(“class”, “item blue”);
}

 Data form processing is a common activity in web application development. You can use the
selectors and fi lters to access form elements. For example, you can access all buttons in a form with
the following query:

$(“form input[type=button]”)

 This query gets all < input > elements within the < form > that have their type attribute set to
 “ button ” . jQuery helps accessing form elements by defi ning form fi lters (pseudo - fi lters), which are
summarized in Table 20 - 14.

 ATTRIBUTE FILTER DESCRIPTION

 [attribute^=value] Returns all elements whose specifi ed attribute (if present) begins with

the specifi ed value.

 [attribute$=value] Returns all elements whose specifi ed attribute (if present) ends with

the specifi ed value.

 [attribute*=value] Returns all elements whose specifi ed attribute (if present) contains the

specifi ed value.

 TABLE 20 - 14: Form Filters in jQuery

 FILTER DESCRIPTION

 :input Returns all elements that have a role in collecting input data, including textarea

and drop - down lists.

 :text Returns all input elements whose type attribute is text .

 :password Returns all input elements whose type attribute is password .

 :checkbox Returns all input elements whose type attribute is checkbox .

 :radio Returns all input elements whose type attribute is radio .

 :submit Returns all input elements whose type attribute is submit .

 :reset Returns all input elements whose type attribute is reset .

The jQuery Library ❘ 969

continues

CH020.indd 969CH020.indd 969 9/6/10 6:31:32 PM9/6/10 6:31:32 PM

970 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 The last four pseudo - fi lters in Table 20 - 14 are very convenient, because you can grab all input
elements in a page that are enabled or disabled. You can also easily get all checkboxes and radio
buttons checked, as well as list items currently selected.

 Chaining and Utility Functions

 One of the best features of jQuery is its chainability, which is possible because the jQuery object
itself (as well as most of the functions and fi lters) returns a jQuery object. The returned object
contains the original wrapped set as modifi ed by the function itself. In the previous sample, you saw
example of chained expressions — for example, the .attr method has been used to set the specifi c
attributes of all elements in a wrapped set.

 You can use chaining to make complex queries more readable by cascading them. For example,
consider the following expressions:

$(“td:not(:contains(‘Bells’))”)
// ...
$(“li:nth-child(3n)”)

This is how they would appear in chained form:

$(“td”).not(“:contains(‘Bells’)”)
// ...
$(“li”).filter(“:nth-child(3n)”)

 You can access the DOM items in wrapped sets, and you can process them easily with the help of a
few utility functions summarized in Table 20 - 15.

 FILTER DESCRIPTION

 :image Returns all input elements whose type attribute is image .

 :button Returns all input elements whose type attribute is button .

 :file Returns all input elements whose type attribute is file .

 :hidden Returns all input elements whose type attribute is hidden .

 :enabled Returns all input elements that are currently enabled.

 :disabled Returns all input elements that are currently disabled.

 :checked Returns all checkbox or radio elements that are currently checked.

 :selected Returns all list elements that are currently selected.

TABLE 20-14 (continued)

CH020.indd 970CH020.indd 970 9/6/10 6:31:33 PM9/6/10 6:31:33 PM

 The each() function is very useful, because you can iterate through the items in the wrapped
set. The “ Decorate albums ” and “ Remove decorations ” buttons use this function:

function decorateAlbums() {
 $(“li:not(:contains(‘***’))”).each(function (i) {
 this.title = this.innerText;
 this.innerText = “*** “ + this.innerText + “ (“ + i + “)”;
 });
}

function removeDecorations() {
 $(“li:contains(‘***’)”).each(function (i) {
 this.innerText = this.title;
 });
}

 The difference between each() and a manual JavaScript loop is that each() automatically maps the
 this object to the element in the collection being processed. The callback function receives an
optional integer parameter that is the (0 - based) index of the iteration. In the previous code snippet,
this index number is used to create the decoration text for the album.

 Later in this section you will learn about a number of methods that can be used with wrapper sets.

 Eventing Model and Event Handlers

 jQuery provides an abstract eventing model that allows cross - browser compatibility. Instead
of handling browser - specifi c events, jQuery offers a set of events that work seamlessly with all
widespread browsers, including Internet Explorer, Firefox, Safari, and Google Chrome. You can
bind event - handler methods to jQuery events, or trigger them with helper methods.

 All events have helper functions to bind handlers to the specifi c event, and most of them also
have helpers to trigger those events. Table 20 - 16 summarizes these events, and names the binding
functions and trigger methods.

 TABLE 20 - 15: Utility Functions Provided by jQuery

 UTILITY FUNCTIONS DESCRIPTION

 each(callback) Loops over the content of the wrapped set and executes the specifi ed

callback function.

 length Property that returns the number of elements in the wrapped set.

 eq(position) Reduces the wrapped set to the single element at the specifi ed position.

 get() Returns the content of the wrapped set as an array of DOM elements.

 get(index) Returns the DOM elements at the specifi ed position in the wrapped set.

 index(element) Returns the 0 - based index in the wrapped set of the specifi ed DOM

element, if any.

The jQuery Library ❘ 971

CH020.indd 971CH020.indd 971 9/6/10 6:31:33 PM9/6/10 6:31:33 PM

972 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 TABLE 20 - 16: jQuery Events, Binding Helpers, and Triggers

 EVENT

 BINDING

FUNCTION

 TRIGGER

METHOD EVENT FIRED WHEN. . .

 beforeunload A browser window is unloaded or closed

by the user.

 blur blur(fn) blur() An element loses focus because either the

user clicked outside of it or tabbed away.

 change change(fn) change() The element loses focus and its value has

been modifi ed since it gained focus.

 click click(fn) click() The user clicks on the element.

 dblclick dblclick(fn) dblclick() The user double - clicks on the element.

 error error(fn) error() The window object signals that an error

has occurred — usually a JavaScript

error has been detected.

 focus focus(fn) focus() An element receives focus either via the

mouse or tab navigation.

 keydown keydown(fn) keydown() A key is pressed.

 keypress keypress(fn) keypress() A key is pressed and released. A

 keypress is defi ned as a successive

 keydown and keyup events.

 keyup keyup(fn) keyup() A key is released. This event follows

 keypress .

 load The element and all of its content has

fi nished loading.

 mousedown A mouse button is pressed.

 mouseenter The mouse enters in the area of an

element.

 mouseleave The mouse leaves the area of an element.

 mousemove The mouse is moved while it is over an

element.

 mouseout The mouse is moved out of an element.

Unlike mouseleave , this event also fi res

when the mouse moves into or out of child

elements.

CH020.indd 972CH020.indd 972 9/6/10 6:31:34 PM9/6/10 6:31:34 PM

 As you see from Table 20 - 16, there are events you
cannot programmatically trigger or bind an event
handler method to.

 The jQueryEventHandling.htm page in the
 jQuerySamples project demonstrates these
concepts. The page contains six images. When you
click them, they display a pop - up message telling
you the name behind the image. When you move the
mouse onto the images, their background is changed.
Figure 20 - 31 shows this simple page in action when
the mouse is moved onto the fi rst image in the
second row.

 The code that causes this behavior is simple. It binds
events with their handlers in the pageLoad method:

function pageLoad() {
 $(“img”).click(function (event) {
 alert(“This is “ + this.alt + “.”);
 event.preventDefault();
 });

 $(“img”).mouseenter(function (event) {
 event.currentTarget.className = “faded”;
 });

 EVENT

 BINDING

FUNCTION

 TRIGGER

METHOD EVENT FIRED WHEN. . .

 mouseover The mouse is moved onto an element.

Unlike mouseenter , this event also fi res

when the mouse moves into or out from

child elements.

 mouseup The mouse button is released. This event

follows mousedown .

 resize An element is resized.

 scroll An element is scrolled.

 select select(fn) select() The user selects some text in a text fi eld.

 submit submit(fn) submit() A form is submitted.

 unload A browser window is unloaded.

 FIGURE 20 - 31: jQueryEventHandling.htm in

action

The jQuery Library ❘ 973

CH020.indd 973CH020.indd 973 9/6/10 6:31:34 PM9/6/10 6:31:34 PM

974 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 $(“img”).mouseleave(function (event) {
 event.currentTarget.className = “”;
 if (event.currentTarget.id == “img6”) {
 $(“#img1”).click();
 }
 });
}

 You can recognize the click(fn) , mouseenter(fn) , and mouseleave(fn) binding functions.
As you can see from the code, there is a little twist in the mouseleave event. When the mouse
leaves the sixth image, it triggers the click event of the fi rst image.

 In addition to the helper methods, you can bind handlers to the corresponding events in a more
sophisticated way. Table 20 - 17 summarizes the jQuery functions you can use to bind and unbind
event handlers to wrapped set items.

 TABLE 20 - 17: Functions Binding and Unbinding Event Handlers

 METHOD DESCRIPTION

 bind Associates the given function to one or more events for each element

contained in the wrapped set.

 die This function removes a live event handler from all current and future elements

of the wrapped set. This means that if a new DOM element is added that

matches the conditions of the wrapped set, the element will be automatically

unbound from the handler.

 live This function binds the specifi ed event handler to all current and future

elements of the wrapped set. This means that if a new DOM element is

added that matches the conditions of the wrapped set, the element will be

automatically bound to the handler.

 one Works like bind, except that any event handler is automatically removed after it

has been run once.

 trigger Triggers the given event for each element in the wrapped set.

 triggerHandler Triggers the given event on one element in the wrapped set and cancels the

default browser actions.

 unbind Removes bound events from each element in the wrapped set.

 These methods have several parameters. For example, the bind method has three of them:

bind(eventName, eventData, eventHandler)

CH020.indd 974CH020.indd 974 9/6/10 6:31:35 PM9/6/10 6:31:35 PM

 The fi rst argument of bind is a string that names the event to handle (for instance, “ click ” ,
 “ mouseenter ” , and so on). The second argument represents any input data coming with the event.
The third argument is the JavaScript function to bind the event to.

 Visual Eff ects and Animations

 In most web applications, client - side scripting is used to improve the user experience by adding
simple effects and animations. The jQuery library has a simple, but powerful, built - in engine
for visual effects. The jQueryVisualEffects.htm page demonstrates how easy it is to use the
jQuery visual effects. This page uses the same six images you saw in Figure 20 - 31, but this
time, the pageLoad method sets up the event handlers to use the slideToggle effect:

function pageLoad() {
 $(“img”).mouseenter(function (event) {
 $(“#” + event.currentTarget.id).slideToggle(“slow”);
 });

 $(“img”).mouseleave(function (event) {
 $(“#” + event.currentTarget.id).slideToggle(“slow”);
 });
}

 Table 20 - 18 summarizes the visual effects supported by jQuery.

 TABLE 20 - 18: Visual Eff ects

 EFFECT DESCRIPTION

 animate Performs a custom animation of a set of CSS properties.

 fadeIn Displays the matched elements by fading them to opaque.

 fadeOut Hides the matched elements by fading them to transparent.

 fadeTo Adjusts the opacity of the matched elements.

 hide Hides the matched elements.

 show Displays the matched elements.

 slideDown Displays the matched elements with a sliding motion.

 slideToggle Displays or hides the matched elements with a sliding motion.

 slideUp Hides the matched elements with a sliding motion.

 stop Stops the currently running animation on the matched elements.

 toggle Binds two or more handlers to the matched elements, to be executed on

alternate clicks.

The jQuery Library ❘ 975

CH020.indd 975CH020.indd 975 9/6/10 6:31:35 PM9/6/10 6:31:35 PM

976 ❘ CHAPTER 20 ASP.NET AJAX CONTROL TOOLKIT AND JQUERY

 Most effect methods take one or more arguments describing the effect. Generally, the fi rst argument
is the time of the animiation specifi ed in milliseconds or literally such as “ slow ” or “ fast ” . All
effect methods take an optional callback argument invoked when the animation is completed.

 For more detail on animations and visual effects, see the jQuery reference and
tutorial at http://api.jquery.com/category/effects/ . You will also fi nd
examples there to help you better understand how a specifi c effect works.

 jQuery Ajax Features

 In jQuery, you can easily leverage the Ajax
infrastructure and carry out asynchronous postbacks.
The key of this behavior is the ajax function through
which you can control all aspects of a web request. The
 jQueryAjax.htm page demonstrates how easy is to call
a web service with this method. The page has a link,
and when you click on it, it initiates the asynchronous
postback. When the call is completed, the result is
displayed, as shown in Figure 20 - 32.

 The ajax method is called as the following code
snippet shows:

function pageLoad() {
 $(‘a’).click(callAjax)
}

function callAjax(event) {
 $.ajax(
 {
 type: “POST”,
 url: “/ExpertiseService.asmx/GetExpertises”,
 data: “”,
 success: function (response) {
 $(“#result”)[0].innerText = response.xml;
 }
 });
 event.preventDefault();
}

 You can see that the success parameter defi nes the function to run when the web service call
completed. This method simply copies the XML result into a literal text fi eld in the page.

 The web service at the back - end is also very simple, as Listing 20 - 28 shows.

 FIGURE 20 - 32: Calling a Web service from

jQuery

CH020.indd 976CH020.indd 976 9/6/10 6:31:36 PM9/6/10 6:31:36 PM

 LISTING 20 - 28: ExpertiseService.asmx

using System.Web.Script.Services;
using System.Web.Services;

namespace jQuerySamples
{
 [ScriptService]
 public class ExpertiseService : System.Web.Services.WebService
 {
 [WebMethod]
 public string[] GetExpertises()
 {
 return new string[]
 {
 “Visual Basic”,
 “Visual C#”,
 “SQL Server”,
 “ASP.NET”,
 “Office”
 };
 }
 }
}

 Code fi le [ExpertiseService.asmx] available for download at Wrox.com

 SUMMARY

 The ASP.NET Ajax Control Toolkit and the jQuery technology are two great pieces of the full
toolset you can use together with your ASP.NET applications to improve the user experience.

 The Ajax Control Toolkit provides you with more than 40 server - side controls. Most of them
are extenders that can be attached to existing server - side controls to extend (improve) their
functionality. There are also new controls that can be used individually. You can use the Toolkit
from scratch to build your websites and pages, but it is also very easy to add these controls to
existing pages.

 The jQuery library makes JavaScript code easier and quicker to write. The library provides
helper functions that dramatically increase your productivity, while decreasing your frustration.
In addition to accessing HTML DOM elements, jQuery offers you browser - independent event -
 handling mechanism, visual effects, and Ajax infrastructure support.

 Chapter 21 provides a brief overview of the history of the Visual Basic programming language,
including its roots, and its main characteristics.

Summary ❘ 977

CH020.indd 977CH020.indd 977 9/6/10 6:31:38 PM9/6/10 6:31:38 PM

CH020.indd 978CH020.indd 978 9/6/10 6:31:38 PM9/6/10 6:31:38 PM

PART IV

VB.NET

CHAPTER 21: History of Visual Basic

CHAPTER 22: Visual Basic 10.0 Language Improvements

�

�

CH021.indd 979CH021.indd 979 9/6/10 6:34:51 PM9/6/10 6:34:51 PM

CH021.indd 980CH021.indd 980 9/6/10 6:34:57 PM9/6/10 6:34:57 PM

History of Visual Basic

 The Visual Basic programming language has been changed a lot over the course of the past
decade. However, the language dialect that developers use today with the “ Visual ” prefi x
was born when the .NET Framework was released in February 2002. The roots of the Basic
language go back to 1964.

 In recent years, many reports have been published about the popularity of programming
languages, and Visual Basic was ranked in the top fi ve most popular in each of them. There
were years when surveys showed Visual Basic as the fi rst or second most popular one. In
the .NET platform, Visual Basic is used by about 60 percent of developers as the primary
programming language.

 This chapter provides a brief overview of the history of the Visual Basic programming
language. The discussions in this chapter assume that you are familiar with the fundamental
constructs of the language and that you have already used it. If you are not a Visual Basic
developer, this chapter also helps to provide you with context.

 This chapter covers the following topics:

 The roots of the Visual Basic language

 A brief history of the language used in the 1990s

 The main characteristic of Visual Basic.NET (7.0) introduced with .NET 1.0

 A brief overview of features in Visual Basic 2005 (8.0) and Visual Basic 2008 (9.0)

 In the past, every major Visual Studio release introduced a new version of the Visual Basic and
C# languages, following the main course of improvements in the .NET Framework. The same
holds true for Visual Studio 2010, which introduces Visual Basic 2010 (10.0). In Chapter 23,
you ’ ll learn about the details of the new features and improvements.

 Let ’ s begin this overview with a review of where it all began for Visual Basic.

➤

➤

➤

➤

 21

CH021.indd 981CH021.indd 981 9/6/10 6:34:57 PM9/6/10 6:34:57 PM

982 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 THE ROOTS OF VISUAL BASIC

 Visual Basic today is an object - oriented programming (OOP) language that shifts toward being a
multi - paradigm programming language. However, it started its life in the mid - 1960s as a high - level
language that allowed the masses to program computers.

 The original BASIC (Dartmouth BASIC) was designed by John G. Kemeny and Thomas E. Kurtz to
provide computer access to non - science students. The language got its name from the acronym for
 Beginner ’ s All - purpose Symbolic Instruction Code. BASIC was a real breakthrough, because, at
that time, nearly all use of computers required writing custom software, which was something only
computer scientists and mathematicians tended to be able to do. In contrast to the user experience
that required fi rst writing a computer program and then compiling it (which was a laborious and
tedious task at that time), BASIC was an interpreted language that could be used interactively. The
fi rst programs were very simple and could be used from the command line. For example, a user may
have typed something such as the following:

PRINT 2 + 2

The interpreter immediately showed 4 on the console as the result of this simple calculation.

 BASIC as a language gained a great popularity in the late 1970s and 1980s when its variants
became widespread on microcomputers such as on Atari, Commodore, Tandy, Sinclair models, and
on many others.

 Structured and Unstructured BASIC

 The fi rst versions of the BASIC language were unstructured. The order (control fl ow) of the
instructions was determined by line numbers. The execution (interpreting the source code) started
at the line with the smallest number. The language had a GOTO statement to change the control
fl ow, a GOSUB statement to call subroutines, and a FOR statement to organize cycles. At that time,
formal and actual parameters were unknown in the language. Subroutines took input parameters
and passed back results through global variables.

 Listing 21 - 1 shows a simple calculation written with unstructured BASIC.

 LISTING 21 - 1: Square Numbers Calculation with Unstructured BASIC

10 INPUT “ENDING NUMBER”; E
20 FOR I=1 TO E
30 A=I
40 GOSUB 100
50 NEXT I
60 END
100 PRINT A;”*”;A;” = “;A*A
110 RETURN

 Both the input and output of the programs were generally the console of the personal or microcomputer
on which the interpreter was run. Figure 21 - 1 shows how users could run the previous code snippet on
a Commodore 64 computer.

CH021.indd 982CH021.indd 982 9/6/10 6:34:59 PM9/6/10 6:34:59 PM

The Roots of Visual Basic ❘ 983

 Despite the fact that unstructured BASIC had poor features to defi ne control fl ow, very complex
applications (including business applications such as accounting, banking, simple CAD programs,
technical computations, and many more) were programmed with it.

 The second generation of BASIC variants (for example, GW - BASIC and its successor, QuickBASIC
by Microsoft and PowerBASIC) introduced a number of features into the language, primarily related
to structured and procedure - oriented programming.

 FIGURE 21 - 1: Simple BASIC program running on Commodore 64

The fi rst version of QuickBASIC was released in 1985 for MS - DOS, and
its last version was 4.5 released in 1988. There are many successors of the
language (including its pure IDE), which are still in use. For example, QB64
released version 0.85 at the end of December 2009, and it even runs on
Windows 7.

 These versions removed the need for line numbers (which were replaced by labels for GOTO)
and added procedures to the language with formal parameters. Several new cycle types were
already added, such as DO WHILE ... LOOP , DO ... UNTIL , and so on. Listing 21 - 2 shows how the
calculation in Listing 21 - 1 could be transformed to the structured style defi ned by QuickBASIC.

CH021.indd 983CH021.indd 983 9/6/10 6:35:00 PM9/6/10 6:35:00 PM

984 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 LISTING 21 - 2: Square Numbers Calculation in QuickBASIC

CLS
INPUT “ENDING NUMBER: “, E
I = 0
DO WHILE I < E
 I = I + 1
 R = SQUARE(I)
 PRINT I; “*”; I; “ = “; R
LOOP

FUNCTION SQUARE(I)
 SQUARE = I * I
END FUNCTION

 Moving to “ Visual ”

 No doubt, BASIC implementations developed by Microsoft gave a solid ground for the company
(think about the Commodore C64 Basic interpreter, GW - BASIC, and QuickBASIC for MS - DOS).
The BASIC language was about console applications for a long time — reading input the user
typed in, and writing output to the console. Early microcomputers extended the language with
instructions for graphical applications. For example, C64 had Simon ’ s BASIC. Sinclair ZX
Spectrum had Sinclair BASIC that allowed developers to draw lines, circles, polygons, and other
shapes utilizing the graphical capabilities of their host computers.

 In the late 1980s and early 1990s, graphical user interfaces (GUIs) became very popular. That was
the era when Microsoft ’ s name had been tied with its Windows operating system, mainly because
of the success of Windows 3.1.

 For a long time, Windows application development was a privilege of C (and later C++)
programmers. They had to carry out a lot of tasks for creating the simplest UI — such as defi ning
and registering Windows classes, implementing the Windows message loop, dispatching Windows
messages, painting the client in Windows, and so on. The smallest “ Hello, World ” program for
Windows was about a hundred lines of code, where you could not meet any explicit statement to
print out the “ Hello, World ” text. The UI missed the concept of controls — there were windows and
child windows, all of them represented by window handles (HWNDs).

 At that time, developers accepted this way of Windows software creation as a price for interacting
with a GUI.

 The fi rst tool that dramatically changed Windows application development was Visual Basic 1.0,
released in May 1991. Visual Basic introduced (or, perhaps, invented) such concepts as forms,
controls, code - behind fi les — all of which are still in use in contemporary development tools.
Instead of writing resource fi les and addressing UI elements through 16 - bit constants, you could
drag and drop predefi ned UI controls to your forms, and program their events. The hundred - line
 “ Hello, World ” program was so simple with Visual Basic:

Private Sub Form_Load()
 MsgBox(“Hello, World!”)
End Sub

CH021.indd 984CH021.indd 984 9/6/10 6:35:17 PM9/6/10 6:35:17 PM

The Roots of Visual Basic ❘ 985

 Visual Basic 1.0 was released at the Comdex World Trade show in Atlanta, Georgia, and it
immediately became a great success.

 Visual Basic in the 1990s

 Visual Basic was not only a single language, but also a development environment. To understand
how the language advanced, you must understand the technological trends and context that
infl uenced the evolution of both the language and the development environment.

 The great success of the concept Visual Basic represented gave a spin for the product, and Microsoft
released fi ve major versions up until 1998. The next version, Visual Basic 2.0, was released in
November 1992. It did not add new concepts to the language, but its programming environment
was much easier to use than its predecessors, and its speed was improved. While Visual Basic 1.0
used static forms, 2.0 allowed instantiating them.

 In November 1992, after creating a tool allowing Windows development for the masses, Microsoft
released Microsoft Access 1.0 as another visual tool — for database development — and in May
1993 Access 1.1 was released that included the Access Basic programming language.

 Visual Basic 3.0 was a new version that shipped with two editions, Standard and Professional. The
main theme of this version released in July 1993 was database programming with the Microsoft
Jet Database Engine. The engine was the same as the one used in Access 1.1, and, because it was
included in the installation kit, Visual Basic 3.0 could read and write Access databases.

 When Windows 95 (the fi rst 32 - bit version of the Windows operating system) was launched in August
1995, the next Visual Basic, version 4.0 (which was released in the same month as Windows 95) was
ready to create both 32 - bit and 16 - bit applications. Having a development tool with the capability to
create 32 - bit programs was an important factor to the success of Windows 95.

 Unfortunately, Visual Basic 4.0 had several releases and introduced some compatibility issues. While
the previous releases had used VBX controls, Visual Basic 4.0 later started using OLE controls
(that is, fi lenames ending with an .OCX extension). This version also took a turn toward object -
 oriented principles — it allowed created non - GUI classes to implement Component Object Model
(COM) interfaces, and encapsulate data and functionality. Although it was a different kind of object
orientation than .NET offers today, admittedly, it was an important step.

 Visual Basic 5.0 released in February 1997 and became an exclusive 32 - bit version ready to
convert 16 - bit Visual Basic 4.0 programs to the new platform. While the previous versions compiled
and executed an intermediate code (P - code), this version had the capability to compile native
Windows executable code. This new compilation model helped signifi cantly in the performance of
calculation - intensive applications.

 Another main theme for version 5.0 was componentization . Developers could create business
components (middleware layer components) running in Microsoft Transaction Server (MTS, later
renamed to COM+), and started moving toward three - tier distributed applications. This version also
had a free Control Creation Edition to develop ActiveX controls (OLE controls were renamed to
ActiveX controls).

 The last version of Visual Basic for the Windows 32 - bit platform was version 6.0 released in June
1998. The language and the development environment were equipped with features to create real

CH021.indd 985CH021.indd 985 9/6/10 6:35:17 PM9/6/10 6:35:17 PM

986 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

distributed, multi - tier enterprise applications
with database support, as well as the capability
to create COM+ middleware components, thick -
 client, and web UI. Figure 21 - 2 shows the project
types developers could use with Visual Basic 6.0
out - of - the - box.

 To emphasize this new position of Visual Basic, in
addition to the Standard and Professional editions,
6.0 had an Enterprise edition — which was a sort
of alternative for the Java language and platform
born in 1995.

 Visual Basic 6.0 was long - lived product. Even
today, there are business applications (with many
COM+ components) developed with Visual Basic 6.0, which are still being used in production.
Microsoft supported this application until March 2008, but the Enterprise edition still can be
downloaded from MSDN.

 VISUAL BASIC IN THE .NET FRAMEWORK

 After the release of Visual Basic 6.0, a long time passed before a new release of the language was
announced. Meanwhile, Microsoft was working on its Common Object Run - time platform that
was announced as the .NET Framework in July 2000 at Professional Developers Conference (PDC)
held in Orlando, Florida. That PDC focused on the .NET Framework, and it spotlighted the new
C# programming language. But it was clear that Visual Basic had a large camp of developers that
Microsoft couldn ’ t ignore.

 When .NET Framework 1.0 was released as part of a pair with Visual Studio.NET in February
2002, the new Visual Basic 7.0 — called Visual Basic.NET — was born. This change for the
programming language was at least as signifi cant as the step from unstructured to structured BASIC
in the mid - 1980s.

 Design Goals and Debates

 The most important goal of the Visual Basic language was to transform it to a real object - oriented
(OO) language free from common programming fl aws. While Microsoft communicated the
pre - .NET versions as OO ones, only the encapsulation principle was fully implemented by
Microsoft, while inheritance and polymorphism were very poor — object classes could implement
COM interfaces.

 The Common Type System (CTS) of the .NET Framework dictated the features language designers
had to take into account. The real question was not which CTS features to implement, but rather
which ones could be omitted from the language. In addition to this paradigm shift, another
reasonable design goal was to change the language syntax and semantics with the best achievable
level of backward compatibility.

 FIGURE 21 - 2: Project types in Visual Basic 6.0

CH021.indd 986CH021.indd 986 9/6/10 6:35:17 PM9/6/10 6:35:17 PM

Visual Basic in the .NET Framework ❘ 987

 The design resulted in a language that was not backward compatible with the previous versions.
It contained signifi cant breaking changes. While method bodies had the same structure and
instructions (of course, a few new instructions were added, such as the ones supporting structured
exception handling), other structures like namespaces and type nesting were totally unusual for
Visual Basic developers.

 Within a few months after the release, a rift developed within the developer community. Many
developers said Visual Basic.NET was a new language, because the language had been decorated
with unusual things that had been tuned for .NET. Companies with relatively small Visual Basic
codebase were weighing whether to learn the new Visual Basic version, or to change to C#. Many
of them decided to learn C#. Despite the debates surrounding Visual Basic.NET, the last eight years
have seen Visual Basic become a modern multi - paradigm language successfully used by a large
community for developing applications with the .NET Framework.

 Visual Basic .NET (7.0) and .NET 2003 (7.1)

 Microsoft ’ s opinion in the debate on whether or not Visual Basic .NET was a new language can
be clearly seen from the continuous version number (7.0) it used.
The next language release (7.1) that is often used as Visual Basic
.NET 2003 (or simply Visual Basic 2003) did not change the
language.

 The new language became a bit more verbose than its pre - .NET
versions. If you wanted to implement a simple “ Hello User ”
application that displayed a user name typed in a TextBox
(as shown if Figure 21 - 3), you had to use the following code with
Visual Basic.NET (2003):

Public Class Form1
 Private Sub CommandBtn_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles CommandBtn.Click
 WelcomeLabel.Text = “Welcome, “ & NameBox.Text & “!”
 End Sub
End Class

 With Visual Basic 6.0 you had a thinner surrounding for the statement setting the label text:

Private Sub CommandBtn_Click()
 WelcomeLabel.Caption = “Welcome, “ & NameBox.Text & “!”
End Sub

 If you compare the two code snippets, you can see a few things that characterize the .NET version:

 The .NET event mechanism is used, and it allows you to pass event arguments.

 Events and related response methods are no longer connected by names.

 Forms are explicit classes.

 The Caption property of a label was renamed to Text in .NET.

➤

➤

➤

➤

 FIGURE 21 - 3: “ Hello User ”

application UI

CH021.indd 987CH021.indd 987 9/6/10 6:35:18 PM9/6/10 6:35:18 PM

988 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 The list of differences in syntax and semantics (compatibility breaks) may underpin the opinions
of those who feel that Visual Basic.NET is a new language. However, the style of the language —
indentation (including the underscore as a line - continuation character) — is remarkably Visual Basic.

 Microsoft and C# programmers often mention C# as the “ native programming language for .NET. ”
The bulk of the differences between C# and VB.NET from a technical perspective are syntactic
sugar. Visual Basic has few features that cannot be found in C#:

 Visual Basic supports the IDE with the WithEvents construct so that a programmer may
select an object from the Class Name drop - down list, and then select a method from the
Declarations drop - down list to have the event method signature automatically inserted.

 C# introduced optional method parameters and named arguments only in C# 4.0 (released
with Visual Studio 2010), while Visual Basic had it from the beginnings.

 The With ... EndWith construct allows marshaling an object for multiple actions using an
unqualifi ed dot reference.

 Inline date declarations can be used with the #12/31/2009# syntax.

 Interface member implementations can be mapped to any methods with matching signatures,
and not just to methods having the same name as the interface member declaration.

 Type System

 Visual Basic.NET has a unifi ed type system that is the CTS in the .NET Framework. Each type has
a root ancestor, namely System.Object . This type system separates data types into two categories:

 Value types — These are plain aggregations of data, and their instances do not have either
referential identity or referential comparison semantics at all. Operations on value types are
carried out with the actual data within the instances.

 Reference types — These have the notion of referential identity. Each instance of a reference
type is inherently distinct from every other instance, even if the data within both instances
is the same.

 There are no standalone global variables or global functions in Visual Basic. All methods and data
members must be declared within types or modules. The following “ Hello, World ” example mirrors
this fact:

Module ExampleModule

 Sub Main()
 Console.WriteLine(“Hello, World”)
 End Sub

End Module

 Visual Basic is type safe . The set of implicit conversions depends on the compilation environment and
the Option Strict statement. If strict semantics are being used (Option Strict On), only widening
conversions may occur implicitly. If permissive semantics are being used (Option Strict Off , which
is the default), all widening and narrowing conversions may occur implicitly.

➤

➤

➤

➤

➤

➤

➤

CH021.indd 988CH021.indd 988 9/6/10 6:35:18 PM9/6/10 6:35:18 PM

Visual Basic in the .NET Framework ❘ 989

 Multiple inheritance is not supported by the language. A class can have only one base class, but is
allowed to implement any number of interfaces. This was a design decision to avoid complication,
avoid dependency hell, and simplify architectural requirements throughout the CTS.

 Memory Management

 The language has the New operator to allocate type instances from memory. However, it does
not have any statement, function, or operator to explicitly free the allocated managed memory.
Instead, it is automatically garbage - collected. Garbage collection addresses memory leaks by
freeing the programmer of the responsibility for releasing memory that is no longer needed. It is a
non - deterministic mechanism.

 Visual Basic does not allow directly using pointers . However, reference types physically use pointers
as their implementation, and you can use them only for referencing the objects behind them. No
pointer arithmetic is available.

 Visual Basic programs can still store and compare pointers through the System.IntPtr type (which
provides interoperability between managed and unmanaged code), but objects and values behind
 IntPtr instances cannot be dereferenced.

 Visual Basic 2005 (8.0)

 .NET 2.0 brought great changes into the CTS. The feature of generic types that really had been
missing from the previous versions was added to the framework, and the Visual Basic language also
implemented this feature. Most changes in Visual Basic 2005 were related to generic types.

 However, in addition to generic types, there were several other great features added to the language
in response to the community feedback and experiences, including the following:

 Partial types

 Nullable types

 Documentation comments

 Operator declarations

 New unsigned and signed integer types

 Using construct

 Let ’ s dive into some detail for these features.

 Generic Types

 Generic types allow you to defi ne type - safe data structures, without committing to actual data
types. This results in higher - quality code, because you can reuse data processing algorithms without
duplicating type - specifi c code.

 There is a similar concept in C++, called templates , but while templates in C++ are supported by
a compiler, .NET generic types are implemented at the Common Language Run - time (CLR) level.
Although there are entire books dedicated to generics, this section provides a brief overview without
deeper explanation.

➤

➤

➤

➤

➤

➤

CH021.indd 989CH021.indd 989 9/6/10 6:35:19 PM9/6/10 6:35:19 PM

990 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 The CLR before generics never offered a type - safe way to encapsulate common behavior into a
type. For example, if you wanted to create a behavior describing how a queue works, and intended
to use it with both Integer and your own Transfer type, you had to create a workaround. Either
you implemented two separate types called IntegerQueue and TransferQueue , or created a
single Queue type that accepted System.Objects . The fi rst implementation has issues with code
maintenance, while the second has issues with providing type safety and performance.

 Generics in Visual Basic allow you to use type parameters with type and method defi nitions. These
defi nitions are called open type defi nitions , as shown in the following example:

Public Class Queue(Of T)
 Public Sub Enqueue(ByVal item As T)
 ‘ ...
 End Sub

 Public Function Dequeue() As T
 ‘ ...
 End Function

 Public ReadOnly Property IsEmpty() As Boolean
 Get
 ‘ ...
 End Get
 End Property
End Class

 In this sample defi nition, T is the type parameter. When it is time to use the defi nitions for concrete
types, T is substituted with the type you intend to use, together with the behavior Queue offers:

Dim intQueue As Queue(Of Integer) = New Queue(Of Integer)
intQueue.Enqueue(42)
Dim transferQueue As Queue(Of Transfer) = New Queue(Of Transfer)
While Not transferQueue.IsEmpty
 Dim transfer = transferQueue.Dequeue()
 transfer.Process()
 ‘ ...
End While

 The types where the type parameter is substituted with a concrete type are called closed types . You
are not limited to using only one type parameter; you can use more. For example, the following
declaration lets you defi ne a node in a linked list, where K represents the type used as the key of the
node, and N is the type representing the value of a node:

Public Class LinkedNode(Of K, N)
 ‘ ...
End Class

 You can also add type parameter constraints to your types to restrict them to a subset of types. For
example, when you allow only value types for being keys, and want to be sure that node elements
can be compared, the previous type defi nition can be constrained like this:

CH021.indd 990CH021.indd 990 9/6/10 6:35:19 PM9/6/10 6:35:19 PM

Visual Basic in the .NET Framework ❘ 991

Public Class LinkedNode(Of _
 K As Structure, _
 N As {IComparable(Of N), New})
 ‘ ...
End Class

 There is a special type constraint called New that requires that the type be able to be used in New
expressions. There are also two special type constraints that limit the kind of type that can be used
to satisfy the constraint:

 Class constrains the type parameter to references types only.

 Structure constrains the type parameter to value types only, with the exception
of nullable types.

 You can use generic types as base types using either open or closed types, as shown in the following
examples:

Public Class SortedNode(Of _
 K As Structure, _
 N As {IComparable(Of N), New})
 Inherits LinkedNode(Of K, N)
 ‘ ...
End Class

Public Class CodeNode(Of N As {IComparable(Of N), New})
 Inherits LinkedNode(Of Integer, N)
 ‘ ...
End Class

Public Class TransferNode
 Inherits LinkedNode(Of Integer, Transfer)
 ‘ ...
End Class

 Not only types, but you can also use methods with generics, as shown here:

Public Class MyUtilities
 Public Sub WriteToDebug(Of T)(ByVal item As T)
 ‘ ...
 End Sub
 Public Sub Serialize(Of T As ISerializable)(ByVal item As T)
 ‘ ...
 End Sub
End Class

 Even Shared , MustOverride and Overridable methods can leverage on generics, as shown here:

Public MustInherit Class BaseClass
 Public Shared Sub WriteToDebug(Of T)(ByVal item As T)
 ‘ ...
 End Sub
 Public MustOverride Sub AbstractMethod(Of T)(ByVal item As T)

➤

➤

CH021.indd 991CH021.indd 991 9/6/10 6:35:19 PM9/6/10 6:35:19 PM

992 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 Public Overridable Sub SomeMethod(Of T)(ByVal item As T)
 ‘ ...
 End Sub
End Class

Public Class SubClass
 Inherits BaseClass

 Public Overrides Sub AbstractMethod(Of T)(ByVal item As T)
 ‘ ...
 End Sub
 Public Overrides Sub SomeMethod(Of T)(ByVal item As T)
 ‘ ...
 End Sub
End Class

 Operators and delegates are implemented as methods behind the scenes, and both of them support
generics with all the power of generic methods. Here is a small example of defi ning and consuming
generic delegates:

Public Class UtilityClass(Of T)
 Public Delegate Sub GenericDelegate(ByVal arg As T)
 Public Sub SomeMethod(ByVal arg As T)
 ‘ ...
 End Sub
End Class

‘ --- Use the delegate
Dim obj As UtilityClass(Of Integer) = New UtilityClass(Of Integer)()
Dim del As UtilityClass(Of Integer).GenericDelegate = _
 New UtilityClass(Of Integer).GenericDelegate(AddressOf obj.SomeMethod)
del(3)

 In .NET 2.0, refl ection was extended to support generic type parameters. The type System.Type
could now represent generic types with specifi c type arguments (closed types), or unspecifi ed
(open) types.

 Also, many types in .NET 2.0 — especially collections — had been changed or added to support
generics. For example, Array type now had about a dozen new generic methods, and there were
many new generic collection classes to provide a new and performance - boosted experience related
to the old .NET 1.1 collection types.

 Partial Types

 The limitation that type defi nitions had to be entirely in only one physical fi le was a bottleneck in
preceding Visual Basic versions, making the life of developers unnecessarily diffi cult. Large type
defi nitions could not be split, and that was especially disadvantageous for those who used code
generation intensively, because generated code could not be easily separated from user - defi ned code.

 Partial types solve this issue. By using the Partial keyword, class, structure, and interface
defi nitions can be split to spread in multiple fi les or multiple segments in the same fi le. This solves

CH021.indd 992CH021.indd 992 9/6/10 6:35:20 PM9/6/10 6:35:20 PM

Visual Basic in the .NET Framework ❘ 993

the problem of separation of user - defi ned and generated code. During compile time, the partitions
of the type defi nition are merged, including attributes, base classes, interfaces, and access modifi ers.

 For example, you can split SampleClass into two parts, as shown in the following example:

‘ --- SampleClass1.cs
 < Serializable() > _
Partial Public Class SampleClass
 Private _IsDisposed As Boolean
End Class

‘ --- SampleClass2.cs
Partial Class SampleClass
 Implements IEquatable(Of SampleClass)

 Public Function EqualsWithSample(ByVal other As SampleClass) As Boolean _
 Implements System.IEquatable(Of SampleClass).Equals
 ‘ ...
 End Function
End Class

 The result of merging the partitions is a public class named SampleClass implementing the System
.IEquatable(Of SampleClass) interface, and decorated with the Serializable attribute.

 Nullable Types

 In CLR 1.0, one of the weaknesses of value types versus reference types was the lack of value type ’ s
 “ nullability. ” To eliminate this weakness, the CLR 2.0 designers added the concept of nullable types
to the run - time. A new generic type, the System.Nullable(Of T) structure, was introduced, where
 T should be a value type.

 The Visual Basic 2005 syntax allowed assigning Nothing to a System.Nullable(Of T) instance,
and to compare an instance value with Nothing . The HasValue Boolean property tells if a nullable
instance has a value, and, if it has, it can be obtained through the Value property.

 Using these properties, you could defi ne the Nothing - aware Square method, as shown in the
following example:

Public Function Square(ByVal n As Nullable(Of Integer)) As Nullable(Of Integer)
 Return IIf(n.HasValue, n.Value * n.Value, Nothing)
End Function

 The Nullable(Of T) also defi nes a Narrowing cast operator from Nullable(Of T) to T , and a
 Widening cast operator from T to Nullable(Of T) , so the following declarations are all correct
when using Option Strict On :

Dim firstValue As Nullable(Of Integer) = 4
Dim secondValue As Nullable(Of Integer) = 5
Dim sumValue As Nullable(Of Integer) = firstValue + SecondValue
Dim squareValue As Integer = CType(Square(sumValue), Integer)

CH021.indd 993CH021.indd 993 9/6/10 6:35:20 PM9/6/10 6:35:20 PM

994 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 However, because the implicit conversion from Nullable(Of T) to T is not allowed, the last two of
the following assignments will result in compilation errors with Option Strict On :

Dim firstValue As Nullable(Of Integer) = 4
Dim secondValue As Nullable(Of Integer) = 5
‘ --- Cannot convert Nullable(Of Integer) to Integer:
Dim myValue As Integer = secondValue
Dim sumValue As Integer = firstValue + SecondValue

 Documentation Comments

 The C# language has been inspired by Javadoc and has its own XML - based documentation system
since the fi rst release of C# in 2002. Visual Basic 2005 introduced the similar concept with a slightly
different syntax coming from the fact that C# and Visual Basic have separate tokens for comments.

 Document comments in Visual Basic are special comments that begin with ‘’’ (three single
quotation marks). They must immediately precede the type or type member that they document. All
adjacent document comments are appended together to produce a single document comment. Here
is an example of documentation comments:

‘’’ < summary >
‘’’ This abstract class defines an attribute with a simple string value.
‘’’ < /summary >
‘’’ < remarks >
‘’’ The class is intended to derive new attributes having a simple string value.
‘’’ Do not use this class to add other properties to the attribute!
‘’’ < /remarks >
Public MustInherit Class StringAttribute
 Inherits Attribute
 ‘’’ < summary >
 ‘’’ Creates a new instance of this attribute and sets its initial value.
 ‘’’ < /summary >
 ‘’’ < param name=”val” > Initial attribute value. < /param > */
 Protected Sub New(ByVal val As String)
 Value = val
 End Sub
 ‘ Other parts of the declaration omitted
End Class

 During compilation, document comments are transformed into an XML fi le that can be utilized
by tools to generate human - readable source code documentation. The documentation generator
accepts and processes any tag that is valid according to the rules of XML. The Visual Basic
language specifi cation defi nes almost 20 tags that provide commonly used functionality in user
documentation.

 Operator Declarations

 Operator declarations are methods that defi ne the meaning of an existing Visual Basic operator
for the containing class. When the operator is applied to the class in an expression, the operator is
compiled into a call to the operator method defi ned in the class. You can declare unary, binary
and conversion operators. Defi ning an operator for a class is also known as operator overloading .

CH021.indd 994CH021.indd 994 9/6/10 6:35:20 PM9/6/10 6:35:20 PM

Visual Basic in the .NET Framework ❘ 995

 Operator declarations must always be Public and Shared , and the type of at least one of the
operands (or the return value) must be the type that contains the operator. There is no function
return variable defi ned for operators. Therefore, the Return statement must be used to return values
from an operator body. Only the following unary and binary operators can be overloaded:

 Unary (+ , unary - , logical Not , IsTrue , and IsFalse)

 Binary (+ , - , * , / , Mod , and ̂)

 Relational operators (= , < > , < , > , < = , and > =)

 Like , & (concatenation), logical And , Or , Xor

 < < , > >

 Relational operators must be declared in pairs — = with < > , > with < , and > = with < = .

 The following code extract demonstrates operator declarations:

Public Structure Vector2D
 Public X, Y As Double

 Public Sub New(ByVal xc As Double, ByVal yc As Double)
 X = xc
 Y = yc
 End Sub

 Public Shared Widening Operator CType(ByVal v2D As Vector2D) As Vector3D
 Dim v3D As Vector3D
 v3D.X = v2D.X
 v3D.Y = v2D.Y
 v3D.Z = 0
 Return v3D
 End Operator

 Public Shared Operator +(ByVal v1 As Vector2D, ByVal v2 As Vector2D) As Vector2D
 Dim result As Vector2D
 result.X = v1.X + v2.X
 result.Y = v1.Y + v2.Y
 Return result
 End Operator
 ‘ --- Other operators...
End Structure

Public Structure Vector3D
 Public X, Y, Z As Double

 ‘ --- Create omitted
 Public Shared Narrowing Operator CType(ByVal v3D As Vector3D) As Vector2D
 Dim v2D As Vector2D
 v2D.X = v3D.X
 v2D.Y = v3D.Y
 Return v2D
 End Operator
 ‘ --- Other operators...
End Structure

➤

➤

➤

➤

➤

CH021.indd 995CH021.indd 995 9/6/10 6:35:21 PM9/6/10 6:35:21 PM

996 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 Vector2D defi nes a Widening conversion operator to Vector3D , while Vector3D has a Narrowing
conversion operator to Vector2D . Widening operators can be used for implicit conversions, while
 Narrowing operators can be used only for explicit conversions (when Option Strict On is used).

 Vector2D defi nes a binary + operator. The following statements compile and work successfully
when using Option Strict On :

Dim vector1 As Vector2D = New Vector2D(1.0, 5.0)
Dim vector2 As Vector2D = New Vector2D(2.0, 4.0)
Dim result3D As Vector3D = vector1 + vector2

 New Unsigned and Signed Integer Types

 However, although the CLR defi nes many unsigned integer types, Visual Basic 2002 and 2003
defi ned only Byte , Short , Integer , and Long as primitive (identifi ed through keywords) types, and
only Byte was unsigned.

 Visual Basic 2005 extended the primitive types with the following new integer types:

 SByte (1 - byte signed integer)

 UShort (2 - byte unsigned integer)

 UInteger (4 - byte unsigned integer)

 ULong (8 - byte unsigned integer)

 These types map to System.SByte , System.UInt16 , System.UInt32 , and System.UInt64 ,
respectively.

 Using Construct

 The CLR supports deterministic fi nalization with the dispose pattern (IDisposable behavior). C#
leverages on this CLR feature with its using statement from C# 1.0, but the fi rst versions of Visual
Basic did not have this construct.

 Visual Basic 2005 introduced the Using keyword to support the IDisposable pattern. Here is a
short example:

Imports System.IO

Public Class UsingSample

 Public Sub LogEntry(ByVal entry As String)
 Using fs As FileStream = New FileStream(“log.txt”, FileMode.Append)
 Using log As StreamWriter = New StreamWriter(fs)
 log.WriteLine(entry)
 End Using
 End Using
 End Sub

End Class

➤

➤

➤

➤

CH021.indd 996CH021.indd 996 9/6/10 6:35:21 PM9/6/10 6:35:21 PM

Visual Basic in the .NET Framework ❘ 997

 The Using statement automates the process of acquiring a resource, executing a set of statements,
and then disposing of the resource. For example, the inner Using statement is handled by the
compiler as if you wrote this:

Dim log As StreamWriter = New StreamWriter(fs)
Try
 log.WriteLine(entry)
Finally
 If log IsNot Nothing Then
 log.Dispose()
 End If
End Try

 The statement can take two forms. In one, the resource is a local variable declared as a part of the
statement and treated as a regular local variable declaration statement. In the other, the resource is
the result of an expression. A Using statement that has a local variable declaration statement may
acquire multiple resources at a time, which is equivalent to nested Using statements. So, the previous
nested Using statements could also be written as follows while preserving exactly the same semantics
as the nested version:

Using fs As FileStream = New FileStream(“log.txt”, FileMode.Append), _
 log As StreamWriter = New StreamWriter(fs)
 log.WriteLine(entry)
End Using

 Visual Basic 2008 (9.0)

 .NET 3.5 shipped with the new Language Integrated Query (LINQ) technology. Like C# 3.0,
Visual Basic 2008 added several great features to the language to allow programmers to create
data - processing operations where they express what they want to get, instead of expressing how
they want to obtain the results.

 The most exciting feature of this version was defi nitely the support of LINQ via the query
expressions that became very popular because of their readability and expressiveness. To achieve
that strength, the following other “ syntax noise - reduction ” features were put into the language,
which have proven useful, even if you grab them out of the context of query expressions:

 Local variable type inference

 Extension methods

 Object - creation expressions

 Lambda expressions

 Query expressions

 Partial methods

 XML literal expressions

 Nullable value type modifi er

 A true conditional operator

 Let ’ s take a look at these features in more detail.

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH021.indd 997CH021.indd 997 9/6/10 6:35:22 PM9/6/10 6:35:22 PM

998 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 Local Variable Type Inference

 There are a few points in the Visual Basic language where you could say the syntax is “ noisy ” —
that is, developers must type many characters to express their intention. For example, when you
want to declare a local variable for a dictionary and immediately initialize it, you do it with some
code similar to the following:

Dim myCodeTable As Dictionary(Of Integer, String) =
 New Dictionary(Of Integer, String)

In this defi nition, writing the Dictionary(Of Integer, String) expression twice is what you
could call syntax noise .

 Visual Basic 2008 has a new option, Infer , that can be used to turn on or off the local variable
type inference feature. Turning it on, you can reduce this noise, as shown here:

Option Infer On
‘ ...
Dim myCodeTable = New Dictionary(Of Integer, String)

 When you use Option Infer On , the compiler parses the expression to the right of the equal sign
and infers its type. This will be used as the type of the variable.

 The default value of Infer is On . If you turn off the type inference (with Option Infer Off), the
previous declaration is still syntactically correct and the compiler will accept it. However, while, in
the fi rst case, the type of myCodeTable is Dictionary(Of Integer, String) , with Option Infer
Off , it will be System.Object !

 You can use this type of implicitly typed local variable declaration in For , For Each , and Using
statements, as well.

 Extension Methods

 Developers often write wrapper methods for objects that, in reality, could be the parts of the object
itself. A good example is a method to check whether or not all characters in a string are in uppercase.
This declaration can be put into a standard module, just like in the following code extract:

Module StringHelper

 Public Function IsAllUpper(ByVal s As String) As Boolean
 For Each c In s
 If Not Char.IsUpper(c) Then Return False
 Next
 Return True
 End Function

End Module

 When using this helper class, you write code something like this:

Dim myString = “This is a String”
Dim isUpper = StringHelper.IsAllUpper(myString)

CH021.indd 998CH021.indd 998 9/6/10 6:35:22 PM9/6/10 6:35:22 PM

Visual Basic in the .NET Framework ❘ 999

 Extension methods provide a way to implement the same pattern and use it with a nicer (and more
readable) syntax. Extension methods are methods with the System.Runtime.CompilerServices
.ExtensionAttribute attribute applied to them. They can only be declared in standard modules,
and must have at least one parameter, which specifi es the type the method extends. The following
slight change in the IsAllUpper method declaration makes it an extension method:

Imports System.Runtime.CompilerServices

Module StringHelper

 < Extension() > _
 Public Function IsAllUpper(ByVal s As String) As Boolean
 ‘ ...
 End Function

End Module

 This extension method can be syntactically used as if it were the instance method of String — the
type it extends:

Dim myString = “This is a String”
Dim isUpper = myString.IsAllUpper

 Object - Creation Expressions

 Types within the .NET Framework rely heavily on the use of fi elds and properties. When
instantiating and using new classes, it is very common to write code like this:

Public Class Customer
 Public ID As Integer
 Public Name As String
 Public IsKeyAccount As Boolean
End Class
‘ ...
Dim customer As Customer = New Customer
customer.ID = 112
customer.Name = “John Doe”
customer.IsKeyAccount = True

 Object - creation expressions allow you to rewrite the preceding code with exactly the same
semantics, but with a shorter and more expressive syntax:

Dim customer = New Customer With {.ID = 112, .Name = “John Doe”, _
 .IsKeyAccount = True}

 An object - creation expression can optionally specify a list of member initializers after the
constructor arguments. These member initializers are prefi xed with the keyword With , and the
initializer list is interpreted as if it were in the context of a With statement.

 One of the most convenient features of Visual Basic 2008 is the capability to create new types
 “ on - the - fl y ” using anonymous object - creation expressions . An object - creation expression with

CH021.indd 999CH021.indd 999 9/6/10 6:35:22 PM9/6/10 6:35:22 PM

1000 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

member initializers can also omit the type name entirely. In that case, an anonymous type is
constructed based on the types and names of the members initialized as a part of the expression.
Consider the following example:

Module AnonymousType
 Sub Main()
 Dim order = New With {.ID = 101, .Date = #1/1/2010#, _
 .ProductID = “Q3456”, .Quantity = 123}
 Console.WriteLine(“ProductID: {0}, Quantity: {1}”, _
 order.ProductID, order.Quantity)
 End Sub
End Module

 Of course, there is no magic here. The compiler creates a real type behind the scenes, but does not
expose its name to you. With Option Infer On , you can declare variables for the anonymous type
instance without the need to name the type explicitly, as shown here:

 Dim order2 = order ‘ --- declared above as anonymous type
 order2.Date = #12/31/2009#

 By default, the properties generated by the anonymous type are read - write. It is possible to mark an
anonymous type property as read - only by using the Key modifi er:

Dim order = New With { Key .ID = 101, .Date = #1/1/2010#, _
 .ProductID = “Q3456”, .Quantity = 123}

 The Key modifi er specifi es that the fi eld can be used to uniquely identify the value the anonymous
type represents.

 Lambda Expressions

 Lambda expressions provide a new and concise syntax to describe an anonymous function that
can contain an expression, and can be used to create delegates. A lambda expression defi nes an
anonymous method called a lambda method . Lambda methods make it easy to pass “ in - line ”
methods to other methods that take delegate types.

 In Visual Basic 2005, you should have used explicit delegates like this:

Module VB2005Module

 Delegate Function BinaryOperation(ByVal op1 As Double,
 ByVal op2 As Double) As Double

 Sub Main()
 Dim op1 As Double = 12.3
 Dim op2 As Double = 23.4
 Dim operation As BinaryOperation = AddressOf MyOperation
 Dim result As Double = operation(op1, op2)
 End Sub

 Function MyOperation(ByVal op1 As Double, ByVal op2 As Double) As Double

CH021.indd 1000CH021.indd 1000 9/6/10 6:35:23 PM9/6/10 6:35:23 PM

Visual Basic in the .NET Framework ❘ 1001

 Return (op1 + op2) / op2
 End Function

End Module

 Lambda expressions provide more concise syntax and type inference so that the operation delegate
can even be described in a more straightforward way:

Sub Main()
 Dim op1 As Double = 12.3
 Dim op2 As Double = 23.4
 Dim operation As BinaryOperation = Function(x As Double, y As Double) (x + y) / y
 Dim result As Double = operation(op1, op2)
End Sub

 A lambda expression begins with the keyword Function and a parameter list. Parameters in a
lambda expression cannot be declared Optional or ParamArray , and cannot have attributes. Unlike
regular methods, omitting a parameter type for a lambda method does not automatically infer
 Object . Instead, when a lambda method is reclassifi ed, the omitted parameter types are inferred
from the target type.

 Query Expressions

 Query expressions provide the “ language - integrated ” experience of LINQ, because they provide
syntax similar to SQL to describe a query. A query expression begins with a From or Aggregate
operator and can end with any query operator. Other valid clauses for the middle of the expression
include From , Let , Where , Join , Distinct , Take , Take While , Skip , Skip While , Aggregate ,
 Order By , and Group By operators.

 Let ’ s take a look at an example:

 Dim fruits() As String = {“Apple”, “Peach”, “Orange”, “Banana”, “Lemon”, _
 “Pear”, “Grapefruit”, “Watermelon”, “Plum”}

 Dim filteredFruits = _
 From fruit In fruits _
 Where fruit.StartsWith(“P”) And fruit.Length < 20 _
 Order By fruit _
 Select fruit

 The strength of this notation is that it describes the intention of what you would like to get as a
result, instead of defi ning how you want to obtain it.

 The Visual Basic compiler translates a query expression into method invocations. For example, the
 Where clause will translate into a call to a Where method, the Order By clause will translate into a call
to an OrderBy method, and so on. These methods must be extension methods or instance methods
on the type being queried. So, in the preceding example, the type representing fruits must have this
characteristic. The method (not the compiler) will determine how to execute the query at run - time.

 This kind of extensibility of query expressions makes LINQ a very powerful feature that enables the
shift from an imperative data - processing model to the declarative one.

CH021.indd 1001CH021.indd 1001 9/6/10 6:35:23 PM9/6/10 6:35:23 PM

1002 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

 Partial Methods

 Partial methods live in partial types. A method is partial if it specifi es a signature but not the body
of the method. The body of the method can be supplied by another method declaration with the
same name and signature, most likely in another partial declaration of the type.

 This improves the performance because you are not loading/creating unwanted methods. Here is an
example:

‘ --- Collection.vb: This is the class that would normally be autogenerated.
Partial Public Class CustomTypedCollection
 Partial Private Sub BeforeAddingElement(ByVal element As CustomElement)
 End Sub

 Public Sub AddElement(ByVal element As CustomElement)
 BeforeAddingElement(element)
 End Sub
End Class

‘ --- Customization.vb: This part is the one added by developers as customization
Partial Public Class CustomTypedCollection
 Private Sub BeforeAddingElement(ByVal element As CustomElement)
 Console.WriteLine(“Element “ & element.ToString() & “ is being added.”)
 End Sub
End Class

 If the Customization.vb fi le did not contain an implementation part for the BeforeAddingElement
partial method, no code would be compiled for this method call in Collection.vb .

 Of course, partial methods have a few restrictions. For example, they must be Sub s, and they are
not allowed to have ByRef parameters, nor can they have access modifi ers, and they cannot be
 Overridable .

 XML Literal Expressions

 The simplicity with which it handles XML literal expressions is a unique feature for Visual Basic
2008 among the core .NET programming languages. An XML literal expression represents
an XML 1.0 value, and can take the form of an XML document, an XML element, an XML
processing instruction, an XML comment, or a CDATA section. There are so many things you

 Using LINQ and query expressions is defi nitely a topic out of the scope of this
book. You can fi nd many books treating LINQ in detail, such as Scott Klein ’ s
 Professional LINQ (Indianapolis: Wiley, 2008). You can also examine the Visual
Basic Language Specifi cation for more information.

 MSDN also supports you with Visual Basic LINQ samples at http://msdn
.microsoft.com/en-us/library/bb397978.aspx .

CH021.indd 1002CH021.indd 1002 9/6/10 6:35:24 PM9/6/10 6:35:24 PM

Visual Basic in the .NET Framework ❘ 1003

can do with XML literals that this section is enough only to whet your appetite. Here is a short
example:

Module XMLLiterals

 Dim Customer As XElement = _
 < Customer ID=”112” Name=”John Doe” IsKeyAccount=”True”/ >

 Dim name = “Jane Doe”
 Dim Customers As XDocument = _
 < ?xml version=”1.0”? >
 < Customers >
 < Customer ID=”112” Name=”John Doe” IsKeyAccount=”True”/ >
 < Customer ID=”113” Name= < %= name % > IsKeyAccount=”True”/ >
 < Customer ID=”114” Name=”Alf Kiter” IsKeyAccount=”False”/ >
 < /Customers >

End Module

 The result of an XML literal expression is a value typed as one of the types from the System.Xml
.Linq namespace. If the types in that namespace are not available, then an XML literal expression
will cause a compile - time error.

 In the previous sample, Customer defi nes an XML element, Customers , which is an XML
document right from the XML literal expressions. You can see that Customers uses an embedded
expression (name) to create the XML document with the Name attribute set to Jane Doe.

 XML elements can contain XML namespace declarations, as defi ned by the XML namespaces 1.0
specifi cation. You can also use the Imports section of the source fi le to defi ne XML namespaces:

Imports < xmlns=”http://myOrg.com” >
Imports < xmlns:db=”http://myOrg.com/myDb” >

Module XMLNamespaces
 Dim Customers As XDocument = _
 < ?xml version=”1.0”? >
 < Customers >
 < Customer db:ID=”112” Name=”John Doe” IsKeyAccount=”True”/ >
 < Customer db:ID=”113” Name=”Jane Doe” IsKeyAccount=”True”/ >
 < Customer db:ID=”114” Name=”Alf Kiter” IsKeyAccount=”False” >
 < db:Order xmlns:db=”http://myOrg.com/OrderDB” >
 < db:ProductID > Q123 < /db:ProductID >
 < db:Amount > 100 < /db:Amount >
 < /db:Order >
 < /Customer >
 < /Customers >

End Module

 The fi rst Import statement sets the default XML namespace to http://myOrg.com , the second
defi nes the db namespace prefi x. In the Customer elements, the db prefi x is used for the namespace

CH021.indd 1003CH021.indd 1003 9/6/10 6:35:32 PM9/6/10 6:35:32 PM

1004 ❘ CHAPTER 21 HISTORY OF VISUAL BASIC

defi ned in the second Import clause. However, the Order element overrides the db prefi x for its local
context to http://myOrg.com/OrderDB .

 You can also use member access expressions to access elements and attributes in the hierarchy
represented by an XML document or element. The following example shows how to access the
hierarchy represented by Customers within the XMLNamespaces module:

 Dim thirdCustomer As XElement = Customers... < Customers > (2)
 Dim thirdCustomerName As String = thirdCustomer.@Name
 Dim thirdCustomerID As Integer = thirdCustomer.@ < db:ID >
 Dim order As XElement = thirdCustomer. < db:Order >

 The ... < descendants > member access operator allows you to go down to the descendants ’ collection
of the element from which it is applied. The . < qualifi edname > element access operator navigates
down to a single element. The .@name and .@ < qualifiedname > operators access element attributes.

If you want more information about this great Visual Basic feature, navigate to
 http://msdn.microsoft.com/en-us/library/bb384808.aspx .

 Nullable Value Type Modifi er

 .NET 2.0 introduced the Nullable(Of T) type to represent nullable value types. Because of
 Nullable(Of T) type is supported by the CLR, you can use it just like any other generic types:

Dim firstValue As Nullable(Of Integer) = 4
Dim secondValue As Nullable(Of Integer) = 5
Dim sumValue As Nullable(Of Integer) = firstValue + SecondValue
‘ ...
Public Function Square(ByVal n As Nullable(Of Integer)) As Nullable(Of Integer)
 Return Iif(n.HasValue, n.Value * n.Value, Nothing)
End Function

 Visual Basic 2008 introduced the ? modifi er for value types. It can be added to a type name to
represent the nullable version of that type. The previous code can be shorten with the ? modifi er:

Dim firstValue As Integer? = 4
Dim secondValue As Integer? = 5
Dim sumValue As Integer? = firstValue + secondValue
‘ ...
Public Function Square(ByVal n As Integer?) As Integer?
 Return Iif(n.HasValue, n.Value * n.Value, Nothing)
End Function

 A True Conditional Operator

 The language has the Iif run - time function so that you can embed conditional evaluation into
expressions. Because Iif is a function, the following expression will raise a NullReferenceException

CH021.indd 1004CH021.indd 1004 9/6/10 6:35:33 PM9/6/10 6:35:33 PM

Summary ❘ 1005

when customer is Nothing , because all the three expressions are evaluated and put to the evaluation
stack before calling the Iif function.

Iif(customer Is Nothing, customer.Name, “ < unknown > ”)

 A conditional If expression tests an expression and returns a value. Unlike the Iif run - time
function, however, a conditional expression only evaluates its operands if necessary. Using If in the
code above instead Iif no exception occurs.

 The operator has two forms:

 If(CondExpr, Expr1, Expr2) — Evaluates CondExpr , and, when it ’ s true, evaluates Expr1
as the operation result; otherwise evaluates Expr2 .

 If(Expr, NullExpr) — Evaluated as if it were If(Expr IsNot Nothing, Expr,
NullExpr) .

 SUMMARY

 Currently an object - oriented language with functional programming features, Visual Basic began its
life in the 1990s as a general - purpose, high - level language with very simple constructs. The ancestor
of Visual Basic was BASIC developed by John G. Kemeny and Thomas E. Kurtz in 1964; today, you
can still recognize the roots of that unstructured language.

 At the end of the twentieth century, Visual Basic 6.0 became a very popular programming language
with a large camp of developers using it. .NET turned Visual Basic into a real object - oriented
language, and launched debates within the community as to whether it is still the same language or
a new one.

 Visual Basic evolved in parallel with the .NET Framework. New features and changes in the CLR
and in the framework ’ s class libraries inspired the language to embed new paradigms beside the
object - oriented programming (OOP) principles.

 In Chapter 22, you will learn the new features of Visual Basic 2010, including auto - implemented
properties, multi - line lambda expressions, dynamic support, covariance, and contravariance.

➤

➤

CH021.indd 1005CH021.indd 1005 9/6/10 6:35:42 PM9/6/10 6:35:42 PM

CH021.indd 1006CH021.indd 1006 9/6/10 6:35:43 PM9/6/10 6:35:43 PM

22
 Visual Basic 10.0 Language
Improvements

 In Chapter 21, you learned that Visual Basic has a 19 - year history under the Windows
platform. During this long time, Visual Basic evolved from a general - purpose, high - level
programming language to a multi - paradigm one. The fi rst version of Visual Basic.NET turned
the language into a real object - oriented one, and also launched debates within the community
as to whether it is still the same Visual Basic or a new language.

 Visual Basic 2005 added support for generic types, and got great performance - boosting
features (such as partial types, operator declarations, Using statement, and nullable types).
Visual Basic 2008 started embracing functional programming principles, such as LINQ and
query expressions, and added XLM literal expressions to the language — which is unique
among the core .NET languages.

 The newest version, Visual Basic 2010, is about enhancing its functional features and
providing seamless cooperation with dynamic programming languages. While a few years
ago there were separate teams in Microsoft responsible for Visual Basic and C#, today the
Managed Languages Team makes tremendous efforts toward the co - evolution of these two
languages. Compare the new Visual Basic 2010 features with the new C# 4.0 improvements in
Chapter 24 and you can see this co - evolution.

 After reading this chapter, you will be familiar with the following improvements of the Visual
Basic 2010 language:

 Implicit line continuation — You can get rid of the underscore character used at the
end of a line when your statement goes on to the next consecutive line.

 Auto - implemented properties — You can quickly specify a property of a class without
having to write code to Get and Set the property.

 Collection initializers — These provide a shortened syntax that enables you to create a
collection and populate it with an initial set of values. Collection initializers are useful
when you are creating a collection from a set of known values.

➤

➤

➤

CH022.indd 1007CH022.indd 1007 9/7/10 6:25:29 PM9/7/10 6:25:29 PM

1008 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 Multiline lambda expressions — Lambda expressions now support subroutines and
multiline functions.

 Working with dynamic objects — Visual Basic binds to objects from dynamic languages
such as IronPython and IronRuby with the help of the Dynamic Language Run - time (DLR).

 Variance — .NET developers used to be constrained by the fact that an IEnumerable(Of
Object) could not be substituted with an IEnumerable(Of String) . Now, this
substitution can be done! Visual Basic embraces type - safe covariance and contravariance.
The common Base Class Library types (primarily generic collection interfaces) also have
been updated to support this behavior.

 NEW PRODUCTIVITY - IMPROVING SYNTAX

 There are a few new features of the language that neither change how you program with Visual
Basic nor provide you brand - new paradigms. However, they are still very useful, because they
make your code shorter and more readable and altogether improve your productivity. This section
provides an overview of them.

 Implicit Line Continuation

 For a very long time, the underscore (_) line continuation character at the end of code lines was a
hallmark of Visual Basic, and often referred to by C# programmers as an example why Visual Basic
is a “ noisy ” language. Even in Visual Basic 2008, you had to use underscores, as shown here:

Dim fruits() As String = {“Apple”, “Peach”, “Orange”, “Banana”, “Lemon”, _
 “Pear”, “Grapefruit”, “Watermelon”, “Plum”}

Dim filteredFruits = _
 From fruit In fruits _
 Where fruit.StartsWith(“P”) And fruit.Length < 20 _
 Order By fruit _
 Select fruit

 The explicit line continuation has several issues:

 It is cumbersome to use it.

 The underscore does not give real value to developers. (Some would question whether
it gives any value at all.) It is rather about helping the language parser fi nd out which
consecutive lines form a statement. It probably originates from the era when Basic programs
were analyzed, tokenized, and compiled to P - code, line by line.

 As the language evolves and moves toward functional principles, there is a natural wish of
developers to break statements into separate lines to improve readability. (Take a look at
the earlier filteredFruits query expression.) Typing an extra underscore at the end of the
lines goes against this wish.

➤

➤

➤

➤

➤

➤

CH022.indd 1008CH022.indd 1008 9/7/10 6:25:39 PM9/7/10 6:25:39 PM

 After a long time, the Managed Language Team made a big leap. Visual Basic 2010 allows omitting
the line - continuation character in most of the cases. For example, you can write the earlier code
snippet like this:

Dim fruits() As String =
 {
 “Apple”, “Peach”, “Orange”,
 “Banana”, “Lemon”, “Pear”,
 “Grapefruit”, “Watermelon”, “Plum”
 }

Dim filteredFruits2 =
 From fruit In fruits
 Where fruit.StartsWith(“P”) And fruit.Length < 20
 Order By fruit
 Select fruit

 Following is a list of the cases where you can continue a statement on the next consecutive line
without using the underscore character:

 After a comma (,).

 After an open parenthesis (() or before a closing parenthesis ()).

 After an open curly brace ({) or before a closing curly brace (}).

 After an open embedded expression (< %=) or before the close of an embedded expression (% >)
within an XML literal.

 After the concatenation operator (&).

 After assignment operators (= , & = , := , += , - = , *= , /= , \= , ̂ = , < < = , > > =).

 After the Is and IsNot operators.

 After a member qualifi er character (.) and before the member name. However, you must
include a line - continuation character (_) following a member qualifi er character when you
are using the With statement, or supplying values in the initialization list for a type.

 After an XML axis property qualifi er (. or .@ or ...). However, you must include a line -
 continuation character (_) when you specify a member qualifi er when you are using the
 With keyword.

 After a less - than sign (<) or before a greater - than sign (>) when you specify an attribute.
Also, after a greater - than sign (>) when you specify an attribute. However, you must include
a line - continuation character (_) when you specify assembly - level or module - level attributes.

 Before and after query operators. You cannot break a line between the keywords of query
operators that are made up of multiple keywords (Order By , Group Join , Take While , and
 Skip While).

 After the In keyword in a For Each statement.

 After the From keyword in a collection initializer. (You ’ ll learn about these later in this

chapter.)

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

New Productivity - Improving Syntax ❘ 1009

CH022.indd 1009CH022.indd 1009 9/7/10 6:25:40 PM9/7/10 6:25:40 PM

1010 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 Getting rid of the mandatory line continuation means that now you can break and indent your
Visual Basic code easier than ever before.

 Auto - Implemented Properties

 C# 3.0 introduced automatic properties in 2008. As a sign of co - evolution, Visual Basic 2010
also implements this feature — even better then C# did! Auto - implemented properties (the name
is intentionally different from the C# terminology) enable you to quickly specify a property of a
class without having to write code to Get and Set the property. When you write code for an auto -
 implemented property, the Visual Basic compiler automatically creates a private fi eld to store the
property variable, in addition to creating the associated Get and Set procedures.

 The following code snippet shows an example defi ning several auto - implemented properties:

Public Class Order
 Public Property ID As Integer
 Public Property CustomerName As String = “Unknown”
 Public Property OrderDate As Date = DateTime.Now.Date
 Public Property Items As New List(Of OrderItem)
End Class

Public Class OrderItem
 ‘ ...
End Class

 With auto - implemented properties, a property (including a default value) can be declared in a single
line. Type inference also works, so if you provide a default value, the compiler infers the property
type (assuming Option Infer On is used). Should you turn off type inference, properties with
default values will have type of System.Object .

 The Order class defi nes four properties, the last three with default values. While CustomerName and
 OrderDate explicitly defi ne their types, the type of Items is inferred from the default value.

 An auto - implemented property is equivalent to a property for which the property value is stored
in a private fi eld. When you declare an auto - implemented property, Visual Basic automatically
creates a hidden private backing fi eld to contain the property value. The backing fi eld name is
the auto - implemented property name preceded by an underscore (_). For example, the compiler
generates the following code for the Items property:

Private _Items As List(Of OrderItem)
Public Property Items As List(Of OrderItem)

 This list of options to leave the underscore means that you can actually omit
underscores from every location where it seems natural. If you would like to see
samples and more details about statements and line continuation, navigate to
 http://msdn.microsoft.com/en-us/library/865x40k4(VS.100).aspx .

CH022.indd 1010CH022.indd 1010 9/7/10 6:25:40 PM9/7/10 6:25:40 PM

 Get
 Return _Items
 End Get
 Set(ByVal AutoPropertyValue As List(Of OrderItem))
 _Items = AutoPropertyValue
 End Set
End Property

 The backing fi eld access modifi ers are set by the compiler. The backing fi eld is always Private ,
even when the property itself has a different access level (such as Public or Protected). When the
property is Shared , the backing fi eld is also Shared . No attributes specifi ed for the property apply
to the backing fi eld.

 If you add a member to your class that is also named the same as any of your properties having a
preceding underscore, you produce a naming confl ict, and Visual Basic reports a compiler error.

 The backing fi eld can be accessed from code within the class, just as if you declared it, so you can
add the following declaration to the Order class:

Public Overrides Function ToString() As String
 Return String.Format(“ID={0}, Customer={1}, Date={2}, #of Items={3}”,
 _ID, _CustomerName, _OrderDate, _Items.Count)
End Function

 Despite the fact you can access the backing fi eld from code, it is not a good
practice to do so. Use direct backing fi eld access only when it is really
necessary — generally because of performance considerations.

 Although you access the backing fi eld from the code, it does not show in an IntelliSense word -
 completion list. The backing fi eld can also be accessed and from debugging tools such as the
Watch window.

 The compiler also takes care of setting the initial values of the properties in constructors. When
creating the constructor, the code for property initialization precedes your custom constructor body.
The compiler also takes care of that if you initialize one of the auto - implemented properties. It does
not set the default value for it.

 Let ’ s assume you have the following two constructors in the Order class:

Public Class Order
 Public Sub New()
 End Sub

 Public Sub New(ByVal initialID As Integer)
 ID = initialID
 End Sub
 ‘ --- Other members omitted
End Class

New Productivity - Improving Syntax ❘ 1011

CH022.indd 1011CH022.indd 1011 9/7/10 6:25:58 PM9/7/10 6:25:58 PM

1012 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 The compiler will generate the following code:

Public Sub New()
 Me.CustomerName = “Unknown”
 Me.OrderDate = DateTime.Now.Date
 Dim temp_var As New List(Of OrderItem)
 Me.Items = temp_var
End Sub

Public Sub New(ByVal initialID As Integer)
 Me.CustomerName = “Unknown”
 Me.OrderDate = DateTime.Now.Date
 Dim temp_var As New List(Of OrderItem)
 Me.Items = temp_var
 Me.ID = initialID
End Sub

 Following are a few restrictions concerning defi ning default values for auto - implemented properties:

 You cannot initialize an auto - implemented property that is a member of an Interface or
one that is marked MustOverride .

 When you declare an auto - implemented property as a member of a Structure , you can
only initialize the auto - implemented property if it is marked as Shared .

 When you declare an auto - implemented property as an array, you cannot specify explicit
array bounds. However, you can supply a value by using an array initializer, and the array
bounds are inferred from this initializer.

 You cannot use auto - implemented properties in every case. Following are the cases when you must
use the standard property defi nition syntax:

 You want the Get and Set procedures to have different accessibilities.

 You need ReadOnly or WriteOnly or parameterized properties.

 You want to add code for the Get or Set procedures.

 You need to extend the backing fi eld with attributes or comments.

 Collection Initializers

 Visual Basic provides you with a simple syntax to set up the initial values of arrays:

Dim PrimesUnder50() As Integer = {2, 3, 5, 7, 11, 13, 17, 19, 23,
 29, 31, 37, 41, 43, 47}
Dim SeaCreatures() As String = {“Stingray”, “Potato cod”, “Surgeon fish”, _
 “Anemone fish”, “Grey shark”, “Stonefish”}

 However, if PrimesUnder50 and SeaCreatures were not arrays, but collections (for example, lists),
with Visual Basic 2008, you must initialize them with longer procedural code:

Dim PrimesUnder50 As New List(Of Integer)
PrimesUnder50.Add(2)
PrimesUnder50.Add(3)

➤

➤

➤

➤

➤

➤

➤

CH022.indd 1012CH022.indd 1012 9/7/10 6:26:04 PM9/7/10 6:26:04 PM

PrimesUnder50.Add(5)
‘...
PrimesUnder50.Add(43)
PrimesUnder50.Add(47)
‘ ...
Dim SeaCreatures As New List(Of String)
SeaCreatures.Add(“Stingray”)
SeaCreatures.Add(“Potato cod”)
‘ ...
SeaCreatures.Add(“Grey shark”)
SeaCreatures.Add(“Stonefish”)

 In 2008, C# 3.0 introduced a new syntax for collection initializers. Visual Basic 2010 took over the
same semantics with a syntax tailored to the Basic language.

 A collection initializer starts with the From keyword and consists of a list of comma - separated
values that are enclosed in braces ({}). PrimesUnder50 and SeaCreatures can be initialized in
Visual Basic 2010, as the following code extract shows:

Dim PrimesUnder50 As New List(Of Integer) From
 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}
Dim SeaCreatures As New List(Of String) From
 {“Stingray”, “Potato cod”, “Surgeon fish”,
 “Anemone fish”, “Grey shark”, “Stonefish”}

 Behind the scenes, the Visual Basic compiler uses the same approach as you would use it with the
 List(Of T).Add method, but it makes for a safer approach, as the following example shows:

‘ --- Compiler generated code for initializing SeaCreatures:
Dim Temp_var As New List(Of String)
Temp_var.Add(“Stingray”)
Temp_var.Add(“Potato cod”)
Temp_var.Add(“Surgeon fish”)
Temp_var.Add(“Anemone fish”)
Temp_var.Add(“Grey shark”)
Temp_var.Add(“Stonefish”)
SeaCreatures = Temp_var

 The collection is initialized in a temporary list (Temp_var), and the collection is set to this
temporary list only after all elements have been successfully added to the collection. This approach
is used to keep the initialization operation atomic. If any exception happened during the call of any
 Add method, SeaCreatures would not become partially initialized. At the end, it fully initializes or
stays uninitialized.

 You can initialize Dictionary(Of K, V) collections with a similar syntax as well:

 Dim PrimesUnder10 As New Dictionary(Of Integer, String) From
 {
 {2, “Two”},
 {3, “Three”},
 {5, “Five”},
 {7, “Seven”}
 }

New Productivity - Improving Syntax ❘ 1013

CH022.indd 1013CH022.indd 1013 9/7/10 6:26:05 PM9/7/10 6:26:05 PM

1014 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 The mechanism behind is defi ned so that you can apply it for any valid collection type (classes
implementing ICollection or ICollection(Of T)). The type that intends to use the collection
initializer syntax must also expose an Add method that meets the following criteria:

 The Add method must be available from the scope in which the collection initializer is being
called. If you are using the collection initializer in a scenario where non - public methods of
the collection can be accessed, the Add method does not have to be Public .

 The Add method must be an instance member or Shared member of the collection class, or
an extension method.

 An Add method must exist so that it can be matched, based on overload resolution rules, to
the types that are supplied in the collection initializer.

 Let ’ s have a look at several simple examples to help understand these criteria. Assume that you have
a Customer class defi ned like this:

Public Class Customer
 Public Property ID As Integer
 Public Property Name As String
End Class

 You can create a CustomerCollection class by inheriting from List(Of Customer) :

Public Class CustomerCollection
 Inherits List(Of Customer)
End Class

 Because CustomerCollection is a collection type, you can use the collection initializer pattern to
set up its initial value:

Dim Customers As New CustomerCollection From
 {
 New Customer With {.ID = 112, .Name = “John Doe”},
 New Customer With {.ID = 113, .Name = “Jane Doe”}
 }

 This seems a bit noisy, and, in addition to the initial fi eld values, you must type many other
characters. Adding a constructor to the Customer class helps to reduce this noise a bit:

Public Class Customer
 Public Property ID As Integer
 Public Property Name As String

 Public Sub New(ByVal id As Integer, ByVal name As String)
 Me.ID = id
 Me.Name = name
 End Sub
End Class
‘ ...

➤

➤

➤

CH022.indd 1014CH022.indd 1014 9/7/10 6:26:05 PM9/7/10 6:26:05 PM

Dim Customers As New CustomerCollection From
{
 New Customer(112, “John Doe”),
 New Customer(113, “Jane Doe”)
}

 To achieve the simplicity and clearness as with the PrimesUnder10 dictionary in the previous code
sample, you must append a new Add method to CustomerCollection with the signature accepting
customer ID and Name . The compiler recognizes this Add method and can use it to initialize your
collection:

Public Class CustomerCollection
 Inherits List(Of Customer)

 Public Overloads Sub Add(ByVal id As Integer, ByVal name As String)
 MyBase.Add(New Customer(id, name))
 End Sub
End Class
‘ ...
Dim Customers As New CustomerCollection From
 {
 {112, “John Doe”},
 {113, “Jane Doe”}
 }

 There are situations when you cannot defi ne an Add method within the collection class — for
example, in a third - party assembly. In this case, extension methods are there to help you. When
you defi ne Customers as List(Of Customer) , you can still create an extension method to use the
shorter collection initializer syntax:

Imports System.Runtime.CompilerServices

Module CustomerExtensions

 < Extension() >
 Public Sub Add(ByVal collection As ICollection(Of Customer),
 ByVal id As Integer, ByVal name As String)
 collection.Add(New Customer(id, name))
 End Sub

End Module
‘ ...
Dim Customers As New List(Of Customer) From
 {
 {112, “John Doe”},
 {113, “Jane Doe”}
 }

 Collection initializers can be nested. Listing 22 - 1 shows an example where OrderCollection is a
nested collection in Customer .

New Productivity - Improving Syntax ❘ 1015

CH022.indd 1015CH022.indd 1015 9/7/10 6:26:06 PM9/7/10 6:26:06 PM

1016 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 LISTING 22 - 1: Class Defi nitions to Use in Nested Collection Initializers

Public Class Customer
 Public Property ID As Integer
 Public Property Name As String
 Public Property Orders As OrderCollection

 Public Sub New(ByVal id As Integer, ByVal name As String,
 ByVal orders As OrderCollection)
 Me.ID = id
 Me.Name = name
 Me.Orders = orders
 End Sub
End Class

Public Class CustomerCollection
 Inherits List(Of Customer)

 Public Overloads Sub Add(ByVal id As Integer, ByVal name As String,
 ByVal orders As OrderCollection)
 MyBase.Add(New Customer(id, name, orders))
 End Sub
End Class

Public Class Order
 Public Property CustomerID As Integer
 Public Property OrderDate As Date

 Public Sub New(ByVal cid As Integer, ByVal odate As Date)
 CustomerID = cid
 OrderDate = odate
 End Sub
End Class

Public Class OrderCollection
 Inherits List(Of Order)

 Public Overloads Sub Add(ByVal cid As Integer, ByVal odate As Date)
 MyBase.Add(New Order(cid, odate))
 End Sub
End Class

 With these classes, you can use the following initialization:

Dim Customers As New CustomerCollection From
 {
 {112, “John Doe”, New OrderCollection From
 {
 {112, #12/1/2009#},
 {112, #12/2/2009#}
 }
 },

CH022.indd 1016CH022.indd 1016 9/7/10 6:26:06 PM9/7/10 6:26:06 PM

 {113, “Jane Doe”, New OrderCollection From
 {
 {113, #12/20/2009#},
 {113, #12/22/2009#},
 {113, #12/23/2009#}
 }
 }
 }

 As a special form of collection initializers, Visual Basic 2010 allows you to use array literal s that
provide a compact syntax for declaring an array whose type is inferred by the compiler. So, you do
not have to declare an array as follows:

Dim PrimesUnder50() As Integer = {2, 3, 5, 7, 11, 13, 17, 19, 23,
 29, 31, 37, 41, 4
 Dim SeaCreatures() As String = {“Stingray”, “Potato cod”, “Surgeon fish”, _
 “Anemone fish”, “Grey shark”, “Stonefish”}

Instead, you can write it without the explicit type declarations:

Dim PrimesUnder50 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}
Dim SeaCreatures = {“Stingray”, “Potato cod”, “Surgeon fish”,
 “Anemone fish”, “Grey shark”, “Stonefish”}

 The compiler infers the type of the enumerated values, and sets the variable in the Dim declaration
to the appropriate array type. For example, PrimesUnder50 will be an array of integers, and
 SeaCreatures an array of strings. You can use this construct to initialize multidimensional arrays
like this one:

Dim threeTimesThree =
 {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
 }

 The compiler also infers the number of dimensions and bounds for the multidimensional arrays,
and also checks for the consistent use of boundaries. For example, when the listed values show
inconsistencies, an error is raised:

Dim threeTimesMany =
 {
 {1, 2, 3},
 {4, 5, 6, 10},
 {7, 8, 9}
 }

 According to the {1, 2, 3} initializer list, the compiler infers the second array dimension ’ s upper
bound to 3 , but the next line shows this value to be 4 , so you ’ ll be given an error message.

New Productivity - Improving Syntax ❘ 1017

CH022.indd 1017CH022.indd 1017 9/7/10 6:26:06 PM9/7/10 6:26:06 PM

1018 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 Multiline Lambda Expressions

 Lambda expressions introduced in Visual Basic 2008 represent a function without a name that
calculates and returns a single value. Lambda expressions can be used wherever a delegate type is
valid. They provide a simple and concise syntax to eliminate the need for defi ning separate functions
to be passed as delegates.

 For example, without lambda expressions, you could write similar code in Visual Basic 2005:

Module VB2005Module

 Delegate Function BinaryOperation(ByVal op1 As Double, _
 ByVal op2 As Double) As Double

 Sub Main()
 Dim op1 As Double = 12.3
 Dim op2 As Double = 23.4
 Dim operation As BinaryOperation = AddressOf MyOperation
 Dim result As Double = operation(op1, op2)
 End Sub

 Function MyOperation(ByVal op1 As Double, ByVal op2 As Double) As Double
 Return (op1 + op2) / op2
 End Function

End Module

 With Visual Basic 2008 lambda expressions, it gets shorter:

Module VB2008Module

 Delegate Function BinaryOperation(ByVal op1 As Double, _
 ByVal op2 As Double) As Double

 Sub Main()
 Dim op1 As Double = 12.3
 Dim op2 As Double = 23.4
 Dim operation As BinaryOperation = _
 Function(x As Double, y As Double) (x + y) / y
 Dim result As Double = operation(op1, op2)
 End Sub

End Module

 While Visual Basic 2008 lambda expression implementation is great, it has two signifi cant
constraints:

 Only single - line functions can be used to defi ne the return value of the lambda
expressions.

 Only Function defi nitions are allowed; subroutines cannot be used.

➤

➤

CH022.indd 1018CH022.indd 1018 9/7/10 6:26:07 PM9/7/10 6:26:07 PM

 Visual Basic 2010 removed these restrictions, so you can defi ne lambda expressions as in the
following sample:

Dim LinearValue1 = Function(a, x, b) a * x + b
Dim LinearValue2 = Function(a, x, b)
 Dim y = a * x + b
 Return y
 End Function
Dim EnglishWelcome = Sub(name)
 Console.WriteLine(“Hello, {0}!”, name)
 End Sub
Dim HungarianWelcome = Sub(name)
 Console.WriteLine(“Isten hozott, {0}!”, name)
 End Sub

 LinearValue1 and LinearValue2 delegates defi ne the same lambda expression, but LinearValue2
uses a multiline function (which was not available in preceding Visual Basic versions). As you can
see, now you can create lambda expressions for delegates invoking subroutines, as EnglishWelcome
and HungarianWelcome show you.

 These improvements in lambda expressions are very useful. The .NET Framework heavily uses the
 Action(Of T) , Action(Of T1, T2) , Action(Of T1, T2, T3) , and so on, types as well as the
 Func(Of T, TResult) , Func(Of T1, T2, TResult) , and so on. They have an important role in
query expressions, and in the Task Parallel Library. Now, thanks to the new lambda expressions,
you can use them to make your Visual Basic code more concise than ever before.

 Listing 22 - 2 shows you the source code of a simple Visual Basic console application that searches for
a specifi c byte in a large byte array — using a parallel algorithm.

 LISTING 22 - 2: Searching in a Large Byte Array

Imports System.Threading.Tasks

Module ParallelSearch

 Sub Main()
 Const ByteSeries = 100000
 Const BlobSize = 100
 Const ToSearch As Byte = 123

 Dim DumpInfo(ByteSeries)() As Byte

 Parallel.For(0, ByteSeries,
 Sub(index)
 Dim blob(BlobSize) As Byte
 Dim rnd = New Random(CType(DateTime.Now.Ticks, Integer))
 rnd.NextBytes(blob)
 DumpInfo(index) = blob
 End Sub)
 continues

New Productivity - Improving Syntax ❘ 1019

CH022.indd 1019CH022.indd 1019 9/7/10 6:26:08 PM9/7/10 6:26:08 PM

1020 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

LISTING 22-2 (continued)

 Parallel.For(0, ByteSeries,
 Sub(index, state)
 If state.ShouldExitCurrentIteration Then Return
 Console.WriteLine(“Search in blob #{0}”, index)
 For Each b As Byte In DumpInfo(index)
 If b = ToSearch Then
 Console.WriteLine(“Halt request in #{0}”, index)
 state.Stop()
 Exit For
 End If
 Next
 End Sub)

 End Sub

End Module

 Without diving too deep into the code (you can fi nd more details in Chapter 10), here is a brief
explanation of this code.

 The Parallel.For method executes the iteration bodies concurrently. The fi rst and second
argument defi ne the range of indexes for the iterations. The third argument is a delegate for the
iteration bodies. They are the concurrent versions of the sequential For cycles, where the method
body uses a delegate passed in the third argument:

For index = 0 To ByteSeries - 1
 ‘ --- Here comes the iteration body
Next

 The fi rst Parallel.For call uses a delegate where the iteration index is passed. The second
 Parallel.For invokes a delegate where the iteration index and a variable representing the loop ’ s
state is passed.

 Without the multiline lambda expressions, you had to move the iteration bodies out of the
 Parallel.For calls into separate methods. That would blow the readability of the code.

 There are many subtle features of lambda expressions that are out of the scope of
this book. You can read more about them at MSDN (http://msdn.microsoft
.com/en-us/library/bb531253(VS.100).aspx).

 WORKING WITH DYNAMIC OBJECTS

 .NET developers are familiar with the fact that types and operations are strictly checked during the
compilation process. The compiler generates Microsoft Intermediate Language (MSIL) code that
explicitly carries out those operations by invoking methods. This behavior of the compiler is called
 early binding .

CH022.indd 1020CH022.indd 1020 9/7/10 6:26:08 PM9/7/10 6:26:08 PM

 Early binding has the following characteristics:

 Early - bound objects (objects that have been assigned their values with early binding) allow
the compiler to make important optimizations that yield more effi cient applications.

 Early - bound objects are signifi cantly faster than late - bound objects and make your code
easier to read and maintain by stating exactly what kind of objects are being used.

 Early binding enables useful features such as automatic code completion and Dynamic Help
because the Visual Studio integrated development environment (IDE) can determine exactly
what type of object you are working with as you edit the code.

 Early binding reduces the number and severity of run - time errors because it allows the
compiler to report errors when a program is compiled.

 There is another galaxy in the universe of programming languages: dynamic languages . The
compiler makes only a few checks over types and their operations. The majority of them are
postponed to the execution of the corresponding operation at run - time.

 In addition to the dynamic languages, there are script languages and object models (for example,
COM objects over the Microsoft Offi ce functionality, the DTE object model in Visual Studio, the
HTML DOM in Internet Explorer, and so on) that also check operations at run - time.

 In this complex world, these tools and languages should interoperate so that they can provide
boosted developer performance. Scripting tools and languages such as JScript, PowerShell, and
many others, as well as dynamic languages such as Python or Ruby, are very popular today.

 Visual Basic was always very strong in interoperating with COM object models, because of the late
binding mechanism provided by the compiler and the Visual Basic run - time. In Visual Basic 2010,
this mechanism has been enhanced, so developers can bind to objects from dynamic languages such
as IronPython and IronRuby much easier than ever before.

➤

➤

➤

➤

 For a long time, C# could not compete with the interoperability features of
Visual Basic, because the C# compiler did not know late binding. C# 4.0
improved C# by introducing a new variable type called dynamic to enable late
binding. Chapter 24 describes how this works in C#.

 Late Binding in Visual Basic 2010

 Visual Basic implemented the mechanism of late binding a long time ago. When you compile your
program with Option Strict Off , and you assign an object to a variable declared to by type
of Object , the compiler generates code that postpones the assignment and other operations with
that object until run - time. Listing 22 - 3 shows a simple console application utilizing this feature.

Working with Dynamic Objects ❘ 1021

CH022.indd 1021CH022.indd 1021 9/7/10 6:26:14 PM9/7/10 6:26:14 PM

1022 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 LISTING 22 - 3: Module1.vb: Console Application Demonstrating Late Binding

Option Strict Off
Module Module1

 Sub Main()
 Dim xlApp As Object
 Dim xlBook As Object
 Dim xlSheet As Object
 xlApp = CreateObject(“Excel.Application”)
 xlBook = xlApp.Workbooks.Add
 xlSheet = xlBook.Worksheets(1)
 xlSheet.Activate()
 xlSheet.Cells(1, 1) = “I”
 xlSheet.Cells(1, 2) = “I*I”
 For i = 1 To 10
 xlSheet.Cells(i + 1, 1) = i
 xlSheet.Cells(i + 1, 2) = i * i
 Next
 xlSheet.Application.Visible = True
 End Sub

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

 This application creates an Excel worksheet with a small table and displays it using Microsoft Excel
automation objects.

 The xlApp , xlBook and xlSheet variables are declared as type of Object . At build time, the
compiler does not know what kind of concrete objects they will represent at run - time. For example,
it does not know how exactly to execute the following assignment:

xlBook = xlApp.Workbooks.Add

This is because it does not know how to access the Workbooks operation of xlApp and the Add
operation resulted from the xlApp.Workbooks operation. The compiler does not even know which
kind of operations (method invocation or property access) they are.

 The compiler emits code that uses the types within the Microsoft.VisualBasic.CompilerServices
namespace heavily to resolve and execute those operations at run - time. When you run the application,
the following actions are carried out:

 1. The run - time recognizes that xlApp is an Excel automation object (COM object)

 2. It asks xlApp to execute the WorkBooks operation and retrieve its result.

 3. When the WorkBooks object is returned, the run - time asks this object to execute its Add
operation.

 4. When Add is executed, its result is stored in xlBook .

CH022.indd 1022CH022.indd 1022 9/7/10 6:26:20 PM9/7/10 6:26:20 PM

 The same mechanism is carried out when the run - time executes operations on xlSheet .

 Visual Basic 2010 improves this mechanism by integrating the late binding with the Dynamic
Language Run - time (DLR). If a late - bound call is made to an object that implements the
 IDynamicMetaObjectProvider interface of the System.Dynamic namespace, Visual Basic
binds to the dynamic object by using that interface. If a late - bound call is made to an object
that does not implement the IDynamicMetaObjectProvider interface, or if the call to the
 IDynamicMetaObjectProvider interface fails, Visual Basic binds to the object by using the late -
 binding capabilities of the Visual Basic run - time — just as it did before DLR integration.

 From a Visual Basic syntax point of view, the DLR integration is transparent. You cannot see
any difference if you work with a late - bound COM object or with a dynamic object (an object
implementing IDynamicMetaObjectProvider). What you can observe is that now Visual Basic can
bind to objects from dynamic languages such as IronPython and IronRuby. The world within which
you can interoperate from Visual Basic is defi nitely larger than it was before.

 THE DYNAMIC LANGUAGE RUN - TIME

 An important component in the underlying implementation of dynamic lookup is
the Dynamic Language Run - time (DLR), which is a part of .NET Framework 4.0.
DLR is a run - time environment that adds a set of services for dynamic languages to
the Common Language Run - time (CLR), and makes it easier to develop dynamic
languages to run on the .NET Framework, as well as to add dynamic features to
statically typed languages. DLR is built on the top of CLR, and uses run - time
binders to access the physical object model addressed by dynamic expressions.

 Chapter 10 provides more details about DLR.

 Accessing an IronPython Library

 To learn how easy it is to use an IronPython library because of the DLR integration in Visual Basic,
let ’ s create a small console application that invokes an IronPython function to solve a quadratic
equation. The function in IronPython will be so simple that you ’ ll be able to understand it without
any Python background.

 To use IronPython, you must download and install the run - time from the Downloads tab of the
IronPython project ’ s home page on CodePlex at http://ironpython.codeplex.com .

 Create a new Visual Basic console application project and name it IronPythonRunner . Double -
 click on My Project under the project node in Solution Explorer to display the project properties,
and go to the References tab to add the IronPython reference assemblies. Click Add to display the
Add References dialog. Use the Browse tab of the dialog to navigate to the IronPython run - time ’ s
installation folder, and add the selected assemblies shown in Figure 22 - 1 to the project.

Working with Dynamic Objects ❘ 1023

CH022.indd 1023CH022.indd 1023 9/7/10 6:26:22 PM9/7/10 6:26:22 PM

1024 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 Add a new text fi le item and name it Quadratic.py , where .py is the standard extension for
IronPython program fi les. This fi le should be in the same folder where the console application is
started from. Set the Build Action property of Quadratic.py to Content, and the Copy to Output
Directory property to Copy Always.

 Listing 22 - 4 shows the content you should copy into the Quadratic.py fi le.

 LISTING 22 - 4: Quadratic.py

import math

def SolveQuadratic(A, B, C):
 determ = B*B - 4*A*C
 solution1 = 0.0
 solution2 = 0.0
 hasSolution = determ > = 0.0
 if hasSolution:
 solution1 = (-B + math.sqrt(determ))/ (2*A)
 solution2 = (-B - math.sqrt(determ))/ (2*A)
 return hasSolution, solution1, solution2

 Code fi le [Quadratic.py] available for download at Wrox.com

 FIGURE 22 - 1: IronPython run - time assemblies

 You will fi nd this folder directly under your operating system ’ s Program Files
folder (on 64 - bit systems, under the Program Files (x86) folder) in a folder
with the IronPython prefi x. As of this writing, a separate IronPython release
was used especially created for Visual Studio 2010 Beta 2. Check the IronPython
home page for the most current version.

CH022.indd 1024CH022.indd 1024 9/7/10 6:26:23 PM9/7/10 6:26:23 PM

 This small Python code snippet solves the quadratic equation defi ned in the form of Ax 2 + Bx + c =
0 and retrieves the results in a tuple of a Boolean (is there a solution, anyway?), and in two numbers
(the two possible solutions).

 Copy the code in Listing 22 - 5 into the Module1.vb fi le to invoke the Python code snippet.

 LISTING 22 - 5: Module1.vb File of IronPythonRunner

Option Strict Off

Imports IronPython.Hosting

Module Module1

 Sub Main()
 Dim ipy As Object = Python.CreateRuntime()
 Dim calculator As Object = ipy.UseFile(“Quadratic.py”)
 SolveQuadratic(calculator, 1.0, 2.0, 3.0)
 SolveQuadratic(calculator, 2.0, 15.0, 6.0)
 End Sub

 Sub SolveQuadratic(ByVal calculator As Object,
 ByVal A As Double,
 ByVal B As Double,
 ByVal C As Double)
 Dim result As Object = calculator.SolveQuadratic(A, B, C)
 Console.WriteLine(“The quadratic equation {0}*x2 + {1}*x + {2} = 0”,
 A, B, C)
 If result(0) Then
 Console.WriteLine(“ has the following solutions:”)
 Console.WriteLine(“ #1: {0}”, result(1))
 Console.WriteLine(“ #2: {0}”, result(2))
 Else
 Console.WriteLine(“ has no solution.”)
 End If
 Console.WriteLine()
 End Sub

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

 The code is really simple. The Python object located in the IronPython.Hosting namespace is
responsible for managing the run - time environment. You can obtain a reference for an object
(named calculator in this context) to access the operations defi ned by the Quadratic.py
mini - program:

Dim ipy As Object = Python.CreateRuntime()
Dim calculator As Object = ipy.UseFile(“Quadratic.py”)

Working with Dynamic Objects ❘ 1025

CH022.indd 1025CH022.indd 1025 9/7/10 6:26:30 PM9/7/10 6:26:30 PM

1026 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 You can invoke the SolveQuadratic operation defi ned in the Python code snippet through the
 calculator object:

Dim result As Object = calculator.SolveQuadratic(A, B, C)

 The result will be a tuple of three values that you can index from 0 to 2. Figure 22 - 2 shows the
output of the console application.

 FIGURE 22 - 2: Output of the application

 VARIANCE

 Inheritance is a great object - oriented principle that is always directly or indirectly used when you
create .NET applications or components. Visual Basic missed object - oriented programming (OOP)
for a long time, but the fi rst Visual Basic.NET version (2002) enabled the language to fully implement
these principles. .NET Framework 2.0 and Visual Basic 2005 brought generic types into the picture,
and boosted developer performance, as well as code reusability. However, generic types may
sometimes surprise you because certain things are illegal, even if you thought they were allowed.

 Type Substitution

 If you see the following Visual Basic console application, you would say, it ’ s okay, and it runs:

Module Module1

 Public strings As IList(Of String) = New List(Of String)
 Public objects As IList(Of Object) = strings

 Sub Main()
 strings.Add(“Hello”)

 The IronPython run - time comes with a brief language tutorial. Open the
 Tutorial\Tutorial.htm fi le under the installation folder, and play with the
language modifying the Quadratic.py and Module1.vb fi les. You can fi nd a
general (and more detailed) tutorial about the Python programming language at
 http://docs.python.org/tutorial/ .

CH022.indd 1026CH022.indd 1026 9/7/10 6:26:30 PM9/7/10 6:26:30 PM

 strings.Add(“World”)

 For Each item In objects
 Console.WriteLine(item)
 Next
 End Sub

End Module

 When you build it, the compiler does not show up any warning or error. However, when you set
 Option Strict On , the compiler gives an error message for the objects declaration telling you that
there is no implicit conversion from an IList(Of String) to an IList(Of Object) .

 The main reason is that the following kinds or relationships between types are often confused:

 Inheritance — A type descends from another type.

 Realization — A type implements an interface.

 Generic parameter substitution — A generic type ’ s type parameters are substituted with
concrete (closed) types.

 Although List(Of String) realizes IList(Of String) (that is, a closed form of IList(Of T))
just as List(Of Object) realizes IList(Of Object) (that is, a closed form of IList(Of T)), it
does not mean that IList(Of String) is assignable to an IList(Of Object) . Figure 22 - 3 shows a
relationship diagram to help explain why this is so.

➤

➤

➤

System.Object

IList(Of T)List(Of T)

List(Of String)

IList(Of Object)

IList(Of String)

 FIGURE 22 - 3: List(Of T) relationship diagram

 The solid lines represent inheritance, dashed lines mark realization, and double lines stand for
parameter substitution. It is obvious from the fi gure that the most common ancestor of these types
is System.Object . While traversing through inheritance and realization in linear inheritance (like
son, father, and grandfather in a family), parameter substitution means collateral relation (such as a
second cousin in a family).

 IList(Of String) and IList(Of Object) are in collateral relation. Often, at fi rst sight,
developers assume this is linear inheritance just because they share the same generic type as
a kind of ancestor. So, there is a false expectation that IList(Of String) is assignable with a
variable of IList(Of Object) .

Variance ❘ 1027

CH022.indd 1027CH022.indd 1027 9/7/10 6:26:36 PM9/7/10 6:26:36 PM

1028 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 It is not just an unnecessarily strict check of the compiler. The discussed assignment can even lead to
hurting type safety. Look at the following code:

Module Module1

 Public strings As IList(Of String) = New List(Of String) From
 {“Zero”, “One”, “Two”, “Three”, “Four”}
 Public objects As IList(Of Object) = strings

 Sub Main()
 objects(3) = 3
 Dim three As String = strings(3)
 End Sub

End Module

 If the objects = strings assignment were allowed, in the objects(3) = 3 assignment, an
 Integer was about to be inserted into a list of String s and subsequently extracted as a String .
This would be a type - safety violation, so that is why the assignment is invalid, resulting in
compilation error.

 Note that the whole situation is about how you can substitute instances of types with instances
of other types. It is natural for OOP developers to think that substitutions are allowed by linear
inheritance, but there are also other cases where theoretically collateral (and other types of)
substitutions can be done.

 The following code mirrors such a situation:

Public strings As IList(Of String) = New List(Of String)
Public objects As IEnumerable(Of Object) = strings

 Note that IEnumerable(Of T) has a single method with the signature of the following:

GetEnumerator() As IEnumerator(Of T)

Thus, there is no way you can make such an assignment as this in the previous code, so you have
no opportunity to put the wrong type of things into strings through objects , because objects
doesn ’ t have any method that takes an element in:

objects(3) = 3

So, here the assignment that hypothetically could work without issues:

Public objects As IEnumerable(Of Object) = strings

 If you can enumerate through instances of System.Object and use the elements in the enumeration for
some operations over System.Object , those operations should work, even if you enumerate through
instances of System.String . Why? Because System.String is assignable to a System.Object , so you
can pass a System.String parameter to an operation (method) expecting System.Object .

CH022.indd 1028CH022.indd 1028 9/7/10 6:26:36 PM9/7/10 6:26:36 PM

 The surprising fact is that this code compiles and works in Visual Basic 2010 with Option Strict
On , although it does not compile with Visual Basic 2008.

 This kind of substitution is called covariance . In programming languages, covariance provides the
capability to use a more derived type than that originally specifi ed. There is a pair of covariance,
 contravariance , that provides the capability to use a less derived type.

 Understanding the basics of variance will help you in becoming a more
productive developer. Read the “ Bird ’ s - Eye View of Variance ” section in
Chapter 24 to learn more about the concepts behind variance.

 Variance in Visual Basic 2010

 Right now, C# implements only a subset of behavior that theoretically could be achieved by
covariance and contravariance. However, the result the CLR designers achieved with this new
version are signifi cant and really practical. Both Visual Basic 2010 and C# 4.0 have all features
to utilize variance in CLR. The current Visual Basic 2010 variance implementation can be
characterized with the following points:

 For non - generic types, nothing has been changed from the previous version of Visual Basic
by means of variance.

 The way of providing variance for generic types is marking type parameters of a generic
type as variant . Because of a restriction in the CLR, variant type parameters can be
declared only on generic interface and delegate types.

 Variance only applies when there is a reference conversion between type arguments. For
example, variance applies for IEnumerable(Of String) and IEnumerable(Of Object)
because there is a reference conversion between String and Object . However, the
conversion from Integer to Object is a boxing conversion, and so variance does not apply
for IEnumerable(Of Integer) and IEnumerable(Of Object) .

 Variance is not automatic. The compiler will not infer whether a type parameter is covariant
or contravariant. Developers must explicitly declare their intentions.

➤

➤

➤

➤

 When Option Strict Off is used, Visual Basic allows any implicit conversion
and does not raise any compilation error. When you intentionally use variance,
it is highly recommended that you use Option Strict On to observe type cast
and conversion issues during compile time.

Variance ❘ 1029

CH022.indd 1029CH022.indd 1029 9/7/10 6:26:37 PM9/7/10 6:26:37 PM

1030 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 Covariance

 Following is an example of covariance :

Public strings As IList(Of String) = New List(Of String)
Public objects As IEnumerable(Of Object) = strings

 Although this does not compile with Visual Studio 2008 when Option Strict is turned
on, it works in Visual Basic 2010. The compiler accepts it, and generates proper code for
executing the previous declarations. The key for this behavior is that IEnumerable(Of T) and
 IEnumerator(Of T) interfaces are declared with a variant type parameter T :

Public Interface IEnumerable(Of Out T)
 Inherits IEnumerable

 Function GetEnumerator() As IEnumerator
End Interface

Public Interface IEnumerator(Of Out T)
 Inherits IDisposable, IEnumerator
 ReadOnly Property Current As T
End Interface

 The only change in the syntax of interface defi nitions — related to the previous language versions —
is the Out modifi er in the previous declarations. The Out modifi er signifi es that the T can only occur
in an output position in the interface — otherwise, the compiler will raise an error. This restriction
provides (of course, it can be proven) that the interface becomes covariant in T , which means that an
 IEnumerable(Of X) is considered an IEnumerable(Of Y) if X has a reference conversion to Y .

 Because of this defi nition, a sequence of strings can substitute a sequence of objects, and the
previous code works. This covariant behavior is very useful in correlation with LINQ query
expressions.

 To experiment with this, create a console application and name it CovarianceSample . Add a new
code fi le named Pet.vb to the project and paste the code in Listing 22 - 6 into this new fi le.

 LISTING 22 - 6: Pet.vb

Public MustInherit Class Pet
 Public Property NickName As String
 Public Property Age As Integer

 Public Shared Function ShackUpWith(_
 ByVal atHome As IEnumerable(Of Pet), _
 ByVal newComers As IEnumerable(Of Pet)) As IEnumerable(Of Pet)

 Return atHome.Union(newComers)
 End Function

End Class

CH022.indd 1030CH022.indd 1030 9/7/10 6:26:48 PM9/7/10 6:26:48 PM

Public NotInheritable Class Dog
 Inherits Pet
End Class

Public NotInheritable Class Macaw
 Inherits Pet
End Class

 Code fi le [Pet.vb] available for download at Wrox.com

 Here, you have abstract Pet s with two concrete manifestations, Dog and Macaw . These types are
intended to be used in a pet shop application, and so Pet has an operation named ShackUpWith
accepting two sequences of pets and returns their union.

 Modify the Module1.vb fi le of the application as shown in Listing 22 - 7.

 LISTING 22 - 7: Module1.vb of CovarianceSample

Option Strict On
Module Module1

 Sub Main()
 Dim Dogs As New List(Of Dog) From
 {
 New Dog With {.NickName = “Spike”, .Age = 3},
 New Dog With {.NickName = “Murray”, .Age = 12},
 New Dog With {.NickName = “Peach”, .Age = 2}
 }

 Dim Macaws As New List(Of Macaw) From
 {
 New Macaw With {.NickName = “Georgey”, .Age = 32},
 New Macaw With {.NickName = “Bella”, .Age = 4},
 New Macaw With {.NickName = “Grey”, .Age = 11}
 }

 Dim Youngsters =
 From pet In pet.ShackUpWith(Dogs, Macaws)
 Where pet.Age < 5
 Select pet

 For Each pet In Youngsters
 Console.WriteLine(pet.NickName)
 Next
 End Sub

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

 The ShackUpWith method used in the query expression expects IEnumerable(Of Pet) arguments.
But in the previous code, IEnumerable(Of Dog) and IEnumerable(Of Macaw) instances are passed.

Variance ❘ 1031

CH022.indd 1031CH022.indd 1031 9/7/10 6:26:49 PM9/7/10 6:26:49 PM

1032 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

However, because IEnumerable(Of T) is covariant in T , the compiler accepts it. With Visual Basic
2008 — assuming that you would transform it in this source to the old syntax — this code would
not compile with Option Strict On ! In order to make it work with Visual Basic 2008, you must
use a workaround. One possible solution is to cast Dogs and Macaws to IEnumerable(Of Pet) :

Dim DogsAsPets As IEnumerable(Of Pet) = Dogs.Cast(Of Pet)()
Dim MacawsAsPets As IEnumerable(Of Pet) = Macaws.Cast(Of Pet)()

Dim Youngsters =
 From pet In pet.ShackUpWith(DogsAsPets, MacawsAsPets)
 Where pet.Age < 5
 Select pet

 It is much simpler with Visual Basic 2010, isn ’ t it?

 Contravariance

 Contravariance also works with generic interfaces and delegates in Visual Basic 2010. Create a
console application and name it ContravarianceSample . Add the Animal.vb fi le to the project with
the code in Listing 22 - 8.

 LISTING 22 - 8: Animals.vb

Public MustInherit Class Animal
 Implements IComparable(Of Animal)

 Public Property Name As String

 Public Function CompareTo(ByVal other As Animal) As Integer _
 Implements IComparable(Of Animal).CompareTo
 Return Name.CompareTo(other.Name)
 End Function
End Class

Public Class Elephant
 Inherits Animal

 Public Shared Function CompareWithOther(
 ByVal first As IComparable(Of Elephant),
 ByVal other As Elephant) As Integer
 Return first.CompareTo(other)
 End Function
End Class

 Code fi le [Animals.vb] available for download at Wrox.com

 Modify the Module1.vb fi le as shown in Listing 22 - 9.

CH022.indd 1032CH022.indd 1032 9/7/10 6:26:50 PM9/7/10 6:26:50 PM

 LISTING 22 - 9: Module1.vb of ContravarianceSample

Module Module1

 Sub Main()
 Dim Jack As New Elephant With {.Name = “Jack”}
 Dim Jane As New Elephant With {.Name = “Jane”}
 Dim compare = Elephant.CompareWithOther(Jane, Jack)
 Console.WriteLine(“Jack compared to Jane: {0}”, compare)
 End Sub

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

 Although the CompareWithOther method in Elephant takes an IComparable(Of Elephant)
instance as its fi rst parameter, it still works in Visual Basic 2010 with an Elephant instance, despite
the fact that Elephant does not implement IComparable(Of Elephant) . Elephant indirectly
(through Animal) implements IComparable(Of Animal) that can substitute IComparable
(Of Elephant) . This is because of the defi nition of IComparable(Of T) :

Public Interface IComparable(Of In T)
 Function CompareTo(ByVal other As T) As Integer
End Interface

 The type parameter T here uses the In variant modifi er, restricting T to occur only in input
positions, and, just as in case of the Out modifi er, the compiler will check the appropriate usage
of T . This restriction provides (and, of course, it also can be proven) that the interface becomes
 contravariant in T , which means that an IComparable(Of X) is considered an IComparable(Of Y)
if X has a reference conversion to Y .

 In the example, Elephant has a reference conversion to Animal , and so IComparable(Of
Elephant) can be substituted by IComparable(Of Animal) .

 A Few More Points on Variance

 There are a few important things about the Visual Basic 2010 implementation of variance you
should be aware of. These can help you understand the opportunities and limitations you have with
this language version.

 Variance with Multiple Type Parameters

 At fi rst sight, many developers may think that to be covariant or contravariant is a property of a
generic type. This is not true! Variance is a property of type parameters in generic types. When you
have a generic type — let ’ s say MyType(Of T) — you cannot say “ MyType is invariant, covariant, or
contravariant. ” What you can say is “ MyType is invariant, covariant, or contravariant in T . ”

Variance ❘ 1033

CH022.indd 1033CH022.indd 1033 9/7/10 6:26:50 PM9/7/10 6:26:50 PM

1034 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 This means you can have generic types that have both covariant and contravariant type parameters.
Before you think this is theoretical and might not have practical reason, consider the fact that there
are generic types frequently used with such a behavior.

 The Func(Of T, TResult) family of generic delegates is defi ned like this:

Public Delegate Function Func(Of In T, Out TResult)
 (ByVal arg As T) As TResult
Public Delegate Function Func(Of In T1, In T2, OutTResult)
 (ByVal arg1 As T1, ByVal arg2 As T2) As TResult

 You can see that they have both kinds of type parameters. With a simple console application, it is
pretty easy to show the power of the generic Func delegate.

 Create a console application and name it FuncExample . Add a new Pet.vb fi le to the project with
the code in Listing 22 - 10.

 LISTING 22 - 10: Pet.vb in FuncExample

Public MustInherit Class Pet
 Public Property NickName As String
 Public Property Age As Integer
End Class

Public NotInheritable Class Dog
 Inherits Pet
End Class

Public NotInheritable Class Macaw
 Inherits Pet
End Class

Public NotInheritable Class Eagle
 Inherits Pet
End Class

 Code fi le [Pet.vb] available for download at Wrox.com

 You are going to use the Func(Of In T, Out TResult) delegate to defi ne transformations among
pets. Listing 22 - 11 shows the Module1.vb fi le implementing this functionality.

 LISTING 22 - 11: Module1.vb in FuncExample

Option Infer On
Option Strict On

Module Module1

 Dim Dogs As New List(Of Dog) From

CH022.indd 1034CH022.indd 1034 9/7/10 6:26:51 PM9/7/10 6:26:51 PM

 {
 New Dog With {.NickName = “Spike”, .Age = 3},
 New Dog With {.NickName = “Murray”, .Age = 12},
 New Dog With {.NickName = “Peach”, .Age = 2}
 }

 Dim Macaws As New List(Of Macaw) From
 {
 New Macaw With {.NickName = “Georgey”, .Age = 32},
 New Macaw With {.NickName = “Bella”, .Age = 4},
 New Macaw With {.NickName = “Grey”, .Age = 11}
 }

 Sub Main()
 Dim macawsToDogs = TransformMacawTo(Macaws, AddressOf TransformToDog)
 Dim macawsToEagles = TransformMacawTo(Macaws, AddressOf TransformToEagle)
 Dim dogsToEagles = TransformDogTo(Dogs, AddressOf TransformToEagle)
 End Sub

 Private Function TransformMacawTo(
 ByVal pets As IEnumerable(Of Macaw),
 ByVal transformation As Func(Of Macaw, Pet)) As IEnumerable(Of Pet)

 Dim result As New List(Of Pet)
 For Each pet In pets
 result.Add(transformation(pet))
 Next
 Return result
 End Function

 Private Function TransformDogTo(
 ByVal pets As IEnumerable(Of Dog),
 ByVal transformation As Func(Of Dog, Pet)) As IEnumerable(Of Pet)

 Dim result As New List(Of Pet)
 For Each pet In pets
 result.Add(transformation(pet))
 Next
 Return result
 End Function

 Private Function TransformToDog(ByVal macaw As Macaw) As Dog
 Return New Dog With {.NickName = macaw.NickName, .Age = macaw.Age}
 End Function

 Private Function TransformToEagle(ByVal pet As Pet) As Eagle
 Return New Eagle With {.NickName = pet.NickName, .Age = pet.Age}
 End Function

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

Variance ❘ 1035

CH022.indd 1035CH022.indd 1035 9/7/10 6:26:52 PM9/7/10 6:26:52 PM

1036 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 In the TransformMacawTo function, the Func(Of Macaw, Pet) delegate is used, while in the
 TransformDogTo function, a Func(Of Dog, Pet) argument, is passed.

 Two functions, TransformToDog and TransfromToEagle , are responsible for performing the
 “ magical change ” of pets. The following lines of codes utilize variance:

Dim macawsToDogs = TransformMacawTo(Macaws, AddressOf TransformToDog)
Dim macawsToEagles = TransformMacawTo(Macaws, AddressOf TransformToEagle)
Dim dogsToEagles = TransformDogTo(Dogs, AddressOf TransformToEagle)

 In the fi rst two TransformMacawTo calls, the Func(Of Macaw, Pet) arguments are substituted
with Func(Of Macaw, Dog) and Func(Of Pet, Eagle) , respectively. In the invocation of
 TransformDogTo , a Func(Of Pet, Eagle) is used instead of the Func(Of Dog, Pet) . It is entirely
valid, strongly typed, and no type conversion magic is done behind the scenes!

 Why can, for example, Func(Of Dog, Pet) be substituted with Func(Of Pet, Eagle) ? The fact
that Func(Of Dog, Pet) is covariant in Pet means that you can return a Pet derived type, namely
 Eagle , because an Eagle is a Pet . The same thinking says that Func(Of Dog, Pet) is contravariant
in Dog , and so any operation with Pet also will work on Dog , because Dog is derived from Pet .
Therefore, Func(Of Pet, Eagle) is a good substitution for Func(Dog, Pet) .

 Variance with User Types

 Obviously, you are not constrained to using only the existing generic types with variant type
parameters. You can create your own generic interfaces and delegates. You can use the In modifi er
for signifying a contravariant, and the Out modifi er for a covariant type parameter. Without a
modifi er, the type parameter remains invariant.

 For example, consider the following declarations:

Public Interface IMyOperations(Of In T, U, V)
 ‘...
End Interface
Public Delegate Function MyDelegate(Of In T, U, Out X)
 (ByVal tPar As T, ByVal uPar As U) As X

Here, X is covariant, T is contravariant, and U and V are invariant type parameters.

 The compiler checks to ensure that you keep within the rules for variant type parameters. For
example, in the following interface defi nitions, all method declarations are invalid because one or
more contravariant type parameters are in output positions:

Public Interface IMyOperations(Of In T, In U, V)
 Function OutputUnsafeOp1() As T
 Function OutputUnsafeOp2() As U()
 Function OutputUnsafeOp3() As List(Of T)
 Function OutputUnsafeOp4() As Func(Of V, U)
 Sub OutputUnsafeOp5(ByRef tpar As T)
 Sub OutputUnsafeOp6(ByRef par As Func(Of V, U))
End Interface

CH022.indd 1036CH022.indd 1036 9/7/10 6:26:52 PM9/7/10 6:26:52 PM

 Similarly, in the following interface defi nition, all operations are invalid because covariant type
parameters are in input positions:

Public Interface IMyOperations(Of Out T, U)
 Sub InputUnsafeOp1(ByVal tPar As T)
 Function InputUnsafeOp2(ByVal tPar() As T) As U
 Function InputUnsafeOp3(ByRef tPar As T) As Func(Of U, T)
End Interface

 The Visual Basic 2010 language specifi cation calls these invalid type parameters output - unsafe and
 input - unsafe types, and precisely defi nes the context they are unsafe within. With the introduction of
variant type parameters, the type inference algorithm used by the compiler also has been modifi ed.

 Variance and Refl ection

 The .NET Framework ’ s refl ection model can be used to obtain information about the variance
of a type parameter. In Listing 22 - 12, you have a simple console application ’ s Module1.vb fi le
demonstrating the refl ection model used to query variance information.

 LISTING 22 - 12: Module1.vb to Query Refl ection About Variance

Imports System.Reflection

Module Module1

 Sub Main()
 Dim Asm = GetType(IEnumerable()).Assembly
 Dim GenericTypes =
 From type In Asm.GetTypes()
 Where type.IsGenericTypeDefinition And type.IsPublic
 Select type
 For Each type In GenericTypes
 Console.WriteLine(“{0}: “, type.Name)
 For Each typeParam In type.GetGenericArguments()
 Dim variance = typeParam.GenericParameterAttributes And
 GenericParameterAttributes.VarianceMask
 If (variance And GenericParameterAttributes.Covariant) < > 0 Then
 Console.WriteLine(“ {0}: covariant”, typeParam.Name)
 ElseIf (variance And GenericParameterAttributes.Contravariant) < > 0 Then
 Console.WriteLine(“ {0}: contravariant”, typeParam.Name)
 Else
 Console.WriteLine(“ {0}: invariant”, typeParam.Name)
 End If
 Next
 Next
 End Sub

End Module

 Code fi le [Module1.vb] available for download at Wrox.com

Variance ❘ 1037

CH022.indd 1037CH022.indd 1037 9/7/10 6:26:53 PM9/7/10 6:26:53 PM

1038 ❘ CHAPTER 22 VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS

 This code iterates through all generic types in the System assembly and writes out their type
parameter information. The nested For Each cycle goes through the type parameters, and uses the
 GenericParameterAttributes property of System.Type to obtain information about variance.
This property ’ s value is a GenericParameterAttributes enumeration instance with fl ags. The
 VarianceMask value of the enumeration can be used to separate the fl ags describing variance from
the ones describing type parameter constraints. Covariant and Contravariant fl ags defi ne the
parameter behavior. If neither of them is set, the type parameter is invariant.

 SUMMARY

 The Visual Basic language has received several great syntax improvements that neither change how
you program with Visual Basic, nor provide you brand - new paradigms. However, they are still
very useful, because they make your code shorter and more readable, altogether improving your
productivity.

 In Visual Basic 2010, you can omit the line continuation underscore from almost all places. Auto -
 implemented properties, collection initializers, and array literals allow you to type fewer characters
to express the same thing as in the preceding version of the language.

 Visual Basic 2010 allows using multiline lambda expressions, and now you can turn not only
functions, but also subroutines, into lambdas. With this improvement, lambda expressions in Visual
Basic become as powerful as the C# implementation.

 Visual Basic has a great compiler feature, late binding, which allows the Visual Basic run - time
to resolve and execute operations dynamically at run - time. This feature provides a signifi cant
simplifi cation of consuming COM object models. Visual Basic 2010 improves this mechanism by
integrating the late binding with the Dynamic Language Run - time (DLR). If a late - bound call
is made to an object that is a dynamic object (implements the IDynamicMetaObjectProvider
interface), Visual Basic binds to the dynamic object by using that interface.

 Visual Basic 2010 introduces new forms of variance. With type parameters of generic interfaces and
delegates signifi ed as covariant or contravariant, from now on, the programming language has a
much more fl exible type substitution model than ever before.

 In Chapter 23, you will learn about the history of C# — the other signifi cant .NET programming
language, often said to be “ the native programming language of .NET. ”

CH022.indd 1038CH022.indd 1038 9/7/10 6:26:54 PM9/7/10 6:26:54 PM

 PART V

C#

 CHAPTER 23: History of C#

 CHAPTER 24: C# 4.0 Language Improvements

�

�

CH023.indd 1039CH023.indd 1039 9/6/10 6:49:54 PM9/6/10 6:49:54 PM

CH023.indd 1040CH023.indd 1040 9/6/10 6:49:58 PM9/6/10 6:49:58 PM

 History of C#

 Over the course of the past decade or so, the C# language (and, of course, the .NET
Framework) has evolved to become a determining part of modern software development.
From its fi rst release in the beginning of 2002, the C# language has gone through an amazing
progression, and attracted millions of developers into the .NET camp. As of today, C# is in
its fourth version.

 This chapter provides a brief overview of the history of the C# language. The discussions
in this chapter do not teach you the language, which is defi nitely not in the scope of this book.
Rather, the discussions in this chapter assume that you have already used the language. If you
are a Visual Basic developer, this chapter also helps you to stay in context.

 This chapter addresses the following topics:

 A brief history of the C# language

 The main characteristic of C# (as it was established in C# 1.0)

 A brief overview of features in C# 2.0 and C# 3.0

 After having so many Visual Studio and .NET Framework releases in the past, it is now safe
to say that every major Visual Studio release hosts a new version of the C# language. The
same holds true for Visual Studio 2010, which introduces C# 4.0. In Chapter 25, you ’ ll learn
about the details of the new features found in C# 4.0.

 THE EVOLUTION OF C#

 Today, C# is a multi - paradigm programming language. However, it started out as a general -
 purpose, object - oriented language.

 The development team of the C# language was led by Anders Hejlsberg, who joined Microsoft
in 1996 (and who is still the leader of the development team) after being exceptionally

➤

➤

➤

23

CH023.indd 1041CH023.indd 1041 9/6/10 6:49:58 PM9/6/10 6:49:58 PM

1042 ❘ CHAPTER 23 HISTORY OF C#

successful with Turbo Pascal and Delphi at Borland. At that time, Microsoft had already worked
on something that later became the Common Language Run - time (CLR). Hejlsberg ’ s team also
put a lot of energy into getting rid of the common fl aws found in major programming languages.
Recognizing those fl aws helped considerably in establishing the CLR, and also drove the
development of the C# programming language.

 Today, the name C# (pronounced as “ C sharp ”) is used without any questions about what “ # ”
really means in the name, because today ’ s developers are used to languages ending with “ sharp ” (for
example, J# or F#). The name of the programming language was inspired from the musical notation
where a “ sharp ” indicates that the note should be made a half step higher in pitch. This kind of
inspiration is not unique — just think of the C++ programming language, where “ ++ ” implies
 “ something more than C ” . The “ # ” in the name simply means “ ++ ” in two rows — in other words,
 “ (C++)++ ” , suggesting to some that C# is superior to C++.

 Design Goals

 The developers of C# got a lot of inspiration from C++ and Java in regard to both popular language
features and fl aws. The original design goal was to create a simple and modern general - purpose
programming language that leveraged the object - oriented paradigms. The designers also wanted
to create a language that was a fi rst - class citizen in developing software components suitable for
deployment in distributed environments. Less obvious was the fact that the team aimed C# to be
suitable for writing applications for both hosted and embedded systems, independently of whether a
large and sophisticated operating system was used or a very small one with dedicated functions.

 Learning from the common fl aws of major programming languages, the team focused on creating
a language that provided support for software engineering principles such as strong types, array
bounds checking, detection of attempts to use uninitialized variables, and automatic garbage
collection.

 Short History

 The history and evolution of C# cannot be uncoupled from the .NET Framework. Their origins
have the same root, and their co - evolution is still inspired by the same forces moving the technology
toward future trends.

 The predecessor of the .NET Framework was called Common Object Run - time (COR). Traces of
it can still be found, for example, in the name of the Microsoft Common Object Run - time Library
(mscorlib.dll). At that time, the class library of COR was written in a managed code compiler
called Simple Managed C . The team formed by Anders Hejlsberg started to develop the new
language, and it wore the name Cool , which stood for “ C - like Object Oriented Language. ” This
name was so overloaded that Microsoft did not keep it because of trademark reasons, and renamed
it to C#. By the time .NET was announced at PDC 2000, the class libraries were ported to C#.

 According to the design goals, Microsoft decided to start the submission of the C# language
specifi cation as well as the Common Language Infrastructure (CLI) specifi cation to the European
Computer Manufacturers Association (ECMA). This submission was also co - sponsored by
Hewlett - Packard and Intel Corporation. About 16 months later, the process resulted in the

CH023.indd 1042CH023.indd 1042 9/6/10 6:50:00 PM9/6/10 6:50:00 PM

ECMA - 334 standard (December 2001). Microsoft also started the standardization at International
Organization for Standardization (ISO), with C# becoming an ISO standard in 2003 with the
moniker ISO/IEC 23270:2003.

 In January 2002, the big leap reached the developer community. Visual Studio .NET (also known as
VS 2002) was released with C# 1.0 (and Visual Basic .NET). The C# 1.0 compiler was the part of the
.NET SDK, and Visual Studio included “ only ” the developer ’ s workbench for the language. Although
the .NET framework had been fi xed and polished in 2003 and also a new Visual Studio version
(VS 2003) had been released in April 2003, the C# language it used was the C# 1.0 specifi cation.

 The next roaring success of the language was C# 2.0 with its most appreciated feature: generics . In
later interviews, Hejlsberg said the team had this feature on its list from the beginning, but there
had simply not been enough time to implement it in .NET 1.0 or 1.1.

 The implementation of generics was very important from the C# language point of view. It was not
only a feature that enabled better code reusability, but also an important part in the move toward
the functional programming paradigm. This new language version was released with Visual Studio
2005 in October 2005.

 The related ECMA and ISO standards were also updated according to the new C# 2.0 features.

 Released with Visual Studio 2008, C# 3.0 made another huge leap with the introduction of
 Language Integrated Query (LINQ) and query expressions . LINQ itself is a .NET Framework
component that adds native data querying capabilities to .NET languages. Query expressions
represent a new form of data query syntax that resembles the SQL language. With LINQ involved
in C#, the language took a new programming paradigm shift from the imperative approach to
the direction of declarative and functional programming. Parallel with the query expressions, the
language included small (but signifi cant) “ syntactic sugar ” features primarily intended to make
the bed for LINQ, but these features individually were also very useful.

 Microsoft has not submitted C# 3.0 for standardization. The most current versions of the standards
for the C# programming language are ISO/IEC 23270:2006 and ECMA - 334 4th edition.

 The newest version of the language is version 4.0, released with Visual Studio 2010. The step from
C# 3.0 to 4.0 signals that it really has become a multi - paradigm programming language. This new
version introduces such new features as support for dynamic types, which introduces a great way
to interoperate with dynamic languages. C# now has named and optional parameters that, among
other things, allow using COM object hierarchies from C# with the same ease as in Visual Basic
and scripts.

 What will be in C# 5.0? Right now, there is no offi cial information from Microsoft about what
the language team is working on. But, because a new Visual Studio release is scheduled for every
two years, you can be sure that the team is defi nitely working on new and exciting features to be
encapsulated into C#.

 Implementations

 Because the C# language is standardized, Microsoft Visual C# is not the only implementation,
although it is the most used. There are other implementations that generally integrate the C#

The Evolution of C# ❘ 1043

CH023.indd 1043CH023.indd 1043 9/6/10 6:50:00 PM9/6/10 6:50:00 PM

1044 ❘ CHAPTER 23 HISTORY OF C#

language compiler, together with the CLI, which is also standardized. Following is a brief list of
well - known C# and CLI implementations:

 Mono project — This is considered by some to be the best non - Microsoft implementation
of an Open Source C# compiler, as well as a complete implementation of the CLI with the
required framework libraries as they appear in the ECMA specifi cation. Mono was led by
Ximian for a long time; as of this writing, it is now led by Novell.

 DotGNU — A part of the GNU Project by Free Software Foundation, this also provides
an Open Source C# compiler and CLI with framework libraries as required by the ECMA
specifi cation. However, this implementation is not yet complete.

 Shared Source Common Language Infrastructure — This Microsoft project is licensed
for education and research only (formerly known as Rotor). This is a shared source
 implementation of a C# compiler and a subset of required framework libraries, according
to the ECMA CLI specifi cation.

 C# 1.0

 This section provides a brief overview features included with this version of the programming
language. Rather than teaching you C#, this discussion assumes that you have experience with this
language — or at least with any other .NET language.

 From its fi rst version, C# has been the programming language that most directly refl ects the
underlying CLI by design, and this trait has not changed over time. Most of the intrinsic types in
C# correspond to value types implemented by the CLI framework.

 Type System

 C# has a unifi ed type system that is the Common Type System in the .NET Framework. Each type has
a root ancestor, namely System.Object . This type system separates data types into two categories:

 Value types — These are plain aggregations of data, and their instances do not have either
referential identity or referential comparison semantics at all. Operations on value types are
carried out with the actual data within the instances.

 Reference types — These have the notion of referential identity. Each instance of a reference
type is inherently distinct from every other instance, even if the data within both instances
is the same.

 Both type categories can be extended by user - defi ned types. The value behind a value type instance
can be converted into a value of a corresponding reference type by the boxing operation that is
implicit in the C# language. The previously boxed value of a reference type can be converted into an
instance of a value type with the unboxing operation. However, this requires an explicit type cast.
The type system allows full type refl ection and discovery.

 There are no global variables or global functions in C#. All methods and data members must be
declared within types. The following “ Hello, World ” example mirrors this fact:

➤

➤

➤

➤

➤

CH023.indd 1044CH023.indd 1044 9/6/10 6:50:01 PM9/6/10 6:50:01 PM

using System;

class ExampleClass
{
 static void Main()
 {
 Console.WriteLine(“Hello, world!”);
 }
}

 C# is type safe . It puts more emphasis on type safety than C++. The only implicit conversions by
default are those that are considered safe (such as widening of integers). This is enforced by the C#
compiler and even at run - time. C# has an intrinsic type for Booleans (the System.Boolean type),
and there are no implicit conversions between Booleans and integers, or between enumeration
members and integers (except for literal 0). Any user - defi ned conversion must be marked as explicit
or implicit.

 Multiple inheritance is not supported by the language. A class can have only one base class but is
allowed to implement any number of interfaces. This was a design decision by the language ’ s lead
architect to avoid complication, avoid dependency hell, and simplify architectural requirements
throughout the CLI.

 Memory Management

 The C# language has the new operator to allocate type instances from the memory. However, it
does not have any statement, function, or operator to explicitly free the allocated managed memory.
Instead, it is automatically garbage - collected. Garbage collection addresses memory leaks by
freeing the programmer of responsibility for releasing memory that is no longer needed. It is a
non - deterministic mechanism.

 The CLR supports deterministic fi nalization with the dispose pattern (IDisposable behavior). C#
leverages on this CLR feature with its using statement, as shown here:

public class UsingExample
{
 public static void Main()
 {
 using(FileStream fs = new FileStream(“log.txt”))
 using(StreamWriter log = new StreamWriter(fs))
 {
 log.WriteLine(“This is a log entry.”);
 }
 }
}

 C# does not allow directly using pointers . However, reference types physically use pointers as their
implementation, and you can use them only for referencing the objects behind them. No pointer
arithmetic is available.

 In C#, memory address pointers can only be used within blocks specifi cally marked as unsafe, and
programs with unsafe code need appropriate permissions to run. Most object access is done through

C# 1.0 ❘ 1045

CH023.indd 1045CH023.indd 1045 9/6/10 6:50:01 PM9/6/10 6:50:01 PM

1046 ❘ CHAPTER 23 HISTORY OF C#

safe object references, which always either point to a “ live ” object or have the well - defi ned null
value. It is impossible to obtain a reference to a random block of memory.

 An unsafe pointer can point to an instance of a value type, array, string, or a block of memory
allocated on a stack. Code that is not marked as unsafe can still store and manipulate pointers
through the System.IntPtr type (which provides interoperability between managed and
unmanaged code), but it cannot dereference them.

 Syntactic Sugar

 The design team added some “ syntactic sugar ” to the language right at the beginning in C# 1.0
(and they kept adding this sugar from version by version).

 Enumeration members in C# have their own scope, and can be used only by specifying the scope
name. For example, consider the following enumeration type members:

enum MyPrimeNumbers
{
 Three = 3,
 Five = 5,
 Seven = 7
}

These can be used only when specifying MyPrimeNumbers as their scope:

MyPrimeNumbers pickFirst = MyPrimeNumbers.Three;
MyPrimeNumbers pickThird = MyPrimeNumbers.Seven;

 C# includes concept of properties, which are members with accessors (getter and setter methods)
that syntactically behave like fi elds. This concept was not new with the development of C#; it
existed before in Delphi and Visual Basic 6. However, C# binds the accessors to the scope of a
property declaration, as shown in the following example:

class MyClass
{
 private int _CountOfMembers;

 public int CountOfMembers
 {
 get { return _CountOfMembers; }
 set { _CountOfMembers = value; }
 }
}

 The C# language has been inspired by Javadoc and has its own XML - based documentation system.
Comments intended to be the part of the documentation use special comment tokens — /// for
 “ rest - of - the - line ” comments, and /** and */ token pairs for multi - line comments. The ECMA
C# standard provides a non - normative annex for defi ning the XML markups of documentation
comments. This annex also treats comment processing rules, and their transformation to a plain

CH023.indd 1046CH023.indd 1046 9/6/10 6:50:01 PM9/6/10 6:50:01 PM

XML document in order to create the appropriate mappings between CLI elements (types, members,
and so on) and related comments.

 The following example illustrates how XML comments are used:

/// < summary >
/// This abstract class defines an attribute with a simple string value.
/// < /summary >
/// < remarks >
/// The class is intended to derive new attributes having a simple string value.
/// Do not use this class to add other properties to the attribute!
/// < /remarks >
public abstract class StringAttribute : Attribute
{
 /** < summary >
 Creates a new instance of this attribute and sets its initial value.
 < /summary >
 < param name=”value” > Initial attribute value. < /param > */
 protected StringAttribute(string value)
 {
 Value = value;
 }
 // ...
}

 C# 1.1

 You can fi nd many web pages and blog entries mentioning or picturing C# 1.1 as an individual
release of the language. Well, there was a .NET Framework 1.1 release that came together with
Visual Studio 2003. Of course, this version contained a new C# compiler, but it was still about
implementing the C# 1.0 language.

 Whenever C# 1.1 is mentioned, it probably means that the related examples are intended to be used
together with Visual Studio 2003 and/or .NET Framework 1.1.

 C# 1.1 never existed as a separate version of the programming language.

 C# 2.0

 When C# 1.0 was designed, only a few dozen people had been involved in the process, and the
specifi cation mirrors mainly their programming experience. After the release of C# 1.0, the number
of direct language infl uencers went to a few hundred, with tens of thousands indirectly having
feedback on the strength and weaknesses of C#.

 .NET 2.0 brought great changes into the Common Type System. The feature of generic types
that really had been missing from the previous versions was added to the framework, and the C#
language also implemented this feature. This change was so signifi cant that the fi rst word used to
characterize C# 2.0 is almost always “ generics. ”

C# 2.0 ❘ 1047

CH023.indd 1047CH023.indd 1047 9/6/10 6:50:02 PM9/6/10 6:50:02 PM

1048 ❘ CHAPTER 23 HISTORY OF C#

 However, in addition to generic types, there were several other great features added to the
language in response to the community feedback and experiences that made C# 2.0 a very mature
programming language, including the following:

 Partial types

 Static classes

 Iterators

 Anonymous methods

 Delegate inference

 Delegate covariance and contravariance

 Nullable types

 Property accessors

 Null - coalesce operators

 Namespace aliases

 Let ’ s dive into some details of these features.

 Generic Types

 Generic types allow you to defi ne type - safe data structures, without committing to actual data
types. This results in higher - quality code, because you can reuse data processing algorithms without
duplicating type - specifi c code.

 There is a similar concept in C++, called “ templates, ” but while templates in C++ are supported by
a compiler, .NET generic types are implemented at the CLR level. Although there are entire books
dedicated to generics, this section provides a brief overview without deeper explanations.

 The C# world before generics never offered a type - safe way to encapsulate common behavior into
a type. For example, if you wanted to create a behavior describing how a queue works and intended
to use it with both int and your own Order type, you had to create a workaround. Either you
implemented two separate types called IntQueue and OrderQueue or created a single Queue type
that accepted System.Objects . The fi rst implementation has issues with code maintenance, while
the second has issues with providing type safety and performance.

 C# generics allow you to use type parameters with type and method defi nitions. These defi nitions
are called open type defi nitions , as shown in the following example:

public class Queue < T >
{
 public Enqueue(T item) { ... }
 public T Dequeue() { ... }
 public bool IsEmpty { get { ... } }
}

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH023.indd 1048CH023.indd 1048 9/6/10 6:50:02 PM9/6/10 6:50:02 PM

 In this sample defi nition, T is the type parameter. When it is time to use the defi nitions for concrete
types, T is substituted with the type you intend to use, together with the behavior Queue offers:

Queue < int > intQueue = new Queue < int > ;
intQueue.Enqueue(42);
Queue < Order > orderQueue = new Queue < Order >
// ...
while (!orderQueue.IsEmpty)
{
 Order order = orderQueue.Dequeue();
 // ...
}

 The types where the type parameter is substituted with a concrete type are called closed types .
You are not limited to use only one type parameter; you can use more. For example, the following
declaration lets you defi ne a node in a linked list, where K represents the type used as the key of the
node, and N is the type representing the value of a node:

public class LinkedNode < K, N > { ... }

 You can also add type parameter constraints to your types to restrict them to a subset of types. For
example, when you allow only value types for being keys, and want to be sure that node elements
can be compared, the previous type defi nition can be constrained like this:

public class LinkedNode < K, N >
 where K: struct
 where N: IComparable
{ ... }

 You can use generic types as base types using either open or closed types, as shown in the following
examples:

public class SortedNode < K, N > : LinkedNode < K, N >
 where K: struct
 where N: IComparable
{ ... }

public class CodeNode < N > : LinkedNode < int, N >
 where N: IComparable
{ ... }

public class OrderNode: LinkedNode < int, Order > { ... }

 Not only types, but you can also use methods with generics, as shown here:

public class MyUtilities
{
 public void WriteToDebug < T > (T item) { ... }
 public void Serialize < T > (T item)
 where T: ISerializable
 { ... }
}

C# 2.0 ❘ 1049

CH023.indd 1049CH023.indd 1049 9/6/10 6:50:02 PM9/6/10 6:50:02 PM

1050 ❘ CHAPTER 23 HISTORY OF C#

 Even static and virtual methods can leverage on generics, as shown here:

public class BaseClass
{
 public static void WriteToDebug < T > (T item) { ... }
 public virtual void SomeMethod < T > (T t) { ... }
}

public class SubClass: BaseClass
{
 public override void SomeMethod < T > (T t) { ... }
}

 Operators and delegates are implemented as methods behind the scenes, and both of them support
generics with all the power of generic methods. Here is a small example of defi ning and consuming
generic delegates:

public class MyClass < T >
{
 public delegate void GenericDelegate(T t);
 public void SomeMethod(T t) { ... }
}

// --- Use the delegate
MyClass < int > obj = new MyClass < int > ();
MyClass < int > .GenericDelegate del;

del = new MyClass < int > .GenericDelegate(obj.SomeMethod);
del(3);

 In .NET 2.0, refl ection is extended to support generic type parameters. The type System.Type can
now represent generic types with specifi c type arguments (closed types), or unspecifi ed (open) types.

 Also, many types in .NET 2.0 — especially collections — had been changed or added to support
generics. For example, Array type has now about a dozen new generic methods, and there are many
new generic collection classes to provide a new and performance - boosted experience related to the
old .NET 1.1 collection types.

 Partial Types

 The limitation that type defi nitions had to be entirely in only one physical fi le was a bottleneck
in C# 1.0, making the life of developers unnecessarily diffi cult. Large type defi nitions could not
be split, and that was especially disadvantageous for those who used code generation intensively,
because generated code could not be easily separated from user - defi ned code.

 Partial types solve this issue. By using the partial keyword, class, structure, and interface
defi nitions can be split to spread out in multiple fi les. This solves the problem of separation of user -
 defi ned and generated code. During compile time the partitions of the type defi nition are merged,
including attributes, base classes and interfaces, and access modifi ers.

CH023.indd 1050CH023.indd 1050 9/6/10 6:50:03 PM9/6/10 6:50:03 PM

 For example, you can split MyClass into two parts, as shown in the following example:

// --- MyClass1.cs
[Serializable]
public partial class MyClass
{
 private bool _IsDisposed;
}

// --- MyClass2.cs
partial class MyClass : IDisposable
{
 public bool IsDisposed
 {
 get { return _IsDisposed; }
 }
 public void Dispose()
 {
 // --- Implement the logic here
 _IsDisposed = true;
 }
}

 The result of merging the partitions is a public class named MyClass implementing the IDisposable
interface and decorated with the Serializable attribute.

 Static Classes

 Static classes are classes that cannot be instantiated, so you cannot use the new keyword to create a
variable of the class type. Before C# 2.0, you could use only the singleton pattern to have types with
exactly one instance.

 By defi nition, static classes can contain only static members and no instance members, so they do
not have instance constructors. The only base type allowed for static classes is Sytem.Object , and
the class is sealed.

 The MyMath class is an example of a simple static class, as shown here:

public static class MyMath
{
 private static double _LastResult;

 static MyMath() { _LastResult = 0.0; }
 public static double Add(double a, double b) {return _LastResult = a + b; }
 public static double Subtract(double a, double b) { return _LastResult = a - b; }
 public static double LastResult
 {
 get { return _LastResult; }
 }
}

C# 2.0 ❘ 1051

CH023.indd 1051CH023.indd 1051 9/6/10 6:50:03 PM9/6/10 6:50:03 PM

1052 ❘ CHAPTER 23 HISTORY OF C#

 You can use the class members directly by naming the class as you would for any ordinary static
members, just like in the following code snippet:

double x = 2.0;
double y = 3.0;
doube result = MyMath.Add(x, y);
Console.WriteLine(MyMath.LastResult);

 Iterators

 C# was designed with the capability to iterate over data structures implementing a GetEnumerator
method that retrieves an instance with the IEnumerator behavior. The IEnumerable interface
defi nes this behavior. However, implementing a data structure passing back an IEnumerator
instance is laborious. You must implement IEnumerator ’ s Current , MoveNext , and Reset methods.

 C# 2.0 introduced the yield construct that is based on the proven theory that iterators can be
implemented as deterministic state machines. You simply describe the iterator as a method using the
 yield return and yield break statements, as the following code snippet illustrates:

public IEnumerable < int > FibonacciUpToMillion()
{
 int fib0 = 0;
 int fib1 = 1;
 while(true)
 {
 int fibNext = fib0 + fib1;
 fib0 = fib1;
 fib1 = fibNext;
 if (fibNext > 1000000) yield break;
 yield return fibNext;
 }
}

 This method creates numbers of the Fibonacchi - sequence, unless the subsequent number exceeds the
value of 1 million. The yield return statement passes back the next item in the sequence, and the
 yield break statement stops the iteration. You can simply use the sequence just as any other data
collection, as shown here:

foreach (int number in FibonacciUpToMillion())
{
 Console.WriteLine(number);
}

 Anonymous Methods

 C# delegates provide operators and methods for adding and removing target methods, and are
used extensively throughout the .NET Framework for events, callbacks, asynchronous calls, and
multithreading. However, you are sometimes forced to create a class or a method just for the sake
of using a delegate. The capability to create anonymous methods was a new feature in C# 2.0 that
enabled you to defi ne an anonymous (that is, nameless) method called by a delegate.

CH023.indd 1052CH023.indd 1052 9/6/10 6:50:03 PM9/6/10 6:50:03 PM

 For example, the following is a conventional DoTheWork method defi nition and delegate invocation:

class MyClass
{
 delegate void MyDelegate();
 public void InvokeMethod()
 {
 MyDelegate del = new MyDelegate(DoTheWork);
 del();
 }
 void DoTheWork()
 {
 MessageBox.Show(“Hello”);
 }
}

 You can defi ne and implement this with an anonymous method, as the following snippet illustrates:

class MyClass
{
 delegate void MyDelegate();
 public void InvokeMethod()
 {
 MyDelegate del = delegate();
 {
 MessageBox.Show(“Hello”);
 };
 del();
 }
}

 Delegate Inference

 The C# 2.0 compiler featured delegate inference , which enables you to make a direct assignment of
a method name to a delegate variable, without wrapping it fi rst with a delegate object. You could
write the following code:

public void InvokeMethod()
{
 MyDelegate del = new MyDelegate(DoTheWork);
 del();
}
void DoTheWork() { ... }

 With delegate inference, the declaration of the del variable becomes as simple as the following:

MyDelegate del = DoTheWork;

 Delegate Covariance and Contravariance

 C# 2.0 introduced covariance and contravariance to provide a degree of fl exibility when matching
method signatures with delegate types.

C# 2.0 ❘ 1053

CH023.indd 1053CH023.indd 1053 9/6/10 6:50:03 PM9/6/10 6:50:03 PM

1054 ❘ CHAPTER 23 HISTORY OF C#

 Covariance permits a method to have a more derived return type than what is defi ned in the
delegate. The following example demonstrates covariance:

class Vertebrata { }
class Birds : Vertebrata { }
delegate Vertebrata Handler();

class Program
{
 Vertebrata FirstHandler() { return new Vertebrata(); }
 Birds SecondHandler() { return new Birds(); }

 static void Main()
 {
 Handler handler1 = FirstHandler;
 // --- Covariance allows this:
 Handler handler2 = SecondHandler;
 }
}

 The data type returned by SecondHandler is of type Birds , which derives from the Vertebrata
type defi ned in the delegate.

 Contravariance permits a method with parameter types that are less derived than in the delegate
type. With contravariance, you can now use one event handler in places where, previously, you
would have had to use separate handlers. The following code snippet illustrates how it works:

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 this.MouseDown += InputEvent;
 this.MouseUp += InputEvent;
 this.KeyDown += InputEvent;
 this.KeyUp += InputEvent;
 }

 private void InputEvent(object sender, EventArgs e)
 {
 Debug.WriteLine(“Input event occured at {0}”, DateTime.Now);
 }
}

 The InputEvent handler accepts an EventArgs input parameter and uses it with the MouseUp and
 MouseDown events that send a MouseEventArgs type as a parameter, and also with the KeyDown
and KeyUp events that send a KeyEventArgs parameter.

 Nullable Types

 In C# 1.0, one of the weaknesses of value types versus reference types was the lack of value type ’ s
 “ nullability. ” To eliminate this weakness, the C# 2.0 designers added the concept of nullable types
to the language.

CH023.indd 1054CH023.indd 1054 9/6/10 6:50:04 PM9/6/10 6:50:04 PM

 This feature also required a change in the CLR. A new generic type, the System.Nullable < T >
structure, was introduced, where T should be a value type.

 The C# 2.0 syntax allows assigning null to a System.Nullable < T > instance, and to compare an
instance value with null . You can also use shortcut syntax in form of T? instead of writing out
 Nullable < T > . The HasValue Boolean property tells if a nullable instance has a value, and, if it has,
it can be obtained through the Value property.

 Using these properties, you can defi ne the null - aware Square method, as shown in the following
example:

public int? Square(int? n)
{
 return n.HasValue
 ? n.Value * n.Value
 : null;
}

 The Nullable < T > also defi nes an explicit cast operator from T? to T , and an implicit cast operator
from T to T? , so the following declarations are all correct:

int? firstValue = 4;
int? secondValue = 5;
int? sumValue = firstValue + secondValue;
int squareValue = (int)sumValue;

 However, because the implicit conversion from T? to T is not allowed, some of the following
assignments will result in compilation errors:

int? firstValue = 4;
int? secondValue = 5;
int myValue = secondValue; // --- Cannot convert int? to int
int sumValue = firstValue + secondValue; // --- Cannot convert int? to int

 Property Accessors

 Although a property ’ s access modifi er applies to both the get and set accessors, you can add
a separate modifi er to one of them. This modifi er can narrow the accessibility scope of the
corresponding accessor, but never widen it.

 For example, the following declaration allows reading the MyValue property for everyone, but only
derived classes can change it:

public int MyValue
{
 get { return _MyValue; }
 protected set { _MyValue = value; }
}

C# 2.0 ❘ 1055

CH023.indd 1055CH023.indd 1055 9/6/10 6:50:04 PM9/6/10 6:50:04 PM

1056 ❘ CHAPTER 23 HISTORY OF C#

 Null - Coalesce Operator

 A minor (but nice) feature of C# 2.0 was the null - coalesce operator that helps in the substitution
of the null value with appropriate replacement. You no longer had to write something like the
following:

string name = nameSpecified == null ? “Type a name” : nameSpecified;

Instead, you can use the ?? null - coalesce operator as a shortcut for that expression, as shown here:

string name = nameSpecified ?? “Type a name”;

 Namespace Aliases

 C# 2.0 introduced the namespace alias qualifi er (::) that provides more control over accessing
namespace members. The global :: alias allows access to the root namespace that may be hidden
by an entity in your code.

 This operator can help you a lot in name and type resolution when you have exactly the same full
names for different types in separate assemblies. Let ’ s assume that you have two assemblies from
two vendors where a nice label control is named as Controls.NiceLabel in both assemblies.
The namespace alias qualifi er helps to resolve this situation. You can use separate aliases for the
assemblies, as shown here:

extern alias AcmeGadgets; // --- Alias for the assembly made by AcmeGadgets
extern alias SuperControls; // --- Alias for the assembly provided by SuperControls

 When it is time to resolve the controls, you can use the namespace qualifi er, as shown here:

AcmeGadgets::Controls.NiceLabel
SuperControls::Controls.NiceLabel

 C# 3.0

 C# 3.0 probably added the most exciting features to the language. This version added a functional
approach to the language in order to allow programmers create data - processing operations where
they express what they want to get, instead of expressing how they want to obtain the results.

 The pivotal feature of this version is defi nitely the support of LINQ via the query expressions that
became very popular because of their readability and expressiveness. To achieve that strength, the
following other “ syntax noise - reduction ” features were put into the language, which have proven
useful even if you grab them out of the context of query expressions:

 Local variable type inference

 Extension methods

 Anonymous types

➤

➤

➤

CH023.indd 1056CH023.indd 1056 9/6/10 6:50:04 PM9/6/10 6:50:04 PM

 Lambda expressions

 Query expressions

 Expression trees

 Automatic properties

 Object initializers

 Collection initializers

 Partial methods

 Let ’ s take a look at some the details of these features.

 Local Variable Type Inference

 There are a few points in the C# language where you could say the syntax is “ noisy ” — developers
have to type many characters to express their intention. For example, when you want to declare a
local variable for a dictionary and immediately initialize it, you do it with some code similar to the
following:

Dictionary < int, string > myCodeTable = new Dictionary < int, string > ();

In this defi nition, writing the Dictionary < int, string > expression twice is what you could call
 syntax noise .

 The local variable type inference feature introduces the var context - sensitive keyword that reduces
this noise, as shown here:

var myCodeTable = new Dictionary < int, string > ();

 The var keyword can be used only for local variable declarations where the variable has an
initialize expression. It is used as an “ abbreviation, ” and the compiler will generate exactly the
same code as if you explicitly declared the myCodeTable variable as Dictionary < int, string > .
When you declare a local variable with var , you actually tell the compiler, “ Please parse the
expression to the right of the equal sign and infer its type. I want my local variable declared with
the type you ’ ve inferred. ”

 You can use this type of implicitly typed local variable declaration in for , foreach , and using
statements, as well.

 Extension Methods

 Developers often write wrapper methods for objects that, in reality, could be the parts of the object
itself. A good example is a method to check whether or not all characters in a string are in uppercase.
This declaration can be put into a static helper class, just like in the following code extract:

public static class StringHelper
{
 public static bool IsAllUpper(string s) { ... }
}

➤

➤

➤

➤

➤

➤

➤

C# 3.0 ❘ 1057

CH023.indd 1057CH023.indd 1057 9/6/10 6:50:05 PM9/6/10 6:50:05 PM

1058 ❘ CHAPTER 23 HISTORY OF C#

 When using this helper class, you write code something like this:

string myString = ... ;
bool isUpper = StringHelper.IsAllUpper(myString);

 Extension methods provide a way to implement the same pattern and use it with a nicer, and more
readable, syntax. An extension method is a static method in a static class that accepts its fi rst
parameter (and maybe the only one) on its parameter list, signing it with the this keyword, just like
in the following example:

public static class StringHelper
{
 public static bool IsAllUpper(this string s) { ... }
}

 The type accepted in the fi rst parameter is the type this method virtually extends. This “ extension ”
means that this static method can be syntactically used as if it were the instance method of the type
it extends:

string myString = ... ;
bool isUpper = myString.IsAllUpper();

 In order for the compiler to recognize extension methods, you must import the namespaces
containing the extender class.

 Anonymous Types

 One of the most convenient features of C# 3.0 is the capability to create new types “ on - the - fl y ”
using anonymous types . These are essentially compiler - generated types that you don ’ t explicitly
declare with a separate type declaration. Instead, you defi ne the type inline as part of the code
where you need to use the new type.

 The syntax to declare an anonymous type looks something like this:

var customer = new
{
 ID = 112,
 Name = “John Doe”,
 IsKeyAcount = true
};

 Of course, there is no magic here. The compiler creates a real type behind the scenes, but does not
expose its name to you. Because of the local variable type inference, you can declare variables for
the anonymous type instance without the need to name the type explicitly, as shown here:

var myCustomer = customer;
customer.IsKeyAccount = false;

 Anonymous types have a signature composed from the names and types of properties they have.
When you declare several anonymous types having the same signature, they will share a common
type declaration, because the compiler recognizes this scenario and creates optimized code.

CH023.indd 1058CH023.indd 1058 9/6/10 6:50:05 PM9/6/10 6:50:05 PM

 Lambda Expressions

 Lambda expressions provide a new and concise syntax to describe an anonymous function that
can contain expressions and statements, and can be used to create delegates or expression tree
types. Lambda expressions use the lambda operator = > , which is read as “ goes to. ” The left side of
the lambda operator specifi es the input parameters (if any), and the right side holds the expression
or statement block. The lambda expression x = > x * x is read “ x goes to x times x. ”

 With C# 2.0, you could create anonymous methods to avoid the need for a separate method
declaration. In C# 1.0, you should have used explicit delegates like this:

class Program
{
 delegate double BinaryOperation(double op1, double op2);

 static void Main(string[] args)
 {
 double op1 = 12.3;
 double op2 = 23.4;
 BinaryOperation operation = MyOperation;
 double result = operation(op1, op2);
 }

 static double MyOperation(double op1, double op2)
 {
 return (op1 + op2) / op2;
 }
}

 With C# 2.0 anonymous methods, this gets easier because there is no need for writing the
 MyOperation method explicitly:

static void Main(string[] args)
{
 double op1 = 12.3;
 double op2 = 23.4;
 BinaryOperation operation = delegate(double x, double y) { return (x + y) / y; };
 double result = operation(op1, op2);
}

 Lambda expressions provide more concise syntax and type inference so that the operation delegate
can even be described in a more straightforward way:

static void Main(string[] args)
{
 double op1 = 12.3;
 double op2 = 23.4;
 BinaryOperation operation = (x, y) = > (x + y) / y;
 double result = operation(op1, op2);
}

C# 3.0 ❘ 1059

CH023.indd 1059CH023.indd 1059 9/6/10 6:50:05 PM9/6/10 6:50:05 PM

1060 ❘ CHAPTER 23 HISTORY OF C#

 Lambda expressions can contain statements as well and can refer to outer variables, just like in the
following example:

double op1 = 12.3;
double op2 = 23.4;
double factor = 45.6;
BinaryOperation operation = (x, y) = >
 {
 Console.WriteLine(factor);
 return factor * (x + y) / y;
 };
double result = operation(op1, op2);

 Query Expressions

 Query expressions provide the “ language - integrated ” experience of LINQ, because they provide
syntax similar to SQL to describe a query. A query expression begins with a from clause and ends
with a select or group clause. Other valid clauses for the middle of the expression include from ,
 let , where , join , and orderby .

 Let ’ s take a look at an example:

string[] fruits = { “Apple”, “Peach”, “Orange”, “Banana”, “Lemon”, “Pear”,
 “Grapefruit”, “Watermelon”, “Plum” };

var filteredFruits =
 from fruit in fruits
 where fruit.StartsWith(“P”) & & fruit.Length < 20
 orderby fruit
 select fruit;

 The strength of this notation is that it describes the intention of what you would like to get as a
result, instead of defi ning how you want to obtain that.

 The C# compiler translates a query expression into method invocations. For example, the where
clause will translate into a call to a Where method, the orderby clause will translate into a call to
an OrderBy method, and so on. These methods must be extension methods or instance methods on
the type being queried. So, in the preceding example, the type representing fruits must have this
characteristic. The method (not the compiler) will determine how to execute the query at run - time.
The compiler would transform the previous query expression into the following:

var filteredFruits =
 fruits.Where(f = > f.StartsWith(“P”) & & f.Length < 20)
 .OrderBy(f = > f)
 .Select(f = > f);

 The lambda expressions in this query are simple, like f = > f in the arguments of OrderBy and
 Select methods.

 Behind the scenes, the C# compiler is performing a translation of the query expression and looking
for matching methods to invoke. This means that the compiler will use the IEnumerable < T > or
 IQueryable < T > extension methods, when available. When importing the System.Linq namespace

CH023.indd 1060CH023.indd 1060 9/6/10 6:50:06 PM9/6/10 6:50:06 PM

with a using clause, the compiler would fi nd appropriate extension methods for Select and
 OrderBy . You could also leave out the System.Linq namespace and write your own extension
methods to replace the standard LINQ implementations completely.

 This kind of extensibility of query expressions makes LINQ a very powerful feature that enables the
shift from an imperative data - processing model to the declarative one.

 Expression Trees

 LINQ expressions can run against objects sitting in the memory, as well as against external
objects (for example, entities represented by a SQL Server database). Consider the following
simple LINQ query:

var q = from o in orders, c in customers
 where o.ShipCity == “London” & & (o.CustomerID == c.CustomerID)
 select new { o.OrderDate, c.CompanyName, c.ContactTitle, c.ContactName };

 When the customers collection in this query represents a simple memory object, the query runs
again this object. However, when customers collection represents a LINQ provider (that is, it
implements the IQueryable < T > , where T is the type of the data in customers), something very
different happens.

 Instead of compiling instructions in the sample query to execute, the compiler creates code to prepare
an expression tree representing the query. The code that is compiled is passing this expression tree
to the LINQ provider implemented by the customers object (through the IQueryable < T > interface).
The provider can analyze this expression tree, and execute the query accordingly.

 For example, if customers represents a Table < Customer > object that implements the
 IQueriable < Customer > interface, the related LINQ provider creates a SQL query string and runs it
on the appropriate SQL Server database. For the preceding query, the SQL query string generated by
the provider looks something like this:

exec sp_executesql N’SELECT [t1].[CompanyName], [t1].[ContactName],
[t1].[ContactTitle], [t0].[OrderDate]
FROM [Orders] AS [t0], [Customers] AS [t1]
WHERE ([t0].[ShipCity] = @p0) AND ([t0].[CustomerID] = [t1].[CustomerID])’,
N’@p0 nvarchar(6)’, @p0 = N’London’

 By using the Expression < T > class, you can direct the compiler to create an expression tree from a
lambda expression. Consider the following example:

Expression < Func < int,int > > expression = x = > x + 12;

 The expression variable is a tree that can be manipulated, or, after the manipulation, it can be
compiled and evaluated:

var value = expression.Compile().Invoke(42);

 This discussion does not dive any deeper into this topic because several books dealing with LINQ
explain it in more depth.

C# 3.0 ❘ 1061

CH023.indd 1061CH023.indd 1061 9/6/10 6:50:06 PM9/6/10 6:50:06 PM

1062 ❘ CHAPTER 23 HISTORY OF C#

 Automatic Properties

 Automatic properties are shortcuts to defi ne properties that use simple backing fi elds with the
trivial get and set accessors. For example, the following backing fi eld and property declaration can
be changed to automatic properties:

// --- Backing field
private string _Name;

// --- Property using the backing field
public string Name
{
 get { return _Name; }
 set { _Name = value; }
}

 With automatic properties, that same snippet can be written much more briefl y as follows:

public string Name { get; set; }

 You must provide both the get and set accessors in the defi nition. If you want to narrow the scope
(for example, if you intend to declare a read - only property), then you must use access modifi ers. For
example, the following property declaration allows read - only access from external entities:

public string Name { get; private set; }

 Behind the scenes, automatic properties use backing fi elds, but per the C# language specifi cation,
these cannot be accessed from the code directly.

 Object Initializers

 Types within the .NET Framework rely heavily on the use of properties. When instantiating and
using new classes, it is very common to write code like this:

public class Customer
{
 int ID { get; set; }
 string Name { get; set; }
 bool IsKeyAccount { get; set; }
}
// ...
Customer customer = new Customer();
customer.ID = 112;
customer.Name = “John Doe”;
customer.IsKeyAccount = true;

 Object initializers allow you to rewrite the preceding code with exactly the same semantics but with
a shorter and more expressive syntax:

customer = new Customer { ID=112, Name=”John Doe”, IsKeyAccount=true };

CH023.indd 1062CH023.indd 1062 9/6/10 6:50:06 PM9/6/10 6:50:06 PM

 Collection Intializers

 Similar to object initialization, it is very common to set up collections like this:

List < Customer > custList = new List < Customer > ();
custList.Add(new Customer { ID=112, Name=”John Doe”, IsKeyAccount=true });
custList.Add(new Customer { ID=113, Name=”Jane Doe”, IsKeyAccount=true });
custList.Add(new Customer { ID=114, Name=”G.I Joe”, IsKeyAccount=false });

 Collection initializers allow you to reduce the related syntax noise, as shown here:

var custList = new List < Customer >
{
 new Customer { ID=112, Name=”John Doe”, IsKeyAccount=true },
 new Customer { ID=113, Name=”Jane Doe”, IsKeyAccount=true },
 new Customer { ID=114, Name=”G.I Joe”, IsKeyAccount=false }
};

 Under the hood, the compiler generates initialization code in a similar way as is used with the Add
methods to append the elements to the collection.

 Partial Methods

 C# 2.0 introduced partial classes to help resolve code - generation issues stemming from the fact
that C# types should have been entirely in the same source fi le before.

 Partial methods live in partial types, and have two parts: a declaration and an implementation. These
are generally in separate partitions — and so in separate fi les. If the compiler fi nds only the declaration
part, but no implementation, no method call code will be generated for the partial method.

 This improves the performance because you are not loading/creating unwanted methods. Here is an
example:

// --- Collection.cs: This is the class that would normally be autogenerated.
public partial class CustomTypedCollection
{
 partial void BeforeAddingElement(CustomElement element);

 public void AddElement(CustomElement element)
 {
 BeforeAddingElement();
 }
}

// --- Customization.cs: This part is the one added by developers as customization
public partial class CustomTypedCollection
{
 partial void BeforeAddingElement(CustomElement element)
 {
 Console.WriteLine(“Element “ + element + “ is being added.”);
 }
}

C# 3.0 ❘ 1063

CH023.indd 1063CH023.indd 1063 9/6/10 6:50:07 PM9/6/10 6:50:07 PM

1064 ❘ CHAPTER 23 HISTORY OF C#

 The partial method cannot be seen from outside:

class Program
{
 static void Main(string[] args)
 {
 CustomTypedCollection c = new CustomTypedCollection();
 c.AddElement(new CustomElement());
 }
}

 If the Customization.cs fi le did not contain an implementation part for the BeforeAddingElement
partial method, no code would be compiled for this method call in Collection.cs .

 Of course, partial methods have a few restrictions. For example, they must return void , and are
not allowed to have out or ref parameters, nor can they have access modifi ers, and they cannot
be virtual .

 SUMMARY

 Currently a multi - paradigm programming language, C# began life with version 1.0 in 2002 as
a general - purpose, object - oriented language. The development team of the C# language was led
by Anders Hejlsberg. The language name was inspired from the musical notation where a sharp
indicates that the note should be made a half step higher in pitch.

 The language evolved in parallel with the .NET Framework as the “ native ” programming language
of the framework ’ s class libraries. New features and changes in the CLR and in the framework ’ s
class libraries inspired the language that turned into a real multi - paradigm language supporting not
only the original object - oriented programming (OOP) principles, but also declarative, functional,
and (with C# 4.0) the dynamic paradigm.

 Chapter 24 will familiarize you with the new improvements to the C# language, such as dynamic
lookup, named and optional parameters, the new COM - specifi c features, and variance.

CH023.indd 1064CH023.indd 1064 9/6/10 6:50:07 PM9/6/10 6:50:07 PM

 C# 4.0 Language Improvements

 In Chapter 23, you learned about how C# evolved from a general - purpose, object - oriented
programming (OOP) language to a multi - paradigm language. After its fi rst release in 2002
(C# 1.0), the language matured amazingly. Version 2.0 added support for generic types and
got great performance - boosting features such as iterators with the yield - construct, delegate
inference, covariance and contravariance, and nullable types.

 C# 3.0 gained a huge spin with the introduction of query expressions that allowed
encapsulating LINQ technology into the language. This feature enabled the shift from the
imperative data - processing model to the declarative one. In addition, many other “ syntax
noise - reduction ” features were put into C# 3.0 to achieve the intended declarative strength.

 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “ dynamic ”
in the sense that their structure and behavior is not captured by a static type or, at least,
not one that the compiler knows about when compiling your program. While C# remains
a statically typed language, the Managed Languages Team targeted vastly improved
interaction with the following:

 Objects from other programming languages, such as Python or Ruby

 Component Object Model (COM) objects accessed through the IDispatch interface

 Objects with dynamically changing structure, such the ones in HTML Document
Object Model (DOM)

 Ordinary .NET types accessed through refl ection

 After reading this chapter, you will be familiar with the following improvements introduced
with C# version 4.0:

 Dynamic lookup — You can write method, operator, and indexer calls; property
and fi eld accesses; and object invocations that bypass the C# compile - time static type

➤

➤

➤

➤

➤

24

CH024.indd 1065CH024.indd 1065 9/6/10 6:53:10 PM9/6/10 6:53:10 PM

1066 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

checking. Instead, these invocations will get resolved at run - time with the help of Dynamic
Language Run - time (DLR).

 Named and optional parameters — Parameters in C# can be specifi ed as optional, and, in
member invocations, optional arguments can be omitted. Furthermore, any argument can
be passed by parameter name.

 COM - specifi c interoperability features — The language designers added a number of
small features that, combined with the strength of dynamic lookup, further improved the
programmer ’ s interoperability experience.

 Variance — .NET developers used to be constrained by the fact that an
 IEnumerable < object > could not be substituted with an IEnumerable < object > .
Now, this substitution can be done! C# embraces type - safe covariance and
contravariance. The common Base Class Library types (primarily generic collection
interfaces) also have been updated to support this behavior.

 Before diving into the details of these topics, let ’ s take a look at a short example demonstrating
issues that were not previously addressed properly in C#, but have been adequately handled in
version 4.0.

 PAINS WITH INTEROPERABILITY

 Before Visual Studio 2010 and .NET 4, using COM object hierarchies in C# were much more
cumbersome than in Visual Basic or in macros. To demonstrate those annoying details that
prevented C# from being coequal with Visual Basic in the COM interoperability fi eld, let ’ s
build a simple application using Microsoft Excel and Word. The application displays the top
ten processes by means of memory usage, creates an Excel chart, and inserts it into a Word
document.

 In this example, you will create two versions of this application. First, you ’ ll use the programming
style you would use with Visual Studio 2008 and C# 3.0, and then you will create it again with
C# 4.0 syntax. Comparing the source code between the two, you ’ ll be able to see the marvelous
improvements C# 4.0 offers. You do not have to install Visual Studio 2008 on your machine,
because you can produce both applications with Visual Studio 2010.

 Creating the PainWithOffi ce Application

 Start Visual Studio 2010, create a new Console Application project, and name it PainWithOffice .
Be sure that the target framework is .NET Framework 4, as shown in Figure 24 - 1; otherwise, the
application will not run properly.

➤

➤

➤

CH024.indd 1066CH024.indd 1066 9/6/10 6:53:13 PM9/6/10 6:53:13 PM

 Add the following two assembly references to the project with the Add Reference dialog:

 Microsoft.Office.Interop.Excel

 Microsoft.Office.Interop.Word

 Change the content of Program.cs fi le, as shown in Listing 24 - 1.

 LISTING 24 - 1: Program.cs

using System;
using System.Linq;
using System.Diagnostics;
using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

namespace PainWithOffice
{
 class Program
 {
 static void Main(string[] args)
 {
 var excel = new Excel.Application();
 excel.Visible = true;
 excel.Workbooks.Add(Type.Missing);
 ((Excel.Range)excel.Cells[1, 1]).Value2 = “Process Name”;

➤

➤

 FIGURE 24 - 1: Create the PainWithOffi ce project for .NET Framework 4

Pains with Interoperability ❘ 1067

continues

CH024.indd 1067CH024.indd 1067 9/6/10 6:53:14 PM9/6/10 6:53:14 PM

1068 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

LISTING 24-1 (continued)

 ((Excel.Range)excel.Cells[1, 2]).Value2 = “Memory Usage”;

 var processes = Process.GetProcesses()
 .OrderByDescending(p = > p.WorkingSet64)
 .Take(10);
 int i = 2;
 foreach (var p in processes)
 {
 ((Excel.Range)excel.Cells[i, 1]).Value2 = p.ProcessName;
 ((Excel.Range)excel.Cells[i, 2]).Value2 = p.WorkingSet64;
 i++;
 }

 Excel.Range range = (Excel.Range)excel.Cells[1, 1];
 Excel.Chart chart = (Excel.Chart)excel.ActiveWorkbook.Charts.Add(
 Type.Missing, // --- Before
 excel.ActiveSheet, // --- After
 Type.Missing, // --- Count
 Type.Missing); // --- Type
 chart.ChartWizard(
 range.CurrentRegion, // --- Source
 Type.Missing, // --- Gallery
 Type.Missing, // --- Format
 Type.Missing, // --- PlotBy
 Type.Missing, // --- CategoryLabels
 Type.Missing, // --- SeriesLabels
 Type.Missing, // --- HasLegend
 “Memory Usage in “ + Environment.MachineName,
 // --- Title
 Type.Missing, // --- CategoryTitle
 Type.Missing, // --- ValueTitle
 Type.Missing); // --- ObjectTitle
 chart.ChartType = Excel.XlChartType.xl3DColumn;
 chart.CopyPicture(Excel.XlPictureAppearance.xlScreen,
 Excel.XlCopyPictureFormat.xlBitmap,
 Excel.XlPictureAppearance.xlScreen);

 var word = new Word.Application();
 word.Visible = true;
 object template = Type.Missing;
 object newTemplate = Type.Missing;
 object docType = Type.Missing;
 object visible = Type.Missing;
 word.Documents.Add(
 ref template,
 ref newTemplate,
 ref docType,
 ref visible);
 word.Selection.Paste();
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

CH024.indd 1068CH024.indd 1068 9/6/10 6:53:14 PM9/6/10 6:53:14 PM

 This program is really simple, even if it takes about 70 lines. The Main method creates an Excel
sheet and sets up a two - column table with process name and memory usage. With the LINQ query
on Process.GetProcesses , it obtains the top ten processes by means of memory consumption.
The method puts the process information into the Excel table, then creates a nice three - dimensional
column chart with the Charts.Add method, and copies it to the clipboard. Finally, the code creates
a new Word document and pastes the chart into the document body.

 At this point, you are ready to build and run this application by pressing Ctrl+F5. You will see Excel
and Word fl ickering for a few seconds, and then Word shows you the result that resembles the chart
in Figure 24 - 2.

 FIGURE 24 - 2: The application displays the chart in Microsoft Offi ce

 Frustrating Issues

 Although the previous code above seems simple and brief compared to the value it provides, it is full
of syntax noise. If you happened to create the application in Visual Basic, it would be shorter and
free from this noise.

 The fi rst and most eye - catching thing is that the code heavily uses the Type.Missing instances.
Those are there as placeholders for optional parameters of COM methods. In this short code,
you can count 17 occurrences of them, meaning 204 unnecessary characters altogether. The

Pains with Interoperability ❘ 1069

CH024.indd 1069CH024.indd 1069 9/6/10 6:53:15 PM9/6/10 6:53:15 PM

1070 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

invocation of ChartWizard method contains 11 parameters, where only 2 of them use non - default
values. Here you must pass nine Type.Missing instances to make your code compile.

 Another annoying code snippet is where you set the values of Excel cells, as shown here:

((Excel.Range)excel.Cells[i, 1]).Value2 = p.ProcessName;
((Excel.Range)excel.Cells[i, 2]).Value2 = p.WorkingSet64;

 Should this simple operation be so “ noisy ” ? First, you must convert the object behind the cells to
an Excel.Range instance, and then set its value through the Value2 property. If you have never
used Excel from C# before, it may take a little time before you get acquainted with this style. It can
be called anything but “ intuitive. ”

 Have a look at the code where the Document.Add method is called. The four parameters it accepts
must be passed to as ref .

object template = Type.Missing;
object newTemplate = Type.Missing;
object docType = Type.Missing;
object visible = Type.Missing;
word.Documents.Add(
 ref template,
 ref newTemplate,
 ref docType,
 ref visible);

 This is not because the invoked method is about to modify them. (Type.Missing is immutable.) The
 Add method was implemented in this way, and your only choice is to use it as is. In order to call this
method, you must create four temporary variables of type System.Object and assign Type.Missing
to them. The whole effort is about being able to pass parameters by reference.

 Remove the Pain

 The Managed Language Team has found the remedy for these frustrating issues. The solution is
now part of the C# 4.0 language specifi cation and is composed from several features that will be
explained in detail later in this chapter.

 Create a new console application and name it PaneWithOfficeRemoved . Change the Program.cs
fi le in the project to the one shown in Listing 24 - 2. Build and run the project.

 LISTING 24 - 2: Syntax noise removed from Program.cs

using System;
using System.Linq;
using System.Diagnostics;
using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

namespace PainWithOfficeRemoved

CH024.indd 1070CH024.indd 1070 9/6/10 6:53:15 PM9/6/10 6:53:15 PM

{
 class Program
 {
 static void Main(string[] args)
 {
 var excel = new Excel.Application();
 excel.Visible = true;
 excel.Workbooks.Add();
 excel.Cells[1, 1].Value = “Process Name”;
 excel.Cells[1, 2].Value = “Memory Usage”;

 var processes = Process.GetProcesses()
 .OrderByDescending(p = > p.WorkingSet64)
 .Take(10);
 int i = 2;
 foreach (var p in processes)
 {
 excel.Cells[i, 1].Value = p.ProcessName;
 excel.Cells[i, 2].Value = p.WorkingSet64;
 i++;
 }

 var range = excel.Cells[1, 1];
 var chart = excel.ActiveWorkbook.Charts.Add(After: excel.ActiveSheet);
 chart.ChartWizard(
 Source: range.CurrentRegion,
 Title: “Memory Usage in “ + Environment.MachineName);
 chart.ChartType = Excel.XlChartType.xl3DColumn;
 chart.CopyPicture(Excel.XlPictureAppearance.xlScreen,
 Excel.XlCopyPictureFormat.xlBitmap,
 Excel.XlPictureAppearance.xlScreen);

 var word = new Word.Application();
 word.Visible = true;
 word.Documents.Add();
 word.Selection.Paste();
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 As you can see, it works exactly like the one in Listing 24 - 1. However, this one is free from the
annoying syntax noise.

 From Listing 24 - 2 you can immediately recognize that there are no Type.Missing instances at all!
Writing values to the Excel cells works as you expect. Look at the Charts.Add and ChartWizard
methods. You can see that arguments are passed with parameter names. In Listing 24 - 2, no
explicitly typed variable declarations are used.

 Now, let ’ s look behind the scenes, and examine the improvements that make this simplifi cation
possible.

Pains with Interoperability ❘ 1071

CH024.indd 1071CH024.indd 1071 9/6/10 6:53:16 PM9/6/10 6:53:16 PM

1072 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 DYNAMIC LOOKUP

 C# developers are familiar with the fact that types and operations are strictly checked during the
compilation process. The compiler generates Microsoft Intermediate Language (MSIL) code that
explicitly carries out those operations by invoking methods. The good side of this approach is the
thorough checks that increase operation safety; the bad side is its rigidity.

 There is another galaxy in the universe of programming languages: dynamic languages . The
compiler makes only a few checks over types and their operations; the majority of them are
postponed to the execution of the corresponding operation at run - time.

 In addition to the dynamic languages, there are script languages and object models (for example,
COM objects over the Microsoft Offi ce functionality, the DTE object model in Visual Studio, the
HTML DOM in Internet Explorer, and so on) that also check operations at run - time.

 In this complex world, these tools and languages should interoperate so that they could provide
boosted developer performance. Scripting tools and languages such as JScript, PowerShell, and
many others, as well as dynamic languages such as Python or Ruby, are very popular today. They
provide a unifi ed approach to objects, and they operate independently of where they are coming
from, and how they are working behind the scenes. These tools focus on the most important thing:
providing the simplest and most intuitive way to use the object ’ s exploited functionality.

 For a long time, C# could not compete with the fl exibility of these languages and tools. But that is
no longer the case.

 Dynamic Binding

 The new version of C# provides dynamic binding as a unifi ed approach to selecting and carrying
out operations dynamically. Operations can be uniformly applied on various objects independently
of whether a specifi c object comes from COM (through interoperability), IronRuby, IronPython,
the HTML DOM, or from any other dynamic context. The run - time takes this responsibility away
from developers, and it will determine what a given operation means for a particular object.

 This approach can greatly simplify your code (just compare the Main methods in Listing 24 - 1 and
Listing 24 - 2), and affords you huge fl exibility. However, the compiler assumes these dynamic objects
support any operation, and this behavior has two drawbacks:

 It will turn out only at run - time if a specifi c object does not support a certain operation,
and you will get an error. Contrast this to static typing, where the compiler gives an error
message.

 Run - time checks incur a kind of performance penalty.

 In many cases, these drawbacks do not come with any loss, because the objects providing the
operations would not have a static type anyway. Of course, there are cases where a tradeoff
should be made between safety and brevity. If brevity is important, safety can be strengthened by
appropriate software development procedures (such as unit testing and code review).

 Dynamic binding is implemented in C# 4.0 as an explicit mechanism where you can opt in or opt
out whether you want to utilize this behavior. When you port your known and running C# 3.0 code

➤

➤

CH024.indd 1072CH024.indd 1072 9/6/10 6:53:16 PM9/6/10 6:53:16 PM

to C# 4.0, it will not change its behavior implicitly. The compiler will make the same strong type
and operation checks as before.

 The dynamic Type

 The key to dynamic binding is a new static type introduced in C# 4.0 called dynamic . (That sounds
funny — a static type that is dynamic — doesn ’ t it?) When you have an object of type dynamic , you
can ask it to do many things. The compiler will only check a few things by means of syntax and
basic semantics, and let the run - time resolve operations. Here is a two - line sample:

dynamic dyn = GetDynamicObject(...);
dyn.DoSomething(“C# 4.0 Rocks!”, 42);

 Assume the GetDynamicObject method retrieves an object of type dynamic . It is stored in dyn . The
compiler analyzes the second line during compilation and creates code that can be described like this:

 “ Ask the run - time to call an operation named DoSomething with a string as its fi rst argument,
and an int as its second one. When the run - time recognizes this operation, call it with ‘ C# 4.0
Rocks! ’ and 42 as the actual parameters of the DoSomething . ”

 At run - time, the actual object that dyn refers to will be examined to determine what it means to
 “ call DoSomething with a string and an int , ” and if the dyn object knows how to handle the call,
it executes it with the actual parameters passed to it.

 The dynamic type can be thought of as a special version of the System.Object type, which signals
that the object can be used dynamically.

 It is easy to opt in or out of dynamic behavior — any object can be implicitly converted to
 dynamic , “ suspending belief ” until run - time. Listing 24 - 3 illustrates this with the dynamic form
of “ Hello, world. ”

 LISTING 24 - 3: Program.cs fi le of HelloWorldDynamic

using System;

namespace HelloWorldDynamic
{
 class Program
 {
 static void Main(string[] args)
 {
 dynamic dyn = Console.Out;
 dyn.WriteLine(“Hello, {0} from dynamic console”, “world”);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

Dynamic Lookup ❘ 1073

CH024.indd 1073CH024.indd 1073 9/6/10 6:53:16 PM9/6/10 6:53:16 PM

1074 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 The run - time recognizes that dyn is an instance of TextWriter (this is the type of Console.Out) and
tries to call the WriteLine method (utilizing .NET refl ection) with the specifi ed set of parameters.
You can build and run this simple program, and it will work. Now, let ’ s say that you change the
 WriteLine call to this:

dyn.WLine(“Hello, {0} from dynamic console”, “world”);

The code still compiles, but raises a RuntimeBinderException , indicating a TextWriter instance
does not support WLine operation.

 Just as any object can be converted to dynamic , the compiler allows implicit conversion of dynamic
expressions to any type:

dynamic dyn = 34 * 23 * 12;
int value = dyn;
Console.WriteLine(value);

 While there is an implicit conversion from the type behind dyn to int (in this case, there is), the
conversion will succeed at run - time. Otherwise (for example, try to use string instead of int), you
get a RuntimeBinderException with a message describing what the issue was.

 Dynamic Operations

 You can use the instances of dynamic type with a number of operations. Assuming that the variable
 dyn has a type of dynamic , you can execute all the operations summarized in Table 24 - 1.

 TABLE 24 - 1: Operations with a dynamic instance

 OPERATION SAMPLE

 Method call dyn.SayHello(“ to have a good buy “);

 Method call with passing arguments by name

 dyn.RunQuery(table: “ customer ” ,

 filter: “ City==’London’ ”);

 Getting fi eld, property, and indexer values

 int size = dyn.Count;

 string value = dyn.Cells[1, 1];

 Setting fi eld, property, and indexer values

 dyn.QuerySource = “ customer ” ;

 dyn.Filters[0] = “ City==’London’ ” ;

 Calling operators int increasedSize = dyn + 1024;

 Invoking as a delegate var opResult = dyn(“ GetPage ” , 10);

 Selecting constructors new MyType myType = new MyType(dyn);

CH024.indd 1074CH024.indd 1074 9/6/10 6:53:17 PM9/6/10 6:53:17 PM

 The C# compiler checks the syntax and decides what kind of operation is to be carried out with
 dyn . According to the type of the operation, it packages the necessary information so that the run -
 time can pick it up and determine what the exact meaning of it is, given an actual object referenced
by dyn . The result of most dynamic operations is itself of type dynamic ; the exceptions are implicit
or explicit conversion, and constructor call. These operations have a natural static type.

 Dynamic Dispatch

 At run - time, a dynamic operation is dispatched to the target object dyn with the following steps:

 1. If dyn is a COM object, the operation is dispatched dynamically through COM IDispatch
interface. This allows calling to COM types that don ’ t have a Primary Interoperability
Assembly (PIA), and relying on COM features that don ’ t have a counterpart in C # (such as
indexed properties and default properties).

 2. If dyn implements the interface of the System.Dynamic namespace, dyn itself is asked to perform
the operation. (Of course, the run - time uses IDynamicMetaObjectProvider to do that.)

 3. Otherwise, dyn is a standard .NET object, and the operation will be dispatched using
refl ection on its type, and a C# “ run - time binder ” that implements C# ’ s lookup and
overload resolution semantics at run - time. (Run - time binders are explored in more detail
later in this chapter in the section, “ Dynamic Language Run - time. ”)

 The IDynamicMetaObjectProvider type is a great way to completely redefi ne the meaning of
dynamic operations, and so is an extensibility point to defi ne a custom run - time binder to resolve
any kind of dynamic type operations.

 This is used intensively by dynamic languages such as IronPython and IronRuby to implement
their own dynamic object models. It is also used by APIs (such as the HTML DOM) to allow direct
access to the object ’ s properties using C# property syntax.

 Compile Time Semantics

 It seems the compiler has an easy job to make a decision on which operations to compile with static
binding and which ones with dynamic binding. For example, you may think what the compiler does
with the following code snippet is trivial:

dynamic someValue = DateTime.Now;
Console.WriteLine(someValue.Ticks);

 You probably think the compiler works like this:

 1. DateTime.Now is put into a dynamic object.

 2. The property or fi eld Ticks is resolved with dynamic binding.

 3. Console.WriteLine is invoked with static (compile - time) binding.

 Yes, it was easy. But, it would be a wrong solution if it worked this way! Why? Look at the
following method call where str is a string and dyn is a dynamic variable:

Console.WriteLine(str, dyn);

Dynamic Lookup ❘ 1075

CH024.indd 1075CH024.indd 1075 9/6/10 6:53:17 PM9/6/10 6:53:17 PM

1076 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 The Console.WriteLine method has the following overloads that accept string as their fi rst
argument:

public void WriteLine(string);
public void WriteLine(string, object);
public void WriteLine(string, object, object);
public void WriteLine(string, object, object, object);
public void WriteLine(string, object, object, object, object);
public void WriteLine(string, object[]);

 If you assume the second version is used by the compiler making a static binding, you think
 “ statically. ” Look at the following two code snippets and you understand why this idea is wrong:

// --- Snippet #1
string str = “Value is {0}”;
dynamic dyn = 1234.5;
Console.WriteLine(str, dyn);

// --- Snippet #2
string str = “{0} > {1}”;
dynamic dyn = new object[] { 123, 12 };
Console.WriteLine(str, dyn);

 It cannot be decided at compile time which Console.WriteLine method to call. In the case
of Snippet #1 , WriteLine(string, object) is the appropriate one; for Snippet #2 , only
 WriteLine(string, object[]) works. Generally, dyn gets its value during run - time, so the only
thing the compiler can do is invoke Console.WriteLine with dynamic binding!

 So, the compiler uses dynamic binding for the following operations if any of the constituent
expressions is a dynamic expression:

 Member and element access

 Method, delegate, or constructor invocation

 Using overloaded operators (both unary and binary)

 Using compound assignment operators (such as += , - = , and so on)

 Implicit and explicit conversions

 Looking back at Table 24 - 1, you can see that the last row mentions “ selecting constructors. ” This
term comes from the fact that, for a constructor call with a dynamic parameter, the run - time selects
which constructor to call according to the type of the dynamic expression.

 System.Object and dynamic

 C# 4.0 defi nes dynamic as a new type, just like object, string, decimal, and so on. It means that
where a type name is expected by the C# language grammar, dynamic can be used. For example,
you can create methods using dynamic arguments and return a value, as shown here:

➤

➤

➤

➤

➤

CH024.indd 1076CH024.indd 1076 9/6/10 6:53:18 PM9/6/10 6:53:18 PM

public dynamic MyOperation(int a, dynamic arg)
{
 return a + arg;
}

 You can use them in types as members and also as constructor arguments, as shown here:

class MyClass
{
 dynamic _Arg;

 public MyClass(dynamic arg)
 {
 _Arg = arg;
 }
}

 Compared to C# 4.0, the .NET Framework ’ s Common Language Runtime (CLR) does not have
a separate intrinsic type for dynamic . Instead, the compiler uses System.Object everywhere,
and internally fl ags the variables as dynamic to use this information during compilation. This
implementation has a few consequences:

 As with System.Object , there is an implicit conversion from every type (other than pointer
types) to dynamic , and an explicit conversion from dynamic to every such type.

 If method signatures differ only by dynamic versus System.Object , they are considered to
be the same.

 The typeof(dynamic) == typeof(System.Object) expression is true.

 Although System.Object and dynamic are considered the same, the type inference algorithm
prefers dynamic over System.Object if both are candidates for a certain expression.

 The Dynamic Language Run - time

 An important component in the underlying implementation of dynamic lookup is the Dynamic
Language Runtime (DLR), which is a part of .NET Framework 4.0. DLR is a run - time environment
that adds a set of services for dynamic languages to the Common Language Run - time (CLR), and
makes it easier to develop dynamic languages to run on the .NET Framework, as well as to add
dynamic features to statically typed languages. DLR is built on the top of CLR, and uses run - time
binders to access the physical object model addressed by dynamic expressions.

 The DLR provides most of the infrastructure behind not only C# dynamic lookup, but also the
implementation of several dynamic programming languages on .NET (such as IronPython and
IronRuby). DLR provides an excellent caching mechanism (named Call Site Caching) that greatly
enhances the effi ciency of run - time dispatch. To the user of dynamic lookup in C#, the DLR is
invisible.

➤

➤

➤

Dynamic Lookup ❘ 1077

CH024.indd 1077CH024.indd 1077 9/6/10 6:53:18 PM9/6/10 6:53:18 PM

1078 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 Although C# is said to be the .NET programming language that is closest to the CLR, there are
some limitations when using dynamics:

 The DLR allows objects to be created from objects that represent classes. However, the
current implementation of C# doesn ’ t have syntax to support this.

 Lambda expressions are type - inferred by their nature, so the compiler uses the context of
them to infer what they mean. If lambdas appeared as arguments to a dynamic method
call, the compiler cannot decide what type the lambda expression is to be converted to. So,
lambdas are not allowed to appear as dynamic method call arguments.

 Dynamic lookup will not be able to fi nd extension methods. The dynamic lookup happens
at run - time, while extension methods are compile - time artifacts. Whether extension
methods apply or not (and which extension method, if there is more than one) depends on
the static context of the call (that is, which using clauses occur in the source fi le). This
context information is not kept in the compiled binaries, and so extension methods will not
be found by the DLR.

 NAMED AND OPTIONAL PARAMETERS

 Earlier, Listing 24 - 1 displayed some “ code horror ” in terms of using noisy and hard - to - read method
invocations, like this one:

chart.ChartWizard(
 range.CurrentRegion, // --- Source
 Type.Missing, // --- Gallery
 Type.Missing, // --- Format
 Type.Missing, // --- PlotBy
 Type.Missing, // --- CategoryLabels
 Type.Missing, // --- SeriesLabels
 Type.Missing, // --- HasLegend
 “Memory Usage in “ + Environment.MachineName, // --- Title
 Type.Missing, // --- CategoryTitle
 Type.Missing, // --- ValueTitle
 Type.Missing); // --- ObjectTitle

 End - of - line comments help you in guessing the role of arguments passed to the ChartWizard call,
but without them, you could hardly decrypt what the Type.Missing arguments stand for.

 Some APIs (most notably COM interfaces such as the Microsoft Offi ce and Visual Studio
automation APIs) are written specifi cally with named and optional parameters in mind. Up until
now, it has been very painful to call into these APIs from C#, with sometimes as many as 30
arguments having to be explicitly passed, most of which have reasonable default values and could
be omitted. With named and optional parameters introduced in C# 4.0, the preceding code looks
exactly as it should look from the beginning:

chart.ChartWizard(
 Source: range.CurrentRegion,
 Title: “Memory Usage in “ + Environment.MachineName);

➤

➤

➤

CH024.indd 1078CH024.indd 1078 9/6/10 6:53:18 PM9/6/10 6:53:18 PM

 Named and optional parameters are really two distinct features, but are often useful together.
Optional parameters allow you to omit arguments to member invocations, while named arguments
provide a way to utilize the name of the corresponding parameter, instead of relying on its position
in the parameter list.

 When you compare the two code snippets in Listing 24 - 1 and Listing 24 - 2 that invoke the
 ChartWizard method, you can see how powerful the combination of these new features is. Not
only does the code become noiseless, but also the intention of the developer is obvious from the
method invocation.

 Using Optional Parameters

 Do not think that COM automation object models are the only candidates for these two language
features! Even in APIs for .NET, you sometimes fi nd yourself compelled to write many overloads of
a method with different combinations of parameters in order to provide maximum usability to the
callers. Optional parameters are a useful alternative for these situations.

 Here is a sample to help you understand why:

public class MyClass
{
 public void DoTheWork(int taskID, string taskType, int timeOut,
 bool useMultipleCores)
 {
 // ...
 }

 public void DoTheWork(int taskID, string taskType, int timeOut)
 {
 DoTheWork(taskID, taskType, timeOut, false);
 }

 public void DoTheWork(int taskID, string taskType)
 {
 DoTheWork(taskID, taskType, 10000);
 }

 public void DoTheWork(int taskID)
 {
 DoTheWork(taskID, “Cleanup”);
 }
}

 Instead of writing four overloads for DoTheWork , you can create one method with optional
parameters. A method parameter is declared optional simply by providing a default value for it:

public void DoTheWork(int taskID,
 string taskType = “Cleanup”,
 int timeOut = 10000,
 bool useMultipleCores = false)
{
 // ...
}

Named and Optional Parameters ❘ 1079

CH024.indd 1079CH024.indd 1079 9/6/10 6:53:19 PM9/6/10 6:53:19 PM

1080 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 Here, the taskType , timeOut , and useMultipleCores parameters are all optional ones and can be
omitted in method invocations:

DoTheWork(123, “Processing”, 4000, true);
DoTheWork(124, “Removing files”, 6000);
DoTheWork(125, “Adding ID”);
DoTheWork(126);

 Rules for Using Optional Parameters

 C# 4.0 does not allow you to omit arguments between commas, so you cannot write something
like this:

DoTheWork(123, , , true);

 The designers of the language thought this could lead to highly unreadable comma - counting code —
and they are right. Instead of writing commas, use named arguments.

 There are a few rules for using required and optional parameters:

 Parameters with the ref or out modifi ers cannot have default values.

 A required parameter (one without a default value expression) cannot appear after an
optional parameter in the formal parameter list.

 The default values of optional parameters must be either constant expressions, or one of the
 new or the default operators with a value type. These can be resolved during compile time,
while other expressions cannot.

 Optional Parameters and Indexers

 Accessors of indexers are actually methods, so you can use optional parameters in getter and setter
methods of indexers. For example, you can defi ne a class implementing a sparse matrix as follows:

public class SparseMatrix < T >
{
 public struct SparseIndex
 {
 public int Row;
 public int Column;
 }

 Dictionary < SparseIndex, T > _Storage = new Dictionary < SparseIndex,T > ();

 public T this[int row = 0, int column = 0]
 {
 get
 {
 T result;
 return _Storage.TryGetValue(
 new SparseIndex { Row = row, Column = column },

➤

➤

➤

CH024.indd 1080CH024.indd 1080 9/6/10 6:53:19 PM9/6/10 6:53:19 PM

 out result) ? result : default(T);
 }
 set { _Storage[new SparseIndex { Row = row, Column = column }] = value; }
 }
}

 This matrix allows you to omit the column value from the indexer. For example, you could write the
following:

var matrix = new SparseMatrix();
// --- Initialize the matrix
Console.WriteLine(matrix[123]);

 Although you can even omit the row information, you cannot omit all the indexes altogether. The
following code would raise a syntax error:

Console.WriteLine(matrix[]); // --- This is not allowed

 If your index has only one parameter and you declare it as an optional one, the compiler will display
a warning. For example, you can have a SparseVector class similar to SparseArray with the
following indexer:

public T this[int row = 0]
{
 get
 {
 T result;
 return _Storage.TryGetValue(row, out result)
 ? result : default(T);
 }
 set { _Storage[row] = value; }
}

 Here row cannot be used as an optional parameter, because indexers cannot be used with zero
parameters; they must have at least one. The warning lets you revise your intention.

 Using Named Parameters

 In previous versions of C#, method, constructor, and indexer arguments could be passed only by
their position. C# 4.0 now allows passing arguments by names. The method invocation may contain
argument names that match with the name of the parameter in the method declaration. Use the
name of the parameter, followed by a colon, to signal that you want to pass those by names, and not
by position.

 For example, you can call the DoTheWork method declared with the following signature:

public void DoTheWork(int taskID,
 string taskType = “Cleanup”,
 int timeOut = 10000,
 bool useMultipleCores = false);

Named and Optional Parameters ❘ 1081

CH024.indd 1081CH024.indd 1081 9/6/10 6:53:19 PM9/6/10 6:53:19 PM

1082 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

You use these invocations to set only the taskID and useMultipleCores parameters:

DoTheWork(123, useMultipleCores: true);
DoTheWork(taskID: 123, useMultipleCores: true);

 As you can see, positional and named arguments can be mixed in the same call. However, no
positional arguments are allowed to be used after named arguments. In the following code snippet,
the second call will raise a compile time error:

DoTheWork(123, useMultipleCores: true);
DoTheWork(useMultipleCores: true, 123);

 The reason behind this requirement is obvious. The named parameter explicitly signals the caller ’ s
intention to diverge from the original sequential positions. Could you tell the number of the position
for 123 in the second method call?

 Overload Resolution

 The introduction of named and optional parameters changed the way of resolving overloaded
method invocations. Let ’ s take a deeper look at these changes.

 Abstract and Virtual Members

 C# allows using parameter names in overrides that are different than in the abstract or virtual
defi nitions. For example, in the following sample, MyMethod has different parameter names in the
base and the derived class:

public class BaseClass
{
 public virtual void MyMethod(int firstPar, string secondPar)
 {
 }
}

public class ChildClass : BaseClass
{
 public override void MyMethod(int firstArg, string secondArg)
 {
 }
}

 How should MyMethod be called with named parameters? How should parameter names in
 BaseClass or in ChildClass be passed? Can any of them be used? The language specifi cation
says, “ the parameter names that apply are the ones that appear in the most specifi c override of the
function member with respect to the static type of the target of the member access. ”

 To understand this rule, here is a short example showing how to use these names:

// --- Most specific context: BaseClass
var myClass = new BaseClass();
myClass.MyMethod(firstPar: 1, secondPar: “Hello”);
myClass = new ChildClass();

CH024.indd 1082CH024.indd 1082 9/6/10 6:53:20 PM9/6/10 6:53:20 PM

myClass.MyMethod(firstPar: 1, secondPar: “Hello”);

// --- Most specific context: ChildClass
var childClass = new ChildClass();
childClass.MyMethod(firstArg: 1, secondArg: “Hello”);

 When the myClass variable is initialized, the compiler infers its type as BaseClass . So, both
 MyMethod calls use the parameter names in the most specifi c override that can be found in
 BaseClass . The childClass variable is a type of ChildClass , so when calling MyMethod through
 childClass , the context for parameter name resolution is ChildClass .

 Resolving Applicable Signatures

 When you have the same method with more than one overload, the compiler must resolve it during
the build process. The compiler fi rst fi lters the overloads to see which are applicable to the method
call context. If there are more candidates, the compiler uses “ betterness ” rules to select the best one.

 With named and optional arguments, this process changed a bit from C# 3.0 to C# 4.0.

 A signature is applicable if all its parameters are either optional, or have exactly one
corresponding argument (by name or position) in the call that is convertible to the
parameter type.

 “ Betterness ” rules on conversions are only applied for arguments that are explicitly given —
omitted optional arguments are ignored for betterness purposes.

 If two signatures are equally good (by terms of “ betterness ”), one that does not omit
optional parameters is preferred.

 Here is a short sample to demonstrate the resolution steps. MyClass here defi nes four overloads for
 MyMethod :

public class MyClass
{
 MyMethod(string s, int i = 1) { ... }
 MyMethod(object o) { ... }
 MyMethod(int i, string s = “C#”) { ... }
 MyMethod(int i) { ... }
}

 The question is which method should be called in the following code snippet?

var myClass = new MyClass();
myClass.MyMethod(2010);

 Now, you can see how the rules work. MyMethod(string,int) is not applicable, because 2010
doesn ’ t convert to string. MyMethod(int,string) is applicable because its second parameter
is optional, and 2010 matches with its fi rst argument. Obviously, MyMethod(object) and
 MyMethod(int) are also applicable.

 Because there are three candidates, the “ betterness ” rules are applied. MyMethod(int,string) and
 MyMethod(int) are both better than MyMethod(object) because the conversion from 2010 to int
is better than the conversion from 2010 to object .

➤

➤

➤

Named and Optional Parameters ❘ 1083

CH024.indd 1083CH024.indd 1083 9/6/10 6:53:20 PM9/6/10 6:53:20 PM

1084 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 So, only two candidates remain. Finally MyMethod(int) is better than MyMethod(int,string)
because no optional arguments are omitted, and, therefore, MyMethod(int) is called.

 COM - SPECIFIC INTEROPERABILITY FEATURES

 The dynamic lookup in C# 4.0 solves a lot of issues related to interoperability with other object
models, and this is especially true for COM objects such as the Offi ce Automation API or the Visual
Studio Extensibility object model (DTE). Optional and named parameters also add great value to
reduce the syntax noise of using COM API from C# code.

 The C# language design team felt that they should polish up the COM interoperability story in
version 4.0, and they added a few missing pieces of the puzzle to complete the picture. In this
section, you can get a closer look at these seemingly small, but really powerful, features.

 Dynamic Import

 A majority of COM methods accept and return variant types. The Primary Interoperability
Assemblies (PIAs) represent arguments and return values of the System.Object type. In a
majority of cases, you already know the static type of a returned object from the call context,
but explicitly have to perform a cast on the returned value. For example, when you access cells
in Excel, you write the following:

var excel = new Excel.Application();
Excel.Range topLeftCell = (Excel.Range)excel.Cells[1,1];

Even if you know Cells[,] returns an instance of Excel.Range , you must explicitly cast it to the
expected type.

 To get rid of this syntax noise, you can now choose to import these COM APIs in such a way that
variants are represented using the type dynamic . Many PIAs shipped with Visual Studio are created
with dynamic — including Microsoft Offi ce PIAs.

 This means that you can easily access members of a returned object, or you can assign it to a
strongly typed local variable, without having to cast. Instead of casting an Excel Cells[,] value to
the type Excel.Range , you can now say the following:

var excel = new Excel.Application();
var oldValue = excel.Cells[1,1];
excel.Cells[1,1].Value = “Set To New Value”;

 Earlier in this chapter, in Listing 24 - 2, you could see this new C# feature in action.

 Omitting ref from Parameters

 In C# (and in other .NET languages like Visual Basic or F#), you pass reference parameters in order
for the called member to mutate it for the subsequent benefi t of the caller. Because of a different

CH024.indd 1084CH024.indd 1084 9/6/10 6:53:20 PM9/6/10 6:53:20 PM

programming model, many COM APIs utilize reference parameters. Contrary to references in C#,
these are typically not meant to change a passed - in argument, but are simply another way of passing
value parameters.

 In Listing 24 - 1, a new Word document was created with the following code snippet:

 var word = new Word.Application();
 word.Visible = true;
 object template = Type.Missing;
 object newTemplate = Type.Missing;
 object docType = Type.Missing;
 object visible = Type.Missing;
 word.Documents.Add(
 ref template,
 ref newTemplate,
 ref docType,
 ref visible);

 This demonstrates very well that a C# programmer should have to create temporary variables for
all such ref parameters and pass these by reference. Type.Missing is immutable, so passing a
reference to it is not a real benefi t for the called method.

 Instead, specifi cally for COM methods, the C# 4.0 compiler will allow you to pass arguments
by value to such a method, and will automatically generate temporary variables to hold the
passed - in values. The compiler subsequently discards them when the call returns. Listing 24 - 2
carries out the same task more intuitively:

 var word = new Word.Application();
 word.Visible = true;
 word.Documents.Add();

 In this way, the caller sees value semantics and will not experience any side effects, but the called
method still gets a reference.

 Indexed Properties

 COM has a concept called parameterized properties that does not exist in C#. Until now, you had
to use get_X() and set_X() methods to access the values of an indexed property X . For example,
you could set the top - left cell ’ s value of an Excel sheet as follows:

var excel = new Excel.Application();
excel.get_Range(“A1”).set_Value(Type.Missing, “Name”);

 Earlier, without indexed properties support, you had to use the ugly Value2 property, because you
otherwise had to call get_Value() or set_Value() :

var excel = new Excel.Application();
excel.get_Range(“A1”).Value2 = “Name”;

COM-Specifi c Interoperability Features ❘ 1085

CH024.indd 1085CH024.indd 1085 9/6/10 6:53:21 PM9/6/10 6:53:21 PM

1086 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 Now, in C# 4.0, you can call parameterized properties declared in COM using the indexer syntax.
For example, instead of get_X() , you can now write X[] . With this syntax, you can now set the cell
value in the most intuitive way, just as scripts and dynamic languages already do:

var excel = new Excel.Application();
excel.Range[“A1”].Value = “Name”;

 This is just syntactic sugar. The compiler still emits calls to the get_ and set_ accessors at the end
of the day. This syntax does not mean that you can now create indexed properties in C#, because
this feature still does not exist in the language. The language designers encourage you to use
indexers and do not plan to introduce indexed properties.

 Compiling Without PIAs

 To interoperate with a certain COM interface, you must use a .NET type wrapping the functionality
of that COM interface. Building these wrapper types manually is very laborious, especially when
you have hundreds of COM interfaces — for example, in the case of using the Microsoft Offi ce
automation model.

 PIAs are .NET assemblies generated from COM interfaces to facilitate strongly typed
interoperability. For large object models, the related PIAs are large as well. At run - time, these large
assemblies can easily bloat your program. They can also cause versioning issues when they are
distributed independently of your application.

 For example, the Word 2007 interoperability assembly has a size about 800 KB, while the Excel
2007 PIA has about 1.2 MB. Contrast this to the
 PainWithOffice binary (the small application
you saw earlier in this chapter), which takes only
18 KB. Is it normal to deploy about 2 MB of
overhead (PIAs) for an application with a size
of 18 KB?

 The no - PIA feature allows you to continue to use
PIAs at design time without having them around at
run - time. Instead, the C# compiler will append the
small part of the PIA that a program actually uses
directly to its assembly. At run - time, the PIA does
not have to be loaded.

 You can turn on or off this feature for each
interoperability assembly. Select the assembly
in Solution Explorer and set the Embed Interop
Types property to True (to turn on) or False (to
turn off) no - PIA. Figure 24 - 3 shows the property
window with no - PIA turned on for the Excel
interoperability assembly. FIGURE 24 - 3: Embed Interop Types property

CH024.indd 1086CH024.indd 1086 9/6/10 6:53:21 PM9/6/10 6:53:21 PM

 When you use this option, the compiler
checks for the interoperability types your
code references, and, behind the scenes,
puts the appropriate type defi nitions into
your assembly. In Figure 24 - 4 you can see
the referenced Excel interoperability types
(and the ones those depended on) added to
the PainWithOfficeRemoved assembly.

 The no - PIA feature is not just a
 “ compiler trick. ” There are a few new
things in the .NET Framework 4.0 CLR
that supports this behavior. You can
read about them in Chapter 10, which
discusses the enhancements to the .NET
Framework ’ s core.

 VARIANCE

 Inheritance is a great object - oriented
principle that is always directly or indirectly
used when you create .NET applications or
components. C# 2.0 brought generic types
into the picture, and boosted developer
performance, as well as code reusability.
However, generic types may sometimes
surprise you because certain things are illegal, even if you thought they were allowed.

 Type Substitution

 Without a check, you would say the following declarations are legal, although the second one is
invalid:

IList < string > stringList = new List < string > ();
IList < object > objectList = stringList; // --- No implicit cast!

 The main reason is that the following kinds or relationships between types are often confused:

 Inheritance — A type descends from another type.

 Realization — A type implements an interface.

 Generic parameter substitution — A generic type ’ s type parameters substitute with concrete
(closed) types.

 Although List < string > realizes IList < string > (that is, a closed form of IList < T >) just as
 List < object > realizes IList < object > (that is, a closed form of IList < T >), it does not mean that

➤

➤

➤

 FIGURE 24 - 4: Embedded interoperability types in

Refl ector

Variance ❘ 1087

CH024.indd 1087CH024.indd 1087 9/6/10 6:53:21 PM9/6/10 6:53:21 PM

1088 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 IList < string > is assignable to an IList < object > . Figure 24 - 5 shows a relationship diagram to
help explain why this is so.

System.Object

List<T>

List(string)

IList<object>

IList(string)

List<T>

IList<T>

 FIGURE 24 - 5: List < T > Relationship Diagram

 The solid lines represent inheritance, dashed lines mark realization, and double lines stand for
parameter substitution. It is obvious from the fi gure that the most common ancestor of these types
is System.Object . While traversing through inheritance and realization in linear inheritance (like
son, father, and grandfather in a family), parameter substitution means collateral relation (such as a
second cousin in a family).

 IList < string > and IList < object > are in collateral relation. Often, at fi rst sight, developers
take it into account as linear inheritance just because they share the same generic type as a kind
of ancestor. So, there is a false expectation that IList < string > is assignable with a variable of
 IList < object > .

 It is not just an unnecessarily strict check of the compiler; the discussed assignment can even lead to
hurting type safety. Look at the following code:

IList < string > strings = new List < string > { “zero”, “one”, “two”, “three”, “four” };
IList < object > objects = strings;
objects[3] = 3;
string three = string[3];

 If the objects = strings assignment were allowed, in the objects[3] = 3 assignment, an int
was about to be inserted into a list of strings and subsequently extracted as a string . This would
be a type - safety violation, so that is why the assignment is invalid and results in compilation error.

 Note that the whole situation is about how you can substitute instances of types with instances
of other types. It is natural for OOP developers to think that substitutions are allowed by linear
inheritance, but there are also other cases where theoretically collateral (and other types of)
substitutions can be done.

 The following code mirrors such a situation:

IList < string > strings = new List < string > ();
IEnumerable < object > objects = strings;

 Because IEnumerable < T > has a single method with the signature of

IEnumerator < T > GetEnumerator();

CH024.indd 1088CH024.indd 1088 9/6/10 6:53:22 PM9/6/10 6:53:22 PM

there is no way you can make such an assignment as

objects[3] = 3;

and so no opportunity to put the wrong type of thing into strings through objects , because
 objects doesn ’ t have any method that takes an element in. So, here the assignment hypothetically
could work without issues:

IEnumerable < object > objects = strings;

 If you can enumerate through instances of System.Object and use the elements in the enumeration for
some operations over System.Object , those operations should work even if you enumerate through
instances of System.String . Why? Because System.String is assignable to a System.Object , so you
can pass a System.String parameter to an operation (method) expecting System.Object .

 The surprising fact is that this code works in C# 4.0, although it does not compile with C# 3.0.

 Bird ’ s - Eye View of Variance

 The concept of how types can be substituted with each other is called variance . Many forms of
variance have been working in C# since the fi rst language version. For example, method return values
can be substituted with instances of derived types. Also, there are many forms that do not work.

 Understanding the basics of variance will help you in becoming a more productive developer. This
section provides a very brief overview about this topic from a higher (more theoretic) view without
the intent of completeness.

 Variance is an attribute of an operation related to a type in the type system of a programming
language. The “ operation ” in this context can be a type conversion, some rule on the type, or any
operation that carries out type transformations. In the type system, you can compare types X and Y ,
and the result of this comparison can be one and only one of the following:

 X and Y are equal.

 X is greater than Y .

 X is less than Y .

 X is not related to Y .

 According to this comparison, you can defi ne ordering (from the lowest to the highest) among the
types, assuming they are related to each other. You say an operation over the types in the type
system is one of the following:

 Covariant — This is if it preserves the ordering of types, or their unrelatedness;

 Contravariant — This is if it reverses the ordering of types, and keeps their equality and
unrelatedness;

 Invariant — This is if neither of these apply.

 One of the key factors that infl uences how the variance is interpreted for a concrete type system of a
programming language is the type comparison operator between X and Y .

➤

➤

➤

➤

➤

➤

➤

Variance ❘ 1089

CH024.indd 1089CH024.indd 1089 9/6/10 6:53:23 PM9/6/10 6:53:23 PM

1090 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 In the concrete example of the C# programming language, the type system is the .NET Framework ’ s
Common Type System (CTS). It ’ s pretty easy to defi ne that X and Y are equal if and only if when
 typeof(X).Equals(typeof(Y)) . It is also easy to imagine that X is greater than Y if they are on the
same inheritance chain, and X is closer to the root of the chain than Y .

 To defi ne the complete ordering among the types of CTS, (including unrelatedness) is a complex
task, — just think about generic types. The remaining discussions in this chapter focus on the
practical side of variance, and its implementation in C# 4.0.

 If you want to dive into this topic deeper and obtain more authentic information
on variance, read Eric Lippert ’ s blog, starting with this post: http://blogs
.msdn.com/ericlippert/archive/2007/10/16/covariance-and-contra

variance-in-c-part-one.aspx .

 Variance in C# 4.0

 Right now, C# implements only a subset of behavior that theoretically could be achieved by
covariance and contravariance. However, the result the language designers achieved with this new
version is signifi cant and really practical. The current variance implementation can be characterized
with the following points:

 For non - generic types, nothing has been changed from the previous version of C# by means
of variance.

 The way of providing variance for generic types is by marking type parameters of a generic
type as variant . Because a restriction in the CLR, variant type parameters can be declared
only on generic interface and delegate types.

 Variance only applies when there is a reference conversion between type arguments.
For example, variance applies for IEnumerable < string > and IEnumerable < object >
because there is a reference conversion between string and object . However, the
conversion from int to object is a boxing conversion, and so variance does not apply for
 IEnumerable < int > and IEnumerable < object > .

 Variance is not automatic. The compiler will not infer whether a type parameter is covariant
or contravariant. Developers must explicitly declare their intention.

 Covariance

 Following is an example of covariance :

IList < string > strings = new List < string > ();
IEnumerable < object > objects = strings;

 This works in C# 4.0. The compiler accepts it and generates proper code for executing the previous
declarations. The key for this behavior is that IEnumerable < T > and IEnumerator < T > interfaces are
declared with a variant type parameter T :

➤

➤

➤

➤

CH024.indd 1090CH024.indd 1090 9/6/10 6:53:23 PM9/6/10 6:53:23 PM

public interface IEnumerable < out T > : IEnumerable
{
 IEnumerator < T > GetEnumerator();
}

public interface IEnumerator < out T > : IEnumerator
{
 bool MoveNext();
 T Current { get; }
}

 The only change in the syntax of interface defi nitions — related to the previous language versions —
is the out modifi er in the previous declarations. The out modifi er signifi es that the T can only occur
in an output position in the interface — otherwise, the compiler will raise an error. This restriction
provides (of course, it can be proven) that the interface becomes covariant in T , which means that an
 IEnumerable < X > is considered an IEnumerable < Y > if X has a reference conversion to Y .

 Because of this defi nition, a sequence of strings can substitute a sequence of objects, and the
previous code works. This covariant behavior is very useful in correlation with LINQ query
expressions.

 To experiment with this, create a console application and name it CovarianceSample . Add a new
code fi le named Pet.cs to the project and paste the code in Listing 24 - 4 into this new fi le.

 LISTING 24 - 4: Pet.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace CovarianceSample
{
 public abstract class Pet
 {
 public string NickName { get; set; }
 public int Age { get; set; }

 public static IEnumerable < Pet > ShackUpWith(
 IEnumerable < Pet > atHome,
 IEnumerable < Pet > newComers)
 {
 return atHome.Union(newComers);
 }
 }

 public sealed class Dog : Pet { }

 public sealed class Macaw : Pet { }
}

 Code fi le [Pet.cs] available for download at Wrox.com

Variance ❘ 1091

CH024.indd 1091CH024.indd 1091 9/6/10 6:53:41 PM9/6/10 6:53:41 PM

1092 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 Here, you have abstract Pet s with two concrete manifestations, Dog and Macaw . These types are
intended to be used in a pet shop application, and so Pet has an operation named ShackUpWith
accepting two sequences of pets and returns their union.

 Modify the Program.cs fi le of the application as shown in Listing 24 - 5.

 LISTING 24 - 5: Program.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace CovarianceSample
{
 class Program
 {
 static void Main(string[] args)
 {
 var dogs = new List < Dog >
 {
 new Dog { NickName = “Spike”, Age = 3 },
 new Dog { NickName = “Murray”, Age = 12 },
 new Dog { NickName = “Peach”, Age = 2 },
 };

 var macaws = new List < Macaw >
 {
 new Macaw { NickName = “Georgey” , Age = 32 },
 new Macaw { NickName = “Bella” , Age = 4 },
 new Macaw { NickName = “Grey” , Age = 11 },
 };

 var youngsters = from pet in Pet.ShackUpWith(dogs, macaws)
 where pet.Age < 5
 select pet;

 foreach (var pet in youngsters)
 {
 Console.WriteLine(pet.NickName);
 }
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 The ShackUpWith method used in the query expression expects IEnumerable < Pet > arguments,
but in the previous code, IEnumerable < Dog > and IEnumerable < Macaw > instances are passed.
However, because IEnumerable < T > is covariant in T , the compiler accepts it. With C# 3.0 in Visual
Studio 2008, this code would not compile! In order to make it work with C# 3.0, you must use a
workaround. One possible solution is to cast dogs and macaws to IEnumerable < Pet > :

CH024.indd 1092CH024.indd 1092 9/6/10 6:53:41 PM9/6/10 6:53:41 PM

IEnumerable < Pet > dogsAsPets = dogs.Cast < Pet > ();
IEnumerable < Pet > macawsAsPets = macaws.Cast < Pet > ();
var youngsters = from pet in Pet.ShackUpWith(dogsAsPets, macawsAsPets)
 where pet.Age < 5
 select pet;

 It is much simpler with C# 4.0, isn ’ t it?

 Contravariance

 Contravariance also works with generic interfaces and delegates in C# 4.0. Create a console
application and name it ContravarianceSample . Add the Animal.cs fi le to the project with the
code in Listing 24 - 6.

 LISTING 24 - 6: Animals.cs

using System;

namespace ContravarianceSample
{
 public abstract class Animal : IComparable < Animal >
 {
 public string Name { get; set; }

 int IComparable < Animal > .CompareTo(Animal other)
 {
 return Name.CompareTo(other.Name);
 }
 }

 public class Elephant : Animal
 {
 public static int CompareWithOther(IComparable < Elephant > first, Elephant other)
 {
 return first.CompareTo(other);
 }
 }
}

 Code fi le [Animals.cs] available for download at Wrox.com

 Modify the Program.cs fi le, as shown in Listing 24 - 7.

 LISTING 24 - 7: Program.cs of ContravarianceSample

namespace ContravarianceSample
{
 class Program
 {
 static void Main(string[] args)

Variance ❘ 1093

continues

CH024.indd 1093CH024.indd 1093 9/6/10 6:53:42 PM9/6/10 6:53:42 PM

1094 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

LISTING 24-7 (continued)

 {
 var jack = new Elephant { Name = “Jack” };
 var jane = new Elephant { Name = “Jane” };

 var compare = Elephant.CompareWithOther(jane, jack);
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 Although the CompareWithOther method in Elephant takes an IComparable < Elephant > instance
as its fi rst parameter, it still works in C# 4.0 with an Elephant instance, in spite of the fact that
 Elephant does not implement IComparable < Elephant > . Elephant indirectly (through Animal)
implements IComparable < Animal > that can substitute IComparable < Elephant > . This is because
the defi nition of IComparable < T > :

public interface IComparable < in T >
{
 int CompareTo(T other);
}

 The type parameter T here uses the in variant modifi er, restricting T to occur only in input
positions, and, just as in case of the out modifi er, the compiler will check the appropriate usage
of T . This restriction provides (and, of course, it also can be proven) that the interface becomes
 contravariant in T , which means that an IComparable < X > is considered an IComparable < Y > if X
has a reference conversion to Y .

 In the example, Elephant has a reference conversion to Animal , and so IComparable < Elephant >
can be substituted by IComparable < Animal > .

 A Few More Points on Variance

 There are a few important things about the C# 4.0 implementation of variance you should be
aware of. These can help you to understand the opportunities and limitations you have with this
language version.

 Variance with Multiple Type Parameters

 At fi rst sight, many developers may think that to be covariant or contravariant is a property of
a generic type. This is not true! Variance is property of type parameters in generic types. When
you have a generic type, let ’ s say MyType < T > , you cannot say “ MyType is invariant, covariant or
contravariant. ” What you can say is “ MyType is invariant, covariant, or contravariant in T . ”

 This means that you can actually have generic types that have both covariant and contravariant
type parameters. Before you think this is theoretical and might not have practical reason, consider
the fact that there are generic types frequently used with such a behavior.

CH024.indd 1094CH024.indd 1094 9/6/10 6:53:43 PM9/6/10 6:53:43 PM

 The Func < > family of generic delegates is defi ned like this:

public delegate TResult Func < in T, out TResult > (T arg);
public delegate TResult Func < in T1, in T2, out TResult > (T1 arg1, T2 arg2);

 You can see that they have both kinds of type parameters. With a simple console application, it is
pretty easy to show the power of the generic Func delegate.

 Create a console application and name it FuncExample . Add a new Pet.cs fi le to the project with
the code in Listing 24 - 8.

 LISTING 24 - 8: Pet.cs in FuncExample

namespace FuncExample
{
 public abstract class Pet
 {
 public string NickName { get; set; }
 public int Age { get; set; }
 }

 public sealed class Dog : Pet { }

 public sealed class Macaw : Pet { }

 public sealed class Eagle : Pet { }
}

 Code fi le [Pet.cs] available for download at Wrox.com

 You are going to use the Func < > delegate to defi ne transformations among pets. Listing 24 - 9 shows
the Program.cs fi le implementing this functionality.

 LISTING 24 - 9: Program.cs in FuncExample

using System;
using System.Collections.Generic;

namespace FuncExample
{
 class Program
 {
 static void Main(string[] args)
 {
 var dogs = new List < Dog >
 {
 new Dog { NickName = “Spike”, Age = 3 },
 new Dog { NickName = “Murray”, Age = 12 },
 new Dog { NickName = “Peach”, Age = 2 },
 };

Variance ❘ 1095

continues

CH024.indd 1095CH024.indd 1095 9/6/10 6:53:43 PM9/6/10 6:53:43 PM

1096 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

LISTING 24-9 (continued)

 var macaws = new List < Macaw >
 {
 new Macaw { NickName = “Georgey” , Age = 32 },
 new Macaw { NickName = “Bella” , Age = 4 },
 new Macaw { NickName = “Grey” , Age = 11 },
 };

 var macawsToDogs = TransformMacawTo(macaws, TransformToDog);
 var macawsToEagles = TransformMacawTo(macaws, TransformToEagle);
 var dogsToEagles = TransformDogTo(dogs, TransformToEagle);
 }

 public static IEnumerable < Pet > TransformMacawTo(
 IEnumerable < Macaw > pets,
 Func < Macaw, Pet > tranformation)
 {
 foreach (var pet in pets)
 yield return tranformation(pet);
 }

 public static IEnumerable < Pet > TransformDogTo(
 IEnumerable < Dog > pets,
 Func < Dog, Pet > tranformation)
 {
 foreach (var pet in pets)
 yield return tranformation(pet);
 }

 static Dog TransformToDog(Macaw macaw)
 {
 return new Dog { NickName = macaw.NickName, Age = macaw.Age };
 }

 static Eagle TransformToEagle(Pet pet)
 {
 return new Eagle { NickName = pet.NickName, Age = pet.Age };
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

 In the TransformMacawTo function, the Func < Macaw, Pet > delegate is used, while in the
 TransformDogTo function, a Func < Dog, Pet > argument is passed.

 Two functions, TransformToDog and TransfromToEagle , are responsible for performing the
 “ magical change ” of pets. The following lines of codes utilize variance:

 var macawsToDogs = TransformMacawTo(macaws, TransformToDog);
 var macawsToEagles = TransformMacawTo(macaws, TransformToEagle);
 var dogsToEagles = TransformDogTo(dogs, TransformToEagle);

CH024.indd 1096CH024.indd 1096 9/6/10 6:53:44 PM9/6/10 6:53:44 PM

 In the fi rst two TransformMacawTo calls, the Func < Macaw, Pet > arguments are substituted with
 Func < Macaw, Dog > and Func < Pet, Eagle > , respectively. In the invocation of TransformDogTo ,
a Func < Pet, Eagle > is used instead of the Func < Dog, Pet > . It is entirely valid, strongly typed,
and no type conversion magic is done behind the scenes!

 Why can, for example, Func < Dog, Pet > be substituted with Func < Pet, Eagle > ? The fact that
 Func < Dog, Pet > is covariant in Pet means that you can return a Pet derived type, namely Eagle ,
because an Eagle is a Pet . The same thinking says that Func < Dog, Pet > is contravariant in Dog ,
and so any operation with Pet also will work on Dog , because Dog is derived from Pet . Therefore,
 Func < Pet, Eagle > is a good substitution for Func < Dog, Pet > .

 Variance with User Types

 Obviously, you are not constrained to using only the existing generic types with variant type
parameters. You can create your own generic interfaces and delegates. You can use the in modifi er
for signifying a contravariant, and the out modifi er for a covariant type parameter. Without a
modifi er, the type parameter remains invariant.

 For example, consider the following declarations:

public interface IMyOperations < in T, U, V > { ... }
public delegate X MyDelegate < in T, U, out X > (T t, U u);

Here, X is covariant, T is contravariant, and U and V are invariant type parameters.

 The compiler checks to ensure that you keep within the rules for variant type parameters. For
example, in the following interface defi nitions, all method declarations are invalid because one or
more contravariant type parameters are in output positions:

public interface IMyOperations < in T, in U, V >
{
 T OutputUnsafeOp1();
 U[] OutputUnsafeOp2();
 List < T > OutputUnsafeOp3();
 Func < V, U > OutputUnsafeOp4();
 void OutputUnsafeOp5(out T t);
 void OutputUnsafeOp6(ref Func < V, U > t);
}

 Similarly, in the following interface defi nition, all operations are invalid because covariant type
parameters are in input positions:

public interface IMyOperations < out T, U >
{
 void InputUnsafeOp1(T t);
 U InputUnsafeOp2(T[] t);
 Func < U, T > InputUnsafeOp3(out T t);
 void InputUnsafeOp4(U u, ref T t);
}

Variance ❘ 1097

CH024.indd 1097CH024.indd 1097 9/6/10 6:53:44 PM9/6/10 6:53:44 PM

1098 ❘ CHAPTER 24 C# 4.0 LANGUAGE IMPROVEMENTS

 The C# 4.0 language specifi cation calls these invalid type parameters output - unsafe and input -
 unsafe types, and precisely defi nes the context they are unsafe within. With the introduction of
variant type parameters, the type inference algorithm used by the compiler also has been modifi ed.

 Variance and Refl ection

 The .NET Framework ’ s refl ection model can be used to obtain information about the variance
of a type parameter. In Listing 24 - 10, you have a simple console application ’ s Program.cs fi le
demonstrating the refl ection model used to query variance information.

 LISTING 24 - 10: Program.cs to query refl ection about variance

using System;
using System.Reflection;
using System.Collections.Generic;
using System.Linq;

namespace VarianceAndReflection
{
 class Program
 {
 static void Main(string[] args)
 {
 var asm = typeof(IEnumerable < >).Assembly;

 var genericTypes = from type in asm.GetTypes()
 where type.IsGenericTypeDefinition & & type.IsPublic
 select type;

 foreach (var type in genericTypes)
 {
 Console.WriteLine(“{0}: “, type.Name);
 foreach (var typeParam in type.GetGenericArguments())
 {
 var variance = typeParam.GenericParameterAttributes &
 GenericParameterAttributes.VarianceMask;
 if ((variance & GenericParameterAttributes.Covariant) != 0)
 Console.WriteLine(“ {0}: covariant”, typeParam.Name);
 else if ((variance & GenericParameterAttributes.Contravariant) != 0)
 Console.WriteLine(“ {0}: contravariant”, typeParam.Name);
 else
 Console.WriteLine(“ {0}: invariant”, typeParam.Name);
 }
 }
 }
 }
}

 Code fi le [Program.cs] available for download at Wrox.com

CH024.indd 1098CH024.indd 1098 9/6/10 6:53:44 PM9/6/10 6:53:44 PM

 This code iterates through all generic types in the System assembly and writes out their type
parameter information. The nested foreach cycle goes through the type parameters, and uses
the GenericParameterAttributes property of System.Type to obtain information about variance.
This property ’ s value is a GenericParameterAttributes enumeration instance with fl ags. The
 VarianceMask value of the enumeration can be used to separate the fl ags describing variance from
the ones describing type parameter constraints. Covariant and Contravariant fl ags defi ne the
parameter behavior. If neither is set, the type parameter is invariant.

 SUMMARY

 The major theme for C# 4.0 is dynamic programming. You have a new feature called dynamic
lookup to bypass the C# compile - time static type checking. Utilizing the new dynamic type
operations on this type ’ s instances will get resolved at run - time with the help of Dynamic
Language Run - time (DLR).

 Some APIs (most notably COM interfaces such as the Microsoft Offi ce and Visual Studio
automation APIs) are written specifi cally with named and optional parameters in mind. Up until
now, it has been very painful to call into these APIs from C#. With named and optional parameters
introduced in C# 4.0, this kind of discommodity has been fi nally removed from the language.

 The C# design team felt that they should complete the COM interoperability picture in version 4.0,
and they added great COM - specifi c features to the language, such as COM type import with the
 dynamic type, simplifi ed syntax for indexed properties, automatic code generation for omitted ref
parameters, and support for the no - PIA compilation.

 C# 4.0 introduced new forms of variance. With type parameters of generic interfaces and delegates
signifi ed as covariant or contravariant, from now on, the programming language has a much more
fl exible type substitution model than ever before.

 Chapter 25 provides an overview of other .NET languages, such as F#, IronPython, and IronRuby.
You can learn the importance of functional programming through the great features of the F#
language, and the chapter also will teach you to use F# with Visual Studio.

Summary ❘ 1099

CH024.indd 1099CH024.indd 1099 9/6/10 6:53:45 PM9/6/10 6:53:45 PM

CH024.indd 1100CH024.indd 1100 9/6/10 6:53:45 PM9/6/10 6:53:45 PM

PART VI

F#

CHAPTER 25: Visual F# and the Other .NET Languages�

CH025.indd 1101CH025.indd 1101 9/6/10 6:57:14 PM9/6/10 6:57:14 PM

CH025.indd 1102CH025.indd 1102 9/6/10 6:57:17 PM9/6/10 6:57:17 PM

Visual F# and the Other
.NET Languages

 One of the most exciting changes in Visual Studio 2010 is the inclusion of F# as a standard
front end, bringing a true functional programming language into the .NET language
ecosystem.

 The importance of functional programming cannot be underestimated. Throughout this book,
you have seen that many of the various enhancements to C# and Visual Basic (VB) are mostly
about bringing functional programming concepts into those languages. This chapter will
provide you with a basic understanding of functional programming, as well as an introduction
to the F# language, a foundation that you can build on to better understand F# programs and
write them yourself. By the end of this chapter, you will be familiar with the following:

 A brief history of the F# programming language.

 The core functional programming concepts from a pragmatic viewpoint — why they
matter and how you can become a better programmer by using functional ideas.

 How you can get started with developing F# programs in Visual Studio, and try them
interactively as you are developing them with F# Interactive.

 An overview of the F# language — basic syntax, major features (including pattern
matching, active patterns, quotations, computation expressions (workfl ows),
asynchronous computations, and units of measure), and how to use them to get the
most out of the language.

 How you can develop a set of modules that you can use with F# Interactive to draw
mathematical plots from your development session.

 A brief look at a couple of other .NET languages, IronRuby and IronPython.

➤

➤

➤

➤

➤

➤

 25

CH025.indd 1103CH025.indd 1103 9/6/10 6:57:17 PM9/6/10 6:57:17 PM

1104 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 A BRIEF HISTORY OF F#

 F# is a functional programming language that grew out of the work of Don Syme and his team at
Microsoft Research (MSR) in Cambridge, United Kingdom. Syme and his team set out to implement
a .NET front end for a functional programming language similar to OCaml. In fact, the initial goal
of F# was to port OCaml to .NET, which, in turn, had identifi ed many of the weaknesses of the
early .NET 1.1 Common Type System (CTS).

 One of the key features that differentiated OCaml and the standard .NET languages at the time was
OCaml ’ s more mature type system. In particular, the type system of .NET 1.1 languages was unable
to express what is called parametric polymorphism , a key feature of many functional programming
languages. This was eventually added to .NET 2.0 as Generics by, among others, Don Syme and
Andrew Kennedy, making it possible to implement the fi rst port of a functional programming
language atop of .NET.

 Although F# saw its beginnings somewhere around 2002, crowds didn ’ t start building until
around 2004 – 2005. These were silent but very productive years, and the occasional releases from
Don Syme ’ s MSR team (that included original team member James Margetson) delivered some
impressive batches of new features every time, drawing more and more people ’ s attention to F#.
The community started to take shape, and many initiatives took off, including the HubFS
(http://cs.hubfs.net), a community site that aims to be the primary place for F# enthusiasts —
now numbering more than 16,000 members as of early January 2010.

 The fi rst books on F# appeared in 2007 — Robert Pickering ’ s Foundations of F# (New York: Apress,
2007) and Don Syme ’ s Expert F# (New York: Apress, 2007). These books helped to introduce F#
to a multitude of developers, and the language gradually became well - known in professional .NET
programming camps.

 Undoubtedly, the growing interest in the functional paradigm, and the impressive coding experience
that F# delivers, helped F# to make its way up to the strategic planners of Microsoft. Microsoft
quickly realized the potential behind the language, and the project was promptly transferred from
MSR Cambridge to Redmond, where it now resides with the other Visual Studio and programming
languages teams.

 This was followed by public announcements at the end of 2007 — the most notable one being
that by Microsoft Developer Division Chief Soma Somasegar, who posted the news on his blog —
emphasizing the company ’ s strong commitment to “ continue the fl ow of good ideas from functional
programming world into mainstream development, ” and the importance of technology transfer
from research to products to “ productize ” great research ideas.

 As time has shown since 2007, F# is much more than a simple product glued together from a set of
ideas from functional programming. It is a unique and amazingly effective combination of brevity
and productivity, of imperative, object - oriented and mainly functional paradigms, and a mind -
 changer that offers a truly unrivaled developer experience.

 A long time had to pass before F# reached its well - deserved membership in the Visual Studio
standard languages, and this has made F# a robust and fully mature language that not only
fi lls in where other .NET languages fall short, but also defi nes new approaches for many of
the traditionally diffi cult problems developers face today — including the advent of multi - core

CH025.indd 1104CH025.indd 1104 9/6/10 6:57:19 PM9/6/10 6:57:19 PM

programming, asynchronous and symbolic computations, and many others. It also reshaped what
professional developers must know about problem solving, mutability, function - based abstractions,
and, with its functional foundation, it prompts for exploring new ways to computing.

 F# AT FIRST GLANCE

 F# is strongly typed functional programming language for .NET that also provides a unique and
effective combination of object - oriented and imperative features — a sort of “ best - of - breeds ”
language.

 If you have a background in other .NET languages, the fi rst question you may have when you fi rst
look at F# is about its support for object - oriented programming. While this chapter is primarily
concerned with the basic functional aspects of F#, it is important to establish early in your language
exploration that these functional core features sit on top of a small and well - defi ned object - oriented
layer, inherent with the foundations of .NET.

 One clear distinction you will observe in this chapter is the use of the word object versus value .
While every object is a value, and ultimately every value is an object, you will see the word object
refer to instances of class types only, and value for instances of any other F# type. As you will see
shortly, there are a host of F# - specifi c types (such as records, tuples, lists, arrays, and others) that
get special treatment in F# — although ultimately they all will be compiled to .NET classes to make
interoperability with other languages possible.

 There are several key characteristics of F# that stem from its functional origin. Understanding these
will help you get up to speed with F# much quicker.

 Immutability — Once values are created and assigned to names (bindings), they do not
change, or change only rarely via marked constructs (such as assigning to reference cells).
Those data structures that break immutability are mutable or imperative data structures,
as are most (if not all) of the data structures you have dealt with in your past C# or VB
programming. With F#, you should think about your data structures mostly as functional ,
and avoid mutation wherever possible. You will see plenty of examples of defi ning and using
functional data structures in this chapter.

 Functions as fi rst - class values — The capability to pass functions or return them from other
functions is the basic building block of functional, higher - level abstractions. You will learn
about these abstractions in this chapter. You should think of higher - order functions and
function values as a natural supplement to your coding that is now more readily available
than ever before. In fact, as you will see shortly, these enable you to come up with better,
more robust, and fundamentally simpler abstractions.

 Algebraic data types — These enable you to differentiate a group of “ shapes ” within a
given type. For example, you may want to express that binary trees are either nodes (one
shape) that carry some value, or trees (the other shape) that have two sub - trees and a
value. This often distills into a more natural recursive defi nition of your data type. Also,
by enumerating the cases or shapes that your values can take, you can effectively control
and limit the complexity of your functions that deal with these values. You will see plenty

➤

➤

➤

F# at First Glance ❘ 1105

CH025.indd 1105CH025.indd 1105 9/6/10 6:57:20 PM9/6/10 6:57:20 PM

1106 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

of examples on how to use discriminated unions , an F# type used to defi ne algebraic data
types, and how to write functions that operate on these values via pattern matching .

 Pattern matching — You can use pattern matching to deconstruct complex values (algebraic
data types, tuples, lists, and so on) into simpler ones in a type - safe and exhaustive way. You
can apply pattern matching not only to discriminated unions and a few other collection
types, but also to any value or object if you use active patterns , a unique F# feature that
makes pattern matching extensible, and provides for complete encapsulation of data
representations.

 Type inference — In F# code you will rarely see type annotations, simply because the
compiler can infer types from their usage. This enables you to write less and accomplish
more (for example, write better code that is more generic and reusable). For example, you
can defi ne functions without having to type their arguments, and you can just simply list
the argument names instead. Then the compiler will try to fi nd the most general signature
for each argument, by solving various type constraints and “ equations ” that your code
poses. You should always aim to write generic code, and eliminate any references, calls,
and operators that are overly restrictive. This way, when the compiler infers the signature
for your functions, they will be as general as possible, and you can make changes easily and
apply them to as diverse data structures as possible.

 Support for lazy evaluation — You can delay the computation of certain values until
these values are actually needed. This enables you to do/compute only as much as you
really need to, and not more. F# offers various ways to enable lazy computations. Most
notably, you will learn about sequences that can be enumerated on demand, via a lazy
interface erected around most F# and .NET collections, Language Integrated Queries
(LINQ), and computations that may yield a lot of data as results. You will also see how
you can construct and evaluate lazy values directly through the .NET Lazy type and the
F# helper module, and syntax sugar around it.

 Trying Things Out with F#

 One of the fun sides of F# development is being able to quickly prototype things and try them out
on - the - fl y. In fact, this is also partially the reason for why developing with F# is a very satisfying
and rewarding experience. A Visual Studio add - in called F# Interactive helps you to accomplish just
that. You can also invoke F# Interactive as a command - line tool by locating fsi.exe from the F#
distribution, and running it in a command window.

 Working with the Visual Studio add - in for F# Interactive is the easiest way to get going. All you
must do is to highlight some block of code and press Alt+Enter to send it to the interactive session.
You can send any code you like; code will be interpreted just like if you typed it in directly into the
F# Interactive window.

 Your interactive session is alive from the time you start it until you decide to exit or restart it.
Typically, you will want to have a session for the time you are developing a module or a piece of code
that relates to a particular functionality in your application. As you add more code to the session, it
is “ remembered ” — so you can refer to any function, type, or “ variable ” that you may have created
and added earlier. You can also refer to the value of the last expression in the session as it .

➤

➤

➤

CH025.indd 1106CH025.indd 1106 9/6/10 6:57:20 PM9/6/10 6:57:20 PM

 Keep in mind, however, that redefi ning functions or types will not have any effect on what you have
already entered unless you redefi ne the consuming functions also. In other words, anything you
enter is parsed and interpreted using lexical scoping. You can think of redefi nitions as creating a
new defi nition with a new name that just happens to be the same as something that existed already,
which now is unreachable.

 If you want to restart your interactive session, type “ exit 1;; ” .

 Understanding Syntax

 Let ’ s take a look at the syntax of F#. In this section, you will learn about a few characteristics,
rules, and conventions for the language.

 First Taste

 F# is a script - like language, with very light, concise, and almost math - like syntax. It lends itself to
exploratory programming, and enables you to quickly prototype short (but powerful) functional
programs that are also easy to maintain.

 Listing 25 - 1 gives a taste of some of the functional core constructs of F#, including global and local
nested functions, higher - order functions (HOFs), piping arguments, raising and catching exceptions,
and pattern matching against values and types.

 LISTING 25 - 1: A Simple F# Function with Various Language Constructs

/// Computes some number based on a list of integers.
/// Returns NaN and reports an error if any of the
/// numbers are prime or on division by zero.
let SillyComputation numbers = // Global function
 let translate x = // Local, nested function
 let isEven n = n%2 = 0
 let isPrime n =
 if n > 1 then // If-then-else
 { 2 .. n/2 } // Sequence
 | > Seq.exists (fun i - > n%i = 0) // Piping into a HOF
 | > not
 else
 false
 if isPrime x then // If-then-elif-else
 failwith “Can’t compute XYZ” // Raising a failure
 elif isEven x then
 -1./float x
 else
 1./float x
 try // try-with
 numbers
 | > List.map translate
 | > List.reduce (+)
 | > fun res - > -res // Anonymous function
 with
 | Failure msg - > // Pattern matching

continues

F# at First Glance ❘ 1107

CH025.indd 1107CH025.indd 1107 9/6/10 6:57:20 PM9/6/10 6:57:20 PM

1108 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

LISTING 25-1 (continued)

 printfn “Failure: %s” msg
 System.Double.NaN
 | :? System.DivideByZeroException - > // Pattern matching over
 // types
 printfn “Error: division by zero”
 System.Double.NaN

let _ =
 [1; 4; 6; 8; 12; 15]
 | > SillyComputation
 | > printfn “The result is=%f”

 Several things should stand out if you are a C# or VB programmer (with many more standing out as
you explore the content of this chapter):

 Indentation matters. The bodies of if - then - else blocks do not need to be enclosed in
braces or between begin - end pairs. They are inferred using the indentation level.

 There are a series of let bindings that bind values to names, creating “ variables ” and
 “ functions. ”

 The bindings you create do not change; there is no mutation. You can, of course, create
bindings that can be updated, but those require extra notation and, thus, are easier to isolate.

 You can nest bindings, which creates nested local functions and bindings that are only
visible in their own scope.

 Functions are called without parentheses, and these calls are often chained together with | > .

 There is no main function that triggers the execution. If you run the code in Listing 25 - 1 in
F# Interactive, or if you compile it as a standalone program, it will print the result. The top -
 level binding that is discarded (via the underscore) causes the execution, and you may have
multiple such blocks, even in multiple fi les.

 Thus, any value binding will trigger the evaluation of the value being bound, and all function
bindings will postpone that evaluation until the function is called, as you would expect.

 Understanding Functions and Piping

 Functional programming gets its name from one of its fundamental pillars: functions, the
workhorses of F# development. In F#, functions can do the following:

 Appear anywhere other values can (they are fi rst - class values)

 Be created on - the - fl y (anonymous functions)

 Carry their closures

 Be passed to as arguments, or returned from other functions (higher - order functions)

As you will see in this chapter, functions are a powerful abstraction that can change the way you
think about problems and their solutions.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

CH025.indd 1108CH025.indd 1108 9/6/10 6:57:21 PM9/6/10 6:57:21 PM

 In your C# or VB coding you were used to calling functions or methods supplying all of their
arguments. For example, your call may have looked like this one:

MyFunction(1, “string value”, 2)

 In F#, this corresponds to calling MyFunction with a single tuple value that carries three values — the
integer 1 , the string “ string value ” , and the integer 2 . You can phrase this in F# the same way, or
slightly differently using piping :

(1, “string value”, 3) | > MyFunction

 Piping relies on the pipe (| >) operator, which is defi ned to take two arguments, and sends the fi rst
to the second. By fl ipping the order of the function and its argument, you gain two things. First, you
get a more natural way of writing a function call. This becomes apparent when you have a chain of
function calls that operate on a value:

GetAllCustomers()
| > FilterWomen
| > FilterThoseInCA
| > AllocateADiscount

 Besides making nested function calls easier to read, piping also helps to drive type inference by
propagating type information from left to right, from the arguments into the functions being
called. In the previous example, the result type of GetAllCustomers() is known in advance, and is
then propagated to the next call, and so on. This may not seem like a huge win in cases where the
participating functions have specifi c type requirements, but it can be a lifesaver with generic ones,
and will save you a few type annotations.

 Understanding Optional Parentheses Around Function Arguments

 You may have noted in Listing 25 - 1 that in F#, parentheses around function arguments are optional,
and you just saw that expressions such as (1, “ string value ” , 2) are single tuple values. The
following guidelines for writing function calls will help you write cleaner code:

 Use f x instead of f(x) . Function application binds stronger than most operators
(unary negation being one notable exception), so you can safely write 1+f 2+3 instead of
 1+f(2)+3 , saving a few keystrokes that can come in handy when prototyping code.

 Use f (x, y) or f (x,y) instead of f(x, y) . The extra space makes it clear that the
function takes a tuple argument.

 Use y | > f x instead of f x y , if and when it makes sense (for example, if the result of f
must undergo further transformations, or if it helps to drive type inference).

 Align your pipes on new lines. This makes code much easier to read and change.

 F# encourages passing multiple values as multiple arguments, so they can be curried.

 Understanding Currying

 Currying refers to functions taking arguments one by one, so they can be partially applied. This is
in contract to passing all arguments at the same time as a single tuple value.

➤

➤

➤

➤

F# at First Glance ❘ 1109

CH025.indd 1109CH025.indd 1109 9/6/10 6:57:21 PM9/6/10 6:57:21 PM

1110 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 When the earlier MyFunction (assuming that it returns an integer) is defi ned in a curried form, it
has the following type:

int - > string - > int - > int

This is opposed to its non - curried, tupled form:

(int * string * int) - > int

 Curried functions offer a couple of advantages:

 They can be partially applied, yielding other, more specialized residual functions that take
fewer arguments.

 They allow you to perform pre - computation on arguments that are known in advance.

 To benefi t the most from curried functions, you should order your arguments from the least varying,
leaving the one that varies the most to the last. For example, the F# core library has a number of
modules defi ned for operations on different data types (such as lists, arrays, sequences, sets, maps,
and so on). A typical operation on these data types — say, mapping or transforming elements
to yield another collection — is defi ned to take the collection after the transformation function
itself. This is because you are more likely to apply the same transformation function to different
collections, than vice versa.

 Nonetheless, avoid exposing curried functions in .NET APIs that you will use from other .NET
languages that don ’ t have an implicit mechanism to call these without requiring you to supply each
argument via an Invoke method call.

 Signifi cant Whitespace, Indentation Matters

 By default, the F# parser operates in what is called the “ light ” syntax, based on a simplifi ed
grammar where signifi cant whitespace is used to eliminate the need for some keywords — providing
for more concise code, and giving explicit recommendations on the coding style. The “ full ” F#
language is slightly more verbose, and primarily it is rarely used, since the light syntax became the
offi cial standard.

➤

➤

 Light syntax is often referred to as “ #light ” syntax. This is a parsing directive
that you can use in your code to turn on (#light “ on ” or simply #light) or off
(#light “ off ”) the light mode.

 For example, the normal syntax mode for records requires that you use a semicolon to separate
the fi elds, and places no restriction on how many you can fi t on a single line. On the other hand, the
light syntax requires no semicolon, but, to be able to disambiguate each fi eld, it requires you to put
each on a new line. You can see in Listing 26 - 1 that no begin - end or other organizational constructs
were needed. The scopes of each identifi er are clear by the indentation, and the code looks clean
and concise.

CH025.indd 1110CH025.indd 1110 9/6/10 6:57:21 PM9/6/10 6:57:21 PM

 As a general guideline, you should use the light syntax wherever possible, and only resort to normal
syntax elements when absolutely necessary. The light syntax encourages a cleaner, shorter, and more
robust coding style because of the added signifi cant whitespace, so your code becomes easier to
maintain.

 Naming Conventions

 In addition to writing F# applications or F# libraries to be used from F# applications, you can
use F# very effectively for writing libraries that you consume from other .NET languages. This
is especially true in those domains where functional programming excels over other paradigms,
including numerical and symbolic computing, data traversal and processing, parallel and
asynchronous computations, and so on — which you then expose as a Windows Forms or web
application with some C# or VB UI code.

 Using F# for .NET components and libraries makes the naming conventions defi ned in the standard
.NET Design Guidelines for libraries prevail, and, indeed, this is the recommended way to program,
even in the small. F# itself has come a long way since its beginnings to wear off many of its early
infl uences from OCaml, especially when it comes to naming conventions.

 As a short summary, here are some naming and coding style recommendations that will help you to
produce code that is easier to maintain and call from other .NET languages:

 Always use PascalCase for type names and type parameters (for example:
 MyCustomerType < ’ T >). Note that most of the standard F# type abbreviations (which you
see all the time in F# code, such as ’ T list , ‘ T array , ‘ T option) are safe “ exceptions ”
to this rule. As abbreviations, they will ultimately map to the underlying .NET type names
that are PascalCase.

 Always use PascalCase for namespaces, modules, exceptions, class members (properties and
methods), discriminated union cases, record labels, and, in general, everything that will be
part of a public API.

 Always use camelCase for function and method parameters, and (internal) let values.

 Avoid using underscores in identifi ers. There has been a strong movement motivated by
standard .NET naming conventions to eliminate underscores from the F# core libraries,
and, all in all, you should avoid using them as well.

 Using Comments

 Comments in F# are the same as those in C#. Thus, you have the following:

 Comments in between (* and *) — These comments can be nested.

 Single - line comments starting with // — These comments apply from the comment opener
to the end of the current line. Used for documenting inner code.

 XDoc comments starting with /// — Used to defi ne comments for public APIs, such as
member or type names, argument types, return types, member description, and so on.

➤

➤

➤

➤

➤

➤

➤

F# at First Glance ❘ 1111

CH025.indd 1111CH025.indd 1111 9/6/10 6:57:32 PM9/6/10 6:57:32 PM

1112 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 YOUR FIRST F# PROJECT

 Now that you have seen some of F# and a bit of functional programming, it is time you created
your fi rst F# project. You can do this pretty much the same way you create any project, by going to
File ➪ New in Visual Studio. Figure 25 - 1 shows a typical F# development environment with
F# Interactive.

 FIGURE 25 - 1: Developing F# projects

 Once Visual Studio has created your project, note that a reference to FSharp.Core.dll has been
added. For NET 4.0, this fi le resides under the following:

C:\Program Files\Reference Assemblies\Microsoft\F#\1.0\Runtime\v4.0\FSharp.Core.dll

 FSharp.Core.dll contains all the core F# constructs, modules, types, and functions. Many of the
miscellaneous functionality (including the primitives required to work with the F# - bundled lexer
and parser generators) are placed in the F# PowerPack, which, as of this writing, is available as a
separate download from MSDN Downloads and CodePlex.

CH025.indd 1112CH025.indd 1112 9/6/10 6:57:33 PM9/6/10 6:57:33 PM

 There are certain types of F# fi les that you should become familiar with as you work with F#
projects:

 Source fi les (*.fs) — These fi les contain F# code that will be compiled with your project.
They are analogous to .cs or .vb fi les in other .NET languages.

 Signature fi les (*.fsi) — These fi les contain signatures and will be compiled with your
project. You can use these signatures to give a public API to your corresponding source fi les,
typically to restrict the visibility of certain members or types. In reality, because you can
hide or expose members or functions within implementation modules using the appropriate
access modifi ers (such as private , public , or internal) signature fi les are of limited use,
except when you want to hide the internals of certain types. Nonetheless, they are very
effective in reiterating what the API should be.

 Script fi les (*.fsx) — These fi les can contain any code and will not be compiled with your
project. You can use script fi les to experiment with certain parts of your code on - the - fl y in
F# Interactive, as you have already seen earlier in this chapter.

 Lexer fi les (*.fsl) — These fi les contain lexer defi nitions for your fslex - based lexers.
 fslex is a lexer generator for F#, similar to lex . To work with generated lexers, you must
reference the F# PowerPack in your project.

 Parser fi les (*.fsy) — These fi les contain grammar defi nitions for your fsyacc - based
parsers. fsyacc is a parser generator for F#, similar to yacc . To work with generated
parsers (and lexers), you must reference the F# PowerPack in your project.

 PROGRAMMING WITH F#

 You are now ready to take a deeper look at the F# language. In this section, you will learn about the
fundamental concepts that underpin any F# programming.

 Namespaces and Modules

 As with any .NET code, F# code is also organized into namespaces , which are logical containers of
code and types. These namespaces may be provided via multiple physical libraries, and referencing a
particular set of libraries will make the namespaces and the contents defi ned in them accessible.

 For your F# projects, adding a project or library reference is all you need to access the namespaces
therein. In F# Interactive, however, you must explicitly reference a particular library to work with it:

 > #r “System.Xml.dll”;;

-- > Referenced ‘C:\Windows\Microsoft.NET\Framework\v4.0.21006\System.Xml.dll’

 > let xdoc = new System.Xml.XmlDocument();;

val xdoc : System.Xml.XmlDocument

 F# also has another code organizational device: modules . Similar to namespaces, F# modules are
also containers for functions and types, but they can also contain values/bindings, allowing you to
group related functionality and their associated values into a single unit.

➤

➤

➤

➤

➤

Programming with F# ❘ 1113

CH025.indd 1113CH025.indd 1113 9/6/10 6:57:34 PM9/6/10 6:57:34 PM

1114 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 F# modules are translated to .NET classes, with the values exposed as static members and types as
nested types. Modules can also contain sub - modules, which are simply translated to nested inner
classes.

 From those namespaces that are contained by the library references available to your project or your
F# Interactive session, you can “ open ” any given namespace or module, making its contents available
without having to qualify them with the parent namespace or module, by using the open keyword:

 > open System.Xml;;
 > let xdoc2 = new XmlDocument();;

val xdoc2 : XmlDocument

 As shown in Table 25 - 1, there are a number of namespaces and modules opened by default in your
F# projects.

 TABLE 25 - 1: Namespaces and Modules Opened Implicitly

 NAMESPACE OR MODULE TYPE DESCRIPTION

 Microsoft.FSharp Namespace Parent namespace for all F# - related

content.

 Microsoft.FSharp.Core Namespace Contains the core F# constructs,

including basic types such as tuples.

 Microsoft.FSharp.Core.

Operators

 Module Contains the core F# built - in operators

and functions.

 Microsoft.FSharp.

Collections

 Namespace Contains the core F# collections,

including support for sets, maps, lists,

and arrays.

 Microsoft.FSharp.Control Namespace Contains F# primitives for asynchronous

and lazy programming.

 Microsoft.FSharp.Core.

ExtraTopLevelOperators

 Module Contains aliases for the top - level

operators and functions, including

pretty printing and common types.

 It is a good practice to always use a namespace declaration in the top of your source fi les, and nest
modules underneath as you see fi t:

namespace Your.Namespace

module FirstModule =

 open System.Xml

CH025.indd 1114CH025.indd 1114 9/6/10 6:57:34 PM9/6/10 6:57:34 PM

 let Foo () = new XmlDocument()
 ...

// Visible from outside as Your.Namespace.SecondModule
module SecondModule =

 let Bar () = FirstModule.Foo ()
 ...

 In the absence of a top - level namespace declaration, the compiler will insist on a top - level module —
and, in this case, all other modules will be implicitly nested underneath this module:

module FirstModule

open System.Xml

let Foo () = new XmlDocument()

// Visible from outside as FirstModule.SecondModule
module SecondModule =

 let Bar () = Foo ()

 The only time you can get away with not giving a top - level namespace or module declaration (that
is, simply giving a set of values, types, and/or functions) is when you have a single - fi le project. In that
case, the compiler will generate a top - level module based on the fi lename, with a capital initial letter.

 A useful module - level attribute is RequireQualifiedAccess . Adding this to a module requires that
its contents are accessed via qualifying with the module name. For example, the List module in
 Microsoft.FSharp.Collections is marked with this attribute, and trying to open it will yield an
error (or a warning in earlier versions of F#).

[< RequireQualifiedAccess >]
module YourModule =
 let Foo () = 1

module YourApplication =
 open YourModule // Error

 let _ = Foo () // Error
 let _ = YourModule.Foo () // OK

 Attributes

 As you just saw in the preceding example, you can add various attributes using the [< ... >]
syntax. Attributes can apply to fi elds, members (properties, methods), types, modules, namespaces,
as defi ned by their usage site. When adding an attribute whose name ends with xxxAttribute , you
can simply use the name without that suffi x.

 Literals and Bindings

 In this section, you will learn more about simple values (ordinary and other literals, and syntax for
various collections), bindings, and type signatures.

Programming with F# ❘ 1115

CH025.indd 1115CH025.indd 1115 9/6/10 6:57:35 PM9/6/10 6:57:35 PM

1116 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 Numbers, Booleans, and Unit

 Having seen .NET code, you will not be surprised to fi nd that most numeric literals are the same (or
similar) as those you may have used in other .NET languages. Table 25 - 2 summarizes some of the
basic numeric types and their associated literals. The list also includes the empty value () , which is
the only value that inhabits the unit type, and it is roughly equivalent to the void type in C or C#.

 TABLE 25 - 2: Some Basic Types and Literals

 F# TYPE SAMPLE VALUES .NET TYPE NAME

 bool true, false System.Boolean

 byte 16uy System.Byte

 sbyte 16y System.SByte

 int16 16s System.Int16

 uint16 16us System.UInt16

 int, int32 16 System.Int32

 uint32 16u System.UInt32

 int64 16L System.Int64

 uint64 16UL System.UInt64

 single, float32 16.0f, 16.f System.Single

 float, double 16.0, 16. System.Double

 decimal 16M System.Decimal

 bigint 16I Math.BigInt

 bignum 16N Math.BigNum

 unit () Core.Unit

 In addition to the suffi xes in Table 25 - 2, you can also specify binary, octal, and hexadecimal literals
by prefi xing them with 0b , 0O , 0x , respectively:

0b00010, 0O1234567, 0xFFFA00

 Strings

 F# strings are immutable values, and they represent instances of the standard System.String type.
Table 25 - 3 lists the most common string literals. The escape characters you can use are the same as
in other .NET languages.

CH025.indd 1116CH025.indd 1116 9/6/10 6:57:35 PM9/6/10 6:57:35 PM

 In addition to the static System.String members, the F# standard library provides the Microsoft
.FSharp.Core.String module that contains a number of additional convenient operations on
strings. These are summarized in Table 25 - 4.

 TABLE 25 - 3: String and Character Literals

 EXAMPLE F# TYPE DESCRIPTION

 “ Hello World! ” string Ordinary string

 “ This is a line\nAnd another\n ” string String with escape

characters

 @ “ c:\Program Files\ ” string Verbatim string

 “ This is a multi - line \ comment. “ string Multi - line string

 “ 1234567890ABC ” B byte array Literal byte array

 ‘ 0 ’ char Character

 ‘ \n ’ char Escape character

 MEMBER TYPE DESCRIPTION

 collect (char - > string) - > string - >

string

 Maps each character of a string to build

another by concatenating the resulting

strings.

 concat string - > seq < string > - >

string

 Concatenates the given strings using the

separator string in between elements.

 exists (char - > bool) - > string - >

bool

 Checks whether any character of the

string satisfi es the given predicate.

 forall (char - > bool) - > string

 - > bool

 Tests whether all characters of the string

satisfy the given predicate.

 init int - > (int - > string) - >

string

 Builds a new string by concatenating the

results of the given function applied to

values from 0 to the number given.

 iter (char - > unit) - > string - >

unit

 Applies the given function to each

character of the string.

 iteri (int - > char - > unit) - >

string - > unit

 Applies the given function to each character

and their position indexes in the string.

 TABLE 25 - 4: Static Members in the F# String Module

continues

Programming with F# ❘ 1117

CH025.indd 1117CH025.indd 1117 9/6/10 6:57:35 PM9/6/10 6:57:35 PM

1118 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 Syntax for Various Collections

 F# provides special syntax for list and array values. These are summarized in Table 25 - 5. In
addition, you can use range expressions (discussed later in this chapter) to generate sequences of
numbers of various types.

 TABLE 25 - 5: Common F# Collection Values

 F# TYPE EXAMPLE .NET TYPE NAME

 list [], [1], [1; 2] Microsoft.FSharp.Collections

.List

 array [| |], [| 1 |], [| 1; 2 |] Microsoft.FSharp.Collections

.Array

 seq { 1 .. 100 } System.Collections.IEnumerable

 Null Values

 Generally, in pure F# programming, you will rarely (if ever) encounter null values. In other .NET
languages, null is used as an indication that a particular value is not yet initialized or available, and
some of the .NET APIs rely on passing and/or returning null values to indicate certain conditions.
In F#, a common pattern for this is to return None option values. Option values, as you will see later
in this chapter, are similar to Nullables , but they are truly generic and can be used with any type.

 To accommodate .NET APIs returning or expecting null s, F# also has a null value. When working
with .NET APIs, you often need to check whether or not a result is null . You can do so by using
pattern matching against the null pattern:

match SomeDotNetAPIFunction() with
| null - >
 ...

 MEMBER TYPE DESCRIPTION

 length string - > int Returns the length of the string.

 map (char - > char) - > string - >

string

 Builds a new string by applying the given

function to each character in the string.

 mapi (int - > char - > char) - >

string - > string

 Builds a new string by applying the given

function to each character and their

position indexes in the string.

 replicate int - > string - > string Builds a new string by appending the

string by the specifi ed number of times.

 TABLE 25 - 4 (continued)

CH025.indd 1118CH025.indd 1118 9/6/10 6:57:36 PM9/6/10 6:57:36 PM

 Type Signatures

 Before delving into the various forms of F# types and values, it is important to understand how the
various types can be referred to, say, in another type defi nition or signature fi le.

 F# type signatures (which cover the most common scenarios you will be seeing in this chapter) can
contain the following:

 Type names — An example would be System.Int32 . These type names can use the fully
qualifi ed type name, or the short type name if the containing namespace or module is opened.

 Type variables — An example would be ‘ T . Here, ‘ T stands for any type.

 Type abbreviations — Examples could be int or float . Table 25 - 2 shows many type
abbreviations commonly used in F# code.

 Tuples — An example would be T1*T2 . Here, the star (*) is used to “ glue ” values together
into a tuple, an anonymous container of values of possibly different types.

 Lists — An example would be ‘ T list . Lists are ubiquitous in functional programming,
and you will see how to work with lists in the subsequent sections of this chapter.

 Arrays — An example would be ‘ T array or T[] . Arrays are mutable collections (and,
hence, fundamentally different from lists or tuples).

 Function types — Examples include ‘ T1 - > ‘ T2 - > ‘ T3 , or (‘ T1 - > ‘ T2) - > ‘ T3 . The arrow
(- >) type operator associates to the right, so ‘ T1 - > ‘ T2 - > ‘ T3 is the same type as ‘ T1 -
 > (‘ T2 - > ‘ T3) — that is, a function that takes a value of type ‘ T1 and returns another
function that takes a value of type ‘ T2 to produce a value of ‘ T3 . Essentially, both of these
types describe a function that takes two arguments (of type ‘ T1 and ‘ T2) in curried form to
compute its result of ‘ T3 .

 As this list shows, one way to write generic data types such as List < ’ T > is as ‘ T list , and, indeed,
this is the usual way you write the core F# container types such as lists and arrays. These two
notations mean equivalent types.

 Bindings

 Unlike in imperative languages, in F#, you rarely use “ variables ” (that is, memory locations that
change their content). Instead, in most cases, when you assign a value to a “ variable, ” it never changes.
Functional programming encourages writing code that uses no mutation, and instead relies on applying
 referentially transparent functions (that is, functions that have no side effects, and consistently produce
deterministic results).

 You can bind a value to a name so that you can refer to it later by using a let binding, as you saw
earlier in this chapter. You can bind any value, including functions. Occasionally, you may want to
type annotate bindings, either to rule out ambiguities, or to assist the type inference algorithm. Here
are a few cases that defi ne how to do this:

 Typing values — You can type annotate a value simply by giving it a type and optionally
wrapping it inside parentheses:

let amount: float = ...

➤

➤

➤

➤

➤

➤

➤

➤

Programming with F# ❘ 1119

CH025.indd 1119CH025.indd 1119 9/6/10 6:57:36 PM9/6/10 6:57:36 PM

1120 ❘ CHAPTER 25 VISUAL F# AND THE OTHER .NET LANGUAGES

 Typing function arguments — You can type annotate a parameter by wrapping it inside
parentheses and giving it a type:

let WithdrawMoney customer (amount: float) = ...

 Typing function return values — You can simply give the function itself a return type (note
the extra space for better readability):

let SomeFunction x y : float = ...

 Bindings are visible in the scope they are defi ned in. So, your top - level bindings are visible
everywhere beyond their defi nition, and your local bindings inside a function are only visible in that
local scope. When you introduce a new binding, it is not yet available in the body of that binding,
unless you make it so. You can introduce recursive bindings using the rec keyword:

let rec fact n = if n < 2 then 1 else n * fact (n-1)

 Also, you may need to defi ne mutually recursive bindings. For these you can combine rec and and :

let rec f x = if x > 0 then 1 + g x else 0
and g x = 1 + f (x-1)

 The bindings you create are not mutable (that is, you can ’ t update them once they are created, unless
they point to mutable values). Mutable bindings can be created and later reassigned as follows:

let mutable counter = 0
//...
counter < - counter + 1

 As you will see later in this chapter, you can also use mutable reference cells if you need mutable data.

 Access Control

 You can control the visibility of your values, functions, types, members, and fi elds using the
following access control specifi ers:

 public — The entity is visible globally and can be referred to by all callers.

 internal — The entity is visible only inside the defi ning assembly.

 private — The entity is private to the enclosing type or module.

 By default, in a module, all top - level let bindings and types are public. You will see type defi nitions
later in this chapter. Members in a type are, by default, public also.

 Expressions

 This section surveys some of the available F# operators and basic language constructs (conditionals
and the imperative style looping). You should pay careful attention to the function operators, which
you will see all the time in F# code.

➤

➤

➤

➤

➤

CH025.indd 1120CH025.indd 1120 9/6/10 6:57:37 PM9/6/10 6:57:37 PM

 Operators

 Tables 25 - 6, 25 - 7, and 25 - 8 summarize selected function, bitwise arithmetic, and logical
operators.

 TABLE 25 - 6: Function Operators

 OPERATOR EXAMPLE TYPE DESCRIPTION

 | > a | > f ‘ A - > (‘ A - > ‘ B) - > ‘ B Applies f to a .

 > > (f > > g) a (‘ A - > ‘ B) - > (‘ B - > ‘ C)

 - > ‘ A - > ‘ C

 Applies f to a , then g to the

result. Equivalent to g(f(a)) .

 < < (f < < g) a (‘ A - > ‘ B) - > (‘ C - > ‘ A)

 - > ‘ C - > ‘ B

 Applies g to a , then f to the

result. Equivalent to f(g(a)) .

 TABLE 25 - 7: Bitwise Arithmetic Operators

 OPERATOR EXAMPLE RESULT DESCRIPTION

 & & & 0b001 & & & 0b111 0b001 Bitwise AND

 ||| 0b001 ||| 0b111 0b111 Bitwise OR

 ̂ ^^ 0b001 ^^^ 0b111 0b110 Bitwise EXCLUSIVE OR

     ~~~      ~~~0x100      0xFFFFFeff     Bitwise negation  

      <  <  <       0b001  <  <  <  2      0b100     Left shift  

      >  >  >       0b100  >  >  >  2      0b001     Right shift  

 TABLE 25 - 8: Boolean Operators 

    OPERATOR    EXAMPLE    RESULT    DESCRIPTION  

      &  &       true  &  &  false      false     Logical AND  

     ||      true || false      true     Logical  “ OR ”   

     not      not true      false     Logical negation  

 Logical operators implement the usual shortcut logic, in  a &  & b  and  a||b ,  b  is not evaluated if  a  is 
 false  and  true , respectively.   

Programming with F# ❘ 1121

 Relational operators are standard, but do note the   <  >   operator. Table 25 - 9 summarizes relational 
operators.    

CH025.indd   1121CH025.indd   1121 9/6/10   6:57:37 PM9/6/10   6:57:37 PM



1122  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

  Conditionals 

  Conditionals  are expressions that are guarded by a Boolean condition, and, depending on this 
condition, evaluate one of their two branches. Unlike in C#, F# conditionals are not statements (that 
is, they do return values): 

let a =
    if x > 100 then
        2
    elif x > 0 then
        1
    else
        0  

 As a consequence, all branches of a conditional must return a value of the same type. So, the 
following will yield a compile - time error: 

let a =
    if x > 100 then
        2
    elif x > 0 then
        1   

  Loops 

 F# provides various imperative looping constructs that will look familiar, although you rarely use 
them in functional code: 

for i = 1 to 100 do
    printfn “%d” i
        
for (i, j) in [1,2; 2,3; 3,4; 4,5 ] do
    printfn “pair-%d-%d” i j
        
while someCondition do
    printfn “inside”
    ...  

 TABLE 25 - 9: Relational Operators 

    OPERATOR    EXAMPLE    RESULT    DESCRIPTION  

      >       1  >  0      true     Greater than  

      > =      1  > = 1      true     Greater or equal  

      <       2  <  1      false     Less than  

      < =      2  < = 0      false     Less or equal  

     =      2 = 2      true     Equal  

      <  >       2  <  >  2      false     Not equal  

CH025.indd   1122CH025.indd   1122 9/6/10   6:57:38 PM9/6/10   6:57:38 PM



 Here are these same code pieces using a more functional style: 

{ 1 .. 100 }
| >  Seq.iter (printfn “%d”)
        
[1,2; 2,3; 3,4; 4,5 ]
| >  List.iter (fun (i, j) - > 
    printfn “pair-%d-%d” i j)
        
let rec loop () =
    if someCondition then
       printfn “inside”
       ...
    loop ()  

 The fi rst two are a straightforward rewriting using pipelining and the higher - order functions 
for iteration. The third is an often - used technique to turn a block of code into a local recursive 
function, especially using an extra accumulator argument that collects a result through the iteration.  

  Reference Cells 

  Reference cells  are a type - safe way to maintain  “ links ”  to values. These links can later be updated 
to point to other values, effectively giving you a way to model imperative - style variables. You can 
create a new reference cell using the  ref  function as follows: 

let counter = ref 0  

 This creates a reference cell, which is a core F# type called  ref , and the  ref  function essentially 
translates any type   ‘ T  to   ‘ T ref . 

 You can retrieve the value of a reference cell by invoking the  !  function on it, and you can update a 
reference cell via the  :=  operator: 

counter := !counter + 1  

 Both reference cells and the mutable bindings you saw earlier can be passed to .NET functions that 
have  out parameters , or expect referenced arguments.  

  Core Functions  —  Formatted Printing 

 Opened by default, the  *.Core.ExtraTopLevelOperators  module contains a number of commonly 
used functions (such as  printf ,  printfn ,  sprintf , and other formatted printing functions). In 
addition to the standard  String.Format  members, these are the most common ways to format 
objects. In particular, note the  %A  format specifi er that you can use to print any value in a 
reasonably robust way. 

 The standard library is a collection of core functions that are part of every F# programmer ’ s tool 
set, and this short chapter can ’ t do justice to describing them in detail. Luckily, documentation is 
available at your fi ngertips in Visual Studio, where exploring the various namespaces is a breeze.  

Programming with F# ❘ 1123

CH025.indd   1123CH025.indd   1123 9/6/10   6:57:38 PM9/6/10   6:57:38 PM



1124  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

  Converting Literals and Values 

 You saw most of the numeric types and sample literals in Table 25 - 2. These types have a 
corresponding set of conversion functions defi ned in  Microsoft.FSharp.Core.Operators , 
each having the same name as the type name, to convert between various numeric formats. This 
conversion may result in a loss of precision or overfl ow. Consider the case when there is no loss of 
precision  —  converting a 32 - bit fl oat value to a 64 - bit one: 

 >  System.Single.MaxValue;;
val it : float32 = 3.40282347e+38f
 >  float System.Single.MaxValue;;
val it : float = 3.402823466e+38
 >  

Underfl owing is unchecked: 

 >  sbyte -129;;
val it : sbyte = 127y 

And so is overfl owing: 

 >  int16 System.Int32.MaxValue;;
val it : int16 = -1s  

 These conversion functions have alternatives in the  Microsoft.FSharp.Core.Operators.Checked  
module that raise an exception if there is an over or underfl ow in the conversion: 

 >  Microsoft.FSharp.Core.Operators.Checked.int16 System.Int32.MinValue;;
System.OverflowException: Arithmetic operation resulted in an overflow.
   at  < StartupCode$FSI_0070 > .$FSI_0070.main@()
Stopped due to error  

 Numeric literals can also be converted to other numeric types using the  System.Convert  class 
provided in the .NET framework. Note, however, that this conversion may fail in certain cases as 
documented for the various members of this class.   

  Values and F# Types 

 Fundamentally, every value in your F# code will be compiled to .NET objects, making it easy to 
interoperate F# code with other .NET languages. However, the following are some of the multiple 
forms of types in the language that you should be aware of, and it is important to understand how 
these types will appear from a non - F# project: 

  Tuples  

  Discriminated unions (algebraic data types)  

  Options  

  Records  

  Lists  

  Arrays    

➤

➤

➤

➤

➤

➤

CH025.indd   1124CH025.indd   1124 9/6/10   6:57:38 PM9/6/10   6:57:38 PM



  Class Types, Objects, and Object Expressions 

 You defi ne class types by defi ning various  members  for them. Members can be  properties  or 
 methods , similar to other .NET languages. Consider the following defi nition: 

type Car(name: string, year: int) =
    member this.Name = name
    member this.Year = year  

 This defi nes a new class type called  Car  that has one constructor taking two arguments, and 
exposes those via two properties. Properties behave like method calls, except that they don ’ t take 
arguments. This means that calling the same property multiple times will evaluate the body of the 
property every time. This is important to remember if you have state manipulation (for example, 
logging) in your property defi nitions. Also, note that all members are assumed to be public unless 
you otherwise specify by prefi xing them with the appropriate access modifi er.   

member internal this.Year = year  

  Inheritance 

 You can inherit from an existing type by adding the  inherit  clause. If you need to access the base 
instance, you can use the  base  keyword.   

type BMW(model: string, year: int) =
    inherit Car(“BMW”, year)
        
    member this.Model = model  

 Inheritance is a less frequently used concept in F# programming. One of the many reasons is that 
inheritance is not a composable abstraction because it makes objects more complex and only 
conceivable up to a certain level, whereas functional programming aims to use simple (but powerful) 
composable building blocks such as higher - order functions.  

  Interfaces 

 An alternative to implementation inheritance is using interfaces to defi ne traits that can be 
supported without having to share a common object ancestry. Interfaces are abstract types, in the 
sense that they contain a  “ skeleton ”  or signature of a class type: 

type ICar =
    abstract Name : string
    abstract Year : int  

 Note that interfaces can only describe instance member requirements, without having to name the 
instance itself in the signature. Also, they can ’ t contain constructors or take arguments. Interfaces 
can also be inherited to create a  hierarchy of interface types : 

type ICarModel =
    inherit ICar
        
    abstract Model : string   

Programming with F# ❘ 1125

CH025.indd   1125CH025.indd   1125 9/6/10   6:57:38 PM9/6/10   6:57:38 PM



1126  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

  Object Expressions 

 You can instantiate interfaces using  object expressions : 

let audi2000 =
    { new ICar with
        member this.Name = “Audi”
        member this.Year = 2000 }  

 Object expressions are used for implementing interfaces on - the - fl y. Any given object expression 
must give the implementation for all interface members: 

let bmw525i2004 =
    { new ICarModel with
        member this.Name = “BMW”
        member this.Year = 2004
        member this.Model = “525i” }  

 You can also defi ne new class types that implement interfaces, as many as you prefer: 

type Citroen(model: string, year: int) =
    interface ICar with
        member this.Name = “Citroen”
        member this.Year = year
    member this.Model = model   

  Objects 

 Ordinary class types can be instantiated using their constructors and the optional  new  keyword.   

let audi2000 = Car(“Audi”, 2000)
let bmw525i2004 = new BMW(“525i”, 2004)   

  Object State via let Bindings 

 Now that you have seen how to defi ne class types and interfaces, how object expressions work, and 
you can instantiate both to create objects, there are a few additional details you should be aware of. 

 Foremost, you can add construction - time state to your objects using  let  bindings in the class 
defi nition: 

type Rectangle(height, width) =
    let area = height*width
    let diagonal = Math.Sqrt(height**2.0 + width**2.0)
        
    member this.Area = area
    member this.Diagonal = diagonal  

 These  let  bindings, similar to the type/constructor arguments, are visible in the entire type 
defi nition, and they are computed only once as the object is being constructed. They need to be 
placed before the members; otherwise, you will get a compiler error.  

CH025.indd   1126CH025.indd   1126 9/6/10   6:57:39 PM9/6/10   6:57:39 PM



  Object Initialization 

 You can also add initialization code to your classes using the  do  keyword. This code can be 
added before or after the  let  bindings. Usually, you can use initialization code to check various 
constraints that must hold for the object to be constructed. Here is an example for refusing to 
construct rectangles with negative dimensions: 

type Rectangle2(height, width) =
    do if height  <  0. || width  <  0. then
        failwith “Can’t construct rectangle with negative dimensions”
        
    let area = height*width
    let diagonal = Math.Sqrt(height**2.0 + width**2.0)
        
    member this.Area = area
    member this.Diagonal = diagonal   

  Setters and Getters 

 In all previous class defi nition examples, the properties you defi ned were read - only. Another way to 
write these properties would be to specify the getter explicitly: 

    ...
    member this.Area with get () = area  

 Because there is no setter defi ned by default, if you tried to set them, you would get an error: 

let r2 = Rectangle2(100,100)
r2.Area  < - 100                 // Error  

 Adding a setter is straightforward, and it usually comes defi ned together with the getter (unless you 
want only a setter): 

type Rectangle2(height, width) =
    let mutable colorCode = 0
    ...
    member this.ColorCode
        with get () = colorCode
        and  set cc = colorCode  < - cc   

  Indexers 

 You can add further dot notation to your objects in the form of  object.[index]  and 
 object.[index]  <  -  expr . These  indexer  properties are special properties that take arguments, 
and can be defi ned with getters and setters as shown previously to a special property called  Item . 

 For example, you may want to provide a mechanism to read the coordinates in a polygon via an index 
(starting at zero). You can implement this by creating a  Polygon  class with an indexer property: 

type Polygon(coords: int list) =
    ...
        
    member self.Item

Programming with F# ❘ 1127

CH025.indd   1127CH025.indd   1127 9/6/10   6:57:39 PM9/6/10   6:57:39 PM



1128  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

        with get idx =
            if Seq.length coords  < = idx then
                failwith “Index out of bound”
            else
                Seq.nth idx coords  

 You can test the indexer property in F# Interactive: 

 >  let p = new Polygon([1;2;3;4;5;6;7]);;
        
val p : Polygon
        
 >  p.[2] | >  printfn “%d”;;
3
val it : unit = ()   

  Named and Optional Arguments to Constructors 

 You can make your code more readable by naming arguments and settable properties in your 
constructor calls. For example, you can construct a new rectangle this way: 

let r2 = Rectangle2(height=100., width=100., ColorCode=5)  

 You can verify that this indeed initialized the object properly: 

 >  r2.ColorCode;;
val it : int = 5
 >  r2.Area;;
val it : float = 10000.0
 >  r2.Diagonal;;
val it : float = 141.4213562  

 You can also add optional arguments to your constructors: 

type Circle(radius, x, y, ?color: int) =
    let setColor =
        match color with
            | None - > 
                128
            | Some c - > 
                c
    member self.Everything = (radius, x, y, setColor)  

 Here,  ?color  defi nes an optional argument to the  Circle  class constructor. In F#, this is modeled 
as receiving an option value, which you check as part of the object initialization sequence, and 
assign the local  setColor  state variable accordingly (in this case, defaulting to  128  if no color code 
is given). You can test this in F# Interactive: 

 >  let c1 = new Circle(radius=10, x=5, y=5);;
val c1 : Circle
 >  let c2 = new Circle(10, 5, 5, 100);;

CH025.indd   1128CH025.indd   1128 9/6/10   6:57:39 PM9/6/10   6:57:39 PM



val c2 : Circle
 >  c1.Everything;;
val it : int * int * int * int = (10, 5, 5, 128)
 >  c2.Everything;;
val it : int * int * int * int = (10, 5, 5, 100)    

  Anonymous Functions 

 You can create an anonymous function (a lambda expression in C# terminology)  —  that is, a new 
unnamed  function value  using the  fun  keyword, listing the formal parameters and the body of the 
function: 

fun x y - >  System.Math.Sqrt(x**2. + y**2.)  

 You can name function values by binding them to a name: 

let diag = fun x y - >  System.Math.Sqrt(x**2. + y**2.) 

This, of course, is equivalent to the following: 

let diag x y = System.Math.Sqrt(x**2. + y**2.)  

 If you need a single argument function that pattern matches against its argument (you will learn 
about pattern matching later in this chapter), you can use the  function  keyword: 

let onlyOne = function | 1 - >  1 | _ - >  0  

 This defi nes a function that takes an integer and returns  1  if it was  1 , and  0  otherwise. By 
convention, each pattern match case starts with a pipe character ( | ), including the fi rst case. 

 The function values you create can be passed or returned from other functions. One particularly 
useful application of anonymous functions is writing  continuations , also known as  continuation 
passing style  (CPS). You will see continuations later in this chapter in the discussion that deals with 
asynchronous programming, where an expression that is evaluated asynchronously takes place via 
registering a  callback function  (that is, a continuation that will receive the computed value and 
proceed with the rest of the computation). 

 For an example of explicit continuations, consider a CPS version of an evaluator (more of which you 
will be seeing later in this chapter in the discussion on discriminated unions): 

type Expr =
    | Number of float
    | Binop of (float - >  float - >  float) * Expr * Expr
        
    static member Add (e1, e2)  = Binop (( + ), e1, e2)
    static member Sub (e1, e2)  = Binop (( - ), e1, e2)
    static member Mul (e1, e2)  = Binop (( * ), e1, e2)
    static member Prod (e1, e2) = Binop (( / ), e1, e2)
        
let rec Eval e cont =
    match e with

Programming with F# ❘ 1129

CH025.indd   1129CH025.indd   1129 9/6/10   6:57:40 PM9/6/10   6:57:40 PM



1130  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

    | Number n - > 
        cont n
    | Binop (f, e1, e2) - > 
        Eval e1 (fun i1 - > 
            Eval e2 (fun i2 - > 
                f i1 i2 | >  cont))  

 Here, the  Eval  function receives an expression and an explicit continuation that takes the result 
of the expression. When the expression is a number, you simply pass it to the continuation. If the 
expression is a binary operation, you evaluate the fi rst operand with a continuation function that 
evaluates the second operand, which itself gets a continuation that takes both of the evaluated results, 
applies the binary operation on them, and passes the overall result to the original continuation. 

 CPS is a common functional pattern, often used for translating between different representations or 
traversing structured data types.  

  Using Tuples 

  Tuples  are a fundamental functional data structure, another workhorse of F# development. They 
are such a versatile data type that .NET 4.0 fi nally included them as a system type as  System
.Tuple , pioneered and inspired by F#. 

 Tuples are also referred to as  product types , because they constitute the Cartesian product of their 
parts, and also because, in type theory, they are denoted by a star symbol (such as  T1*T2*T3 ). As 
you saw earlier, in F# type signatures, tuples are marked with the star symbol (such as  T1*T2*T3 ). 

 You can construct tuples by connecting values with a comma: 

1, “my string”, 3  

 Often, you must parenthesize to avoid precedence errors  —  for example, when you call a function 
that takes a tuple argument, as you saw in the beginning of this chapter: 

(1, “my string”, 3) | >  MyFunction  

 Here, the function call (or the pipe operator) has higher precedence than a comma, and, without 
parentheses, it would only apply to the last value in the intended tuple. 

 Tuples are also called  n - tuples  for any  n , where the tuple groups  n  separate values together. You can 
nest tuples in tuples, so the following are different values: 

(1, “my string”, 3)
(1, (“my string”, 3))
((1, “my string”), 3)  

 You can use pattern matching to deconstruct tuples, as you will see later in this chapter. F# also 
provides some utility functions to work with pairs: 

 >  fst (1, 2);;
val it : int = 1
 >  snd (1, 2);;
val it : int = 2   

CH025.indd   1130CH025.indd   1130 9/6/10   6:57:40 PM9/6/10   6:57:40 PM



  Using Discriminated Unions 

  Discriminated  (or  tagged )  unions  are a form of algebraic data types that can take on a predefi ned 
set of shapes. One immediate advantage of using discriminated unions in your code is that the 
compiler can check that you handle all possible shapes where you operate on them, as you will see 
shortly in the discussion on pattern matching. However, fundamentally, an even more important 
advantage is that they provide type - safe access to the values they carry, as opposed to the C - style 
unions you may have encountered before. Discriminated unions are important data abstractions in 
functional programming because they partition a value space into a set of shapes, making it easier 
and conceptually cleaner to work on them. 

 Consider the following example: 

type Expr =
    | Num of float
    | Var of string
    | UnOp of (float - >  float) * Expr
    | BinOp of (float - >  float - >  float) * Expr * Expr
        
    static member Add (e1, e2) = BinOp (( + ), e1, e2)
    static member Sub (e1, e2) = BinOp (( - ), e1, e2)
    static member Mul (e1, e2) = BinOp (( * ), e1, e2)
    static member Div (e1, e2) = BinOp (( / ), e1, e2)
    static member Sin (e1)     = UnOp  (Math.Sin, e1)
    static member Cos (e1)     = UnOp  (Math.Cos, e1)  

 Here you created a discriminated union type to represent mathematical expressions with four basic 
shapes: numbers, variables, unary and binary operations. To make it easier to construct values 
(expressions) of this type, you have also added a few static members to represent the four basic 
arithmetic operations, and sine and cosine. You can also add any number of additional members the 
same way. 

 You can now construct mathematical expressions easily. Consider the following that represents 
 cos(x+ � ) : 

let num = Expr.Cos (Expr.Add (Expr.Var “x”, Expr.Num Math.PI))  

 Note that you have used the type name to qualify the occurrences of the basic four shapes ( Var  and 
 Num )  —  this is not required as long as the type itself is in scope. However, because you may have 
union cases with the same name in different unions, it is good practice to qualify them with the 
appropriate type name. 

 You can examine union values (and others) using  pattern matching     —  a machinery used to 
deconstruct and bind values via patterns. You will learn more about pattern matching later in this 
chapter, but as a preview, here is a function that evaluates expressions of your new type: 

let rec Eval (env: Map < string, float > ) = function
    | Num num - > 
        num
    | Var v - > 
        env.[v]

Programming with F# ❘ 1131

CH025.indd   1131CH025.indd   1131 9/6/10   6:57:40 PM9/6/10   6:57:40 PM



1132  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

    | UnOp (op, e) - > 
        op (Eval env e)
    | BinOp (op, e1, e2) - > 
        op (Eval env e1) (Eval env e2)  

 You can play with the evaluator in F# Interactive a bit just to double - check that it works correctly: 

 >  let env = [“x”, 1.0] | >  Map.ofList;;
        
val env : Map < string,float > 
        
 >  Eval env num;;
val it : float = -0.5403023059
 >  Math.Cos (1. + Math.PI);;
val it : float = -0.5403023059
 >    

  Using Options 

  Option values  are a generalization of the concept of  “ nullables ”     —  that is, to represent that a 
value of some type  T  is given or not. One key difference from the  Nullable <  ’ T >   .NET type is 
that F# options can be used with any arbitrary type, and not just value types. As you may expect, 
options can be implemented with discriminated unions. In fact, this is how it ’ s done in the F# 
standard library: 

type Option < ’T >  =
    | Some of ‘T
    | None  

 You will also fi nd a type alias (simply to defi ne it as a lowercase type name) to this type in the 
standard library, and, in fact, this is the type you will be seeing in most F# code: 

type ‘T option = Option < ’T >   

 Option values play an important role in making F# programming safe. One of the drawbacks of 
imperative languages is that they rely heavily on  null s to represent that some computation can ’ t 
proceed, or that the result is undefi ned. In fact, there are plenty of examples of standard .NET 
library functions returning  null s in certain situations. 

 Consider the following F# function: 

let FileExtension fname =
    if fname | >  String.IsNullOrEmpty | >  not then
        fname.LastIndexOf(‘.’)
        | >  function
            | n when n  <  1 - > 
                None
            | idx - > 
                idx
                | >  fname.Substring
                | >  Some
    else
        None  

CH025.indd   1132CH025.indd   1132 9/6/10   6:57:40 PM9/6/10   6:57:40 PM



 This function returns the fi le extension from the fi lename parameter as an option. It will only succeed 
if the fi lename passed has a dot ( . ) in it, and then it will return the tail from that dot as a  Some  value. 
In every other case, it will return  None . A bit of F# Interactive exploration helps to test these: 

 >  FileExtension “data”;;
val it : string option = None
 >  FileExtension “data.”;;
val it : string option = Some “.”
 >  FileExtension “data.dat”;;
val it : string option = Some “.dat”
 >  FileExtension “”;;
val it : string option = None
 >  FileExtension null;;
val it : string option = None
 >    

  Using Records 

 You can defi ne a record type by listing its fi elds and their types inside braces: 

type Person =
    { FirstName: string
      LastName: string
      Age: int
      Children: Person list
      mutable LastSeen: System.DateTime option }  

 You can just as easily create a new record value by giving the values of its fi elds inside braces: 

let john =
    { FirstName = “John”
      LastName = “Smith”
      Age = 32
      Children = []
      LastSeen = None }  

 In both the defi nition and the value constructor, fi elds can be separated with semicolons  —  this 
comes in handy when you want to put multiple fi elds on the same line. 

 At times, you may need to copy records to create new ones, perhaps with certain fi elds changed: 

let sally =
    { john with
        FirstName = “Sally”
        Age = 25 }  

 One important thing to remember is that records are not value types. Switching one of the fi elds to 
mutable will reveal this: 

let shadowOfSally = sally  

Programming with F# ❘ 1133

CH025.indd   1133CH025.indd   1133 9/6/10   6:57:41 PM9/6/10   6:57:41 PM



1134  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 Now, in F# Interactive, you can experiment with what happens when you update  shadowOfSally : 

 >  shadowOfSally.LastSeen  < - Some System.DateTime.Now;;
val it : unit = ()
 >  sally;;
val it : Person =
  {FirstName = “Sally”;
   LastName = “Smith”;
   Age = 25;
   Children = [];
   LastSeen = Some 12/16/2009 10:16:03 PM {Date = 12/16/2009 12:00:00 AM;
                                           Day = 16;
                                           DayOfWeek = Wednesday;
                                           DayOfYear = 350;
                                           Hour = 22;
                                           Kind = Local;
                                           Millisecond = 122;
                                           Minute = 16;
                                           Month = 12;
                                           Second = 3;
                                           Ticks = 633965985631224530L;
                                           TimeOfDay = 22:16:03.1224530;
                                           Year = 2009;};}  

 Type inference for records works by identifying fi eld names and trying to match them to unique 
types. This can fail if you have multiple records types that overlap in their fi eld names. In this 
case, you can prefi x the fi eld labels with the parent type to disambiguate  —  and even a single type 
annotation helps to fi x the type error: 

type PersonA = { FirstName: string; Age: int }
type PersonB = { FirstName: string; Age: int; Department: string }
        
let a = { PersonA.FirstName=”Sally”; Age=32 }
let b = { FirstName=”Peter”; Age=45; Department=”Sales” }   

  Using Lists 

 F# lists provide a hassle - free container for storing an ordered sequence of values of a given type, 
giving you fast access to the head and tail of the list. They are implemented as linked lists, so 
if you need random access to obtain the list elements, you should consider using sets or arrays 
instead. 

 Lists are at the core of functional programming, and, as such, they are your primary collection type 
as you work with F# code. They also receive extra attention in the language, which provides a clean 
syntax for constructing list values. 

 Table 25 - 10 shows the basic list - related language constructs.   

CH025.indd   1134CH025.indd   1134 9/6/10   6:57:41 PM9/6/10   6:57:41 PM



 List values can be iterated, transformed, and aggregated using the static members available on the 
 List  module (defi ned as  Microsoft.FSharp.Collections.List ). Consider the following: 

 >  let a = List.empty
  let b = []
  let c = 1 :: 2 :: 3 :: [ 4 ]
  let d = [ 1; 2; 3; 4 ];;
        
val a : ‘a list
val b : ‘a list
val c : int list = [1; 2; 3; 4]
val d : int list = [1; 2; 3; 4]  

 Here, both  a  and  b  contain the empty list, with a generic type because no list elements have been given. 
 c  and  d  are also equal, with  1 ,  2 ,  3 ,  4  as elements  —  and, thus, with the concrete type  int list . 

 You can traverse (iterate) a list with  List.iter , giving a  “ visitor ”  function that takes an element 
and returns nothing (so, a function value of type   ‘ T  -  >  unit ) and a list you want to traverse (of 
type   ‘ T list ): 

 >  List.iter (printfn “Printing a number: %d”) c;;
        
Printing a number: 1
Printing a number: 2
Printing a number: 3
Printing a number: 4
val it : unit = ()  

 TABLE 25 - 10: Language Constructs for Lists 

    EXPRESSION    DESCRIPTION    EXAMPLES  

     [ ]     An empty list.     [ ]   

     expr :: expr     Adding an element to the head 

of the list ( “ consing ” ).  

   1 :: [ 2; 3 ]   

     [ expr;  ... ; expr ]     A list with its elements.     [ 1; 2; 3 ]   

     [ expr .. expr ]     A range of numbers.     [ 1 .. 100 ], [ 1.0 .. 

100.0]   

     [ expr .. expr .. expr ]     A range of numbers using a 

skip value.  

   [ 0 .. 2 .. 100 ]   

     expr @ epxr     Concatenation of two lists.     [ 1; 2 ] @ [ 3; 4 ]   

     [ for x in list  -  >  expr ]     A list comprehension.     [ for x in 1 .. 100  -  >

 x*x ]   

Programming with F# ❘ 1135

CH025.indd   1135CH025.indd   1135 9/6/10   6:57:41 PM9/6/10   6:57:41 PM



1136  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 You can aggregate (fold) a list with  List.fold , giving a function that takes an accumulator value 
and an element, and returns a new aggregate value (so, a function value of type   ‘ T1 -  >  ‘ T2 -  >  ‘ T1 ), an 
initial accumulator value (of type   ‘ T1 ), and a list (of type   ‘ T2 list ): 

 >  List.fold (+) 0 c
    | >  printfn “The sum of all elements= %d”;;
        
The sum of all elements= 10
val it : unit = ()  

 Here, both the accumulator and the list elements have the same type ( int ), so you can pass the 
ordinary addition operator (that has a relevant overload of type  int -  > int -  > int ) as the accumulator 
function. 

 You can also fi lter lists using  List.filter  and giving a predicate function. For example, you can 
defi ne a Boolean function that checks whether its argument is a prime number: 

 >  let IsPrime n =
        if n  >  1 then
            { 2 .. n/2 }
            | >  Seq.exists (fun i - >  n%i = 0)
            | >  not
        else
            false;;
        
val IsPrime : int - >  bool  

 Armed with this function, you can then fi nd all primes smaller than 100 as easily as the following: 

 >  [ 1 .. 100 ] | >  List.filter IsPrime;;
        
val it : int list =
  [2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47;
       53; 59; 61; 67; 71; 73; 79; 83; 89; 97]  

 Table 25 - 11 shows the most important list operations defi ned in the  List  module.   

    FUNCTION    TYPE    DESCRIPTION  

     List.length       ‘ T list  -  >  int     The length of the list.  

     List.head       ‘ T list  -  >     ‘ T     The fi rst element of the list (raises  System.

ArgumentException  if the list is empty).  

     List.tail       ‘ T list  -  >     ‘ T list     The tail (all but the fi rst) elements of a list (raises 

 System.ArgumentException  if the list is empty).  

     List.init      int  -  >  (int  -  >     ‘ T)  -  >   

  ‘ T list   

  Creates a new list of the specifi ed size, and with 

elements generated by the function given in the 

second argument.  

 TABLE 25 - 11: Functions in the List Module 

CH025.indd   1136CH025.indd   1136 9/6/10   6:57:42 PM9/6/10   6:57:42 PM



    FUNCTION    TYPE    DESCRIPTION  

     List.append       ‘ T list  -  >     ‘ T list  -  >   

  ‘ T list   

  Appends two lists that contain elements of the 

same type by copying the elements from the fi rst 

list, followed by those in the second.  

     List.filter      ( ‘ T  -  >  bool)  -  >     ‘ T 

list  -  >     ‘ T list   

  Returns a new list containing the elements from 

the original list for which the given predicate 

function returns  true .  

     List.map      ( ‘ T  -  >     ‘ U)  -  >     ‘ T list 

 -  >     ‘ U list   

  Maps a function to each element in a list, and 

returns the results in a new list.  

     List.iter      ( ‘ T  -  >  unit)  -  >     ‘ T 

list  -  >  unit   

  Iterates through the list by calling the given 

function on each element.  

     List.unzip      ( ‘ T *  ‘ U) list  -  >     ‘ T 

list *  ‘ U list   

  Takes a list of pairs and returns a pair of lists that 

each contain the elements from the original pairs.  

     List.zip       ‘ T list  -  >     ‘ U list  -  >  

( ‘ T *  ‘ U) list   

  Takes two lists, and returns a new list that contains 

the elements of the original two lists as pairs. 

Raises  System.ArgumentException  if the 

original lists are of diff erent sizes.  

     List.toArray       ‘ T list  -  >     ‘ T array     Converts a list to an array.  

     List.ofArray       ‘ T array  -  >     ‘ T list     Converts an array to a list.  

     List.toSeq       ‘ T list  -  >     ‘ T seq     Converts a list to a sequence.  

     List.ofSeq       ‘ T seq  -  >     ‘ T list     Converts a sequence to a list.  

 Finally, there are a few points to remember about lists: 

   Lists are immutable   —  As you saw at the beginning of this chapter, immutability plays 
an important role in functional programming, and that is especially true for one of its 
fundamental data structures  —  lists. For example, when you cons (append to the front) a 
new element to a list, or concatenate two lists, you always get a new list value.  

   Lists are eager     —  One way to ensure that a collection of values is fully computed is to 
convert it to a list. This is a typical pattern, and you will see it often when you work with 
lazy sequences (you will see what these are later in this chapter) and the kind of objects they 
wrap (for example, LINQ query results).  

   Lists are generic     —  Because the standard .NET list collection type (of which the F# list type 
is a sub type) is generic, F# lists can store values of arbitrary types.      

  Type Augmentations 

 Type augmentations make it possible to extend a type after it ’ s been defi ned. The C# or VB 
extension methods you may have used fall under the very same umbrella, and, in fact, they can be 
modeled using F# type augmentations. 

➤

➤

➤

Programming with F# ❘ 1137

CH025.indd   1137CH025.indd   1137 9/6/10   6:57:42 PM9/6/10   6:57:42 PM



1138  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 Here is an example of extending  System.Int32  with a new static member to check a number for 
primeness, reusing the  IsPrime  function you defi ned earlier: 

type System.Int32 with
    static member IsPrime n = IsPrime n  

 You defi ne type augmentations the same way you would add members to any of your types. The 
only difference is that the type being augmented is followed with the  with  keyword. 

 You should add type augmentations to a separate module that you can open whenever the 
augmentations are needed.  

  Computation Expressions 

  Computation expressions  (or F#  workfl ows ) are an important part of F# programming, and they 
underpin many useful formalisms such as sequence expressions, or asynchronous computations. 
Computation expressions are the F# way to express what ’ s called  monads , a term that originates 
from advanced mathematics, used for representing computations as a chain of operations. Monads 
are used extensively in various functional programming languages, most notably in Haskell. 

 The general syntax for computation expressions is strikingly simple: 

builder { computation-expression }  

 Here,  builder  is any computation expression builder object, a special object that implements certain 
well - defi ned members that the various constructs in  computation - expression  are de - sugared into 
by the compiler. Table 25 - 12 summarizes the constructs, giving a subset of the F# language and some 
enhancements such as  let!  and  use! , that you can use in computation expressions.   

    CONSTRUCT    UNDERLYING REPRESENTATION  

     ()      b.Zero()   

     let pat = expr in cexpr      b.Let(expr, (fun pat  -  >  [[cexpr]]))   

     let! pat = expr in cexpr      b.Bind(expr, (fun pat  -  >  [[cexpr]]))   

     use pat = expr in cexpr      b.Using(expr, (fun pat  -  >  [[cexpr]]))   

     use! pat = expr in cexpr      b.Bind(expr, (fun x  -  >  b.Using(x, (fun pat 

 -  >  [[cexpr]]))))   

     do expr in cexpr      b.Let(expr, (fun ()  -  >  [[cexpr]]))   

     do! expr in cexpr      b.Bind(expr, (fun ()  -  >  [[cexpr]]))   

     if expr then cexpr      if expr then [[cexpr]] else b.Zero()   

     if expr then cexpr1 else cexpr2      If expr then [[cexpr1]] else [[cexpr2]]   

 TABLE 25 - 12: Constructs in Computation Expressions 

CH025.indd   1138CH025.indd   1138 9/6/10   6:57:42 PM9/6/10   6:57:42 PM



 Not all of the constructs in Table 25 - 12 are used in the various computation expressions available, 
and the designer of new  workfl ows  can decide what features to support by implementing the 
appropriate members, as listed in Table 25 - 13.   

 TABLE 25 - 13: Computation Expression API for Some Builder Type  M  

    MEMBER    DESCRIPTION  

     Let :  ‘ A * ( ‘ A  -  >  M <  ’ B > )  -  >  M <  ’ B >      Used for  let  and  do .  

     Bind : M <  ’ A >  * ( ‘ A  -  >  M <  ’ B > )  -  >  M <  ’ B >      Used for  let!  and  do! .  

     Delay : (unit  -  >  M <  ’ A > )  -  > M <  ’ A >      Used to execute an expression when 

expected.  

     Using :  ‘ A * ( ‘ A  -  >  M <  ’ A > )  -  >  M <  ’ A > , when 

 ‘ A : >  IDisposable   

  Used for  use .  

     For : seq <  ’ A >  * ( ‘ A  -  >  M <  ’ B > )  -  >  M <  ’ B >      Used for  for ... do ...   

     While : (unit  -  >  bool) * M <  ’ A >     -  >  M <  ’ A >      Used for  while ... do ...   

     Combine : M <  ’ A >  * M <  ’ A >     -  >  M <  ’ A >      Used for sequencing.  

     Zero : unit  -  >  M <  ’ A >      Used for empty  else  branch.  

     Return :  ‘ A  -  >  M <  ’ A >      Used for  return .  

    CONSTRUCT    UNDERLYING REPRESENTATION  

     cexpr1, cexpr2      b.Combine([[cexpr1]], b.Delay(fun ()  -  >  

[[cexpr2]]))   

     while expr do cexpr      b.While((fun ()  -  >  expr), b.Delay((fun ()  -  >  

[[cexpr]])))   

     for pat in expr do cexpr      b.For(expr, (fun pat  -  >  [[cexpr]]))   

     return expr      b.Return(expr)   

     return! Expr      expr   

 To implement a new computation builder, you must defi ne a new type with some or all members 
from Table 25 - 13. As a short example, consider the following block of code: 

let a = ComputeA ()
let b = ComputeB a
let c = ComputeC (a, b)
ComputeD c  

Programming with F# ❘ 1139

CH025.indd   1139CH025.indd   1139 9/6/10   6:57:43 PM9/6/10   6:57:43 PM



1140  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 Here, you would like to know how much time certain steps in the computation take, and log this 
timing information to the console (or a fi le, or the database, and so on). 

 You can start by defi ning a computation builder as follows: 

type LoggerBuilder() =
    let mutable lastTime = None
    member self.Return e =
        lastTime  < - None
        e
    member self.Bind (value, cont) =
        match lastTime with
        | None - > 
            printfn “Time at let! = 0 sec”
        | Some (last: System.DateTime) - > 
            let time = System.DateTime.Now - last
            time.TotalSeconds
            | >  printfn “Time at let! = %f sec”
        lastTime  < - Some System.DateTime.Now
        cont value
        
let logger = new LoggerBuilder()  

 Here, your new  logger  computation builder has special treatment for  let!  expressions. First, you 
keep a  lastTime  value in the builder that stores the timestamp of the latest invocation of a  let!  
expression. Initially, this is not available, and you store that as a  None  option value. When a  let!  is 
encountered inside this builder, the  Bind  method will be invoked. Here, you fi rst check if you have 
the last timestamp available, and report the elapsed time accordingly. As a last step, you update the 
 lastTime  counter, and invoke the continuation. 

 This will print the elapsed time since the last  let!  for each  let! . One last tiny bit is resetting the 
timestamp when exiting from the  logger  block. This is useful if you are reusing the same logger 
builder instance across multiple sessions/blocks. 

 Now you can wrap your earlier code in a  logger  computation: 

logger {
    let a = ComputeA ()
    let b = ComputeB a
    let c = ComputeC (a, b)
    let d = ComputeD c
    return d
}  

 This has no effect; everything executes like before. However, if you switch some of the instances of 
 let  to  let! , you will see timing information: 

Time at let! = 0 sec
Time at let! = 0.104006 sec   

CH025.indd   1140CH025.indd   1140 9/6/10   6:57:43 PM9/6/10   6:57:43 PM



  Sequences 

 All F# collections, such as lists and arrays, implement the  System.Collections.IEnumerable <  ’ T >   
interface. In F# code, you most often see this interface type as  seq <  ’ T >  , which is a type abbreviation 
for this interface type. As in other .NET code, sequences are lazy data structures. They are 
enumerated on demand, and sequence values are not computed until they are requested. 

 It is important to understand that, since sequences wrap collections, you can turn F# lists and arrays 
lazy by operating on them with the various  Seq.*  static members. 

 Table 25 - 14 shows the most important members, along with a brief description. As you will see, 
there is a lot of similarity between these and the aggregate operations defi ned in the  List  module in 
Table 25 - 11, and, indeed, this is true for all other F# collections as well. However, the  Seq  module 
also supports operations for calculating minimum, maximum, and average values, sort and average, 
and traverse in various ways to fi nd or pick elements.    

    FUNCTION    TYPE    DESCRIPTION  

     Seq.append      seq <  ’ T >     -  >  seq <  ’ T >     -  >  

seq <  ’ T >    

  Appends two sequences, keeping the 

result lazy.  

     Seq.average      Seq <  ’ T >     -  >     ‘ T     Computes the average of the elements in the 

sequence.  

     Seq.cast      IEnumerable  -  >  seq <  ’ T >      Wraps an untyped collection to a typed 

sequence.  

     Seq.choose      ( ‘ T  -  >     ‘ U option)  -  >  

seq <  ’ T >     -  >  seq <  ’ U >    

  Returns a new sequence whose elements, when 

applied to the given predicate, return  Some .  

     Seq.collect      ( ‘ T  -  >  seq <  ’ U > )  -  >  

seq <  ’ T >     -  >  seq <  ’ U >    

  Applies the given function to each element, 

and returns a new sequence with the results 

concatenated.  

     Seq.concat      Seq < seq <  ’ T >  >     -  >  seq <  ’ T >      Concatenates the sequence of sequences into 

a single sequence.  

     Seq.distinct      Seq <  ’ T >     -  >  seq <  ’ T >      Returns all distinct elements.  

     Seq.empty      Seq <  ’ T >      Returns an empty sequence.  

     Seq.exists      ( ‘ T  -  >  bool)  -  >  seq <  ’ T >   

  -  >  bool   

  Tests if any element satisfi es the given 

predicate.  

     Seq.filter      ( ‘ T  -  >  bool)  -  >  seq <  ’ T >   

  -  >  seq <  ’ T >    

  Filters all elements that satisfy the given 

predicate.  

     Seq.find      ( ‘ T  -  >  bool)  -  >  seq <  ’ T >   

  -  >     ‘ T   

  Finds the fi rst element that satisfi es the given 

predicate.  

 TABLE 25 - 14: Selected Aggregate Operators from the Seq Module 

continues

Programming with F# ❘ 1141

CH025.indd   1141CH025.indd   1141 9/6/10   6:57:44 PM9/6/10   6:57:44 PM



1142  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

    FUNCTION    TYPE    DESCRIPTION  

     Seq.fold      ( ‘ State  -  >     ‘ T  -  >     ‘ State) 

 -  >     ‘ State  -  >  seq <  ’ T >     -  >   

  ‘ State   

  Applies the given function to each element in 

the sequence, threading a result throw each 

invocation.  

     Seq.forall      ( ‘ T  -  >  bool)  -  >  seq <  ’ T >   

  -  >  bool   

  Tests that the given predicate is satisfi ed by all 

elements in the sequence.  

     Seq.head      Seq <  ’ T >     -  >     ‘ T     Returns the head of the sequence.  

     Seq.isEmpty      Seq <  ’ T >     -  >  bool     Tests if the sequence is empty.  

     Seq.iter      ( ‘ T  -  >  unit)  -  >  seq <  ’ T >   

  -  >  unit   

  Applies the given function to every element of 

the sequence.  

     Seq.length      Seq <  ’ T >     -  >  int     Returns the length of the sequence.  

     Seq.map      ( ‘ T  -  >     ‘ U)  -  >  seq <  ’ T >     -

  >  seq <  ’ U >    

  Maps the given function to every element and 

returns a new sequence.  

     Seq.max      Seq <  ’ T >     -  >     ‘ T     Calculates the largest element in the 

sequence.  

     Seq.min      Seq <  ’ T >     -  >     ‘ T     Calculates the smallest element in the 

sequence.  

     Seq.nth      Int  -  >  Seq <  ’ T >     -  >     ‘ T     Calculates the  n th element in the sequence.  

     Seq.ofArray       ‘ T []  -  >  seq <  ’ T >      Converts an array to a sequence.  

     Seq.ofList       ‘ T list  -  >  seq <  ’ T >      Converts a list to a sequence.  

     Seq.pick      ( ‘ T  -  >     ‘ U option)  -  >  

seq <  ’ T >     -  >  U   

  Returns the fi rst element for which the given 

function returns  Some .  

     Seq.reduce      ( ‘ T  -  >     ‘ T  -  >     ‘ T)  -  >  

seq <  ’ T >     -  >     ‘ T   

  Applies the given function to the fi rst two 

elements and threads the result with the others.  

     Seq.

singleton   

    ‘ T  -  >  seq <  ’ T >      Builds a sequence with a single element.  

     Seq.skip      Int  -  >  seq <  ’ T >     -  >  

seq <  ’ T >    

  Skips the specifi ed number of elements and 

yields the rest of the sequence.  

     Seq.sort      Seq <  ’ T >     -  >  seq <  ’ T >      Sorts the sequence (will enumerate all elements).  

     Seq.sum      Seq <  ’ T >     -  >     ‘ T     Returns the sum of the sequence.  

     Seq.take      Int  -  >  seq <  ’ T >     -  >  

seq <  ’ T >    

  Returns the fi rst  N  elements.  

     Seq.toArray      Seq <  ’ T >     -  >     ‘ T[]     Converts the sequence to an array.  

 TABLE 25 - 14 (continued) 

CH025.indd   1142CH025.indd   1142 9/6/10   6:57:44 PM9/6/10   6:57:44 PM



    FUNCTION    TYPE    DESCRIPTION  

     Seq.toList      Seq <  ’ T >     -  >     ‘ T list     Converts the sequence to a list.  

     Seq.truncate      Int  -  >  seq <  ’ T >     -  >  

seq <  ’ T >    

  Truncates a sequence to at most  N  elements.  

     Seq.tryFind      ( ‘ T  -  >  bool)  -  >  seq <  ’ T >   

  -  >     ‘ T option   

  Same as  Seq.find , but returns  None  if no 

element can be found that satisfi es the given 

predicate.  

     Seq.tryPick      ( ‘ T  -  >     ‘ U option)  -  >  

seq <  ’ T >     -  >     ‘ U option   

  Same as  Seq.pick , but returns  None  if no 

element can be found that returns  Some .  

     Seq.windowed      Int  -  >  seq <  ’ T >     -  >  

seq <  ’ T [] >    

  Returns a sequence of sliding windows, 

represented as fresh arrays, of the specifi ed size.  

     Seq.zip      Seq <  ’ T >     -  >  seq <  ’ U >     -  >  

seq <  ’ T *  ‘ U >    

  Combines two sequences (assuming equal 

length) to a sequence of pairs.  

     Seq.zip3      Seq <  ’ T >     -  >  seq <  ’ U >     -  >  

seq <  ’ Z >     -  >  seq <  ’ T *  ‘ U 

*  ‘ Z >    

  Combines three sequences (assuming equal 

length) to a sequence of triplets drawn from 

each.  

  Range Expressions 

 In addition to using the various members in Table 25 - 14, sequences can be constructed in a variety 
of other ways. For example, numerical sequences can be constructed using  range expressions , 
adding sugar to the more general sequence expressions you will see later in this chapter: 

seq { 0 .. 100 }  

 This constructs a sequence of integers between  0  and  100 , served on demand. If you need elements 
of another numerical type, you can add a type suffi x to the initial and last element in the range 
expression, say, to yield a sequence of  float32  values: 

seq { 0.0f .. 100.0f }  

 You can also use a skip value to specify an increment. For example, the following will give you all 
even numbers between  0  and  100 .   

seq { 0 .. 2 .. 100 }   

  Sequence Expressions 

  Sequence expressions  are a form of computation expressions, built with the  seq  computation 
builder, that yield sequences. They are a versatile abstraction and receive special handling in terms 
of syntax from the compiler. You can use them for a host of different purposes  —  for example, 

Programming with F# ❘ 1143

CH025.indd   1143CH025.indd   1143 9/6/10   6:57:45 PM9/6/10   6:57:45 PM



1144  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

to create a stream of computed elements, or serve large collections incrementally. Consider the 
following function,  AllFiles , that returns all of the fi lenames in a given folder and all of its 
subfolders: 

open System.IO
        
let rec AllFiles folder =
    seq { for file in Directory.GetFiles folder do
              yield file
          for subfolder in Directory.GetDirectories folder do
              yield! AllFiles subfolder }  

 This function has two parts. First it fetches all the fi les in the given folder using a single  System.
IO  call, and serves their names one by one, on demand. Remember that sequences are lazy data 
structures, and their elements are only computed when they are requested. 

 Once all fi les in the specifi ed folder have been served, the second part of the function fetches all the 
subfolders and calls itself for each recursively to enumerate the fi les within. Note the use of  yield!  
to fl atten the resulting sequence into the one that is being built. 

 In terms of the computation expression language that you can use inside a  seq  computation, the 
following constructs are not supported from the general computation expression capabilities: 

   let!   

   use!   

   return  (instead you must use  yield  to return a value from a sequence expression)    

 All others are available, and you can use them to build your sequence computations. Also, as you 
saw earlier, you can also use  yield!  to fl atten a new sequence of values and return them as part of 
the original sequence you are building.  

  Asynchronous Workfl ows 

 Asynchronous workfl ows enable you to write code whose execution is non - blocking. This is often 
highly desirable  —  for example, in situations where you need to keep a UI active while performing 
some intensive computation in the background. Here, your application must be designed not to be 
single - threaded to avoid the computation thread from becoming the bottleneck of your application. 

 An important characteristic of a computation is whether it is more CPU or more I/O bound  —  in 
other words, whether it spends most of its time calculating something spinning the CPU at 100 
percent, or whether it simply waits for the inherently slower IO operations to complete. 

 Consider the following pseudo code, where  processUrl  involves both CPU and I/O bound 
activities. (For the purposes of this discussion, it downloads the content of a text fi le available via a 
URL and counts the number of words in it.) Let ’ s assume that the two invocations of this function 
are independent.   

let result1 = processUrl( ... )
let result2 = processUrl( ... )
 ...   

➤

➤

➤

CH025.indd   1144CH025.indd   1144 9/6/10   6:57:45 PM9/6/10   6:57:45 PM



 As written, this code executing on a single thread will spend valuable time waiting for I/O 
operations to complete (for example, delays in addressing the server that contains the requested 
resources), whereas it could be instead working toward some CPU operations in the meantime. 
This may not seem like much. But if you have a multitude of similar calls, the overhead quickly 
adds up and the amount of  “ speed ”  you could gain by making your application more parallel can 
be very signifi cant. 

 What you need is the capability to easily create threads, and, within a thread, designate the points 
of asynchronous execution that allow putting that thread to sleep until the asynchronous call 
returns, and letting another thread do something more useful in the meantime. 

 F# asynchronous workfl ows enable you to do just that. They use the workfl ow syntax you saw 
in the preceding sections to manipulate values of the  Microsoft.FSharp.Control.Async  class. 
This class provides the representation to model asynchronous computations, and contains various 
members for constructing and manipulating  Async  values by hand (in case you need fi ner control). 

 With the help of a couple  Async  members, you can easily rewrite the pseudo - code you saw earlier as 
follows. 

 First, create an  Async  value representing the computation to process a URL. Here you can see a 
quick - and - dirty implementation that yields a good enough approximation to counting the words in 
a text fi le accessed via a URL: 

open Microsoft.FSharp.Control.WebExtensions
        
let processUrl url =
    async {
        let uri = new System.Uri(url)
        let client = new System.Net.WebClient()
        let! content = client.AsyncDownloadString uri
        let res =
            content.Split( [| ‘\n’;’\r’;’\t’;’/’;’\\’;’=’;’?’;’-
                 ‘;’*’;’_’;’,’;’.’;’;’;’ ‘ |])
            | >  Seq.filter (fun s - >  s  <  >  “”)
            | >  Seq.distinct
            | >  Seq.length
        return url, res
    }  

 The  Microsoft.FSharp.Control.WebExtensions  module that you opened before defi ning 
 processUrl  contains a couple of extension members (or, in F# terminology,  type augmentations ) 
that make it easier to create  Async  values from web - based activities. In particular, it defi nes 
 AsyncDownloadString , which takes a  Uri  parameter and returns an asynchronous computation to 
download its content as a string. 

 Note that in the previous computation expression  AsyncDownloadString  is invoked using a  let! . 
Indeed, in  async  computation expressions, a  let!  binding is implemented by calling the right - hand 
side asynchronously (thus, it must be an  Async  value), and putting the thread to sleep until that 
computation returns  —  in essence, giving you a nice syntax sugar to conveniently work with 
asynchronous computations. 

Programming with F# ❘ 1145

CH025.indd   1145CH025.indd   1145 9/6/10   6:57:45 PM9/6/10   6:57:45 PM



1146  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 To really benefi t from making the  processUrl  asynchronous, you must fork off a few threads and 
let them compute in parallel. So, as a second step, you can take a few text fi le URLs, map them to 
 Async  values, run those in parallel, and collect their results in a single result by running the  Async  
computation via  RunSynchronously .   

let pages =
    [ “http://www.google.com/robots.txt”
      “http://www.yahoo.com/robots.txt”
      “http://www.bing.com/robots.txt” ]
let res =
    pages
    | >  List.map processUrl
    | >  Async.Parallel
    | >  Async.RunSynchronously  

 If you look carefully, this yields a list of  (string * int)  pairs, each representing the URL and the 
respective word count. And last, you can simply print these results on the screen: 

res
| >  Array.iter (fun (url, wcount) - > 
    printf “The page at %s has approx. %d words)\n” url wcount)  

 This implementation performs far better as you scale up the number of URLs to be processed 
because of the relatively high latency in locating remote fi les via URLs. Instead of sequentially 
processing these URLs, this version is able to spread the work over several threads and minimize the 
idle time spent by keeping the CPU as busy as possible.  

  Pattern Matching 

 Earlier in this chapter, you saw how you can use pattern matching to examine discriminated union 
values. But that ’ s not all. You can use pattern matching to examine a whole host of different kinds 
of values. Take a look at Table 25 - 15.   

    PATTERN CASE    EXAMPLE    DESCRIPTION  

     null      null     Matches  null   

     Lit      12     Matches the specifi ed literal  

     Id      Str     Matches any value and binds it to  id   

     _      _     Matches any value without binding it  

     id(patt, ... )      Binop(f, op1, op2)     Matches a discriminated union case 

and its arguments  

     []      []     Matches an empty list  

 TABLE 25 - 15: Basic Pattern Match Cases 

CH025.indd   1146CH025.indd   1146 9/6/10   6:57:46 PM9/6/10   6:57:46 PM



    PATTERN CASE    EXAMPLE    DESCRIPTION  

     [ patt;  ...  ]      [ elem ]     Matches a list with its elements  

     id :: patt      hd :: tail       

     hd1 :: hd2 :: [ 

last ]   

   Deconstructs a list into 

a head and a tail.   

    

     [| |]      [| |]     Matches an empty array  

     [| patt;  ...  |]      [| el1; _; el3 |]     Matches an array with its elements  

     { id=patt;  ...  }      { FirstName=fn; 

LastName=ln }   

  Matches a record by matching against 

its fi elds  

     patt | patt      [ ] | [ elem ]     OR pattern  

     patt  &  patt         AND pattern  

 Pattern matching is a fundamental technique in functional programming and is absolutely 
ubiquitous in F# code. For example, all  let  bindings use pattern matching to bind the right - hand 
side of the binding to the left - hand side. Consider the following: 

let (a, b, c) = 1, “my string”, 2
let (x, y, _) = Compute3DCoordinates()
let (myList, Some x) = [1; 2], FindCustomerById 12  

 In addition to binding, pattern matching is also a control - fl ow device. The  match  ...  with  ...   
construct allows you to pattern match on an expression with various pattern cases, and return a 
value from the fi rst pattern case that matches. The various cases are checked in the order of their 
defi nition, so the fi rst you list in your match expression will be the fi rst to be consulted.   

let result =
    match myList with
    | [] - > 
        printfn “empty”
        1
    | [ _ ] - > 
        printfn “single element”
        1
    | _ :: [ _ ] - > 
        printfn “two elements”
        2
    | _ - > 
        printfn “more elements”
        3  

 A fundamental property of pattern matching is whether or not it is  exhaustive     —  that is, whether 
it covers all possible cases or shapes of the value being matched. For example, a pattern match on 
a discriminated union value with three possible shapes must handle all three of those shapes to 
be exhaustive. 

Programming with F# ❘ 1147

CH025.indd   1147CH025.indd   1147 9/6/10   6:57:46 PM9/6/10   6:57:46 PM



1148  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 However, keep in mind that match cases can be arbitrarily complex, so deciding when you have an 
exhaustive set can be diffi cult in certain situations. Luckily, the F# compiler has a great deal of help to 
pinpoint pattern matches that are not exhaustive, and you will get a compiler warning in such cases: 

 >  let result =
    match myList with
    | [] - > 
        1
    | [ _ ] - > 
        1
    | _ :: [ _ ] - > 
        2;;
        
      match myList with
  ----------^^^^^^
        
C:\stdin(33,11): warning FS0025: Incomplete pattern matches on this expression.
     For example, the value ‘[_;_;_]’ may indicate a case not covered
     by the pattern(s).
        
val result : int = 1  

 If you don ’ t handle the missing cases, the compiler will insert an automatic  “ catch - all ”  case that 
simply does nothing but raise a  MatchFailure  exception. Therefore, it is imperative that you always 
have exhaustive pattern matches in production code (all code, really), because an unexpected run -
 time error can have disastrous consequences. 

 You may be tempted to use the wildcard pattern. However, you should take some extra precautions. 
Although using the wildcard pattern removes the compiler warning you just saw, it makes your 
code less extensible. Consider the following example where you have a discriminated union type 
representing how certain clients want to be contacted, and a function that determines whether 
a particular choice will cost anything. The original developer thought that only snail mail cost 
anything.   

type ContactVia =
    | Email of string
    | Mail of string
        
let WillCost meth =
    match meth with
    | Mail _ - > 
        true
    | _ - > 
        false  

 However, in a subsequent iteration, another developer added a new contact method: 

type ContactVia =
    | Email of string
    | Mail of string
    | Sms of string  

CH025.indd   1148CH025.indd   1148 9/6/10   6:57:46 PM9/6/10   6:57:46 PM



 At this point, the previous  WillCost  function compiled fi ne, and without knowing this code, this 
new developer would have never noticed that anything else needed to be addressed  —  which should 
raise some fl ags on its own right, of course. However, let ’ s say that the original developer coded 
 WillCost  as follows: 

let WillCost meth =
    match meth with
    | Mail _ - > 
        true
    | Email - > 
        false 

It would have been immediately obvious that the additional contact method needs further code 
changes. 

 Functional programming encourages fast prototyping and incremental development, and you should 
learn to turn these to your (and your team ’ s) advantage. As a case in point, try to avoid the wildcard 
pattern in match cases over most structured data, and spend the extra time to spell out all base 
cases/shapes. 

 And last, you can apply pattern matching not only to examine the shape of a particular value, but 
also of its type, as shown in Table 25 - 16. This comes in handy when you are dealing with catching 
exceptions. (You ’ ll learn more about that later in this chapter.)    

 TABLE 25 - 16: Additional Pattern Match Constructs 

    PATTERN CASE    EXAMPLE    DESCRIPTION  

     patt when expr      lst when List.length lst  >  0     Conditional pattern  

     null      Null     Matches  nulls   

     :? ty      :? System.Int32     Checks whether the expression 

being matches has type  ty .  

  Active Patterns 

 Ordinary pattern matching allows you to match on the structure of certain values such as lists, 
arrays, discriminated unions, tuples, or records. It does so by providing various pattern constructors 
for these shapes that, in turn, you can use to deconstruct structured values and bind their 
constituents, as you have seen in the previous section. 

 However, for other values such as objects, strings, or numbers, ordinary pattern matching is of little 
help. Consider matching on numbers, for example: 

match i with
| i when i=0 - > 
    0
| i when i < 0 - > 

Programming with F# ❘ 1149

CH025.indd   1149CH025.indd   1149 9/6/10   6:57:47 PM9/6/10   6:57:47 PM



1150  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

    -1
| i when i > 0 - > 
    1  

 Although you can use  conditional pattern clauses  as shown in this example, and the F# compiler 
even warns you if not all possible values are matched. This forces you to have to remember what sets 
apart the different  “ types ”  of numbers with respect to a particular trait you are matching against. 
The same issue also holds for ordinary object values, which are  “ sealed ”  against ordinary pattern 
matching, and once again you must resort to various members that publish and use these to drive 
pattern matching. 

 What ’ s needed is a mechanism to translate values of a given type to a set of  “ shapes ”  that you can 
then pattern match against. Luckily, F# provides this mechanism via its so - called  active patterns  
feature. Active patterns (also called  active pattern recognizers ) allow you defi ne for  any  value a set 
of named partitions called the  active pattern results  that you can pattern match against as if they 
were simply cases in a discriminated union. 

 Active pattern cases can carry values such as ordinary discriminated union constructors, allowing 
you to tag associated values of arbitrary complexity to each pattern result. Furthermore, your active 
pattern defi nitions can be  total  or  partial . 

 There are three fundamental types of active patterns that you should be aware of, and each has its 
distinctive advantages and usage patterns. These are summarized in Table 25 - 17.   

 TABLE 25 - 17: Active Pattern Uses 

    GOAL    TYPE    DESCRIPTION  

    Conversion    Single - case, complete    Converts the given value to a new value.  

    Segmentation    Multi - case, complete    Groups all values of a given type into a set 

of shapes/groups.  

    Characterization    Single - case, partial    Provides a characteristic trait to  some  

values in a given type.  

 Active patterns have a distinct place in the language, and they are treated differently than ordinary 
pattern matches. 

 When you defi ne active patterns, you must separate each pattern recognizer with a pipe ( | ) 
character, and also surround the entire set that belongs to a given active pattern by pipes. 

 Let ’ s walk through the different active pattern families from Table 25 - 17. 

 Single - case complete active patterns behave much like a normal function that converts the value 
being matched to another value. This conversion is more convenient than a simple function, 
however, since it allows you to bind and extract the result in the same step. Consider the following 

CH025.indd   1150CH025.indd   1150 9/6/10   6:57:47 PM9/6/10   6:57:47 PM



example, where you get some input from your user and print it trimmed from leading and trailing 
white - space: 

// Define a trimming function
let trim (s: string) = s.Trim()
        
// Read user input
let input = System.Console.ReadLine()
        
// Perform trimming
let trimmed = trim input
        
// Print the result
trimmed | >  printf “Result=%s”  

 You can defi ne an active pattern for the trimming  “ conversion ” : 

// Define a conversion active pattern
let (|Trim|) (s: string) = s.Trim()
        
// Read user input and perform conversion
let (Trim trimmed) = System.Console.ReadLine()
        
// Print the result
trimmed | >  printf “Result=%s”  

 Note how you can perform the trimming simply by pattern matching using the  Trim  active pattern 
case. You can also use active patterns like a function  —  in this case, you will need the pipes: 

System.Console.ReadLine()
| >  (|Trim|)
| >  printf “Result=%s”  

 Multi - case  complete active patterns  can (in addition to these, you have just seen) be used to segment 
a given value space into multiple active pattern results. This is useful when you have a fi xed set of 
 “ groups ”  that describe the values in a given type completely. A trivial example is splitting integers 
into even or odd numbers: 

let (|Even|Odd|) (i: int) =
    if i%2 = 0 then
        Even
    else
        Odd  

 Another slightly more complex example is dividing string values into categories based on what they 
store. For example, the following active pattern splits strings into fi ve different categories: nulls, 
empty (those strings that, when trimmed from white - space, yield an empty string), integers (those 
strings that store integer values), fl oats (those strings that store real numbers), and normal  “ strings ”  
that don ’ t fall into any of these categories. 

Programming with F# ❘ 1151

CH025.indd   1151CH025.indd   1151 9/6/10   6:57:47 PM9/6/10   6:57:47 PM



1152  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 First, both  System.Int32  and  System.Double  support a  TryParse  method that can be used to 
check whether a given string contains an integer or double, respectively. Instead of creating two 
nearly identical functions, you can create a generic one. This is parameterized over the type it can 
check. You can give it the  “ zero ”  value (or any value in that type for that matter) and the parse 
function that can take a string, and return whether it can be successfully converted to the given type 
and the converted value itself. Without having to worry about how  TryParse  is implemented (after 
some consideration, you would likely prefer a more consumable signature, such as mapping strings 
to  int  or  float  options), you have something like the following: 

open System
        
let tryParseGeneric < ’T >  (zero: ‘T) parse (s: string) =
    let i = ref zero
    if parse(s, i) then
        !i | >  Some
    else
        None
        
let tryParseInt = tryParseGeneric < int >  0 Int32.TryParse
let tryParseFloat = tryParseGeneric < float >  0. Double.TryParse
        
let (|Empty|Null|Integer|Float|String|) (s: string) =
    if s = null then
        Null
    elif s.Trim() | >  String.IsNullOrEmpty then
        Empty
    else
        match tryParseInt s with
        | Some i - > 
            Integer i
        | None - > 
            match tryParseFloat s with
            | Some f - > 
                Float f
            | None - > 
                String (s.Trim())  

 Basically, complete active patterns use some heuristics (most typically, a set of  if  statements or 
match cases) to fi gure out when to yield which active pattern result. Whenever a particular result is 
appropriate, you use it like you would any discriminated union case  —  that is, by giving its name and 
supplying any values you want to make available in the pattern match when that case is matched. 

 There is a subtle detail here that you should be aware of. The pattern cases you list in the defi nition 
of a complete active pattern will constitute the closed list of shapes that you can match against once 
the active pattern is applied to a value. So, even if you are not using a particular shape from those 
defi ned, you will still need to cover it in an actual match expression. 

 So, going back to the example, this implementation guarantees that a particular string value can 
only by matched by one of the active pattern cases, and it also guarantees that all strings fall into 
one of these pattern results. This is of great help, because the compiler can warn you of incomplete 
pattern matches. Simply try to remove any one of the match cases from the following function to see 
that in action: 

CH025.indd   1152CH025.indd   1152 9/6/10   6:57:48 PM9/6/10   6:57:48 PM



let PrintString = function
    | Empty - > 
        printfn “empty or whitespace”
    | Null - > 
        printfn “null”
    | Integer i - > 
        printfn “number:%d” i
    | Float f - > 
        printfn “float:%f” f
    | String s - > 
        printfn “other string:%s” s  

 Often, though, the difference between the various value  “ groups ”  is not so clear - cut, and you can 
either not characterize the entire value space at once (because you may not know about all the 
possible cases), or you don ’ t care to. 

 Consider the following  partial active patterns , reusing the functions you defi ned earlier: 

let (|Integer|_|) = tryParseInt
let (|Float|_|)   = tryParseFloat  

 Here, the key difference from the previous complete active patterns is that there is only one case, 
with the  “ partial ”  nature being refl ected in the  “ catch - all ”  wildcard case  —  and you will get a 
compiler error if you try to defi ne a partial active pattern with more than one. This was a deliberate 
choice from the language designers, and you can think of partial active patterns as a means to defi ne 
 “ traits ”  or  “ characterizations ”  that only apply to a particular set of values in the input type (and, 
for these, the partial active pattern recognizer returns a  Some  option value), leaving every other 
value  “ unmatched ”  (for those returning  None ). 

 In this example,  tryParseInt  and  tryParseFloat  have the following signature: 

val tryParseInt : (string - >  int option)
val tryParseFloat : (string - >  float option)  

 Essentially, both take a string and return an option value of the appropriate type. Thus, you can use 
them as partial active patterns. Note how you can simply bind these functions to the partial active 
patterns without having to explicitly name the input parameter (the value to match against), making 
it obvious that these functions behave exactly like partial active patterns. 

 As you would expect, when matching with partial active patterns you always need a  “ catch - all ”  case: 

match GetSomeNumber() with
| Integer i - > 
    printfn “Is an integer=%d” i
| Float f - > 
    printfn “Is a float=%f” f
| _ - > 

    printfn “Unknown”  

 Finally, it is important to understand that you can apply both partial and complete active patterns in 
the same match expression, but the compiler will warn you if not all complete active pattern cases are 
covered. While normally an active pattern is executed only once for a given match expression, 

Programming with F# ❘ 1153

CH025.indd   1153CH025.indd   1153 9/6/10   6:57:48 PM9/6/10   6:57:48 PM



1154  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

mixing different active patterns in the same match expression will cause the active patterns to execute, 
possibly more than once (depending on the order of the match cases and the value being matched).  

  Exceptions 

 Exceptions are a way to signal an error to a calling site, breaking the normal fl ow of execution and 
exiting without a return value. .NET exceptions are relatively expensive to create, so you should 
not use exceptions as a control - fl ow device. Instead, you may try to return option values, and signal 
an error with a  None  value. However, there are situations where exceptions come handy, some even 
when they are inevitable. 

 F# provides a number of shorthand notations for dealing with exceptions. All F# exceptions are 
subtypes of the  System.Exception  class, the general .NET exception base class. Table 25 - 18 
summarizes the primitives to raise and catch exceptions.   

 TABLE 25 - 18: Language Constructs for Exceptions 

    CONSTRUCT    EXAMPLE    DESCRIPTION  

     exception     id     of     ty      exception CanNotCompute 

of string * int   

  Defi nes a new F# exception 

type.  

     raise      raise (new System.Argument

Exception( “ message ” ))   

  Raises the given exception, 

either a type that inherits from 

 System.Exception , or an F# 

exception.  

         raise (MyException 

 “ message ” )   

    

     try     expr     with     patt      -  >      expr      try       

     1/num | >  Some     Evaluates an expression and 

catches any exceptions as 

specifi ed.  

         with       

         | _  -  >  None       

     try     expr     finally     expr           

     failwith      failwith  “ Can ’ t do it ”      Raises a new instance of 

 System.Exception  with the 

given message.  

     failwithf      failwithf  “ Failed at 

number %d ”  i   

  Same as  failwith , but allows to 

format the error message using 

a  printf  - style format string.  

CH025.indd   1154CH025.indd   1154 9/6/10   6:57:48 PM9/6/10   6:57:48 PM



 F# exceptions can be defi ned using the  exception  keyword: 

exception MyException of string * int  

 This defi nes a new exception type called  MyException , a sub - type of  System.Exception , that carries 
two values. It can be raised using the  raise  function defi ned in the  Core.Operators  module: 

raise (MyException (“message”, 1))  

 Since the return type of raising an exception is a generic type, it will unify with any type, so you can 
raise an exception anywhere where a value is expected, as indicated by the type of  raise : 

 >  raise;;
val it : (Exception - >  ‘a) =  < fun:clo@11 >   

 You can catch exceptions using a  try - catch  expression. If you want code that is executed regardless 
of whether any exception occurs you can wrap your  try - catch  expression in a  try - finally  
expression: 

try
    try
        MyException (“error”, 0) | >  raise
    with
        | MyException (msg, i) - > 
            printfn “Caught - message=%s, value=%d” msg i
finally
    printfn “Done”  

 You can also use standard .NET exceptions. You simply defi ne these as class types that inherit from 
 System.Exception : 

type MyDotNetException(msg: string, value: int) =
    inherit System.Exception()
        
    override self.Message = msg
        
    member self.Value = value  

 If you use .NET exceptions via class types, raising them requires you to instantiate them using the 
 new  keyword (although this is optional): 

new MyDotNetException(“error”, 12) | >  raise  

 Note that  MyException  (an F# exception) you defi ned earlier does not require instantiation  —  
although underneath it is a .NET exception sub - type, it is not a class type directly. Instead, it receives 
special treatment from the F# compiler, and behaves like a function that takes the arguments of the 
exception and returns a new instance. Similarly, F# exceptions can be used in the  catch  cases to be 
matched against as if they were discriminated unions. 

Programming with F# ❘ 1155

CH025.indd   1155CH025.indd   1155 9/6/10   6:57:49 PM9/6/10   6:57:49 PM



1156  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 In contrast,  MyDotNetException  is not an F# exception, so you must catch it slightly differently by 
matching on its type: 

try
    new MyDotNetException(“error”, 12) | >  raise
with
    | :? MyDotNetException as exc - > 
        printfn “Caught - message=%s, value=%d” exc.Message exc.Value  

 Now that you have seen how F# and .NET exceptions can be defi ned, raised, and caught, you can 
look at the rest of the exception primitives from Table 25 - 18. 

 You can signal a general failure using  failwith  or its format - enabled alternative,  failwithf . This 
will raise an instance of  System.Exception . Normally, you should use different exception subtypes 
to indicate different causes of failure so that the calling sites can recover appropriately, but when 
used in the small to yield a  “ general ”  failure these two functions are indispensable. 

 A companion to raising exceptions with  failwith / failwithf  is catching them via the  Failure  
active pattern, defi ned in  Core.Operators . This active pattern matches an exact instance (as 
opposed to a subtype instance) of  System.Exception  and binds the message it carries. 

 Consider implementing a special division function that reports the divisor of two integers, but with 
reporting division by zero and by a prime number. Reusing the  IsPrime  function you defi ned earlier 
in this chapter, you can implement this as follows.   

let RequireNonPrime x =
    if IsPrime x then
        failwith “Prime”
    else
        x
let SpecialDiv x y =
    try
        x/RequireNonPrime y | >  printfn “Result=%d”
    with
    | Failure msg - > 
        printfn “Failure: %s” msg
    | :? System.DivideByZeroException - > 
        printfn “Error: division by zero”  

 Experiment with this new function in F# Interactive, as shown here: 

 >  SpecialDiv 1 0;;
Error: division by zero
val it : unit = ()
 >  SpecialDiv 1 17;;
Failure: Prime
val it : unit = ()
 >  SpecialDiv 10 4;;
Result=2
val it : unit = ()   

CH025.indd   1156CH025.indd   1156 9/6/10   6:57:49 PM9/6/10   6:57:49 PM



  Units of Measure 

 One impressive feature of F# is its support for measures and their units.  Units of measure  enable 
you to associate various units with your numeric values and functions that operate on those values. 
The compiler will then verify that any operation that involves quantities with units produces the 
right unit of measure, saving precious time and preventing any programming mistakes. You will 
benefi t most in your scientifi c coding by using units, but they can (and should) be used wherever 
you compute with various units to ensure that no bugs creep into your programming logic, and 
that you safely address unit conversions, and different systems of units. 

 You can defi ne a unit of measure as a new type by adding the  Measure  annotation to it: 

[ < Measure > ]
type g
        
[ < Measure > ]
type kg  

 This defi nes two units of measure, grams and kilograms. You can tag these units to a numerical 
quantity as follows: 

let myWeight = 75 < kg >   

 The unit and its quantity must follow each other without any white space for the compiler to 
correctly infer that this is a unit - tagged quantity. The type of this value will be derived as the type of 
the quantity ( int  in this example), enhanced with the specifi ed unit, giving  int < kg >  . 

 Quantities with units participating in arithmetic expressions produce units that refl ect the 
arithmetic operations performed. The unit language is quite expressive and follows the scientifi c 
conventions as closely as possible. In this unit language, you can use the following: 

   The literal     1     —  This represents a unitless quantity, and is equivalent to using a quantity 
without any units.  

   Units     —  Examples would be  kg  or  m . These must be measure - annotated types that are in 
scope.  

   Exponentiation     —  Examples would be  kg^3  or  m^ - 3 . Powers must be integers, and can be 
negative to stand for reciprocal.  

   Division     —  An example would be  m/s^2 . You can list other units separated by spaces 
following the division. They will all be assumed to be in the denominator.  

   Multiplication     —  An example would be  kg * m . You can omit the star and simply use 
spaces between the units that are to be multiplied, such as  kg m . When you use the star 
together with division, the units following the star will be assumed to be in the numerator.  

   Parentheses     —  An example would be  kg/(m/s) .    

 The units you compose will be simplifi ed and rearranged, eliminating negative powers, grouping 
units in the numerator and the denominator, and sorting them alphabetically. 

➤

➤

➤

➤

➤

➤

Programming with F# ❘ 1157

CH025.indd   1157CH025.indd   1157 9/6/10   6:57:49 PM9/6/10   6:57:49 PM



1158  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 When you write functions that require quantities with a certain unit, you must explicitly state that 
in its defi nition. For example, a typical conversion function looks like the following: 

let GramsToKilos (x: int < g > ) = x / 1000 < g/kg >   

 Note how the division will cancel out the gram unit and yield kilograms. Explicitly stating the 
return type and its unit can also help to catch programming errors: 

let BadGramsToKilos (x: int < g > ) : int < kg >  = x / 1000 < g >   

 Here, the compiler will tell you that you are trying to return an integer value, whereas the function 
is defi ned to return  int < kg >  . By adding the right unit to the divisor, you can solve this problem. 

 Values carrying units are not compatible with the same values without units. This is the 
fundamental underpinning that ensures that the type system can assist you with fi nding 
programming errors in your unit - based computations. However, occasionally you may need to 
access the numerical value carried in a unit - enhanced value  —  for example, if you wanted to print 
someone ’ s weight. In this case, you can either defi ne a conversion with inverse units by multiplying 
your kilogram values with the constant  1 < 1/kg >  , or you can simply throw away the unit annotation 
by applying the appropriate generic conversion function,  int  or  float : 

 >  let a = 1 < kg > ;;
        
val a : int < kg >  = 1
        
 >  a*1 < 1/kg > ;;
val it : int = 1
 >  float a;;
val it : float = 1.0
 >  int a;;
val it : int = 1  

 Units can also be treated in a generic way. For example, you may want to have an aggregate data 
type that has various parts sharing the same unit. You can defi ne such types by utilizing the 
 Measure  annotation on the generic type variable: 

type Expr < [ < Measure > ] ‘U >  =
    | Constant of int < ’U > 
    | Binop of (int < ’U >  - >  int < ’U >  - >  int < ’U > ) * Expr < ’U >  * Expr < ’U > 
        
    static member Sum  (e1, e2) = Binop (( + ), e1, e2)
    static member Diff (e1, e2) = Binop (( - ), e1, e2)
    static member Prod (e1, e2) = Binop (( * ), e1, e2)
    static member Div  (e1, e2) = Binop (( / ), e1, e2)  

 Here, you defi ned an expression type similar to the one you saw earlier in this chapter in the 
discussion on discriminated unions. But this new type is generalized over a particular unit of 
measure,   ‘ U . Its two basic shapes carry this measure, so you either have an integer constant that has 
the required unit, or you have a binary operation that carries two operands that themselves have 
this unit. 

CH025.indd   1158CH025.indd   1158 9/6/10   6:57:49 PM9/6/10   6:57:49 PM



 The four static members on this type provide a convenient way to construct values of this type, but 
still adhering to the constraint that any expression must be quantifi ed with the same unit. So, the 
following will not work: 

let a = Expr < kg > .Sum(Constant 12 < kg > , Constant 2 < g > )  

 But once you bring the second constant to kilograms, you will be okay, and the compiler happily 
accepts your expression. 

 As this section has demonstrated, units of measure bring a tremendous value to your F# coding 
experience. Not only do they help produce code free of the typical and so - easy - to - make mistakes 
when it comes to computation with various measurements; they also make your programs easier to 
interpret, with the units guiding the reader. 

 You may wonder about the costs of using units for your computations. The good news is that 
there is no run - time cost associated. The unit information is only used during compilation to drive 
the compiler and pinpoint potential programming errors. Once your programs are compiled, this 
information is discarded, and your programs execute as if they were executing without using units 
of measure.  

  Lazy Computations 

 As you saw earlier in this chapter, sequences provide one important way to express lazy 
computations as sequences of elements that are enumerated on demand, and indeed this is suffi cient 
to model most scenarios with the need of lazy evaluation. The other most readily available way is to 
use  Lazy  values directly. 

  Lazy computations  are effectively functions that need to be invoked to produce their result, as 
opposed to producing those results immediately. Consider the following: 

let eagerResult = LongRunningComputation ()
let lazyResult = fun () - >  LongRunningComputation ()  

 The difference between  eagerResult  and  lazyResult  is that the latter is wrapped in an 
anonymous function, and, thus, its value is a function that must be called fi rst to return the result of 
 LongRunningComputation . 

 This is essentially the idea behind explicit  Lazy  values.  Lazy  values are instances of the  System.
Lazy  class, a standard .NET 4.0 class used to represent lazy values. This class is a bit of a pain to 
work with directly, so you will fi nd the utility functions in the  Microsoft.FSharp.Control.Lazy  
module, and the  lazy  keyword a joy to use. For example, you create a new lazy value as follows: 

let a = lazy (LongRunningComputation ())  

 This is roughly equivalent to defi ning  lazyResult  as shown earlier, in the sense that it must be 
 “ pinged ”  to evaluate the lazy computation it carries. You can accomplish that by invoking the  Value  
member: 

a.Value  

Programming with F# ❘ 1159

CH025.indd   1159CH025.indd   1159 9/6/10   6:57:50 PM9/6/10   6:57:50 PM



1160  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 This will check that the lazy value  a  has been evaluated already, and, if not, it will evaluate it. 
Subsequent calls to the  Value  property will simply serve the value already calculated, so  “ caching ”  
is automatically provided and this can be of great value. You can accomplish the same effect by 
calling  Force() .  

  Quotations 

 Language Integrated Queries (LINQ) in C# and VB have received quite a bit of attention since their 
introduction and incorporation into those languages. The general idea of LINQ is to give you typed 
query access to various data sources using the same (language integrated) query language. Various 
SQL - like constructs were then added to C# and VB to utilize LINQ, including  from ,  select ,  where , 
and so on. 

 Underneath the covers, when you use LINQ queries in C# or VB, the LINQ extensions to the 
compiler take care of translating those queries to  expression trees , which are then evaluated at run -
 time and converted to various alternate representations and executed. 

  Quotations  are the F# way of converting F# code into expression trees. These expression trees are 
different than those used by LINQ. They are defi ned in the  Microsoft.FSharp.Quotations.Expr  
type. You will rarely use this type directly (if ever), but instead will create quotations using the 
convenient operators   < @  ...  @ >  : 

 >  let q1 =  < @ 1 @ > ;;
        
val q1 : Expr < int >  = Value (1)
        
 >  let q2 =  < @ 1+2 @ > ;;
        
val q2 : Expr < int >  =
  Call (None, Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),
      [Value (1), Value (2)])
        
 >  let q1 =
     < @ let add x y = x+y
       add 10 20 @ > ;;
        
val q1 : Expr < int >  =
  Let (add,
     Lambda (x,
             Lambda (y,
                     Call (None,
                           Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),
                           [x, y]))),
     Application (Application (add, Value (10)), Value (20)))  

 As these examples show, you can enclose any block of valid F# code inside quotations. They 
will be parsed and converted to quoted expressions. Furthermore, these quotations are typed, 
meaning that they preserve type information. If you need, there is also an untyped quotation 
expression representation. You can use   < @@  ...  @@ >   to wrap code and translate it to this untyped 
representation, or you can go directly from a typed quotation by invoking the  Raw  property on it. 

CH025.indd   1160CH025.indd   1160 9/6/10   6:57:50 PM9/6/10   6:57:50 PM



 Top - level bindings that aim to expose quoted expressions produce metadata for the quotations that 
will not be automatically compiled into the assembly. If you want to access your quotations from 
outside the assembly, you should add the  ReflectedDefinition  attribute to your binding. 

 Quoting F# code has a number of advantages, and it is the primary way to provide  alternate 
execution mechanisms  to F# code. As you will see in the next section, you can use quotations 
to author and effectively execute database queries. There are a number of Open Source and 
commercial projects that utilize F# quotations for other interesting applications. For example, one 
can translate F# quotations to code that can be executed on the GPU. Another, the  WebSharper  
project, provides a framework to translate quotations to effi cient JavaScript code to be executed 
in the browser, and it also manages many of the chores such as client - server communication 
and serialization, effectively freeing you from most of the painful details of web application 
development, and enabling you to write entire web applications with nothing but F# code.  

  Working with Database Queries 

 As you saw in the previous section, quotations provide the mechanism to assign different execution 
strategies to F# code. The F# PowerPack includes a query builder that can construct SQL queries 
from quotations. Using this query builder, quoted LINQ - like queries that use sequence and other 
operations against relational data (for example, object - relational mappings generated by SqlMetal 
or another O/R tool) can be translated to SQL and executed against the database specifi ed in the 
context handle of the generated mappings. The results are then fetched and served as prescribed in 
the queries, typically as sequences of objects that contain the extracted data fi elds. 

 Using higher - order functions to query, transform, or fi lter data is a fundamental functional 
abstraction, so, as you may expect, expressing such queries in native F# is straightforward. Consider 
the following code that computes the sorted list of  CA  customer last names for all orders that came 
in today: 

// Get all orders
db.Orders
// Filter those that are from today
| >  Seq.filter (fun o - >  o.OrderDate = System.DateTime.Today)
// Filter those that are by CA customers
| >  Seq.filter (fun o - >  o.Customer.State = “CA”)
// Map each order to the customer’s last name
| >  Seq.map (fun o - >  o.Customer.LastName)
// Sort the results
| >  Seq.sort  

 This code uses the  Seq  members you saw in Table 25 - 14 to fi lter, transform, and sort an initial 
sequence (all orders) you obtained from the database via SqlMetal - generated objects. You may also 
use other input collections to query in - memory collections or XML fi les. 

 Although queries using  Seq  members are highly expressive, they may not be the best or most 
effi cient execution mechanism when used directly. In the previous example, for instance, each 
time you visit a new order, it must be brought in from the database (unless you have it  “ cached ”  
in the database context you are using), and similarly for the associated customer records, an extra 
database read is necessary. 

Programming with F# ❘ 1161

CH025.indd   1161CH025.indd   1161 9/6/10   6:57:50 PM9/6/10   6:57:50 PM



1162  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

 Instead, you can use the query builder  query  from  Microsoft.FSharp.Linq.Query , found in the 
 Microsoft.FSharp.PowerPack.Linq.dll  assembly, and rephrase the previous query as follows: 

query  < @ seq { for o in db.Orders do
               if o.OrderDate = System.DateTime.Today
                  &  &  o.Customer.State = “CA” then
                   yield o }
         | >  Seq.map (fun o - >  o.Customer.LastName)
         | >  Seq.sort @ >   

 Here, you utilized a sequence expression to build a sequence of orders that came in today from 
customers in  CA , then mapped and sorted this sequence using the standard  Seq  members. Above all, 
you wrapped this entire computation in a quotation and passed it to the  query  function. 

 The key part here is the use of the  query  function. This takes the quotation that describes what 
you want to do with the database  —  in this case, to query for some orders, fi lter those that are 
interesting, translate that entire quotation into .NET 4.0 expression trees, and pass it to the LINQ 
run - time for SQL generation and execution. 

 As with direct LINQ queries in C# or VB, there is a possibility that the run - time conversion from 
expression trees to SQL queries fails, most often because you are using primitives that are not 
supported inside database queries. Table 25 - 19 shows the various  Seq  and other members you can 
use inside quotations.     

 TABLE 25 - 19: Available Members in Database Queries 

    MEMBER    MEMBER    MEMBER  

     Query.contains      Seq.filter      Seq.toArray   

     Query.groupBy      Seq.find      Seq.toList   

     Query.groupJoin      Seq.forall       

     Query.join      Seq.head       

     Query.maxBy      Seq.length       

     Query.minBy      Seq.map       

     Seq.append      Seq.max       

     Seq.average      Seq.min       

     Seq.averageBy      Seq.sort       

     Seq.collect      Seq.sortBy       

     Seq.distinct      Seq.sum       

     Seq.empty      Seq.sumBy       

     Seq.exists      Seq.take       

CH025.indd   1162CH025.indd   1162 9/6/10   6:57:51 PM9/6/10   6:57:51 PM



A Larger Application in F# ❘ 1163 

  A LARGER APPLICATION IN F# 

 Now that you have seen some of the core F# features, you can set out to develop a small application 
in F# that you might benefi t from. Given that the F# Interactive is a great environment to test 
out your code incrementally, the idea of this section is to walk you through a series of module 
implementations that together allow you to use F# Interactive as a shell to explore plots of 
mathematical functions. 

 Figure 25 - 2 shows an example session.   

 FIGURE 25 - 2: Using F# Interactive to plot functions 

 To build this code, you will need the following: 

  Defi ne your Abstract Syntax Tree (AST) representation for the mathematical expressions 
you want to plot. This will go into your  Ast  module.  

  Implement a parser to parse formulas into this AST. This will go into your  Language  
module.  

  Implement a function that evaluates AST terms. This will go into your  Evaluator  module.  

  Implement a function that creates a new window and plots your formulas in it. This will go 
into your  FunctionPlotter  module.    

➤

➤

➤

➤

CH025.indd   1163CH025.indd   1163 9/6/10   6:57:51 PM9/6/10   6:57:51 PM



1164  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

  The Ast Module 

 The  Ast  module defi nes the abstract syntax tree (AST) type for your arithmetic expressions. These 
consist of the following: 

  Numbers, represented as fl oats  

  Binary operations, such as addition or multiplication  

  Variables, which will be the single variable used in the formulas you are going to be plotting  

  Function calls, a couple of primitive ones of which you will support, such as sine and cosine 

module Ast =
        
    type var = string
        
    type Expr =
        | Number   of float
        | BinOp    of (float - >  float - >  float) * Expr * Expr
        | Var      of var
        | FunApply of var * Expr
        
        static member Sum (e1, e2)   = BinOp (( + ), e1, e2)
        static member Diff (e1, e2)  = BinOp (( - ), e1, e2)
        static member Prod (e1, e2)  = BinOp (( * ), e1, e2)
        static member Ratio (e1, e2) = BinOp (( / ), e1, e2)     

 The static members you added to the type will make it easier later to create expressions that use the 
four basic arithmetic operators.  

  The Language Module 

 The  Language  module contains functions to parse strings into the AST representation you defi ned 
earlier. The heart of the parser is  matchToken , that takes a regex pattern and an input string and 
returns a  Some  value of a pair of strings (one for the matched, and one for the remaining string), or a 
 None  value (if the regex pattern can ’ t be matched). 

 This function is then used to build various partial active patterns that can match different types 
of tokens (terminal symbols) and non - terminals. (These correspond to grammar productions that 
consist of various symbols that must be parsed before the production can  “ reduce. ” ) 

 You build up expressions from sums that, in turn, can be products of terms that, in turn, can be 
various factors such as numbers, variables, or function calls.   

module Language =
    open System
    open System.Text.RegularExpressions
        
    let matchToken pattern s =
        Regex.Match(s, “\A(“ + pattern + “)((?s).*)”,
            RegexOptions.Multiline)
        | >  fun m - > 

➤

➤

➤

➤

CH025.indd   1164CH025.indd   1164 9/6/10   6:57:52 PM9/6/10   6:57:52 PM



A Larger Application in F# ❘ 1165 

            if m.Success then
                (m.Groups.[1].Value, m.Groups.[2].Value) | >  Some
            else
                None
        
    let (|WHITESPACE|_|) = matchToken @”[ |\t|\n|\n\r]+”
        
    let rec MatchTokenNoWS s pattern =
        match (|WHITESPACE|_|) s with
        | Some (_, rest) - > 
            rest
            | >  matchToken pattern
        | None - > 
            s
            | >  matchToken pattern
        
    let MatchToken s f pattern =
        pattern
        | >  MatchTokenNoWS s
        | >  Option.bind f
        
    let MatchSymbol s pattern =
        pattern
        | >  MatchToken s (fun (_, rest) - >  rest | >  Some)
        
    let rec (|Star|_|) f acc s =
        match f s with
        | Some (res, rest) - > 
            (|Star|_|) f (res :: acc) rest
        | None - > 
            (acc | >  List.rev , s) | >  Some
        
    let (|NUMBER|_|) s =
        @”[0-9]+\.?[0-9]*”
        | >  MatchToken s
            (fun (n, rest) - >  (n | >  Double.Parse, rest) | >  Some)
        
    let (|ID|_|) s =
        “[a-zA-Z]+”
        | >  MatchToken s (fun res - >  res | >  Some)
        
    let (|PLUS|_|)   s = @”\+” | >  MatchSymbol s
    let (|MINUS|_|)  s = @”\-” | >  MatchSymbol s
    let (|MUL|_|)    s = @”\*” | >  MatchSymbol s
    let (|DIV|_|)    s = “/”   | >  MatchSymbol s
    let (|LPAREN|_|) s = @”\(“ | >  MatchSymbol s
    let (|RPAREN|_|) s = @”\)” | >  MatchSymbol s
        
    let rec (|Factor|_|) = function
        | NUMBER (n, rest) - > 
            (Ast.Expr.Number n, rest) | >  Some
        | ID (v, rest) - > 
            match rest with
            | LPAREN (Expression (arg, RPAREN rest)) - > 

CH025.indd   1165CH025.indd   1165 9/6/10   6:57:52 PM9/6/10   6:57:52 PM



1166  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

                (Ast.Expr.FunApply (v, arg), rest) | >  Some
            | _ - > 
                (Ast.Expr.Var v, rest) | >  Some
        | LPAREN (Expression (e, RPAREN rest)) - > 
                (e, rest) | >  Some
        | _ - > 
            None
        
    and (|Term|_|) = function
        | Factor (e1, rest) - > 
            match rest with
            | MUL (Term (e2, rest)) - > 
                (Ast.Expr.Prod (e1, e2), rest) | >  Some
            | DIV (Term (e2, rest)) - > 
                (Ast.Expr.Ratio (e1, e2), rest) | >  Some
            | _ - > 
                (e1, rest) | >  Some
        | _ - > 
            None
        
    and (|Sum|_|) = function
        | Term (e1, rest) - > 
            match rest with
            | PLUS (Sum (e2, rest)) - > 
                (Ast.Expr.Sum (e1, e2), rest) | >  Some
            | MINUS (Sum (e2, rest)) - > 
                (Ast.Expr.Diff (e1, e2), rest) | >  Some
            | _ - > 
                (e1, rest) | >  Some
        | _ - > 
            None
        
    and (|Expression|_|) = (|Sum|_|)
        
    let (|Eof|_|) s =
        if String.IsNullOrEmpty s then
            () | >  Some
        else
            match s with
            | WHITESPACE (_, rest) when rest | >  String.IsNullOrEmpty - > 
                () | >  Some
            | _ - > 
                None   

  The Evaluator Module 

 This module implements your evaluator  —  a function that takes AST terms and evaluates them with 
respect to an environment. You will model the environment as a list of string - fl oat pairs that map a 
fl oat value to a given variable. 

CH025.indd   1166CH025.indd   1166 9/6/10   6:57:52 PM9/6/10   6:57:52 PM



A Larger Application in F# ❘ 1167 

 The evaluator function works as follows: 

  For numbers, it returns the number.  

  For binary operations, it evaluates the two operands and calls the binary operation on them 
to calculate the result.  

  For variables, it tries to locate the variable in the environment, and returns its bound value 
if successful. Otherwise, it raises an error message with the name of the variable that is not 
found.  

  For function calls, it checks for the two built - in functions and calls them with the single 
argument evaluated.  

  In every other case, it reports an error.   

module Evaluator =
    open System
    open Ast
        
    let rec Eval (env: (string * fl oat) list) e =
        match e with
        | Expr.Number num        - >  num
        | Expr.BinOp (f, e1, e2) - >  f (Eval env e1) (Eval env e2)
        | Expr.Var v             - > 
            env
            | >  List.tryFind (fun (_v, _) - >  _v = v)
            | >  function
                | None - > 
                    “Unbound variable: “ + v | >  failwith
                | Some (_, value) - > 
                    value
        | Expr.FunApply (f, e) when f.ToLower() = “sin” - > 
            Eval env e | >  sin
        | Expr.FunApply (f, e) when f.ToLower() = “cos” - > 
            Eval env e | >  cos
        | Expr.FunApply (f, _) - > 
            “Unknown function: “ + f | >  failwith      

  The FunctionPlotter Module 

 The  FunctionPlotter  module implements the plotting capabilities based on the modules you 
defi ned earlier. It defi nes a  PlotInfo  record type, which you will use to specify the information for 
the function plots  —  such as the formula itself,   “ sin(cos(x)*x) ”   or the formula variable,   “ x ”  . This 
must match exactly the variable you use in your formulas. Also, only one variable is supported  —  
the domain of this variable in which the plot will be made (between  From  and  To )  —  and the range 
of the formula (between  FromY  and  ToY ), so you can  “ zoom ”  if you need to. 

 The entry point to this module is the  Plot  member that takes a  PlotInfo  value, creates a new 
window with a  PictureBox , and plots the function given. 

 More refi ned implementations could do several optimizations, use better, more effi cient drawing 
techniques, and implement further typical chores, such as calculating the optimal zooming to 

➤

➤

➤

➤

➤

CH025.indd   1167CH025.indd   1167 9/6/10   6:57:53 PM9/6/10   6:57:53 PM



1168  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

eliminate the need to specify range and domain limits, and so on. These are left to you for further 
exploration.   

module PlotterClient =
    open System
    open System.Drawing
    open System.Windows.Forms
    open Microsoft.FSharp.Control
        
    let WIDTH = 500
    let HEIGHT = 500
    let POINTS = 500
        
    type PlotInfo =
        { Variable : string
          From : float
          To : float
          FromY : float
          ToY : float
          Formula : string }
        
    // A utility function to evaluate a formula with respect to the given
    // variable assigned with the given value.
    let EvalAt v formula x =
        Evaluator.Eval [v, x] formula
        
    // The function that plots a list of values with respect to a global
    // minimum and maximum.  It needs the graphics context of the canvas
    // to draw on.
    let draw min max values (ctx: Graphics) =
        let pen = new Pen(Color.White)
        // Increase range if min=max to 0..(max*2)
        let min = if min=max then 0. else min
        let max = if min=max then max*2. else max
        
        // Scale values into the box available (with height HEIGHT).
        let scaleY y = float32 HEIGHT - float32 HEIGHT / float32 ((max-min) /
             (y-min))
        
        // Break the computed values into segments (continuous lines)
        values
        | >  List.fold (fun ((segments, current), x) y - > 
            match y with
            | None - > 
                (current :: segments, []), x+1
            | Some y - > 
                y
                | >  scaleY
                | >  fun sy - > 
                    if sy  > = 0.f  &  &  sy  < = float32 HEIGHT then
                        (segments,
                            PointF (float32 x * float32 WIDTH / float32 POINTS, sy)
                                :: current), x+1
                    else

CH025.indd   1168CH025.indd   1168 9/6/10   6:57:53 PM9/6/10   6:57:53 PM



A Larger Application in F# ❘ 1169 

                        (current :: segments, []), x+1) (([], []), 0)
        // Make sure that last segment is there
        | >  fun ((segments, current), _) - > 
            match current with
            | [] - > 
                segments
            | _ - > 
                current :: segments
        // Filter out “empty” and single segments
        | >  List.filter (function | [] | [_] - >  false | _ - >  true)
        | >  List.iter (fun segment - > 
            // Draw each segment
            ctx.DrawCurve(pen, segment | >  Array.ofList))
        
    // Take a plot info object and draw it in a new window.
    let Plot input =
        let form = new Form(Text=input.Formula)
        let bmp = new Bitmap(WIDTH, HEIGHT, Imaging.PixelFormat.Format16bppRgb555)
        let ctx = System.Drawing.Graphics.FromImage bmp
        let pbox = new PictureBox()
        pbox.Image  < - bmp
        pbox.Width  < - bmp.Width
        pbox.Height  < - bmp.Height
        form.Width  < - bmp.Width + 30
        form.Height  < - bmp.Height + 50
        form.Controls.Add pbox
        form.Show()
        match input.Formula with
        | Language.Expression (formula, Language.Eof) - > 
            try
                input.To - input.From
                | >  fun range - > 
                    [ input.From .. (range / (float POINTS)) .. input.To ]
                    // Calculate all Y’s, returning None for undefined values.
                    | >  List.map (fun x - > 
                        try
                            EvalAt input.Variable formula x
                            | >  fun y - > 
                                if y = infinity || y = -infinity then
                                    None
                                else
                                    Some y
                        with
                        | _ - > 
                            None)
                    | >  fun values - > 
                        draw input.FromY input.ToY values ctx
            with
            | e - > 
                e.Message
                | >  sprintf “Can not evaluate formula - %s”
                | >  failwith
        | _ - > 
            “Can not parse formula” | >  failwith   

CH025.indd   1169CH025.indd   1169 9/6/10   6:57:53 PM9/6/10   6:57:53 PM



1170  ❘  CHAPTER 25  VISUAL F# AND THE OTHER .NET LANGUAGES

  Running the Function Plotter 

 Although you could build an impressive UI around the function plotter functionality you built 
earlier, the easiest way to test it is via F# Interactive. You can highlight all the code and send it to a 
clean interactive session. At that point, you can start experimenting.   

 >  open PlotterClient;;
 >  let pi = { Variable=”x”; From= -2.*System.Math.PI;
     To= 2.*System.Math.PI; FromY = -10.; ToY = 10.;
     Formula=”sin(cos(x)*x)” };;
        
val pi : PlotInfo = {Variable = “x”;
                     From = -6.283185307;
                     To = 6.283185307;
                     FromY = -10.0;
                     ToY = 10.0;
                     Formula = “sin(cos(x)*x)”;}
        
 >  Plot pi;;
val it : unit = ()  

 At this point, you should see a window pop up as shown in Figure 25 - 2.   

  OTHER .NET LANGUAGES 

 Finally, to close this chapter, let ’ s take a look at a few basic pointers concerning the Iron languages. 
These languages bring dynamic capabilities to the .NET language ecosystem, giving you another 
powerful toolset to combine with the functional paradigm you saw in this chapter. 

  IronRuby 

 IronRuby is an implementation of the Ruby programming language for the .NET platform, 
spearheaded by John Lam, and running on the top of the Dynamic Language Runtime (DLR). The 
DLR is designed to enable language developers to create high - performance implementations of 
languages that rely on dynamic features, such as dynamic/duck typing and dynamic method dispatch. 

 Combined with the CLR and the DLR, Iron languages like IronRuby and IronPython offer developers 
a script - like syntax, and a dynamic run - time model that can be effectively used for quick exploration 
and problem - solving. They also enable developers to leverage the .NET libraries and its run - time 
support, and develop embedded languages, scripting capabilities, and other dynamic extensions. 

 You can fi nd out more about IronRuby at the offi cial site at  http://www.ironruby.net/ .  

  IronPython 

 Another member of the Iron language, IronPython is a .NET implementation of Python, the 
popular general - purpose programming language, originally designed by Guido van Rossum in the 
early 1990s. 

 You can fi nd out more about IronPython at  http://ironpython.net/ .   

CH025.indd   1170CH025.indd   1170 9/6/10   6:57:53 PM9/6/10   6:57:53 PM



  SUMMARY 

 In this chapter you walked through the foundations and key features of Visual F#, a new functional, 
object - oriented programming language available in Visual Studio 2010. You learned about its 
origins and design motivations, and surveyed its core functional concepts, including immutability, 
functions as fi rst - class values, algebraic data types, pattern matching, type inference, and lazy 
evaluation. 

 You saw how you can quickly get started with F#, how to create and run F# projects, and how to 
use the F# Interactive facility to quickly prototype F# programs and try them out on - the - fl y as you 
develop your code. 

 You started your exploration of F# syntax with a short example that demonstrated defi ning and 
calling functions, binding values, currying and partial function application, and using piping to 
combine function calls to make them more readable. You then learned about using modules and 
namespaces to organize your code; ordinary, string, and other literals; the syntax for various 
collections; type signatures and annotations; and controlling access to parts of your code. 

 In a deeper look at the syntax of the language, you saw many of the available operators, 
conditionals, imperative features (such as loops and reference cells), and examples for converting 
between types. You worked with class types, objects, and object expressions, and surveyed the 
various object - oriented tools that enhance the dot - notation for values and objects. 

 You worked with anonymous functions, higher - order functions, and learned about continuations 
and CPS. You also saw many of the core functional data types (such as tuples, discriminated unions, 
option values, records, and lists). 

 In the second half of this chapter, you looked at some of the more advanced F# features, including 
computation expressions (also known as F# workfl ows), enumerable sequences, range and sequence 
expressions, asynchronous workfl ows, pattern matching, active patterns, exceptions, units of 
measure, lazy computations, and quotations. You saw how to work with database queries. As a 
more in - depth example, you developed a set of F# modules that you can use with F# Interactive to 
draw mathematical plots from your Visual Studio development session. 

 Finally, you took a tiny look at IronRuby and IronPython, and learned where you can obtain more 
information about these languages.                                              

Summary ❘ 1171 

CH025.indd   1171CH025.indd   1171 9/6/10   6:57:54 PM9/6/10   6:57:54 PM



CH025.indd   1172CH025.indd   1172 9/6/10   6:57:54 PM9/6/10   6:57:54 PM



1173

INDEX

Symbols

|> (pipe operator), F# syntax, 1109
=> (lambda operator), 1057

A

About dialog box, VS Add-In Wizard, 232
About views, MVC, 770
abstract members, C# 4.0, 1082–1083
abstract syntax tree (AST), in F#, 1164
Access 1.1, release of, 985
access control, F#, 1120
accessors

C# syntax, 1046
indexers, 1080–1081

Accordion control
AccordionSample.aspx, 924–925
AccordionWithDataSample.aspx, 

926–927
description of, 908
overview of, 924
properties, 928

action fi ltering, MVC, 821–822
ActionResult class, MVC, 822–824
actions

designer-developer cooperation in Silverlight 
and WPF, 370

in Macro Explorer, 216–217
actions, MVC controllers

adding, 779
child actions, 835
Create view action, 786–787
Delete view action, 787–789
Details action, 779–782
Edit view action, 782–785

active command scope, 156
active documents, components on Toolbox tabs, 

187–188
active patterns, F#

complete, 1151–1152
overview of, 1149–1151
partial, 1152–1154

Active Server Pages. See ASP (Active Server 
Pages)

active solutions, Toolbox tabs, 187–188
active state, VisualStateGroup, 335
Active Template Library (ATL), for Visual Studio 

Gallery, 211
ActiveX controls, VB 5.0, 985
activities, WF 4.0. See also workfl ow activity 

library, WF 4.0
adding fl owchart to workfl ow, 500–504
adding to workfl ow, 494
assembling workfl ow, 490–491
building in code-only workfl ows, 508
extensions providing services to, 512–513
workfl ow activity model changes, 513–517
workfl ow architecture, 511–512

Activity class, WF 4.0, 511–512
<Activity> element, WF, 499
adaptive (smooth) streaming, Silverlight media, 

349–350
Add button, Code Snippets Manager, 52, 54
Add New Commands button, menus, 141–142
Add New Item dialog

accessing online templates, 124
adding item templates to project, 69–70
customizing templates. See templates, 

customizing
item template hierarchy, 84

bindex.indd   1173bindex.indd   1173 9/7/10   9:45:06 PM9/7/10   9:45:06 PM



1174

Add New Menu button, 141
Add or Remove Buttons menu, 140, 144
Add Reference dialog, 19, 342
Add Tab command, Toolbox, 190
.AddIn fi le, 237–239
Add-In Manager, 231
Add-in Options page, Visual Studio Add-In 

Wizard, 231–232
add-ins

architecture, 229–230
creating with Connect class, 233–237
creating with Visual Studio Add-In Wizard, 

230–233
development of, 241–242
managing and loading, 237–239
overview of, 209–210
using automation model, 239–241

AddNamedCommand2 method, implementing 
add-ins, 236

ad-hoc mode, WCF 4.0, 586
ADO.NET

adding features to Visual Studio 2008 with, 
9–10

creating Entity Data Model, 574
Entity Framework. See Entity Framework

ADO.NET Data Services
benefi t of, 294
Microsoft Ajax Library supporting, 879
working with, 888–889

adornments, extensibility of new editor, 212
advanced data binding, Ajax, 872–875
AdvancedChartStateManagement.aspx page, 

serialization, 691–693
advertising, in SOA, 378
Aero glass, in Windows 7/WPF, 363
Ajax (Asynchronous JavaScript and XML)

advanced data binding, 872–875
ASP.NET and, 840–841
client-side data binding with templates, 

859–860
Content Delivery Network, 846–848
Control Toolkit. See Ajax Control Toolkit
custom converters in, 875–877
DataView control, 860–863

DOM elements and, 852–855
interacting with events inside templates, 

867–871
jQuery leveraging Ajax infrastructure, 

976–977
live binding, 872–873
master-detail binding, 877–878
Microsoft Ajax Library, 666, 848–852
new in ASP.NET 3.5, 665–666
overview of, 665–666, 837–839
restoring framework libraries, 844–846
retrieving cross-domain data, 889–892
running code inside templates, 865–867
script loader, 855–859
server controls, 841–844
summary, 889–892
top-level binding, 874
two-way binding, 874–875
updating data on server, 883–888
using external templates, 871
using pseudo-columns in templates, 863–865
Visual Studio and, 841
WCF service enabled by, 392
working with ADO.NET data services, 

888–889
working with server-side data, 878–883
XMLHTTPRequest object, 839–840

Ajax chart interactivity
handling click events, 698–701
overview of, 697
real time charts, 705–709
triggering chart events, 701–705

Ajax Control Toolkit
Accordion control, 924–928
adding CascadingDropDown extenders to 

demo project, 901–902
adding ExpertiseService class to demo 

project, 902–903
adding ScriptManager to demo project, 901
adding UpdatePanel to demo project, 

905–908
animations, 956–962
AsyncFileUpload control, 928–932
button and checkbox extenders, 938–942

Add New Menu button – Ajax Control Toolkit

bindex.indd   1174bindex.indd   1174 9/7/10   9:45:08 PM9/7/10   9:45:08 PM



1175

ComboBox control, 916–920
control extenders, 938
creating demo project, 896–900
discovering effect of CascadingDropDown 

extenders, 904–905
Editor control, 932–937
improving demo project, 900
installing, 894–895
list extenders, 947–949
list of controls in, 908–915
new server controls, 915–916
overview of, 841, 894
panel extenders, 949–952
popup extenders, 952–955
summary, 977
TabContainer control, 921–924
textbox extenders, 942–947
types of controls in, 895
upgrading to new version, 896
validator extenders, 955–956

Ajax Extensions. See also Server controls, Ajax, 
666, 841–842

Ajax Library, Microsoft
client-side and, 666
Core Services, 848–850
cross-domain data requests supported, 

889–892
interoperability with web services, WCF 

services, and ADO.NET services, 879
JavaScript library for use with Ajax, 837
live binding, 872–873
loading JavaScript fi les from Microsoft Ajax 

Library, 855–859
Networking Layer, 850–852
overview of, 841
split script fi les in, 844–846
top-level binding, 874
two-way binding, 874–875

algebraic data types, in F#, 1105–1106, 1131
aliases, C# 2.0 namespace, 1056
AlignSeries method, DataManipulator, 644, 

645
AllowRecomposition property, Import 

attribute, 481–482

Alt+F11, starting Macros IDE, 218
Alt+F7, changing active window, 159–160
AlwaysVisibleControlExtender control, 908
anchoring annotations, 636
Anders, Mark, 655–656
AnimationExtender

Ajax Control Toolkit, 909
XML animation declaration, 957–958, 962

animations
defi ning with visual states, 334
enhancing user experience with, 341
jQuery library and, 975–976
Silverlight, 341–345
storyboards and, 342–344
transformations, 344–345

animations, and Ajax Control Toolkit
actions, 961–962
events triggering, 959
types of, 960

annotations
anchoring, 636
moving, 637–638
overview of, 633
properties of, 607–608
types, 633–635

anonymous functions, F#, 1129–1130
anonymous methods, C# 2.0, 1052–1053
anonymous object-creation expressions, VB 9.0, 

999–1000
anonymous types, C# 3.0, 1058
anti-aliasing, for text and graphics on charts, 

622–623
application, MVC

adding controller actions, 779
adding pages to, 771
Controller class, 769–770
Create view action added, 786–787
creating, 761–762
creating controller for managing database 

items, 773–776
creating database page for, 771–772
creating model for, 772
creating view for displaying items in database, 

776–779

Ajax Extensions. See also Server controls, Ajax, – application, MVC

bindex.indd   1175bindex.indd   1175 9/7/10   9:45:09 PM9/7/10   9:45:09 PM



1176

application, MVC (continued)
Delete view action added, 787–789
Details action added, 779–782
Edit view action added, 782–785
how it works, 764–766
Index and About views, 770
project structure, 763–764
routing requests within, 766–768

application logic. See controllers, MVC
ApproveDomainNameRequest activity

customizing tracking events, 549–550
DomainNameWorkflowWithHost, 558–559
resuming workfl ow instance, 543–544

ApprovementWorkflow activity, 557–560
architects, new tools for, 27–28
architecture

add-in, 229–230
DLR high-level, 405
Entity Framework, 573–579
extensibility of new editor, 212
Model-View-Controller, 667–668
.NET Framework, 289–290
parallel programming, 420
Visual Studio window, 128–131
WCF building blocks, 378–381
workfl ow. See workfl ow architecture

Architecture Explorer, 28
area charts, 612–613
areas, MVC 2 architecture, 668
areas, MVC architecture, 834
arguments, WF 4.0

adding fl owchart to workfl ow, 500
adding input argument to workfl ow, 493
adding output argument to workfl ow, 

495–496
declaring in code-only workfl ows, 507–508
explicit defi nition of, 511
passing input argument to workfl ow, 

494–495
arithmetic expressions in F#, abstract syntax tree, 

1164
ArrangeOverride method, Silverlight layout, 317
array literals, as collection initializers, 1017
arrays, in F#, 1118, 1119

artifacts
adding to VSIX project, 115–116
building, 133

ASMX Web Services, 375–376
AsOrdered( ) method, and PLINQ behavior, 

427
ASP (Active Server Pages)

ASP.NET improvements over, 657
history of Microsoft web platforms and, 753
as programming framework, 655
in VS 97, 5

ASP+ platform, history of, 656
AsParallel( ) method, PLINQ, 425
<asp:Image> elements, 684–687
ASP.NET

Ajax. See Ajax (Asynchronous JavaScript and 
XML)

birth of, 5–6, 655–656
chart controls. See chart controls, ASP.NET
demo project. See FindAnExpertDemo, 

ASP.NET application
Dynamic Data application. See Dynamic Data 

application, ASP.NET
history of Microsoft’s approach to web 

platform, 753–754
improvements over ASP, 657
Model View Controller. See MVC (Model 

View Controller)
as .NET architecture service, 292
overview of, 657–659
release of, 655–657
release of ASP, 654–655
user experience in, 297
version 1.0, 658, 659
version 1.1, 658, 659
version 2.0, 658, 659–664
version 3.0, 658, 664–665
version 3.5, 658, 665–666
version 3.5 SPI, 659, 667
version 4.0, 659, 667–668
WCF RIA Services integration with, 354
web development and, 653–654

AspNetCacheProfile attribute, HTTP caching 
in WCF 4.0, 589

application, MVC – AspNetCacheProfi le attribute, HTTP caching in WCF 4.0

bindex.indd   1176bindex.indd   1176 9/7/10   9:45:09 PM9/7/10   9:45:09 PM



1177

assemblies
interop (interoperability) assemblies, 211–212
overview of, 463–464
PIAs (Primary Interoperability Assemblies). 

See PIAs (Primary Interoperability 
Assemblies)

referenced. See referenced assemblies
assembly catalog, programming with MEF, 468
<Assembly> element, for <References> 

element, 47
Assign button, keyboard shortcuts, 159
AST (abstract syntax tree), arithmetic expressions 

in F#, 1164
Ast module, F#, 1164
AsUnordered( ) method, PLINQ, 427
AsyncFileUpload control

AsyncFileUpload.aspx.cs, 932
AsyncFileUploadSample.aspx, 928–930
description of, 909
overview of, 928
properties, 930–931

AsynchPostBackTrigger, chart events, 702–703
asynchronous communications, .NET vs. 

Silverlight, 352
asynchronous controllers, Model View Controller, 

835
Asynchronous Java Script and XML. See Ajax 

(Asynchronous JavaScript and XML)
asynchronous workfl ows, F#, 1144–1146
ATL (Active Template Library), for Visual Studio 

Gallery, 211
attached dependency properties, 318–319
AttachedToParent value, task control fl ow, 

444
attribute fi lters, jQuery, 968–969
Attributed Programming Model, MEF, 486
attributes

customizing Dynamic Data validation, 
747–749

MVC validation, 795–797
programming in F#, 1115
<Project> element for item templates, 94–95
<Project> element for project templates, 

91–94
<ProjectItem> element, 92–94

audio playback, Silverlight media, 345–347
authorization, in MVC, 819–821
AuthorizationAttribute, MVC, 819
AutoCompleteExtender, 909, 942
auto-encoding syntax, MVC, 771
Auto-Hide command, 136
auto-implemented properties, VB 10.0, 1007, 

1010–1012
automatic properties, C# 3.0, 1062
Automation API, 211–212
automation model

functional parts of, 239–241
programming macros using Visual Studio, 

208–209
Avalon, 301
axes, chart

adding custom labels to, 629–630
customizing appearance and behavior, 

623–627
labels, 606–607
titles, 606–607

AxisLabel property, customizing data point 
labels, 632

B

bandwidth
in online video and movies, 349
smooth streaming and, 349

bar charts
candlestick charts as, 615
defi ned, 610
range, 614

Base Class Library
development of, 7
.NET Framework architecture, 290, 291

BASIC (Beginner’s All-purpose Symbolic 
Instruction Code)
moving to “visual,” 984–985
structured, 983–984
unstructured, 982–983

Basic VSPackage Information page, 244–245
BasicChartStateManagement.aspx.cs, 

688–690, 691–693
BasicHttpBinding, Silverlight, 353

assemblies – BasicHttpBinding, Silverlight

bindex.indd   1177bindex.indd   1177 9/7/10   9:45:10 PM9/7/10   9:45:10 PM



1178

BeforeOpeningFile method, iWizard, 104, 
106

behaviors
adding to workfl ow services, 560–561
customizing chart axis, 624–627
designer-developer cooperation in Silverlight/

WPF, 370
enabling service discovery, 587
extension methods infl uencing PLINQ, 

425–428
part creation, 482

Berners-Lee, Tim, and WWW, 653–654
BetweenFilter class, DataManipulator 

fi ltering, 643
binary operations

arithmetic expressions in F#, 1164
COM and reusability of, 281–282
overloading, 995–996

binary stream rendering, ASP.NET charts, 
684–687

binding editor, WPF Designer property grid, 27
binding helpers, jQuery, 972–974
bindings, WCF

predefi ned, 379–380
specifying information, 387–388

Bing Maps, using Deep Zoom, 346–347
bitmap effects, Silverlight, 356
bitwise arithmetic operators, F#, 1121
BizTalk 2006, in .NET Framework 2.0, 286–287
Blend (Expression Blend)

creating complex animations, 342–344
editing Silverlight templates, 332
warning for confl icting visual state settings, 

335–336
working with Silverlight and WPF, 313, 

367–371
as WPF application, 302

blendability, 368–369
blocked components, and Toolbox, 191–192
Blur shader effect, Silverlight, 356
BMP format, image fi les, 682
body delegate, Parallel.For<TLocal>, 

436–437
BookController class, for MVC application, 

773–776

bookmarks
resuming workfl ow instance with, 544
suspending workfl ow with, 539–540

Boolean operators, in F#, 1116, 1121
BouncingCircle.xaml, 342, 344–345
boxing operations, 1044
browser, running WPF application within, 

359–361
Browser Compatibility Layer, ASP.NET Ajax, 841
BrowserHttpStack, Silverlight, 353
buffering, eliminating with stream smoothing, 349
Build ⇒ Rebuild Solution function, VSPackage 

Wizard, 247
business processes

dynamic data and. See Dynamic Data 
application, ASP.NET

managing rules in MVC, 801–803
MVC controllers and. See controllers, MVC
.NET benefi ts, 294

Buttons

adding event handlers to Silverlight, 308–311
applying to templates, 337
ControlTemplate, 333
for data binding to list of objects, 326–328
for Silverlight layout containers, 316
VisualStateGroups for, 335

ButtonTemplating.xaml, ControlTemplate, 
333–335

C

C#
automatic properties, 1010
code snippet implementation in, 33–34, 40
design goals of, 1042
DLR high-level architecture diagram, 405
dynamic binding in, 185
evolution of, 1041–1042
history of, 1041
implementations of, 1043–1044
invoking code snippets, 35
.NET Framework and, 1042–1043
summary, 1064
user experience in VisualBasic.NET and, 297

BeforeOpeningFile method, iWizard – C#

bindex.indd   1178bindex.indd   1178 9/7/10   9:45:11 PM9/7/10   9:45:11 PM



1179

variance in, 1029
VB.NET compared with, 988

C# 1.0
memory management, 1045–1046
overview of, 1044
syntax, 1046–1047
type system, 1044–1045

C# 1.1, 1047
C# 2.0

anonymous methods, 1052–1053
delegate covariance and contravariance, 

1053–1054
delegate inference, 1053
generic types, 1048–1050
iterators, 1052
namespace aliases, 1056
nullable types, 1054–1055
null-coalesce operator, 1056
overview of, 1047–1048
partial types, 1050–1051
property accessors, 1055
static classes, 1051–1052

C# 3.0, 1056–1064
anonymous types, 1058
automatic properties, 1062
collection initializers, 1063
expression trees, 1061
extension methods, 1057–1058
lambda expressions, 1059–1060
local variable type inference, 1057
object initializers, 1062
overview of, 1056–1057
partial methods, 1063–1064
query expressions, 1060–1061

C# 4.0
abstract and virtual members, 1082–1083
addressing syntax noise, 1069–1071
changes in CLR. See CLR (Common 

Language Run-time)
COM-related interoperability issues, 

1084–1087
contravariance, 1093–1094
covariance, 1090–1093
creating demo project, 1066–1069

dynamic binding, 1072–1073
Dynamic Language Runtime and, 1077–1078
dynamic lookup, 1072
dynamic operations, 1074–1077
dynamic type, 1073–1074
interoperability issues, 1066
issues before, 401
named parameters, 1081–1082
optional parameters, 1079–1081
overview of, 1065–1066
resolving applicable signatures, 1083–1084
resolving overloaded method invocations, 

1082
summary, 1099
type substitution and, 1087–1089
variance, 1089–1090
variance and refl ection, 1098–1099
variance with multiple type parameters, 

1094–1097
variance with user types, 1097–1098

C+, roots of Visual Studio, 4
C++

C# inspired by, 1042
before .NET Framework, 280
releasing Microsoft tools in, 4–5
roots of Visual Studio, 4
templates, 989, 1048

caching
Call Site Caching in DLR, 1077–1078
of command table in VS packages, 252
WCF 4.0 support for HTTP, 589

CalendarExtender

description of, 909
textbox extenders, 942, 945

Call Hierarchy function, code-navigation, 23
call site caching, in DLR

DLR high-level architecture diagram, 405
overview of, 403–404
understanding, 1077–1078

cancellation, in compensating transaction model, 
528–530

cancellation primitives, 451, 455
CancellationToken property, Parallel class, 

430

C# 1.0 – CancellationToken property, Parallel class

bindex.indd   1179bindex.indd   1179 9/7/10   9:45:12 PM9/7/10   9:45:12 PM



1180

candlestick charts, 615
Canvas, as layout container, 318–319
CascadingDropDown extenders

adding to sample ASP.NET application, 
901–902

description of, 909
discovering effect of, 904–905
list extenders, 947

Case, types of animations, 960
catalogs, MEF, 475–476, 486
categories

inserting, 35
Options dialog, 146–147
Visual Studio Gallery, 194–195

Cccheck.exe, 457, 462
Ccrefgen.exe, 457, 462
Ccrewrite.exe, 457, 462–463
CDN (Content Delivery Network), Ajax, 846–848
CERN (European Organization for Nuclear 

Research), 653
CF (Compact Framework), .NET, 289
chaining functions, jQuery, 970
ChangeRequestStatus method, resuming 

workfl ow, 544
character literals, in F#, 1117
Chart class, 607–608
chart components, .NET

adding charts to WPF applications, 603–605
adding data to chart programmatically, 

598–603
binding data to series, 638–641
Chart class, 607–608
chart coordinate system, 617–619
chart data serialization, 648
chart elements, 606–607
chart elements, appearance of, 621–623
chart elements, axes and related, 623–630
chart interactivity, 649
chart printing, 648
creating simple chart, 594–598
customizing chart drawing, 649
data points, 630–633
DataManipulator class. See 
DataManipulator class, Chart control

overview of, 593
three-dimensional charts, 619–621
using annotations, 633–638

Chart control
adding charts to WPF applications, 603–605
adding data to chart programmatically, 598

chart controls, ASP.NET
adding to page, 670–674
binary stream rendering, 684–688
binding data to chart, 676–678
image URL rendering, 680–683
overview of, 669–670
rendering, 679–680
setting up charts in event handler method, 

674–676
state management, 688–694
user interactivity. See user interactivity, 

ASP. NET charts
using charts with legacy web sites, 683–684

chart data serialization, 648
chart elements

adding custom labels to axis, 629–630
appearance of, 621–623
axes, 623–627
overview of, 606–607
strip lines, 627–629

chart interactivity, 649
chart pictures, 606–607
chart printing, 648
chart state management, ASP.NET

chart serialization basics, 690–691
overview of, 688
playing with serialization content, 693–694
saving chart state, 688–690
using serialization in state management, 

691–693
chart types, .NET

area charts, 612–613
bar charts, 609–610
candlestick charts, 615
column charts, 609–610
custom properties and, 616–617
doughnut charts, 613–614
line charts, 611

candlestick charts – chart types, .NET

bindex.indd   1180bindex.indd   1180 9/7/10   9:45:12 PM9/7/10   9:45:12 PM



1181

overview of, 609
pie charts, 613
point charts, 611–612
polar charts, 616
radar charts, 616
range charts, 614–615
step line charts, 615
stock charts, 615–616

ChartArea Collection Editor, 596, 598
ChartArea element, NET charts

adding new, 596
ASP.NET, 671–674
creating three-dimensional charts, 619–621
defi ned, 606–607
properties of, 607–608

ChartImages folder, ASP.NET charts, 680–681
/ChartImg.axd, rendering ASP.NET charts, 

679–680
ChartSerializer, 691
CheckBox control, extenders, 938–942
child actions, MVC, 835
child tasks, 444–445
ChildActionOnlyAttribute, MVC 

authorization, 819
Choose a Collection of Settings to Import page, 

Import and Export Settings Wizard, 153
Choose Settings to Export page, Import and 

Export Settings Wizard, 152
Choose Template Type page, Export Template 

Wizard, 73
Choose Toolbox Items dialog, 190–191
class types, in F#, 1125
Class View, Architecture Explorer, 28
classes

C# 2.0 static, 1051–1052
macros using code in, 214
viewing in Macro Explorer, 215

Classic ASP. See ASP (Active Server Pages)
classifi cation format, editor classifi er, 262, 

267–269
classifi cation type, editor classifi er, 262–263
classifi cation type registry, 265
ClassificationChanged event, 

OrdinaryClassifier, 266–267

ClassificationFormat.cs fi le, 267–270
ClassificationRegistry fi eld, classifi cation 

type registry, 265
ClassificationType attribute, classifi cation 

format, 268
ClassificationType.cs fi le

changing completely, 271–272
creating editor classifi er, 262–263
modifying, 269–270

ClassificationTypeDefinition type, 263
classifi er, creating simple

assigning to specifi ed editor content, 212
classifi cation format, 267–269
classifi cation type, 262–263
classifi er provider and classifi er, 263–267
overview of, 260–262
playing with classifi cation, 269–275

classifi er provider, editor classifi er, 263–267
Classifier.cs fi le, 263–267
ClassName()function, code snippets, 47, 49
CLI (Common Language Infrastructure)

history of C# and, 1042
implementations of, 1044

Click events
adding to Silverlight project, 310–311
ControlTemplate, 333
using Ajax for, 698–701

ClientHttpStack, Silverlight, 353–354
client-side

Ajax and jQuery as technologies on, 893
Ajax Library on, 666
data binding in Ajax on. See data binding, 

Ajax client-side
importance of user experience on, 297–299
validation in MVC on, 803–804
WCF on, 381

clock speed, computer CPU evolution and, 
416–418

ClockSample.xaml, 323
ClockViewModel.cs, 323
closed types

in C#, 1049
in VB, 990

clouds, new in VS 2010, 12

ChartArea Collection Editor – clouds, new in VS 2010

bindex.indd   1181bindex.indd   1181 9/7/10   9:45:13 PM9/7/10   9:45:13 PM



1182

CLR (Common Language Run-time)
addressing fl aws in major languages with, 

1042
birth of ASP.NET and, 656
as bottom layer of .NET Framework, 

290–291
dispose pattern, 996–997
DLR and, 402–411
DLR integration, 1077–1078
executing tasks in TPL, 448–449
generic types implemented at CLR level, 

989–990
nullable types and, 1055
overview of, 400
in-process side-by-side execution and, 

400–402
support for LINQ, 564
type equivalence, 411–415
unsigned integers, 996
user experience in VB.NET and, 297
variance in, 1029
Visual Studio 2005, 8
VS 2008, 8–9
in WCF, 379

code
completion, 32
inside templates, 865–867
surround, with code snippets, 36
XAML vs., 311–313

code contracts
code contract library, 456–457
declaring, 457–461
defi ned, 400
overview of, 455–456
run-time behavior, 462–463
system of, 456–457
tools in Visual Studio for, 461–462

Code Defi nition window, code-navigation, 24
code editor

Call Hierarchy function, 23
Code Defi nition window, 24
debugging, 24
Navigate To dialog, 22
new features in VS 2010, 12–13

reference highlighting, 22
UI enhancements, 20–22
using code snippets with at least one, 34

code element, 43–44
code snippets

adding and removing, 54
adding text snippets to Toolbox, 192–193
building online providers for, 59
Code Snippets Manager, 52
creating simple, 37–41
editors, 59–60
Export as Code Snippet, 60–61
extending Visual Studio with, 205–207
HTML, SQL, and JScript, 37
importing, 54–55
importing fi le with multiple, 56–57
inserting, 34–36
in other languages, 58
overview of, 31–32
Snippet Designer, 61–62
Snippet Editor, 62–63
specifi c Visual Basic features, 36–37
storage, 53–54
surrounding selected code with, 36
types of, 33
understanding, 32–33
using, 34

code snippets, fi le structure
functions, 47–51
<Header>, 42–43
language-dependent features, 46–47
overview of, 41–42
<Snippet>, 43–45

Code Snippets Manager
adding and removing snippets, 54
code snippet storage, 53–54
importing code snippet, 39–41
importing fi le with multiple snippets, 56–57
importing snippets, 54–55
overview of, 52

code-completion list, with snippets, 35
CodedHelloWorkflow, 505–509
code-navigation

Call Hierarchy function, 23

CLR (Common Language Run-time) – code-navigation

bindex.indd   1182bindex.indd   1182 9/7/10   9:45:14 PM9/7/10   9:45:14 PM



1183

Code Defi nition window, 24
debugging, 24
Navigate To dialog, 22
reference highlighting, 22

code-only workfl ows, WF 4.0
building activities, 508
declaring variables, 508
declaring workfl ow arguments, 507–508
DomainNameWorkflow project, 533–534
overview of, 505–507
using expressions, 509

CodeOnly.xaml.cs, 311–313
CodePlex, downloading Ajax Control Toolkit 

from, 894
<CodeSnippet> element, 42
CollapsiblePanelExtender, 909, 949–951
collection initializers, in C# 3.0, 1063
collection initializers, in VB 10.0

array literals, 1017
examples of, 1013–1017
how it works, 1012–1013
new features in VB 10.0, 1007

collection-handling activities, in WF 4.0, 524–525
collections

generics and, 1050
programming in F#, 1118

Color, changing classifi cation, 268–269
ColorAnimation, Silverlight, 343
ColorPickerExtender, 910, 942, 945
colors

controlling chart appearance, 622–623
customizing Text Content format, 274
types of animations, 960

column charts, 609–610, 614
COM (Component Object Model)

add-in components as, 229–230
extensibility and, 211–212
interoperability issues in C# 4.0, 1066, 

1084–1087
issues before C# 4.0 with managed 

components, 401
.NET 4 changes in CLR hosting, 401–402
object oriented programming and, 985

programming before .NET Framework, 
281–282

type equivalence and, 411–415
VS 2010 and, 15

COM Components tab, Choose Toolbox Items 
dialog, 190

combined-page mode, Dynamic Data URL 
routing, 721–722, 729–730

ComboBox control
AutoCompleteModeList, 919
ComboBoxSample.aspx, 916–917
ComboBoxSample.aspx.cs, 918–919
description of, 910
overview of, 916
properties, 920
SimpleComboBox_ItemInserting method, 

919–920
using Dynamic Data web app for master-

detail relationships, 729–730
ComImportAttribute attribute, equivalence in 

CLR, 415
command activation, package load mechanism for, 

204
command bar, workfl ow design surface, 491
command buttons, Start Page, 169–170
command groups, packages, 253
Command Options page, VSPackage Wizard, 

245–246
command table, package development, 252–254
command targets, command routing with, 156
CommandList_MouseDoubleClick, accessing VS 

object model, 184–185
CommandListStartPage, 184–185
CommandProcessor.cs fi le, simple item template, 

76–77
CommandProcessorItem.cs fi le, simple item 

template, 76–78
commands

determining shortcut key assigned to, 158
handling keyboard shortcuts, 155–157
as menus and toolbars. See menus and 

toolbars, customizing
Commands tab, Customize dialog, 139–140

code-only workfl ows, WF 4.0 – Commands tab, Customize dialog

bindex.indd   1183bindex.indd   1183 9/7/10   9:45:14 PM9/7/10   9:45:14 PM



1184

CommentDescriptor.cs, customizing templates, 
104

comments
F# syntax, 1111
VB 7.0/7.1 documentation, 994

CommentSelector.xaml, 102–104
CommentSelector.xaml.cs, 103
CommentWizard.cs, iWizard, 106–107
Common Language Infrastructure (CLI)

history of C# and, 1042
implementations of, 1044

Common Language Run-time. See CLR (Common 
Language Run-time)

Common Language Specifi ciation, CLR, 290
Common Object Run-time (COR), 1042
Common Type System. See CTS (Common Type 

System)
CommonStates, VisualStateGroup for Button, 

335–336
communication, between client and server, 297
community technology preview (CTP), of LINQ, 9
Compact Framework (CF), .NET, 289
CompareMethod, DataManipulator fi ltering, 

643
compatibility, between versions of CLR, 400–401
compensating transaction model, WF 4.0

ConferenceWorkflow example of, 527–528
implementing cancellation, 528–529
implementing compensation, 530–532
implementing confi rmation, 530
transaction-handling activities implementing, 

523–524
CompilerGeneratedAttribute attribute, 

equivalence in CLR, 415
compilers

compile time semantics, 1075–1076
compiling without PIAs, 1086–1087
XAML, 308

complete active patterns, 1151–1152
Component Object Model. See COM (Component 

Object Model)
componentization, in VB 5.0, 985
components

Model-View-ViewModel, 372

pioneering role of COM, 281–282
Visual Studio Gallery, 194–197

components, Toolbox
adding, 190–191
adding text snippets, 192–193
blocked, 191–192
overview of, 187–188

composition, MEF
accessing metadata, 484–486
defi ned, 471
explicit and implicit, 478
import notifi cation, 480–481
lazy instantiation, 480
overview of, 477
part instantiation, 478–480
part lifetime, 482–484
path instantiation, 478–479
recomposition, 481–482

composition containers, MEF
example of, 468
overview of, 474–475
part lifetime and, 482–484
querying for parts, 486

computation expressions
asynchronous workfl ows, 1144–1146
F#, 1138–1140

Conceptual (C-Space layer), Entity Data Model, 
574

Conceptual Schema Defi nition Language (CSDL), 
Entity Data Model, 574

Conceptual-Storage (C-S Mapping layer), Entity 
Data Model, 574

Concurrency Run-time, Parallel Computing 
Platform, 419

concurrent collection classes, 450–452
Condition, types of animations, 960
conditional operator, in VB 9.0, 1004–1005
conditional pattern clauses, 1150
conditionals, in F#, 1122
ConferenceWorkflow, 527–528
confi guration, simplifi ed in WCF 4.0, 583–585
ConfigureWorkflow, 548–549
confi rmation, compensating transaction model, 

528–532

CommentDescriptor.cs, customizing templates – confi rmation, compensating transaction model

bindex.indd   1184bindex.indd   1184 9/7/10   9:45:15 PM9/7/10   9:45:15 PM



1185

ConfirmButtonExtender, 910
Connect class, creating add-ins, 233–237
constraints, type parameter, 990–991
Constructor Injection, MVC, 759
Consume First mode, IntelliSense, 21–22
containers, Silverlight layout

Border, 317–318
Canvas, 318–319
concept of, 315–317
Grid, 319–321
StackPanel, 319
Viewbox, 321–322

Content Delivery Network (CDN), Ajax, 846–848
Content Model View, XML Schema Designer, 27
Content property, Button, 308–309
ContentControl, as Silverlight container, 

315–316
ContentPresenter control, ControlTemplate, 

333
context

changing using package load, 204
sensitivity, 145
Start Page accessing, 176–182
in Visual Studio. See Visual Studio context

context menus
adding menus and commands to, 143
command handling for, 156
initiating actions in Macro Explorer from, 

216–217
ContextItem.cs fi le, 180
ContinueWith method, task control fl ow, 446
ContractException, 463
ContractFailed event, 463
ContractInvariant method, 458
contracts

code. See code contracts
name, 472
programming with MEF, 471–472
type, 472

CONTRACTS_FULL symbol, code contracts, 458
contravariance

in C# 4.0, 1093–1094
defi ned, 1029, 1089
delegate covariance and contravariance in C# 

2.0, 1053–1054

with multiple type parameters, 1033
in VB 10.0, 1032–1033

control extenders, Ajax Control Toolkit
button and checkbox extenders, 938–942
CascadingDropDown extenders, 901–902, 

904–905
list extenders, 947–949
overview of, 895, 938
panel extenders, 949–952
popup extenders, 952–955
textbox extenders, 942–947
validator extenders, 955–956

control fl ow, and tasks, 444–446
control templates

in Silverlight, 332–337
in WPF, 365–366

Controller class, MVC, 769–770
Controller Factory, MVC routing details, 816–817
controllers, MVC

architecture, 668
asynchronous, 835
authorization, 819–821
child actions, 835
Controller class, 769–770
Controller Factory, 816–817
Create view action added, 786–787
creating for managing items in database, 

773–776
Delete view action added to MVC 

application, 787–789
Details action added to MVC application, 

779–782
Edit view action added to MVC application, 

782–785
execution fl ow and, 817–818
overview of, 752
preparing for validation, 799–800
testing, 824–826

controls
adding own contributions to Visual Studio 

Gallery, 197
displaying on Toolbox, 188
Visual Studio Gallery, 194–195

Confi rmButtonExtender – controls

bindex.indd   1185bindex.indd   1185 9/7/10   9:45:16 PM9/7/10   9:45:16 PM



1186

controls, Ajax Control Toolkit
Accordion control, 924–928
AsyncFileUpload control, 928–932
ComboBox control, 916–920
Editor control, 932–937
list of, 908–915
new server controls, 915–916
standard controls, 895
TabContainer control, 921–924
types of, 895
UpdatePanel control, 905–908

ControlStoryboardAction, 342
contructs, in computation expressions, 1138–1139
converters, data binding and, 325, 875–877
coordinate system, charts, 617–619
coordination data structures

cancellation primitives, 455
concurrent collection classes, 451–452
lazy initialization classes, 454
overview of, 451
synchronization primitives, 452–454

copying
chart values in DataManipulator, 645
fi les for exporting templates manually, 111
project templates, 69

COR (Common Object Run-time), 1042
core functions, in F#, 1123
Core Services, Microsoft Ajax Library, 848–850
CorrelationScope activity, 

DomainNameWorkflowWithHost, 556
cost categories, Visual Studio Gallery, 195
covariance

in C# 4.0, 1090–1093
defi ned, 1029, 1089
delegate covariance and contravariance in C# 

2.0, 1053–1054
with multiple type parameters, 1033
in VB 10.0, 1030–1032

Create New SQL Server Database, preparing 
workfl ow, 536

Create view action added, MVC controller 
actions, 786–787

CreateBookmark method, workfl ow, 540
CreateDomainNameRequest activity, workfl ow 

project, 536–537

cross-domain data, and Microsoft Ajax Library, 
889–892

crossdomain.xml fi le, Silverlight security, 352
CRUD (Create-Read-Update-Delete) operations

creating Dynamic Data application for 
master-detail relationships, 726–730

creating in Dynamic Data website, 712, 
718–724

potential security risk of, 716
using Entity Client for, 578
WCF RIA Services addressing, 354

C-S Mapping layer (Conceptual-Storage), Entity 
Data Model, 574

CSDL (Conceptual Schema Defi nition Language), 
Entity Data Model, 574

C-Space layer (Conceptual), Entity Data Model, 
574

CssClass, ASP.NET Dynamic Data websites
customizing look and feel, 733
working with fi eld templates, 739–741
working with page templates, 736–738

CTP (community technology preview), of LINQ, 9
Ctrl+Alt+X, 188–189
Ctrl+K, S, 34, 36
Ctrl+K, X, 34
Ctrl+K,Ctrl+B, 52
Ctrl+K,Ctrl+C, 155
Ctrl+Tab, 159–160
CTS (Common Type System)

defi ned, 290
in .NET Framework, 986
ordering among types in, 1089
VB 2005 (8.0) and, 989
VB.NET (7.0/7.1) and, 988
VS 2005 development, 7

current project scope, 156
currying, F# syntax, 1109–1110
custom converters, data binding, 875–877
custom error pages, in ASP.NET 2.0, 662–663
Custom Start Page Project Template

accessing Visual Studio context, 178–182
changing StartPage.xaml fi le, 173–176
MyControl tab, 171–172
Start Page, creating, 164

controls, Ajax Control Toolkit – Custom Start Page Project Template

bindex.indd   1186bindex.indd   1186 9/7/10   9:45:17 PM9/7/10   9:45:17 PM



1187

Start Page, more about, 186
Start Page solution structure, 165–167

customization
ASP.NET Dynamic Data site page, 746–747
ASP.NET Dynamic Data site validation, 

747–749
chart axis labels, 629–630
chart data points, 630–633
chart drawing, 649
extending Visual Studio with, 204–208
features in MVC, 790
Silverlight layout panels, 321–322
templates. See templates, customizing
templates in MVC, 811–814
tracking workfl ow events, 549–550

customization, menus and toolbars
adding menus and commands, 140–143
context sensitivity, 145
creating and rearranging toolbars, 144–145
overview of, 138–140

Customize dialog
adding menus and commands, 140–143
creating and rearranging toolbars, 144–145
overview of, 139–140

<CustomParameters> element, custom template 
parameters, 99–101

D

data. See also models, MVC
adding to chart programmatically, 598–603
manually adding to chart, 594–596

Data Annotation Attribute validation, MVC 2, 
668

data binding
to charts in ASP.NET, 676–678
dynamic binding in C# 4.0, 1072–1073
early binding, 1020
in F#, 1108, 1115, 1119–1120
fi eld templates rendering data, 738
late binding in VB 10.0, 1021–1023
to series in charts, 638–641
to series in .NET charting components, 

638–641

several fl avors of .NET, 639
data binding, Ajax client-side

advanced, 872
custom converters, 875–877
DataView control, 860–863
interacting with events inside templates, 

867–871
live binding, 872–873
master-detail, 877–878
running code inside templates, 865–867
with templates, 859–860
two-way, 874–875
using external templates, 871
using pseudo-columns in templates, 863–865

data binding, Silverlight
to list of objects, 326–328
master-detail, 328–329
overview of, 322
simple, 322–325
with templates, 337–341
between two UI elements, 325

data binding, to data source in charts, 600–603
data context, adding data model to Dynamic Data 

website, 713–716
data contracts, WCF, 379, 386–387
data controls, ASP.NET, 660, 665
data labels, charts, 606–607
data models, Dynamic Data web applications

creating for master-detail relationships, 
725–730

creating using LINQ to SQL, 712–716
mastering validations, 749

data points
adding ASP.NET chart control to page with, 

671–672
adding programmatically, 598–599
adding tooltips to chart, 694–696
anchoring annotations with, 636
controlling color of, 622
customizing, 630–633
customizing for various chart types, 609
fi ltering in DataManipulator, 642–643
handling clicks on, 696–697
in line charts, 611

customization – data points

bindex.indd   1187bindex.indd   1187 9/7/10   9:45:17 PM9/7/10   9:45:17 PM



1188

data points (continued)
overview of, 595
properties of, 607–608
in range charts, 614
setting up in ASP.NET Chart control, 672
sorting in DataManipulator, 644

data source
binding chart to, 600–603
binding to series, 638–641
properties of, 608

Data Source Confi guration Wizard, 601
data structures for coordination, parallel 

programming, 420
data types

algebraic data types in F#, 1105–1106
ASP.NET Dynamic Data fi eld templates, 

738–741
databases

creating Entity Data Model, 574–575
creating pages in MVC, 771–772
F# queries, 1161–1162
preparing workfl ow, 536
sending new request into, 536–537

DataBindCrossTable.aspx fi le, charts, 
676–678

DatabindingList.cs, 327–328
DatabindingTemplates.xaml, 337–341
DataContext property

accessing Visual Studio context, 176–177, 
180–181

Grid_DataContextChanged. See Grid_
DataContextChanged method

LINQ to SQL, 570–572
master-detail data-binding, 329
modifying for Start Pages, 186
simple data-binding example, 324–325

DataContract attribute, WCF, 386–387
data-driven websites, with little or no coding. See 

Dynamic Data application, ASP.NET
DataManipulator class, Chart control

applying fi nancial formula to data, 647–648
applying statistical formula to data, 646–647
copying values, 645
exporting data to DataSet object, 646
fi ltering data, 642–643

overview of, 641–642
sorting data, 644

DataPager data control, 665
DataPoint Collection Editor dialog, 595, 599
DataPointCollection, 640–641
datasets

exporting chart data to, 646
querying data with LINQ to DataSet, 

569–570
DataView control

adding interaction events inside templates, 
867–871

client-side data binding and, 860–863
master-detail binding supported, 877–878
using external templates, 871

.dbmi extension, Entity Data Model, 575
debugging

add-ins, 237
new in VS 2010, 12
packages, 247, 254–255
VS 2008, 11
with WPF tree visualization, 27

Debugging category, Options dialog, 147
declarative data access, 660–661
declarative WCF services, 394–398
decomposition of tasks, into units, 440–441
DecreaseTextEditorFontSize macros, 

225–226
Deep Zoom, Silverlight, 347–348
default skins, 662
Default.aspx fi le

adding ASP.NET chart control to page, 
670–674

customizing ASP.NET Dynamic Data look 
and feel, 735

setting up ASP.NET charts in event handler 
methods, 674–676

delegate covariance and contravariance, C# 2.0, 
1053–1054

delegate inference, C# 2.0, 1053
delegates, generics and, 1050
Delete button

removing toolbar from list, 144
removing Toolbox tab, 189

data points – Delete button

bindex.indd   1188bindex.indd   1188 9/7/10   9:45:18 PM9/7/10   9:45:18 PM



1189

Delete view action added, MVC controller, 
787–789

Delimiter attribute, code element, code snippets, 
44

Delphi, programming in, 281
Dependency Injection design pattern for 

workfl ows, 512
Dependency Injection (DI), applying MVC to, 

759–760
Dependency Object, actions and triggers, 370
dependency properties, animations working only 

with, 343
deployment

macro project as smallest unit of, 215
.NET Framework model for, 283

design patterns, in MVC, 752
design time sample data, in Blend, 369–370
designer-developer cooperation, in Silverlight and 

WPF, 367–371
designers

skills of developers vs., 299–301
WF 3.5 workfl ow design surface, 492
WF 4.0 workfl ow design surface, 491
WPF Designer, 26

designers, XML Schema Designer, 27
Details action, MVC controller, 779–782
DetailsView data control

Dynamic Data website structure, 732
new in ASP.NET 2.0, 660

developers, 299–301
Development Tools Extensibility (DTE), 239–241
devenv.exe, 229
DGQL (Directed Graph Query Language) fi le, 

Architecture Explorer, 28
DI (Dependency Injection), applying MVC to, 

759–760
Directed Graph Query Language (DGQL) fi le, 

Architecture Explorer, 28
Directory column, Choose Toolbox Items dialog, 

191
discovery

in SOA, 378
standard endpoints in 4.0, 586–588

discriminated (tagged) unions, in F#, 1106, 
1131–1132

display area, Options dialog, 146
display templates, in MVC, 805–808
DisplayAttribute, in MVC, 810–811
DisplayColumnAttribute, in MVC, 808–809
DisplayFormatAttribute, in MVC, 809
DLINQ, 570–572
DLLs (dynamic link libraries)

in C++, 280
.NET Framework interoperability and, 283

DLR (Dynamic Language Runtime)
accessing IronPython library from VB, 

1023–1026
C# 4.0 and, 1077–1078
overview of, 1023

DLR (Dynamic Language Runtime), changes in 
CLR
advantages of in .NET 4, 403–405
dynamic object example, 409–411
ExpandoObject example, 407–309
expression trees in .NET 3.5 and, 402–403
IronPython code example, 405–407
overview of, 402

DNRequestTrackingBehavior, 560–561
DNRequestTrackingParticipant, 546–547, 

548–549
docking windows

document windows, 135–136
tool windows, 131–132, 135
using keyboard for, 160

DockPanel, WPF layout, 362
Document Object Model. See DOM (Document 

Object Model)
document outline window, VS 2010, 314
Document Outline window, WPF Designer, 26
document windows

command handling for, 156
defi ned, 16–17
docking, 135–136
fl oating, 134
organizing into tab groups, 136
overview of, 132–134
setting position of new, 137–138
splitting and duplicating, 136–137
tabbed, 130

documentation comments, VB 2005 (8.0), 994

Delete view action added, MVC controller – documentation comments, VB 2005 (8.0)

bindex.indd   1189bindex.indd   1189 9/7/10   9:45:19 PM9/7/10   9:45:19 PM



1190

Documents tab, Options dialog, 137–138
DOM (Document Object Model)

accessing elements via Microsoft Ajax 
Library, 851

jQuery and, 964
working with DOM elements in Ajax, 

852–855
domain logic. See controllers, MVC
domain model, in MVC, 826–827
DomainNameWorkflow project. See persistence 

and human interactions, WF 4.0
DomainNameWorkflowTracking. See workfl ow 

tracking, WF 4.0
DomainNameWorkflowWithHost project

adding behaviors, 560–561
approval workfl ow, 557–559
changing main workfl ow, 554–556
confi guring WorkflowServiceHost, 

559–560
overview of, 554
running application, 561

DotGNU, implementation of C#, 1044
DoubleAnimation, Silverlight, 343
doughnut charts, 613–614
DragPanelExtender, 910, 949–950
DrawChartButton_Click handler, ASP.NET 

charts, 675–676
DropDownExtender, 910
DropDownList control, CascadingDropDown 

extenders, 902
DropShadow shader effect, Silverlight, 356
DropShadowExtender, 911, 949, 952
DTE (Development Tools Extensibility), 239–241
DTE property

accessing Visual Studio context, 177
accessing Visual Studio object model, 

182–185
description of, 178
macros accessing IDE options with, 226
for MyControl tab in Start Page, 172

dynamic binding
in C# 4.0, 1072–1073
defi nition of, 185
using C# 4.0, 400

dynamic composition, MEF, 464
Dynamic Data application, ASP.NET, 730–749

customizing look and feel, 732–735
customizing pages, 746–747
customizing validations, 747–749
displaying data from existing tables, 716–718
with entity templates, 741–744
with fi eld templates, 738–741
with fi lter templates, 744–746
for master-detail relationships, 725–730
overview of, 711
with page templates, 735–738
simple CRUD applications, 718–724
summary review, 750
understanding structure, 730–732
working against data model, 711–716

dynamic data, MVC 2, 668
dynamic dispatch, in C# 4.0, 1075
dynamic HTML, evolution of, 653–654
dynamic import, COM-related interoperability 

issues, 1084
Dynamic Language Runtime. See DLR (Dynamic 

Language Runtime)
dynamic languages

benefi ts of, 1072
C# 4.0 as, 1065
early vs. late binding and, 1021

dynamic link libraries (DLLs), 280, 283
dynamic lookup, 1065, 1072, 1078
dynamic object interoperability, of DLR

example of, 409–411
high-level architecture diagram of, 405
overview of, 403–404

dynamic objects, in VB 10.0, 1008, 1020–1021
dynamic operations, in C# 4.0

compile time semantics, 1075–1076
dynamic dispatch, 1075
overview of, 1074–1075
System.Object and, 1076–1077

dynamic translation, in C++, 280
dynamic types, C# 4.0, 1073–1074
dynamically-typed languages, using DLR, 

403–404
DynamicPopulateExtender, 911

Documents tab, Options dialog – DynamicPopulateExtender

bindex.indd   1190bindex.indd   1190 9/7/10   9:45:20 PM9/7/10   9:45:20 PM



1191

E

early binding, Microsoft Intermediate Language, 
1020–1021

easings, applying to Silverlight animation, 
343–344

EchoProcessor.cs fi le, 81
ECMA (European Computer Manufacturers 

Association), 1042–1043
Edit button, Dynamic Data website, 719
Edit view action added, in MVC, 782–785
editing

basic template information, 121
code snippet fi les, 59–62
templates in MVC, 805–808

editions
downloading correct versions of SDKs for, 

114
Visual Studio 2005, 8
Visual Studio 2008, 11

Editor control
CustomEditor.cs, 938
description of, 911
EditorSample.aspx, 933–934
EditorSample.aspx.cs, 934–935
overview of, 932–933
properties, 935–936

editor extensibility
with Managed Extensibility Framework, 

256–258
overview of, 255
points, 258–260

editor extensibility, creating simple classifi er
classifi cation format, 267–269
classifi cation type, 262–263
classifi er provider and classifi er, 263–267
overview of, 260–262
playing with classifi cation, 269–275

EDM (Entity Data Model), Entity Framework, 
574–577

effects, jQuery visual, 975–976
80/20 rule, 418–420, 430
Ellipses, in Grid layout container

ControlTemplate, 333, 336
Silverlight layout, 320–321

EMF (Enhanced Metadata Format), image fi les, 
682

EnableAction, animation, 961
encoding, in smooth streaming, 349–350
endpoints, WCF

4.0 standard, 585–588
Ajax-enabled, 393
content of, 664
creating, 382
defi ned, 381

Enhanced Metadata Format (EMF), image fi les, 
682

ENQUIRE software, 653
Enter a Name and Description page, Visual Studio 

Add-In Wizard, 231
Entity Client, Entity Framework, 578
Entity Data Model (EDM), Entity Framework, 

574–577
Entity Data Model Wizard, 574–577
Entity Data Source control, 579
Entity Framework

Dynamic Data web application requiring, 711
Entity Client, 578
Entity Data Model, 574–577
Entity SQL, 578
LINQ to Entities, 577
as .NET architecture service, 293
.NET benefi t of, 294
Object Services, 578–579
overview of, 573

Entity SQL, Entity Framework, 578
entity templates, ASP.NET Dynamic Data site, 

741–744
enumeration types, in C#, 1046
Environment category, Options dialog

defi nition of, 146–147
Extension Manager page, 148–149
Keyboard page, 157–158
Start Pages. See Start Page, customizing
visual experience options, 148

equality comparisons, equivalence vs., 414
error-handling activities, WF 4.0, 522
Essential Windows Presentation Foundation 

(Anderson), 301

early binding, Microsoft Intermediate Language – Essential Windows Presentation Foundation (Anderson)

bindex.indd   1191bindex.indd   1191 9/7/10   9:45:20 PM9/7/10   9:45:20 PM



1192

ETW (Event Tracking for Windows) events, 
545–546

EtwTrackingParticipant, 545–546
European Computer Manufacturers Association 

(ECMA), 1042–1043
European Organization for Nuclear Research 

(CERN), 653
Evaluator module, in F#, 1166–1167
event handlers

adding to Silverlight project using XAML, 
308–311

binding to list of objects, 327
binding/unbinding, 974
setting up ASP.NET charts, 674–676

Event Tracking for Windows (ETW) events, 
545–546

event-driven recomposition, MEF, 481
eventing model, jQuery library, 971–975
events

chart interactivity with Ajax. See Ajax chart 
interactivity

customizing tracking, 549–550
handling clicks on data points in charts, 

696–697
jQuery, 972–973
package load mechanism, 204
triggering animations, 959

exception handling
in compensating transaction model, 529
F#, 1154–1156
in MVC routing details, 822
WF 4.0, 522

Exec method, add-ins, 237
ExecuteCommand method, accessing VS object 

model, 185
execution

fl ow in MVC, 817–818
suspending workfl ow, 539–540

ExpandoObject example, DLR integration, 
407–309

expansion snippets, 33–36
Experimental Hive

creating editor classifi er, 261
debugging package, 247, 254–255

Expert F# (Syme), 1104
explicit composition, MEF, 478

explicit recomposition, MEF, 481
Export as Code Snippet, 60–61
Export attribute, MEF

accessing metadata, 484–486
attaching metadata to exports, 476–477
in Attributed Programming Model, 486
classifi cation format, 267–268
classifi cation type, editor classifi er, 263
classifi er provider, editor classifi er, 265
example of, 466
part lifetime, 483
parts and contracts using, 471–472
using host services, 469–470
working with, 472–474

Export Template Wizard dialog
creating simple item template, 78–80
creating simple project template, 72–74
customizing project template, 75

Export Template Wizard, using
Choose Template Type, 78, 112–113
Select Item References, 79
Select Item to Export, 79
Select Template Options, 79

exporting
chart data to DataSet object, 646
IDE confi guration, 153
Import and Export Settings Wizard, 151–153
keyboard mapping schemes, 161

exporting, in MEF
attaching metadata, 476–477
defi ned, 471
overview of, 472–474
path instantiation and, 478–480

exporting templates, 111–114
ExportMetadata attribute, MEF, 476–477, 484
ExportSeriesValues method, 646
Express Editions, Visual Studio 2005, 8
Expression Blend. See Blend (Expression Blend)
Expression Design, for Silverlight and WPF, 

313–315
Expression Encoder 4, for live smooth streaming, 

349–350
expression trees

in C# 3.0, 1061
in DLR, 402–405

ETW (Event Tracking for Windows) events – expression trees

bindex.indd   1192bindex.indd   1192 9/7/10   9:45:21 PM9/7/10   9:45:21 PM



1193

expressions
in code-only workfl ows using, 509
in F#, 1120
in WF 4.0 using VB syntax, 494

extended ORM. See Entity Framework
extensibility

of add-ins. See add-ins
customizing for, 204–208
editor. See editor extensibility
of MVC, 760–761
overview of, 201–202
of packages. See VSPackages (Visual Studio 

Packages)
using macros for. See macros
of Visual Studio SDK, 210–213
of XAML, 308

extensibility points, editor, 258–260
Extensible Application Markup Language. See 

XAML (Extensible Application Markup 
Language)

Extension Manager
browsing/installing online templates with, 

123–125
Options page, 148–149
removing Visual Studio Gallery components, 

196
VS 2010 UI enhancements, 20, 110

extension methods
in C# 3.0, 1057–1058
infl uencing PLINQ behavior, 425–428
in VB 9.0, 998–999

extensions
adding tracking participant to workfl ow, 

545–546
command handling for, 156
Visual Studio Gallery and. See Visual Studio 

Gallery

F

F#
access control, 1120
active patterns, 1149–1154
anonymous functions, 1129–1130

Ast module, 1164
asynchronous workfl ows, 1144–1146
attributes, 1115
bindings, 1119–1120
Booleans, 1116
building large applications in, 1163
characteristics of, 1105–1106
class types, objects, and object expressions, 

1125
comments, 1111
computation expressions, 1138–1140
conditionals, 1122
converting literals and values, 1124
core functions, 1123
currying, 1109–1110
database queries, 1161–1162
demo project, creating, 1112–1113
discriminated (tagged) unions, 1131–1132
Evaluator module, 1166–1167
exceptions, 1154–1156
expressions, 1120
function argument syntax, 1109
FunctionPlotter module, 1167–1170
functions, 1108–1109
history of, 1104–1105
indexers, 1127–1128
inheritance, 1125
interfaces, 1125
Language module, 1164–1166
lazy computations, 1159–1160
lists, 1134–1137
literals and bindings, 1115
loops, 1122–1123
modules, 1113–1115
named and optional arguments to 

constructors, 1128–1129
namespaces, 1113–1115
naming conventions, 1111
null values, 1118
numbers, 1116
object expressions, 1126
object initializers, 1127
object state via let bindings, 1126
objects, 1125, 1126

expressions – F#

bindex.indd   1193bindex.indd   1193 9/7/10   9:45:22 PM9/7/10   9:45:22 PM



1194

F# (continued)
operators, 1121–1122
option values, 1132–1133
overview of, 1103
pattern matching, 1146–1149
piping, 1109
prototyping and trying solutions on the fl y, 

1106–1107
quotations, 1160–1161
range expressions, 1143
records, 1133–1134
reference cells, 1123
sequence expressions, 1143–1144
sequences, 1141–1143
setters and getters, 1127
strings, 1116–1118
summary, 1171
syntax, 1107–1108
Text Editor category options, 149
tuples, 1130
type augmentations, 1137–1138
type signatures, 1119
units, 1116
units of measure, 1157–1159
values and types, 1124
whitespace and indentation, 1110–1111

F# Interactive, 1106, 1113
Factory property, Task class, 444
FadeIn animation, 960
FadeOut animation, 960
failure, cancellation vs., 529
Fibonaci sequence, with C# iterators, 1052
fi eld templates, Dynamic Data websites, 738–741
fi elds, customizing Dynamic Data validation, 

747–749
fi le associations, classifi cation types and, 273
File System navigation, Architecture Explorer, 28
fi le templates, 70
fi les

code snippet structure. See code snippets, fi le 
structure

creating simple project template, 74
custom parameters for naming, 100–101
defi ning in project templates, 91–94

Dynamic Data website structure, 730–732
VSIX project, 115–116

Filter method, DataManipulator, 643
fi lter templates, Dynamic Data websites, 744–746
Filter text box, Choose Toolbox Items dialog, 191
FilterDataPoint method, 643
FilteredTextBoxExtender, 911, 942, 944
fi lters

DataManipulator, 642–643
for master-detail relationships in Dynamic 

Data sites, 726–729
MVC, 821–822
Pascal IntelliSense lookup, 21
Visual Studio Gallery, 195–196
WCF 4.0 routing service, 589–591

fi lters, jQuery
attribute fi lters, 968–969
combining with selectors, 968
form fi lters, 969–970
list of, 966–967

fi nancial formulas, for chart data, 647–648
Find and Replace window, 129
FindAnExpertDemo, ASP.NET application

adding CascadingDropDown extenders to, 
901–902

adding ExpertiseService class to, 902–903
adding ScriptManager to, 901
adding UpdatePanel to demo project, 

905–908
Ajax Control Toolkit improving, 900
creating, 896–897
DataAccess.cs, 898–899
Default.aspx for, 897–900
discovering effect of CascadingDropDown 

extenders, 904–905
fl oating windows

tool windows, 131–132
using keyboard to dock, 160
VS architecture, 130–131
working with, 134–135

fl ow control activities, WF 4.0, 518–520
fl ow documents, WPF, 361–362
Flowchart activity, WF 4.0, 499
fl owcharts, in WF 4.0

F# – fl owcharts, in WF 4.0

bindex.indd   1194bindex.indd   1194 9/7/10   9:45:22 PM9/7/10   9:45:22 PM



1195

activities for creating, 521–522
adding FlowDecision activity, 500–502
adding FlowSwitch activity, 503–504
adding ForEach<T> activity, 502–503
adding to workfl ow, 500
overview of, 499–500
running workfl ow, 504–505

FlowDecision activity, fl owchart workfl ow, 
500–502

FlowSwitch activity, fl owchart workfl ow, 
503–504

FocusedStates, ControlTemplate, 335–336
folders

code snippet storage, 53–54
defi ning in project templates, 91–94
Dynamic Data website structure, 730–732

fonts
changing classifi cation, 268–269
customizing Text Content format, 274
extensibility of new editor, 212

For method. See Parallel.For, Task Parallel 
Library

For<TLocal> method, Parallel class, 430, 
436–438

ForEach method, Parallel class, 430, 439
ForEach<T> activity, fl owchart workfl ow, 502–

503
form fi lters, jQuery, 969–970
Form_Init method, chart state, 690
formats, changing image fi le, 682–683
FormView data control, 660
Foundations of F# (Pickering), 1104
framework libraries, restoring, 844–846
from clause, in query expressions, 1060
From property, Silverlight/WPF animations and, 

343
from__ in ___, LINQ query structure, 566
full compatibility, 401
function arguments, in F#, 1109
function calls, in F#, 1164
function operators, in F#, 1121
functional programming languages. See also F#, 

1103–1104
FunctionPlotter module, F#, 1167–1170

functions, code snippet, 47–51
functions, F#

anonymous, 1129–1130
capabilities of, 1108
currying and, 1109–1110
as fi rst-class values, 1105
optional parentheses around function 

arguments, 1109
syntax, 1108–1109
type signature and, 1119

G

GAC (Global Assembly Cache), customizing 
templates, 101

garbage collection
in C#, 1045
memory management in VB.NET, 989

Garrett, Jesse James, 837
GDI+functions, drawing chart coordinates, 617
General page of Environment category, Options 

dialog, 146–148
Generate From Usage feature, 24–25
GenerateSwitchCases(EnumLiteral)function, 

code snippets, 47, 49
generic parameter substitution, type relationships, 

1027, 1087
generic types

C# 2.0, 1048–1050
code reuse supported by, 1043
VB 2005 (8.0), 989–992

GetChartDataConnection method, 677
GetClassificationSpans method, editor 

classifi er, 266, 273
GetClassifier method, editor classifi er, 

265–266
GetData( ) method, WCF service interface, 384
GetEmployeeList( ) method, WCF service 

interface, 384
GetEnumerator method, iteration, 1052
GetOrCreateSingletonProperty method, 

editor classifi er, 266
GetOutputWindowPane method, output 

messages, 227

FlowDecision activity, fl owchart workfl ow – GetOutputWindowPane method, output messages

bindex.indd   1195bindex.indd   1195 9/7/10   9:45:23 PM9/7/10   9:45:23 PM



1196

GetService method, package type defi nition, 
250

getters
C#, 1046
F#, 1127
property accessors, 1055

ghost frames, docking tool windows, 135
GhostDoc, 207–208
Global Assembly Cache (GAC), customizing 

templates, 101
Global scope

command handling for, 156–157
keys not assigned command in, 159
overriding shortcut defi ned in, 158–159

global toolbars, creating and rearranging, 144
Global.asax fi le, 721
GoToState method, ControlTemplate, 334
GPU (graphics processing unit)

acceleration in Silverlight, 357
rendering in WPF, 301

Graph View, XML Schema Designer, 27
graphical user interfaces (GUIs), Windows OSs 

and, 984
Grid control

Hello World application in WPF, 359
as layout container, 319–321
StartPage.xaml, 167–168

grid lines, chart, 606–607
Grid_DataContextChanged method

accessing Visual Studio context, 179, 181–182
accessing Visual Studio object model, 185

GridView data control
Dynamic Data website structure, 732
new in ASP.NET 2.0, 660
working with page templates, 736–738

group clause, query expressions, 1060
GuidAttribute attribute, equivalence in CLR, 

415
GUIs (graphical user interfaces), Windows OSs 

and, 984
Guthrie, Scott, 655–656
GW-BASIC, 983

H

H.264, Silverlight support for, 346
hardware graphics acceleration, 148
HasMorePages property, printing in Silverlight, 

356
HD video, user playback problems in, 349
headers

code snippets, 42–43
customizing ASP.NET Dynamic Data look 

and feel, 734–736
Hejlsberg, Anders, 1041–1042
“Hello, World” application, Silverlight

adding event handlers, 308–311
creating new project, 304–311
in Expression Blend, 314–315

“Hello, World” applications
code-only workfl ows, 505–509
in early Windows UI development, 4
“Hello User” in VB.NET, 987
jQuery, 963–964
for workfl ow. See HelloWorkflow 

application
in WPF, 359–361

HelloWorkflow application
adding activities, 494
adding input argument, 493
adding output argument, 495
adding variable, 496
creating output value, 496
extracting workfl ow output, 496–499
overview of, 492–493
passing input arguments to workfl ow, 

494–495
SimpleHelloF35 workfl ow, 513–515
SimpleHelloF4 workfl ow, 515–517

HiddenInputAttribute, in MVC, 811
Hide Snippet Highlights, 37
HideAction, animation, 961
hierarchy

code snippet folders, 54
document windows, 133–134

GetService method, package type defi nition – hierarchy

bindex.indd   1196bindex.indd   1196 9/7/10   9:45:24 PM9/7/10   9:45:24 PM



1197

item templates, 84
Macro Explorer, 215–216
project templates, 82–83
task control fl ow, 444–445

High level Shader Language (HSLS2.0), Silverlight 
bitmaps, 356

HKEY_CURRENT_USER hive, project template 
hierarchy, 82

horizontal tab groups, for document windows, 
133, 136

host application
accessing extensions, 512–513
communicating with during workfl ow, 

537–539
executing WorkflowApplication within, 

510–511
hosting

with MEF, 469
.NET 4 changes in CLR and, 401–402
WCF 4.0 routing services, 590–591
WCF declarative services, 396
WCF services, 382–384, 388–389

HoverMenuExtender, 911
HSLS2.0 (High level Shader Language), Silverlight 

bitmaps, 356
HTML (Hypertext Markup Language)

ASP embedded in, 655
code snippets, 37
creating new Silverlight project, 308
as standard markup for web pages, 654

HtmlBrush class, available in OOB mode, 355
HtmlPageWithIFrame.html, charts with legacy 

web sites, 683–684
HTTP (HyperText Transfer Protocol)

network stacks for communication, 352–353
pipeline, and ASP.NET 3.5, 666
request fl ow in MVC, 768
WCF 4.0 support for caching, 589

human interactions, WF 4.0, 532
Hypertext Markup Language (HTML). See 

HTML (Hypertext Markup Language)

I

IBook interface, in MVC, 830–831
IClassifier interface, editor classifi er, 266
IClassifierProvider type, 265
icons, exporting templates with, 111
IControllerFactory interface, 816
IDE confi guration

for add-ins, 209
export and import options, 151–153
for macros, 225–226
option pages changes, 147–150
Options dialog, 145–147
using Macros IDE. See Macros IDE
Visual Studio settings, 150–151
.vssettings fi le, 154

IDE customization
keyboard shortcuts. See keyboard shortcuts
menus and toolbars. See menus and toolbars, 

customizing
overview of, 127–128
Start Page. See Start Page, customizing
Toolbox, 186
Visual Studio Gallery, 193–198
window management. See window 

management
identity metasystems, and CardSpace, 293
IDisposable pattern, in VB 8.0, 996–997
IDTCommandTarget interface, add-ins, 229, 

235–237
IDTExtensibility2 interface, add-ins, 229, 

235–236
IEnumerable interface, 1052
If operators, conditional expressions in VB 9.0, 

1004–1005
<iframe> tags, charts with legacy web sites, 684
Iif function, conditional expressions in VB 9.0, 

1004–1005
IIS (Internet Information Server), 7–8, 382

hosing WCF services, 382
VS 2005 changes in, 7–8

High level Shader Language (HSLS2.0), Silverlight bitmaps – IIS (Internet Information Server)

bindex.indd   1197bindex.indd   1197 9/7/10   9:45:25 PM9/7/10   9:45:25 PM



1198

images, rendering ASP.NET charts, 679–683
immutability

characteristics of F#, 1105
of lists, 1137

implementations, of C#, 1043–1044
implicit composition, MEF, 478
implicit line continuation feature, in VB 10.0

issues with explicit line continuation, 
1008–1009

new features in VB 10.0, 1007
when you can use, 1009–1010

Import attribute, MEF
accessing metadata, 485
example of, 467–468
import notifi cation, 480–481
lazy instantiation and, 480
part lifetime, 483
as part of Attributed Programming Model, 

486
parts and contracts using, 471–472
recomposition, 481–482
working with, 474

Import button, Code Snippets Manager, 54–55
import notifi cation, MEF, 480–481
Imported FromTypeLibAttribute attribute, 

equivalence in CLR, 415
importing

code snippets, 39–40, 54–55
IDE confi guration, 153
with Import and Export Settings Wizard, 

151–153
keyboard mapping schemes, 161
with MEF, 471–474, 478–480
multiple snippets, 56–57
templates, 111–114

ImportingConstructor attribute, MEF, 
479–480

<Imports> element, code snippets, 46
IncreaseTextEditorFontSize macros, 

225–226
indentation, in F#, 1108, 1110–1111
index fi les, of system folders, 54
Index view, 770, 776–779
indexed properties, in C# 4.0, 1085–1086

indexers, in F#, 1127–1128
Indigo. See WCF (Windows Communication 

Foundation)
inheritance

as disadvantage of COM, 281
F#, 1125
multiple inheritance not supported by C#, 

1045
multiple inheritance not supported by VB, 

989
OOP and, 1026
type relationships and, 1027, 1087

initialization, setting up Chart from code, 
673–674

Initialize method, package type defi nition, 
250

InitializeComponent method, event handler 
for Silverlight project, 310–311

initializers
collection initializers in C#, 1063
collection initializers in VB 10.0, 1012–1017
object initializers in C#, 1062

InitServiceHost method, 
WorkflowServiceHost, 559–560

InitTrackingParticipant method, 548–549
inline styles, problems of, 330
INotifyCollectionChanged interface, 327
input, workfl ow services, 552–553
input arguments

adding fl owchart to workfl ow, 500
adding to workfl ow, 493
passing to workfl ow, 494–495

InputBox method, macros, 229
Insert button, Dynamic Data websites, 719
Insert Snippet function, expansion snippets, 34
inserting, code snippets, 34–36
installation kit, creating template

creating VSIX installation kit, 114–119
installing templates with Extension Manager, 

123–125
overview of, 114
uploading to Visual Studio Gallery, 119–123

Installed Templates tab, New Project dialog, 164, 
260–261

images, rendering ASP.NET charts – Installed Templates tab, New Project dialog

bindex.indd   1198bindex.indd   1198 9/7/10   9:45:25 PM9/7/10   9:45:25 PM



1199

installing, Ajax Control Toolkit, 894–895
InstanceStore extension class, 512–513
integer types, unsigned and signed in VB 8.0, 996
Integrated Tools, Parallel Computing Platform, 

419
IntelliSense

changing presentation of, 212
code editor window enhancements, 21–22
creating code snippets, 38–40
invoking code snippets from, 34–35
Visual Basic code snippet features, 36–37
writing LINQ queries in Silverlight using, 354

interactivity, chart, 648
interfaces

applying MVC to development of, 756–757
code contracts for, 458–459
defi ning WCF services with, 384
equivalence in CLR and, 415
F#, 1125

internal, access control specifi er, 1119
International Organization for Standardization 

(ISO), C# standard, 1043
Internet, development of, 653–654
Internet Information Server (IIS), 7–8, 382
interop (interoperability) assemblies, package 

development, 211–212
interoperability

accessing Visual Studio context, 179
advantages of DLR in .NET 4, 403
C# and, 1066
COM-related issues in C# 4.0, 1084–1087
.NET Framework and, 283

Interpolated animation, 960
invariant, 1089
Invoke method

Parallel class, 430–432
passing input arguments to workfl ow, 

494–495
IPartImportsSatisfiedNotification 

interface, 480–482
IronPython

accessing library from VB 10.0, 1023–1026
DLR high-level architecture diagram, 405
DLR integration example, 405
languages in .NET Framework, 1170

IronRuby, 405, 1167–1170
ISO (International Organization for 

Standardization), C# standard, 1043
isolated storage, Silverlight, 357–358
item templates

<TemplateContent> elements, 91, 94–95
<TemplateData> child elements, 88–89
creating simple, 76–81
hierarchical structure of, 84
overview of, 69–70
storage structure, 81–83

ItemsPanelTemplate, 338–339
iterators, C# 2.0, 1052
IViewEngine, 814–815
IVsPackage interface, 250
IWizard interface, 101–104

J

Java
C# inspired by, 1042
release of Visual J++1.0, 4

Java Virtual Machine (JVM), 4
Javadoc, C# and, 1046
JavaScript

Ajax and jQuery built on, 893
jQuery library, 962
working with Ajax-enabled WCF service, 

392–393
Jet Database engine, 985
JIT (Just In Time) compiler, VB.NET, 297
join clause, query expressions, 1060
JPEG format, image fi les, 682
jQuery library

Ajax features in, 976–977
chaining and utility functions, 970–971
eventing model, 971–975
“Hello, World” example, 963–964
jQuery object, 964–965
overview of, 962
publishing JavaScript fi le from Microsoft Ajax 

Library to, 846
selectors and fi lters, 965–970
summary, 977
visual effects and animations, 975–976

installing, Ajax Control Toolkit – jQuery library

bindex.indd   1199bindex.indd   1199 9/7/10   9:45:26 PM9/7/10   9:45:26 PM



1200

jQuery object, 964–965
JScript, 37, 655
JSON, 666, 889–892
JSONP, 889–892
Just In Time (JIT) compiler, VB.NET, 297
JVM (Java Virtual Machine), 4

K

Kennedy, Andrew, 1104
Kermeny, John G., 982
keyboard

accessing Toolbox functions using, 188–189
mapping schemes, 155, 160–162

Keyboard option page, 157–159
keyboard shortcuts

command routing and command contexts, 
155–157

creating new, 158–159
determining key assigned to command, 

158–159
Keyboard button in Customize dialog for, 140
overview of, 155
removing, 158
using keyboard exclusively, 159–160
using keyboard mapping schemes, 160–162
working with, 157–158

keyframes, for Silverlight animations, 343
Kind attribute, code snippets, 44
Kurtz, Thomas E., 982

L

labels, chart
axis, 606–607, 629–630
customizing data points, 632

lambda expressions
C# 3.0, 1059–1060
DLR and, 1078
VB 10.0 multiline, 1007, 1018–1020
VB 9.0, 1000–1001

lambda operator (=>), 1057
Language attribute, code snippets, 44
Language module, in F#, 1164–1166

language services, code snippets, 58
languages, in .NET Framework, 1170
languages, programming

code snippets in other, 34
DLR clients and, 405
expression syntax and, 494
history of Visual Studio, 4–5
importing code snippets in other, 46–47, 

55, 58
.NET as secure platform for multiple, 293
.NET Framework, 1167–1170
.NET full integration between, 283
selecting for simple add-in, 231
selecting in VSPackage Wizard, 244
using Code Snippets Manager, 52

late binding, in VB 10.0, 1021–1023
“Latest News” tab, Start Pages, 186
layer diagram, as architectural tool, 28
layout. See also Silverlight layout

customizing for table with entity templates, 
741–744

WPF additional container and controls for, 
362–364

WPF transformations, 345
LayoutRoot grid, Start Page

accessing Visual Studio context, 182
changing StartPage.xaml, 173
properties of data context set for, 177–178
structure of StartPage.xaml, 168

LayoutTransformer, Silverlight, 345
lazy computations, in F#, 1106, 1159–1160
lazy initialization classes, 451, 454
lazy instantiation, MEF, 480
left-brain thinking, developers vs. designers, 

299–300
legacy web sites, embedding charts into, 683–684, 

687
Legend Collection Editor, 597
legends

adding, 597
adding tooltips to chart, 694–696
customizing items in, 709
defi ned, 606–607
handling clicks on, 697

jQuery object – legends

bindex.indd   1200bindex.indd   1200 9/7/10   9:45:27 PM9/7/10   9:45:27 PM



1201

pie charts and, 613
properties of, 608

Length animation, 960
let clause, in query expressions, 1060
lexer files (*.fsl), in F#, 1113
libraries

jQuery. See jQuery library
Microsoft Ajax Library, 848–852
restoring framework, 844–846

“light” syntax, in F#, 1110–1111
line charts

area charts based on, 612–613
displaying range charts based on, 614
overview of, 611

line continuation, VB 10.0 implicit, 1007–1010
line transformations, using new editor, 212
line-of-business (LOB) software, user experience 

and, 298
LINQ (Language Integrated Query)

C#3.0 and, 1043
expression trees, 1061
LINQ to DataSet, 569–570
LINQ to Entities, 577, 579
LINQ to Objects, 567
LINQ to XML, 568–569
operators, 564–566
overview of, 563–564
PLINQ. See PLINQ (Parallel LINQ)
query expressions in C# and, 1060
query expressions in VB 9.0 and, 1001–1002
released in VS 2008, 8–9
supported in VB 9.0, 997
WCF RIA Services and, 354

LINQ to SQL
in Dynamic Data application. See Dynamic 

Data application, ASP.NET
Dynamic Data for master-detail relationships, 

725–730
LINQ to Entities vs., 579
overview of, 570–572

List control, extenders for, 947–949
List module, F# functions, 1136–1137
List View option, Toolbox tabs, 189
ListBox, data binding with templates, 337–341

ListDatabinding.xaml, master-detail 
data-binding, 328–329

ListProj macro, 227–228
ListProjAux macro, 228
lists

characteristics of, 1137
data binding to object, 326–328
F# type signature and, 1119
programming in F#, 1118, 1134–1137

ListSearchExtender, 911, 947, 949
ListView data control

new in ASP.NET 3.5, 665
WPF layout, 362

literals
converting in F#, 1124
declaring in code snippets, 44–45
programming in F#, 1115
using code snippet functions, 49

live binding
master-detail binding and, 877–878
Microsoft Ajax Library supporting, 872–873

live encoding, smooth streaming and, 349–350
Live ID, Visual Studio Gallery, 119
LOB (line-of-business) software, user experience 

and, 298
local messaging, Silverlight, 356
local variable type inference

in C# 3.0, 1057
in VB 9.0, 998

localFinally delegate, Parallel.
For<TLocal>, 436–437

localInit delegate, Parallel.For<TLocal>, 
436–437

localization, new in ASP.NET 2.0, 663
Location fi eld, Code Snippets Manager, 52
Logical (Storage Layer or S-Space), Entity Data 

Model, 574
login controls, new in ASP.NET 2.0, 661
long-running transactions, 523
look and feel, customizing Dynamic Data, 

732–735
loops, in F#, 1122–1123
LoremIpsumQuery example, PLINQ, 421–425

Length animation – LoremIpsumQuery example, PLINQ

bindex.indd   1201bindex.indd   1201 9/7/10   9:45:28 PM9/7/10   9:45:28 PM



1202

M

machine templates, in item template hierarchy, 84
Macro Explorer, 215–218
macro system

adding new macro project to, 217
defi ned, 215
viewing, 215–216

macros
accessing IDE options, 225–226
adding new module to macro project, 218
automation model for, 208–209, 239–241
creating, 213–218
for dealing with user input, 229
deploying, 224
developing, 223–224
Macro Explorer, 215–218
Macros IDE, 218–221
recording, 221–223
responding to IDE events, 224–225

Macros IDE, 218–221
Main Menu bar, 141
MainPage.xaml fi le

adding event handler to Silverlight project, 
310–311

with Hello World text block, 306–307
in new Silverlight project, 306

Managed Code stack, Parallel Computing 
Platform, 419–420

Managed Extensibility Framework. See MEF 
(Managed Extensibility Framework)

managed mode, WCF 4.0, 586
Managed Package Framework (MPF), 212
manifest fi le

advanced features, 95–98
creating VSIX installation kit with, 116–117
exporting templates by creating, 111
general structure of, 85–86
overview of, 84–85
<TemplateContent> element, 91–95
<TemplateData> element, 86–91

manipulation API, Windows 7/WPF, 363
many-core CPUs, 416–418
Mapping Specifi cation Language (MSL), 574
Margetson, James, 1104

MaskedEditExtender, text boxes, 912, 942, 947
master pages, new in ASP.NET 2.0, 661
master-detail binding, 877–878
master-detail relationships

creating Dynamic Data application for, 
725–730

data-binding and, 328–329
MaxDegreeofParallelism property, Parallel 

class, 430
MbUnit, unit testing with, 755
MDN (Microsoft Developer Network) library, 5
MeasureOverride method, Silverlight layout, 317
media, Silverlight

audio and video playback, 345–347
Deep Zoom, 347–348
smooth streaming, 349–350
webcam and microphone access, 350–352

MediaElement control, A/V playback with, 
345–347

MEF (Managed Extensibility Framework)
catalogs, 475–476
challenge of, 463–465
composition. See composition, MEF
composition containers, 474–475
defi ned, 15, 400
exports and imports, 472–474
extending editor with, 212, 256–258, 265
more points about, 486
overview of, 463
parts and contracts, 471–472
parts and metadata, 476–477
simple example of, 465–471

memory
managing in C# 1.0, 1045–1046
managing in Visual Basic.NET (7.0/7.1), 

988–989
package integration and, 203–204

menu bar
adding commands to, 141–143
adding menus to, 141, 143
removing menus and commands, 142–143

menus and toolbars, customizing
adding commands, 141–143
adding menus, 141, 143

machine templates, in item template hierarchy – menus and toolbars, customizing

bindex.indd   1202bindex.indd   1202 9/7/10   9:45:28 PM9/7/10   9:45:28 PM



1203

context sensitivity and, 145
creating and rearranging toolbars, 144–145
Customize dialog, 138–140
overview of, 138–139
removing menus and commands, 142–143

messaging
Silverlight local, 356
SOA, 378
WCF service/client, 381
WF 4.0, 525–526

metadata
providers, 834
validation metadata, 798–799, 803–804
view interface, 485–486

metadata attributes, in MEF
accessing, 484–486
classifi cation type, editor classifi er, 263
classifi er provider, editor classifi er, 265
overview of, 258
programming with, 476–477

metadata attributes, in MVC
DisplayAttribute, 810–811
DisplayColumnAttribute, 808–809
DisplayFormatAttribute, 809
HiddenInputAttribute, 811
overview of, 808
ScaffoldColumnAttribute, 809
UIHintAttribute, 809–810

Method Call Injection, 759
MFC (Microsoft Foundation Classes), 4
Micro Framework, .NET, 289
microphone access, Silverlight media, 350–352
Microsoft

Ajax CDN, 846–848
Ajax Library. See Ajax Library, Microsoft
parallel computing approach ob, 418–420

Microsoft Developer Network Library, 5
Microsoft Foundation Classes (MFC), 4
Microsoft Intermediate Language. See MSIL 

(Microsoft Intermediate Language)
Microsoft SQL Server 2005, 286–287
Microsoft.Expression.Interactions 

assembly, in Blend SDK, 342–343
ModalPopupExtender

description of, 912
pop-up control extenders, 952, 954

Mode option, data binding, 325
model binders, MVC, 835
Model View Controller. See MVC (Model View 

Controller)
Modeling project, as architectural tool, 27
models, MVC

architecture, 667–668
binding, 790–794, 835
creating, 772
domain model, 826–827
extending using validation metadata, 

798–799
overview of, 752

models, MVVM, 372
Model-View-Presenter (MVP), 753
Model-View-ViewModel (MVVM)

design patterns in MVC, 753
overview of, 324, 372

ModifiedStartPage project, 173–176
Modify Selection button

changing name of custom toolbars, 145
creating and rearranging toolbars, 144

modules
adding to macro project, 218
creating demo project in F#, 1113–1115
organizing macros into, 213–214
viewing with Macro Explorer, 215

Mono project, 1044
Moore’s law, 415–416
Move, types of animations, 960
Move Down

adding menus and commands, 142
creating and rearranging toolbars, 144
Toolbox tabs, 189

Move Up
adding menus and commands, 142
creating and rearranging toolbars, 144
Toolbox tabs, 189

MP3, Silverlight support for, 346
MPF (Managed Package Framework), 212
mscoree.dll fi le, CLR, 291
.msi fi le, deploying add-ins and, 209

messaging – .msi fi le, deploying add-ins and

bindex.indd   1203bindex.indd   1203 9/7/10   9:45:29 PM9/7/10   9:45:29 PM



1204

MSIL (Microsoft Intermediate Language)
creating expression trees in .NET 3.5, 402
DLR integration in new CLR, 402
early binding and, 1020

MSL (Mapping Specifi cation Language), 574
msvbvm60.dll fi le, hiding Win32 API in Visual 

Basic, 280
MultiHandleSliderExtender

description of, 912
textbox extenders, 942, 946

multi-instanced windows
document windows as, 132
tool windows as, 131

multiline lambda expressions, in VB 10.0, 1008, 
1018–1020

multi-paradigm programming languages
C# as, 1041
VB as, 1007

multiple documents mode, Visual Studio 2008, 
130–131

multiple type parameters, variance in VB 10.0 
and, 1033–1036

multi-project templates
composing, 67
overview of, 95–98

MultiScaleImage (Deep Zoom) control, 
347–348

multi-targeting
using Add Reference dialog, 19
VS 2008, 8–9

multi-threading, 417–418
multitouch, Windows 7/WPF, 363
MutuallyExclusiveCheckBoxExtender, 912, 

938–942
MVC (Model View Controller)

action and result fi ltering in, 821–822
ActionResult class, 822–824
adding controller actions, 779
areas, 834
asynchronous controllers in, 835
attaching book item to IBook interface, 

830–831
authorization in, 819–821
auto-encoding syntax in, 771

business rule management, 801–803
child actions, 835
client-side validation, 803–804
Controller class, 769–770
Controller Factory, 816–817
Create view action, 786–787
creating controllers, 773–776
creating database pages, 771–772
creating models, 772
creating MVC applications, 761–762
creating views, 776–779
custom templates, 811–814
customization features, 790
Delete view action, 787–789
design patterns used by, 752
Details action, 779–782
DI (Dependency Injection), 759–760
display templates and edit templates in, 

805–808
DisplayAttribute, 810–811
DisplayColumnAttribute, 808–809
DisplayFormatAttribute, 809
displaying validation issues, 800–801
domain model for, 826–827
Edit view action, 782–785
exception fi ltering in, 822
execution fl ow in, 817–818
extending models using validation metadata, 

798–799
extensibility in, 760–761
features in ASP.NET 4.0, 667–668
HiddenInputAttribute, 811
how it works, 764–766
Index and About views, 770
interface-based development with, 756–757
metadata attributes in, 808
metadata providers, 834
Microsoft’s approach to web platform and, 

753–754
model binding, 790–794, 835
MVVM pattern based on, 372
overview of, 751–752
preparing controller for validation, 799–800
project structure, 763–764, 826

MSIL (Microsoft Intermediate Language) – MVC (Model View Controller)

bindex.indd   1204bindex.indd   1204 9/7/10   9:45:30 PM9/7/10   9:45:30 PM



1205

repositories for projects, 827–830
Repository Design Pattern, 757–759
routing details, 816
routing requests within MVC applications, 

766–768
ScaffoldColumnAttribute, 809
Service Locator Pattern, 760
summary, 835–836
TDD (test driven development) in, 755–756
templated helpers feature in, 804–805
testing controllers, 824–826
UI customization, 804
UIHintAttribute, 809–810
unit testing in, 831–833
validation attributes, 795–797
value providers, 834–835
view engines in, 814–816
what it is, 754–755

MVP (Model-View-Presenter), 753
MVVM (Model-View-ViewModel)

design patterns in MVC, 753
overview of, 324, 372

My Contributions link, Visual Studio Gallery, 197
My Documents virtual folder, code snippet 

storage, 53
MyControl tab, 171–172
MyControl.xaml fi le, Start Page, 172, 183–184
MyControl.xaml.cs fi le, Start Page, 130, 

184–185
MyMacros, Macro Explorer, 215
MyTemplate.vstemplate fi le

creating simple item template, 80
creating simple project template, 74
template storage structure, 81–82

N

named arguments for constructors, in F#, 
1128–1129

named parameters
abstract and virtual members and, 1082–1083
in C# 4.0, 1066
resolving applicable signatures, 1083–1084
resolving overloaded method invocations, 

1082

using, 1081–1082
named skins, 662
namespaces

aliases in C# 2.0, 1056
in F#, 1113–1115

naming conventions
F# syntax, 1111
templates, 75

Navigate To dialog, code-navigation, 22
navigation

displaying table data in Dynamic Data 
website, 718

new in ASP.NET 2.0, 661
Silverlight and, 358

navigation bar, workfl ow design surface, 491
navigation pane, Options dialog, 146
Nemerle programming language, 58
.NET Framework

1.0, 5–6, 286
1.1, 6, 286
2.0, 286–287
3.0, 8, 287, 375
3.5, 8–10, 287–288, 301, 402–403
4.0, 288–289
architecture, 289–293
before, 279–282
C# history, 1042–1043
chart types. See chart types, .NET
Communications Framework enhancements. 

See WCF (Windows Communication 
Foundation) Framework 4.0

Compact Framework (CF), 289
evolution of, 283–285
history of Visual Basic and, 986
languages in, 1170
main benefi ts of, 293–294
Micro Framework, 289
origin and goals of, 282–283
overview of, 279
user experience and, 297
and WCF, 379
Workfl ow Framework enhancements. See WF 

(Workfl ow Foundation) 4.0
.NET Framework Components tab, Choose 

Toolbox Items dialog, 190

MVP (Model-View-Presenter) – .NET Framework Components tab, Choose Toolbox Items dialog

bindex.indd   1205bindex.indd   1205 9/7/10   9:45:30 PM9/7/10   9:45:30 PM



1206

.NET Framework, Core Framework enhancements
CLR. See CLR (Common Language 

Run-time)
code contracts. See code contracts
Managed Extensibility Framework. See MEF 

(Managed Extensibility Framework)
overview of, 399–400
parallel computing. See parallel computing
shipping with new CLR, 400
summary review, 487

.NET Framework, Data Framework enhancements
choosing LINQ to Entities vs. LINQ to SQL, 

579
Entity Data Source Control, 579
Entity Framework, 573–579
LINQ. See LINQ (Language Integrated 

Query)
overview of, 563
PLINQ, 572–573

networking, in Silverlight, 352–354
Networking Layer, Microsoft Ajax Library, 

850–852
New button, adding to toolbar, 144
New Project dialog

accessing online templates, 124
creating new Silverlight project, 304–305
creating package with VSPackage Wizard, 

242–243
creating Start Page with template, 164
customizing templates. See templates, 

customizing
project template hierarchy in, 82–84
selecting installed project template, 67–69
Visual Studio 2010 UI enhancements, 17–18

New Web Site dialog, 712
New Window command, 137
NeXT workstation, 653
NoBot control, 913
nodes, in project template hierarchy, 83–84
No-PIA example, of type equivalence, 412–414
n-tuples, F#. See also tuples, 1130
null values, in F#, 1118
nullable types

C# 2.0, 1054–1055

Visual Basic 2005 (8.0), 993–994
nullable value type modifi ers, in VB 9.0, 1004
null-coalesce operator, C# 2.0, 1056
<NumberOfParentCategoriesToRollUp>, in 

project template hierarchy, 84
numbers

arithmetic expressions in F#, 1164
programming in F# and, 1116

NumericUpDownExtender

description of, 913
textbox extenders, 942, 946

nUnit, unit testing with, 755

O

object expressions, F#, 1125, 1126
object initializers

C# 3.0, 1062
F#, 1127

object invariants, code contracts, 457–458
object models

accessing Visual Studio, 182–185
early vs. late binding and, 1021
LINQ integratation of queries into, 563
macro programming using, 209
.NET 4 changes in CLR, 402

object oriented programming. See OOP (object 
oriented programming)

Object Oriented Software Construction (Meyer), 
464

Object Pascal, 281
Object Relational Designer (O/R Designer), 713, 

725–726
Object Services, Entity Framework, 578–579
<object> tag, HTML, 308
ObjectAnimation, Silverlight, 343
object-creation expressions, in VB 9.0, 999–1000
ObjectDataSource, new in ASP.NET 2.0, 661
objects

data binding to list of, 326–328
declaring in code snippets, 44–45
dynamic, 1020–1021
F#, 1125–1126
LINQ to Objects, 567

.NET Framework, Core Framework enhancements – objects

bindex.indd   1206bindex.indd   1206 9/7/10   9:45:31 PM9/7/10   9:45:31 PM



1207

.NET Framework, 283
package load mechanism for requesting, 204
selecting for EDM, 575
vs. values in F#, 1105
XAML describing hierarchy of UI, 308

Objects and Timeline panel, Blend, 315
OCaml, 1104
OldValue<T> method, 458
OLE controls, in VB 4.0, 985
OnClick, events triggering animations, 959
OnConnection method, 236
one-CLR-rules scenario, 401
100 percent stacked bar or column charts, 610
OnHoverOut, events triggering animations, 959
OnHoverOver, events triggering animations, 959
online code snippet providers, 59
online templates

browsing/installing, 124–125
creating project with, 68

OnLoad, events triggering animations, 959
OnMouseOut, events triggering animations, 959
OnMouseOver, events triggering animations, 959
OOB (out-of-browser) applications, Silverlight 

settings, 355
OOP (object oriented programming)

C# and, 1041
COM (Component Object Model), 985
F# support for, 1105
.NET Framework and, 282–283
variance and, 1087
Visual Basic and, 982, 986

OpacityAction, types of animation actions, 961
Open Packaging Convention, 114
open type defi nitions

in C#, 1048–1049
in VB, 990

Open/Closed Principle, MEF, 464–465
OperationContract attribute, in WCF, 379
operations, dynamic in C# 4.0, 1074–1077
operators

F#, 1121–1122
generics and, 1050
LINQ, 564–566
null-coalesce operator in C# 2.0, 1056

Visual Basic 2005 (8.0), 994–996
option values, F#, 1132–1133
optional arguments to constructors, F#, 

1128–1129
optional parameters

in C# 4.0, 1066
indexes and, 1080–1081
overview of, 1078–1079
resolving applicable signatures, 1083–1084
resolving overloaded method invocations, 

1082
using, 1079–1080

Options dialog
changing IDE confi guration in, 150
customizing Start Page. See Start Page, 

customizing
IDE confi guration using, 145–147
new changes in pages of, 147–150
setting position of new document windows, 

137–138
Visual Studio settings, 150–154

O/R Designer (Object Relational Designer), 713, 
725–726

orderby clause, in query expressions, 1060
OrdinaryClassificationDefinition class, 

263
OrdinaryClassificationType fi eld, 263
OrdinaryClassifier class, editor classifi er, 266
OrdinaryClassifierProvider, 265
Orientation attribute, StackPanel, 316–317
ORM (Object Relational Mapping)

benefi ts of LINQ for, 563–564
Entity Framework as extended. See Entity 

Framework
out-of-browser (OOB) applications, Silverlight 

settings, 355
output

adding arguments to workfl ow, 495
creating values in workfl ow, 496
extracting from workfl ow, 496–499
handling in workfl ow services, 552–553
running fl owchart workfl ow, 504–505
writing messages with macros, 226–227

Objects and Timeline panel, Blend – output

bindex.indd   1207bindex.indd   1207 9/7/10   9:45:32 PM9/7/10   9:45:32 PM



1208

Output window
defi ned, 130
as docked tool window, 132
writing output messages to, 226–227

OutputItem method, 228–229
OutputString method, 227
overloaded method invocations, resolving in C# 

4.0, 1082

P

Package API
managed code developers accessing, 211–212
native code developers using, 211

Package class
attributes decorating, 251–252
overview of, 250–251

package load mechanism, 204
page templates, ASP.NET Dynamic Data

creating custom, 746–748
working with, 735–738

Page_Init method, ASP.NET Dynamic data, 
745–746

Page_Load method
adding tooltips to chart, 695
playing with serialization content, 693–694
real time charts in Ajax, 706–708
saving chart state, 688–690
setting up Chart from code, 673–674
triggering chart events with, 703
using Ajax for click events, 701
using serialization in state management, 692

pages, ASP.NET Dynamic Data website
customizing, 746–747
look and feel of, 734–736

PagingBulletedListExtender

description of, 913
list extenders, 947, 949

Panel control, extenders for, 949–952
Parallel class, Task Parallel Library

overview of, 430
Parallel.For, 432–436
Parallel.For<TLocal>, 436–438
Parallel.ForEach, 439
Parallel.Invoke, 430–432

parallel computing
challenge of many-core shift, 416–418
Microsoft approach, 418–420
overview of, 399–400, 415–416
Parallel LINQ (PLINQ), 421–428
Task Parallel Library. See TPL (Task Parallel 

Library)
Parallel Framework Extensions (PFX). See PLINQ 

(Parallel LINQ)
Parallel LINQ. See PLINQ (Parallel LINQ)
Parallel.For, Task Parallel Library, 429–430, 

432–436
Parallel.For<SearchInfo>, Task Parallel 

Library, 438
Parallel.For<TLocal>, Task Parallel Library, 

430, 436–438
Parallel.ForEach, Task Parallel Library, 430, 

439
Parallel.Invoke, Task Parallel Library, 

430–432
ParallelLoopState instances, 433–436
ParallelOptions instance, 430–433
parameters

named. See named parameters
optional. See optional parameters
reference parameters, 1084–1085
type parameters. See type parameters

parameters, template
$safeitemname$, 77–78
$safeprojectname$, 75
customizing templates with, 98–101

parametric polymorphism, 1104
parent tasks, control fl ow, 444–445
parser fi les (*.fsy), in F#, 1113
part instantiation, MEF, 478–480
part lifetime, MEF, 482–484
PartCreationPolicy attribute, part lifetime, 

483
partial active patterns, 1152–1153
partial methods

C# 3.0, 1063–1064
in VB 9.0, 1002

partial types
C# 2.0, 1050–1051
partial methods and, 1002, 1063

Output window – partial types

bindex.indd   1208bindex.indd   1208 9/7/10   9:45:32 PM9/7/10   9:45:32 PM



1209

Visual Basic 2005 (8.0), 992–993
parts, MEF

composition containers and catalogs 
containing, 474–476

matching with composition. See composition, 
MEF

metadata and, 476–477
multiple, 468–469
overview of, 471–472
querying composition container for, 486

Pascal IntelliSense lookup, 21
PasswordStrength

description of, 913
textbox extenders, 942, 944

path instantiation, MEF, 478–480
path of execution thinking, developers and, 440
Path option, data binding, 325
pattern matching, in F#

active patterns, 1149–1154
characteristics of F#, 1106
examining union values with, 1131–1132
overview of, 1146–1149

performance
maximizing with PLINQ. See PLINQ 

(Parallel LINQ)
situations when view state provides better, 

688
PerlScript, 655
persistence and human interactions, WF 4.0, 532
PersistenceParticipant extension class, 513
personalization services, new in ASP.NET 2.0, 

662–663
per-user extensions, 148
PetShopCharts sample, 670
PFX (Parallel Framework Extensions). See PLINQ 

(Parallel LINQ)
PIAs (Primary Interoperability Assemblies)

compiling without, 1086–1087
dynamic import and, 1084
No-PIA example of type equivalence, 

412–414
overview of, 411–412

pie charts, 613
pinning functionality, under Microsoft Windows 

7, 16

pipe operator (|>), F# syntax, 1109
placeholders

inserting in code snippets, 35–36
<Snippet> section, 43–44
understanding code snippets, 32–33
Visual Basic and, 36–37

PlaneProjection transform, 344
platform support, Visual Studio 2008, 11
PLINQ (Parallel LINQ)

comparing LoremIpsumQuery 
implementations, 425

extension methods infl uencing behavior of, 
425–428

LoremIpsumQuery example, 421–425
.NET Framework, Data Framework 

enhancements, 570–573
overview of, 421
as Parallel Computing Platform element, 419
parallel programming architecture, 420

plot area, in charts, 606–607
PNG format, image fi les, 682
point charts, 611–612
PointAnimation, Silverlight, 343
Pointer, Toolbox, 187
pointers

not supported in C#, 1045
not supported in VB, 989

points, editor extension, 258–260
polar charts, 616
PollingDuplexHttpBinding, Silverlight 

networking, 353
PopupControlExtender, 913, 952–955
Position property, Chart control, 617–619
postbacks, preserving chart state between, 

688–690
postconditions, code contracts, 457, 458
PowerBasic, 983
POX, ASP.NET 3.5 support for, 666
pre-compilation of full sites, new in ASP.NET 2.0, 

663
preconditions, code contracts, 457
Premium with MSDN edition, Microsoft Visual 

Studio 2010, 11
preview images, exporting templates by creating, 

111–113

parts, MEF – preview images, exporting templates by creating

bindex.indd   1209bindex.indd   1209 9/7/10   9:45:33 PM9/7/10   9:45:33 PM



1210

Primary Interoperability Assemblies. See PIAs 
(Primary Interoperability Assemblies)

PrimaryInteropAssemblyAttribute attribute, 
415

primitive activities, in WF 4.0, 518
primitive types, in VB 8.0, 996
printing

charts, 648
with Silverlight, 356

private, access control specifi er, 1119
ProcessCommand method

creating simple item template, 76–77, 81
creating simple project template, 71–72

ProcessDomainNameRequest.cs class, 
534–536, 554–556

product types, F#. See also tuples, 1130
Professional with MSDN edition, Microsoft 

Visual Studio 2010, 11
Program.cs fi le, 71–72
Programming Models, 419
Project Cool, 656
Project From Existing Code menu, options for 

creating new projects, 19
project structure, in MVC, 763–764, 826
project templates

adding small customization to, 75
creating, 71–75
creating editor extensions with, 260–261
hierarchical structure of, 82–84
overview of, 67–69
storage structure, 81–83
<TemplateContent> elements, 91–94
<TemplateData> elements, 89–90

project type root nodes, project template 
hierarchy, 83–84

<Project> element, 91–94
<ProjectCollection> element, 91, 95–97
ProjectFinishedGenerating method, 

105–106
ProjectGroup type, 91, 95–97
<ProjectItem> element

for item templates, 94–95
for project templates, 91–93

ProjectItemFinishedGenerating method, 
105–106

projects
creating in new way, 19
defi nition of, 133
selecting in New Project dialog, 17–18
<TemplateData> element and, 88

Projects and Solutions category, Options dialog, 
147, 149

<ProjectTemplateLink>, 96–97
properties

accessing Visual Studio context, 177–182
accessors in C# 2.0, 1055
anchoring annotations, 636
animations changing, 343
auto-implemented in VB 10.0, 1010–1012
automatic in C#, 1062
C# syntax, 1046
Chart class, 607–608
ClassificationFormatDefinition class, 

268
code contract tools, 461–462
indexed properties in C# 4.0, 1085–1086
macros accessing IDE options, 226
moving annotations, 637–638
tools for working with Silverlight and WPF, 

314–315
properties, chart

creating three-dimensional charts, 620
customizing chart axes, 624–627
determining appearance of chart elements, 

621–623
tailoring chart types with custom, 616–617

Properties grid, WPF Designer, 26–27
Properties window, as docked tool window, 132
Property (Setter) Injection, applying MVC to 

Dependency Injection, 759
Property Browser

adding event handlers to Silverlight project, 
310

searching properties in, 314
PropertyChanged event, 324–325
prototyping, with F#, 1106–1107

Primary Interoperability Assemblies. See PIAs (Primary Interoperability Assemblies) – prototyping, with F#

bindex.indd   1210bindex.indd   1210 9/7/10   9:45:34 PM9/7/10   9:45:34 PM



1211

provider class model, new in ASP.NET 2.0, 
663–664

pseudo folder nodes, project template hierarchy, 
83

pseudo-columns, using in templates, 863–865
public, access control specifi er, 1119
Pulse, types of animations, 960
.py extension, IronPython, 405

Q

query defi nition
comparing implementations, 425
implementing manually vs. using LINQ, 422
implementing parallel query defi nition 

manually, 423–424
implementing parallel query defi nition using 

PLINQ, 424–425
query expressions

C# 3.0, 1043, 1060–1061
VB 9.0, 1001–1002

QueryStatus method, 236
Quick Find button, 129
QuickBASIC, 983–984
quotations, F#, 1160–1161

R

RAD (rapid application development)
displaying UI in Visual Basic 6.0, 297
Web Forms and, 755

radar charts, 616
range charts, 614–615
range expressions, F#, 1143
rapid application development (RAD)

displaying UI in Visual Basic 6.0, 297
Web Forms and, 755

Rating control, 914
RDBMS (relational database management system), 

757
real time charts, Ajax displaying, 705–709
realization, type relationships and, 1027, 1087
Recent Projects

defi nition on Start Page, 170–171
pinning functionality of, 16

recomposition, MEF, 480–482
records, F#, 1133–1134
refactoring, using code snippets in C# for, 34
reference cells, F#, 1123
reference highlighting, code-navigation using, 22
reference parameters, 1084–1085
referenced assemblies

creating simple item template, 79
customizing templates with wizards, 101
defi ning in item templates, 94–95
Start Page, 166–167
using item templates for, 70

references types
in C#, 1044
in VB.NET, 988

<References> element
code snippets, 46–47
item templates, 91, 94–95

referentially transparent functions, in F#, 1119
refl ection

C# type system and, 1044
generic type parameters and, 1050
variance in VB 10.0 and, 1037–1038

registering, data context with Dynamic Data 
website, 715–716

Regular mode, IntelliSense, 21–22
relational database management system (RDBMS), 

757
relational operators

F#, 1122
VB 8.0, 995

Remove button, Code Snippets Manager, 52, 54
Remove button, removing shortcut key, 158
Remove Split command, document windows, 137
<RemoveShortcut> element, 162
rendering, ASP.NET charts

binary stream, 684–687
image URLs, 680–683
overview of, 679–680

RenderType property, 680, 684–687
ReorderList control, 914
repository, implementing for book project in 

MVC, 827–830
Repository Design Pattern, 757–759

provider class model, new in ASP.NET 2.0 – Repository Design Pattern

bindex.indd   1211bindex.indd   1211 9/7/10   9:45:35 PM9/7/10   9:45:35 PM



1212

Representational Transfer State (REST), WCF 
and, 394, 588–589

RequestClient project fi les, 
DomainNameWorkflow project, 533–534

RequestClientProxy class, 538–539
RequiredCreationPolicy property, part 

lifetime, 483
RequireHttpsAttribute, 820
Requires<TException> method, 458
Reset Toolbox command, 190
ResizableControlExtender, 914
Resize, types of animations, 960
resolving applicable signatures, C# 4.0, 

1083–1084
REST (Representational Transfer State), WCF 

and, 394, 588–589
result fi ltering, in MVC, 821–822
results, tasks with, 446–448
ResumeBookmark method, workfl ow, 544
reusability. See templates
RIA Services, WCF, 354
ribbons in Visual Studio, 139
rich client experience, 148
right-brain thinking, designers vs. developers, 

299–300
RoundedCornersExtender, 914
round-trip, 838
routing algorithms, forwarding commands to 

command targets using, 156
routing details, in MVC

action and result fi ltering in, 821–822
ActionResult class, 822–824
authorization, 819–821
Controller Factory, 816–817
exception fi ltering in, 822
execution fl ow, 817–818
overview of, 816

routing requests, within MVC applications, 
766–768

routing service, in WCF 4.0, 589–591
RSS, ASP.NET 3.5 support for, 666
RunStarted method, 105–107
run-time

behavior and code contracts, 462–463

binders in DLR, 1077
DomainNameWorkflowTracking, 550
IronPython, 407
Managed Extensibility Framework, 486
.NET Framework properties, 282
Parallel Computing Platform, 419
performing chart data-manipulation at. See 
DataManipulator class, Chart control

workfl ow activities in WF 4.0, 520–521

S

$safeitemname$ template parameter, 77–78
$safeprojectname$ template parameter, 75
Samples, Macro Explorer, 215
Save Current Settings page, Import and Export 

Settings Wizard, 152
Saved DGQL Query mode, Architecture Explorer, 

28
saving chart state, ASP.NET, 688–690
ScaffoldColumnAttribute, in MVC, 809
scaffolding mechanism, Dynamic Data, 711, 

715–716
Scale animation, 960
schema, creating code snippets, 38
script fi les (*.fsx), in F#, 1113
script languages, .NET 4 changes in CLR, 402
Script Loader, 858–859
ScriptAction, animation, 961
ScriptManager

adding to sample ASP.NET application, 901
ASP.NET, 844–846
ASP.NET Ajax server controls, 842–844
using Ajax with, 698–699

scripts
early vs. late binding in scripting languages, 

1021
loading JavaScript fi les from Microsoft Ajax 

Library, 855–859
split script fi les in Microsoft Ajax Library, 

844–846
SeaDragon, 347, 914
Search Engine Optimization. See SEO (Search 

Engine Optimization)

Representational Transfer State (REST), WCF – Search Engine Optimization

bindex.indd   1212bindex.indd   1212 9/7/10   9:45:35 PM9/7/10   9:45:35 PM



1213

SearchInfo instance, Parallel class, 438
security

Dynamic Data website risks, 716, 720
.NET Framework, 283
.NET multi-language platform and, 293–294
.NET vs. Silverlight network access, 352

SecurityTokenException, 582
Select an Application Host page, Visual Studio 

Add-In Wizard, 231
select clause, query expressions, 1060
Select Programming Language page

Visual Studio Add-In Wizard, 231
VSPackage Wizard, 244

Select Template Options page, Export Template 
Wizard, 73

Select Test Project Options page, VSPackage 
Wizard, 246

selectors, jQuery, 965–968
Send activity, DomainNameWorkflowWithHost, 

556
SEO (Search Engine Optimization)

creating pages in ASP.NET 4.0 for, 668
Silverlight and, 308, 358

Seq Module, F#, 1141–1143
Sequence activity, WF, 499, 508
sequence expressions, F#, 1143–1144
sequences, F#, 1141–1143
sequential workfl ows, previous WF versions, 499
serialization, ASP.NET

chart basics, 690–691
playing with content, 693–694
in state management, 691–693

serialization, of chart data in .NET, 648
SerializationContents enumeration

chart serialization and, 690–691
playing with serialization content, 693–694
using serialization in state management, 692

Serializer property, Chart control, 691, 693
Series Collection Editor

adding ASP.NET chart control to page, 
671–672

adding data points to chart programmatically, 
599

adding new chart area, 596

binding chart to data source, 601
manually adding data to chart, 595

Series element, charts
adding ASP.NET chart control to page, 

671–674
adding to chart, 596
binding data to, 638–641
copying chart values in DataManipulator, 

645
with custom properties that vary with chart 

types, 609
defi ned, 606–607
organizing chart data points into, 595
pie charts and, 613
properties of, 608, 622
sorting data in DataManipulator, 644

server controls, Ajax, 837, 841–844
server-side

ASP active scripting on, 654
ASP.NET Ajax Extensions on, 666
importance of user experience on, 297–299

server-side data, Ajax
ADO.NET data services, 888–889
Control Toolkit for, 894
retrieving cross-domain data, 889–892
updating data on server, 883–888
working with, 878–883

Service Application template, WCF, 382–383
Service class, WCF, 382–386
service consumer(s)

creating WCF service client, 391
in SOA, 377

service contracts
SOA, 377
WCF, 379, 384, 395

service description, SOA, 378
service lease, SOA, 378
Service Locator Pattern, MVC, 760
service logic, declarative WCF services, 396–398
Service Oriented Architecture (SOA)

quick look at, 376–378
WCF based on. See WCF (Windows 

Communication Foundation)
service provider, SOA, 377

SearchInfo instance, Parallel class – service provider, SOA

bindex.indd   1213bindex.indd   1213 9/7/10   9:45:36 PM9/7/10   9:45:36 PM



1214

service proxy
in SOA, 378
WCF client, 389–391

service registry, SOA, 377
ServiceDiscovery behavior, 587
services

accessing with Import attribute, MEF, 
257–258

DLR, 404
.NET architecture, 292–293
SOA, 377
WCF, creating, 382–384
WCF, getting started with, 381
WCF 4.0, simplifi ed confi guration, 583–585
workfl ow. See workfl ow services

setters
C#, 1046
F#, 1127
property accessors, 1055

SetValue method, 186
shader effects, Silverlight, 356
shadows, smoothing on charts, 623
Shared Source Common Language Infrastructure, 

C#, 1044
SharePoint, in VS 2010, 12
Shell, Visual Studio IDE, 203
<Shortcut> element, 162
shortcuts

accessing expansion snippets with, 35–36
invoking surrounding snippets with, 36
keyboard. See keyboard shortcuts

<ShortcutsScheme> element, 162
ShouldAddProjectItem method, iWizard, 

105–107
Show All option, Toolbox controls, 188
Show Snippet Highlighting, 37
side-by-side execution, CLR, 401–402
signature fi les (*.fsi), F#, 1113
signed integers, VB 8.0, 996
Silverlight

4.0, 302–304
bitmap effects, 356
choosing WPF vs., 366–367
data binding. See data binding

designer-developer cooperation in, 300
emergence of, 9
GPU acceleration, 357
isolated storage, 357–358
local messaging, 356
MEF for, 486
MVVM pattern and, 372
navigation and SEO, 358
.NET using, 294
out-of-browser applications, 355
printing, 356
SDK for audio and video playback, 346
specifying version for new project, 18
Toolkit, 321–322
versions of, 302
WPF features not available in, 361–366
XAML, 304–311
XAML vs. code, 311–313

Silverlight, ten pillars of
animations, 341–345
data binding. See data binding
layout. See Silverlight layout
media, media, Silverlight
networking, 352–354
overview of, 303
styles, 330–332
templates. See templates, Silverlight
tools, 313–315

Silverlight Components tab, Toolbox, 190
Silverlight layout

applying transformations, 345
Border, 317–318
Canvas, 318–319
containers, 315–316
custom layout panels, 321–322
Grid, 319–321
overview of, 315–317
StackPanel, 319
Viewbox, 321–322

Simple Comment wizard, 101–104
SimpleHelloF35 workfl ow, 513–517
SimpleHelloF35WF4 workfl ow, 515–517
SimplePackagePackage class, 248–249
SimplePackage.vsct fi le, 248, 252–254

service proxy – SimplePackage.vsct fi le

bindex.indd   1214bindex.indd   1214 9/7/10   9:45:37 PM9/7/10   9:45:37 PM



1215

SimpleTypeName function, code snippets, 47, 49
Site.css fi le, Dynamic Data

customizing look and feel, 732–735
working with fi eld templates, 739–741
working with page templates, 736–738

Site.master fi le, Dynamic Data, 734–735
64-bit architectures, ASP.NET 2.0 supporting, 

659–660
SketchFlow, Blend, 370–371
skins, new in ASP.NET 2.0, 662
SliderExtender, 914, 943, 946
SlideShowExtender, 915
smooth (adaptive) streaming, Silverlight media, 

349–350
Snippet Designer, 61–62
Snippet Editor, 62–63
.snippet fi les

building online code snippet providers, 58
creating snippets in XML, 38–41
defi ned, 37
editing, 59–62
fi le structure. See code snippets, fi le structure
importing, 54–55
importing fi le with multiple snippets, 56–57
Snippet Designer, 61–62
storage, 53

<Snippet> section, <CodeSnippet>
declaring literals and objects, 44–45
defi ned, 42
defi ning code, 43–44
<Imports> and <References>, 46
overview of, 43

SnippetIndex.xml fi le, Visual Basic, 54
SnippetsIndex.xml fi le, 54
SOA (Service Oriented Architecture)

overview of, 376–378
for WCF. See WCF (Windows 

Communication Foundation)
software

challenges of many-core CPUs, 416–417
development of web, 653
using MEF for evolving, 463–464

Solution Explorer

adding custom commands to context menu 
of, 143

defi ned, 130
as docked tool window, 132
fi le structure of new Silverlight solution, 305

solution hierarchy, traversing with macros, 
227–228

Solution View, Architecture Explorer, 28
<SolutionFolder>, multi-project templates, 96
Sort method, DataManipulator, 644
sorting data

ordering of data points in ∆αταΜανιπυλατο, 
644

ordering of Toolbox tabs, 189
source code

add-ins, 232
in F#, 1113
package type defi nition, 248–251
VSPackage Wizard, 247–248

Source Control category, Options dialog, 147
Source option, data binding, 325
source.extension.vsmanifest fi le, 116–118, 

130
Spec# project, 456
spline charts, 611–614
Split command, document windows, 137
split script fi les, 844–846, 855–856
splitter button, code editor window, 21
SQL

code snippets, 37
Entity SQL, Entity Framework, 578
LINQ to SQL, 570–572
using Entity SQL, 578

SQL Server database, preparing workfl ow, 536
SqlDataSource, new in ASP.NET 2.0, 660
SqlWorkflowInstanceStore, 536, 540–542
SSDL (Store Schema Defi nition Language), Entity 

Data Model, 574
stacked area charts, 613
stacked bar charts, 610
stacked column charts, 610
StackedGroupName property, stacked column 

charts, 610

SimpleTypeName function, code snippets – StackedGroupName property, stacked column charts

bindex.indd   1215bindex.indd   1215 9/7/10   9:45:37 PM9/7/10   9:45:37 PM



1216

StackPanel

data binding with templates, 339
overview of, 319
as Silverlight container, 316–317

standard endpoints, WCF 4.0, 585–587
standard query operators, LINQ, 564
star charts, 616
Start Page

choosing New Project dialog from, 17–18
enhanced features, 15–16

Start Page, customizing
accessing Visual Studio context, 176–182
accessing Visual Studio object model, 

182–185
changing StartPage.xaml fi le, 173–176
command button defi nitions, 169–170
creating fi rst, 163–165
defi nition of, 167–168
further tips about, 186
MyControl user control, 171–172
overview of, 16, 162–163
Recent Projects defi nition, 170–171
structure of, 165–167

Start View, XML Schema Designer, 27
StartNew() method, Task class, 444
StartPage.xaml fi le

accessing Visual Studio context, 178–179
changing, 173–176
command button defi nitions, 169–170
creating more tabs, 186
defi ned, 166
recent project list defi nitions, 170–171
structure of, 167–168

state management. See chart state management
state-maching workfl ows, in WF versions, 499
static classes, C# 2.0, 1051–1052
static translation, in C++, 280
static types, 1073
statically-typed languages, using DLR, 403–404
statistical formulas, applying to chart data, 

646–647
step line charts, 615
stock charts, 615–616
storage

code snippet, 53–54
template structure for, 81–82

Store Schema Defi nition Language (SSDL), Entity 
Data Model, 574

storyboards, 342–344
Stretch property, Viewbox, 321–322
String module, in F#, 1117–1118
strings, in F#, 1116–1118
StyleAction, animation, 961
styles, Dynamic Data

customizing look and feel with, 732–735
working with fi eld templates, 739–741
working with page templates, 736–738

styles, Silverlight, 330–332
Surround With function, surrounding snippets, 

34, 36
surrounding snippets, 33–34, 36
symbols, command table fi les for packages, 

253–254
Syme, Don, 1104
synchronization primitives, 451–454
syntax

C# 1.0, 1046–1047
VB 10.0, 1008

syntax, F#
comments, 1111
currying, 1109–1110
function arguments, 1109
functions, 1108–1109
naming conventions, 1111
overview of, 1107–1108
piping, 1109
whitespace and indentation, 1110–1111

syntax noise
in C# applications, 1069–1070
local variable type inference and, 1057
removing from C# applications, 1070–1071

Sys.get, DOM elements in Ajax, 852–855
Sys.require, loading scripts, 855–856
system folders

code snippet storage, 53–54
taking care when removing, 54
as template storage structure, 82

System.Object, C# 4.0, 1076–1077

StackPanel – System.Object, C# 4.0

bindex.indd   1216bindex.indd   1216 9/7/10   9:45:38 PM9/7/10   9:45:38 PM



1217

System.Threading.TaskScheduler class, 448–449
System.Threading.ThreadPool class, 448–449
System.Workfl ow Components, Choose Toolbox 

Items dialog, 190

T

Tab Defi nition fi les, Start Page, 163
tab groups, for document windows, 133, 136
tabbed document windows, 130–131
TabContainer control

description of, 914
overview of, 921
properties, 923
TabContainerSample.asxp, 921–922
TabContainerSample.asxp.cs, 922–923

TabControl, in Start Page, 171–172
tables, Dynamic Data

customizing layout, 741–744
displaying data, 716–718
for master-detail relationships, 725–730

TabPanel control, properties, 923
tabs, Toolbox, 189–191
tagged (discriminated) unions, in F#, 1106, 

1131–1132
tags, Visual Studio Gallery, 195
TargetControlID, Ajax control extenders, 938
Task class

creating and starting tasks, 444
defi ned, 450
Task<TResult> derived from, 446–447

Task Parallel Library. See TPL (Task Parallel 
Library)

Task Scheduler, Parallel Computing Platform, 420
Task<TResult> class, 446–448, 450
taskbar integration, Windows 7/WPF, 364–365
TaskCancelledException class, 450
TaskCompletionSource<TResult> class, 450
TaskCreationOptions, task control fl ow, 

444–445
TaskFactory,TaskFactory<TResult> class, 

450
tasks, working with

coordination data structures and, 450–455

creating and starting, 441–444
defi ning control fl ow, 444–446
executing, 448–449
overview of, 440–441
with results, 446–448
task-related types, 449–450
understanding, 428–430

TaskScheduler class, 450
TaskScheduler property, Parallel class, 430
TDD (test driven development)

applying MVC to, 755–756
Generate From Usage feature for, 27
new in Visual Studio 2010, 12

Team Foundation Server, 11, 16
team settings fi le, Options dialog, 153
Team System Editions, Visual Studio 2005, 8
template folder nodes, project template hierarchy, 

83–84
<TemplateContent> element

custom templates, 99–101
fi les and projects in project templates, 91–94
fi les and referenced assemblies in item 

templates, 94–95
multi-project templates, 96–97
overview of, 91
structure of manifest fi le, 85

templated helpers feature, in MVC, 804–805
Templated helpers, MVC 2, 668
<TemplateData> element

display characteristics, 86–88
general structure of manifest fi le, 85
item template characteristics, 88–89
meaning of, 90–91
project and language characteristics, 88
project template characteristics, 89–90

_TemplateIcon.ico fi le, 74, 80–81
templates

C++, 989, 1048
creating installation kit, 114–125
creating simple item, 76–81
creating simple project, 71–75
creating Start Page, 164
editor classifi er, 260–262
exporting and importing, 111–114

System.Threading.TaskScheduler class – templates

bindex.indd   1217bindex.indd   1217 9/7/10   9:45:39 PM9/7/10   9:45:39 PM



1218

templates (continued)
item, 69–70
new in Visual Studio 2010, 12
New Project dialog options, 18
overview of, 65–66
project, 67–69
role of, 66–67
storage structure. See also manifest fi le, 

81–84
summary review, 125
using code snippets. See code snippets
Visual Studio Gallery, 194–195, 197
WCF Service, 382, 551
Workfl ow Console Application, 492–493

templates, Ajax
client-side data binding with, 859–860
interacting with events inside, 867–871
pseudo-columns in, 863–865
running code inside, 865–867

templates, ASP.NET
creating Dynamic Data site, 712–713
Dynamic Data entity, 741–744
Dynamic Data fi eld, 738–741
Dynamic Data fi lter, 744–746
Dynamic Data page, 735
overview of, 711–712

templates, customizing
custom template parameters, 99–101
overview of, 98
template parameters, 98–99
wizards, 101–110

templates, MVC
custom templates, 811–814
display and edit templates, 805–808
templated helpers feature in, 804–805

templates, Silverlight, 332–341
control, 332–337
creating new project, 304–305
for data binding, 337–341
overview of, 332
Silverlight Navigation Application, 358

test driven development. See TDD (test driven 
development)

Test Tools category, Options dialog, 147

testing
add-ins, 238
multi-threading issues in many-core CPUs, 

417–418
packages, 246
webcam applications, 351

testing, with MVC
attaching book to IBook, 830–831
creating/running unit tests, 831–833
domain model for, 826–827
implementing repository for book project, 

827–830
overview of, 824
project structure following refactoring, 826
testing controller, 824–826

Text Editor category, Options dialog, 147, 
149–150

text elements, properties controlling chart, 622
Text Model, editor, 212–213
Text properties, adding activities to workfl ow, 

494
text snippets, adding to Toolbox, 192–193
Text View Model concept, editor, 212–213
TextBlock

data binding with templates, 338–341
Hello World application in WPF, 359
master-detail data-binding, 329
simple data binding example, 324–325
using VideoBrush as foreground brush of, 

346
TextBox control, extenders for, 942–947
TextBoxWatermarkExtender, 914, 943
themes and skins, new in ASP.NET 2.0, 661–662
third-party tools, with GhostDoc, 207–208
thread pool, executing tasks in TPL, 448–449
threads

executing tasks in TPL, 448–449
multi-threading issues in many-core CPUs, 

417–418
3D, WPF, 366
three-dimensional charts

adding effects to charts, 598
creating doughnut charts as, 614
overview of, 619–621

templates – three-dimensional charts

bindex.indd   1218bindex.indd   1218 9/7/10   9:45:39 PM9/7/10   9:45:39 PM



1219

tick marks, chart, 606–607
time-based animations, Silverlight and WPF, 341
Timer control, real time charts in Ajax, 706–708
titles, chart, 596–597, 606–608
titles, customizing ASP.NET Dynamic Data look 

and feel, 734–736
Titles Collection Editor, 596–597, 601–602
ToggleButtonExtender, 914, 938–942
tokens, customizing data point labels, 632
tool windows

auto-hiding, 136
command handling for, 156
defi ned, 16–17
docking, 135
document windows vs., 132
fl oating, 134
overview of, 131–132
toolbars for, 144
using keyboard exclusively in, 159–160

toolable, XAML as, 308
toolbars

adding menu to Main Menu, 141
adding menus and commands to, 143
context sensitivity of predefi ned, 145
creating and rearranging, 144–145
customizing with Customize dialog, 138–140
overview of, 138–139
for window frames, 129

Toolbars tab, Customize dialog, 139–140, 
144–145

Toolbox
accessing functions using keyboard, 188–189
adding items to, 190–193
components in, 187–188
customizing tabs, 189–190
defi ned, 130
further tips about, 193
overview of, 186–187
WF 4.0 workfl ow design surface, 492
working with tabs, 189
WPF Designer, 26

Toolkit. See Ajax Control Toolkit
ToolkitScriptManager, 901

tools
adding own contributions to Visual Studio 

Gallery, 197
code contract, 457, 461–462
Visual Studio Gallery, 194–195
VS 2008 diagnostic, 11
for working with Silverlight and WPF, 

313–315
Tools menu, 232
tooltips, adding to charts, 694–696, 709
top-level binding, Ajax Library supporting, 874
touch, Windows 7/WPF, 363
TPL (Task Parallel Library)

coordination data structures and tasks, 
450–455

creating and starting tasks, 441–444
defi ning control fl ow, 444–446
executing tasks, 448–449
overview of, 428–430
as Parallel Computing Platform element, 419
parallel programming architecture, 420
PLINQ composed of, 573
task-related types, 449–450
tasks with results, 446–448
working with tasks, overview, 440–441

TPL (Task Parallel Library), Parallel class
overview of, 430
Parallel.For, 432–436
Parallel.For<TLocal>, 436–438
Parallel.ForEach, 439
Parallel.Invoke, 430–432

tracking participant
adding to workfl ow instance, 545–546
confi guring, 548–549
persisting tracking information with, 

546–547
tracking profi le, assigning to tracking participant, 

545–546
tracking records, workfl ow, 544–545
TrackingParticipant extension class, 513
transaction-handling activities, WF 4.0, 523–524
Transact-SQL, Text Editor category for, 150
transformations, 344–345

tick marks, chart – transformations

bindex.indd   1219bindex.indd   1219 9/7/10   9:45:40 PM9/7/10   9:45:40 PM



1220

transitions
defi ning with visual states, 334
enhancing user experience, 341

triggers
for chart events with Ajax, 701–705
jQuery, 972–973
in Silverlight and WPF, 370

try-catch-finally exception handling, WF 
4.0, 522

tuples, F#, 1119, 1130
two-way binding, in Ajax Library, 874–875
type abbreviations, F# type signature, 1119
Type attribute, <VSTemplate>, 85, 91–95
type augmentations, in F#, 1137–1138
type equivalence

in CLR, 415
instead of equality, 414
MSDN documentation vs., 415
No-PIA example of, 412–414
overview of, 411–412

type inference, in F#, 1106
type parameters

in C#, 1048
constraints on, 990–991
variance with multiple type parameters in C#, 

1094–1097
variance with multiple type parameters in VB 

10.0, 1033–1036
in VB, 990

type safety
in C#, 1045
in VB.NET, 988

type signatures, in F#, 1119
type substitution

in C# 4.0, 1087–1089
in VB 10.0, 1026–1029

type system, C#
1.0, 1044–1045
dynamic type in 4.0, 1073–1074
enumeration types, 1046
generic types in 2.0, 1048–1050
nullable types in 2.0, 1054–1055
partial types in 2.0, 1050–1051

type system, F#

list of basic types, 1116
type signatures, 1119
values, 1124

type system, VB
generic types in VB 8.0, 989–992
local variable type inference in VB 9.0, 998
nullable types in VB 8.0, 993–994
nullable value type modifi ers in VB 9.0, 1004
overview of, 988–989
partial types in VB 8.0, 992–993
unsigned and signed integer types in VB 8.0, 

996
variance with multiple type parameters in VB 

10.0, 1033–1036
variance with user types, 1036–1037

TypeIdentifierAttribute attribute, 
equivalence in CLR, 415

U

udpDiscoveryEndpoint, service discovery in 
WCF 4.0, 587

UI (user interface)
communicating with host application in 

workfl ow, 537–539
customizing templates with wizards, 102–103
data binding between two elements in, 325
Dynamic data using fi lter templates for, 

744–746
in early Windows programming, 4
popularity of Visual Basic due to complexity 

of, 280
reasons to not ribbons in Visual Studio, 139
synchronous vs. asynchronous, 838
Visual Basic revolutionizing, 4

UI (user interface) enhancements, Visual Studio 
2010
Add Reference dialog window, 19
code editor window, 20–22
code-navigation features, 22–24
creating new projects in new way, 19
Extension Manager, 20
Generate From Usage feature, 24–25
New Project dialog window, 17–18

transitions – UI (user interface) enhancements, Visual Studio 2010

bindex.indd   1220bindex.indd   1220 9/7/10   9:45:41 PM9/7/10   9:45:41 PM



1221

new tools for architects, 27–28
overview, 15
Start Page, 15–16
understanding window management, 16–17
WPF Designer, 26–27
XML Schema Designer, 27

UI (user interface), in modern frameworks
developers vs. designers, 299–301
importance of user experience, 297–299
new generation of presentation frameworks, 

301–303
Silverlight layout, 315–322
Silverlight tools, 313–315
ten pillars of Silverlight, 303–313

UI customization. See view, in MVC
UIElement

adding adornments to text in, 212
manipulation API for, 363

UIHintAttribute, in MVC, 809–810
Ultimate with MSDN edition, Microsoft Visual 

Studio 2010, 11
UML (unifi ed modeling language), 27–28, 608
unary operators, overloading, 995
unboxing operations, 1044
underscore (_), line continuation character in VB, 

1008
unifi ed modeling language (UML), 27–28, 608
UniformGrid, WPF layout, 362–363
unit tests

creating/running in MVC, 831–833
Unit Testing Frameworks, 755

unit type, in F#, 1116
units

creating demo project in F#, 1116
decomposing tasks into, 440–441
of measure, in F#, 1157–1159

unsigned integers, in VB 8.0, 996
UpdatePanel control

ASP.NET Ajax server controls, 842–844
overview of, 905–908
triggering chart events with, 701–705

UpdatePanelAnimationExtender, 914, 
957, 962

UpdateProgress control, Ajax, 705, 842–844

updates
checking for installed extension, 148
of data on server, 883–888
with host application in workfl ows, 537–539

upgrades, Ajax Control Toolkit, 896
uploading, template to Visual Studio Gallery, 

119–123
<Url> element, 47
URLs

creating CRUD applications for Dynamic 
Data site, 719–721

customizing Dynamic Data’s routing, 
721–722

rendering ASP.NET chart images, 679–683
UseImageLocation property, rendering 

ASP.NET charts, 680
user experience (UX)

purchasing software based on, 297–299
in Silverlight and WPF, 367–371

user folders
importing snippets only to top-level, 55
removing snippets from, 54
storing code snippets in, 53–54
as template storage structure, 82

user input, collecting with macros, 229
user interactivity, ASP. NET charts

with Ajax, 697–709
handling clicks on data points, 696–697
more points about, 709
tooltips, 694–696

user interface. See UI (user interface)
user profi les, new in ASP.NET 2.0, 662
user templates, 84
user types

variance in C# 4.0 and, 1097–1098
variance in VB 10.0 and, 1036–1037

UserControl, adding styles to, 330–332
UserNamePasswordValidator class, in WCF 

with NET 3.5, 582
<UserShortcuts> element, 162
Using keyword, for IDisposable pattern in VB 

8.0, 996–997
using statement, memory management in C#, 

1045

UI (user interface), in modern frameworks – using statement, memory management in C#

bindex.indd   1221bindex.indd   1221 9/7/10   9:45:42 PM9/7/10   9:45:42 PM



1222

utility functions, in jQuery, 970–971
UX (user experience)

purchasing software based on, 297–299
in Silverlight and WPF, 367–371

V

ValidateAntiForgeryTokenAttribute, in 
MVC, 820

ValidateInputAttribute, in MVC, 820–821
validation

binding between two UI elements and, 325
Dynamic Data, 747–749
in WCF 3.5, 582–583

validation, MVC
attributes, 795–797
client-side, 803–804
displaying issues, 800–801
extending model using metadata, 798–799
managing business rules, 801–803
overview of, 795
preparing controller for, 799–800

validators, extenders for, 955–956
VallidationCalloutExtender, 914, 955–956
value providers, MVC, 834–835
value types

in C#, 1044
in VB.NET, 988

values
converting, 1124
copying in DataManipulator, 645
F#, 1124
vs. objects in F#, 1105

variables
adding fl owchart to workfl ow, 500
adding workfl ow, 496
assigning workfl ow without, 497
declaring for incode-only workfl ows, 508
F# arithmetic expressions and, 1164
F# type signatures and, 1119
WF 4.0 explicit defi nition of, 511

variance
in C# 4.0, 1066, 1089–1090

delegate covariance and contravariance in 
C#2.0, 1053–1054

with multiple type parameters in C#, 
1094–1097

refl ection and, 1098–1099
with user types in C#, 1097–1098

variance, in VB 10.0
contravariance, 1032–1033
covariance, 1030–1032
with multiple type parameters, 1033–1036
new features in VB 10.0, 1029
overview of, 1029
refl ection and, 1037–1038
type substitution and, 1026–1029
with user types, 1036–1037

VBA (Visual Basic for Applications), macro 
development, 209

VB.NET, macro development, 209
VBScript, ASP pages using, 655
VCL (Visual Component Library), 281
vendors, Visual Studio Gallery, 195, 196
Version attribute, <VSTemplate>, 85
versions, Visual Studio Gallery, 195
vertical tab groups, for document windows, 136
video, Silverlight media, 309, 345–347
VideoBrush, 346–347, 355
view, in MVC

custom templates, 811–814
display templates and edit templates, 805–808
DisplayAttribute, 810–811
DisplayColumnAttribute, 808–809
DisplayFormatAttribute, 809
displaying items in database, 776–779
displaying validation issues, 800–801
HiddenInputAttribute, 811
Index and About views, 770
metadata attributes, 808
overview of, 668, 752, 804
ScaffoldColumnAttribute, 809
templated helpers feature, 804–805
UIHintAttribute, 809–810
view engines in, 814–816

View, MVVM, 372

utility functions, in jQuery – View, MVVM

bindex.indd   1222bindex.indd   1222 9/7/10   9:45:42 PM9/7/10   9:45:42 PM



1223

View Code command, VSIX installation kit, 117
view engines, MVC, 814–816
view state

in ASP.NET Framework, 688
using serialization in state management, 

692–693
Viewbox, as layout container, 321–322
ViewModel, MVVM, 372
__VIEWSTATE name, ASP.NET Framework, 688
ViewStateContent property, charts, 690–691
virtual members, C# 4.0, 1082–1083
VirtualizingStackPanel, data binding with 

templates, 338–339
Visual Basic

1.0, 4
2003, 987–989
5.0, 5
6.0, 297
7.0/7.1 (VisualBasic.NET), 987–989
9.0, 9
code snippets in, 33–34, 36–37
design goals and debates, 986–987
DLR high-level architecture, 405
history of, 981
macros written in. See macros
movement to “visual,” 984–985
.NET Framework and, 280–281, 986
roots of, 982
structured and unstructured BASIC and, 

982–984
summary, 1005
versions released in 1990s, 985–986

Visual Basic 10.0
accessing IronPython library from, 1023–

1026
auto-implemented properties, 1010–1012
collection initializers, 1012–1017
contravariance in, 1032–1033
covariance in, 1030–1032
implicit line continuation feature, 1008–1010
late binding in, 1021–1023
multiline lambda expressions, 1018–1020
new syntax in, 1008
overview of, 1007

summary, 1037–1038
type substitution and, 1026–1029
variance and refl ection, 1037–1038
variance in, 1029
variance with multiple type parameters, 

1033–1036
variance with user types, 1036–1037
working with dynamic objects, 1020–1021

Visual Basic 8.0 (2005)
documentation comments, 994
generic types, 989–992
nullable types, 993–994
operator declarations, 994–996
overview of, 989
partial types, 992–993
unsigned and signed integer types, 996
Using keyword supporting IDisposable 

pattern, 996–997
Visual Basic 9.0 (2008)

conditional operator, 1004–1005
defi ned, 9
extension methods, 998–999
lambda expressions, 1000–1001
local variable type inference, 998
nullable value type modifi ers, 1004
object-creation expressions, 999–1000
overview of, 997
partial methods, 1002
query expressions, 1001–1002
XML literal expressions, 1002–1004

Visual Basic Editor, and code snippets, 36–37
Visual Basic for Applications (VBA), macro 

development, 209
Visual Basic.NET

bundled into Visual Studio.NET, 6
importance of user experience in, 297
overview of, 987–989

Visual C#
bundled into Visual Studio.NET, 6
implementations of C#, 1043
Microsoft release of, 5

Visual C++
5.0, 5
bundled into Visual Studio.NET, 7

View Code command, VSIX installation kit – Visual C++

bindex.indd   1223bindex.indd   1223 9/7/10   9:45:43 PM9/7/10   9:45:43 PM



1224

Visual Component Library (VCL), 281
visual effects, jQuery library, 975–976
visual experience, Options dialog, 148
Visual F#. See F#
Visual FoxPro 3.0, 4–5
Visual InterDev, 5
Visual J#

bundled into Visual Studio 97, 5
bundled into Visual Studio.NET, 7
released in 1995, 4
retired in VS 2008, 9

Visual State Manager (VSM), WPF templates, 
365–366

visual states, in Silverlight, 333–336
Visual Studio 2002, 5–7
Visual Studio 2003, 7–8
Visual Studio 2005

code snippets in, 37
.NET Framework 2.0 for, 286–287
overview of, 7–8

Visual Studio 2008, 8–10, 302
Visual Studio 2010, 10–13, 367–371
Visual Studio 6.0, 5
Visual Studio 97, 5
Visual Studio Add-in wizard, 210
Visual Studio Add-In Wizard, 230–231
Visual Studio Command Table (VSCT) 

expression, 252
Visual Studio contexts, 176–182, 204
Visual Studio Documentary, 3
Visual Studio Extensibility community, 198
Visual Studio Extension Installer, 117–118
Visual Studio Extensions category, 164
Visual Studio Gallery

adding own contributions to, 197
browsing, 194–196
downloading and installing components, 196
new in Visual Studio 2010, 12
overview of, 193
release of, 110
uploading template installation kit to, 

119–123
working with Visual Studio Extensibility 

community, 197

Visual Studio, history of, 3–13
overview of, 3
roots of, 3–5
summary review, 13
Visual Studio 2005, 7–8
Visual Studio 2010, 10–13
Visual Studio 97 and 6.0, 5
Visual Studio .NET 2002 and 2003, 5–7
VS 2008, 8–10

Visual Studio Integration Package Wizard. 
See VSPackage (Visual Studio Integration 
Package) Wizard

Visual Studio Library (VSL), and package 
development, 211

Visual Studio packages. See VSPackages (Visual 
Studio packages)

Visual Studio settings
keyboard shortcuts in, 161–162
managing with Import and Export Settings 

Wizard, 151–153
overview of, 150–151
.vssettings fi le, 154

Visual Studio Software Development Kit. See VS 
SDK (Visual Studio Software Development Kit)

VisualBrush, WPF, 366
visualizer, code editor window, 21
VisualStateGroups, 335–336
VisualStateManager, 334
VisualStudioIntegration folder, VS SDK 

directory, 210–211
VS SDK (Visual Studio Software Development Kit)

creating editor extensions, 260–261
creating packages with, 204
downloading correct version of, 210
extensibility, 210–213
Start Page development with, 163–164
for VSIX installation kit, 114

VsBrushes class, 168, 172
VSContextControl.xaml fi le, 179–180
VSContextControl.xaml.cs fi le, 180–182
VSCT (Visual Studio Command Table) expression, 

252
.vsct fi les, 253–254
.vsix fi le, 121, 123–125, 196

Visual Component Library (VCL) – .vsix fi le

bindex.indd   1224bindex.indd   1224 9/7/10   9:45:43 PM9/7/10   9:45:43 PM



1225

VSIX installation kit
adding Visual Studio Gallery components, 

196, 197
creating for template, 123–125
generating, 114

VSL (Visual Studio Library), and package 
development, 211

VSM (Visual State Manager), WPF templates, 
365–366

.vsmacros extension, 215
VSPackage (Visual Studio Integration Package) 

Wizard
creating package with, 243–247
package type defi nition, 248–251
source code structure, 247–248

VSPackage Options page, VSPackage Wizard, 245
VSPackages (Visual Studio packages)

command table, 252–254
creating Package API with VS SDK, 211
creating package with VSPackage Wizard, 

242–247
debugging, 254–255
implementing majority of IDE functions with, 

203
integrating, 203–204
overview of, 204, 242
package type defi nition, 248–251
source code structure, 247–248
Visual Studio Shell hosting, 203

.vssettings fi le
automatic saving of settings in, 153
IDE confi guration, 154
importing settings and, 152–153
kinds of settings stored in, 154
navigating to team settings fi le, 153

.vstdir fi le, project template hierarchy, 82, 84

.vstemplate fi le
multi-project templates, 96–97
project template hierarchy, 83
as template manifest fi le. See manifest fi le

<VSTemplate> element
in item templates, 94–95
in project templates, 91–94
structure of manifest fi le, 85

W

WaitForApproval method, workfl ows
confi guring, 540–542
resuming, 543–544
suspending and resuming, 539–540

WCF (Windows Communication Foundation)
Ajax Library supporting, 879
ASMX Web Services vs., 375–376
ASP.NET 3.0 releasing, 287
building blocks, 378–381
creating service, 382–386
creating service client (consumer), 391
creating service proxy, 389–391
creating workfl ow services. See workfl ow 

services
defi ned, 375
defi ning data contracts, 386–387
hosting service, 388–389
implementing declaratively, 394–398
integration of messaging in workfl ows with, 

525–526
.NET 3.5 additions to, 581–583
as .NET architecture service, 293
overview of, 375
released in .NET Framework 3.0, 664
REST and, 394
RIA Services, 354
Service Library template, 382–383
Service Workfl ow Application template, 551
Silverlight networking and, 353–354
SOA and, 376–378
specifying binding information, 387–388
working with Ajax-enabled, 392–393

WCF (Windows Communication Foundation) 
Framework 4.0 enhancements
discovery, 586–588
overview of, 583
REST improvements, 588–589
routing service, 589–591
simplifi ed confi guration, 583–585
standard endpoints, 585–586

WCS (Windows CardSpace), 293, 665
Web Browser tool window, 131–132

VSIX installation kit – Web Browser tool window

bindex.indd   1225bindex.indd   1225 9/7/10   9:45:44 PM9/7/10   9:45:44 PM



1226

web charts, 616
web development, .NET benefi ts, 294
Web Forms

ASP.NET 4.0, 667
ASP.NET MVC compared with, 754–755

web parts, new in ASP.NET 2.0, 662
web platform, history of Microsoft’s approach to, 

753–754
web services

Microsoft Ajax Library supporting, 879
as .NET architecture service, 292
.NET secure, 294

WebBrowser control, only in OOB mode, 355
webcam access, Silverlight media, 350–352
web.config fi le, Ajax-enabled WCF service, 

392–393
WebFormViewEngine, 815
Welcome page, Import and Export Settings 

Wizard, 151–152
WF (Workfl ow Foundation)

as .NET architecture service, 292
released in .NET Framework 3.0, 287, 489

WF (Workfl ow Foundation) 4.0
communicating with host application, 

537–539
compensating transaction model, 527–532
confi guring SqlWorkflowInstanceStore, 

540–542
creating code-only workfl ows, 505–509
creating fl owcharts, 500–505
HelloWorkflow application, 492–499
history of, 489
main workfl ow, 534–536
overview of, 490–491
persistence and human interactions, 532
persistence and human interactions in. See 

persistence and human interactions, WF 4.0
preparing workfl ow database, 536
project demonstrating, 533
project structure, 533–534
resuming workfl ow instance, 543–544
storing new request into database, 536–537
suspending workfl ow instance, 539–540
workfl ow activity library. See workfl ow 

activity library

workfl ow architecture. See workfl ow 
architecture

workfl ow design surface, 491–492
workfl ow services. See workfl ow services
workfl ow tracking, 544–550

what you see is what you get (WYSIWYG), web 
development, 654

where clause, in query expressions, 1060
whitespace, F# syntax, 1110–1111
Win32 API, 279–281
window management

architecture, 128–131
arranging windows, 134–138
document windows, 132–134
overview of, 128
tool windows, 131–132

Window root element, WPF, 359
Window_Loaded method

SqlWorkflowInstanceStore, 541–542
WorkflowServiceHost, 559–560

windows
command handling for, 156
enhanced features, 16–17
frames, 129
panes, 129

Windows 2000, 286
Windows 7, 363–365
Windows 95, 985
Windows 98, 286
Windows CardSpace (WCS), 293, 665
Windows Communication Foundation. See WCF 

(Windows Communication Foundation)
Windows Forms

Chart control for. See chart components, 
.NET

data binding in .NET 4, 639
interoperability with WPF, 363
as .NET architecture service, 292
user experience in VB.NET and, 297
using in Visual Studio 2008, 302

Windows Me, 286
Windows Media Audio (WMA) encoding format, 

in Silverlight, 346
Windows NT 4.0, 286
Windows Phone 7 (WP7) platform, 303

web charts – Windows Phone 7 (WP7) platform

bindex.indd   1226bindex.indd   1226 9/7/10   9:45:45 PM9/7/10   9:45:45 PM



1227

Windows Presentation Foundation. See WPF 
(Windows Presentation Foundation)

Windows Server 2003, 286, 287
Windows XP, 286, 287
<WizardData>, manifest fi le, 85
<WizardExtension>, manifest fi le, 85
wizards

attaching to templates, 107–110
customizing templates with, 101
example of, 101–104
implementing iWizard, 104–107

WMA (Windows Media Audio) encoding format, 
in Silverlight, 346

workfl ow activity library, WF 4.0
collection-handling activities, 524–525
error-handling activities, 522
fl ow control activities, 518–520
fl ow-chart specifi c activities, 521–522
messaging activities, 525–526
overview of, 517–518
primitive activities, 518
transaction-handling activities, 523–524
workfl ow run-time activities, 520–521

workfl ow architecture, 509–510
activities, 511–512
activity model changes, 513–517
extensions, 512–513
WorkflowApplication and hosts, 510–511

workfl ow arguments, declaring in code-only 
workfl ows, 507–508

Workfl ow Console Application template, 492–493
Workfl ow Foundation. See WF (Workfl ow 

Foundation)
workfl ow run-time activities, in WF 4.0, 520–521
workfl ow services

adding behaviors, 560–561
approval workfl ow, 557–559
changing main workfl ow, 554–556
confi guring WorkflowServiceHost, 

559–560
creating, 551–553
running application, 561
using WorkflowServiceHost, 553–554

workfl ow services, WF 4.0, 551–561
workfl ow tracking, WF 4.0, 544–550

confi guring tracking participant, 548–549
custom events for, 549–550
overview of, 544
participating in tracking process, 545–546
persisting tracking information, 546–547
running DomainNameWorkflowTracking, 

550
tracking records, 544–545

WorkflowApplication class, 510–513
WorkflowInvoker class, 494–495
workfl ows, in F#. See computation expressions
WorkflowServiceHost

adding behaviors to, 560–561
approval workfl ow, 557–559
confi guring, 559–560
overview of, 510
using, 553–554

Workflow.xaml fi le, adding fl owchart to 
workfl ow, 500

workspace, Visual Studio 2010, 305
work-stealing, executing tasks in TPL, 449
World Wide Web (WWW), development of, 

653–654
WP7 (Windows Phone 7) platform, 303
WPF (Windows Presentation Foundation)

3D, 366
4.0 features, 302
adding charts to, 601–602
animations, 342–345
choosing between Silverlight and, 366–367
code editor window enhancements, 20–21
compared with Ajax Library, 875
data-binding features, 862
debugging using tree visualization, 27
designer-developer cooperation in, 300, 

367–371
evolution of, 301–3032
features not available in Silverlight, 361–366
MVVM pattern, 372
as .NET architecture service, 293
.NET Framework 3.0 releasing, 287
overview of, 359–361
tools, 313–315
VS 2010 based on, 12–13
Windows Forms interoperability with, 363

Windows Presentation Foundation  – WPF (Windows Presentation Foundation)

bindex.indd   1227bindex.indd   1227 9/7/10   9:45:45 PM9/7/10   9:45:45 PM



1228

WPF Components tab, Choose Toolbox Items 
dialog, 190

WPF Designer, 26–27
WPF/E (WPF Everywhere), 302
wrapped sets, jQuery, 964
WWW (World Wide Web) development, 653–654
WYSIWYG (what you see is what you get), web 

development, 654

X

XAML (Extensible Application Markup 
Language)
adding event handlers to Silverlight project, 

308–311
code vs., 311–313
creating new Silverlight project, 304–311
defi ning declarative WCF services in, 

394–398
defi ning Start Page, 163
functionality of, 306
goals and benefi ts of, 308
as pillar of WPF, 301
using Expression Blend with, 314–315

XBAP (WPF Browser) deployment, 359–361
XLINQ, 568–569
XML

C# and, 1046–1047
code snippets stored in, 53

creating simple code snippet, 38–41
Entity Data Model in, 576–577
LINQ to XML, 568–569
Schema Designer, 27
snippet editors, 58–59
VB 9.0 literal expressions, 1002–1004
VS 2008 literals, 9
XAML based on, 308

XmlDataSource, ASP.NET 2.0, 661
XMLHTTPRequest object, Ajax Extensions, 

839–842
XSP platform, history of, 656
xUnit, unit testing with, 755

Z

Z coordinate, three-dimensional charts, 620
.zip archives

creating multi-project templates, 96–97
deploying template fi les, 113–114
exporting templates manually, 111
item template hierarchy, 84
storing item templates, 80–82
storing project templates as, 74
template folders, 82–84

zoom, in code editor window, 21

WPF Components tab, Choose Toolbox Items dialog – zoom, in code editor window

bindex.indd   1228bindex.indd   1228 9/7/10   9:45:46 PM9/7/10   9:45:46 PM



bindex.indd   1229bindex.indd   1229 9/7/10   9:45:46 PM9/7/10   9:45:46 PM



bindex.indd   1230bindex.indd   1230 9/7/10   9:45:47 PM9/7/10   9:45:47 PM



bindex.indd   1231bindex.indd   1231 9/7/10   9:45:47 PM9/7/10   9:45:47 PM



bindex.indd   1232bindex.indd   1232 9/7/10   9:45:47 PM9/7/10   9:45:47 PM


	Visual Studio® 2010 and .NET 4: Six-in-One
	CONTENTS
	INTRODUCTION
	PART I: VISUAL STUDIO
	CHAPTER 1: HISTORY OF VISUAL STUDIO
	Roots
	The First Breakthrough: Visual Basic
	Other Languages and Tools
	Visual Studio 97 and 6.0

	Visual Studio. NET 2002 and 2003
	Visual Studio 2005
	Visual Studio 2008
	Visual Studio 2010
	Changes in Editions
	What's New in Visual Studio 2010
	Shift to WPF

	Summary

	CHAPTER 2: VISUAL STUDIO UI ENHANCEMENTS
	Basic IDE Overview
	Exploring the Start Page
	Understanding Window Management
	New Project Dialog Window
	Creating New Projects in a New Way
	Using the Add Reference Dialog Window
	Using the Extension Manager

	Exploring New Daily Development Features
	Exploring the Code Editor Window
	Code Navigation
	Generate From Usage

	Exploring the Visual Designers
	WPF Designer
	XML Schema Designer

	New Tools for Architects
	Summary

	CHAPTER 3: VISUAL STUDIO CODE SNIPPETS
	Understanding Code Snippets
	Using Code Snippets
	HTML, SQL, and JScript Code Snippets

	Creating Code Snippets
	Creating a Simple Code Snippet
	The Code Snippet File Structure

	Managing Code Snippets
	The Code Snippet Manager
	Code Snippet Storage
	Adding and Removing Snippets
	Importing Snippets

	Advanced Code Snippet Features
	Multiple Snippets in a File
	Code Snippets in Other Languages
	Building Online Code Snippet Providers

	Snippet Editors
	Export as Code Snippet Add- In
	Snippet Designer
	Snippet Editor

	Summary

	CHAPTER 4: VISUAL STUDIO TEMPLATES
	The Role of Templates
	Project Templates
	Item Templates

	Creating Templates
	Creating a Simple Project Template
	Creating a Simple Item Template

	Template Storage Structure
	Template Folders
	The Template Manifest File

	Customizing Templates
	Template Parameters
	Custom Template Parameters
	Wizards

	Deploying Templates
	Exporting and Importing Templates
	Creating a Template Installation Kit

	Summary

	CHAPTER 5: GETTING THE MOST OUT OF THE IDE
	Window Management
	Visual Studio Window Architecture
	Tool Windows
	Document Windows
	Arranging Windows

	Customizing Menus and Toolbars
	The Customize Dialog
	Adding Menus and Commands
	Creating and Rearranging Toolbars
	Context Sensitivity

	IDE Configuration
	The Options Dialog
	Changes in Option Pages
	Visual Studio Settings

	Reducing Efforts with Keyboard Shortcuts
	Command Routing and Command Contexts
	Working with Keyboard Shortcuts
	Working with Keyboard Mapping Schemes

	Custom Start Pages
	Creating Your First Custom Start Page
	Changing the StartPage.xaml File
	Accessing the Visual Studio Context
	Accessing the Visual Studio Object Model
	A Few More Points About Start Pages

	Customizing the Toolbox
	A Lap Around the Toolbox
	Customizing Toolbox Tabs
	Adding Items to the Toolbox
	A Few More Points About Toolbox Customization

	Visual Studio Gallery
	Browsing the Visual Studio Gallery
	Downloading and Installing Components
	Adding Your Own Contributions to the Gallery
	Working Together with the Community

	Summary

	CHAPTER 6: VISUAL STUDIO EXTENSIBILITY
	The Visual Studio Shell and Packages
	Package Integration

	Extensibility Out of the Box
	Extending Visual Studio by Customization
	Using Macros to Automate Common Tasks
	Visual Studio Add-Ins

	Extensions with Visual Studio SDK
	The Full Power of Extensibility
	Visual Studio Package Development
	Editor Extensibility

	Creating Visual Studio Macros
	Understanding the Structure of Macros
	Using the Macros IDE
	Recording and Developing Macros
	Macro Samples

	Creating Visual Studio Add-Ins
	Add- In Architecture
	Creating a Simple Add-In
	Using the Automation Model
	Going on with Add-In Development

	Visual Studio Packages in a Nutshell
	Creating a Package with a Simple Menu Command
	Debugging the Package

	Extending the New Editor
	Extending the Editor with the Managed Extensibility Framework
	Editor Extensibility Points
	Creating a Simple Classifier

	Summary


	PART II: .NET 4
	CHAPTER 7: .NET FRAMEWORK VERSION HISTORY
	Before the .NET Framework
	Win/ Win32 Programming in C
	C++ Programming
	Programming in Visual Basic
	Programming in Delphi
	COM Programming

	The Origin and Goals of the .NET Framework
	Evolution of the .NET Framework
	.NET Framework 1.0
	.NET Framework 1.1
	.NET Framework 2.0
	.NET Framework 3.0
	.NET Framework 3.5
	.NET Framework 4.0
	.NET Compact Framework
	.NET Micro Framework

	.NET Framework Architecture
	Common Language Run-time (CLR)
	Base Class Library
	Services of the .NET Architecture

	Main Benefits of the .NET Framework
	Summary

	CHAPTER 8: MODERN UI FRAMEWORKS (WPF AND SILVERLIGHT)
	The Importance of User Experience
	Developers Are from Vulcan, Designers Are from Venus
	A New Generation of Presentation Frameworks
	The Ten Pillars of Silverlight
	XAML
	Tools for Working with Silverlight (and WPF)
	Layout
	Data Binding
	Styles
	Templates
	Animations
	Media
	Networking
	Other Features

	Windows Presentation Foundation
	WPF Features not Available in Silverlight

	Choosing Between WPF and Silverlight
	Designer - Developer Cooperation in Silverlight and WPF
	A Common Solution Format
	Blendability
	Design Time Sample Data in Blend
	SketchFlow
	Triggers, Actions, and Behaviors
	Model-View-ViewModel Pattern

	Summary

	CHAPTER 9: WINDOWS COMMUNICATION FOUNDATION (WCF)
	WCF Versus ASMX Web Services
	A Quick Look at SOA
	Service
	Service Provider
	Service Consumer(s)
	Service Registry
	Service Contract
	Service Proxy
	Service Lease
	Message
	Service Description
	Advertising and Discovery

	Building Blocks of the WCF Architecture
	Getting Started With WCF
	Creating the WCF Service
	Defining Data Contracts
	Specifying the Binding Information
	Hosting the WCF Service
	Creating the Service Proxy
	Creating the Service Client — The Service Consumer

	Working with an Ajax-Enabled WCF Service
	REST and WCF
	Implementing a WCF Service Declaratively
	Defining the Service Contract
	Hosting the Service
	Implementing the Service Logic Declaratively

	Summary

	CHAPTER 10: ENHANCEMENTS TO THE .NET CORE FRAMEWORK
	Changes in Common Language Run-time
	In-Process Side-By-Side Execution
	DLR Integration
	Type Equivalence

	Parallel Computing
	The Challenge of Many-core Shift
	The Microsoft Approach
	Parallel LINQ
	Task Parallel Library

	Code Contracts
	Managed Extensibility Framework
	The Challenge
	A Simple MEF Example
	Basic MEF Concepts
	Composition
	A Few More Points on MEF

	Summary

	CHAPTER 11: ENHANCEMENTS TO THE .NET WORKFLOW FRAMEWORK
	An Introduction to WF 4.0
	The Workflow Design Surface
	The Hello Workflow Application

	Creating Flowcharts and Coded Workflows
	Flowcharts in WF 4.0
	Code-Only Workflows

	Workflow Architecture
	WorkflowApplication and Hosts
	Activities
	Extensions
	Workflow Activity Model Changes

	Workflow Activity Library
	Primitive Activities
	Flow Control Activities
	Workflow Run-Time Activities
	Flowchart-Specific Activities
	Error-Handling Activities
	Transaction-Handling Activities
	Collection-Handling Activities
	Messaging Activities

	Using the Compensating Transaction Model
	The ConferenceWorkflow Example
	Implementing Cancellation, Confirmation, and Compensation
	Cancellation
	Compensation

	Persistence and Human Interactions
	The DomainNameWorkflow Project
	Workflow Tracking

	Workflow Services
	Creating a Workflow Service
	Using WorkflowServiceHost

	Summary

	CHAPTER 12: ENHANCEMENTS TO THE .NET DATA FRAMEWORK
	Language Integrated Query (LINQ)
	LINQ Operators
	LINQ Implementations

	Parallel LINQ (PLINQ)
	Entity Framework
	Entity Framework Architecture

	The Entity Data Source Control
	Choosing Between LINQ to Entities and LINQ to SQL
	Summary

	CHAPTER 13: ENHANCEMENTS TO THE .NET COMMUNICATION FRAMEWORK
	Enhancements in WCF Framework 3.5
	Enhancements in WCF Framework 4.0
	Simplified Configuration
	Standard Endpoints
	Discovery
	REST Improvements
	Routing Service

	Summary

	CHAPTER 14: .NET CHARTING COMPONENTS
	Creating Charts
	Creating a Simple Chart
	Adding Data to the Chart Programmatically
	Adding Charts to WPF Applications

	Using Chart Controls
	Elements of a Chart
	The Chart Class
	Chart Types
	Chart Coordinate System
	Three-Dimensional Charts
	Appearance of Chart Elements
	Axes and Related Chart Elements
	Data Points

	Advanced Chart Manipulation
	Annotations
	Binding Data to Series
	The DataManipulator class
	More Chart Manipulations

	Summary


	PART III: ASP.NET 4.0
	CHAPTER 15: ASP.NET VERSION HISTORY
	Development of the Web and Web Development
	Enter ASP
	Enter ASP.NET
	ASP.NET Version History
	ASP.NET 1.0
	ASP.NET 1.1
	ASP.NET 2.0
	ASP.NET 3.0
	ASP.NET 3.5
	ASP.NET 3.5 SP1
	ASP.NET 4.0

	Summary


	CHAPTER 16: ASP.NET CHARTING CONTROLS
	Creating Charts
	Adding a Chart Control to a Page
	Setting up Charts in an Event Handler Method
	Binding Data to the Chart

	Rendering ASP.NET Charts
	Image URL Rendering
	Using Charts with Legacy Web Sites
	Binary Stream Rendering

	Chart State Management
	Saving Chart State
	Advanced Chart State Management

	User Interactivity
	Using Tooltips
	Handling Clicks on Data Points
	Interactivity With Ajax
	A Few More Points on User Interactivity

	Summary

	CHAPTER 17: ASP.NET DYNAMIC DATA
	Creating a New Dynamic Data Web Site
	Working Against a Data Model
	Displaying Data from Existing Tables
	Creating Simple CRUD Applications
	Creating a Dynamic Data Application for Master-Detail Relationships

	Working to Modify Implementation to Fit Business Needs
	Understanding Dynamic Data's Structure
	Customizing the Look and Feel
	Working with Page Templates
	Working with Field Templates
	Working with Entity Templates
	Working with Filter Templates
	Creating Custom Pages
	Customizing Validations

	Summary

	CHAPTER 18: ASP.NET MODEL VIEW CONTROLLER (MVC)
	Introduction to MVC
	Similar Design Patterns
	Microsoft and the Web Platform
	What Is Microsoft ASP.NET MVC 2?
	Extensibility in MVC

	Creating an MVC 2 Application
	The Project Structure
	How Does it Work?

	Adding New MVC 2 Pages
	Create a Database
	Create a Model
	Listing Books
	Adding Book Actions

	Customization in MVC 2
	Model Binding
	Validation
	UI Customization

	Routing Details
	Controller Factory
	Influencing the Execution Flow
	Authorization
	Action and Result Filtering
	Exception Filtering
	ActionResult

	Testing with MVC 2
	Refactoring AcmeLibrary
	Creating and Running Unit Tests

	A Few More Points on MVC 2
	Areas
	Metadata Providers
	Value Providers
	Model Binders
	Child Actions
	Asynchronous Controllers

	Summary

	CHAPTER 19: ASP.NET AJAX IMPROVEMENTS
	Understanding Ajax
	The XMLHttpRequest Object
	ASP.NET and Ajax

	Using the ASP.NET Ajax Server Controls
	Refactoring the Framework Libraries
	Using the Microsoft CDN

	Using the Microsoft Ajax Library
	Working with DOM Elements
	The Script Loader
	Client-Side Data Binding with Templates
	Advanced Data-Binding Scenarios
	Working with Server-Side Data

	Summary

	CHAPTER 20: ASP.NET AJAX CONTROL TOOLKIT AND JQUERY
	First Look at the Ajax Control Toolkit
	Installing the Ajax Control Toolkit
	Creating a Simple Web Application with the Toolkit

	Using the Controls of the Toolkit
	New Server Controls
	Control Extenders
	Animations

	The jQuery Library
	"Hello, World" with jQuery
	Selectors and Filters
	Chaining and Utility Functions
	Eventing Model and Event Handlers
	Visual Effects and Animations
	JQuery Ajax Features

	Summary


	PART IV: VB.NET
	CHAPTER 21: HISTORY OF VISUAL BASIC
	The Roots of Visual Basic
	Structured and Unstructured BASIC
	Moving to "Visual"
	Visual Basic in the 1990s

	Visual Basic in the .NET Framework
	Design Goals and Debates
	Visual Basic .NET (7.0) and .NET 2003 (7.1)
	Visual Basic 2005 (8.0)
	Visual Basic 2008 (9.0)

	Summary

	CHAPTER 22: VISUAL BASIC 10.0 LANGUAGE IMPROVEMENTS
	New Productivity-Improving Syntax
	Implicit Line Continuation
	Auto-Implemented Properties
	Collection Initializers
	Multiline Lambda Expressions

	Working with Dynamic Objects
	Late Binding in Visual Basic 2010
	Accessing an IronPython Library

	Variance
	Type Substitution
	Variance in Visual Basic 2010
	A Few More Points on Variance

	Summary


	PART V C#
	CHAPTER 23: HISTORY OF C#
	The Evolution of C#
	Design Goals
	Short History
	Implementations

	C# 1.0
	Type System
	Memory Management
	Syntactic Sugar
	C# 1.1

	C# 2.0
	Generic Types
	Partial Types
	Static Classes
	Iterators
	Anonymous Methods
	Delegate Inference
	Delegate Covariance and Contravariance
	Nullable Types
	Property Accessors
	Null- Coalesce Operator
	Namespace Aliases

	C# 3.0
	Local Variable Type Inference
	Extension Methods
	Anonymous Types
	Lambda Expressions
	Query Expressions
	Expression Trees
	Automatic Properties
	Object Initializers
	Collection Intializers
	Partial Methods

	Summary

	CHAPTER 24: C# 4.0 LANGUAGE IMPROVEMENTS
	Pains with Interoperability
	Creating the PainWithOffice Application
	Frustrating Issues
	Remove the Pain

	Dynamic Lookup
	Dynamic Binding
	The dynamic Type
	Dynamic Operations
	The Dynamic Language Run-time

	Named and Optional Parameters
	Using Optional Parameters
	Using Named Parameters
	Overload Resolution

	COM-Specific Interoperability Features
	Dynamic Import
	Omitting ref from Parameters
	Indexed Properties
	Compiling Without PIAs

	Variance
	Type Substitution
	Bird's-Eye View of Variance
	Variance in C# 4.0
	A Few More Points on Variance

	Summary


	PART VI F#
	CHAPTER 25: VISUAL F# AND THE OTHER .NET LANGUAGES
	A Brief History of F#
	F# at First Glance
	Trying Things Out with F#
	Understanding Syntax

	Your First F# Project
	Programming with F#
	Namespaces and Modules
	Attributes
	Literals and Bindings
	Expressions
	Values and F# Types
	Type Augmentations
	Computation Expressions
	Sequences
	Range Expressions
	Sequence Expressions
	Asynchronous Workflows
	Pattern Matching
	Active Patterns
	Exceptions
	Units of Measure
	Lazy Computations
	Quotations
	Working with Database Queries

	A Larger Application in F#
	The Ast Module
	The Language Module
	The Evaluator Module
	The FunctionPlotter Module
	Running the Function Plotter

	Other .NET Languages
	IronRuby
	IronPython

	Summary


	INDEX


