
TEAM LinG

Visual Web DeveloperTM

2005 Express Edition
FOR

DUMmIES
‰

01_583603 ffirs.qxd 10/21/05 6:56 PM Page i

01_583603 ffirs.qxd 10/21/05 6:56 PM Page ii

by Alan Simpson

Visual Web DeveloperTM

2005 Express Edition
FOR

DUMmIES
‰

01_583603 ffirs.qxd 10/21/05 6:56 PM Page iii

Visual Web Developer™ 2005 Express Edition For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Visual Web Developer is a
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005927626

ISBN-13: 978-0-7645-8360-5

ISBN-10: 0-7645-8360-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RQ/RR/QV/IN

01_583603 ffirs.qxd 10/21/05 6:56 PM Page iv

www.wiley.com

About the Author
Alan Simpson is the author of over 90 computer books on databases,
Windows, Web-site design and development, programming, and networking.
His books are published throughout the world in over a dozen languages.
Alan has served as a consultant on high-technology projects for the United
States Navy and Air Force.

01_583603 ffirs.qxd 10/21/05 6:56 PM Page v

01_583603 ffirs.qxd 10/21/05 6:56 PM Page vi

Dedication
To Susan, Ashley, and Alec.

01_583603 ffirs.qxd 10/21/05 6:56 PM Page vii

01_583603 ffirs.qxd 10/21/05 6:56 PM Page viii

Author’s Acknowledgments
Writing a book is always a team effort, and this book is no exception. I’d like
to take this opportunity to thank all the folks who made this book possible,
and contributed to its completion. At Wiley Publishing, many thanks to Katie
Feltman for providing the opportunity (and reminders to get on schedule).
Thanks to Christopher Morris, Barry Childs-Helton, and Dan DiNicolo for
their superior editing.

Thanks to David Fugate at Waterside Productions, my literary agency, for
getting the ball rolling and ironing out the details.

And most of all, thanks to my family for putting up with yet another long
Daddy project.

01_583603 ffirs.qxd 10/21/05 6:56 PM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Christopher Morris

Acquisitions Editor: Katie Feltman

Senior Copy Editor: Barry Childs-Helton

Technical Editor: Dan DiNicolo

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Adrienne Martinez

Layout and Graphics: Carl Byers, Andrea Dahl,
Lauren Goddard, Barbara Moore,
Barry Offringa

Proofreaders: Laura Albert, Dwight Ramsey,
TECHBOOKS Production Services

Indexer: Sherry Massey

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_583603 ffirs.qxd 10/21/05 6:56 PM Page x

www.dummies.com

Contents at a Glance
Introduction ..1

Part I: Planning a Web Site ..7
Chapter 1: Getting Started ..9
Chapter 2: Creating a Web Site ..21
Chapter 3: Configuring a Membership Site ..39
Chapter 4: Creating Master Pages ...53

Part II: Building Your Web Site73
Chapter 5: Creating Web Pages ..75
Chapter 6: Designing with Styles ...97
Chapter 7: Working with ASP.NET Controls ...123
Chapter 8: Easy Site Navigation ...153

Part III: Personalization and Databases169
Chapter 9: Using Personalization ..171
Chapter 10: Using Themes ...199
Chapter 11: SQL Server Crash Course ..221
Chapter 12: Using Data in Web Pages ...261

Part IV: The Part of Tens ..319
Chapter 13: Ten Terms to Make You Look Smart ..321
Chapter 14: Ten Alternatives to Being Helpless ..327

Appendix: Publishing Your Site331

What’s on the CD-ROM? ...337

Index ..341

End-User License AgreementBack of Book

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xi

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xii

Table of Contents
Introduction ..1

About This Book ...2
Foolish Assumptions ..2
Conventions Used in This Book ...3
What You’re Not to Read ...3
How This Book Is Organized ...4

Part I: Planning a Web Site ...4
Part II: Building Your Web Site ..4
Part III: Personalization and Databases ...4
Part IV: The Part of Tens ..4

Icons Used in This Book ..5
Where to Go from Here ..5

Part I: Planning a Web Site ...7

Chapter 1: Getting Started .9
Who VWD Is For ..9
Installing Visual Web Developer ...10
Getting Around in VWD ...10

Using panes ...11
Getting panes back to normal ...12
Don’t forget the View menu ...13

About the Start Page ..14
Using VWD Help ..14

Closing Help pages and panes ..16
Online resources ...16

Being Compatible with Web Browsers ..17
Publishing Your Web Site ..19

Chapter 2: Creating a Web Site .21
Creating a Web Site ..21
Closing and Opening Pages ...23
Creating and Using Folders ...24

Copying files to folders ..25
Renaming and deleting folders ...26

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xiii

Editing Pages ...26
Adding text to a page ...27
Selecting and formatting text ..27
Undoing changes ..28
Adding pictures ...28
Changing properties ...29
Switching views ..30
Editing in Source view ..31
Saving your work ..32
Dealing with code-behind files ..33

Titling Pages ..34
Viewing Pages in a Web Browser ..35
Opening and Closing Web Sites ..37

Chapter 3: Configuring a Membership Site .39
Creating a Folder for Members-Only Content ...39
Using the Web Site Administration Tool ..40

Choosing an authentication type ...42
Creating Roles to Categorize People ..43
Creating Access Rules ..45

Managing access rules ...46
Creating a User Account ..48

Managing user accounts ..50
Closing the Web Site Administration tool ..51

What the Web Site Administration Tool Did ...51

Chapter 4: Creating Master Pages .53
Creating a Folder for Master Pages ..54
Creating a Master Page ..54

Designing your page layout ...55
Styling Master Page panes ...57
Styling the left pane ..60
Styling the ContentPlaceHolder pane ..61

Using a Master Page ...63
Editing a Master Page ..66
Adding a Master Page to Existing Pages ..69

Part II: Building Your Web Site73

Chapter 5: Creating Web Pages .75
Creating a New Blank Page ..75
Creating HTML Tables ...77

Adding a table to a page ..77
Typing in table cells ...78

Visual Web Developer 2005 Express Edition For Dummies xiv

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xiv

Working with HTML Tables ...78
Selecting rows and columns ..79
Selecting cells ..80
Merging cells ...80
Styling cells ..81
Adding controls to table cells ...84

Adding Hyperlinks to Pages ..84
Quick links to pages in your site ..85
Creating bookmarks ...86
Linking to bookmarks ..86

Adding and Styling Pictures ..87
Sizing a picture ..88
Styling pictures ...88

Adding Lines ...92
Editing in Source View ...92

Selecting in Source view ..93
Typing tags and attributes ..93
Debugging HTML ..95

Chapter 6: Designing with Styles .97
Understanding CSS ...97
Creating a CSS Style Sheet ...100
Creating Style Rules ...101

Creating CSS element styles ..101
Creating CSS class selectors ...102

Defining Rules with Style Builder ...104
Styling fonts ...105
Styling the background ..107
Styling text alignment and spacing ..108
Styling position ...110
Styling layout ...112
Styling boxes and borders ...113
Saving Style Builder choices ...114
Saving a CSS style sheet ...115

Linking to a Style Sheet ..115
Using Styles in a Page ..116

Applying CSS element selectors ...116
Applying CSS class selectors ...117
Applying element class selectors ...119
Using DIV styles ..120

The CSS 2.1 Specification ..122

Chapter 7: Working with ASP.NET Controls .123
What Is ASP.NET? ..123
Adding a Server Control to a Page ...125

Tweaking server controls in Design view ..126
Using the Common Tasks menu ..127

xvTable of Contents

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xv

ASP.NET Login Controls ...130
Allowing Users to Create an Account ..131

Assigning new users to a role ...133
Testing the control ...134

Creating a Login Page ..135
Providing a Login Link ...136

The LoginStatus control ..137
The LoginName control ...138
The LoginView control ...138

Letting Users Manage Passwords ...141
Using the PasswordRecovery control ..141
The ChangePassword control ...145

Testing Membership ..146
Server Controls in Source View ..148
Relaxing Password Constraints ..149

Chapter 8: Easy Site Navigation .153
Getting Organized ...153
Using Site-Navigation Controls ...154
Using the TreeView and Menu Controls ..155
Creating a Site Map ..158

Customizing navigation for roles ..161
Binding a control to Web.sitemap ..163

Adding an Eyebrow Menu ...164
Creating Web User Controls ..165

Creating a Web User Control ...166
Using a Web User Control ..167

Part III: Personalization and Databases169

Chapter 9: Using Personalization .171
Creating a User Profile ...171

Setting up user profiles ..173
Letting Users Enter Properties ...176

Adding a button ..178
Writing some code ..179
Tying code to an event ...180
Determining where to put the profile information183
Letting users edit their profiles ..184
Using profile properties with Visual Basic187

Using Validation Controls ..188
RequiredFieldValidator ..189
RangeValidator ..190

Visual Web Developer 2005 Express Edition For Dummies xvi

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xvi

RegularExpressionValidator ..190
CompareValidator ...191
CustomValidator ...192
ValidationSummary ..192

Using the Forms Designer ...193
Stacking absolutely-positioned objects ...194
Aligning absolutely-positioned objects ...195
Sizing objects equally ...196
Spacing absolutely-positioned objects ..197

Chapter 10: Using Themes .199
Creating Themes ...199
Creating Theme Folders ..200
What’s in a Theme? ..201
Using Pictures in Themes ..201
Creating a Theme Style Sheet ...202
Creating Skins ...204

Creating a skin file ..204
Default vs. named skins ...207

Using Themes in Pages ..209
Letting Members Choose a Theme ..210

Creating a page for viewing themes ...211
Creating a control for choosing a theme ...212
Storing the preferred theme ..213
Applying a theme ..214
A theme tester page ...216

Applying Themes to Master Pages ...217
Other Ways to Apply Themes ...218
Defining a Site-Wide Default Theme ...219

Chapter 11: SQL Server Crash Course .221
Crash Course in Database Design ..222

Tables, rows, and columns ..222
One-to-many, many-to-many ..223
SQL Server Tables ...227
Assigning GUIDs automatically ...233

Creating Your Own Tables ...236
Defining a primary key ...237
Creating text fields ...238
Adding a money field ...240
Saving the new table ..240
Creating the Transactions table ...241
A Primary Key for Transactions ...243

Populating Tables ...244

xviiTable of Contents

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xvii

Linking Tables ...247
Creating a view ..248
A more detailed view ..251

Creating a Table of Pictures ..254
Creating a Table of HyperLinks ..257

Chapter 12: Using Data in Web Pages .261
Binding Data to Controls ...262

Using the Data Configuration Wizard ...262
Data controls in Design view ...273

Formatting Dates and Numbers ..274
Some Security Considerations ..275
Using the GridView Control ..276

An instant GridView control ..276
Formatting the GridView control ..278

Binding to DropDownList Controls ..280
Using a DropDownList to filter records ...282
Viewing and editing user properties ..284

Using the DetailsView Control ..287
Binding a DetailsView control ...287
Formatting a DetailsView control ...289

Creating Master-Details Forms ...291
Master-Details DropDownList control ...292
Master-Details GridView control ..293
The Master-Details DetailsView control ..294
General GridView and DetailsView considerations295

Using the DataList Control ..296
Formatting a DataList control ...298
Formatting dates and numbers in a DataList300
Showing a DataList in columns ...301
Using DataList to show pictures ...302
Using a DataList to show HyperLinks ..309

The FormView Control ...312
Showing subtotals ..314

Part IV: The Part of Tens ..319

Chapter 13: Ten Terms to Make You Look Smart 321
Web Application ...321
Developer ..321
Data-Driven ..322
ASP.NET 2.0 ...322
Visual Studio ...322
IDE ..322

Visual Web Developer 2005 Express Edition For Dummies xviii

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xviii

Control ...323
Code ...323
Programmatic ...324
Database ..325

Chapter 14: Ten Alternatives to Being Helpless 327
Microsoft Developer Network (MSDN) ..327
HTML Home Page ...327
Cascading Style Sheets Home Page ..328
XML Home Page ..328
ASP.NET ...328
ASP.NET Starter Kits ..328
ASP.NET Forums ...329
SQL Server Developer Center ...329
dotnetjunkies ..329
Microsoft Technical Communities ...329

Appendix: Publishing Your Site331
Choosing a Hosting Provider ..331
Preparing Your Site for Uploading ..332
Copying the Site ..334

What’s on the CD-ROM? ...337
Visual Basic 2005 Express ...337
Visual Web Developer 2005 Express ..338

Index ...341

End-User License AgreementBack of Book

xixTable of Contents

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xix

Visual Web Developer 2005 Express Edition For Dummies xx

02_583603 ftoc.qxd 10/21/05 6:55 PM Page xx

Introduction

Welcome to Visual Web Developer 2005 Express Edition For Dummies.
Visual Web Developer is a tool for developing dynamic, data-driven

Web sites. The dynamic part refers to the fact that each page your site sends
out can be tailored — on the spot and even on the fly — for whatever person
happens to be viewing the page at that moment. The data-driven part stems
from the fact that the information needed to create pages dynamically is
stored in a database.

Historically, creating a data-driven Web site was an enormous task, requiring
countless hours of tedious programming and debugging. Visual Web Developer
(VWD) changes all that — allowing you to create dynamic Web sites in a
quicker, easier, and more intuitive visual mode where simple drag-and-drop
replaces hours of typing code.

That’s not to say that Visual Web Developer is so easy that you can just
“think” a Web site into existence. There’s still plenty of knowledge and skill
required to develop a Web site. You just don’t need as much knowledge and
skill as was required in the pre-VWD olden days.

If you’ve spent much time online trying to figure out how to work Visual Web
Developer, you’ve probably been overwhelmed by countless buzzwords and
confusing computer code that looks like something written by aliens from
another planet. Much of what you’ve seen probably comes from people com-
paring the VWD way of doing things to the old way of doing things (and that
can get obscure in a hurry).

This book takes a different approach: I don’t talk about the old way of doing
things at all. There are two reasons for that. The first is, if you don’t know
about the old way of doing things, then the comparisons don’t help one bit.
And if you do know the old way of doing things, then you can see for yourself
how the new way is different without my telling you.

At the risk of sounding smarmy, I might even go so far as to say that the old
way of doing this is irrelevant now. By the time you’ve finished with this book,
you’ll see what I mean. And you’ll be able to create powerful data-driven Web
sites — perhaps without typing any code at all.

03_583603 intro.qxd 10/21/05 6:51 PM Page 1

About This Book
The main goal of this book is simple: To cover everything you really need to
know about Visual Web Developer to create data-driven Web sites. And I do
mean “need.” You won’t catch me wandering off into irrelevant product com-
parisons or advanced topics that few people need.

Another key ingredient of this book is its coverage of things that most other
resources assume you already know — in fact, it’s okay if you don’t already
know them. Everybody has to start somewhere, and Web-site development is
tricky enough without having to fight a feeling of being left out. You won’t get,
“Sorry, you didn’t learn our secret language umpteen years ago when we did,
so you can’t play.” Here, just about everyone gets to play.

It’s important, especially for newbies, to understand that there’s a big differ-
ence between “everything you need to know (just to get in the game),” and
everything there is to know. This book makes no attempt to cover everything
there is to know about Visual Web Developer (as you’ll notice right away
because one person can actually carry the book). The reason is simple: Ten
books the size of this one couldn’t cover everything there is to know about
Visual Web Developer. So you may need to rely on other resources from time
to time. And that’s okay too.

Finally, though I’d like to be able to write this book in such a way that even a
fresh-minted PC newbie could follow along, such a goal is unrealistic. Covering
everything from your first mouse click to publishing your dynamic data-driven
Web site would take too much space — so I have to make some assumptions
about who is going to read this book. Which brings us to . . .

Foolish Assumptions
Creating dynamic data-driven Web sites, even with Visual Web Developer, is
not a topic for absolute computer beginners. If you just got your first PC a
few weeks ago, and so far have mastered only the art of e-mail, you may need
to spend quite a bit more time learning Windows basics before you can tackle
some of the terms used in this book without getting a headache.

It would be best if you already had some experience creating Web pages on
your own. There isn’t really room in this book to discuss things like HTML
and CSS in depth. So if those two acronyms are completely foreign to you,
then you might want to study up on them before you start using this book.

On the bright side, you don’t really need to know anything, well, technical
about ASP.NET or C# or SQL Server to use this book. You’ll use those tech-
nologies to create your site, sure enough, but I’ll give you a practical briefing

2 Visual Web Developer 2005 Express Edition For Dummies

03_583603 intro.qxd 10/21/05 6:51 PM Page 2

in how to boss them around. You don’t have to be a mechanic to drive; like-
wise, you don’t have to be a programmer or database developer already
before you use this book.

Conventions Used in This Book
As you browse through this book you might notice some unfamiliar symbols
or odd-looking text in gray boxes. Don’t worry about ’em. The ➪ symbol
you’ll see in the text just separates individual menu options (commands) that
you choose in sequence. For example, rather than saying “Choose New from
the File menu” or “Click File in the menu bar, then click New in the drop-down
menu,” I just say something like this:

Choose File ➪ New from the menu bar.

Creating VWD Web sites doesn’t take much programming. What little code is
actually required to perform some task is shown in a monospace font, like
this:

if (!Page.IsPostBack) {
txtFirstName.Text = Profile.FirstName;
txtLastName.Text = Profile.LastName;
txtAddress1.Text = Profile.Address1;
txtAddress2.Text = Profile.Address2;
txtCity.Text = Profile.City;
txtStateProv.Text = Profile.StateProvince;
txtZipPostalCode.Text = Profile.ZIPPostalCode;
txtPrefTheme.Text = Profile.PreferredTheme;

}

When there are a few little chunks of code to show in text, like this —
Profile.FirstName — I show them that way so you can see what is and
what isn’t code.

What You’re Not to Read
Reading computer books is not most people’s idea of fun. (though it can be a
great cure for insomnia, should the need ever arise). Any text that doesn’t
clearly fit into the need-to-know category of using VWD will be marked with
Technical Stuff icons (more about those in a minute) or placed in gray side-
bars. If you’re in a hurry, or just feel overwhelmed by the need-to-know stuff,
you can skip the Technical Stuff and sidebar text. (They’ll still be there when
you sneak up on them later.)

3Introduction

03_583603 intro.qxd 10/21/05 6:51 PM Page 3

How This Book Is Organized
Building a dynamic, data-driven Web site is a process; certain things must be
done in a certain order. (A simple example: If you want people to be able to
set up accounts on your site and log in, first you have to create some means
of storing data about users.) For that reason, this book is divided into parts
and chapters that present information in the exactly the same order you need
to follow when creating your own Web site. The following subsections tell
you what to expect from those parts and chapters.

Part I: Planning a Web Site
Right off the bat, you need to decide whether to have your Web site support
capabilities such as site membership, and whether to use the Master Pages
feature of Visual Web Developer to give your site a consistent look and feel.
This first part covers all the stuff you need to know if you want to build those
features into your site.

Part II: Building Your Web Site
After you have the basic components for site membership and Master
Pages in place, you can start focusing on specific content. In this part
you’ll discover the Visual Web Developer ways of defining content.

Part III: Personalization and Databases
Chances are, if you use Visual Web Developer to create your Web site, you’ll
want to offer more than just basic logins and simple static content. Part III
covers topics you need to beef up your site with personalization, themes, and
your own custom database tables.

Part IV: The Part of Tens
What For Dummies book would be complete without a Part of Tens? In this
part you’ll find a quick reference to the top ten buzzwords every VWD geek
needs to know to get into the VWD Geek clubhouse, and resources you can
access for information that goes beyond the scope of this book.

4 Visual Web Developer 2005 Express Edition For Dummies

03_583603 intro.qxd 10/21/05 6:51 PM Page 4

Icons Used in This Book
As you flip through this book, you’ll notice little icons like these sprinkled
about its pages. They point out little chunks of text that either deserve a little
extra attention or (if they’re obscure) deserve very little attention. For exam-
ple, a Warning icon points out places where being careless could cause real
problems, whereas a Technical Stuff icon points out facts nice to know but
not super-important. The icons are

Tips point out handy tricks or techniques that can make things easier
for you.

These icons point out techniques where you really need to watch what
you’re doing. The world won’t end if you mess up, but fixing the problem
won’t be easy.

These icons point out tools and techniques that you’ll use often in VWD, and
hence should be high on your priority list of Things to Keep in Mind.

These icons point out text that isn’t desperately relevant to all readers,
though useful in an arcane way. You can skip these for now, if you like. They’ll
wait.

Where to Go from Here
There’s a definite start-to-finish process to go through if you want to build a
data-driven Web site. So if you’re new to Visual Web Developer and are just
starting your first site, starting at Chapter 1 is your best bet. Those of you
who already have some experience with VWD and have already laid out some
components of your sites can jump in anywhere.

5Introduction

03_583603 intro.qxd 10/21/05 6:51 PM Page 5

6 Visual Web Developer 2005 Express Edition For Dummies

03_583603 intro.qxd 10/21/05 6:51 PM Page 6

Part I
Planning a
Web Site

04_583603 pt1.qxd 10/21/05 6:53 PM Page 7

In this part . . .

Every project has to start somewhere. In Visual Web
Developer, that usually means creating a new, empty

Web site and configuring it to support membership. While
you’re at it, you’ll need to get the hang of using the pro-
gram’s major features, and techniques for getting text and
pictures into the pages you create. If you want to provide
a consistent look and feel for all the pages in your site,
you might want to consider creating a Master Page as
well. All of those early steps are covered here in Part I.

04_583603 pt1.qxd 10/21/05 6:53 PM Page 8

Chapter 1

Getting Started
In This Chapter
� Getting your Web feet wet

� Getting around in Visual Web Developer

� Getting the help you need, when you need it

� Being compatible

� Finding someone to host your site

Visual Web Developer (VWD) is a tool for building dynamic, data-driven
Web sites. The Express edition, which is the subject of this book, is

specifically designed for non-professionals who want to learn to use VWD
and related technologies without having to spring for the tools used by large
corporations and professional programmers

That’s not to say you can’t create a “real” Web site with the Visual Web
Developer Express. On the contrary, you can build a Web site of any com-
plexity, and copy it to any Web server that supports ASP.NET 2.0 and other
related technologies. It’s just that the Express edition doesn’t have some
advanced features needed for very large commercial Web sites.

But, as a beginner, you’re probably a long way from developing a large, busy
commercial Web site. There’s no need to spring for a more expensive version
of the product until after you’ve mastered the Express edition.

Who VWD Is For
Visual Web Developer (VWD) is not a tool for computer beginners. Not by
a long shot. VWD allows you to develop fancy Web sites by using existing
Web technologies such as XHTML, XML, CSS, ASP.NET, as well as the .NET
Framework 2.0, SQL Server, C#, and Visual Basic. In fact, most of the help
and documentation for Visual Web Developer presumes that you’re already
familiar with those tools and technologies.

05_583603 ch01.qxd 10/21/05 6:44 PM Page 9

Of course, each said tool or technology is a book-length topic in itself. Total
coverage of all that is beyond the scope of a single book written about Visual
Web Developer. By way of a quick look, however, I describe what they are, how
you use them, and where you find online resources with more information.

Installing Visual Web Developer
One of the biggest challenges beginners face when trying to use a large, com-
plex program like Visual Web Developer is knowing what to do, how to do it,
and when to do it. Technical documentation and “theory” don’t help with
that. To really get your feet wet and understand the big picture, you need to
spend some time using the program in a hands-on way.

Getting that hands-on experience is what this book is about. And to make
sure you can get that experience, we’ve included a free copy of Visual Web
Developer Express on the CD that comes with this book.

Like any program, you have to install Visual Web Developer Express before
you can use it. So before you go any further here, take a moment to complete
the installation instructions presented in Appendix B.

Getting Around in VWD
Once installed, starting Visual Web Developer is no different from starting
any other program. Assuming VWD is properly installed on your computer,
just click the Start button and choose All Programs➪Visual Web Developer
2005 Express Edition. Figure 1-1 shows (roughly) how the program looks
when it first opens. Don’t worry if yours looks different — it’s easy to move
and size things to your liking.

The list given here briefly describes the purposes of the main panes pointed
out in Figure 1-1. (If some of the terms are new to you, don’t worry about it;
save the definitions for later when you start creating your site.)

� Toolbox: When you open a page or other item to edit, the Toolbox offers
tools that allow you to add controls to the page.

� Design Surface: Also called the design grid, this is where you’ll create
and edit your Web pages. Initially, you’ll see a Start Page here, which I’ll
discuss that in a moment.

10 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 10

� Solution Explorer/Database Explorer: Each Web site you create is orga-
nized as a group of folders that shows up in the Solution Explorer. Any
database you create for the site appears in the Database Explorer. Use
the tabs at the bottom of the pane to switch between the two Explorer
programs.

� Properties: Shows properties associated with the page or object with
which you’re currently working.

Using panes
You can move, size, show, and hide panes as needed to take advantage of
your available screen space. To widen or narrow a pane, drag its innermost
border left or right. If you have two or more panes stacked up along the edge
of a screen, you can make the lower pane taller or shorter by dragging its top
border up or down. The two-headed mouse pointers in Figure 1-2 show where
you’d drag a couple of sample borders. (Ever see a two-headed mouse?)

Solution Explorer/Database Explorer

Toolbox PropertiesDesign surface

Figure 1-1:
VWD main

program
window.

11Chapter 1: Getting Started

05_583603 ch01.qxd 10/21/05 6:44 PM Page 11

As pointed out in Figure 1-2, the title bar of a pane contains three buttons
titled Window Position, Auto Hide, and Close. Clicking the Window Position
option gives you the following choices on a drop-down menu:

� Floating: Converts the pane to a free-floating window that you can move
and size independently of the program window.

� Dockable: Docks a pane that is currently showing as a tabbed document.

� Tabbed Document: Moves the pane into the Editing area, identified by a
tab at the top of the area. Click the tab to make the pane visible. Right-
click the tab and choose Dockable to re-dock the pane to the program
window.

� Auto Hide: Converts open panes to hidden panes along the border of
the program window, as in the example shown in Figure 1-3. To bring a
pane out of hiding, point to (or click) its name.

� Hide: Hides a pane immediately so only its name appears along the
border. To bring the pane out of hiding, click (or just point to) its name.

To quickly put all of the visible panes into hiding, choose Window➪Auto
Hide All.

When you bring a hidden pane out of hiding, you’ll notice that the Auto Hide
“pushpin” is horizontal. Clicking that pushpin keeps the pane open.

Getting panes back to normal
With so many optional panes, and so many ways to move and size things, it’s
easy to make a real mess of your program window. But don’t worry; to whip
everything back into shape, all you have to do is choose Window➪Reset
Window Layout from the menu bar.

Window position

Auto Hide

Close

Drag to sizeFigure 1-2:
Tools for

moving and
sizing

panes.

12 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 12

Don’t forget the View menu
The View option in the menu bar, shown in Figure 1-4, provides access to all
optional panes (also called windows because they can be free-floating). If you
close a pane by clicking its Close (X) button, you can always bring the pane
back into view by choosing its name from the View menu.

Figure 1-4:
The View

menu.

Figure 1-3:
Hidden

panes along
the right

border.

13Chapter 1: Getting Started

05_583603 ch01.qxd 10/21/05 6:44 PM Page 13

Some options on the View menu, like Object Browser and Error List, won’t
play any significant role until you start building your Web site. In most cases,
these panes appear automatically when needed. I’ll discuss those other
panes as the need arises in this, and later, chapters.

The View menu also offers a Toolbars option you can use to show and hide
various toolbars. As with many of the optional panes, toolbars appear —
and disappear — as appropriate to whatever task you’re performing at the
moment. So don’t fret about which toolbars are (or aren’t) visible right now.

About the Start Page
The Start Page, shown in Figure 1-5, appears each time you open VWD. Under
Recent Projects you’ll see a list of Web sites you’ve worked on recently (if
any). To open one of those Web sites, just click its name.

The Start page doesn’t contain anything that’s required to build a Web site. In
fact, after you’ve created or opened a Web site, you can close the Start page
by clicking the Close (X) button in its upper-right corner. If you change your
mind and want to bring the Start page back to the screen, just choose View➪
Other Windows➪Start Page from the menu.

Using VWD Help
Quick, easy access to information is key to using VWD well. There’s too much
information for anyone to memorize. Visual Web Developer offers many ways
of getting the information you need when you need it. The Help command on
the menu bar, and the Help toolbar shown at the bottom of Figure 1-6, pro-
vide many ways to look up information, as summarized below.

Figure 1-5:
The VWD

Start Page.

14 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 14

If the Help toolbar isn’t visible, choose View➪Toolbars➪Help from the menu
bar. The navigation buttons at the left side of the Help toolbar will be enabled
when you have some Help content visible on your screen.

It’s probably no stretch to assume you can find your way around the Help
system and figure things out from the options available to you. But just so
you know what’s available, I’ll briefly summarize the main Help options:

� How Do I: Opens the “How Do I?” page in the Design Surface. The page
contains links to topics that describe how to perform various common
tasks in VWD.

� Search: Provides many options for searching both local and online help
for a specific word or phrase.

� Index: Provides an index, like the index at the back of a book, where you
can look up a term alphabetically.

� Contents: Opens the Help Table of Contents in the right pane. Use it as
you would the Table of Contents at the start of a book.

� Help Favorites: Opens the Help Favorites pane at the right side of the
program window. When you’re viewing a Help page, you click the “Add
to Help Favorites Button” in the Help toolbar (just to the right of the
Help Favorites button) to add the current page to your Help Favorites.

� Dynamic Help: (Help menu only) Opens the Dynamic Help pane in the
lower-right corner of the screen (Figure 1-7). As you create a page and
click different types of controls, links to information about the context
in which you’re working automatically appear in this pane.

� Help on Help: (Help menu only) Offers detailed information on all the
built-in help available to you.

If you’re new to Web development, much of the help may be over your
head and not very helpful at all. Try not to let that intimidate you.
Everyone has to be a beginner at some point. A major goal of this book
is to get you from that absolute-beginner point to a more experienced
level where the technical documentation can actually be helpful.

Help toolbar

Figure 1-6:
The Help

toolbar
(bottom).

15Chapter 1: Getting Started

05_583603 ch01.qxd 10/21/05 6:44 PM Page 15

Closing Help pages and panes
Most Help pages open up in the Design surface. You can switch among open
pages using the tabs at the top of the surface. To close a pane, click its tab and
then click the Close (X) button at the top of the Design surface (Figure 1-8). Or
right-click the tab and then choose Hide.

Panes, like the Dynamic Help pane shown back in Figure 1-7, can be handled
like any other pane, using tools and techniques described near Figure 1-2.

Online resources
No matter what your level of expertise coming into this book, sometimes you
need specific information about the technologies that VWD supports. That
includes the .NET Framework 2.0, ASP.NET, CSS, HTML, XML, SQL Server 2005,
and the C# programming language. You don’t need to master all these topics
right off the bat. Heck, the printed documentation for the .NET Framework
alone is over 8,000 pages. Not may people will be interested in learning or
using everything it has to offer. It’s just too darn much information, most of
which has nothing to do with building Web sites.

The trick is being able to find the information you need when you need it.
Certainly the Help resources described in the previous sections have much
to offer. But it never hurts to have a few extra resources at your fingertips.

A good first resource is the Visual Web Developer section of my own personal
Web site at www.coolnerds.com. (You can browse straight to that section
using www.coolnerds.com/vwd). For more technical information, consider
the following Web sites:

Tabs Close button

Figure 1-8:
Tabs and

Close
button.

Figure 1-7:
The

Dynamic
Help pane.

16 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 16

� .NET Framework Developer Center: http://msdn.microsoft.com/
netframework/

� ASP.NET QuickStart Tutorials: www.asp.net/tutorials/quickstart.
aspx

� Cascading Style Sheets (CSS) — W3C: www.w3.org/Style/CSS/

� SQL Server Developer Center: http://msdn.microsoft.com/SQL/

� Visual C# Developer Center: http://msdn.microsoft.com/vcsharp/

� XHTML Home Page: www.w3.org/TR/xhtml1/

� XML (Extensible Markup Language): www.w3.org/XML/

Being Compatible with Web Browsers
Every Web author has to make a trade-off decision between Web browser
compatibility and fancy features. If you want to ensure that virtually every-
one can visit your site, then you want to be compatible with very early ver-
sions of Web browsers — say, Internet Explorer 3 and Netscape Navigator 3.
However, those older browsers don’t support the better, fancier stuff you
can use with modern Web browsers.

If you want to use the capabilities of modern browsers, you have to limit
your Web site to using only those. This is not as big a sacrifice as it might
seem; almost everyone has more recent browsers. Few sites gear their new
content to version 4 and earlier browsers anymore, and most browser manu-
facturers are keeping up with current XHTML specifications. And since
XHTML is the future for browsers anyway, most Web authors lean toward
those specifications.

Anyway, I’m sure one could debate browser compatibility ad infinitum — but
here’s the bottom line: Make that decision early on so you’re better prepared
to create consistent pages for the site and match what your visitors are most
likely using. You use the Options dialog box in VWD to set browser compati-
bility; here are the steps:

1. Choose Tools➪Options from VWD’s menu bar.

The Options dialog box opens.

2. Click the + sign (if any) next to Text Editor HTML.

3. Click Validation.

4. Choose your preferred browser compatibility from the Target drop-
down list.

In Figure 1-9, I chose “XHTML 1.0 Transitional (Netscape 7, Opera 7,
Internet Explorer 6).”

5. Click OK.

17Chapter 1: Getting Started

05_583603 ch01.qxd 10/21/05 6:44 PM Page 17

In case you’re wondering why the option in the Options dialog box is named
Validation, it’s because VWD automatically validates your page each time you
open it — that is, it makes sure everything in the page works properly when a
visitor opens the page from a Web browser. If VWD finds a problem, it alerts
you via an error message.

The Options dialog box has a whole slew of other options. You can see ’em
if you choose the Show All Settings check box at the bottom of the dialog
box. There are a ton of other options to choose from, but the only one worth
bothering with at the moment would likely be the General tab under HTML
Designer.

As you’ll discover in Chapter 2, you can edit pages either in a WYSIWYG graphi-
cal view, or a more textual Source view. You can switch views at any time with a
single mouse click, which is no big deal. But if you choose Design View rather
than Source View from the HTML Designer General options, as in Figure 1-10,
your pages will initially open in Design view.

Figure 1-10:
Choosing to
open pages

in Design
view.

Figure 1-9:
Choosing

target
browsers.

18 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 18

When you’ve finished making your choices in the Options dialog box, just
click OK to save your choices and return to VWD.

Publishing Your Web Site
As you may already know, simply creating a Web site on your own PC is
only a first step; you can admire it while it sits there, but that doesn’t make
your site available to the public at large. That can happen only after you’ve
obtained a domain name and published your site to a Web server located
at that domain name.

The company that provides the space on which you publish your site is often
referred to as a hosting service, a hosting provider, a Web presence provider, or
even a WPP for short. The hosting services that specifically support the tech-
nologies you use in VWD to develop your Web site are ASP.NET 2.0 Hosters.

Eventually you’ll need a hosting service that supports ASP.NET 2.0 and SQL
Server 2005. You can find a list of such hosting services at www.asp.net/
hosters/. There’s no reason to sign up right this minute, especially if your
site isn’t built yet. But you can certainly shop around as time permits.

19Chapter 1: Getting Started

05_583603 ch01.qxd 10/21/05 6:44 PM Page 19

20 Part I: Planning a Web Site

05_583603 ch01.qxd 10/21/05 6:44 PM Page 20

Chapter 2

Creating a Web Site
In This Chapter
� Creating a new Web site

� Defining and using folders

� Creating and editing Web pages

� Viewing pages in a Web browser

The first step to using Visual Web Developer is to create a new, empty Web
site. The phrase Web site in this context does not mean a Web site that

people can browse to on the Web — that would be a live Web site or a produc-
tion Web site. The Web site you create is initially just a bunch of files and fold-
ers on your computer that nobody except yourself can get to.

After you’ve created your new Web site, you can then start designing and cre-
ating the site. Doing so involves creating folders and pages, putting things on
pages, seeing how pages look when viewed in a Web browser, and so forth.
Such things fall under the heading of “everyday basic skills” because you’ll
do them every time you use Visual Web Developer. They are also the topic of
this chapter.

Creating a Web Site
From the standpoint of Visual Web Developer, a Web site is basically a folder
that contains still more folders and all the files that make up a single, com-
plete Web site. Unlike a live Web site, the empty one you create will be in
your file system, or, in less technical terms, your own computer’s hard disk,
where nobody except you can get to it.

Even in Visual Web Developer, there will be times when you may have to
write some code, in a programming language, to get a job done. Visual Web
Developer supports several programming languages — including Visual
Basic, C#, and J#. In this book, we use C# (pronounced see sharp). If you’re
already familiar with one of the other languages, you’re welcome to use it

06_583603 ch02.qxd 10/21/05 6:40 PM Page 21

instead. But given that you probably won’t be writing much code, and given
that these languages are so similar, you shouldn’t have any problems using
C# even if you’re not familiar with the language.

To create a new Web site that uses C# as its default programming language,
follow these steps:

1. From VWD’s menu bar, choose File➪New Web Site.

The New Web Site dialog box (shown in Figure 2-1) appears.

2. Click ASP.NET Web Site.

3. From the Location drop-down list, choose File System.

4. From the Language drop-down list, choose a preferred programming
language.

As mentioned, I use Visual C# throughout this book.

5. Optionally, change the location and name of the Web site.

The site name is at the end of the lengthy path to the right of the
Location drop-down list. In the example shown in Figure 2-1, I’ve opted
to create a site named MyVWDsite in the My Documents folder.

6. Click OK.

It takes a few seconds for VWD to create the site. When the site is ready, you
end up with an empty page named Default.aspx, which is the Web site’s
home page. You also get a folder named App_Data, which is where your site’s
database will be stored (eventually). These are both listed under the site’s
root folder in Solution Explorer at the right side of the program window.

Figure 2-1:
The New
Web Site

dialog box.

22 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 22

The Default.aspx page also opens automatically in the Design surface.
You’ll see its name in a tab at the top of the Design surface. In Design view,
the page just looks like a big white sheet of paper. In Source view, you’ll see
some HTML and other stuff that isn’t visible to people who visit the site, as
in Figure 2-2.

Speaking of Design view and Source view, notice the two little buttons titled
Source and Design near the bottom of the window (Figure 2-3). Use those but-
tons to switch from one view to the other. Note that these are just two differ-
ent ways of looking at the page, as follows:

� Design: In this view, the page looks much as it will in a Web browser. Use
this view for normal WYSIWYG (what you see is what you get) editing.

� Source: This view shows the HTML and other tags for the page —
“instructions” that tell the page how to behave and how to look in a Web
browser.

Closing and Opening Pages
As mentioned, when you create a new Web site, VWD automatically creates
one blank page, named Default.aspx, for the site. Your site will likely con-
tain many pages. Typically you only want to work on one page at a time

Figure 2-3:
The Design
and Source

buttons.

Figure 2-2:
A new

Web site
as shown

in Solution
Explorer,

and an
open page
in Source

view.

23Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 23

(or perhaps a few pages) — and that means opening and closing pages for
editing. Right now there’s only one page in the site, and it’s open. To close a
page:

� Click the Close (X) button in the upper-right corner of the Design surface
(near the mouse pointer in Figure 2-4).

� Or choose File ➪ Close from the menu bar.

If you made any changes to the page since you last opened it, a dialog box
asks if you want to save those changes. Choose Yes (unless you made a
mess of things and don’t want to save your changes). The page disappears
from the Design surface, but its name remains visible in Solution Explorer.

To open a page, just double-click its name in Solution Explorer. When the
page is open, use the Design and Source buttons to choose how you want
to view the page.

Creating and Using Folders
You can use folders to organize pages and other components in your Web site
in much the same way you use folders in Windows to organize files. For exam-
ple, you might want to create a folder for storing all the site’s pictures. To
create a folder, follow these steps:

1. Make sure your site is open and go to the Solution Explorer pane.

2. Right-click the site name at the top of the Solution Explorer tree and
choose New Folder, as shown in Figure 2-5.

3. Type in a new name for the folder, and then press Enter.

Figure 2-6 shows an example I created — a new folder named Images. I’ll use
that folder to store some of the pictures for my Web site.

To rename a folder, right-click its icon in Solution Explorer, choose Rename,
type in the new name, and press Enter.

Figure 2-4:
Close

button for
Default.

aspx.

24 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 24

Copying files to folders
You can create pages in any folder you wish within your site. But what about
files you may have already created, such as pictures you intend to use on
your site? Well, you can move or copy those from their current location into
folders in Solution Explorer, using the drag-and-drop method.

For example, to copy a picture from your My Pictures folder into a folder,
leave VWD open with your site folder open in Solution Explorer. Then just
drag-and-drop any icon, or selected group of icons, from your My Pictures
folder to the site folder in Solution Explorer.

Figure 2-7 shows an example where I dragged a file named logo.gif from the
My Pictures folder to the Images folder in Solution Explorer. When the Images
folder is expanded (showing a – mark instead of a + mark), the logo.gif file
within that folder is visible.

Figure 2-6:
A new

regular
folder

named
Images.

Figure 2-5:
Creating a

folder.

25Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 25

Use the + and – keys next to the folder name to show or hide the contents of
the folder.

If drag-and-drop isn’t your thing, you can copy and paste instead. For exam-
ple, if you have some pictures in a folder that you need to use in a Web site,
open that folder in Windows. To copy multiple pictures, select their icons
using standard Windows techniques. Then right-click the picture’s icon (or
any selected icon) and choose Copy. Then, in Solution Explorer, right-click
the name of the folder into which you want to place the picture(s) and
choose Paste.

Renaming and deleting folders
You can rename or delete any regular folder by using techniques similar to
those in Windows:

� To rename a folder, right-click the folder, choose Rename, enter the new
name, and press Enter.

� To delete a folder, right-click the folder name and choose Delete.

Editing Pages
To edit an existing page in VWD, you first need to open the page so it’s visible
on the Design surface. To open a page, double-click its icon in Solution
Explorer. When you open an .aspx page (such as Default.aspx), you see
the Design and Source buttons at the bottom of the Design surface, so you
can switch between the two views.

Figure 2-7:
Here’s the

Logo.gif file
in the

Images
folder.

26 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 26

Adding text to a page
As mentioned briefly in the preceding section, VWD allows you to edit an
.aspx page in either Design view (which shows what the page looks like in a
browser) or Source view (raw HTML and ASP.NET). Typing and editing text in
Design view is like typing and editing in Microsoft Word, FrontPage, or just
about any other text editor or word processor: You click the page to get the
cursor into position, and then type your text. Figure 2-8 shows an example
where I typed the text Welcome to my site on the (otherwise empty)
Default.aspx page.

All the standard text-editing tools and techniques work on the Design surface.
For example, you can delete with the Backspace and Delete keys. You can
select text by dragging the mouse pointer through the text, or by holding
down the Shift key while positioning the cursor with the navigation keys.
You can copy and paste text to or from the Design surface.

Selecting and formatting text
Selecting and formatting text works the same in VWD as it does in word pro-
cessing programs. To format a chunk of text, first select (highlight) the text
you want to format by dragging the mouse pointer through that text. Then
choose a format option from the Formatting toolbar.

In Figure 2-9, for example, I selected the text Welcome to my site so it’s
highlighted. Then I clicked the Block Format button at the left side of the
Formatting toolbar; the figure shows how the screen looks just before I
click the Heading1 <H1> option.

Figure 2-8:
Here’s

some text
added to

Default.
aspx.

27Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 27

Undoing changes
As in most modern applications, you can undo the most recent changes you
made to a page by using either of these methods:

� Choose Edit ➪ Undo from the menu bar.

� Press Ctrl+Z.

� Click the Undo button in the Standard toolbar.

VWD has multiple levels of undo and redo, so you’re not limited to undoing
only your most recent change. However, when you save a page, you “commit”
all changes up to that point. Undo actually only reaches back as far as your
last save.

Adding pictures
To add a picture to a page, first make sure you move or copy the original pic-
ture into a folder in Solution Explorer. Make sure all the files that make up
your Web site — including pictures — are in folders within Solution Explorer.
Otherwise, when you upload your finished site to a Web server, the pictures
won’t be included in the upload, which means that anyone trying to view a
page that contains a picture will just see a red X where the picture should be.

To add a picture to a page, just drag its icon from its folder in Solution Explorer
onto the page. Figure 2-10 shows an example where I dragged a picture named
Logo.gif onto the page, from a folder named Images in Solution Explorer.

Block Format Formatting toolbar

Selected text

Figure 2-9:
Getting

ready to
format some

selected
text.

28 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 28

On the Design surface, the picture shows dragging handles (small squares
along the border). If you don’t see the handles, click the picture to select it;
they’ll show up. Then you can size the image by dragging any handle.

Changing properties
If you look around the room you’re in right now, you’ll probably see many
physical objects — PC, keyboard, mouse, desk, and whatever else is in the
room. No two objects are exactly alike. Instead each object has certain prop-
erties such as size, shape, weight, purpose, and so forth that makes it unique.

Just about anything you add to a Web page is also an object. And (like objects
in the real world) objects on Web pages have properties. An object’s proper-
ties are settings that define its characteristics — such as size, shape, location
on the page, and so forth.

To see, and perhaps change, an object’s properties, just select (click) the
object of interest and look at the Properties pane. Or, right-click the object
and choose Properties. The item’s properties appear in its properties sheet,
which always shows in Visual Web Developer’s Properties pane.

Figure 2-11 shows an example where I’m viewing the properties for a picture.
The tag near the top of the Properties sheet is a reflection of the fact
that, like all pictures in all Web sites, this particular picture is displayed by
an HTML tag.

To make the Properties sheet free-floating (as in Figure 2-11), choose Floating
from its Window Position button. (See Chapter 1 for more details.)

Drag

Handles

Figure 2-10:
Dragging a

picture’s
icon onto
the page.

29Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 29

HTML (Hypertext Markup Language) is a set of tags used to define the gen-
eral format of items on a Web page. Visual Web Developer is a tool for people
who already know that, and know what the HTML tags are. That’s why when
you click on a picture and look at its Properties sheet, you see the term
 in the properties sheet rather than the word picture. The assumption
is you already know that tags show pictures.

Different types of objects have different properties. The list of properties for
an object may be long, so you may need to use the scrollbar at the right side
of the list to see them all. Most properties can be changed by clicking the
column to the right of the property name.

An object’s properties sheet provides a means of tweaking optional settings
for the object, but not the only means. In fact, any settings that relate to the
look and feel of the object on the page are best dealt with outside the proper-
ties sheet through the Style Builder or CSS (Cascading Style Sheets), which
are covered in Chapters 5 and 6.

To get to the Style Builder, right-click the item you want to style and choose
Style.

Switching views
The Design view shown in the previous figures allows you to edit a Web page
in a WYSIWYG (pronounced wizzy-wig — “what you see is what you get”)
mode. In other words, what you see in the Design view is very similar to what
a person visiting the page with a Web browser would see. That’s the way
most people like to work.

Selected object

Properties

Figure 2-11:
An object’s
properties.

30 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 30

As mentioned earlier, there’s also a Source view for editing Web pages. To
switch to Source view, click the Source button at the bottom of the Design
surface. (To switch back to Design view, click the Design button at the
bottom of the Design surface.)

The Source view shows the HTML tags (and other stuff) that VWD is creating
behind the scenes as you create the page in the Design view. Whether or not
any of that looks familiar depends on your familiarity with HTML.

Those of you who are familiar with HTML will recognize similarities between
the tags and the content of the page. For example, if you switch to Source
view while viewing the page in Figure 2-11, you might recognize the tags
shown here:

<h1>Welcome to my site</h1>

Dragging the logo.gif file onto the page created the tag. Welcome to
my site is typed text. The <H1> and </H1> tags were added by selecting the
typed text and choosing Heading 1 <H1> from the Block Format menu on the
toolbar.

There’s rarely any need to work directly with HTML tags. So don’t get too
uncomfortable looking at all the gibberish in the Source view. But for those
of you who are familiar with HTML, I offer the following section.

Editing in Source view
If you’re familiar enough with HTML to work directly in the Source view,
you’ll be able to take advantage of VWD’s IntelliSense technology. IntelliSense
“looks at” what you’re typing, or have already typed, and provides menus of
options representing valid HTML keywords relevant to the context in which
you’re typing. I think an example will best illustrate.

Suppose you’re working in the Source view and want to insert an HTML tag.
As soon as you type the opening angle bracket, <, a menu appears listing
valid words you can type after the opening bracket, as in Figure 2-12.

When the IntelliSense menu appears, you have two choices. You can ignore it
and just keep typing. Or you can scroll through the menu and double-click
the word you want to insert next into the brackets.

If you enter the first tag of a pair, IntelliSense will usually add the closing tag
for you automatically. For example, if you type <p> into the page in Source
view, you’ll get <p></p>. The cursor lands between the two tags so you can
type within the tags immediately.

31Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 31

When you use XHTML for validation, unpaired tags such as and

 must end with a slash and a closing angle bracket (/>). For example,
<img.../> and
. When you edit in the Design surface, the correct tags
are created automatically. If you plan on writing HTML yourself, make sure
you’re up on XHTML rules, which you can find online at www.w3.org/MarkUp.

If you’re not familiar with HTML and don’t quite get what value IntelliSense
offers, don’t worry about it. For the most part, you can create Web sites in
VWD by using simple drag-and-drop techniques and properties without
typing any HTML at all.

All Web pages contain some HTML, even though you never see HTML tags in
pages. That’s because your browser renders the HTML into what you see in
your browser. For example, the HTML Hello renders as the word
Hello in boldface, without the tags. If you use Internet Explorer as your Web
browser, you can choose View➪Source from its menu bar to see the unren-
dered HTML source page.

Saving your work
As soon as you start editing a page, you’ll notice that the tab that shows the
page name at the top of the Design surface is boldfaced and shows an aster-
isk, as in the example shown in Figure 2-13. The asterisk means “you’ve
changed this page since you last saved it, and those changes have not yet
been saved.” To save the page with your most recent edits, use whichever
technique below is most convenient:

� Click the Save button in the toolbar (shown near the mouse pointer in
Figure 2-13).

� Press Ctrl+S.

� Choose File ➪ Save Pagename from the menu bar (where Pagename is
the name of the page you’re editing).

Figure 2-12:
IntelliSense

menu in
Source

view.

32 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 32

Clicking the Save All button next to the Save button will do the trick too. As
its name indicates, the Save All button saves all open pages.

If you attempt to close an edited page without saving it first, you’ll see a
prompt asking whether you want to save your changes. You should choose
Yes unless you’re sure you want to abandon all changes you’ve made since
you last saved the page.

Dealing with code-behind files
Many .aspx pages have a corresponding code-behind file. These pages con-
tain programming code that defines the behavior of the page, as opposed to
any kind of visible content. The code in a code-behind page is written in
whatever programming language you choose when first creating the Web site.
In this book’s examples, that will always be the C# programming language.

In Solution Explorer, any page that has a code-behind file shows a + sign next
to its icon, or a minus sign with an icon for the code-behind file. The name of
the code-behind file is the same as the name of the .aspx page with a .cs
extension added on, as in Figure 2-14. (The .cs is for C#. If you use a different
programming language, the extension will adjust accordingly, for example,
.vb for Visual Basic.)

Figure 2-14:
Icon for

code-
behind file

under
Default.

aspx.

Save button Asterisk

Figure 2-13:
Changed
page and

Save button.

33Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 33

When you open a code-behind file you see code. There is no Design view for
code, because a code-behind file can only contain code — computer instruc-
tions written in a programming language like C# or Visual Basic. The code
may look something like this:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
}

The meaning of the code isn’t important at the moment. Suffice it to say that
the code file is where the logic of a Web page resides, whereas HTML controls
what appears on-screen when someone views the page through a Web
browser. You’ll see examples of how that works in Chapter 9. Whether or not
you’ll ever have to deal with code-behind pages depends on what you want
your Web site to do — so don’t let all that gibberish in the code-behind page
worry you.

To close a code-behind page, just click its Close (X) button near the upper-
right corner of the Design surface.

Titling Pages
Every Web page has a page title that appears in the Web browser’s title bar
when someone is viewing the page. That same title also shows up in links to
the page from most search engines, like Google. In HTML, the title must be
placed between <title>...</title> tags, which in turn must be inside the
page’s <head>...</head> tags.

In Visual Web Developer, you can follow these steps to create a title for what-
ever page you’re currently editing in the Design surface:

34 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 34

1. From the drop-down list at the top of the Properties sheet, choose
<DOCUMENT>.

2. Scroll to the bottom of the Properties sheet and type your page title as
the Title property.

For example, in Figure 2-15, I’ve given the page the general title MyVWDSite
Home Page.

You won’t see anything in the Design view of the page, because this title
doesn’t show up on the Web page. In Source view, you’ll see the HTML
required to show the page title:

<title>MyVWDSite Home Page</title>

The only other time you’ll see that title is when you view the page in a Web
browser, where it appears in the title bar at the top of the Web browser’s pro-
gram window. Which brings us to . . .

Viewing Pages in a Web Browser
The Design view of a page gives you a good sense of how the page will look in
a Web browser. But it doesn’t always provide an exact view. To put your page
to a real test, view the page in a Web browser. After all, when the site is up
and running on a Web server, everyone who visits the site will be doing so
through a Web browser.

To view, in a Web browser, the page you’re currently working on in Design or
Source view in VWD, use whichever method below is most convenient for you:

� Right-click some empty space on the page and choose View In Browser.

� Click the View in Browser button in the toolbar (left side of Figure 2-16).

� Press Ctrl+F5.

Figure 2-15:
Typing a

page title
for the

browser’s
title bar.

35Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 35

If you want to view in a Web browser a page that isn’t currently open, right-
click its name in Solution Explorer and choose View in Browser, as shown at
the right side of Figure 2-16.

The page opens in a Web browser, mostly likely Microsoft Internet Explorer.
Figure 2-17 shows the Default.aspx page open in Internet Explorer. Note
the page title, MyVWDSite Home Page, in the upper-left corner of the figure.
That’s the only place that page title is actually visible on the screen.

The browser window will likely cover Visual Web Developer’s program
window. To go back to designing your page, just close the Web browser by
clicking the Close (X) button in its upper-right corner.

Figure 2-17:
The

Default.
aspx page

in Microsoft
Internet

Explorer.

Figure 2-16:
Two ways to
view a page

in a Web
browser.

36 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 36

Opening and Closing Web Sites
Creating a Web site is no small feat, and it’s pretty unusual to accomplish
much in a single sitting. So before I end this chapter, let’s take a quick look
at managing Web sites as a whole.

When you’re in Visual Web Developer and working on a site, you can close
the site without closing the program — handy if you’re working on multiple
sites. To close the current Web site, choose File➪Close Project from VWD’s
menu bar. (VWD often uses project to mean Web site.)

When you first open VWD, you won’t be taken to your Web site automatically.
Even so, you can easily open your site by any of the following methods:

� Click your site’s name under Recent Projects on the VWD Start Page.

� Choose File➪Recent Projects from the menu bar. Then click the name of
the Web site you want to open.

� Choose File➪Open Web Site from the menu bar. When you choose this
option, the Open Web Site dialog box opens. Click File System, then use
the directory tree to navigate to the folder in which you placed your pro-
ject (look for a regular folder icon with whatever name you entered
when you created the site).

Whichever method you use to open your Web site, the folders and files
appear in Solution Explorer exactly as you left them.

37Chapter 2: Creating a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 37

38 Part I: Planning a Web Site

06_583603 ch02.qxd 10/21/05 6:40 PM Page 38

Chapter 3

Configuring a Membership Site
In This Chapter
� Configure your Web site for membership

� Create folders for members-only content

� Prevent anonymous users from accessing members-only content

� Create and manage user accounts

One of Visual Web Developer’s best features is its ability to create a
membership Web site with minimal fuss and muss. As the owner of a

membership Web site, you can control who has access to what content. For
example, you can have general content for anonymous users, people who just
happen to wander into the site, and then you can have premium content for
members only, where members are people who have set up an account on
your site.

The basic idea is pretty simple. You create a folder, perhaps named Member-
Pages, where you put all members-only content. Then you set up a role, per-
haps named SiteMembers. Finally, you create a rule that says “anonymous
users cannot access content in the MemberPages folder; only people in the
SiteMember role can access pages in the MemberPages folder.” In other
words, if someone who just happens to visit your site wants to see your spe-
cial content, that person must first join your site by setting up a user account.

Creating a Folder for Members-Only
Content

The first step to setting up a membership site is to decide how you’re going
to organize your content. You’ll likely want some of your site’s content to be
available to anonymous users. An anonymous user is anyone who visits the
site without creating or logging into an account on your site.

In addition to the general content that’s available to everyone, you may want
some privileged members-only content that’s available only to site members —
people who have joined your site by setting up a user account.

07_583603 ch03.qxd 10/21/05 6:55 PM Page 39

To keep the privileged members-only content separate from the general con-
tent, you need a folder, perhaps named MemberPages. Keep all your privi-
leged content in the MemberPages folder. Keep general content out of that
folder. The MemberPages folder can be just a regular folder in which you
store pages.

To create a folder in Visual Web Developer, right-click the site name at the
top of Solution Explorer and choose New Folder. Then type the folder name
and press Enter. Figure 3-1 shows an example where I’ve added a new, regular
folder named MemberPages. As its name implies, the MemberPages folder
will (eventually) contain pages that only site members can access.

There is nothing special about the MemberPages folder. It’s just an empty
folder in which you can store pages. If you want to use that MemberPages
folder to store privileged members-only content, you need some means of
distinguishing between site members and the general riff-raff (anonymous
users). In other words, your site needs an infrastructure that can store
information about site members, allow site members to log into their user
accounts, and so forth. To create that infrastructure, you use the Web Site
Administration Tool.

Using the Web Site Administration Tool
The Web Site Administration tool, often abbreviated WAT, is the tool you use
to administer access to pages within your Web site. To start the tool, follow
these steps:

1. If you haven’t already done so, start Visual Web Developer and open
your Web site.

2. Choose Website➪ASP.NET Configuration from the menu bar.

The tool opens in a Web browser like the one in Figure 3-2.

Figure 3-1:
A regular

folder
named

Member-
Pages has

been added
to the site.

40 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 40

The tabs near the top of the page (Home, Security, Application, and
Provider), and links on the Home tab, provide tools both for creating a mem-
bership site and for managing a membership site after it’s created. The first
step to setting up a membership site is to make sure Visual Web Developer
can connect to SQL Server, the database program used to store information
about users. To test your connection, follow these steps:

1. Click the Provider tab or the Provider Configuration option on the
Home tab.

2. Choose the Select A Single Provider For All Site Management Data
option.

3. Make sure that AspNetSqlProvider is selected, as shown in Figure 3-3.
(Most likely there won’t be any other options to select anyway).

Figure 3-3:
Link to test

your SQL
Server

connection.

Figure 3-2:
The Home
tab in the
Web Site

Administra-
tion Tool.

41Chapter 3: Configuring a Membership Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 41

4. Click the Test link to the right of your selection to make sure your site
can connect.

5. You should see a message that reads “Successfully established a con-
nection to the database.” Click OK.

If the test fails the first time, just try again. Sometimes it takes a few
tests for the connection to work.

6. Click the Back button in the lower-right corner of the page.

7. Click the Home tab in the Web Site Administration Tool.

At this point, you’ve told VWD that you want to use SQL Server as your site’s
database management system for storing information about users and user
accounts. The next step is to choose an authentication type.

Choosing an authentication type
If you’ve ever set up any kind of an account on any Web site, you know that in
order to log in you must enter two pieces of information: Your user name (or
e-mail address) and your password. The user name defines who you are. Your
password verifies that you actually are who you say you are (assuming you
haven’t been handing out your password to people). That two-step process is
known as authentication because it both identifies you and verifies that you
are who you say you are.

In Visual Web Developer, you can choose between two forms of authentica-
tion: Windows authentication or Forms authentication. Windows authentica-
tion works only on a small Web site used within a local network. Assuming
you intend on putting your site on the Internet, you’ll need to follow these
steps to choose Forms authentication:

1. In the Web Site Administration Tool, click the Security tab.

2. Click the Select Authentication Type option under Users on the
Security tab.

3. On the next page (Figure 3-4) choose the From the Internet option.

4. Click the Done button.

With the data provider and authentication mode selected, you’re ready to set
up your site’s security by defining the access rules of your site. The first step
is to create a role that will distinguish members of your site from anonymous
users who are just looking around.

42 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 42

Creating Roles to Categorize People
If you think about how a business is organized, access to business resources
and information tends to be based on people’s roles within the company. For
example, executives might have access to everything, managers have access
to sensitive information within their department, and workers have access to
whatever they need to do their jobs. Your role in the company determines
your access to information.

In a membership Web site, access to information is also based on roles. A
person who just browses to the site is an anonymous user because he hasn’t
signed into an account to identify who he is. To separate the anonymous
users from people who are members with accounts, you need a role, perhaps
named SiteMembers. In order for someone to be considered a SiteMember,
she must have an account on the site, and must log into that account. After
she’s logged into her account, the person is no longer in the anonymous user
role. Instead, that person is in the SiteMembers role.

To use roles in your Web site, you first have to enable that feature via the
Web Site Administration Tool by following these steps:

1. If you haven’t already done so, click the Security tab in the Web Site
Administration Tool.

2. If roles aren’t already enabled, click the Enable Roles link.

The center pane near the bottom of the Security tab now provides a link
titled Create or Manage Roles as shown in Figure 3-5.

Do not create a role for anonymous users. Anyone visiting your site is by
default an anonymous user, and you need not define such a role in the Web
Site Administration Tool.

Figure 3-4:
Choosing

Forms
authentica-

tion for an
Internet

Web site.

43Chapter 3: Configuring a Membership Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 43

After you’ve enabled roles, you can define roles for people who visit your
site. In a simple membership site, you really only need one role, like
SiteMembers. To create a role, follow these steps:

1. On the Security tab of the Web Site Administration Tool, click the
Create or Manage Roles option.

2. Under the Create New Role heading on the next page, type a role
name.

For example, in Figure 3-6 I’m about to create a role named SiteMembers.

3. Click the Add Role button.

The page changes slightly to show the roles you’ve already created. For
example, in Figure 3-7, you can see where I’ve created the SiteMembers role.
You could, at this point, create more roles by entering role names and click-
ing Add Role for each role you want to create. For this example I’ll just stick
with the SiteMembers role. When you’re done creating roles, click the Back
button.

After you’ve clicked the Back button, you’re returned to the Security tab of
the Web Site Administration Tool.

Sometimes it helps to hear things explained in two or more ways. For a
different explanation on using the Web Site Administration Tool, click the
How Do I Use This Tool? link near the upper-right corner of the Web Site
Administration Tool. Then click the Web Site Administration Tool – Security
tab in the Overview page that opens. Also, pay attention to the text that
appears on every page that opens in the Web Site Administration Tool.

Figure 3-6:
About to

create a role
named Site-

Members.

Figure 3-5:
Roles are

enabled, so
you can

create or
manage

roles.

44 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 44

Creating Access Rules
The whole purpose of creating roles is to distinguish among different types of
people visiting your site, so you can control who has access to what. The way
you do that is by defining access rules for different roles.

For example, at the start of this chapter I created a folder named Member-
Pages. The plan is to put all privileged content into that folder, to keep it
separate from regular content that all users can view. But to make that
happen, we need an access rule that denies anonymous users access to that
MemberPages folder. You use the Web Site Administration tool to create
access rules. Here are the steps:

1. In the Web Site Administration Tool, click the Security tab (if you
aren’t already there).

2. In the column titled Access Rules, click the Create Access Rules link.

3. In the left column of the resulting Add New Access Rule page, click
the name of a content folder for which you want to create a rule.

The term content folder means regular folders you created yourself,
like my MemberPages folder. There’s no need to assign permissions to
the root folder at the top, or special folders like App_Data. Those pre-
defined special folders already have all the permissions they need for
the site to work correctly but remain secure. Changing those permis-
sions will likely cause a world of confusion and problems for you. And
all for naught because you shouldn’t have messed with them in the first
place.

4. In the center column, choose the role for which you want to create an
access rule.

For example, in Figure 3-8, I’ve chosen MemberPages as the folder for
which I want to create a rule. In the middle column I’ve chosen
Anonymous Users as the role for which I want to create a rule.

Figure 3-7:
The Site-

Members
role is

created and
added to the

list of role
names.

45Chapter 3: Configuring a Membership Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 45

5. In the Permission column, choose whether you want to Allow or Deny
people in the selected role access to the selected folder.

For example, in Figure 3-8, I’ve chosen the Deny option. In other words,
the three selections made in Figure 3-8 define a rule that says
“Anonymous users cannot access pages in the folder named
MemberPages.”

6. Click OK.

At this point, you have defined one access rule. There may be times when
you need to manage (view, change, or delete) access rules you’ve already
defined. Which brings us to . . .

Managing access rules
To review, change, or delete access rules you’ve defined in the past, click the
Manage Access Rules link on the Security tab of the Web Site Administration
Tool. The Manage Access Rules page of the tool opens.

Figure 3-8:
SiteMembers

is the
selected

folder;
Anonymous
Users is the

selected
role.

46 Part I: Planning a Web Site

Why does it say “Select a directory”?
You might have noticed the term “directory”
under “Add New Access Rule” in Figure 3-8.
The term directory is just another word for
folder. Directory is the older term, harkening
back to the early days of computing before
there were icons on the screen to represent
such things. The term folder is used more often

now, because icons that represent folders
always look like little manila file folders. That’s
because a computer folder (or directory) is a
“container” in which you store files, just as a
folder in a file cabinet is a container in which
you store paper documents (files).

07_583603 ch03.qxd 10/21/05 6:55 PM Page 46

It’s important to keep in mind that access rules are defined on a folder-by-
folder basis. Therefore, in the left column of the page that opens, your first
task will be to click on the name of the folder for which you want to view or
change access rules.

For example, in Figure 3-9 I’ve already clicked on Manage Access Rules to
get to the page shown. I’ve also already clicked on MemberPages in the left
column to see access rules for that specific folder. The center column shows
all the rules defined (so far) for that MemberPages folder.

Notice that with MemberPages selected in the left column, the first rule denies
anonymous users access to the MemberPages folder. Below that is a dimmed,
unchangeable rule that reads Allow [all]. It’s important to understand that
rules are applied in top-to-bottom order. Because the Deny permission is listed
first, anonymous users won’t be able to access pages in the MemberPages
folder. However, everyone else will have access to that folder.

In this example, “everyone else” means SiteMembers, because that’s the only
other role a person could possibly belong to in this particular Web site
because it’s the only other role we’ve created.

There is no way, and no reason, for you to change, remove, or worry about
that dimmed Allow rule that applies to [all] users. That rule is fixed and
based on the most fundamental (yet unspoken) rule of all, which can be
stated like this:

If you have information you don’t want to share with others, don’t publish
that information on the Internet.

The Allow [all] rule is based on the simple fact that if you’re publishing
information on the Web, you’re doing so because you do want to share that
information with other people. The Deny access rule just refines that basic
assumption by saying “I do want to share information in the MemberPages
folder with some people who visit my site. I just don’t want to share that
information with anonymous users who visit the site.”

That’s all you need to prevent anonymous users from accessing members-
only content in the MemberPages folder. So let’s take a moment to review, in
English, what you’ve done in the above steps:

Figure 3-9:
Viewing
access

rules for the
Member-

Pages
folder.

47Chapter 3: Configuring a Membership Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 47

� Created a folder named MemberPages for storing pages to be published
on the Web.

� Created a role named SiteMembers that defines people who have an
account and are logged into an account (as opposed to anonymous
users).

� Created an access rule that prevents anonymous users from getting to
members-only content in the MemberPages folder. SiteMembers will
have access to that content (because there’s no Deny rule preventing
them from viewing the contents of that folder).

All of that is just an example. A site can have many content folders, many
roles, and many access rules to control exactly who has access to what. But
in the interest of keeping it simple and sane, we’ll stick with the relatively
easy example you’ve already defined here: The site contains a folder named
MemberPages in which you can put members-only content.

At the moment, there’s no way to test whether or not this will actually work.
One reason why is that there is no user account on the site, and hence nobody
in the SiteMembers role. For another, there is no content in the MemberPages
folder to try to access. We can deal with the first problem by creating a hypo-
thetical user account and putting that user in the SiteMembers role. As you’ll
see next, you can use the Web Site Administration Tool to create that user
account.

Creating a User Account
You need at least one user account to work with while developing your Web
site, just for testing and debugging purposes. You might as well create an
account for yourself. To do so, you need to be in the Web Site Administration
tool. If you’ve been following along, you’re already in that tool. Otherwise,
choose Website➪ASP.NET Configuration to get into the tool.

In the Web Site Administration tool, click the Security tab. Then click Create
User in the left column under the Users heading. Doing so will take you to the
Create User page where you can define a user account.

Because the account is purely hypothetical, it doesn’t much matter what you
enter as a User Name, E-mail address, Security Question, and Security Answer.
However, the password must be at least seven characters in length and must
contain at least one non-alphanumeric character (that is, a punctuation mark).
So, for testing purposes, use a password like:

password!

48 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 48

Chapter 7 covers ways that you can relax the password requirements so that
users can enter passwords they’re more likely to remember.

Because the real goal of this hypothetical account is to make sure the
SiteMembers role works as intended, you need to select (check) the
SiteMembers check box to the right of the Create User form. Figure 3-10
shows an example where I’ve created a hypothetical user named
TestMember, and have placed that user in the SiteMembers role.

Near the bottom of the form you’ll notice an Active User check box. You’ll
want to make sure that box is selected (checked). Then just click the Create
User button. You’ll get some feedback indicating that the account has been
successfully created. Click Continue to return to the Create User page.
Because you only need one user account to test things out, you’re finished
here. Click the Back button in the lower-right corner of the Create User page
to return to the Security tab of the Web Site Administration tool.

Figure 3-10:
A hypo-

thetical user
named Test-

Member.

49Chapter 3: Configuring a Membership Site

Active versus inactive users
Your membership system can consist of active
and inactive accounts — which can be handy
in a situation where people pay dues to main-
tain their accounts. If a member stops paying
her dues, you can keep her in the database as
an inactive user. You can then keep the user out

of privileged content, but still have the user’s
information in the database. This is better than
deleting the user account because you can use
the information in the database to send e-mail
messages to inactive users, reminding them to
pay their dues.

07_583603 ch03.qxd 10/21/05 6:55 PM Page 49

Managing user accounts
The Manage Users link on the Security tab provides a means of finding,
editing, and deleting user accounts. Okay, when you have only a few user
accounts to worry about, there’s not much to “manage.” But as your Web
site grows, so will the number of user accounts you manage (that’s the idea,
anyway).

Clicking the Manage Users link on the Security tab takes you to the page
shown in Figure 3-11. There you can search for — and make changes to —
user accounts.

When you have lots of accounts to manage, use the options under “Search for
Users” to locate any user account based on user name or e-mail address. As
you’re typing your search text, you can use the ? and * wildcards as follows:

� ? Matches any single character

� * Matches any number of characters

For example, if you choose “E-mail” from the Search By drop-down list, enter
*@aol.com as the text to search for, and click Find User, you’ll see all users
whose e-mail addresses end in @aol.com.

Optionally, you can jump to any part of the alphabet by clicking any under-
lined letter. To see all user accounts, click the All link at the end of the alpha-
bet. For example, if you perform a search that returns no results, you can
click the All link and instantly re-display all user accounts.

Figure 3-11:
Managing

user
accounts.

50 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 50

After you find the account you want to change or delete, you can use the con-
trols that are on the same row as the user name in the following manner:

� Active check box: Choosing the check box identifies the account as
Active. Clearing the check box makes the account inactive (though does
not remove the account from the database).

� Edit user: Clicking this link takes you to a page where you can change
the account name, e-mail address, and role memberships of the user.

� Delete user: Deletes the user account. Unlike marking the account inac-
tive, this option permanently removes the account from the database.

� Edit roles: Allows you to put the user into a role, or remove the user
from a role.

To return to the Security tab options when you’ve finished managing user
accounts, click the Back button in the lower-right corner of the page.

Closing the Web Site Administration tool
As with any other program, you can open, use, and close the Web Site
Administration tool whenever you need to. Closing the Web browser that’s
showing the Web Site Administration tool automatically closes the tool;
you’ll be back to the Visual Web Developer program window.

What the Web Site Administration
Tool Did

Back in Visual Web Developer’s program window, all that work you did in the
Web Site Administration tool appears as three new items in Solution Explorer.
One of those items is a new database named ASPNETDB.MDF. To see its icon,
click the + sign next to the App_Data folder in Solution Explorer, as shown
in Figure 3-12. If you don’t see that + sign, click the Refresh button in the
Solution Explorer toolbar, or choose View➪Refresh from the menu bar.

Down at the bottom of Solution Explorer is a new icon named Web.config.
As its name implies, that file contains information about your site’s general
configuration. There’s also a Web.config file in the MemberPages folder.
That Web.config file contains code that prevents anonymous users from
viewing pages in the MemberPages folder.

51Chapter 3: Configuring a Membership Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 51

There’s no need for you to open either the ASPNETDB.MDF or Web.config
files. They’re all part of the site’s infrastructure and don’t relate to anything
that appears on Web pages in your site.

A good general rule of thumb here is: If you don’t know what something is,
don’t delete it, don’t change it, don’t rename it, and don’t try to improve it by
opening it up and hacking away at it cluelessly.

For now, we can consider the ASPNETDB.MDF and Web.config files “technical
stuff” that is best left alone. The important thing to understand, though, is that
the site now has all the infrastructure a site needs to support membership.

At the moment, there’s no way to test that or to prove it. The site still needs
a Login page so that you can log in and try things out. You’ll create that page
(Login.aspx) in Chapter 7. Furthermore, the MemberPages folder is still
empty, so there’s nothing to see in that folder.

In other words, you are not finished building your Web site. Not by a long
shot. There’s plenty more to be done. In Chapter 4, you’ll discover how to
create another important infrastructure component: a Master Page.

Figure 3-12:
ASPNETDB.

MDF and
Web.

config
icons in
Solution
Explorer.

52 Part I: Planning a Web Site

07_583603 ch03.qxd 10/21/05 6:55 PM Page 52

Chapter 4

Creating Master Pages
In This Chapter
� Giving your site a professional look and feel

� Creating a Master Page

� Using Master Pages

� Adding Master Page content to existing pages

A professional-quality Web site needs a consistent look and feel that lets
users know they’re still in your site as they move from page to page.

The site must also be easy to navigate so users can get around without get-
ting lost. Master Pages are a great way to give your site that consistent look
and feel, because they allow you to define content that appears on every
page in your site.

A Master Page lets you define a general format for all the pages in your site.
For example, you might want a consistent header across the top of each
page, to show your logo on each page. Or you might want a bar down the
side of the page for displaying links and navigation controls. You might want
a footer at the bottom of each page providing still more links. Or you may
want a combination of header, sidebar, and footer.

Figure 4-1 shows some general examples of layouts. The gray area on each
page will be the same on every page in your site. The white area will be
unique to each page. This chapter uses the middle example, in which you
have a header and sidebar on each page.

side

header header

side

header

footer

Figure 4-1:
Examples of

Master
Page

layouts.

08_583603 ch04.qxd 10/21/05 6:54 PM Page 53

Creating a Folder for Master Pages
You can put a Master Page wherever you like within your site. In the interest
of staying organized, you may want to create a regular folder just for master
pages. To do so, right-click the site path at the top of Solution Explorer and
choose New. Then give the folder a name. I named my folder Masters, as
shown in Figure 4-2.

Creating a Master Page
Creating a new Master Page is similar to creating any other type of page in
VWD. Here are the steps:

1. In Solution Explorer, right-click the folder in which you want to place
the Master Page and choose Add New Item.

In my example I’d right-click my Masters folder.

2. In the Add New Item dialog box, click Master Page.

3. Enter a name for your page, or just accept the default name
MasterPage.master.

4. Choose a programming language.

I use Visual C# in my own examples.

5. Select the “Place code in separate file” check box.

Figure 4-3 shows how the Add New Item dialog box might look at this
point.

6. Click the Add button.

Figure 4-2:
Adding a

new folder
named

Masters to
the site.

54 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 54

A blank Master Page opens in Source view. If you click the Design button at
the bottom of the Design surface, you’ll see a page with a ContentPlace
Holder on it. That ContentPlaceHolder is the on-screen place where each
page in your site appears.

Designing your page layout
Before you add anything to the Master Page, you want to choose your layout.
Here’s how:

1. From the VWD menu bar, choose Layout➪Insert Table.

2. In the Insert Table dialog box that opens, choose Template.

3. Choose a template from the drop-down list.

For example, in Figure 4-4, I’ve chosen the Header and Side layout.

4. Click OK.

The Master Page is split into panes that reflect the options you choose. The
ContentPlaceHolder will likely drop to the bottom of the page — perhaps
out of view altogether until you scroll down through the page. In the design I
chose, I wanted the content that’s unique to each page to appear to the right
of the side pane, not under the pane. So I needed to move the ContentPlace
Holder control into the appropriate cell on the page.

Figure 4-3:
Creating a

Master
Page.

55Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 55

The page layout is really just an HTML table, and each “pane” is really just a
table cell defined by a pair of HTML <td> and </td> tags. You can see that
for yourself by clicking the Source button and viewing the HTML that defines
the table.

To move an object, like the ContentPlaceHolder control, in Design view,
you can either drag it, or cut and paste it. Here I just need to scroll down to,
and click, the ContentPlaceHolder control to select it. Then just drag the
four-headed arrow that appears into the bottom-right table cell and release
the mouse button. Figure 4-5 shows what happens when you move the
ContentPlaceHolder under the header pane and beside the left pane.

Figure 4-5:
Here’s the
Content
Place
Holder

moved into
the table.

Figure 4-4:
Choosing a

page layout.

56 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 56

Styling Master Page panes
Each pane in the Master Page is actually just a table cell — a very bland table
cell in that each one has a white background and gray border. Even if you
don’t know exactly what you intend to put in each pane, you may want to
size and color those panes and borders.

Any time you want to style something on a page, the Style Builder is your best
bet. For one reason, it’s any easy way to style things. For another, it follows
Cascading Style Sheets (CSS) specifications, which is a good thing from a tech-
nical standpoint; these days, the trend is to use CSS to style everything in Web
pages.

CSS is an Internet standard for styling elements on Web pages. Chapter 6 dis-
cusses CSS in some detail. But for the complete lowdown, see the official
specification at www.w3.org/Style/CSS/.

To get to the Style Builder, right-click the item you want to style and choose
Style. For instance, to style the top pane of the Master Page, right-click within
that pane and choose Style. The Style Builder shown in Figure 4-6 opens.

Choosing a background color
To choose a background color for the pane you’re styling, click Background
at the left side of the Style Builder, then choose a color from the Color

Figure 4-6:
The Style

Builder.

57Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 57

drop-down list. Or, click the Build button to the right of the Color drop-down
list. Clicking the Build button opens the Color Picker dialog box, where you’ll
have more colors to choose from. You can choose any color from any tab just
by clicking the color, and then clicking the OK button in the Color Picture
dialog box.

When you click OK, the Color Picker dialog box closes. The Style Builder then
shows the name of the color you chose or its HTML code (like #ffffcc). The
Sample box at the bottom of the Style Builder shows the selected color, as
shown in Figure 4-7.

Setting text alignment defaults
You can set a default horizontal and vertical alignment for text within the
selected cell. At the left side of the Style Builder, click the Text option. Then
use the Horizontal drop-down list to choose how you want text aligned within
the cell.

For example, when styling the top cell you might want to choose Left as the
Horizontal alignment and Bottom as the Vertical alignment as shown in Figure
4-8. Later, when you add text to the cell, that text will align to the left side of
the cell and run along the bottom of the cell.

Setting cell height and width
To set the height or width of the selected cell, click Position at the left side of
the Style Builder. Then you can use the Height and Width options to set the

Figure 4-7:
Choosing a

background
color for

a cell.

58 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 58

cell’s height and width. When you’re styling the top pane of a Master Page,
you’ll likely want to set the width to 100%, because the pane needs to be as
wide as the page. But you can set the width of the cell to any value you like.
Figure 4-9 shows an example where I’ve set the height to 50 pixels and the
width to 100%.

Styling cell borders
Every table cell has borders around it that you can color. You can style all
the borders so they’re the same or you can style borders individually. To
get started, first click Edges at the left side of the Style Builder. Then, under
Borders, choose which borders you want to style. In this example, when
styling the top pane of a Master Page, you’d likely choose Bottom to style
the line along the bottom of that pane.

Next, choose a style, width, and color from the respective drop-down list
options. For example, if you want the line along the bottom of the top pane to
be a little thicker and a little darker than the default gray line, choose Solid
Line, Medium, and some dark color of your own choosing, as shown in Figure
4-10. (The color #191970 is just a dark blue I chose for the sake of example.
Feel free to choose any color you like.)

Figure 4-10:
Styling the

top cell’s
bottom
border.

Figure 4-9:
Setting a

height and
width for the

top cell.

Figure 4-8:
Choosing

text
alignment

options for
the top cell.

59Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 59

When you’ve finished making your selections in the Style Builder, click OK.
The Style Builder closes and your selections are applied to the cell you
styled.

Styling the left pane
The examples above work for the top pane of a Master Page. To style the left
pane, right-click some empty space in that left pane and choose Style. Again,
the Style Builder opens. But this time the selections you make are applied to
the left pane only.

For example, maybe you want to change the background color in the left
pane. To do so, click Background, then use the Color Builder to choose a dif-
ferent color. In Figure 4-11, I chose a light blue, which shows up as #ccffff.

For text alignment in the left pane, click Text in the Style Builder. To center
text in the left pane, and make it align toward the top of the pane, set the
Horizontal and Vertical options to Centered and Top, respectively, as shown
in Figure 4-12.

As a rule, you’ll want the left pane’s height to be equal to the height of the
browser window. The width of that pane can be anything you like. To set the
height and width, click Position in the Style Builder. Then set the height to
100% and the width to however many pixels you think you’ll need. If you’re
unsure, just pick any number — such as 50 pixels, as shown in Figure 4-13.

Figure 4-12:
Text

alignment
for the left

pane.

Figure 4-11:
Choosing a

light blue
color for the

left pane.

60 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 60

You might also want to style the right border of that left pane. To do so, click
Edges in the Style Builder. Then choose Right as the edge to change. Choose
a style, width, and color. Figure 4-14 shows an example where #191970 is
again just a dark blue color I chose. You can use any color you like.

Click OK in the Style Builder to save your changes and apply them to the
page. The left border then reflects the choices you made in the Style Builder.

Styling the ContentPlaceHolder pane
The pane that contains the ContentPlaceHolder doesn’t really need to be
styled in terms of color, width, or height, because the page that appears in
place of the ContentPlaceHolder will eventually fill that pane completely.
However, if you start with the ContentPlaceHolder aligned to the top of its
table cell, you may find it easier to work with Master Pages. To make that
change to the Master Page, first right-click some empty space within the
ContentPlaceHolder pane. Make sure the mouse pointer is in the same cell
as the ContentPlaceHolder, but not on the ContentPlaceHolder as shown
in Figure 4-15. Then choose Style from the menu that appears.

Figure 4-14:
Styling the
left pane’s

right border.

Figure 4-13:
Setting the
left pane’s
height and

width.

61Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 61

In the Style Builder, click on Text. Then choose Top as the Vertical alignment
as shown in Figure 4-16.

You might find it useful to add some padding to the Content pane as well,
because doing so provides a margin for content that will later appear in that
pane. To pad the pane, click Edges in the Style Builder. Then set the Padding
options to whatever you think is appropriate. For example, in Figure 4-17,
I’ve set the padding inside that cell to 5 pixels all the way around.

Figure 4-17:
Padding the

Content
pane to

provide a
small

margin.

Figure 4-16:
Alignment

setting
for the

Content
Place
Holder

pane.

Figure 4-15:
Right-click

the cell (but
not the

Content
Place
Holder

itself).

62 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 62

Click OK in the Style Builder to apply your style choices. The ContentPlace
Holder now aligns to the top of its cell. There’s a small margin above and to
the left of the ContentPlaceHolder because of the 5-pixel padding added in
the Style Builder. The top and left panes have the color and border styles you
applied, as shown in Figure 4-18. (Here in the book, of course, the colors I
chose show up as shades of gray.)

Remember that Figure 4-18 is just an example: You can style things in your
own Master Pages as you see fit. You haven’t made any lifelong commitments
here. If you change your mind about some stylistic setting you’ve made, just
right-click the pane, choose Style, and use the Style Builder to choose what-
ever style options you like.

Eventually, you’ll want to put some content (text, pictures, or whatever) into
those panes. Keep in mind that whatever you put into those panes will be visi-
ble on every page that uses the Master Page. But, at this early stage of the
design and development process, just having a Master Page with the basic
look and feel you want is sufficient. You can worry about specific content later.
Right now your time is better spent getting a feel for how you use Master
Pages.

Before you can use a Master Page, you need to close and save it. Use the
same technique you’d use to close any other item: Click the Close (X) button
in the upper-right corner of the Design surface.

Using a Master Page
To use a Master Page, you must create a new Web Form. As you go through the
process, choose the Select Master Page check box in the Add New Item dialog
box. To try it out, create a simple page, perhaps named TestMember.aspx, by
following these steps:

Figure 4-18:
The Master

Page after a
bit of styling.

63Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 63

1. Right-click the site name at the top of Solution Explorer and choose
Add New Item.

2. In the Add New Item window that opens, choose Web Form.

3. In the Name box, enter a name for the page.

4. I’ll use the name TestMaster.aspx because this is just a test page.

5. Choose the Select Master Page check box as shown in Figure 4-19.

6. Click the Add button.

7. In the Select a Master Page dialog box that opens, click the name of
the folder that contains the Master Page (Masters, in this example).
Then click the name of the Master Page you want to use, as shown in
Figure 4-20.

8. Click OK.

Figure 4-20:
Choosing a

Master
Page to use.

Figure 4-19:
Ready to
create a

new page
that uses a

Master
Page.

64 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 64

Note that the page doesn’t look exactly as it will in a Web browser; every-
thing on the Master Page is dimmed and uneditable. That’s because in this
new page, you want to create and edit only the content of this one page, not
the Master Page content, which appears on many pages.

The white area under the Content heading (which represents the Content
PlaceHolder you see while creating the Master Page) is the only place you
can compose your Web page. That white area is the content page, so named
because it holds the content that’s unique to the page you’re creating right
now. (As opposed to the Master Page, which shows content that appears on
all pages that use the Master Page.)

Creating a content page is no different from creating a page that gives you the
whole page to work with. For example, within the content page, you can type,
edit, and format text using all the usual tools and techniques, as described in
Chapter 2. You can add pictures by dragging their icons from Solution Explorer
onto the page as was also described in Chapter 2. You can add controls from
the Toolbox to the page. (Later chapters detail adding controls, and more basic
formatting techniques as well.) Figure 4-21 shows an example in which I typed
and formatted some text in the content page.

Don’t worry about the small size of the content page in these figures, or on
your own screen. Likewise, don’t worry about the width of the content page’s
left pane. Things will adjust automatically as you work. It’s nothing to be
alarmed about because what you see in the Design surface isn’t exactly how
things will look in the Web browser.

When you’ve finished working on a content page, just close and save it as you
would any other page. It will be placed in its folder with the usual .aspx
extension. To get a better idea of how the page will actually look to people
who visit your site, view the page in a Web browser. That is, right-click the
page name (not the Master Page name) in Solution Explorer, as shown in
Figure 4-22, and choose View in Browser.

Figure 4-21:
New text in
the content

page.

65Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 65

When the page opens in the browser, you’ll see the panes from the Master
Page above and to the left of the content page. At the moment, those panes
are just strips of color (gray in Figure 4-23). But again, don’t worry about the
width of the panes or anything else. All that matters at this stage of the game
is that you create a general layout for your Master Page, and understand how
to use it when creating new pages. You can think about specific content later.

When you’ve finished viewing the TestMaster page, close your Web browser
to return to Visual Web Developer.

Editing a Master Page
You can put anything you want into a Master Page. But it’s important to real-
ize that any time you want to edit the Master Page, you have to open the

Figure 4-23:
Test

Master.
aspx in a

Web
browser.

Figure 4-22:
About to

view Test
Master.
aspx in a

Web
browser.

66 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 66

Master Page, not a page that just uses the Master. For example, to edit the
Master Page created in this chapter, you’d double-click the MasterPage.master
file, shown near the mouse pointer in Figure 4-24.

When the page opens, you can add content to either the top or left pane as
you see fit. The content can be anything — text, pictures, tables, controls,
whatever. For example, to add a picture to the top-left pane of a Master Page,
just drag a picture icon from Solution Explorer into the pane. Figure 4-25
shows an example where I’ve dragged a picture named Logo.gif to the top
page of my Master Page.

To add text to a pane, just click in the pane and type your text. After you’ve
typed the text, you can select it and apply formatting as described back in
Chapter 2. Figure 4-26 shows an example where I’ve typed the word Welcome
in the left pane. I then selected that text and choose the Heading 1 style from
the Block Format drop-down list.

Drag

Figure 4-25:
Adding a

picture to a
Master

Page.

Figure 4-24:
To edit a

Master
Page,

double-click
its name in

Solution
Explorer.

67Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 67

You can also add any control from the Toolbox to a Master Page. (Controls in
the Toolbox are discussed in Chapter 7.) For example, if you want people to
be able to log in from any page in your site, you could add a Login control to
the pane. It’s just a simple matter of dragging the control from the Toolbox
into the top or left pane of the Master Page, as illustrated in Figure 4-27.

As you add content to the left pane of the Master Page, the width of the pane
changes to accommodate the content. Try not to let that bother you because
it’s not always a direct reflection of how things will look in a Web browser.

After making your changes to the Web page, close and save it. Then, open
any page that uses the Master. For example, after making the sample changes
in the previous three figures and closing the Master Page, I right-clicked my
TestMaster.aspx page and choose View in Browser. Figure 4-28 shows the
result.

Drag

Figure 4-27:
Adding a

Login
control to

the left
pane.

Block formats

Selected text

Figure 4-26:
Added some

text to the
Master

Page left
pane.

68 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 68

I’ll be the first person to admit that the page in Figure 4-27 is ugly. But I’m not
suggesting you create your Master Page to look like the one in the figure. All
that matters now is that you have a Master Page that you can use as you
create new pages in your site. You can think about what specific things you’d
like to put on your own Master Page later.

Visual Web Developer is mostly about creating the infrastructure for a
dynamic, data-driven Web site. You can worry about making things “pretty”
later in the process. Figure 4-28 is nothing more than an example of how you
can put things into a Master Page.

At this point, you do have a working Master Page, and you’ll see more exam-
ples of ways you can use it in upcoming chapters.

Adding a Master Page to Existing Pages
If you’ve already created some pages in Visual Web Developer without speci-
fying a Master Page, you can still get that content into a Master Page’s
Content area using simple copy-and-paste techniques. Actually, you already
have a page that has no Master Page: the Default.aspx page that Visual
Web Developer created automatically when you first created the Web site.

Figure 4-28:
Test

Master.
aspx after

adding
content to
Master
Page.

master.

69Chapter 4: Creating Master Pages

08_583603 ch04.qxd 10/21/05 6:54 PM Page 69

If you want the new page you’re about to create to have the same name as
the original page, you’ll need to rename that original page first. To do so,
right-click its name in Solution Explorer and choose Rename. Type a new
name (without changing the .aspx extension) and press Enter. For example,
you might rename Default.aspx to OriginalDefault.aspx.

Then, to copy and paste the stand-alone page’s content into a new page’s
Content placeholder, follow these steps:

1. Double-click the stand-alone page to open it.

In my current example, that would be the OriginalDefault.aspx page.

2. If the page opens in Source view, click the Design button to switch to
Design view.

3. Select and copy everything in the page (press Ctrl+A, then press
Ctrl+C).

4. Right-click the site name at the top of Solution Explorer and choose
Add New Item.

5. In the Add New Item dialog box, choose Web Form, and make sure
you also choose (check) the Select Master Page check box.

6. Name the page whatever you like.

Figure 4-29 shows an example where I’m about to create a new
Default.aspx page.

7. Click the Add button.

8. In the Select a Master Page box, click the folder that contains the
Master, then click the Master Page.

For this example you’d click Masters in the left column, then click
MasterPage.master in the right column.

Figure 4-29:
About to
create a

new
Default.
aspx page

with a
Master.

70 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 70

9. Click OK.

10. In the new page that opens, right-click the empty Content placeholder
and choose Paste.

The copied content now appears in the Content placeholder. Now close and
save the new page. To verify that things worked out as intended, view that
page in a Web browser. Here, for instance, you’d right-click the new Default.
aspx page in Solution Explorer and choose View in Browser.

The page opens in the browser, showing both the Master Page and the con-
tent you copied into its Content placeholder. Close the browser after check-
ing things out.

Assuming the new page works as intended, you don’t need the original page
anymore because its content is in the Content placeholder of the new page
you created. To delete the original page (named OriginalDefault.aspx in
this example), right-click its name in Solution Explorer and choose Delete.
Then choose Yes when asked for confirmation.

The next chapter starts Part II of this book, which gets into the nitty-gritty
details of creating individual pages that take advantage of the infrastructure
elements you’ve defined.

71Chapter 4: Creating Master Pages

If pictures don’t show in a Master Page
When you choose View in Browser to view a
page that uses a Master page, pictures in the
Master page should show up in the browser. If
you see a red X where the picture should be,
you need to make a slight change to the Master
page. Here’s how:

1. Close the browser, then double-click the
Master Page in Solution Explorer to open it.

2. With the Master Page open for editing, click
the Source button at the bottom of the
design surface to switch to Source view.
Locate the <img...> tag for the picture,
which should look something like this:

3. Add runat=”server” to the tag.
Make sure there’s a blank space before and
after those new words and that the whole
thing is inside the < and /> tags as follows:

<img src=”../Images/Logo.gif”
runat=”server” />

4. Close and save the Master page. Then view
in a browser any page that uses the Master
to verify that the picture works correctly.

08_583603 ch04.qxd 10/21/05 6:54 PM Page 71

72 Part I: Planning a Web Site

08_583603 ch04.qxd 10/21/05 6:54 PM Page 72

Part II
Building Your

Web Site

09_583603 pt2.qxd 10/21/05 6:48 PM Page 73

In this part . . .

After you’ve laid out the basic foundation of your data-
driven Web site, it’s time to start creating pages. As

you discover in this part, VWD pages use the same basic
tools as any other Web page to format your site’s content:
HTML and CSS. Visual Web Developer also offers powerful
ASP.NET controls that can do a lot more than HTML and
CSS alone. In this part, you get a look at how all that fits
together, and see an example of creating a control that
makes your site easy for your visitors to navigate.

09_583603 pt2.qxd 10/21/05 6:48 PM Page 74

Chapter 5

Creating Web Pages
In This Chapter
� Creating and editing tables

� Adding hyperlinks to pages

� Adding and styling pictures

� Working in Source view

No matter what program you use to create Web pages, you’re actually
creating a document that contains text and HTML tags. That’s because

all Web pages use HTML as a markup language.

This chapter builds on Part I of this book, which focused on building the
foundation of your Web site. With the foundation done, you can start creating
content for individual Web pages.

As you’ll discover in this chapter, creating and editing Web pages in VWD is
much like creating and editing word-processing documents — although some
of the procedures differ from typing content into a program such as Microsoft
Word or FrontPage. This chapter shows you what to look for, and covers all
the basics of creating and editing pages in Visual Web Developer.

Creating a New Blank Page
Visual Web Developer offers you two types of Web pages to create:

� Web Forms: Can contain HTML and ASP.NET Server controls. The file-
name extension is .aspx.

� HTML Pages: Can contain HTML but no ASP.NET controls. The filename
extension is .html.

So if you want your page to use any ASP.NET capabilities at all, even if you
just want to use a Master Page with the page you’re creating, you want to
create a Web form. You would only use HTML to create pages that don’t use a
master, and don’t use ASP.NET controls.

10_583603 ch05.qxd 10/21/05 6:58 PM Page 75

To create a new page, start in Solution Explorer. If you want to put the page in
the root folder, right-click the site folder at the top of the Solution Explorer
page and choose Add New Item. To put the page into a particular folder in
Solution Explorer, right-click that folder’s icon in Solution Explorer and
choose Add New Item. Either way, the Add New Item dialog box opens.

If you want to create an HTML page that doesn’t use ASP.NET server controls,
click the HTML Page icon. The programming-related controls, and the option
to select a Master Page, are dimmed because you can’t use those items in an
HTML page. Just type the filename for your new page and click the Add
button. The page opens in the Design surface ready for editing in either
Design or Source view.

To create a new .aspx page from the Add New Item dialog box, click Web
Form; then choose your programming language, whether or not you want
to put code in a separate file (you should always choose this option), and
whether you want to include a Master Page. Then click the Add button. In
Figure 5-1, for example, I’m about to create a new page named Login.aspx
that uses C# as its programming language, places code behind the form, and
uses a Master Page.

If you choose “Select master page,” then clicking the Add button calls up a
dialog box that asks which Master Page you want to use. Just click the name
of the folder that contains the Master Page, click that page’s name, and then
click OK.

If you opted to use a Master Page, you’ll do all your work in the white Content
box that appears on the page. Although the box doesn’t look as large as a whole
page, it grows to accommodate whatever you add. What’s most important to

Figure 5-1:
Creating a

new .aspx
page (Web

form).

76 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 76

understand is that the techniques described in this chapter work the same
whether you’re creating an HTML page, a particular .aspx page without a
master, or another .aspx page controlled by a Master Page.

After you have a page (whether .aspx or .html) open in the Design surface,
use the Design and Source buttons at the bottom of the Design surface to
switch between the WYSIWYG Design view and HTML Source view.

Creating HTML Tables
After you have a page open in Design view, creating the page is not too differ-
ent from creating a document in a word processing program. Text flows as it
would when typing a normal business letter. If you want to organize text into
columns and rows, you can insert a table into the page and use its cells to
organize content.

Adding a table to a page
You can add a table to any page (including the Content page in a page that
uses a Master Page). One way to do so is as follows:

1. In your page, click where you want to put the table.

2. Choose Layout➪Insert Table from the menu bar.

The Insert Table dialog box opens.

3. Choose the Custom option.

4. Specify the number of rows and columns you want.

For example, in Figure 5-2 I’m about to create a table with two rows and
two columns.

5. Optionally, choose other formatting options under Layout and
Attributes.

Instead of choosing options in the Insert Table dialog box to format
every table you create, you can use CSS to create a general style that
applies to all tables. (Chapter 6 gives you the goods on CSS.) Here, it is
sufficient to choose only the number or rows and columns you want.

6. Click OK.

An empty table with the number of rows and columns you specified
appears on the page.

77Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 77

Typing in table cells
If you have any experience at all with Microsoft Word or an HTML editor,
you’ll find there’s nothing unique to working with text in table cells. To type
in a cell, you just click the cell and start typing; Figure 5-3 shows where I’ve
inserted a table with two rows and two columns. Then I typed a question into
each of the top two cells. I widened each column by dragging its right border
to the right until the text in the table cell no longer wrapped to two lines.

Working with HTML Tables
You can change a table or its contents at any time. Options for managing the
table as a whole, and for inserting and deleting columns, are on the Layout
menu in the toolbar — but make sure you click somewhere inside the table

Figure 5-3:
Text typed

into top two
cells.

Figure 5-2:
Insert Table
dialog box.

78 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 78

before you choose options from that menu. Here’s a quick rundown of how to
perform common tasks:

� Add a column: Click a column that will be next to the new column, and
then choose Layout➪Insert➪Columns to the Left or Columns to the
Right.

� Add a row: Click a row that will be next to the new row, and then choose
Layout➪Insert➪Rows Above or Rows Below.

� Insert a cell: Click the cell that’s to the left or right of where you want
the new cell to be placed. Then choose Layout➪Insert➪Cells to the Left
or Cells to the Right.

� Delete an entire table: Click anywhere inside the table you’ve decided
to delete. Then choose Layout➪Delete➪Table.

� Delete a column: Click in the column you want to remove and choose
Layout➪Delete➪Column.

� Delete a row: Click in the row you want to remove and choose Layout➪
Delete➪Row.

� Delete a cell: Click the cell you want to remove and choose Layout➪
Delete➪Cell.

� Resize a column: Drag the right border of the column left or right. Or,
click in the column, choose Layout➪Resize➪Resize Column, set your
width, and then click OK.

� Resize a row: To make a row taller or shorter, drag its bottom border up
or down. Or click the row, choose Layout➪Resize➪Resize Row, set the
row height, and then click OK.

As always, if you don’t like a change you’ve made to a table, press Ctrl+Z or
choose Edit➪Undo to undo that change.

Selecting rows and columns
You can change the appearance of any cell, or its contents, at any time. You
can work with individual cells. Or, you can select multiple cells first, and then
apply your change to all of the selected cells.

There are several methods you can use. To select a column or row, first click
in the column or row you want to select. Then right-click the cell and choose
Select➪Column or Select➪Row. As an alternative to right-clicking, choose
Format➪Select➪Column or Format➪Select➪Row.

79Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 79

You can also select a column by clicking its top border. Likewise, you can
select a row by clicking its leftmost border. You have to get the tip of the
mouse pointer right on the border, so the mouse pointer turns to a little
black arrow first, like the example in Figure 5-4. Don’t hold down the mouse
button until you see the little black arrow.

To select multiple columns, you can drag the little black mouse pointer left or
right through the top border of other columns. Likewise, drag the little black
arrow up and down to select multiple rows in the table.

When you select multiple cells, one of the selected cells won’t be gray.
Instead it will be white with a black border like the top cell in Figure 5-4.
That’s normal. Don’t drive yourself nuts trying the make the last selected
cell gray. It’s not necessary.

Selecting cells
To select a single cell, just click in the cell. To select multiple adjacent cells,
drag the mouse pointer through the cells you want to select. To select multi-
ple, nonadjacent cells, click in the first cell you want to select, and then hold
down the Ctrl key as you click other cells. To deselect a single selected cell,
Ctrl+Click that one selected cell.

Most of the selected cells will be highlighted (grayed). But as when selecting
rows and columns, one selected cell will be white with a black border. When
using the Ctrl+Click method, the last cell you select with be the white one.

Merging cells
You can merge two or more cells to form a single large cell. For example, if
you want to center a heading in the first row of the table, you can merge all of
its cells so it’s just one long cell across the table. Then you can type any text
you like in that cell and center it above the table.

Figure 5-4:
Little black

mouse
pointer for

selecting
table

columns.

80 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 80

To merge cells, select the cells you want to combine into a single cell. Then
right-click any selected cell and choose Merge Cells. For example, the top of
Figure 5-5 shows three cells across a table selected. Just below that is the
result of merging those three cells.

Styling cells
When it comes to styling things in a Web site, there are lots of ways to go. But
because the world seems to be gravitating toward a universal XHTML stan-
dard, the Style Builder will be your best bet. First you have to make sure you
know what you’re about to style. Three rules apply:

� To style a single cell, click that cell (the Properties sheet will show <TD>,
indicating that you’re about to style a table cell.

� To style multiple cells, rows, or columns, select whatever you want to
style. The Properties sheet won’t show any tag when multiple items are
selected.

� To select the entire table, right-click a cell and choose Select➪Table. The
Properties sheet shows a <TABLE> tag, indicating that you’re about to
style the entire table.

Then you can get to the Style Builder by using either of these methods:

� Right-click the item or selection and choose Style. (If Style is disabled on
the menu, use the next method instead.)

� Scroll down to, and click on, the Style property in the Properties sheet,
and then click the Build button that appears.

Selected cells

Merged cells

Figure 5-5:
Merging all

cells in a
row.

81Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 81

Either way, the Style Builder opens. Items down the left column represent dif-
ferent things you can style, such as the font, background, text, position, and
so forth. When you click a category name, the main pane to the right shows
options in that category.

For example, suppose you selected the top row across a table. In the Font
category of the Style Builder, you can choose a font family and style for text
within those cells. Figure 5-6 shows the font set to Arial, its Color to Navy, its
size to 12 points, and its weight to Boldface. The Sample Text at the bottom
of the screen shows you how things will look when your selected options are
applied.

To add a little background color to the selected cells, click Background in the
Style Builder. Then click the Build (...) button. In the Color Picker that opens,
click any color you like, and then click OK. The preview sample at the bottom
of the style builder shows how your text will look against the background
color you chose.

To center text in all of the selected cells, click the Text category at the left
side of the Style Builder, and then choose Centered from the Horizontal
option under Alignment. To determine how text aligns vertically in a tall cell,
choose either Top, Middle, or Bottom from the Vertical option under the
Alignment heading.

To style the borders around the selected cell(s), click the Edges button. Under
Borders, select which borders you want to style. In Figure 5-7, for example, I
opted to style only the Bottom border as a thin, navy-blue solid line.

Figure 5-6:
Some Font

options
selected

in Style
Builder.

82 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 82

When you’ve finished making your selections in the Style Builder, click OK.
The items you styled take on the chosen new style. Figure 5-8 shows an exam-
ple where the top two cells now have a background color and dark border
along the bottom. The text in each cell is 12pt Arial Bold, and centered within
each cell.

Figure 5-8 also shows how the Style property looks after clicking OK in the
Style Builder. Your selections are converted to CSS formatting syntax. You can
change the style at any time by clicking the Style property again, and the
Build button again. The Style Builder opens again, and you can make what-
ever changes you want.

If you just want to format a small chunk of text within a cell, select that small
chunk of text only. Then use the Formatting toolbar to apply a font, color, ital-
ics, or whatever.

Chapter 6 will get more into the Style Builder. For now, that should be enough
to get you working with tables in the VWD Design surface. But there’s one
other thing I should mention about tables in this chapter. And that is . . .

Figure 5-8:
Two styled
table cells

and a
Properties

sheet.

Figure 5-7:
Styling table
cell borders.

83Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 83

Adding controls to table cells
If you’re creating an .aspx page, you can also add ASP.NET Web server con-
trols to table cells. Doing so couldn’t be easier: You just drag the control from
the Toolbox into a table cell. In Figure 5-9, for example, I dragged a Login
control from the Toolbox into the table cell under the heading “Already a
member?”

Chapter 7 gives you more info on using and formatting ASP.NET controls like
Login.

So like I said, that’s the basics of working with tables. Now, on to another
common design element found in Web pages.

Adding Hyperlinks to Pages
There are many ways to add hyperlinks to pages in VWD. Here’s a method for
creating a link to any page on the Web:

1. If you haven’t already done so, type the text that you want to serve as
the link.

2. Select the text that will act as a link.

In Figure 5-10, I’ve typed and selected the phrase “Sign up now!”

Drag and drop
into cell

Figure 5-9:
Login

control
added to

a table.

84 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 84

3. Click the Convert to Hyperlink button in the Formatting toolbar.

In Figure 5-10, the mouse pointer is resting on the Convert to Hyperlink
button. When you click this button, the Hyperlink dialog box appears.

4. Choose the link’s Type.

For example, choose http: for a Web page.

5. Type (or paste) the complete URL of the target Web page.

6. Click OK.

The selected text shows as blue and underlined.

The blue-and-underlined text doesn’t act as a link in VWD. To test the link,
open the page in a Web browser.

Quick links to pages in your site
If you want to create a link to another page in your Web site, you can just
drag that page’s name from Solution Explorer onto the page. Initially, the
text on the page will exactly match the filename of the page, as given here:

Default.aspx

To change the text of the link to something more meaningful than the file
name, select the hyperlink text. Type your new text in its place. Changing the
text of the link won’t change the file to which the link refers. When you click
the link to select it in your page, the Properties sheet will show an <A> tag
(because all links are <A> tags in HTML).

Figure 5-10:
Selected
text and

Convert to
Hyperlink

button.

85Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 85

Figure 5-11 shows an example where the cursor is in a link (Home). The
Properties sheet shows an <A> tag, and the HRef property is the page that
the link will open (when used in a Web browser).

Creating bookmarks
Your page can contain bookmarks, places that you can jump directly to from
any link in the same page, or any link in any other page. To create a book-
mark, click where you want to place the bookmark in your page, so the
cursor is positioned where you want the bookmark to be. Then choose
Format➪Insert Bookmark from the menu bar. Type in a name for your book-
mark (for example, Top for a bookmark at the top of a page). Then click OK.

You won’t see any trace of the bookmark in Design view because bookmarks
are not visible there (or in Web browsers). You can see the bookmark only in
Source view, where it will be expressed in HTML and look something like this:

where YourName refers to whatever name you gave your bookmark.

Linking to bookmarks
To create a link to a bookmark from within the same page, follow these steps:

1. Type the text of the link exactly as you would for creating a link to an
external page.

For more about this process, refer to the earlier section, “Adding
Hyperlinks to Pages.”

Figure 5-11:
Here is the
cursor in a

hyperlink on
a Properties

sheet.

86 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 86

2. Select that text and click the Convert to Hyperlink toolbar button.

3. In the dialog box that opens, choose Other as the link type.

For the URL, type the bookmark name preceded by a pound sign (#). For
instance, if you named a bookmark Top, you’d type #Top as the URL.

When you click the link in Source view, the Properties sheet shows an
<A> tag. The HRef property is the one whose name has a leading pound
sign (for example, #Top). As with any link, you can’t really test these out
in the VWD Design view. You have to open the page in a browser to test
your links.

Adding and Styling Pictures
The easiest way to include pictures in your Web site is to first get them into a
folder in the VWD Solution Explorer. As discussed in Chapter 2, you can just
drag the picture icons from any folder in Windows Explorer to any folder in
Solution Explorer.

To add a figure to your page, just drag the picture’s icon from Solution
Explorer onto your page. In Design view, the figure looks much as it will in
a Web browser, though when it’s selected on the page it will show borders
that won’t appear in the Web browser.

To select a picture, click it. After it’s selected, the picture appears framed
with a border showing three dragging handles (as in Figure 5-12). Also, the
Properties sheet displays an tag; the Src (source) property will be the
path to the image file, as is also shown in the figure.

Figure 5-12:
Selected

picture and
Properties

sheet.

87Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 87

Sizing a picture
To size a picture interactively — changing its aspect ratio without distorting
the picture — drag the handle in the lower-right corner of the selected pic-
ture. To widen or narrow the picture without regard to aspect ratio, drag
either of the other two handles.

You can also set the height and the width, in pixels, using the Height and
Width properties in the Properties sheet or the Style Builder. The Style
Builder also offers options for controlling the position of the picture and its
borders, so we’ll look at those techniques next.

Styling pictures
To style the picture, right-click it and choose Style, or, in the Properties
sheet, click the Style property (just under the Src property), then click the
Build button that appears. The Style Builder opens. Options relevant to pic-
tures are in the Layout and Edges categories of the Style Builder, as the next
subsections show.

Positioning pictures
When you click the Position category in the Style Builder (Figure 5-13), you
can choose any of the following options from the Position Mode drop-down
list to position the image:

� Position in normal flow: Anchors the figure to neighboring text so it
sticks to the current paragraph. (This is the most common selection.)

� Offset from normal flow: Anchors the figure to the neighboring text,
offset from where it would normally appear in the flow by whatever
amount you specify in the Top and Left options.

� Absolutely position: Anchors the figure to a specific place on the page,
independent of text flow.

Figure 5-13:
Position

options in
Style

Builder.

88 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 88

The Height and Width options let you set the height and width of the picture
in pixels, points, percentage of the page width, or any other of several units
of measure.

The Top and Left options are enabled only if you choose “Offset from normal
flow” or “Absolutely position.” If you choose “Offset from normal flow,” you
can define the offset using Top and Left. For example, entering 10px for Top
and 10px for Left would position the picture 10 pixels down and to the right
of where it would have been positioned if you chose “Position in normal
flow.”

If you choose “Absolutely position” from the Position Mode drop-down list,
the Top and Left options define where the picture is placed relative to the
upper-left corner of the page. For example, setting each measurement to 10px
would put the upper-left corner of the picture 10 pixels away from the upper-
left corner of the page.

The Z-Index option applies only to absolutely positioned objects, and defines
the layer in which the object exists. The page itself is always layer 0. Objects
at layer 1 can cover the page. Objects at level 2 can cover objects at level 1,
and so forth, just like sheets of paper with the bottom sheet being layer 0.

Note that anything at a lower layer will be covered by an object at a higher
layer. So if you position a picture absolutely or offset it, there’s a good chance
that the picture will cover the text beneath it. Not good.

Wrapping text around a picture
For text that’s positioned to flow with text (as opposed to positioning the
images absolutely), click the Layout category name at the left side of the
Style Builder. Then use the “Allow text to flow” option to set whether (and
how) text flows around the figure. Your options, in a nutshell, are these:

� To the right: The picture aligns to the left margin and text flows to the
right side of the picture, as in the top example in Figure 5-14.

� Don’t allow text on sides: No text flows around the picture, as in the
example in the center of Figure 5-14.

� To the left: The picture aligns to the right margin and text flows down
the left side of the picture, as in the bottom of Figure 5-14.

Bordering pictures
To put a border around a picture, or to increase the distance between a pic-
ture and the text that flows around it, use the Edges category in the Style
Builder (Figure 5-15). In particular, you can use the Margins options to define
the amount of space between the picture border and neighboring text.

89Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 89

If you want to put a border around your picture, choose All from the “Select
the edge to be changed” drop-down list. Then choose the style, width, and
color of the border. Click OK, and the selected picture will take on the new
style.

Figure 5-16 shows an example that allows text to flow to the picture’s right.
The border around the picture comes from the selections under Borders in
Figure 5-15. The gap between the picture border and the text to the right of
the picture is defined by the 15 pixel right margin setting in Figure 5-15.

Figure 5-15:
The Edges

category in
Style

Builder.

Figure 5-14:
Text flow

and
pictures.

90 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 90

Padding pictures
The Padding options in the Edges category define the amount of empty space
between the picture and its outer border. For example, Figure 5-16 shows the
border actually touching the bottom of the picture (the character’s chin).
Increasing the Padding options to 5 pixels or more would increase the size of
the box (but not the picture in the box) to put more room between the picture
and the border surrounding the picture. When you’re done choosing options,
click OK in the Style Builder.

Choices you make in the Style Builder aren’t set in concrete. If you don’t like
a change you’ve made, you can undo it by pressing Ctrl+Z. Or, just reopen the
style builder and change whatever options you want.

Figure 5-16:
Picture with
border and

right margin.

91Chapter 5: Creating Web Pages

Why can’t I center a picture?
If you’re familiar with HTML, you may be accus-
tomed to using the align= attribute in
tags to align pictures. That attribute is being
phased out in favor of using CSS styles to align
pictures. To align a picture to the left or right
margin, just choose the “To the left” or “To the
right” option from the Allow Text To Flow drop-
down list. To center a picture, enclose the
 tag in a pair of <div>...</div> tags
that have the text-align property set to Center,
as follows:

<div style=”text-align:center”>

<img src=”Images/Laugh.gif”
alt=”laughing” />

</div>

You can type the required tags manually in
Source view. (More on using the Source view a
little later in this chapter.)

10_583603 ch05.qxd 10/21/05 6:58 PM Page 91

Adding Lines
If you want to add a horizontal rule to a page, expand the HTML category in
the Toolbox. Then drag a horizontal rule onto the page, as illustrated in
Figure 5-17. To style the line after placing it on the page, right-click the line
and choose Style. Then, in the Style Builder, use Style and Color options
under the Borders heading to choose the line’s appearance and color.

Editing in Source View
Everything you do in Design view gets translated to HTML (as well as CSS and
ASP.NET) in your page. When you click the Source button at the bottom of
the Design surface, you see all the tags. If you’re familiar with (and like work-
ing in) HTML, you can add, change, and remove tags in Source view.

When you click one member of a pair of tags, like <td> or </td> for table
cells, or <p> or </p> for a paragraph, both the opening and closing tags for
the pair are boldfaced. That lets you see immediately what’s contained within
the paired tags.

When you’re in Source view, you can use the + and – signs at the left side of
the page to expand or collapse whole sections of the page. Doing so reduces
clutter and allows you to focus on whatever portion of the page you’re work-
ing on.

Drag to page

Figure 5-17:
Horizontal

rule added
to a page.

92 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 92

Selecting in Source view
You can select text and tags using all the standard techniques, such as drag-
ging the mouse pointer through whatever you want to select. After you’ve
selected something, you can move it by dragging it, or delete it by pressing
the Delete (Del) key.

As you move the cursor about the page in Source view, tags that are near the
cursor are represented by little buttons at the bottom of the Design surface. If
you want to select a tag, its ending tag, and everything in between, just click
the button. Or, right-click the button and choose Select Tag.

Alternatively, you can select everything between a pair of tags, and exclude
the opening and closing tags. To do so, click the right side of the button that
represents the tag, as at the bottom of Figure 5-18. Then choose Select Tag
Content. (The Select Tag option has the same effect as just clicking the
button — it includes the opening and closing tags in the selection.)

Typing tags and attributes
If you know HTML (and CSS) well enough, you can edit your page right in
Source view. To add a new tag, just position the cursor to where you want to
place the tag, and start typing the tag.

As soon as you start typing a tag, an IntelliSense menu appears, showing tags
that match what you’ve typed so far. Rather than continue typing, you can
double-click the tag name in the menu to finish what you’ve started typing.

To add attributes to a tag by typing, get the cursor just to the right of the tag
text (and inside the > bracket if there is one) and press the spacebar to insert
a blank space. The IntelliSense menu changes to show acceptable attributes
for the tag you’re typing. Again, you can continue typing, or double-click a
name in the IntelliSense menu.

Figure 5-18:
Selection

options on a
button.

93Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 93

If you’re validating your tags against a current XHTML spec, many attributes
that you may be accustomed to may not show up in the IntelliSense menu.
That’s because XHTML has replaced many of the original attributes from
HTML with CSS styles. When you use the Style Builder, you’re actually adding
CSS styles to your tags.

As an alternative to using the Style Builder, you can type CSS styling attrib-
utes right into the tag. Type style= (preceded by a blank space) into the tag.
Then you can either just continue typing, or choose a CSS property from the
IntelliSense menu that appears (Figure 5-19).

If you don’t know a CSS from a cinderblock, don’t worry about it at this point.
Chapter 6 explains what CSS is about.

If you don’t remember the exact CSS property:value pair you want to type,
you can still use the Style Builder to design the element. Here’s how:

1. First, make sure you click the tag you want to style, so the tag appears
at the top of the Properties sheet.

2. In the Properties sheet, click the Style property, and click the Build
button that appears.

The Style Builder opens.

3. In the Style Builder, choose your formatting options then click OK.

As soon as the Style Builder closes, the appropriate style= text is
added to the tag. For example, Figure 5-20 shows how a <div> tag would
look after choosing Silver as the background color in the Style Builder.

When you type the closing bracket of an opening paired tag, the closing tag
for the pair is inserted automatically. For example, in Figure 5-20, the closing
</div> tag was inserted automatically after I typed the closing angle bracket
on the opening <div> tag.

Figure 5-19:
IntelliSense

menu.

94 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 94

To put text into the HTML element you just created, get the cursor right
between the opening and closing tags. Then just start typing your text. Or, if
you’ve already typed the text you want to put in the tag, just cut and paste it
between the two tags.

Debugging HTML
All HTML and CSS that you type directly into Source view is validated against
whatever version of HTML you’ve decided to use for your site. To review,
or change, that selection, right-click any empty space in Source view and
choose Formatting and Validation. In the Options dialog box that opens,
click Validation under the Text Editor HTML heading. Then choose your
HTML (or XHTML) preference from the Target drop-down list and click OK.

VWD won’t be too fussy about rules as you type in Source view. But if you’ve
created any problems while editing, you’ll know about them as soon as you
click the Design button to switch to Design view. If there are any problems,
you’ll see a message saying you can’t go to Design view until you fix those
errors. All you can do is click OK to stay in Source view and try to correct
your errors.

If you haven’t made any significant changes to the page, you can just close
the page and choose No when asked about saving your changes.

Any problems in a page that prevent you from switching from Source view to
Design view are listed in the Error List pane below the Design surface, as in
Figure 5-21. If that pane doesn’t open, choose View ➪ Error List from the
menu bar to make it visible.

The severity of each error is marked by an icon. Errors that are marked with
a red X have to be fixed before you can switch to Design view. Errors marked
as Warning or Message are more like “suggestions” than actual errors.

Figure 5-20:
Paired

<div>...
</div>

tags with a
style.

95Chapter 5: Creating Web Pages

10_583603 ch05.qxd 10/21/05 6:58 PM Page 95

To quickly locate the source of an error, double-click its message in the Error
list. The offending tag will be selected so you can make your change.

If you’re not already an XHTML expert, you may want to stay out of Source
view altogether, and stick to designing your page in Design view. That way,
you won’t make any errors that have to be corrected manually. However, if
you’re serious about being a Web developer, learning XHTML should be high
on your to-do list. Things will be much easier after you understand what’s
going on with all those tags in Source view.

Figure 5-21:
Sample

Error List
pane,

showing
errors.

96 Part II: Building Your Web Site

10_583603 ch05.qxd 10/21/05 6:58 PM Page 96

Chapter 6

Designing with Styles
In This Chapter
� Defining styles for your entire Web site

� Creating CSS style sheets

� Defining CSS style rules

� Linking style sheets to your pages

� Using CSS styles in your pages

If you want your Web site to have a unique character and be easy for visi-
tors to get around in, it’s important to maintain a consistent look and feel

throughout all pages in your site. This involves thinking about what kinds
of design elements you might use in your site. Examples of design elements
include things like main headings, subheadings, body text, tables, picture bor-
ders, lines, and other items that might appear on pages throughout your site.

To maintain a consistent look and feel, it’s best to predefine the exact appear-
ance of all these items in style sheets. Doing so up front saves you a lot of time
because you don’t have to style every single heading, table, and picture as
you add it to your page. Instead, you just format things normally and they
automatically take on the appropriate appearance as you create them.

The real beauty of style sheets goes beyond consistency and ease of use to,
well, preserving your sanity. If you ever decide to change the style of some
element in your Web site, you don’t have to go through every single page and
make the change. You just change the style in the style sheet, and the new
style is automatically displayed in every page. The technology you use to
create style sheets goes by the name Cascading Style Sheets, or CSS for short.

Understanding CSS
CSS is a language that works in conjunction with HTML to define the exact
appearance of any element in a Web page. You can use it in conjunction with
the style= attribute in any HTML tag. When you choose options from the
Style Builder introduced in earlier chapters, your selections get converted to
a CSS style= attribute in the HTML tag.

11_583603 ch06.qxd 10/21/05 6:46 PM Page 97

If you want to give your site a consistent look and feel, you don’t want to
have to memorize and apply every style in every page. Instead, why not
define the style once, in one place, and apply it everywhere? Now you’re
talking — and that’s where Cascading Style Sheets come into play. They are
the “one place” you define your styles for all your site’s pages to share.

Before I talk about the sheets, let me talk about the “cascading.” The explana-
tions in the official specs are daunting, to say the least. So let’s take it from the
top. Most HTML tags define elements in your Web page, things like the body of
the page (between <body>...</body> tags), headings (<h1>...</h1> tags),
paragraphs (<p>...</p> tags), and so forth. Some tags are contained within
other pairs of tags. For example, the heading and paragraph (and the tags that
define them) are between the <body> and </body> tags.

<body>
<h1>I’m Heading</h1>
<p>I am Paragraph. Heading and I are children of body.</p>

</body>

Here the heading and paragraph elements are both children of the body ele-
ment, because they’re contained within <body> and </body> tags. Like a
family tree, the page body is the parent to the heading and paragraph ele-
ments, because both of those elements are contained within its opening and
closing tags.

Now, suppose we use a CSS style to change the font of the body tag, as given
here? What effect will that have? Behold:

<body style=”font-family: ‘Monotype Corsiva’”>
<h1>I’m Heading</h1>
<p>I am Paragraph. Heading and I are children of body.</p>

</body>

The effect is that both the heading and the paragraph are shown in the
Monotype Corsiva font in the Web browser. The reason is that both the <h1>
and <p> tags inherit their default font from the parent element. Because the
<body> element is the parent element to both the heading and paragraph,
they both inherit its font style.

That brings up the main reason for “Cascading” Style Sheets: Certain stylistic
elements cascade down through child elements. There’s an “unless otherwise
specified in the child tag” addendum to that rule. In other words, if a child tag
has its own style= attribute, than that one child’s element overrides the
inheritance. Suppose (for example) we style the <h1> tag like this:

<body style=”font-family: ‘Monotype Corsiva’”>
<h1 style=”font-family: ‘Arial Black’”>I’m Heading</h1>
<p>I am Paragraph. Heading and I are children of body.</p>

</body>

98 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 98

When this code is viewed in a browser, the heading (only) is shown in the Arial
Black font. The paragraph is still shown in the Monotype Corsiva font set in the
<body> tag. That’s because the new style=”font-family: ‘Arial Black’”
style overrode the inheritance for that one element (the heading) only. The
paragraph, which is its own separate element, has no style= attribute and
hence still inherits the font specified in its parent element, the page body.

So, who wants to be bothered typing style= all over the place in HTML tags?
Nobody. That’s where style sheets come in. In the style sheet, you just define
the rules of how each element will look, and all the elements take on the look
you specified automatically.

The style sheet is the place where you define these rules. You don’t use normal
HTML tags and style= attributes in style sheets. Instead, you define CSS rules
by using a different syntax: You simply type the name of the element you’re
designing, and then specify its style in a pair of curly braces. Here’s an example
of a simple CSS rule in a style sheet:

body {font-family: ‘Bookman Old Style’}

Of course, there are lots of buzzwords that go with CSS. So let me first point
out that every CSS rule (including the example above) consists of two major
components:

� Selector: The name that appears to the left of the first curly brace.

� Declaration: The text inside the curly braces.

In the example given here, the selector is the word body and the declaration
is font-family: ‘Bookman Old Style’. In English, the rule says All pages
in this Web site will use Bookman Old Style as the default font for body text (and
everything that inherits the body tag’s font). Brevity is the soul of CSS.

The declaration describes a style using one or more property:value pairs
in which a colon (:) separates the property name from its value. In the exam-
ple just given, font-family is the property and ‘Bookman Old Style’ is
the value of that property.

A rule can contain multiple property:value pairs, provided you separate
them with semicolons (;). The rule shown in Figure 6-1, for example, has two
property:value pairs in its declaration.

Selector Declaration

Property Value Property Value

Figure 6-1:
A sample
CSS style

rule.

99Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 99

Rules don’t have to be defined across a single line like the above example. In
fact, VWD automatically arranges rules so each rule’s property/value pair
appears on a separate line. This makes it easier to see what’s in the rule.

For example, here’s yet another rule for the body style that defines the font
type, font size, and background color for the page:

body
{

font-size: 12pt;
font-family: ‘Bookman Old Style’;
color: navy

}

In the above example, the selector is on one line. The declaration is broken
into five lines so you can clearly see the braces and the property: value
pairs.

In VWD, you can create style sheets without knowing all the selectors, prop-
erties, and values, because you don’t have to type anything. You can create
your styles using the Style Builder instead. (Thank goodness.) First, you have
to create a style sheet in which to put your CSS rules. The next section tells
you how.

Creating a CSS Style Sheet
Creating a style sheet in VWD is fairly easy. If you want to keep your style
sheets in a specific folder, you can start by right-clicking the project folder
and the top of Solution Explorer and choosing New Folder. Name the folder
whatever you like (I’ll name mine, oh, what the heck, StyleSheets) and press
Enter. Then, to create a new style sheet, follow these steps:

1. In Solution Explorer, right-click the folder in which you want to place
the style sheet and choose Add New Item.

2. In the Add New Item dialog box, click Style Sheet.

3. In the Name box, type a name for your style sheet.

In Figure 6-2 I’ve named mine MyStyles.css.

4. Click Add.

A new style sheet opens in the CSS Editor, at first just showing an empty
rule for defining the style of the HTML body tag. The Style Sheet toolbar
also opens, as shown at the top of Figure 6-3.

If your CSS toolbar doesn’t open somewhere, choose View➪Toolbars➪
Style Sheet from the menu bar.

100 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 100

If you’re already into CSS and have a preference, you can use the drop-down
list on the Style Sheet toolbar to choose with which version of CSS you want
your sheet to comply. If you don’t have a preference and just want to go with
the latest version, choose CSS 2.1 (as in Figure 6-3).

Creating Style Rules
A style sheet can contain any number of rules — of several different types.
The sections that follow look at the different types of rules and how to create
them.

Creating CSS element styles
A CSS element style is a rule that defines the style of a built-in HTML tag like
<p> or <body> or <h1>. These rules are the easiest to create and the easiest
to use (in most cases). The predefined elements cover most of the design ele-
ments needed for a Web page. So rather than reinvent the wheel, you can set
a style for those elements and just use the elements as you would normally.

Figure 6-3:
The Style

Sheet
toolbar and

part of
MyStyles

.css.

Figure 6-2:
Creating a

new CSS
style sheet

named
MyStyles

.css.

101Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 101

In a CSS style sheet, you follow these steps to create an element-rule selector:

1. Click the Add Style Rule button in the CSS toolbar, or right-click in the
CSS style sheet and choose Add Style Rule.

The Add Style Rule dialog box opens.

2. Choose Element, and then choose the HTML element for which you
want to design a style.

In Figure 6-4, I chose the H1 element, allowing me to define the style of all
text marked with <h1>...</h1> tags in my pages.

3. Click OK.

A rule selector appears with empty curly braces, as in the example given here:

H1
{
}

With the selector and curly braces in place, you can use the Style Builder
described later in this chapter to define the style of the element.

If you already have a style sheet from a previous Web site, you can just copy
and paste that sheet’s contents into the new sheet you’ve created in VWD.

Creating CSS class selectors
You don’t have to apply a style to all instances of an HTML element. You can
create “special circumstance” rules that are applied only as needed. For exam-
ple, you might have to create two types of tags for table cells: one for regular
table cells, and one for the column headings across the top row of the table.

Figure 6-4:
Defining

a style rule
for the H1
element.

102 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 102

To create “special circumstance” rules, you define CSS class selectors. Unlike
an element selector, a class selector doesn’t have to match an HTML tag. You
can give the class selector any name you want — just avoid using spaces and
punctuation in the name. Keep it short and simple.

You create a class selector as you would an element selector. Click the Add
Style Rule button or right-click the page and choose Add Style Rule. In the
Add Style Rule dialog box, choose Class Name. Then type the name of the
class in the text box, as in the example shown in Figure 6-5.

Click OK, and the class appears in the style sheet looking like this:

.Mono
{
}

The leading dot that VWD adds to your name isn’t actually part of the name.
It’s just a signal to the Web browser, indicating that the name that follows the
dot is a class name rather than an HTML element.

You can also assign a style class to a particular HTML element, and use that
style class with only certain instances of the element. For example, you might
create a DIV (division) class that creates sidebar text, similar to the sidebars
you see in this book. In a style sheet, you create such a selector by joining
the HTML element name (the same name you use inside an HTML tag) fol-
lowed by a dot and whatever name you decide to give your class.

Again, you use the Add Style Rule dialog box to create the rule. Choose Class
Name and type in a name of your own choosing for the class. Then select the
Optional Element check box, and choose an HTML element from the drop-
down list. For example, in Figure 6-6, I’m about to create a new CSS class
named DIV.BoxedText.

Click OK, and the result is as follows:

DIV.BoxedText
{
}

Figure 6-5:
Creating a
CSS class

selector.

103Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 103

Now all that’s left to do is make sure the cursor is between the curly braces,
and use the Style Builder to define the style of the rule. The next section tells
you how.

Defining Rules with Style Builder
Manually typing the declaration for a rule isn’t easy. The syntax rules are strict,
and there are a lot of property names to remember. The Style Builder offers a
much better alternative. The first step, or course, is to create the selector (you
know — the name and curly braces). The next step is actually two:

1. Position the cursor just to the right of the opening curly brace of the
selector you want to style.

2. Click the Build Style button in the Style Sheet toolbar, or right-click
near the cursor and choose Build Style.

In Figure 6-7, for example, I’m about to build a style for the body{} selec-
tor in MyStyles.css.

After you’ve chosen Build Style, the Style Builder dialog box opens.
Figure 6-8 shows the top half of the Style Builder. Here you can add all
the styles you like.

Figure 6-7:
Preparing to
build a style

for the
body{}

selector.

Figure 6-6:
Defining

a CSS
element

class
selector.

104 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 104

The sections that follow discuss the most commonly used options in the
Style Builder. As with HTML, CSS is a book-length topic in its own; an exhaus-
tive discussion of styles would surpass my page count (and probably your
patience). But a quick tour of the most common style options can give you a
sense of how you might use them in your own Web sites. Stay tuned.

For more information about the options in the Style Builder category you’re
viewing, press Help (F1).

Styling fonts
The Font category of the Style Builder lets you define the font of the selector
(the item you’re styling). It’s important to know that fonts come from the
client computer, not from your computer. In the person doesn’t have the font
specified in your CSS rule, their Web browser will automatically substitute
another font.

To gain some control over how the client PC chooses substitute fonts, specify
multiple fonts in order of preference. Generic fonts are good for this purpose,
because they allow the client PC to choose a font that at least resembles your
preferred font. To specify fonts in the Style Builder, choose Family under Font
Name in the Style Builder. Then click the Build button.

Figure 6-8:
Here’s what

part of the
Style

Builder
looks like.

105Chapter 6: Designing with Styles

Setting to <not set>
Many of the drop-down lists you encounter in
the Style Builder will have a <not set> option,
like the Italics drop-down list in Figure 6-8. It
may seem odd that you have the choice to set
an option to “not set,” but there is a reason for
it: If you previously set the option to a specific
setting, choosing <not set> ensures that the
old setting is removed.

In the rule that the Style Builder creates, you
won’t see <not set> anywhere because
choosing <not set> removes the property:
value pair from the rule. That means the ele-
ment you’re styling will inherit the style from its
parent element.

11_583603 ch06.qxd 10/21/05 6:46 PM Page 105

A generic font is just a general font style without a specific typeface. For
example, Arial and Helvetica are both sans-serif fonts used for headlines. If
you specify Arial as the preferred font, and sans-serif as the Generic font,
Arial will be used wherever possible. Otherwise, Helvetica (or some other
sans-serif font) will be used instead.

In the Font Picker, first choose the font you most prefer, and then click the >>
button to move that font name to the Selected Fonts list. Any additional fonts
you choose after the first will be used only if your preferred font isn’t avail-
able on the client PC. Figure 6-9 shows an example in which I’ve chosen
Bookman Old Style as the preferred font, and a generic Serif font as the alter-
nate. Click OK after making your selections.

To choose a color for your font, pick a color name from the Color drop-down
list. Or click the Build button to the right of the color option. In the Color
Picker dialog box that opens, click any tab, and then choose your color and
click OK.

There are several ways to size a font:

� Set a specific size, in points (or some other unit of measure): You might
want to do this when defining the default font for body text (in the body{}
selector in the style sheet). To set a specific size, choose Specific. Then
type in a size and choose your unit of measure.

� Set an absolute size: This option defines the size as a value, ranging
from XX-small to XX-large. The exact size of the text, in points, is defined
by settings in the visitor’s Web browser.

Absolute sizes are defined by the visitor’s Web browser, with Medium
being equal to body text size. The exact size varies. For example, in
Microsoft Internet Explorer you can choose View➪Text Size to set a
general size for all text on the page. Text you define using an Absolute
size will be sized according to which Text Size a visitor chooses from
that menu.

Figure 6-9:
The Font

Picker
dialog box.

106 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 106

To get a sense of how the absolute sizes vary relative to one another,
choose Choose a Size from the Absolute drop-down list. The sample text
at the bottom of Style Builder shows you an example of your choice.

� Set a relative size: This defines the size of the text relative to neighbor-
ing inline text, either smaller or larger.

Relative size refers to the size of the parent element’s size. The parent
element is usually text in the same sentence of a paragraph. This setting
makes the text a little smaller, or a little larger, than whatever size that
neighboring text happens to be.

The option for boldface reflects XHTML’s preference for using the CSS
font-weight property rather than ... tags for boldface. You can
choose how bold you want boldface to be using that property. If you want the
standard boldface, choose Bold from the Absolute drop-down list. Otherwise
choose Relative and then choose either Lighter or Bolder.

By and large, the other items in the Fonts category are self-explanatory. If
they still seem a little obscure, just choose one and have a look at its preview
sample at the bottom of the Style Builder.

Styling the background
You can choose a background color or picture for the item you’re designing.
Optionally, you can choose a picture to use as a watermark for the background.
Click Background in the Style Builder to get to the Background options.

A watermark is a pale image that appears to be imprinted on the page, behind
text and other items on the page.

To specify a background color, choose a color name from the Background
Color drop-down list. Or click the Build button next to the Color option and
choose a color from the Color Picker.

If you have a picture you’d like to use as a watermark, click the Build button
next to the Image option and choose the picture you want to use. If it’s a
small picture like a logo, you can choose a Tiling option to have the image
repeated down, across, or all over the page. The scrolling options let you
choose whether the background image scrolls with text, or remains fixed as
the text scrolls over the image.

The Position options determine the starting position of the background
image. The effect of the Position option depends on how the Tiling option is
set. The preview at the bottom of the Style Builder shows how your current
selections will look on a page. Figure 6-10 shows an example with a back-
ground color, image, and some image options selected. The preview shows
how those selections look.

107Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 107

In Figure 6-10, the background color shows through the background image
because that image file has a transparent background. If you use a picture
with an opaque background and tile that image in all directions, its back-
ground will hide whatever color you choose for the page background.

The options in the Background category of the Style Builder relate directly
to the CSS properties that control background — color, background-
image, background-repeat, background-position, and background-
attachment.

Styling text alignment and spacing
Clicking the Text button in the Style Builder takes you to styling options for
text (Figure 6-11). Under the Alignment heading, the Horizontal option lets
you choose how you want the text, or item, aligned between the margins of
the parent object. For example, if you’re styling a table cell (<td> element),
and set the horizontal alignment to Center, any text or picture you place in
the cell is centered within the cell.

The Vertical alignment option offers several settings, not all of which apply to
all types of elements. The sub and superscript elements, for example,
apply to inline text only. Thus, they only apply to inline elements — those
that don’t cause text, a picture, or a table to start on a new line. Examples of
inline elements that don’t cause line breaks include ... for boldface,
as well as ... and

Figure 6-10:
Background

options in
Style

Builder.

108 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 108

In Figure 6-12, the top two lines show examples of using superscript and
sub vertical alignments. The superscript alignment raises the text from the
normal flow. The sub alignment lowers it, as in a subscript.

Unlike the HTML <sup> and <sub> tags, the vertical alignment options don’t
change the size of text. They change only its position relative to other text in
the same line.

Figure 6-12:
Examples of

vertical
alignment

options.

Figure 6-11:
Text

category of
options in

Style
Builder.

109Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 109

If you’re styling an tag used to show a very tiny picture, use the
text-top, baseline, and text-bottom vertical alignment options; these give the
picture a precise vertical position relative to inline text. The middle example
in Figure 6-12 shows examples of vertically positioning a tiny happy-face
image.

If you’re styling a block element that contains text and has some height to it,
use the Top, Middle, and Bottom vertical alignment options to align text
within the box. In Figure 6-12, the Top, Middle, and Bottom vertical alignment
options are applied to cells in a table where the row is three lines tall.

When you’re styling a table, keep inheritance — the relationship between
parent and child tables — in mind. Any alignment options that you want to
apply to the table as a whole should be defined in the table element (the
<table> tag in HTML), because each cell in the table is a child element,
defined by <td> tags, within the table. Therefore, any style you define for the
table will be inherited by all cells in the table.

Of course, you can always override the style in any cell or group of cells.
When you change the setting of a single cell, you do so only for that one cell,
that one <td> tag. Other cells still inherit the characteristics of the parent
<table> tag.

The spacing and flow options in the Text category of the Style Builder are
largely self-explanatory. As soon as you choose an option, the preview sample
given here shows you the effects of your choice. The words “Normal Text” in
the preview never change, so you can compare the results of any change you
make to that text. If you don’t like a change you’ve made, choose <not set>
to cancel your selection, or delete whatever you typed into an option.

Styling position
The Position category of Style Builder, shown in Figure 6-13, offers options for
sizing and positioning pictures (the tag), tables (the <table> tag), and
block elements that contain text like the <div>...</div> (division) tags.

Figure 6-13:
The Position
category in

the Style
Builder.

110 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 110

From the Position Mode drop-down list, you can choose from the following
options:

� Position in normal flow: The element is “glued” to its neighboring text
(usually a paragraph). When the paragraph moves, the text moves with
it. This is the default for most blocks; they end up in normal flow if you
don’t specify otherwise in a style.

The “palm tree” and “laughing kid” pictures in Figures 5-14 and 5-16 of
Chapter 5 are in tags that are positioned in normal flow.

� Offset from normal flow: Same as above, but the item can be offset
from its default position. Choosing this option enables the Top and Left
options; use those to specify the offset. For example, entering 10px for
Top and 5px for Left would move the element down 10 pixels and 5
pixels to the right, where it would have been positioned by default.

� Absolutely position: Places the block at a specific position on the page.
The block is not “glued” to any neighboring text. When you insert or
delete text above the block, text below that point moves around the
object rather than dragging the block with it.

Choosing the Absolute position options enables the Top and Left options.
Use them to define where you want to place the upper-left corner on the
page. You can express the measurement in pixels, percent, points, or what-
ever is most convenient for you.

For example, if you absolutely position the top of a block element to 40%, and
the left to 10px, the top-left corner of the block will be 40% of the distance to
the bottom of the page, and 10 pixels away from the left margin. The block
won’t change position as you add or delete text above it.

If you choose Absolute position, you can also set a Z-Index for the block. A Z-
Index is a number that defines the layer on which a block element is placed.
Think of a stack of paper, with each sheet of paper as a layer. The sheet at the
bottom of the stack is at layer 0 (or Z-Index 0). The next sheet up is at layer
1 (Z-Index 1), and covers the sheet below it. The next sheet up is at layer 3
(Z-Index 2), and it covers layers below it.

Using Z-Indexes is tricky, because items with Z-Indexes greater than zero
can cover content on your page. That sort of thing can really bother visitors
who are trying to read your page. So you want to stay away from setting any
Z-Index unless you have a specialized application for it in your site.

The Height and Width options in the Style Builder Position options let you
define the size of the image, table, or other block element you’re styling. You
can define the size in pixels, a percent of the page width (or height), or any of
several other units of measure.

111Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 111

Styling layout
In the Layout category of the Style Builder, you find options that control how
elements appear on your page in relation to one another. Some are beyond
the scope of this book. But the first three Flow Control options (shown in
Figure 6-14) are right up our alley.

� Visibility: This option controls whether or not the block is visible on the
page. For instance, you might want to make an element initially invisible,
and then have it appear when the visitor clicks a link or button. The
Visibility options are Hidden (the element isn’t visible on the page)
and Visible (the element is visible). The <not set> option is the same
as Visible.

� Display: This option determines whether the item is displayed as a
block element or inflow element. If treated as a block element, the item
is placed in its own box on the page, like a table or image. If treated as
an inflow element, the style is applied inline. Boldface and italics are
good examples of inline elements. Both apply their styles to text without
disrupting the flow of text.

� Do Not Display: This option omits the element from the page altogether —
but it’s not the same as the Invisible option (which sends the element to
the client PC but hides it from view, perhaps temporarily). The Do Not
Display option prevents the element from being sent to the browser.
That reduces the download time. A good example would be sending con-
tent to visitors selectively, based on the capabilities of the visitor’s Web
browser.

� Allow Text To Flow: These options determine whether (and where) text
flows around the block element you’re styling. Figure 5-14 in Chapter 5
showed an example using images. You have three basic choices:

• Choosing Do Not Allow Text On Sides prevents any text from wrap-
ping around the element. The element appears on its own line.

• Choosing To The Right causes the element to align to the left
margin, so text can flow down the right side of the element (as with
the laughing boy in Figure 5-16 in Chapter 5).

Figure 6-14:
Some

options in
the Layout

category of
Style

Builder.

112 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 112

• Choosing To The Left causes the item to align to the right margin,
so text can flow down its left border.

If you want a really thorough description of CSS layout properties, see
Chapters 8 through 10 in the CSS 2.1 spec at www.w3.org/TR/CSS21.

Styling boxes and borders
Many design elements, like pictures, tables, and chunks of text enclosed in
<div>...</div> tags, form boxes on your page. The Edges category in Style
Builder allows you to define the spacing outside the box, inside the box, and
the appearance of the borders around the box. If you’re defining the style of a
box that contains text or an image, the settings apply as follows:

� Margins: Defines the margins outside of the box (how near neighboring
text can get to the box).

� Padding: Defines margins inside the box (how near text inside the box
can get to the box border).

� Borders: Defines the style, width, and color of the border surrounding
the box.

Figure 6-15 illustrates where the Margins and Padding settings apply to a box
that contains text.

A table’s margins are, in effect, little gaps between cells, as shown in Figure
6-16. The padding puts space between a cell’s inner border and the contents
of the cell. The Borders options control what kind of lines go around the table
and between the cells.

Padding MarginBorder

Figure 6-15:
Margins,
padding,

and borders
for a box.

113Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 113

When designing borders, you can choose to define all the borders at once, or
just the left, right, top, or bottom margin.

You can also collapse the vertical borders in a table so there’s only one line
and no gap between cells vertically. This only works if you’re defining the
style characteristics of a table element (that is, using a <table> tag). To col-
lapse vertical borders in the table, click Other in left column of the Style
Builder. Then, under the Tables heading, choose Collapse Cell Borders from
the Tables drop-down list.

Saving Style Builder choices
When you’ve finished choosing options from the Style Builder, just click OK.
Your selections are translated into appropriate CSS property: value pairs and
inserted between the curly braces for the rule. Here’s a general example:

DIV.BoxedText
{

border-right: navy thin solid;
padding-right: 25px;
border-top: navy thin solid;
padding-left: 25px;
float: left;
padding-bottom: 25px;
margin: 0px 25px 15px 0px;
border-left: navy thin solid;
padding-top: 25px;
border-bottom: navy thin solid;
width: 30%;
background-color: #ffffcc;

}

To change your selections, right-click anywhere between the curly braces
and choose Style Builder again. Make your changes and click OK. Remember,
your style sheet can contain as many, or as few, style rules as you like.

Padding Margin

Figure 6-16:
Margins,
padding,

and borders
for a table.

114 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 114

All those property: value pairs that Style Builder creates are straight from
the online CSS specification, available at www.w3.org/TR/CSS21.

Saving a CSS style sheet
When you’ve finished working with a style sheet, just close and save it as you
would any other document. The styles you defined won’t be applied to any-
thing until you link the style sheet to a page (or Master Page), as discussed
next.

Linking to a Style Sheet
The rules you create in a CSS style sheet are applied only to the pages to
which you link the sheet. If you’ve created a Master Page, you can link the
style sheet to the Master Page. The styles automatically carry over to all con-
tent pages that use the Master Page.

The easy way to link to a style sheet is just to drag its icon from Solution
Explorer into the page you’re editing. For example, to add a CSS link to a
Master Page, you simply open the Master Page (by double-clicking its icon in
Solution Explorer), drag the CSS file’s icon from Solution Explorer to the
upper-left corner of the page you’re editing, and drop it there.

Figure 6-17 shows an example: I’m dragging a style sheet named
MyStyles.css into an open Master Page named MasterPage.master.

To use your style sheet in an HTML page (or an .aspx page that doesn’t use
the master), just open that page in Design view and drag the style sheet’s
icon from Solution Explorer onto the page.

Drag CSS file
to pageFigure 6-17:

Link a style
sheet to a

Master
Page.

115Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 115

Unless there are styles in the style sheet that apply to tags already in the
Master Page, you won’t notice any difference. But if you switch to Source
view, you’ll see that VWD has inserted a link to the style sheet between the
<head> and </head> tags near the top of the page. That link will look some-
thing like this example:

<link href=”../StyleSheets/MyStyles.css” rel=”stylesheet” type=”text/css” />

Keep in mind that only pages that have that tag near the top use the styles in
the style sheet. If you create a new page from scratch, and don’t specify a
Master, drag the CSS file over to the page to create the link.

Using Styles in a Page
After you’ve linked a style sheet to a page, HTML element styles will be for-
matted automatically. For example, if you styled the body{} element, then
body text in the page takes on the style you defined immediately.

As you format text in the page, any new styles will come into play as you use
the element. For example, let’s say you created a style for Heading 1 elements
in your CSS style sheet, like this:

H1
{

font-size: 16pt;
font-family: ‘Arial Black’;
font-style: italic;

}

Any text in the document that is already formatted as H1 will automatically
be displayed in the new style. That is, any text between the <h1> and </h1>
tags in the Web page will be displayed in 16 point Arial Black italic font.

Exactly how you use a style rule to format new or existing content on the
page depends on which type of selector defines the rule. I’ll start with the
easiest one, in which the selector’s name matches an HTML tag (for example,
as H1 or BODY).

Applying CSS element selectors
A CSS element selector is any CSS rule whose name does not contain a dot.
The name of the selector matches the name inside the HTML tags of the ele-
ment. Applying such a selector takes no real effort at all. You just apply the
element as you normally would.

116 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 116

For example, suppose the currently linked CSS style sheet contains the H1
style shown earlier. In the current document, you select a chunk of text, and
then choose the Heading 1 style from the Block Format drop-down list on the
Formatting toolbar, as in Figure 6-18. The style is applied to the selected text.

In Source view, the formatted text is contained in the usual pair of HTML tags,
like this:

<h1>Hello World</h1>

The words Hello World take on the formatting defined by the H1 style rule
in the style sheet. You don’t have to do anything special to make that happen.
The connection between <h1> in the page and the H1{...} style in the style
sheet is built-in and automatic. If you change the H1{} style rule in the style
sheet, the change shows up in all pages automatically.

Applying CSS class selectors
CSS class selectors aren’t associated with any particular HTML element. In a
style sheet, their names are preceded by a dot, as in this .Mono class selector:

.Mono
{

font-family: ‘Courier New’ , Monospace;
font-style: normal;
color: navy;

}

Block format Selected text

Figure 6-18:
Applying an

element
style.

117Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 117

Using CSS class selectors in VWD is a bit of a pain, because their names don’t
show up in IntelliSense menus or any drop-downs anywhere. You have to
remember the names and type them yourself. For an inline style like the
.Mono example, your best bet would be to enclose the text to be formatted in
... tags in Source view and specify the class name in the
 tag, as follows:

text to format goes here

Note that within the tag you don’t include the leading dot, just the
name. The class name must be enclosed in single or double quotation marks.

You’ll need to work directly in Source view to type the tags. But it will be easi-
est to find the text if you first select that text in Design view. For example,
let’s say in Figure 6-19 you want to display the sample code LET X = 10 in
monospace. First, select that text as shown in Figure 6-19 by dragging the
mouse pointer through only that text.

To switch to Source view, click the Source button at the bottom of the Design
surface. The text you selected in Design view is still selected in Source view,
making it a little easier to find among all the other stuff that appears in
Source view.

Next, click a space just to the left of the first character you want to format,
then manually type in the tag, as follows:

VWD automatically adds the closing tag right after the opening tag.
You need to move that closing tag so that it’s after the text to which you want
to apply the style. A simple way to do that would be to cut and paste the text
so that it’s between the two tags. For example, in Figure 6-20 I’ve moved the
sample code LET X = 10 so it’s between the ... tags.

Figure 6-19:
Selecting

text in
Design

view.

118 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 118

When you switch back to Design view, only the text within the tags will be for-
matted with the Mono style.

If you switch to Design view and the text isn’t formatted as expected, either
you forgot to link the style sheet to the current page, or you misspelled the
class name in the Style tag.

Applying element class selectors
Element class selectors have a dot embedded in the name. The first part of
the name defines which tag you use to apply the style. For example, here is
an element-class selector named ColHead that can only be applied to table
cells (<TD> tags).

TD.ColHead
{

font-weight: bold;
font-family: Arial;
background-color: #ffffcc;
border-bottom: navy thin solid;

}

To use an element class like TD.Colhead, you have to apply the class to text
that’s already formatted by the HTML element, TD in this example. Because
<TD>...</TD> tags define table cells, you have to start, in Design view, by
clicking on text that’s already in a table cell.

You can take a shortcut and select the items you want to format. For exam-
ple, to apply the TD.ColHead class selector to all the cells in a row, select the
row as in the example at the top of Figure 6-21. The Properties sheet won’t
show a tag name when you have multiple elements selected. But you can still
type the class name, ColHead, in the Class property for the selection, as in
the center of that same figure. Press the Tab key to complete the entry, and
the selected cells will take on the style, as in the bottom of that same figure.

Figure 6-20:
Applying a
CSS class

selector to
an

tag.

119Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 119

Using DIV styles
It’s worth mentioning the HTML <div>...</div> tags at this point, because
they’re relevant to CSS styles. A div is a box or “division” of text, set off from
the normal flow of body text.

The <div> tag is to block styles what is to inline styles. An empty
pair of <div>...</div> tags creates a new box in which you can place text,
tables, pictures, or whatever. However, text inside the box inherits its font
and virtually everything else from its parent element, most likely the <body>
tag for the page.

The main reasons I mention the <div> element is because many of the old
ways of aligning things — for instance, the align= attribute — are being
phased out in favor of using <DIV> tags.

As an alternative to manually creating and formatting a pair of <div>...</div>
tags each time you put a centered element on a page, you could create a CSS
style that already defines how you want centered elements to appear on the
page. For example, the CSS style below, named DIV.Centered, ensures that
any element between its tags is centered on the page, and that no text flows
around the centered element.

DIV.Centered
{

background-color: transparent;
text-align: center;
width: 100%;
float: none;
clear: both;

}

Figure 6-21:
Applying

TD.ColHead
to multiple

cells.

120 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 120

In the Style Builder you’d choose the following categories and options:

� Background: Choose Transparent.

� Text: Choose Horizontal, Centered.

� Position: Choose Width property and set it to 100%.

� Layout: Set Allow Text To Flow to Don’t Allow Text On Sides. Set Allow
Floating Objects to Do Not Allow.

To use the style in a linked page, first make sure the page you’re editing is
linked to the style sheet. Then drag the HTML Div control from the toolbox
onto the page. An empty box appears and <DIV> appears at the top of the
Properties sheet. Type the class name into the Class property, and press
Tab. The box won’t change immediately. Figure 6-22 illustrates the procedure.

To center an image on the page, drag its icon from Solution Explorer into the
box. To center a table on the page, click inside the box before you choose
Layout➪Insert Table from the menu bar. Then create the table normally.

In the VWD Design view, the <DIV> box will be visible as gray lines around
the object inside. But in the Web browser, no such lines are visible and the
item is just centered on the page.

In the HTML for the page, a picture appears as an tag within <div>
tags as in the following example:

<div class=”Centered”>

</div>

DragFigure 6-22:
Adding

a Div.
Centered

box.

121Chapter 6: Designing with Styles

11_583603 ch06.qxd 10/21/05 6:46 PM Page 121

The CSS 2.1 Specification
This chapter has been about using CSS style sheets in VWD, presuming you’re
at least vaguely familiar with CSS already. There’s not enough room in this
book to cover the entire CSS specification. That’s a topic in itself you could
learn in a class, from a book, or from the online specification and tutorials.

Like the HTML specs, the CSS specs are available at the World Wide Web
Consortium Web site at www.w3c.org/. The following short list shows pages
specifically relevant to CSS 2.1. Check them out. Any time you invest in learn-
ing CSS is time well spent.

� Starting with HTML + CSS: www.w3.org/Style/Examples/011/
firstcss

� Introduction to CSS 2.1: www.w3.org/TR/CSS21/intro.html

� CSS 2.1 Specification: www.w3.org/TR/CSS21/

122 Part II: Building Your Web Site

11_583603 ch06.qxd 10/21/05 6:46 PM Page 122

Chapter 7

Working with ASP.NET Controls
In This Chapter
� What is ASP.NET, anyway?

� Using server controls in your pages

� Allowing users to create their own accounts

� Creating a login page

� Letting users change their passwords

The big difference between creating a regular Web site with HTML and a
dynamic Web site with Visual Web Developer mostly boils down to

ASP.NET controls. ASP stands for Active Server Pages. The .NET refers to the
Microsoft .NET Framework, the home of thousands of controls for all types of
programmers, not just Web developers.

Some readers may already know what all that means and what it’s all about;
some may not. For those who don’t, we start this chapter with a quick
overview of ASP.NET and why it’s important for Web developers.

What Is ASP.NET?
Glad you asked. ASP.NET is essentially a set of controls for a building
dynamic, data-driven Web site. To understand what that means, let’s start
with a (hopefully familiar) example of searching the Web using a search
engine like Google.

Suppose you go to www.google.com, type in something like 1966 Ford Mustang
convertible parts, and press Enter. A moment later, Google sends back a page
with links to a bunch of Web sites that contain those words (not to mention
quite a few relevant ads). Where did that page come from? How does that
work?

12_583603 ch07.qxd 10/21/05 6:43 PM Page 123

Certainly Google didn’t have a Web page already made up and waiting, just in
case someone happened to search for “1966 Ford Mustang convertible parts”.
There are a near infinite number of word combinations that people might
search for. And there’s no way to create a near infinite number of Web pages
to cover every conceivable combination of words people might search for.

Instead, Google’s Web server has to take whatever words a user submits,
search its database of 8 billion or so links for pages that contain those words,
then create a page that contains appropriate links to send to the user’s Web
browser.

In other words, Google’s Web server had to take an active role in creating the
page it sent to your Web browser.

That is the very essence of a dynamic, data-driven Web site. The pages that
Google sends out from its Web server are dynamic in that each page contains
only links that match the words the user searched for. Those results are data-
driven in that all those links are stored in a database at Google’s site.

I’m not saying the Google was created with Visual Web Developer. Google was
created long before Visual Web Developer existed. But the concept of having
the Web server take an active role in creating a Web page is all that matters for
this analogy. Likewise, we won’t be building a search engine in this book. The
only analogy that matters is the fact that Google’s Web server plays an active
role in creating the Web pages that get sent to people who conduct searches.

Making your Web server take an active role in creating the pages it sends is
what ASP.NET is all about. Active Server Pages (Web pages with an .aspx
extension) are basically Web pages that contain Active Server Controls. But
you can’t send pages that contain server controls directly to clients; clients
can’t execute server controls. The server uses data from the database and
information in the .aspx page to determine exactly what HTML is needed on
the client PC. Then the server creates the appropriate page and sends it to
the client. Figure 7-1 illustrates the basic idea.

+ + = HTMLData ASPX
page

Web
serverFigure 7-1:

Using data
and .aspx

pages to
create
HTML.

124 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 124

The .NET Framework is an enormous collection of tools for programmers
(and, like “the world and all it contains,” not a subject we have to get into
right now). Suffice it to say that all ASP.NET Web server controls you find in
VWD are members of the .NET Framework. And as such, complete documen-
tation about any server control is available from the .NET Framework online
documentation.

In Visual Web Developer, the Toolbox shows the names of commonly used
.NET Server controls, categorized into groups like Data, Validation, Navigation,
Login, and so forth. These tools are visible only when you’re editing a Web
form (.aspx page). The server controls are hidden when you’re editing an
.HTML page.

Adding a Server Control to a Page
Adding a server control to a page is pretty simple: You drag its name from the
Toolbox onto your page. You can put server controls on a blank .aspx page, in
Master Pages, or in the content placeholder in a page that uses a Master Page.

The size and complexity of server controls ranges from a tiny link on a page
with a few properties to multipage wizards consisting of many smaller con-
trols and many properties, and every size in between. Despite the differences
among server controls, there are some commonalities in how you work with
them. Those commonalities are what this chapter is mostly about.

As mentioned, adding a server control to a page is simple: You just drag its
name from the Toolbox to wherever you want to place it on the page. In
Figure 7-2, for example, I’ve created a page named Login.aspx and placed a
table (along with some text) on the page. In the figure, I’ve just dragged a
Login control from the Toolbox into the lower-right cell of the table.

Drag
Figure 7-2:
Using data

and .aspx
pages to

create
HTML.

125Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 125

Tweaking server controls in Design view
In Design view, clicking an ASP.NET control selects the control. The Properties
sheet shows the name and properties of the control. The Properties sheet in
Figure 7-3 shows an example in which a Login control is selected. The name
of the control is Login1.

Controls in the .NET Framework are organized into a hierarchical namespace,
a place to keep them that works much the same way as the hierarchical orga-
nization of the folders on your hard disk that keep your files. In the Properties
sheet of Figure 7-3, System.Web.UI.WebControls.Login is the full name of
the Login control within the .NET Framework namespace.

You can design some elements of an ASP.NET control using the Style Builder.
Just right-click the control and choose Style, or click the control so its name
shows at the top of the Properties sheet. Then click the Style property and
the Build button that appears. The Style Builder opens, and you can choose
items as you would for any normal HTML control.

For example, to change the size of the text in the Login1 control, scroll down
its properties list and click the + sign next to the Font property. Then click
the Size property and choose a relative size like Medium.

ASP.NET controls are converted to HTML before they’re sent to the server.
Element styles like TABLE and TD (for table cells) are applied to the HTML
automatically. So don’t knock yourself out trying to design an ASP.NET con-
trol in Design view until you’ve had a chance to see how it looks in a Web
browser.

Figure 7-3:
The Login

Tasks menu,
showing

Properties
for an

ASP.NET
control.

126 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 126

The Style Builder won’t work for all parts of an ASP.NET control. If you want
to fine-tune every single element in a control, you have to convert it to a tem-
plate first. This is done on the Common Tasks menu you’ll find on ASP.NET
server controls. This menu is explored more fully in the next few sections.

Using the Common Tasks menu
In Design view, when you select (click) a server control, you see a tiny arrow
button somewhere on its border. Clicking that tiny button opens the control’s
Common Tasks menu. In Figure 7-3, for example, I’ve clicked the little arrow
button for a Login control on a page in Design view.

The exact options on a Common Tasks menu vary from one server control
type to the next. But some options, such as

� Auto Format

� Convert to Template

� Administer Website

� Edit Templates

are so common they deserve further mention. The next few sections discuss
these options in greater detail.

Using Auto Format
The easiest option on the Common Tasks menu is Auto Format. Clicking that
button takes you to an Auto Format dialog box, where you see a list of
scheme names and a preview window. When you click a scheme name, the
preview shows you how the scheme looks.

If you find a scheme you like, just click OK to select it. Or, if you don’t want to
use a scheme and just want to use the default control appearance, click
Remove Formatting, then click OK.

In Figure 7-4, I chose Auto Format➪Classic scheme, and clicked OK. The
Login control takes on the Classic scheme (it’s blue on the screen, not gray).
The change is also reflected in the control’s BackColor, BorderColor, and
other properties.

In the Properties sheet, values in boldface are recent. This serves as a good
reminder that you can Undo them with Ctrl+Z or Edit➪Undo.

127Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 127

Converting a control to a template
By looking at the Login control shown back in Figure 7-4, you can conclude
that it must be made of several smaller controls. After all, it contains text,
boxes, and a button, all neatly aligned. Where are those individual controls,
and what if you want to change one?

The answer lies in converting the control from an individual control to a
template. As its name implies, the template defines the exact content and
position of each item that makes up the control.

When you choose Convert to Template, a complex visual control like Login is
divided into its individual components. Then, the “Convert to Template”
option on the Common Tasks menu is replaced with a Reset option.

The Reset option undoes changes you’ve made to the template before con-
verting it back to a single control. Don’t click Reset if you intend to keep
changes you’ve made in a template.

Within the template, each control has its own tiny arrow button — so tiny
you practically need a microscope to see it. Fortunately, you don’t have to
click the tiny ➪ button. It’s just there to identify the upper-left corner of each
control in the template. Click anywhere on a control to select it. Figure 7-5
shows an example in which I’ve clicked the Log In button in the template.

To select multiple controls, click the first one, then hold down the Ctrl key as
you click others.

The Properties sheet, as always, shows the name and properties of the
selected control. Because it’s a server control, it won’t have the usual HTML
tag name in angle brackets. You can change any property of the control in the
usual manner. For example, to change the text that appears on the selected
button, change the button’s Text property.

Figure 7-4:
Classic

scheme
applied to

the Login1
control.

128 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 128

Red text in a template represents text that appears in the browser only under
special circumstances, such as when the user fails to fill in a required text
box. You don’t have to change any of the red text, it’s just a temporary place-
holder for normal text that will appear in the Web browser.

Administering the Web site
The Administer Website option on the Common Tasks menu is just a shortcut
to the Web Site Administration Tool discussed in Chapter 3. There’s really no
need to switch to that tool, though. The link is only there as a convenience in
case you want to check, or maybe change, current user accounts, roles, or
access rules.

Editing templates
The Common Tasks menu of some server controls includes an Edit Templates
option. For example, the multipage CreateUserWizard template described a
little later in this chapter has an Edit Templates option on its Common Tasks
menu. Clicking that option takes you to a template-editing window that has
its own Common Tasks menu. From the Templates Common Tasks menu, you
can choose which template (that is, which portion of the control) you want
to style. Figure 7-6 shows an example where I chose Edit Templates from its
common tasks menu after dragging a CreateUserWizard control onto a page.

Selected control

Figure 7-5:
Log In
button

selected in
a template.

129Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 129

You can treat the template like a Web page in the sense that you can type text
in the template or add controls to the template. If you’re not sure where a
template appears in a control, type in some random descriptive text. If you’re
editing a Header template, for example, type in “I am the Header Template.”
Then choose End Template Editing from the Common Tasks menu for the
template. Afterwards, you’ll see the control in its normal appearance, and the
text you typed into the template appears within that control.

A big part of using server controls in a Web site is knowing how the control
looks and acts in a Web browser. And to do that, use some controls in some
pages. Because you went to great trouble in Chapter 4 of this book to config-
ure your Web site to support member logins, I’ll start by looking at some of
the Login controls that you can use with that foundation.

ASP.NET Login Controls
Visual Web Developer supports several ASP.NET 2.0 controls that you can use
to manage logins through your Web pages. They only work if you’ve already
configured your site to support membership, as discussed in Chapter 4. You
can use them in any Web Form (.aspx page). In the Toolbox for an .aspx page,
you’ll find all the Login controls under the Login heading, as in Figure 7-7.

Here’s a quick overview of what each Login control is for:

� Pointer: Not really a Login control. If you click a control and then change
your mind and want to get back to the normal mouse pointer, click this
Pointer item.

� Login: Presents a control that allows users to log into their accounts
with their user name and password.

� LoginView: Lets you show different stuff to different users based on
whether they’re anonymous or logged in.

Figure 7-6:
Common

Tasks
menu’s

Template
Editing
Mode.

130 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 130

� PasswordRecovery: As the name implies, presents fields that allow a
user to recover a forgotten password.

� LoginStatus: Displays a Login link to anonymous users, or a Logout link
to authenticated users.

� LoginName: Displays nothing to an anonymous user; displays an authen-
ticated user’s login name.

� CreateUserWizard: Provides a fill-in-the-blanks form for creating a new
user account. Use it in your Web sites to allow people to create their
own accounts.

� ChangePassword: Provides a form that allows a user to change his or
her password.

You can use all of these controls anywhere in any .aspx page, any Master
Page, as well as in the Content placeholder of a page that uses a master. The
next few sections discuss these controls more fully. I’ll start with the
CreateUserWizard control.

Allowing Users to Create an Account
If your site will allow anyone to create an account, you need a page that
allows users to enter the appropriate data. The CreateUserWizard control is
just the ticket to do this because it displays on a Web page all the fields
needed for a user to create an account.

Figure 7-7:
Login server

controls in
the Toolbox.

131Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 131

To create a new page for the control, right-click the site folder or subfolder in
Solution Explorer and choose Add New Item. Choose Web Form and fill in the
blanks as you see fit. I named mine CreateAcct.aspx. The other options are
entirely up to you. I chose Visual C# as the language, as I routinely have in the
other examples in this book, and selected the Place Code In Separate File
option. I also used the Master Page described in Chapter 4 in my example.

Anyway, after you’ve created (or opened) a page, just drag a CreateUserWizard
tool from the Login category of the Toolbox onto the page (or drag it into the
Content placeholder in a Master Page). If you like, use the Auto Format
option on the Common Tasks menu to style the form.

Figure 7-8 shows an example in which I’ve added a CreateUserWizard control
to the Content placeholder on a page. I also used Auto Format on the Common
Tasks menu to set the scheme to Classic, making the control easier to see.

If you want to keep life simple, just close and save the page. You don’t really
have to do anything else to the control, all the stuff it needs to validate the
user’s entries, store the user’s data in the SQL Server database, and so forth,
is already done.

If you want to customize the control later, you can do so at any time. It has a
Common Tasks menu, templates, and so forth. You can press Help (F1) for
help while customizing the control.

Figure 7-8:
Create
User

Wizard
control in

Design
view.

132 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 132

Assigning new users to a role
The CreateUserWizard control doesn’t automatically assign a new user to a
role. If you want to put all the people who sign up through the CreateUser
Wizard control into a specific role, add a little code. I know I haven’t talked
about code in this book, and now is not the time to get into details of writing
code. However, for this example, I can just show you what to type.

This technique only works if you’ve already enabled Roles in the Web Site
Administration Tool as discussed in Chapter 3. Also, you’ll have to remember
exactly how you spelled your role name, as it won’t appear in any IntelliSense
menu.

If you want your CreateUserWizard control to automatically assign every
new user to a specific role in your site, follow these steps:

1. In design view, select the CreateUserWizard control.

Its name appears in the Properties sheet when selected.

2. In the Properties sheet, click the Events (lightning bolt) button.

3. Double-click the CreatedUser event.

You’re taken to the code-behind page for the page you’re designing; the
cursor is already in the event procedure, right where you type its code.

4. Type the following at the cursor position, substituting your own data
for the italics, as follows:

Roles.AddUserToRole(ctrlName.UserName,”roleName”);

ctrlName refers to the name of your CreateUserWizard control. That
would likely be CreateUserWizard1 if you let VWD name the control.
When you type a roleName, make sure you spell it exactly as you did
when creating the role in the Web Site Administration Tool.

The code given here shows what my example looked like after adding a
line of code to add the new user to my SiteMembers role.

protected void CreateUserWizard1_CreatedUser(object sender, EventArgs e)
{

Roles.AddUserToRole(CreateUserWizard1.UserName,”SiteMembers”);
}

Typing code isn’t like typing in English. In code you have to get every
dot, comma, parenthesis, quotation mark, and semicolon exactly right.
Spelling and blank spaces count a lot too. The code won’t work if you
don’t type the line exactly right.

5. Close and save the code-behind page.

133Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 133

Testing the control
After you close and save the new page, you can take the CreateUserWizard
control for a test drive. Just right-click the page’s name (CreateAcct.aspx in
my example) in Solution Explorer, and choose View in Browser. When the
page opens, you should be able to create a new user account You’ll have to
remember the user name and password to test the account later.

Figure 7-9 shows an example of a user account (in the Web browser) with the
user name Testy. The hypothetical data you enter needs to be realistic
enough to pass all the tests that the control imposes. For example, if the
passwords don’t match, you’ll get an error message in the control and won’t
be able to create the account.

Don’t forget that your password needs to be at least seven characters long,
and must include a non-alphanumeric character. For example, password!
(with the exclamation point) is an acceptable (if rather obvious) choice.

When the control contains reasonable data for a hypothetical user account,
click the Create User button. You should see a “Your account has been suc-
cessfully created” message and a Continue button. At this point there’s no
place to continue to, so you can just close the Web browser to return to VWD.

Figure 7-9:
Create
User

Wizard
control in
the Web
browser.

134 Part II: Building Your Web Site

A coupla’ CreateUserWizard tips
If you take a look at the whole Properties sheet
for the CreateUserWizard control, you’ll see
it has many properties. You can figure out what
most properties are just by looking at their
names and values.

A couple of noteworthy properties include
ContinueDestinationPageURLand Login
CreatedUser. You can set the Continue

DestinationPageURL property to whatever
page you want to have open when the user
clicks Continue after successfully creating an
account. The LoginCreatedUser property
determines whether or not the user is logged in
automatically after creating the account. The
default is True, the user is logged in.

12_583603 ch07.qxd 10/21/05 6:43 PM Page 134

To verify that the process worked, you can choose Website ➪ ASP.NET
Configuration from the menu bar to open the Web Site Administration Tool.
Click the Security tab, and then click Manage Users. The new user should be
listed. If you added code to add the user to a role, click the Edit Roles link for
that user. The check box should be filled already, indicating that the user is in
the role.

When you have a way for users to create an account on your site, the next
thing they need is a way to log in with their user names and passwords.
That’s where the Login control comes into play.

Creating a Login Page
People who have already created accounts at your site need a place to sign
in. Some of the other Login controls assume that page is in the site’s root
folder and named Login.aspx. So if you haven’t already done so, you should
create that page now by following the usual steps:

1. In Solution Explorer, right-click the site folder at the top of the folder
hierarchy and choose Add New Item.

2. In the Add New Item dialog box, choose Web Form.

3. Name the page Login.aspx.

4. Choose C# as the language and choose Place Code In Separate File.

Whether or not you choose to use a Master Page is entirely up to you.

5. Click the Add button.

If you opted to use a Master Page, click the Master Page’s folder, and
then click the Master Page filename and click OK.

I created my Login page using a table with two rows and two columns, and
typed in a couple column headings as described in Chapter 5. I dragged the
Login control from the Toolbox into the lower-right cell. I used its Common
Tasks menu to apply the Classic scheme. Figure 7-10 shows the Login tool
(highlighted in the Toolbox) and a Login control placed under the “Already a
Member?” heading in a table.

In the cell to the left of the Login control, I typed the Sign Up Now! text and
selected it. Then I used the Convert to Hyperlink button in the toolbar to
browse to the CreateAcct.aspx page I created previously. (In the Hyperlink
dialog box, the Type appears as (other) and the URL as the name of the
page.) Click OK, and the page offers non-members a way to create an account
right now.

135Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 135

To align text in a table cell, right-click the cell and choose Style. Click Text in
the Style Builder, set the Horizontal and Vertical Alignment, and click OK. To
widen a column beyond what you can do by dragging, right-click some empty
space in a cell in the column and choose Resize ➪ Resize Column. Then,
increase the current width, choose All Cells, and click OK.

Like all ASP.NET controls, the Login control has a Common Tasks menu, as
you saw earlier in this chapter. However, everything there is optional. All you
really have to do is close and save the page on which you placed the control.

To test the login page, right-click its name Login.aspx in Solution Explorer and
choose View in Browser. To verify that the control works, type in a valid user
name and password. An invalid user name and password is rejected. A valid
entry takes you to the default page for the site. But that’s fine for now; there’s
no way to verify right now if you’re logged in or not anyway. This brings me to
some other Login controls. (Don’t forget to close the Web browser.)

Providing a Login Link
There’s no telling which page in your site a user might first encounter. A link
from a search engine could take a user to any page. To make your site easy to
use, you need a login link on every page. An easy way to provide this is to put
a link to the Login.aspx page into the Master Page for your site.

But a regular link that always showed Login would be confusing for people
who have already logged in. The link should show Logout or something else
for people who are already logged in. That’s where the LoginStatus control
comes in.

Figure 7-10:
Login

control
added to

a page.

136 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 136

You must create a page named Login.aspx in your site’s root folder before you
can actually use the controls described in this section. Otherwise, when you
try to test the control in a Web browser, you’ll get an error message indicat-
ing that the Login.aspx page cannot be found.

The LoginStatus control
The easiest way to provide a Login/Logout link is to drag a LoginStatus con-
trol to a Master Page. That’s all you really have to do, besides close and save
the Master Page.

Then, right-click any page that uses the Master Page and choose View in
Browser. In the browser, clicking the Login link should take you to Login.
aspx. If you enter a valid user name and password, as in Figure 7-11, and click
Log In, you’ll be logged in. If your Default.aspx page uses the Master Page,
you’ll see that the link has changed from Login to Logout, because you’re
logged in.

If you see a Logout link, click it to log out. You won’t be taken to another
page. You’ll simply be logged out and the control will again show Login. Close
the Web browser. If all of that works, you have all the basic stuff for a mem-
bership site: a way to sign up for an account, a way to log in, and site-wide
Login and Logout links. Other stuff to follow in this section is optional stylis-
tic stuff.

By default, Logged Out users see a Login link, and authenticated users see a
Logout link. In Design view, the LoginStatus control has all the usual design
accoutrements, including a Properties sheet and Common Tasks menu
(Figure 7-12). You can change the text of either link using the LoginText and
LogoutText properties.

As an alternative to using text links, you can choose a pair of graphic images
to show. One image to show to anonymous users, and another to show to
authenticated users. When those pictures are placed in your site’s folders, use
the LoginImageURL property of the control to specify the picture to show to
anonymous users. Set the LogoutImageUrl to the picture that authenticated
users should see.

Figure 7-11:
Putting
Login.
aspx to
the test.

137Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 137

The Views menu on the LoginStatus control’s Common Tasks menu lets you
switch between what anonymous (Logged Out) users will see, and what
authenticated (Logged In) users will see. You can change the text of either
link just by editing the text.

If you want something a little fancier than what the LoginStatus control has
to offer, consider the LoginName and LoginView controls, discussed in the
next two sections.

The LoginName control
The LoginName control is about as easy to use as a control can be. It shows
nothing to anonymous users. For authenticated users, the control displays
the user’s login name. Typically you use the LoginName control with the
LoginView control.

The LoginView control
Like the LoginStatus control, the LoginView control can tell the difference
between anonymous and authenticated users. But it’s not limited to showing
text or a picture. You can use it to show just about anything, even ASP.NET
server controls. To use the control, just drag it to the Web page or Master
Page.

Figure 7-12:
Login
Status

control
Common

Tasks and
Properties.

138 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 138

After the control is placed on the page, the control is shaped as a box. The box
has two different views, but you only see one view at a time. You can choose
which view you want to see (and design) by choosing one of the following from
the View option on the LoginView control’s Common Tasks menu:

� Anonymous Template: Content that anonymous users see.

� LoggedIn Template: Content that only authenticated users see.

What you put into either template is entirely up to you. It can be text, a table,
a picture, an ASP.NET control, whatever. Think of the box as a mini-page that
can contain anything that a big page can contain.

During this stage of the site-building project, your best bet would be to create
a simple LoginView control that shows a Login link to anonymous users. For
authenticated users, the control shows the user’s name and a Logout link.
This comes in very handy when you’re testing your site, because you can
always see whether you’re currently testing as an anonymous user or as an
authenticated user. Putting the control on a Master Page is especially helpful
because you’ll be able to see it on every page that uses the Master.

So, given that general advice, let’s take a look at the steps required to make it
happen:

1. In Solution Explorer, double-click your Master Page to open it in
Design view.

In Chapter 4, I created a MasterPage.master file in a folder named
Masters. So I’ll use that one as a working example here.

2. Drag a LoginView control from the Login category of the Toolbox to
the top (or left) pane of the Master Page so that it will be visible on all
pages that use the master.

By default, the control will be named LoginView1.

3. From the control’s Common Tasks menu, choose Anonymous
Template.

Whatever you add to the LoginView control now will be visible only to
anonymous users.

4. Drag a LoginStatus control from the Toolbox into the LoginView1
control.

The LoginStatus control appears as a Login link, and its Common
Tasks menu might open automatically. You don’t need to change any-
thing on the LoginStatus control, so just click the larger LoginView1
control to hide that Common Tasks menu.

139Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 139

So at this point, the Anonymous Template for the LoginView control
contains a Login link. If you click the Common Tasks button for the
LoginView control, you should see AnonymousTemplate in the
Common Tasks menu, and the Login link inside the LoginView1 control
as shown in Figure 7-13.

5. To choose what authenticated users will see in the control, click the
Common Tasks button for the LoginView1 control and choose
LoggedInTemplate.

The Login link disappears because it’s on the Anonymous Template, not
the LoggedIn Template.

6. In the LoginView1 control, type the word Hello followed by a blank
space.

7. Drag a LoginName control from the Toolbox into the LoginView1 con-
trol, just to the right of the word Hello.

8. Drag a LoginStatus control from the Toolbox into the LogingView1
control.

At this point, the LoggedInTemplate should look like Figure 7-14. When
you view the Common Tasks menu for the LoginView1 control, it should
show LoggedInTemplate, as shown in the figure.

The LoginStatus control always shows the word Login in Design view. Don’t
worry about that. Later, when you actually use the page in a Web browser, it
will show Logout to authenticated users.

You can’t open a Master Page on its own in a Web browser, so you can’t
choose View in Browser to test the page immediately. But that is not a prob-
lem. You’ll be able to put things to the test a little later in this chapter. For
now, just close and save the Master Page.

Drag

Figure 7-13:
Login
View

control’s
Anonymous

control
contains a

Login
Status
control.

140 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 140

Letting Users Manage Passwords
People forget their passwords all the time. And the last thing you need is to
be spending all your time reminding people of their forgotten passwords. So
your site needs a means of allowing users to retrieve their own passwords.
Likewise, users have to be able to change their own passwords, so your site
will need that capability too. In the Login category of the Toolbox, the
PasswordRecovery and ChangePassword controls are just the ticket.

Using the PasswordRecovery control
The PasswordRecovery control provides a way for a user to retrieve a for-
gotten password. (Actually, with the default hashed encryption used in Visual
Web Developer, it sends them a new password that they can use to log on). In

Drag

Figure 7-14:
LoggedIn
Template
contains
text and
Login

Name and
Login
Status
controls.

141Chapter 7: Working with ASP.NET Controls

Multiple views for multiple roles
The LoginView control isn’t limited to show-
ing two different views. If your site contains
numerous roles, you can use the Edit Role
Groups option on the Common Tasks menu to
define multiple views for multiple roles. In the
RoleGroup Collection Editor, use the Add button
to add a RoleGroup placeholder to the left
column. Then, to the right of the Roles column
in the right column type a valid role name from

your site, and then click OK. You can repeat the
process to add multiple role groups.

After you’ve created a RoleGroup, you can
design what it shows to its members by clicking
the Views option on the Common Tasks menu
and choosing the new RoleGroup name. In
other words, whatever you put in the Login
View control at this point is visible only to
people in the specified role.

12_583603 ch07.qxd 10/21/05 6:43 PM Page 141

the browser, the control first asks the user to enter a user name and click
Submit. If the user name exists in the database, the second page appears
showing the user’s secret question. When the user enters the correct answer
and clicks Submit, the control e-mails a password to the user’s e-mail
address, and provides a “Your password has been sent to you” confirmation
message.

To use the control, create a new page or open the page on which you want to
place the control. For my example I created a new page named Recover
Password.aspx that uses my Master Page. Just drag the control onto the
page, like any other server control. You can choose a color scheme from the
Auto Format option on the control’s Common Tasks menu. I applied the
Classic scheme to the PasswordRecovery control shown in Figure 7-15.

The PasswordRecovery tool is unique in that there are a couple of extra
steps involved in getting it to work. Furthermore, the page has to be config-
ured to work on the Web server, not your local PC, so you may need to just
leave that page as-is, and then remember to finish it later after you’ve copied
the site to a Web server.

One thing you need to configure is the return e-mail address. This will likely
be an e-mail address you create using your own domain name (after you have
set up your own domain name). You enter that return mailing address into
the Properties sheet by following these steps:

1. With the page open and visible in Design view, click the
PasswordRecovery control to select it.

2. In the Properties sheet, expand the Behavior and MailDefinition
categories.

Figure 7-15:
The

Password
Recovery

control.

142 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 142

3. Type your return e-mail address as the From property.

Figure 7-16 shows an example where I’ve entered the hypothetical
address support@yourdomain.com.

4. Optionally, you can also fill in the Subject line for the message.

In addition to defining a return address, your site must be configured to use
the SMTP (Simple Mail Transfer Protocol) server provided by your hosting
service. You won’t know what that is until you’ve set up an account with a
hosting provider, so don’t knock yourself trying to get the PasswordRecovery
control to work on your own PC. The PasswordRecovery control doesn’t
even need to work on your PC: It only has to work on the Web server.

So the only smart thing to do is close and save the page that contains the
PasswordRecovery control, and forget about it for now. If you try to test it in
a Web browser, you’ll just get an error message when it tries to e-mail the
password. When you’ve chosen a hosting provider, they will tell you how to
configure your site to use their SMTP mail server. It may be something as
simple as adding the following lines to your Web.config file:

<smtpMail
serverName=”localhost”>

</smtpMail>

Figure 7-16:
Set the
From

property to
an address

for your own
domain.

143Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 143

But keep in mind that I said it may be something as simple as that. Only your
hosting provider can tell you specifically what’s needed to get your Password
Recovery control to work on their Web servers. Furthermore, and this is
important enough to put in a warning:

If you add the <smtpMail> tag shown above to the Web.config file on your
local PC, you might create a situation where your site doesn’t work at all.
Wait until you’ve actually posted your site to a Web server to configure SMTP
mail for your site.

Even though you can’t put the RecoverPassword.aspx page to the test yet,
you still need to provide a link to the page so that once the page is published,
people can get to the page. And ideal place for the link would be the Login.
aspx page, where users will likely first discover they’ve forgotten their pass-
word. Figure 7-17 shows an example where I’ve added a link to the Login.
aspx page that asks if the user has forgotten his password. The target of that
link is the RecoverPassword.aspx page.

Figure 7-17:
“Forgot your
password?”

This link
was added
to Login.

aspx.

144 Part II: Building Your Web Site

Testing RecoverPassword on your Local PC
I don’t mean to imply that it’s absolutely impos-
sible to test the RecoverPassword.aspx
page on your local PC. The fact is, if you know
how to configure IIS, understand virtual direc-
tories, and have access to an e-mail server, you
could get the control to work. However, doing
so doesn’t really solve anything because getting

the control to work on your local PC is irrele-
vant. The control only needs to work on the Web
server. Even if you did get the control to work on
your local PC, you’d probably still have to recon-
figure on the Web server to get it to work in your
actual, live Web site.

12_583603 ch07.qxd 10/21/05 6:43 PM Page 144

The ChangePassword control
As its name implies, the ChangePassword control lets a logged-in user change
her password. Unlike other pages you’ve created in this chapter, a “Change
Password” page applies only to logged-in users. An anonymous user can create
an account and password, using the CreateAcct.aspx page described earlier.
An anonymous user can also recover a lost password, assuming he or she has
set up an account in the past and has simply forgotten their password. That
user would access the RecoverPassword.aspx page to get their password.
But again, you won’t be able to really put RecoverPassword.aspx to the test
until after the site is on a Web server.

Because only logged-in users can change their password, you can put the
page that allows password changes into the protected MemberPages folders.
The other pages described in this chapter, CreateAcct.aspx, Login.aspx,
and RecoverPassword.aspx, need to be in the root folder, or some other
folder to which anonymous users have access.

To put the ChangePassword.aspx page in the MemberPages folder, right-
click that folder name in Solution Explorer and choose Add New Item as
shown in Figure 7-18. In the Add New Item dialog box that opens, be sure to
choose Web Form. I named my page ChangePassword.aspx, but you can
name yours as you see fit.

As with any page, you can add text, tables, pictures, or whatever to make it
look however you like. The only control you must add to the page is a
ChangePassword control. Just drag that control name from the Login cate-
gory of the Toolbox onto the page, as shown in Figure 7-19.

Figure 7-18:
About to

add a new
page to the

Member
Pages
folder.

145Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 145

In the figure, I applied the Classic scheme to the ChangePassword control,
just to give it some color. But even that step is optional. The control doesn’t
require any further configuration, so you can just close and save the page.

Testing Membership
At this point, you have built some more of your site’s membership infrastruc-
ture. When you test pages by viewing them in a Web browser, you will be
experiencing the site exactly as strangers who are visiting the site will experi-
ence it. That can be very confusing if you forget about the access rules you
defined back when you were first configuring membership.

For example, if you right-click the ChangePassword.aspx page and choose
View in Browser, you might be shocked to discover that the
ChangePassword.aspx page doesn’t open. Instead, the Login.aspx page
opens! Most confusing indeed! But it’s not an error or a problem. It’s the way
things are supposed to work. Here’s why.

Any page that’s stored in the MemberPages folder is off-limits to anonymous
users (assuming you created an access rule to make it off-limits, as described in
Chapter 3). When an anonymous user attempts to open a page in the Member
Pages folder, she is automatically redirected to the Login.aspx page. If you’re
not signed into an account when you try to open ChangePassword.aspx, the
same rule applies to you. Opening ChangePassword.aspx automatically redi-
rects you to Login.aspx.

If you sign into a user account on the Login.aspx page and click the Submit
button, then you’ll be taken to the ChangePassword.aspx page. It’s impor-
tant to understand how that works, otherwise you’ll drive yourself absolutely
batty trying to open members-only pages from the standpoint of an anony-
mous user, because every page you try to open will take you to Login.aspx
until you actually log into a user account.

Drag

Figure 7-19:
Change

Password
control

added to
a page.

146 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 146

The new LoginView control at the top of the Master Page is a big help in that
regard. Because any time you open in a Web browser a page that uses that
Master, you’ll see your current status right away. If you’re currently testing
things out as an anonymous user, you’ll see a Login link in the Master, as
shown at the top of Figure 7-20. When you’re testing things out as a logged-in
user, you’ll see Hello, your current user name, and a Logout link, as shown at
the bottom side of that same figure.

Keep in mind, too, that any user accounts that you create through the
CreateUserWizard control are actual user accounts that will be stored in
the database. You can view all current user accounts at any time via the Web
Site Administration tool. Here’s how:

1. From Visual Web Developer’s menu bar, choose Website ➪ ASP.NET
Configuration.

2. In the Web Site Administration tool, click the Security tab.

3. Click Manage Users.

4. To see what role any user is in, click the Edit Roles link in that user’s
role.

For example, in Figure 7-21 I created a new user account for a hypothetical
user named Testy. Clicking the Edit Roles link for that user shows that the
user has indeed been added to the SiteMembers role, as per the code added
to the page to ensure that each new user is assigned to the SiteMembers role.

Because there’s no way to recover a forgotten password on your local PC, if
you forget the password for any sample user account you create, your best bet
would be to just delete the account by clicking the Delete User link next to the
account name. Then you can re-create the account with a password you’ll

Figure 7-20:
Login
View

control as
seen by

anonymous
user

(top) and
authenti-

cated users
(bottom).

147Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 147

remember. You can create the account using either the Web Site Administration
Tool, or your CreateAcct.aspx page. It doesn’t matter which you use because
the result will be the same: The user is added to the database.

Server Controls in Source View
When you drag a server control from the Toolbox to the page, you add a pair
of <asp:>...</asp:> tags that define that control to the Source of your
page. You can see for yourself by clicking the Source button after adding a
server control to a page. For example, the tags representing a Login control
would look something like this:

<asp:Login ID=”Login1” runat=”server”>
</asp:Login>

Most of the server controls you create should follow the same general
syntax, as summarized here:

<asp:controlType ID=”yourName” runat=”server”>

</asp:controlType>

where

� controlType is the type of control, and matches the name shown in the
Toolbox.

� yourName is the name that uniquely identifies the control. VWD creates
a default name, such as Login1. You can replace the default name with a
name of your own choosing.

� runat=”server” identifies the item as a server control, to be executed
on the Web server rather than on the client computer.

Figure 7-21:
Testy is

added to
the Site

Members
role.

148 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 148

The tags for a control really don’t look like much, especially if you just keep
the default settings for the control. In fact, from looking at the tags in Source
view, you’d wonder how they accomplish anything at all — there’s really not
much to them.

But, as is often the case, first appearances don’t tell all. There are actually
lots of attributes and settings hidden inside the <asp>...</asp> tags. These
attributes are just intentionally hidden so as to avoid cluttering up the Source
view of the page.

If you switch back to the Design view, and use the control’s Common Tasks
menu to convert the control to a template, the <asp>...</asp> tags in Source
view will change, often dramatically. Even if converting a control to a template
has absolutely no visible effect on the control in Design view, chances are the
switch has had a big effect on the content of the <asp>...</asp> tags.

For example, when you convert a Login control to a template, and switch to
Source view, the number of tags between the Login control’s opening and
closing asp tags increases — dramatically. In fact, I can’t show all the tags
here — they’d take several pages to display.

Included in the expanded template view of the server control are the actual
HTML tags used to render the control in the user’s Web browser. You can edit
any attribute in any tag you like (you can even design your controls that way).

In Design view, choosing Reset from the Common Tasks menu collapses the
control back to its smaller size in Source view. But remember, the Reset
option also cancels out any customization you did while in the template view.

I imagine most people would find it tedious to design things by tinkering with
individual attributes in a templated server control. But then again, it all
depends on your background and experience. There’s no rule that says you
must work in Source view. But you can if you want to — do what works.

Relaxing Password Constraints
By default, Visual Web Developer requires that passwords be at least seven
characters long and contain at least one non-alphanumeric character. This
provides for strong security — perhaps stronger than your site really needs.
If you’re not storing personal or financial information about users, you may
want to relax the rules a little so users can make up passwords that are easier
for them to remember.

149Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 149

To relax the password rules, you need to edit the Web.config file in your
site’s root folder. To edit the Web.config file, just double-click its name at
(or near) the bottom of Solution Explorer. Initially the file contains some XML
tags that look something like this:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<system.web>
<roleManager enabled=”true” />
<authentication mode=”Forms” />

</system.web>
</configuration>

You need to add some new tags above the closing </system.web> tag. You
must type carefully because even the slightest mistake will prevent your site
from working. (In fact, I’ll post the exact text in the Chapter 7 section of my
Web site at www.coolnerds.com/vwd so you can copy-and-paste rather than
type). The exact lines to add above the </system.web> tag are as follows:

<membership>
<providers>

<remove name=”AspNetSqlMembershipProvider”/>
<add name=”AspNetSqlMembershipProvider”

type=”System.Web.Security.SqlMembershipProvider”
connectionStringName=”LocalSqlServer”
minRequiredPasswordLength=”5”
minRequiredNonalphanumericCharacters=”0”
passwordStrengthRegularExpression=””

/>
</providers>

</membership>

The minRequredPasswordLength setting determines the minimum number
of characters required for a password to be valid. I set that to five characters
in the example. You can use a different minimum length if you prefer.

The minRequiredNonalphanumericCharacters setting determines how
many non-alphanumeric characters (punctuation marks) are required. I set
that to zero so no punctuation marks are required.

The passwordStrengthRegularExpression setting defines a regular
expression that could require that the password contain (or not contain)
certain characters. By setting that to nothing (“”), as in the example, you
allow “normal” passwords that can contain only text.

Figure 7-22 shows how the Web.config file should look after adding the
appropriate lines to the file. Notice how the new lines are all together within
the <system.web> and </system.web> tags.

150 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 150

Make sure you close and save the Web.config file after making any changes.
To test the change, view the CreateAcct.aspx page (described earlier in
this chapter) in a browser. (If you get an error message rather than the page,
you typed something wrong in the Web.config file). You should be able to
add a new test user account using a five-character (or more) password that
contains no punctuation marks.

Figure 7-22:
Web.config

file with
code to

relax
password

restrictions.

151Chapter 7: Working with ASP.NET Controls

12_583603 ch07.qxd 10/21/05 6:43 PM Page 151

152 Part II: Building Your Web Site

12_583603 ch07.qxd 10/21/05 6:43 PM Page 152

Chapter 8

Easy Site Navigation
In This Chapter
� Getting organized, staying organized

� Creating custom site-navigation controls

� Using Menu, TreeView, and SiteMenuPath controls

� Make life easier with Web User Controls

If your site is to be successful, it must be easy to navigate. If people can’t
easily find and get to what they need, they might quickly lose interest and

move on to another site. If yours is a large Web site, navigating between pages
using nothing but hyperlinks can be tedious for the user. But for you, the
developer, managing a large site with too many links can also be a nightmare.

Visual Web Developer’s Site Navigation controls provide a great way to pro-
vide an easy, consistent navigational structure for your site. Furthermore,
you can define all the links in one place. That way, when you add a new page
to the site (or delete a page), you don’t have to worry about going back to
tweak the links in a bunch of different pages in your site — you just have to
keep the links straight in one file. This chapter gives you the goods on how to
manage your sites with Site Navigation controls.

Getting Organized
At some point, you have to think about how you’re going to organize your
Web site’s content. Exactly how you do that depends on your content, the
size of your site, and your definition of the word organized. But if you intend
for your site to have major areas that people can navigate to, it would be
good to create a file for each of those major areas. You can even put a blank
.aspx page in each one as a placeholder to link to when you’re developing
your site navigation.

13_583603 ch08.qxd 10/21/05 6:47 PM Page 153

In Figure 8-1, for example, I’ve created some folders within my PublicPages
folder. I’ve put a blank .aspx page in each folder. You don’t have to include
all your site’s folders in your navigation structure. In the interest of keeping
this example to a reasonable size, I’ll just focus on the AboutUs, Help,
Products, and Services folders in my PublicPages folder.

Using Site-Navigation Controls
The two main VWD controls for site navigation are Menu and TreeView. The
Menu control offers a simple drop-down menu of navigational links, as shown
at the left of Figure 8-2. When the Menu control is first displayed on the page in
a browser, only the Home link and arrow symbol are visible. The menu of links
doesn’t appear until the user clicks the arrow button. The Menu control is
good for a small menu that you want to keep out of the way most of the time.

Figure 8-2:
Menu

(left) and
TreeView

(right)
examples.

Figure 8-1:
Some

folders and
pages in the
PublicPages

folder.

154 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 154

The TreeView control shows the navigational structure in a collapsible tree,
as in the example at right in Figure 8-2. The user can click + and – signs to
(respectively) expand and collapse categories. I’m sure you’ve seen a gazil-
lion similar collapsible trees; in VWD, both the Toolbox and Solution Explorer
are collapsible trees. The TreeView control is best for handling larger naviga-
tional tasks.

Both the Menu and TreeView commands can be used with either static data
or dynamic data. When using a control with static data, the navigational
structure of the site is defined as part of the control. The method is easier in
that you can define the whole menu structure just by filling in the blanks in
dialog boxes.

With dynamic data, you store data about the site’s structure in a file, called a
site map, that’s external to the control. The advantage to this approach is
that the site’s navigational structure is stored in one place. So if you need to
change the navigational structure of the site, you just have to change the
external file, not every control on every page.

In the sections that follow, I’ll look at using both controls with static data and
with dynamic, external data.

Using the TreeView and Menu Controls
The TreeView and Menu server controls are both in the Navigation category
of the Toolbox. They’re so similar that reading one set of instructions is suffi-
cient for you to use either. In this section, I describe how to use the controls
with static data (without a site map that’s defined in an external file). This is
the easiest way to create a map, especially if it’s a small map that’s not likely
to change often. (That’s especially true if, like a lot of us, you know nothing
about XML and can’t type worth beans.)

The only real drawback to this method is that it’s tedious. And if you put the
control on a specific Web page, you’d have to re-create the control on (or
copy and paste the control to) other pages. (Unless you put the control in a
Master Page, in which case it will appear on all pages that use the Master
Page — which may not be what you’re looking for.)

If you don’t want to put the navigation control on a Master Page, you could
put it in a Web User Control and use it as needed on pages throughout your
site. I’ll talk about Web User Controls later in this chapter.

So the first step is to open the page on which you want to place the Menu or
TreeView control. Make sure you’re in Design view. Then follow these steps:

155Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 155

1. Drag either a Menu or TreeView control from the Toolbox onto the
page as shown in Figure 8-3.

2. On the Common Tasks menu, click Edit Menu Items.

The Menu Item Editor dialog box opens.

3. Use the Menu Item Editor to define each menu item.

More on this rather hefty step in a moment.

4. Click OK.

To use the Menu Item Editor, use toolbar buttons at the top of the Items list
to insert options to appear on your menu. You’ll need a root element first, so
click the Add Root Item button in the toolbar to add a new root. At first, the
item is just named New Item.

Next you have to set the following properties in the Properties column of the
dialog box:

� NavigateUrlL: Click this property, and then click the Build button that
appears. Use the Select URL dialog box that opens to navigate to the
page that the link should open, and then click OK.

� Text: Type the text of the menu item.

� ToolTip: Type the ToolTip text for the item.

Figure 8-4 shows an example where I’ve added one root element. I’ve set its
NavigateURL property to ~/Default.aspx. The ~ character always refers to
the root folder of the site (C:\...\MyVWDSite in Figure 8-1). So ~/Default.
aspx means “the default.aspx page in the site’s root folder.” I changed the
Text property to Home (which also changed the text of the Value property).
And I added a little ToolTip that reads Go to home page.

Figure 8-3:
Menu

control
added to
the page.

156 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 156

To add a child page item under the root item, click the Home item at the top
of the left column, and then click the Add a Child Item button in the toolbar
(second button from the left). Another New Item appears, indented under the
first item.

As before, you want to set the NavigateUrl property to the page the menu
item opens, the Text to the item as you want it to appear in the menu, and
optionally a ToolTip. Just keep repeating the process until you’ve defined all
your items.

Use other buttons in the toolbar to work with items you’ve already put in the
menu. Click on the item you want to change, and then use the Delete (X), up,
down, left, or right arrow buttons to reposition the item, if necessary.

Figure 8-5 shows an example. I’ve just created the last child element, and
changed its Text property to show “About us.” You can’t see the entire
NavigateUrl. It’s the path to the AboutUsHome.aspx page from the site’s
root folder, as given here:

~/PublicPages/AboutUs/AboutUsHome.aspx

You can see both Default.aspx and AboutUsHome.aspx in Figure 8-1.

Remember, the same technique works whether you’re creating a Menu control
or TreeView control. If you ever need to change the control, just open the
page on which you placed the control. From the control’s Common Tasks
menu, choose Edit MenuItems again. In the dialog box, click the + sign next to
the root item to expand the menu.

Both the Menu and TreeView controls have an Auto Format option on their
Common Tasks menu. Be sure to check out each one.

Figure 8-4:
One item
added to

Menu Item
Editor.

157Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 157

As mentioned, using static data with a Menu or TreeView control is just one way
to create a site-navigation menu. The other is to store all the site-navigation
info in site map file, and then bind the control to the site map.

Creating a Site Map
There are several ways to create site maps. The easiest is to just create a
Web.sitemap file in the root of your folder. Then edit the resulting XML file to
define your site’s navigation structure. Here are the steps to get started:

1. Right-click your site name at the top of Solution Explorer and choose
Add New Item.

2. In the Add New Item dialog box, click Site Map.

3. Click the Add button.

In Solution Explorer, you see the Web.sitemap name at or near the bottom of
the folder hierarchy. On the Design surface, you see an almost-empty site
map file with some placeholders for typing text, like in Figure 8-6. (There is
no Design view for the Web.sitemap file.)

The trickiest thing about using the site map file is keeping track of parents
and children. It’s all done with nesting (indentations have nothing to do with
it). Basically, any element that has child elements must enclose its child ele-
ments in a pair of <siteMapNode>...</siteMapNode> tags. An element that
has no children can be expressed in a single <siteMapNote /> tag (note the
/> rather than just > at the end of the tag).

Figure 8-5:
All items in

the Menu
Editor.

158 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 158

The organization of the XML tags defines the organization of options dis-
played in a Menu or TreeView control. In XML, it’s all about nesting. Children
of elements must be nested within their parent element. To illustrate, let’s
start with a simple example.

At the top of Figure 8-7 you see a Web.sitemap file. The outermost <site
MapNode>...</siteMapNode> tags define the root element — that is, the
item that appears above all others — of the menu. That root element is the
parent to several child elements within the tags. Each of those represents a
single link on a “submenu” below the parent. (I removed the url= and
description= elements that normally appear in the siteMapNode tags for
clarity.)

At the bottom of Figure 8-7 I show how that SiteMap file looks in a Menu con-
trol (left) and a TreeView control (right). In both cases, the Home link is the
root element at the top of the heap. Each child element is an option “beneath”
the root element (and to the right in the case of the Menu control).

In real life, you couldn’t just omit the url= attribute, as that’s what binds the
link to a page in your site. The description= attribute just defines the
ToolTip that appears when the user points to the menu item. Here’s a sample
Web.sitemap with all the attributes in place:

<sitemap... >

<siteMapNode url=”~/Default.aspx” title=”Home” description=”Go home”>

<siteMapNode url=”~/PublicPages/Services/ServicesHome.aspx”
title=”Products” description=”Product catalog” />

<siteMapNode url=”~/PublicPages/Products/ProductsHome.aspx”
title=”Services” description=”Service options” />

Figure 8-6:
A new Web.
sitemap file.

159Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 159

<siteMapNode url=”~/PublicPages/Help/HelpHome.aspx”
title=”Help” description=”Site help” />

<siteMapNode url=”~/PublicPages/AboutUs/AboutUsHome.aspx”
title=”About Us” description=”Contact us” />

</siteMapNode>

</siteMap>

As you might imagine, the more complicated the navigational structure of
your site, the more complicated the Web.sitemap file. For example, Figure 8-8
shows the Web.sitemap file (again using only title= attributes for brevity)
I used to make the TreeView control back in Figure 8-2. The braces won’t be
visible on your screen. I added those to highlight the nesting levels.

The nesting levels in the Web.sitemap file define the nesting levels (or show/
hide levels) in the Menu or TreeView control to which you bind the site map.

Typing site maps isn’t exactly fun. There’s not much in the way of IntelliSense
support or other user-friendly features. Writing a Web.sitemap file probably
involves as much copying and pasting as it does typing.

Web.sitemap file

Menu control Treeview control

Children

Parent

Bound controls

Figure 8-7:
A Web.

sitemap file
(top) in

Menu and
TreeView

controls.

160 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 160

The + and – signs at the left side of the editing window expand and collapse
nodes within the site map. With a little practice, you can use those buttons to
help make sure things are nested properly in your file.

The upside to creating a Web.sitemap file is that the site’s navigation struc-
ture is defined in one file. You don’t have to worry about broken hyperlinks
all over your site whenever you make a change. When you change your site,
you need only change the navigation structure in the Web.sitemap file to
match the new structure.

Customizing navigation for roles
If your site has members and roles, you may want different navigation maps
for different types of users. For example, the navigation options for an anony-
mous user might include links to public information only. The options on the
navigation menu for an authenticated user, or user in a specific role, might
include links to members-only content.

Hiding navigational options from anonymous users is called security trimming,
because you “trim things out” of a menu by making some options available
only to people in specific roles.

Figure 8-8:
Web.site

map file
with three

nesting
levels.

161Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 161

Using security trimming in your site menus is a two-step process. First, you
have to enable security trimming for your site as a whole. That involves
specifically defining Web.sitemap as your site’s default site map file, and
then enabling security trimming on that file by manually editing your site’s
Web.config file. Here are the necessary steps:

1. Open (double-click) the Web.config file in your site’s root folder.

Don’t confuse Web.config with Web.sitemap. They’re two separate files
that play two separate roles.

2. Scroll down to the bottom of the Web.config file, and get the cursor to
a blank line just above the closing </system.web> tag.

3. Type the following tags exactly as shown:

<siteMap defaultProvider=”XmlSiteMapProvider” enabled=”true”>
<providers>
<add name=”XmlSiteMapProvider”
description=”Default SiteMap provider.”
type=”System.Web.XmlSiteMapProvider “
siteMapFile=”Web.sitemap”
securityTrimmingEnabled=”true” />

</providers>
</siteMap>

Type carefully because typing something that’s sorta like the above
won’t cut it. Use the IntelliSense menus as much as possible to minimize
typos.

4. Close and save the Web.config file.

All you’ve done so far is change your site’s overall configuration a bit to sup-
port security trimming in the Web.sitemap file. To take advantage of that
new feature, you have to specify who can see what in the Web.sitemap file.
You do so by adding the following attribute to any tag that’s to be viewed by
members of a specific role only:

roles=”roleName”

The roleName must be the name of a role you’ve previously defined for your
site using the Web Site Administration Tool. For example, in Chapter 3, I cre-
ated a role named SiteMembers. So, in my Web.sitemap folder, I’d add

roles=”SiteMembers”

to the sitemapnode tag of any menu item that should be visible only to
logged-in SiteMembers. The following is an example of a Web.sitemap file,
where three of the menu items are visible only to people in the SiteMembers
role. I’ve boldfaced the title attributes and new roles=”SiteMembers”
attributes for clarity:

162 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 162

<?xml version...>
<siteMap xmlns...>

<siteMapNode url=”~/Default.aspx” title=”Home” description=”Go home” >

<siteMapNode url=”~/PublicPages/Services/ServicesHome.aspx”
title=”Products” description=”Product catalog” />

<siteMapNode url=”~/PublicPages/Products/ProductsHome.aspx”
title=”Services” description=”Service options” />

<siteMapNode url=”~/MemberPages/MemberServices/MemberServices.aspx”
title=”My Page” description=”Member Services”
roles=”SiteMembers”/>

<siteMapNode url=”~/MemberPages/Forums/ForumsHome.aspx”
title=”Forums” description=”Discussions”
roles=”SiteMembers”/>

<siteMapNode url=”~/MemberPages/Downloads/DownloadsHome.aspx”
title=”Download” description=”Download stuff”
roles=”SiteMembers” />

<siteMapNode url=”~/PublicPages/Help/HelpHome.aspx”
title=”Help” description=”Site help” />

<siteMapNode url=”~/PublicPages/AboutUs/AboutUsHome.aspx”
title=”About Us” description=”Contact us” />

</siteMapNode>
</siteMap>

When that Web.sitemap file is bound to a navigation Menu control, anony-
mous users see the drop-down menu at the left in Figure 8-9. Authenticated
users in the SiteMembers role see the navigation menu shown at the right in
that same figure.

Binding a control to Web.sitemap
After you’ve created a Web.sitemap file in your site’s root folder, you can bind
it to either a Menu or TreeView control. “Binding” just means that the control
gets its information from the Web.sitemap file rather than properties defined

SiteMembers menuAnonymous users menu

Figure 8-9:
A security-

trimmed
navigation

menu.

163Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 163

within the control. First, in Design view, you open the Master Page (or .aspx
page) on which you want to put the control. Then follow these steps:

1. Drag a Menu or TreeView control onto the page.

2. From the Data Source drop-down list on the Common Tasks menu,
choose <New Data Source...>.

3. In the Data Source Configuration Wizard that opens, click Site Map.

4. Click OK.

That’s it. To see the results, close and save the page. Then view the page in a
Web browser. (Or, if you put the control on a Master Page, open any page that
uses that master.) A Menu control initially shows only its root link. When you
point to that item, the submenu items appear. To go to any page, click its link.

If there’s a problem with your Menu or TreeView control, the most likely cul-
prit is the Web.sitemap file: possibly something as minor as a missing quota-
tion mark or improperly nested tags. If you enabled security trimming, the
problem could be in the Web.config file.

Adding an Eyebrow Menu
A breadcrumb or eyebrow menu is a short navigational path back to the home
page, usually shown at the top of a page. You see examples of them at many
large Web sites, including the Microsoft Developer Network Web site (www.
msdn.com). Such a menu usually looks something like this:

MSDN Home > ASP.NET Home > Get Visual Web Developer

The path provides a quick view of where the user is in the navigational hier-
archy, as well as quick links up the navigational hierarchy.

If your site has a Web.sitemap file, you can easily add a breadcrumb menu to
the top of any page in your site. Just drag a SiteMapPath tool from the
Toolbox onto your page. It appears as a generic eyebrow menu in Design
view as in the example shown in Figure 8-10.

Like all server controls, SiteMapPath has a Common Tasks menu with an
easy AutoFormat option. It also has an extensive Properties sheet where you
can change things like font, color, and so forth. But you don’t have to do any-
thing to it if you don’t want. Just close and save the page.

164 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 164

Creating Web User Controls
Though not directly relevant to site navigation, I’d be remiss in my duties if I
didn’t make you aware of Web User Controls. Here’s why: In any given Web
site there’s likely to be stuff you want to show on every page. That stuff you
can put in a Master Page. On the other hand, there may also be stuff that you
want to put on some, but not all, pages. An eyebrow menu would be a good
example, because such a menu doesn’t really make sense on pages that are at
the top of a navigational hierarchy.

If you drag-and-drop a control straight from the Toolbox onto a page, you
create a whole new control. If you want consistency across your site, you’ll
have to style the control exactly the same on every page in your site. If you
ever change your mind about that style, you’ll have to make the change to
every page that uses the control. Bummer.

The simple solution to the problem is a Web User Control. Getting back to the
eyebrow menu example, you could put the SiteMapPath control in a Web
User Control, and design it as you see fit, and then close and save the Web
User Control.

Then, any time you want an eyebrow menu on the page you’re editing, drag
the Web User Control from Solution Explorer onto the page (which I named
MyEyebrowMenu.ascx in Figure 8-11). Don’t use the generic SiteMapPath
control from the Toolbox anymore, as that one won’t have the same style as
the one in the Web User Control.

When you drop the Web User Control onto your page, you won’t have to design
it because it’s already been designed. And, if you ever decide to change the
appearance of the control that’s inside the Web User Control, no problem. Just
open the Web User Control in Design view, make your changes, and close and
save the page. The change is automatically reflected in every page on which
you’ve placed the Web User Control.

Figure 8-10:
Use a

SiteMap
Path

control for
eyebrow

menus.

165Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 165

And remember, the eyebrow menu is just an example. Web User Controls are
perfect for anything that you might want to show on some, but not all, pages
throughout your site.

A good starting point might be to create a folder for the controls. To do so,
just right-click the site name at the top of Solution Explorer and choose Add
Folder➪Regular Folder. Give the folder a name (I’ll name mine
WebUserControls) and press Enter.

Creating a Web User Control
Creating a Web User Control is almost identical to creating a regular Web
Form page. Here are the steps:

1. In Solution Explorer, right-click the folder in which you want to store
the control and choose Add New Item.

2. In the Add New Item dialog box, click Web User Control.

3. Enter a filename of your choosing.

I named mine MyEyebrowMenu.ascx in Figure 8-12.

4. Choose language options to taste.

I chose the usual in Figure 8-12.

5. Click Add.

The new control opens looking just like an empty Web page (in Design view).
And basically, it is just an empty page in the sense that you can put whatever
you want into it. In the eyebrow menu example, you’d drag a SiteMapPath
control from the Toolbox onto the page. But any server control from any
Toolbox category would be fine as well.

DragFigure 8-11:
Drag a Web

User Control
onto a page.

166 Part II: Building Your Web Site

13_583603 ch08.qxd 10/21/05 6:47 PM Page 166

You can style the item using its Common Tasks and Properties menus. Or you
can leave it as-is. Then just close and save the page. Its filename extension,
.ascx, identifies it as a Web User Control.

Unlike a page, you can’t view a Web User Control in a Web browser. You first
have to put the Web User Control on a page, and then open that page in a
Web browser.

Using a Web User Control
Any time you want to display a Web User Control on one of your pages, just
drag its filename from Solution Explorer onto your page, as in the example
shown back in Figure 8-11. Nothing else is required. To see the control, close
and save the page on which you placed the control. Then view that page in a
Web browser.

Should you decide to change the style of the control that’s inside the Web
User Control, here’s the drill:

1. Open the Web User Control by double-clicking its name in Solution
Explorer.

2. Edit the control in Design view as you normally would.

3. Close and save the control.

All pages that use the Web User Control display the control with your
current format settings.

Figure 8-12:
Creating a
Web User

Control.

167Chapter 8: Easy Site Navigation

13_583603 ch08.qxd 10/21/05 6:47 PM Page 167

168 Part II: Building Your Web Site

Don’t be shy with Web User Controls
You can also create different Web User Controls
for different types of site visitors. For example,
you could create a Web User Control named
Anon.ascx (or whatever), and put whatever
you want in that control. Create another Web
User Control named Authenticated.ascx
(or whatever), and put whatever you want in
that one. Close and save both controls.

Then, on any page where you want to show one
control or the other, first drag a LoginView

control onto the page. Then drag Anon.ascx
into the Anonymous Template of that control.
Switch to the Logged In template, and drag
the Authenticated.ascx file into that tem-
plate on the LoginView control. Anonymous
users will see only what’s in Anon.ascx.
Authenticated users will see only what’s in
Authenticated.ascx.

13_583603 ch08.qxd 10/21/05 6:47 PM Page 168

Part III
Personalization
and Databases

14_583603 pt3.qxd 10/21/05 6:40 PM Page 169

In this part . . .

If you want users to return to your site regularly, you
have to give them a sense of belonging to a community.

One way to accomplish that is to give them the option of
personalizing their use of your site to their liking. In this
part, you get a handle on using the Personalization and
Themes features of VWD to give users what they want.

If you plan to offer courses, products, or other things that
users might purchase or sign up for, your site will need
some custom database tables to store data about your
offerings and record transactions. This part unravels the
mysteries about how to create these features.

14_583603 pt3.qxd 10/21/05 6:40 PM Page 170

Chapter 9

Using Personalization
In This Chapter
� Creating user profiles

� Storing information about users as profile properties

� Retrieving, changing, and saving profile properties

� Using validation controls

� Using the Forms Designer

When you configure your Web site to support membership, VWD
automatically creates database tables to store information about

user accounts. However, it creates only the bare-minimum number of fields
needed, such as User Name, E-mail Address, and Password. If you want to
store more information than that about each user, such as name, address,
and phone number, you must define profile properties.

The basic idea in VWD is this: Every authenticated user has a profile that
contains information about that user. In code, you can use the simple syntax
Profile.propertyname to get, or store, information about each user. The
keyword Profile (with an uppercase P) always means “whichever user hap-
pens to be viewing this page.”

The first step is to decide what properties you want to store for each user —
and then configure your site to support those profiles.

Creating a User Profile
A user profile consists of a set of property names, where each property name
represents the unit of information you want to store. The names you give
your properties are entirely up to you. Just keep the name short, no blank
spaces, and make sure it starts with a letter (A–Z). Some common examples
include names like FirstName, LastName, Address, City, State, and
ZIPCode.

15_583603 ch09.qxd 10/21/05 6:42 PM Page 171

You can also choose a data type for each field — that is, a description of the
type of information being stored, whether it’s text (string), a number, a date,
whatever.

If you don’t know a data type from a turtledove, suffice it to say that the
String data type can store just about anything. So if in doubt, use the
String data type.

For the sake of example, in this chapter we create eight profile properties to
store the following information about each person who creates an account on
your Web site:

� FirstName: This stores the person’s first name (such as Joe or Mary).

� LastName: This stores the person’s surname (such as Smith or Jones).

� Address1: First line of street address.

� Address2: Optional second line of street address.

� City: Town or city in which the person lives.

� StateProvince: State or province in which the person lives.

� ZIPPostalCode: ZIP code or postal code in which the person lives.

� Country: Country where the person lives.

You can assign default values to properties. For example, you can set the
default value of the Country field to USA if you think most site members will
be American. The default value is simply the value that’s stored in the prop-
erty unless the user specifies another.

172 Part III: Personalization and Databases

Why strings for phone numbers and ZIP codes?
It may seem that phone numbers and ZIP codes
should be numbers rather than strings. After all,
aren’t (215) 555-1234 and 00123-1343 numbers?
Actually, they’re not numbers. At least, they’re
not scalar values that represent some quantity.
With scalar values, you can do math (addition,
subtraction, multiplication, and division) to
come up with some new meaningful result. Try
doing math with ZIP codes or phone numbers,
and even if you can come up with some sort of
result, that result has no real meaning.

Also, numbers must start with a numeric digit
(0–9) or a leading minus sign. A number cannot
contain parentheses or embedded hyphens.
Hence, you couldn’t type a phone number like
(215) 555-1234 or a ZIP code like 00123-1343 into
a numeric field even if you wanted to. You only
want to use the Number data types for true
scalar values such as 10, 98.6, –32, 9.99, and so
forth.

15_583603 ch09.qxd 10/21/05 6:42 PM Page 172

Setting up user profiles
To define user profiles, you need to manually edit the Web.config file in the
root of your Web site. Here’s how:

1. Open Web.config for editing by just double-clicking its icon.

Typically you’ll see that filename located near the bottom of Solution
Explorer.

2. Just above the closing </system.Web> tag, type

<profile>

and press Enter. A closing </profile> tag is added automatically. So
you end up with:

<profile>

</profile>

3. With the cursor placed between the <profile> and </profile> tags,
type:

<properties>

and press Enter. Once again, the closing </properties> tag is entered
automatically. So you end up with

<profile>
<properties>

</properties>
</profile>

4. Between the <properties> and </properties> tags you need to type
a tag for each property you want to define using the following syntax:

<add propertyName />

where propertyName is the name of the profile property.

If you’re using the string data type, as all the sample fields described earlier
were, then you don’t need to specify a data type. So in this example all you’d
really need in your Web.config file is the following:

<profile>
<properties>

<add name=”FirstName”/>
<add name=”LastName”/>
<add name=”Address1”/>
<add name=”Address2”/>
<add name=”City”/>
<add name=”StateProvince”/>
<add name=”ZIPPostalCode”/>
<add name=”Country”/>

173Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 173

</properties>
</profile>

When you’re typing code, like here, there is no margin for error. You must
type every character and blank space correctly, or you’ll get error messages
when you try to view a Web page in your browser.

If you want to put in a default value for a property, include a defaultValue=
”value” in the tag (where value is the text you want inserted into the prop-
erty automatically). For example, to make USA the default value for the
Country property, add defaultValue=”USA” to the tag that defines the
Country property, as shown below:

<profile>
<properties>

<add name=”FirstName”/>
<add name=”LastName”/>
<add name=”Address1”/>
<add name=”Address2”/>
<add name=”City”/>
<add name=”StateProvince”/>
<add name=”ZIPPostalCode”/>
<add name=”Country” defaultValue=”USA”/>

</properties>
</profile>

I should mention that even though you can omit the data type when defining
string value, that doesn’t mean you must omit them. When you look at other
examples of profile properties, you might see the string data type defined
explicitly, like this:

<profile>
<properties>

<add name=”FirstName” type=”System.String”/>
<add name=”LastName” type=”System.String”/>
<add name=”Address1” type=”System.String”/>
<add name=”Address2” type=”System.String”/>
<add name=”City” type=”System.String”/>
<add name=”StateProvince” type=”System.String”/>
<add name=”ZIPPostalCode” type=”System.String”/>
<add name=”Country” defaultValue=”USA”

type=”System.String”/>
</properties>

</profile>

Try not to let this confuse you. Including the type=”System.String”
attribute really has no effect — even if you omit the attribute, the data type
will be System.String (called a string for short).

So, just to make sure we’re all on the same page here, let’s recap. Assuming
you added the same properties described in this chapter,your entire
Web.config file should look something like the example in Figure 9-1.

174 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 174

If you happened to add the tags for relaxing password rules as described in
Chapter 7, your Web.config file might look more like the one in Figure 9-2.

When you’re sure you have it right, just close and save the Web.config file.

Figure 9-2:
Another
sample
Web.

config file
with profile
properties

defined.

Figure 9-1:
Profile

properties in
a sample

Web.
config

file.

175Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 175

Letting Users Enter Properties
The whole purpose of creating profile properties is to store information
about users (site members). You wouldn’t want to type in all that information
about each user yourself. Rather, you want each user to type in his or her
own profile properties. To do so, you need to provide users with a fill-in-the-
blanks form.

A form is basically a Web page with controls for entering and editing data
(information). To create a Web form for entering profile properties, just
create a new, empty .aspx page. In the following steps, I create a page named
CreateProfile.aspx to let users enter profile information in their own
accounts:

1. In Solution Explorer, right-click the folder in which you want to store
the new page and choose Add New Item.

In my example, I right-clicked my MemberPages folder.

2. In the Add New Item dialog box, click Web Form.

3. Enter a filename for your page.

I entered CreateProfile.aspx for my page.

4. Choose other options to taste.

I chose the options shown in Figure 9-3.

5. Click the Add button.

6. If you opted to use a Master Page, choose your master, and then
click OK.

Figure 9-3:
About to
create a

Web Form
named

Create
Profile.

aspx.

176 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 176

A new, blank page (or content placeholder) opens ready for you to design
your form. If it opens in Source view, click the Design button at the bottom of
the Design surface to switch to Design view. Then you can add text, pictures,
links, and controls to the page using all the standard methods described in
earlier chapters.

Here, some Textbox controls will allow users to enter profile information on
this new page. Probably your best bet would be to add a table to the page first,
to make it easy to organize the text boxes. The left column of the table would
be used for plain-English descriptions of what you expect the user to type in
the text boxes in the right column, as shown in the example in Figure 9-4.

To make the table act as a form, you’ll need to add some Textbox controls so
users can type in their own information. You’ll also need to assign a program-
matic name to each control, via the control’s ID property. You’ll use the pro-
grammatic name to refer to the text box from code. The programmatic name
can be just about anything you want, but must start with a letter and cannot
contain spaces or punctuation marks.

For example, in Figure 9-5 I dragged a Textbox control from the Standard
tools (visible in the Toolbox at the left side of the figure) into a table cell. The
text box is the white rectangle. That control is currently selected so you can
see its Properties sheet. As you can see in the figure, I’ve named the text box
txtFirstName by typing that name as the control’s ID property in its
Properties sheet.

You’ll need to add (and name) a Textbox control for each profile property
that you want users to see or edit. For my example, I created eight Textbox
controls and named them as shown in Figure 9-6. Adding “txt” to the front of
each name isn’t a technical requirement. I just stuck that on there to remind
myself later that the name refers to a Textbox control.

Figure 9-4:
Table and
some text

added to a
page.

177Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 177

Adding a button
In addition to having some blanks to fill in, users need a button to indicate
when they’re done typing and ready to submit their information. To add a
button to the form, just drag a Button control from the Standard tools onto
the form. VWD automatically names the button Button1. You can keep that
name or change it by changing the button’s ID property. For my example, I’ll
keep the default name.

To change the text that appears on the button, change the button’s Text
property. Figure 9-7 shows an example where I’ve added a button to my
sample form, and set its Text property to Submit. So the button shows
Submit as its label. (You could use OK or anything else you want for the
button’s Text property.)

txtFirstName
txtLastName
txtAddress1
txtAddress2
txtCity
txtStateProvince
txtZIPPostalCode
txtCountry

Figure 9-6:
Sample
named

Textbox
controls.

Figure 9-5:
A Textbox

control
named

txtFirst
Name added
to the page.

178 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 178

So now you have a page that shows some empty text boxes, and a button that
does nothing when you click it. But it has no connection whatsoever to pro-
file properties. Before this page is of any real value, I need to come up with a
way to copy whatever the user types into the Textbox controls into that
user’s profile properties. That requires some programming. And program-
ming means writing code in the page’s code-behind file.

Writing some code
Programming is all about writing code — which is slang for “computer
instructions written in a programming language like C# or Visual Basic” (and
not for “hieroglyphics,” no matter what you’ve heard). Learning to write code
fluently is an enormous undertaking and usually requires several months, if
not years, of study and experience to master. I can’t get into all of that here;
there’s simply not enough room in this book. But I can tell you exactly what’s
needed in terms of using profile properties.

In code, if you want to refer to the contents of a Textbox, you use the syntax

ctrlName.Text

where ctrlName is the programmatic name (ID) of the control. For example,
in code, txtFirstName.Text refers to the contents of the txtFirstName
text box.

To refer to a specific profile for the current user, the syntax is:

Profile.propertyName

Figure 9-7:
A button

added to my
sample

form.

179Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 179

where propertyName is one of the property names you created yourself. For
example, Profile.FirstName refers to the first name of whatever user hap-
pens to be viewing the page at the moment.

To copy the contents of a text box into a profile property, make the profile
property “equal to” the Textbox control’s contents. The C# syntax for that
looks like this:

Profile.propertyName = txtBoxID.Text;

Here propertyName is one of your profile property names and txtBoxID is
the ID of its corresponding text box. The semicolon (;) at the end of the line
is a C# requirement. In Visual Basic, you just omit the semicolon.

If you forget the semicolon, the C# Editor shows a little red squiggle where
the semicolon should be. Type in the semicolon and your code should work
properly.

The following is a line of C# code that copies the contents of the
txtFirstName control to the current user’s Profile.FirstName property:

Profile.FirstName = txtFirstName.Text;

To copy the contents of every text box to the user’s Profile properties, you
need several lines of code, like this:

Profile.FirstName = txtFirstName.Text;
Profile.LastName = txtLastName.Text;
Profile.Address1 = txtAddress1.Text;
Profile.Address2 = txtAddress2.Text;
Profile.City = txtCity.Text;
Profile.StateProvince = txtStateProvince.Text;
Profile.ZIPPostalCode = txtZipPostalCode.Text;
Profile.Country = txtCountry.Text;

Tying code to an event
To ensure that the code is executed only when the user clicks the Submit
button, tie the code to the Click event for Button1. The easy way to tie code
to a button is to simply double-click the button in Design view. The code-
behind page (where all code is kept) for the page opens, looking something
like Figure 9-8.

The code-behind page is the place where you put the logic of a page — the
code that tells computers what to do, rather than stuff the user actually sees
on the screen. After it’s opened, the code-behind page appears in its own
tabbed document window. You can switch back and forth between the .aspx
page and the code-behind page by clicking their tabs.

180 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 180

When using C# as your programming language, the code-behind page has the
same name as the .aspx page followed by a .cs extension. For example, the
code-behind page for CreateProfile.aspx is named
CreateProfile.aspx.cs.

At the top of the code-behind page is a bunch of using directives followed by
more C# code. Basically, you don’t want to change or remove anything that’s
in the page unless you really know what you’re doing. Just now, all you want
to do is add some code to the Button1_Click event handler — which
appears near the bottom of the page and looks like this:

protected void Button1_Click(object sender, EventArgs e)
{

}

Do not confuse the Button1_Click procedure with the Page_Load proce-
dure that precedes it. You’ll use the Page_Load procedure later. Make sure
you get the cursor between the correct procedure’s opening and closing
curly braces before you start typing.

Type the properties code you created in the previous section here. When
typing code, there is no margin for typographical errors. So you want to use
IntelliSense as much as possible to minimize those errors. For example, when
typing the first line, you can type Prof and then press Enter to choose Profile
from the IntelliSense menu.

Figure 9-8:
Code-

behind page
for my

Create
Profile
example.

181Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 181

Next, type the dot (period), and the IntelliSense menu shows valid words/
names you can type there, as in Figure 9-9. Again, to get the word you want,
you can just keep typing, press Enter when the highlighter is on the word
you want in the IntelliSense menu, or double-click the word you want in the
IntelliSense menu.

Yellow highlights near line numbers indicate lines that have been added or
changed but not yet saved.

When typing C# code, remember to type a semicolon (;) at the end of each
statement. If you forget the semicolon, the editor gives you a little red squig-
gly line showing where to put it.

When you’ve finished typing all the code, your code-behind page should look
something like Figure 9-10.

Figure 9-9:
Sample

IntelliSense
menu.

182 Part III: Personalization and Databases

The wrong page opened!
Normally you can view any page in your site by
right-clicking its name in Solution Explorer and
choosing View in Browser. However, when you
start using privileged content in your site, it
doesn’t always work that way. By default, when
an anonymous user attempts to access a page
that requires authentication, they’re automati-
cally redirected to the login page.

When you right-click a protected page in Solution
Explorer and choose View in Browser, the same
thing happens if you’re not logged in — you’re
instantly redirected to your own login page,
making it look as though the wrong page has
opened! To get around this problem, you simply
log in to a valid user account and then open the
restricted page.

15_583603 ch09.qxd 10/21/05 6:42 PM Page 182

When you’re finished typing your code, just close and save the file as you
would any other, by clicking the Close (X) button in its upper-right corner.
The original .aspx page will still be open. The code you wrote doesn’t affect
its appearance or behavior in Design view. The code won’t actually do any-
thing until you open the page in a browser.

Determining where to put
the profile information
The next thing to consider is when users enter profile information. Of course,
you can provide a link to the page from any place you want (though a good
time to grab users is right after they finish successfully creating their individ-
ual user accounts). If you used a CreateUserWizard control to let users set
up accounts, the job is easy. You just set the ContinueDestinationPageURL
property of the CreateUserWizard control to the CreateProfile.aspx
page.

For example, back in Chapter 7 I created a page in my sample site named
CreateAcct.aspx. I would just open that page in Design view, click the control

Figure 9-10:
Here’s the
Button1_

Click
event

handler,
ready to go.

183Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 183

to select it, and then scroll through the (lengthy) set of properties until I got
to ContinueDestinationPageURL. There I’d click the property, click the
Build button, navigate to my CreateProfile.aspx page, and click OK. The
property then shows the path to that page, as shown in Figure 9-11.

Close and save the CreateAcct.aspx page — and that takes care of allowing
users to create accounts and enter profile information.

Though I didn’t specifically mention it, I was thinking about Web site security
the whole way through the above scenario. I don’t want anonymous users to
have any access to profiles, so I put the CreateProfile.aspx page in my
MemberPages folder. That way an anonymous user can’t get to that page. The
only way to get to that page is by first successfully creating a valid user
account.

The word “successfully” is key there. I wouldn’t want people to sneak around
setting up accounts. But that’s not going to happen; only users who success-
fully create an account can reach the ContinueDestinationPageURL. That
restriction is built right into the logic of the CreateUserWizard (so I don’t
have to worry about it).

If you’re going to allow users to enter profile information, you’ll also have to
let them change their own information. I haven’t done anything about that
yet. But I can do so pretty quickly.

Letting users edit their profiles
So far I’ve only created a form that can store information in a user’s profile.
We haven’t come up with a means to retrieve a user’s profile properties. If we
want users to edit their own profiles, we need a page that can retrieve the
profile information, show it on a form for the user to view (or edit), and if
need be, send any changes back to the database.

Figure 9-11:
The

Continue
Destina
tionPage
URL prop-

erty of a
Create
User

Wizard
control.

184 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 184

Getting data from the profile to the text box is just the opposite of getting
data from the text box to the profile. That is, rather than making the profile
property equal to the text box’s text, you make the text box text equal to the
profile property. For example, to copy the user’s FirstName profile property
to a control named txtFirstName, the C# statement is:

txtFirstName.Text = Profile.FirstName;

You could whip this profile-retrieval page together quickly just by making a
copy of CreateProfile.aspx and renaming it to EditProfile.aspx. To do
this, open the EditProfile.aspx page, then double-click some empty space
on the page background (or the content placeholder). Or you can just
double-click EditProfile.aspx.cs in Solution Explorer. Either way, the
code-behind page opens.

You want the profile properties to be loaded into the page as soon as the
page opens so the user sees their information and can make changes. To exe-
cute code as soon as a page opens, put that code in the page’s Page_Load
event handler.

There’s just one catch. With ASP.NET programming, every time a user does
something on your page, a postback gets sent to the Web server. The post-
back causes the Page_Load event handler to execute again — which is fine in
some cases — sometimes (as in this situation) the Page_Load code should
execute only when the user first opens the page — not every time they click a
button on the page.

To prevent code from being executed on postbacks, you can add some “If not
postback, then . . .” C# logic to your Page_Load procedure, as follows:

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

}
}

In C#, an exclamation point (!) means not — so if (!Page.IsPostBack){}
is the C# way of saying, “If the page has already been loaded into the user’s
browser, don’t execute the code in my curly braces.” The code you add to
copy profile properties to text boxes must go in the if (!Page.IsPost
Back){} block’s curly braces, as shown below:

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

txtFirstName.Text = Profile.FirstName;

185Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 185

txtLastName.Text = Profile.LastName;
txtAddress1.Text = Profile.Address1;
txtAddress2.Text = Profile.Address2;
txtCity.Text = Profile.City;
txtStateProvince.Text = Profile.StateProvince;
txtZIPPostalCode.Text = Profile.ZIPPostalCode;
txtCountry.Text = Profile.Country;

}
}

Figure 9-12 shows how the EditProfile.aspx.cs page looks with all the
right code in place. (Please note that I clicked the – sign next to the first
using statement to collapse and hide it. But I did not delete anything up
there.)

Now the EditProfile.aspx.cs page has two C# procedures, each of which
plays a different role in the page:

� Page_Load: Copies the contents of the user’s profile from the Web
server database to Textbox controls on the user’s Web page. This hap-
pens when the user first opens the page.

� Button1_Click: Copies the contents of the Textbox controls on the Web
page to the user’s profile on the database. This happens when the user
clicks the Submit button. If the user never clicks the Submit button,
nothing gets copied to the database.

Figure 9-12:
The

EditProf
ile.aspx
.cs page.

186 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 186

That takes care of allowing users to view and edit their own profile informa-
tion. To put it all to the test, you can start by opening (in a Web browser) the
page for creating a user account. Then actually create a new account, click
Continue, and you should then be able to add some profile properties to the
new account via your CreateProfile page. You should also be able to view
and edit a user’s profile using your EditProfile page.

If you put your CreateProfile and EditProfile pages in a protected
folder, don’t be surprised if your login page opens when you try to view
either one in a Web browser. When you’re in a Web browser, you’re just
another user. Like everyone else, you have to log in to a valid user account
before you can access any page in your site’s protected folder(s).

Of course, if you made even the tiniest mistake when writing your code, or
doing any other step in the overall process, you’ll get error messages rather
than working Web pages. In that case, you’ll need to fix whatever is wrong
before you can get the pages to work.

Using profile properties with Visual Basic
I used C# as the language in the above example. But in Visual Basic, the tech-
niques and code are basically the same: Double-click the page background to
get to the Page_Load event for the page and double-click a button to get to
its event handler.

In Visual Basic, you’d use the If . . . End If block shown below in place
of the C# if{} block. The rest of the lines are identical to the C# code, minus
the semicolon at the end of each line (prompting some C programmers to
refer to C# as “Visual Basic with semicolons”).

Partial Class ProfileVB
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _

187Chapter 9: Using Personalization

Where are profile properties stored?
The profile properties are stored in the same
database as the rest of the membership stuff —
the database you see when you click the
Database Explorer tab instead of Solution
Explorer. Specifically, the profile properties are

stored in the aspnet_Profile table. But the
profiles aren’t stored in a traditional manner, so
you don’t want to go rummaging around in that
table unless you really know what you’re doing.

15_583603 ch09.qxd 10/21/05 6:42 PM Page 187

ByVal e As System.EventArgs) Handles Me.Load
If Not Page.IsPostBack Then

txtFirstName.Text = Profile.FirstName
txtLastName.Text = Profile.LastName
txtAddress1.Text = Profile.Address1
txtAddress2.Text = Profile.Address2
txtCity.Text = Profile.City
txtStateProvince.Text = Profile.StateProvince
txtZIPPostalCode.Text = Profile.ZIPPostalCode

End If
End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Profile.FirstName = txtFirstName.Text
Profile.LastName = txtLastName.Text
Profile.Address1 = txtAddress1.Text
Profile.Address2 = txtAddress2.Text
Profile.City = txtCity.Text
Profile.StateProvince = txtStateProvince.Text
Profile.ZIPPostalCode = txtZIPPostalCode.Text
Profile.Country = txtCountry.Text

End Sub

End Class

Using Validation Controls
The sample forms I presented earlier in this chapter have one weakness:
They accept anything the user types into the boxes. In fact, they accept the
form even if the user leaves every text box empty. That might be okay if you
don’t want to force users to enter personal information. But if getting profile
data from users is important, you may have to reject empty fields or fields
that contain meaningless data.

The ASP.NET validation controls, available in the Validation section of the
Toolbox, make it easy to verify form data (see Figure 9-13). To use a valida-
tion control, you first need a place to put it on your form. You’ll want to put it
near the control you’re validating, because the control will display an error
message if the user’s entry isn’t valid.

Most validation controls have certain properties that must be set in order for
the validation to work. The main properties are these:

� ControlToValidate: Specify the name (ID) of the Textbox control that
should be validated.

� Display: Choose Dynamic so the error message takes up no space on the
screen unless a user’s entry fails the validity test.

188 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 188

� ErrorMessage: Any text you type here is used in a ValidationSummary
control (if any) on the current page. This is not the error message that
appears near the control.

� Text: Whatever you type here appears next to the control, but only if a
user’s entry fails to pass validation. It can be a simple asterisk (*) or a
more descriptive message such as Required Field!.

The different kinds of validation controls available to you are described, one
by one, in the following sections.

RequiredFieldValidator
The most commonly used validation control is the
RequiredFieldValidator, which prevents users from leaving a text box
empty. It’s super-easy to use: You just drag the control to your page, and then
set its ControlToValidate property to the programmatic name (ID) of the
control that you don’t want left blank. Figure 9-14 shows an example; here’s
how I set it up:

� I added a third column to a table, and then dragged a RequiredField
Validator control to the cell to the right of my txtFirstName Textbox
control.

� I set the ControlToValidate property to txtFirstName to ensure that
the text box would not be left blank. I set the Display property to
Dynamic, and the ErrorMessage to First name required.

� I set the Text property to an asterisk (*) — which reduced the size of
the control to an asterisk. You can see the control selected, in the upper-
right table cell, in Figure 9-14.

Figure 9-13:
Validation

controls
hanging

around in
the Toolbox.

189Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 189

In a Web browser, those properties play out as follows:

� When the page first opens, the validation control is there but invisible.

� If the user clicks the Submit button and the text box is empty, the valida-
tion control shows its Text property (here it’s a red asterisk).

� The ErrorText is displayed in a ValidationSummary control — provided
you’ve added one to your page (as described later in this chapter in its
own section, “ValidationSummary”).

You can add as many validation controls to a page as you need to ensure
quality data entry.

RangeValidator
The RangeValidator lets you check an entered value to verify that it falls
within some range of acceptable values. It’s the same idea as other controls
in that you drag it to the page and set its ControlToValidate property to
the name of the control you want validated. Then you set the Maximum
Value and Minimum Value properties to define the range of acceptable
values for the control.

RegularExpressionValidator
A regular expression is a symbolic way of defining complex validation criteria.
You can do things like validate an entry against a pattern of characters, or

Figure 9-14:
Using a

validation
control to
keep the

First Name
control from

being left
blank.

190 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 190

add complex “or” logic to a validation control. The language for creating regu-
lar expressions is extensive and beyond the scope of this book. But there are
some ready-made ones that you can use without studying the whole language
of regular expressions.

For an in-depth discussion of regular expressions, see http://msdn.
microsoft.com/library/en-us/cpguide/html/cpconcomregular
expressions.asp.

To validate a control against a regular expression, first drag a Regular
ExpressionValidator onto the form and set its ControlToValidate
property to the name (ID) of the Textbox control you want to validate. Then
click the ValidationExpression property, click the Build button, and you
can scroll through a list of predefined standard expressions in the Regular
Expression Editor (looking very regular in Figure 9-15).

If you find a standard expression you can use, click it and then click OK. In
the Properties sheet, the expression appears as a bunch of parentheses,
backslashes, and other weird characters. But that’s just what a regular
expression looks like. It should work in your form anyway.

CompareValidator
Use the CompareValidator to check a text box entry by comparing it to a
known value or the contents of another control. The most common use of
this is when having a user enter a new password twice. Use a Compare
Validator to compare the contents of the two controls, and reject both
entries if they don’t match. Here’s how to use one:

1. Drag a CompareValidator control to your form and drop it there.

2. Check the new control by setting its ControlToValidate property to
the name of the control.

Figure 9-15:
The Regular
Expression

Editor.

191Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 191

3. Use the control to make a comparison of contents.

• To compare your control’s contents to those of another control,
set the ControlToCompare property to the name of the control to
which you’re comparing the current control.

• To compare the entry to some other known value, set the
ValueToCompare property of the control to the comparison value.

CustomValidator
Use a CustomValidator if none of the other validation controls can do what
you need done — and (oh yeah) you also happen to be a skilled programmer.
If that’s your thing, here are your steps:

1. Drag a CustomValidator control to the page.

2. Set the control’s ControlToValidate property to the name of the con-
trol you want to validate.

3. Switch back to your form.

4. Outside the Properties sheet, double-click the CustomValidator con-
trol you dropped onto the page.

The code-behind file for the page opens with a new CustomValidator1_
ServerValidate procedure all ready and waiting for you to type in your
code.

5. Write your validation routine, close and save both files, then view the
page in a Web browser to test it out.

ValidationSummary
The ValidationSummary control displays a summary of all failed validations
that occurred on the form. All you have to do is drop it on the form. You
don’t even need to change its properties.

In Design view, the ValidationSummary is just a placeholder showing no
useful information. In a Web browser, it initially is invisible. After the user
clicks the Submit button, it lists the ErrorMessageText of each control that
failed validation. It’s simple to use, and handy for users.

192 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 192

Using the Forms Designer
That about wraps it up for profile properties. However, because I’ve touched
on the topic of forms here, it might be worth taking a moment to mention
that putting form controls in tables isn’t the only way to go in VWD. If you’re
accustomed to working with forms-design programs or graphics programs, it
may seem awkward to have to use tables to create forms.

If you want to be able to stick controls anywhere on a page, you can: Use
absolute positioning, the option that puts them where you say. You can use
absolute positioning in any .aspx page, Master Page, Web User Control, or
HTML page. The easiest way to do so is to start by creating or opening a
page. Then, in Design view, follow these steps:

1. Choose Layout ➪ Position ➪ AutoPosition Options from the menu bar.

2. Make sure the first check box is selected.

3. Set the drop-down list option to Absolutely Positioned.

4. Optionally, enable snapping to pixels by choosing the second option,
as shown in Figure 9-16.

5. Click OK.

Choosing the option to snap to pixels is an easy way to line things up on the
form. If you want total freedom in positioning things on the form (as you’d
have in a graphics program), you can leave Snap to Pixels turned off. Feel free
to try both settings to see how they differ and what works for you.

Figure 9-16:
Enabling
absolute

positioning.

193Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 193

After you’ve enabled absolute positioning, any control you add to the page
will initially jump to the upper-left corner of the page. But from there you can
drag it anywhere you like; it’ll stay wherever you drop it. You can arrange
your controls however you see fit.

For each text box you intend to put on your page, you’ll probably want to
also add a Label control to hold some text describing what goes into the text
box. To type text into a Label control, you have to change the label’s Text
property in the Properties sheet. If you double-click the label, you wind up on
the code-behind page. (If you do that by accident, just close the code-behind
page and choose No when asked about saving your changes.)

Figure 9-17 shows an example where I’ve absolutely positioned Label,
Textbox, Validation, and Button controls on a page to create a form simi-
lar to CreateProfile or EditProfile. Because each item is absolutely posi-
tioned on the page, there’s no need to use a table to get things lined up.

Stacking absolutely-positioned objects
If you combine absolute and relative positioning, free-floating objects can
cover (or be covered by) body text. With absolute positioning, you can set an
object’s Z-Index to define where you want it to appear in a stack. An item with
a Z-Index less than 0 is placed beneath text, like the box labeled Z = –1 in
Figure 9-18.

Items with Z-Indexes greater than zero are stacked above text. For example,
in Figure 9-18, the box labeled Z = 1 is one layer above the text, so it covers
text beneath it. The box labeled Z = 2 is at an even higher layer, so it par-
tially covers the boxes and text beneath it.

Setting the Z-Index of an absolutely-positioned item is pretty quick:

1. Right-click the item and choose Style.

Alternatively, you can click the item to select it, then click the Style
property in the Properties sheet, and then click the Build button. Either
way, the Style Builder opens.

Figure 9-17:
Four

controls
positioned
absolutely
on a page.

194 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 194

2. In the Style Builder, click the Position category, use the Z-Index set-
ting to set the item’s Z value, and then click OK.

The on-screen object now has your chosen Z-Index.

To move an item quickly to the top or bottom of the stack without going
through the Style Builder, click the item to select it. Then choose Format ➪
Order ➪ Send to Back (or Bring to Front, depending on where you want to
put the item).

In Source view, absolutely-positioned items sport the style attributes that
define the item’s place on the page, as in this example:

style=”position:absolute; top:152px; left:56px; z-index:2”

The top attribute defines the distance from the top of the page to the top of
the control. The left attribute defines the distance from the left edge of the
page to the left edge of the control. And of course z-index indicates the
item’s stacking position.

If you give an item a Z-Index less than zero, then can’t select it in Design view,
switch to Source view and make its Z-Index a positive number. Go back to
Design view and make your changes. Then you can set the Z-Index back to a
negative number.

Aligning absolutely-positioned objects
Before you align controls, get at least one control into position so you can
use it as the model to which other controls will align. From there, it’s just a
couple of easy steps:

Figure 9-18:
High Z-

Index items
stack above
low Z-Index

items

195Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 195

1. Select all the controls you want to line up, saving the model control
for last.

Here’s the sequence: Click the first item you want to align, hold down
the Shift key while clicking others, and keep holding down the Shift key
as you click the model. Be sure to select the model control last so it
shows white sizing handles.

2. Choose Format➪Align from the menu bar and line things up the way
you want.

For example, in the left side of Figure 9-19, I selected a bunch of Label con-
trols, making ZIP/Postal Code the model. The right side of that same figure
shows the result of choosing Format➪Align➪Rights to get the right edges of
all selected controls to line up to the right edge of the ZIP/Postal Code
control.

It’s easy to make mistakes while trying to get the hang of alignment options
(trust me on this one). If you make a real mess of things, just press Ctrl+Z to
undo the mess.

Sizing objects equally
If you want to make multiple objects the same size, the quick way is to pick
or make a control to use as a the model — and then follow these steps:

1. Make a particular control the size and shape you want all the controls
to be.

2. Select all the controls that you want to size.

Before aligning After aligning

Figure 9-19:
Selected

items (left)
and result of

aligning
(right).

196 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 196

Make sure you select the model item last so it shows the white sizing
handles. For example, in the left side of Figure 9-21, I selected the control
at the top last, so it acts as the model.

3. Choose Format➪Make Same Size from the menu bar.

4. Choose the uniform dimensions you want to apply to all controls.

You can make them the same width, the same height, or the same width
and height. In the right side of Figure 9-20, I first made the controls all
the same size (both height and width).

Spacing absolutely-positioned objects
If you want to equalize the spacing between multiple items in the page, first
select all the items. No particular control plays the role of “model” here, so
the order in which you selected the items isn’t important. After selecting the
items, choose Format➪Horizontal Spacing if you want to make the selected
items equally spaced across the screen. Or choose Format➪Vertical Spacing
if you want to equally space the items down the screen. Note that you can
also increase, decrease, or remove the spacing between items.

As always, if you really make a mess of things when trying to space multiple
items, press Ctrl+Z to undo the change.

The left side of Figure 9-21 shows several Textbox controls selected. The
right side shows those same selected controls after I chose Format➪Vertical
Spacing➪Make Equal.

Before sizing equally After sizing equally

Figure 9-20:
Selected

items (left)
and items

made same
size (right).

197Chapter 9: Using Personalization

15_583603 ch09.qxd 10/21/05 6:42 PM Page 197

There’s no rule that says you must use absolute positioning and all the vari-
ous options for aligning, sizing, and spacing controls. Using a table often gets
you the same result with a lot less effort.

Before spacing equally After spacing equally

Figure 9-21:
Selected

items (left)
and items

made same
size (right).

198 Part III: Personalization and Databases

15_583603 ch09.qxd 10/21/05 6:42 PM Page 198

Chapter 10

Using Themes
In This Chapter
� Creating themes for your site

� Letting users choose their own themes

� Applying themes to pages

� Applying themes to Master Pages

In Windows and some other programs, users can choose a theme. The
theme defines the general look and feel of the content in terms of color

scheme, font, the way buttons are represented, and so forth.

If you’re building a membership site where members are likely to spend a lot
of time reading pages (for example, taking courses in an online school), then
adding a similar theme capability to your Web site might be a good idea.
Granted, it’s a lot of work on your part. But it allows users to personalize the
site content to their own needs and tastes, which, in turn, can make for a more
pleasant experience at your site — and can encourage users to keep coming
back for more — or even spread the word about your awesome site — instead
of shopping elsewhere.

Creating Themes
The first step in adding themes to your site is to create an App_Themes older
and a single Theme subfolder. You might want to start by creating a default
theme that everyone first sees when they open the site. To create an
App_Themes folder and a default Theme folder, follow these steps:

1. Right-click the site name at the top of Solution Explorer and choose
Add ASP.NET Folder➪Theme.

2. Type a name of your own choosing and press Enter.

This is the name of your default Theme folder. I’ll name my first sample
theme DefaultTheme, but you can name yours anything you like.

16_583603 ch10.qxd 10/21/05 6:41 PM Page 199

In Solution Explorer, you now have a folder named App_Themes. It contains a
subfolder with the name you entered in Step 2. The subfolder is empty; it’s
just a container in which you’ll store the files that define the theme.

Creating Theme Folders
The whole idea behind themes is to offer the user several themes to choose
from. Each theme you create will have its own subfolder within the
App_Themes folder. So if you already have some ideas for themes you might
create, you can create the Theme folders right now. To create a Theme folder,
follow these steps:

1. Right-click the App_Themes folder and choose Add ASP.NET Folder➪
Theme.

2. Type a name for the new theme and press Enter.

In Figure 10-1, I’ve added a few theme folders named Antique, ArtDeco,
HeavyMetal, Nerdy, NoSquint, and Pastels.

So now you have a bunch of empty theme folders, which, so far, have no
effect whatsoever on the look and feel of the Web site. Each folder is just a
container for things to come.

You can rename and delete Theme folders like anything else. Just right-click
and choose Rename or Delete.

Figure 10-1:
New App_

Themes
folder and

Theme
folders.

200 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 200

What’s in a Theme?
Depends on your point of view. From a user’s perspective, a theme is the
“look and feel” of the pages in a site. For you, the Web developer, a theme is a
folder that contains files. Those files, in turn, define the look and feel of pages
in the site. There are three types of files you can put into a Theme folder:

� Pictures: If a theme uses its own pictures for things like page back-
grounds and icons, store those pictures in the Theme folder.

� Cascading Style Sheets: Use a standard Cascading Style Sheet to define
things like font color, size, and other stylistic properties you define with
the Style Builder.

� Skins: A skin defines the appearance of a type of control. For example,
you can create a skin for all Textbox controls, another skin for all but-
tons, and yet another for all TreeView controls.

In a sense, themes are just a way of forcing you to get organized and stay
organized. Because each theme has its own unique set of files, changing a
theme is easy. You just open the theme folder and make your changes.

Using Pictures in Themes
With themes, you can use pictures to define things like the page background,
the appearance of buttons and icons, and so forth. Any pictures that you
intend to use as part of a theme need to be stored in the Theme folder.
Assuming you already have the pictures, it’s just a simple matter of dragging
each picture’s icon into the appropriate Theme folder in Solution Explorer.

In Figure 10-2, I created some page-background images for my site’s Antique,
ArtDeco, HeavyMetal, Nerdy, and Pastels themes. DefaultTheme and
NoSquint just use plain white backgrounds, so no pictures are necessary. I
dragged each image into its appropriate folder. Though it’s not entirely neces-
sary to do so, I renamed each image PageBkg.gif. I renamed them so each
filename defines the picture’s role in the theme, rather than the picture’s con-
tent. But that’s not something VWD requires you to do. You can name your
own pictures however you like.

201Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 201

Creating a Theme Style Sheet
To define the look and feel of pages in terms of font, text color, text size, back-
ground colors, border colors, and so forth, create a theme style sheet. A
theme style sheet is just a normal Cascading Style Sheet stored within the
theme folder. If you already have a style sheet, you can just copy that one
into a theme folder. Then edit the copy that’s in the theme folder to define
what’s different in this particular theme.

If you already have a Cascading Style Sheet that defines all the design ele-
ments of your site, you can keep that sheet and continue to use it in all your
pages. In theme style sheets, you can define only those elements that are dif-
ferent from what the default style sheet specifies. That way you still have all
your site-wide styles in one place, and themes define the styles of only those
items that vary from the default style sheet.

Because of the way theme folders are organized, it makes more sense to
name files by their role within the theme than by their content. So you might
want to start by copying your default style sheet to a theme folder. Rename
the copy in the theme folder to StyleSheet.css. Then double-click that
style sheet to open and use as your starting point for creating the theme style
sheet.

If you don’t already have a style sheet for your site (or just prefer to start the
theme style sheet from scratch), follow these steps:

1. Right-click the Theme folder to which you want to add a style sheet,
and choose Add New Item.

2. In the Add New Item dialog box, click Style Sheet.

Figure 10-2:
Some

themes use
a page-

background
image.

202 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 202

3. Click the Add button.

VWD adds a page named StyleSheet.css to the theme folder, and
opens the page for editing.

Technically, you don’t have to name the theme style sheet StyleSheet.css.
But again, given the way theme folders are organized, it seems to make more
sense to name files by their role in the theme rather than the specific file
content.

Whether you create a style from scratch, or start with a copy of an existing
sheet, you create and edit themes using the tools and techniques described
in Chapter 6 to define your styles. To recap quickly:

� To create a new style, right-click some empty place in the style sheet,
and choose Add Style Rule.

� To define a style using the Style Builder, right-click between the open-
ing and closing curly braces of the style name, and choose Build Style.

After you create a StyleSheet.css page for one theme, and close it, you can
then copy it to all your other theme folders to use as the starting point in
designing those other themes.

The idea is to have a style sheet for each theme, as in the example shown in
Figure 10-3. In that example, each StyleSheet.css page defines things like
body text, font, and color; heading text font and colors; and so forth.

Figure 10-3:
Each theme
folder has a
StyleSheet.

css file

203Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 203

Excluding DefaultTheme and NoSquint, which don’t use background pic-
tures, each StyleSheet.css file defines a picture background. For example,
the style rule for the body tag in the Antique theme’s folder might look
something like this:

body
{

font-family: ‘Bookman Old Style’ , Serif;
font-size: medium;
color: #8b4513;
background-image: url(App_Themes/Antique/PageBkg.gif);

}

You don’t have to type the style rule manually, of course. You can use the
Style Builder to define everything in every style sheet.

After you’ve defined pictures and style sheets for themes, you can take it a
step further and define styles for ASP.NET controls within each theme.
However, I don’t refer to the styles for ASP.NET controls as style sheets — I
call them skins.

Creating Skins
Exactly how far you want to take themes is up to you. You can design just
about any page element using CSS styles and images. If you want to take it
a step further and style ASP.NET controls likes text boxes, buttons, and
TreeView controls, you can do that, too. You use skin files to design ASP.NET
controls.

A skin, like a style, is just the visual appearance of an item on a Web page.
Most ASP.NET controls are skinnable, meaning you can define multiple styles
for any given control. The way you define skins, though, is different from the
way you define CSS styles.

Creating a skin file
The easiest way to create a skin is to start with a new instance of the type of
control you want to style: a text box, for example, or a button. Then style that
control using its Properties sheet or the Style Builder (or both). Then copy
the resulting <asp:...>...</asp:> tags to a skin file, and remove any tag
attributes that aren’t stylistic and wouldn’t be applied to all controls. For
example, remove the ID= attribute because that’s unique to each control
you create and not relevant to the control’s visual appearance.

Let’s take it from the top and look at an example. First, create a Web Form
page to use as an artist’s canvas. Here’s how.

204 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 204

1. Right-click the site name at the top of Solution Explorer and choose
Add New Item.

2. Choose Web Form.

3. Deselect the “Use master page” check box because you don’t need one
here.

4. Name the page anything you like.

I’ll use Temp.aspx for my page.

5. Click the Add button, and a new empty page opens up.

If the page opens in Source view, click the Design button to switch to
Design view.

Next create an instance of the type of control you want to style. The following
steps show you how:

1. In the interest of keeping it simple, drag a Textbox control from the
Standard controls in the Toolbox onto the page.

2. To style the control, right-click it and choose Style (or choose Options
from the control’s Properties sheet to define styles).

Figure 10-4 shows an example where I’ve right-clicked a Textbox con-
trol. You can also see the Properties sheet for the control.

3. View the page in a Web browser to see how the control will really
look in a page. Then close the browser.

Figure 10-4:
A Textbox
control with

styled
Properties.

205Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 205

4. When you’re happy with the way the control looks, switch to Source
view.

5. Select the entire control, including the opening and closing
<asp:>...</asp:> tags, nothing more, nothing less, as shown in the
example in Figure 10-5.

6. Press Ctrl+C (or right-click and choose Copy) to copy the selected tag
to the clipboard.

7. In Solution Explorer, right-click the theme file in which you want to
create your skin file and choose Add New Item.

8. In the Add New Item window, choose Skin File and type a filename for
the file.

I’d name the one I just created Textbox.skin.

9. Click the Add button.

10. Press Ctrl+V to paste the tags from the clipboard into the skin file.

There may be some comments (green text) in the skin file already. That’s
just a large comment that you can delete. It serves no purpose other
than to tell you about naming skins.

11. Delete the ID=... attribute and control name (TextBox1 in this
example).

If you’re designing a control that has other non-stylistic attributes in its
tag, those should be eliminated to. For example, when designing a
generic TreeView control, you wouldn’t want to define a specific Source
attribute in the skin. The skin is only about visual attributes.

Figure 10-6 shows how my Textbox.skin file looks after pasting in the tags,
removing the green comment text, and removing the ID=”Textbox1”
attribute. As you can also see in the figure, this Textbox.skin file is in my
DefaultSkin theme folder.

Figure 10-5:
A styled

Textbox
control’s tag

selected in
Source

view.

206 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 206

Default vs. named skins
Any skin you create can be treated as either a default skin or a named skin.
Here’s the difference:

� Default skins: Apply automatically to all controls of the same type. For
example, Textbox.skin would apply to all Textbox controls in all pages if
treated as a default skin.

� Named skins: Apply only to controls in pages that specifically identify
the skin by SkinID in their Properties sheet.

If you want to create a default skin, don’t give the skin a SkinID attribute.
The skin is applied to all controls that use the theme, except controls that
request a specific skin by name. Most likely you’ll want to create one default
skin that applies to all instances of the control you’ve styled.

To define a specific skin that controls can use, give the skin a SkinID
attribute. For example, suppose you want to have two styles of buttons in
your site, a regular button as shown at the top of Figure 10-7, and a bold
button like the one at the bottom of that same figure. In that figure, the
bottom button is selected, and you can see where I’ve set its Bold property
to True.

Figure 10-7:
Two Button

controls,
one

boldfaced.

Figure 10-6:
Sample

Textbox.skin
skin file.

207Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 207

Changing from Design view to Source view reveals the ASP tags for the two
buttons, as shown in Figure 10-8. In the figure, I’ve already selected the tags
for the two buttons, so I can copy them to a skin file.

Next, just copy both tags to a new skin file. Because these are for ASP Button
controls, you’d right-click a theme folder and choose Add New Item. Choose
Skin File in the Add New Item dialog box, name the file Button.skin and click
Add. Then paste the tags into the skin file.

Recall that you always need to remove from the skin file any attribute that
will vary from one control to the next. That means you always have to take
out the ID= attribute. In the case of a Button control, you also want to
remove the Text= attribute because that defines the text that appears on the
button. That will vary from one button to the next. (OK buttons, Cancel but-
tons, Submit buttons, and so forth, all have unique text.)

Finally, add a SkinID=”yourName” attribute to all but the default skin. The
yourName part can be anything you like. In the case of my bold button, I’d
probably use something like SkinID=”Bold”.

In my own Button.skin file I replaced the comment text with the
<asp:Button> tags. I removed the ID=”name” and Text=”Button” attrib-
utes from both tags. Then I added a SkinID=”Bold” to the second button
style to differentiate it from the default button style, just above in the same
skin file. The result is shown in Figure 10-9 where the Button.skin file in
DefaultTheme contains a default skin for buttons, and a Bold skin for buttons.

Figure 10-9:
New

Button.skin
file in

Default-
Theme
theme.

Figure 10-8:
Tags for
buttons

selected.

208 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 208

I’ve intentionally kept these skin examples small and simple, so as not to
obscure the basic facts with lots of details. But you can style your controls
however you see fit.

As with background pictures and style sheets, you’ll need to create skin files
for all your themes. (As you can imagine, one could end up putting a lot of
time into this sort of thing.) The result would be as in Figure 10-10, which
shows some of my sample theme folders. Though you can’t tell from looking
at the figure, the Stylesheet.css, Textbox.skin, and Button.skin files in
each folder provide a style that’s unique to that theme.

Using Themes in Pages
To take advantage of themes while creating and editing pages, you really
don’t have to do anything special; as always, style-sheet themes are applied
automatically. Default skins are also applied automatically to ASP controls.
For example, every Textbox control automatically takes on the appearance
of the currently selected theme’s Textbox.skin file.

If you want a control on a page to use a non-default skin file, just set the con-
trol’s SkinID property to the name of the skin you want to use. For example,
suppose you’re creating a new page and you want to add some buttons to it.
One of the buttons should use the Bold skin. After you add the button to your
page, set its SkinID property to Bold (as in Figure 10-11).

Figure 10-10:
Each theme
can contain
its own skin

files.

209Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 209

The control to which you apply a skin won’t actually take on the skin’s
appearance immediately. (That’s why the Submit button doesn’t look any dif-
ferent from the Reset button in Figure 10-11.) Keep in mind that so far we’ve
only taken the first step to adding themes to the site. There’s still plenty
more to do here.

There are many ways to implement themes. But it seems to me the most
likely scenario would be that you want each member to be able to choose
their own theme, which means to be able to store each user’s theme prefer-
ence as a profile property. So let’s start with that.

Letting Members Choose a Theme
If the goal is to allow members to choose a theme, the first thing you’ll want
to do is create a profile property — say, named PreferredTheme — in which
you store each user’s preferred theme. To ensure that each new user has
some theme selected, you can give the profile property the name of your
default theme.

You can add the profile property to the Web.config file as described in Chap-
ter 9. In my example where I already created profile properties, I would just
add a new property named PreferredTheme, give it a default value of
DefaultTheme, and a data type of System.String as shown in the follow-
ing code:

Figure 10-11:
Using skins

in pages.

210 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 210

<profile>
<properties>
<add name=”FirstName” />
<add name=”LastName” />
<add name=”Address1” />
<add name=”Address2” />
<add name=”City” />
<add name=”StateProvince” />
<add name=”ZIPPostalCode” />
<add name=”Country” defaultValue=”USA” />
<add name=”PreferredTheme” defaultValue=”DefaultTheme”/>

</properties>
</profile>

That takes care of having a place to store each user’s preferred theme. In
code, you can use Profile.PreferredTheme whenever you want to get, or
set, the current user’s preferred theme.

Next, you need some means of allowing users to explore themes and choose
one, which means some sort of interactive form.

Creating a page for viewing themes
Next, you’d need a page where a user can go and take a look at various
themes, and then choose a preferred theme. On my site, this page would go
in my MemberPages folder because I’d only allow authenticated users to
choose themes. So it’s just a matter of right-clicking the MemberPages folder
and choosing Add New Item. I’d choose Web Form as the template, enter
ChooseTheme.aspx as my page, choose Visual C# as the language, and check
both the check boxes for choosing a Master Page and using a code-behind
page. Nothing new or different there.

To allow users to choose a theme, you’ll need a control that allows users to
choose any one of several mutually exclusive options — such as a drop-down
list, a list box, or perhaps a set of option buttons (although you could just as
easily use buttons or links).

The page also needs some content that uses styles defined in the themes. That
way, when the user chooses a theme, you can simply apply the theme to show
the user how the theme looks. How you design the page is entirely up to you, of
course. As an example, I started off with the page shown in Figure 10-12.

211Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 211

Okay, at this point there’s nothing special about the page. It’s just a table with
some text, a Textbox control, and a couple of buttons that do nothing. (The
Sample2 button has its SkinID property set to Bold to test the Bold skin in
my Button.skin themes.) The two top table cells have their Class proper-
ties set to ColHead to test the TD.ColHead style in my themes.

Creating a control for choosing a theme
Next comes the tricky part where I need a control that allows users to choose
a theme. The trickiness comes from the fact that as soon as the user chooses
a theme, we need to do a postback to the server to update the user’s profile
and also to apply the theme to the page. But let’s start with the control itself.

I’ll use a ListBox control for this example. Drag a ListBox control from the
Standard controls in the Toolbox onto the page. Then choose Enable
AutoPostBack from its common tasks menu (as in Figure 10-13), so a post-
back occurs as soon as the user chooses a theme.

Figure 10-13:
A ListBox

control
added to
the page.

Figure 10-12:
A page

that uses
elements
styled by
themes.

212 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 212

Next you populate the ListBox with some options. Click Edit Items and use
the ListItem Collection Editor (Figure 10-14) to list options to appear in the
control. For each option, enter two things:

� Text: The text that appears in the box. This can be any text you want.

� Value: The value that the selection returns. This must exactly match the
name of a Theme folder in the App_Themes folder.

Each time you click the Add button, you’re prompted to enter another item.
In Figure 10-14, I’ve added an option for each theme. I left the highlighter on
the No Squint option to illustrate that it’s okay to show “No Squint” as two
words in the list. However, the value of that option must be NoSquint to
match the name of the Theme folder.

When you click OK in the ListItem Collection Editor, you’ll be returned to the
page and the options are visible. You can then set the height of the control by
dragging its bottom edge (or by setting the Height property in the control’s
Properties dialog box).

Storing the preferred theme
When the user makes a selection from the ListBox, that control’s
SelectedValue property will equal the Value of the selected item. For starters,
we need some code to copy the value to the user’s PreferredTheme property.
To get to the code-behind file, first double-click the ListBox control. The event
handler for the ListBox is named ListBox1_SelectedIndexChanged.

Figure 10-14:
The ListItem

Collection
Editor.

213Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 213

The C# code needed to copy the selected value to the user’s profile is simply
this:

Profile.PreferredTheme = ListBox1.SelectedValue;

Another detail to think about here is the fact that when the user first opens
the page, she will already have a theme name selected in her profile. Then
the ChooseTheme page first opens; the ListBox control should show that
current theme as the selected theme. So in the Page_Load event, you need
some code to set the SelectedValue of the ListBox control to whatever is
currently in the user’s PreferredTheme property. Hence, the Page_Load
event needs this statement:

ListBox1.SelectedValue = Profile.PreferredTheme;

But, as is often the case with page loads, we have to take postbacks into con-
sideration. Every time the user clicks the ListBox control, that’s going to
cause a postback, as we really only want to load the preferred theme when
the user first opens the page. So once again, we need some “if not postback”
logic in the Page_Load event handler, as shown here (in C#):

if (!Page.IsPostBack)
{
ListBox1.SelectedValue = Profile.PreferredTheme;
}

Applying a theme
Given our whole approach to themes in this chapter, it stands to reason that
whenever a page loads, its theme must be set to the user’s preferred theme.
To get that done in your code, simply set Page.Theme to the user’s preferred
theme. In C#, the code looks like this:

Page.Theme = Profile.PreferredTheme;

But, you can’t set a theme in the Page_Load event because the theme has to
be applied before content and controls are rendered on the page. The
Page_Load event fires after all that stuff is done, which is too late to apply a
theme. So use the Page_PreInitI() event handler instead.

You won’t necessarily find a predefined pre-init handler in the page. But you
can just copy and paste one of the existing handlers into the code and
change its name to Page_PreInit. Then type in the code to apply the pre-
ferred theme, as given here:

protected void Page_PreInit(object sender, EventArgs e)
{

Page.Theme = Profile.PreferredTheme;
}

214 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 214

In the above code, I’m assuming that every user will have something in their
PreferredTheme profile, mainly because I gave that property a default value
in Web.config. Just to play it safe, you could build a little logic into the code
so if the PreferredTheme is “nothing,” then DefaultTheme is used as the
preferred theme, as given here (again in C#):

protected void Page_PreInit(object sender, EventArgs e)
{

if (Profile.PreferredTheme == null)
{

Page.Theme = “DefaultTheme”;
}
else
{

Page.Theme = Profile.PreferredTheme;
}

}

The final C# code for the ChooseTheme.aspx page looks like Figure 10-15.

All well and good — save for one little problem unique to this page: The
PreInit event fires before the postback — which doesn’t allow for the theme
to be applied to the current page the first time you choose an option from the
list box. To get around that, you can add a Preview button to the page beneath
the ListBox, and provide some sort of instruction telling the user to click a
theme name, then click Preview.

Figure 10-15:
Here’s the

C# code-
behind page
for Choose

Theme.
aspx.

215Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 215

You don’t have to program the button to do anything, because if you just drag a
button from the Standard tools into the page, it will automatically do a postback
when clicked later, in the browser. So basically you’d end up with something like
Figure 10-16. The only control on that page that has an event handler is the
ListBox control, which is handled by the ListBox1_SelectedIndexChanged
shown in Figure 10-15.

A theme tester page
The ChooseTheme page simply allows a user to choose a theme. The theme
won’t actually be applied to any pages unless you specifically apply it. Then
the theme of choice is the current user’s preferred theme. So you need a
PreInit handler on every page that will apply the theme.

To test it out, create a page named ThemeTester.aspx, and provide a link to
it from the ChooseTheme.aspx page, as I did in Figure 10-16. In ThemeTester
you can put any text or controls you want. But — most importantly — your
code must apply the theme, like this:

protected void Page_PreInit(object sender, EventArgs e)
{

if (Profile.PreferredTheme == null)
{ Page.Theme = “DefaultTheme”; }

else
{ Page.Theme = Profile.PreferredTheme; }

}

That should be all that’s required in the code-behind page of any page to
which you want to apply user’s preferred themes. After you get things work-
ing in ChooseTheme.aspx and ThemeTester.aspx, then it’s just a matter of
copying that same Page_PreInit handler to any page that needs to apply a
user-selected theme.

Figure 10-16:
A Choose
Theme.
aspx

example.

216 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 216

Applying Themes to Master Pages
You can apply themes to Master Pages in same way you apply themes to an
.aspx page. For example, you could allow users to choose background colors
for the various table cells that make up a Master Page layout. Step 1 would be
to open the Master Page and set the Style property of each table cell to a
class name. Remove any explicitly-set Style properties that would conflict
with the theme.

In Figure 10-17, for example, I removed the Style properties for the top table
cell, and changed the Class property to a MasterTop. And though they’re
not visible in the figure, I removed the Style properties from the left column
as well, and set its Class property to MasterLeft.

Close and save the Master Page. Then in your main style sheet (if you have
one), set a default style for both elements as in the examples given here:

TD.MasterTop
{

background-color: e0ffff;
border-bottom: #483d8b thin solid;

}

TD.MasterLeft
{

background-color: #fffff0;
border-right: #483d8b thin solid;

}

TD.MasterTop

TD.MasterLeft

Figure 10-17:
Master
Page.
master
with CSS

classes
applied to

table cells.

217Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 217

You’ll need the similar style rules in each theme folder’s StyleSheet.css
page, though the colors and other stylistic options you choose would vary
from one theme folder to the next.

In the code-behind file for the Master Page (MasterPage.master.cs in my
example), add Page_PreInit code to apply the user’s preferred theme. The
code is no different from the code you’d use in an .aspx page. So, in my
example, it would look like this:

public partial class MasterPage : System.Web.UI.MasterPage
{

// On pre-initialization apply user’s preferred theme.
protected void Page_PreInit(object sender, EventArgs e)
{

if (Profile.PreferredTheme == null)
{ Page.Theme = “DefaultTheme”; }
else
{ Page.Theme = Profile.PreferredTheme; }

}

}

Whether to allow users to customize Master Pages is really something you
have to decide for yourself.

There’s no rule that says a site can only have one Master Page. The fact is, a
site can have as many Master Pages as you like.

As an alternative to allowing users to customize “the” Master Page for your
site, you could have two Master pages. Use one fixed-and-unchanging Master
Page for general pages. Then create a second Master Page for privileged con-
tent only, and allow users to set styles within that Master Page only.

Other Ways to Apply Themes
In all of the above examples of applying themes, you used the syntax
Page.theme=Profile.PreferredTheme to apply the user’s preferred theme
to a page. Here’s another syntax you can use as an alternative:

Page.StyleSheetTheme = Profile.PreferredTheme;

The difference between using Page.Theme and using Page.StyleSheetTheme
is as follows:

218 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 218

� Page.Theme: The theme’s style settings override any local style settings.

� Page.StyleSheetTheme: Behaves more like a Cascading Style Sheet —
local style settings still take precedence over styles defined in themes.

Choosing one option or the other is largely a matter of personal taste. The
advantage of using Page.Theme is that you know that whatever is defined in
the theme “rules.” You won’t get any unpleasant surprises when a control or
a chunk of text ignores the theme because you previously set some style
that’s now overriding your theme.

The disadvantage to using Page.Theme is that if ever there was a need to
override a theme-defined style for a particular control, there wouldn’t be any
way to do it, other than to create a special style rule for that one control.

In the long run, you’re probably better off sticking to the Page.Theme
approach and allowing themes to take precedence. You don’t want to end up
with hundreds of controls on hundreds of pages, all doing their own things
and ignoring your themes. That can just make using (not to mention main-
taining) the site all the more confusing and more laborious.

Defining a Site-Wide Default Theme
In the code samples above, themes are applied to pages programmatically in
the sense that code defines which theme is used for any given page based on
the user’s PreferredTheme property. At a higher level, you can define a
default theme to be used by all the pages in your site. You do so in the
Web.config file for your site using either of the following syntaxes:

<pages theme=”ThemeName” />

<pages styleSheetTheme =”ThemeName” />

where ThemeName is the name of a theme folder. For example, if you create a
theme folder named DefaultTheme, and want to apply that theme to all pages
in the site, you add the following line to your Web.config file:

<pages theme=”DefaultTheme” />

Be sure to put the tag between the <system.web> and </system.web> tags
in Web.config (as in Figure 10-18).

219Chapter 10: Using Themes

16_583603 ch10.qxd 10/21/05 6:41 PM Page 219

The beauty of this approach is that every page opens with the default theme
applied, instead of with no theme applied. As you create and review your
pages, you know exactly where each item’s style is coming from.

The default theme is only the default, in the sense that it’s applied only when
something else doesn’t override it. Any theme that’s applied programmati-
cally will override the default theme.

Figure 10-18:
Setting a

default
theme

in Web.
config.

220 Part III: Personalization and Databases

16_583603 ch10.qxd 10/21/05 6:41 PM Page 220

Chapter 11

SQL Server Crash Course
In This Chapter
� Exploring database design

� Designing a database with tables and primary keys

� Creating your own SQL Server tables

� Linking tables

A big part of any dynamic data-driven Web site is the database that con-
tains data for the site. Visual Web Developer allows you to use either

Microsoft Access (.mdb files) or SQL Server 2005 (.mdf files) for storing data.
Of the two, a SQL Server database provides better scalability and supports a
greater number of simultaneous users. That’s why it’s the database most
people will likely want to use (or would, if they knew what we know), so
that’s the one that gets the focus in this book.

As its title suggests, this chapter is a quick crash course in using SQL Server
as the database for your Web site. You’ll discover what SQL Server is, and
how to create tables to store the data your Web site needs. You’ll also get the
lowdown on SQL, Structured Query Language, the tool you use to extract spe-
cific data from the database to display on Web pages. If you’re already familiar
with a database program like Microsoft Access, the most noticeable feature of
SQL Server is that it has no user interface — no program window you can
open from the Start menu. There’s no table designer, no forms designer, noth-
ing. The reason for that is simple: Microsoft Access is an application program
that has to perform multiple tasks for a wide range of users — but SQL Server
is a lot more specialized; it’s just a server.

As a server, SQL Server 2005 is designed to provide data storage and Access
to some other program rather than to a human who is sitting at the mouse
and keyboard. The working interface for SQL Server isn’t in its own separate
program window. It’s right in Visual Web Developer.

17_583603 ch11.qxd 10/21/05 6:52 PM Page 221

Crash Course in Database Design
Database design is an enormous topic that could easily fill several books the
size of this one — and has — so I can’t get into all the details here. But I can
get you in the ballpark and clear up some of the important buzzwords that
apply to all relational databases.

Tables, rows, and columns
The data (information) in a SQL Server database is organized into tables. Each
table consists of rows (also called records) and columns (also called fields).
Figure 11-1 illustrates the terms, using a sample table named Items. The field
names (that is, the column names) are ItemId, OurItemId, ItemName, and
ItemPrice. The table contains five rows (records), which happen to be num-
bered 10001, 10002, 10003, and so forth.

When you set up your site for Membership, VWD automatically creates several
tables for you. To see those tables, first make sure your Web site is open in
Visual Web Developer, then click the Database Explorer tab or choose View➪
Database Explorer from the menu bar.

To see the tables that are already in your database, expand the Data Connec-
tions, ASPNET.MDF, and Tables categories (if they’re showing a + sign). Each
item under the Tables heading represents a single table of data. The names of
tables that VWD automatically creates all start with aspnet_ as shown in
Figure 11-2.

Each one of those tables contains rows and columns. To see the actual data
that’s stored in a table, right-click the table name and choose Show Table
Data. For example, if you right-click aspnet_Users and choose Show Table
Data, the aspnet_Users table opens. The table will contain one record for
each user account you’ve created.

Columns (fields)Rows (records)

Figure 11-1:
A sample
database

table.

222 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:52 PM Page 222

For example, by the time I got to this part of the book, I had created seven
user accounts through the Web Site Administration Tool. Every account you
create becomes a record in aspnet_Users. So opening my aspnet_Users
table shows that it contains seven records, as shown in Figure 11-3.

Don’t add, change, or delete data in any of the aspnet_ tables manually
through Database Explorer. Always use the Web Site Administration Tool to
manage membership data.

To close an open table, just click the Close (X) button in the upper-right
corner, just as you’d close anything else that’s open in the Design surface.

One-to-many, many-to-many
SQL Server 2005 is a relational database-management system (RDBMS) that
not only stores data, but can also define multiple relationships among items

Figure 11-3:
The

aspnet_
Users

table data.

Figure 11-2:
Automatically

created
tables in a

Membership
site.

223Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:52 PM Page 223

of data. It, and other products like it, exist mainly because in the real world,
there are natural one-to-many relationships among different types of data. For
example, suppose your site offers some kind of items to users. The items
might be products you sell, courses you offer, Web seminars that people sign
up for, or something like that.

In cases such as these there are two natural one-to-many relationships
between users and the items being offered:

� Any one user might purchase many items.

� Any one item might be purchased by many users.

Any time you have two one-to-many relationships like that, you have what’s
called a many-to-many relationship. You have many users purchasing (or
enrolling in, or attending) many items.

To illustrate, let’s look at simplified versions of the aspnet_Users table and a
table of items that the site offers to users. At the left side of Figure 11-4 is a
table showing a couple of columns and some rows from a table of users. Each
record in that table represents a single user account.

On the right side is a simple Items table. Each record in that table represents
a single item offered to users. In between the two tables is the burning ques-
tion “How do I connect these?” The answer is pretty straightforward: “By cre-
ating a third table that keeps track of who purchased what.”

It might help to think of it this way. Each time a user purchases a product, that’s
a transaction. You need to keep track of these transactions — specifically,
who purchased what — and that requires two pieces of information per
transaction: who (a UserId), and what (an ItemId).

So, at the very least, this third table (which I’ll name Transactions) must con-
tain two fields: One field to record the user’s identification (UserId), and the
other to record the item purchased (ItemId). You can imagine this as a table
with two fields named UserId and ItemId between the aspnet_Users table
and the Items table.

Users
Items

How do I
connect
these?

Figure 11-4:
Sample

aspnet_
Users and

Items
tables.

224 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:52 PM Page 224

Now, imagine that user Carol (UserId 66cd...) purchases item 10003. The
Transactions would need a new record with 66cd in its UserId field and the
10003 in its ItemId field. If you then trace an imaginary line from the user to
the transaction to the item, you’ll see how the record in the Transactions
table provides the link from a specific user to a specific item purchased, as in
Figure 11-5.

Every time a user purchases something, the Transactions table grows by
one record. As time goes by, the Transactions table continues to grow, per-
haps to thousands of records. Each record represents a single transaction
where a specific user purchased a specific product.

Recall that the natural many-to-many relationship between users and items is
actually two one-to-many relationships. Any one user might purchase many
items, and any one item might be purchased by many users. The Transactions
table provides the “map” that allows code to find all transactions by any
one user.

No matter how many records are in the Transactions table, that table still
provides the one-to-many link from users to items. To illustrate, pick one
user, such as Carol (UserId 66cd...). Each record in the Transactions
table that has 66cd... is a transaction made by that user. The ItemId field
in Transactions identifies exactly which item the user purchased, as shown
in Figure 11-6.

Users
Transactions

Items

Figure 11-6:
One-to-

many link
from a user

to many
products

purchased.

Users Transactions Items

Figure 11-5:
Third

Transac-
tions table

links user
to item

purchased.

225Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:52 PM Page 225

There’s also a one-to-many relationship between items and users. The
Transactions table, once again, provides the map describing which users
purchased an item. Pick any one item, say 10003, from the Items table. Find
records in the Transactions table that have 10003 in their ItemId field, and
you have a link back to each user that purchased that product, as shown in
Figure 11-7.

In real life, of course, you don’t draw lines between records in tables to get
information. In fact, you don’t look at the tables at all — instead, you create
queries to get information.

However, while I’m on the subject of lines that connect things between tables,
any time you extract data from all three of the tables (users, transactions,
and items), your query must contain fields of all three tables. And the pri-
mary and foreign keys that link the tables must be connected by join lines in
that query, as shown in Figure 11-8. We’ll discuss the roles of the primary and
foreign keys in detail as we progress through the chapter.

So that’s how database design works, in a conceptual sense. When there is a
natural many-to-many relationship between items in two separate tables, you
need a third table that contains records stating who purchased what. That
third table provides the many-to-many link needed to extract meaningful data
from the tables.

Figure 11-8:
A query’s

view of
connecting

lines
between

tables.

Users
Transactions

Items

Figure 11-7:
Trace any

one ItemId
back to

users who
bought that

item.

226 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:52 PM Page 226

However, if you were to try this technique right now — using only what’s
covered in the book up to this point — there’s a good chance yours wouldn’t
work. That’s because there are rules to follow to get this sort of thing to work —
two in particular:

� Every table on the “one” side of a one-to-many relation must have a pri-
mary key, a field that uniquely identifies each record in that table. In this
example, both the users and items tables must have a primary key.

� The transaction table must contain at least two fields whose names and
data types match the names and data types of the two tables on the
“one” side of the relationships.

To understand and apply those rules, the first order of business is to under-
stand data types and primary keys. Let’s start with data types.

SQL Server Tables
Every column in every table has a data type that defines the type of data
stored in the column. To view each column’s data type, open the table defini-
tion, rather than the table data. When you open a table definition, you don’t
see any of the actual data that’s stored in the table. Instead, you see the struc-
ture of the table. The table’s structure shows the name, data type, and
whether the field allows nulls.

To see an existing table’s structure, right-click the table’s name in Database
Explorer and choose Open Table Definition, as shown in Figure 11-9.

For example, if you right-click the aspnet_Users table in Database Explorer
and choose Open Table Definition, you see field names listed down the left
side of the grid that opens. Each of those names represents a column that
appears at the top of the aspnet_Users table when you’re viewing the
table’s data. To the right of each field name is the Data Type of that field, as
shown in Figure 11-10.

Figure 11-9:
How to view

a table’s
structure

(definition).

227Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:52 PM Page 227

Here’s what the table definition for the built-in aspnet_Users table tells you
about columns in that table:

� There are seven fields (columns) in this table, their names are listed in the
Column Name column (ApplicationId, UserId, UserName, and so forth).

� The data type of each field is visible just to the right of the field name.
For example, both the ApplicationId and UserId columns are of the
uniqueidentifier data type.

� The UserId field is the primary key for this table, as indicated by the
key symbol to the left of its name.

� When entering new records into this table, it’s okay to leave the
MobileAlias field empty (because its Allow Nulls check box is
selected). But no other fields in the record can be left blank.

Never change or remove anything in any aspnet_ table’s structure. Those
tables are created and used by the membership system and any changes you
make could cause the whole membership system to stop working.

When you’re creating your own tables, it’s important to choose data types
wisely. A field’s data type defines what you can put into the field — and what
you can do with the information stored in that field. The main data types
available to you in SQL Server 2005 Express are categorized as follows:

� Text: Character data like the text you’re reading right now, people’s
names, product names, and so forth.

� Number: Also called scalar values, these are real numbers like quantities
and dollar amounts on which you can do math.

� Date/Time: Dates and time of day.

� Boolean: A value that can be only True or False.

� Binary: Pictures and other kinds of data that aren’t text, numbers,
or dates.

� Other: Specialized data types such as uniqueidentifier, xml,
timestamp, and sql_variant.

Figure 11-10:
Table

definition
(structure)

of the
aspnet_
Users

table.

228 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 228

The most common type of information stored in tables is text, so we’ll look at
the text data types first.

Data types for storing text
In the computer biz, a chunk of text is referred to as a string, shorthand for “a
string of characters.” The following are all examples of strings:

� Banana

� Andy Adams

� 123 Oak Tree Lane

� Hello world, how ya doin’ today?

� (215) 555-1234 (phone number)

� 123-45-6789 (Social Security number)

� 00453-4321 (ZIP Code)

Phone numbers, social security numbers, and ZIP codes are not true numbers
(scalar values) that you’d ever add, subtract, multiply, or divide. So they must
be stored as strings (usually the char data type) rather than as numbers. If you
use a number data type for any of those fields, you won’t be able to use leading
zeroes in Zip codes (like 01234), or use parentheses and hyphens in phone
numbers, because such things are not allowed in scalar values.

Text comes in two basic flavors:

� Unicode text: Requires two bytes (16 bits) per character and can
include characters from virtually any human language.

� Non-Unicode text: Uses only one byte (eight bits) per character, but is
limited to characters in the English alphabet.

You always want to be efficient in how you store data. So if a field should con-
tain only English characters (A–Z) and such, a non-Unicode data type would be
most efficient. But, given that we live in a Web-connected world, you may often
need characters from other languages, in which case you’d use a Unicode data
type — and storing the data would cost you twice as much disk space.

When defining a field to store either type of text, you can choose between
fixed-length and varying-length. Fixed-length is more efficient when all the
values stored in the field are the same length, or very similar in length. For
example, if you were to create a field to store product identifiers, and all the
product identifiers follow a similar pattern — say, ABC-123 — then a non-
Unicode fixed-length text field would be ideal. In the ABC-123 example, a fixed
length of 7 characters would do the trick (the hyphen counts as a character).

Often, there’s no way to predict how much text a field will store. For example,
if the field is storing text that people have typed into a form, there’s no telling

229Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 229

exactly how many characters a given user might type. You would want to use
a variable-length text field for that sort of thing. The amount of storage space
needed to store each string would be roughly equal to the length of each string.

Given that there are two types of text (Unicode and non-Unicode), and two
ways to define string length (fixed-length or variable-length), there are four
main data types for storing text data. The length of string allowed in the field —
represented by n in the list that follows — determines how much storage
space is required to store data in the column:

� char(n): Fixed-length non-Unicode text where n defines the actual
length of each string.

� nchar(n): Fixed-length Unicode text, where n defines the actual length
of each string.

� varchar(n): Variable-length non-Unicode text where n defines the maxi-
mum length of a string stored in the field, up to 8,000 characters.

� nvarchar(n): Variable-length Unicode text, where n defines the maxi-
mum length of each string, up to 4,000 characters.

Notice the pattern of the data type names. The names of data types that store
Unicode data start with the letter n (for national), as in nchar and nvarchar.
Data types that store variable-length strings all contain var, as in varchar
and nvarchar.

For truly enormous chunks of text, SQL Server offers varchar(MAX) and
nvarchar(MAX), which can store strings containing up to two billion charac-
ters. But let’s stick with the data types most commonly used in Web sites
for now.

Number data types
In the computer world, the term number usually refers to actual scalar values,
the kinds of numbers on which you can do math. That includes things like
quantities and dollar amounts. As mentioned, it doesn’t refer to types of data
we casually refer to as numbers in day-to-day speech (such as phone num-
bers, Social Security numbers, or ZIP codes).

Scalar values come in two basic flavors:

� Integers: These are whole numbers with no decimal point.

� Floating-point numbers: These types of scalar values can contain a deci-
mal point as in 0.10 or 123.45 or 12,345,678.987654321. There are also cur-
rency data types specifically used for storing dollar amounts like $99.99.

Starting with integers, there are four data types to choose from. Each provides
for a range of acceptable numbers, and each has its own storage requirements.
You want to choose the smallest one you can, but make sure it’s not too small
to store the kinds of numbers you’ll need.

230 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 230

For example, if the field is going to store a number between 1 and 10, then the
tinyint data type will do just fine, because it can store numbers from 0 to
255. If the field will be storing much larger numbers — perhaps up to two bil-
lion (or some other value with a long string of zeros) — use the int data
type. Here are the integer data types and the range of values each can store:

� tinyint: From 0 to 255

� smallint: From –32,768 to 32,767

� int: From –2,147,483,648 to 2,147,483,647

� bigint: From –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

For storing dollar amounts, your best bet is to use the smallmoney or money
data types. For unit prices, you could probably get away with the small-
money data type, unless some of your products cost more than $200,000.00.
For larger monetary values, use the money data type. Here is the range of
values each data type can handle:

� smallmoney: From about –$214,748.00 to about $214,748.00.

� money: From about –$922,337,203,685,477.00 to about
$922,337,203,685,477.00.

Floating-point numbers are for really big or precise numbers used in math
and science, probably not the kind of thing you’d use much in a Web site —
unless, of course, the Web site is about math or science. Several data types
are available for storing floating-point numbers. I imagine the most com-
monly used would be the decimal data type.

With the decimal data type you can define a numeric value in terms of both
precision and scale. The precision defines the total number of numeric digits
in the number, the scale defines the number of digits to the right of the deci-
mal point. For example, the number 1234.5678 has a precision of eight
(because it contains 8 numeric characters) and a scale of 4, because there
are four numbers to the right of the decimal point.

The maximum precision is 38 digits. The scale can be anywhere from zero (no
digits to the right of the decimal point) to whatever the precision value is set
to (all numbers to the right of the decimal point). For example, a field with
its data type set to decimal(38,18) could contain 38 numeric digits, with
18 of them to the right of the decimal point. So a field could store a number
like this:

99,999,999,999,999,999,999.999999999999999999

Other data types that can store floating-point numbers include numeric,
float, and real. (Their ranges are shown in Table 11-1 later in this chapter.)
It seems unlikely you’d use those in a Web site, so let’s just keep forging
ahead with the more likely data types here.

231Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 231

Boolean (bit) data type
A Boolean field is one that can contain only one of three possible values,
Null, 0 (False), or 1 (True). In SQL Server, you use the bit data type to
define a Boolean field. Back in Figure 11-10, the IsAnonymous field is the bit
data type because it can contain only two possible values. A user is either
anonymous (True) or isn’t anonymous (False).

The bit data type is the same as the Yes/No data type in Microsoft Access, in
case you happen to be familiar with that product.

Data types for date and time
There are two main data types for storing dates, datetime and smalldate-
time. The smalldatetime data type will usually do the trick as it can store
dates from January 1, 1900 to June 6, 2079. If your database needs to store
dates outside that range, you can use the datetime data type, which can
handle dates from January 1, 1753 to December 31, 9999.

The uniqueidentifier data type
The uniqueidentifier data type defines a field that can store a GUID
(Globally Unique Identifier). A GUID is a long string of characters that looks
something like this:

8a116cb2-4503-4f83-870e-4fa50bee923a

The tables that Visual Web Developer creates for membership use the
uniqueidentifier data type for the ApplicationID and UserID fields. For
example, if you right-click aspnet_Users in Database Explorer and choose
Show Table Data, you’ll see a record for each user account you’ve created so
far. If you widen the first two columns enough to see the full contents of each,
you’ll see that each contains a GUID, as shown in Figure 11-11.

You may be wondering where all the weird GUIDs came from. The Application
Id identifies your entire Web site, and is automatically created when you first
set up membership for your Web site. It’s the same for each user because

Figure 11-11:
Applicat-
ionId and
UserId
are both
unique
identi-

fier fields.

232 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 232

each user is a member of the current Web site. The UserId is automatically
created each time you create a new user account through the Web Site
Administration Tool or the CreateUserWizard control.

So what does the GUID value mean? Absolutely nothing. And that’s the whole
point. It’s a randomly-created value that has no meaning. But it’s still a good
thing because it’s guaranteed to be unique, and uniqueness is a critical factor
in fields that might be used as primary keys. Think of it as being like a
person’s Social Security number. Everyone has one, but no two people have
the same one. The Social Security number has no “meaning” — you just take
whatever Social Security number you get handed.

Actually, your Social Security number is a primary key in the government’s
databases. Your Social Security number uniquely identifies you among all the
millions of people in the country, because nobody else has the same Social
Security number that you do.

The ApplicationId is a unique identifier for your Web site. In the
aspnet_Users table, every record has the same ApplicationId value in its
field. That’s because each of these users is a member of the same application
(which means Web site in this case).

The UserId field is the random GUID assigned to each user automatically
when you (or a user) creates a user account. No two users will ever have the
same UserId. And once entered, a user’s UserId never changes. Even users
who change their own UserNames will still belong to the same user accounts
they initially created — because the UserId value won’t change.

Assigning GUIDs automatically
Every time you or someone else creates a new user account, that new
account automatically is assigned a GUID. The reason has to do with the
Default Data Value or Binding column property for the field. If you click
on the UserId field name in the table definition, then look at that property,
you’ll see it contains (newid()) as shown in Figure 11-12.

Figure 11-12:
The UserID

field shows
(newid())

in its
Default
Value or
Binding
property.

233Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 233

That newid() property is what makes that field in that record receive a value
automatically each time a record is created. If you looked at the Default
Value or Data Binding property for the ApplicationId field, you would
not see a newid() there. That’s because the ApplicationId field does not
get a new, random value each time you create a record. The value in that field
is always the same, the GUID that specifically identifies your Web site.

In aspnet_Users, the ApplicationId field provides a link to the aspnet_
Applications table. In aspnet_Applications, the ApplicationId field
is a primary key.

The data types I’ve discussed so far don’t represent the full set of SQL Server
data types, just the ones you’re most likely to use in your Web sites. For future
reference, Table 11-1 summarizes all these data types. For more detailed infor-
mation on data types, a heftier list of them, or any other facet of SQL Server,
refer to SQL Server Books Online or a book that’s strictly about SQL Server 2005.

Table 11-1 Summary of SQL Server 2005 Data Types
Data Type Used to Store Space Consumed

bigint Integers from –2^63 8 bytes
(–9,223,372,036,854,775,808)
to 2^63 – 1
(9,223,372,036,854,775,807)

binary(n) Fixed-length binary data, n bytes
where n can be any value
from 1 to 8,000

bit 1, 0, or Null 1 byte per 8 bit fields

char(n) Fixed-length text, where n n bytes
can be from 1 to 8,000

datetime Dates from January 1, 1753, 8 bytes
through December 31, 9999, to
3.33 milliseconds of accuracy

decimal(p,s) Numbers from –1038 + 1 Depends on p
to 1038 – 1

float(n) Numbers from –1.79E + 38 Depends on n
to –2.23E – 38, 0, and
2.23E – 38 to 1.79E + 38

image Variable-length binary data to length + 2 bytes
231 – 1 (2,147,483,647) bytes

234 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 234

Data Type Used to Store Space Consumed

int Integers from –2^31 4 bytes
(–2,147,483,648) to 2^31 – 1
(2,147,483,647)

money Dollar amount from 8 bytes
–922,337,203,685,477.5808
to 922,337,203,685,477.5807

nchar(n) Fixed-length Unicode text 2*length
to 4,000 characters

ntext Variable-length Unicode 2*length bytes
data or binary data to
230 – 1 bytes

numeric(p,s) Numbers from –1038 + 1 Depends on p
to 1038 – 1

nvarchar(n) Variable-length Unicode 2*length + 2 bytes
text up to 4,000 characters

nvarchar(MAX) Variable-length Unicode 2*length + 2 bytes
data to 231-2 bytes

real –1.18E – 38, 0 and 1.18E – 38 4 bytes
to 3.40E + 38

smalldatetime Dates from January 1, 1900, 4 bytes
through June 6, 2079,
accurate to 1 minute

smallint Integers from –2^15 2 bytes
(–32,768) to
2^15 – 1 (32,767)

smallmoney Dollar amounts from 4 bytes
–214,748.3648 to
214,748.3647

sql_variant Non-specific data type Depends on data stored
up to 8,016 bytes

text Variable-length text to 231 – 1 Depends on code page
(2,147,483,647 characters) of server

timestamp Time of last change to row 8 bytes

tinyint Integers from 0 to 255 1 byte

(continued)

235Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 235

Table 11-1 (continued)
Data Type Used to Store Space Consumed

unique- GUIDs (Globally Unique 16 bytes
identifier Identifiers)

Varbinary(n) Variable-length binary data, length+2 bytes
where n can be 1 to 8,000

varbinary Variable-length data up to length + 2 bytes
(MAX) 231 – 1 bytes in length

varchar(n) Variable-length text where n+2 bytes
n can be from 1 to 8,000

varchar(MAX) Variable-length text up to length + 2 bytes
231 – 1 bytes in length

xml Typed or untyped XML data Depends on data stored

Creating Your Own Tables
Even though you never want to change, rename, delete, modify, annoy,
pester, improve, or in any other way alter aspnet_ tables, you can certainly
create your own tables. Before you can put data into a table, of course, you
have to create an empty table. To create your own SQL Server tables, work in
Database Explorer — right-click on the Tables folder and choose Add New
Table as shown in Figure 11-13.

The next step is to define the columns (fields) that the table will contain; give
each field a name of your own choosing. Make it a short name with no spaces
or punctuation marks. Then you have to choose a data type for each field,

Figure 11-13:
Creating a
new table.

236 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 236

and decide whether or not the field can be left blank when adding new
records to the table.

Defining a primary key
If the table you are creating will be on the “one” side of a one-to-many rela-
tionship, then that table must have a primary key. The primary key field must
contain a value that’s unique to each record in the table. The field need not
have the uniqueidentifier data type, but it should have some kind of field
that’s automatically assigned a random, unique value each time a record is
added to the table.

Another name for a primary key is identity, because the value in a record’s
primary key field is also the record’s unique identity.

A good primary key should contain a value that’s assigned to the record ran-
domly, so the key has no “meaning” to humans. Amateur database designers
often make the mistake of trying to make the primary key a field that is mean-
ingful to humans. Resist the temptation to do that; you’ll save yourself a
world of headaches if you just let SQL Server manage the primary key for
you, and keep it hidden from everyone.

In the Items table shown way back in Figure 11-1, the ItemId field is the pri-
mary key. I didn’t use a GUID (although I could have). I used a five-digit
number starting at 10001. That number is not something I typed in myself;
it’s assigned to the record automatically each time a record is added to the
table. Like a GUID, that number has no meaning — and, once entered, it can
never be changed.

If you’re not going to use a GUID for a primary key, your next best bet would
be an auto-numbered integer (int) field. That’s how I created the ItemId
field in my sample Items table, and here are the steps required:

1. In the Column Name column, type a name for the field you’re about to
create.

2. In the Data Type column, choose one of the integer data types.

If you’re not sure which to use, choose the int data type.

3. Clear the check mark (if any) from the Allow Nulls check box.

A primary key cannot be left blank, so nulls cannot be allowed here.

4. Right-click the field name in the left column and choose Set Primary
Key, or click the field name and choose Table Designer➪Set Primary
Key from the menu.

You should see a small key symbol to the left of the field name. For exam-
ple, in Figure 11-14, I created a field named ItemId that has the int data
type, does not accept nulls, and is defined as the table’s primary key.

237Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 237

5. To have the records automatically numbered as they’re entered into
the table, first click the + sign next to Identity Specification in
the Column Properties pane.

6. Set the (Is Identity) property to Yes.

7. Set the Identity Increment and Identity Seed properties to whatever
number you want to appear first in the table.

In Figure 11-15, I’ve set the Identity Seed to 10001 and left the Identity
Increment at 1. That means that the first record added to the table will auto-
matically be assigned 10001. Subsequent records will be numbered 10002,
10003, 10004, and so forth.

Creating text fields
When you define a text field using any of the previously described char data
types, you can use the Length property in the Column Properties to set the
size of the field in characters. When you’re using a fixed-length data type
such as char or nchar, every field is stored using the exact number of char-
acters you define as the field’s Length. If you use one of the variable-length

Figure 11-15:
Here the

primary key
field will
be auto-

numbered,
starting at

10001.

Figure 11-14:
Designating

a field as a
table’s

primary key.

238 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 238

data types, the Length property defines the maximum number of characters
that can be stored in the field.

The Items table I’m building here could use at least three text fields, includ-
ing one for an in-house ItemId. Although it would be a bad idea to use a
“meaningful” field like that as a primary key, there’s no harm in including it as
a field in the table. For my example, I name the field OurItemId and make it a
fixed-length text field (char) of 7 because my in-house codes all look like
BWG-101, BWG-102, and so forth.

I’ll also add a text field to store the name of the item, and another text field to
store a lengthier description of the item. I’ll name these fields ItemName and
ItemDescription. There’s no way to predict exactly how many characters
an item name or description might be, so both of these will be variable-length
text fields. I’ll put a maximum length of 64 characters on the ItemName field,
and a maximum length of 2,048 characters on the description. You should use
field lengths that meet the needs of your own site’s data storage.

To create text fields, follow these steps:

1. Type the field name in the Column Name property.

2. Choose one of the text data types from the Data Type column’s drop-
down list.

3. Set the Length property in Column Properties to the maximum
number of characters to be stored in the field (or just type a new
length between the parentheses in the Data Type column).

Figure 11-16 shows an example where I’ve created three more fields for the
Courses Items table. You can see the Length property near the bottom of
the figure in the Column Properties pane.

Figure 11-16:
Three text

fields added
to the table.

239Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 239

Adding a money field
Data types for storing money don’t require that you specify a Length prop-
erty. It’s a simple matter of entering a field name of your own choosing and
choosing one of the money data types. For example, you could add a field
named ItemPrice to the current table and give it the smallmoney data type
(assuming you don’t intend to charge $200,000 or more for a course — if
you’re selling bigger-ticket items, use the money data type rather than small-
money). So the finished sample table design would look like Figure 11-17.

Remember that my little Items table is just an example. Your own table could
contain many more fields. But for the purposes of this example, we can con-
sider that table finished.

Saving the new table
After you’ve defined the field names and data types for a table, click the
Close (X) button in the upper-right corner of the Design surface. A dialog box
asks if you want to save your changes. Choose Yes, and enter a name for your

Figure 11-17:
Here all

fields for the
Items table
are defined.

240 Part III: Personalization and Databases

This is not an e-commerce book
If you’re wondering when we’re going to get to
the part in this book where you actually sell
things and do financial transactions, you can
stop wondering. The answer is “never” —
because there’s really nothing built into Visual
Web Developer to support that.

The more likely scenario is that you’d use some
third-party service or tool to add e-commerce

capabilities. For example, you could create an
account with Paypal and let people pay through
that service. But that’s just an example and not
a topic that can be covered in this book. Sorry if
my use of items, transactions, and money fields
led you to believe otherwise.

17_583603 ch11.qxd 10/21/05 6:53 PM Page 240

table. (In my database, I named this table Items.) Then click OK. The new
table will be listed along with other tables that are already in the database.

Creating the Transactions table
Creating the Transactions table is no different from creating the Items
table. However, there are lots of rules and details that need to be dealt with.
To get started, right-click the Tables folder and choose Add New Table. You
get the standard design screen for defining field names and data types.

How you define the first two fields in the transaction table is critical. Because
if you make even the slightest mistake, it won’t work. In the Transactions
tables, the two key fields are actually foreign keys, not primary keys. (A for-
eign key has the same name and data type as a primary key in a table, on the
“one” side of a one-to-many relationship.)

For example, there is a one-to-many relationship between users and transac-
tions. In the Users table, the UserId field is the primary key that uniquely
identifies each user. In the Transactions table, the UserId field (alone)
cannot be marked as a primary key, and should never be automatically
assigned a value using newid() or an Identity Specification.

So, the first field in this example’s Transactions table must be named
UserId, must be the uniqueidentifier data type, and must have its Allow
Nulls check box blank (because records with no value in this field would be
useless). The Default Value or Binding property for the field must be left
empty as shown in Figure 11-18.

The Transactions table also needs a field that provides a link to the pri-
mary key in the Items table. The primary key in the Items table is named
ItemId and its data type is int. In the Transactions table, the ItemId field

Figure 11-18:
First field

in the
Transac-
tions table

defined.

241Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 241

must not be auto-numbered and must not allow nulls. So its Identity
Specification property must be set to No, as shown in Figure 11-19.

At this point in time, the Transactions table has all the fields it needs to
record transactions and provide the links between users and items. Even
though the table must contain the two fields just created here, there’s no rule
that says it can’t contain other fields as well.

For example, if you wanted to record the date of each transaction, add a
smalldatetime field. If you want to keep track of whether a transaction has
been paid, add a bit field. If items are such that a user might buy several of
them at a time (say, pencils or kumquats), your Transactions table could
include a Qty field to indicate how many items were purchased. If prices of
items change over time, and you want to know exactly what the user paid in
each transaction, you could include a SellingPrice field that records
exactly what the user paid for the item.

For the example in this book, I added two fields to my Transactions table:
TransactionDate and its data type smalldatetime. The idea is to record
the date and time of each transaction. I also added an IsPaid field and gave
it the bit data type. In records, that field contains True for transactions that
have been paid, and False for unpaid transactions. Figure 11-20 shows that
sample Transactions table with the two additional fields defined.

Figure 11-20:
This sample
Transac-
tions table

contains
four fields.

Figure 11-19:
Second field

in the
Transac-

tions
table.

242 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 242

A Primary Key for Transactions
As mentioned, if a table is on the “one” side of a one-to-many relationship,
then that table must have a primary key to uniquely identify each record. In
that regard, the Transactions table does not need a primary key, because
it’s on the “many” side of its relationships with users and items.

However, there is another rule in Visual Web Developer that states that if you
want to be able to edit a table through a Web page, then that table must have
a primary key. So if you want to be able to edit the Transactions table
through Web pages, you’ll need to give that table a primary key.

As always, the primary key need not have any special “meaning” — it can just
be a number that’s automatically assigned to each new record, sort of like an
order number on a paper order form. An automatically incremented int
(integer) field will do nicely.

Figure 11-21 shows an example where I’ve added a field named TransactionId
to the Transactions table. As you can see in its Column Properties, I set the
fields Is Identity to Yes, set the Identity Increment to 1, and the Identity Seed to
20000. You can use any starting number you like. I just opted to number trans-
actions 20000, 20001, 20002, and so forth arbitrarily. I also right-clicked the field
name and chose Set Primary Key to make the field the table’s primary key.

When you’re done defining fields for the Transactions table, close and save
the design as you would any other object. In my example, I named the table
Transactions — as shown in Figure 11-21 — and it will be added to the list
of other tables already in the database. For example, Figure 11-22 shows my
list of tables after creating the new tables named Items and Transactions.

Figure 11-21:
Final struc-
ture of the
Transac-
tions table.

243Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 243

Populating Tables
When you first create a table, it will be empty. So when you right-click the
table name and choose Show Table Data, you’ll see an empty record with the
word NULL in each field. For example, right-clicking an empty Items table and
choosing Show Table Data displays that table’s contents. But because the
table is brand new and empty, its contents consist of a single empty record
that has the word NULL (which means, in effect, blank) in each field, as shown
in Figure 11-23.

You can add data to the table just by replacing the NULLs with the data you
want to store. That’s not the only way to do it, or even the best way. For exam-
ple, you’d never want to type the data manually to populate the aspnet_
tables in the database (trust me on that one). You must use the Web Site
Administration Tool, CreateUserWizard, and so forth to manage that data.

Figure 11-23:
Here’s the

Empty
Items

table, open
and really

empty.

Figure 11-22:
Two new

tables
(Items and
Transac-

tions),
listed with

other tables.

244 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 244

But, if you need some sample data to play around with in the tables you cre-
ated yourself, you can manually type that data directly into the tables. It’s not
the most intuitive way to do it; there are some rules you have to play by.

Never use the procedure described here to add data to any table whose name
starts with aspNet_. Always use the Web Site Administration Tool to add,
edit, and delete data in those tables. Use the method described only to enter
some sample data into a table you created yourself.

Here are some quick tips for entering data into fields:

� When you enter data into a record that contains an automatically-
generated primary key (for example, the ItemId field in the Items
table), you must leave that field empty (NULL). The field gets filled with
a value automatically, after you’ve filled in other fields in the record.

� When you’re typing data into table fields, do not press Enter when you
complete your entry. Instead, when you’ve finished filling one field and
want to move on to the next, press the Tab key. Or just click the next
field in which you want to enter or edit data.

� The little pencil that appears after you fill in a field isn’t part of the data
in the field. It’s only there to tell you the field has been edited since the
table was first opened.

� When typing dollar amounts, don’t type the dollar sign. There’s no need
to bother typing commas, either; they’ll just be removed. For example, if
you want to enter $1,234.56 into a money field, type 1234.56. In the
Design surface, all dollar amounts have four digits to the right of the
decimal point and no dollar sign. Don’t let that bother you. As long as
you’re working in Database Explorer, how the data looks isn’t important.

� If you don’t have data to fill a field yet, you can leave the field empty
(NULL), provided you allowed nulls in the design of the table. If you
didn’t, and you find that the table really needs to allow nulls in a field, go
back to the table’s definition and select the Allow Nulls check box for
that field.

� After you’ve filled in all the fields for a record, you can press Tab or
Enter to complete that record. SQL Server validates the data and saves
the record. If there are any problems, the record won’t be saved. Instead,
you’ll see an error message (stating No row was updated) with a
description of the problem. You have to click OK in that message box
and fix the problem. This fix often involves clicking the faulty value and
then pressing Escape to “undo” the entry currently in the column.

The example in Figure 11-24 shows where I’ve typed some sample (and fake)
data into the Items table. The ItemDescription field contains much more
text than can be displayed in the narrow column. But that text isn’t impor-
tant here.

245Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 245

To widen or narrow a column, click and hold on the bar to the right of that
column’s name, and then drag left or right.

I’ll need some sample data in my Transactions table to illustrate upcoming
concepts. So I opened that table and added the records below. It’s imperative
that the value in each record’s UserId field exactly matches an actual user’s
GUID in the aspnet_Users table. So, to enter GUIDs into records, I copied
and pasted actual GUIDs from the aspnet_Users table. The TransactionId
values are entered automatically. So when you get to that field, just press the
Tab key to move to the next record without typing a TransactionId number.

Dummies beware! Typing the GUIDs shown in Figure 11-25 into your own table
will not work. Every GUID you manually enter into your own Transactions
table must exactly match an actual GUID from your own aspnet_Users table.

At this point, I have all the tables that the membership system created, plus
my Items and Transactions tables. There is a natural many-to-many link
between users in the Membership table and items in my Items table. The
Transactions table contains the fields necessary to link many users to
many items, and also provides a record of who purchased what and when.

At this moment, SQL Server is not “aware” that there are relationships among
these tables. You have to describe the relationships by linking tables together
in queries.

Figure 11-25:
Sample data

in the
Transac-

tions
table.

Figure 11-24:
Adding

some
records to
my Items

table.

246 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 246

Linking Tables
Although the tables in a database store data, the way you get exactly the data
you need, and only the data you need, when you need it, is through Structured
Query Language, abbreviated SQL and often pronounced like sequel. You use
SQL to create queries (also called SQL statements or SELECT statements) —
commands that describe exactly what data you want to retrieve from the data-
base, and where to find that data. Here is an example of a simple SQL statement:

SELECT * FROM Items

This SQL statement, when executed, retrieves all columns and all records
from the table named Items. (The * is short for “all columns.”)

If you want to retrieve only certain columns of data from a table, replace the
* with the names of the columns the SQL statement should retrieve. For
example, the following SQL statement retrieves data from the UserId and
UserName (only) columns in the aspnet_Users table:

SELECT UserId, UserName FROM aspnet_Users

Both sample SQL statements just given retrieve all records from the table.
The only time such an extraction doesn’t happen is when that SQL statement
includes a WHERE clause, which specifies which records to retrieve. The
WHERE clause is often called a filter because it “filters out” any records you
don’t need. (Or, more accurately, it filters out the records that the current
Web page doesn’t need to show.)

A WHERE clause limits the records retrieved from the data to those records
that meet some criterion. For example, this SQL statement retrieves exactly
one record (not all records) from the Items table: The record that has 10002
in its ItemId field:

SELECT * FROM Items WHERE ItemId = 10002

If you wanted just the ItemName and ItemDescription fields from the table,
and only the records for item 10002, then you replace the * with the names of
columns you want, as follows:

SELECT ItemName, ItemDescription FROM ItemsTable WHERE ItemId = 10002

Not to worry: You don’t actually have to write the SQL statements yourself.
And that’s a good thing — SQL statements can be far more complex than the
examples shown here. To avoid all that tedious and error-prone typing, you
can use the Query Builder to create your complex SQL statements. The
Query Builder lets you pick and choose what you want to extract from your
tables with ease — and with a more intuitive graphical user interface. You

247Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 247

pick and choose options, the Query Builder then writes the appropriate SQL
statement for you.

The Query Builder appears automatically whenever you perform some action
that requires getting data from a database. You’ll see examples in upcoming
chapters; in this chapter, as a general example, we use the Query Builder to
link tables together into a view.

Creating a view
In SQL Server, a view is a saved query. When you set up your site for
Membership, VWD automatically created several views. They are listed under
Views in Database Explorer. The name of each automatically-created view
starts with vw_aspnet_ as shown in Figure 11-26.

Never delete, change, or rename any view whose name starts with vw_aspnet_.
Those views are created by the membership system, for the membership
system, and they really don’t like being monkeyed around with.

To illustrate using the Query Builder to link users, transactions, and items, I’ll
create a view named UsersAndItemsView. You create a view as you would

Figure 11-26:
Views

created
by the

membership
system.

248 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 248

any other object: Right-click the Views folder in Database Explorer and
choose Add New View. A dialog box named Add Table opens.

The first step in building the query is to choose the tables from which the
query will get data. If there’s a many-to-many relationship among selected
tables, the view must also include the Transactions table that provides the
link between tables. To add a table to the query, click its name in the Add
Table dialog box, and then click OK. (For this example, I add the
aspnet_Users, Transactions, and Items tables to the view.) Click the Close
button in the Add Tables dialog box after choosing your tables.

If you forget to add a table before clicking the Close button, choose Query
Designer➪Add Table from the menu bar, or click the Add Table button in the
toolbar.

Each table you add appears as a field list in the Diagram pane at the top of
the Query Builder. Each field list shows the names of fields within the table.
You can move and size the field list’s little windows by using standard tech-
niques (drag the title bar to move, drag any corner or edge to size). In most
cases, the lines connecting tables by their key fields are added to the field
lists, as in Figure 11-27.

With the three items linked together, the next step is to choose which fields
you want to see from these tables. You choose which fields you want the view
to display by clicking the check box next to each desired field name. As you
do so, each field name you check appears in the Criterion pane, just below
the Diagram pane.

Below the Criterion pane is the Show SQL pane, which shows the actual SQL
statement that the Query Builder creates as you go. You can size those panes
by dragging their borders up and down. You can choose which panes you
want to hide by using buttons in the toolbar shown near the top of Figure
11-28; the figure also shows how the query looks after you choose some field
names from tables in the Diagram view.

Figure 11-27:
Three tables

joined in
the Query

Builder.

249Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 249

While you’re designing a query, you can test it out at any time using any of
these methods:

� Right-click some empty space in the Design surface and choose
Execute SQL.

� Press Ctrl+R.

� Click the Execute Query button (red exclamation mark) in the toolbar.

� Choose Query Designer➪Execute Query from the menu bar.

The results of executing the query appear in the Results pane at the bottom
of everything else. Figure 11-29 shows the results of executing the query from
Figure 11-28. Although it might not look like much, at first glance, it could be
the solution to many of your data processing problems.

Figure 11-29:
Results of
executing
the query.

Figure 11-28:
Fields that
the query

should
retrieve are

selected.

250 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 250

Each record in the view’s results represents a single transaction; the view
always shows one record for every transaction made, up to the moment you
see the results. In other words, if you ignored all fields except UserId and
ItemId, you’d see that the view contains exactly the same records as the
Transactions table.

However, the view offers a big advantage over the Transactions table alone.
Each record in the view includes the user name, date of the transaction, paid
status, OurItemId, ItemName, and ItemPrice fields. In other words, the view
contains a lot more useful information that the Transactions table provides —
and offers greater control of your data in these ways:

� The way the data looks in the query results is of no importance. Users
never see query results like those you’re seeing in Web pages. They see
the information in whatever format you present it to them — and you
have near-infinite choices there.

� Any time you “call upon” a view for information, it returns all the fields
shown in the current query results — including current data from the
tables — but the view doesn’t “contain” any data at all. Each time it’s
executed, it has no choice but to get the specified information from the
tables that are currently in the database.

� A view can only be used to retrieve data from a table — not to edit data
in the underlying table. That’s an advantage because in a Web site, nine
times out of ten you want a Web page to show data to the user but not to
allow the user to edit the data. Why? Well (for instance), imagine an
unscrupulous user editing the page to change the price of an item in
your Items table to a penny — and then ordering 100 of them. . . .

Using a view to access data from the tables provides the added security of
knowing that a user cannot gain any access whatsoever to data in the tables
from which the view retrieves its records. Also, the fact that the Web server
doesn’t need to fuss with editing improves overall performance; data moves
faster to the user’s page from the server.

To save a view, click the Close button in its upper-right corner and choose
Yes when asked about saving your changes. Name the view (I’ll call this one
UsersAndItemsView1) and click OK. The view name is added to the list of
views in Database Explorer.

A more detailed view
One weakness of the previous view is that it didn’t include the user’s e-mail
address. It can’t; the linked aspnet_Users table doesn’t contain the user’s
e-mail address. That bit of information is stored in the aspnet_Membership
table.

251Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 251

There is, however, a view named vw_aspnet_MembershipUsers already
defined under Views in Database Explorer. You can use that view in place of
the aspnet_Users table to create a query that includes users’ e-mail
addresses.

Creating another view named DetailedUsersItemsView illustrates the point:

1. Right-click the Views folder and choose Add New View.

2. In the Add Tables dialog box, click the Views tab, click
vw_aspnet_MemberhsipUsers, then click the Add button.

3. In the Add Tables dialog box, click the Tables tab.

4. Click the Transactions table, then click Add.

5. Click the Items table, then click Add.

6. Click Close in the Add Tables dialog box.

7. In the diagram pane, drag the UserId field in the vw_aspnet_
MembershipUsers field list to the UserId field name in the Transactions
table. The two fields will then be connected by a line as shown in
Figure 11-30.

In Figure 11-30, I sized and arranged things so you can see all the field lists
and the lines joining the tables by their key fields.

The query can return any fields from any table you see. In Figure 11-30, I
chose some fields that might come in handy in the future. However, you can
choose any fields you like.

Executing the query returns a set of records similar to those from the less-
detailed query — exactly one record per transaction shows up in the query

Figure 11-30:
The

Detailed
Users
Items
View’s

tables and
selected

fields.

252 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 252

results. However, this view offers more information about who made each
purchase — including each user’s e-mail address, the date he or she created
the account, the date of the user’s last login, and more. Figure 11-31 shows
the results — but actually the results table is wide enough to see all the
columns. Suffice it to say that for every checked field name in Figure 11-30,
there’s a field containing data in the query results.

For purposes of future examples, I saved the query shown in Figure 11-30 as
DetailedUsersItemsView, so in my own Database Explorer, that name has
been added to the list of Views in the current database (as in Figure 11-32). To
execute a view to see only the data it retrieves — without seeing its design —
you can right-click the view name and choose Show Results.

The way the data looks in the view results is of zero importance. Formatting
takes place when you display data from a view in a Web page.

Figure 11-32:
Two new

Views
added to the

database.

Figure 11-31:
Results of
executing

the detailed
query.

253Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 253

In real life, there would rarely be any need to open a view from Database
Explorer and see the records it returns, because the way the results are
shown in Database Explorer aren’t especially pretty or easy to read. Instead —
normally — you’d use the view to extract data from your tables via data-
bound controls in the Web pages you create.

Each data-bound control can choose as much (or as little) information from
the view as it needs. For example, one control could display a list of all users
who purchased a specific item. Another could list all items purchased by a
specific user. Still other controls could organize information from the view in
other ways.

Creating a Table of Pictures
Not all database tables need to be linked to other tables. You can use a data-
base table to store things that don’t relate directly to specific users or spe-
cific items. For example, if you have pictures you want to show or allow
people to download, you can create a table of pictures. Then, as you’ll see in
Chapter 12, you can use Data controls to make it easy to display multiple pic-
tures on a page.

You don’t need to put the pictures directly in the database. Rather, you can
store all the pictures in a folder (or multiple folders). Then just create a table
that identifies the picture’s location within your site. As an example, Figure 11-33
shows where I’ve created a subfolder named FlowerPix within my Images
folder in Solution explorer. Each of the filenames, Flower02,jpg,
Flower02.jpg, and so forth, is a photo of a flower.

Figure 11-33:
The

FlowerPix
folder

contains ten
pictures of

flowers.

254 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 254

Next, you can create a table that contains three fields. One field will be a pri-
mary key that just assigns each record a unique number. Even though this
table won’t be on the “one” side of a one-to-many relationship, a table needs
to have a primary key if you want to be able to edit it through Web pages. So
we’ll add a primary key to the table we’re about to create.

The second field will be a caption or title for each photo. The third field will
be the path and filename of a photo. The path to each picture will look some-
thing like this:

~/Images/FlowerPix/Flowerxx.jpg

where ~/Images/FlowerPix means “the FlowerPix folder in the Images
folder, under the root (~) folder.” The Flowerxx.jpg will be the name of a
specific picture within that folder. I’ll name the sample table Photos. You
create it as you would any other table. Here are the steps:

1. If you’re in Solution Explorer, click the Database Explorer tab.

2. Right-click on Tables under the database name and choose Add
New Table.

` 3. Type PhotoId as the first field name, and make it the smallint
data type.

If you think you’ll have more than 32,000 pictures, use the int data type
rather than smallint.

4. Clear the check mark from the Allow Nulls field.

5. In the Column Properties, click the + sign next to Identity Specification.

6. Set the (Is Identity) property to Yes.

You can leave the Identity Increment and Identity Seed each set to 1, so
records are just numbered 1, 2, 3, 4, and so forth.

7. Right-click the PhotoId field name and choose Set Primary key.

Figure 11-34 shows how the table design should look so far.

Figure 11-34:
The

PhotoId
field is an

auto-
numbered

primary key.

255Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 255

8. Add a second field named PhotoCaption, and set its Data Type to var-
char(50).

9. Add a third field named PhotoURL and set its Data Type to var-
char(64).

Figure 11-35 shows the final structure of the table.

When defining a field that stores any kind of URL or address, use either
varchar or nvarchar. Using char or nchar will pad short addresses
with blank spaces, which in turn may prevent the link from working
properly later when used on a page.

10. Click the Close (X) button in the upper-right corner of the Design
surface.

11. Choose Yes when asked about saving your changes.

12. Change the name of the table to Photos, then click OK.

Now you have a new table, named Photos, in the database. Each record
in the table can contain a photo caption and the link to a photo. If you
already have your pictures in a folder, you can right-click the table and
choose Show Table Data.

Because PhotoID is an automatically-numbered field, you want to leave it as
Null when entering new records. Just type a caption name and a link to a pic-
ture in the PhotoCaption and PhotoURL fields. Then type a caption and link
for each photo.

For my example, where each photo is a picture of a flower, I put a (fake) Latin
name for each photo into the PhotoCaption field, and a link to each photo in
the PhotoURL field. (I don’t know the actual Latin names for the flowers, so I
just made some up, borrowing a few names from animal anatomy.) Figure
11-36 shows an example. I’ve opened Solution Explorer in that figure so you
can see how the PhotoURL in each record refers to a specific image in the
~/Images/FlowerPix folder.

Figure 11-35:
Completed
Photos

table
design.

256 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 256

The table doesn’t look like much with just the text in it. However, keep in mind
that a table is always just “raw data” and how things look in the table doesn’t
dictate how they’ll look on a page. As you’ll discover in Chapter 12, you can
use a DataList control with the Photos table to show the actual pictures and
captions on a page. For now it’s sufficient to just close and save the table.

Creating a Table of HyperLinks
If your site has many links to Web sites outside your own site, you can store
all those links in a database table. Doing so keeps all the links in one place,
where they’re easy to manage. You can then use whatever links you want on
any page you want without having to worry about keeping links up-to-date
across many different pages within your site.

For a table of links, you’ll need at least two text fields, one for the name or
title of the site, and one for the site’s URL (address). If you like, you could add
a third field for storing a description of each site. Also, if you want to be able
to edit the table’s data through Web pages, the table will need a primary key.

To keep things fairly simple, I’ll show you how to create a table that contains
a primary key, a field for storing each site’s name, and a field for storing each
site’s address. The steps are:

1. If you’re in Solution Explorer, click the Database Explorer tab.

2. Right-click on Tables under the database name and choose Add New
Table.

3. Type SiteId as the first field name, and set its Data Type to smallint.

If you think you’ll have more than 32,000 links, use the int data type
rather than smallint.

Figure 11-36:
Some

sample
records in

my Photos
table.

257Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 257

4. Clear the check box for Allow Nulls.

5. In the Column Properties pane, click + next to Identity Specification.

6. Set the (Is Identity) property to Yes.

You can leave the Identity Increment and Identity Seed fields each set
to one.

7. Right-click the SiteId field name and choose Set Primary Key.

Figure 11-37 shows the table structure so far, with just the auto-num-
bered primary key SiteId defined.

8. Add a second field to store the site’s title. For my example, I’ll name
that field SiteName and set its Data Type to nvarchar(50).

9. Add a third field for storing the site’s URL. In my example, I’ll name it
SiteURL and give it the varchar Data Type with a maximum length of
64 characters.

Figure 11-38 shows my completed table structure.

10. Click Close in the upper-right corner of the Design surface.

11. When asked about saving the table, choose Yes.

12. Name the table Links and click OK.

Figure 11-38:
Structure of

my sample
Links

table.

Figure 11-37:
The primary

key for a
table of

hyperlinks.

258 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 258

To add data to the table, right-click its name in Database Explorer and choose
Show Table Data. When typing in data, remember to leave the SiteId field
set to Null, as it will be numbered automatically after you’ve filled the other
fields. You can type any text for the site’s name or title. But when specifying
the site’s URL, make sure you use the full http://... address.

Figure 11-39 shows an example where I’ve put in some site titles and the links
to those sites. The links don’t actually do anything in the table. Remember, the
table is just a means of storing the data. But as you’ll discover in Chapter 12,
you can use a DataList control to create a page that displays each site title
as a link that takes the user directly to the site.

Thus ends the world’s quickest SQL Server/Database Design crash course.
There is a great deal more to know about those topics. (But you knew that.)
What you’ve discovered here should be enough to get you started. If nothing
else, it has covered a lot of things many other VWD information resources
will assume you already know. Chapter 12 shows many ways of putting the
data to good use within the site.

Figure 11-39:
Storing links

in a table.

259Chapter 11: SQL Server Crash Course

17_583603 ch11.qxd 10/21/05 6:53 PM Page 259

260 Part III: Personalization and Databases

17_583603 ch11.qxd 10/21/05 6:53 PM Page 260

Chapter 12

Using Data in Web Pages
In This Chapter
� Binding data to pages

� Using the Data Source Configuration Wizard

� Using the GridView and DetailsView controls

� Using the DataList and FormView controls

Visual Web Developer is a tool for building dynamic, data-driven Web
sites — dynamic because the information you display on these Web

pages doesn’t have to be the same for everyone. You can get your site to
create a page that’s appropriate for every user, showing only the appropriate
(user-specific) data from a database.

Take a big search engine like Google for instance. When you submit a search
string to Google, you’re actually submitting a query to its database. What its
database spits back are pages and pages of links to Web pages that contain
the word or phrase you searched for. In other words, Google’s Web site
dynamically created the page you see using data from its database.

To display data from your site’s database in Web pages, you bind data from
the database to controls on the page. While sitting on your server, the control
is just a placeholder that contains no data. When a Web site visitor requests
the page, the control can then be filled with whatever data is appropriate to
that specific request.

In other words, if 100 different people visit the page, each might see some-
thing different, just as 100 different people doing different Google searches
see 100 different lists of things in the page that Google sends them. What
makes the page dynamic is that the page contains only data that is relevant to
the user’s request — and that changes from user to user.

This chapter explores how to use dynamic content in your own Web pages:
how to bind the data to controls and how to place that data into your Web site.

18_583603 ch12.qxd 10/21/05 6:50 PM Page 261

Binding Data to Controls
You can bind data to all kinds of controls in Visual Web Developer. But before
I get into specific controls, it’s worth reviewing some things that apply to all
data-bound controls. For openers, you always put data-bound controls on
Web form (.aspx) pages. So the first step is to open or create, in Design view,
the page on which you want to place the control.

Next, you drag a data-bound control from the Toolbox onto the page (or, if
the current page has a Master Page, you drag the control into the Content
area of the page). The control won’t look like much in Design view. It’s just a
placeholder; don’t be alarmed by its ugly appearance.

The control won’t automatically be bound to anything specific in your data-
base. You have to tell it what to bind to. For this you can use the Data
Configuration Wizard

Using the Data Configuration Wizard
To bind a control to data, you use the Data Configuration Wizard. Typically,
you launch that by opening the control’s Common Tasks menu, clicking
Choose Data Source, and then choosing New Data Source. Figure 12-1 shows
an example: I’ve dragged a DataList control from the Toolbox onto a page,
and am about to bind it to a data source.

Specifying a data source and connection
The first wizard page asks for the type of data source you want to get data
from. Choose Database to get data from a SQL Server database. A name for

Drag
Figure 12-1:

Preparing
to bind a

DataList
control to a

data source.

262 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 262

that source, usually SqlDataSource1, appears in the text box (as shown in
Figure 12-2).

You don’t need to change or worry about the name that appears in the text
box, it will just be the control’s name within the current page. You can click
Next to move on.

The next wizard page asks you to choose a connection. Typically, the connec-
tion to your database has already been defined in your Web.config file, so
you should always use that one. If that’s the case, just choose that existing
connection string from the drop-down list, as shown in Figure 12-3.

Figure 12-2:
Choosing

SQL Server
as the data

source.

263Chapter 12: Using Data in Web Pages

Defining the connection string
The first time you add a data control to a page,
there may not be a name to choose from in the
drop-down list. If that’s the case, click New
Connection. Then in the dialog box that opens,
click Browse and navigate to the folder that
contains the database file. For example, if you
saved your site as MyVWDSite in your
My Documents folder, you’ll need to open
MyVWDSite in the My Documents folder, then
the App_Data folder, and finally click on ASP-
NETDB.MDF, and click Open. Then click OK.

A second page will ask if you want to
save the connection string in your Application
Configuration file. Choose Yes, and give the con-
nection string a name. For example, I named
mine MyConnectionString. After you’ve defined
a connection string, there’s no need to create
others. Each time you add a Data control to a
page, you can use the same connection string.
That’s because the connection string just tells
Visual Web Developer where the database
(.mdf file) is located. It doesn’t specify any par-
ticular tables within that database.

18_583603 ch12.qxd 10/21/05 6:50 PM Page 263

Configuring the Select Statement
The next wizard page, titled Configure the Select Statement (and shown in
Figure 12-4), is where you tell the wizard exactly what you need from the
database. Here you specify what you want the control to show on the page.
There are two ways you can go about doing that:

� Specify a Custom SQL Statement or Stored Procedure. This is the
option to choose if you’re creating a complex query with multiple con-
nected tables involved. It takes you to the Query Builder, where you can
create the SQL statement using the same technique used at the end of
Chapter 11 to construct views. If this approach looks a bit intimidating,
don’t worry; it’s rarely (if ever) actually necessary.

� Specify Columns from a Table or View. This is the cushy (and more
commonly used) option. You can easily grab what you want from wher-
ever it is without going through the whole Query Builder rigmarole.

Figure 12-4:
The

Configure
the Select
Statement

page.

Figure 12-3:
Once you

create a
connection

string, use it
every time.

264 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 264

Choosing a table or view
If you choose Specify Columns from a Table or View, the next step is to tell
the wizard which table or view contains the data to bind to. You can bind to
any table or view you created yourself. If you need data from the membership
system, you can bind to any of the vw_aspnet_ views in the Name drop-
down list shown in Figure 12-5.

Choosing columns to retrieve
After you choose a table or view, names of columns (fields) in that table or
view appear below, each with a check box. That’s where you specify which
column (or columns) contain the data you need. To get all columns, choose
the * check box. But if you don’t need all the columns, then choose only
those columns you do need.

For example, let’s say I chose Items as the table to retrieve data from. I really
don’t need to be broadcasting my database’s primary keys to the general
public via the Internet, so I chose to include every column except ItemId, as
shown in Figure 12-6.

While you’re choosing options, you’re actually creating the SQL statement
that appears below the column names.

To see what the SQL statement you’ve created so far will retrieve from the
database, click Next, then click Test Query. The results of executing the SQL
statement appear in a window. Using the options in Figure 12-6 as an exam-
ple, the Test Query results display all the records from my Items table,
minus the ItemId field, as shown in Figure 12-7. (Note that this is exactly the
data needed to show a product catalog on a Web page.)

Figure 12-5:
Choose

whichever
table

or view
contains

the data that
the control

needs.

265Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 265

As always, do not be concerned about how the data looks, or the arrange-
ment of the columns at this stage. Here you’re just saying what you want.
You’ll deal with how it looks on the page later.

If the results you get from your query are not what you expected, no big deal.
Just click the Previous button to return to the Configure the Select Statement
page and work on the query some more.

Figure 12-7:
Results of

testing the
query from

Figure 12-6.

Figure 12-6:
A request

for all
columns

except
ItemId
from the
Items

table.

266 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 266

If you need data from multiple related tables, and have already created a view
that connects the tables, then you can choose that view as your source. For
example, if you need information about transactions, you could choose one
of the views described at the end of Chapter 11, then specify which columns
of information you need about each transaction, as shown in Figure 12-8.

Testing that query reveals a set of records in which each record represents a
transaction made to date. Each transaction would include the name and
e-mail address of the user who made the purchase, as shown in Figure 12-9.

Specifying a sort order
By default, records your query retrieves will be listed in the same order
they’re arranged in the table. If you want a different sort order — say,

Figure 12-9:
Results of
executing

the query in
Figure 12-8.

Figure 12-8:
Choosing

columns to
display from

a view.

267Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 267

alphabetical by name, oldest to newest, or something like that — click
the ORDER BY button. The Add ORDER BY Clause dialog box shown in
Figure 12-10 opens.

In this dialog box, you can choose how you want records in the query results
sorted. For example, if the table or view contains a UserName field, you could
choose UserName and Ascending to alphabetize rows by user name. If the
table or view contains a TransactionDate, and you want to list rows from
newest to oldest, choose TransactionDate as the Sort by column and
Descending as the order.

As always, you can choose multiple columns to create sorts within sorts.
When you’ve finished choosing your sort column(s) and orders, click OK.
The SELECT statement you’re creating gains an ORDER BY clause to order
records by whatever columns you specified.

Showing only unique values
Sometimes you want to extract unique records from a table, so there is no
duplication of information in the data returned. That’s often the case when
you want to use the query results as menu items in a drop-down list.

For example, suppose you want to choose a user (to view their transactions)
from a drop-down menu. The menu shouldn’t contain all user’s names, only
users who have records in the Transactions table.

A drop-down list usually only needs one or two columns, in this case they
would most likely be UserName or Email, or both. In Figure 12-11, I opted to
retrieve only the Email and UserName columns from the view.

Figure 12-10:
The Add

ORDER BY
Clause

dialog box.

268 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 268

If it were not for the selected check box (Return Only Unique Rows) in
Figure 12-11, the query in Figure 12-11 would return a row for every transac-
tion to date, repeating the UserName each time, as shown in the left side of
Figure 12-12. Some names are duplicated because any one user might have
many transactions. Choosing Return Only Unique Rows eliminates duplicates
from the returned rows, leaving only a list of unique names as shown in the
right side of Figure 12-12.

Retrieving specific rows (filtering)
More often than not, you want to bind a data control to some of the records
in a table or view but not to all those records. For example, you might want
to extract records only for user Bob or Alice from the view to show that
person what products they’ve purchased. Or, you might want to see a list of
everyone who purchased a specific item rather than a list of every transac-
tion ever made.

Only unique rowsAll rows

Figure 12-12:
Showing
duplicate
and then

unique
values.

Figure 12-11:
This option,

when
checked,

shows only
unique

records.

269Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 269

Limiting the records you retrieve from a table or view is called filtering the
rows. To specify how you want rows filtered, click the WHERE button on the
Configure the Select Statement page. The Add WHERE Clause dialog box opens.

The first step is to choose which column you want to filter on. For example, if
you want to extract rows for a particular user only, choose UserName or
UserId. If you want to retrieve rows for a specific item, choose ItemId.

After you’ve chosen a column for the filter, choose an operator. All the usual
suspects are available and summarized in Table 12-1.

Table 12-1 Operators Used in a SQL WHERE Clause
Operator Meaning

= Equals

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Does not equal

After you’ve chosen the column name and operator, specify where the value
to compare to will come from. You use the Source drop-down list for that. It
offers several options, but you’re most likely to use these two:

� Control: Choose this if the value you want to compare to will come from
some other control on the same page, such as a drop-down list.

� Profile: Choose this if the criterion for selecting records has anything to
do with choosing only records that are relevant to the specific user who
is viewing the page.

It’s unlikely that you’d ever have to choose Cookie, Form, QueryString, or
Session from the Source drop-down list. You should be able to do anything
needed here if you use either the Control or Profile source.

What happens next depends on what you chose in the steps leading up to
this point. You’ll see more information and examples shortly. But for the sake
of example, let’s say you chose UserName as the column to query, = as the
operator, and Profile as the Source. The next step would be to specify the
property name which, in this case, is UserName (same as the column name).
Figure 12-13 shows an example in which only records that have the current
user’s name in the UserName column of the table will be extracted from the
table.

270 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 270

When you’ve specified your criterion, you must click the Add button to go
on. (If you forget this step, the query won’t work and you’ll drive yourself
nuts trying to figure out what’s wrong.) When you click Add, your current
selections are converted to SQL down at the bottom of the dialog box. The
other controls are cleared so you can create additional criteria, if need be. If
you don’t need to add any more criteria, then click OK to return to the previ-
ous wizard page.

The SELECT statement you’re creating now contains a WHERE clause that
looks like this:

WHERE ([UserName] = @UserName)

That’s SQL for “get records only for whichever user requested this page.”

It’s important to understand that the WHERE clause you create must refer to
columns in the current query. The query shown here wouldn’t work in the
Items table because there’s no UserName column in the Items table. But it
works in DetailedUsersItemsView because that view does contain a
UserName column.

When you test a query that includes a WHERE clause, you’ll need to manually
type in some plausible data to verify that the SELECT statement works. This
means click Next, and then click Test Query. You won’t see query results
immediately; instead, you see the Parameter Values Editor dialog box shown
in Figure 12-14.

A parameter is a chunk of information being passed to the SQL statement. For
example, we can feed the WHERE clause the parameter Bob. In return, the SQL
statement spits back only records that have Bob in the UserName column.

Figure 12-13:
Retrieve

records for
the current

user only.

271Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 271

To test the query, you must enter a realistic value into the Value box in the
query editor. For example, I know for a fact that I have a user named Bob in
my current membership system. So I could type that name into the Value box,
(refer to Figure 12-14).

After you enter a test value and click OK, the query executes. In this example,
only rows that have Bob in the UserName field are retrieved from the view, as
shown in Figure 12-15.

The query results show every transaction made by user Bob. When you bind
this to a data control on your page, however, the query won’t show Bob’s record
on the page. It will show records for whatever user requested the page.

Given those options you just discovered, you can retrieve anything you want
from your database, no matter how large or small. When you’ve accurately
defined the columns and rows that your data-bound control needs, click Next.
You’re taken to the Test Query page again. There you can click the Test Query
button once to make sure your query is retrieving the data you need. Then click
Finish when you’re certain the query provides the data your control needs.

Figure 12-15:
Only rows

for user Bob
are returned

by the
SELECT

statement.

Figure 12-14:
The

Parameter
Values

Editor dialog
box.

272 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 272

If you tested a query previously, the results that show up on the Test Query
page will be the ones left over from that previous text. To see what your cur-
rent query produces, you must click the Test Query button.

Clicking Finish closes the wizard and brings you back to the Design view of
the page. The data-bound control will probably look completely different
(though still random and ugly, because it’s only a placeholder for data to be
provided later).

Data controls in Design view
In Design view, data controls don’t look like much. The control shows column
names from the underlying table or view. For example, Figure 12-16 shows a
DataList control after binding it to the Items table (without the ItemId
column). Instead of showing actual data from the table, the control just
shows placeholders like abc for text and 0.1 for numbers.

To see what the data-bound control will display to people accessing your
Web site normally, view the page in a Web browser. The placeholder text is
replaced with actual text from the table, as shown in Figure 12-17. (There’s
more text than can be seen without scrolling. But trust me, the page shows
all records from the Items table.)

Keep in mind that Figure 12-17 is only an example. There are many data con-
trols to choose from, and an infinite number of ways you can display data on
a page. But the general procedure of going through the Data Configuration
Wizard is the same, regardless of what data control you use or how you
format your data.

Figure 12-16:
A

DataList
control after

binding to
columns
from the
Items

table.

273Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 273

If you ever change your mind about the columns and rows you chose for a
data-bound control, it’s no big deal. Just click the control’s Common Tasks
menu and choose Configure Data Source. Click Next on the first wizard page,
and you’ll be taken back to the Configure SQL Statement page, where you can
change which columns are retrieved, the sort order, the WHERE clause, or
any combination of those.

Formatting Dates and Numbers
Unless you specify otherwise, data from SQL Server tables look on a page as
they do in a table, which means money fields display in the format 29.9500
and date/times appear in the format 6/15/2006 12:00:00 AM. Of course,
you’re not stuck with those formats.

Exactly how you change the format of a date or number varies from one data
control to the next. (You’ll see examples in upcoming sections.) But the sym-
bols you use to format dates and times are always the same.

The full set of things you can do, formatting-wise, are all documented in the
.NET Framework and C# documentation under the general moniker of composite
formatting. The ones you’re most likely to actually use in a Web site are sum-
marized in Table 12-2. The first one, {0:C} or {0:c}, works with any field
that’s the money or smallmoney data type. The others work with fields of the
datetime and smalldatetime data type.

Figure 12-17:
The

page from
Figure 12-6

as seen
in a Web
browser.

274 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 274

Table 12-2 Formatting Symbols for Currency
and Date/Time Columns

Symbol Name Sample Output

{0:C} or {0:c} Currency $29.95

{0:d} Short date 6/1/2006

{0:D} Long date Thursday, June 01, 2006

{0:t} Short time 12:00 AM

{0:T} Long time 12:00:00 AM

{0:f} Full (short time) Friday, June 02, 2006 12:00 AM

{0:F} Full (long time) Thursday, June 01, 2006 12:00:00 AM

{0:g} General (short time) 6/1/2006 12:00 AM

{0:G} General (long time) 6/1/2006 12:00:00 AM

Some Security Considerations
In any given database, there is sure to be information that users should never
see. There will also be much information that users are allowed to see but
not change. It’s up to you to decide which is which — and to provide all the
necessary security.

A relatively simple way to deal with this is to create a new folder for pages
that no user (other than you) can see. Here’s how:

1. Right-click the site name at the top of Solution Explorer.

2. Choose New Folder.

3. Name this folder AdminPages.

4. Using the Web Site Administration Tool, create a new role, perhaps
named Admin.

5. Add a new access rule that allows people in the Admin role to access
pages in AdminPages, and denies access to both anonymous users and
site members.

6. Finally, create a new user account for yourself and put yourself in
both the Admin and SiteMembers roles.

You’ll need to log in to that new user account before you can view any
pages you put into the new AdminPages folder.

275Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 275

If you don’t have the slightest idea what I’m talking about here, see Chapter 3.

Using the GridView Control
As its name implies, the GridView control shows data from a table or view in
a grid consisting of rows and columns. As always, you can specify exactly
which columns and rows (and from which tables or views) in your database
the grid should show. The GridView can be used both to display data, as well
as to add, change, and delete data in a table.

If your intent is to show data to users in the GridView control, then you can
bind the GridView to any table or view in your database. If you want to use
the GridView to edit data in the table, then you cannot bind the control to a
view. (Data from views can never be edited by the user.) Furthermore, the
GridView must be bound to one table only, and that table must contain a pri-
mary key field.

An instant GridView control
If you want to use a GridView control to show all columns and rows from a
single table in your database, your job is easy. Here’s what you should do:

1. In Database Explorer, click the + sign (if necessary) to expand the
tables list.

2. Drag the name of a table that you created (not one of the aspnet_
tables) onto the page.

For example, Figure 12-18 shows the results of dragging a table named Items
into the content area of a page that has a Master Page.

Drag

Figure 12-18:
Drag a table

to a page
to create

an instant
GridView.

276 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 276

If you want to show something in a GridView other than the contents of a
single table, you can create a GridView control and bind it to appropriate
data using the Data Configuration Wizard. Here are the steps:

1. In the Toolbox, expand the Data category of controls.

2. Drag a GridView control from the Toolbox onto your page.

3. From the GridView’s Common Tasks menu, select Choose Data
Source➪<New data source>.

4. Use the Data Source Configuration Wizard to specify which data you
want the control to show.

When you complete the wizard and click Finish, the GridView control
shows a column heading for each column you specified in the Data
Source Configuration Wizard.

In a Web browser, the data will look something like Figure 12-19 (assuming
you don’t do any formatting). The control actually shows all records from the
table. The figure only shows a few records.

Figure 12-19:
The page

from
Figure 12-18

in a Web
browser.

277Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 277

Formatting the GridView control
The default appearance of a GridView control isn’t necessarily pretty. But
you have lots of options for making it look and act the way you want. Most of
these options are available from the control’s Common Tasks menu shown in
Figure 12-20.

The gray SQLConnection box is just a placeholder that defines the control’s
data source, and won’t show up on your Web page. You can show or hide
those gray boxes by choosing View➪Non Visual Controls from VWD’s menu.

As with most controls, the Common Tasks menu for the GridView has an
Auto Format option that you can choose to apply a predefined formatting
style to the control. Other major items on the menu are as follows:

� Enable Paging: Adds a navigation bar to the bottom of the GridView,
allowing users to page through multiple records. Useful for displaying
data from larger tables to prevent all records from showing up on a
single page.

� Enable Sorting: Converts each column title to a clickable link. In the
browser, users can click any column heading to sort the rows by that
column.

� Enable Editing: Allows users to change any value in any row or column.
This option is only available if the control is bound to a single table that
has a primary key.

� Enable Deleting: Allows users to delete records. This option is only
available if the control is bound to a single table that has a primary key.

If you enable editing or deleting, that means anybody who views the
page can change or delete records in the table. If you don’t want users to

Figure 12-20:
Common

Tasks menu
for a

GridView
control.

278 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 278

do that, be sure to put the page that contains the control into a folder
that users can’t access.

� Enable Selection: Allows users to select a record. That record, in turn,
can be used as a filter for other data controls on the same page. You’ll
see an example in the section titled “Creating Master-Details Forms.”

Formatting GridView dates and times
If your GridView control shows currency or date/times, you use the Edit
Items option on the Common Tasks menu to format those columns. After you
choose Edit Items, you’ll be taken to a dialog box titled Fields. Under Selected
Fields in that dialog box, click the name of the field to which you want to
apply a format. The Properties box for the BoundField control then shows
properties for that selected field.

Scroll down through the properties until you get to the DataFormatString
property and then enter your formatting code. Figure 12-21 shows an example
in which I’ve applied the {0:c} formatting code to the ItemPrice control.

To right-align or center text within a column, scroll down a bit further in the
Properties sheet and expand the ItemStyle category. Then set the
HorizontalAlign property to Right or Center.

Arranging and hiding columns
To arrange or hide columns in a GridView, use the arrow and Delete buttons
just to the right of the Selected Fields list. For example, to move a column to
the left within the GridView, click its name, then click the Up button.

To hide a column from GridView display, click its name and click the black X
button to the right of the Selected Fields list.

Figure 12-21:
Fields dialog

box for a
GridView

control.

279Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 279

If your GridView supports editing, deleting, or selecting, the Selected Fields
list will include an item named CommandField. That item represents the left-
most column in the table where Edit, Delete, and Select links are placed.

If you don’t want a particular column to show up in the GridView, just
remove its name from the list of Selected Fields. For example, I could remove
the ItemId field from the current GridView control by clicking ItemId in the
Selected Fields list and then clicking the black X button just to the right of
the list.

When you’ve finished formatting fields in the Fields dialog box, click OK to
save your changes and return to the page. To get an accurate picture of how
your selections will play out, be sure to view the page in a Web browser.

Styling the whole GridView
You can style the GridView, as a whole, much as you would any other item.
Right-click the control, choose Style, and use the Style Builder to define
the style.

You can also style the control via its Properties sheet. The Properties sheet
for GridView provides extremely fine-grained control over the exact appear-
ance and behavior of every GridView nook and cranny. For example, if
you’ve enabled Paging in your control and want to set the number of rows
that appear on each page, change the PageSize property under Paging to
however many records you want each page to show.

If you want to apply a consistent look and feel to GridView controls used
throughout your site, consider creating a CSS class. For example, you could
create a CSS style rule named GView that looks like this:

.GView
{

border-right: #191970 thin solid;
border-top: #191970 thin solid;
font-size: smaller;
border-left: #191970 thin solid;
color: #483d8b;
border-bottom: #191970 thin solid;
border-collapse: collapse;
background-color: #f0f8ff;

}

Binding to DropDownList Controls
Even though a DropDownList control isn’t a data control, per se, you can
bind data from a database to that control. This is especially useful when the

280 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 280

drop-down list needs to show current data from the database — for example,
all users, all items in an Items table, or all users who have made purchases.
Whatever you choose from the drop-down list can then be used as a filter for
specifying rows to display in a nearby data-bound control.

For example, suppose you want to create a page in which you can choose any
user in your database and see his or her transactions and profile properties
(or whatever) only. Your first move is to create some means of choosing one
user. A drop-down list might work nicely for that.

To create a drop-down list that shows current database data, follow these steps:

1. Create or open the .aspx page on which you want to place the control.

2. From the Standard category in the Toolbox, drag a DropDownList con-
trol onto the page.

By default, the control is named DataList1 (assuming it’s the first
DropDownList control you added to the page). It’s important to know
the name of the control because to use the control’s value for anything
useful later, you must refer to it by exactly that name.

3. On the DataList control’s Common Tasks menu, select Enable Postback.

The above step is important if you intend to use the drop-down list as a
means of filtering rows in a table.

4. From the Common Tasks menu, select Choose Data Source.

5. On the wizard page that opens, choose New Data Source.

6. On the first wizard page, choose New Data Source from the
drop-down list.

7. Go through the usual steps in the first wizard pages (that is, choose
Database, click OK, choose your usual connection string, and click Next).

At this point, you’re in the Configure SQL Statement page.

8. Choose the table or view that contains the columns you want to show
in the drop-down menu.

For example, if you want the drop-down menu to show an alphabetical list
of all current users, you could choose vw_aspnet_MembershipUsers.

9. Choose the column (or columns) you want to use for the
drop-down menu.

For example, choose UserName to make the drop-down list show a list of
user names.

10. Use the ORDER BY button to sort the items into alphabetical order.

When you’ve finished, you can click Next (as necessary) and then Finish
to work your way back to the control.

281Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 281

To test the drop-down list, you have to view the page in a Web browser. Using
the example in which I opted to show the UserName and Email columns from
the vw_aspnet_MembershipUsers view, my drop-down list looks like the one
shown in Figure 12-22.

Using a DropDownList to filter records
To use a DropDownList control to filter records in another data-bound con-
trol (such as a GridView), several steps are required. I’ll use a GridView con-
trol to explain the basic process, but the same idea works with other Data
controls described later.

The first step is to add the control to the page and bind it to the values you
want the control to show. For example, suppose that after you choose a user
name from the drop-down list, you want to see all the transactions that user
has made. You could get that result by dragging a GridView control to the
same page as the DropDownList control and using the drop-down list control
to filter the records it displays.

Any time you add a second Data control to a page, you want to be sure to
choose <New Data Source...>, and not try to use the same data source
that the first control uses. That’s because the data source defines the exact
rows and columns that the control will show. And the rows and columns the
second control shows will be different from what the first control shows. By
default, the new data source is named SqlDateSrc2.

When you choose a connection string, you want to reuse the same connec-
tion string you use for everything else. That’s because the connection string
only tells the control where the database is located — it doesn’t specify any
tables or views within the database.

When you’re choosing a table, view, or column, choose one that has the same
column as the DropDownList control; UserName, in this example. That’s
because rows to be retrieved need to be filtered by values in that column name.

Figure 12-22:
A Drop

DownList
control

showing
data

from vw_
aspnet_

Membership
Users.

282 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 282

The DetailedUsersItemsView view (described in Chapter 11) contains lots
of information about transactions, and includes a UserName field, so you
could choose that as the view. Then, just choose the columns you want the
GridView control to show, as shown in Figure 12-23. You can also choose a
sort order using the ORDER BY button.

The critical step in the filtering process is limiting records to those that
match the name in the DropDownList. Click the WHERE button to get started
on that. Then set your options as follows:

� Column: The name of the column that contains the value needed for fil-
tering; UserName in this example.

� Operator: This is typically the = operator, but it can be any available
operator.

� Source: Where the value to be searched for comes from. In this example,
that would be Control because the value to look for is in a DataList
control.

� Control ID: The name of the control that contains the value to look for;
DropDownList1 in this example.

So in this example, the selections would look like Figure 12-24. Those selec-
tions are just a graphical way of saying “Retrieve only rows in which the
UserName column’s value equals the value of the control named
DropDownList1.”

You must remember to click Add, at which point the selections get translated
into SQL. Click OK, click Next, and then click Finish to work your way back to
the page.

To test the page, view it in the browser. Initially you’ll see just the DropDownList
control. To view any user’s transactions, select that user’s name from the drop-
down list. The GridView control “re-filters” each time you make a selection, so
you can check out different users. Figure 12-25 shows an example in which Carol
is selected in the DropDownList control, so only her transactions are visible in
the GridView control below the DropDownList control.

Figure 12-23:
Columns to
show in the
GridView

control
selected.

283Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 283

In Figure 12-25, I gussied up the GridView control a bit, using techniques
described in the preceding section. I also typed some text directly onto the
page to clarify what’s going on.

Viewing and editing user properties
If you added profile properties to your site, sometimes you want to see and
edit the properties of your user profiles. The tricky part is that you can’t use
the normal syntax such as Profile.propertyName to refer to a specific
user’s properties. That’s because that standard syntax always refers to who-
ever is viewing this page. When you’re viewing the page, that’s always going
to be you (well, yeah), so you’d see only your own profile properties.

Figure 12-25:
GridView

control,
showing
only the

records for
selected

user Carol.

Figure 12-24:
Retrieving

only the
records that

match the
UserName

in Drop
DownList1.

284 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 284

To see the properties of some other user, use the following syntax instead:

Profile.GetProfile(UserName).propertyName

where UserName is the name of the user for which you want to view a profile,
and propertyName is the name of the property. If the UserName value is
stored in a control, like DropDownList1, then UserName is actually the value
of that control, as given here:

Profile.GetProfile(DropDownList1.SelectedValue).propertyName

So, if the name Bob is currently selected in the control named DropDownList1,
then Profile.GetProfile(DropDownList1.SelectedValue).FirstName
refers to user Bob’s LastName property.

Given that, you could add a table to the page that contains a Textbox control
for each profile property you want to display. For example, Figure 12-26
shows some Textbox controls, and their names, in a page with a drop-down
list control on it. I’ve also pointed out the names of the drop-down list control
(DropDownList1) and the button (Button1), as those names are important
programmatically.

Each time you choose a name from the drop-down list, the Textbox controls
need to be populated with properties from the currently-selected user, which
means they have to be updated every time the value in the drop-down list
changes. To make that happen, double-click the drop-down list control to get

Button1
txtPrefTheme
txtZIPpostal
txtStateProv
txtCity
txtAddress2
txtAddress1
txtLastName
txtFirstName

Figure 12-26:
Textbox

controls that
can be used

to show
profile

properties.

285Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 285

to its SelectedIndexChanged event handler. Then type in the necessary code
to populate each Textbox control. So the whole C# procedure looks like this:

//Populate Textbox controls with selected user’s profile properties.
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
txtFirstName.Text = Profile.GetProfile(DropDownList1.SelectedValue).FirstName;
txtLastName.Text = Profile.GetProfile(DropDownList1.SelectedValue).LastName;
txtAddress1.Text = Profile.GetProfile(DropDownList1.SelectedValue).Address1;
txtAddress2.Text = Profile.GetProfile(DropDownList1.SelectedValue).Address2;

txtCity.Text = Profile.GetProfile(DropDownList1.SelectedValue).City;
txtStateProv.Text =

Profile.GetProfile(DropDownList1.SelectedValue).StateProvince;
txtZIPpostal.Text =

Profile.GetProfile(DropDownList1.SelectedValue).ZIPPostalCode;
txtCountry.Text = Profile.GetProfile(DropDownList1.SelectedValue).Country;
txtPrefTheme.Text =

Profile.GetProfile(DropDownList1.SelectedValue).PreferredTheme;
}

To allow editing you’d need to include a button like the Submit button in the
EditProfile.aspx page from Chapter 9. But, again, replace Profile. with
Profile. GetProfile(DropDownList1.SelectedValue). as shown here:

//Replace current user’s profile properties with contents of Textbox controls.
protected void Button1_Click(object sender, EventArgs e)
{
Profile.GetProfile(DropDownList1.SelectedValue).FirstName = txtFirstName.Text;
Profile.GetProfile(DropDownList1.SelectedValue).LastName = txtLastName.Text;
Profile.GetProfile(DropDownList1.SelectedValue).Address1 = txtAddress1.Text;
Profile.GetProfile(DropDownList1.SelectedValue).Address2 = txtAddress2.Text;
Profile.GetProfile(DropDownList1.SelectedValue).City = txtCity.Text;
Profile.GetProfile(DropDownList1.SelectedValue).StateProvince =

txtStateProv.Text;
Profile.GetProfile(DropDownList1.SelectedValue).ZIPPostalCode =

txtZIPpostal.Text;
Profile.GetProfile(DropDownList1.SelectedValue).Country = txtCountry.Text;
Profile.GetProfile(DropDownList1.SelectedValue).PreferredTheme =

txtPrefTheme.Text;
}

Assuming you add that to the previous page example, when you choose a
user from the drop-down menu, that page shows all profile properties for that
user as well as all of that user’s transactions, as shown in Figure 12-27.

286 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 286

Using the DetailsView Control
The DetailsView control in the Toolkit’s Data category is similar to the
GridView in that you can use it to show data as well as to edit and delete
data. The main difference is that the GridView is designed to show multiple
rows and columns in a tabular format, and DetailsView is designed for
working with one record at a time.

For readers who are familiar with Microsoft Access, a GridView is like a
datasheet and a DetailsView control is more like a form. The FormView con-
trol is an older ASP.NET 1 control that isn’t quite as easy to use as the new
ASP.NET 2.0 DetailsView control.

Binding a DetailsView control
The DetailsView control allows you to add, edit, and delete records in a table.
However, it can only do so if it’s bound to a single table that has a primary key.
If you bind a DetailsView control to a view or to multiple tables, you can still
see data in the control, but you can’t edit data in the underlying table(s).

Figure 12-27:
Page shows

profile
properties

and
transactions
for selected

user.

287Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 287

Even if you do bind a DetailsView control to a single table that has a pri-
mary key, you still won’t be able to use it to edit data in the underlying table
unless you take some extra steps during the binding process. From start to
finish, the steps would be:

1. Drag a DetailsView control from the Data category of the Toolbox
onto the page.

2. On its Common Tasks menu, click Choose Data Source and choose
<New Data Source...>. The Data Source Configuration Wizard opens.

3. The next steps are the same as always: Choose Database, click OK, use
the same connection string you always use, and click Next.

4. If you want to use DetailsView to add/edit/delete table records,
choose a table that has a primary key.

I’ll use my sample Items table to illustrate.

5. Click * to choose All Columns (if you intend to use the control to
enter/edit/delete records).

Optionally you can use the WHERE and ORDER BY buttons in the usual
manner to limit records the control retrieves to set a sort order.

6. If you want to be able to add/edit/delete records, click the Advanced
button.

7. In the dialog box that opens, choose both options, as shown in
Figure 12-28.

That scary “optimistic concurrency” thing is just a means of dealing with
situations in which two people edit a record at the same time. Choosing
that option is a good thing because it basically says to the app “You deal
with that headache, so I don’t have to.”

8. Click OK, then click Next and Finish, as appropriate, to return to
the page.

Figure 12-28:
Choose both

options if
you want

to use
Details
View to

modify data.

288 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 288

Assuming you didn’t skip Steps 6 and 7 above, the Common Tasks menu for
the DetailsView control shows options for inserting, editing, and deleting
records as shown in Figure 12-29. There’s also an Enable Paging option, which,
if selected, lets you page through multiple records in the underlying table.

Formatting a DetailsView control
Formatting a DetailsView control is very similar to formatting a GridView.
As always, you can use the Auto Format option on Common Tasks to choose
a general appearance for the control. Use the Edit Fields option to choose the
order of items in the control and currency/date formats.

In Figure 12-30, for example, I moved the OurItemId control to the top of the
list under Selected Fields. Then I clicked the ItemPrice field name and set its
DataFormatString to {0:c} to display the ItemPrice in currency format.

Figure 12-30:
The Fields
dialog box

for a
Details

View
control.

Figure 12-29:
Common

Tasks menu
for a

Details
View

control.

289Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 289

You can also size the control by clicking it and dragging any sizing handle
that appears in its border. (The widths of the columns in Design view don’t
accurately match how things will look in the browser, but don’t let that bug
you.) In Figure 12-31, for example, I’ve made the DetailsView control much
wider than it was originally.

Of course, you never really know how a control will look in real life until you
view its page in a browser. Figure 12-32, for example, shows how the control
from the previous example looks in Internet Explorer. The little numbers at
the bottom represent other records in the same table. (They appear because
I chose Enable Paging in the control’s Common Tasks menu.)

At the bottom of the control are the Edit, Delete, and New options. Clicking
any one of those lets you (respectively) edit, delete, or change the record
currently displayed in the control.

Figure 12-32:
Details

View
control in

Internet
Explorer.

Figure 12-31:
The

Details
View

control,
widened.

290 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 290

Creating Master-Details Forms
You can combine DropDownList, GridView, and DetailsView controls on a
single page to create a Master-Details form. The DropDownList and GridView
controls are used to zero in on a specific record. The DetailsView control
then allows you to edit one record. Such a scenario is useful when the data-
base contains a lot of records and finding specific records isn’t always easy.

Figure 12-33 shows an example where choosing a user’s name from the
DropDownList control displays detailed information about all transactions
made by that user in the GridView control to the right. Clicking Select at the left
side of the GridView then displays the actual record from the Transactions
table that represents that transaction. The DetailsView control contains Edit
and Delete options, allowing you to change or delete that one record in the
Transactions table.

Before we get into specifics, let me point out that I started by adding a table
with two columns and three rows to a blank page. The text you see on the
page, like 1. Choose a user is just text typed right into the table cell. The
text and DropDownList control are in the top-left cell. The text and GridView
control are in the cell to the right of that one.

The second row in the table I left empty to put a little empty space above the
third row. The left column of the third row contains the text 3. Edit or
Delete transaction, and the last table cell contains the DetailsView
control.

Figure 12-33:
Sample
Master-

Details page
for editing

transactions.

291Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 291

That’s just how I organized the text and controls on the page. What makes all
the controls work together is the way in which the GridView control is fil-
tered to show only transactions for the user name selected in the drop-
down list, and the way the DetailsView control is filtered to show only the
record associated with the selected row in the GridView control.

Master-Details DropDownList control
Let’s start with the DropDownList control, which is named DropDownList1.
To show user names, that control is bound to the UsersAndItemsView view
from Chapter 11. From that view, only UserId and UserName are selected. Its
Return Only Unique Rows option is selected to show only unique user names.
I set its ORDER BY option to sort the records by UserName, so the names will
be in alphabetical order by name. Figure 12-34 shows the Configure the Select
Statement page for that DropDownList control.

On the Choose a Data Source page of the Data Source Configuration wizard,
I set UserName as the value to display in the control, and set UserId as the
value of the control, as shown in Figure 12-35. That means that the control
will show user names. But, once the user makes a selection, the value of the
control will actually be that user’s UserId — the GUID that’s automatically
assigned to each new user account. We need the drop-down list’s value to be
that UserId, because that’s the value that provides the link to transactions.

The Enable Postback option for the DropDownList control’s Common Tasks
menu must be selected for the page to work. Because that postback (com-
bined with some filtering you’ll see in a moment) is what allows the
GridView control to show only transaction information for the user whose
name is selected in the control.

Figure 12-34:
The

Configure
the Select
Statement

page for
Master-
Details

DropDown
List1.

292 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 292

To customize the appearance of the DropDownList control, first click the
control to select it. Then use its Properties sheet to refine the control’s font
and width.

Master-Details GridView control
The GridView control, named GridView1 in the Master-Details example, is
bound to the DetailedUsersItemsView view created back in Chapter 11. It
uses a few fields from that view to make it easy for the user to locate a spe-
cific transaction, as shown in Figure 12-36.

The critical factor in getting the GridView control to show only records for
the user whose name appears in the DropDownList control is in the WHERE
clause. After clicking the WHERE button in Figure 12-36, I set up the condition
as shown in Figure 12-37. Recall that the value of the DropDownList1 control
will be one person’s UserId. Therefore, the condition specified in Figure 12-37
is for the GridView to show only records where the UserId field in the view
matches the UserId that’s in the DropDownList1 control.

Figure 12-36:
Selected
view and
columns

used for the
Master-
Details

GridView
1 control.

Figure 12-35:
Data source

for the
DropDown

List
control in

Master-
Details.

293Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 293

After finishing the Data Configuration Wizard for the GridView control, you
need to choose Enable Select from its Common Tasks menu. Doing so places
the Select option to the left of each record. As you’ll see in a moment, the
DetailsView control can then be configured to show only the record that’s
represented by the selected row in the GridView control.

The Master-Details DetailsView control
The DetailsView control in the Master-Details example needs to be filtered
so that it displays only the transaction associated with whatever row is
selected in the GridView. Also, that control needs to be bound to a single
table that has a primary key. Otherwise, you couldn’t use the control to edit
or delete records.

In this example, the Configure the Select Statement page for the DetailsView
control looks like Figure 12-38. Note that it’s bound to the Transactions
table, and shows all fields from that table (the * is short for “all columns”).

To ensure that the DetailsView control shows only data associated with the
record that’s selected in the GridView control, click the WHERE button and
choose options as shown in Figure 12-39. Those options, in English, say
“where the TransactionId in the Transactions table matches the
TransactionId in whatever row is currently selected in the GridView.”

Figure 12-38:
Table and

columns
bound to the
Details

View
control.

Figure 12-37:
The WHERE

condition
for Master-

Details
GridView

control.

294 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 294

On the Common Tasks menu for the DetailsView control, choose Enable
Edit and Enable Delete to display the Edit and Delete options that allow the
user to edit the transaction.

When you first open a page like the Master-Details example, the DetailsView
control will not be visible in the Web browser. That’s because it’s filtered to
show only the transaction associated with the row that’s selected in the
GridView. So when there’s nothing selected in the GridView, there’s nothing
for the DetailsView control to show. But as soon as you click Select at the
left side of the GridView, your DetailsView control will appear showing the
selected transaction record.

As an alternative to showing nothing when the DetailsView control has no
record, you can edit its EmptyData Template to show a message. Here’s how:

1. In Design view, open the DetailsView control’s Common Tasks menu
using the little triangle button or by right-clicking the control and
choosing Show Smart Tag.

2. On the menu, click Edit Templates.

3. In the drop-down list that appears, choose EmptyData Template. A
small box appears in which you can type and format text. For exam-
ple, you might type Select a transaction to see details.

4. Right-click the template you just filled and choose End Template Editing.

From now on, when you first open the page in a Web browser, you’ll see what-
ever text you typed into the EmptyData Template rather than nothing. As soon
as you select a transaction from the GridView control, that text will be replaced
by the actual DetailsView control showing the selected transaction.

General GridView and DetailsView
considerations
The GridView and DetailsView controls are both new in ASP.NET 2.0, and
offer easier, better editing capabilities than the older DetailsView and

Figure 12-39:
The WHERE

condition
for the

Details
View1
control.

295Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 295

FormView controls described later in this chapter. Both GridView and Details
View have an Auto Format option on their Common Tasks menu, making it
easy to define a general look and feel for the control right off the bat.

Both GridView and DetailsView also have an enormous number of proper-
ties you can tweak to get exactly the look and feel you want. There are so
many properties that it would take more pages than there are in this book to
describe them all. But rather than worry about every single property, a good
general strategy might be to use Auto Format to get a general look for the
control. Then use Properties to refine details, but only if you want to change
something about the format.

Beyond all the properties for the control as a whole, there are many proper-
ties for each column in a GridView, and each field in a DetailsView. To get
to those properties, you have to choose Edit Columns or Edit Fields from the
control’s Common Tasks menu. Then, under Selected Fields in the dialog box
that opens, click on a specific field name under Selected Fields. The proper-
ties for that one column or field appear in a Properties sheet within the
dialog box.

Remember that you can use both GridView and DetailsView either to show
data or to allow editing of data in the database. But if you want to use either
control to edit data, you must bind the control to a single table that has a pri-
mary key. Also, when using the DetailsView control to edit data, you need to
remember to click the Advanced button in the Configure Select Statement page,
as described under “Binding a DetailsView control” earlier in this chapter.

The DataList and FormView controls described later in this chapter are
older ASP.NET controls. Although they hint at offering data-editing capabili-
ties, they are much harder to use for that purpose. Your best bet is to try to
use GridView or DetailsView when you know, in advance, that you want to
edit data in the underlying database. Use DataList and FormView when
you’re just concerned with showing data on a page, without letting users
make changes to that data.

Using the DataList Control
The DataList control is ideal for when you want to show data to users as
though it were normal text, as opposed to items in a table or on a form. The
DataList control’s biggest strength is that it allows you to list data in just
about any format imaginable. Using the DataList control is much like using
the other Data controls you’ve seen in this chapter. Just follow these steps:

1. Create or open an .aspx page so you’re in Design view.

2. In the Toolbox, expand the Data category of controls.

296 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 296

3. Drag a DataList control from the Toolbox onto the page (or Content
Placeholder on a page that has a Master Page).

4. From the DataList control’s Common Tasks menu, select Choose Data
Source➪<New data source...>.

5. As usual, choose Database and click OK.

6. Choose your usual connection string, and click Next.

That gets you to the standard Configure the Select Statement page.

7. In the Configure the Select Statement page, choose the table or view
from which the control will retrieve data.

As always, you can use the WHERE button to limit the records shown.
Use the ORDER BY button to specify a sort order.

Figure 12-40 shows an example where I’ve opted to show all fields except
ItemID from the Items table. I also used the ORDER BY button to set the
sort order to OurItemID, Ascending order (though the only place you can
see that is in the ORDER BY clause at the end of the SELECT statement).

8. Click Next and Finish to return to the page.

In Design view, the bound DataList control appears as a placeholder of field
names with “abc” placeholders for text, and random values like 0 and 0.1 as
placeholders for numbers. When you view the page in a Web browser, you get
a better idea of how the data will look to a person viewing the page through a
Web browser. Figure 12-41 shows how the fields from the Items table look
when viewed through an unmodified DataList control.

Figure 12-40:
Sample field

selections
for a

DataList
control.

297Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 297

Formatting a DataList control
The real beauty of the DataList control comes into play when you edit its
template. To do so, click the DataList control to select it, then click the tiny
triangle button near its upper-right corner. Or right-click the DataList con-
trol and choose Show Smart Tag. From the Common Tasks menu that appears,
choose Edit Templates. The control takes on a completely different look, as
shown in Figure 12-42.

The Item Template is like a small page that you can edit using standard word
processing techniques and HTML. Text that’s not enclosed in square brackets
is just plain text typed right into the control. You can edit, format, or delete

Figure 12-42:
A

DataList
control Item

Template.

Figure 12-41:
Fields from

Figure 12-40
as displayed

by a
DataList

control.

298 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 298

that text however you like. For example, you can select a chunk of text and
use options on the Formatting toolbar to make it bold, change its font, or
whatever.

Items enclosed in square brackets are Label controls that are bound to data
in the underlying database table or view. Those you can format in a similar
manner. But you don’t drag the mouse pointer through the item as you would
with regular text. You just click the item to select it. Then choose options
from the Formatting toolbar.

To select multiple Label controls, click one to select it. Then hold down the
Ctrl key while clicking others that you want to select.

You can also rearrange things in the ItemTemplate to change how things
look on the page. Moving things around can be a little awkward, especially if
you’re trying to align controls side-by-side. That’s because the items word-
wrap within the template, just as they would in a word processing program.
To get things side-by-side, you may need to widen the control. To do so, click
the top of the DataList control to select it. Then use the sizing handle on its
right border to widen or narrow the control.

To move an item, just drag it to where you want to put it. Or, click the item
to select it, press Ctrl+X to cut it, click where you want to put the control,
and press Ctrl+V to paste it. If you want a space to appear between items in
the page, make sure to insert a blank space between the items within the
template.

Figure 12-43 shows an example where I deleted all the text labels, leaving
only the bound Label controls. Those I rearranged so that the ItemNameLabel
is on the top. The ItemDescriptionLabel, OurItemIdLabel, and
ItemPriceLabel controls are side-by-side on one line, with one space
between them.

299Chapter 12: Using Data in Web Pages

Blank lines in a DataList control
Though you can’t see them, any extra carriage
returns at the bottom of the control will add
height to the control, and will also put extra
space between each record on the Web page.
(A carriage return is an invisible character that
gets added every time you press the Enter or
Return key.)

To reduce the height of a DataList control,
you may need to remove some of those extra

carriage returns. You’ll need to be in the Edit
Templates mode, like Figure 12-42, to do that.
Click inside the template, then move the cursor
to the bottom of the template (press Ctrl+End).
From there, each time you press Backspace
you’ll remove one carriage return (one blank
line). If you go too far and delete a control within
the template, press Undo (Ctrl+Z) to undo the
deletion.

18_583603 ch12.qxd 10/21/05 6:50 PM Page 299

I also boldfaced the ItemNameLabel control and italicized the ItemPriceLabel
control, just to illustrate the idea. I’ll show you how that DataList control
looks in a Web browser in a moment. First, let’s talk about . . .

Formatting dates and
numbers in a DataList
To apply a date or currency format to a field, click its Label control to select
the control. Then, click its tiny triangle button to show its Common Tasks
menu as shown in Figure 12-44. Then, choose Edit DataBindings.

A DataBindings dialog box for the selected control opens. If the item you’re for-
matting is a currency or date value, use the Format drop-down list to choose a
format for the item. For example, Figure 12-45 shows the DataBindings dialog
box for the ItemPrice control in my sample DataList. You can see where I’ve
chosen Currency – {0:C} from the Format drop-down list to display that
value in Currency format.

Figure 12-46 shows the results in a Web browser. The arrangement and
appearance of data on the page is a direct reflection of the arrangement of
the Label controls shown back in Figure 12-43. Each ItemPrice is shown in
Currency format ($29.95) rather than the default 29.9500 format.

Figure 12-44:
Common
Tasks for

a single
bound
Label
control.

Figure 12-43:
DataList

control’s
Item

Template
radically

rearranged.

300 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 300

Showing a DataList in columns
The DataList control can also show data in newspaper-style columns. To
use this feature, you’ll need to end Template Editing if you’re still viewing the
Item Template in the Design surface. Right-click the DataList control and
choose End Template Editing, or choose End Template Editing from the
DataList control’s Common Tasks menu. Then, click the tiny triangle near the
upper-right corner of the DataList control (not a single Label control) and
choose Property Builder.

Figure 12-46:
The

DataList
control from
Figure 12-43

in a Web
browser.

Figure 12-45:
The Data
Bindings

dialog box
for the

ItemPrice
Label
control.

301Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 301

In the Properties dialog box that opens, click on General in the left pane. Then
specify the number of columns you want to display from the Columns option.

For the Layout option, you need to choose Table. If you choose Flow, the
columns won’t work. Use the Flow option only when you want data displayed
without a table.

Use the Direction option to choose a Horizontal or Vertical orientation for the
columns. If you choose Horizontal, the first record’s data appears first, the
second record’s data appears in the column to the right, and so forth. If you
choose Vertical, the first record’s data appears first, the second record’s data
appears under that one in the same column, then the third record, and so
forth down the page.

To put some space between columns, click the Borders option at the left side
of the Properties dialog box. Then set the Cell Spacing setting to the number
of pixels to put between each column. Optionally, if you want to show border
lines on the page, choose an option from the Grid Lines drop-down list. Then
choose a color and width for the borders.

To see the results of your changes, click OK to close the Properties dialog
box. Then view the page in a Web browser. Figure 12-47 shows an example
where I set Columns to 2, Direction to Horizontal, and Cell Spacing to 40. It’s
the same data as in Figure 12-46 split into two columns.

Using DataList to show pictures
In Chapter 11, I created a sample table named Photos that contains two text
fields named PhotoCaption and PhotoURL. The PhotoCaption field contains

Figure 12-47:
The

DataList
control

showing
data in two

columns.

302 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 302

plain text, while the PhotoURL field contains the path to a picture in a folder
named FlowerPix. You can use a DataList control to display the actual pic-
ture to which each PhotoURL refers.

There’s nothing special about how you initially create the control. The steps,
as usual, are:

1. Drag a DataList control from the Data group in the Toolbox onto any
.aspx page or Content Placeholder.

2. From the DataList control’s Common Tasks menu, select Choose Data
Source➪<New Data Source>.

3. Choose Database, then click OK.

4. Choose your standard connection string and click Next.

5. Choose your table or view and columns to display.

For this example, I’ll retrieve the PhotoCaption and PhotoURL fields
from the Photos table, as in Figure 12-48.

6. Click Next and Finish.

In Design view, the DataList control appears with the usual field names and
placeholders (abc for the text fields). In a Web browser, you still only see the
links to the images, for example ~/Images/FlowerPix/Flower01.jpg
rather than the actual photo. To get the photo to show, you need to edit the
DataList control’s ItemTemplate.

As always, you can edit the template by choosing Edit Templates from the
control’s Common Tasks menu, or by right-clicking the control and choosing
Edit Templates➪Item Template. The ItemTemplate is like a miniature page
that defines how each record from the underlying table will be displayed
on the page. Initially the ItemTemplate just shows each field name as text
typed right into the template, and each field as a Label control, as shown in
Figure 12-49.

Figure 12-48:
Binding

DataList
control to

fields from
the Photos

table.

303Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 303

To show each picture as an actual picture rather than the PhotoURL value,
you need to get an Image control from the Standard group of tools into the
ItemTemplate. Then bind the ImageURL property of that control to the
PhotoURL field. You can start by deleting what’s already in the template. Here
are the steps:

1. Delete all the text and both Label controls from the ItemTemplate, so
that the template is just an empty box.

2. In the Toolbox, click the + sign next to Standard to show the Standard
ASP.NET controls.

3. Drag an Image control from the Toolbox into the ItemTemplate.

The control appears as a small box containing a red X (it’s just a place-
holder for each picture that will be shown in the Web browser).

4. Click the Image control’s Common Tasks button and choose Edit Data
Bindings.

5. In the dialog box that opens, click ImageURL in the left column under
Bindable Properties.

6. In the right column, choose Field Binding.

7. From the Bound To drop-down list, select the name of the field that
contains the link to the image.

In the example of the Photos table, that’s the PhotoURL field, as shown
in Figure 12-50.

8. Click OK.

Viewing the page in a Web browser at this point will display each picture
rather than just the URL to the picture. If that’s all you want, then you’re
done. But chances are you’ll want something fancier than just a bunch of pic-
tures shown down the page. So let’s look at some things you can do to fancy
things up.

Figure 12-49:
The

ItemTemplate
for a

DataList
control.

304 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 304

Sizing the pictures
You might want to make each picture of equal size so you can put them into
columns. Click on the Image control to select it. Then, in the Properties sheet,
set the Width property to however wide you want each picture to be. For
example, in Figure 12-51, I’ve set the Width of the Image control to 150 pixels.

Showing pictures in columns
Recall that the DataList control can show data in multiple columns. To
show pictures in columns, you first need to get out of Template Editing mode.
Then use the Property Builder for the DataList control to configure the
columns. The steps are:

1. Right-click the ItemTemplate and choose End Template Editing (or
choose End Template Editing from the Common Tasks menu).

2. Choose Property Builder from the DataList control’s Common
Tasks menu.

Figure 12-51:
Width of the

Image
control set

to 150
pixels.

Figure 12-50:
The

ItemTemplate
for a

DataList
control.

305Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 305

3. In the Properties dialog box, set the Columns option to the number of
columns you want, then choose either Horizontal or Vertical for the
orientation.

For my example, I set Columns to 4 and Direction to Horizontal, as
shown in Figure 12-52.

4. Optionally, choose other formatting options from the Properties
dialog box. For the example you’re about to see, I did the following:

• Click Format in the Properties dialog box, click the + sign next to
Items, click Normal Items, set the Horizontal Alignment to Center,
and set the Vertical Alignment to Bottom.

• Click Borders in the Properties dialog box and set the cell spacing,
padding, and border lines. For this example, I only set Cell Spacing
to 10 to put a little space between each picture.

5. Click OK in the Properties dialog box.

Viewing the page in a Web browser at this point shows the pictures in
columns, as in the example shown in Figure 12-53.

Figure 12-53:
Pictures

displayed
in columns

by a
DataList

control.

Figure 12-52:
Going

for four
columns of

photos here.

306 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 306

Adding picture captions
Let’s suppose that you also want to show each picture’s caption. But as an
added bonus, you want to make each caption a link that, when clicked, shows
the corresponding image at full size, rather than with the Width you set for
the Image control. The trick here is to add a HyperLink control to the tem-
plate. Set the Text of that link to the PictureCaption field, and the
NavigateURL property to the PictureURL field. Here are the steps:

1. In Design view, choose Edit Templates from the DataList control’s
Common Tasks menu.

2. In the ItemTemplate, click to the right of the Image control and press
Enter to make a little room under the control.

3. From the Standard group of tools in the Toolbox, drag a HyperLink
control into the ItemTemplate, so that it’s under the Image control.

4. From the HyperLink control’s Common Tasks menu, choose Edit
DataBindings.

5. Set the Text property to the name of the field that contains the text
to show.

In my example, that would be the PhotoCaption field, as shown in
Figure 12-54.

6. In the left column, click on NavigateURL to define where the link will
take the user.

7. Set the Bound To property for the NavigateURL property to the name
of the control that contains the path to a page or picture.

In this example, that would be the PhotoURL field, as shown in
Figure 12-55.

Figure 12-54:
The Text

property for
the sample

Hyper
Link

control.

307Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 307

8. Click OK in the dialog box.

Figure 12-56 shows how the page looks when viewed in a browser. When a
user clicks a picture caption, the effect will be to open the picture, full size, in
a new browser window. The user can then click the Back button in the
browser to return to the previous page where all pictures are shown in
columns.

To download a picture, the user just needs to right-click the picture and
choose Save Picture As. You could add instructions to the page to explain
that to the user.

Figure 12-56:
Photos with

captions
displayed as

hyperlinks.

Figure 12-55:
The

Navigate
URL

property for
the sample

Hyper
Link

control.

308 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 308

Using a DataList to show HyperLinks
In the photos example, I used a HyperLink control in a DataList
ItemTemplate to show hyperlink text from a table (the PhotoCaption field),
and to define where the link takes the user (the PhotoURL field). You can use
the same technique to show a list of links that are stored in a Database table.

In Chapter 11, I created a sample table named Links that contains two text
fields named SiteName (the name of a Web site) and SiteURL (the URL of the
site). It’s a small sample table, as shown in Figure 12-57. But of course the
technique described here would work with any number of records in a table.

A DataList control containing a standard HyperLink control that’s bound to
the SiteName and SiteURL fields in the table will present a nice list of links.
Here are the steps to create the list:

1. From the Data group in the Toolbox, drag a Data List control to any
.aspx page or content placeholder.

2. From the DataList control’s Common Tasks menu, select Choose Data
Source➪<New Data Source>.

3. Choose Database and click OK.

4. Choose your normal connection string and click Next.

5. Choose the table that contains the site data, then choose the columns
that contain the site name and URL.

For my example, that would be the SiteName and SiteURL fields in the
Links table, as shown in Figure 12-58.

6. Optionally, use the ORDER BY button to alphabetize the links by
SiteName.

7. Click Next, then click Finish.

Figure 12-57:
Sample

Links table
with site

names and
URLs.

309Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 309

You see the control with the standard field names and abc placeholders. To
change that to a list of working hyperlinks, you need to remove the text and
labels that are currently in the control. Then put in a single HyperLink con-
trol. Here’s how:

1. Choose Edit Templates from the DataList control’s Common Tasks
menu.

2. Delete the text and Label controls that are currently in the template,
so that the template is empty.

3. From the Standard group of controls in the Toolbox, drag a
HyperLink control into the Template.

4. From the HyperLink’s Common Tasks menu, choose Edit DataBindings.

5. In the left column of the dialog box that opens, click Text, then set
the Bound To property to the name of the field that contains the site
name.

In my example, that would be the SiteName field.

6. In the left column, click the NavigateURL property.

7. Set the Bound To property to the name of the field that contains
the URL.

In my example, that would be the SiteURL field.

8. Click OK.

At this point, the ItemTemplate looks like Figure 12-59.

When viewed in a Web browser, the page shows each site’s name as a hyper-
link. Clicking the link opens the page to which the link refers.

Figure 12-58:
Binding

control to
the

SiteName
and

SiteURL
fields in the

Links
table.

310 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 310

Keep in mind that the ItemTemplate is like a mini Web page onto which you
can place any text or image. For example, let’s say you have a small graphic
image of a bullet you’d like to place to the left of each list item.

First, you’ll need to make a little space to the left of the HyperLink control.
Click inside the template, press Ctrl+Home a couple of times, then press the
spacebar and left arrow key to make a little space. Then, just drag your little
image into the space you made, as in Figure 12-60.

If you want to put a bullet character and space to the left of each item,
rather than a graphic image, switch to Source view by clicking the Source
button at the bottom of the Design surface. Find the <asp:HyperLink...>
tag between the <ItemTemplate> and </ItemTemplate> tags. To the left of
that <asp:hyperlink...> tag, type • (for the bullet) and (non-
breaking space) for the blank space. Both characters should be right up
against the <asp:Hyperlink...> tag like this:

• <asp:HyperLink ID=”HyperLink1”...>

When you switch back to Design view, by clicking Design at the bottom of the
Design surface, you’ll see the character and space in place. Of course, in the
Web browser, the character will appear to the left of each item in the list.

Figure 12-60:
Graphic
in Item-

Template
(left) and in

browser
(right).

Figure 12-59:
DataList

control’s
ItemTemplat
e contains a

Hyper
Link

control.

311Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 311

As you’ve seen, the DataList control offers lots of different ways to display
data from database tables. The template you define is applied to every record
that’s retrieve from the database table. But sometimes, you don’t want to
show data from multiple records. Sometimes, you just want to show a single
record, or a single piece of information from a table. For those occasions, the
FormView control might be your best bet.

The FormView Control
The FormView control is similar to the DetailsView control in that it only
shows one record at a time. But it’s also similar to a DataList control in that
it displays data in such a way that it looks like text printed on a page rather
than a table or form.

If you want to display and edit one record at a time, you’re much better off
using the DetailsView control, as opposed to FormView. The DetailsView
control, which is new in ASP.NET 2.0, is much easier to work with.

The FormView control works like the other Data controls in that you drag
it to a page, define your data source, and optionally edit its template to get
the exact look you want. Because it’s limited to displaying a single record,
FormView can be useful for displaying a single item of data, such as a sum
or total. Here’s an example.

In Chapter 11, I created a view named DetailedUsersItemsView which con-
tains detailed information about every transaction. Suppose you want to sum
up the ItemPrice field in that view to see a grand total of all transactions.
You’d start by dragging a FormView control onto a page. From its Common
Tasks menu, choose New Data Source, choose Database, and click OK. As
always, choose the standard connection string, and click Next.

On the Configure the Select Statement page, you won’t be able to use the
“Specify columns from a table or view” in this example because you need a
sum of all the numbers in a view. You have to choose “Specify a custom SQL
statement or stored procedure,” then click Next to get to the more advanced
query editor where you can specify a sum. On the next page that appears,
click the Query Builder button.

In the Add Table dialog box that opens, click the Views tab, click Detailed
UsersItemsView, click Add, then click the Close button in the Add Table
dialog box. In the Query Builder, scroll down the field list for the view and
choose ItemPrice. Right-click some empty space in the top page of the
Query Builder and choose Add Group By. Then, in the query grid, set the
Group By column for the ItemPrice field to Sum, as shown in Figure 12-61.

312 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 312

Click OK at the bottom of the Query Builder. Then click Next, and then click
Finish. In Design view, you end up with a FormView control that just shows:

Expr1:0

Viewing that page in a Web browser shows something like the example below
(though the number will be the sum of whatever values are in the ItemPrice
field of the view at the moment):

Expr1: 469.4000

As it stands, the information presented by the control isn’t exactly self-
explanatory. But you can edit the control’s template to show anything you
want. First you need to close the Web browser (if it’s open) to get back to the
Design view of the page. Then right-click the FormView control, choose Show
Smart Tag, then choose Edit Templates.

To show the sum in currency format rather than in the 469.4000 format, do as
you did in the DataList control. That is, right-click [Expr1Label], choose
Show Smart Tag, then choose Edit Data Bindings. Set the Format to Currency
– {0:C} and clear the “Two-way databinding” check box as shown in Figure
12-62, and click OK.

You need only choose “Two-way databinding” if you intend to edit data in a
FormView control. However, if you want to edit data, you’d be better off using
a DetailsView control, as it’s a lot easier with DetailsView.

In the ItemTemplate, replace the text Expr1: with Grand Total: as shown
in Figure 12-63.

When you view the page in a browser, the control shows:

Grand Total: $469.40

Figure 12-61:
A query to

sum the
ItemPrice

field in
Detailed

Users
ItemsView.

313Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 313

which is the sum of all the ItemPrice fields in DetailedItemsUsersView,
expressed in a more meaningful format than Expr1: 469.4000.

Showing subtotals
Showing just the grand total of sales on a Web page is useful, but chances are
you might also want to see things subtotaled by customer, product, or month.
You could add a GridView control on the same page as the Grand Total, and
have that GridView control show multiple records with the appropriate
grouping.

For example, with the previous FormView1 control still on the page, press
Ctrl+Home a couple of times, and press Enter a couple of times, to make
some space above the FormView control. Then drag a GridView control into
that space at the top of the page.

From the GridView’s Common Tasks menu, select Choose Data Source➪
<New Data Source>, as usual. Then choose Database and click OK. Choose
your usual Connection String and click Next. You’ll come to the Configure
the Select Statement page where you’ll once again need to choose “Specify
a custom SQL statement or stored procedure,” then click Next.

Figure 12-63:
Item-

Template for
sample

FormView
control.

Figure 12-62:
Data-

bindings for
the Expr1

Label
control.

314 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 314

In the next box that opens, click the Query Builder button to get to the more
advanced query builder. In the Add Table dialog box that opens, click the
Views tab, click DetailedUsersItemsView, click Add, then click Close to
close the Add Tables dialog box.

How you set up the query depends on how you want to group the subtotals.
First, right-click some empty space at the top of the Query Builder and
choose Add Group By to add a Group By column to the grid. Then, if you
want to subtotal by users, choose the UserName, Email, and ItemPrice
columns from the Field List. Then set the Group By column to Sum for the
ItemPrice field, as in Figure 12-64.

Notice in Figure 12-64 I also set the Alias column for each field. Whatever
you type into the Alias column will appear at the top of the column in the
GridView control. The default aliases will be generic (Expr1, Expr2, and so
forth), which isn’t particularly meaningful information to someone viewing
a page. So you wouldn’t necessarily want those names appearing at the top
of the GridView control. The easy way to put more meaningful names at the
top of a GridView control is to just change those generic names to whatever
names you want to put at the top of the GridView.

The square brackets you see in the figure around the [User] and [Email
Address] names are only required when the column name might conflict with
some other name. But you don’t have to worry about that. After you type an
alias name of your own choosing, the Query Builder will automatically add
square brackets if (and only if) they’re needed.

You can click the Execute Query button near the bottom of the Query Builder
window to test the query. The query results appear in the bottom pane of the
window.

Figure 12-64:
Group By
and Sum

to subtotal
by User.

315Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 315

The above example assumes you want to see subtotals based on users.
Suppose that you wanted to subtotal by Item rather than by Customer.
You could use the OurItemId, ItemName, and ItemPrice columns, with
only the ItemPrice column set to Sum. Then enter meaningful aliases
for the GridView’s column headings, as shown in Figure 12-65.

If you prefer to subtotal my month, rather than by customer or item, you’ll
need to use some custom expressions. In my example, the TransactionDate
field contains the date of each transaction. You can use the following expres-
sions to group by month number, month name, and year:

� MONTH(TransactionDate): Isolates the month number of the
TransactionDate field. This field is for sorting purposes only, so
you can clear its Output check box to hide it in the query results.
Set its Sort Type to Ascending.

� MONTHNAME(TransactionDate): Isolates the month name from the
TransactionDate. The Query Builder will change the syntax of this one
slightly to read {fn MONTHNAM(TransactionDate)}. But don’t worry
about that. It happens automatically if, and only if, the specific expres-
sion you entered requires the modified syntax. You can just let it happen
and not fret over it.

� YEAR(TransactionDate): Isolates the year of the TransactionDate. Set
this item’s Sort Type column to Ascending as well, so items are listed in
month and year order.

Figure 12-66 shows how you’d use the expressions in the grid portion of the
query. Notice that I’m sorting by the month number and year, to get the
records to be displayed in chronological order. As always, all fields except
ItemPrice are set to Group By, since only ItemPrice needs to be totaled.

Figure 12-65:
Group By

and Sum to
subtotal by

Item.

316 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 316

When you’ve finished defining the query, click OK in the Query Builder. Then
click Next and Finish to return to the page. The only thing you’d really need
to format in the GridView control would be the ItemPrice field, which will
show in that 29.9500 format if you don’t set its Format to Currency.

To format the ItemPrice column, choose Edit Columns from the GridView’s
Common Tasks menu. Choose Subtotal from the Selected Fields box near the
bottom of the dialog box. Then set that field’s DataFormatString property
to {0:C} as shown in the examples presented earlier in this chapter. While
you’re at it, click the + sign next to ItemStyle in the Properties list, then set
the HorizontalAlign property to Right to have number right-align within
the column. Then click OK.

In Design view, the page won’t look like much, just the usual placeholders.
Figure 12-67 shows an example. The Sales by Customer text at the top of the
page is just text I typed right into the page. The GridView is bound to the
query shown back in Figure 12-64, which subtotals by user. The FormView
control is the same as described at the start of this section.

When viewed in a Web browser, though, the page shows total sales by user,
with a grand total at the bottom, as shown in Figure 12-68.

You could create three separate pages, one for each type of query, making it
easy to view subtotals and totals by user, product, or month.

It’s important to understand that all of the examples you’ve seen in this
chapter are just examples. There’s almost no limit to the things you can do
with the GridView, DetailsView, DataList, and FormView data controls
in Visual Web Developer. In this chapter, we’ve barely scratched the tip of the
proverbial surface. But this should be enough to get you in the ball game, and
to see how you can easily bind data controls to SQL server tables and views
to extract whatever data you need to show on a Web page.

Figure 12-66:
Group By

and Sum to
subtotal by

Month.

317Chapter 12: Using Data in Web Pages

18_583603 ch12.qxd 10/21/05 6:50 PM Page 317

How easy, or how difficult, it all seems really depends on your perspective.
Clearly, if you’re already familiar with database concepts and SQL, things will
seem easy because you can do so much without writing any code. If you’re
new to database management, you may want to invest some time boning up
on database design basics and SQL to understand the full creative potential
these controls offer.

Figure 12-68:
Page from

Figure 12-67
in a Web
browser.

Figure 12-67:
Text,

GridView,
and

FormView
controls in

Design
view.

318 Part III: Personalization and Databases

18_583603 ch12.qxd 10/21/05 6:50 PM Page 318

Part IV
The Part of Tens

19_583603 pt4.qxd 10/21/05 6:47 PM Page 319

In this part . . .

Welcome to the Part of Tens. Here you discover the
actual plain-English meaning of the top ten buzz-

words Web developers use to describe their tools and
techniques. After that, you get a treasure map to ten
online places where Web developers get their information,
ask questions, and get answers.

19_583603 pt4.qxd 10/21/05 6:48 PM Page 320

Chapter 13

Ten Terms to Make
You Look Smart

Even if this book were 3,000 pages long, it still wouldn’t be long enough to
cover everything there is to know about Visual Web Developer, HTML,

CSS, ASP.NET, and programming. You’ll often need to refer to online resources
or books for more information.

Given that Visual Web Developer is a tool for software developers, you’ll have
to get accustomed to terminology that developers use. This chapter presents
the top ten terms that everyone will assume you already know and understand.

Web Application
Familiar computer terms can change when they venture onto the World
Wide Web. For instance, you may already know application as a program such
as a word processor or spreadsheet, but the term Web application basically
means a Web site or Web page that contains more than just static, unchang-
ing HTML and text that looks the same to all visitors. A Web application is
more dynamic than that; the page’s exact content is created just before the
page is sent. Exactly what the visitor sees depends on who that visitor is, or
the specific information the user requested.

Developer
There are two main types of computer users in the world, those who use
software, and those who create software. The people who create software
are called developers. Everyone else is called a user.

It’s a lot easier to be a user than a developer. As a user, you can often figure out
how to do things just by guessing and hacking away until you get it right. Not so
for a developer. You have to actually know how the technology works — as well as
what you’re doing with it — to create software. Guessing and hacking away at
random generally leads to nothing but endless hours of hair-pulling frustration.

20_583603 ch13.qxd 10/21/05 6:58 PM Page 321

Data-Driven
A data-driven Web site consists of Web pages whose content depends upon
(“is driven by”) the data stored in a database. For example, when you search
the Internet with a search engine such as Google, you’re basically sending a
query string to Google’s database. What you get back is a dynamic page cre-
ated in response to your query; exactly what appears on it depends on what
you searched for. The page’s specific content is “driven” (determined) by
what’s in Google’s database that matches what you searched for.

ASP.NET 2.0
ASP stands for Active Server Pages, and is Microsoft’s fundamental technol-
ogy for building dynamic, data-driven Web sites. As with all technologies, ASP
has evolved over the years to become ever more powerful and easy to use.

As I write this book, ASP.NET 2.0 is the latest version of ASP. It’s also the ver-
sion of ASP used by Visual Web Developer to create dynamic data-driven Web
sites. To publish a site you created with Visual Web Developer, you must find
a hosting provider that supports ASP.NET 2.0.

Visual Studio
Visual Studio is Microsoft’s main software-development tool. It has all kinds
of functionality for creating all kinds of programs. It’s big, complex, and easy
to get lost in because Visual Studio provides a seemingly-endless array of
tools and options.

Even so, Visual Web Developer is (believe it or not) a greatly uncomplicated
version of Visual Studio; it focuses on developing one type of application:
dynamic, data-driven Web sites. In effect, Visual Web Developer just “hides”
the parts of Visual Studio that aren’t relevant to developing Web applications.

IDE
IDE acronym stands for Integrated Development Environment. Both Visual
Studio and Visual Web Developer are IDEs. They’re called integrated because
they give you access to all the various tools and technologies you need to get
the job done.

322 Part IV: The Part of Tens

20_583603 ch13.qxd 10/21/05 6:58 PM Page 322

To create data-driven Web sites, for example, you need a pretty specific list of
things: HTML, CSS, ASP.NET, a data source (such as SQL Server), and at least
one programming language (such as C#). An IDE like Visual Web developer
brings all those technologies together under one roof, so to speak, so you can
get all your work done in one program window. (What a concept.)

You’ve seen a similar (but unrelated) term before: In hard drives, IDE stands
for Integrated Device Electronics. But that concept is in no way related to
software development. In hard drives, it just means that all the electronics
the disk needs to operate are contained within the drive’s case.

Control
When used as a noun within the context of programming, the term control
refers to things in a program, or on a page, that allow users to control the
action. For example, open any Windows dialog box and you see a bunch of
text boxes, drop-down menus, check boxes, and buttons. All of these are rela-
tively small, simple controls.

In a more general sense, a control can be anything on the page that a user
interacts with. In Visual Web Developer’s Toolbox, each item actually repre-
sents a control that you can drag and drop onto a page. As a developer, you
choose which controls users will see, and can program what happens when a
user interacts with a control.

Code
Code is the text that forms the instructions for the computer, written in some
programming language such as C# or Visual Basic. It has a different function
from text that’s typed in a human language. Unlike regular text, code uses no
sentences or paragraphs. Instead, code consists of statements (lines) written
in the programming language rather than in a human language. Figure 13-1
shows an example of some C# code.

When you write in (say) English, you can get away with murder in terms of
spelling and punctuation; even if the text would make your composition
teacher cry, your human recipient will probably still be able to figure out
what you mean — simply by studying the context of the message. (If you’ve
spent any time in online forums, you’ve no doubt seen the extent to which
people can get away with worse-than-iffy spelling and punctuation.)

323Chapter 13: Ten Terms to Make You Look Smart

20_583603 ch13.qxd 10/21/05 6:58 PM Page 323

When you write code, there is no such margin for error. Every character of
every word counts; if it isn’t just so, you’ll likely get an error message rather
than code that works. Unlike a human being who can figure out (at least) the
intent of some dreadfully composed written message, a computer can’t
“figure out” diddley squat. You either write the code correctly and it works,
or you write it incorrectly and it doesn’t work.

Programmatic
There are two ways to interact with controls. One way is manual: You actually
use the finished control yourself. For example, when you click a button in a
Windows dialog box, you are manually operating the control with your mouse
and keyboard.

As a programmer, you can also write code to specify the exact appearance
and behavior of a control, as well as what happens after a user interacts with
the control. That sort of code is generally executed in response to some
event, as when the user clicks a button or makes a selection from a drop-
down menu.

Figure 13-1:
Some

sample
code written

in C#.

324 Part IV: The Part of Tens

20_583603 ch13.qxd 10/21/05 6:58 PM Page 324

In essence, a user who is viewing a page and makes a selection from the
options provided is manually using the control. But exactly what happens
after the user makes a selection is generally handled programmatically — the
control runs some code you’ve written, and that code tells the machine
exactly what to do.

Database
The term database is often used casually to refer to any body of knowledge or
collection of information. In programming terms, it’s more specific — refer-
ring to data that’s organized into tables that consist of columns and rows so
it can be stored and accessed consistently. The database for a Web site is
made available through the Database Explorer tab in Visual Web Developer,
as shown in Figure 13-2.

A database management system (DBMS) is a program that allows you to orga-
nize data into tables, and retrieve data programmatically. Microsoft Access
and SQL Server are examples of database-management systems. Microsoft
Access is a self-contained DBMS; it contains all the tools you need to create
tables, queries, forms, reports, and other aspects of an application — in one
program.

Figure 13-2:
A Web site’s

database.

325Chapter 13: Ten Terms to Make You Look Smart

20_583603 ch13.qxd 10/21/05 6:58 PM Page 325

SQL Server isn’t so much an application as it is a server — a single-minded
program obsessed with serving up data. Unlike an application program,
which has its own program window, a server works behind the scenes; it has
no particular interface or program window of its own. Instead, the server just
“serves up” data to some external application — such as (for a convenient
example) a dynamic data-driven Web site you create in Visual Web Developer.

326 Part IV: The Part of Tens

20_583603 ch13.qxd 10/21/05 6:58 PM Page 326

Chapter 14

Ten Alternatives to Being Helpless

Visual Web Developer brings together all the technologies you need to
create dynamic, data-driven Web sites. Those technologies include

HTML, CSS, ASP.NET, C#, the .NET Framework, and SQL Server — each and
every one of which is an enormous topic in itself. (For example, the first
printed documentation for the .NET Framework alone consisted of over 8,000
pages, bound into several volumes.)

To deal with such a gigantic body of knowledge, you must find ways to get
exactly the information you need, when you need it. Sending desperate
“PLEASE HELP!!!!” messages generally won’t cut it. You have to be more
resourceful — and know where the people you’re asking are getting their
information, so you can go get that information too.

The sites listed in this chapter get you in the ballpark. Of course, Web sites
being what they are, some of the URLs listed here may change between now
and the time you actually read this. That’s why I keep an up-to-date list of
links on www.coolnerds.com/vwd just in case any change occurs. If you
have any problems finding a page, try looking there.

Microsoft Developer Network (MSDN)
The Microsoft Developer Network at http://msdn.microsoft.com is home
to all Microsoft software-development tools and technologies. This is where
the hardcore computer geeks go to get information about Microsoft devel-
oper products.

HTML Home Page
All Web pages are formatted using HyperText Markup Language (HTML). The
W3C (Word Wide Web Consortium) is the “official” site for all things HTML
(including that useful new mutant, XHTML). To go straight to documentation
on HTML or XHTML, use the link www.w3.org/MarkUp/.

21_583603 ch14.qxd 10/21/05 6:46 PM Page 327

Cascading Style Sheets Home Page
Cascading Style Sheets (CSS) are a must if you intend to give your Web site a
consistent look and feel. They’re even more indispensable if you intend to
use themes, because every theme includes some CSS. The home page for CSS
is at www.w3.org/Style/CSS/.

XML Home Page
XML (eXtensible Markup Language) is a standardized means of transmitting
raw data across the Internet via the Word Wide Web. (By “raw” I mean unfor-
matted, like the data in a database — useful even if it isn’t pretty to look at.)

Whether your site needs (or can even use) XML depends on many factors.
In Visual Web Developer, you may be able to get by with little or no XML at
all — that depends on your site. If you do need XML info, the official site at
www.w3.org/XML/ contains all the specs.

ASP.NET
If I was forced to pin down my choice for the main technology behind Visual
Web Developer, ASP.NET 2.0 would be the one I’d choose. Although there are
plenty of Web sites that address this topic, the most “official” would have to
be the one whose URL is also the easiest in the world to remember:
http://ASP.NET.

ASP.NET Starter Kits
Clicking the Starter Kits tab at the ASP.NET Web site takes you to a page of
sample Web applications that you can download for free. There are different
kinds of Starter Kits for different types of Web sites. If you have a particular
type of site in mind, but don’t quite know how to organize things, a Starter Kit
could be a great way to get started.

328 Part IV: The Part of Tens

21_583603 ch14.qxd 10/21/05 6:46 PM Page 328

ASP.NET Forums
The ASP.NET Forums at http://forums.asp.net give you a handy place to
go for questions and answers. There are a lot of discussions to choose from.
You may have to scroll down to find Visual Web Developer and related discus-
sions. You can discover a lot about what the technology can do just by read-
ing through some of the questions and answers that have already been
posted.

SQL Server Developer Center
The subtitle to this Web page, “Enabling a world of data-driven applications,”
is what SQL Server is all about. In a Visual Web Developer site, SQL Server
contains all the data that drives the Web site. As I write this, the URL for SQL
Server 2005 is http://msdn.microsoft.com/SQL/2005. If that doesn’t
work, try the more general URL http://msdn.microsoft.com/SQL.

dotnetjunkies
The Microsoft .NET Framework is a huge collection of pre-written software
that most modern programmers use to create modern programs. In fact, all
the Using statements you see at the top of a code-behind page in VWD are ref-
erences to namespaces within the .NET Framework. Each namespace is like a
folder containing usable code organized into classes.

The dotnetjunkies site (at www.dotnetjunkies.com) is a place for people
who are into the whole .NET way of doing things. Though it spans the whole
of .NET Framework development tools, there’s always info on ASP.NET 2.0
and Visual Web Developer.

Microsoft Technical Communities
This site encompasses all of Microsoft’s software-development tools — and
discusses them in blogs, technical chats, newsgroups, webcasts, communi-
ties, user groups, and forums. There are all sorts of ways to interact with
other people who use the same tools you’re using. The URL for this site is
www.microsoft.com/communities.

329Chapter 14: Ten Alternatives to Being Helpless

21_583603 ch14.qxd 10/21/05 6:46 PM Page 329

330 Part IV: The Part of Tens

21_583603 ch14.qxd 10/21/05 6:46 PM Page 330

Appendix

Publishing Your Site
In This Appendix
� Choosing a hosting provider

� Preparing to upload

� Uploading to the Web server

When all your site’s Web pages are working properly, you’re ready to
upload your site to a hosting provider — a company that can host

your Web site in a way that allows anybody with an Internet connection to
view your site.

When you’ve chosen a hosting provider, exactly how you upload pages to
the site will depend on the provider you chose. There is no simple one-rule-
fits-all technique that I can give you. Only your provider can give you specific
details on what’s needed. But I can tell you, in general, what the process is
all about.

Choosing a Hosting Provider
There are tons of companies out there who will be more than happy to host
your Visual Web Developer Web site — for a fee, of course. (You may be able
to get a few months free as a trial period, but that’s normally temporary.) The
ASP.Net Web site (www.ASP.net) provides links to many companies that offer
that service.

When you’re shopping for a hosting provider, you’ll come across a ton of
options to choose from. Your goal is to find a service that specifically sup-
ports Visual Web Developer and SQL Server.

You’ll need a domain name, too. That domain name, preceded by http://www,
becomes your site’s URL. For example, if you get the domain name Dunce
School.com, then people will have to type www.DunceSchool.com into their
browser’s Address bar to visit your site.

22_583603 app.qxd 10/21/05 6:49 PM Page 331

You can set up your account and get a domain name at the same time. But
there is no guarantee that the domain name you want is available. You might
have to try several domain names before you find one that’s available. You
can do so by going to any site that offers help with selecting domain names
(such as www.NetworkSolutions.com).

After you have selected a domain name and a hosting provider, you’ll have
the information needed to publish your site. For the sake of example, let’s say
you set up an account with the following choices:

� Domain Name: DunceSchool.com

� UserName: YourUserName

� Password: YourPassword

Don’t forget your own Web site’s domain name, username, and password.
Print or jot down that information as soon as you get it. When you have a
place to post your site, you also have two locations for the site:

� Local: The copy of the site that’s on your computer, and has been since
Day One.

� Remote: The copy of the site on the Web server that the rest of the
world can browse to.

To make your site visible to the world at large, you copy it from your local
PC to the remote Web server. If you edit, refurbish, or otherwise tweak your
site, the place to do that is your local PC. Then you can upload the revised
version.

Preparing Your Site for Uploading
Once you have a place to upload your site, your ISP can fill you in on any
specific tasks that have to be done prior to uploading. It’s a good bet you’ll
want to turn off debugging and tracing in your site’s Web.config file before
uploading (more about why in a moment). To do that, follow these steps:

1. Choose Website ➪ ASP.NET Configuration from the menu bar.

2. In the Web Site Administration Tool, click Application Configuration.

The options shown in Figure A-1 appear.

332 Visual Web Developer 2005 Express Edition For Dummies

22_583603 app.qxd 10/21/05 6:49 PM Page 332

On a Web server, you generally don’t want debugging and tracing enabled
because those things eat up resources. The drain is trivial and unimportant
on your local PC, but on a Web server — where the system is likely to be
much busier — the effect of that resource consumption is magnified greatly.

So before you upload, click the Configure debugging and tracing link. Then
clear the Enable Debugging and Capture Tracing Information check boxes,
as shown in Figure A-2.

Figure A-2:
Turning off
debugging

and tracing.

Figure A-1:
Application
Configura-
tion in the
Web Site

Administra-
tion Tool.

333Appendix: Publishing Your Site

22_583603 app.qxd 10/21/05 6:49 PM Page 333

Remember, I’m just showing you examples here, not specific instructions for
your hosting provider. Only your hosting provider can give you specific
instructions to configure your site for the services they provide.

If your site will send e-mail automatically, you also need to configure SMTP
e-mail settings, using the link by that same name shown in Figure A-1). Again,
only your hosting provider can tell you exactly how to configure your SMTP
settings.

Copying the Site
After you have the above ducks all in a row, you’re ready to copy your site to
the hosting provider’s server. You start by opening your Web site in Visual
Web Developer, of course. Exactly how you do that will vary from one hosting
provider to the next. But here are the general steps using FTP to upload
pages:

1. Choose Web Site ➪ Copy Web Site from the menu bar.

2. Click the Connect button near the top of the page that opens.

3. In the left column, click FTP Site.

4. Type the FTP URL — exactly as provided by your ISP — into the
Server box.

5. Deselect the Passive Mode and Anonymous Login check boxes.

6. Type your user name and password into the appropriate boxes, as
shown in Figure A-3, and click Open.

Figure A-3:
Turn off

debugging
and tracing.

334 Visual Web Developer 2005 Express Edition For Dummies

22_583603 app.qxd 10/21/05 6:49 PM Page 334

When you’re connected, the left pane shows your local site’s files; the right
pane shows the remote site’s files. Initially, the remote site is empty. At this
point, you simply want to copy all the files from your local site to the remote
site. You can do so by clicking the button with the two-headed arrow between
the two panes. Then you wait.

When all the files have been copied, the two columns will look the same,
because the remote site contains all the same folders and files as the local
site. To test the remote site, close Visual Web Developer. Then browse to the
site’s URL, just as if you were any user who wanted to visit the site.

If there’s a problem with the remote site, chances are it’s something you have
to fix at that end — using a Control Panel or something similar on the remote
site to do that final tweaking. But exactly what final tweaking is required is
(you guessed it) information you can get only from your service provider.

Given that your local site — the one that lives on your PC — is the best place
to tweak, you may want to re-enable debugging and tracing in that site only.
Now, because that change will be stored in the site’s Web.config file, you
must remember not to upload that file to the remote site. In the Copy Files
text box, the discrepancy between the local-site and remote-site Web.config
files will show up as a pair of question marks, as shown in Figure A-4.

Don’t presume that question marks mean “You must upload this file right
now.” The question marks simply mean that the two files are different. But in
this case, you may very well want the two Web.config files to be different
because the sites are on two different computers, requiring two different con-
figuration files. Any other changes you make to your site, however, should be
uploaded to the remote site as needed. Those changes show up as a blue
arrow.

Figure A-4:
The local

and remote
Web.config

files don’t
match —

but that may
be okay.

335Appendix: Publishing Your Site

22_583603 app.qxd 10/21/05 6:49 PM Page 335

If you use the two-headed arrow box to copy all the pages from your local
site to the remote computer in that case, you end up copying the local
Web.config file too. To play it safe, select only the files you do want to copy,
then click the right-pointing arrow button, as shown in Figure A-5, to copy
just the modified pages without copying the modified Web.config file.

In a nutshell, that’s how uploading pages to a Web server works in Visual Web
Developer Express. In the non-Express version of the product, you also have
the option to publish the site. The main difference between the two processes
is that when you publish, you must first create a set of executable files, and
then copy those files to the server.

Figure A-5:
Copying just
the selected

files.

336 Visual Web Developer 2005 Express Edition For Dummies

22_583603 app.qxd 10/21/05 6:49 PM Page 336

What’s on the CD-ROM?

This book includes two CD-ROMs. The first disc contains Visual Web
Developer 2005 Express Edition software. The second disc contains sup-

plemental material for Visual Basic 2005 Express and Visual Web Developer
2005 Express. The full contents of this second disc are discussed in the sec-
tions that follow.

Visual Basic 2005 Express
� Videos: Absolute Beginner’s Guide to Visual Basic Express

This video series is designed specifically for individuals who are inter-
ested in learning the basics of how to create applications using Visual
Basic 2005 Express Edition. This includes over 8 hours of video-based
instruction that walks from creating your first “Hello World” application
to a fully functioning RSS Reader application. Learn how to write your
first application today.

For more information on software development with Visual Basic Express
Edition, you may be interested in these Supplemental Readings. (They
require Adobe Acrobat Reader.)

Includes all 16 lessons with 17 videos and 12 downloads.

� Starter Kits: Starter Kits are enhanced project templates that can be
shared with other members of the community. Here are some starter
kits for Visual Basic.

• Card Game Starter Kit: This Starter Kit is a complete Black Jack card
game. The starter kit contains an extensible framework for building
card games and a Black Jack game application that is built on top of
this framework. The project comes ready to compile and run, but
it’s easy to customize with only a little extra programming. The sec-
tion Expanding the Card Game contains a list of some customiza-
tions you might make. You are also free to use the source code as
the basis for your own card game projects, and share your work
with others or upload it to the Internet.

• Amazon-Enabled Movie Collection Starter Kit (link): The Amazon-
Enabled Movie Collection Starter Kit is a Windows Form application
that uses Amazon.com’s Web services to dynamically search for
movie titles. This Starter Kit demonstrates technologies such as:
calling XML Web services, databinding, application settings, local
data storage using SQL Server 2005 Express Edition, and more.

23_583603 aboutcdrom.qxd 10/21/05 6:56 PM Page 337

� Additional Resources: Here are additional resources on the Web. Most of
these links will be updated in the future, so you may want to occasionally
check them for updated information and resources.

• Visual Basic Express Edition Home Page: This page on the Microsoft
Web site provides additional information and links for Visual Basic
Express.

• Visual Basic Developer Center: Visit the Microsoft Visual Basic
Developer Center. Here you will find the most recent information
on Visual Basic.

• Visual Basic Forums: Read and place postings on the many
ASP.NET forums.

• SQL Server Query Basics: Learn to use the powerful T-SQL language
and see how easy and flexible it is for retrieving information stored
in SQL Server. This article introduces you to T-SQL and its robust
query syntax that makes it easy for you to use SQL Server Express
for your data-driven applications.

Visual Web Developer 2005 Express
� Videos: Learn Visual Web Developer Series

This video series is designed specifically for individuals who are interested
in learning the basics of how to create dynamic Web applications using
ASP.NET 2.0 and Visual Web Developer 2005 Express Edition in either
Visual Basic or C#.

Includes all 14 lessons with 14 videos and 14 downloads for Visual Basic

Includes all 14 lessons with 14 videos and 14 downloads for C#

� Videos: Videos by Jeff Prosise of Wintellect (Links to MS Web Site)

This series of video presentations by Jeff Prosise of Wintellect introduces
you to many of the new features of ASP.NET 2.0, such as:

• Web Forms: Web forms are the atoms from which ASP.NET Web pages
are built. This module introduces the Web forms programming model
and acquaints developers with some of the Web controls featured
in ASP.NET.

• State Management: ASP.NET 2.0 provides a variety of mechanisms
for building stateful Web applications. This module introduces
them all: view state, application cache, session state, profiles, and
cookies.

338 Visual Web Developer 2005 Express Edition For Dummies

23_583603 aboutcdrom.qxd 10/21/05 6:56 PM Page 338

• Security: Learn the essentials of ASP.NET security with an empha-
sis on forms authentication, the membership and role management
services, and login controls.

• Master Pages and Site Navigation: Get an introduction to master
pages, which are templates that provide content to other pages,
and to the data-driven site navigation tools featured in ASP.NET 2.0.

• Data Access: New controls in ASP.NET 2.0 enable developers
to build sophisticated, data-driven Web pages with little or no
code. This module introduces developers to data-driven content,
ASP.NET-style.

• Application Infrastructure: Pages alone do not a Web site make.
This module introduces other essential elements of ASP.NET
applications, including Web.config, Global.asax, components,
and resources.

� Starter Kits: The ASP.NET 2.0 Starter Kits for Visual Web Developer are
fully functional sample applications to help you learn ASP.NET 2.0. Each
sample is complete and well-documented so that you can use the code
to kick start your Web projects today.

• Club Site Starter Kit (link): This starter kit provides a starting point
for creating a Web site for your club or organization. The kit includes
news posting, calendaring, member directory, and photo album
systems.

• Time Tracker Starter Kit (link): This is a business Web application
for keeping track of hours spent on a project, with the ability to
handle multiple resources as well as multiple projects.

� Additional Resources: Here are additional resources on the Web. Most of
these links will be updated in the future, so you may want to occasionally
check them for updated information and resources.

• Visual Web Developer 2005 Express Edition Guided Tour: Learn
about the key new features available in Visual Web Developer 2005
Express that will make Web development easier and more produc-
tive than ever before.

• ASP.NET 2.0 QuickStart Tutorial: The ASP.NET QuickStart is a series
of ASP.NET samples and supporting commentary designed to quickly
acquaint you with the syntax, architecture, and power of the
ASP.NET Web programming framework. The QuickStart samples are
designed to be short, easy-to-understand illustrations of ASP.NET
features. By the time you finish reading this tutorial, you will be
familiar with the broad range of the new features in ASP.NET 2.0,
as well as the features that were supported in earlier versions.

339What’s on the CD-ROM?

23_583603 aboutcdrom.qxd 10/21/05 6:56 PM Page 339

• ASP.NET: Visit Microsoft’s Web site for the latest information
on ASP.NET.

• ASP.NET Developer Center: The Official Microsoft Developer Center
for ASP.NET

• Visual Web Developer 2005 Express Edition Home Page: This page
on the Microsoft Web site provides additional information and links
for Visual Web Developer Express.

• ASP.NET Forums: Read and place postings on the many ASP.NET
forums.

• SQL Server Query Basics: Learn to use the powerful T-SQL language
and see how easy and flexible it is for retrieving information stored
in SQL Server. This article introduces you to T-SQL and its robust
query syntax that makes it easy for you to use SQL Server Express
for your data-driven applications.

340 Visual Web Developer 2005 Express Edition For Dummies

23_583603 aboutcdrom.qxd 10/21/05 6:56 PM Page 340

• Symbols •
: (colon) character, declarations, 99
{ and } (curly braces) characters, CSS

style elements, 99
. (period) character, class indicator, 103
; (semicolon) character, declarations, 99

• A •
absolute positioning

enabling, 193
object alignments, 195–196
Z-indexes, 194–195

access rules, membership sites, 45–48
Active Server Pages (ASP),

described, 322
Add New Item dialog box

adding style sheets to a theme,
202–203

CSS style sheet creation, 100–101
new blank page creation, 76
site map addition, 158
Web form addition, 176
Web Form creation, 205
Web User Control addition, 166–167

Add New Style Rule dialog box, class
rule creation, 103

Add ORDER BY Clause dialog box, data-
bound control sorts, 267–268

Add Style Rule dialog box
CSS class selector creation, 103
CSS style rule creation, 102

Add Table dialog box, view creation, 249
Add WHERE Clause dialog box, data-

bound control query filters, 270

alignments
absolutely-positioned objects, 195–196
HTML table cell text, 82

anonymous users
membership site visits, 39–40
security trimming, 161–162
App_Data folder, default database

storage, 22
App_Themes folder

subfolders, 200–201
theme storage, 199–200

applications, described, 321
ASP (Active Server Pages),

described, 322
ASP.NET. See also controls
ChangePassword control, 145–146
control/template conversion, 128–129
forums, 329
Login controls, 130–131
login links, 136–141
Login.aspx page creation, 135–136
LoginName control, 138
LoginStatus control, 137–138
LoginView control, 138–141
membership testing, 146–148
Microsoft .NET Framework integration,

123, 135
password constraints, 149–151
PasswordRecovery control, 141–144
server control addition, 125–130
specifications, 328
Starter Kits, 328
template editing, 129–130
user account creation, 131–135
viewing server controls in Source view,

148–149
workflow process, 123–124

Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 341

ASP.NET 2.0 Hosters, publishing to the
Web, 19

ASP.NET 2.0, described, 322
aspnet_Profile table, profile property

storage, 187
ASPNETDB.MDF database, Solution

Explorer display, 51–52
attributes, Source view entry

conventions, 93–95
authentication

Forms authentication, 42–43
membership sites, 42–43
user profiles, 171–175
validation controls, 188–192
Windows authentication, 42–43

Auto Format, server controls, 127

• B •
background colors

cells, 82
Master Pages, 57–58

backgrounds, styling, 107–108
binary data type, SQL Server, 228
binding
DetailsView control, 287–290
DropDownList control, 280–287
navigation controls, 163–164
bit data type, SQL Server, 232
blank pages, creating, 75–77
bookmarks

creating, 86
links, 86–87

Boolean data type, SQL Server,
228, 232

borders
cells, 59–60
HTML table cells, 82–83
pictures, 89–91
styling, 113–114

boxes, styling, 113–114

browsers
compatibility issues, 17–19
viewing Web pages, 65–66
Web page viewing, 35–36
Button control, adding to a Web form,

178–179
buttons, adding to a Web form, 178–179

• C •
C# language, supported programming

language, 21
captions, picture, 307–308
Cascading Style Sheets (CSS). See also

styles; style sheets
class selectors, 102–104, 117–119
declaration component, 99–100
described, 97–100
DIV styles, 120–121
element class selectors, 119–120
element selectors, 116–117
element styles, 101–102
HTML interaction, 97–100
saving style sheets, 115
selector component, 99–100
specifications, 328
Style Builder editing, 57, 104–115
style rules, 101–104
style sheet creation, 100–101
style sheet links, 115–116
theme element, 201–204
toolbar viewing, 100–101
W3C specifications, 122

cell borders, Master Pages, 59–60
cells

background, 82
borders, 82–83
control addition, 84
deleting, 79
height/width settings, 58–59
HTML table insertion, 79
HTML table merges, 80–81

342 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 342

HTML table selections, 80
resizing, 79
selections, 80
styling, 81–83
table data entry, 78
text alignments, 82
text formatting, 82
ChangePassword control, ASP.NET,

145–146
ChangePassword, Login control, 131
char data type, SQL Server, 230
character data, text data type, 228–230
class indicator, period (.), 103
class selectors

CSS (Cascading Style Sheets), 102–104
Web page application, 117–118

code-behind files
tying code to an event, 180–183
viewing, 33–34

codes
conventions used in book, 3
described, 323–324
elements, 323–324

colon (:) character, declarations, 99
colors

background, 57–58
background styling, 107–108
cell background, 82

columns
adding to HTML tables, 79
data-bound control retrieval, 265–267
DataList control picture display,

305–306
DataList control text display, 301–302
date/time number formatting, 274–275
deleting, 79
grid arrangements, 279–280
hiding/displaying in grids 279–280
selections, 79–80
SQL Server table element, 222–223

Common Tasks menu, server controls,
127–130

CompareValidator control, text box
value comparison, 191–192

compatibility, Web browser settings,
17–19

components, book sections, 4
composite formatting, date/time number

formatting, 274–275
connections, data-bound controls,

262–264
content pages, creating, 65
ContentPlaceHolder pane, Master

Pages, 55–56, 61–63
contents

adding to Master Pages, 67–68
Help system element, 15

controls. See also ASP.NET; Login
controls;, server controls

absolute positioning, 193–198
adding to Master Pages, 68
data binding methods, 262–274
described, 323
grid display, 276–280
HTML table cell addition, 84
login links, 136–141
programmatic interaction method,

324–325
programmatic name assignment, 177
server, 125–130
site-navigation, 154–158
skin files, 201, 204–209
static versus dynamic data, 155
template conversion, 128–129
template editing, 129–130
theme selection, 212–213

conventions, used in book, 3
CreateUserWizard, Login control,

131–135
CSS (Cascading Style Sheets). See also

styles; style sheets
class selectors, 102–104, 117–119
curly braces ({ and }) characters, 99
declaration component, 99–100

343Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 343

CSS (continued)

described, 97–100
DIV styles, 120–121
element class selectors, 119–120
element selectors, 116–117
element styles, 101–102
HTML interaction, 97–100
saving style sheets, 115
selector component, 99–100
specifications, 328
Style Builder editing, 57, 104–115
style rules, 101–104
style sheet creation, 100–101
style sheet links, 115–116
theme element, 201–204
toolbar viewing, 100–101
W3C specifications, 122

CSS Editor, style sheet display,
100–101

curly braces { and } characters,
CSS style elements, 99

CustomValidator control, form
validation, 192

• D •
data, binding to controls, 262–274
Data Configuration Wizard

binding data to a control, 262–273
column retrieval, 265–267
connection selections, 262–264
data source selections, 262–264
filtering, 269–273
query filters, 269–273
Select Statement configuration, 264
sort order settings, 267–268
table selections, 265
unique value display, 268–269
view selections, 265

data sources, data-bound controls,
262–264

data types
binary, 228
bit, 232
Boolean, 228, 232
char, 230
date/time, 228, 232
datetime, 232
decimal, 231
float, 231
int, 231
money, 231
nchar, 230
number, 228, 230–232
numeric, 231
nvarchar (MAX), 230
nvarchar, 230
other (specialized), 228, 232–233
real, 231
smalldatetime, 232
smallmoney, 231
SQL Server, 227–233
table definitions, 227–228
text, 228–230
theme information, 201
tinyint, 231
user profiles, 172–175
varchar (MAX), 230
varchar, 230

Database Explorer
table creation, 236–237
user interface element, 11
view creation, 249
viewing existing tables, 222–223
viewing table definitions, 227–228

database management system (DBMS),
described, 325–326

databases
ASPNETDB.MDF, 51–52
data-bound control data sources,

262–264
described, 325–326

344 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 344

drop-down list data binding, 280–287
hyperlinks table, 257–259
many-to-many relationships, 223–227
money fields, 240
one-to-many relationships, 223–227
picture table, 254–257
primary key field, 237–238, 241–244
SQL Server storage advantages, 221
SQL Server table elements, 222–223
table data entry, 244–246
table links, 247–254
text fields, 238–240
Transactions table, 241–244
user access prevention techniques,

275–276
data-driven, described, 1, 322
DataList control, normal text data

display, 296–312
date/time columns, date/number

formatting, 274–275
date/time data type, SQL Server, 228, 232
dates
DataList control formatting, 300–301
formatting, 274–275
GridView control formatting, 279
uniqueidentifier, 232–233
datetime data type, SQL Server, 232
DBMS (database management system),

described, 325–326
debugging, HTML in Source view, 95–96
decimal data type, SQL Server, 231
declarations

colon (:) character, 99
CSS component, 99–100
semicolon (;) character, 99
Default.aspx, default Web page, 22–23
Design Surface

How Do I page display, 15
page editing techniques, 26–31
saving changes before closing, 32–33
title creation, 34–35

user interface element, 10–11
viewing code-behind files, 33–34

Design view
absolute positioning, 193–194
Common Tasks menu, 127–130
data-bound controls, 273–274
LoginStatus control display, 140
moving objects, 56
server control editing, 126–127
switching to Source view, 23, 30–31
Web page display, 23
DetailsView control

data display/editing, 287–290
Master-Details forms, 294–295

developers, described, 321
directory. See folders
DIV styles, Web page application,

120–121
domain name, Web publishing

requirement, 331–332
dotnetjunkies, online resource, 329
drop-down lists, data binding, 280–287
DropDownList control

drop-down list binding, 280–287
Master-Details forms, 292–293

dynamic data, navigation control
support, 155

Dynamic Help pane, Help system
element, 15–16

dynamic, described, 1

• E •
element class selectors, Web page

application, 119–120
element selectors, Web page application,

116–117
element styles, CSS (Cascading Style

Sheets), 101–102
e-mail addresses, PasswordRecovery

control element, 142–143

345Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 345

Error List pane, debugging HTML, 95–96
eXtensible Markup Language (XML),

specifications, 328
eyebrow menus, adding to a Web page,

164–165

• F •
false/true values, Boolean data type,

228, 232
favorites, Help system element, 15
fields

foreign keys, 241
money, 240
primary key, 237–238, 241–244
RequiredFieldValidator control,

189–190
SQL Server table element, 222–223
table data entry, 244–246
text, 238–240

files
ASPNETDB.MDF, 51–52
code-behind, 33–34
copying to a folder, 25–26
copying/pasting to a folder, 26
dragging/dropping to a folder, 25–26
Login.aspx, 135–136
RecoverPassword.aspx, 144
skin, 201, 204–209
Web.config, 51–52, 150–151, 162,

173–175
Web.sitemap, 158–164

filters
data-bound control query, 269–273
DropDownList control, 282–284
float data type, SQL Server, 231
floating-point numbers, scalar value

type, 230–231
folders
App_Data, 22
App_Themes, 199–200
copying files to, 25–26

creating, 24–25
database access prevention

techniques, 275–276
deleting, 26
dragging/dropping files to, 25–26
hiding/showing contents, 26
Master Pages, 54
members-only content, 39–40
renaming, 24, 26
Theme, 199–201

Font Picker, font selections, 106
fonts

sizing, 106–107
styling, 105–107

footers, Master Page layout, 53
foreign keys, SQL Server tables, 241
formatting, text, 27–28
forms. See also Web forms

absolutely-positioned objects, 193–198
custom validation controls, 192
failed validation summary, 192
Master-Details page, 291–296
regular expression validation control,

190–191
required field validation control,

189–190
text box validation control, 189–190
text box value comparison, 191–192
user profile information entry, 176–188
validation controls, 188–192
value entry validation control, 190

Forms authentication, membership sites,
42–43

FormView control, record data display,
312–318

forums, ASP.NET, 329

• G •
Globally Unique Identifier (GUID), SQL

Server, 232–234
Google, search engine workflow process,

123–124

346 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 346

grids, GridView control, 276–280
GridView control

grid display, 276–280
Master-Details forms, 293–294
subtotal display, 314–318

• H •
headers, Master Page layout, 53
Help on Help pane, Help system

element, 15
Help system, user interface element,

14–16
Help toolbar, user interface element,

14–15
home page, described, 327
horizontal rules, Web page addition, 92
hosting providers

uploading sites to, 334–336
Web publishing, 19, 331–332
Web publishing preparations, 332–334

How Do I page, Design Surface display, 15
HTML pages

CSS interaction, 97–100
debugging in Source view, 95–96
home page, 327
uses, 75

HTML tables
adding to a page, 77–78
cell data entry, 78
cell insertion/deletion, 79
cell merges, 80–81
cell selections, 80
cell styling, 81–83
column addition/deletion, 79
control addition, 84
deleting, 79
resizing cells, 79
row addition/deletion, 79
row/column selections, 79–80
HyperLink control, picture captions,

307–308

Hyperlink dialog box, converting text
selections to a hyperlink, 85

hyperlinks. See also links
adding to a Web page, 84–87
DataList control display, 309–312
quick links, 85–86
SQL Server table, 257–259

• I •
icons, used in book, 5
IDE (Integrated Development

Environment), described, 322–323
Image control

picture captions, 307–308
sizing pictures, 305

index, Help system element, 15
inline elements, styling, 108
Insert Table dialog box, adding HTML

tables to a page, 77–78
int data type, SQL Server, 231
integers, scalar value type, 230–231
Integrated Development Environment

(IDE), described, 322–323
IntelliSense menu

ignoring, 31
selections, 31–32

Internet, Forms authentication, 42–43

• J •
J# language, supported programming

language, 21

• L •
Label control, creating, 194
layouts

Master Pages, 53, 55–56
styling, 112–113
template selections, 55–56

347Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 347

lines (statements), code element,
323–324

lines, Web page addition, 92
links. See also hyperlinks

ASP.NET login, 136–141
bookmarks, 86–87
hyperlinks table, 257–259
picture captions, 307–308
picture table, 254–257
RecoverPassword.aspx page, 144
SQL Server tables, 247–254
style sheets, 115–116

list boxes, theme selections, 212–213
ListBox control, theme selections,

212–213
ListItem Collection Editor, theme list box

selections, 213
local networks, Windows authentication,

42–43
Login, Login control, 130
Login controls. See also controls

adding to a Web page, 130–131
types, 130–131

login links, ASP.NET, 136–141
Login.aspx page, creating, 135–136
LoginName control, ASP.NET, 138
LoginName, Login control, 131
LoginStatus control

ASP.NET, 137–138
Design view display, 140
LoginView control, ASP.NET, 130,

138–141

• M •
many-to-many relationships, SQL Server,

223–227
margins, styling, 113
Master Pages. See also Web pages

adding to existing Web pages, 69–71
background color, 57–58
cell borders, 59–60

cell height/width settings, 58–59
content addition, 67–68
content pages, 65
ContentPlaceHolder pane styling,

55–56, 61–63
creating, 54–55
editing techniques, 66–69
folder creation, 54
layouts, 53, 55–56
left pane styling, 60–61
LoginStatus control, 137–138
LoginView control addition, 139–140
moving objects, 56
panes, 55–56
picture display troubleshooting, 71
Style Builder, 57–63
style sheet links, 115–116
template selections, 55–56
text alignments, 58
theme application, 217–218
Toolbox control addition, 68
Web forms, 63–66

Master-Details forms
DetailsView control, 294–295
DropDownList control, 292–293
GridView control, 293–294
transaction editing uses, 291–292

membership sites
access rules, 45–48
active versus inactive user accounts, 49
ASPNETDB.MDF database, 51–52
authentications, 42–43
GUID (Globally Unique Identifier),

232–234
members-only content folders, 39–40
preferred theme storage, 213–214
roles (people categorizes), 43–45
security trimming, 161–162
SQL Server connection testing, 41–42
testing in ASP.NET, 146–148
theme page display/selections, 211–212
theme selections, 210–216

348 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 348

user accounts, 39–40, 48–51
viewing existing tables, 222–223
WAT (Web Site Administration Tool),

40–43
Web.config file, 51–52

members-only content, folder creation,
39–40

Menu control, site-navigation, 154–158
Menu Item Editor dialog box, navigation

control addition, 156–158
merges, HTML table cells, 80–81
Microsoft .NET Framework, ASP.NET

integration, 123, 125
Microsoft Access, DBMS (database

management system), 325–326
Microsoft Developer Network (MSDN),

online help resource, 327
Microsoft, technical communities, 329
money data type, SQL Server, 231
money fields, SQL Server tables, 240

• N •
NavigateUrl property, navigation

controls, 156–158
navigation controls

binding to Web.sitemap file, 163–164
dynamic data support, 155
eyebrow menus, 164–165
security trimming, 161–162
site maps, 158–164
static data support, 155
ToolTips, 156–158
nchar data type, SQL Server, 230
New Web Site dialog box, new Web site

creation, 22–23
newspaper-style columns, DataList

control text display, 301–302
non-Unicode text, text data type, 229–230
<not set> setting, Style Builder, 104
null value, Boolean data type, 228, 232

number data type, SQL Server, 228,
230–232

numbers
DataList control formatting, 300–301
formatting, 274–275
subtotal display, 314–318
numeric data type, SQL Server, 231
nvarchar (MAX) data type, SQL

Server, 230
nvarchar data type, SQL Server, 230

• O •
objects

alignments, 195–196
moving, 56
property editing, 29–30
sizing, 196–197
spacing, 197–198
stacking, 194–195

one-to-many relationships, SQL Server,
223–227

online resources, Web sites, 16–17
other (specialized) data type, SQL

Server, 228, 232–233

• P •
padding, styling, 113
pages. See Web pages
panes
ContentPlaceHolder, 55–56, 61–63
docking/undocking, 12
hiding/displaying, 12
Master Page layout element, 55–56
Master Page styling, 60–63
moving objects, 56
moving/sizing, 11–12
resetting to default display, 12
View menu options, 13–14

349Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 349

Parameter Values Editor dialog box,
data-bound control query
testing, 272

PasswordRecovery control, ASP.NET,
141–144

PasswordRecovery, Login control, 131
passwords

authentication method, 42–43
ChangePassword control, 145–146
constraint editing, 149–151
PasswordRecovery control, 141–144
user accounts, 48–49

people categories (roles)
access rules, 45–48
membership sites, 43–45

period (.) character, class indicator, 103
permissions, access rules, 45–48
phone numbers, user profile

element, 172
pictures

adding to a Web page, 28–29
binary data type, 228
borders, 89–91
captions, 307–308
centering troubleshooting, 91
DataList control display, 302–308
Master Page display

troubleshooting, 71
padding, 91
position styling, 110–111
positioning, 88–89
sizing, 88, 305
SQL Server table, 254–257
styling, 88–91
text wrapping, 89–90
theme element, 201–202
watermark uses, 107–108
Web page addition, 87–91

Pointer, Login control, 130
postbacks, when to execute, 185
precision, decimal data type limits, 231

primary keys
SQL Server tables, 237–238, 241–244
Transactions table, 243–244

profile properties
default values, 172, 174
information storage, 187
information types, 172, 173–175
retrieving/editing, 184–187
user profiles, 171
viewing/editing, 284–287
Visual Basic, 187–188

programmatic names, control
assignment, 177

programmatic, control interaction
method, 324–325

programming languages
preference selections, 22
supported types, 21

properties
object editing, 29–30
user interface element, 11
validation controls, 188–192
viewing/editing, 284–287

Properties pane, object editing, 29–30
Properties sheet

docking/undocking, 29
object property editing, 29–30

publishing to the Web
copying sites to hosting providers,

334–336
domain name requirement, 331–332
hosting providers, 331–332
preparing for uploads, 332–334
services, 19

• Q •
queries

data-bound control filters, 269–273
SQL Server views, 248–254

Query Builder, SQL Server views, 248–254
quick links, creating, 85–86

350 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 350

• R •
RangeValidator control, value

entry, 190
RDBMS (relational database-management

system), SQL Server, 223
readers, author’s assumptions, 2–3,

9–10
real data type, SQL Server, 231
records
DropDownList control filtering,

282–284
FormView control display, 312–318
SQL Server table element, 222–223
RecoverPassword.aspx page,

testing, 144
regular expressions, validation control,

190–191
RegularExpressionValidator

control, validation criteria, 190–191
relational database-management system

(RDBMS), SQL Server, 223
relationships

many-to-many, 223–227
one-to-many, 223–227
RequiredFieldValidator control,

text boxes, 189–190
resources, online, 16–17
Results pane, query results display,

250–251
rolegroups, creating/editing, 141
roles (people categories)

access rules, 45–48
membership sites, 43–45

rows
adding to HTML tables, 79
data-bound control query filters,

269–273
deleting, 79
selections, 79–80
SQL Server table element, 222–223

• S •
scalar values

floating-point numbers, 230–231
integers, 230–231
math function support, 172
number data type, 228

scale, decimal data type limits, 231
schemes, server controls, 127–128
search engines, workflow process,

123–124
searches

Help system element, 15
user accounts, 50

security
access rules, 45–48
authentications, 42–43
user access prevention techniques,

275–276
security trimming, anonymous users,

161–162
Select a Master Page dialog box, 64
Select Statements, data-bound control

configuration, 265
selections

converting to a hyperlink, 85
HTML tables rows/columns, 79–80
text, 27–28
themes, 210–216

selectors, CSS component, 99–100
semicolon (;) character, declarations, 99
server controls. See also controls

Auto Format, 127
Common Tasks menu, 127–130
editing in Design view, 126–127
schemes, 127–128
viewing in Source view, 148–149
Web page addition, 125–130

sidebars, Master Page layout, 53
site maps

adding to a Web page, 158–161
dynamic data support, 155

351Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 351

SiteMapPath control, adding
breadcrumb menu to a Web
page, 164–165

sizes, absolutely-positioned objects,
196–197

skins
default versus named, 207–209
described, 201
file creation, 204–207
theme element, 201
smalldatetime data type,

SQL Server, 232
smallmoney data type, SQL Server, 231
Solution Explorer

adding a picture to a Web page,
28–29, 87

ASPNETDB.MDF database display, 51–52
code-behind files, 33–34
copying files to a folder, 25–26
default theme creation, 199–200
folder creation, 24–25
log in before viewing restricted

page, 182
Master Pages folder creation, 54
members-only content folder

creation, 40
new blank page creation, 76–77
opening Web pages, 24
quick link creation, 85–86
renaming folders, 24
user interface element, 11
viewing Web pages in a browser, 65–66
Web form creation, 64
Web User Controls, 165–167
Web.config file display, 51–52

sorts, data-bound controls, 267–268
Source view

absolutely-positioned item display, 195
bookmark display, 86
editing techniques, 92–96
HTML debugging, 95–96

selection techniques, 93
server control viewing, 148–149
switching to Design view, 23, 30–31
tag/attribute entry conventions, 93–95
Web page display, 23
Web page editing techniques, 31–32

spacing, absolutely-positioned objects,
197–198

specialized (other) data type, SQL
Server, 228, 232–233

SQL Server
binary data type, 228
bit data type, 232
Boolean data type, 228, 232
char data type, 230
columns, 222–223
data storage advantages, 221
data type summary listing, 234–236
date/time data type, 228, 232
datetime data type, 232
DBMS (database management system),

325–326
decimal data type, 231
development center, 329
float data type, 231
foreign keys, 241
GUID (Globally Unique Identifier),

232–234
hyperlinks table, 257–259
int data type, 231
many-to-many relationships, 223–227
membership site connection testing,

41–42
money data type, 231
money fields, 240
nchar data type, 230
non-Unicode text, 229–230
number data type, 228, 230–232
numeric data type, 231
nvarchar (MAX) data type, 230
nvarchar data type, 230

352 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 352

one-to-many relationships, 223–227
other (specialized) data type, 228,

232–233
picture tables, 254–257
primary keys, 237–238, 241–244
Query Builder, 248–254
query views, 248–254
RDBMS (relational database-

management system), 223
real data type, 231
rows, 222–223
saving tables, 240–241
smalldatetime data type, 232
smallmoney data type, 231
statements, 247–248
table creation, 236–237
table data entry, 244–246
table data types, 227–233
table definitions, 227–228
table links, 247–254
tables, 222–223
text data type, 228–230
text fields, 238–240
tinyint data type, 231
Transactions table, 241–244
Unicode text, 229–230
uniqueidentifier data type,

232–233
varchar (MAX) data type, 230
varchar data type, 230

Start Page, disabling/enabling, 14
Starter Kits, ASP.NET, 328
statements (lines)

code element, 323–324
SQL Server, 247–248

static data, navigation control
support, 155

String data type, user profiles, 172–175
strings

connections, 263
text data types, 229–230

Style Builder
accessing, 30
background color, 57–58
background styling, 107–108
box/border styling, 113–114
cell borders, 59–60
cell height/width settings, 58–59
ContentPlaceHolder pane styling,

61–63
CSS (Cascading Style Sheets)

specifications, 57
DIV styles, 121
font styling, 105–107
HTML table cell styling, 81–83
layout styling, 112–113
left pane styling, 60–61
<not set> setting, 104
saving changes, 114–115
stacking objects, 194–195
style rules, 104–115
styling position, 110–111
text alignments, 58, 108–110
white space styling, 108–110

style rules
CSS (Cascading Style Sheets),

101–104
Style Builder editing, 104–115

style sheets. See also Cascading Style
Sheets (CSS)

adding to a theme, 202–204
copying between Theme folders, 203
creating, 100–101
links, 115–116
saving changes, 115

styles. See also Cascading Style Sheets
(CSS)

GridView control, 280
skin file creation, 205–206

subtotals, Web page display, 314–318
symbols, date/time number

formatting, 275

353Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 353

• T •
table definitions, SQL Server tables,

227–228
tables

binary data type, 228
Boolean data type, 228, 232
closing, 223
column definitions, 236–237
creating, 236–237
data entry, 244–246
data information display, 222–223
data types, 227–223
data-bound control selections 265
date/time data type, 228, 232
DetailsView control binding, 287–290
foreign keys, 241
grid display control, 276–280
HTML, 77–84
hyperlinks, 257–259
links, 247–254
many-to-many relationships, 224–227
money fields, 240
number data type, 228, 230–232
one-to-many relationships, 224–227
other (specialized) data type, 228,

232–233
picture, 254–257
primary keys, 237–238, 241–244
profile property storage, 187
saving, 240–241
SQL Server organization, 222–223
styling, 110
table definitions, 227–228
text data type, 228–230
text fields, 238–240
Transactions, 241–244
viewing existing, 222–223

tabs, Help system navigation, 16
tags, Source view entry conventions,

93–95

templates
control conversion, 128–129
DataList control, 298–299
editing, 129–130
Master Page layouts, 55–56

text
adding to a Web page, 27
DataList control display, 296–300
formatting, 27–28
selections, 27–28
undoing changes, 28
Text property, navigation controls,

156–158
text alignments

Master Pages, 58
styling, 108–110

text boxes
CompareValidator control, 191–192
RequiredFieldValidator control,

189–190
text data type, SQL Server, 228–230
text fields, SQL Server tables, 238–240
text formatting, HTML table cells, 82
text wrapping, pictures, 89–90
Textbox controls

user profile information entry,
177–178

viewing user properties, 285–287
Theme folders

creating subfolders, 200–201
deleting, 200
renaming, 200
theme storage, 199–200

themes
application methods, 214–216,

218–219
data information types, 201
default creation, 199–200
described, 199
folders/subfolders, 199–201
ListBox control, 212–213

354 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 354

Master Page application, 217–218
member page display/selections,

211–212
member selections, 210–216
pictures, 201–202
preferred storage, 213–214
site-wide default theme, 219–220
skins, 201, 204–209
style sheets, 201, 202–204
testing, 216
Web page uses, 209–210

time/date columns, number formatting,
274–275

time/date data type, SQL Server, 228, 232
times, GridView control formatting, 279
tinyint data type, SQL Server, 231
titles, creating, 34–35
toolbars, viewing, 100–101
Toolbox

adding controls to a HTML table
cell, 84

adding controls to Master Pages, 68
adding server controls to a Web

page, 125
navigation controls, 155–158
user interface element, 10–11
validation controls, 188–192

ToolTips, navigation controls, 156–158
Transactions table, SQL Server,

241–244
transactions

Master-Details forms, 291–292
primary key field, 243–244
TreeView control, site-navigation,

154–158
troubleshooting

Master Page picture display, 71
picture centering, 91

true/false values, Boolean data type,
228, 232

• U •
Unicode text, text data type, 229–230
uniqueidentifier data type, SQL

Server, 232–233
uploads

copying sites to hosting providers
334–336

Web publishing preparations, 332–334
user accounts

active versus inactive users, 49
ASP.NET creation, 131–135
authentications, 42–43
CreateUserWizard control, 132–135
creating, 48–49
database access prevention

techniques, 275–276
editing/deleting, 50–51
GUID (Globally Unique Identifier),

232–234
many-to-many relationships, 224–227
membership sites, 39–40
membership testing, 146–148
PasswordRecovery control, 141–144
passwords, 48–49
preferred theme storage, 213–214
preferred themes, 210–211
searches, 50
table data information display, 222–223
theme page display/selections, 211–212
validation controls, 188–192

user interface, elements, 10–16
user profiles

data types, 172, 173–175
event/code tying, 180–183
information entry page, 176–188
information storage, 183–184, 187
phone numbers, 172
profile properties, 171
retrieving/editing, 184–187

355Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 355

user profiles (continued)

String data type, 172, 173–175
Textbox controls, 177–178
Web forms, 176–188
Web.config file, 173–175
ZIP codes, 172

user properties, editing/viewing,
284–287

• V •
validation controls
CompareValidator, 191–192
CustomValidator, 192
properties, 188–192
RangeValidator, 190
RegularExpressionValidator,

190–191
RequiredFieldValidator, 189–190
ValidationSummary, 192
ValidationSummary control, failed

validations, 192
values

Boolean data type, 228, 232
CompareValidator control, 191–192
CustomValidator control, 192
data-bound control display, 268–269
GUID (Globally Unique Identifier),

232–234
primary key field, 237–238, 241–244
RangeValidator control, 190
varchar (MAX) data type, SQL

Server, 230
varchar data type, SQL Server, 230
View menu, user interface element,

13–14
views

creating in Database Explorer, 249
data-bound control selections, 265
grid display control, 276–280
query results display, 250–251

saving, 251
SQL Server query, 248–254
switching between, 23, 30–31
user properties, 284–287
vw_aspnet_, 248

Visual Basic language
profile properties, 187–188
supported programming language, 21

Visual Studio, software-development
tool, 322

Visual Web Developer Express
browser compatibility settings, 17–19
installation, 10
IntelliSense technology, 31
supported programming languages, 21
user interface elements, 10–16
vw_aspnet_ views, SQL Server, 248

• W •
W3C (World Wide Web Consortium),

HTML specifications, 327
WAT (Web Site Administration Tool)

access rules, 45–48
membership sites, 40–43
roles (people categories), 43–45
user accounts, 48–51
Web publishing preparations,

332–333
watermarks, background styling,

107–108
Web application, described, 321
Web browsers

compatibility issues, 17–19
viewing Web pages, 35–36, 65–66

Web forms. See also forms
Button control addition, 178–179
button addition, 178–179
Master Pages, 63–66
skin file creation, 205
Textbox controls, 177–178

356 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 356

theme page display/selections,
211–212

user profile information entry,
176–188

uses, 75
validation controls, 188–192

Web pages. See also Master Pages
adding Master Pages to, 69–71
blank page creation, 75–77
bookmarks, 86
closing/opening, 23–24
code-behind files, 33–34
content page, 65
CSS class selectors, 117–118
CSS element selectors, 116–117
Default.aspx, 22–23
DIV styles, 120–121
editing techniques, 26–32
element class selectors, 119–120
eyebrow menu addition, 164–165
horizontal rules, 92
HTML Pages, 75
HTML tables, 77–84
hyperlinks, 84–87
Login controls, 130–131
Login.aspx, 135–136
navigation control addition, 155–158
object properties, 29–30
picture addition, 87–91
picture insertion, 28–29
quick links, 85–86
RecoverPassword.aspx, 144
saving changes before closing, 32–33
saving changes when closing, 24
server control addition, 125–130
site map addition, 158–164
Source view editing techniques, 92–96
style applications, 116–121
subtotal display, 314–318
switching between Design/Source

views, 23

text addition, 27
text formatting, 27–28
text selections, 27–28
theme uses, 209–210
theme view/selections, 211–212
titles, 34–35
types, 75
undoing changes, 28
user profile information entry,

176–188
viewing in a browser, 35–36, 65–66
Web Forms, 75
Web User Control addition, 165–167

Web presence provider, publishing to
the Web, 19

Web Site Administration Tool (WAT)
access rules, 45–48
membership sites, 40–43
roles (people categories), 43–45
user accounts, 48–51
Web publishing preparations,

332–333
Web sites

ASP.NET forums, 329
ASP.NET QuickStart Tutorials, 17
ASP.NET specifications, 328
Cascading Style Sheets (CSS), 17
coolnerds.com, 16
creating new, 22–23
CSS (Cascading Style Sheets), 122, 328
domain names, 332
dotnetjunkies, 329
Google, 123
hosting services, 19
Microsoft technical communities, 329
MSDN (Microsoft Developer

Network), 327
navigation considerations, 153–154
.NET Framework Developer Center, 17
online resources, 16–17
opening/closing, 37

357Index

24_583603 bindex.qxd 10/21/05 6:57 PM Page 357

Web sites (continued)

renaming, 22
site-wide default theme, 219–220
SQL Server Developer Center, 17, 329
Visual C# Developer Center, 17
W3C (World Wide Web Consortium), 327
World Wide Web Consortium, 122
XHTML Home Page, 17
XML (Extensible Markup Language),

17, 328
Web User Controls, adding to a Web

page, 165–167
Web.config file

password constraints, 150–151
security trimming, 162
Solution Explorer display, 51–52
user profiles, 173–175
Web.sitemap file

adding sitemap to a Web page, 158–161
control binding, 163–164
security trimming, 162–163

white space
DataList control display, 299
styling, 108–110

Windows authentication, membership
sites, 42–43

Windows, copying/pasting files to a
folder, 26

wizards, Data Configuration, 262–273
World Wide Web Consortium (W3C),

HTML specifications, 327
wraps, text around pictures, 89–90

• X •
XML (eXtensible Markup Language),

specifications, 328

• Z •
Z-indexes

absolute positioning, 194–195
position styling, 111

ZIP codes, user profile element, 172

358 Visual Web Developer 2005 Express Edition For Dummies

24_583603 bindex.qxd 10/21/05 6:57 PM Page 358

Notes

24_583603 bindex.qxd 10/21/05 6:57 PM Page 359

Notes

24_583603 bindex.qxd 10/21/05 6:57 PM Page 360

Notes

24_583603 bindex.qxd 10/21/05 6:57 PM Page 361

Notes

24_583603 bindex.qxd 10/21/05 6:57 PM Page 362

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

25_583603 bob.qxd 10/21/05 6:45 PM Page 363

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

25_583603 bob.qxd 10/21/05 6:45 PM Page 364

