

TestGoal

Derk-Jan de Grood

TestGoal

Result-Driven Testing

123

Derk-Jan de Grood
Collis B.V.
De Heijderweg 1
2314 XZ Leiden
The Netherlands
grood@collis.nl

ISBN 978-3-540-78828-7 e-ISBN 978-3-540-78829-4

DOI 10.1007/978-3-540-78829-4

ACM Computing Classification (1998): K.6, D.2.5

Library of Congress Control Number: 2008924999

© 2008 Collis B.V., Leiden, The Netherlands

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover Design: KünkelLopka, Heidelberg
Illustrations: Thijs Geritz, The Hague
Back cover photo: H. de Vries, Rijswijk

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface by Lee Copeland

Focus on business goals. Align your work with those goals. Eliminate work that
does not add value to the business – this is today’s management mantra. All good
advice. But few in the testing community truly understand what that kind of
alignment means. Derk-Jan de Grood is one of those few.

Today, many variations of testing processes are available to organizations. Some
are tool driven (both commercial and open source); others are document driven
(IEEE 829 Standard for Software Test Documentation); while still others are tech-
nique driven (boundary value, state-transition, and pair-wise testing). A myriad of
books are available to help you from the classics by Beizer and Myers to the latest
from Black; Bach, Kaner, and Pettichord; Graham, Evans, and van Veenendaal;
Craig; and Copeland.

TestGoal is different. TestGoal is result-driven. Not the kind of results testers
have historically tried to achieve–find all the severity 1 defects, reach 100% state-
ment coverage, or accurately estimate the number of defects remaining. TestGoal
focuses on results that the business cares about. Like it or not, the business does
not care about pair-wise test design and defect taxonomies and defect reports no
matter how pretty our charts and graphs may be. The business cares about busi-
ness results – sales, profit, market share, time to market, product differentiation,
and competitive advantage.

As testers, our goals must not only support the goals of the business, they must be
the goals of the business. Result-driven testing understands those goals, carries out
only those activities that contribute to those goals, and produces information that
enables executive management to achieve those goals. In this way, all of our test-
ing activities support and add value to the organization.

One way TestGoal accomplishes this is by asking us to consider the question
“How would you know that this test project has been a success?” How many
executive managers would respond, “Well, when you have achieved 90% condi-

vi Preface by Lee Copeland

tion coverage, of course.” They don’t even know what those words mean. Yet that
is what we measure and report – a sign of our disconnectedness from the business.
TestGoal puts us on the right track.

Another way TestGoal guides us is by pointing out that the “risks” in risk analysis
are those things that prevent the business goals from being achieved – profit, im-
age, product differentiation. Yet most testing risk analysis focuses on threats at
a very different level–resource availability, staff availability, and training needs.

TestGoal also emphasizes the central role that testers should play in their organi-
zations. Gone are the days when the testing group was tucked away in the corner
of the organization chart. Today’s testers play a central role in the creation of
quality systems, building bridges to all parts of the organization. We add value to
the organization when we influence others in aligning their work to the business.

This book, however, is more than just high-level philosophy. It describes the intri-
cacies of test plans, levels, budgets, strategies, techniques, and designs. It explains
the importance of test environments, execution, reporting, and automation. But
throughout, Derk-Jan reminds us that while “Testers see a lot of suboptimal proc-
esses and faulty systems … This doesn’t change the fact that testing is a wonderful
and fun profession. Result-driven testers … know they add value to the software
development project.” It is a great profession. I’m proud to be a part of it. Best
wishes in your testing efforts.

March 2008 Lee Copeland

Lee Copeland has over thirty years experience as an information systems professional and has
held a number of technical and managerial positions with commercial and non-profit organiza-
tions in the areas of applications development, software testing, and software development proc-
ess improvement. He is a well-known and highly regarded speaker at software conferences both
in the United States and internationally. Lee is the author of A Practitioner’s Guide to Software
Test Design, a compendium of the most effective methods of test case design.

Preface by Martin Pol

For many organizations, software has become one of the most important pillars of
their business processes. The requirements for the timely availability and quality
of information systems are high by definition. But in spite of all of the innovations
and initiatives to improve processes, it’s still not easy to develop error-free soft-
ware. Testing is, and will continue to be, indispensable to identify poor quality in a
timely manner, or in other words, to identify the risks of going live. Learning by
error has taught organizations that testing is not only a must but that it contributes
positively to the company’s business goals.

Structured testing began in the United States in the 1960s, and has since developed
into a mature and independent field. Structured testing was first carried out in
military environments and in the computer hardware industry. Pioneers such as
Beizer, Perry, Parnas, Myers, Hetzel and Gelperin have provided a solid methodi-
cal and organizational foundation. Throughout the years, the materials they devel-
oped have been included in various standards such as IEEE, ISEB and ISTQB.
Over time, these standards have been supplemented with extensions, variations
and special applications.

As the result of a study that was conducted by the General Accounting Office and
due to political pressure, the Dutch Tax and Customs Services was the first (unbe-
lievable but true) to introduce a comprehensive structured test approach in 1985.
As an employee of the Dutch Tax and Customs Services, I was able to build a
bridge between the American developments and the Dutch approach. In 1988, this
approach was published as the “Testing Manual,” which was quickly sold out. In
the years following its publication, every self-respecting organization, administra-
tive or other, gladly applied this approach, which is the source of every Dutch
testing standard. The Netherlands also have an international reputation to main-
tain, because their contribution to the worldwide testing community is significant.

Now that testing has conquered a position in information processing, the focus has
shifted to its added value and the relationship between costs and profits, and,

viii Preface by Martin Pol

therefore, to the contribution testing makes to the organization’s goals. What dam-
age is prevented by testing? What are the risks? And what are the rewards? In
short, the main goal of testing is to minimize risk!

Can testing have more than one goal? It sure can! Testing, of course, is still an
activity aimed at finding errors. But with the improvement of methods, techniques,
and especially of testing tools, the development of reusable testware, expertise and
infrastructure have become valuable by-products. As a result, testing is faster,
cheaper and better, which of course has a positive effect on the costs and the time-
to-market. TestGoal takes a result-driven approach to testing.

TestGoal is a very valuable addition to today’s broad range of available test litera-
ture. The “result-driven” approach is hotter than ever. This book’s clear explana-
tions pleasantly point the different disciplines involved in the testing process in the
right direction: “What is needed to achieve the anticipated goal?”

Experience shows that it is not easy to apply a methodology. Pressures such as
deadlines, low budgets or low quality stop many good intentions dead in their
tracks. Six clearly described steps lead the reader to the goal – the test result.

Throughout the book, TestGoal provides readers with pointers that enable them to
focus on the anticipated goal, the test result, and in fact to minimize risk and pro-
duce reusable test products. “Who does what when? How are risks analyzed and
processes set up?” Everything has a purpose.

For the TestGoal tester, this result-driven mindset (the ten test principles) is almost
innate. A unique element of this book is that every letter focuses on these princi-
ples, which I interpret as follows: Professional, Result-driven, Confidence-build-
ing, Predictable, Supportive, Flexible and Transparent. The flaws of comparable
methodologies are discussed and useful solutions introduced, always with the
same goal in mind – the result!

Derk-Jan de Grood has made an exceptional contribution to the world of testing.
His drive for result is now available to everyone.

I wish you a lot of fun applying the approach and am confident that this book will
enable you to achieve your test goals.

Amersfoort, The Netherlands,
February 2007 Martin Pol

Martin Pol is the founder of the first Dutch test approach. He was chairman of the EuroSTAR
conference many times, and was chairman of the Dutch association for testers, TestNet, for five
years. In 1998, he was the first person to receive the European Testing Excellence Award for his
exceptional contribution to the field of testing in Europe.

Acknowledgements

A book does not write itself. A lot of people helped create the TestGoal philoso-
phy described in this book. A word of thanks is therefore more than appropriate;
this book would not be what it is without their contribution.

A lot of colleagues contributed to the first version of TestGoal by writing down
the experiences they gained with specific activities in a test project. Thanks to
their efforts, TestGoal is not only my story, but our story. For their efforts, I would
like to thank the following people:

Albert Los, Albert Witteveen, Colin Lek, Edward van der Pijl, Frodo Wesseling,
Gert de Mooij, Hans van Bommel, Jaap Wijnands, Jos Oudsen, Juul Roelofs,
Leonard Hugenholtz, Marcel van Donge, Marco van der Heide, Mario de Boer,
Mehdi Jalilivandt, Paul van Leeuwen, Roy Miller Sander Panhuyzen, Wilco
Schumacher, Mathilda Banfield and Janneke Klop.

In addition, I would like to thank the following people individually: Trainee class
2005: You very actively used the primal version of this book. Your questions pro-
vided me with valuable information, which I have used to expand the TestGoal
story and make it clearer. Ronald Lagendijk: Thank you very much for your review
and your special contribution to the chapter on test automation and the section
on testing conformity and interoperability. Martin Storm: You went through the
manuscript at a number of vital moments, and I took great pleasure in our discus-
sions. Your test expertise was an indispensable contribution. I would also like to
thank you for creating the layout for the chapter on test automation. Harry Vroom:
It took me weeks to process your review comments, all of which were justified.
Your critical examination was a great help. George Leih: I should have known that
you would ask a lot of questions instead of commenting! I had to think about some
of the questions for a while, but you will find the answers in the book. Juul Roelofs:
Your expertise in test automation and test data has been a great help. Thank you for
thinking along with me and for your review. Susan Zarakoviti: When you started

x Acknowledgements

your review, you knew nothing about TestGoal, which makes you an ideal re-
viewer. And even more so because I respect your knowledge of the testing profes-
sion. Jaap Wijnands: Thank you for your meticulous thoughts during the review.
Jan Rodenburg: Thank you for your contribution on performance testing. Jasper
Overgaauw: I appreciate how you thought along and helped put exploratory testing
into practice. Thanks go to Cynthia Maasbommel, Jos Oudsen and Herman Rus:
for their indispensable contribution on security testing. Thank you. Vien Sawer of
L&L Bunnick: Thanks to your edit work the text just as I wanted it, understandable
and easy to read. I Couldn’t have done without you. Thijs Geritz: You know that
I really like your drawings. Thank you for the pictograms and the other illustrations
you made for us. I am happy to have them in my book.

Henk van Dam and Dirk van den Heuvel: Thank you for your contribution. Our
discussion about the position and content of TestGoal was very intense, but it
resulted in a joint product. I also want to thank you for the support and the free-
dom that you gave me while I was writing. Dirk Jan, the first time we met I still
had to learn everything about this intriguing profession. I am glad you introduced
me to the world of testing and I am thankful for what you taught me. Without your
lessons, this book would not have come into existence.

Erik Petersen, Donna McLeod, Fariba Marvasti, Julie Gardiner and Thérèse
Schoch. Thanks for your interest and pre-reading the English edition.

And finally, I would like to thank the following people:

Martin Pol and Lee Copeland who wrote the prefaces: Thank you for your words
of praise. I am honored that you were took interest in my book. I am thrilled you
liked it.

Hilda and Babette: I am aware of the fact that writing a book is an enormous drain
on the family quality time. Thanks for understanding and for your patience while
I was sitting behind my laptop again.

Leiden, The Netherlands
April 2008 Derk-Jan de Grood

Content

1 Result-driven Testing... 1
1.1 The Importance of IT .. 1
1.2 A Statement about Quality .. 3
1.3 The Perception of Testing ... 6
1.4 A Common Goal ... 7
1.5 Tying in with the Business.. 10
1.6 Result-driven Testing.. 11
1.7 Focus on the Goal ... 13

2 TestGoal and the Ten Test Principles... 15
2.1 Test Principles... 15
2.2 Focus on Result... 16
2.3 Build Trust .. 17
2.4 Take Responsibility... 19
2.5 Master the Testing Profession... 20
2.6 Build Bridges .. 22
2.7 Test in Phases.. 23
2.8 Facilitate the Entire Product Life Cycle.. 24
2.9 Provide Overview and Insight... 25
2.10 Ensure Reusability .. 27
2.11 Keep in Mind: Testing is Fun.. 28
2.12 Applying the Test Principles... 29

3 Test Expertise ... 31
3.1 The Test Manager ... 32
3.2 The Test Coordinator .. 32
3.3 The Test Analyst ... 33
3.4 The Test Engineer ... 33
3.5 The Test Specialist .. 33

xii Content

4 The Approach ... 37
4.1 Context of the Test Project.. 38
4.2 Test Levels .. 42
4.3 The Details of the Test Project.. 44

4.3.1 The Step Plan ... 45
4.3.2 Sequence of Activities.. 46

4.4 Testing a New Program... 47
4.4.1 Step 1: Goal.. 48
4.4.2 Step 2: Approach .. 49
4.4.3 Step 3: Design .. 51
4.4.4 Step 4: Set up.. 54
4.4.5 Step 5: Execution.. 56
4.4.6 Step 6: Assurance ... 58
4.4.7 Goal (Information and Communication) 59
4.4.8 Review and Acceptance ... 61

4.5 Testing in a Maintenance Environment .. 61
4.6 Testing Conformity and Interoperability....................................... 65

4.6.1 Introduction .. 65
4.6.2 Applying the Step Plan... 67
4.6.3 Certification Tests .. 69

4.7 Testing Performance ... 71
4.7.1 Introduction .. 71
4.7.2 Applying the Step Plan... 72
4.7.3 Test Design Techniques ... 73
4.7.4 Test Tools... 74
4.7.5 Dependencies ... 75

4.8 Testing Security .. 77
4.8.1 Introduction .. 77
4.8.2 Approach .. 77
4.8.3 Applying the Step Plan... 79

5 Getting Started ... 83

Step 1 – Goal

6 Assessing the Anticipated Goal ... 87
6.1 Introduction... 87
6.2 Aim of the Assessment ... 88
6.3 Goal Description ... 90
6.4 Information Gathering... 93

6.4.1 Product Development ... 93
6.4.2 People ... 94
6.4.3 Guidelines and Documentation 95

Content xiii

Step 2 – Approach

7 Test Risk Analysis .. 101
7.1 Introduction... 101
7.2 The 1D Test Risk Analysis ... 104

7.2.1 Introduction .. 104
7.2.2 Identify Stakeholders and Kick-off 105
7.2.3 Determine the Functions and Areas of Attention 106
7.2.4 Determine the Relative Importance................................ 108
7.2.5 Process the Data ... 111
7.2.6 Agree on the TRA .. 112

7.3 The 2D Test Risk Analysis ... 113
7.3.1 Introduction .. 113
7.3.2 Identify Stakeholders and Kick-off 116
7.3.3 Establish the Risks.. 116
7.3.4 Data Processing .. 117
7.3.5 Agree on the TRA .. 118

8 Generic Test Strategy... 119
8.1 Introduction... 119
8.2 The Generic Test Strategy... 120
8.3 Test Strategy in the DTP and MTP ... 123

9 Test Budget and Planning.. 125
9.1 Introduction... 125
9.2 Create the Test Budget.. 126

9.2.1 General ... 126
9.2.2 Work Breakdown Structure.. 127
9.2.3 Assessing the Requisites... 135
9.2.4 Establishing the Budget.. 136

9.3 Test Planning .. 137
9.3.1 Generic Planning .. 137
9.3.2 Detailed Planning ... 138

9.4 Key Indicators... 141

10 Test Plan.. 143
10.1 Introduction... 143
10.2 Description of the Assignment.. 145
10.3 Test Base... 146
10.4 Test Strategy ... 148

10.4.1 Description of the Test Strategy 149
10.4.2 Test risk analysis .. 151
10.4.3 Quality Attributes ... 152
10.4.4 Strategy Matrix... 155

xiv Content

10.4.5 Technique Matrix ... 157
10.4.6 Previous and Next Phases... 158
10.4.7 Test Environment ... 159
10.4.8 Assuring the Quality of the Test Project 160
10.4.9 Release Advice ... 163
10.4.10 Change and Error Management...................................... 164
10.4.11 Transfer .. 164

10.5 Planning .. 166
10.6 Test Organization.. 167

10.6.1 Organization Chart ... 167
10.6.2 Responsibilities .. 168
10.6.3 Meeting Structures ... 169

10.7 Deliverables .. 170
10.8 Requisites for the Test Process ... 171
10.9 Changes and Deviations.. 171

Step 3 – Design

11 Sanity Check ... 175
11.1 Introduction... 175
11.2 Filling out the Sanity Check Checklist.. 176
11.3 Continuous Learning... 178
11.4 Test Base Review.. 178
11.5 Registration ... 180
11.6 Formal Review and Inspection Procedures................................... 181

12 Logical Test Design .. 183
12.1 Introduction... 183
12.2 Test Design Techniques .. 185
12.3 Use Test Design Techniques Cleverly .. 191
12.4 Little Experience with Test Design Techniques?.......................... 191
12.5 No Test Design Techniques .. 192
12.6 Using Test Design Techniques.. 193

12.6.1 Syntax Testing.. 193
12.6.2 EP: Equivalence Partitioning.. 196
12.6.3 BVA: Boundary Value Analysis 199
12.6.4 C/E: Cause-effect Graphing ... 203
12.6.5 State Transition... 206
12.6.6 CRUD Testing.. 208
12.6.7 PCT: Process Cycle Test / AT: Algorithm Test 210
12.6.8 Load Tests .. 215
12.6.9 Stress Testing ... 221
12.6.10 Reliability Testing .. 223

Content xv

12.6.11 Concurrency Tests .. 225
12.6.12 HT: Heuristic Testing... 226
12.6.13 ET: Exploratory Testing ... 227

12.7 Test Design Techniques and Security Testing 234

13 The Physical Test Design ... 237
13.1 Introduction... 237
13.2 Relationship Between the TRA and the Logical Test Design 237
13.3 Physical Test Case .. 238
13.4 Test Actions .. 243
13.5 The Physical Test Scenario ... 245
13.6 Test Data ... 246

14 Test Data ... 247
14.1 Test Data Elements ... 247
14.2 Test Data Repository... 249
14.3 Live Data Versus Test Data .. 250
14.4 Test Data Management Strategy ... 251

14.4.1 Input from the Application ... 251
14.4.2 Input from the Database ... 252
14.4.3 Closed Loop ... 253

14.5 Including Data in the Physical Test Design 254
14.6 Automated Tests ... 255
14.7 Test Data and Exploratory Testing.. 256
14.8 Back-up and Restore ... 256

15 Test Environment... 257
15.1 Introduction... 257
15.2 Determine the Requirements of the Test Environment 258

15.2.1 Module Tests and Module Integration Tests 258
15.2.2 System Tests... 259
15.2.3 Functional Acceptation Tests ... 260
15.2.4 User Acceptance Tests ... 261
15.2.5 Production Acceptance Tests ... 262
15.2.6 Chain Tests ... 262
15.2.7 Pilot .. 263
15.2.8 Performance Tests .. 264
15.2.9 Security Tests ... 265
15.2.10 Training Purposes... 266

15.3 Test Environment Requirements Checklist................................... 267
15.4 Setting up the Test Environment... 270
15.5 Configuration and Smoke Test.. 271

15.5.1 Configuring the Test Environment 271
15.5.2 Smoke Test ... 271

xvi Content

15.6 Maintaining the Test Environment.. 272
15.6.1 Configuration Management.. 272
15.6.2 Release Management.. 273
15.6.3 Back-up and Restore .. 274

Step 4 – Set up

16 Test Automation ... 277
16.1 Introduction... 277
16.2 What is Test Automation?... 278
16.3 Dynamic Test Tools .. 278

16.3.1 Additional Testing Possibilities...................................... 278
16.3.2 Time Saving ... 279
16.3.3 Log files.. 279
16.3.4 Comparing Results ... 280
16.3.5 Extensive Repeatability .. 280

16.4 Static Test Tools ... 282
16.5 Supporting Tools... 282
16.6 Test Automation: Yes/No ... 283

16.6.1 Business Case... 283
16.6.2 Making a Well-Informed Decision................................. 285

16.7 Developing Test Scripts .. 285
16.7.1 Record and Playback .. 286
16.7.2 Programming Test Scripts .. 288

16.8 Automated Testing for Systems with More Than One Interface... 289

17 Smoke Test.. 293
17.1 Introduction... 293
17.2 Filling out the Checklist .. 295
17.3 Maintaining the Checklist ... 296

Step 5 – Execution

18 Test Execution .. 299
18.1 Test Execution and its Activities... 299
18.2 Activities During the Test Execution .. 301
18.3 Test Run and Regression Tests ... 303
18.4 Leaving the Beaten Track ... 305
18.5 When is Testing Finished? .. 306

19 Error Logging and Management .. 309
19.1 Introduction... 309
19.2 Filling out the Error Log ... 310

Content xvii

19.3 Error Attributes ... 311
19.4 Error Management .. 316

20 Test Reporting .. 321
20.1 Introduction... 321
20.2 Elements in the Test Report .. 323

20.2.1 Scope .. 323
20.2.2 Release Advice ... 324
20.2.3 Hour Estimate... 325
20.2.4 Project Risks and Bottlenecks .. 326
20.2.5 Product Status... 327
20.2.6 Completed Versus Planned Tests 327
20.2.7 Error Status... 328
20.2.8 Defect Detection Rate .. 332
20.2.9 Open Errors .. 333
20.2.10 Test Result by Risk Category or Test Cluster 334
20.2.11 Test Progress – Executed Versus Planned Tests 337
20.2.12 Outstanding Product Risks ... 339

20.3 The Dashboard .. 340
20.4 Clarity of the Test Report.. 342

Step 6 – Assurance

21 Assurance .. 349
21.1 Introduction... 349
21.2 Evaluating the Test Project ... 349

21.2.1 Purpose of the Evaluation... 349
21.2.2 Points of Attention.. 350
21.2.3 Lessons Learned Report ... 352

21.3 Determining the Regression Test Set .. 353
21.4 Archiving and Securing the Testware ... 354
21.5 Handover... 354
21.6 Discharging the Test Team ... 355

Appendix A – Checklist: Sanity Check on the Design................................. 357
Appendix B – Checklist: Sanity Check on the Testware.............................. 363
Appendix C – Checklist: Checklist smoke test system................................. 367
Appendix D – Checklist: Test charter exploratory testing 369
Appendix E – Glossary ... 371
References .. 389
Index... 393

Introduction

Software testing is gaining in popularity. Today, organizations are investing more
in the quality of their software and in ways that enable them to control it better.
Testing is a very suitable tool that enables companies to do just that.

As testers and consultants, my colleagues and I have visited many different com-
panies over the years. Many of the companies we visited have very mature testing
processes, others do not. Although business management and other stakeholders
understand that testing is necessary, they are often not aware of its added value.
Testers who overlook the added value of testing have difficulty demonstrating it
and incorporating it in their software development process. Two aspects seem to
function as pitfalls time and time again: the reason to test and the actual framing of
the test project. In other words, why are we going to test, and how are we going to
do it? The many books that are available on software testing do not spend enough
time on these aspects. This is one of the reasons why many companies still con-
sider testing as an activity that is separate from the actual development process.
Consequently, the collaboration between testers, business managers, users, devel-
opers and other stakeholders is not optimal.

My colleagues and I know that things can be done differently. We know that test-
ing adds value, saves money, minimizes risk and increases overall profitability.
There’s no denying that testing has a lot of added value.

The added value of testing:

• Testing improves the quality of software products
• Testing accelerates the time-to-market of software products

Testing improves the quality of software products by finding errors and enabling
them to be solved before the product is released.

xx Introduction

Testing also accelerates the time-to-market of software products by providing
insight into the actual operation and performance of the software and reducing
uncertainties that business stakeholders have.

Testing supports the development process by building bridges to the other parties
involved. Testers work with developers to find a solution that meets the business
needs and wishes. Testing increases the confidence stakeholders have in the solu-
tion, which creates support and speeds up the decision to go live. The test activi-
ties provide insight into the quality of the system and the progress of the develop-
ment. This information helps steer development activities and thus contributes to
an efficient development process.

My intention with this book is to highlight the substantial contribution that testing
makes to an organization’s business goals. This does, however, require an effort
on behalf of both the tester and the organization. It also requires a testing method
that focuses on the business goals: result-driven testing.

Result-driven testing is more than just applying a methodology. The success of a
project is not determined by the methodology, but by the way the methodology is
applied. Result-driven testing, therefore, encompasses several aspects:

• A result-driven mindset
• Testing knowledge
• A result-driven approach that supports the application of result-driven testing

TestGoal is a philosophy that supports all three aspects of result-driven testing.
The combination of these three aspects into one philosophy is what makes Test-
Goal a fully result-driven approach that enables testers to create transparent and
well-structured test projects. This not only benefits the company, it also motivates
testers by enabling them to give the company visible added value, namely im-
proved product quality and shorter time-to-market.

This book explains how you can make testing result driven. It explains why testing
is important and describes all of the activities involved in testing. This makes it a
“GO kit” that enables testers to immediately get started. I hope that this book will
make you as enthusiastic as I am about the testing profession and the added value
testing has for your organisation and its development process. This being the case,
I will have achieved my goal with this book.

TestGoal: A Different View on Testing

TestGoal is not my way of introducing yet another methodology. A number of
good methodologies have already been developed and written about. But, like any

Introduction xxi

other profession, testing encompasses more than the simple application of a meth-
odology. After all, strict adherence to a specific methodology is no guarantee for
success. Success stems from the mindset, enthusiasm, knowledge and skill of the
tester. These factors determine whether a methodology is applied successfully and
whether testing takes on a result-driven character.

Collis is a professional testing organization that has been testing software under
different conditions at both large and small companies for more than ten years.
TestGoal is the result of this extensive experience. TestGoal was developed in the
field and contains practical descriptions combined with familiar examples. Test-
Goal helps you combine the mindset, enthusiasm, knowledge and skills needed to
successfully streamline your test project.

• TestGoal provides a concrete proposal for an efficient test approach. It defines
the activities that must be included in the test project, the sequence in which
they are best run, and the products they produce. The process is efficient be-
cause this information enables testers to start testing early on in the project.

• TestGoal enables expectations to be aligned and the customer to formulate its
wishes. It stimulates discussion between the tester and the stakeholders about
the approach. Involving stakeholders in the determination of the approach
builds trust and commitment. It also helps align the stakeholders’ different ex-
pectations.

• For each of the test activities, the drive to achieve goals and the test principles
are integrated in the practical descriptions. Testers not only learn what their
tasks are, but also how each task contributes to the anticipated goal. The result-
driven tester involves the stakeholders in the test process and ensures that they
can see how the quality of the software improves and how the risks of going live
are reduced one by one. This builds trust and a basis for the go-live decision.

• TestGoal provides companies with a generic test approach. Together with a
clear test report, a generic approach makes the test projects more controllable
and comparable to other test projects. This increases the efficiency of the de-
velopment process and accelerates the time-to-market.

In short: TestGoal is not a methodology, but a philosophy. It’s a practical philoso-
phy that gives testers the tools and best practices to make choices and create good
test projects. TestGoal is an integrated combination of these two aspects and helps
testers think and act in a result-driven way.

The Reason for Testing: What are we Going to Test and Why?

A lot of companies are very keen on testing and have a good, structured method-
ology, but do not have a concrete goal. Some companies have difficulty explaining
why some tests are run and what their goal is. This is, however, a very important

xxii Introduction

part of successfully delivering quality software. If the goal of the test is not clear,
the tester will not be able to indicate whether the test produces the desired results
or contributes to the organization’s business goals. And the latter is crucial to any
company. Testers who know what they’re doing and what their goal is, are not
only able to make the right choices, they are also able to explain their activities
and their goals to others.

The first part of this book explains why and how we should focus on the company’s
business goals. It discusses the role business goals play in a test project and how it
helps involve stakeholders in the test activities. The ten test principles are discussed
after the introduction to result-driven testing. They help the tester apply the theory
with the right mindset and are the driving force behind the tester’s actions. What
characterizes a result-driven tester and what do their actions contribute to?

Most of the literature about test methodologies covers the testing of applications
that are in development, in other words, brand new systems. TestGoal is widely
applicable, and can be efficiently and successfully used in maintenance or line
organizations to test new programs, as well as changes or enhancements to exist-
ing applications. The first part of the book takes a look at various levels of testing
and how TestGoal is applied in the different environments. It provides insight into
the approach of a test project and the activities involved. Separate chapters are
dedicated to the testing of new systems, testing in a maintenance environment, and
the testing of performance, security, conformity and interoperability.

Setting up the Test Project: How do we Apply the Methodology?

The second important aspect of testing is the set up of the test project and the
approach. More than enough books describe how to test, but because the informa-
tion is usually very generic, many organizations find it difficult to translate theory
into practice. The books do not provide enough information to help the readers
make the choices required to apply the theory.

TestGoal clearly describes the philosophy of result-driven testing. This practical
approach is the basis for the second part of this book. The TestGoal approach
bridges the gap between methodology and practice and provides a practical start-
ing point for planning, setting up, running and finishing test activities. This part of
the book is based on the best practices my colleagues and I have gathered
throughout the years. It enables readers to choose what they need to set up an
efficient test project that suits their specific environment. The TestGoal approach
is based on a number of principles:

Introduction xxiii

• A number of decisions have already been made in TestGoal based on best prac-
tices. Choices are always made at the cost of genericness, but this usually bene-
fits the concreteness and applicability of the approach.

• Where decisions have not been made, TestGoal suggests a “standard” option.
Arguments for other options are also provided. This gives readers a starting
point and support should they choose another option.

• Each activity is described clearly and in detail. If the activity produces a prod-
uct, the information the product should contain is indicated. If possible, guide-
lines and examples are provided. For example, the description of the physical
test design contains tips for the clear formulation of the “goal of the test.”

• Each activity is explained using an action plan. The action plan enables readers
to go through the activities in the test project in a practical sequence, whereby
some activities can be carried out simultaneously. The action plan clarifies the
relationship between the activities and prevents activities being forgotten.

• Integrated test principles . Several places in the book refer to relevant test prin-
ciples. This provides readers insight into the practical application of the princi-
ples and into the coherence between the different activities in the test process.

• Situations to which best practices apply are indicated. Tips from the field can
be adopted by readers or can serve as an inspiration for devising one’s own so-
lution.

The set up of the test process is closely linked to the tester’s drive to achieve goals
and the test principles. The description of the test approach regularly refers to the
test principles introduced in the first part of the book.

Who is this Book Intended for?

Business Managers and Others Who Have an Interest
in Producing High-Quality Software

This book addresses a wide target group. First, it addresses business managers,
project managers, functional managers and other stakeholders who are directly or
indirectly involved in the test process. This book explains what the added value of
testing is and what has to be done to achieve it. Result-driven testing tests and
produces reports on the quality of the product and the anticipated goal. It gives
business managers who support result-driven testing immediate insight into the
degree to which the anticipated goal has been achieved and insight into the associ-
ated business risks. No lengthy reports, but one or two pages that contain all of the
information business managers need to made well-founded decisions.

xxiv Introduction

Junior and Senior Testers

Second, it addresses the testers. This book gives them insight into the role the goal
plays in their activities. Testers must be aware of the added value of tests so they
can run them effectively. This book describes a tester’s goals as well as the activi-
ties he needs to carry out in order to achieve them. It also contains numerous ex-
amples and practical tips that junior testers can use as starting points to work out
the details of the activities they are asked to perform. Senior testers will also bene-
fit from the book in more way than one. On the one hand, the book helps them
streamline their activities, which enables them to work on the organization’s view
on testing. On the other hand, the book’s practical approach helps them crystallize
their expectations and explain to their teams how they want certain aspects to be
executed.

Students

IT students are a separate target group. Many students are interested in a career as
a tester, but find it difficult to grasp what the profession actually consists of. The
limited amount of time schools spend on testing is partly to blame. This book
demonstrates how testing contributes to the development of an organization, and
thanks to its practical approach, it also provides a clear overview of what testing
actually encompasses. I also hope that the pleasure I get out of this profession –
which I hope can be read between the lines – will motivate them to become a
member of the great profession testing is.

Want to Know More? TestGoal.com

TestGoal is a philosophy with a practical approach, which is supported by a num-
ber of practical templates. The templates were developed together with the ap-
proach and make the application of TestGoal easier and more efficient. The tem-
plates are not included in this book. You can find them on the special Web site:
www.testgoal.com.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_1, © Collis B.V., Leiden, The Netherlands, 2008

1 Result-driven Testing

1.1 The Importance of IT

It’s no longer possible to imagine life without information technology –
every day, we use computers at home and at work. Companies earn
their money by supplying IT-related services and products, or use IT
systems to run their business.

An error in an IT system can have grave consequences: a company
might not be able to supply products or bill for performed services. A
customer who is disappointed by the quality of a service or product will
look for another supplier. Software has become an entity that must be
taken seriously.

The life cycle of software has sharply declined over the past decades.
Due to the rapid succession of technological developments and chang-
ing markets, systems are constantly adapted. There are many reasons
for this, see Example 1.1.

Example 1.1: Why is software adapted? Some practical examples:

A company is launching a new cell phone. By responding to the
growing demand for advanced devices, business management ex-
pects to double the sales figures and increase the company’s mar-
ket share. Technically there’s nothing wrong with the old model,
but it doesn’t have an integrated MP3 player and video camera. In
the new model, the software for the camera and the MP3 player is
integrated with the existing telephone functionality.

2 1 Result-driven Testing

An acquisition results in the merger of the companies' finance de-
partments. An analysis reveals that the software that one company
is using needs to be scaled up to the size of the new company.
The other company has streamlined processes that can be applied
to the new company with minor changes. A project is set up to
implement the new processes in the invoicing system in order to
create the desired synergy. Management is also expecting the in-
voicing system will be more efficient.

The users of a system at a medium-sized bank indicate that
a number of improvements are needed. In the current system,
bank statements are printed for all account holders. To save on
postage, it has been decided that bank statements will only be sent
to account holders when transactions have taken place. Every
month, two employees go through the pile of printed bank state-
ments to find the statements in question. The users indicate that
an additional option in the application would make this activity
redundant and significantly reduce work pressure.

To maintain its membership file and book catalogue, a library
uses an off-the-shelf application that has been customized over
the years. Although the users are very happy with the system, the
supplier indicates that their version of the application will no
longer be supported. The supplier advises the system administra-
tor to migrate to the newest version so they can continue to offer
help when problems occur.

The helpdesk gets a phone call from a customer about an incor-
rect invoice. The discount applied to the invoice does not corre-
spond to the stated discount percentage. Closer examination re-
veals that the correct percentage was used in the calculation, but
that the standard percentage was printed on the invoice. The
number of complaints about invoices has recently increased. The
helpdesk thinks that correcting the invoice will reduce the number
of calls, which will reduce the waiting time, which will increase
customer satisfaction.

For companies, every change made to a software program presents a
risk because it can introduce new errors. And who guarantees that the
business is not at risk and that the planned enhancement will deliver
what has been promised?

1.2 A Statement about Quality 3

To minimize risk, measures are taken in the software development
process, for example, by developing flexible systems. Service-oriented
Architecture (SOA), for example, is a system architecture that is de-
signed to easily combine and reuse functionality. It enables new busi-
ness wishes to be implemented faster [Thillard, 2006]. A second option
is to choose a development method that fits the dynamics of the organi-
zation better. The ongoing trend for software products to work faster
and faster means that incremental development and agile techniques are
frequently chosen. A third option is to minimize risk by applying con-
trol measures, which consist, for example, of involving business in the
development and assessment of the system design, and carrying out re-
views and audits. Another control measure to minimize risk and in-
crease the performance of the software is result-driven testing, the sub-
ject of this book.

1.2 A Statement about Quality

What is testing? The Dutch dictionary van Dale gives the following
definition:

A test is an assessment of the quality, capacities of people or
things [van Dale].

There are a number of definitions for “test.” Some of the definitions
explain the term “test” more precisely. They talk about comparing the
desired situation to the existing situation [IEEE 829]. Other definitions
include the aim: “testing is aimed at finding the errors,” in which “er-
rors” are defined as the difference between the desired and the existing
situation.

Error, Fault, Failure, Finding, Defect and Bug

Many terms are being used to indicate that there might be some-
thing wrong with the system. How should terms like error, fault,
failure, finding, defect and bug be used?

4 1 Result-driven Testing

When the analyst or the developer makes an error (or mistake)
he will produce a fault. Faults are also called defects or bugs.
A defect is a flaw in a component or system that can cause it to
fail. Many defects hide in the code, but are never discovered. The
moment they are discovered we speak of a failure, indicating that
the systems does not react as we expect [ISTQB, 2007].

Findings indicate an observed difference between expected and
implemented system behavior that can jeopardize the anticipated
goal. This definition includes both the experience of the tester and
the anticipated business goal. A finding can originate from a test
fault, a fault in the test base, or a bug in the code.

Experience shows that the above definitions are accurate, but that
in daily work this distinction is often neglected. Since this book is
a practical book, we do the same and use “error” in most cases.

Errors are an important output of the test process. They are important
because they can be solved, and hence improve the quality of the sys-
tem. It must be said, however, that finding errors is not the only aim of
testing. The added value of testing should not be measured by the num-
ber of findings (errors), but by the number of errors that are actually
solved [Pas, 2004].

The test process has to produce information about the errors found and
the degree to which the quality has been improved by solving them. In
turn, the tests have to indicate whether the modified system responds to
the reason that led to the change, and if it contributes to the business re-
quirements. As shown in Example 1.1, an expectation is expressed
about the extent to which

• the sales figures of the devices will double and the market share will
increase

• billing in the merged company will never fail and market share will
increase

• the two bank employees will be able to concentrate on their other
tasks again, postage will be saved and customers will still get a bank
statement

• software errors in the library package will be quickly solved without
affecting the lending of books

• customers will receive correct bills and the helpdesk will receive less
calls

1.2 A Statement about Quality 5

It’s not always easy to determine how a modified system will contribute
to the business requirements. In the case of large and complex systems,
it is particularly difficult to prove how software (a function or service)
will contribute to the company’s goals. This is why derived goals are
defined in the development process to determine the requirements the
system components must meet. In actual fact, it’s a translation of the
business goals to system specifications. The system design defines
things such as the technical requirements for the operating system and
the environment in which the system will be used.

Functional requirements define what the system has to do. Which func-
tions are available, how does the system react when a user carries out a
wrong action, which validations and business rules are applied? The
system design also defines non-functional demands, such as perform-
ance and security, user friendliness and design, such as the structure and
sequence of the screens or the use of a company style. The system de-
sign is a collection of documents, such as

• the requirement specifications
• the functional design
• the technical design
• UML diagrams
• the database design
• the interface specifications
• important quality attributes
• acceptance criteria
• use cases and user scenarios
• possible norms, standards, policies and legislation

If the translation is carried out correctly and each system component
meets its system specifications, it is realistic to say that the anticipated
business goals will be achieved. IT system testing generally focuses on
checking whether the system and/or its components meet the specifica-
tions. This is called verification. Verification indicates whether the sys-
tem has been “properly” built, i. e. built according to specification.

But system specifications are not always complete and clear, which is
why it is important to check whether the system is usable and meets the
specified goals. This is called validation. Validation determines whether
the “right system” has been built, i. e. a system that contributes to the
business goals. Validation prevents building a system that is technically
and functionally correct but not “fit for purpose.”

6 1 Result-driven Testing

1.3 The Perception of Testing

Many business managers perceive IT as “too little, too late, too costly.”
There is a gap between business and IT on both sides of which reign in-
comprehension and a lack of knowledge about the other discipline
[Ommeren, 2006]. This is why business management often has wrong
expectations of software development and testing.

A software development project consists of building applications and
systems, making software development an activity that produces a
product. Business may perceive the product as being too little, too late
and too costly, but in the end they have a system. Many people actually
believe that testing is an activity that does not produce anything at all.
The system will be built anyway, tested or not.

The testing community has difficulty explaining what the added value
of testing is to management, customers and developers [Clermont,
2006]. As a result, testing is frequently pushed into a subordinate role
and cannot fully contribute to the development process.

Provided testing is carried out well, it makes a positive contribution to
the software development process. Testing adds value to the develop-
ment process by

• Contributing to the development of “fit-for-purpose” systems that
work according to the requirements, quality attributes and expecta-
tions (implicit or other). It achieves the goal.

• Preventing damage while the system is live because errors will have
been detected during testing and solved on time. This takes away the
cause.

• Preventing damage while the system is live because the errors are
known and their consequences have been anticipated. This reduces
the impact.

• Providing insight into the quality of the test object, which instills
confidence in the test object.

• Providing insight into the quality of the test object and its progress,
making effective project coordination possible [Black, 2002].

It is important that business management show commitment and enable
testers to do their job professionally. To get this commitment, testers will
have to communicate with management in a language they understand.
Testers have to realize business managers do not think in functions, but
in products and services; not in incidents, but in wishes and require-

1.4 A Common Goal 7

ments. Business managers like hearing which wishes and requirements
are feasible. They prefer hearing about the risks that are being dealt with
than about the problems that still exist. In short, a manager’s involvement
is obtained by giving them the information they ask for, not data.

Business managers will also become increasingly involved if they have
insight into the testers’ activities. They are involved when crucial deci-
sions need to be made to reassure them that testing will answer their
questions, and that only the activities required to answer those questions
will be carried out. This requires a specific view on testing, which we
call result-driven testing.

Business managers are not the only people who have a stake in the sys-
tem that is being developed. Result-driven testing also involves a num-
ber of other stakeholders.

1.4 A Common Goal

Software is changed to eliminate the cause of an error, or because the
users have additional wishes. New requirements sometimes lead to the
replacement of existing applications. Key notions in this text are the
elimination of errors, additional wishes and new requirements. These
notions imply that each change in the software is related to a stake-
holder that is having problems with an error, would like to see his
wishes implemented, or has come up with new requirements. In addi-
tion to business managers, the following groups are involved:

• Users
The people who use the system. Users can be end-users, for exam-
ple, customers who place orders at a Web store, or company staff,
such as order processing clerks or managers who need sales
reports.

• System Administrators
The people who are responsible for the tasks and activities that are
required to maintain the system in such a state that it continues to run
according to the known requirements and needs [ASL].

• Controller
The person who carries out checks and provides insight into the
company’s operations. Many companies must provide proof of the
transactions they perform, the processes they run, or the quality
measures they implement. The reason behind this may be a service

8 1 Result-driven Testing

level agreement that includes traceability. Government institutions
also demand that a company’s operations are “auditable.” Examples
are the requirements defined by the Internal Revenue Service, the
Sarbanes-Oxley Act, Basel II and the Tabaksblat Code (Dutch Cor-
porate Governance Code) [van Es et al, 2005].

All of these stakeholders have their own job-related wishes and re-
quirements. For example, users will want a fast and user-friendly sys-
tem, while the system administrator will be more interested in a system
that is easy to maintain. The controller will find traceability (the degree
to and the ease with which the correctness, completeness and integrity
of information can be checked) an important quality aspect.

Testing is part of a chain of activities that are required to change or de-
velop software. Testing is usually part of a project, which has a project
organization. In this project organization, the tester works with various
parties, namely:

• Developers
Changes and enhancements require changes to be made to the pro-
gram code. This is the job of the developers. Ideally, developers base
their work on a design created by analysts. If there is no design, the
developers decide what is done and how.

• Analysts and System Designers
The analysts and system designers translate the wishes and require-
ments of the business, the users, the system administrators and the
controllers into a system design, which defines how the system
should work and how the code needs to be changed.

• IT Architects
IT architects specify the framework within which the system will be
developed and the long-term guidelines the design must meet. Be-
cause IT architects like their systems to be built within the specified
framework, they are considered to be quality driven [Dietz].

• Project Managers
The project manager’s task consists primarily of setting up the devel-
opment project. Project managers ensure that the intended solution is
realized. Project managers direct and facilitate, which does not release
them from having technical knowledge, because specific knowledge
is needed to make the right decision. Larger projects often distinguish
between technical and general project managers. General project
managers rely on the knowledge of their technical project leaders,
as they have less in-depth knowledge of the project’s activities.

1.4 A Common Goal 9

• Customers
Customers are people who have test budgets and commission test
activities. The customers’ hierarchical position makes them an
important stakeholder with whom testers communicate intensively.
Customers are usually among the group of previously described
stakeholders, i. e. business managers, project managers or test
managers .

Each of the mentioned stakeholders have their own job-related issues
and interests. Their daily work determines the issues they focus on.
Each party will also try to leave their mark on the system.

Will I finish in time for
the dead line ?

Any new features ?

Did we test all ?

What is changed ?

Will we beat
competition ?

Can I continue doing
my tasks ?

Project
manager

Developer

Tester

User

Administrator

Business
manager

Fig. 1.1 A software development project involves a number of disciplines, each of
which has their own issues and interests

Interests that diverge too much during a software development project
jeopardize the success of the project. Conversely, the following can be
said:

An important success factor for a project is the degree to which
the disciplines involved pursue the same goal .

If the stakeholders intend to pursue a common goal, which goal should
it be? The answer is simple. It has to be the goal the organization is pur-
suing; the business goal.

10 1 Result-driven Testing

 In a result-driven project, testers, developers, project managers, sys-
tem administrators, users and other stakeholders all work toward the
same goal. Ideally, every activity that is carried out contributes to
achieving the common goal. We could speak of result-driven develop-
ment, result-driven project management, result-driven system admini-
stration, result-driven work, and of course … result-driven testing.

1.5 Tying in with the Business

Focusing our activities on the business goals should enable us to bridge
the gap with the business managers. It is crucial that we understand the
goals the business managers are aiming for and that the business man-
agers understand our point of view.

Let us listen in on the board meeting of a fictitious company. The busi-
ness managers are talking about conquering new markets and increasing
sales revenue. “How’s our market share doing? Can we reduce costs by
streamlining operational processes?” The company has legal obliga-
tions, and politics also play a role. One manager has a hobbyhorse and
is ready to sacrifice everything to make it a success.
 The managers know that most of their plans will involve IT. That
may be why they discuss software development projects now and again.
Testing, however, never makes it on to the agenda. They’re not IT
driven: software is no more than a means of achieving the defined busi-
ness goals.

Many organizations use business cases to drive their projects because
they justify the investment. A business case describes the business
goals, the advantages the project has for the organization and the degree
to which the project contributes to the business goals. The core of the
business case is the assessment of the pros and the cons. The project’s
goal is assessed against the required effort [PRINCE2, 2005].

Despite the fact that testing is not on any of the meetings’ agendas, re-
sult-driven testing is discussed because it is at these meetings that the
business requirements and wishes are determined. The test project as-
sesses the suitability of the developed products and the degree to which
they fulfill the business requirements and wishes. In this assessment,
one has to look further than the financial result of the business case. The
non-financial results and the implicit expectations are also part of the
anticipated goal.

1.6 Result-driven Testing 11

Example 1.2

Example 1.1 shows a number of reasons why software is adapted.
The company that is launching a new cell phone expects to double
its sales. The financial result is quite easily derived. The profit
gained from additional sales has to balance with the device’s de-
velopment costs. But even if the numbers balance, it doesn’t nec-
essarily mean that the company’s market share has increased. The
new device may have sold well, but the competitors didn’t sleep.
The device that the competitor launched was also well received by
consumers. As a result, the market share of the company in the ex-
ample did not increase and the anticipated goal was not achieved.

Throughout the software development project, the test project provides
information about the quality of the system being built. Testers would
be well-advised to compile this information in a language that business
managers understand. Incorporating the anticipated goal as frame of
reference in the information gives managers an idea of the progress and
the bottlenecks encountered on the path to achieving their goals.

1.6 Result-driven Testing

Result-driven testing assesses the quality and suitability of the devel-
oped products as well as the extent to which they meet the business re-
quirements and wishes. In order to do this well and efficiently, we must

• know and understand the anticipated goal
• only carry out those activities that contribute to the anticipated goal,

or that produce information about the extent to which the goal has
been achieved

• provide the stakeholders with understandable information in a timely
manner

Result-driven testing is therefore defined as follows:

Result-driven testing puts the business goals at the center of each
step in the test project. The project focuses on providing added
value for the anticipated business goals and for the software de-
velopment project.

12 1 Result-driven Testing

Result-driven testing puts the business goals at the center of each step in
the test project. The reason for the development or modification of the
system is defined at the beginning of the test project. While creating the
test assignment, the tester not only establishes what the anticipated goal
of his assignment will be, but also what the business wishes are. The
difference between the two becomes clear in the following example.

Example 1.3: The Connecta project

A test coordinator is discussing a new test project with his cus-
tomer and asks what is expected of him. The customer replies that
he wants the system to be properly tested. A detailed system de-
sign has been created and the customer wants to know if the sys-
tem can meet the requirements. During the test, the test coordina-
tor must adhere to both the company’s rules and the test’s
guidelines. The customer wishes to receive regular information on
the progress, status and risks encountered during the project.

This may sound like a clear assignment, but it does not say much
about when the test coordinator can give a positive release advice.
Doing this requires information on the goal the company is aim-
ing for. Asking about the crucial success factors reveals that the
company wants to streamline its activities. The new system is
supposed to replace a number of existing systems. Transferring
the data manually between the various systems is too time con-
suming and prone to errors. The customer expects the new system
will help prevent many of the errors and unnecessary delays. The
investment in the new system will be recovered because fewer
FTEs will be required to carry out the activities.

The test coordinator thanks the customer for this information. He
now knows which questions he will have to answer. He sets up
the test project so that he can give a well-founded release advice
that answers the questions.

Result Aimed and Result Driven

Result aimed: We aim to achieve the result in everything we do.
Result driven: We are driven by the result, so we only do things
that have added value. The added value is determined by the ex-
tent to which the activity contributes to the anticipated goal or

1.7 Focus on the Goal 13

produces the desired information about the extent to which the
goal has been achieved. We focus on this throughout the duration
of the activity (the same applies to ”result aimed”).

1.7 Focus on the Goal

In the previous sections, we learned about goal. Now that we under-
stand what they are, we can use this knowledge and this notion to put
the goal at the center of our test project. The anticipated goal is used to

• describe the test strategy
• sets up the tests
• build bridges to the organization
• run tests
• generate test reports
• write a release advice

The anticipated goal determines the test strategy. The test coordinator
uses the information he gathered during the assessment of the antici-
pated goal to draft a suitable test strategy. The purpose of the test strat-
egy is to establish as effectively as possible whether the anticipated goal
will be achieved. In Example 1.3, the system should, of course, function
well, but the real question that has to be answered is: does the new sys-
tem save resources now that the processing has become faster and con-
tains fewer errors?

The goal is also central during the set up of the tests. First, a sanity
check is run to determine whether the system documentation supports
the test strategy. The test base is also tested against the anticipated goal
to obtain a timely indication of whether the system design will produce
the right system. The goal determines the structure of the test design,
which ensures that all of the test results can be related to the identified
risks, i. e. the areas that need attention. This bridges the gap between the
world of the business managers and the other stakeholders.

While setting up the test design and running the tests, the testers will
build bridges to other parts of the organization. Because everyone is aim-
ing for the same goal, the testers and other stakeholders speak the same
language and work hand in hand. The testers never lose sight of events
that may arise from risks, requirements or the market, and they can in-
dicate how the test approach needs to be adapted to respond to them.

14 1 Result-driven Testing

During the test, the goal is taken into account by running the tests that
provide insight into the quality of the system the quickest. The tester as-
sesses the test object against the anticipated system behavior (described
in the test design) without losing sight of the fitness for purpose. The
tester shares the information produced by the tests with all of the stake-
holders.

The anticipated goal is defined according to a number of Key Perform-
ance Indicators (KPIs). Throughout the test project, the test report (see
Chap. 20 Test Reports) provides insight into the status of the KPIs. Re-
porting on the same KPIs from the beginning produces clear informa-
tion about the progress of the test and its results, and prevents surprises
arising after the test has been completed.

The final test report is produced at the end of the test. This report pro-
vides insight into the activities that were carried out during the test. It
refers to the test strategy to indicate how the test was run, and builds a
bridge to the anticipated business goal. This enables the tester to give a
release advice that is in line with the business managers’ perception,
and to explain how he reached his conclusion.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_2, © Collis B.V., Leiden, The Netherlands, 2008

2 TestGoal and the Ten Test Principles

2.1 Test Principles

Testing is commonly carried out according to a test methodology. The
test methodology ensures that testers and other stakeholders use the
same terminology and definitions. The methodology also contains best
practices so that the knowledge and experience of others can be used.
This contributes to the efficiency and quality of the test project.

But there’s more to testing than just the methodology. Many organiza-
tions apply a methodology but not all of them implement it properly.
There are testers who do everything according to the book but can’t find
their feet in the organization. After all, strict adherence to a specific

Fig. 2.1 It is not the method, but the way it is applied that determines the success of
a project.

16 2 TestGoal and the Ten Test Principles

methodology is no guarantee for success: it is not the method, but the
way it is applied that determines the success of a project

The correct application of the methodology depends on the mindset and
the expertise of the tester, who has to be able to stress the right things
and make the right choices. Ten test principles have been developed to
help result-driven testers put this into practice. The test principles are a
short and strong formulation of the tester’s desired mindset, knowledge
and working method. They indicate how the tester can create added
value and how he can make it visible to the organization.

The test principles enable testers to focus on the anticipated goal with-
out external assistance. By thinking and acting according to the ten test
principles, testers assume a result-driven mindset. They make sure that
they apply the test methodology in such a way that it achieves optimal
added value for the organization.

The result-driven tester works according to the following principles.

Table 2.1 The ten principles of the tester

Focus on result Test in phases

Build trust Facilitate the entire IT life cycle

Take responsibility Provide overview and insight

Master the testing
profession Ensure reusability

Build bridges Keep in mind: Testing is fun!

2.2 Focus on Result

Result-driven testers will always focus on the business goal, regardless
of what they’re doing. Their drive extends far beyond contributing to
the quality of the software. The tests they run must be able to reveal

2.3 Build Trust 17

whether the system helps to reach the goals that are being pursued.
Reaching the goals will contribute to the companies business result. In
this context the companies result could be a non-financial one or aimed
revenue

Result-driven testers do more than just verify, i. e. demonstrate that the
system is built according to the system design. They also validate, i. e.
provide insight into the extent to which the system fits the business
processes and whether the business goals will be achieved.

Working from the organization’s anticipated goal enables testers to look
after different interests. For example, a functionally correct solution
could be very user unfriendly or an application that is easy to maintain
could conflict with the security requirements. Result-driven testers not
only inform stakeholders when their interests are at risk, they often have
better solutions.

Focusing on the goal also prevents investing excessive energy in rela-
tively unimportant matters. Result-driven testers are critical about their
activities and continually ask themselves how the activities fit the or-
ganization and contribute to the goal. The testers’ result-driven mindset
adds value to the organization. The organization knows that the tester
will look further than the tip of his nose.

2.3 Build Trust

Confidence in the system can be built through intensive testing. Inten-
sive testing reduces the risk of errors being overlooked, but is unfortu-
nately not always feasible; there is rarely enough time to test every
situation. This is why risk-based testing is used, and the most important
parts of the system tested more thoroughly than others.

It’s easy to find fault in people’s work. Good testers not only look for
errors in other people’s work, they also look for the good things. By re-
lating the test goals to the business needs and requirements, business
management can establish the areas that need attention and the compo-
nents that work well. As testing progresses, confidence in the system
grows. By indicating which parts of the anticipated goal will be
achieved, testers show that they understand the business goal and are
pursuing the common goal.

Testers make sure they can be trusted and that a positive release advice
can be seen as a guarantee for quality software. This also works the

18 2 TestGoal and the Ten Test Principles

other way around; when testers indicate that the quality is poor, they
expect their indication to be taken seriously and their recommendation
to be followed. Testers can build trust in a number of ways. First, by
doing a good job, which is the main prerequisite to building trust. They
also have to carry out the right activities, and those are defined in con-
sultation with the stakeholders.

This is why the stakeholders should be actively involved in the deter-
mination of the risks and the areas that need attention. Stakeholders are
often concerned about one specific component or anticipate certain
problems. If the tester takes things seriously, the stakeholders will take
the tester seriously. The tester shows which tests he is going to run to
determine whether the concerns are justified and explains how he uses
his test expertise to make sure the anticipated problems do not occur in
the live system.

Trust is also a result of thoroughness and transparency. Do not spend
time and energy on hiding mistakes. Everyone makes mistakes, even
the test team. People in the organization will start worrying if they have
the feeling that there are hidden problems. It’s never pleasant when
a tester has to admit he has a problem or has made a mistake. Expe-
rience, however, shows that others appreciate their honesty and are of-
ten prepared to accept the consequences. A good solution is often found
together.

Example 2.1: Trust

The functional acceptance test for a new software development
project is almost finished. A lot of tests were run over the last
couple of weeks, and there’s one week to go. A concern emerges
during a meeting with the maintenance organisation: all of the
live data has to be migrated to the new database. The system ad-
ministrator knows that tests have been developed for this, but he
recently heard about a situation that rarely occurs and is now
wondering if it will also be tested. The test coordinator is starting
to feel insecure. Should he say that the migration tests have been
discussed in detail and that he is confident that this situation has
also been tested? Or should he admit that he did not anticipate
this situation at all. But if additional tests need to be run, the
planned tests will never be finished on time.

The system administrator is really worried about this issue. Fault-
less migration was high on the list of business goals. The test

2.4 Take Responsibility 19

coordinator decides to give this issue additional attention. He and
the customer investigate how the situation can be solved and
quickly find the answer. They decide that one of the testers will
look into the situation with a system administrator and will amend
the test set accordingly. The activities that were planned for the
coming week, the testing of low-risk functions, have already been
documented. The project manager asks a programmer to run the
tests, which is not the ideal solution because a programmer is not
a tester, but the test manager knows the programmer and knows
he can do it. “And if he works with us in the testing room, I can
keep an eye on the situation,” he thinks.

The migration tests, which were initially a showstopper, are ready
on time. The programmer also found a number of things in his
colleagues’ code and enjoyed seeing how the test team actually
works.

2.4 Take Responsibility

At the end of the test project, the tester gives a release advice that he
would “bet his booty on.” The tester ensures that he has prepared the
right tests and that he has taken the risks and the necessary coverage
into account. He keeps an eye on things during the test project and
makes sure that all of the activities that have to be carried out actually
take place. As a result, he can vouch for his advice and support it, even
if it’s negative.

Testers represent the test domain and are also strongly involved in the
rest of the product life cycle. A lot of the problems that are discovered
during testing were created somewhere else in the development process.
Below are a few examples.

• Bad Assessment of the Customer’s Wishes
The customer’s wishes were not properly assessed. However excel-
lent the programmer is, the solution will never achieve the antici-
pated goal.

• Poor Design
The design was not properly thought through and is not detailed
enough, or it contains contradictions and gaps. When a design is

20 2 TestGoal and the Ten Test Principles

faulty, the developer needs to fill in the gaps. As a result, the differ-
ent components do not always interact well.

• Poor Programming
The quality is poor. The code contains at lot of bugs because there
wasn’t enough time to write neat code, or because the programmer is
inexperienced.

• Poor Configuration and Version Management
The development team is working hard to solve errors. As a result of
poor configuration and version management, errors are being solved
in the wrong code or wrong software components are included in the
release.

A responsible tester shows stakeholders where the bottlenecks are and
explains how they affect the anticipated goal. If necessary, the tester of-
fers help and expertise. The tester also draws the stakeholders’ attention
to issues that still need to be taken care of.

Taking responsibility also means that the tester does more than just test.
He sometimes can’t avoid taking on tasks that are not his responsibility,
such as release and configuration management. Because these processes
are crucial to achieving the anticipated goal, the tester here too takes re-
sponsibility if necessary.

Sometimes the goal is best achieved if the tester relaxes his require-
ments. Nobody benefits from sticking to requirements that the tester
knows will never be met. It is much better to adapt the strategy, within
the realms of possibility, in order to obtain the best possible result.
Clear boundaries must be set though, because too many compromises
can be counterproductive.

2.5 Master the Testing Profession

A good tester knows that testing information systems is not just a mat-
ter of pressing a few buttons. He masters the test profession, which is
aimed at giving an organization the confidence that an information
system works properly. This means that a good tester has to have sound
knowledge of information technology, system development, test meth-
odologies and the processes in an organization. His knowledge of the
different business areas also enables him to understand the test object
and to be an interlocutor for the users and the business managers. This
enables him to build bridges to all of the stakeholders.

2.5 Master the Testing Profession 21

It goes without saying that a tester is familiar with accepted testing
standards, methodologies and techniques. This knowledge and experi-
ence enables him to select the elements that best suit the purpose of the
test. Each test project is unique and it is up to the tester and his skills to
define a suitable and efficient approach.

Example 2.2: An inexperienced organization

A tester is asked to set up tests for an organization that has little
experience building and testing software. The customer explains
that they have subcontracted the development of the system, but
that they want to run an acceptance test upon delivery. To prepare
and run the tests, three of the organization’s employees are as-
signed to the tester. The users have never tested software before,
and are looking forward to the challenge.

The tester realizes that the organization’s resources are limited.
He decides to let the users do what they are best at. A number of
business scenarios will be explored during the acceptance test.
The tester explains the basic principles of testing and how he is
going to approach the acceptance test. He expects the users will
gradually gain a better understanding of both testing and the sys-
tem. He therefore introduces elements of ”exploratory” testing .
This enables the users to adapt the predefined scenarios according
to their experience and even add new ones.

In order to test the functionality and the business scenarios, the
tester turns to the contractor. The contract states that he has to
supply tested software. The tester shares his requirements for the
test plan and test design with the contractor, who reviews the test
plan and checks the coverage of the test design. The contractor is
cooperative and adopts the suggestions for additional test cases
without resistance.

The tester discusses the approach with his customer, who agrees.
Both test projects should provide good coverage. The internal
working of the system has to be tested as well as its applicability.

A good test requires thorough preparation. Test plans, test specifica-
tions and test scripts must be feasible and clear. It must be possible to
relate the test results to the business wishes and requirements. Thorough
preparation, however, does not mean that testers cannot be creative. The

22 2 TestGoal and the Ten Test Principles

rapidly developing “agile” development and test methods actually en-
courage creativity.

In addition to general subject knowledge, testers often have a special-
ism such as test automation, performance testing or security testing
(see Chap. 3 Test Expertise).

2.6 Build Bridges

Result-driven testers are the central point of contact. They communicate
with all of the parties involved in the software development project.
They know who has a stake in the IT solution and, if necessary, they
mediate between the parties.

Testers have contact with the accepters to stay in touch with their re-
quirements and wishes. Often a project will have to deal with changing
requirements, risks and expectations. The contact with the accepters en-
ables testers to anticipate developments in and changes to technology
and business.

Because testers can put themselves in the stakeholders’ position, they
can explain to developers how the stakeholders perceive the system.
Testers have enough technical knowledge to understand developers and
help them analyze the errors or the system’s behavior. If necessary, they
will bring developers and users in contact.

Example 2.3: Changes

Changes to existing systems are implemented in the company on
the basis of change requests, i. e. “changes.” Changes have to be
tested before they can be implemented. Based on the impact of
the change, the tester will work with a system administrators or
user.

A user is involved in testing change CR0001745. The user has re-
ported nine errors, which is quite a lot for a small change. The
tester discusses the change with the project manager, who says
that everything’s fine. “I immediately assigned a developer to it,”
he says, “and he says there’s just one real error; you’ll find the fix
in the test environment tomorrow.”

2.7 Test in Phases 23

It is not rare for different stakeholders to have different ideas
about the nature and the importance of an error. The tester knows
that a number of errors were found. His guess is that the errors are
more annoying for the user than they are difficult to fix. He inter-
venes. The tester explains to the developer that there is a reason
why the user logged nine errors, and that he probably won’t be
very happy to hear that the builder doesn’t find his errors impor-
tant enough to fix. The tester suggests the builder and the user
talk to each other and decide together which errors will be fixed.
In the end, the tester was right and the remaining errors were in-
deed easy to fix. The fix is available for retesting the following
day. While discussing one of the errors, it turned out that the error
was not caused by the code but by the specifications. It was
agreed that the tester discuss the issue with the analyst.

Result-driven testers also build bridges between the project organization
and the line organization. A lot of the knowledge that is gained from a
software development project is also valuable for the line organization,
for example, knowledge the test team gained about the configuration of
the system. It’s also possible that test data was used for the configura-
tion of the test project. The errors the test team made don’t have to be
repeated by the maintenance organization. The test design is handed
over so the maintenance organization can carry out the necessary tests
when future changes are made.

The line organization often has a checklist that has to be worked
through before the project can be formally completed. If a checklist
hasn’t been made yet, the tester can suggest making one. Discussing the
expectations of the accepters in advance prevents surprises arising. This
is the tester’s contribution toward a smooth transition from the project
phase to the live phase.

2.7 Test in Phases

Experience shows that phased testing produces the best quality because
the result-driven tester is using a clear project approach and planning
his activities in phases. A software development project has a number
of test projects. A project is created by specifying its goal. This ensures
that tests are not carried out twice or forgotten. A test project can con-
sist of several test phases. The work breakdown structure (WBS) and
planning (see Chap. 9 Test Budgeting and Planning), establish which

24 2 TestGoal and the Ten Test Principles

activities have to be carried out when. This ensures that the activities
are carried out in a logical sequence and that the most important risks
are covered first.

A phased test project has the following characteristics:

• The strategy fits the software development process.
• A structured test methodology is used.
• If the waterfall model is used, the components are tested first, then

the integration of the components, and finally the link to the business
processes.

• If the development and delivery are done incrementally, the tester
first discusses the delivery schedule with the build coordinator. He
then ensures that the increments are delivered in a sequence that
minimizes the biggest risks first.

• The quality attributes are distributed over different test levels . The
tester schedules time to test the functionality, performance, interop-
erability, user friendliness and security.

A phased test process has a number of advantages:

• The different stakeholders can do their preparatory work. While the
developers work on the first delivery, the test team makes sure the
corresponding test designs are finished on time. The analysts are fa-
miliar with the content of the next delivery and submit the amended
system specifications for review.

• Entry and exit criteria can be used. These concrete agreements about
the phase transitions clarify the expectations. The criteria also help
create a clear progress report, and they prevent later phases suffering
from oversights in previous phases.

• Expectations can be clearly expressed. Step by step, it becomes clear
whether the system being tested will meet the expectations. The further
the test progress the clearer it becomes whether a system can go live.

2.8 Facilitate the Entire Product Life Cycle

Testing is an integral part of the IT development chain and life cycle,
and makes demands on preceding links in the chain. The added value of
a tester is determined by the extent to which he can influence the chain
to ensure that the final information system comes as close as possible to
the business requirements and wishes. A good tester is therefore in-
volved in the entire life cycle, reminds others of their responsibilities
and controls the preceding links in the chain.

2.9 Provide Overview and Insight 25

The tester can benefit from demonstrating his involvement early in the
process. Doing this enables the tester to help during the analysis and de-
sign phase by testing the products for their testability. He can also test
whether the design indicates how the anticipated goal is going to be
achieved. For example, the organization in Example 1.3 expects that the
live system will be free of errors and delays. The tester can check
whether the system design specifies how this is achieved.

The tester encourages the developers to test their work during the de-
velopment process so errors can be detected as early as possible. He ex-
plains the importance of module testing and, if necessary, suggests how
it can be approached. In terms of his own activities, he knows that the
designed tests will not lose their validity at the end of the test project
and hence ensures they can be reused.

After the tests have been run, the tester shares his knowledge and test-
ware with the maintenance organization. A good handover contributes
to the smooth transition from project phase to maintenance phase.

2.9 Provide Overview and Insight

Many different kinds of data come together in a test project. To start
with, a system has several functions, each of which is submitted to a
large number of tests. Test results not only refer to the function they
test, they also cover risks, issues and quality aspects. There are also er-
rors and the test project has its own progress and bottlenecks.

In order to turn all this data into useful information, the tester must be
able to see the main features (overview) and explain the details (in-
sight). The tester provides overview and insight by producing a clear
test report in which he specifies the quality of the test object and the
progress of the test project. The tester uses clear language to describe
the consequences for the anticipated goal. This is how he contributes to
the insight that is required to choose the right solution.

By using a transparent working method, the tester builds trust and
makes the information accessible to all of the stakeholders. This pre-
vents confusion and unnecessary communication and thus helps achieve
the common goal.

26 2 TestGoal and the Ten Test Principles

Example 2.4: An Intranet site for the information

Following several confusing reports about the progress of the test
project, the test coordinator decides to make important informa-
tion centrally available. A colleague has shown him how easy it is
to save Microsoft Word documents as HTML files. The test coor-
dinator puts the information he wants to make centrally available
on the Intranet.

Test Reports
The test report is updated every other day. There’s also a weekly
meeting, but people often ask what the project’s status is and how
it’s progressing between meetings. They can now check the cur-
rent status at their desk.

Planning and Milestones
To achieve the goals defined in the planning, the stakeholders
must be aware of the planning. In the past, the test coordinator
discussed the planning with the customer. The planning was
sometimes adjusted during these meetings, but the testers didn’t
always notice. The team now works with one planning and has
insight into the milestones it needs to achieve.

Overview of Test Environments
The test team uses a number of different test environments, each
with its own version, configuration and login details. Placing this
information on the Intranet prevents the question “What’s the
login for the test environment again?”

Responsibilities
The test coordinator creates a list of the employees and their spe-
cializations and responsibilities. In this way, the developers and
the users always know who they can address for specific issues.

Everyone is pleased with the approach and the test coordinator
notices that the testers in his team contribute even more informa-
tion. The project manager asks if the agreements from the error-
meeting can be added as well. “Everyone will know where to find
them,” he adds.

2.10 Ensure Reusability 27

Fig. 2.2 The Intranet site in the example has indeed grown. Screenshot of a test project page

2.10 Ensure Reusability

Producing products that are reusable for subsequent test projects con-
tributes to their efficiency. The result-driven tester knows that the tests
he uses will not lose their validity at the end of a test project. While
using the system, users will invariably discover errors that need cor-
recting or will want to make changes. The organization therefore needs
a reusable test set. Tests that are expected to be run frequently can be
automated.

Reusability is also important for another reason. A good test project
takes time and stakeholders see testing as a costly activity. Good reus-
ability ensures that the time that is invested in the preparation and build-
ing of knowledge will prove useful even after the test project has been
completed. This benefits the business goals in the long term.

The tester has a number of options to increase the reusability of the
products. To ensure that the purpose of each product is clear, they
should have good descriptions and instructions.

28 2 TestGoal and the Ten Test Principles

A few examples: Adding comments to the test scripts helps understand
the test’s goal. A physical test case specifies which part of the test base
is covered. As a result, a successor can easily check whether the tests
still apply to the last version of the specifications. The risk analysis not
only takes the relative importance of the functions into account, but also
the people involved in the risk estimation. This enables a successor to
convene stakeholders when the risk analysis needs to be updated.

But good descriptions and instructions are not enough: you have to be
able to find the products. The result-driven tester also spends time on
the handover so that people who need to work with the products at a
later stage know they exist and where to find them.

2.11 Keep in Mind: Testing is Fun

Testing is a fascinating profession. Happy and enthusiastic testers con-
vince others more quickly and work more efficiently.

Testers see a lot of suboptimal processes and faulty systems – this can
cause them to adopt a negative attitude. But it won’t be the first time
that a delivered system doesn’t work, and it won’t be the last time that a
bad design was used or the tester wasn’t given enough time to test.
 This doesn’t change the fact that testing is a wonderful and fun pro-
fession. Result-driven testers are aware of their position and motives.
They know they add value to the software development project.

Testers share the responsibility that systems only go live if they are of
good enough, i. e. they meet the business requirements. The errors the
tester finds not only improve the quality of the system, it also guaran-
tees they do not occur in the live system. A tester contributes to the
goal, and that puts the tester in a unique position. He is one of the first
parties to gain insight into how the system works and has contact with
many of the stakeholders in different disciplines. The production of a
high-quality and viable IT system is an ongoing challenge.

Testers have to be flexible and creative and able to find a suitable solu-
tion for every new situation. Testers develop continuously and in many
directions. Testers grow by taking on more responsibility and acquiring
methodical knowledge as well as by learning special technical skills
such as test automation, and performance or security testing. All this
makes testing a fascinating and versatile profession.

2.12 Applying the Test Principles 29

2.12 Applying the Test Principles

The following needs to be said about the test principles:

The ten test principles are not autonomous; they are correlated. The
stakeholders’ active involvement in determining risk areas increases the
confidence in the test approach. As soon as the tester approaches the
stakeholders, he builds a bridge. A clear project phasing not only con-
tributes to the “test in phases” principle, it also provides “overview and
insight.” Together, the test principles are the foundation for result-
driven testing.

A number of descriptions are provided with an example to add color to
the principles. To show how the test principles are applied in practice,
they are regularly referred to throughout the rest of the book. A picto-
gram in the margin indicates that a test principle is actively applied.

The reader is challenged to use the test principles and to apply them in
their own way. The principles do not necessarily have to be followed as
they are described in this book. It is important, though, that the princi-
ples become part of the tester’s working method. A tester who does not
apply the principles is doing neither himself nor his customer a favor. It
is therefore necessary to regularly check that all of the testers are paying
enough attention to all of the test principles; this keeps them on their
toes and focused on providing added value.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_3, © Collis B.V., Leiden, The Netherlands, 2008

3 Test Expertise

The test principles are a guideline for the motivation and mindset the
tester has to assume in order to work in a result-driven way. They indi-
cate how he can add value by testing. A structured test methodology is
also indispensable. Together, the test principles and the test methodol-
ogy provide the starting points for the set up and execution of a test pro-
ject. But there is also a third aspect that is very important for the result-
driven tester. However complete the methodology is, it can never cover
every situation. There will always be choices that have to be made
based on the tester’s knowledge and experience. A tester’s expertise is
therefore of great importance.

Testers should have knowledge of IT, as well as of the industry they
work in. To be able to build bridges to others and communicate with
them efficiently, they also have to understand other professionals in the
organization. This requires flexibility, because at one time the tester can
be having a detailed discussion with a programmer or analyst, and at the
next trying to understand the users’ requirements by putting himself in
their shoes. To provide overview and insight and to explain the release
advice to management, the tester must also be able to distance himself
from an issue.

And last but not least, the tester is familiar with the testing standards,
methodologies and techniques. He is able to combine the best elements
from these methodologies, which enables him to find and manage
errors.

The following paragraphs describe the test expertise that is required for
a number of roles. These roles are not always clearly distinguished in
every organization. In some projects, all of the roles are fulfilled by one
tester, who combines the roles of knowledge expert and test coor-

32 3 Test Expertise

dinator. In larger projects, the roles are generally separated. To keep the
test approach generic, this book mainly speaks about the tester. Testers
can have one or more of the roles described below.

3.1 The Test Manager

If several test projects are carried out in a software development project,
the test manager is responsible for the overall outcome. He decides how
the master test process is approached and ensures that the combined test
projects have sufficient test coverage. It is important that the coverage
is complete and that things are not unnecessarily tested twice. He also
monitors the progress of the individual test projects and guides the test
coordinators. The test manager also manages the generic test strategy
and master test plan (MTP) if they exist.

In order to do this task well, the test manager has to have a good under-
standing of the business requirements and wishes. He also has to have
project management skills and experience as a tester. The test manager
is involved in the whole development process. He is also active during
the goal, approach and assurance steps (see the step plan in Sect. 4.3.1
for an explanation of these steps).

3.2 The Test Coordinator

The test coordinator defines the test approach that is going to be used
and is responsible for the success of a test project. To achieve the an-
ticipated goal as efficiently as possible, he determines, for example,
whether he is going to work out the details of his physical test cases or
use an agile test approach, and whether he is going to run his tests
manually or automatically. The test coordinator works according to the
guidelines in the generic test strategy or the MTP. If these documents
are not available, he consults the stakeholders and determines his
course. He describes the test approach in the detailed test plan (DTP).
In addition to drafting the DTP, the test coordinator also leads one or
more testers. He monitors the progress and the quality of the test
activities and discusses the test results with the people involved. He is
an important player in the error-management procedure. In the end,
it’s the test coordinator who decides whether a positive release advice
can be given.

3.5 The Test Specialist 33

In order to do this task well, the test coordinator has to be an experi-
enced tester and must have project management skills. The test coor-
dinator determines and monitors the day’s activities and is therefore
active during the entire test project. He is also active during the start-up
phase and the goal, approach and assurance steps.

3.3 The Test Analyst

The test analyst uses the test plan to determine which tests are carried
out. He understands the anticipated goal and examines the test object’s
areas of attention. The test analyst masters his test design techniques
and knows when to apply them. Because he communicates a lot with
the analysts and designers, and because system design is his area of ex-
pertise, he knows about system design techniques. For example, he can
read UML diagrams and he knows which requirements a good use case
has to meet. The test analyst is mainly involved in the design step and
creates the logical test design.

3.4 The Test Engineer

The test engineer is responsible for the physical test design and the exe-
cution of the tests. He elaborates the tests. If test analysts have been ap-
pointed to create the logical design, the test engineer translates it into
detailed test scripts. If there is no logical test design, the test analyst
will use the test base as his foundation. Test scripts are not created in
agile environments. In this case, the emphasis of the work shifts from
the design to the test execution, since the test engineer is also the one
who runs the tests. The test engineer also records and discusses the er-
rors. He not only builds bridges to the designers and programmers, but
also to the test coordinator. The test engineer is primarily involved in
the design, set up and execution steps.

3.5 The Test Specialist

Testing also has a number of technical specializations, such as test
automation, performance testing and security testing. The testers work-
ing in these areas are expected to have additional technical expertise.

34 3 Test Expertise

• The Test Automation Developer
The test automation developer is the test team’s automation expert.
He can be involved in the creation of automation projects, tool selec-
tions and pilots. The test automation developer is the programmer
among the testers. He implements the logical or physical test designs
in test scripts so the tests can be run automatically.

The test automation developer has testing and programming knowl-
edge. His knowledge of tooling enables him to program and param-
eterize test scripts. He uses his technical knowledge of the system to
configure the test environment and include test data in his test
scripts. The test automation developer is primarily involved in the set
up and execution steps.

• The Performance Tester
The performance tester checks whether the system meets the load,
stress and reliability requirements. These tests distinguish them-
selves from functional tests by their highly technical nature. Because
simulators and load generators are used in performance testing, per-
formance testing overlaps with test automation. A lot of measure-
ments and calculations are made during performance tests. Error
analysis and significance are issues that play a role. Once the per-
formance has been determined, it often has to be improved.

Because of his technical knowledge, the performance tester is able to
determine the system parameters that influence the performance to-
gether with the system specialists. If necessary, he changes these pa-
rameters to improve the performance. To this end, the performance
tester has knowledge of IT architecture, database organization and
the systems’ workings. The performance tester is involved in the de-
sign, set up and performance steps.

• The Security Tester
The security tester determines whether the system meets the defined
security requirements and checks them against the organization’s
policies and procedure. To this end, he performs reviews and audits
on the design, the code, and the procedures, and carries out struc-
tured security tests on the system. He also assesses the test results.
He is able to recognize possible security risks on the basis of errors
or combinations of errors.

The security tester distinguishes himself from the other testers be-
cause he has up-to-date knowledge of the most important security
exploits, which enables him to quickly recognize the most common
security errors. The security tester can familiarize himself with the

3.5 The Test Specialist 35

common pitfalls that come with, for example, the used design meth-
ods, design platforms, or middleware. He has knowledge of the test
design techniques , which he uses to analyze the network or system
in a structured manner. The security tester can be involved in all
phases of the test project. He performs a review during the sanity
check and checks the system while the test is running. In the mean-
time, he can audit the code or the architecture.

The testers’ expertise and quality are crucial for the success of a test
project. Another important element is the way in which the test project
is set up, as it determines whether the tester’s expertise is deployed
properly and effectively.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_4, © Collis B.V., Leiden, The Netherlands, 2008

4 The Approach

Result-driven testing can be applied to any test method. The previous
chapters explained how expertise and the TestGoal principles ensure the
methodology is correctly applied. The ten test principles help testers
create a result-driven mindset. Result-aimed thinking is an important
step for the tester, but it would also be nice if the used methodology
supported result-driven activities. TestGoal was developed according to
the idea that the testers’ expertise, the testing principles and the meth-
odology have to be integrated and have to support each other. In Test-
Goal, result-aimed thinking and result-driven acting form a unity, which
creates a practical test approach that puts the business goals first.

The TestGoal approach helps testers use their expertise and knowledge
and apply the test principles. A clear step plan shows when activities
have to be carried out, how they can be carried out and which areas
need attention. Where necessary, the approach also provides clear in-
formation about best practices. The approach gives the test project
a clear structure, which ensures that even the less obvious aspects are
not overlooked. Moreover, communication between project members is
more efficient and the anticipated goals are known beforehand. As a re-
sult, the activities get off to a good start and trust is built from the very
beginning.

The TestGoal approach can be applied to a wide range of test projects.
The approach is fully autonomous, but can also be used in combination
with other methodologies and standards, such as TMap [Pol et al,
1999], [Koomen et al, 2007], ISTQB/ISEB [Spillner et al, 2003], the
IEEE standards for software testing [IEEE 829, 1998], IS0 9126 and
BCS SIGIST [BCS SIGIST, 1997]. Choosing one option does not
exclude another. The TestGoal step plan is a guideline for the activities
that are to be carried out. The applied methodology describes how the

38 4 The Approach

activities can be carried out. The best practice information described in
the TestGoal approach is either a welcome addition, or can be used as
second opinion. In short, an organization that is used to working with
a different standard can continue to use it. If an organization is not
using a test standard, TestGoal provides a proven starting point. Not
applying the TestGoal approach, however, demands even more of the
tester because he will have to apply the test principles even more con-
scientiously in order to meet the expectations of result-driven testing.

The advantages of the TestGoal approach are as follows:

• The goal is central in all test activities
• The focus on the goal and the test principles are embedded in the

approach
• It’s possible to start a test project quickly
• The right activities are carried out at the right time
• Best practice information and tips
• Transparent test project

In short, the TestGoal approach enables you to run a transparent and ef-
ficient test project that focuses entirely on the goal: added value for the
customer. That’s why we speak of result-driven testing.

4.1 Context of the Test Project

Testing is usually carried out as part of a software adaptation process.

The fact that a system has gone live does not mean that it will never
change. Many a maintenance organization regularly releases a mainte-
nance release to keep the system running and to apply small changes.
Because the maintenance organization regularly produces maintenance
releases, it automatically gains the experience required to analyze, spec-
ify, build and test changes. This creates a standard approach that works
as long as the changes are small and the activities are straightforward.

The activities will have to be restructured as soon as the changes be-
come more sweeping. In such cases, a project-oriented approach is of-
ten chosen. Software change projects of this kind impact the whole or-
ganization and involve several disciplines. Not only the system, but also
the processes and the users are affected by the changes.

4.1 Context of the Test Project 39

Each project has its own set-up according to the size of the project, the
organization and the preferences of the stakeholders. It is, however, not
unusual for test activities to be placed in a separate subproject. The be-
low example illustrates the structure of the “Connecta” project in which
testing has its own place.

Example 4.1: Connecta

The Connecta project (see also Example 1.3) consists of building
a new system to replace a number of existing ones. The company
has chosen this path because it expects a new system will correct
many of the current errors and delays. Although the designers will
leave as many existing processes as possible unchanged, a num-
ber of processes will still have to be changed. This means that us-
ers will have to get used to both a new system and new processes.

The steering committee has decided to create a number of subpro-
jects, each with its own project manager.

• Processes
This subproject defines the new business processes and en-
sures that they are in line with the current working method as
much as possible. This subproject will also ensure that the
software development project is supplied with clear informa-
tion about the processes that the new system has to support.

• Software Development
This subproject consists of making the modifications to the
system. The system design is created according to the system
requirements and the business processes. The system design
forms the basis for the implementation. Module testing is also
part of this subproject.

• Testing
This subproject consists of testing the modifications that were
made to the system. The tests are based on the system specifi-
cations and the described business processes. The tests are car-
ried out to prevent the business processes being disrupted after
the new system goes live. The tests focus on the correct work-
ing of the system and its interaction with interfacing systems.
User acceptance tests are also part of this subproject. They are
run to ensure the users can use the system.

40 4 The Approach

• Implementation
This subproject consists of introducing the system and the new
procedure to the users. Because several different systems are
integrated with the new system, a number of processes will
work differently. It’s important that the users are trained so
they can continue working as they are used to.

Connecta
Project

Software
Development Testing ImplementationProcesses

Fig. 4.1 The Connecta project is divided into a number of subprojects. Test-
ing is a separate subproject.

As the example shows, the Testing subproject consists of several differ-
ent test levels, each with its own specific system boundaries and focus.
Because each test level can have a different priority, the test levels are
stored separately; they distinguish themselves from each other in three
areas: their aim, their focus and the system boundary.

The Aim
The aim can be different for each test level. When the aim is to dem-
onstrate that the system works according to the system design or stan-
dards, or to demonstrate the applicability of the system, we speak of
“fit for purpose.” Some test levels are aimed at the chain and are
supposed to demonstrate that several components successfully interact
with each other, whereas the aim of other tests is to accept one
component.

The Focus
The Testing subproject ensures that all of the areas of attention and
risks are tested, which is why it’s not enough to just test the functional-
ity of the software. Non-functional issues such as user friendliness, per-
formance, safety and interoperability are also important success factors.
These areas of attention are called quality attributes (see the below text
box). Because it is not always possible to test all of the relevant quality
attributes at the same time, they are often spread across the different test
levels. For example, the system test in the Connecta project is aimed at
the functionality and the efficiency of data processing. The user accep-

4.1 Context of the Test Project 41

tance test is aimed at user friendliness and the integration of the system
with the processes. The chain test is carried out to demonstrate that the
system works well with the interfaced systems.

Quality Attributes
A conceptual framework or quality model is needed to clearly
express the desired quality of the software. The quality model
enables a consensus to be reached about the characteristics that
are important for the system. We also want to determine what the
relative importance of the characteristics is. The relative impor-
tance is used to assign priorities during testing. Because it is not
possible to achieve an optimal score for every quality aspect, it is
not necessary to test a system for all of the aspects.

The quality requirements can be determined according to Quint.
Quint is an extension of the ISO-9126 standard and describes the
quality of software by means of six main characteristics (func-
tionality, usability, efficiency, reliability, maintainability and
portability) and 33 subcharacteristics [Zeist et al, 1996].

P
o

rtab
ility

M
ain

tain
ab

ility

U
sab

ility

F
u

n
ctio

n
ality

R
eliab

ility

E
fficien

cy

suitability
accuracy
interoperability
compliance
security
traceability

maturity
fault tolerance
recoverability
availability
degradability

understandability
learnability
operability
explicitness
customisability
attractivity
clarity
helpfulness
user-friendliness

time behaviour
resource behaviour

analysability
changeability
stability
testability
manageability
reusability

adaptability
installability
conformance
replaceability

Extended ISO model

scaleability

Fig. 4.2 Quality attributes according to the extended ISO-9126 Standard

The System Boundary
The system boundary has to be determined for each test level. The sys-
tem boundary determines which system components are tested. The
components are part of the test object. The components that are outside
of the system boundary are not tested in that test level.

42 4 The Approach

The test object often increases for later test levels. The first test levels
focus on program components, after which the system test focuses on
the complete application. If the application appears to function well, the
focus shifts to how the users experience the program. In the chain test,
the interaction with interfaced systems is tested.

4.2 Test Levels

As discussed in the previous chapter, the Testing subproject consists of
several test levels, which distinguish themselves from each other by
a different aim, focus and system size. A lot of organizations define
their own test levels, as a result of which the content of the test levels is
not always what the name suggests. One should be careful.

The below overview describes the most common test levels and their al-
ternative names.

• Module Test (MT) and Module Integration Test (MIT)
Module tests focus on the elementary building blocks in the code.
They demonstrate that the modules meet the technical design. In
modern development projects, module tests are almost always auto-
mated tests and require programming knowledge. This is why they
are run by the developer before the module is released. Module inte-
gration tests focus on the integration of two or more modules. Mod-
ule tests are also referred to as component tests (CT), unit tests (UT)
or program tests (PT). Instead of module integration tests, the term
“integration in the small” is sometimes used as well. [ISEB practi-
tioner, 2004].

• System Test (ST)
System tests usually test a whole system. The system test is a black-
box test. Tests are often run based on existing system interfaces. The
system test demonstrates that the system works according to the
functional design. The system test is often the domain of the building
party and is carried out before the system is handed over to the ac-
cepter.

• Functional Acceptance Test (FAT)
The functional acceptance test is carried out by the accepter to dem-
onstrate that the delivered system meets the required functionality.
The functional acceptance test tests the functionality against the sys-
tem requirements and the functional design.

4.2 Test Levels 43

• User Acceptance Test (UAT)
The user acceptance test is primarily a validation test to ensure the
system is “fit for purpose.” The tests are based on representative
scenarios from the users’ daily work life. The test checks whether
the users can use the system, how usable the system is and how the
system integrates with the workflow and processes.

• Production Acceptance Test (PAT)
The system owner uses the PAT to determine that the system is
ready to go live and can go into maintenance. The system must be
stable and available in the live environment. The owner also deter-
mines whether the project has supplied all of the material that is nec-
essary to put the system into maintenance, such as system documen-
tation, testware and installation manuals.

• Chain Test (CT)
A chain test tests the interaction of the system with interfacing sys-
tems. These systems are frequently linked to each other for the fist
time in the chain test. The chain test focuses on finding errors that
arise when systems are not properly integrated. Because the business
processes are also often checked in a chain test, the chain also tests
the integration of processes with the system. The chain test is also
called system integration test (SIT), end-to-end test or “integration in
the large.”

• Pilot
The pilot is carried out prior to going live. The pilot simulates live
operations in a safe environment so that the live environment is not
disrupted if the pilot fails. The safe environment consists of a shadow
system in a different environment in which the old situation can al-
ways be restored if problems occur. New systems usually go live with
only a few users. Should problems occur, they can be solved without
having too much impact on the business. Once the system has proven
itself, it is rolled out across the organization and goes live.

• Claim Testing
The object of a claim test is to evaluate whether a product lives up to
its advertising claims.

The manufacturer of embedded software systems or the supplier of
commercial-off-the-shelf (COTS) software will try to convince his
potential customers with his product. In order to distinguish his
product from the competitors’, he will assign several properties to
his product . These properties are claimed on e. g. the products pack-
aging or the manufacture’s website.

44 4 The Approach

Normally, the advertised and the implemented functionality of
a software product is identical. Most software applications are truly
meant to essentially do what the seller says. But in order to assure
that the claims as defined by the marketing department match the
true characteristics of the product, claim tests are executed.

In Example 4.1, we saw that several test levels are run in the Testing
subproject. The project manager of the Testing subproject, usually the
test manager, ensures that the results of the various test levels lead to
the anticipated goal. Together, the results of all of the test levels bridge
the gap between wish and goal. To this end, the test manager divides
the areas of attention across the test levels and appoints a test coordina-
tor to each test level. The test coordinator is responsible for the content
and progress of his test project.

The Difference Between Test Level and Test Project

A test level is a definition of test activities with a common goal,
area of attention and system boundary. A test project is a type of
set up in which test activities that belong together are prepared
and run. Separate test projects are frequently set up for each test
level, but don’t have to be. When several test levels are run by
one test coordinator and the set up does not distinguish between
test levels, we speak of one test project. In this case, one planning,
one test plan and one test report are used.

4.3 The Details of the Test Project

Each test project has its own characteristics. The disciplines of various
organizational components can differ greatly. The actual details of a test
project will therefore be different for each organization. For example,
compare the development department of a very technical company to the
maintenance organization in the administrative sector. But all successful
test projects have a number of characteristics in common1. These charac-
teristics, which apply to each test project, are the basis for the TestGoal
step plan. This step plan was developed to give the test project a con-
crete, practical shape. It assumes that there is one step plan for different
environments and test levels. The actual activities can differ, but the

1 “Happy families are all alike; every unhappy family is unhappy in its own way”-
Leo Tolstoy in Anne Karenina

4.3 The Details of the Test Project 45

approach is the same. The step plan was written to bridge the gap be-
tween methodology and practice. It serves as a practical starting point
when planning, setting up, running and concluding test activities.

4.3.1 The Step Plan

The TestGoal step plan describes which activities are carried out and
which products are delivered at the end of each step. It helps the tester
apply the test principles and guarantees a transparent and result-driven
test project.

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.3 The step plan

The step plan is displayed as a pentagon surrounded by five hexagons.
The pentagon is placed in the middle and represents the Goal. The goal
has to be kept in mind during all subsequent steps. The subsequent steps
– Approach, Design, Set up, Performance and Assurance – are dis-
played as hexagons, each of which interfaces with the central pentagon.
This symbolizes the contact that should exist between each subsequent
step and the goal determined in the first step. The advantages of the step
plan are discussed below.

46 4 The Approach

• Doing the Right Things
The step plan defines the activities that have to be carried out in the
test project and the sequence in which they are best performed.

• Communicating the Approach
The step plan provides a concrete proposal for the test approach. The
step plan enables the test project to be quickly set up by indicating
what the planned steps are and which products are delivered. This
enables the tester to explain to the customer and the other stake-
holders what he will be doing. It enables expectations to be aligned
and provides a starting point for the customer to indicate what he
wants.

• Making Risks Discussable
The step plan is not a strait-jacket, but a reference. There’s no reason
why a step cannot be skipped, but there are always risks. Steps
should not be skipped unless all of the risks have been discussed and
understood.

• Test Report
The step plan clearly indicates when which products should be de-
livered. Monitoring the progress enables the tester to see which
products have to be finished in each step.

• Generic Approach
Using a step plan makes it possible to use a generic test approach for
the different test projects. This makes it easier to manage and com-
pare the test projects.

4.3.2 Sequence of Activities

The step plan indicates which activities have to be carried out and puts
them in a specific sequence. Going through the steps in the prescribed
sequence ensures the activities are carried out smartly and efficiently.
Some activities, however, can be carried out in parallel. It must, how-
ever, be clear that each step and activity has its own starting conditions.
If the conditions are not met, the step or activity should not be started.
For example, a test environment and a test design are needed to start
running a test. The test environment can be set up earlier in the process,
but it makes little sense to do so until the test design is stable. Likewise,
the test design can be created earlier in the process, but it makes little
sense to do so until the test environment is stable.

4.4 Testing a New Program 47

This is why the step plan places the execution of the test after the set up
of the test environment, and the test design after the sanity check. Even
if activities are carried out in parallel, the dependencies defined in the
step plan will still apply.

What does a test project that was set up according to the step plan look
like? To give you an idea, we’ll go through the step plan for a software
development project that consists of developing a new system. An ex-
ample is the system test in the Connecta project. The step plan can be
applied to several environments and test levels. This is why we will also
indicate what changes when TestGoal is used in a maintenance envi-
ronment and will look at a few other levels of testing: conformity and
interoperability testing, performance testing and the testing of security.

4.4 Testing a New Program

An imaginary test project is used to describe the step plan for a new
program.

Example 4.2: A test project

A test coordinator is asked to set up a test project that will be run
by one or more testers. The test coordinators responsibilities con-
sist of:

• Giving a release advice within the deadline
• Respecting the test department’s rules (i. e. the organization’s

test strategy)
• Regularly informing the test manager about the progress, the

status and the risks

In addition to his own testers (who fulfill the roles of test analyst,
test engineer and test specialist), the following people are involved
in the project: the project manager, the test manager, the analyst,
the developer, the administrator and the user representative.

The test coordinator decides to base his project on TestGoal. He
has little time and wants to be fully prepared. He can use the step
plan to explain the steps and their results to everyone involved.

48 4 The Approach

The scenario described in Sects. 4.4.1 to 4.4.6 indicates the steps that
are taken and the people who are involved. The products that are cre-
ated are printed in italics. The steps are described sequentially.

A detailed description is provided for each activity in Chaps. 6 to 21.
The following section describes which activities are included in which
step of the step plan.

4.4.1 Step 1: Goal

The first step in the test project is to determine the test assignment. To-
gether with the customer, the test coordinator maps out what the antici-
pated goal of his test assignment is and what the business wishes are.

This step gives the test coordinator enough starting points to define the
test strategy. Examples of starting points are the location of the test
base, the available standards, and the names of the stakeholders, who
will be informed throughout the test project and will be involved in the
decision-making.

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

1. Goal

Fig. 4.4 Goal

4.4 Testing a New Program 49

The Goal step consists of the following activities:

1. Customer
Indicates that test activities have to be carried out. The designated test
coordinator is asked to carry out at least part of the activities with his
team.

2. Test Coordinator
Examines the customer’s expectations, requirements and wishes and
formulates them in the goal description. He asks for the customer’s ap-
proval.

The step is concluded when the customer and the test coordinator have
agreed on the anticipated goal of the test project, and if the customer
trusts that the test coordinator understands the anticipated business goal.

4.4.2 Step 2: Approach

In the Approach step, the Goal described in the previous step is further
elaborated. The stakeholders are asked for their vision on the product
that is to be achieved. This results in a test risk analysis (TRA), which

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.5 Approach

50 4 The Approach

indicates where the risks are and what impact the changes can have on
the system. A budget and planning are created and the test strategy de-
fined. The aim of the strategy is to describe how testing can effectively
and efficiently contribute to achieving the goal. This is an assessment of
the costs, time and risks. The strategy indicates which system compo-
nents will be tested, how the tests cover the risks and areas of attention,
and how the test project will be set up. The stakeholders and the cus-
tomer are involved in drafting the strategy so they can indicate their in-
terests and gain trust in the approach. The test strategy is described in
the detailed test plan (DTP).

In addition to the stakeholders’ input, the generic test strategy or the
MTP are also used as starting points. Both documents contain guidelines
for all of the test projects that are run in the project or the organization.
For example, the test methodology that is to be used, the definition of
the test level, the organizational structure, the stakeholders and, for ex-
ample, the error-logging process. Using these guidelines as a starting
point enables the test plan to be reduced to a minimum. After all, every-
thing that is standard is already contained in the guidelines. Other input
for the detailed test plan consists of the already mentioned TRA, the test
budget and the test planning. Because these products must be created
with diligence, they are included in the step as separate activities.

The Approach step consists of the following activities:

3. Test Coordinator
Finds out whether the organization uses a generic test strategy and fa-
miliarizes himself with it.

4. Test Coordinator
Asks his test manager about the MTP and uses it as a framework for his
detailed test plan.

5. Test Coordinator
Approaches the stakeholders identified in the Goal description and asks
them to share their view on the anticipated goal. He uses the test tree to
perform a test risk analysis.

6. Stakeholders
Indicate that the test risk analysis correctly represents their interests.

7. Test Coordinator
Draws up the initial budget and planning and harmonizes them with the
customer. If the customer agrees, the test coordinator creates a detailed
test planning.

4.4 Testing a New Program 51

8. Test Coordinator
Uses the goal description, test strategy and test risk analysis to deter-
mine the approach for the test project, and describes it in his detailed
test plan.

9. Customer
Approves the detailed test plan.

10. Test Coordinator
Kicks off the project with his testers and the stakeholders. The test co-
ordinator explains the test plan and the used methodology, and high-
lights the most important points.

In principle, step 2 is concluded when the customer approves the de-
tailed test plan and the stakeholders indicate they trust the test approach.
The test design and the test environment can now be created.

4.4.3 Step 3: Design

The test approach was determined in the previous step. The testers can
create the test design according to the detailed test plan and the test

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.6 Design

52 4 The Approach

base. The purpose of the design step is to define the content of the test
cases and design the test environment.

The test analysts run a sanity check to determine whether the system
specifications are good enough. A thorough check is carried out to de-
termine whether the system design sufficiently defines the anticipated
goal so it can be used as a basis for test cases. This not being the case, ei-
ther the system specifications are improved or the test strategy modified.

Example 4.3: A detailed test case

The test coordinator wants to create a detailed test design because
the designed tests are expected to be frequently reused after the
system has gone live. To ensure a good reusability, it is important
that the test design has a clear structure that contains enough
detail.

The sanity check reveals that the system design contains little de-
tail. The documents cannot be used to elaborate the details of the
test design as planned. The test coordinator notifies the project
manager and points out the risks. He specifies that the handling of
errors and exceptional situations are poorly described, which
makes it difficult to determine how they should be tested. This in-
creases the chance of surprises arising during the test and reduces
the reusability of the tests. The request to improve the specifica-
tions is rejected. Elaborating the details of the specifications
would delay the planning, which is not desired.

After a number of meetings, it becomes clear that the project
manager will not budge. The test coordinator decides to change
his test strategy. The tests are less detailed in the new strategy. To
ensure that the test design still has sufficient coverage, the ana-
lysts and builders are involved. During information sessions and
reviews, test cases are developed that cannot be derived from the
system design. The analysts explain the design. The builders de-
fend the implementation choices they have made.

Additional time is reserved for the test in order to determine how
the tests were run. The test coordinator also expects that the test-
ers will encounter unforeseen situations. This means that more
time will be needed to fix errors. Because this will probably lead
to more bug fixes, additional time is also planned for regression
tests.

4.4 Testing a New Program 53

The project manager is given a new version of the test plan. He’s
not very happy that the planning has been extended. He is, how-
ever, happy that the test coordinator is willing to cooperate to
achieve the common goal. This is clearly visible, among other
things, from the way he builds bridges to the stakeholders. The
project manager also realizes that the builders will benefit from
the information sessions – discussing their implementation
choices with the analysts improves the code. The test coordina-
tor’s plan is well crafted and convincing, which is why he agrees
with the new strategy and approves the test plan.

As soon as the specifications support the selected test strategy, the logi-
cal and physical test designs are created. The test design defines the
tests that are necessary to determine whether the system requirements
are met. The tests also check the extent to which the risks that jeopard-
ize achieving the goal are actually realistic. Test results show where the
system can be improved so the risks can be reduced, which is why the
test design is written in such a way that the test results can be linked to
the identified risks.

The test data is also defined. The test data contains the data that is nec-
essary to run the tests and the data that is necessary to configure the test
environment.

Although the test environment is set up and configured in the fourth
step, the requirements the environment must meet are described here.
The requirements concern things such as the required software, system
components and possibly simulators and test tools, whether they benefit
the automated test or not.

The Design step consists of the following activities. The person who
carries out each activity is also indicated.

11. Test Analyst or Test Engineer
Runs a sanity check. Checklists are used to determine if work on the
test design can start. The conclusion is documented in the sanity check
report. Errors or specification issues are documented in the review log.

12. Test Coordinator or Test Engineer
Starts preparing the test environment. The test environment require-
ments are defined and the activities started to ensure that the test envi-
ronment is ready on time.

54 4 The Approach

13. Test Analyst
Uses the test strategy defined in the test plan to determine the test de-
sign techniques that are to be used.

14. Test Analyst
Applies the chosen test design techniques to the logical test design.
Possible errors or specification issues are added to the review log.

15. Test Engineer
Takes the logical test design and develops it into a physical test design.
The test data is also defined in this step.

This step is finished when all of the tests have been designed. Sec-
tion 10.4.8, Assuring the quality of the test project, also demonstrates
how stakeholders can be involved in the assessment of the test design so
they have an overview of and insight into the tests that will be carried
out, as well as into the set up of the test approach.

Experience shows that a test is frequently started as soon as the test en-
vironment and the test object are available. This can be a point in time
at which not all of the tests have been defined. Executing both steps in
parallel can save time, but resources can be a bottleneck.

4.4.4 Step 4: Set up

The aim of the Set up step is to prepare the test environment for testing,
which can only start if the test environment is well set up. The require-
ments for the test environment that are established in the design step are
used to purchase the required hardware and install the necessary system
components. If necessary, simulators or test tools that aid the automated
tests are also integrated. Once the system has been configured, the envi-
ronment is tested to determine whether it is suitable for the planned tests.

If the test is automated, test scripts will be part of the available test en-
vironment. Scripts that have already been written can now be tested in
the defined test environment. For an explanation on writing and imple-
menting scripts, see Chap. 16 Test Automation.

This step is finished as soon as the environment has been provided with
the version of the system that is to be tested. The smoke test report indi-
cates whether the tests can be run. A negative conclusion following the
smoke test can have various causes, for example, the system may con-
tain one or more major errors that make further testing impossible.

4.4 Testing a New Program 55

Experience shows, however, that the cause is often due to an error in
the system’s configuration or installation. After the cause has been
found and corrected, the smoke test is repeated.

The Set up step consists, among other things, of the below activities.
The person who carries out each activity is also indicated.

16. Test Engineer or Maintenance Organization
Sets up the test environment so that the test scripts can be implemented
and run.

17. Test Specialist (Test Automation Developer)
The test designs are used to create the test scripts used for automated
tests. The scripts can be recorded with the automation tool’s record and
playback function or coded manually.

18. Test Engineer
Configures the system and performs the smoke test. Checklists are used
to establish whether the test can be started. The conclusion is docu-
mented in the smoke test report. Errors or specification issues are
documented in the Error report.

This step is finished as soon as it has been established that the test
environment and the correct version of the test object are available. If

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.7 Set up

56 4 The Approach

automated tests are run, the tools should be integrated with the rest of
the test environment and tested.

4.4.5 Step 5: Execution

Once it has been established that the test environment is available, the
planned tests are run manually or automatically.

The test produces errors, which are documented. Each error is examined
and the urgency with which it needs to be solved determined. A new
version of the test object is made available at regular intervals. The test
team reruns the tests to make sure the errors have been solved.

The stakeholders are provided with clear information about the progress
of the test and the quality of the test object. The aim is to give a positive
release advice on time. The release advice describes the degree to which
the system contributes to the anticipated goal. A positive release advice
means that the system is considered suitable for the next phase. This
can be another test project or the roll out of the system in the live envi-
ronment.

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.8 Execution

4.4 Testing a New Program 57

Errors often result in changes to the system design. In such cases, the
test designs need to be modified as well. For the test project, this means
that the Design step has to be repeated. The tests are resynchronized
with the test base. If necessary, the test data, the test scripts and the con-
figuration are modified as well. During this activity, a check is run to
establish if the anticipated goal established in step 1 is still valid. If the
anticipated goal has changed in the meantime, the new insights are in-
cluded in the design activities. If a new installation or system configura-
tion is required, the Organisation step is repeated. The test is resumed
after the smoke test.

The Execution step consists of the following activities. The person who
carries out each activity is also indicated.

19. Test Engineer
Runs the described tests either manually or automatically. The tests are
aimed at testing new functionality, or are retests or regression tests. The
test engineer establishes the test results. Errors are documented in the
error report.

20. Test Coordinator
Delivers the test report and discusses it with the stakeholders. He gives
insight into the progress of the test project and into the quality of the
test object. Together with the stakeholders, he establishes whether addi-
tional measures are necessary to improve the progress or the quality in
order to ensure that the test project delivers the planned added value.

It is worth noting that the test report is created throughout the test pro-
ject. Experience shows that test execution is commonly followed by
several people. The number of stakeholders who will want to see the
test report will probably be higher than during the previous steps.

21. Test Coordinator
Decides, together with the project manager, if a new version of the test
object is necessary, and if yes, when. He ensures that he is informed
about the errors that have been solved in the new version.

Depending on the situation, a previous step in the step plan may have to
be repeated. If, however, a new version of the test object is not required,
the test coordinator can draw up the final test report.

22. Test Coordinator
Draws up the final test report which includes, among other things, the
remaining risks, recommended further activities and the release advice.
It is always difficult to determine when the test run is finished.

58 4 The Approach

The Execution step is finished once it has been established that the sys-
tem meets the majority of the defined requirements and wishes, at
which point a positive release advice is given. The test run can be
stopped even if it has been decided to ignore a negative release advice
and to proceed to the next phase. Chapter 18 Test Execution, discusses
the question: “When are we ready?”

4.4.6 Step 6: Assurance

After the test has been run, the test project is evaluated in the Assurance
step, and the products of the test project are handed over to the system
owner or manager.

The test project is assessed during the evaluation. The result and the
added value of the test project are studied and compared to the antici-
pated goal established in step 1. The process is then evaluated: which
things went well, which measures are necessary to prevent the errors we
made this time in future. The products are also assessed during the
evaluation. For example, the test set is evaluated to ensure that it can be
reused for a future test or regression test. Unnecessary tests are removed
in order to make the regression test set more efficient. Should the

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

Fig. 4.9 Assurance

4.4 Testing a New Program 59

evaluation establish that important tests are missing, the team considers
adding them.

The Assurance step consists of the following activities. The person who
carries out each activity is also indicated.

23. Test Coordinator
Evaluates the test project with the test team. The stakeholders are also
involved in the evaluation. All of the lessons learned are included in the
lessons learned report.

24. Test Engineer
Determines the regression test set for the next testing period.

The test project is finished in the last step of the step plan. The testware
is archived and is handed over to line management or the project or-
ganization so that they can reuse the products and the acquired knowl-
edge. The handover means that all of the goals defined for the test pro-
ject have been achieved. The customer discharges the test team.

25. Testers
Archive the testware and clean up the test archive.

26. Testers and Test Coordinator
Hand over the test archive to line management or the project organiza-
tion. The test team ensures that the receiving party knows what is avail-
able and that they can use the delivered products.

27. Test Coordinator
Asks the customer to discharge the test team.

28. Customer
Discharges the test team. This completes the assignment described in
the Goal description.

4.4.7 Goal (Information and Communication)

The focus on the goal and the test principles is embedded in each step
of the TestGoal approach. It’s not enough to center on the goal, it’s also
important to inform others about the degree to which the goal has been
achieved. Throughout the test project, we provide the customer and
other stakeholders with an overview of and insight into the project’s
progress. We inform them about the quality of the test object, about the

60 4 The Approach

risks that are jeopardizing the anticipated goals and about the progress
of the tests. This information is provided in the test report, which is
regularly updated and meets the stakeholders’ information require-
ments.

A lot of test projects use progress reports. A test report is written when
the test project is in its final stage. The test report is generally more
formal than the progress reports. Experience shows that this is the rea-
son why information is added to the test report that was not previously
included in the progress reports. Many a customer is therefore surprised
by a new context that sheds a different light on familiar data.

The test report that is used in TestGoal combines the familiar test report
and the progress reports into one report, which, from the start, contains
all of the information on which the final release advice is based. The fi-
nal version of the test report serves as a formal test report. This prevents
surprises arising at the end of the project. This approach is transparent
and builds trust step by step.

Release advice: ConditionalDashboard

Fig. 4.10 Example of a dashboard

4.5 Testing in a Maintenance Environment 61

At the beginning of a test project, that is, during the examination of the
anticipated goal, agreements are made about the test report. The content
of the test report changes during the project. At the beginning, for ex-
ample, there are no test results to be reported, and step-specific infor-
mation is only provided during the relevant step. Chapter 20 Test Re-
port, describes which information is relevant in which step of the test
project. But not all of the information is step specific; generic informa-
tion is also provided in each test report.

TestGoal recommends setting up a dashboard for the test reports. The
dashboard indicates the degree to which the business requirements and
wishes for the system have been tested and whether they are deemed
acceptable. The status of the remaining errors and the number of tests
that still have to be run provides insight into the degree to which the an-
ticipated goal is achieved. It also shows where the remaining risks are.
The dashboard provides all of the stakeholders access to the KPIs. The
KPIs and the graphics that are included in the dashboard are explained
in Chap. 20 Test Report.

4.4.8 Review and Acceptance

Quality assurance is an important component of any test project. Test-
Goal assumes that all of the products in the test project are delivered
according to the organization’s quality standards, which include review
and acceptance, as well as a good version management system. The
budget includes the time that is necessary for review and acceptance. In
the test report , we specify for each product whether it is ready, re-
viewed or accepted. Both measures ensure that quality assurance is
maintained and implemented. See Chap. 9 Test Budgeting and Planning
and Chap. 20 Test Report.

4.5 Testing in a Maintenance Environment

In contrast to writing new programs in a development environment, it is
not uncommon to run several short test projects when working on pro-
grams in a maintenance environment. Small changes are carried out as
operational tasks that do not require a project. This applies to the
changes in the software as well as to the test activities. The activities’
runtime is short, but the reuse of knowledge and testware is high. The
dynamics of a test project for a maintenance release are different than
those of a new development project.

62 4 The Approach

Example 4.4

A maintenance organization regularly produces maintenance re-
leases, which generally contain a number of corrective changes,
but can also be used to add or change system functions. The
change requests submitted by the users and/or the maintenance
organization are revised and approved for each release. The or-
ganization has a Change Control Board, which decides, based on
the impact and urgency of the change request, which changes will
be included in the next maintenance release. Accepted changes
are implemented and tested.

The test coordinator, who works in the maintenance organiza-
tion’s test department, is asked to test a maintenance release. The
test is run by one or more testers. The test coordinator must:

• Deliver a well-founded release advice on time
• Adhere to the test department’s rules (the organization’s

generic test strategy)
• Regularly inform the manager about the progress, status and

risks

In addition to his own testers (test analyst, test engineer and test
specialist), the following people are involved: the manager
(release manager or change manager), the analyst, the developer
and the user representative.

The test coordinator decides to set up his project according to
TestGoal. The step plan is used as the basis for all activities. All
of the products used and created for the maintenance release are
centrally available giving everyone involved access to and insight
into the products.

The below scenario indicates where the application of a step plan in
a maintenance environment differs from the application of a step plan in
a new development project.

Step 1: Goal
The runtime for a maintenance release is often shorter than for a new
development project. The changes are generally smaller, meaning that
the Goal description has to be in place quicker. If maintenance releases
are produced on a regular basis, the expectations, requirements and
wishes placed on the system and the test process are probably already

4.5 Testing in a Maintenance Environment 63

known. If they are the same for each release, it may be possible to use
and reuse a generic Goal description.

Step 2: Approach
Because of the maintenance release’s short runtime, the test approach
has to be put in place quickly. The advantage of the maintenance or-
ganization frequently producing maintenance releases is that it can use a
standard approach, which is usually described in the generic test strat-
egy. Because much of the standard test approach can be used for spe-
cific projects, the test plan can be reduced to the exceptions that apply
to a specific maintenance release.

A test risk analysis is created for each change. A standard estimate is
not sufficient. The stakeholders and testers meet to discuss to determine
the complexity of each change request and the impact it has on the sys-
tem. In this context, the test risk analysis is mainly used to determine
which system components are affected by the change. This is also re-
ferred to as an impact analysis. It is important that the test department
has knowledge of the business area the change is requested for. The test
risk analysis is used to estimate how changes have to be tested. The
thoroughness of the regression test is determined for each system com-
ponent. Components that have a greater impact run a higher risk and are
tested more thoroughly.

Step 3: Design
As opposed to new development projects, there is a lot of testware that
can be reused in a maintenance situation. When making corrective
changes, errors are removed from the code, but that doesn’t necessarily
mean that the test base has to be changed, which is why the tests can be
reused. The sanity check checks if this really is the case. Existing test-
ware is checked for correctness and completeness. The risk analysis and
sanity check provide information about the parts of the testware that
have to be checked.

For the new system components, new tests are designed based on new
or adapted parts of the test base. Except for the fact that the test base for
a single change will be smaller, the sanity check does not substantially
differ from that for a new development project.

Many maintenance organizations have a standard test environment for
maintenance and bug fix releases. In such cases, the requirements for
the test environment are much easier to create because all you have to
do is check if a specific maintenance release has additional require-
ments. This not being the case, the test environment can be used as is.

64 4 The Approach

Step 4: Set up
This step consists of preparing the test environment. At the same time,
changes are made to the existing test scripts or new test scripts are
added to the test set. In contrast to a new development project, the em-
phasis is not on defining new scripts but on reusing the already auto-
mated tests.

If a standard test environment is available, setting up the test environ-
ment is much easier, too. All you have to do is establish whether the
environment is available. Any changes that are needed to test the new
system components will, of course, still have to be made.

Step 5: Execution
The test consists of running the planned tests and analyzing the errors.
At the end of the process, a release advice is either given for each indi-
vidual change request or for the entire release.

Example 4.5: Phased testing

In the maintenance organization, testing is phased. Each mainte-
nance release is put through a number of test levels. After the de-
veloper has changed the code, he runs a module test, after which a
system test is run by the maintenance organization’s test depart-
ment. A module test and a system test are run for each function
that is changed.

These test projects are all related to one specific change. A re-
lease advice is given for each change to indicate that the change
has been correctly implemented and can be included in the main-
tenance release.

After the system test, a functional acceptance test (FAT) is run.
This test does not focus on individual changes, but on the entire
release. The FAT tests all of the functions’ integration. Business
processes are used to determine whether the system still supports
the operational processes, such as purchasing or invoicing.

Experience shows that, despite a thorough risk analysis and sys-
tem test, a change can still have an unforeseen impact. For exam-
ple, making a change to a database table for one function can
cause the screen that displays invoices not to work anymore. The
problem analysis reveals that it was overlooked that this screen
also uses the table. Or an outgoing message is rejected by the

4.6 Testing Conformity and Interoperability 65

interfacing system after changing the field length of an input
field. The validity check carried out by the interfacing system was
overlooked.

When there is no regression, the program is released to the next
test level after the FAT. The advice can be for the product accep-
tance test (PAT) or the chain test.

Step 6: Assurance
The evaluation of the test process has a different meaning in the main-
tenance organization than in a new development project. The work is
less unique than in a new development project and the process is carried
out regularly. This, however, does not make the evaluation less valu-
able. On the contrary. Because the same process is repeated at short in-
tervals, the evaluation may be even more important than in a new de-
velopment project. The evaluation can be dissociated from the
individual releases, for example, by doing periodic evaluations.

It is also important that the test set be regularly evaluated. The test set is
adapted based on experience gained during testing and the nature of the
errors found in the live environment. The regression test set is now
ready for the next maintenance release.

In the last step of the step plan, all of the testware is archived so that the
test department can use the modified and additional testware for a sub-
sequent maintenance release. In Example 4.4, the tests are run by a test
department, meaning that the team does not have to be explicitly dis-
charged because it will not be dissolved and is getting ready to test the
next release.

4.6 Testing Conformity and Interoperability

4.6.1 Introduction

For many systems, “fit for purpose” is more important than the extent to
which the system meets the system design criteria. Deviations to the
specifications are acceptable as long as they support the business proc-
ess. This is different for standard systems, which must meet the speci-
fied standards in order to be “fit for purpose.”

66 4 The Approach

Conformity and interoperability tests are run to demonstrate that the test
object works according to the defined requirements and that it works
with or can be connected to other systems. It is often not possible to test
the test object against each target system, which is why the test checks
whether the test object meets the defined standards. The standards dic-
tate the criteria the system has to meet. There are a number of organiza-
tions that determine standards: the NNI (Nederlands Normalisatie Insti-
tuut), ISO (International Organisation for Standardization) and the
field-specific IEEE (Institute of Electrical and Electronics Engineers).
Governments and private companies can also define and impose stan-
dards, with or without the cooperation of other parties.

Conformity and interoperability tests are often run on systems that work
in a cross-organizational infrastructure where several suppliers deliver
products that have to work in the infrastructure. An example is quad-
band cell phones, which have to be able to be used in different coun-
tries. Manufacturers will do everything to meet the defined standards so
consumers can use their phone in any country without problems and the
owner of the infrastructure can guarantee a service of constant quality.

Because embedded software systems are produced and distributed in
large numbers, it is particularly important that they meet the defined
standards because the products are often out of reach for the mainte-
nance engineer, making it difficult to correct errors. This applies to cell
phones as well as to bank cards. If a bank card does not work according
to the standard, there is a big chance that interoperability problems will
occur. Vacationers do not want to discover at their destination that they
cannot use their bank card in local ATMs. Correcting an error in a bank
card is a very costly activity, especially if the bank has to recall the is-
sued cards. Banks run the risk of damaging their image, which is why it
is important that such situations are prevented. It is extremely important
to have an unambiguous standard, such as the EMV standard, and a re-
lated test set with good coverage.

The third situation in which conformity and interoperability play an im-
portant role, is in a Service-oriented Architecture (SOA), where generic
functionality is packaged as services. The services do not have a user
interface but are called by different applications. Standard messages are
used to exchange services through an Enterprise Service Bus (ESB),
which translates message formats, routes the messages and converts the
message protocols. Translation layers are necessary because the seman-
tics and syntax of the exchanged information can differ per system.

The idea behind SOA is that business processes are continually subject
to change. A flexible IT infrastructure is necessary in order to support

4.6 Testing Conformity and Interoperability 67

the business processes properly. In an SOA, generic services can
quickly be combined into new applications, providing the services in-
teract well. This is achieved by applying various open standards, such
as WSDL, SOAP, XML and UDDI. In an SOA, business processes are
defined by the order in which the services can be called. This is called
“orchestration.” To reduce the number of errors while testing the busi-
ness processes, the individual services are thoroughly tested before they
are integrated. The test not only focuses on functionality, but also on
conformity and interoperability [van Es, et al, 2005] [Ash, 2006].

The above examples enable us to conclude that conformity and interop-
erability tests are often run to test functionality at the interface level and
the communication protocol level.

4.6.2 Applying the Step Plan

The test process for conformity and interoperability tests does not differ
substantially from the other test levels described in this book, which
means that the TestGoal step plan can also be applied to them. There
are, however, a number of differences that need to be highlighted.

Focus of the Activities
In new development projects, a relatively large amount of time is spent
on devising the approach and developing the test cases. For conformity
and interoperability tests, the Approach and Design steps in the Test-
Goal step plan are not given much attention. The main focus is on the
Set up and Execution steps. This is due to the fact that conformity and
interoperability tests are often repeated for different systems. With one
test set, different systems from different suppliers can be tested against
the standards. This automatically shifts the focus of the activities from
“devising” to “using.”

In new development projects, the design and test design are often cre-
ated in the same organization, stimulating communication between the
disciplines. Organizations that run conformity and interoperability tests
are often not involved in determining the standards. Indeed, some tests
are even dictated by the standards organizations. In this case, the party
running the tests limits itself to scripting and running them.

Test Automation
Conformity and interoperability tests are very suitable for automation
for a number of reasons.

68 4 The Approach

• Stability of the Standards
Standards do not change very often. In new development projects,
changing requirements have to be taken into account and a lot of
time spent maintaining the test design. Because the standards are so
stable, the conformity tests are easy to maintain and automate.

• Repeatability
Test automation guarantees that each product is tested in exactly the
same way. This adds value to a declaration of conformity and to a
quality mark or certificate.

• Stable Test Environment
Environments in which standards are applied generally have a stable
infrastructure. This makes it possible to create a test environment
that requires little to no configuration for each of the tested systems.

• Technical Necessity
As previously concluded, conformity and interoperability tests are
often run on interfaces and communication protocols. Their technical
nature and lack of a user interface require automation in order to test
them efficiently (see also Chap. 16 Test Automation).

Solving Errors
In general it can be said that merely recording findings has little added
value. Value is only added if the findings are also processed. This is dif-
ferent for conformity and interoperability tests because they only spec-
ify where the test object deviates from the standards. Test labortories, or
test labs, that offer conformity and interoperability tests as a service run
the required tests. They report the results and indicate whether the stan-
dard was met, and if not, for which points it wasn’t. The supplier is re-
sponsible for analyzing and solving findings. The supplier also decides
if and when the modified product is submitted for retesting. Although
the tester is less involved in the development of the system, this level of
testing can still be result driven. Here, the added value is found in:

• Thorough and objective testing against the standards
• Clear and unambiguous reporting about the findings
• Recommending how the standards can be met

Multi-level Testing
In addition to software tests, conformity and interoperability tests also
comprise tests for the hardware and the more technical aspects of a sys-
tem. The standards dictate requirements at several levels alongside the
software: physical, electronic, data transmission, protocol, and so forth.

4.6 Testing Conformity and Interoperability 69

All of these aspects are included in the test to ensure that a declaration
of conformity is obtained.

Test Risks
The set of conformity and interoperability tests that is required for a
product can depend on the product’s specific settings and configuration,
in which case the selection of tests is not necessarily based on the risks.
When submitting a product for testing, the supplier informs the test lab
of its product’s specific settings and configuration. This he does, for ex-
ample, in the form of an Implementation Conformance Statement (ICS).
In this case, the test lab does not design its activities and their focus ac-
cording to a test risk analysis, but according to the ICS.

4.6.3 Certification Tests

Certification tests are conformity or interoperability tests that are car-
ried out with the aim of obtaining declarations of conformity, which are
paired with legal and other liabilities.

When conformity or interoperability tests are successful, the product is
awarded a quality mark or quality certificate. This quality mark or qual-
ity certificate is awarded by an official authority that also supervises the
test. In some cases, the tests may only be run by a test lab that is accred-
ited by an official authority. The supplier of a certified system can
demonstrate that he meets the standards and their associated responsi-
bilities. This enables the supplier to guarantee that the system works
correctly with other systems. This builds trust.

Example 4.6: A credit card

A large bank issues credit cards to its customers. The logo on the
card guarantees optimal ease of payment. The bank emphasizes
that the customer can use the card anywhere in the world and
does not need to worry about being able to access their money.

In order to meet these expectations, every card the bank issues
has to work in every ATM that bears the card’s logo. To this end,
a number of banks have developed a common standard for ATMs
and cards. If the standard is met, the goals of the logo will have
been met, and the card will work in any bank’s ATM.

70 4 The Approach

An independent certification authority was established to test the
credit cards and their functionality in the ATMs. The authority
has translated the standard to a solid test set, which was validated
by the bank. A foreign branch of the bank can only issue a credit
card or introduce a new ATM if the conformity or interoperability
tests are successful.

The certification authority developed a standard test approach to
test credit cards and their functionality in the ATMs. The ap-
proach is based on experience gained from previous test projects.
The use of test tools and simulators enable the cards and the
ATMs to be certified independently of each other. During the
sales cycle, the certification authority explains its approach to the
customer, and how the results and findings will be communicated.
Because the authority’s testers are familiar with the test approach,
the preparation time is minimal. As a result, testing can start as
soon as the test object has been delivered.

For some critical systems, the official certification tests have to be suc-
cessful before the system can go live. A supplier of such systems has to
have a certificate, or several sub-certificates, in order to market the
product. Sometimes a certificate is only granted if the supplier has ob-
tained all of the required sub-certificates by running, or contracting
someone else to run, the tests at various test labs.

For important certificates, the way in which the tests are run is subject to
requirements that are imposed by, for example, the government or an
umbrella agency. Certification tests are therefore run by specialized test
labs. Before a test lab is allowed to run official certification tests, it has
to be accredited. In order to obtain the accreditation, the test lab first has
to demonstrate, by means of an audit, for example, that the requirements
of the certifying authority have been met. In order to keep the accredita-
tion, the test lab is periodically reassessed. In the Netherlands, the Dutch
Accreditation Council controls the test authorities. At the international
level, it has been agreed that each country have such an authority, which
also has to meet the specified requirements.

Less important certificates have less strict rules. Organizations can de-
fine their own set of requirements, like the banks in Example 4.6. In this
example, the cooperating banks are the authority that draws up the re-
quirements the test lab has to meet in order to be accredited. In some
cases, the product supplier runs the tests and submits the test results and
required reports to the certifying authority for approval. The certifying

4.7 Testing Performance 71

authority examines and checks the test report . If all of the requirements
are satisfied, the authority grants approval in the form of, for example, a
quality mark or a quality certificate. In some cases, the product supplier
can grant itself the certificate after running the required tests. By doing
this, however, the supplier accepts legal liability if it can be proven that
the tests were not run correctly.

As the above shows, certification tests can lead to official declarations
of conformity in a number of ways. The way in which conformity is
confirmed depends on the requirements that apply to the product and
the involved organizations. It is important that recognized test labs run
the tests and that the labs are controlled according to established stan-
dards. This is the only way to guarantee the trustworthiness and usabil-
ity of a declaration of conformity.

4.7 Testing Performance

4.7.1 Introduction

An important aspect of the quality of an IT system is its efficiency.
System efficiency is defined as the degree to which the system is able
to deliver the right performance, depending on the number of resources
used under the specified conditions [ISTQB, 2005]. A common de-
scription of the performance question is: “If a lot of users are using
the system, will it be fast enough?” Performance tests are used to
determine the system’s efficiency and to answer the performance ques-
tion. Performance tests are specially developed to test efficiency and
are run to demonstrate that the system responds well to long and
intensive use.

Below is a popular definition of performance testing:

Performance testing is the validation of requirements with respect
to time and speed and the use of a specific information system’s
resources [Pol et al 1999] [Siteur 2005].

Performance tests are very important, especially when the system is ex-
pected to have a large number of users. This is demonstrated by, among
other things, a study that was conducted by Akamai and Jupiter Re-
search in 2006. The study concluded that the average visitor of a Web

72 4 The Approach

store will wait no more than four seconds for a Web page to load. If the
page takes longer to load, the user leaves. The study also found that
one-third of the Internet users who have a bad experience with a site
never return. Three-quarters of the visitors indicated that they would
probably not buy anything from such a site [Akamai 2006]. A slow
Web site can damage the company’s reputation and result in signifi-
cantly lower sales. That’s why it’s very important to make sure that the
system has a high enough efficiency. The aim of performance testing is
to provide timely insight into a lack of performance and to produce reli-
able results.

This not only applies to Web-based systems. In general, it can be said
that the users’ acceptance of a system depends partly on its perform-
ance. If users find that the system they need to work with is slow, they
will either completely ignore it or declare it as not usable. Systems that
do not reach the expected performance level are generally not usable.

With a view toward the anticipated business goal, performance is taken
into account in the design, the development and the testing. This starts
by defining the performance requirements. The results of the perform-
ance tests are used to make a statement about the degree to which the
requirements have been met and the likelihood that the system will con-
tribute to the goal.

4.7.2 Applying the Step Plan

The performance test process is not substantially different than the other
test levels described in this book. The TestGoal step plan can therefore
be applied, under consideration of the below.

Performance tests can be run during the entire software development
project. In practice, however, performance tests are mainly run later in
the project as part of the acceptance test because a representative test
environment is needed. The live environment’s configuration and
hardware are often unknown until late in the project. The live environ-
ment cannot be simulated until its configuration and hardware have
been determined. Another reason is that the performance is best run on
a functionally correct system, which is why performance tests are often
run only after the system test or FAT. Although these are valid argu-
ments, it is wise to run the performance tests as early as possible. The
first performance tests could be run during the integration of various
components, that is, during the integration test. Performance problems
can have deep architectural causes [Anderson 1999]. The later these

4.7 Testing Performance 73

causes are detected, the harder and the more expensive it will be correct
them [Boehm 1981].

Experience shows that the performance requirements are often not
available or are incomplete. Performance tests frequently turn into per-
formance measurements and end up as measurement results rather than
in a release advice. The measurement results need to be analyzed after
the test has been run. The stakeholders can use the outcome of the
analysis to say how they rate the measured performance.

Improvement actions may have to be performed on the test object. Such
improvements are often implemented by the multidisciplinary team that
was involved in the measurements and the optimization of the perform-
ance. The performance tester works with the team’s analyst, IT architect
and builder. After the improvements have been implemented, the team
provides insight into the effect of the improvement actions by repeating
the tests.

The above shows that it is difficult to specify the quality of the test ob-
ject in the test report . This is why an additional report is often created,
which indicates how the measurements were made, what the measure-
ment results are and how the performance can be improved.

The results of the performance tests are used to improve the system, but
they also have another use. The quantitative character of the test results
is suitable for service level agreements (SLA). The results give an indi-
cation of the performance, which can be used as a limit value in the
SLA.

4.7.3 Test Design Techniques

Performance testing also tests the system’s response times. Different
terms and test notions are often used to describe the same thing. To en-
sure clarity, the following notion is used in TestGoal.

The term performance testing is a general notion or collective
term for the testing of response times [Siteur 2005].

In performance testing, the following test design techniques are distin-
guished:

74 4 The Approach

Load Testing
Determines the optimal processing time at a representative system load.

Stress Testing
Determines the maximum load the system can bear and provides insight
into the dependency between the load and the processing time.

Reliability Testing
Demonstrates the system’s reliability by letting it run under a represen-
tative load for a longer period of time.

Concurrency Testing
Demonstrates the system’s reliability by establishing that the various
processes do not have a negative influence on each other.

Each test design technique has its own focus, and each test design tech-
niques enables different bottlenecks to be found. The different test de-
sign techniques enable performance testers to look at the system in dif-
ferent ways. The last two test design techniques focus on the
“reliability” aspect, but they can reveal problems that can have conse-
quences for the response times and hence also say something about the
efficiency. This is why these techniques have been categorized as per-
formance tests. In addition, these test design techniques use the same
scripts and tools. A tester who is running load and stress tests can often
run the reliability and concurrency tests with little additional effort.
This is an efficient way of obtaining information about how the system
works.

4.7.4 Test Tools

Test tools are indispensable in performance testing. Performance testing
consists of running a large number of transactions over a longer period
of time, making it impracticable to run the tests manually.

Performance test tools monitor the test object under various usage con-
ditions and report on its behavior. The tools are often based on auto-
mated tests [ISTQB, 2005].

Tools are used to create a heavy load. The load is determined on the ba-
sis of the performance requirements or the expected use. Performance
tools enable profiles to be created based on parameters. Examples of pa-
rameters are the number of simulated users, the number of repetitions in
a test, and a specific period within which the tests are run in cycles.

4.7 Testing Performance 75

Fig. 4.11 Results of a performance test run on a Web application using the open source tool
System Testing Architecture (OpenSTA). The main screen displays the measurement data, the
load imposed and the measured transaction time. It is clearly visible that the transaction times
increase with the number of users using the system.

Tools are also used to monitor the usage of system resources, such as
the processor. Monitoring the used system resources enables us to de-
termine the breaking points or bottlenecks. In addition, performance
tools generally produce a lot of measurement data, which is stored in a
database or written to log files. Performance test tools can analyze and
graphically display measurement data.

Performance tests are characterized by a lot of measuring and calculat-
ing. Due to the strong technical nature of the tests, we see performance
testing as a separate specialism.

4.7.5 Dependencies

When assessing the results of the performance test, it is important to
know to which extent the results are representative for the live envi-
ronment . In order to obtain representative results, it is important to run

76 4 The Approach

the test in an environment that closely resembles or is identical to the
live environment. In many organizations, the acceptance test environ-
ment is used because it simulates the live environment best. There are,
however, a number of other factors that influence the similarity between
the two environments that a performance tester will have to be aware of
and include in the test design, the test environment, the test itself and
the test report. Below are examples of such factors:

• Test Configuration
The test configuration must be as close to that of the live environ-
ment as possible. If it differs, the impact of the difference will have
to be included in the test results.

• Operational Load Profile
A load profile will have to be created based on the users using the
test object and the transactions they will be running. Determining the
frequency of use and of the transactions will ensure the system load
is simulated as accurately as possible.

• Batch Transactions
The operational profile is used to simulate transactions that occur in
a test session at a specific point in time. Batch transactions enable
the transactions to be simulated as accurately as possible.

• Non-intrusion
When the test tool and the test object are in the same configuration,
the test tool will influence the performance of the test object. To
eliminate these effects, a test should be created as non-intrusively as
possible.

• Test Data
There must be enough test data so that advanced queries can be run
and considered in the performance results.

• Database Size
In addition to sufficient test data, the database size will have to be
included in the performance test. Queries run faster on smaller data-
bases than they do on larger databases. It must also be taken into ac-
count that live databases can grow quickly.

• Indirect Influences Additional Software/Hardware
The test environment will not contain any other systems that influ-
ence the test configuration. When presenting or assessing the per-
formance, one must take into account that users will probably be us-
ing other software alongside the test object, which can influence the
performance or that the hardware will also be used for other ends.

4.8 Testing Security 77

When one or more factors need to deviate, the deviations will also have
to be considered in the test results. Factors such as error analysis and
significance will also play a role (see Sect. 12.6.8 Load testing). All of
the factors will have to be mapped before a reliable statement can be
made about the performance.

4.8 Testing Security

4.8.1 Introduction

One of the most important technical challenges nowadays is to produce
secure software as security is the key limiting factor in deploying
information technology. Security testing can help to build a secure
application.

It is quite hard to give a definition of security testing that covers this
term completely, as security testing encompasses a wide area. A general
definition would state something like: the process of determining to
what extent a system as a whole secures confidentiality, integrity and
availability of information. Here, a system refers not just to an IT sys-
tem, but also to procedural and organizational components. Confidenti-
ality is the prevention of intentional or unintentional unauthorized dis-
closure of contents. Integrity concerns the guarantee that the message
sent is the message received and that the message is not intentionally or
unintentionally altered. The concept of availability ensures that infor-
mation is accessible. [Hansche, 2003]

The primary goal would be to achieve a satisfactory level of confidence.
This way testing increases trust in the system and helps to prevent dam-
ages caused by an insufficient security level. It makes the current sys-
tem more secure by mitigating current risks and it assists in future im-
provements of the system’s security.

4.8.2 Approach

Within security testing, both hacking and testing principles come to-
gether. The security tester therefore should have knowledge of both
testing and security, a strong focus on detail, and a wide knowledge of
current trends in security.

78 4 The Approach

In order to find security errors, the security tester should try to adopt the
mindset of a hacker who is trying to break the application. The hacker is
assumed to have access to all system components that are not protected
by authentication rules. Creative thinking can help to determine which
set of data may cause a system to behave in an insecure way, or as-
sumptions made by developers that can be exploited [OWASP].

As well as being creative, a security tester should have a broad knowl-
edge of the best practices and known threats. He should also have
knowledge of the organization’s security policy. Even scenarios of low
probability should be tested.

Security Testing Terminology

Threat: An environment or situation that could lead to a potential
breach of security. Examples of threats: Phishing, Worms, Vi-
ruses, Power loss and Fire.

Vulnerability: An existence of a software flaw, logic design, or
implementation error that can lead to an unexpected and undesir-
able event executing bad or damaging instructions to the system.
Examples of vulnerabilities: Using insecure coding techniques
and Insufficient input validation.

Exploit: A defined way to breach the security of an IT system
through a vulnerability. Examples of exploits: Cross site scripting
(XSS), SQL injection and Buffer overflow.

Attack: Occurs when a system is compromised based on a vulner-
ability.

Security analysis: Looking for and prioritize threats.

Target of evaluation: System, program, or network that is the
subject of a security analysis or attack. The test object.

When it comes to testing, it’s all about the details. This especially goes
for security testing as the smallest leak often leads to the biggest security
threat. A minor exploit which individually does not represent much risk,
may lead to a security breach when aggregated. In security testing, the
structured method of software testing should be followed. By remaining
well-organized and persistent, the executed tests will give information
about risks, weaknesses, information leaks and vulnerabilities. The

4.8 Testing Security 79

challenge for a security tester is to translate this information into clear
test reporting. Stakeholders are given insight into the domains where not
only the anticipated goal is endangered but also into the domains where
the systems security can be trusted.

4.8.3 Applying the Step Plan

Taking the previous remarks into account, the essentials of the test
process, as described in the TestGoal step plan, can be adopted for secu-
rity testing as well.

In step 1, the Goal description is being formulated and approved by the
customer. Since gaining access to the company’s operational systems is
illegal in most countries, it is important to have explicit authorization.
This authorization can be included in the goal description, or otherwise
in a separate contract.

Security testing is like any other test level; it is a risk-based activity.
Step 2 of the step plan describes 1D and 2D TRA. It is the 2D TRA that
is especially useful for determining the focal points for the security
tests, as this is likely to detect non-functional risks at a later stage that
are not addressed in the test base.

The test design techniques used in the third step of the step plan (de-
sign) are also applicable for security testing. However, Security tests
don’t usually take into account the “normal” way of using the system.
For example, the security tester will test a web server using the client
(like a browser), but will also try to gain access through the back door,
just as a malicious user will. Section 12.7 describes how the traditional
test design techniques can serve this purpose.

While executing the tests, a lot of creativity is required from the tester.
Since our aim is to provide structured information on the security
threats, a physical test design is used. However, the test design will al-
low the tester some degrees of freedom, in order to explore the systems
weaknesses.

During test execution (step 5), test reporting is done like in any other
test project. One should realize that security testing is an ongoing
process, as the environment in which the tests are performed is con-
tinuously changing. Hackers keep finding new ways to exploit weak-
nesses. It is the responsibility of the security to make the customer
aware that a security test represents a snapshot of the system: it pro-

80 4 The Approach

vides a profile of the system concerning known vulnerabilities, known
weaknesses and known configurations at that time [Herzog]. The secu-
rity level of the system alters as soon as changes are made to the sys-
tem or its configuration. Therefore the used configuration is included
in the test report. It should list the configuration of the system, the
versions of test tools being used and, of course, the date when the
security test was performed.

The ISO 9126 standard contains several quality attributes that encom-
pass security related items (e. g. performance testing, maintainability,
etc). When security is a main asset of the business, the ISO model is in-
sufficient. In this case security is an attribute for itself.

CISSP, which stands for Certified Information Systems Security Pro-
fessional, is a leading certification for security professionals. Within
CISSP ten domains are defined that indicate how broad the field of se-
curity testing really is. All these domains together are called the Com-
mon Body of Knowledge (CBK). The CBK can act as a knowledge
base for the security tester. The ten domains are:

• Information Security and Risk Management
• Access Control
• Telecommunications and Network Security
• Cryptography
• Security Architecture and Design
• Operations Security
• Application Security
• Business Continuity Planning and Disaster Recovery Planning
• Legal, Regulations
• Compliance and Investigations and Physical security

For each domain security tests can be set up.

Testing security should be organized as a separate test project, thus en-
suring that the security tests take place at all test levels.

For large projects, security is often organized as a separate test project.
The Test coordinator has the responsibility of ensuring that all security
related test activities are aligned. To do so, he will assume the responsi-
bility of embedding the security tests in the master test plan. He and his
team will take care of the preparation and execution of the tests, as well
as making recommendations for improvements. These later often show
to be indispensable as the security tester is often the only person skilled
enough to analyze and provide solutions for security exploits at the
client’s site.

4.8 Testing Security 81

Usage of automated and specialized tools are necessary when perform-
ing a security test, as testing against known vulnerabilities by hand
would be highly inefficient.

As for the domains, a suggested order in testing security is: first review
compliance to legislation and the organization’s regulation and policy;
second, check configurations of security measures (i. e. firewall); third,
use automated tools to uncover known vulnerabilities; and finally, com-
bine creativeness, best practices and knowledge of known threats to
produce and execute a set of test cases.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_5, © Collis B.V., Leiden, The Netherlands, 2008

5 Getting Started

The previous chapters briefly described the whole test process for the
different environments and different test levels. A tester’s mindset and
expertise were also discussed. The following chapters describe the test
process step by step and look at each activity in the TestGoal approach
in detail.

Chapters 6 to 21 discuss the six steps in the step plan. Each step’s aim,
activities and deliverables are explained on a separate page between the
chapters.

To make this practical part of the book accessible to as broad an audi-
ence as possible, each activity is described in a separate chapter. The
activities are described in the same order in which they are carried out
in the step plan. This makes it a useful quick reference guide for testers.

St
ep

 1
 –

 G
oa

l Step 1 – Goal

The first step, Goal, is central to the step plan. In this step, the antici-
pated goal is assessed. The expected results of the test project are estab-
lished and the business goal defined. Understanding the anticipated
business goal helps the test coordinator organize his test strategy in
such a way that the system’s real success factors are tested.

The Goal step consists of the following activities and products:

Activity Product

Goal assessment Goal description

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_6, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 1
 –

 G
oa

l 6 Assessing the Anticipated Goal

6.1 Introduction

Before a test project starts, the stakeholders usually have an idea of the
test activities and specific expectations concerning the result. When the
project starts, it’s important for the test manager or test coordinator to
know what the actual test assignment consists of and what the expecta-
tions are. The first activity in the step plan focuses on mapping out the
expectations and assessing the anticipated goal. This activity’s deliver-
able is the Goal description.

The Goal description is sometimes compared to the project brief (the
project proposal) used in the PRINCE2 method [Hedeman, 2000]. The
project brief describes in summary what the reason for the project is. It
also describes, among other things, the business case and the quality
expectations. The project brief is written by the customer and the pro-
ject manager, and defines the scope of the project to be started.
A known risk in the use of the project brief is that the project manager
is not always involved in its creation. Consequently, he does not always
have insight into the project’s expectations. This is one of the reasons
why the project manager often uses the project brief to reduce his re-
sponsibilities and to keep problems outside of the project. In practice, it
is not uncommon that project managers protect themselves by hiding
behind the project brief [ZBC], [Steenberg, 2005].

The assessment of the anticipated goal is a relatively small, but ex-
tremely important step that forms the core of TestGoal. In contrast to
the projects themselves, this step focuses not only on the formulation of
the assignment, but especially on understanding the goal the organiza-
tion wants to achieve. The Goal description establishes the agreements

88 6 Assessing the Anticipated Goal

St
ep

 1
 –

 G
oa

l

between the customer and the test coordinator. Clear agreements are
important, but the Goal description should not be used to protect the test
coordinator. The Goal description is defined to gain a clear understand-
ing of the real reason for the project. What are the business goals and
what are the anticipated effects the project will have? It is important
that we as testers understand how we can contribute to these results
with the testing activities.

6.2 Aim of the Assessment

At the beginning of a new test project, the first activity is the assess-
ment of the goal to be achieved. A description of the assignment may
already exist, for example, as part of the proposal or the customer’s re-
quest for resources. If a description is not available or leaves doubts
about the anticipated goal, the test coordinator will have to create one
himself. In either case, the test coordinator has to communicate with his
customer and get a picture of the following points:

The Anticipated Goal
As we saw in Sect. 1.2, the business goals are translated into system
specifications in a software development project. A common assump-
tion is that if the system meets the specifications, the business goals will
have been achieved. The system requirements will quickly take a cen-
tral place in the assessment of the anticipated goal. After all, the test as-
signment will often be summarized as: “Demonstrate that the system
meets the system requirements.” The power of TestGoal is that it in-
cludes two other goals: the anticipated goal of the business and of the
test project itself.

In many cases, more is needed to achieve the business goals than the
modification or creation of an IT system. The business processes, too,
will have to change, and the users will have to be trained – they are the
people who will have to work with the adapted business processes and
the adapted system. It’s important to realize that the goal of the soft-
ware development project is only part of the total operation.

A test project also has an anticipated goal of its own. The test project
will have to provide insight into the quality of the system. In addition,
the test project will also be evaluated based on the way in which this in-
sight is provided and the deliverables the project yields. These goals
also have to be taken into account.

6.2 Aim of the Assessment 89

St
ep

 1
 –

 G
oa

l

The Reason and Project History
In addition to the anticipated goal, the reason for the project and the
project history can provide useful information. Think of issues and poli-
tics that may have played a role; they also often provide information
about problems the organization is trying to solve, as well as about
common pitfalls.

Example 6.1: Project history

During the assessment of the anticipated goal, the test coordinator
questions the customer about the reason for and the history of the
project. The customer explains that similar initiatives had been
started in the past, before the company was reorganized. One of
the reasons why the last attempt had failed was because the users
had not been involved in the project. A system had been built, but
it didn’t tie into the workflow and was never completed. He ex-
plains that for this project, the users were consulted and their
opinions included in the current project approach. A user meeting
will be held once a month to discuss the most important system
issues. The test coordinator can use this user platform to involve
users in the test project.

The Assignment
While discussing the assignment, the customer describes what it con-
sists of. It is also wise to consider the customer’s expectations. The
success factors are also established insofar they have not already been
embedded in the anticipated goal. The success factors formulate the
points at which the test project is evaluated. In principle, they are the
customer’s answer to the question “When do you think the test project
is a success?” The test project is also delineated: which system or
system component will be tested? Has the test level been determined
or does the entire test strategy still have to be established? When secu-
rity tests need to be executed, explicitly ask for the customer’s permis-
sion to perform these tests. Gaining unauthorized access to the live
systems of a company is illegal in most countries, even if you are
a security tester.

The Expected Timeline and the Available Budget for the Project
and Test Assignment
For many test projects, a deadline and a budget will have been deter-
mined before the project starts, for example, during the creation of the
project plan. Experience shows that this happens in a lot of projects
without consulting the test expert. Regardless whether the tester

90 6 Assessing the Anticipated Goal

St
ep

 1
 –

 G
oa

l

believes the budgeted time and money is realistic, the customer believes
that it is. This budget is the starting point for our strategy and planning.

Reporting
During this step, agreements can be made about the progress report.
The test plan will define how progress is reported. In complex projects,
it can take a couple of weeks before the test plan has been completed. In
such cases, it is wise to agree on the way the progress will be reported
until the test plan has been completed.

After discussing the above-mentioned topics, the test coordinator cre-
ates the Goal description; this is the formulation of the assignment that
is used as the starting point for the further set up of the test project.
Note that the Goal description is a generic description that is no longer
than one or two pages. The next step of the step plan consists of defin-
ing the test approach that is needed to achieve the anticipated goal. Dur-
ing the creation of the test approach, certain assumptions may turn out
to be unrealistic. If, for example, it turns out that the initial timeline is
not feasible, the test coordinator will look for a solution together with
the customer.

6.3 Goal Description

The Goal description contains the following elements:

Project Name
The name of the project.

Anticipated Goal
A description of the goal that is to be achieved. Include what the busi-
ness goal is behind the decision to create a new application or adapt an
existing one. Also include what the expected added value of the test
project is.

Customer
Name of the person responsible for the test project.

Accepter of the Assignment
Name of the test coordinator or of the test department.

Scope
Description of the system to be tested (test object or SUT). Indication of
the system boundaries.

6.3 Goal Description 91

St
ep

 1
 –

 G
oa

l

Test Level
The test level that is applied to the system, for example, module test,
module integration test, system test, functional acceptance test, etc.

Expected End Date/Available Budget
Date on which the test project should be finished and the budget that is
available.

Task Description
Short description of the test assignment and the success factors.

Agreed Reporting
Agreement on how and at which frequency the results of the test project
are reported to the customer and the stakeholders. The report should
also contain the elements that are included in the test report (See
Chap. 20 Test reporting).

In the Connecta project (see Example 1.3), a new system is developed
that will replace a number of existing systems. The below text box dis-
plays the Goal description that the test coordinator wrote together with
his test manager.

Example 6.2: Goal description Connecta system test

Project Name
Conneta system test

Anticipated Goal
The new system will replace the five systems that are currently in
use. The functionality of these five systems will be integrated in
the Connecta module. The integration is expected to increase the
efficiency of data processing and reduce errors. The current op-
erational activities will be able to be carried out with fewer FTEs.
In short:

• The system will process data more efficiently
• The number of errors that have to be fixed manually will be

reduced
• Fewer FTEs will be needed to carry out the current operational

activities
• The project will ensure that new system works well with inter-

faced systems. The project will also ensure that the existing

92 6 Assessing the Anticipated Goal

St
ep

 1
 –

 G
oa

l workflows are adapted to the new situation and that the users
are trained.

• The test project makes a statement about the quality of the sys-
tem and the risks at the launch. The goal is to ensure that busi-
ness processes are not severely affected after the new system
has gone live.

Customer
Connecta test manager (Yasmin Hassouni).

Accepter
System test test coordinator (David Bloom).

Scope
Connecta module.

Test Level
System test.

Expected End Date/Available Budget
The chain test for the first increment is planned to take place be-
fore September 2007. The complete Connecta module has to go
live before November 1. There is enough budget for two testers
and 1 FTE test coordinator until December 1.

Description of the Assignment
Organize and run the system test. Demonstrate that the system
meets the system specifications and can replace the five existing
systems. The goal of the test project is to give a release advice for
the chain test, which will test the interaction between the systems.
The test project should also provide information as to whether the
new system will actually reduce the number of FTEs. David
Bloom needs to stay in touch with the UAT test coordinators (in
order to guarantee that the systems support the processes) and the
CT (next test level).
The system test:

• Indicates whether the system is of good enough quality to start
the chain test

• Indicates the extent to which it is realistic to expect that fewer
FTEs will be required

• Provides a documented test design that can be reused for future
regression tests

• Is run according to the guidelines in the generic test strategy

6.4 Information Gathering 93

St
ep

 1
 –

 G
oa

l Agreed Reporting
The meetings and reports will be defined in the DTP that David
will create. The test plan is expected to be ready in two weeks. It
has been agreed that until that time, David will e-mail a report to
Yasmin every Wednesday and Friday, which will include:

• The names of the people he has talked to
• The status of the products (WBS, planning, TRA and test plan)
• The bottlenecks and risks

The goal assessment enables the tester to familiarize himself with the
activities that we know will occur in the step plan. By gathering infor-
mation now, he will be able to quickly start with the test risk analysis,
the test budget and the test plan. The information he does not include in
the Goal description will be elaborated in the preparation phase of the
test project. Together with the goal description, this information is re-
peated in the test plan. The test plan is described in Chap. 10.

6.4 Information Gathering

The test coordinator starts defining the test approach as soon as the
Goal description is ready. The time needed to define the test approach
can be reduced if all of the relevant information is available. This
is why it’s useful to obtain the necessary information during the
assessment:

6.4.1 Product Development

Test Object
Which system has to be tested? What are the system boundaries? What
should the system do, what are the risks and concerns?

Tip: Use a graphic to indicate the system boundaries and their
relationships. For an example, see Fig. 10.01 Context diagram in
Chap. 10 Test Plan.

94 6 Assessing the Anticipated Goal

St
ep

 1
 –

 G
oa

l

Test levels
Which tests have to be run? For example:

• The test levels in the V-model: module test, module integration test,
system test, functional acceptance test, etc. (see Sect. 4.2 for an over-
view of test levels).

• The quality attributes (in Quint): will performance, usability and
security be tested as well as functionality?

• If the assignment is for one specific test level, how are the other test lev-
els handled? Who is responsible? Are all of the known risks covered?

Relationship with Other Systems
Are there external dependencies that can influence the progress or the
success of the test project, such as interfaces to other systems?

Development
How will the system be developed? Will specific techniques or devel-
opment methods be used? Will the program be developed in-house, or
will it be outsourced?

Maintenance
How will the handover to the maintenance organization take place? To
whom will the products of the test project be delivered and how will
they be used after the project?

Are there any relevant products the maintenance organization can make
available for the test project? For example, a regression test set from an
earlier project.

6.4.2 People

Owner of the Anticipated Goal
Who has the (biggest) interest in the anticipated goal?

Customer
If the customer is not the same person as the owner of the anticipated
goal, who is the customer? Are there any other parties who can be con-
sidered as customers, or as people who want to influence the goal, such
as external contractors, customers or users?

Stakeholders
In addition to the owner of the anticipated goal, more parties may have an
interest in the software development project or in the test project. Who
are they and what interests do they have? How can they be contacted?

6.4 Information Gathering 95

St
ep

 1
 –

 G
oa

l

Experts
Who are the experts, and in which fields? For example, the analyst who
can provide information about the design, or the senior employee who
has a lot of subject-matter knowledge. Can these experts be consulted
during the project?

Test Team
Has a test team been put in place? What are the team’s limitations?
What quality/knowledge/training does the test team have? Are there
enough resources to run the tests?

6.4.3 Guidelines and Documentation

Guidelines
Are there any project or organizational guidelines the test project must
adhere to? For example, a test methodology that is used: a master test
plan or requirements that are imposed by the umbrella QA policy. Also
check the organization’s security policies, and possible liability.

Tools
In addition to compulsory guidelines, an organization may have proce-
dures, standards or tools that can save a lot of time because they save
reinventing the wheel, for example, in the area of configuration, change
and error management. Does the test team have experience with these
tools and processes?

Documentation
What documentation is available and relevant? Have system acceptance
criteria been defined? Has the test base been defined? Is there a project
plan that defines everything that relates to the test assignment?

Terminology
Which terminology is used? Many projects or organizations have their
own definitions for seemingly familiar terms. Bear in mind that the
definition of a term may not be the one you’re familiar with.

With the answers to the above questions in mind, the test coordinator
should be able to create an initial picture of the test assignment. The test
coordinator also knows who he can approach for more detailed infor-
mation. The Goal description and the additional information create the
basis for step 2.

St
ep

 2
 –

 A
pp

ro
ac

h

Step 2 – Approach

The Approach step is based on the anticipated goal that was established
in the first step. The TRA and the available time are used to translate
the anticipated goal into a concrete test strategy. The product of this
step is a detailed test plan that includes the TRA, the planning and the
test approach.

The Approach step consists of the following activities and products:

Activity Product

Execute TRA Test tree
Test risk analysis

Budget test assignment Budget
Generic planning
Detailed planning

Determine test strategy Test strategy (in test plan)
Create test plan Test plan

St
ep

 2
 –

 A
pp

ro
ac

h

Step 2 Approach

In step 1, the anticipated goal was assessed and the test coordinator has
obtained the information that will help him create a good approach for
the test project. The test strategy describes how the test coordinator
will effectively establish whether the anticipated goal has been
achieved. In order to create the right test strategy, the following compo-
nents are combined into a consistent whole in the test plan:

• Goal Description: The Goal
The Goal description is the formulation of the assignment in which
the test project’s anticipated goal is defined.

• The Test Risk Analysis: Threats to the Goal
The TRA identifies the areas of attention for the test object and
estimates the risks for each of them. Because testing minimizes
the defined risks, it is important that the risks are mapped out and
weighed. As soon as it is known which risks jeopardize the antici-
pated goal the most, the test efforts can be aimed at minimizing
them. This also prevents spending time and money on things that
do not contribute to the goal.

• The Generic Test Strategy: Generic Testing Guidelines
The generic test strategy contains the standard guidelines for all of
the test projects the organization carries out. Think of the test meth-
odology to be used, the definition of the test levels, the organization,
the stakeholders and, for example, the error resolution process. Us-
ing these guidelines as the starting point means that the test plan can
be less elaborate.

• The Test Budget and Planning
The test budget and planning indicate how much effort the pre-
scribed test strategy will take and when the effort will have to be
made.

There is never enough time to test everything, which is why the antici-
pated goal, the established risks and the test depth deserve a close look
when establishing the budget and the planning. Choosing a different test
approach may save time, but it has to be justified by the test risk analy-
sis: which risks are not or are only partly covered by the tests? The bal-
ance between the three components determines the test project specific
test strategy. The optimal balance is determined by the result

St
ep

 2
 –

 A
pp

ro
ac

h

Result

Generic
Test Strategy

Test Budget
and Planning

Test Risk
Analysis

Detailed Test Plan
(test project-specific test

strategy)

The test strategy for the test project that is described in the test plan is
not autonomous, but has a relationship with the generic test strategy,
the test risk analysis, and the test budget and planning. These three
components are related to the anticipated goal that is described in the
Goal description. The balance between these four components deter-
mines the test approach that will be used for the test project.

The Goal description was discussed in Chap. 6. The next chapters dis-
cuss the test risk analysis, the generic test strategy, the test budget and
planning, and the detailed test plan, which contains the project-specific
test strategy.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_7, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 2
 –

 A
pp

ro
ac

h

7 Test Risk Analysis

7.1 Introduction

Most of today’s test projects are based on risks. In risk-based testing
(RBT), the test approach is determined by the risk the organization runs
when the system goes live. The scope and depth of the tests vary ac-
cording to the risk.
 The advantage of risk-based testing is that time is spent on and atten-
tion given to things that have added value for the anticipated goal
[Pinkster et al, 2004]. A test risk analysis is carried out to determine the
risks that jeopardize the anticipated goal. The insight provides a guide-
line for decisions that have to be made at various points during the test
project.

The TRA is used to determine the test strategy. There is rarely enough
time in a test project to test everything. The TRA can be used to set pri-
orities, i. e. indicate what the test activities should focus on. For exam-
ple, the test coordinator can use the TRA to determine which things will
be tested less thoroughly or not at all. The TRA supports the choice for
the test design techniques that are applied.

During reviews and smoke tests, the TRA can be used to ensure that
important components will be paid more attention than less important
ones. During testing, the TRA is used to establish the sequence in which
the tests are run. It is common to start with the most important tests be-
cause it increases the chance of finding the important errors quickly. It
also has the advantage that the most important tests will have been run
should the test be stopped prematurely. The risks are referred to in the
test report. The benefit of this is that the test report contains information

102 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

about things that appeal to the stakeholders, namely the risks for the an-
ticipated goal.

There are two types of TRA that can be used alongside each other.

1D TRA
The one-dimensional TRA determines the relative importance of the
test object’s various components. A functional decomposition is used to
create an overview of the functions the system should be able to sup-
port. The TRA defines which functions are important and which are less
important.

The system specifications or the requirements are used as input for the
1D TRA because they describe the functions the system should support.
The product of the 1D TRA is a list of these functions ranked by their
relative importance. The 1D TRA can be used to determine the test
depth for each function as well as the sequence of the tests.

2D TRA
The two-dimensional TRA maps out the threats to the anticipated goal.
For each threat, the chance that it really will occur and what its impact
would be are estimated.

The threats that were indicated by the stakeholders are used as input for
the 2D TRA. The product of the 2D TRA is an “impact x probability”
matrix in which each risk is positioned. The 2D TRA can be used to de-
termine which tests have to be run. This will often result in the testing
of non-functional quality attributes.

The advantage of the 2D TRA is that it is the more accurate of the
two TRAs and ties in best with the anticipated goal. The 2D TRA
maps out the risks for the business and stimulates testers to look
beyond the system specifications or the requirements. The test
risk analysis can reveal risks that were not addressed in the sys-
tem design. If the risks that were overlooked are discovered on
time, they can be processed in the design before coding starts and
thus prevent errors occurring early in the product life cycle.

In the testing world, risk-based testing is a household word. But there
are still a number of organizations that do not do it. Experience shows
that organizations have difficulty allocating the time and applying the
discipline required to carry out a 2D TRA. Not only does a 2D TRA
take more time than a 1D TRA, the customer might not appreciate

7.1 Introduction 103

St
ep

 2
 –

 A
pp

ro
ac

h

a process that questions the system design. Whether wise or not, there
are projects in which the assignment forces the system to be built ac-
cording to the design. The customer uses testing to demonstrate that the
system works according to the specifications and has no interest in
demonstrating that the design can be improved.

In these situations the 1D TRA is often sufficient. It is relatively easy
to do, is easy to understand and still provides clear starting points to
differentiate test depth. The 1D TRA helps determine the sequence of
the test and can be used to introduce risk-related thinking. When the
organization realizes what the advantages of risk-based testing are, it
can always move on to 2D TRA. In short: a 1D TRA should always
be done, and if there is room and time for a 2D TRA, consider doing
it as well.

Testing is the reduction or the removal of risks. The art consists of
choosing a strategy that provides insight into the real risks as efficiently
as possible. It is also important to be able to relate the test results to the
identified risks. The tester reports the test results during and after test-
ing. By specifying in the test report how testing has removed certain
threats, he demonstrates the added value of testing and indicates the is-
sues business management no longer has to worry about. Linking the
anticipated goal to the TRA in the test report gradually increases confi-
dence in the quality of the system. This is displayed in the below figure.

1D TRA

Test

Report

Goal

2D TRA

Fig. 7.1 The circle from goal to goal: The figure shows that the anticipated goal is
the start and end point of the TRA, testing and the test reports

104 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

The figure shows that the anticipated goal is the starting point for all
test activities. The TRA maps out which risks jeopardize the goal. The
TRA is used to derive the points that need the most attention during
testing. Testing itself is an activity that is carried out to examine the ex-
tent to which the risks are real. For example, if the tester is afraid that a
calculation error will result in the creation of wrong invoices, he can
test the calculation. He eliminates the risk by demonstrating that the
calculation does not contain any errors (see the discussion on the test
report). The tester relates the test results to the previously established
risks, and can thus state the extent to which he thinks the anticipated
goal will really be achieved.

In principle, it is not desirable to do a separate test risk analysis for each
test project because it’s not efficient. And because all of the activities
related to the development project should be aiming for the same goal,
the same test risk analysis should apply to all of the test projects. It is
therefore best to do an umbrella TRA that applies to every test project.
But sometimes there simply is no generic test risk analysis, and it’s not
possible to do an umbrella one either. This being the case, the test coor-
dinator needs to do his own TRA.

The next section describes how a TRA is done.

7.2 The 1D Test Risk Analysis

7.2.1 Introduction

To do a one-dimensional test risk analysis, a test tree is created by de-
composing the test object into functions and areas of attention. During
the test risk analysis, the relative importance is determined for each
branch of the tree. The result is a one-dimensional TRA matrix, i. e. a
list of the risks ranked by their relative importance. See Table 7.1.

The test risk analysis is done during a workshop that is attended by
various stakeholders. The stakeholders’ field expertise enables them to
identify the functions and areas of attention and assign them a priority.
The TRA is organized by the moderator, who also guides the group
through the analysis and processes the data at the end of the session.
The test coordinator is often the moderator.

7.2 The 1D Test Risk Analysis 105

St
ep

 2
 –

 A
pp

ro
ac

h

Table 7.1 A one-dimensional risk matrix for a navigation system

Risk category Risk area Relative importance

Critical Route calculation – Standard calculation
Navigation – Entering destination

270
150

High Route calculation – Find alternative
Accuracy
Navigation – Favorites list

117
99
80

Medium User friendliness
Route calculation – Route type
Extra – Traffic jam info
Performance
Navigation – Recent destination

65
63
45
45
20

Low Navigation – Home
Extra – Weather forecast
Settings – Audio
Settings – Maps
Settings – Standard

15
9
8
6
6

The 1D TRA consists of the following steps:

1. Identify stakeholders and kick-off
2. Establish the functions and areas of attention
3. Determine the relative importance
4. Data processing
5. Agree on the TRA

The steps are explained in the next sections.

7.2.2 Identify Stakeholders and Kick-off

It is likely that the project stakeholders were identified during the as-
sessment of the anticipated goal. This being the case, the moderator in-
vites them to do the TRA. In the best of worlds, the stakeholders will
represent a number of different disciplines. Different stakeholders
probably have different visions on the anticipated goal and the risks
[Thompson, 2004]. Involving various disciplines helps create a bal-
anced and well-considered risk assessment. The group of stakeholders
could be made up of, for example:

• The Customers
End-users, operators, business managers or system administrators

• The Builders
Analysts, system designers or programmers

106 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

• The Project Owners
Project managers or customer

After the participants of the TRA have been selected and invited, it’s
time to kick off the project. The moderator explains why the TRA is
done, how it works and what is expected from the stakeholders.

It is important that each party that is involved in the TRA is deemed
competent by the group he represents. This ensures that the participant
can make well-founded statements about the priority and that his as-
sessment will be accepted by his group. This may seem to be a trivial
issue, but it isn’t. Consider the following case:

Example 7.1: A Web-based application

The organization is building a Web-based application that enables
customers to place orders online. During the TRA, the project
leader indicates that the project has a rather short runtime. As a
result, more concessions will have to be made to the delivered
functionality. The participants agree that the part the customers
will be seeing cannot be compromised on. The Web interface
must be developed and tested with diligence. But the application
has another interface, namely the screens the employees will be
using to process the orders. During the TRA, it is agreed that the
screens have to work but that the user friendliness does not have
to be tested.

The user representative knows that his group will not be happy
with this decision. The fact that this interface will not have been
thoroughly tested may impact their work. Nonetheless, he agrees
with the decision because it seems to be the wisest and he knows
the users will respect his decision.

7.2.3 Determine the Functions and Areas of Attention

Before the moderator can assign priorities to the risk areas, he has to map
them out. This he does by creating a test tree. A test tree is a kind of mind
map in which each function or area of attention is a branch in the tree. If
necessary, functions and areas of attention can also have branches,
meaning that one branch can be split up into multiple branches.

7.2 The 1D Test Risk Analysis 107

St
ep

 2
 –

 A
pp

ro
ac

h

The below figure shows the test tree for a simple navigation system.
A number of main functions can be recognized: Navigation, Route cal-
culation, Extra and Settings. Each of the main functions, also called
function groups, is a collection of functions. The main function,
Navigation, contains all of the ways in which a trip’s final destination
can be entered. As can be seen in the test tree, this can be done in sev-
eral ways: by entering a new destination or by selecting a destination
from the list of recent or favorite destinations. It is also possible to be
guided home. The left side of the test tree displays some non-functional
areas of attention that can also be branched out. Accuracy, for example,
can be branched out into the calculation of the trip time, the timely in-
dication of an exit or, not unimportant, the correct indication of the
fastest route.

Using a test tree as the basis for the test risk analysis has a number of
advantages. During the TRA, the test tree can be used as a checklist to
ensure that no functions are forgotten and later as a framework for the
physical test design. This also makes it easy to relate the test results to
the test risk analysis and report them back to the stakeholders.

Fig. 7.2 Test tree for a simple navigation system

The functions in the test tree are derived from the test base (for exam-
ple, functions described in the requirements, the functional design and
use cases). The areas of attention are mentioned by the stakeholders and
originate in the

• business
• processes
• functionality and technique
• quality attributes

108 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

The areas of attention are mapped out during interviews with the stake-
holders, which can take place prior to or during the TRA session. Good
preparation ensures that the TRA session doesn’t take too long. During
the TRA session, the participants check the completeness of the test tree
and add new insights if necessary. Once the functions and areas of at-
tention have been mapped out, it’s time to determine the relative impor-
tance of the risk areas.

As preparation for the interviews with the stakeholders, it can be
useful to create a context diagram for the test object. The analyst
may even have already created one. A context diagram is usually
a kind of architectural diagram and defines the relationships be-
tween various functional components and the system interfaces.
The diagram is reused in the test plan (see Chap. 10).

This diagram can be used to ask questions about the processes, informa-
tion streams, functionality, security aspects, etc. Such a diagram often
helps clarify things because it quickly provides insight into the func-
tions and areas of attention. Moreover, running through the quality at-
tributes in the Quint model ensures that the non-functional aspects are
not forgotten either.

7.2.4 Determine the Relative Importance

An efficient approach is to ask all of the stakeholders to assign priorities
to all of the branches in the test tree. Each of the stakeholders divides
their points over the branches. This can be done either in individual in-
terviews, or if the group is not too big, together. The ratings are com-
piled after everyone has provided their input.

The following ratings are used:

9 points
The function or the area of attention is key to the working of the system
and to achieving the anticipated goal. Errors in this function or a poor
implementation will directly impact the system’s usability. The system
can only be released after this function or area of attention has been
thoroughly tested.

7.2 The 1D Test Risk Analysis 109

St
ep

 2
 –

 A
pp

ro
ac

h

5 points
The function is important. Errors in these functions, or a poor imple-
mentation, are allowed if a workaround is available. Functions and ar-
eas of attention should be tested well before they can be released.

3 points
Non-crucial function or area of attention. Errors in the function can be a
hindrance, but are not expected to jeopardize the anticipated goal. Func-
tions and areas of attention must be tested before they can be released.

1 point
Function or area of attention that is not necessary for the working of the
system. It is preferable to test them, but they can be tested less thoroughly.

When awarding points, it is important to aim for a good division over
the risk areas. Participants who are not very experienced in estimating
risks will be inclined to find everything important. In this case, stress
that it is important to make distinctions. Explain the purpose of the test
risk analysis again and stress that it is about relative importance. Every-
thing may indeed be important, but even then some things are more im-
portant than others. Table 7.2 displays the data of a TRA session with
four participants.

Table 7.2 Data from a TRA session

Risk area Spread 1 Spread 2 Spread 3 Spread 4 Total

Navigation-Entering destination 9 9 3 9 30
Navigation-Recent destination 3 1 4
Navigation-Favorites list 9 1 3 3 16
Navigation-Home 3 3
Route calculation-Standard
calculation

9 9 3 9 30

Route calculation-Find alternative 5 3 5 13
Route calculation-Route type 1 3 3 7
Extra-Traffic jam info 3 3 9 15
Extra-Weather forecast 3 3
Settings-Maps 3 3 6
Settings-Audio 5 3 8
Settings-Standard 3 3 6
Performance 9 3 3 15
Accuracy 5 3 3 11
User friendliness 9 1 3 13
Total 45 45 45 45

110 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

Should an attempt to distinguish between the functions and areas
of attention fail, give the stakeholders a limited number of points.
This was done in the above example. The participants had divided
a maximum of 45 points over 12 risk areas. Only 5 x 9 points can
be awarded (Division 1). If the participant wants to give points to
more than five risk areas, he is forced to give fewer points (Divi-
sion 2). If a participant wants to divide his points evenly, that’s
fine too (Division 3). However, because there is a maximum to
the number of points that can be given, he minimizes his overall
influence. If this is pointed out to the participant, he will probably
decide to divide his points differently.

It is very well possible that a function that is not very important
on its own contains a number of paths that are important. This be-
comes clear if not only the lowest level of the test tree is assigned
a relative importance, but the level above it as well. In the below
example, a priority has been assigned to each function and sub-
function. The functions and subfunctions have been assigned their
priorities independently of each other. When they are multiplied
by each other, it is striking that the relative importance of the sub-
functions get mixed up. In the below table, the relative impor-
tance of both functions has been taken into account in the total
calculation.

What is striking is that the function Extra is found to be much less im-
portant than the function Navigation, which get 3 and 5 points res-
pectively. Yet, the relative importance of Extra-Traffic jam info is
higher than that of Navigation-Recent destination. When doing the
TRA, take into account that a less important function can contain im-
portant aspects.

7.2 The 1D Test Risk Analysis 111

St
ep

 2
 –

 A
pp

ro
ac

h

Table 7.3 The relative importance of functions

Risk area Relative
importance
of function

Relative im-
portance of
subfunction

Total

Route calculation-Standard calculation 9 30 270
Navigation-Enter destination 5 30 150
Route calculation-Find alternative 9 13 117
Accuracy 9 11 99
Navigation-Favorites list 5 16 80
User friendliness 5 13 65
Route calculation-Route type 9 7 63
Extra-Traffic jam info 3 15 45
Performance 3 15 45
Navigation-Recent destination 5 4 20
Navigation-Home 5 3 15
Extra-Weather forecast 3 3 9
Settings-Audio 1 8 8
Settings-Maps 1 6 6
Settings-Standard 1 6 6

7.2.5 Process the Data

Each of the participant’s data is gathered and sorted by relative impor-
tance. This can be done in Excel.

The risk areas are then grouped into risk categories, which are the prod-
uct of the test risk analysis. Table 7.4 shows how the risk areas can be
divided over the risk categories.

Table 7.4 Risk categories

Risk category Content

Critical Most important 10% of the risk areas
High Next 20% of the risk areas
Medium Next 30% of the risk areas
Low Least important 40% of the risk areas

112 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

Using the example in the previous section, this produces the following
TRA:

On <date> a risk analysis was done by:
Name, job title
Name, job title

The following risks and relative importances were identified:

Risk category Risk area Relative importance

Critical Route calculation – Standard calculation
Navigation – Entering destination

270
150

High Route calculation – Find alternative
Accuracy
Navigation – Favorites list

117
99
80

Medium User friendliness
Route calculation – Route type
Extra – Traffic jam info
Performance
Navigation – Recent destination

65
63
45
45
20

Low Navigation – Home
Extra – Weather forecast
Settings – Audio
Settings – Maps
Settings – Standard

15
9
8
6
6

Fig. 7.3 An example of a TRA

7.2.6 Agree on the TRA

The last step consists of agreeing on the TRA. Once the estimates have
been processed and the risk categories indicated, it is wise to ask the
participants and stakeholders for their approval. Ask them to make sure
that no areas of attention have an illogically high or low position in the
TRA. At this stage, remarks can be processed without any problems. It
is better to process new insights sooner rather than later.

Also ask the stakeholders to approve the test tree. Areas of atten-
tion may have been added or removed during the TRA. The
approved test tree is used for test clustering during the test design
phase and is the basis for the test reports.

Once the TRA has been approved, the test strategy can be selected. The
test strategy is described in the next chapters.

7.3 The 2D Test Risk Analysis 113

St
ep

 2
 –

 A
pp

ro
ac

h

7.3 The 2D Test Risk Analysis

7.3.1 Introduction

Risks are identified differently in the 2D TRA than in the 1D TRA. The
main difference between the two is that the 1D TRA is based on the
system specifications or requirements and the 2D TRA is not: the
2D TRA is based on the risks that jeopardize the anticipated goal. The
2D TRA thus enables risks to be detected that are not addressed in the
test base.

Once the anticipated goal has been defined in the Goal description, the
threats to the anticipated goal are examined. A threat is any event that
can prevent the goal being achieved. Because not all threats need to be
taken equally seriously, the risk of each event is estimated. The follow-
ing definition of risk is used:

The risk of an event is the product of the chance that the event
will occur and the impact it has on the goal. Or: Risk = Chance x
Impact.

The goal is included in this definition. In result-driven testing, we refer
the identified risks back to their effect on the anticipated goal. This is
explained using the Connecta project (see Example 1.3).

Example 7.2: Risk and goal at Connecta

The anticipated goal is clearly formulated in the Goal description
for Connecta’s system test. Business is counting on the system us-
ing fewer resources. Integrating a number of existing systems not
only accelerates the processes, it also reduces the number of errors.
If we take this anticipated goal as a starting point, we immediately
identify a risk. What happens if the new system doesn’t reduce the
number of resources? This could be the case if the new integrated
system does not:

• process data faster, but just as fast or slower
• produce less errors

114 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

The tests will have to make a statement about the degree to which
the project’s goals can be achieved. This is why the test coordina-
tor will at least have to ensure that the tests make a statement about
the speed at which the system works and the errors that occur.

Each of these risks can be analyzed more closely. The aim is to find
out which events trigger the stated risk. An Ishikawa diagram, also
known as fishbone diagram, is often used for this (the diagram is re-
ferred to as fishbone diagram because of its shape) [Bilt]. Figure 7.4
displays a fishbone diagram.

No reduction of
resources

Processing
is not faster

Processing with
errors

Calculation contains errors

Not all messages are included
in calculation

Processing time too long

Capacity too low (messages are not
processed when traffic is high)

Transactions waiting for approval
 by electronic signature

No manual control
Rounding causes

deviations

Business rules wrong

Inefficient event handling

Data queries are slow

No control on
input data

Fig. 7.4 A fishbone diagram

In a fishbone diagram, causes and effects are linked to each other. In
this case, the diagram shows events that present a risk. If, for example,
not all messages are processed, the output of the process will probably
contain errors. If the process contains errors, the organization will have
to make manual corrections. This is why saving resources was esti-
mated as a risk.

After the risks have been mapped out, measures can be taken to deal
with them. In practice, this means that one of the following options will
be chosen:

• Not tackle the risk
• Study the extent to which the risk is real
• Remove the causes that lead to the risk
• Reduce the effects of the risk

7.3 The 2D Test Risk Analysis 115

St
ep

 2
 –

 A
pp

ro
ac

h

Testing is mainly aimed at the two points in the middle. Testing enables
experience with the working of the system to be gained as well as in-
sight into the actual chance of the risk occurring and its potential im-
pact. Finding and solving errors removes the cause of the risk.

Example 7.3: Covering the risks in the Connecta project

Among others, the following two risks were identified in the
Connecta project:

Risk 1: An error in the calculation causes a lot of manual fol-
low-up.

Risk 2: The capacity of the system is insufficient and cannot
process all of the requests on time.

The test project aims at covering these risks as follows:

Risk 1:
The calculation is tested with realistic scenarios. The outcome of
each step is compared to the expected outcome. In addition,
illogical combinations of data are entered to check if error han-
dling is working properly. During the test, a number of errors
were found that caused the calculation to produce the wrong out-
come. By solving these errors, the chance that wrong calculations
are made in the live system is considerably reduced. The test re-
sult is discussed in the test report. The stakeholders believe that
risk 1 has been reduced to an acceptable level.

Risk 2:
The organization knows that a lot of requests are received every
day. Using this load, a performance test is carried out to deter-
mine the peak load the system can bear. At a high peak load, mes-
sages are sometimes not processed. Research, however, reveals
that it is not expected that this peak will occur in the coming
years. Subsequently, an endurance test is run to demonstrate that
if the load is 150% of the current number of requests, the system
will run without problems for one week. The test shows that
risk 2 is still present but does not currently require attention.

The test report provides information about the identified risks and their
status. By referring the test results to the previously defined risks,

116 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

statements can be made about the extent to which the risks still jeopard-
ize the goal.

The 2D TRA consists of the following steps:

7.3.2 Identify Stakeholders and Kick-off

The TRA participants are selected, invited and informed in the same
way as for the 1D TRA (see Sect. 7.2.2).

7.3.3 Establish the Risks

The TRA participants are asked to

• point out risks
• examine the causes a risk can have
• mention factors that can influence the chance of failure

For the 2D TRA, the chance and the impact are estimated separately for
each of the established threats. This is done by assigning points to each
factor for both the chance of failure and the impact. Estimating the im-
pact enables the possible damage the risk will incur to be determined if
it occurs. The possible damage relates to the anticipated goal and can be
subdivided into, for example:

• Finances
• Image
• Internal business processes
• External business processes
• Business processes of customers, direct or other

When estimating the chance of failure, it is also estimated how high the
chance is that the risk will actually occur. The chance depends on the
following factors:

• The complexity of the test object’s component
• The size of the test object’s component
• The extent to which new unproven technologies are used
• The relationship with other components
• The quality of the build team
• The frequency with which the component is used

7.3 The 2D Test Risk Analysis 117

St
ep

 2
 –

 A
pp

ro
ac

h

7.3.4 Data Processing

After all of the risk workshop participants have handed in their input,
the impact and chance of failure are calculated for each risk. The results
are commonly presented in a chance-impact graphic. Categories are as-
signed to the risks in the same way as for the 1D TRA.

Risks with a high chance and impact are critical. The risks with a low
impact and chance belong to the low risk category. The below graphic
displays the risk categories.

The TRA matrix is often created with four quadrants (Fig. B). The
“critical” risk quadrant contains all of the risks for which the chance of
failure and the impact are high. However, this representation is not rec-
ommended. The division of the quadrants does not correspond to the
distribution of the risk in the graphic and can cause confusion. Graphic
C shows the product of chance and impact in each cell. The graphic
shows that the upper right corner of quadrant 3 represents more risk
than the lower left corner of quadrant 1. The cells have a value of 27
and 25 respectively. Graphic A displays a more realistic image of the
risk categories. In graphic A, the points with the same risks have been
connected with each other. The risk categories correspond to the distri-
bution indicated in Graphic C [Baars et al, 2006], [Gardiner, 2006],
[Pinkster et al, 2004].

9 9 27 45 81

5 5 15 25 45

3 3 9 15 27

1 1 3 5 9

1 3 5 9

Critical

High

Medium

Low

Quadrant 1

Risk category
Critical

Quadrant 3

Risk category
Medium

Quadrant 4

Risk category
Low

Quadrant 2

Risk category
High

Impact

P
ro

ba
bi

lit
y

A) B) C)

Impact

P
ro

ba
bi

lit
y

Fig. 7.5 The TRA matrix. The risk of an area of attention, expressed in estimated failure chance
and impact, can be represented by a point in the chance-impact graph. A) Realistic distribution of
risk categories, B) Distribution in quadrants gives a distorted picture of the risk categories,
C) Distribution of risk in the TRA matrix.

118 7 Test Risk Analysis

St
ep

 2
 –

 A
pp

ro
ac

h

A list such as the one we saw in Sect. 7.2.1 can be extracted from the
graphic. This is in fact a list of the risk areas sorted by relative im-
portance.

7.3.5 Agree on the TRA

As for the 1D TRA, it is wise to ask the stakeholders for approval after
all of the data has been processed. See also the description in
Sect. 7.2.6. Once the TRA has been approved, the test strategy can be
chosen. This is described in the next chapters.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_8, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 2
 –

 A
pp

ro
ac

h

8 Generic Test Strategy

8.1 Introduction

Why is an organization prepared to spend time and money on test ac-
tivities? Testing makes a statement about how realistic it is that the an-
ticipated goal will be achieved. It points out the risks that jeopardize the
goal and studies the impact of changes that are implemented. The test
process reduces the uncertainties and contributes to the confidence in
the built system. Moreover, the errors found during testing can help im-
prove the quality of the system.

Now that the goal of testing is clear, the following challenge is waiting:
how is this goal going to be achieved? This is where the test strategy
comes in: it describes the plans to achieve a goal [Kramers, 1987].

The test strategy can be used to communicate with others about the set
up of the tests and the strategic choices that have to be made. The test
strategy explains how the anticipated goal is translated into the manner
of testing. To arrive at the test strategy, the organization’s existing
guidelines, the test risk analysis, and the planning are combined into
one consistent whole. The test strategy can be added to a number of test
products, such as:

• The generic test strategy
• The master test plan
• The detailed test plan

The contents of the test strategy are more or less the same, wherever it’s
mentioned. In a generic test strategy, the strategy will be less detailed
than in a detailed test plan. But the test strategy has the same goal in each
of the cases: to determine how the anticipated goal will be achieved.

120 8 Generic Test Strategy

St
ep

 2
 –

 A
pp

ro
ac

h

Organization

Development project

Test project
Generic Test

Strategy

MTP

DTP

Scope

Details

The test strategy can be described in a number of different documents.
The generic test strategy describes the things that apply to the whole or-
ganization. The MTP describes in more detail how the generic docu-
ment is applied to a specific software development project. The DTP
has a more limited scope: it specifies what the approach is for a specific
test project and it specifies in detail where the strategy differs from the
strategy described in the MTP.

8.2 The Generic Test Strategy

In an organization where a lot of software is developed, a generic test
strategy can considerably increase efficiency because it defines a ge-
neric approach that applies to every test project. A generic approach
makes test projects

• More efficient; the wheel does not have to be constantly reinvented
• Easier to compare; each project uses the same starting point and the

same definitions
• Easier to control; a generic test strategy makes it possible to define

fixed control points and use them to monitor the project

Among other things, the generic test strategy describes the following
items:

The Importance the Organization Attaches to Testing
The generic test strategy finds its right to exist in the realization that
testing is important for the organization. The generic test strategy ex-
plains why the organization thinks testing is important.

8.2 The Generic Test Strategy 121

St
ep

 2
 –

 A
pp

ro
ac

h

Example 8.1: The importance of testing

“In our marketing statements, our company emphasizes that we
supply reliable and high-quality products. To be able to maintain
this product positioning, we have to ensure that our products are
indeed reliable and of high quality. This is why controls are car-
ried out during product development, maintenance and delivery.
Testing is one of these controls and focuses on the development
and maintenance of the software in our products.”

The Generic Areas of Attention and Risks
For a product line or range of services, generic areas of attention and
risks can often be defined. Although there can be additional project-
specific areas of attention, the generic areas of attention and risks al-
ways apply. The above example mentions a number of generic areas of
attention. Reliability is an important property for all of the products the
company supplies. Other examples are security for banking systems:
who wants to leave their money in a bank that is said to be unsafe? Or
continuity for an airline’s flight booking and reservation systems: if the
site is not accessible, the traveler will book his flight elsewhere.

These areas of attention mention things that are important if we want to
achieve the business goal. The generic test strategy describes the areas
of attention and what should be done with them. The strategy shows
how it is guaranteed that these areas of attention will actually be tested
and that the focus remains on the anticipated goal. This can be done, for
example, by grouping them in a specific test level.

A Definition of Test Levels and Notions
A definition of the test levels that are used in the organization ensures
that all of the parties have the same notion of their contents. It helps the
stakeholders aim for the same goal and prevents wrong expectations.
Section 4.2 describes a number of frequently occurring test levels such
as the user acceptance test (UAT).

User Acceptance Test

The user acceptance test is mainly a validation test (is the system
“fit for purpose”). The tests are based on representative scenarios
from the users’ daily jobs. The test is run to determine whether the
users can work with the system, how usable the system is and how
the system integrates with the working method and processes.

122 8 Generic Test Strategy

St
ep

 2
 –

 A
pp

ro
ac

h

A generic glossary can prevent discussions and confusion arising about
the used terminology, and ensures that we can focus on the things that
deserve our attention. Appendix E contains a glossary with the terms
that are used in TestGoal.

The Existing Test Environments
The generic strategy describes the exiting test environments and their
characteristics, and indicates which test levels are run in which envi-
ronment. The description in the generic test strategy is usually generic
to prevent having to adapt the strategy. The environment is described in
more detail in the test plan. See Chap. 10 Test Plan.

The Relationship with the Organization’s Processes
General processes, such as error management, change management and
release management, and the tools used can be described in the generic
test strategy.

Test Risk Categories and Test Design Techniques to be Used
The classification of the risk categories and a description of the test de-
sign techniques that can be used ensure that the various test projects are
set up generically.

Organization
The generic test strategy defines the parties that are involved in the test
project. Because it is generic, the generic strategy does not mention the
names of the people involved, but their job titles and the associated re-
sponsibilities. If, for example, an MTP says that David Bloom is the test
coordinator for the system tests, everyone knows what David is respon-
sible for. A description of test functions can be found in Chap. 3. More-
over, the different departments can specify their involvement in the test
process and their responsibilities. Everyone knows that the development
department plays a role, but does this also apply to the marketing and
QA departments and the helpdesk?

Control
The generic test strategy also describes how the testware should be con-
trolled. This component ensures that clear agreements are made about
the maintenance of the test set. This is important for regression tests.

A generic test strategy works well in organizations that have a dedi-
cated testing department. A generic test strategy also has added value if
a lot of software development projects are carried out and the organiza-
tion believes that consistent quality is important. The added value is
also high for tests that consist of standard test activities, such as con-
formance tests.

8.3 Test Strategy in the DTP and MTP 123

St
ep

 2
 –

 A
pp

ro
ac

h

8.3 Test Strategy in the DTP and MTP

If available, the generic test strategy should be the starting point when
creating the MTP or DTP. Generic agreements that apply to a project
are also easy to reuse. There may be cases in which more detail is
needed or a generic scenario does not work for specific points. The test
plan specifies which points diverge from the standard by

• Referring to the MTP and the generic test strategy in the DTP, and
• Referring to the generic test strategy in the MTP

This is done for a number of reasons:

• It keeps the test plans short because they only contain the non-
standard aspects of the test project, which are also the most inter-
esting.

• Test projects are not autonomous; after all, the anticipated goal and
the associated risks apply to the entire system. The test manager en-
sures that the test projects tie in with each other and cover all of the
relevant risks and areas of attention. This means that the test strategy
should be determined at a higher level. An individual test project
targets a subset of these aspects.

• Reinventing the wheel for each test project is inefficient. Think of
the creation of processes such as release management, error man-
agement and the maintenance of the test environment. This is why
such things are done on a project or organizational level.

To ensure that all of the test levels are efficiently and consistently set up,
the generic parts of the test strategy are included in the MTP or the generic
test strategy. The lower-level detailed test plans can refer to them. The de-
tailed test plan indicates how direction can be given to the path specified
in the MTP. The plan also shows where the test project diverges from the
prescribed approach. Chapter 10 Test Plan discusses the test strategy in
detail and mentions the things that can be included in a strategy.

Cutting and Pasting

Rule of thumb: When a piece of text about the test strategy is cop-
ied for the second time from a detailed test plan for reuse in a dif-
ferent detailed test plan, it is worth considering whether this text
should be included in the MTP or the generic test strategy.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_9, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 2
 –

 A
pp

ro
ac

h

9 Test Budget and Planning

9.1 Introduction

This chapter helps you create a test budget and planning according to
the TestGoal step plan. The advantage of doing this is that the activities
and products of the test project have already been defined in the step
plan. This ready-made list of activities and products accelerates the
creation of the budget. Hours that are often forgotten are embedded in
the step plan and automatically find their way into the budget and the
planning. This chapter contains guidelines for checking the budget and
making the planning in order to produce a realistic and well-founded
planning.

The anticipated goal is described in the Goal description. The budget is
an estimate of the costs that have to be made in order to achieve the an-
ticipated goal. The test budget consists of an estimate of fixed and vari-
able costs and is in principle time independent. The budget identifies
the necessary activities and requisites, but does not indicate when they
have to be completed. The planning takes the time component into
account. This produces a phasing that indicates the sequence in which
the test activities should be carried out, and defines when the milestones
should be reached.

In general, experience data is the ideal basis for creating a budget. If
this data is not available, the budget has to be created in a different way.
There are various techniques to estimate the amount of work. In this
chapter, the work breakdown structure (WBS) is used; this estimation
method can be used with and without experience data and has the ad-
vantage that it demands a structured approach. The WBS is a good
starting point for a detailed planning and a structured test report.

126 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

The following steps explain how the test budget and planning are
created.

• Test budget
− Determine the anticipated goal
− Work breakdown structure (WBS)
− Assess the requisites
− Determine the budget

• Test planning
− Generic planning
− Detailed planning

The checklist helps create a test budget and planning that are as com-
plete as possible.

9.2 Create the Test Budget

9.2.1 General

A budget consists of the following components:

Variable Costs
Variable costs directly depend on the amount of work or the number of
employees. The largest variable cost items usually consist of the hours
of internal and external employees, but the rent for the workplaces and
the technical support costs can also fall under variable costs. Software
licenses that are issued by user or period are also considered as vari-
able costs.

Fixed Costs
Fixed costs do not depend on the amount of work or the runtime of the
test project. This category contains, for example, the one-time costs that
are made for hardware and the software licenses that are part of the test
environment or the required infrastructure.

Many projects only take the variable costs into account, for example,
when the test environment and licenses are already present. Before cre-
ating the budget, find out which costs it should include. If the customer
is only interested in the variable costs, then use them as the starting
point. The majority of the variable costs consist of the employees’
activities. This is why the activities that need to be carried out are first
defined using a WBS.

9.2 Create the Test Budget 127

St
ep

 2
 –

 A
pp

ro
ac

h

9.2.2 Work Breakdown Structure

A WBS is created by breaking down the test project into small chunks.
Each piece consists of the work that has to be done to complete an ac-
tivity or produce a product. The main activities of the WBS are mapped
out first. Then, for each main activity it is determined what is needed to
achieve it. This produces a list of subactivities. Figure 9.1 displays
a WBS for drinking of a cup of tea.

Drinking tea

Boiling water Making tea Drinking

Fill kettle

Remove plug

Turn kettle on

Pick a clean glass

Select tea bag

Insert tea bag

Pour water in glass

Season to taste

Stir

Fill with water

Add suger

Add Milk

Plug in soccet

Remove tea bag Consume

Fig. 9.1 A WBS for drinking a cup of tea

The WBS provides insight into the main activities. In this example, they
are Boiling water, Making tea and, ultimately, Drinking tea [Business-
Future]. By defining the main activities, a number of milestones have
been determined as well. When the boiling water phase is finished, boil-
ing water is available. When the making tea phase is finished, there is
a glass of tea, which is ready for consumption, but may have to be sea-
soned to taste. When the drinking phase is finished, all that remains is
the empty glass.

The WBS also indicates how a main activity branches out into subactiv-
ities. In the example, the kettle’s plug is taken out of the socket for

128 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

safety reasons before the kettle is held under the faucet. If sugar is
added, stirring is necessary.

The elaboration of a WBS often raises many questions, and their an-
swers often provide a lot of insight into the set up of the test project.
Discuss the possible details with others involved in the test project. This
reduces the number of surprises that arise later in the project, leads to a
balanced phasing and ensures the approach is supported.

A closer look at the above example reveals that the WBS is not yet
complete. To stir, you need a spoon. Getting the spoon can be included
in the WBS as a subactivity. The first instinct may be to put this subac-
tivity under making tea. By doing this, the milestone of this activity re-
mains standing: the tea is ready to be consumed. On the other hand, if
the user does not want sugar, he does not need a spoon, so maybe this
subactivity should be put under drinking tea. Both choices are right, but
have different consequences.

Something else is missing: If a clean glass is taken from the cupboard, it
may have to be washed after drinking. This activity also takes time and
costs money and should hence also be included in the budget.

Making a WBS does not only help create a good budget, is also helps
define and limit the activities, which is why the WBS is a good basis for
the test report. The extent to which the goal has been achieved can be
derived from an activity’s progress.

The level of detail in the WBS varies depending on the size of the pro-
ject. After all, a detailed list of activities is easy to create for a small
project. For large projects, however, activities are combined to maintain
the overview. How detailed should the WBS get? A rule of thumb is not
to include any activities that take less than a day to complete, with the
exception of critical activities that drive the test project, such as mile-
stones; an example of this is “Acceptance (test plan ready)." In the
planning, these critical activities are called milestones, and to prevent
them being forgotten in the planning, they are included in the WBS.

The following steps apply to creating a budget that is based on the
WBS:

• Establish the anticipated goal
• Assess activities and products
• Estimate the number of hours required for each activity
• Estimate the costs
• Control

9.2 Create the Test Budget 129

St
ep

 2
 –

 A
pp

ro
ac

h

Determine the Anticipated Goal
The budget is an estimate of the costs that have to be incurred in order
to achieve the anticipated goal. The anticipated goal is determined dur-
ing the assessment of the anticipated goal and is described in the Goal
description.

Assess Activities and Products
In order to create a testing budget, a WBS is created for the test project,
which maps out all of the products and activities that have to be carried
out. The WBS is based on the TestGoal step plan, in which all of the
important activities are described. Basing the WBS on the step plan has
the advantage that essential activities are not forgotten. The products
and activities in the step plan are listed in the below checklist.

Table 9.1 A checklist for the products and activities in the step plan

Test activity Subactivity

Goal
Assess anticipated goal • Initial meeting

• Formulate the goal description
• Review and adaptation
• Acceptance (Goal description ready)

Approach
Test risk analysis (TRA) • Identify stakeholders

• Prepare TRA meeting
• TRA meeting
• Review and adaptation
• Acceptance (TRA ready)

Budget and planning test
assignment

• Frame the budget
• Review and adaptation
• Acceptance (Budget ready)
• Create generic planning
• Create detailed planning
• Review and adaptation
• Acceptance (Planning ready)

Determine test strategy • Frame and discuss initial strategy
• Determine strategy
• Review and adaptation
• Acceptance (Strategy ready)

Create test plan • Create test plan
• Review and adaptation
• Acceptance (Test plan ready)
• Kick off approach and methodology

130 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

Table 9.1 Continued

Test activity Subactivity

Design

When planning the sanity check on the test base and the test design, the test tree we created for
the test risk analysis provides a lot of detailed information. The test tree indicates which tests
have to be defined. When scheduling the design activities, an estimate of the required time can
be specified for each branch in the test tree. The one-to-one relationship with the TRA enables
the thoroughness of the tests to be taken into account. As a result, relatively more time is sched-
uled for the important components. The outcome of the TRA can also be taken into account for
the sanity check. This enables more time to be spent on the test base components that describe
an important function.

Sanity check on test base • Determine and compile test base
• Plan and run sanity check
• Reporting and consultation

Test design • Draw up logical test design
• Review and adaptation
• Draw up physical test design
• Create test scenarios
• Review and adapt test design and scenarios
• Define test data
• Adapt test design according to changes in the test base
Estimate the number of times the test design will have to be
adapted as a result of changes to the test base. Estimate whether
the nature of the changes entails a repetition of the sanity check.

Requirements for
the test environment

• Assess requirements for the test environment
• Draw up requirements for the test environment
• Discuss with maintenance organization
• Review and adaptation
• Acceptance (requirements for the test environment ready)
• Purchase requisites

Set up (Iterative process)

Estimate the number of times an environment has to be set up and how many test runs are re-
quired to reach a positive release advice.
Experience data is often available when testing in a maintenance organization. Use the data to
estimate how often an environment has to be set up.

For new developments, experience data is generally not available. In this case, assume that
three test runs are needed and that the environment will have to be set up at least as many times.
Assuming fewer test runs is only realistic if the test object is of high quality upon initial deliv-
ery. More iterations are usually not necessary unless it can be demonstrated in advance that the
quality of the test object is very low and the anticipated goal is seriously jeopardized. Also see
Chap. 18 Test Execution.
Set up the test environment • Set up the infrastructure

• Set up the test environment
Configure the system • Install the test object and test data

• Configure the test object/test environment
Smoke test • Plan and run smoke test

• Reporting and consultation
• Rerun tests (showstoppers)

9.2 Create the Test Budget 131

St
ep

 2
 –

 A
pp

ro
ac

h

Table 9.1 Continued

Test activity Subactivity

Execution (Iterative process)
Run tests • Run defined tests

• Rerun tests (non-showstoppers)
• Run regression tests
• Record errors

Release • Gather test results
• Test against exit criteria
• Draw up final release advice
• Draw up final test report

Assurance
Determine regression test • Determine regression test
Evaluate test project • Plan and carry out evaluation

• Write lessons learned report
• Review and adaptation
• Acceptance (lessons learned report ready)

Archive testware • Assess destination of software
• Archive testware and errors
• Clean up project directory

Transfer • Transfer to stakeholders
Discharge test team • Discharge test team
Miscellaneous
Coordination and manage-
ment

• Test coordination (guide testers)
• Test team meetings
• Test reporting

Consultation • Project meetings
• Triage meetings
• Review meetings
• Workshops
• Brainstorming session

Training and introduction • Testing training
• Training/introduction of company and/or system
• Introduce employees to the work in terms of the

method/system
Control • Set up maintenance of test environment and data

• Maintenance on test environment (during test project)
• Maintenance on test data (during test project)

Unforeseen • Unforeseen
(10–15% of the total estimate)

Hour Estimation
The WBS contains an estimate of the number of hours required to com-
plete each activity. The following is needed in order to create a realistic
planning:

132 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

• Provide an Estimate of All of the Activities
Starting with a complete WBS prevents hours being forgotten. Ex-
perience shows that the time spent on reviews, processing comments,
rerunning tests, training and meetings, is often forgotten. These
points are included in the checklist.

• Estimate Accurately
− Including enough detail in the WBS ensures the activities can be

estimated with reasonable certainty. Errors will, of course, be
made, but because the estimates are made for each activity, the
deviation will be small and maybe even compensated by devia-
tions in other estimates.

− Estimating an activity accurately seems to a very difficult thing to
do. Experience helps, but it still is more of a gut feeling than an
exact science, which can make the estimate difficult to support.
Metrics provide a good foundation and make it easier to adapt the
budget if, for example, it turns out that one of the assumptions is
incorrect or if the composition of the release changes. Metrics
would help explain the amount of additional time that is required
or can be saved if, for example, two use cases were removed from
the release.

Examples of simple metrics are:

• Review
Metric: number of pages per hour.
The estimated time required for the review based on the number of
pages in the test base.

• Test Design
Metric: Number of test cases per use case, Number of test cases per
hour. The estimated time for the test design is the Number of use
cases x Number of test cases per use case / Number of test cases per
hour.

• Test Execution
Metric: Number of test cases per use case, Number of executed test
cases per hour. The estimated time required to run the test is the
Number of use cases x Number of test cases per use case / Number
of test cases per hour.

If no experience data is available, a ”best guess” is made when fram-
ing the budget. As soon as an activity starts, the number of pages ac-
tually reviewed per hour can be controlled, or the amount of time ac-
tually required to create a test case. This new knowledge can be used
to adapt the metrics, and the adapted metrics can be used to guess

9.2 Create the Test Budget 133

St
ep

 2
 –

 A
pp

ro
ac

h

again how much time is required to complete the activity. The
remaining required time is also referred to as the estimated time to
completion (ETC).

If there is enough time and the test base is available, it can be useful
to review part of it with the team, or to elaborate a representative
part of the system design. This baseline measurement forms a basis
for other metrics.

The total number of estimated hours is obtained by adding up all of the
required hours.

9.2.2.1 Cost Estimate

The budget is created by converting the hours into costs using the
hourly rate in one of two ways.

Use an Average Hourly Rate
This option provides a quick result because no detailed planning is re-
quired and the people who will be working on the project do not have to
be known. However, watch out for differences that can arise if the ac-
tual rates are used in the test report or to settle accounts.

Link the Activities to Employees and Calculate the Costs According
to their Hourly Rate
This option is more accurate, but also more complicated. For internal
employees, the hourly rate is the internal labor rate. For external em-
ployees, it’s the contracting rate.

In order to do this, the availability and the rates of the employees that
are used in the calculation must be taken into account. If the scheduled
employee is not available and the activity is carried out by a different
employee, the activity may become more or less expensive. To avoid
surprises, a detailed planning is necessary to establish which employee
is available when. Creating such a detailed planning takes a lot of time
and may be a bit premature if the budget has not been formally ap-
proved. This is done at a later stage, namely after the planning has been
approved and if the customer declares that the first option is not accu-
rate enough.

9.2.2.2 Verification

A number of controls can be carried out to check whether the estimate
is correct. They can be used individually or together.

134 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

Peer Review
Let a colleague who has experience with budgeting and testing check
the estimate. Focus the review on the completeness of the activity list
and on the correctness of the estimate.

Independent Estimate
Let a colleague make his own estimate. Discuss the differences and the
total amount of the estimate. Adapt the estimate in such a way that there
is consensus.

Experience Data
Evaluate the estimate against earlier estimates. Compare the size and
complexity of the reference project to the current project, and convert
the hour planning to the current estimate. Bear in mind that the refer-
ence project may not have been set up according to the planning. It may
be preferable to use the actual number of hours spent as the starting
point rather than the planned hours.

The size and complexity of the projects can be compared in a number of
ways, for example, by doing a function or test point analysis.

Statistics
A variety of statistic calculations for the relationship between develop-
ment costs and testing costs, or between the phases of the test project
are known from literature.

Jones [Jones, 2000] indicates for each test type what the effort of the
tests is in relation to the total project effort. Because the hours that are
spent on the module tests are often included in the development costs,
they are not included in the total test effort. According to the below
overview, the relative test effort corresponds to the frequently rule of
thumb norm that testing constitutes 40 percent of the project budget.

Table 9.2 The test effort in relation to the total project effort. Source: [Jones, 2000].
(see Sect. 9.4 for a more detailed overview of data)

Test level Relative effort

Module test 16%
Functional test 14%
Integration test 13%
Acceptance test 9%
Total 52% (incl. unit test)

36% (excl. unit test)

9.2 Create the Test Budget 135

St
ep

 2
 –

 A
pp

ro
ac

h

TMap/TMapNext provide a relative distribution of the phases of a test
project. Table 9.3 shows a wide distribution, which shows how difficult
it is to get good generic metrics.

Table 9.3 A relative distribution of the phases of a test project. Source: [Koomen et
al, 2007], [Pol et al, 1999]

Phase Relative effort TestGoal step

Preparation 6% -21% ± 1 & 2
Specification 33% -54% ± 3 & 4
Execution 21% -45% ± 5
Completion 2%-5% ± 6
Planning and control 15%-17% in all steps

It is preferable to combine two types of controls to validate the
estimate. For example:

Peer Review or Independent Estimate
It is easier and faster to control the estimate by means of a peer
review than by having an independent person create a new esti-
mate. This method works well if the estimate is more or less
trustworthy.
The advantage of an independent estimate is that the “sparring
partner” is not influenced. This method can be used to increase
the confidence in the budget.

In combination with:

Experience Data or Statistics

It is always preferable to use experience data to do a validation,
but the data is often not available. A good alternative is to use sta-
tistics from literature. The statistics provide a good idea of the
reasonableness of the estimate, and provide good independent ar-
guments to support the planning.

9.2.3 Assessing the Requisites

In addition to a budget for the execution of the work, additional things
may also be required, such as components that are needed for the test

136 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

environment. Depending on the situation, these costs can be fixed or
variable, or possibly even non-existent because the organization pro-
vides the requisites without charging the test project.

The checklist in Table 9.4 shows a number of possible requisites. The
composition of the test environment will differ depending on the test
levels that are run. More information about this can be found in
Chap. 15 Test Environment. Things can be added to the checklist if the
situation so requires.

Table 9.4 Assessment requisites

Component Subcomponent

Test environment
Hardware Server

PCs
Printer
…

Software Operating system
Test tools
Databases
Word processing package
Planning package
Back-up / Restore
Communication software
…

Infrastructure
Workplace Rooms

Meeting room
Furniture (chairs, desks, tables, filing cabinets)
Photocopiers
Telephone

Network Router
Hub
Bridge
Gateway
UTP cables
Coax cable
…

9.2.4 Establishing the Budget

The budget is established by adding up all of the defined costs, i.e the
costs estimated for the activities and the requisites. Make sure the
budget distinguishes between fixed and variable costs. This makes it

9.3 Test Planning 137

St
ep

 2
 –

 A
pp

ro
ac

h

easy to establish which costs a change in the project runtime will incur.
This is explained in the below example:

Example 9.1

The following project costs have been defined:

Hourly costs: €450/hour
 (on average, the five employees book 160 hours a week)

Hardware: €5,000 one-off
License tool: €100 per user per month
Rent tool: €900 every two weeks

If the test project is extended by three weeks, the costs for the test
project will increase by €218,300:

Extension 1 week 2 weeks 3 weeks 4 weeks 5 weeks

Hours 160 x €450 160 x €450 160 x €450 160 x €450 160 x €450
License 5 x €100 5 x €100
Rent €900 €900 €900
Cumulative
costs

 €73,400 €145,400 €218,300 €290,300 €363,700

9.3 Test Planning

9.3.1 Generic Planning

In addition to the costs, the runtime is an important component of the
anticipated goal. In the Goal description, we established what the avail-
able budget and the expected end date is. The customer will want to
know whether the expected end date will be reached within budget.
This will, of course, depend on the total number of hours estimated and
on the availability of the resources.

Experience shows that a planning frequently goes through several ite-
rations before it is approved. Several versions are often needed before
the customer approves it. Because a lot of effort goes into creating a
detailed planning, a generic planning is created first. This planning is

138 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

easily changed because it does not take the following items into
account:

• Resource availability
• Dependencies between the subactivities
• Parallel projects

9.3.2 Detailed Planning

A detailed planning is developed after the budget and the generic plan-
ning have been approved. When the planning is created, the activities
are assigned to employees. Their actual availability is investigated and
it is established when the activities can be carried out.

The planning takes milestones, moments of decision and risks into ac-
count. Moments of decision and milestones often fall together at the end
of a phase, but they don’t have to.

Moments of Decision
Moments in which a choice is made, for example, a pilot that is run to
gain experience with a new test tool. After a week, the pilot is evalu-
ated. This is the actual moment of decision. If the new test tool meets
the requirements and is easy to use, it will be used during the rest of the
test project; if not, the current test tool will be used.

Milestones
A milestone is a point at which the progress of the test project can be
clearly established. A milestone is often planned at the end of a phase,
the delivery of a product or a moment of decision. An example of a
milestone is a detailed test plan that has been approved or a smoke test
that has been completed with a positive advice.

Project Risks
In contrast to the product risks, which are part of the test risk analysis,
project risks do not say anything about the test object. Project risks in-
dicate where the progress or the success of the project is in jeopardy.
When describing the risks, we specify:

• What the risk is
• How the risk can be recognized if it occurs
• The impact of the risk
• The measure to be taken

9.3 Test Planning 139

St
ep

 2
 –

 A
pp

ro
ac

h

In principle, planning a test project is not much different than planning
a software development project.
A lot of literature is available on project planning. The following re-
marks, which are specific to a test project, build on the literature.

External Dependencies
A test project is strongly dependent on the development project. The
quality of the test design depends on the stability and the quality of the
test base.

If the test base changes frequently, time will have to be allocated to
adapt the test design. The test’s runtime depends on the availability and
stability of the test object and the test environment. Experience shows
that if the development project’s build phase takes too long, the test ob-
ject will not be ready for testing as planned. Moreover, the stability is
often such that problems would occur were the team to continue work-
ing. Keep a close eye on what happens in the development project and
indicate what the effects will be if a previous activity overruns.

Quality of the Software
The quality of the software impacts the number of test hours required
and the runtime. Each error has to be recorded, discussed and retested.
This takes time. Between recording and retesting, time is needed to
solve the error and make the code available again. For module tests, the
developer commonly executes the tests, meaning he can fix errors him-
self. This is not common for all other test types, and makes error fixing
an external dependency.

This has to be taken into account when creating the planning. For ex-
ample, estimate the expected quality of the system. If the quality differs
from expectation, inform the customer. The risk that the planning is not
met is suddenly becoming real. You have to look for a solution with the
customer.

The following signs indicate that the quality of the software may be
lower than expected:

• The previous test levels were not run or were not run as thoroughly
as initially planned.

• The sanity check shows that the test base is incomplete or ambigu-
ous.

• The smoke test reveals a lot of problems.
• The first day of the test produces a high number of errors.
• A new version of the software is needed at the beginning of the test.

140 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

Available Time
In general, tests are run at the end of the development project, Experi-
ence shows that preceding activities are often overrun. The go-live date
is generally not delayed because business interests are involved, mean-
ing that any additional time an activity takes will reduce the available
test time. This is why it is important that the most important tests,
which are defined in the risk analysis, are run at the beginning of the
test phase.

Changing Requirements
The demands the customer makes on the test object often change during
the development project. This can be the case because the market con-
tinues to develop, because of a growing insight into the way the system
works, or because new technologies emerge. When the requirements
change, it is almost certain that the plans and the test base will have to
be adapted (also see the next item: “System changes”). This can mean
that the system will go live with less functionality than planned. It is
important to know this on time to prevent valuable time being wasted
on testing functions that will not be included in the live product.

System Changes
The system and the test base go through many changes during devel-
opment. The development time is estimated when change requests are
planned. The development team is often granted additional time to im-
plement the changes. Remember that a change also requires additional
testing time and make sure that this time is included in the planning.
This is not something that comes naturally to every organization.

External Parties
When testing with external parties, remember that they have their own
planning and runtime. For chain tests, for example, all of the parties in
the chain have to be ready on time. If the planning is too tight, the
chances are high that the entire chain test will be overrun because one
party in the chain is not ready on the agreed date.

Effective Productivity
Use effective productivity to convert the hour estimate to the runtime.
An employee is never one hundred percent productive: they attend de-
partment meetings, take coffee breaks, go on vacation, etc.

Depending on the type of organization, the effective productivity is be-
tween 60 and 80 percent [DeMarco, 1999]. This means that an activity
that takes one person seven hours to complete is not finished in an
eight-hour workday.

9.4 Key Indicators 141

St
ep

 2
 –

 A
pp

ro
ac

h

9.4 Key Indicators

To create a good hour estimate, it is important to check the correlation
between the planned activities. For the latter, Table 9.5 includes the
necessary key indicators. The table is taken from the benchmark study
of a few hundred IT projects in [Jones, 2000]. The percentages have to
be used with care, but in practice they provide a useful crutch. A few
remarks:

Table 9.5 The correlation between planned activities for a good hour estimate

Phase Activity Jones Own
Organization

Architecture Architectural sanity check 2%
 = 2%

Analysis Functional specifications 4%
 Demo validation
 = 4%

Design Initial system design 3%
 Detailed system design 4%
 Review
 Reuse acquisition 1%
 = 8%

Realization Building (coding) 17%
 Module tests 16%

 = 33%

Tests Functional tests 14%
 Integration tests 13%
 = 27%

Acceptance Acceptance tests 9%
 = 9%

Deployment Integration
 Configuration management 2%
 = 2%

General Documentation 4%
 Project management 11%
 = 15%
 = 100%

142 9 Test Budget and Planning
St

ep
 2

 –
 A

pp
ro

ac
h

• The percentages provide an average over a large number of very dif-
ferent projects.

• The table is based on the creation of management information sys-
tems. For other areas, other key indicators may apply.

• New development methods can produce other key indicators.
• Feasibility studies and pilot phases are not included in the total.

Many organizations have their own experience data. Although this data
is the most interesting as benchmark for the budget, differences be-
tween the projects need to be taken into account here too.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_10, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 2
 –

 A
pp

ro
ac

h

10 Test Plan

10.1 Introduction

Testing is usually done on a project basis. In order to steer toward the
goal, an approach is also created for testing: the test plan. The test pro-
ject is seen as an independent project or as a subproject of a develop-
ment project, whereby we assume that all of the test activities are car-
ried out in the test project. The test plan can then be considered as a
subplan within the framework of the bigger project that is specifically
aimed at testing. We distinguish between an MTP and a DTP.

Generic Test
Strategy

Master
Test Plan

Detailed
Test Plan

Detailed
Test Plan

Detailed
Test Plan

A master test plan is made on a more strategic level and deals with
more than one test level. It converts the generic test strategy into a test
approach for all test projects that are within the scope of the project.
The master test plan is generally created by the test manager.
 A detailed test plan focuses on one test level. In principle, it has the
same structure as the master test plan, but it deals with one specific test

144 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

level and with how it is carried out. The detailed test plan is usually
created by the test coordinator.

Example 10.1: MTP and DTP or Connecta

The test levels used in the Connecta project are described in Ex-
ample 4.1. A module test, system test, chain test and a user accep-
tance test are run on the project. Yasmin Hassouni, the test man-
ager, is responsible for the execution of these test levels. She has
appointed a test coordinator for each test level. We met David
Bloom in Example 6.2. He will coordinate the system test.

The test manager creates an MTP, which provides an overview of
the test levels that are run on the Connecta project. It defines
a number of generic things for the project, including the tools that
are used, how errors are recorded and processed, and which test
environments are available. The MTP also shows what is expected
of the system test, the test level for which David is responsible.

David creates a DTP for the system tests. He uses the framework
established in the MTP to fill in the details of the system test.

This chapter discusses the creation of a detailed test plan. A number of
templates are available, many of which primarily show which topics
should be included in the plan. This chapter not only describes what
should be included in a test plan, but also explains why certain topics
are included. Experience shows that the instructions provided in this
chapter enable even a less experienced tester to create a good test plan.
Example 10.2 displays the index of an extensive test plan. Each of the
elements will be explained in this chapter.

Example 10.2: Index of a detailed test plan

Task description
Test base
Test strategy
 Description of the test approach
 Test risk analysis
 Quality attributes
 Strategy matrix
 Technique matrix

10.2 Description of the Assignment 145

St
ep

 2
 –

 A
pp

ro
ac

h

 Previous and next phases
 Test environment
 Quality assurance
 Release advice
 Change and error management
 Transfer
Planning
Test organization
 Organization chart
 Responsibilities
 Meeting structures
Products
Requisites
Changes and deviations

10.2 Description of the Assignment

The Goal description was defined during the Goal assessment (step 1
in the TestGoal step plan). The Goal description describes what the an-
ticipated goal is; the Test plan explains how the anticipated goal will be
achieved. The overall assignment description is therefore part of the
test plan.

The test object is identified in the Goal description. Additional clarity is
provided by indicating which systems will and will not be tested in a
context diagram. Figure 10.1 displays a sample system architecture. In

Test object

System A System B

System C

System D

System E

DB DB

Fig. 10.1 A sample system architecture

146 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

this figure, we focus on the test object, also known as the system under
test (SUT).

The Master Test Plan

In contrast to the detailed test plan, the master test plan only out-
lines how testing will be done. It does, however, define the test
phases and the sequence in which they are run. The master test
plan also has to indicate in a table or in a graphic which test levels
will be run on which systems. In Fig. 10.2 the following activities
are carried out:

• Functional acceptance tests (FAT) on systems B, C and D
• User acceptance test (UAT) on systems C and E
• Chain test (CT) on systems B, C, D and E

Chain test
FAT FAT

System A System B System D

DB DB

UAT

System ESystem C

Fig. 10.2 A master test plan indicates which test levels are carried out on
which systems

10.3 Test Base

The test base consists of all of the test object descriptions that are used
as the basis for the tests.

For new projects on which tests have not yet been run, the test base
consists of documentation, namely the system specifications. These are
generally available in the form of

10.3 Test Base 147

St
ep

 2
 –

 A
pp

ro
ac

h

Requirement specifications

• A functional design
• A technical design
• UML diagrams
• A database design
• Interface specifications
• Important quality attributes
• Acceptance criteria
• Use cases and user scenarios
• Possible norms, standards, policies and legislation

Not every document is used in each test level. A module test will test
technical specifications like UML diagrams, and the user acceptance
test will generally cover user scenarios. This doesn’t make the other
documents any less interesting. If the tester wants to be a good inter-
locutor for the organization’s various stakeholders he will have to un-
derstand the system both technically and functionally. He should there-
fore be familiar with both the high-level documentation and the
technical documentation.

When a new system is built to replace an old system, the old system is
sometimes used as a reference and is also considered part of the test
base. If tests have already been run, it is likely that reusable testware is
available. The testware’s reusability is determined during the sanity
check. If the testware is not usable without modification, the time to
make the changes is included in the planning. The test base is included
in the detailed test plan because the hour estimate, the planning, the test
risk analysis and the tests to be designed are based on it.

Changes to the Test Base
In most projects, the system specifications change gradually. When this
happens, the impact the changes have on testing need to be examined. If
the impact is high, the initial planning becomes invalid. The test base
that is included in the test plan serves as a reference to the versions that
are the foundation of the initial test approach and planning. This refer-
ence is useful if we need to illustrate why the current test approach and
planning differ from the original plan.

The contents of the test base should be controlled from the sanity check
onwards. A good change management procedure that lays down how
we deal with changes to the test base (see Sect. 10.4.10) is indispensa-
ble. The accompanying availability and quality are important from the
time the test base is used. The quality and stability of the test base
directly influence the quality of the tests to be designed. If the quality is

148 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

poor, a lot of errors and ambiguities will surface during the sanity check
and test design phase that will delay the test design, make it less accu-
rate, or result in changes. Changes can, however, also be a result of in-
creasing insight or business developments.

10.4 Test Strategy

The test strategy describes how the anticipated goal is translated into
the chosen test method. The test strategy is created by combining the
organization’s guidelines, the test risk analysis and the planning into a
consistent whole. Knowledge of and experience in testing is needed to
create a test strategy. It is specialist work that requires making choices
and explaining them. This chapter deals with the components of the test
strategy.

It is convenient if the organization already has a generic test strategy or
a master test plan. If either describes the above-mentioned components,
the test approach in the detailed test plan can be short and only needs to
indicate where the chosen approach differs from the normal workflow.
If the test strategy or master plan is either non-existent or incomplete,
the detailed test plan will have to describe the strategy in more detail.

In many test methodologies, the test strategy primarily consists of

• distributing the areas of attention, the risks and the functions over the
test types

• determining the thoroughness with which the areas of attention, the
risks and the functions need to be tested [Koomen et al, 2007],
[Pinkster et al, 2004].

Although this is correct, the test strategy quickly turns into a technical
account of strategy matrices, risk categories, test design techniques and
cross tables. The above approach overlooks a number of very important
aspects.

It should be possible to explain the test strategy to the organization’s
stakeholders. The test strategy enables them to gain insight into the way
in which the testers contribute to the anticipated goal. In the strategy,
the tester explains which activities are undertaken to make this contri-
bution and how he provides information about the extent to which the
goal has been achieved. Testing is a profession and not all stakeholders
are familiar with things like strategy matrices, test design techniques,
quality attributes, test types and risk analyses.

10.4 Test Strategy 149

St
ep

 2
 –

 A
pp

ro
ac

h

A test strategy should not only show how the test cases are going to be
developed, but also how the test process ties in with the software devel-
opment method and process. The test strategy also describes how test-
ing ties in with the rest of the organization and the applied processes.

A test strategy also has to be developed in organizations where testing
is less mature. Even organizations that do not do risk-based testing and
do not use test design techniques still have a need for a test strategy.

To give the stakeholders insight into the test strategy, the strategy
should be short and clear to ensure that non-testers also understand
what’s going on and feel they are part of the testing process. An acces-
sible test strategy builds bridges and confidence and is therefore goal
driven.

10.4.1 Description of the Test Strategy

A detailed test strategy can be very extensive. Nevertheless, it is impor-
tant to be able to explain the essence of the strategy to non-testers, like
business management, who may not know anything about testing but
would like to understand the approach. The test strategy should be un-
ambiguous and no longer than one page [Quentin, 2006] so that the
readers don’t have to evaluate tables with percentages and figures but
can focus on what the test process actually consists of [Hul, 2006].
Among other things, the strategy explains

• Which goal is pursued
• Which tests are run to ensure the goal is achieved
• How the risks that jeopardize the goal are dealt with
• How the link is made to the software development process and the

development method
• Which advantages the chosen strategy has
• How the quality of the process is assured

The anticipated goal was examined in the first step of the step plan. The
test strategy explains which tests are run to achieve the goal. When
mapping out the risks, it should be explained how the results of the test
risk analysis serve as a starting point for reviews, sanity checks and the
test design to be developed. Finally, it explains which quality attributes
are important and how they will be tested.

The development method will have a lot of influence on the test strat-
egy. If the traditional waterfall model is used, it is reasonable to assume

150 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

that extensive system designs have been created. They are usually rea-
sonably stable and can be used as input for the test design, enabling
a detailed verification. With agile development techniques, the system
design is less detailed and often subject to change, requiring a more
flexible test strategy. On the one hand, the strategy explains how the
changes should be dealt with, and on the other hand how a meaningful
statement can be made about the quality even though detailed specifica-
tions are missing. Nowadays, systems are often developed incremen-
tally and the system delivered piece by piece. In such cases, it is impor-
tant to know how the increments are built and whether the tests that
cover the most important risks can be run on the first increment.

Example 10.3: Incremental development

The system is developed incrementally. One or more business
processes are delivered per increment. The test strategy ties in
with this and establishes per increment whether the delivered
business processes meet the criteria. The business processes that
were tested in earlier increments are also checked for regression.

Further, it should be established whether the increments can be properly
tested. Experience shows that testability is often forgotten when the in-
crements are defined. For example, in order to run the tests, functionality
is needed that is provided by a later increment. The strategy takes the
impact of the development method on the test process into account and
explains which choices need to be made in order to respond accordingly.

Before the stakeholders agree to the test activities, they will need to
trust the approach. This trust is gained by giving the stakeholders in-
sight into the strategy and by pointing out at what points in time they
are involved in the decision-making process. A bit of advertising
doesn’t hurt. Show that the strategy is well crafted and show what the
advantages of the chosen strategy are.

Example 10.4: Advantages of a chosen test strategy

• The most important business processes are tested first.
• The most important processes are released early in the project.

This boosts the confidence business and the users have in the
success of the project.

10.4 Test Strategy 151

St
ep

 2
 –

 A
pp

ro
ac

h

• Users can be trained on the released processes at an early
stage. This enables the users to get used to the new compo-
nents in the software and the processes.

• Regression is continually monitored. This prevents surprises
arising at the end of the project and contributes to a growing
confidence in the final solution.

• Business processes are first tested functionally and then
checked by the users. This prevents the UAT tests leaving a
negative impression on the user organization because of errors
that should have been found during the ST.

Work that is done well and on time produces reliable information about
the quality of the system. Explain in the strategy which measures have
been included in the test project to ensure that the quality of the test
project is high. If reviews are done and methodologies used, include a
few words about the tester’s expertise. This quality assurance enables
the stakeholders to trust the test project.

This description can be expanded with the following components:

• The results of the test risk analysis
• The relative importance of the quality attributes
• The strategy matrix
• An overview of the test design techniques to be applied
• The previous and next test projects
• The requirements for the test environment
• Quality assurance
• How the release advice is reached
• How changes and errors are dealt with
• How the transfer of knowledge and products is organized at the end

of the test project

Each of the above-mentioned components is explained in the following
sections.

10.4.2 Test risk analysis

The results of the test risk analysis (see Chap. 7) are described in the
test plan together with the date on which the risk analysis was done and
by whom.

152 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Example 10.5: TRA results

On <date> the following people did a risk analysis:
Name, job title
Name, job title
The following risks and their relative importance have been ac-
knowledged:

Risk category Risk area Relative
importance

Critical Route calculation-Standard calculation
Navigation-Enter destination

270
150

High Route calculation-Find alternative
Accuracy
Navigation-Favorites

117
99
80

Medium User friendliness
Route calculation-Route type
Extra-Traffic jam information
Performance
Navigation-Recent destinations

65
63
45
45
20

Low Navigation-Home
Extra-Weather forecast
Settings-Audio
Settings-Maps
Settings-Standard

15
9
8
6
6

10.4.3 Quality Attributes

It is hard to define which requirements a high-quality system has to
meet. Not only because the answer to this question depends on the an-
ticipated goal, but also because everyone has their own ideas about
quality. To provide a frame of reference, quality attributes were devel-
oped to make quality discussable and help the stakeholders indicate
which attributes they really find important. The stakeholders determine
the relative importance of the various quality attributes. This gives the
tester a clear picture of what his tests need to focus on. The prioritized
quality aspects can be displayed in Table 10.1 [Zeist et al, 1996],
[Bouman, 2004].

10.4 Test Strategy 153

St
ep

 2
 –

 A
pp

ro
ac

h

Table 10.1 Quality attributes

Quality attribute Description Relative
importance
H M L

Functionality
• Suitability
• Accuracy
• Interoperability
• Compliance
• Security
• Traceability

Extent to which the system displays
functionally correct behavior, i. e. the
presence of functions and their speci-
fied characteristics.

� � �
� � �
� � �
� � �
� � �
� � �

Reliability
• Maturity
• Fault tolerance
• Recoverability
• Availability
• Degradability

Degree to which the system contin-
ues operating under the specified
conditions during a specified period.

� � �
� � �
� � �
� � �
� � �

Usability
• Understandability
• Learnability
• Operability
• Explicitness
• Customizability
• Attractiveness
• Clarity
• Helpfulness
• User friendliness

Degree to which the system is suit-
able for use.

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

Efficiency
• Time behavior
• Resource behavior

Degree to which the system performs
well. Expressed in transaction speed
and used capacity at a specified load.

� � �
� � �

Maintainability
• Analyzability
• Changeability
• Stability
• Testability
• Manageability
• Reusability

The ease with which the system can
be changed or the effort that is
needed to make certain changes.

� � �
� � �
� � �
� � �
� � �
� � �

Transferability
• Adaptability
• Installability
• Conformance
• Replaceability

The ease with which the software can
be transferred from one environment
to another.

� � �
� � �
� � �
� � �

154 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Considering the large number of attributes, it is important to sepa-
rate the wheat from the chaff and determine the attributes that are
really important together with the stakeholders. The most impor-
tant attributes are usually those that the stakeholders want to re-
ceive reports on.

There are two ways to implement the most important quality attributes
in the test design:

• The quality attribute is integrated with the functional tests.
• The quality attribute is tested in a separate test cluster.

The choice depends on the nature and the importance of the quality at-
tribute. If the quality attribute is very important, or if it is difficult to
test, it is best to create a separate test cluster.

Fig. 10.3 Section of the test tree. On the left, the non-functional areas of attention
have been included as separate test clusters.

A number of non-functional areas of attention have been included in the
test tree that was created for the TRA (step 2 of the step plan). In
Fig. 10.3, these are performance (time behavior), accuracy and user
friendliness. Specialist knowledge is needed to test these areas of atten-
tion, which is why they are grouped separately. The test report provides
insight into the test results, often per test cluster. The advantage of de-
fining a separate test cluster for these quality aspects is that they appear
as a recognizable unit in the test report (see Chap. 20 Test Report).

Quality attributes can also be integrated with the other tests if they are
less important or if doing so is more efficient. In the example, the trace-
ability test is integrated with the business process tests.

10.4 Test Strategy 155

St
ep

 2
 –

 A
pp

ro
ac

h

Example 10.6: Integration of quality attributes

An airline is building a Web site so it can sell tickets online.
Traceability is considered to be an important aspect of selling
tickets because the organization has a legal obligation to trace
specific transactions, such as booked flights and payments.

In the test approach, the traceability test is integrated with the
process flow tests. To test the traceability properly, a check has to
be carried out to determine whether each situation has been re-
corded in the transaction log. To cover all situations, the business
scenarios have to be run through in their entirety, as do the proc-
ess flow tests. Integration saves a considerable amount of time.

For the process flow test, all of the business scenarios are run
through. After each scenario, a check is carried out to determine
whether the correct data can be traced to the transaction log. An
additional test case has been added to the physical test design, af-
ter the test cases that describe the scenario. This test case de-
scribes how the check has to be carried out to determine whether
the transactions and payments made in the scenario can be traced.

To illustrate which attributes are relevant at which point in the test pro-
ject, a strategy matrix is created.

10.4.4 Strategy Matrix

In the strategy matrix, the relevant quality attributes are distributed over
the test clusters or test levels. In the MTP, the quality attributes are dis-
tributed over the test levels. It is logical that the tester focus on user
friendliness during the UAT, as it is not something he will pay much at-
tention to during the module tests. A more interesting consideration can
be made for the security and performance tests. Performance is often
tested late in the development cycle, which is logical because that’s
when a working system that is representative of the live environment is
available. Unfortunately, experience shows that performance often cre-
ates a problem that is discovered late. Suppose the performance of the
system is a critical success factor. It is then a strategic choice to pay at-
tention to performance during the module test, for example, by examin-
ing the efficiency of each database query. We can also verify early on
how security is assured in the system design.

156 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

In the detailed test plan, the tester indicates how he will distribute the
quality attributes, over the test clusters. The starting point is the quality
attributes as they have been assigned to a test level in the master test
plan. A login module, for example, is tested on security. The interface
that offers large files that have to be processed by the system is tested
on performance. If these files are supplied by various parties, it is wise
to test if file processing meets the applicable standards. This conformity
test is part of the quality attribute “transferability.”

A matrix, such as the one displayed below, can be used to illustrate
which attributes are relevant in which test cluster and at which test
level [Hul, 2006].

Table 10.2 Sample strategy matrix. The matrix shows which risk area is tested for which quality
attribute at which test level.

Risk area

Fu
nc

tio
na

lit
y

A
cc

ur
ac

y

U
se

r f
rie

nd
lin

es
s

Pe
rf

or
m

an
ce

In
te

ro
pe

ra
bi

lit
y

C
la

rit
y

...

 H H M M M L ...
Route calculation-Standard
calculation

C ST (H) MT (H)
ST (M)

AT (M) ST (M)
AT (L)

 AT (L)

Navigation-Enter
destination

C ST (H) AT (L) AT (L)

Route calculation-Find
alternative

H ST (M) AT (M)

Accuracy H - - - - - -
Navigation-Favorites H ST (M) MT (H)

ST (L)
AT (L)

User friendliness M - - - - - -
Route calculation-Route
type

M ST (L) MT (H)
ST (L)

 AT (L)

Extra-Traffic jam
information

M ST (L) MT (H)
CT (M)

...

C=Critical, H=High, M=Medium, L=Low, N=Not relevant, MT=Module test, ST=System test,
AT=Acceptance test, CT=Chain test

The two left columns indicate the priority of the risk areas. They are
specified in the TRA (see Sect. 10.4.2). The two upper rows display the
quality attributes with their relative importance. For combinations of
quality attributes and risk areas, the matrix shows the test levels at
which they will be tested. In the example, the importing of traffic jam

10.4 Test Strategy 157

St
ep

 2
 –

 A
pp

ro
ac

h

information is tested on interoperability in the module test and the chain
test. In the module test, the technical interface is thoroughly tested to
demonstrate that all traffic jam information can be processed (priority is
high). In the chain test, it is investigated if it is also possible to receive
traffic jam information when it is transmitted by the interfacing system
(priority is medium).

10.4.5 Technique Matrix

The test strategy also indicates for each test level and test cluster which
test design techniques will be used. The test design techniques are dis-
cussed in Chap. 12 Logical Test Design. In the MTP, the techniques are
grouped by test level. In the DTP, the techniques are grouped by test
cluster or group of test clusters. The technique matrix is shown below.

Table 10.3 Sample technique matrix: The prescribed test design techniques are in-
dicated for each test level.

Test level Risk category
Low

Risk category
Medium

Risk category
High

Risk category
Critical

Module test AT statement
coverage

AT statement
coverage

AT branch
coverage

AT condition
coverage

System test EP valid
Syntax

EP valid +
invalid
Syntax

BVA valid
State
Syntax

BVA valid +
invalid
Syntax
State
C/E

Acceptance
test

Error guessing Exploratory
testing
Load

Exploratory
testing
CRUD
Load
Stress

PCT branch
coverage
CRUD
Load
Stress
Reliability
Concurrency

Chain test <not tested
explicitly>

PCT statement

PCT branch

PCT branch

AT=Algorithm test, EP=Equivalence test, BVA=Boundary value analysis,
PCT=Process cycle test

Read from left to right, Table 10.3 shows that the techniques get
stronger. Components with a high risk are tested more thoroughly than
components with a low risk. Read from top to bottom, the table shows
that different test design techniques are used. At each test level, the test
object is looked at from a different angle. This creates a better coverage
because different things are tested at each test level.

158 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

10.4.6 Previous and Next Phases

A third part of the strategy is a clear phasing of the project. The
V-model can be used to illustrate the phases. Specify what the previous
and the next phases of the test project are, and then define the entry and
exit criteria that apply to the project.

Define system
requirements

Functional
system
design

Coding

System test

Module
(integration)

test

Acceptance
tests

(FAT, UAT,
PAT)

Pilot

Chain test

Technical
system
design

Wish
(anticipated result)

Review

Review

Review

Operational
(achieved result)

The bridge from anticipated
to achieved GOAL

Fig. 10.4 Representation of the V-model. The V-model consists of two legs that, to-
gether, form the letter V. The left leg shows how the initial wish is converted into
system requirements. The system requirements are converted into an increasingly
detailed system design that serves as a basis for the programmer. The left leg also
defines the static tests; each design is tested by means of reviews. The right leg
shows the dynamic tests. The next test types, module (integration) test, system test,
acceptance test, chain test and pilot can be recognized.

At the beginning of the test project, the output and the status of the pre-
vious phases will be important pieces of information. When test time is
limited, everything should be done to ensure that the testers can do their
jobs and rather than those that should have been done in a previous
phase. This ensures that the little time that is available for the planned
test activities is spent efficiently.

Identify the dependency the test project has on the previous activities
and discuss important items with the responsible colleague. The DTP
defines the things that must be taken care of in order to be able to start
the test project without problems.

10.4 Test Strategy 159

St
ep

 2
 –

 A
pp

ro
ac

h

After a release advice, the test object moves on to the next phase, which
is often the next test level or the live environment. Remember that the
next party that will be working with the system will look at the testers
in the same way that the testers in the previous phase looked at their
predecessors. It is a good idea to determine when the test level is fin-
ished and what it means for the next phase (entry and exit criteria). In
general, the test manager should have included this in his MTP. It
doesn’t hurt, however, if the test coordinator ensures that the process
also ties in with the details.

Building bridges to the stakeholders of the other phases is crucial in
order to ensure that the expectations are the same. It also prevents gaps
or overlaps.

10.4.7 Test Environment

Different test projects put different demands on the test environment.

If it is important for the test project that errors are quickly fixed and re-
tested, it’s worth considering running the tests in the development envi-
ronment. A development environment has a so-called fast deployment
cycle. The time between finding an error and the availability of the so-
lution is then short. If, however, similarity with the live environment is
a deciding factor for the test project, an acceptance environment is bet-
ter. Bear in mind, however, that it takes longer before solved errors can
be retested in an acceptance environment because the deployment of the
new software is more formal and hence takes more time. Because the
acceptance environment resembles the live environment more closely,
the likelihood that a component that works in the test environment will
cause problems in the live environment is considerably reduced.

The requirements for the test environment are described in detail in the
design step of the step plan (Chap. 15 Test Environment). In the test
plan, these requirements are outlined insofar as they are part of the test
strategy.

The maintenance of the test environment and the testware is impor-
tance to assure the quality of the test project. Include how this is done
in the test plan, which parties are involved and how the maintenance is
organized.

160 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

10.4.8 Assuring the Quality of the Test Project

The detailed test plan should also specify how the quality of the de-
livered products is assured. Think of the following measures and de-
scriptions:

Review, Inspection and Walk-Through Sessions
The products of the test project will be delivered to stakeholders for re-
view or inspection. The objective is twofold: on the one hand, the re-
view or inspection should reduce the number of errors, and on the other
hand, it should increase the involvement of the stakeholders. By acquir-
ing knowledge of the contents of the products, they gain insight into the
quality of the approach and the working method. For the latter objec-
tive, walk-through sessions can be done as well.

Provide feedback for each review comment in the next version of the
document. Indicate how the comments have been processed, and if they
haven’t, explain why.

Sanity Check and Smoke Test
A sanity check and a smoke test are run. The purpose of these tests is to
establish whether the objects are of sufficient quality and the planned
test activity can be executed. The tests prevent time being lost during
the execution of the test activities. If the objects are of lower quality
than expected, the anticipated goal may be jeopardized. If the smoke
test results in a negative advice, measures need to be taken. This limits
the risks and ensures the planned activities can be carried out.

Testing the Testware
The testware will be tested for functionality and clarity. The resulting
feedback will be processed where relevant.

Change Procedure
After the products of the test project have been approved, the change
procedure is applied to ensure changes are carried out in a controlled
manner.

Review of the Test Design
It is important that the stakeholders have an idea of the content of the
tests so they can see for themselves that testing is done seriously, that
their input is used in the test design, and that the points of attention that
are important to them will indeed be tested. Experience shows that
stakeholders are more involved and more readily accept that testing
takes time when they have insight into the content of the tests.

10.4 Test Strategy 161

St
ep

 2
 –

 A
pp

ro
ac

h

Moreover, knowledge of the tests that will be run helps the stakeholders
evaluate the release advice. After all, how can someone have confi-
dence in a release advice if they don’t know how it is established?

Reviewing is a method that is frequently used to familiarize the stake-
holders with the contents of the test project. One of the most extensive
products of the test project is the physical test design. It’s not easy to
read either! It requires patience and knowledge of the system. Most us-
ers and managers would prefer to do anything rather than review a test
design!
There are a number of ways to make the review more accessible to the
stakeholders.

Divide the Reviews into Small Sessions
This minimizes the review effort. It is easier to start a review with a
document of 20 pages than with a document of 200 pages. Experience
shows that the last pages are usually reviewed less thoroughly than the
first pages. Organizing a special review session for the last part of the
document minimizes this effect.

Tell each reviewer which parts they should review
Only ask the reviewer to review specific parts. These are, of course,
parts that fall within the reviewer’s field and expertise. The advantage is
that it takes the reviewer less time.

Use the Results from the Test Risk Analysis to Vary the Thorough-
ness of the Review
How thorough should the review of the test design be? This depends on
the risk the test case covers. For less important test cases, it is very
probable that the tester will only want to know if he is testing the right
thing, in which case the review is only aimed at the test goals. For more
important test cases, he will also want to know whether he is carrying
out the test correctly: has he interpreted the specifications correctly, are
the expected results accurate, is the test case going to work? By varying
the thoroughness of the review, the reviewer can spend his valuable
time on the right things.

Give Each Reviewer a Specific Scope
Let the reviewers look at the design from different perspectives. For ex-
ample: the tester’s colleagues look closely at how the tests have been
developed and whether the test design techniques have been applied
correctly. The analysts pay attention to errors in the contents of the test
design and the users look at the coverage of functions that are important
to them. This type of review is called “perspective-based reading.”

162 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Specific function is
not tested

Typo in document

Expected system
reaction is not correct

Test design technique is
not used correctly

Typo in document

Tester
Scope: Are the test cases clear and unambiques ?

Are the test design techniques used correctly ?

User
Scope: Are all important functions covered ?

Analyst
Scope: Do the test cases test the

correct behavior ?

Fig. 10.5 The principle of “perspective-based reading.” Each reviewer pays attention to things
that are important to him. The advantage of this method is that the errors found during the review
are more diverse. The above figure displays a number of errors. The typo could have been found
by any reviewer. Other errors are always found by just one reviewer because he has focused on
this particular issue [Basili]

This working method has the advantage of a clearly defined assignment
and a clear definition of what is expected of the reviewer. It also in-
creases the efficiency of the review because each reviewer can focus on
his own field. It also increases the coverage of the review. The number
of identical comments (for example, the typo in Fig. 10.5) that the re-
view produces decreases.

Walk-Through Session Test Design
A walk-through session is a good way of giving others in the organiza-
tion insight into the coverage of the tests. A walk-through session con-
sists of two parts.

In the first part of the session, the test coordinator explains how the
team approached the test design and how the stakeholders’ input was
incorporated. The test coordinator uses example to show how the TRA
and test design techniques were applied. He demonstrates how the tests
were elaborated and how the test results relate to the anticipated goal.
The first part is finished as soon as the participants have a good under-
standing of the approach.

In the second part of the session, the participants get to ask questions. A
frequently asked question is “Will you thoroughly test the function I
find so important?” The test coordinator shows the extent to which the
test will be run so the inquirer can establish whether he trusts the test
design. Should the inquirer not trust the test design, it is further elabo-
rated and an action item formulated. The test coordinator follows up on
the action item and informs the participant about the result.

10.4 Test Strategy 163

St
ep

 2
 –

 A
pp

ro
ac

h

At the end of the walk-through session, the participants are asked
whether they have confidence in the test design. Do they think that,
when the defined tests have been run with a positive result, the system
will be good enough to move on to the next phase? If the participants
feel that there are still unaddressed risks, additional actions are dis-
cussed. An additional walk-through session may be needed after the
action items have been dealt with. If the conclusion of the participants
is positive and they trust the test approach and the tests, the test coordi-
nator can be satisfied. The participants’ confidence is important for the
acceptance of the release advice.

Make sure that the test manager attends the walk-through sessions
as some of the participants’ questions may be covered in other
test levels. Because the test manager has an overview of all of the
project’s test projects he can confirm this on the spot or make
sure another test coordinator is informed about the stakeholder’s
concern.

10.4.9 Release Advice

The test plan also contains information about the release advice that is
given in the test report. A release advice can be negative, conditional or
positive, and indicates whether the test object can move on to the next
phase, which can be the next text level or the live environment.

The test plan explains how the release advice is established: by means
of a formal test against fixed acceptance criteria or intuitively during a
triage meeting. The most important stakeholders, which are specified in
the Goal description, must attend the meeting.

Determine who ultimately gives the release advice. In a standard test
project, this is usually the test coordinator or the test manager. Also
agree on how the release advice will be treated. Thinking about subse-
quent actions in advance avoids tough discussions and panic if a nega-
tive release advice is given at the last minute. Describe what will hap-
pen if a negative release advice is given. Is the release advice binding,
or is it, as is usually the case, an advice? Who decides to go live if the
latter is the case?

164 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

10.4.10 Change and Error Management

Changes to the system, the test base and the testware have a lot of influ-
ence on the test project, which is why they need to be implemented in
a controlled manner. Changes to the system and the test base also im-
pact the software development project, which is why it is very likely
that agreements on how to deal with changes will have already been
made for the project. The test project will tie in with the process and
system the organization uses. If a smooth process is not available, one
should be defined and implemented.

It is not only important to know which system specifications have been
used for the test design, it is also important that they have the same ver-
sion as those the developers used to build the system. The following
procedure has proven to work well: each change is implemented in the
specifications by the analysts, who give the document a new version
number and release it to the project leader. The project leader deter-
mines the moment at which the specifications will be used. He releases
the specifications to the developers and the testers and determines for
which software release the specifications are used as baseline. The
baseline for developers is the test base for the tester.

The first advantage of this approach is that the analyst can implement
his changes directly. Some changes turn out to be a lot more complex
than they seemed to be at first sight. Dealing with the changes quickly
means that the bottlenecks or unforeseen complications are detected and
discussed at an early stage. The second advantage is that the specifica-
tions are released after having been verified, and that both the test team
and the development team are working with the same versions.

Errors that are found during reviews, sanity checks, smoke tests and test
runs are recorded. Once they’ve been recoded, it has to be determined
whether they will be fixed and when. Include in the test plan how error
management has been set up and who makes the decisions, or refer to
the existing procedure (see also Chap. 19 Error Recording and Man-
agement).

10.4.11 Transfer

Before the test team is discharged, the testware and the acquired knowl-
edge are transferred to the organization. Indicate in the test plan what is
transferred to whom and what the rules are.

10.4 Test Strategy 165

St
ep

 2
 –

 A
pp

ro
ac

h

Example 10.7: Planning the transfer

During the system test on the Connecta project (also see Exam-
ple 1.3 and further examples), products such as the test design and
a review log were created. The testers also acquired knowledge
about the new system. To ensure that the products and knowledge
are reused as best as possible, they are transferred. During the ap-
proach phase, the test coordinator maps out which parties need a
product or information and when. After consultation with the
stakeholders, he includes the following in his DTP:

Test Design
Description
The test design is transferred to the test center. The test center
will run future regression tests.
Recipient
Test center manager.
Transfer method
Cleaned test archive is transferred after an oral explanation.
Moment of transfer
In the Transfer step described in the step plan.

Review Errors in Test Base
Description
The issue list with the errors that were found in the test base is
transferred to the team of analysts. The information can be used
to improve the test base for future projects.
Recipient
Analyst team leader
Transfer method
The review log for the test base is regularly exchanged and dis-
cussed.
Moment of transfer
At fixed times throughout the test project.

System Configuration
Description
The knowledge of the system configuration is transferred to the
maintenance organization. A lot of knowledge about how the
system should be configured is gained while running the tests.
Although the configuration was set up for testing purposes, the
knowledge gained may also be applicable to the live environment.

166 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Recipient
The system administrator, who is responsible for the configura-
tion of the live system.
Transfer method
The system configuration is discussed with the system adminis-
trator.
Moment of transfer
In the Transfer step described in the step plan.

System Knowledge
Description
The test team has learned how to work with the system. The ex-
perience gained about the workings of the system and its peculiari-
ties will be transferred to the subproject Implementation. The
trainers can use the knowledge for a practical system introduction.
Recipient
Project leader/trainer of the subproject Implementation
Transfer method
Review and discuss the training before it is given.
Moment of transfer
When work is started on the training material.

Learning Points
Description
During the evaluation, the learning points are included in the
learning points report.
Recipient
Test department manager, Test manager.
Transfer method
The lessons learned report is transferred. The recipient is present
during the assessment.
Moment of transfer
During the last step of the project (assurance).

10.5 Planning

Chapter 9 explained the creation of the test budget and planning in
detail. The approved test budget and planning are included in the test
plan.

10.6 Test Organization 167

St
ep

 2
 –

 A
pp

ro
ac

h

Some project management methods, like PRINCE2, store the planning
in a separate document because it changes so often. If the planning is
stored in a separate document, include the initial planning. Include a
reference to the document in which the updated planning is stored.

10.6 Test Organization

The test plan contains an overview of the test set up. The test set up is
included in the test plan to indicate which parties are involved in the
test process and how communication between these parties is struc-
tured. It is important that all of the parties that are needed to achieve the
defined milestones and to execute the planned activities are identified.
So that everyone knows their place in the test project, the roles, respon-
sibilities and tasks are determined for each party.

10.6.1 Organization Chart

Use organization charts to make things transparent. More complex pro-
jects may require more than one organization chart, for example, for the
project organization and the line organization, and maybe an organiza-
tion chart for the external customer or contractor.

The organization chart displays the hierarchical relationships and
should contain a level above the customer. It is useful to know who is
backing the customer in the event of escalation.

The organization chart is also useful to indicate communication lines.
Communication lines may seem logical in a neatly arranged project, but
when external parties are involved, special agreements may have been
made. In politically sensitive situations, it is not always desirable that
everyone exchange ideas freely. In such cases, define the topics the par-
ties may and may not talk to each other about.

In Fig. 10.6, the dotted lines indicate that the testers communicate with
the developers and that the test coordinator communicates with the ex-
ternal contractor’s project leader.

168 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Project Manager
name

Test Coordinator
name

Project Leader
name

Tester
naamTester

naamTest Engineer
name

Developer
name

Manager Test
Center
name

Test Manager
Test Coordinator
Test Engineer
Test Analyst
Tester Engineer

General
Manager

name

Manager
IT Factory

name

Project organization

Project Manager
name

Project Leader
name

Developer
name

Project organization
External contractor

Tester Engineer
name

Test Manager
name

Manager
Operations

name

Developer
Analysts
Project Manager
Project Leader

User
System
administrator
Helpdesk
engineer

Communication line
Hierarchical relationship

Line organization

Fig. 10.6 An organization chart

10.6.2 Responsibilities

The description of the test organization also contains the description of
the stakeholders’ responsibilities, i. e. the employee’s role in the project.
State the person’s job title and the responsibilities he can be approached
about. Mapping out the responsibilities makes the interests transparent
and helps understand why stakeholders react the way they do.

The RACI Chart
The test plan contains a description of the tasks and responsibilities.
A RACI chart is a good way to display them. A RACI chart indicates
which parties are responsible for the execution of which activities as
well as who performs the action and who is informed or consulted.

When creating a RACI chart, activities and stakeholders are matched in
a table. Codes indicate how each person is involved in the activity. The
following codes are used to fill in the table:

• R = Responsible; performs the corresponding action.
• A = Accountable; person who is ultimately responsible for this

activity.
• C = Consultation; is consulted during the execution of this activity.
• I = Informed; is informed about the result of this activity.

Part of a RACI chart is displayed in Table 10.4. The below RACI chart
should be read as follows:

10.6 Test Organization 169

St
ep

 2
 –

 A
pp

ro
ac

h

• The test coordinator is responsible for the development of the DTP
(R). He does this in consultation with the testers in his team (C). If
the test coordinator does not develop his plan correctly or com-
pletely, the test manager (A) will have a problem. The plan contains
important information for the project manager, who receives the plan
for information (I).

• The sanity check is run by the tester (R). The analyst has to deliver
revised work. This also makes him responsible for the sanity check
(A). The test coordinator is informed about the results (I).

Table 10.4 A RACI chart

Pr
oj

ec
t m

an
-

ag
er

Te
st

 m
an

ag
er

Te
st

 c
oo

rd
in

a-
to

r

Te
st

er

U
se

rs

M
ai

nt
en

an
ce

or

ga
ni

za
tio

n

A
na

ly
st

s

MTP A R C I
DTP I A R C
Sanity check I R A
Process review
on test base

A R

Configuration
environment

A I R

Test design A R C C
Test execution A R
Test report I R C

10.6.3 Meeting Structures

The test organization needs structured meetings. It is useful to state
which meetings will be held and to explain their objective so the avail-
able time can be used as efficiently as possible. When stating the names
of the meetings, include the following items:

• Objective of the meeting
• Attendees
• Frequency
• Reporting
• Required time, including the time to create the report(s)

170 10 Test Plan
St

ep
 2

 –
 A

pp
ro

ac
h

Test Progress Meeting
Objective: Establish the progress against the planning based
 on the test report
Attendees: Test coordinator, Project leader, Project leader
 external contractor
Frequency: Biweekly
Report: Test report
Time needed: No more than 1.5 hours per meeting

Standing Meeting
Objective: Establish progress, bottlenecks and dependencies
Attendees: Test coordinator, Test team members
Frequency: Every day during the test run
Report: None
Time needed: 15 minutes per meeting

It can, of course, happen that planned meetings are cancelled during the
test project or that additional meetings are needed. If regular meetings
with many stakeholders are cancelled, it may be desirable to adapt the
test plan. This does not apply to meetings that are held only a few times
or that have no strategic importance.

10.7 Deliverables

The products to be delivered by the test project are an essential part of
the test project’s anticipated goal. In the planning phase, the customer
and the contractor discuss and agree on the deliverables. The agree-
ments are described in the test plan.

A basis for mapping out the products is the TestGoal step plan. The
products from the step plan are included in the WBS checklist in
Chap. 9 Test Budget and Planning.

The product overview is the basis for the discharge of the people who
worked on the test project. The team can be discharged if the agreed re-
sult has been achieved; this means that all of the agreed products have
been delivered to the customer.

10.9 Changes and Deviations 171

St
ep

 2
 –

 A
pp

ro
ac

h

10.8 Requisites for the Test Process

Requisites are everything that is needed to be able to start, run and fin-
ish the test project, such as a test environment, workplaces or an addi-
tional printer. When requesting requisites, bear in mind that a number
of items may have a delivery delay. In some organizations, requesting a
mainframe test environment has a delivery delay of several months.

This is why requisites need to be planned. It is also wise to define their
requirements. The requirements for a chair probably won’t be all that
exciting, but they will be for the test environment. This is why the re-
quirements for the test environment are taken into account in the design
phase (also see Chap. 15).

10.9 Changes and Deviations

Experience shows that a project’s scope is subject to change. A wish to
deviate from the developed and approved plan can suddenly arise. This
is why the test plan describes how changes and deviations are dealt
with. For example:

Changes and deviations to the approach described in the test plan
will be implemented in consultation with the customer and the
contractor.

If need be, the test coordinator and the customer will work together to
establish what the change is, how the stakeholders will be informed and
how the change will be formalized. This can be done, for example, by
creating a new version of the test plan.

St
ep

 3
 –

 D
es

ig
n

Step 3 – Design

.

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

The Design step discusses the tests that need to be run and the envi-
ronment that is required to run them. In this step, a logical and physical
test design is developed, and the requirements for the test environment
are established. The definition of the required test data is also part of
this step.

The Design step consists of the following activities and products:

Activity Product

Sanity check Review log test base
Sanity check report

Test designs Logical test design
Physical test design
Test data

Requirements test environment Requirements test environment

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_11, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 3
 –

 D
es

ig
n

11 Sanity Check

11.1 Introduction

The sanity check provides insight into the quality and usability of the
test base. It shows which measures need to be taken to start working on
the test design without risks. The sanity check ensures that project risks
are discovered at an early stage and that errors in the test base are dealt
with. The sanity check is not intended to bring the project to a grinding
halt, but to make risks discussable. The sanity check is run on both the
test base and the testware. Reusing existing test designs is part of the
TestGoal philosophy.

While the Goal description was created, the contents of the test base
were also mapped out: relevant system designs, test designs and test
tools. A first scan was also carried out to determine the test approach
and the planning. The test base will be used actively during the creation
of the test design. Before work on the test design can start, the last ver-
sions of the required documents must be available. It is on this version
that the sanity check is performed.

The sanity check verifies whether the test base clearly describes the an-
ticipated goal. This being the case, the test base can be used as a basis
for the test cases. If testware is available, the extent of its reusability is
checked. The testware must be of sufficient quality, complete, and up to
date. The checklist is filled out during the sanity check. This ensures
that key components are not forgotten. To fill out the checklist cor-
rectly, the test base needs to be thoroughly assessed, which is why this
activity is combined with a review. Because the review is a risk-based
activity, the TRA is used to determine which parts are more or less im-
portant. The depth of the review is adapted to the importance to ensure

176 11 Sanity Check
St

ep
 3

 –
 D

es
ig

n

that the important functions are reviewed more thoroughly than the less
important ones. The sanity check produces

• Review findings
• A completed checklist containing:

− A conclusion on the usability of the test base.
− An overview of the measures that need to be taken so that the test

design can be started without risks. If the test base does not meet
the standards, the incomplete points are indicated. The risks for
the test design and the planning, and the measures needed to
cover the risks are indicated for each item.

The following sections discuss using the checklist and the review of the
test base in more detail.

11.2 Filling out the Sanity Check Checklist

The checklist produced by the sanity check consists of two parts: one
part for checking the design and one for checking the testware. The test
analyst typically fills out the design checklist because he is the one who
will be converting the system design into test cases. The testware

Table 11.1 Examples of errors, risks and measures

Error Risk Measure

System design is incom-
plete

Ambiguity about the desired
result. High likelihood of
changes in the specifications.
High likelihood of errors in
the system.

Map out the anticipated goal to-
gether with the stakeholders. En-
sure that all of the team’s test ex-
perts are informed.

System design contains
numerous errors

High likelihood of changes in
the specifications.

Explain that it is necessary to adapt
the specifications before work can
start on the test design.

System design is not up to
date

High likelihood of errors in
the system.

Explain that the project must take
more releases and additional main-
tenance on the testware into ac-
count.

The software to be reused
is not detailed enough

Tests do not give a good im-
pression of the quality.

Plan an activity to adapt the test-
ware.

The software to be reused
contains numerous errors

Tests give an incorrect im-
pression of the quality.

Increase the team’s subject-matter
knowledge so that the team can
assess the system properly.

The software to be reused
is not up to date

11.2 Filling out the Sanity Check Checklist 177

St
ep

 3
 –

 D
es

ig
n

checklist is typically filled out by the test engineer because he usually
has knowledge of test tools and the physical test design.

On the one hand, the checklist is used to determine whether the test
base contains all of the desired components, and on the other hand it is
used to determine whether the components are of sufficient quality. All
of the checks that are carried out are checked off in the checklist.

The test base may not contain all of the components. Components may
be missing because they are not needed for the level of functionality be-
ing tested. An example is the checks run on reports: not every system
generates a report. If the quality of the test is not good enough, the
points that are of poor quality are indicated as well as the risks for the
anticipated goal and how they jeopardize the efficient development of
the test design. This is accompanied by a proposal for the measures that
are required to cover the risks.

Test base checklist: Design

Conclusion
Conclusion Y / N

X

If the conclusion is negative:
The overall findings of the sanity check are described below. The risks for the test design and the activiti
that are required to cover them are specified for each point.

Findings Risk Measures
Performance is specified in the
TRA as an important quality
attribute. It is not clear if
performance requirements were
taken into account.

Analyst: Define performance
requirements so the
performance can be accepted.
Analyst: Explain to the test team
how performance has been
included in the design and
where the performance risks are
in the system.

Goal
Description Y/N N/A Solutions

√

√

X

√

There are no performance
requirements for the system.

The specifications (test base) are sufficiently detailed to start a structured test
project.

All of the functionality, processes and their coherence
are sufficiently described.
All of the functionality, processes and their coherence
are consistent with the anticipated goal.
All of the quality criteria have been sufficiently
discussed.

The results of the risk analysis have been traceably
processed in the test base.

Performance
requirements have not
been defined.

Fig. 11.1 Part of a completed sanity check checklist

178 11 Sanity Check
St

ep
 3

 –
 D

es
ig

n

The sanity check is finalized with a conclusion on the usability of the
test base. A positive conclusion indicates that the examined specifica-
tions are a good and useful basis for the test design and test execution.

The completed checklist forms the sanity check report, which is used to
determine who will take which measures and if work can start on the
test design.

11.3 Continuous Learning

The sanity check checklist (see Appendixes A and B) can be supple-
mented and changed as needed. Experience from the test project and
experience from previous sanity checks or other comparable projects
can be processed in the checklist. Adding these experiences enables
sanity checks to be carried out according to the latest insights and the
acquired knowledge to be optimally reused.

11.4 Test Base Review

The contents of the system and test design are also reviewed during the
sanity check. The system design review enables design errors and flaws
to be detected and fixed early on in the project with relatively little ef-
fort and cost. The relative cost of fixing errors in the live product that
are the result of specification flaws is much higher.

Experience shows that the review produces the most results if it is
done when the design is almost finished. Most of the functionality will
have been described, but changes can still be made to the design with
little impact on the runtime. When 70 to 75 percent of the design is
complete, the author will have had enough time to describe the func-
tionality. He then knows how it has to be implemented and will have
put the design on paper (perhaps after a couple of internal reviews
with peers). At this point, the reviewer can get a clear picture of what
the described functionality contains. See also Sect. 10.4.8, Assuring
the quality of the test project, for practical tips on how to make the re-
view more accessible.

11.4 Test Base Review 179

St
ep

 3
 –

 D
es

ig
n

Example 11.1: Summary of testability review

Evaluate for each component in the system design whether the
component contains sufficient information to check whether the
implementation meets the standards. Check whether the compo-
nent is detailed enough and unambiguously formulated in order
to derive the required test cases. Ask the following questions
[Basili]:

• Is all of the information required to establish acceptance crite-
ria for the requirement available? Is there enough information
to define tests for each aspect of the requirement?

• Is there another requirement for which the same test could be
defined, but of which the expected result is contradictory?

• Is it certain that the result of the test is easy to predict? Is the
value of the output and the unit in which it will be represented
known?

• Are there other interpretations that the programmer may use to
build the system? Which test needs to be developed to demon-
strate that the builder has indeed used a different interpreta-
tion? Is enough information available to define this test?

It is also useful to verify if the requirement is sensible from the
view point of the anticipated goal.

• Does the requirement tie in with the description of the func-
tion? Does the requirement tie in with the system? Does the
requirement contribute to the anticipated goal?

The test design review focuses on the testware that is already available.
For example, the review establishes the extent to which the available
tests are reusable. Often, the test team will have already worked with
the test design, so its level of detail and quality are probably known. In
such cases, the review can be limited to determining how up to date the
design is and whether all of the system changes were implemented in
the test design. Also bear in mind that the TRA may have changed. Pay
particular attention to functions that were classified as “low risk” and
are now classified as “high risk.” It may very well be the case that a
limited set of tests was defined for these functions, while a higher test
depth is now required. It’s also likely that these parts of the test design
were reviewed less thoroughly in the past. If there is no knowledge of
and experience using the test design, it will have to be reviewed thor-
oughly in order to prevent surprises arising during the test run.

180 11 Sanity Check
St

ep
 3

 –
 D

es
ig

n

Errors are entered in the generic error log, if it exists. If it doesn’t, a
separate review log can be used. The completed review log is sent to the
author and discussed with him if necessary. Where required, the author
fixes the error in the system design. Experience shows that errors are
often found because the reviewer has an incorrect picture of the system
that is being built. In such cases, the author explains the error and an-
swers the reviewer’s questions.

11.5 Registration

The review errors are entered in the generic error log. If the log doesn’t
exist, a simple review error form can be used and sent together with the
document to be reviewed. The below table displays the various ele-
ments that are on the review log form.

Table 11.2 Elements used in the review log

Element Explanation

Number Unique identification number of the error.
Document ID Name, version number and author of the reviewed document.
Reference Place in the document. Use agreed conventions, like Chapter 2, Sect 3, point 2.
Type Type of error. The following categories are distinguished:

Functional Error or inconsistency in the development
Unclear Ambiguous description
Incomplete Lacks functionality, or incomplete error handling
Cosmetic For example, typos, terminology, version numbering, etc.

Description Short and clear description of the error.
Prio Priority of the error according to the effects on the product to be built if the

statement remains in the specification.
H = High – the statement definitely produces an error in the test.
M = Medium – the statement may produce an error in the test.
L = Low – the statement will not produce an error in the test.

Error status Description of the status of the error.
Open = New error, not dealt with
Analysis = Needs to be analyzed
On hold = Is temporarily set aside
Decision = Waiting for a decision to be taken
Action = Waiting for the result of an indicated action
Finished = Has been processed

Proposed
solution

The author describes the solution for the described error.

Change? Here, the author indicates whether the statement will be dealt with
(removing an error) or if the error has to go through error management
(in the case of a change that falls outside the scope of the contract or a
change that has great impact).

11.6 Formal Review and Inspection Procedures 181

St
ep

 3
 –

 D
es

ig
n

11.6 Formal Review and Inspection Procedures

If formal reviews and inspections are used in the organization, it is ad-
visable to follow suit. Formal reviews and inspections are led by a
trained moderator who supervises and guides the process. In addition,
the moderator monitors the following things:

• Which review/inspection method is most relevant?
• Is the product ready for review or inspection?
• Is the maximum review speed applied (pages per hour)?
• Are the error logging meetings held according to the rules?
• Are the follow-up actions finished correctly?

If the organization is not yet familiar with formal reviews and inspec-
tions, it is advised to start with a less formal procedure (see also
Sect. 10.4.8 Assuring the quality of the test project).

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_12, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 3
 –

 D
es

ig
n

12 Logical Test Design

12.1 Introduction

This chapter discusses the development of a logical test design and the
use of test design techniques. The logical test design is a collection of
all of the logical test cases. Logical test cases define the tests on a logi-
cal level. The logical test design is based on the test base, the antici-
pated goal and the TRA. The aim is to create a balanced set of logical
tests. “Balanced” means that the number of test cases that are defined
for each function is in proportion to the complexity and the importance
of the function. The distribution of test cases for each quality attribute is
also carefully examined. Using the right test design techniques creates a
set of logical tests that can be used to efficiently establish whether the
system will contribute to the anticipated goal. The logical test design
provides a balanced blueprint that is supported by the TRA. The blue-
print can be used to elaborate the physical test cases.

A logical test case describes what needs to be tested; a physical
test case describes how it is done.

Why would you want to create a logical test design? A logical test de-
sign has a number of advantages. When developing the physical test
cases directly from the test base, the tester has to divide his attention
over two areas. On the one hand, he has to figure out which tests are
necessary and on the other hand he has to describe the tests in detail. As
described in Chap. 13 Physical Test Design, the physical test case de-
scribes step by step how the test has to be run. For example, the physi-
cal test case describes the screens that are tested and the test data that is

184 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

used. The development of a logical test case and the development of a
physical test case are two different disciplines. The knowledge that is
needed to develop logical test cases is different than the knowledge
needed to develop physical test cases. If a logical test design is created
in addition to a physical test design, the activities can be distributed
over more people. Depending on experience and preference, a tester can
deal with the more analytical logical test design, and someone else can
concentrate on the more practical physical test design.

In addition, thinking about what without having to worry about how en-
sures that we do not apply unintended self-censorship. Although a test
may be useful, it can be decided not to run it, perhaps because it is too
difficult or because it too time consuming. In such cases, it is important
to know that the test will not be run. Apparently the corresponding risk
is not covered.

A logical test design contributes to reusable and maintainable testing.
The logical test design provides insight into the tests to be run and dis-
tributes them over the test cases. To ensure the tests are run more effi-
ciently, it can be useful to distribute tests for one logical test case over
several physical test cases. Without a logical test design it is difficult to
derive from the test cases whether the coverage is sufficient. The logical
test design provides insight and makes it possible to explain the choice
to include or exclude certain test cases in the physical design. This
makes the test design maintainable and reusable.

Finally, creating logical tests enables the tester to vary the depth and fo-
cus of the tests so that the developed tests have maximum added value.
The test can cover the identified risk by using test design techniques
cleverly: only those tests are run that produce information about the
suitability of the test object.

Is it always necessary to create a logical test design? The answer is, of
course, no. A logical test design is only created if it adds value. It may
not be important to know what the exact coverage of the less critical
components is. A test case that is forgotten may not pose a problem and
thus a logical test case is not needed. For the critical functions, how-
ever, more security is desired. The security for these components is
provided by the logical test design.

There are a lot of organizations that use neither test design techniques nor
a logical test design. In these organizations, the test base is often directly
converted into a physical test design. But the tester will still implicitly
use test design techniques during the conversion. Sound knowledge of
the test design techniques and their principles still has added value.

12.2 Test Design Techniques 185

St
ep

 3
 –

 D
es

ig
n

Example 12.1: Implicit use of a test design technique

A tester is defining tests for an input field. He implicitly uses the
test design technique BVA. In the test description, he defines the
use of a number of boundary values. This increases the likelihood
of finding errors and makes the test set more effective. The cov-
erage of his test set is not entirely clear. Are all of the boundary
values prescribed by the BVA design technique used in the test
set or are only a few used? Are the boundary values that are and
are not used traceable?

12.2 Test Design Techniques

This chapter describes the use of various test design techniques. Test
design techniques are used to convert the test base into logical test
cases.

A lot of different test design techniques are available. Applying all of
the techniques at once is very time consuming and inefficient. A tech-
nique needs to be chosen. The suitability of a technique depends on a
number of things:

• The type of error that can be expected
• The severity of the error if it occurs in the live system
• The information that is available to base the tests on

This is explained in the below figure.

Which information is
available?

What kind of error
is expected?

What is the impact if
this error occurs in the live
environment?

Select a technique
that covers the right

domain

Select a technique
with the right test

depth

TRA

Test base

Test design
technique

Select a technique for
which the necessary

information is
available

Fig. 12.1 Selection of test design techniques

186 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Determining the Test Domain
Test design techniques force the tester to look at the test base and the
test object in a specific way. Each test design technique has its own fo-
cus. Applying a specific technique increases the likelihood that errors of
a certain type (within a specific domain) will be found. The structural
approach of the technique ensures that the work is done more thor-
oughly and that errors are revealed that would otherwise remain unno-
ticed. However, the dark side of test design techniques lurks behind this
advantage. Looking at the test object in a specific way makes you blind
to errors that are outside the scope of the domain. These errors can be
found with other techniques, which need to be chosen carefully and
with the anticipated goal and the risks in mind.

EP

State
P

C
T

C
R

U
D

Error that is not found
with the used test design
techniques

Error that is found with
the EP test design
technique

Fig. 12.2 Software errors in relation to the used test design techniques

In Fig. 12.2, the large rectangle represents the test object, which con-
tains a number of errors. In this example, four test design techniques
were used (PCT, CRUD, State Transition and EP) that reveal a number
of these errors. In the example, the following things stand out:

• Errors that are found by one technique are not necessarily found by
another technique.

• Some errors cannot be found with any of the chosen techniques.
• Errors often occur in clusters (for example, because of a poorly de-

signed function, or because of a careless programmer).
• There are techniques that are very suitable in a specific situation (in

this case EP) and techniques that are ineffective (in this case CRUD
tests).

The TRA or the quality attributes can be used to determine the expected
errors.

12.2 Test Design Techniques 187

St
ep

 3
 –

 D
es

ig
n

Example 12.2

A transaction processing system is being developed. In the system,
certain actions are allowed or disallowed depending on the status
of the transactions. The system also determines how long a trans-
action remains in a specific state. If necessary, the system displays
a message to inform the user of the action he needs to perform.

The DTP of a test project includes the results of the TRA. One of
the risks defined during the TRA was that the actions and mes-
sages may be triggered at the wrong moment.

In order to test this, all of the processes need to be run through
and in each state checked whether the right messages are sent.
The best way of doing this is by using state transition tests or
process cycle tests. Both test design techniques mainly aim at
state transitions and force the tester to go through the system in a
structured manner.

The same DTP also indicates that reliability is an important qual-
ity attribute.

This is why a reliability test is suggested. This test design tech-
nique aims at demonstrating that the system can operate without
problems over a long period of time.

Determining the Test Depth
Test design techniques make it possible to vary the test depth. Based on
the available time and an estimate of the risks, it can be decided to test
certain clusters more or less thoroughly. This variation is achieved by
using heavy (strong) or light (weak) test design techniques. A technique
is considered strong if it produces a lot of test cases. The advantage of a
strong technique is that it has a wide coverage; the disadvantage is that
the development and the test are more time consuming. The opposite can
be said of a light technique. It results in relatively fewer test activities,
but because the coverage is narrower, the likelihood that errors are over-
looked is higher. Varying the test depth has the advantage that the test
effort focuses on the most important components of the software. This
prevents a lot of time being spent on testing less important clusters.

A stronger technique is commonly chosen for functions with a high risk
than for functions with a low risk. Moreover, several test design tech-
niques are often used for functions with a high risk.

188 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Example 12.3

The following two risks are clearly visible in Example 12.2:

• The wrong action can be carried out at the wrong time in the
application.

• The system displays the wrong message. The message invites
the user to perform an action he should not perform.

During the TRA, it was established that the impact of the first risk
is greater than that of the second one. Therefore it is suggested to
thoroughly test the triggering of the actions. A choice is made for
a combination of state transition testing and process cycle testing
techniques. The displaying of the messages has a lower risk and is
therefore only tested with PCT.

Each test design technique has its own focus and aims at finding errors
in a specific domain. A domain consists of errors of the same type. The
test coverage of the cluster can be expanded by combining techniques
so that different types of errors can be found. Depending on the test ob-
ject and the expected errors, some domains will be more or less impor-
tant. The test coverage of a cluster therefore depends on two variables:
the strength of the test technique used and the coverage of the domain.

The technique matrix in the below table provides a starting point for the
choice of the techniques. The domains are shown horizontally, the test
strength is shown vertically. The table is based on best practices and
is designed to show which techniques could be used for a cluster in

Covered domains

T
es

t s
tr

en
gt

h

Low coverage

High coverage

Fig. 12.3 The test coverage of a cluster depends on two variables: the strength of the
technique used and the coverage of the domain

12.2 T

est D
esign T

echniques
189

Step 3 – Design

Table 12.1 Sample technique matrix: the domains are shown horizontally, the test strength is shown vertically.

Test
strength

Input Functional treatment Data
flow

Situation transitions Process-
ing time

Multi-
user

Reliability

12 Syntax
valid +
invalid

 BVA valid
+ invalid

C/E AT condition
coverage
(or measure 2)

CRUD PCT
condition
coverage

PCT
meas-
ure 2

STT
switch-
coverage=1

Load Concur-
rency

Stress Reliabi-
lity

ET/HT

10 Syntax
valid +
invalid

 BVA valid
+ invalid

C/E AT branch
coverage/
measure 1

CRUD PCT
condition
coverage

PCT
meas-
ure 2

STT
switch-
coverage=0

Load Concur-
rency

Stress Reliabi-
lity

ET/HT

8 Syntax
valid +
invalid

 BVA valid
+ invalid

 AT branch
coverage/
measure 1

CRUD PCT branch
coverage /
measure 1

 Load Concur-
rency

Stress Reliabi-
lity

ET/HT

6 Syntax
valid +
invalid

EP valid
+ invalid

BVA valid AT statement
coverage

 PCT branch
coverage /
measure 1

 Load Concur-
rency

Stress ET/HT

4 Syntax
valid +
invalid

EP valid PCT branch
 coverage /
measure 1

 Load Concur-
rency

 ET/HT

2 Syntax
valid

 PCT
statement
 coverage

 Load Concur-
rency

 ET/HT

EP=Equivalence Partitioning, BVA=Boundary Value Analysis, C/E=Cause-effect Graphing, STT=State Transition Test, CRUD=Data Cycle Test,
PCT=Process Cycle Test, AT=Algorithm Test, ET=Exploratory Test, HT=Heuristic Test

190 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

a specific risk category. What is striking is that for a low test strength
lighter test design techniques are suggested and that the testing covers
fewer domains. For higher test strengths, the number of domains in-
creases and a heavier (stronger) test technique is chosen. It is also worth
noting that the coverage of a test technique can be changed by varying
the test depth. The algorithm test has three test depths: statement,
branch and condition coverage.

Determining Testability
Which of the techniques that are prescribed in the test strategy is used de-
pends on the test base. A test technique may have a good focus and it may
define tests with the right depth, but this does not guarantee that the sys-
tem design contains the information that is needed to apply the technique.

Example 12.4

Syntax and state transition tests are suggested to test the applica-
tion of a Web site where airline tickets can be purchased online.

Syntax tests check whether the restrictions on input data are imple-
mented correctly. The test analyst checks whether the test base de-
scribes the criteria for the input fields and whether the input fields
are mandatory. He discovers that the test base does not contain a
data dictionary. The functional design describes a number of fields,
but no restrictions have been defined for the majority of the input
fields. It is not clear to the test analyst which restrictions he should
test, and he doubts whether the syntax test is applicable at all.

The test coordinator suggests using the state transition technique to
test navigating between screens. The system design clearly de-
scribes how a flight is selected and how a ticket is booked. A test
analyst can use this description to derive how the screens succeed
each another. But quick analysis reveals that a large number of al-
ternative screen transitions are also possible. A state transition ta-
ble (STD) is not available and the test base does not contain infor-
mation about which transitions are allowed. The technique cannot
be used without investing time to gather the missing information.

There are two options when the test base does not contain enough in-
formation:

• Find the information, no matter how hard it is
• Do not use the selected test design technique

12.4 Little Experience with Test Design Techniques? 191

St
ep

 3
 –

 D
es

ig
n

The first option is preferred. Missing information or information that is
hard to find is a risk. If one person cannot find the information, other
people involved in the project will probably have the same problem.
Who knows which system behavior will be implemented, who will
decide whether the application is good enough? Ensuring that the in-
formation becomes available reduces the risk of surprises arising later
on in the software development project.

But it’s not always possible to obtain the missing information. There
may not be enough time to adapt the system design, or the project man-
ager may not think the risk is high enough to merit taking measures. In
this case, the function will have to be tested in a different way. It is
important that the risk is communicated clearly; after all, the tests will
be less thorough than intended.

12.3 Use Test Design Techniques Cleverly

Using test design techniques has advantages, but should never become a
goal in itself. Clever testing is more important than the formal use of a
test design technique. When elaborating the physical test cases, a test
can always be added that is not prescribed by the test design technique.
This is all right as long as the test produces output. The same goes for
eliminating test cases the technique prescribes but that are known to
have little added value. Make sure the test case mentions why the test
was omitted. This contributes to transparency and reusability. More-
over, the choice may be reconsidered during maintenance activities.

12.4 Little Experience with Test Design Techniques?

An organization that starts introducing test design techniques will
probably not use all of the techniques described in this book. Our rec-
ommendation is to make small improvements first by applying simple
test design techniques. A number of techniques are easy to learn and
can usually be integrated with the existing strategy. For example, the
BVA and syntax test techniques used to test input fields or incoming
messages that need to be processed, or the PCT technique to test proc-
esses. The more complex and perhaps less obvious techniques can then
be added to the test process at a later stage.

192 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

12.5 No Test Design Techniques

One reason for using test design techniques is to vary the test depth.
The test risk analysis is used to determine which components are tested
more or less thoroughly. By choosing a heavier test technique, a spe-
cific component can get more attention and a higher test coverage.

The test depth can still be varied, even without test design techniques.
This is done by varying the process used to create the test design rather
than the test design techniques. Below is an example from a generic test
strategy, which shows how the approach ensures that the test effort is
distributed evenly over the risks.

Example 12.5

In an organization, the following risk-based variation is applied
during the development of the physical test design:

Risk category Approach

Critical For critical components, the test base is discussed by two test
experts, a programmer, and an analyst or a user. During this
discussion, the essence of the components function(s) is estab-
lished. The group also checks whether there are undocumented
exceptions that need to be included in the test. The minutes of
the meeting provide a good overview of what should be tested
and forms the basis for the logical test design. One tester devel-
ops the logical test design into a physical test design. Another
tester carries out a review on the physical test design and dis-
cusses his findings with the designer.

Experience shows that when two testers discuss a use case, half
an hour is enough to split the main scenario up into one, two or
more different test situations. This depth is often not achieved
without discussion.

High The component is discussed by two testers. The aim of the
meeting is the same as for the critical components. The compo-
nent is developed by one tester. If necessary, he gathers addi-
tional information from programmers, analysts or users. The
other tester carries out a review on the physical test design and
discusses his findings with the designer.

Medium The component is developed by one tester without any prior
discussions. The component is reviewed by a peer.

Low The component is developed by one tester. Review is not com-
pulsory.

12.6 Using Test Design Techniques 193

St
ep

 3
 –

 D
es

ig
n

12.6 Using Test Design Techniques

The previous sections discussed the how and why of a logical test de-
sign. It can be said that choosing good test design techniques helps de-
fine tests that will provide insight into the quality of the test object and
help focus the test effort on the system components with the highest
risk. Both are important, because the stakeholders want information on
the extent to which the anticipated goal will be achieved as quickly as
possible.

In the next section, a number of test design techniques are described.
They were chosen according to their applicability. They are described
according to a fixed format and contain examples to create an accessi-
ble overview of their use and to compare them. The explanation of the
test design techniques is limited to the basic principle of the technique.
There is, of course, a lot more to say about the techniques, but keeping
the descriptions short prevents the focus shifting to details. For the less
experienced tester, the description is a stepping stone to the use of test
design techniques. For the experienced tester, the description is a refer-
ence, i. e. a quick reminder of how the technique should be applied.

The following techniques are described.

• Syntax testing
• EP: Equivalence Partitioning
• BVA: Boundary Value Analysis
• C/E: Cause-effect Graphing
• State Transition Testing
• CRUD Testing
• PCT: Process Cycle Test/AT: Algorithm Test
• Load Testing
• Stress Testing
• Reliability Testing
• Concurrency Testing
• HT: Heuristic Testing
• ET: Exploratory Testing

12.6.1 Syntax Testing

Description
A test design technique for a component or a system for which the test de-
sign is based on the syntax verification of the input. Or: syntax tests check

194 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

whether the limitations that are set for the input (and sometimes output as
well) have been implemented correctly [ISEB practitioner, 2004].

Useful for

• Checking input fields on the user interface.
• Checking data elements in incoming and outgoing messages.
• Checking the consistency of the functional data model and the tech-

nical data model.

Approach
1. Determine the length and the restrictions for each data element (at-

tribute) tested.
2. Determine the valid and invalid values for each attribute.
3. Design test cases according to these values.

Example
Step 1: Determine the attribute restrictions

A screen or a message contains three attributes: Name, Age and Chil-
dren. The following restrictions apply:

Name 15 Characters, Optional
Age 3 Integer, Mandatory, maximum value 120
Children Boolean, Mandatory

The functional specifications for a Web store for airline tickets contain
the following:

• If the age is higher than or equal to 60, a 10% reduction is applied.
• Children up to 10 years get a 5% reduction.
• Frequent flyers get a free lunch.
• If the age is higher than 120, an error message is displayed.
• An error message is displayed when one or more attributes do not

have the right size.

Step 2: Determine valid and invalid values

Valid and invalid values can be determined according to the applied
character set and definitions for the various data elements. See the be-
low example.

12.6 Using Test Design Techniques 195

St
ep

 3
 –

 D
es

ig
n

 Valid Invalid

Name Name ≤ 15 char
Null

Name > 15 char
Diacritical char

Age 0 ≤ age ≤ 120 1000
<0
Characters
Null

Children Y, N Other
Null

In this table, it is assumed that diacritical characters (characters with a
mark placed above, below or through them such as é, ë, ç) are invalid,
that the age cannot be negative or null and that the Boolean has the
value Y or N. These assumptions need to be verified against the avail-
able specifications.

Step 3: Determine test cases

Combine the options determined in step 2 into a minimum number of
cases that include each category at least once. A test case that has inva-
lid values may have only one invalid attribute, otherwise it won’t be
clear which invalid value triggered the error message.
Example (the invalid values are in bold):

 Case 1 Case 2 Case 3 … Case n

Name Name ≤ 15 char Name ≤ 15 char Name > 15 char … Name ≤ 15 char
Age 0 ≤ Age ≤ 120 0 ≤ Age ≤ 120 0 ≤ Age ≤ 120 … Age = 1000
Children Y N Y … N

The above test cases are based on the three attributes and their restric-
tions. In addition, an error message is also displayed when one or more
attributes are invalid. This information is used to define the result in the
test case.

The table will then look as follows:

 Case 1 Case 2 Case 3 … Case n

Name Name ≤ 15 char Name ≤ 15 char Name > 15 char … Name ≤ 15 char
Age 0 ≤ Age ≤ 120 0 ≤ Age ≤ 120 0 ≤ Age ≤ 120 … Age = 1000
Children Y N Y … N
Result No error No error Error ... Error

196 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Remarks

• Test depth: The number of invalid values that is included in the test
is variable. The number can be infinite. A decision needs to be made
about the extent to which the invalid values need to be tested.

Use three syntactically invalid values for each attribute. Use more
than three different values when you are not sure whether three
values are enough, or when there is a strong likelihood that a lot
of invalid values will be entered during use.

• Difference with EP tests (see Sect. 12.6.2): Children up to 10 years
get a 5% reduction. When using EP, a distinction is made between
Age < 10 and Age ≥ 10. A syntax test does not make this distinction:
Age = 8 and Age = 43 produce different results (respectively a re-
duction of 5% and no reduction), but they are both valid syntax val-
ues. However, syntax tests also find errors that would not be found
with EP, namely errors in the syntactical check on input fields.

12.6.2 EP: Equivalence Partitioning

Description
Division of the data input domain in equivalence partitions. Each parti-
tion leads to a test case. An equivalence partition is a collection of pos-
sible input data that leads to the same type of processing [ISEB practi-
tioner, 2004].

Equivalence
class 1

Equivalence
class 2

Equivalence
class 3

Valid value

Invalid value

12.6 Using Test Design Techniques 197

St
ep

 3
 –

 D
es

ig
n

Useful for

• Checking input fields on the user interface.
• Checking functional decisions that are based on input data.

Approach
1. Determine attributes and relevant functional description.
2. Determine valid and invalid equivalence categories.
3. Determine test cases.

Example
Step 1: Determine attributes and relevant functional description

A screen or a message has three attributes, namely: Name, Age and
Frequent flyer. The following restrictions apply:

Name 15 Characters, Optional
Age 3 Integer, Mandatory, Maximum value 120
Frequent flyer Boolean, Mandatory

The functional specifications of a Web store for flight tickets contain
the following:

• If the age is higher than or equal to 60, a 10% reduction is applied.
• Children up to 10 years get a 5% reduction.
• Frequent flyers get a free lunch.
• If the age is higher than 120, an error message is displayed.
• An error message is displayed if one or more attributes do not have

the right format.

Step 2: Determine valid and invalid equivalence categories

Use the system design to determine which input groups produce the
same result. The starting point is the boundary values that are men-
tioned in the design. Using the above restrictions, the following bound-
ary values apply for Age: 0, 10, 60, 120.

It is also defined which equivalence categories are valid and which are
invalid. The following applies to each definition: the specified values
are valid and the unspecified values are invalid. In the above example,
an age of 130 is not an invalid value because the error handling for this
input value has been specified. An age below 0 is an invalid value. The
specifications do not provide an explanation.

198 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

The above section of specifications is used to create the following
equivalence categories:

 Valid Invalid

Name Name ≤ 15 char
Null

Name > 15 char

Age 0 ≤ Age < 10
10 ≤ Age < 60
60 ≤ Age ≤120
120 < Age

≤0
Null

Frequent flyer Y, N Null

Step 3: Determine test cases

Combine the options into a minimum number of test cases as described
in step 2. For example (not all test cases are shown):

 Case 1 Case 2 Case 3 Case 4 … Case n

Name Name ≤ 15
char

Null Name ≤ 15
char

Name ≤
15 char

... Name
> 15 char

Age 0 ≤ Age < 10 10 ≤ Age
< 60

60 ≤ Age ≤120 120 <
Age

... 0 ≤ Age
< 10

Frequent
flyer

N Y N Y ... Y

Result 5% reduction
No Lunch

No reduction
Free lunch

10% reduction
No Lunch

Error ... Error

During testing, choose one input value from each equivalence partition.
Normally, a tester chooses a value that lies approximately in the middle
of the equivalence partition, for example, Age = 35 years. If the func-
tion is implemented according to the specifications, the choice for this
value (within a partition) will not influence the result. It therefore does
not matter whether 20, 35 or 43 years is entered.

Remarks

• Difference with syntax testing: In EP, a distinction is made between
Age < 10 and Age ≥ 10. The syntax test does not make this distinc-
tion, Age = 8 and Age = 43 produce different results (respectively a
5% reduction and no reduction), but are both valid syntax values.
Therefore EP is a stronger technique than syntax testing.

• Difference with syntax testing 2: Both EP and syntax testing distin-
guish between valid and invalid input values. The scope of both test
design techniques is, however, different. Syntax tests mainly serve to

12.6 Using Test Design Techniques 199

St
ep

 3
 –

 D
es

ig
n

test input: use of incorrect values such as diacritical characters, use
of characters where numeric input is expected, or incorrect date for-
mats. EP mainly serves to look at the functional decision that is
based on the input. The emphasis is on entering the correct values.
EP is used for syntactically correct values that are defined as invalid
because the functional behavior has not been specified.

The processing of empty input (Null) is a different story. For manda-
tory fields, it can be interpreted as syntax verification. For optional
fields, it is part of an equivalence partition because the functional
processing does not change if the field remains empty. Depending on
whether the number is mandatory, input “Null” is tested with syntax
or EP testing.

• Tip for making EP more effective: The likelihood of finding a bug is
increased if boundary values are used instead of the values from the
middle of the equivalence partition, for example, 10 years instead of
43 years. This includes using elements from a different technique
namely BVA (also see BVA testing).

• Input and output EP: The above example describes how EP can be
used for input values. EP can, however, also be used for the output
values. In practice, this means that each output is generated once as
the result of choosing the right input values.

12.6.3 BVA: Boundary Value Analysis

Description
A design technique that consists of designing test cases that contain rep-
resentative boundary values.

The approach is the same as that for Equivalence Partitioning, with the
exception that the used values are not arbitrary values in the equiva-
lence categories. With BVA, test values are chosen according to defined
boundaries. These boundary values contain the values that come just
below, on, and just above the boundary of the equivalence partition.
A distinction is made between valid and invalid boundary values [Pol et
al, 1999].

200 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Equivalence
class 1

Equivalence
class 2

Equivalence
class 3

Valid value

Invalid value

Useful for

• Checking input fields for user or message interface.
• Checking functional decisions made on data input.

Approach

1. Determine attributes and the relevant functional description.
2. Determine valid and invalid boundary values.
3. Define test cases.

Example
Step 1: Determine attributes and the relevant functional description

A screen or message has three attributes, namely: Name, Age and Fre-
quent flyer. The following restrictions apply:

Name: 5 Characters, Mandatory
Age: 3 Numerical, Optional
Frequent flyer: Boolean, Mandatory

The functional specifications of a Web store for airline tickets contain
the following:

• If the age is higher than or equal to 60, a 10% reduction is applied.
• Children up to 10 years get a 5% reduction.
• Frequent flyers get a free lunch.
• An error message is displayed if one or more attributes are invalid.

Step 2: Determine valid and invalid boundary values

Check which boundary values are defined in the design. Based on the
above restrictions, the following boundary values are found for Age: 0,

12.6 Using Test Design Techniques 201

St
ep

 3
 –

 D
es

ig
n

10, 60, 999. With BVA, the boundary value and the values just below
and above it are tested. For the boundary of 60 years, the values are 59,
60 and 61.

 Valid boundary value Invalid boundary value

Name 1 char, 4 char, 5 char 6 char, 0 char
Age 0, 1, 9, 10, 11, 59, 60, 61, 999 -1, 1000, 1001
Frequent flyer Y, N

Step 3: Define test cases

Use the boundary value to combine the options determined in step 2
into a minimum number of test cases.

Valid boundary values:

 Case 1 Case 2 Case 3 Case 4 Case 5

Name 1 char 1 char 4 char 5 char 1 char
Age 0 1 9 10 11
Freq. flyer N Y N Y Y
Result 5%

No free
lunch

5%

Free lunch

5%

No free
lunch

No reduction

Free lunch

No reduction

Free lunch

 Case 6 Case 7 Case 8 Case 9

Name 4 char 5 char 4 char 5 char
Age 59 60 61 999
Freq. flyer N N N Y
Result No reduction

No free lunch

10%

No free lunch

10%

No free lunch

10%

Free lunch

Invalid boundary values (the invalid values are bold)

 Case 10 Case 11 Case 12 Case 13 Case 14

Name 0 char 6 char 5 char 4 char 4 char
Age 1 9 -1 1000 1001
Freq. flyer Y N N N N
Result Error Error Error Error Error

202 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Another example
The tester has to understand what is supposed to happen when a bound-
ary value is entered. When, for example, a field is expected to accept an
amount between €0 and €10, does this include €10 or is an error dis-
played at €9.99? On the other hand, is an amount of €0 acceptable? Are
the boundary values in euros or in euro cents? The analyst determines
the following boundary values and behavior:

-0.01= rejected
0.00 = rejected
0.01 = accepted
9.99 = accepted
10.00 = accepted
10.01 = rejected

Elements on the same side of the boundary value are put in the same
equivalence class, which is why only three values for the upper bound-
ary value need to be tested, namely €9.99 and € 10.00, both of which
should be accepted, and €10.01, which should be rejected.

Remarks

• Determine input values: In the above example of the online airline
ticket store, the same input is used in the name field for a number of
test cases. For example, in the test cases 3, 6 and 8 the name has four
characters. It is not necessary to use the same name, the input can
vary and increase the coverage of the test. In line with the principle
of syntax testing, new input values can be determined. As long as all
of the values are valid, this shouldn’t be a problem. When an unex-
pected error occurs, the influence of the value concerned must be ex-
amined. There may be an error in the input validation.

• Null values: A regularly asked question is whether a null value is
also a boundary value. It is preferable to handle null values with syn-
tax tests or EP tests. In this example of BVA, the null values are not
taken into account.

• Invalid values: For a test case with invalid values, the test case
should be set up in such a way that there is only one invalid attribute
for each test case because it will otherwise not be clear which invalid
value triggered the error message. However, this rule does not apply
if the system provides an overview of each individual error. If this is
the case, multiple invalid values can be included in one test case. Do
not forget to take combinations of these values into account; not all
combinations may be possible.

12.6 Using Test Design Techniques 203

St
ep

 3
 –

 D
es

ig
n

• Difference with EP: BVA distinguishes between age categories; EP
doesn’t. The error that a reduction is given for ages between 10 <
Age < 60 instead of 10 ≤ Age < 60 will be found with BVA, but not
with EP. This makes BVA a stronger technique than EP. Using
boundary values in EP instead of arbitrary values taken from the
middle of each equivalence class increases the likelihood of finding
errors. This has to be done, but it is not called BVA because it does
not guarantee that all boundary values are included.

• Reduction in the number of test cases: In many cases, the number of
tests per boundary can be reduced from three to two values. The as-
sumption is that the boundary value itself is tested and both tests
have a different outcome. This is explained in the following exam-
ple.

It is specified that if the input is > X then Y = B, else Y=A.

Y = A Y = B

X-1 X x+1

Normally, three tests are designed for BVA, namely for input X-1, X
and X+1. In this example, X and X-1 produce the same result,
namely Y=A. In this case, the test runtime can be reduced by setting
up only two test cases: X (this produces Y=A), and X+1 (this pro-
duces Y=B).

If the system does not produce the expected outcome, the tests often
produce the same value twice (e. g. A-A or B-B). In this case, the
third boundary value is tested so that both outcomes A and B have
been tested at least once.

12.6.4 C/E: Cause-effect Graphing

Description
A test design technique that uses decision tables to model causes and
their effects. C/E provides wide coverage, but is an extensive and time-
consuming method [Pol et al, 1999].

Useful for

• Testing small system components with a high risk.
• Assessing the situations to be tested and putting logical test cases on

paper. We speak of test assessment when only the approach and no-

204 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

tation use the C/E technique. When not striving for completeness and
including all possible combinations, C/E is not formally applied.
[Mors, 1993].

• Finding ambiguities and gaps in the system design [Pavankumar].

Approach

1. Determine conditions and actions.
2. Define the decision table.
3. Reduce the number of test cases.
4. Define test cases.

Example
Step 1: Determine conditions and actions

Extract the conditions (C1, C2, C3) and the associated actions (A1, A2,
A3) from the specifications for a library’s member entry system.

When a new member is entered, the system checks whether the appli-
cant is eligible for a youth membership (applicant < 18 years). If this is
the case (C1), the young member is added to the family account (A3). If
a family account does not exist (C2), the applicant is entered as a new
member (A2), but not before the parent’s authorization has been
checked (A1) and accepted (C3). If the applicant is an adult (applicant ≥
18 years), he is entered as a new member (A2) or added to the family
account (A3).

This produces the two following overviews:

Conditions

C1: Youth membership
C2: Existing family account
C3: Parent authorization is accepted

Actions

A1: Verify parent authorization
A2: Enter new member
A3: Add member to family account

Step 2: Define the decision table

The decision table displays all of the conditions and their associated ac-
tions. The upper part of the table displays the conditions. The columns
are used to display all of the conditions’ possible combinations. In this

12.6 Using Test Design Techniques 205

St
ep

 3
 –

 D
es

ig
n

example, the conditions are 1 (true) or 0 (false). The total number of
cases is: number of cases = 2n, whereby n is the number of conditions.
The lower part of the table indicates for each case with an X which ac-
tions are expected.

Conditions/Actions 1 2 3 4 5 6 7 8

C1: Youth membership 1 1 1 1 0 0 0 0
C2: Existing family account 1 1 0 0 1 1 0 0
C3: Authorization = OK (1) (0) 1 0 (1) (0) (1) (0)
A1: Verify authorization X X
A2: Enter new member X X X
A3: Add to account X X X X

Note that not all of the combinations are possible or meaningful. In this
example, the test cases 1 and 2, 5 and 6, and 7 and 8 cannot be distin-
guished from each other; they result in the same actions. This is because
the condition “Authorization = OK” is not relevant. This is why these
conditions are declared with (0) and (1). With C/E, all of the test cases
must be run. In practice, this is not always meaningful and the number
of test cases is reduced.

Step 3: Reduce the number of test cases

When reducing the number of test cases, the cases with an impossible
combination of conditions are discarded, as well as the tests in which
the value of the condition has no influence on the result. In the example,
we either execute test case 1 or 2, 5 or 6, and 7 or 8.

Reducing the number of test cases narrows the coverage, which is why
this needs to be done carefully. There are formal simplification rules
that indicate how the number of test cases can be further reduced. These
simplification rules are not explained in this chapter, see [Mors, 1993].

Step 4: Define test cases

For each column, define the test cases that contain the combination of
conditions and actions in the column.

Remarks

• The difference with EP and BVA: C/E tests every combination of the
conditions and therefore results in a higher number of test cases.
This method is stronger than EP and BVA because these techniques
only test one attribute at a time. Possible interactions between attrib-
utes are not taken into account.

206 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

12.6.5 State Transition

Description
A test design technique used to design test cases to test state transitions
[Veenendaal, 2002].

Useful for

• Testing process states/state machines.
• Testing screen transitions.

Approach

1. Create the State Transition Diagram (STD).
2. Determine the test depth.
3. Define the state table.
4. Define test cases.

Example
Step 1: Create the State Transition Diagram (STD)

If there are three states and four actions, the STD could look like this:

S1

S2

S3

A/R1

B/Null

D/R5

C/R4

This diagram is read as following:

• In State 1 (S1), execute action A. This will result in a result (R1) and
the system will transition to State 2 (S2).

• In S2, execute action B. The system will go back to state S1 without
any result.

• An action cannot be executed in State 3 (S3).

A concrete example of this is a library system. A borrowed item is in the
state “borrowed” (S1). If the book is scanned when it is returned (A), a
receipt is printed (R1) and the book transitions to state “in stock” (S2).

12.6 Using Test Design Techniques 207

St
ep

 3
 –

 D
es

ig
n

Step 2: Determine the test depth

The test depth depends on the number of steps that are tested each time.
A single transition from S1 to S2, for example, is called a first order
transition. A greater test depth is achieved when higher order transitions
are tested. When applying switch coverage 1, all transitions are second
order transitions. From each arbitrary starting state, two steps are taken
to reach the final state, for example, from S1 to S3 via S2 (S1-S2-S3) or
S1-S2-S1. The switch coverage indicates how many state transitions are
tested in each step:

• Switch coverage 0 = first order transitions
• Switch coverage 1 = second order transitions
• Switch coverage 2 = third order transitions

In general, only first order transitions are tested. This example uses
STD switch coverage 0.

Step 3: Define the state table

The state table displays the state transitions for zero switch coverage.
Since there are three situations and four actions, the state table contains
3x4=12 tests. The below table displays the valid and invalid transitions.
Invalid transitions are blank.

 A B C D

S1 S2 / R1 – – S3 / R5
S2 – S1 / null S3 / R4 –
S3 – – – –

The table is read as following:
In State 1 (S1), execute action A; this results in “R1,” the system transi-
tions to State 2 (S2).
In State 1 (S1), execute B; this action should not produce a result; the
system remains in State 1.

Step 4: Define test cases

The state table can be used to create transition chains. The following
transitions are possible:

S1 → S2
S1 → S3
S2 → S1
S2 → S3

208 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Using each of the above transitions, the following valid and invalid tests
can be derived:

 Valid 1 Valid 2 Invalid 3 Invalid 4 Invalid 5 Invalid 5
(cont.)

Precondition S1 S2 S1 S2 S3 S3
Action A C B A A D
Result R1 R4 - - - -
Condition S2 S1 S2 S3
Action B C D B
Result null - - -
Condition S1 S3
Action D C
Result R5 -
Post-condition S3 S3 S1 S2 S3 S3

Remarks

• The state transition test not only tests state transitions, it also tests
the results of the transitions. This means that test 1 will test the re-
sults of actions A, B and D.

• Invalid cases can be combined with valid cases. Since no transition
is expected for the invalid cases, the system will remain in the same
state.

• Nice to know: Varying the test depth, as is done in state transition
testing, is based on the same principle as the test depth in the Process
Cycle Test (PCT).

• State table and higher order transitions: In the above example the
state table is presented as a ‘state by action’ matrix. The aim of state
testing is to test all transitions. For switch coverage=0 this format
works best, the table’s columns will list all actions that will lead to a
transition. For higher order transitions this format of the state table
won’t work. In that case use a ‘state by state’ matrix.

12.6.6 CRUD Testing

Description
Test method that follows a data element in the system or process during
its life cycle. The typical life cycle of a data element is defined by Cre-
ate, Read, Update and Delete. The test is also called data cycle test [Pol
et al, 1999].

12.6 Using Test Design Techniques 209

St
ep

 3
 –

 D
es

ig
n

Useful for
Testing the life cycle of a data element and verifying actions on the data
element.

Approach
1. Determine the CRUD matrix.
2. Derive test cases.

Example
Step 1: Determine the CRUD matrix

The CRUD matrix is the starting point for the CRUD test. This matrix
can be a component of the system design or it can be derived from the
functional specifications. The CRUD matrix specifies in which screens
certain actions on a data element are possible. The below matrix is read
as follows: the data element “Name” is created (Create) in screen S1, its
value is read (Read) in screen S2 and it is deleted in screen S3 (Delete).

 Create Read Update Delete

Name S1 S2 S3
Age S4 S2 S1

Test the life cycle of each data element. The life cycle can be tested for
each data element or screen in which actions can be performed on more
than one data element. Because the latter is the more efficient option, it
is explained below.

Step 2: Derive test cases

Derive test cases by performing all of the CRUD actions in the CRUD
table:

 Case 1 Case 2 Case 3 Case 4

Precondition S1 S2 S3 S4
Action 1 Create Name Read Name Delete Name Create Age
Action 2 Update Age Read Age

This table is read as following: Test case 1: In screen S1, enter the ele-
ment Name (create) and then change the element Age (update).

When tests are designed per screen, the sequence of the test cases is, of
course, important. In this example, test case 4 needs to be performed
before test case 1. The data element Age needs to be created before it
can be changed.

210 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Remarks

• This example includes all of the tests with a positive outcome. The
tests can also be extended with negative tests. For example, a nega-
tive test will also test that the name attribute cannot be deleted in
screen S1.

• When creating the CRUD matrix, the system design needs to be
looked at from a specific angle. Creating a CRUD matrix can reveal
errors in the design. In the above example, the data element Name
cannot be changed after it has been created. This omission can be
discovered during the design phase without actually having to run
the test. This may, of course, be a deliberate design choice, but it is
more likely that it is an error that the analyst can explain.

• If PCT is used to test the organizational procedures, this technique
can be easily combined with CRUD tests. The PCT tests run through
all of the screens, the CRUD tests can be added for each screen.

12.6.7 PCT: Process Cycle Test / AT: Algorithm Test

Description
Process cycle tests are commonly derived from a process diagram,
which can describe the organizational processes (for example, the AO
processes), but also a system-technical process [Pol et al, 1999].

This definition combines the algorithm test (AT) and the process cycle
test (PCT). Although both techniques have a different scope, the
method used to derive the test cases is the same. The algorithm test
aims at testing the functional paths in the system while the PCT aims at
testing the organizational processes. Users can be involved to test how
they will work with the new processes and the new system.

Useful for
PCT: Testing the suitability of the system taking the organizational
processes and procedures into account.

Algorithm test: Testing scenarios that run through one or more systems
in order to check that the different functions tie in with each other cor-
rectly. This test can be run as a quick scan or a chain test if systems will
be integrated.

Approach

1. Determine decision points in the process diagram.
2. Determine the test depth.

12.6 Using Test Design Techniques 211

St
ep

 3
 –

 D
es

ig
n

3. Determine the paths through the process diagram.
4. Define the test scenarios.

Example
Step 1: Determine decision points in the process diagram

Determine the decision points in the process. Define a process diagram
if one is not already available. As previously mentioned, the method
used to derive the test cases is the same for the AT and the PCT. This is
illustrated in the following example. Two almost identical process dia-
grams are displayed. The left diagram describes a functional path (for
the AT). The right diagram describes a scenario that was created by
linking various use cases (for the PCT). Each block in the diagram is
seen as a statement. Statements can consist of actions (rectangles) or
decision points (diamonds).

START

a : Remove
message from

batch

b : Sequence
number and format

OK?

d : Parse data
to DB

e : Last
message?

c : Display error
message

END

1

2

4

5

3

7

6

START

a : UC 8
Main Scenario

b : A and B?

d : UC 9
Main scenario

e : OK?

c : UC 8
Exception 1

END

1

2

4

5

3

7

6

Fig. 12.4 Decision points in a process diagram

212 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Step 2: Determine the test depth

Before test cases can be derived, the test depth needs to be chosen. The
test depth for PCT determines the extent to which dependencies be-
tween two subsequent decision points will be tested [Computerwoor-
den]. In practice, test depth 1 is usually used for testing. Test depth 1
means that every path is covered. This test depth has the same coverage
as branch coverage. There are two options with regard to branch cover-
age/test depth 1: increase or decrease the test depth according to the test
risk analysis.

If a lower test depth is sufficient, not all results of the decisions will be
tested. This test depth is called “statement coverage.” With a higher test
depth, there is a choice between two types: test depth 2 or “condition
coverage.” Test depth 2 and condition coverage are not comparable.
They are both heavier than branch coverage but focus on different
things. Test depth 2 focuses on the flow and tests the path combinations
before and after a decision point. Condition coverage focuses on the de-
cision itself and tests the arguments that influence the decision.

Statement
coverage

Branch coverage
= depth 1

Depth 2Condition
coverage

T
es

t d
ep

th

Fig. 12.5 Test depths

To illustrate the above, the test paths for the various test depths are ex-
plained below.

Step 3: Determine the paths through the process diagram

Based on the above process diagram, the test paths for all of the test
depths are explained in Table 12.2.

12.6 Using Test Design Techniques 213

St
ep

 3
 –

 D
es

ig
n

Table 12.2 Test paths belonging to different test depths

Statement
coverage

All of the statements are run at least once. Two tests can hit all
of the statements a to e. The test paths are:

1-3-7-5
1-2-4-5

Note that path 6 is not covered because it does not contain any
statements.

Branch coverage
=
Test depth 1

Branch coverage: All branches/paths are run once. To achieve
branch coverage, paths 1, 2, 3, 4, 5, 6 and 7 need to be run.

Test depth 1: In order to test both possible outcomes of the first
decision point, paths 2 and 3 must be run. For the second deci-
sion point, this means that paths 5 and 6 must be run.

The test cases that cover all of the decisions will also cover all
of the branches and vice versa. In this example, this produces
one more test case than statement coverage. Because path 6
does not contain a statement, it is not tested with statement
coverage but with branch coverage.

Branch coverage test depth 1 produces the following test paths:
1-2-4-5
1-2-4-6-1-3-7-5

Test depth 2 All of the combinations between two subsequent paths are
tested. These are combinations of arrows before and after a
statement. For the second decision point this produces:
4 – 5 (from 4, to path 5)
4 – 6 (from 4, to path 6)
7 – 5 (from 7, to path 5)
7 – 6 (from 7, to path 6)

This produces more cases than branch coverage because there
is now a distinction between 4 – 5 and 7 – 5. The outcome of
the decision is the same but the starting point is different.
Elaborating this idea produces the following two test paths:
1-2-4-6-1-3-7-5
1-3-7-6-1-2-4-5

Condition
coverage

All of the conditions determine the outcome of the decision
once. The first decision point contains two conditions A and B.
If A and B are both true, the decision is positive and path 2
follows.
With respect to the branch coverage, condition coverage will
result in additional test cases in order to cover:
1-2-4 (A, B)
1-3-7 (not A, B)
1-3-7 (A, not B)

214 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

In the first test case, A and B are positive because A and B are
both true. In the last two cases the outcome of the decision is
identical but the condition determining the outcome is different.
A is false in the second case and B is false in the third case.
According to the definition of condition coverage, the test case
in which both A and B are false does not have to be run.

This leads for example to:
1-2-4(A, B)-5
1-2-4-6-1-3-7(not A, B)-5
1-3-7(A, not B)-5

Step 4: Define test scenarios

Two test paths are derived for statement coverage: 1-2-4-5 and 1-3-7-5.
In order to cover these two paths, two test cases are defined:

 Case 1 Case 2

Scenario description Successful process-
ing of batch with
one message.

Batch processing triggers an error
message because the first message has
a wrong serial number or format.

Path 1-2-4-5 1-3-7-5

Note that the second test case does not explain the cause of the error
message. It is left up to the test engineer who created the physical test
design to provide an explanation.

Remarks

• Nice to know: The switch coverage used in state transition tests is
based on the same principle as the test depth in the process cycle
test.

• Test depth: As this example shows, a number of essential tests are
missing following the use of statement coverage. It is therefore rec-
ommended to use branch coverage (test depth 1) for all of the rele-
vant system components. All of the actions are then carried out once.
Specific system components can then be tested more thoroughly.

12.6 Using Test Design Techniques 215

St
ep

 3
 –

 D
es

ig
n

12.6.8 Load Tests

Description
Load tests load the system with a representative constant load. The
processing times of the time-critical transactions or processes are meas-
ured to establish whether they meet the performance requirements.

Useful for

• Determining the (optimal) performance of the system.
• Determining whether further performance tests, like stress tests, are

useful.

Approach

1. Determine what the time-critical transactions and/or operating proc-
esses are.

2. Decompose the process steps for which the transaction time will be
measured.

3. Determine the start and end points of the measurement.
4. Determine the representative load.
5. Design test cases and create the scripts used to run the tests.
6. Run the tests.
7. Analyze the measurement results and aim for a graphical representa-

tion.
8. Check whether the results meet the requirements.

Example
Step 1: Determine what the time-critical transactions and/or operating
processes are

Determine the time-critical transactions and/or operating processes. The
organization may have clear performance requirements, for example:

• A changed customer detail record should be saved within five sec-
onds.

• A management report containing the total revenue should be gener-
ated within two minutes.

If the organization doesn’t have any performance requirements, deter-
mine the time-critical processes. This is best done together with the
stakeholders

216 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Step 2: Decompose the process steps for which the transaction time will
be measured

A process or transaction often consists of multiple process steps that
follow each other after a short wait time. The wait time can be a result
of processes that are run sequentially and hence first queued (queue
time), or of messages that are sent to other systems (transport time).
Decomposing the process into steps clearly illustrates where the real
processing time is and where the real wait time is. Figure 12.6 is an ex-
ample of a decomposition.

Process 1

Process 2

Process 3

t1

t2

t3

t4

t6

T1
= t2 – t1

T5

T7

T4

T3

T0

t5

t7

t0

Process A

System 1 System 2

t8

t9

T2
= t3 – t0

Fig. 12.6 Example of a decomposition

This figure displays the process of two systems that exchange mes-
sages. System 1 triggers a message to be sent to System 2, which proc-
esses the message and runs Process 1. When Process 1 is finished, a
message is sent back to System 1, which processes the message and
runs Process A, etc.

12.6 Using Test Design Techniques 217

St
ep

 3
 –

 D
es

ig
n

When determining performance, it is important to know exactly which
time intervals need to be measured. Does the total time of the process
on System 2 include or exclude the time required for Process A? Should
the processing time for System 1 be left out of the measurement? How
is message transport time handled (e. g. t1-t0).

When measuring the processing time of Process 1, 2 and 3, is it a prob-
lem that the wait times between the processes are not taken into account
(e. g. t7-t6)?

If things are not clear, discuss the design and the expectations with the
analyst and the developer. Use this information to ask the stakeholders
which time intervals are important to them.

Step 3: Determine the start and end points of the measurement

Step 2 can be used to determine which time intervals are measured and
what the start and end points of the measurement are. When determin-
ing the measurement points, the technical feasibility is also important.
Can the start and end points be determined on the screen, in the log or
on the data transport line? If it is very difficult to determine the time-
stamp for this point in time, additional measures may have to be taken
so it can be measured, for example, by adding additional measuring
points to the system logs (sometimes called hooks). If this is too time
consuming, select a different measuring point.

For some measurements, a stopwatch can be used to manually measure
the processing time. But if the operating processes are complex or if the
measurement results need to be accurate, advanced tools should be used
(see also Sect. 4.7 Performance Testing).

Step 3 provides insight into the intervals that will be measured and
when the time measurement starts and stops. Moreover, step 3 examines
whether the measuring points are feasible.

Step 4: Determine the representative load

Load tests load the system with a representative constant load. This load
usually consists either of a minimum load to measure the maximum
performance, or of a representative load to measure performance during
normal use. The latter requires input from the business or the mainte-
nance organization – they can usually provide information about the
expected or the current load of the live system. Assumptions will have
to be made if this information is not available.

218 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Fig. 12.7 Load testing

The load is usually expressed in the number of users on the system, the
number of messages, or the number of transactions processed per unit
of time.

Step 5: Design test cases and create the scripts used to run the tests

Now that the load and the performance to be measured have been de-
termined, the tests can be defined. If necessary, scripts are written to
run the tests automatically or to generate load. Any tools that are
needed for the tests should also be available.

Step 6: Run the tests

Run the planned tests. Every measurement should be done at least three
times. If the variation in the measuring values is high, it is recom-
mended to do the measurement more often. If the variation stays high,
work with the builders or the analysts to find out what is causing it.
Keep a logbook of the measurement and its starting points. It may be
necessary to collect the measurement data from different system logs,
which is why it’s important that you are able to determine which data
belongs to which measurement.

Step 7: Analyze the measurement results

When the tests are finished, the measurement results have to be ana-
lyzed. The time intervals determined in step 3 are calculated.

The customer will want to know how the system performed. Explaining
that a fast transaction time was measured a few times is not enough
because it says little about the transaction times that were not measured.
Here, we need to apply the probability theory.

12.6 Using Test Design Techniques 219

St
ep

 3
 –

 D
es

ig
n

The following example illustrates how a basic error analysis can be
done. Although this example may be somewhat technical for some
readers, it illustrates how probability theory can influence the final con-
clusion. The example shows that the measured message transport time
falls within the defined limit of one minute. However, the error analysis
shows that it is realistic to expect that some transactions will exceed the
limit.

Example 12.6: Error analysis

The message transport time is measured in order to determine
whether it meets the performance requirements. A message
should be transferred within one minute. The message transport
time cannot be measured directly, so the difference between time
intervals T2 and T1 is measured (see also Fig. 12.6). The follow-
ing measurements are carried out:

Measurement T1 1 2 3

t1 13:51:50 13:59:45 15:16:36
t2 13:55:34 14:03:33 15:20:31

T1 = t2-t1 0:03:44 0:03:48 0:03:55

Average 0:03:49
Standard deviation 0:00:06

Measurement T2 4 5 6 7

t0 13:51:12 13:59:03 14:15:59 14:21:02
t3 13:56:03 14:04:00 14:20:30 14:25:55

T2= t3-t0 0:04:51 0:04:57 0:04:31 0:04:53

Average 0:04:48
Standard deviation 0:00:12

Time intervals are calculated by subtracting the timestamps of the
measurements from each other. The time interval is then deter-
mined by the average over the measured intervals:

1
1

x

n,

n

T
T

x
=
∑

220 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

For the measurement of T1, this produces the following average:

1 2 3 0 : 03 : 44 + 0 : 03 : 48 + 0 : 03 : 55
3 3

0 : 03 : 49

n, n, n,
n

T T TT + += =

=

The intervals have a spread that is determined by the standard de-
viation (σ). Most calculators can calculate this. Excel also has a
standard function (formula: =STDEV(B5:E5)) to calculate the
standard deviation. Calculating T1 results in σ = 0:00:06. What
does this value mean for the time interval? Elementary statistics
assume that 68.2% of all measurement values lie between
0:03:49-0:00:06 and 0:03:49+0:00:06. The consequence of this is
that 15.9% of the transaction times are longer than
0:03:49+0:00:06.

The message transport time is determined by calculating the dif-
ference between the time intervals T2 and T1. This produces:

1 0 : 04 : 48 0 : 03 : 49 = 0 : 00 : 59n n nT T T+= − = −

Does this justify the conclusion that the system meets the per-
formance requirement? In order to make a statement about that,
the deviations in the measurements have to be studied.

Elementary error analysis shows that for a formula F = A+B-C,
the measuring error is equal to the root of the quadratic summed
measuring error for every variable, meaning that:

2 2 2F A B Cδ δ δ δ= +

Here the error in the time determination (δt) is equal to the stan-
dard deviation (σ) mentioned earlier. The message transport time
is determined by calculating the difference between the time in-
tervals T2 and T1. The following applies for the error in this
measurement:

2 2 2 2
2 1 0 : 00 :12 0 : 00 : 06 0 : 00 :13nT T Tδ σ σ= + = + =

Based on the standard deviation, it can be established that 68.2%
of the transport times are expected to be between 0:00:59-0:00:13
and 0:00:59+0:00:13. It is expected that 15.9% of all message
transport times will be higher than 0:00:59+0:00:13, and will

12.6 Using Test Design Techniques 221

St
ep

 3
 –

 D
es

ig
n

therefore exceed the maximum time. The probability that there
are messages that do not meet the performance requirements is
therefore realistic.

A much more extensive error analysis is, of course, possible. The
above approach provides a good picture of measuring values and
errors in the final result. This approach provides a sufficient de-
gree of confidence unless very strict requirements are imposed.

Step 8: Check whether the results meet the requirements

Testing means comparing the system reaction to the anticipated goal,
which is why it is checked whether the measured processing times meet
the performance requirements.

If there are no requirements for the system’s performance, the accept-
ability of the performance will be determined in this phase together
with the stakeholders. If the performance is too low, the cause will have
to be determined and the problem solved.

If the performance is sufficient at a low load and it is not yet known
how the system will react at a higher load, it is useful to run stress tests
to examine how the processing time changes when the system load is
increased.

Remarks
Difference with stress tests: Load tests measure performance at a con-
stant, representative load. The aim of the load test is to measure the
(daily) processing time. Stress tests mainly focus on the effect an in-
creasing load has on the system’s processing time and on situations in
which the system grinds to a halt. The processing time is measured to
establish its load dependency.

12.6.9 Stress Testing

Description
Stress testing consists of loading the system with an increasing load.
Stress tests determine the load under which a system fails and the way
in which it fails. A stress situation can crash the system, for example,
but can also cause the system to react very slowly. There are several
kinds of stress tests, such as step stress tests or peak stress tests.

222 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Useful for

• Determining the maximum load the system can bear.
• Determining the influence of load on the processing time.

Approach
The approach is the same as the approach for load testing, with the fol-
lowing additions.

Step 4: Establish the maximum load

Instead of the representative load, the maximum load is determined
here. The maximum load is often expressed as a constant load and a
peak load. For example:
“The system should be able to record 200 transactions/minute, and each
transaction should be finished within (at the most) 1.0 seconds. The
peak load is 10 transactions per second, whereby the peak load lasts for
a maximum of 2 seconds. In this situation the transaction time does not
exceed 1.5 seconds.”

Step 5: Design test cases and create the scripts to run the tests

Design test cases that can establish the breaking point. Create the scripts
to run the tests. In some cases, load tests can be run manually, but stress
tests are virtually impossible to run without tools. To increase the load
on the system, users are sometimes asked to perform an action at the
same time. This can be practical, but with this type of tests there is little
control over the load, making them difficult to reproduce.

Step 6: Running the tests

Run the tests and check whether they meet the requirements for re-
sponse time, breaking point, system recovery and security.

The initial load is increased during the test. This is usually done gradu-
ally, so the system can find its “balance” before the performance is
measured. An exception is, of course, the peak load.

Example
Figure 12.8 displays the load characteristics for stress tests with a
gradually increased load and a peak load.

12.6 Using Test Design Techniques 223

St
ep

 3
 –

 D
es

ig
n

(a) (b)

Fig. 12.8 Load characteristics for stress tests

Gradually increased load
The load is increased and kept constant for a while. The system behav-
ior is monitored in order to determine how it reacts to a load that ex-
ceeds the set threshold over a longer period of time.

Example 12.7

During a stress test, the system stops starting new sessions once
the load has exceeded a certain threshold. The maintenance or-
ganization receives a message indicating that the load has ex-
ceeded the maximum allowable threshold. New users cannot log
in. Existing sessions are processed without notable delay. Be-
cause the observed behavior meets the system design, the test is
successful.

Peaks in the load
Peaks are brief system loads that exceed a specific threshold. The sys-
tem either recovers correctly and processes the backlog after the peak is
over or it does not recover and unexpectedly shows undesired behavior.
If such behavior occurs, the cause will have to be determined and
solved.

12.6.10 Reliability Testing

Description
Reliability tests test the reliability (or stability) of the system by making
the system operate under a stable, representative load over a longer pe-
riod of time. This test type is also called an endurance test.

224 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Useful for
Determining the stability of the system.

Approach
The approach is the same as that for load testing, with the following ad-
ditions:

Step 1: Determine the time-critical transactions and/or operating proc-
esses

Load testing mainly focuses on measuring the processing time of time-
critical transactions or operating processes. Reliability testing mainly
focuses on the stability of the system. A simulation of the usage of the
system shows whether the performance decreases during use, for exam-
ple, as a result of memory leaks. Performance is usually measured by
running a few transactions and/or operating processes.

Step 6: Running the tests

Reliability tests take long and are run automatically, often at night or on
weekends. If an endurance test runs without problems for a night or a
weekend, the duration of the test can be extended.

Example
The load characteristics for reliability tests with a long-term constant
load are displayed below:

Fig. 12.9 Load characteristics for reliability tests

12.6 Using Test Design Techniques 225

St
ep

 3
 –

 D
es

ig
n

Remarks
Don’t start the endurance test when everyone starts leaving for the day;
start it a few hours earlier. If something does go wrong, the problem can
probably be solved and the test restarted. Experience shows that reli-
ability tests often terminate within an hour of starting because of little
mistakes or errors such as a wrong configuration. These errors are gen-
erally easy to fix. Starting the test earlier in the afternoon prevents you
discovering the next morning that the test stopped five minutes after the
last tester went home.

12.6.11 Concurrency Tests

Description
These tests look at the correlation of user actions on the system. These
tests aim to determine whether concurrent transactions have a negative
impact on each other.

Useful for
Determining the behavior of the system when several transactions are
run simultaneously.

Approach

1. Establish which processes can influence each other.
2. Determine scenarios.
3. Design test cases and create the scripts to run the tests.

Example
Step 1: Determine which processes can influence each other

For these tests, it is important to establish which processes can influ-
ence each other. These tests require the assistance of people who have a
(technical) overview of the application to be tested, and who can point
out where the difficulties in the architecture and technique are so they
can be tested.

Step 2: Determine scenarios

The processes established in step 1 will be developed into test scenar-
ios. There are two options:

1. Steps from the processes are run sequentially. For this option, a num-
ber of steps are performed manually or automatically, whereby mul-

226 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

tiple users are simulated. This option works well if the direct connec-
tion between the actions is clear. For example:

User 1 Administrator

1 Logs in
2 Goes to screen x and enters data
 3 Logs in
 4 Goes to user administration
 5 Removes the permissions of user 1 in screen x
6 Selects “Save record”

In this test case, a correct system reaction would be that User 1 can
finish what he was doing. Another implementation could be that the
administrator cannot change user permissions while the user is
logged in. The error that is looked for is the error the system displays
when the user saves the record.

2. The processes are repeatedly run at the same time. This option is es-
pecially suitable if it cannot be estimated when and in which way the
processes influence each other. By executing the processes repeat-
edly and simultaneously, undesired interaction may be discovered.
Tools are needed. Besides having to generate the load, the tools
should also be able to check the system’s reaction. The system’s re-
action will show when the processes start interacting. The tools
should then be able to establish which process triggered the system’s
reaction.

Step 3: Design test cases and create the scripts to run the tests

Define the scenarios and the way in which they have to be combined. If
necessary, scripts are written to execute the tests automatically. The re-
quired tools are developed.

Remark
Performance measurements: “Concurrent” use can also bring perform-
ance problems to light. Problems can occur if certain processes have a
negative impact on the performance of other processes. To find these
errors, the processing time will have to be measured as well.

12.6.12 HT: Heuristic Testing

Description
This is a test design technique that uses existing knowledge and experi-
ence. This knowledge and experience is stored in checklists that can be

12.6 Using Test Design Techniques 227

St
ep

 3
 –

 D
es

ig
n

reused for future tests. The checklists tell the tester what he should
check, and force completeness. Heuristic testing can be used for dy-
namic tests and static tests.

Useful for
Tests that can be reduced to checking specific things using predefined
checklists.

Approach

1. Use the available checklist.
2. Evaluate the contents of the checklist (is it suitable for my purpose?).
3. Check the product using the checklist.
4. Evaluate the checklist and adapt it. Store the acquired knowledge so
 it can be used next time.

Example

Static testing: In TestGoal, checklists are used, among other things, for
the sanity check, the smoke test and to develop the requirements for the
test environment. See the relevant chapters for a description of the use.

Dynamic testing: If certain components need to be checked frequently,
it can be useful to not describe them in detail every time in the physical
test design. This would result in a very voluminous test design with a
lot of duplication. It can be practical to put the standard checks on a ge-
neric checklist. An example is the testing of the application’s GUI. The
checklist can show which elements need to be tested on each screen:
The navigation, the log-off link, the pull-down menus, etc. These lists
can be made for each test, but generic checklists are also available, such
as the SUMI list to check user friendliness.

Remark
TestGoal contains a lot of checklists, but other methodologies often
contain many standard lists, too.

12.6.13 ET: Exploratory Testing

Description
An approach for unspecified tests that is based on the skill and experi-
ence of the testers. ET is a formal, risk-based technique that uses proce-
dures, test charters and heuristics [Veenendaal, 2002].

228 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Useful for

• Testing off the beaten track.
• Testing if no time is left to write test scripts and the risk of the func-

tion is not very high.
• Testing if few system specifications are available, but knowledge of

the system and the anticipated goal is.
• As a supplement to the “scripted” test design techniques.

Introduction
The philosophy of ET is that the experience gained during a test is im-
mediately used to determine what the focus of the remaining tests will
be. This is in strong contrast to the other test design techniques, where
test cases are developed in advance. Testing with predefined test cases
is called “scripted testing.” Writing the tests down basically defines
which tests will be run. Favorers of ET say that it is inefficient to prede-
fine detailed tests. The arguments are twofold.

1. The added value of the tests can be derived from the number of
solved errors. The time that is normally spent on the test design is
better for hands-on testing and error detection.

2. During the test, the tester discovers the system’s real weak spots.
Running predefined tests has little added value if it has already been
determined that the problems are of a different category. In this case
it is better to create new tests that cover the category. But at this
point there’s usually no time left to add a complete new test set to
the test design. So an “unscripted” approach is needed.

Exploratory testing is an unscripted test design technique. Test cases are
not developed in detail. However, a tight process and clear work pack-
ages guarantee the right choices are made and that what has and has not
been tested is traceable. The process is supervised by the moderator,
who may be the test manager or the test coordinator [Veenendaal,
2002].

Process
1. Putting together the test team
In ET, tests are run by teams of two testers. When putting the team to-
gether, the moderator must ensure that each team has knowledge of the
test and business domain. This can be done by choosing two experi-
enced testers with knowledge of the domain, or by creating teams of
testers and senior users.

2. Organizing the kick-off
In ET, the observance of the agreed process and the mindset of the peo-
ple involved are very important. This is why the moderator organizes a

12.6 Using Test Design Techniques 229

St
ep

 3
 –

 D
es

ig
n

kick-off before testing starts to ensure that everyone involved under-
stands the philosophy and the process of exploratory testing. When eve-
ryone understands what is expected of them, the work packages (test
charters) can be defined.

The process shown in the below figure is used [Veenendaal].

Assign charters

Preparation Session evaluation

Debriefing

Test charters

Determine
charters

Execution

Fig. 12.10 Exploratory testing

3. Determine the test charters
All the test activities are done according to test charters . Test charters
are work packages of two hours to one day. The test charter tells the
tester what the scope of his test is and what he needs to pay attention to.
The test charters are defined and prioritized together with the stake-
holders. This process resembles the TRA in many aspects (Chap. 7 Test
Risk Analysis). The result of the session is a list identifying the test
charters that need to be developed and their relative importance. The
test coordinator ensures that this list is included in the test charters be-
fore the first test session is held.

Among other things, a test charter contains the following infor-
mation (see the template in Appendix C):

Charter ID
Unique reference.

230 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

Priority
The relative importance of the test cluster.

Time Available
The time that can be spent on the charter.

Anticipated Goal
The goal the charter is aiming for, for example, “Demonstrating
that it is possible to send a mailing to subscribed customers.”

Why Test
Why it is important to test this charter. In fact, this is a link to the
business goal, which describes the contribution the tested function
makes to the goal. Including this link helps the testers validate the
implemented solution.

Expected Problems
If known, the identified risks or possible problems that are associ-
ated with the tested function. The testers use this knowledge to
decide which tests they will run.

Do Not Test in This Charter
Things that should not be included in a charter, for example, be-
cause a separate charter was defined for these areas of attention.
For example: “Do test the sending of the data, but not the correct-
ness of the sent data.”

Conclusion
The conclusion of the charter, which is written after the charter
has been executed. The conclusion establishes whether the charter
is finished (if this is not the case, it may have to be continued in
the next session); should be extended or whether a new charter
should be defined; has achieved the anticipated goal.

If the charter does not have a positive conclusion, the errors are
specified. They can be the errors that were entered in the bug
tracking tool. However, if several errors were found, it is clearer
to explain what the essence of the errors is by describing them
and the risk involved and including a proposal for a suitable
measure.

12.6 Using Test Design Techniques 231

St
ep

 3
 –

 D
es

ig
n

Fig. 12.11 Part of a finished test charter

4. Assigning charters
The moderator sorts the charters by priority and assigns them to the test
teams according to their skills.

Because some charters are more exhaustive than others, the amount of
time that should be spent on a charter, for example, 2, 4 or 8 hours is
specified on each of the charters. When assigning the charters, the mod-
erator makes sure that each team has enough work until the next de-
briefing. For example, one team can be assigned two charters of 2
hours, while another team is only assigned one charter of 4 hours.

5. Run the test (preparation, execution, session evaluation)
The test team first studies the charter. They examine the charter and
discuss how they should run it. The team establishes what has to be
tested, what the general approach is, who will run the test, and who will
be the “scribe.” A test charter of 4 hours requires about half an hour of
preparation.

The tests are then run. Both testers are supposed to challenge each other
and stimulate each other to create interesting test cases. One person
usually runs the test, while the other, the scribe, makes notes in the test
log. The advantage of a test log is that the tests that were run can be
traced at a later stage. During the session, all of the errors are entered in
the bug tracking system. The time also needs to be monitored during the
test. In principle, the testers can decide how they run the test charter. If
a lot of errors are found in a specific function, it makes sense for the
testers to spend more time on it. It is also important, though, that all of
the areas of attention in a charter are dealt with. In order to do this, a

232 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

scan is run on the whole charter first, the so-called “mile wide, inch
deep” test. The testers use these first test results to determine where
problems are expected to occur, and concentrate on those categories.
This approach prevents large parts of the test being left out and enables
the team to draw up a conclusion at the end of the session.

The test teams need to work in a quiet environment. This means that
they should work in a closed room and that all their other tasks should
be assigned to colleagues.

The last fifteen minutes of the session are used to prepare the debrief-
ing. Together, the test team defines

• The conclusion of the test charter
• Recommendations for possible future tests
• The assessment of the quality
• The most interesting bug that was found

Experience shows that it is effective to use a flip chart. Each team
has five minutes to present its results to the other teams. This way
of working gives the debriefing a good structure and forces the
testers to be well prepared.

6. Debriefing
The debriefing is led by the moderator. The aim of the debriefing is for
the test teams to exchange experience. The testers discuss the results
and possible risks of the finished session and exchange ideas for new
tests. If necessary, new charters are defined and prioritized, and the
charters for the next session are assigned.

The debriefing should be limited. Aim at spending no more than fifteen
minutes on each charter. It’s important that the moderator and the test-
ers are well prepared for the debriefing so that everything can be dis-
cussed quickly. Experience shows that a lot of time is wasted on the de-
briefing if the meeting is not structured. This strongly decreases the
effectiveness of ET.

The described process is repeated until all charters have been tested or
the agreed time is over.

7. Retesting and regression tests
In principle, retesting is not done according to the exploratory testing
technique. The errors are logged and provide enough information to re-

12.6 Using Test Design Techniques 233

St
ep

 3
 –

 D
es

ig
n

test. The essence of the ET sessions is the exploration of the test object
and, in particular, the search for new errors. It’s important that no time
is lost retesting the errors. Showstoppers are retested, but it is preferable
to postpone the remaining retests until after the ET sessions. Because it
is not necessary to retest in teams of two, the retest can be run when not
all testers are available.

After the errors have been retested, the regression tests starts. Because
the testers kept a log, the earlier tests can be repeated. The degree of
improvisation depends on the detail of the test log. Note that if a high
reusability is desired, there are high demands on the test log.

Areas of Attention
Just as for the other techniques, exploratory testing is very effective in
some situations and not in others. For example, it may be desirable to
work from a predefined test design if the risks are very high and if you
want to be sure which tests are run and how they’re run. Scripting may
also be desirable if the tests are supposed to be reused. Both of these ar-
guments apply to conformance testing. Not only do all of the aspects of
the standards have to be tested before it can be established that the test
object meets them, the tests are usually run on a large number of differ-
ent test objects. Exploratory testing is not really a suitable technique in
this situation.

Exploratory testing also becomes less effective when it is difficult to
validate the system reaction in real time, which can be the case with
complex calculations. The time that is needed to establish that the cal-
culation is correct takes the dynamics out of the test process. In this
case it is more efficient to specify the expected result in advance using
predefined test data. The system takes too long to provide feedback for
batch processes with a long runtime to apply ET effectively.

ET also puts demands on the testers. Good testers are needed, who can
come up with good tests on the fly and run them. The testers have to be
able to deal with uncertainties, be creative, and be so familiar with all of
the test design techniques described in this chapter that they can run
them with their eyes closed. They also have to have knowledge of the
business domain and have a feeling for finding errors. Exploratory
testing has a playful element, which makes exploratory projects chal-
lenging. But this is only true if the tester can appreciate it.

Don’t forget to account for the overhead that will be generated, for ex-
ample, by the debriefings, the definition of new test charters, and the
updating of reports and lists, such as error reports and the list of test
charters. These overviews are necessary to monitor the progress and

234 12 Logical Test Design
St

ep
 3

 –
 D

es
ig

n

quality during the debriefings and should be updated daily. Make sure
you schedule enough time for these activities.

12.7 Test Design Techniques and Security Testing

A security test aims at protecting IT systems. Security tests can focus
on IT components such as DMZ servers, firewalls, router configurations
and standard workstations, as well as on a complete network or applica-
tion infrastructure. A system security test is particularly suitable to ana-
lyze systems with a high risk profile for security problems. Security
tests, too, require a tight structure. The test design techniques described
in this chapter are very useful for security tests. Security tests don’t usu-
ally take the “normal” way of using the system into account. A good se-
curity tester will test a server (like a Web server) using the client (like a
browser), but will also access the server through the back door, just as a
malicious user will.

Table 12.3 shows how the techniques can be used for structured secu-
rity testing:

Table 12.3 Techniques for structured security testing

Test design
technique

Specific to security testing

Syntax testing A large part of the security problems result from errors in input
validation. This is why syntax tests are often run with especially
long inputs or input with specific symbols.

Equivalence
partitioning

Values in the equivalence classes that lead to negative or very large
numbers (32-bit overflow) can cause security problems, which is
why the invalid equivalence classes are included. Also think of the
output EP, which enables us to test situations in which two valid
inputs produce an invalid output.

Boundary
value analysis

In particular boundary values that lead to negative or very large
numbers (32-bit overflow) can cause security problems.

Cause-effect
graphing

C/E can be used to do a test assessment. This technique is suitable
for finding ambiguities and gaps in the system design. Where there
are gaps, there may be security leaks.

State transi-
tion testing

This technique has no specific application in security testing.

12.7 Test Design Techniques and Security Testing 235

St
ep

 3
 –

 D
es

ig
n

Table 12.3 Continued

Test design
technique

Specific to security testing

CRUD tests CRUD tests are suitable for checking authorizations: for each au-
thorization or user profile, the test checks whether it is impossible
to carry out prohibited actions. For example, a requester who can-
not start the function that the request approves, or a user with read-
only permissions that can suddenly change data. Security tests
mainly use the negative tests in the CRUD table.

Process cycle
testing

This technique has no specific application in security testing.

Exploratory
testing

Very suitable for security testing. This technique is often used to
flexibly exploit the discovered security leaks. ET combines the
flexibility of the test run with a tight process to produce a repeat-
able and controlled process that takes the risk analysis into account.

Heuristic
testing

The use of checklists to test for the presence of specific security
heuristics is very important to achieve a reproducible and high-
quality result.

Load testing This technique has no specific application in security testing.
Stress tests This technique is used in security testing to check whether the

system is still in a secure mode when the load exceeds the “break-
ing point” when the system can crash or go into overload mode. In
either case, the system needs to stay at the same security level.

Reliability
testing

This technique has no specific application in security testing.

Concurrency
testing

This technique has no specific application in security testing.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_13, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 3
 –

 D
es

ig
n

13 The Physical Test Design

13.1 Introduction

This chapter describes the creation of physical test cases. The starting
point for the creation of a physical test case is the logical test case. The
tester uses his knowledge of the system to convert logical test cases into
physical test cases, which define the test actions that need to be carried
out, the test data used, and the most efficient sequence (the testing sce-
narios) to carry them out in. These three elements form an integral
whole because they are all worked on during the creation of the physi-
cal test design.

If a logical design is not available for a specific test cluster , the test
base needs to be directly converted into physical test cases. This is pos-
sible, but it has the disadvantage that it will be difficult to make a good
statement about the test coverage.

13.2 Relationship Between the TRA and the Logical
Test Design

A good structure is very important for a physical test design. A test de-
sign for a medium-sized system can easily contain a few hundred pages
and more than a thousand test actions. A good structure and clear refer-
ences to the test base enable tests to be traced and increase maintain-
ability. The basis of all test actions, and thus of the physical test design,
is the TRA. During the creation of the TRA, a test tree is set up. This
test tree is the basis for the structure of the physical test design. Giving
all of the tests a position in the tree creates a hierarchical structure in the

238 13 The Physical Test Design

St
ep

 3
 –

 D
es

ig
n

test design, which ensures that a test can always be traced to the corre-
sponding risk and component in the test base.

Figure 13.1 displays the relationship between the TRA and the logical
and physical test designs. The TRA is done using the test tree. The im-
portance is estimated for each branch in the tree. The test tree specifies
the clustering of the tests that are to be designed. Every cluster is de-
fined in logical and physical test cases. Using these structures ensures
that the result of a test action that has been performed can always be
traced to the area of attention discussed during the TRA.

Logical test design Physical test designTest risk analysis

Risk area TRA Cluster
Logical

testcase

Physical

testcase
Test steps

Executed test action gives an indication of the remaining risk

Each logical test case

Is elaborated to

physical test cases

Cluster is elaborated to

logical test cases
detarobalesiesactsetlacisyhP

snoitcatsetfosnaemyb

atadtsetdna

Fig. 13.1 The relationship between the TRA and the logical and physical test designs

13.3 Physical Test Case

The logical test case describes what is tested and not how it is done. The
aim of a physical test case is to fill in the details of the corresponding
logical test case so that the how is clear. In order to elaborate the physi-
cal test case, we need to answer the following questions:

• Which preconditions or other conditions need to be met?
• Which actions need to be carried out?
• Which input data should be used?
• When is a test successful?

13.3 Physical Test Case 239

St
ep

 3
 –

 D
es

ig
n

A physical test case consists of the following attributes:

Physical Test Case ID
Each physical test case has a unique identifier, which can be a number
or a text. A text may be an easy way of quickly identifying a test, but a
number, like in the first of the below examples, is easy to generate
automatically.

Possible examples of IDs:

• Test Case 1
The first test that was designed.

• CC_auth_nok_pin_01
This test case ID specifies that the test case is about an invalid (nok)
credit card (CC) authentication (auth) with an incorrect PIN.

• CC_auth_nok_blacklist_03
This test case ID specifies that the test case is about an invalid (nok)
authentication (auth) and that the credit card (CC) is on a blacklist.

• INT02.C1T01
This test case ID has the format <project><cluster>.<condition><test
case>. In this case, the ID stands for the second cluster, condition
C1, first test case.

Test Purpose
To provide a short description of the test case, which corresponds to the
logical test case and clearly indicates when a test case can be called
successful. The description should include the following elements:

• The situation that is tested (for example, “enter an invalid date”)
• The expected and correct system reaction (for example, “cannot save

the record”)

This produces descriptions such as:

• Check that a record is not saved if the date is invalid.
• Check that the authentication is not approved if a wrong or invalid

PIN is entered.

Precondition
Describes the test’s base situation and specifies the conditions that must
be met when starting the test case. For example, in the case of a library
system: System in window S1, status of the book = on loan.

240 13 The Physical Test Design

St
ep

 3
 –

 D
es

ig
n

Describe the standard, valid base situation in a central place in the
physical test design. In the test case, all you then have to do is
specify where it deviates from the valid situation. This prevents
the precondition turning into a long list of obvious points that
provide no information about the actual test with conditions such
as: the user is logged in, the connection with the database has
been established, the database contains a number of book titles,
etc.

Only specifying where the test case deviates from the valid situation
provides better insight into the essence of the test. For example, in the
valid situation, the book status is always available, but in this test an
exception is made: status of the book = on loan.

Using mathematical symbols such as =, ≤, <, ≥ and > for condi-
tions ensures clarity. This notation is often more precise than a
textual description and it stands out in the text. This makes recog-
nizing the condition and looking for the differences between vari-
ous test cases easier.

Test Actions
A test action consists of one of the following attributes: test action ID,
test action, expected system reaction, conclusion and the indication for
regression testing. These attributes are discussed in Sect. 13.4.

Post-condition
Describes the expected situation after the test. The post-condition is de-
scribed in the same way as the precondition.

Reference to the Test Base
Specifies the part of the test base the test is based on. This makes it easy
to locate the related specifications.
This field is important to locate the specifications for review and con-
trol.

Reference to the Position in the Test Tree
Specifies the cluster or logical test the physical test case belongs to.

Quality Attribute
Specifies the quality attribute that is tested by the test case. This field en-
ables the test results to be displayed in the test report by quality attribute.

13.3 Physical Test Case 241

St
ep

 3
 –

 D
es

ig
n

Reference to the Configuration Used
The tests are run with a specific configuration of the test object, test en-
vironment, test base and test data. Specifying the versions that were
used to run the test enables the result of changes to be traced.

The configuration can consist of different kinds of elements. Ex-
perience shows, that it is convenient to describe these elements in
the configuration management system. The unique combination
of specific versions of test object, test environment, test base and
even test data, enables us to assign a unique label, namely the
configuration ID, which is referred to in the test cases. The con-
figuration ID can be chosen freely, but it is advisable to use a
name that is convenient and clear for the test team.

If one or more elements in the configuration change, the description is
updated with the new configuration and the difference between the pre-
vious and the new configuration noted. The configuration ID of the new
configuration is used as reference in the test cases. The configuration
description can contain a reference to the used:
Test object
The version number of the test object is used to determine which errors
have been fixed and can be tested or retested. The release notes indicate
which errors were fixed and which functions are new to a particular
version.

Test environment
Not only the test object is subject to change, the test environment is too.
Examples of such changes are database migrations, patches and updates
to third-party components. It may not be necessary for the test team to
manage all the changes, but they do have to manage the changes that
can impact the tests.

Test base
The tests are designed for a particular version of the test base. There is
not always enough time to implement changes to the test base in the test
design, which is why you should always specify the version of the test
base the test design is based on. This enables you to determine which
changes in the test base still have to be implemented in the test design
and to explain failed tests. If the programmer says the system is work-
ing correctly but the behavior deviates from the expected outcome, it is
possible that changes were made to the test base that were not imple-
mented in the test design.

242 13 The Physical Test Design

St
ep

 3
 –

 D
es

ig
n

Because the test base often consists of a large number of docu-
ments, it’s a good idea to compile a list of the documents and give
the list a version number. When system specifications are re-
leased as a new “baseline,” a new list with a higher version num-
ber can be used as the test base.

Test data
The input and output data that is used in the physical test case depend
on the configuration and metadata (see also Sect. 16.13.6). Any changes
to the configuration will impact the usability of the test cases, which is
why you should specify which version of the test data was used for the
designs.

Write the configuration on a whiteboard during the test run so that
everyone in the room knows which configuration is used for the
test environment. If the testers are not working in the same room,
an Intranet page or a wiki web are also good places to publish the
configuration.

Fig. 13.2 A test case in Microsoft Access

13.4 Test Actions 243

St
ep

 3
 –

 D
es

ig
n

Figure 13.2 displays an example of what a physical test case looks like
in Microsoft Access. The above-mentioned attributes are recognizable,
as well as the test actions that describe the actual test steps. The test ac-
tions are described in Sect. 13.4.

13.4 Test Actions

A physical test case consists of one or more test actions . A test action
consists of the following attributes:

Test Action ID
Unique identification of the actual action the tester has to perform, pref-
erably a number that is unique in the physical test case. The combina-
tion <physical test case ID>.<test case ID> should be unique so there is
no confusion.

An example of unique IDs for the first three test actions of test case 4:

• Test case 4.1
• Test case 4.2
• Test case 4.3

Test Action
Describes an action that the tester has to perform. Use action words
such as

• Select
• Check
• Create
• Enter
• Edit
• Delete
• Log in

If the physical test case is used as a basis for automated test output, it is
recommended to use the same action words in the test scripts and in the
physical test case.

Also specify clearly which input data needs to be used. Experience
shows that it is convenient to specify if valid or invalid values are en-
tered because it makes the test easier to understand. For example:

• Enter an invalid date (31-02-2005).
• Select an invalid user (Mr. Johnson).

244 13 The Physical Test Design

St
ep

 3
 –

 D
es

ig
n

Chapter 14 Test Data provides a number of examples of how test data
can be specified in physical test cases.

Expected System Reaction
The expected system reaction describes the result that is expected if the
system behaves according to the design. Describe the result in such a
way that it can be checked, for example, by mentioning the action the
system performs and for whom the action is performed. For example:

• The system displays an error message to the user to indicate that the
date is invalid.

• A reservation request is sent to the library system.
• The result of the computation (answer = 42) is displayed to the user.
• The changed book status is written to the database.

Conclusion
Specifies whether the action was successful. A test action is successful
if the observed result is the same as the described expected result. The
value of the conclusion can be OK, NOK, or not run. If a test was not
successful, a reference to the associated error is added.

Sometimes, an additional status is added to the conclusion to indicate
that a test was not feasible. The disadvantage of this, is that a non-
feasible test is often deemed “not important anymore” in the progress
meeting. If a test is not feasible, decide whether it’s important, and if it
isn’t, delete it from the test set or the regression test set. If, however, the
test is important, the fact that it has not been run is an open risk. Leave
the test in the report as “test yet to be run.”

Indication for the Regression Test
Indicates the risk category a test action belongs to. This ranking by
importance can be used to determine the regression test set.

A distinction can be made between full regression tests and, for exam-
ple, quick scans. Some urgent changes need a quick and limited regres-
sion test. Indicating the importance of a test action makes it easier to de-
fine a regression policy; see also Table 13.1.

Table 13.1 Regression test policy

Type of regression test Run

Quick scan Only run tests and retests in the risk category “critical.”
Limited regression test Only run tests and retests in the risk category “critical”

and “high.”
Full regression test Run all tests.

13.5 The Physical Test Scenario 245

St
ep

 3
 –

 D
es

ig
n

Depending on the situation, this indication for regression tests can also
be established at the test case level. In practice, it requires less detail.
An advantage of an indication at the test action level is that in a physi-
cal test action case, the tests that are not strictly necessary can be left
out. This can, for example, be a syntax test where different valid values
are entered. In an exhaustive test we would want to perform this test
completely, but not in a quick scan. Reducing the number of tests
changes the coverage but not the way in which the test case is run
through.

13.5 The Physical Test Scenario

The physical test design consists of a number of physical test cases. The
sequence in which they are added to the test design is determined by the
test tree. The advantage of this structure is that test cases are easily
traced and the test set is easier to maintain.

A more efficient sequence can generally be devised for the test run.
This is done by creating a separate test scenario that specifies the se-
quence in which the test cases are best run. This is generally the logical
sequence in which two test cases immediately follow each other. For
example, the first test case creates a record and the one that follows
changes the record. If the post-condition of the first test does link up
with the precondition of the one that follows, link actions are defined to
make sure the tests can be run immediately after each other.
A scenario consists of the following attributes:

Scenario ID
Unique identification of the scenario.

Description
Describes the scenario in a concise and clear way. Make sure the stake-
holders can create a picture of the scenario. The test goal in the physical
test case is meant for insiders; the scenario will have to tie in with the
experience of the users, the marketing department, the program direc-
tors etc.

Tests to Be Run
A list of the tests that are to be run in the scenario supplemented with
possible link actions. For example:

• Test case number 1
• Test case number 5

246 13 The Physical Test Design

St
ep

 3
 –

 D
es

ig
n

• <link action>
• Test case number 3
• Test case number 7

Conclusion
The conclusion of the scenario. The value of the conclusion can be OK,
NOK or not run. Some scenarios can be run through and completed, and
still contain a number of unsuccessful tests. If this doesn’t produce any
showstoppers, for example, because there is a “workaround,” it can be
worth giving the scenario an OK conclusion. Accepting the scenario in-
dicates that the business process is feasible.

A reference matrix like the one displayed in Table 13.2 provides for
good traceability. This cross-check matrix shows which physical test
case is tested in which physical scenario. The matrix is primarily used
to control completeness, but it also increases the reusability of the test
design. It’s best to keep the matrix up to date.

Table 13.2 A reference matrix

 Scenario 01 Scenario 02 … Scenario nn

Test case 1 X
Test case 2 X
Test case 3 X
Test case 4 X
Test case 5 X X
Test case 6 X
Test case 7 X

13.6 Test Data

While setting up the physical test design, the test data used during the
test is also defined. The various types of test data and the way they are
used in the physical test design is described in Chap. 14 Test data.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_14, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 3
 –

 D
es

ig
n

14 Test Data

14.1 Test Data Elements

People often think of test data as the data that is input and checked
when a physical test case is run. But test data covers much more than
that. The following elements are distinguished:

Input and Output Data
During the test run, data is entered and the output of the test action is
compared to the expected result (expected output data). Input data is
data that is defined for boundary value research, syntax tests, etc.

Output data can, for example, be the output of a calculation, or data
elements that are generated by the system for messages and reports.

Operational Data
Each test has a precondition. During the test, the data set can be
searched for data or processes that are in a condition that meets the pre-
condition. The data that is present in the system and that can be used as
the starting point for a specific test is called operational data. This name
was chosen because this kind of data is also present in the live system
where “operations” are carried out.

The base situation described in the test design can be created during the
test run, but it is more efficient to create it prior to running the test and
to make it available in the test object’s database so it can be used when
the test is run. The base situation often consists of a process that is in a
specific state, for example:

• A specific credit card that is also on a blacklist
• A library system in which a specific book has the status “on loan”

248 14 Test Data

St
ep

 3
 –

 D
es

ig
n

Configuration Data
One of the requirements of testing is that the system is correctly config-
ured. The configuration data is the data that is used to make the system
suitable for use, which is why it is important that the correct configura-
tion data is used. Configuration data can vary depending on the test
level. The following questions should be answered to ensure the system
is correctly configured:

• Users and Login Information
Are test accounts used or are users testing with live accounts?

• Connections and relations
What is the connection and the relationship between the users? Are
the authorizations distinct and does every user have a specific role,
or are they combined in a superuser test account?

• Permissions
Are the testers assigned additional permissions to perform certain ac-
tions? These would be permissions that users don’t usually have but
that are necessary to run the test.

• Timeout settings
Are the real timeout values used or do they have to be higher or
slower? Shorter periods can shorten the wait time during the test and
speed up testing. A disadvantage is that it is sometimes hard to run a
certain test action within the allocated time. Short timeout times are
preferred to test a timeout situation, and long timeout times to test
the valid flow.

• Addresses
Are e-mail, technical messages or short text messages delivered to
the operational addresses, or are internal test accounts used?

Metadata
Metadata is also referred to as reference data or master data. To enable
a specific configuration it is sometimes necessary to predefine meta-
data. This can be generic data such as:

• Geo data that is used to check a zip code or a city
• User roles that are selected from a drop-down list. In this case, the

list should be populated.
• Predefined statuses that an entity can have, for example, the book

status “on loan” in the library system.

The physical test design contains or refers to input and output data and
operational data. The configuration data and the metadata are used to
set up the test environment and the smoke test.
All of the different types of test data are correlated and need to be well
maintained, preferably in a test data repository.

14.2 Test Data Repository 249

St
ep

 3
 –

 D
es

ig
n

14.2 Test Data Repository

A test data repository is a central storage location for test data. Because
all types of test data (input data, expected output data, operational data,
configuration data and metadata) are closely related, it is efficient to
manage them as one set in a central location. This can be a tool, a test
data database or an Excel spreadsheet. Managing the test data as one set
reduces the risk of inconsistencies and enhances reusability.

Test object

Test data
repository

Operational data
Configuration data
Metadata

ApplicationInput data Actual output Expected
output data

Evaluation

Physical test case

Test action and expected system reaction

Test aim

Precondition and postcondition-

Fig. 14.1 displays the logical use of a test data repository.

The test data repository contains all of the test data. The configuration
and metadata are used to install and configure the system. The live data
describes the starting point of the test, which is basically the same as the
precondition of the test case in the test design and can be predefined in
the test object to ensure the tests run efficiently. This means that it is
also included in the system database.

The input data used in the test is specified in the physical test case
and entered during the test. The system reaction is compared to the
expected output data, which is also specified in the test action in the
physical test case.

250 14 Test Data

St
ep

 3
 –

 D
es

ig
n

14.3 Live Data Versus Test Data

The test data set can contain only fictitious data or of data used in the
live environment . Technical test cases, such as the module tests, usu-
ally use fictitious data. During the user tests or a pilot, it is desirable to
use data that closely resembles that used in the live environment.

100%

0%
Module test FAT PilotST

Live data
Fictitious data

UAT

Use live data as early on as possible

Fig. 14.2 This figure shows that the share of fictitious data decreases as the test approaches the
go-live phase. Also note that it is advisable to start using live data as early on as possible. Expe-
rience shows that some errors are not found until a real data set is used.

The requirements for the test data are defined for each test level. It is
wise to start using live data or data that closely resembles live data as
early on in the test as possible.

Example 14.1

The system test for the Connecta project is run with fictitious test
data. In order to test the authorizations properly, a separate test
user is created for each user role. Because the data is fictitious,
the names of the users are chosen in such a way that the testers
immediately recognize which role is logged in to the application,
such as FrequentFlyer or SeniorClient.

Real data is used during the UAT so that the users can get a good
picture of how the application works. Certain users produce er-
rors. Upon analysis, it seems that these users are all intermediar-
ies that represent several organizations and several roles. Because

14.4 Test Data Management Strategy 251

St
ep

 3
 –

 D
es

ig
n

the system test worked with single roles, combinations of roles
were not tested.

In later test levels, it is preferable to work with data that closely resem-
bles that in the live environment. There is, however, still a need for spe-
cific test data. This can, for example, be data that enables exceptional
situations to be effectively tested.

Example 14.2

The maintenance organization runs an acceptance test on every
maintenance release. The test uses anonymized live data and
some fictitious data to test exceptional situations that would oth-
erwise be difficult to test, such as a record in which all the fields
are filled to the maximum field length. This situation does not
commonly occur in practice, but the record is used to test the lay-
out of the reports. Experience shows that changes made to the re-
ports do not take long field names into account. The test now in-
cludes a standard check that consists of filling the fields in a
report to their maximum length.

14.4 Test Data Management Strategy

Test data management consists of using the right input data and live
data and maintaining the configured environment. There are a lot of
ways to maintain test data. Three of the most common strategies are de-
scribed below. It is also possible to combine strategies or parts of
strategies.

14.4.1 Input from the Application

The easiest way of accessing the desired test data is to define it during
the test. The system is configured as soon as it’s available. Transactions
are run during a test case to create the desired starting point.

252 14 Test Data

St
ep

 3
 –

 D
es

ig
n

The advantage of this strategy is that you don’t have to think about the
test data in advance. If necessary, the configuration of the system can be
adapted during the test run to prepare it for the next test.

But this strategy also has disadvantages. Time may be saved during the
creation of the test design by not preparing the test data, but because
part of the preliminary work was not done, the test execution will take
longer. And because the configuration of the system is not fixed and
changes during the execution, some tests cannot be reproduced. This
strategy does not allow for automated testing either. A tester can impro-
vise and react to a situation; a test script can’t. A further disadvantage is
that the application is used to create the basic situation and configure
the system. This creates a dependency on the availability of the func-
tionality, meaning that certain tests will not run if a certain function is
not available or doesn’t work.

Because the test data is not thought about in advance, relationships be-
tween the different data elements are not established. This makes data
management fairly simple and a test data repository superfluous.

Operational data
Configuration data
Metadata

Application

Input data

Operational data
Configuration data

Metadata

Fig. 14.3 Logical use of test data whereby all of the test data is defined during the
test and entered from the application

14.4.2 Input from the Database

An alternative strategy is to add the test data directly to the database.
This eliminates the dependency on the availability of the functionality.
All of the test data can be managed centrally from the insert script that

14.4 Test Data Management Strategy 253

St
ep

 3
 –

 D
es

ig
n

is used to populate the database. The original situation is easily restored
by cleaning up the database and rerunning the insert script to repopulate
the database.

The disadvantage of this strategy is that database administration (DBA)
knowledge is needed to create and maintain the script. Because the test
data is crucial for testing, the test team has to have DBA knowledge.
Another disadvantage is that an insert script can be very complex. Er-
rors in the script will corrupt the database, which can lead to illogical
errors, such as inserts that have to be performed in the correct sequence
or validations that disappear because they are usually performed at the
GUI level.

There is an advantage, though: all of the test data is managed centrally.
This enables a consistent set in the test data repository to be defined
where configuration, starting point and input data are linked. The link
between the different elements of the test data is described in Sect. 14.2.

14.4.3 Closed Loop

Test data that is added from the database (Sect. 14.4.2) generally origi-
nates from a test data repository that contains all of the test data. In the
closed loop strategy, the relationship between the repository and the da-
tabase is reversed. Here, a desired, already existing starting point is se-
lected in the application database by running targeted (SQL) queries.
The application database is hence feeding the repository. An advantage
of the closed loop solution is that it can be based on existing (live) data.
If the tests need to be rerun, it’s not necessary to recreate the original
situation. A query enables a new selection to be made providing the
data is available in the test object database.

This works well for maintenance releases because the tests are run on an
existing application and the test object database probably contains
enough data. It may not work so well for new systems. In practice, the
test object database usually contains enough valid data. Running tests
with invalid data increases the likelihood that the query will not produce
any results. In this case, the starting point will have to be recreated.

This solution can also be used in automated testing (see Sect. 14.6). The
data is loaded from the test object database into the test data repository
from where it is read into the test script. DBA knowledge is required to
implement this solution and maintain the queries.

254 14 Test Data

St
ep

 3
 –

 D
es

ig
n

Test data
repository

Operational data
Configuration data
Metadata

ApplicationInput data

SQL

Fig. 14.4 Logical use of test data where the test data repository is populated from
the application database.

14.5 Including Data in the Physical Test Design

The input data, the expected output data and the starting point are also
used in the physical test case (see also the dotted lines in Fig. 14.1). The
test case specifies which test data is used during the test in a number of
ways. Consider using one of the following strategies:

Use Static Data in the Physical Test Case
The physical test data is included in the test design, but it is static.
While designing the test, the used values can also be added to the test
data repository , for example, to ensure that the system is configured in
such a way that Mr. Johnson is also on the list of available users. The
advantage of this strategy is that the tester knows which data he’s sup-
posed to use. The disadvantage is that using static data in the test design
makes maintenance difficult and time consuming. Example of a test ac-
tion: Select a valid user (Mr. Johnson).

Refer to the Matching Test Data in the Physical Test Case
If the data is maintained from a test data repository, it makes sense to
work in the repository because the data is immediately added to it. A
reference is added to the test design so the tester knows which test data
relates to which test. The below example of a test action refers to a po-
sition in an Excel spreadsheet that is used as test data repository. Refer-
ring to the data in the repository in this way considerably increases the
maintainability of the test set. The test data can be changed without

14.6 Automated Tests 255

St
ep

 3
 –

 D
es

ig
n

having to adapt the test descriptions. A disadvantage is that the tester
has to use the test design and the spreadsheet at the same time, which
increases the risk of errors being made. Example of a test action: Select
a valid user (see A9).

Use a Dynamic Link
The most advanced solution is to dynamically add the test data to the
test design. Changes to the repository are immediately made in the
physical test case. This is the best, but also the most complex solution.
Example of a test action: Select a valid user (Mr. Johnson).

There is also the possibility of not including any data in the physical
test design.

Do Not Include Data in the Physical Test Design
This strategy ties in well with the choice of defining test data during the
test (see also Sect. 14.4.1). As a result, the test design only contains
logical test data and it is up to the tester to define a physical value dur-
ing the test. Although this choice gives the tester a lot of freedom dur-
ing the test, it is no longer possible to reproduce the tests unless the
tester notes which physical data he used during the test. On the other
hand, not noting the test data saves a lot of time. An example of a test
action where the test data is not defined: Select a valid user.

14.6 Automated Tests

For automated tests, it is important that the test data is managed cen-
trally. If the data in the test script does not match the system configura-
tion, the test will not finish successfully. While the manual tester can
adapt his tests interactively and interpret the results, the automated test
is very rigid and inflexible. For automated tests, the combination of
configuration data, live data and input data needs to be 100% correct.

It is therefore advisable, if the test tool supports this, to dynamically en-
ter the test data that is used in the tests scripts. This working method
corresponds to the “dynamic link” option described in Sect. 14.5. The
test data repository plays a central role in this solution as the central
storage location for the test data.

256 14 Test Data

St
ep

 3
 –

 D
es

ig
n

14.7 Test Data and Exploratory Testing

Up to now, we discussed test data for tests that were completely elabo-
rated. If unscripted testing is used, as is the case with exploratory tests,
what is then the importance of predefined test data?

In general, predefined input and output data is of little importance. Be-
cause the tests are created during the test run, little preparation is possi-
ble. It is, however, still important that the test environment is correctly
configured. The predefined configuration data and metadata can be put
to good use. The operational data describes the test’s starting point. It
may also be convenient to have a number of starting points ready for
unscripted tests. This prevents losing a lot of time creating precondi-
tions and enables the exploratory testers to focus on running the test
charter . Optionally, the precondition can also be added to the ET test
charter. See Chap. 12 for an explanation of exploratory testing and the
use of test charters.

14.8 Back-up and Restore

Regardless of the strategy chosen, it is desirable and even necessary to
back up the configured system and its corresponding starting points. A
restore can be used to go back to the situation as it was before testing
started (see also Sect. 15.6 Maintaining the Test Environment).

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_15, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 3
 –

 D
es

ig
n

15 Test Environment

15.1 Introduction

The requirements that the test environment has to meet are described in
detail in the Design step (Sect. 4.4.3). We also know which tests will be
run and which system configuration is needed, so we can now create the
test execution environment and make sure the test can start. This chap-
ter describes the defining and setting up of the test environment.

In a test project, planning and progress, the quality of the test design
and the status of the errors require a lot of attention. It should not be
forgotten that the test environment is a vital part of ensuring the test
project is successful. Or in other words: the most important reason why
test projects are not completed on time or do not produce the desired re-
sult is because the test environment is not good enough. Defining and
setting up the test environment is often much more complex than ini-
tially thought and needs to receive sufficient attention.

It can take a lot of time to set up the test environment. If components
need to be purchased, or there are problems during the set-up, the time
it takes to set up and configure the environment can be substantial. This
should be taken into account when the test planning is put in place.

In this chapter, the following steps are used to set up the environment:

• Determine the requirements
• Set up the environment
• Configure the system and run the smoke test

This chapter also touches on managing the test environment and the test
data.

258 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

15.2 Determine the Requirements of the Test Environment

Before a test environment can be set up, its requirements have to be de-
fined. The requirements depend on the tests that will be run.

The different test levels put different demands on the environment. The
different quality attributes that will be tested also determine which re-
quirements are considered more or less important. In a functional test,
the focus will be on the software. When measuring the performance or
running the security tests, the demands the environment puts on the
hardware also have to be thought about. Imagine that performance is
measured on a platform that is slower than the platform used in the live
environment. The test results won’t be indicative of the real perform-
ance. In order to be able to make sensible comments on the perform-
ance, the test environment has to resemble the live environment as
closely as possible.

This section discusses the demands that each test level puts on the test
environment. This information constitutes the background information
that is needed to define the requirements of the test environment. To de-
fine the requirements of the test environment, a checklist has been cre-
ated that can be used to build a bridge to the system management or-
ganization. See also Sect. 15.3.

Example 15.1

The test coordinator wants to run performance tests. On the
checklist, he indicates that he needs a fast network connection be-
tween the client and the database server. He and the system ad-
ministrator determine what “fast” means and which network
components (hubs, network cards) will be included in the chain.
They check whether the components meet the defined perform-
ance requirements. System management uses the checklist and the
information from this session to set up the test environment.

15.2.1 Module Tests and Module Integration Tests

Module tests, which are sometimes referred to as unit tests (UT), are
“white-box” tests. White-box tests are tests that provide insight into the
code and where the internal workings of the system are known. The test
environment is usually the same environment as the one the system is

15.2 Determine the Requirements of the Test Environment 259

St
ep

 3
 –

 D
es

ig
n

being developed on. A development environment is equipped with,
among other things, a compiler, an SQL client, etc.

A unit/model test tool is used to run unit tests; in Java environments, for
example, JUnit is used. Because the modules are tested at a point in
time when not all of the modules are available, missing modules are
simulated with stubs and drivers. It is fairly common for a developer to
run the module tests rather than a tester. The deployment cycle is short,
which means that there is not much time between finding an error and
fixing it. The developer tests, finds an error, fixes the error, and runs
another test on a new version of the module.

Developers will often use their own test data, which often consists of
technical data that resembles the live data used in functional tests. For
module integration tests, the test data will often be stored centrally so
that the process becomes more efficient by reusing test data. This central
storage location is the test data repository (see also Chap. 14 Test Data).

Requisites for module tests:

• Development tool
• SQL client or database administration tool
• Unit test tool
• Stubs
• Drivers
• Test data repository
• (Technical) test data
• Bug tracking system
• Version management tool

15.2.2 System Tests

System tests (ST) are black-box tests; they provide no insight into the
code and the system is tested from the outside. A large part of the tests
are run using already developed system interfaces. The system test is
often run at a point in time when not all of the system components are
available, which is why they are simulated by stubs and drivers. For ex-
ample, a Web application can be tested without actually connecting it to
the Internet or to the network because it is run on a simulated server.

The system test does not look into the system, although there is a need
to view the system logs and message queues. The testers perform ac-
tions directly on the database, which requires the testers to have read

260 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

permissions on all of the system elements. In consultation with the envi-
ronment manager, it can be convenient to give one or more of the
team’s testers write permissions so that he can optimally control the
environment. The testers who are granted write permissions need to
have enough knowledge and experience so they can assess the conse-
quences of their changes.

System tests are no longer run by developers, which is why the de-
ployment cycle of the system test will be somewhat longer than that of
the module test. It is desirable that showstoppers are solved quickly and
the software released to the testers.

Tests are run using test data, which is stored in a test data repository
(see also Chap. 14 Test Data) that is shared by the testers. If a tool is
used to design or run the tests, the tool should also be available.

Requisites:

• Stubs
• Drivers
• Simulators
• SQL client or database administration tool
• Monitoring tools
• Read permissions for all of the log files, databases and system ele-

ments
• Write permissions for all of the databases and system components
• Test tool (test automation and/or result logging)
• Bug tracking system
• Test data
• Test data repository

15.2.3 Functional Acceptation Tests

Just as for system testing, functional acceptance tests (FAT) are mainly
run using the developed system interfaces. For the FAT, the system is
expected to be developed to such a degree that stubs and drivers are no
longer needed. It may, however, still be necessary to simulate external
systems.

In this phase, the system can be expected to work fairly well. The errors
found during the system test have helped improve the functioning of the
system. It’s no longer necessary to examine all kinds of system logs.
System logs contain errors that are not intended for users and are hence
not displayed in the user interface.

15.2 Determine the Requirements of the Test Environment 261

St
ep

 3
 –

 D
es

ig
n

It is convenient if the testers have read permissions on the database and
the primary system logs. It is not necessary (and even not desirable) that
the testers change the configuration or the database. Experience shows
that changes that are made without the knowledge of the administrator
are often forgotten. The result is that an error will occur again when a
new version is installed. In the best case, the tester will remember that
the error is easy to fix and will fix it again; in the worst case, a lot of
unnecessary time will be spent analyzing the error. Make sure you don’t
lose control of the configuration of the test environment. Changes
should go through the manager and be checked to ensure they are im-
plemented in the live environment.

Compared to the system test, the deployment cycle can be longer (the
new version is available the next day). The FAT is a controlled test
phase, the smoke test has proven that the system is working reasonably
well and is ready for testing.

It’s obvious that the test designs, the test tools and the error logs have to
be available. The tests will use test data, for example, for syntax testing,
but also to test live data. This data may also have to be anonymized.

Requisites:

• Simulators
• SQL client or database administration tool
• Read permissions for system log and databases
• Test tool (test automation and/or result logs)
• Bug tracking system
• Test data repository
• Test data or anonymized live data

15.2.4 User Acceptance Tests

The user acceptance test (UAT) is run together with users or user re-
presentatives. The tests consist of realistic scenarios that are created to-
gether with the users. The system should be stable enough to support
the primary business processes. External systems can be simulated. The
users do not normally need to have technical knowledge to run the tests.

As the UAT is usually run on a stable system, the deployment cycle
does not necessarily have to be short. It is not expected that many
showstoppers will occur. If major flaws are found during the smoke
test, the UAT will be suspended.

262 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

The tests will use either live data or representative test data. The test
data may consist of anonymized live data.

Requisites:

• Simulators
• Bug tracking system
• Test data repository
• Test data or anonymized live data

15.2.5 Production Acceptance Tests

The production acceptance test (PAT) does not focus on the functional-
ity of the software, but on the maintenance aspects. The PAT consists of
an elaborate checklist and the testing of maintenance. Filling out the
checklist helps ensure that systems that are entering the maintenance
phase were tested, the system documentation delivered, agreements
made about support, etc.

Among other things, maintenance testing consists of

• Back ups
• Restores
• Installing a new version
• Support procedures
• Fallback scenarios and implementation

The things that are needed are the same as the things the maintenance
organization needs for the live environment. See also Sect. 4.2.

15.2.6 Chain Tests

In a chain test, two or more systems are connected. In previous test lev-
els, simulators replaced the missing components. In the meantime, those
components will have been completed, which means that they can be
used instead of the simulators. Experience shows that a lot of errors are
found during this round of integration testing. The chain tester should
have access to the database and system logs so he can analyze what is
causing an error. Technically speaking, the chain test is very much like
the system test, but in terms of organization it is very different.

15.2 Determine the Requirements of the Test Environment 263

St
ep

 3
 –

 D
es

ig
n

Chain tests are often very complex because of the many parties and sys-
tems that are involved in the test. The system that is being tested has
connections to other systems, some of which can also be connected to
other systems. Because the chain can become very long, the chain is of-
ten only set up with the systems that are directly connected to the sys-
tem that is being tested.

A lot of the complexity is due to the fact that all of the systems in the
chain need to use the same test data. If one system uses a customer
number, all of the systems need to use the same customer number.
Needless to say, the data that is related to the customer number also has
to be correct. Because existing test environments are often used for the
chain test, it is very difficult to harmonize the test data across the sys-
tems.

If a chain test is planned, agree with the chain partners on the test
data at an early stage. For example, you can agree to use the same
customer data, or to use fixed ranges for test order numbers.

15.2.7 Pilot

The pilot is a way of running the live environment in a safe environ-
ment. Here, safe means that the impact of possible problems is mini-
mized, for example, by running a shadow of the existing system. Should
something go wrong, you can fall back on the existing system. For new
systems (or services), the pilot is also used to run tests with a small
group of users. This has the advantage that only a small group of users
will be affected should unforeseen problems occur.

In a pilot, the rollback procedure needs to be given enough attention es-
pecially if the pilot environment is connected to chain partners. If the
live environment needs to be restored to its original configuration,
transactions may need to be rolled back on other systems in the chain.
The pilot can be run in the live environment as well as in the test envi-
ronment. In the latter case, the requirements for the test environment are
the same as those for the live environment.

264 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

15.2.8 Performance Tests

Performance tests consist of doing load, stress, reliability, and concur-
rency measurements (see also Sect. 4.7). This results in requirements
for the test environment that are different from those for functional
tests. For performance tests, the hardware and the infrastructure should
be representative of the live environment. This means that the test envi-
ronment has to be the same as the live environment. It’s sometimes pos-
sible to convert the results to the performance that is expected when the
test object really is running in the live environment. Performance test-
ing also includes testing the network connections between two systems
in the chain.

The test data used for performance tests should resemble the live data as
closely as possible. Queries take longer on a populated database than on
an empty database, and the time it takes to process messages (for exam-
ple, the time needed to parse an XML message) that are sent or received
by the system will vary depending on the size of the message. The mes-
sages that are used in the performance test have to be representative of
the ones produced in the live environment.

Performance can be analyzed using the time a process step takes. The
system resources that are used also provide important information. The
development environments often provide their own analysis and moni-
toring possibilities. Logging in to the server also produces information.
If the standard information and tools are not sufficient, additional
measuring points will have to be added to the code. These measuring
points are called hooks.

To measure the performance, it is desirable to put a certain load on the
system for a longer period of time. This load simulates the behavior of
several users performing transactions on the system. Tools and simula-
tors used to do this should be available and are placed on a separate
system in order to reduce their influence on the performance of the test
object.

Reliability tests often have a longer runtime and are run at night. Stress
tests are often run outside office hours because the heavy load used in
these tests puts a heavy load on the network and the servers. It is impor-
tant that the test can run uninterrupted, which is why processes that
could influence the test need to be taken into account.

In many organizations, processes are run at night. For example, the ser-
ver is restarted, batch jobs are run and back-ups made. Open connec-

15.2 Determine the Requirements of the Test Environment 265

St
ep

 3
 –

 D
es

ig
n

tions are sometimes automatically closed. Establish which processes are
running and how their influence can be minimized. If this is not possi-
ble, some of the problems can be solved by using a separate network
segment.

Performance measurements are often analyzed with special tools. The
results are presented in graphics.

Requisites:

• Hardware that is representative of the live environment
• Same infrastructure (for example, a network connection) as the live

environment
• Simulators
• Load generators
• A populated database with representative test data consisting of ano-

nymized live data
• Test data repository
• A separate system on which simulators, generators and measuring

tools are run
• Performance test tool
• Network load measuring tool (analyzes the behavior of the applica-

tion and explains bottlenecks)
• Permissions to access logs and resource utilization on the server
• Bug tracking system
• Result analysis tool
• Graphics program

15.2.9 Security Tests

Security tests can be run at a number of testing levels. The tests focus
on different parts of the system, which consists of the modules, the
application, the procedures and the infrastructure in which the system
operates.

In module security testing, components or objects are tested for security
flaws. It is usually quite simple to extend unit test environments with
test cases for security testing, but specialized software that runs these
tests is also available. In addition to unit testing, tests are also run on the
coding standards or security guidelines the code is based on. In this
case, the requirements for the test environment are the same as for the
unit test.

266 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

Application security tests test the whole application. Just as with unit
testing, the environment that can be used for application security tests is
the same as the one used for system tests.

Network security tests map out flaws by running a test from the net-
work, such as a hacker test, which checks whether unauthorized indi-
viduals can access the system. It is important that the infrastructure is
the same as in the live environment. It will not be possible to ensure
that the security in the live environment is good if the test environment
uses a different firewall or configuration. In practice, this level of test-
ing is often run on the live environment with the necessary precautions.

Requisites:

• See module and module integration tests (15.2.1)
• See system tests (15.2.2)
• See pilot (15.2.7)

15.2.10 Training Purposes

If a test environment is designed for training purposes it will closely re-
semble the environment used for the UAT. The stability and the per-
formance of the environment need to be in order. Experience shows that
the training manuals are often based on previously defined starting
points. This enables the participants to run through some of the scenar-
ios very quickly. The starting points should be available in the system,
which puts demands on the test data. It must also be possible to use the
original data set in a subsequent course. See also Sect. 15.6.3.

During the training, simulators can be used to replace external systems
or to create error situations. The participants should not need extensive
technical knowledge to follow the training.

As opposed to the UAT, the purpose of the training is not to find errors,
which is why a bug tracking system is not necessary. It is however,
helpful if the trainer is able to log errors.

Requisites:

• Simulators
• Training data or (anonymized) live data
• Bug tracking system

15.3 Test Environment Requirements Checklist 267

St
ep

 3
 –

 D
es

ig
n

15.3 Test Environment Requirements Checklist

This checklist can be used to identify the requirements of the test envi-
ronment.

The tester who is setting up the test environment fills out the checklist
and discusses it with the test coordinator. Together they check whether
the requirements for the test environment support the test strategy.

The purpose of the checklist is to help build a bridge to the system
management organization. While discussing the list, the system admin-
istrator gets a picture of the requisites and fills out the rest of the list.
This requirements list is used to decide how the environment will be set
up and which hardware needs to be purchased.

Requirement Option

1. Type of
environment

□ Development
□ Test
□ Acceptance
□ Live

2. Which test
levels does the
environment have
to support

□ Module tests
□ System tests
□ Functional acceptance tests
□ Production acceptance tests
□ Chain tests
□ Pilot
□ Performance tests
□ Security tests
□ Training
□ Other …

3. Configuration
check

□ Complete (it is not possible to change anything in the
software versions, in the configuration or in versions of
supporting packages like DBMS, server software etc.)

□ Partial (releases, patches and upgrades of supported pack-
ages are controlled, but the configuration can be changed
without notice.)

□ None (everybody can change everything, there is no con-
trol)

4. Black box or
white-box testing

□ White box, check whether development tools are needed.
□ Black box

5. System
components

□ Standalone
□ Client, quantity: …
□ Server (for example, for database, Apache, active direc-

tory, etc.), quantity:…
□ Network components (hub, router, switch, UTP cables,

etc.)
□ Generic platform
□ Other …

268 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

Requirement Option

6. Resemblance with
live environment

□ Hardware same as live environment
□ Infrastructure (for example, network connection and

redundancy) same as live environment
□ Software configuration same as live environment
□ Software not same as live environment, there is a special

test build with additional hooks and checks
7. Performance □ Network performance: High/Standard/N/A

□ Server performance: High/Standard/N/A
□ Client performance: High/Standard/N/A
□ Peripheral equipment (hub, router): High/Standard/N/A

8. Concurrent users □ Number of testers simultaneously working on the
system: …

9. Interfaces with
external systems

□ Yes …
□ Simulated …
□ No

10. Connection with
external systems

□ Through a network
□ Through the Internet
□ Through message exchange
□ Through batch (e-mail, data storage exchange)
□ N/A

11. Software security □ None
□ Log in
□ Encryption
□ Authentication
□ Firewalls
□ Other …

12. Physical security □ None
□ Test environment is in a separate room only accessible to

staff
□ All components and all data are in a separate room only

accessible to authorized staff
13. Accessibility □ The test environment is accessed from the standard

workplace
□ The test environment is accessed from a separate PC,

additional requirements are: …
□ The test environment is part of the standard business

network
□ The test environment is part of an standalone develop-

ment/test network
14. Protection □ Permissions to view or edit system logs

□ Permissions to view or edit queue
□ Permissions to view or edit database
□ Permissions to view or change system configuration
□ Permissions to view or change system users
□ Permissions to use the system as a user
□ Permissions to work as an administrator or user in inter-

facing systems
15. Tools □ Test data repository

□ Bug tracking system
□ Development tool

15.3 Test Environment Requirements Checklist 269

St
ep

 3
 –

 D
es

ig
n

Requirement Option
□ Unit test tool
□ SQL client or database administration tool
□ Drivers
□ Stubs
□ Simulators
□ Monitoring tools
□ Test tool (create load, measure performance)
□ Result analysis tool
□ Test tool (test automation and/or result logging)
□ Separate machines to run simulators and test tools
□ XML editor
□ Text editor
□ Message editor/generator
□ Data analysis tool
□ Version management tool
□ Other...

16. License policy,
additional tools

□ Only freeware (no license costs)
□ Only limited license costs (€ … max.)
□ Only after extensive tool selection, no maximum, but

business case required
17. Stability and
uptime

□ Automatic restart
□ Yes/No
□ Automatic deployments
□ Yes/No
□ Automatic processes
□ Yes/No
□ Automatic closing down of connections
□ Yes/No

18. Speed of
deployment cycle

□ Within 1 hour
□ Within 1 day
□ Other...

19. Test data □ Technical test data
□ Logical test data
□ Training data
□ Live data (anonymized)
□ Live data (not anonymized)
□ Live data (migrated)

20. Size of the test
data set

□ Small size < … MB
□ Medium size < … GB
□ Large size < … GB

21. Sharing informa-
tion

□ Own data, own system
□ Same test data, but own data set to work with
□ Same test data, all testers work with the same database

22. Test data,
maintenance

□ Test data is defined by the tester, no fixed test data
□ Test data has been defined and is maintained centrally.

Test data repository
□ Test data is rolled back to the starting point after each test

23. Test data,
starting points and
configuration

□ Are always implemented from the application
□ Are initially implemented from the application and are

rolled back to the starting point after each test.

270 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

Requirement Option
□ Are entered from the database using SQL
□ Other …

24. System needs to
work with different
configurations

□ Works with following versions of MS Windows …
□ Works with following versions of Web browsers …
□ Works with following versions of DBMS …
□ Works with another OS…
□ Works with other components …

25. System
availability, sharing
with other projects

□ The environment has been assigned to this project only
□ The environment is shared, but software installations are

independent, switching has no impact
□ The environment is shared, changing software

components or configuration is necessary and switching
has impact

26. Compatibility □ Test environment must be interchangeable with other
environments (Development, test, Acceptance, Live)

□ Test environment should be interchangeable with other
environments (e. g. Acceptance 1, Acceptance 2, etc.)

27. Manual or auto-
mated test execution

□ Manual
□ Automated

28. Test environment
is installed by

□ Test team
□ Development department
□ Maintenance department

29. Additional tools
are installed by

□ Test team
□ Development department
□ Maintenance department

30. Maintenance and
support

□ Own maintenance
□ Maintenance by development department
□ Maintenance by maintenance department

31. Knowledge and
skills of management
team

□ System knowledge
□ Network knowledge
□ Database knowledge
□ SQL
□ Tool knowledge
□ Other …

15.4 Setting up the Test Environment

The completed checklist is used to set up the test environment. The
maintenance organization (or other parties responsible for the test envi-
ronment) can use the requirements to acquire the components and im-
plement the test environment.

The set-up consists of the following steps:

1. Acquire the infrastructure
2. Install the infrastructure (for example, DBMS)

15.5 Configuration and Smoke Test 271

St
ep

 3
 –

 D
es

ig
n

3. Install the metadata (see also Chap. 14, Test data)
4. Install the test object (pre-release)
5. Test the test environment
6. Install the test object (release that is to be tested)

This list distinguishes between installing the pre-release and installing
the release of the test object. The distinction is made in order to test the
test environment and the installation procedure in advance to reduce the
risk of having to use valuable testing time to install the system when the
test object becomes available. At this point, you want to start testing,
not spend valuable time on the test environment. In some cases, the re-
lease that is to be tested is immediately available and the environment is
tested at the same time the smoke test is run (see also Sect. 15.5.2).

15.5 Configuration and Smoke Test

15.5.1 Configuring the Test Environment

When the test environment has been set up and the test object has be-
come available, the environment and the test object can be configured.
This activity can overlap with the previous activity, since it is necessary
to configure the system during set-up. Configuration is a necessity if it is
not possible to test the test environment without partially configuring the
test object. Configuration using a pre-release is desirable, because it
prevents surprises arising. Only the changes will have to be imple-
mented in the final release once it becomes available. This situation also
occurs when the release is being used for a retest or for a regression test.

Configuration data is used to configure the test environment. This data
is part of the test data ; see also Chap. 14 Test data.

15.5.2 Smoke Test

The purpose of the smoke test is to ensure that the quality of the system
is good enough to start testing. The smoke test is run before testing
starts and as soon as the version of the test object to be tested has been
released.

The most important reason to run the smoke test is to save testing time.
Experience shows that it is very likely that the delivered systems will
not work as desired, meaning that it will not be possible to run a reliable
test on them. If the delivered system does not work as desired, it will

272 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

have to be flagged before the test starts so measures can be taken. The
smoke test is described in Chap. 17.

The smoke test is run on a “tuned” system, meaning that the system has
to be configured before the smoke test can be run. In practice, configu-
ration and smoke test are not always distinct activities. The system is
used to check the changes made to the configuration. To run a smoke
test on the system, the test environment needs to be configured. Possi-
ble errors can be caused by bugs in the software, but also by configura-
tion errors. The lack of distinction between the configuration and the
smoke test doesn’t matter as long as the purpose of the smoke test is not
forgotten.

15.6 Maintaining the Test Environment

Maintaining the test environment is at least as important as setting it up.
If the test environment works properly during the first test run, it will
probably work properly during the retests and the regression tests. To
ensure the test environment remains a reliable factor throughout the test
project, its maintenance needs to be well organized. If the test environ-
ment is maintained by an in-house maintenance organization, everything
discussed in this chapter will most likely have been dealt with. If the test
environment is not maintained by an in-house maintenance organization,
the test coordinator will have to set up the maintenance himself. If there
is a standard procedure that can be reused, it is advisable to use it be-
cause it increases efficiency and makes the transition from project to
maintenance easier. The below activities should be well organized.

15.6.1 Configuration Management

Configuration management is the process that ensures that the structure
of the test environment is known and controlled. Changes to the test en-
vironment often have an impact on the test results, which is why it is im-
portant to know which changes are implemented when. The version and
configuration of all of the relevant components are documented. These
components are also referred to as configuration items [ITSMF, 2000].

In your project, make sure the following information is maintained:

• Version of the test object
• Version of the supporting software packages

15.6 Maintaining the Test Environment 273

St
ep

 3
 –

 D
es

ig
n

• Version of all of the patches that were applied
• Version of test data repository
• Version control (what has been changed when)

15.6.2 Release Management

It is important that the changes made to the test environment are con-
trolled. Release management ensures that changes are implemented at
previously agreed times and that the implemented changes are docu-
mented.

Releases are often released in consultation with the test coordinator, the
project leader and the administrator. The test coordinator indicates the
ideal time for a new release. The project leader knows how the team is
progressing and can indicate how much time he needs to create a new
version of the test object. The operator is responsible for the release and
plans the activities. A release is not only accompanied by a new version
of the test object, but also by release notes and an installation or de-
ployment guide.

Release Notes
Release notes describe the characteristics of the deliverable. Release
notes include:

• The version of the release
• Changes in relation to the previous release
• The errors that were fixed
• The implemented change requests (RfCs)
• The known errors that can impact the test process

Installation or Deployment Guide
The installation or deployment guide includes instructions for the admin-
istrator. These instructions can have the form of a checklist and indicate
which installations still need to be done. For big systems, the deployment
can be very complex. The sequence in which the installations, upgrades,
patches and controls need to be run should be specified. The installation
or deployment guide is often written by the maintenance organization to-
gether with the party that built the system. A good installation or de-
ployment guide ensures the installation runs smoothly and prevents prob-
lems occurring during the test run and in the live environment.

274 15 Test Environment

St
ep

 3
 –

 D
es

ig
n

15.6.3 Back-up and Restore

It goes without saying that the test environment should be backed up
before an installation and at regular intervals. Should an installation go
wrong or the environment become corrupt, the back-up can be used to
restore the test environment.

Even if errors don’t occur, you may want to restore the test environment
to its starting point, for example, to rerun a test or run a regression test.
Restoring a back-up means that a test can be rerun with the same test
data. This is relevant, for example, if a test requires creating unique re-
cords. If the data is dynamically entered in the test scripts (see also
Sect. 14.4 Test Data Management Strategy), it may be quicker to use
different test data than to do a restore.

When restoring a database from back-up, remember that the database
structure may have changed in the new version of the test object. Re-
strictions and stored procedures may also have changed. After the data-
base has been restored from the back-up, all the patches will have to be
applied. Note that the back-up is restored in agreement with the test co-
ordinator (I want to go back to that situation), the maintenance organi-
zation (we will be able to do it at this time) and the party building the
system (these are the changes we made since the previous version).

St
ep

 4
 –

 S
et

 u
p

Step 4 – Set up

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

During the Set-up phase, tests are scripted and the test environment cre-
ated. Creation means acquiring and developing the items that are speci-
fied in the requirements of the test environment. After a successful
smoke test, the created environment is finalized, meaning that the test
environment now supports the execution of the physical test design and
the scripts.

Set-up consists of the following activities and products:

Activity Product

Set up the test environment
Configure the system

Test environment

Test automation Scripts for automated testing
Smoke test Smoke test errors

Smoke test report

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_16, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 4
 –

 S
et

 u
p

16 Test Automation

16.1 Introduction

A lot of organizations wonder whether it’s worth switching to auto-
mated testing. The concept presented by commercial tool suppliers is
often very tempting: test while you sleep [Siteur, 2005]. Unfortunately,
reality is different. It may not be worth automating all of the test cases.

There are a number of reasons why manual testing will continue to be
necessary; the automated testing of requirements with a high change-
ability, uncertainty or complexity is very expensive. Moreover, auto-
mated tests need to be prepared and maintained, just like manual tests.
Automated testing enables a lot of tests to be run in a short period of
time. Nonetheless, the test results still have to be checked by a test ex-
pert, a process that is not much different than that for manual testing. In
both cases, tests are prepared and run and in both cases the errors are
logged, examined, fixed and retested. But that doesn’t mean that every-
thing has been said and done. This chapter discusses automated testing
in depth because there are a lot of situations in which it makes sense to
run automated tests. This chapter takes a closer look at situations in
which test automation is a technical necessity as well as at the ways in
which test scripts are created. A lot of books have been written about
test automation [Fewster et al, 1999], [Broekman et al, 2001], [Dustin et
al, 2005], which is why this chapter will focus on creating a conceptual
framework that the test expert can use to discuss the basic principles
with his organization.

278 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

16.2 What is Test Automation?

When people hear “test automation” they immediately think of the
automated execution of tests. The picture they have is that tests are run
at the press of a button or the click of a mouse, which makes them
cheaper and easier to run than manual tests. Unfortunately, things are
not that simple. On the one hand, this picture is far too positive, and on
the other hand there are many more forms of test automation . In Test-
Goal, test automation is defined as follows:

Test automation is the use of test tools that support the test proc-
ess and help the tester find errors.

If, for example, errors are logged in an error log, we call that test auto-
mation. Test automation is also the use of simulators to replace missing
system components. There are different types of test tools that can be
used to automate tests. We distinguish between

• Dynamic tools
• Static tools
• Supporting tools

16.3 Dynamic Test Tools

Dynamic test tools are used for dynamic tests, which are tests in which
the system is actually used. Dynamic test tools are used for one or more
of the following reasons:

16.3.1 Additional Testing Possibilities

Some tests are almost impossible to run manually. Dynamic test tools
can make a lot of tests easier to run, but they are an absolute necessity
when it comes to testing an object that does not have a user interface,
like a smart card. In this case, a tool is needed that sends commands to
the card and looks at the response the card returns. Another example is
module tests, which are difficult to do manually. Because module tests
focus on small parts of the code, stubs, drivers and automated scripts
are needed to check if the modules technically meet the system re-
quirements.

16.3 Dynamic Test Tools 279

St
ep

 4
 –

 S
et

 u
p

A dynamic test tool is not only used to generate good behavior, but also
to create error situations (how will the test object react to wrong input).
The correctness, specific content, consistency and syntax of the test ob-
ject’s response can be checked automatically.

16.3.2 Time Saving

There are tests that take up too much time when run manually, such as
security tests, which require checking a lot of options to ensure there
are no leaks in the security protocol. Or reliability or endurance tests, in
which tests are repeated many times to determine whether the system is
stable. Using simulators to automate tests can also save a lot of time, for
example, if manually simulating a peripheral system is labor-intensive
and prone to error. In this case, simulating the peripheral system can
significantly increase the efficiency of the test run.

16.3.3 Log files

To record information that is (virtually) impossible to obtain manually.
An example of this is performance testing, where it’s very difficult to
measure times in real time if the steps succeed each other very rapidly.
Tools can be used to measure and record the performance accurately.

13-2-2006 16:01:07 ,1-12,POST http://www.empe3.nl/index.php?ma

13-2-2006 16:01:08 ,1-12,GET http://www.empe3.nl/index.php?mai

13-2-2006 16:01:08 ,1-11,GET http://www.empe3.nl/index.php?mai

13-2-2006 16:01:09 ,1-11,POST http://www.empe3.nl/index.php?ma

13-2-2006 16:01:10 ,1-11,GET http://www.empe3.nl/index.php?mai

13-2-2006 16:01:10 ,1-10,GET http://www.empe3.nl/index.php?mai

13-2-2006 16:01:10 ,1-12,GET http://www.empe3.nl/index.php?mai

Fig. 16.1 Fragment of a system log. On the left, the timestamps indicate when the
http requests were executed.

16.3.4 Comparing Results

The ability to compare the observed results with the expected results
objectively. The comparison of the results can be included in the test
script and can take place during the automated test to establish the con-

280 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

clusion of the test. If the observed result is not the same as the expecta-
tion defined in the script, the test will receive the status “failed” (see
also Fig. 16.2).

Fig. 16.2 Fragment of a test log of an automated protocol test. The log shows that the test was
not successful.

Results can also be compared after the test, for example, the compari-
son of big messages that the system sends. Manual comparison is very
difficult and a lot less objective than automated comparison. Microsoft
Word can, for example, be used to compare the two messages to each
other. This suddenly promotes the text editor to a testing tool.

16.3.5 Extensive Repeatability

To execute the same test again and again in the same way, possibly for
various versions of the product. This is important for, among other
things, conformity tests (the tests have to be executed in the same ob-
jective way for different suppliers) and regression tests (the same test
has to be run on a new version of the product).

The ideal dynamic test tool supports the tester in all the above-mention-
ed areas and provides a number of functionalities for each of the previ-
ously mentioned reasons. The additional functionality is displayed in
Fig. 16.3. The figure provides an overview of the desired possibilities.

Record and Playback
The ability to record the actions a user is performing on the test object,
store them in a script, and play them back.

Scripts
The program code that runs the tests. This program is coded manually
or is automatically generated by the record and playback function.

Input Data and Expected Output Data
The ability to save the input data and the expected output data sepa-
rately and to use it to run the scripts.

16.3 Dynamic Test Tools 281

St
ep

 4
 –

 S
et

 u
p

Result Logs
Comprehensive logs that include the results of the test run as well as of
the performance measurements of the test object.

Comparator
Compares the measured results to the expected results.

Test scenario
The ability to merge available tests or scripts into test scenarios.

Dynamic test tool

Test risk analysis

Record and playback Scripts

Reporting SimulatorComparator

Dynamic monitoring
and analysis

Test object

Result
logs

Test scenario

Input data and
expected output data

Fig. 16.3 The ideal test tool supports a lot of functions

Dynamic Monitoring and Analysis
The ability to monitor the test object and analyze the cause of a problem
(for example, resource allocation, network monitoring, memory leaks).
Other possibilities are test coverage tools that do more than monitor the
test object. The test tool ads code to the object to trace which code is af-
fected during the test execution.

282 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

Reporting
Present the results and output of the comparator in a report that ties in
well with the test risk analysis.

Simulator
The test tool communicates with the test object and simulates a user or
another system.

There are not many dynamic test tools that offer all of the above-
mentioned features, which is why it is often necessary to use a combi-
nation of dynamic test tools (see also Sect. 16.8)

16.4 Static Test Tools

Static test tools are used in static tests: the tests that do not require the
program to be started. Static test tools can focus on the software or the
documentation.

A few examples of static test tools:

• Tools to measure the complexity and the structure of the code (for
example, the average size of a function, the number of nested IF-
THEN loops, etc.)

• Tools to check the correctness of the code (for example, to detect
unused routines)

• A spell checker for the system documentation

16.5 Supporting Tools

In addition to the tools that help run the tests or analyze data, there are
also test tools that support the test process in general, such as:

• Error logging tools (bug tracking)
• Planning tools
• Tools to create test designs
• Tools that can be used to report the results of manual or automated

test runs (dashboard)
• Configuration management tools

16.6 Test Automation: Yes/No 283

St
ep

 4
 –

 S
et

 u
p

16.6 Test Automation: Yes/No

16.6.1 Business Case

The previous section revealed that automation is not always applicable.
In some cases, the nature of the tests or of the test object will dictate the
use of tools. In other cases, there will be a choice, and in most cases the
decision will be based on a cost-benefit analysis.

The costs of an automated test include the cost of selecting, acquiring
and implementing the tool. Moreover, it takes time to learn how to use
the tool; unproductive time that costs money. After the tool has been
implemented, the costs mainly consist of:

• License fees
• The cost of developing test scripts and/or tools
• The cost of maintaining test scripts and/or tools

These are costs that are not incurred by manual testing. To build a fa-
vorable business case, the costs are generally cut out of the test execu-
tion. This doesn’t pose a problem if the tests are frequently repeated and
the test set requires little maintenance. A rule of thumb is that if the
automated tests are run less than five times, the investment is not earned
back. This rule of thumb applies to all automated tests, but not all tests
need to be automated. For organizations that are starting to automate
their tests, the best advice is to automate only the tests that have to be
run a lot of times or if automation saves a lot of time.

The maintenance costs of an automated test set depend on the stability
of the test set and the ease with which the tests can be modified. For
conformity and interoperability tests (see also Sect. 4.6) the test base is
often very stabile and the tests can be reused without a lot of mainte-
nance.

In a situation where the test base is constantly changing, more mainte-
nance will be needed. Maintenance costs money and takes time. How-
ever, without good maintenance, the testware will quickly become use-
less. This can be prevented by setting up the implementation in a
flexible way and by ensuring that changes are easy to implement. Al-
though the initial development costs are often high, the maintenance
costs will decrease, as is depicted in Fig. 16.4.

The graphic shows that an optimum can be reached between develop-
ment costs and maintenance costs. The precise form of the curves, and

284 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

hence of the location of the optimum, depends on many factors, such as
the test team’s experience with scripting and with the tools that are used.
If the test team is very experienced, the development costs will be lower
than if the team is not very experienced. The curve for the development
costs will be less steep and the optimum will shift to the right. Depend-
ing on the stability of the test object and the test base, the maintenance
costs will also vary. In a very stable test base, the maintenance costs may
already be low, meaning that implementing a more flexible automation
will not result in higher savings. The curve for the maintenance costs
will start low and get flatter, and the optimum will shift to the left.

Development

Maturity test automation

C
o

s
ts

Maintenance

Total

Fig. 16.4 As the flexibility of the implementation increases, the maintenance costs
decrease and the development costs increase.

In addition to reducing costs, there are other reasons why test automa-
tion can be worthwhile:

Technical Necessity
Some tests simply can’t be run manually. A few examples were dis-
cussed in this chapter.

Time to Market
The test run is usually in the planning’s critical path. When running a
quick scan or a regression test in a maintenance environment, it is often
desirable that the tester give a release advice quickly; the time to market
is not allowed to suffer from the time lost running the test. Test automa-
tion provides a solution. If the automated tests prove themselves during
the implementation, they can soon be repeated.

Reproducibility
There is always a certain amount of variability when tests are run
manually. Test automation provides a solution if it is important that
tests are run in exactly the same way every time.

16.7 Developing Test Scripts 285

St
ep

 4
 –

 S
et

 u
p

Controllability
Some organizations have to prove that enough testing was done. This
can be due to legal regulations or a fear of damage claims. Having test
scripts that accurately show how the tests were carried out and what ex-
actly was tested, for example, as part of a certification process, can be
the decisive argument.

Motivation of the Test Team
Test fatigue will set in if tests are repeated over and over again. The
tester may lose his objectivity and motivation. This benefits neither the
employment relationship nor the quality of the tests. Test automation
can ensure the test expert will not spend valuable time on repetitive
work and will instead be able to focus more on the anticipated goal.

16.6.2 Making a Well-Informed Decision

Test automation brings software development into the testing domain.
What applies to developing the test object also applies to test automa-
tion. Paying attention to the requirements for the test tools and test
scripts, good version management and expertise in test automation in-
crease the likelihood of success.

If the functionality of the test object is not clear, a lot of energy can be
put into writing nice scripts and simulators, but it will still be hard to
develop good tests. If the functionality changes significantly with every
release, more time will be spent on maintenance than using the test-
ware. The stability of the test object is hence a precondition. Another
precondition is that there is a stable test environment with which the
scripts and tools for development and testing are integrated. Don’t for-
get that testware also has to be tested [Zambelich]. The test team needs
to have the expertise and the testing time will have to be scheduled.

16.7 Developing Test Scripts

A test tool is needed to run automated tests. But a test tool on its own
doesn’t do a lot; instructions are needed to tell the tool which test ac-
tions and controls need to be carried out. These instructions are pro-
vided in the form of test scripts, which are test cases that have been
converted into code. A test script is created after the physical test case
has been created, or the test script can be the physical test case. A num-
ber of strategies, which vary in maturity and complexity, can be used to

286 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

develop scripts. The boundary between a physical test case and the
script decreases as the test scripts become more mature.

As a reference, the manual test is first displayed in Fig. 16.5. The tester
creates a logical test design (LTD) and elaborates it into a physical
test design (PTD). The physical test design is his plan of action during
the test.

Manual test runCreate LTD Create PTD Test object

Fig. 16.5 Manual test run

When the tests are automated, a number of things in the above figure
change. The following sections explain how test scripts are created by a
record and playback tool and by programming them.

16.7.1 Record and Playback

One form of scripting is record and playback. The test tool records the
tester’s actions in a script, which can be played back and changed if
necessary. A user interface is needed to do this. This form of scripting
is often used in a system with a graphical user interface (GUI). Record
and playback can be done in the following ways:

Linear Scripting
Linear scripting consists of generating scripts by recording the tester’s
actions during a manual test run using a record and playback tool. The
test actions must be predefined in a physical test case that is completely
separate from the script.

Test tool

Manual test runCreate LTD Create PTD

Record script Play back script

Test object

Fig. 16.6 Record and playback scripting

The advantage of linear scripting is that, because the scripts are re-
corded, it doesn’t take much additional time to create them. The disad-

16.7 Developing Test Scripts 287

St
ep

 4
 –

 S
et

 u
p

vantage is that the scripts are not very flexible and control over the con-
tent is limited since all of the tester’s actions, including the errors, are
recorded. Test data is embedded in the script making it difficult to
change it. The reusability of the script rapidly decreases when the sys-
tem or the data changes during the test run.

Structured and Data-Driven Scripting
Structuring linearly generated scripts increases the control over the
flow of the scripts. Using conditions and statements like “if-then-else,”
“for” and “while,” makes the scripts more flexible. Shared functional-
ity can be reused and certain tasks can be executed iteratively. The
physical test case is still separated from the script; the test data is hard
coded in the script.

In the data-driven method, the test data is separated from the scripts.
This is called parameterization. Parameterized test scripts enable the test
data to be extended or changed without having to adapt the test scripts.
This enhances the maintainability of the test scripts and the coverage of
the automated tests because it’s easy to repeat the test with different test
data [Fewster, 2006]. The test data is entered in a separate test data re-
pository. Using a test data repository is described in Chap. 14, Test data.

A test data repository can also be used when designing the physical test
cases, which is why it is worth defining the test data in such a way that
it can be used by the test tool.

Test tool

Manual test runCreate LTD Create PTD

Record script
Structure and

parameterize (data) script
Run script

Test object

Create data

Fig. 16.7 Structured and data-driven scripting

Action-Word-Driven Scripting
In this method, the test tool is driven by action words. Action words are
generic procedures that are stored in a library and can be called by the
test script. Procedures consist of a group of statements. Executing a
statement executes a test action. For example, the action word “log in”
that is used when a Web application is tested. The log in procedure en-
sures that the Web browser is started, that the log in page is opened and
that the appropriate user name can be entered. Action words are “build-
ing blocks” that enable test scripts to be quickly created and modified.

288 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

Physical test cases are separate from the test tool. However, the action
words and test data that are used in the automated tests can also be used
in the physical test cases. Write the test cases in such a way that the ac-
tion words and test data are easy to extract and reuse in the test script
(see Sect. 13.4 Test Actions).

Test tool

Manual test runCreate LTD Create PTD

Record script
Structure and parameterize

(data and action words)script
Run script

Test object

Create action words

Create data

Fig. 16.8 Action-word-driven scripting

16.7.2 Programming Test Scripts

Creating a script using a record and playback tool assumes the avail-
ability of a user interface. There are, however, enough situations in
which the user interface is not yet available but the automated tests are
being prepared. This is the case for smart cards, transaction processing
systems and switchboards.

Example 16.1

How should a bank card with a chip, a so-called smart card, be
tested? The card is a piece of plastic with a chip consisting of
metal contact surfaces. A smart card does not have a user inter-
face; the only way to approach the payment application is through
the metal contact surfaces.

Scripts need to be created differently for situations that do not have a
user interface. Programming the scripts (scripting) is the solution. The
same rules apply to scripting as to developing an application. The test
project now has a development project.

Just as record and playback, scripting has different levels of maturity.
Test data can be hard coded in a script. To increase the reusability and

16.8 Automated Testing for Systems with More Than One Interface 289

St
ep

 4
 –

 S
et

 u
p

the maintainability of the tests, a test script library can be used to sepa-
rate the test data, configuration parameters and test procedures from the
test script.

Test tool

Create LTD Create PTD

Run script

Test object

Create data

Create script library

Code scripts

Fig. 16.9 Using a test script library

A well maintained test script library makes it easy to develop a lot of
different test scripts. The test script library needs to be well structured.
Prior to developing the test script library, it should be decided how the
test scripts will be set up and which tests and generic building blocks
are needed. This knowledge is then used to define the architecture of
the test script library, bearing completeness, accuracy, maintainability
and configurability in mind. There are a lot of advantages to a test tool
that is easy to configure and control because it enables existing test
scripts to be used for different systems. This benefits the reusability of
the test scripts and the efficiency of the test process.

Programmed scripts can build on the physical test design, but it
takes a lot of time to first elaborate the physical tests and then
script them. If a manual test does not have to be run to create the
scripts, the scripts can be based on the logical test design. The
script then represents the physical test case.

16.8 Automated Testing for Systems with More Than
One Interface

A system can have one or more interfaces. The above-mentioned bank
card with the chip is a typical example of a system with one interface.

290 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

Most systems do, however, have more than one interface. Systems often
have a user interface and a technical interface to the database. Addi-
tional interfaces are usually required to input, output and exchange data.
An ATM is a good example of a system with several interfaces. The be-
low example shows how a number of test tools can be used simultane-
ously to run automated tests on the ATM.

Example 16.2: Testing an ATM

An ATM has more than one interface. We distinguish the smart
card’s interfaces to the user, the bank card and the bank’s host
systems. Each of the interfaces is used alternately during a trans-
action. The terminal reads information from the bank card, gives
instructions to the user, and checks the balance on the host sys-
tem.

To test the interface to the card, a test tool is used that intercepts
the communication with the card and simulates the smart card if
necessary. The tester does not have to rely on physical test cards
and can easily create error situations, such as the use of a blocked
card. A simulation of the bank system is used for the interface to
the host system. The simulator creates test situations such as an
insufficient balance or a non-existent account number. The inter-
face to the user is harder to automate. ATMs do not have a Win-
dows interface and they all have a different design; for example,
the keypad and the display.

To test the functionality of the ATM, all of the interfaces have to
be tested at the same time.

Card Host systemsATM
(test object)

Card – Terminal
interface

Terminal - Host
system interfaces

User interface

16.8 Automated Testing for Systems with More Than One Interface 291

St
ep

 4
 –

 S
et

 u
p

When testing a system with several interfaces, all of the interfaces have
to be tested at the same time. A number of test tools are connected to
the test object’s interfaces. In order to run through a test scenario, the
test tools have to be synchronized. The tester can do this himself or
automate the task by implementing a controller.

A controller sends instructions and triggers to the other test tools. The
controller ensures that every test tool knows which test it has to run,
which test data is needed and what the expected system reaction is. The
controller can also provide the tester with scripted instructions for the
test actions that need to be performed. Building on the above-mentioned
example, the tester can receive instructions such as “Press the balance
information key” or “Check whether the terminal displays the ‘Insuffi-
cient balance’ message.”

Fig. 16.10 The Conclusion Test Platform® uses user instructions to integrate the manual test
actions and the user interface with the automated test run when testing an ATM.

The controller also generates the test report. In principle, each of the
test tools can independently generate output. A disadvantage of this is
that there will be more than one test report for each test. The test tool
architecture can be set up in such a way that a script combines the re-
sults of all of the interfaces into one test result. The controller collects
the output of the separate test tools and integrates them into one test
report.

A test automation architecture is needed to link several test tools as
mentioned above. Together, the test tools create an automated test envi-

292 16 Test Automation
St

ep
 4

 –
 S

et
 u

p

ronment that can test all of the interfaces at the same time. The test en-
vironment isolates the test object and is therefore sometimes called a
“test harness”

Test harness

Card
simulator

Host
simulator

ATM
(test object)

Gebruikers
Interface

Card - Terminal
interface

Terminal -
Host system

interfaces

User instructions
Synchronize and

exchange
test results

Synchronize and
exchange
test results

User
interface

Fig. 16.11 A test harness

A test harness can consist of tools from various suppliers, which is why
it can take a while to overcome all of the interface and synchronization
problems. Integrated solutions are available to test special applications
such as ATMs. The supplier will have already done the integration; this
saves a lot of time and benefits the stability of the test environment.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_17, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 4
 –

 S
et

 u
p

17 Smoke Test

17.1 Introduction

The smoke test has a lot of similarities with the sanity check; the proc-
ess of both tests is more or less the same. The main difference between
the tests is the time at which they are run and the object they focus on.
The sanity check is run earlier on in the test project and focuses on the
system design and the testware. The smoke test focuses on the system
that is to be tested and is run on the installed and configured test envi-
ronment (see Sect. 15.5).

The purpose of the smoke test is to determine whether the system is of
sufficient quality before it is released for testing. The smoke test is of-
ten run more than once because the system is often presented for testing
more than once. Based on the experiences of previous deliveries, the
smoke test can be more or less rigorous.

The smoke test provides insight into the quality and the testability of the
system. The smoke test uses a configured system to determine whether
or not the project’s products are present. Examples of project products
are release notes, the release advice of the previous test phase, and in-
stallation instructions. The test also determines whether the delivery is
of sufficient quality to start testing: “Does the system start up?”, “Does
the most important feasible path work?”, “Is the new functionality ac-
cessible?”

The smoke test is not intended to bring the project to a grinding halt but
to make risks discussable. Accepting the test assignment means accept-
ing responsibility. The test budget and planning create an expectation of
the number of hours needed to test the system. If the quality of the sys-

294 17 Smoke Test

St
ep

 4
 –

 S
et

 u
p

tem is lower than expected, the efficiency of the test process will suffer
and the agreed deadline may even be at risk. The latter should be com-
municated on time.

The smoke test provides insight into the degree to which the system
meets the expectations and enables the tester to issue a warning if the
quality is lower than expected. The measures that need to be taken are
agreed in consultation with the customer.

Important reasons to perform a smoke test are saving testing time and
maintaining the stability of the test environment. Experience shows that
delivered systems can work so poorly that it is not efficient to start the
test. If this is not discovered until after the test has started, precious test-
ing time will be lost.

Example 17.1

The development team of the Connecta project (see Example 1.3)
has delivered the system. Because the delivery was a little later
than expected it’s decided not to run a smoke test. David Bloom’s
test team has prepared the test run really very well and is ready to
start. As soon as the system is ready, the testers log in and start
running the tests they were assigned.

The first error is quick to surface. While David is talking to one
tester about the error, he picks up the following conversation:
“Did you know that the system crashes when you import a batch?
“You have that problem, too? I can’t run my tests without
batches!” The fourth tester says he’s already logged the error.

It was a bad start. Testing is suspended because David thinks it’s
a waste of time if all of the testers work on the same error. “I
don’t care if the system is delivered on time. The next time I’ll
ask one of the testers to run through the application first. Only if
it appears to be working properly will I ask the other team mem-
bers to start.”

The instrument of the smoke test is the smoke test checklist. The check-
list is used to determine whether or not the test can start. The products
of the smoke test are:

• Errors
The first errors are found during the smoke test and are logged ac-
cording to the error reporting procedure.

17.2 Filling out the Checklist 295

St
ep

 4
 –

 S
et

 u
p

• A completed checklist containing:
− A conclusion on the testability of the system.
− An overview of the measures that need to be taken before the test

run can start without risks. If the system does not meet the re-
quirements, the points at which it fails are specified. The factors
preventing an efficient test run and the measures that need to be
taken to cover them are specified for each point.

The smoke test is a risk-based activity. The TRA describes the compo-
nents the stakeholders have defined as more or less important. The
smoke test focuses on components that need to work in order to run the
most important tests.

17.2 Filling out the Checklist

There are two aspects to filling out the checklist. One aspect consists of
checking the presence of products, the other of checking the system’s
workings. The workings are checked by performing a few basic system
actions such as logging in, approaching the new function, and writing a
record to the database. These checks can be extended by running
through the most important test scenario.

In principle, the test engineer who configured the system will execute
the smoke test (see also Sect. 15.5). He knows the system, he knows the
configuration and he knows the tests that will be run. The test engineer
is also familiar with the bug tracking system. From experience, how-
ever, we know that the first errors are not caused by bugs in the soft-
ware, but by errors in the configuration. To check the configuration and
any changes made to it, the test engineer runs through the system. By
doing this, he’s actually doing a smoke test. It’s all right that the con-
figuration and smoke test overlap as long as the purpose of the smoke
test is not forgotten.

When the system is released for testing, the test engineer runs through
the system according to the smoke test checklist. If the system is not
good enough, he indicates the points at which the system is failing. For
each point, he indicates the risks the failures pose for the anticipated
goal and how they prevent the tests being run efficiently. He also sug-
gests measures to cover the risks. Table 17.1 provides a few examples.

296 17 Smoke Test

St
ep

 4
 –

 S
et

 u
p

Table 17.1 Measures to cover risks

Error Risk Measure

The most important “feasible
path” cannot be completed.

The system does not suffice at
all, a new release is necessary.
Not all tests can be run.

The system is unstable.
The system has a lot of errors.

The tests will take longer to
run than expected.

A new release is needed before
testing can be continued.
The project needs to plan for
more releases and a longer
testing time.

There are no release notes. It is not clear which errors
have been solved and which
known issues are relevant.
Functions are tested although
they are known not to work,
or known errors are being
logged.
It is not known which changes
have to be made to the con-
figuration.

Release notes are still needed.
Organize a knowledge transfer
between the development team
and the test team.
The project needs to plan for
unnecessary testing time and
additional meetings.

The smoke test concludes with the conclusion on the degree to which
the system is suitable for testing. The smoke test report consists of the
completed checklist, which may contain additional information to sup-
port the conclusion. Section 11.2 contains an example of a completed
checklist. Although the example represents the sanity check report, it
still gives a good impression of the checklist used in the smoke test.

17.3 Maintaining the Checklist

Experiences from the test run, previous smoke tests or other comparable
projects can be included in the checklist. Including experiences ensures
the smoke test will be run according to the latest insights and that the
acquired knowledge is optimally reused.

The experiences from previous test runs can, for example, be used to
adjust the most important “feasible path” that is run through during the
smoke test. If so wished, the smoke test can be extended with the retest-
ing of the showstoppers from the previous release. Building on Exam-
ple 17.1, it can, for example, be a good idea to check the importing of
batches in the new release. It doesn’t make much sense to start testing if
the function still doesn’t work.

The checklists should be changed according to a controlled change pro-
cedure to make sure everyone’s using the last version and that it doesn’t
get too long.

St
ep

 5
 –

 E
xe

cu
tio

n

Step 5 – Execution

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

All of the manual and automated tests are run in the Execution step. Er-
rors are logged, solved and retested. The unchanged system components
are checked for regression. This step concludes with a release advice
that is formulated in the final test report. The Execution step consists of
the following activities and products:

Activity Product
Run tests
Run retests
Run regression tests
Collect errors

Test results
Errors
Test reports
Final test report

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_18, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 5
 –

 E
xe

cu
tio

n

18 Test Execution

18.1 Test Execution and its Activities

Remember, the goal of the test project is twofold: to help improve the
quality of the system and to make a statement about the degree to which
the system will contribute to the anticipated goal. Until the system be-
comes available, the test activities will focus on understanding the an-
ticipated goal, performing reviews and sanity checks, and preparing a
test design and a test environment. The errors found during these activi-
ties should help improve the system. In order to make a statement about
the real quality, the testers have to work with the system. This they do
during the test runs.

Although the actual testing is only a small part of the total test project,
it is the most visible of the test project’s activities. This is the point in
the project at which all the focus is on the testers.

The test execution period distinguishes itself in two ways from the other
activities. More than during the preparation, an impression of the qual-
ity of the system emerges as the test execution proceeds. The test exe-
cution is always very exciting for the stakeholders. When communicat-
ing, the tester must realize that others may have a different impression
of the activities. Intentionally or not, rating a system also makes a
statement about the project leader and the development team. If the test
team finds a lot of errors, it will be difficult for the project leader to
keep the deadline. The users and business management are eager to
know whether the system can go live and are curious about the errors
the test team is finding. In many projects, people walk into the test
room during testing to try to find out what the chances of a positive re-
lease advice are.

300 18 Test Execution

St
ep

 5
 –

 E
xe

cu
tio

n

Fig. 18.1 Most of an iceberg’s mass is below water. In a test project, most of the
time is spent on good preparation. But in the end it’s the test execution that sticks
out [Pol et all,1999].

Be careful with making early statements about the quality of the
system and the progress of the tests. The testers are not aware of
the context and do not know their audience. A tester will be en-
thusiastic when a test finally succeeds. The listener will apply
such a reaction to the whole system. If this happens, it will be a
lot more difficult to tell the stakeholders that the system is not
very good. The same applies the other way around. Negative sig-
nals about one test that simply won’t work can demotivate the
user group. “See what I mean? I said it was no good, and now
we’ll have to work with a bad system,” although only one test did
not work and the rest of the system is of good quality.

It is important that the test team provides insight into and a good over-
view of the quality of the test object. This they do according to the pro-
cedure and at the moments specified in the test plan (see also Chap. 20
Test Reporting).

18.2 Activities During the Test Execution 301

St
ep

 5
 –

 E
xe

cu
tio

n

The test execution is also different from the preparation activities be-
cause it is often in the critical path. The test design is made at the same
time the system is being built. A lot of attention is paid to the develop-
ment process because it determines how the project will progress. This
changes as soon as testing starts: the test project now determines the
progress of the project. A delay in the test project can have direct con-
sequences on the go-live date.

We have often heard that there is less time for testing when the project
is delayed. Fewer tests are run than originally planned, while the dead-
line remains fixed. This is certainly the case for low-priority tests. Ex-
perience shows that if the test team is able to explain the outstanding
risks and if the tests have revealed some serious showstoppers, the
stakeholders will be willing to wait for the test results. This requires
good collaboration between the stakeholders and a good supply of in-
formation. Throughout the test execution, provide good insight into the
quality of the test object as well as a good overview of the test project’s
progress.

18.2 Activities During the Test Execution

The test execution is an iterative process, meaning that the activities
might be repeated more than once. Every test run includes, but is not
limited to, the following activities:

Running the Planned Tests
The testers run the planned tests. The most important tests should be
run first in case there’s not enough time to run all of the tests. The test
coordinator monitors whether the project is progressing well and
whether there are bottlenecks.

Logging the Test Results
The result of every test is documented. This produces information about
the quality of the test object and the progress of the test project. The ra-
tio between successful and failed tests is a measure for the system’s
quality. The part of the test set for which the test result has already been
documented provides a measure for the progress of the test project. The
progress provides insight into when testing will be finished and into the
uncovered risks. The more tests that are run, the smaller the chance
showstoppers will be found.

302 18 Test Execution

St
ep

 5
 –

 E
xe

cu
tio

n

Fig. 18.2 The test results are documented

Logging Errors
Every error is logged. Error logging consists of more than just properly
documenting an error. If possible, errors should be discussed with the
developer [Buchholtz, 2006]. It is not officially the task of the tester to
investigate the source of the error, but it is often worth determining
whether the error is in the code, the system design or the test case.
However, efficiency is of the essence: it does not make sense for a
tester to spend hours looking into something a developer can check in
five minutes. Experience shows that it is efficient for a tester to sit with
a developer to find the cause of critical errors. This makes estimating
the severity and the required solution time a lot more realistic. The fact
that the two work together also prevents the developer misinterpreting
the error and solving a different problem. The knowledge gained about
the source of the problem is of course documented with the error. The
test coordinator decides whether an error is submitted for fixing. Chap-
ter 19 describes error logging in detail.

Discussing and Solving Errors
For each of the recorded errors it is decided whether, and how quickly,
it will be solved. Ideally, this is done in a controlled manner. Not every
error needs to be solved, and not every error is urgent. Error manage-
ment ensures the development capacity is used for the most important
errors. The test plan describes how error management is organized. See
Sect. 19.4 for information on error management.

Planning New Versions
If errors in the system make further testing difficult or impossible, the
test coordinator will organize a bug-fix version for his testers. This he
does by maintaining contact with the project leader responsible for the
build or with the release manager. New releases cost time and money,
which is why it is advisable to finish the test project with as few new
versions as possible. But, an error that makes further testing impossible
does have to be solved quickly. This is certainly the case if testing is on
the critical path.

18.3 Test Run and Regression Tests 303

St
ep

 5
 –

 E
xe

cu
tio

n

When planning a new version, the consideration is often: “If we
get a new version today in which the showstoppers have been
solved, we can run the planned tests and retests. This will enable
us to minimize the risks. If we carry on testing for a while, we
might find more showstoppers that can be directly implemented
in the new version.” This may slow down the progress of the cur-
rent test, but it can also save an additional release, and that means
saving time.

Reporting Progress and Quality
Reporting plays an important role in result-driven testing. The reports
ensure the stakeholders have insight into the test process. The focus on
the test project is particularly high during the test run and there is often
a need for up-to-date information about progress and quality. A cen-
trally available dashboard containing the fulfills the requirement for
up-to-date information.

Error logging and test reports reporting are discussed more extensively
in the next chapters.

18.3 Test Run and Regression Tests

During testing terms such as test run, bug-fix versions, retests and re-
gression tests are used. The below figure defines these terms and puts
them in context.

C
lu

st
er

 1

C
lu

st
er

 2

C
lu

st
er

 3

C
lu

st
er

 4

C
lu

st
er

 5

C
lu

st
er

 6

C
lu

st
er

 7

C
lu

st
er

 8

C
lu

st
er

 9

C
lu

st
er

 1
0

Test run 1 version A

Test run 2 version D

Regression version E

version B

version C

Legend:
Test = OK
Test = NOK
Regression test
Fig. 18.3 Test execution

304 18 Test Execution

St
ep

 5
 –

 E
xe

cu
tio

n

Figure 18.3 shows a number of test clusters , the groups of tests that
were defined during the TRA and that are also found in the structure of
the physical test design. The below describes the work of a tester, so to
speak, by looking over his shoulder. Testing has just begun.

When testing started, the tester started the first test run on version A of
the test object. The tester started with a cluster in the most important
risk category, cluster 1, which consists of twelve test cases. The first
tests were successful (OK). The sixth test failed (NOK), but the error
wasn’t a showstopper so testing continued normally. The seventh test
failed too, but this error was a showstopper so the remaining tests in the
cluster could not be run. The tester started running the tests in cluster 2.
The fourth test in this cluster also produced a showstopper. The tester
indicated that he needed a new version in order to finish testing the
clusters. While the errors were being processed and the development
team was building a new version, the tester tested the other clusters,
which are in a lower risk category.

The requested bug-fix version is available; this is version B. The tester
checks whether the errors have been solved and tries to finish his tests
for cluster 1 because it’s one of the most important clusters. The errors
have been fixed, but he encounters another showstopper (test case 8).
The tester stops testing cluster 1 and continues with the other clusters.
He concludes that some errors have been solved and that other errors
will apparently be solved in the next version (test case 11 in cluster 7 is,
for example, not OK in version B either). He also finds a number of
new errors, some of which are showstoppers. So a new version is
needed; version C.

All of the reported showstoppers are solved in version C. This does not
mean that all of the tests will succeed, but that the tester can run all of
his tests. When all of the tests have been run once, the first test run is
finished.

A test run is a compilation of test activities in which all of the
tests have been run at least once. However, it is possible that
more versions of the system are needed to complete a test run. At
the end of a test run, all of the tests will have been run once, but
that doesn’t mean that all of the tests will have been successful.

All of the tests have been run once, but a new version is needed to
check whether all of the errors have been solved correctly. The tester
does this using the fourth release, version D. Almost all of the errors

18.4 Leaving the Beaten Track 305

St
ep

 5
 –

 E
xe

cu
tio

n

have been solved; it is decided to solve two of the three errors in the fi-
nal version. Version E is used to retest these two errors.

A regression test is also run. Some tests have not been run since version
A. The tester would like to make sure the clusters work from start to
finish in version E. Because there is not a lot of time, the tester suggests
not rerunning all of the tests. Using his experience with the system, he
puts together a good regression test set. He selects representative tests
for each cluster. He will select more tests for the clusters that contained
a lot of errors, and fewer tests for the clusters that did not produce any
errors (for example, cluster 9). This will save a lot of testing time.

A regression test is a test that checks whether regression has oc-
curred. Regression is the phenomenon that unchanged functional-
ity no longer works in a next version of the test object.

A retest is a test that checks whether errors have been properly
solved.

18.4 Leaving the Beaten Track

The previous section assumes that only planned tests are run. In some
test projects this is an absolute necessity, for example, for conformity
tests, during which all of the points described in the standards have to
be tested. Thinking up new test cases is not a point of attention. The op-
posite applies to the testing of new software, where it is difficult to de-
termine beforehand what the solution will look like. Because more ex-
perience is gained about the system during each test run, it makes sense
to include this experience in the next test run.

In practice we see that new tests are gradually added to the test set or
that existing tests lose importance. This means that the test design has
to be updated. This is best done between two releases.

Another way of using the experience and knowledge gained about the
system is to use exploratory tests alongside the more traditional test de-
sign techniques . The execution of the test charter has already been
planned, but the actual test is not defined until it’s scheduled to run.
This enables the testers to use the experiences with the system while de-
signing effective tests and to make the test project more flexible (see
also Sect. 12.6.13 Exploratory Testing).

306 18 Test Execution

St
ep

 5
 –

 E
xe

cu
tio

n

A third option is to reserve time during the test run, for example, on
Friday afternoon, when testers can test off the beaten track. The test co-
ordinator encourages his testers to use their system and test knowledge
to find hidden errors. The testers are stimulated to leave the beaten
track. Depending on the organizational structure, it may be worth intro-
ducing an element of fun, for example, by awarding a prize to the tester
who logs the most new errors or the first tester who finds a showstop-
per. Experience shows that this is not only effective, but that it is also
experienced as a welcome break from daily routine.

18.5 When is Testing Finished?

The question that is closely connected to running tests is the question of
when testing will be finished. The next question that is asked in almost
the same breath is who determines when the test project is finished.

In principle business will decide whether the testing activities can be
stopped or should be continued. The role of the test coordinator is to
provide business with information so it can make a well-informed and
correct decision (see Chap. 20 Test Reporting). The following, corre-
lated issues should be considered.

All of the Planned Tests Have Been Run
If all of the defined tests have been run, it can be established that the
test work has been done. That is to say, if all of the tests have finished
successfully and the test team and stakeholders feel that everything has
been tested with the defined test set. The chapter on the test plan de-
scribes how a test design review can be performed. We have seen that
this review helps the stakeholders assess the tests and the release advise
(see Sect. 10.4.8). Involving the stakeholders in the test project at an
early stage during the review adds value. For automated test runs, it can
occur that all of the tests will have been run. For manual test runs, this
is hardly ever is the case. There is usually one more test a tester will
want to run. But let’s be honest, finished is finished. The information
needed to determine whether all of the tests have been run can be found
in the test report (see Sect. 20.2.10 Test result by test risk category or
test cluster).

Unsolved Errors
Are there errors that have not been solved or that need to be retested? If
this is the case, testing is not finished. Unless, of course, it has been de-
cided that the unsolved errors are not showstoppers, in which case test-

18.5 When is Testing Finished? 307

St
ep

 5
 –

 E
xe

cu
tio

n

ing is finished. The information needed to answer this question can be
found in the test report (see Sect. 20.2.7 Error status).

A New Showstopper
Even if all of the known errors have been solved, it does not mean that
the system is free of errors. Further testing can produce a new show-
stopper. The defect detection rate (see Sect. 20.2.8) provides insight
into the time that is expected to be needed to find the next error. This
time can, converted into costs, be weighed against the expected damage
if a showstopper is found in the live system. If the defect detection rate
is low, it may be more lucrative to stop testing.

Outstanding Risks
As shown in Example 7.3, testing minimizes risks. The further the test
execution progresses, the more outstanding risks will be minimized. At
set times, business will have to consider the following: What is the ex-
pected damage if the outstanding risks occur, and what will it cost to
minimize these risks with testing? It is common to stop testing before
all of the risks have been minimized. The outstanding product risks can
be found in the test report (see Sect. 20.2.12 Outstanding Product
Risks).

In addition to the above-mentioned “objective” consideration, there are
always some considerations that are less tangible but still influence the
decision, such as those mentioned below.

The General Feeling About the System
During testing, the testers and the stakeholders develop an impression
of the system’s performance. This feeling is often key in the decision to
stop testing. If all of the tests have been run but the general feeling is
not good, testing will often continue. Conversely, it is also true that if
the general feeling is good, the stakeholders will be inclined to attach
less importance to outstanding issues. This is all right, as long as the
testers take their responsibility by feeding objective information into the
decision-making process.

The Importance of Going Live
Regardless of facts or feelings, going live can be so important that it
negates all arguments. The system goes live with or without errors, with
or without risks. The tester has to be able to recognize this situation and
adapt the test strategy. In this situation, the added value of testing is not
the well-considered release advice, but minimizing the number of errors
in the live environment.

308 18 Test Execution

St
ep

 5
 –

 E
xe

cu
tio

n

It is result driven not to give a release advice when this does not
has any added value.

Note that arguments such as “no money” and “no time” have not been
taken into consideration. Even though these arguments are often men-
tioned, experience shows that if the risks are too high additional time
and money will be provided. Whether this really happens depends on
the outstanding risks and the confidence business has in testing.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_19, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 5
 –

 E
xe

cu
tio

n

19 Error Logging and Management

19.1 Introduction

Errors are found during the test run. Logging the errors in a disciplined
way provides insight and makes it possible to solve the errors effi-
ciently. A prerequisite is that an error should be unambiguous and legi-
ble and contain all of the information needed to process and manage it.
This chapter discusses how errors are logged to ensure the requirements
are met. The information in this chapter can also serve as a guideline for
the organization and as a starting point for the testers. Clearly describ-
ing how errors are logged saves a lot of time when discussing and solv-
ing them.

An error is found as soon as something is identified in the test base or in
the test object that deviates from the expectation. Errors are found in:

• The test base
• The programs
• The test design
• The test data
• The technical infrastructure

Findings constitute an observed difference between expectation and
outcome; they indicate where the anticipated goal is at risk. A bug in
the code is the most well-known occurrence of an finding, but not every
finding is necessarily a bug. An example of this is the enhancement, of-
ten called change or RfC (Request for Change); the system is working
according to specification, but the tester has a suggestion for improve-
ment. Another example is the test error; the tester logs an defect during
a test and closer analysis reveals that the defect is not in the test object,

310 19 Error Logging and Management

St
ep

 5
 –

 E
xe

cu
tio

n

but in the designed tests. That is why the he tester must be diplomatic
when reporting errors and take into account that he too can be the cause
of an error. Besides that, emphasizing that the supplier or the developer
has made “yet another mistake” does not benefit communication.

The importance and purpose of good error logging are:

• Errors can be checked, traced and reproduced

• Priorities can be defined

• Insight into the quality of the test object is provided

Simply logging errors does not have much added value. A result is not
achieved until the errors have been processed. How this is done, de-
pends on how error management has been set up. To ensure error man-
agement runs smoothly, it is important to log the errors properly, accu-
rately and completely.

19.2 Filling out the Error Log

Errors should always be logged to provide insight into the quality of the
test object. Considering that the aim is good quality software, good log-
ging and the controlled processing of errors (including bug fixing) is es-
sential. Accordingly, error logs must meet a certain standard. An error
report is used to:

• Indicate the risks for the anticipated goal if the test object goes live.
• Process errors by implementing the solution in the documentation or

the code. This requires clear references and an unambiguous, com-
plete description.

• Retest the error. It must be clear which test or test actions caused the
error.

Time pressure can make it tempting to “quickly” log the error, but it is
in the interest of the whole organization to log errors accurately and
completely.

Experience shows that for every five minutes the tester saves on
error logging, a multiple of this time is lost at a later stage. This is

19.3 Error Attributes 311

St
ep

 5
 –

 E
xe

cu
tio

n

due to discussions and explanations that need to be given, incor-
rectly solved errors and the retesting of incorrectly solved errors.
In many cases, the tester will have to show the developer how he
produced the error. Always take the time to log an error and in-
clude this time in the planning.

A lot of organizations have resources or tools that can be used to gener-
ate and view error logs. Sometimes reports and statistics are automati-
cally structured using the attributes that were added with the error. To
ensure the reports are actually trustworthy, testers have to be disciplined
when it comes to entering information. It is not useful (and can even
have the opposite effect) to document certain attributes if they are not
entered properly.

Non-reproducible errors should also be logged because they can
turn out to be important at a later stage. Do not wait too long be-
fore logging an error or you’ll forget it. Additional observations
or information can always be added at a later stage.

19.3 Error Attributes

The following attributes are logged together with an error. The last col-
umn indicates whether the field is a “must have” (A) or an optional en-
hancement (B).

Table 19.1 Continued

Attribute Description A/B

Number Unique identification number of the error. A
Date Date on which the error was found. A
Test level and test object Test level at which the error was found, for

example:
• System test of test object A
• User acceptance test of test object B
If the test level is obvious, this field can be
omitted. This can be the case if project only has
one test level.

B

Table 19.1 Error attributes

312 19 Error Logging and Management

St
ep

 5
 –

 E
xe

cu
tio

n

Table 19.1 Continued

Attribute Description A/B

Type Type of error, for example, an error that occurs
in:
• The test base
• The code
• The test design
• The test data
• The technical infrastructure
Keeping track of the error category enables
targeted improvements to be made to develop-
ment processes.
If the organization does not analyze errors, this
field can be omitted.

B

Tester The tester who logged the error. A
Error status The status of the error indicates whether an error

has been found, solved or closed. The actual
status descriptions that are used will depend on
the standard that is applied by the organization.
Possible statuses are:

Found
The error has been logged and needs to be
solved by the development team.

Solved
The error has been solved by the development
team and needs to be retested by the test team.

Closed
The test team has retested the error and the
problem does not occur anymore, or the problem
was incorrectly logged and does not need further
attention.

If needed, additional statuses can be added, such
as:

Duplicate Record
The error was logged twice, this error is not
processed.

Rejected
The error was unjustified. The test object is
working as it should or the error is a result of an
incorrect assumption made by the tester. The
error is not processed.

Assigned
The error has been assigned to a devel-
oper/analyst but has not been solved yet.

A

19.3 Error Attributes 313

St
ep

 5
 –

 E
xe

cu
tio

n

Table 19.1 Continued

Attribute Description A/B

Reopened
The error was solved and retested by the test
team. Unfortunately, the solution was incorrect
or incomplete, so the error has been reopened.
If the organization has little experience with
error logging, it is advisable to limit the number
of statuses.

Severity The severity of the error. There are three catego-
ries: High, Medium and Low.

High
The test object cannot be tested. The functional-
ity of the test object or of the main component is
not working properly. This means that other
parts cannot be tested and that there will be no
test results. Errors in this category are also
called showstoppers.

The error is so severe that the application cannot
go live. Examples of showstoppers are primary
processes that cannot be executed, a very unsta-
ble system, or errors in key calculations.

Medium
The test object cannot be tested. One or more
functionalities are not working as they should
but are not stopping further testing. The error
has no consequences for the other test results
and the progress of the project. This category is
also called serious.

Low
All of the functions that do not influence the
functionality of the test object. Examples of this
are typos and GUI errors. This category is also
called cosmetic.

If needed, more categories can be added, for
example, Nice to have. In practice, a classifica-
tion in three categories works well. Limiting the
number of severity levels saves time when as-
signing and discussing errors. Too many levels
muddle the distinction between the severities.

A

Urgency In addition to the severity of the error, the ur-
gency of the error also determines when it will
be solved. The field “urgency” is most important
when there are a lot of errors with a certain
severity.

B

314 19 Error Logging and Management

St
ep

 5
 –

 E
xe

cu
tio

n

Table 19.1 Continued

Attribute Description A/B
Urgency then determines the sequence in which
the errors are processed. Urgency is important
for the software development project and does
not make any statements about going live.

Example:
In a project, all of the errors with the code
“high” were solved. There are 120 errors with
the code “medium,” but there is not enough
time to solve all of them. The urgency gives the
developer insight into the errors he needs to
solve first.

As shown in the example, this field is especially
important if the test project is nearing its end
and errors need to be prioritized.

Test design A reference to the test case to which the prob-
lem notification relates.
In practice, a lot of errors are not directly con-
nected to a test case. They are found during the
execution of a test case but they identify another
error than the one the test case was designed for.
This attribute can sometimes be left empty.

A

Configuration/
release version

Identifies the configuration of the test environ-
ment and the version or build number of the test
object. This field makes it possible to research
version dependency.
If external suppliers are used, the name or the
code of the supplier must be included in the
version description.

A

Fix version Identifies the configuration of the test environ-
ment and the version or build number of the test
object in which the reported error is solved. An
error that is solved in a version that has already
been released can be included in the retest.

The field can also indicate a future version in
which the error will be solved. After priorities
have been set, it is possible that an error will not
be solved in the next version. This can be the
case if a quick release has to be made because a
showstopper is preventing further testing. Quick
releases are commonly limited to solutions for
showstoppers.

A

Test environment Identifies the test environment in which the
error has been identified. This makes it possible
to research environment dependency.
This attribute can be omitted if only one envi-
ronment is used in the project or organization.

B

19.3 Error Attributes 315

St
ep

 5
 –

 E
xe

cu
tio

n

Table 19.1 Continued

Attribute Description A/B

Assignment The employee or division to which the next
action that is linked to the error has been as-
signed. This can be the analyst who has to re-
search the error, the programmer who has to
solve the error or the tester who needs to retest
the error.

B

Summary The title or summary of the error provides a
short description of the nature of the error.
In the summary, indicate:
• Where the error occurs
• What the wrong result is
• Which test action produces the error

For example:
NAR screen. Entering a name with diacritical
characters produces the error: “Invalid name.”

A

Description The description should contain all of the infor-
mation needed to reproduce the error. The de-
scription consists of
• The test actions executed by the tester
• The observed system response
• The expected system response
• The reason why the system response is in-

correct
• The impact of the deviation

Example:

Test action:

Select [male customer] in the Registration wiz-
ard. The NAR screen is displayed. In the NAR
screen, enter first name: Jâñ, surname: Ĵanşén
Select [Save].

System response:

The error message “Invalid name” is displayed.

Expected response:

The expected response was that the name Jâñ
Ĵanşén would be saved in the system without
producing an error message.

Why this is not correct:

The characters that are used are not allowed
according to the character set specified in
FO_CHARSET_V01.

A

316 19 Error Logging and Management

St
ep

 5
 –

 E
xe

cu
tio

n

Table 19.1 Continued

Attribute Description A/B
Impact:

Certain customer names cannot be entered in
the system. The current customer record con-
tains a lot of names with special characters.

A reference to the used specifications (including
version number) can also be added.

Comment Notes from those involved on what was done
with the error; additions or actions that need to
be performed. Most tools automatically add a
name and a date/time to the comment. If this is
not the case, start every new comment with, for
example, the date followed by the name of the
tester:
“YY-MM-DD <NAME>:”

This field can also be used to indicate the possi-
ble solution and to keep track of the error’s
history.

A

Attachments If it helps clarify the error, add an attachment
with (examples of) system logs, displayed mes-
sages or screenshots. A reference can be added
instead of an attachment.

If there are no attachments, this field can remain
empty.

B

Starting the summary with the location where the error occurs, the
NAR screen in the above example, enables errors to be quickly
located in the report. Sorting the report by description automati-
cally groups the errors.

19.4 Error Management

As previously mentioned, error logging is not a goal in itself; something
has to be done with them. Error management ensures that the right er-
rors are processed and closed in a controlled manner. Efficient error
management requires good procedures and an error logging process that
supports them.

19.4 Error Management 317

St
ep

 5
 –

 E
xe

cu
tio

n

Error management can be set up as described below. The below set up
is based on a centralized bug tracking system. The tool enables errors
to be assigned to project employees and automatically sends them a
notification.

Bevindingenoverleg

Error logging

Testers
Programmers

Test coordinator Project leader Stakeholders

Fig. 19.1 The error management process. The black arrows indicate the information exchange
between the people involved. The white arrows indicate that all of the people involved request
information and add it to the central error log.

Error management includes the following steps:

1. Logging
A tester observes a system response that is different from what was ex-
pected. He examines the situation and repeats his actions in order to
check whether the system response can be reproduced. Depending on the
type of error, it may be worth the tester discussing it with the program-
mer [Buchhultz, 2006]. Experience shows that such discussions improve
the quality of the error log. The tester logs his error in the bug tracking
system, gives it the status “Found” and assigns it to the coordinator.

318 19 Error Logging and Management

St
ep

 5
 –

 E
xe

cu
tio

n

2. Control
The test coordinator checks that the error has been logged according to
the agreed standards. He makes sure the description is clear and checks
that any necessary attachments have been added. If this is not the case,
he will ask the tester to correct the entry. The test coordinator also
checks whether a similar error has already been logged. If this is the
case, he indicates this in the error entry, for example, by giving it the
status “duplicate record.” In this case, he makes sure that any additional
information is also added to the earlier entry. If the error is clear and the
entry complete, he passes it on to the project leader.

In an organization in which the testers are used to logging errors accord-
ing to the agreed standards, this control is less important. However, to
prevent sloppiness, it is advisable to control the entries at set intervals.

3. Triage Meeting
It does not go without saying that every error is processed by the pro-
grammers. If the project is under a lot of time pressure, it is important
that the available time is used to solve the most important errors. This is
why triage meetings (or error meetings), in which the test coordinator
and the project leader discuss the errors, are held at set intervals. The
following is usually discussed during these meetings:

New Errors
The desired follow-up action and urgency are determined for each new
error.
The test or business impact is determined and it is decided whether the
error can be solved with or without adapting the test base or if further
analysis is required.

Open Errors
The progress of the unsolved errors is discussed. If the source of the er-
ror has been analyzed and it turns out that more than one solution is
possible, the solutions can be discussed.

Solved Errors
The retest date is specified for each of the solved errors. Note that, de-
pending the deployment cycle, a solution might not be instantly avail-
able on the test environment.

The test coordinator and the project leader do not decide which errors
are solved: this is the privilege of the stakeholders (the customer, the
acceptor, the user representative, the system administrator), who also
participate in the error meetings. However, this does not mean that
every error meeting has to be attended by everyone.

19.4 Error Management 319

St
ep

 5
 –

 E
xe

cu
tio

n

At the beginning of a test project, the emphasis is on the impact an er-
ror has on testing. The test impact indicates the degree to which testing
is hindered by errors in the system. The impact on the test is deter-
mined primarily by the test coordinator, not the stakeholders. In the
beginning, the test coordinator and the project leader manage the errors
together. At the start of the test project, the errors with the biggest im-
pact on the test will be processed first. If the test team cannot run the
tests, the most important business scenarios will not be tested. As test-
ing progresses, the emphasis will shift to the business impact. At the
end of the test project, the stakeholders will play an important role and
will indicate which errors have to be solved before they accept the sys-
tem [Pinkster et al, 2004].

4. Implementing the Solution
The project leader assigns the error to an analyst or programmer who
solves the error. If necessary, the analyst or programmer meets with the
tester who logged the error. In some organizations, the developers are
isolated from the testers. This is a pity because collaboration between
testers and developers helps quickly and effectively solve errors. If the
tester demonstrates how he found the error, the programmer can test the
solution himself. It may even be possible for the tester to watch the
programmer test the solution. This way of working may take more time
but the payback is manifold because the retest runs smoothly and the
error is solved correctly the first time around.

When the programmer checks in his solution, he changes the error
status to “solved” and assigns the error to the project leader who adds
the solution to the planned release and informs the test coordinator that
the solution is available for retesting.

5. Retesting
When the changed software, which contains the solved errors, is avail-
able in the test environment, the test coordinator orders a retest. The re-
test is preferably executed by the tester who logged the errors. The retest
enables the tester to decide whether the error can be closed. If the solu-
tion is not correct or if it is incomplete, the error will be represented.

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_20, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 5
 –

 E
xe

cu
tio

n

20 Test Reporting

20.1 Introduction

TestGoal focuses on the goal. But it’s not enough to give the goal a
prominent place; it’s also important to inform the stakeholders about the
degree to which the goal has been achieved. This is done using the test
report, which provides an overview of and insight into the progress of
the test project and the quality of the test object.

Virtually every test project uses a progress report. It is also common to
write an official test report at the end of the test project. The test report
provides a comprehensive summary and contains a conclusion. In most
cases, the test manager formulates the conclusion carefully, which is
why it is not unusual for the final test report to contain new information
that places the release advice in a different context. For the receiving
party, this is undesirable and can come as a surprise.

Business, project and test management need clear performance indica-
tors that answer the questions that management has to deal with. The
testers who create the reports need to know what these questions are
and need to make sure the information provided answers them. This
applies throughout and after the test project.

In TestGoal, the progress report and the test report are combined. The
result is a test report that provides an overview of and insight into the
quality of the test object and the progress of the test project.

The test report is a snapshot that compares the achieved goal to the an-
ticipated goal. Based on the test report, the recipient can decide whether
action is necessary. If everything is going according to (test) plan, no

322 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

action is necessary. But in many cases action is necessary and priorities
have to be shifted or new actions have to be defined. These actions can
apply to the project as well as to the product. At the end of the test pro-
ject, the last version of the test report functions as the final release ad-
vice or report. Although the customer determines the information that a
test report should contain, it possible to specify the information that is
usually relevant for each step. The test report usually contains the fol-
lowing elements:

General – during all steps

• Scope
• Release advice
• Hour estimate
• Project risks/bottlenecks
• Status of the products

Some information is only relevant for a specific step, which is why the
report is occasionally extended with the following elements:

Step 3 – during the test design

• Test designs – realized versus planned tests
• Outstanding errors – for example, in the test base

Step 5 – during the test run

Test results by risk category, test cluster , function or quality attribute

• Errors status
• Defect detection rate
• Outstanding errors
• Test progress – run versus planned tests
• Outstanding product risks

The reports contain information that is extracted from the test process
and presented in tables, lists and graphics. Graphics often provide quick
insight into the progress, but the essence of reporting is to explain the
graphics. The following sections show how report elements can be dis-
played as graphics and how the graphics can be interpreted.

20.2 Elements in the Test Report 323

St
ep

 5
 –

 E
xe

cu
tio

n

20.2 Elements in the Test Report

Stakeholders don’t always know which reports they want to have. The
tester then has to choose what he will report on. This chapter helps him
make this choice by describing the elements a test report can consist of.
The aspects, the function and the information that can be obtained from
a report element are described for each of the elements. This not only
helps the tester choose, it can also serve as a manual for the stake-
holders that enables them to interpret the test report.

Make sure the test report is as clear as possible, and report only
on the project’s key performance indicators. The creation of a test
report is never a goal in itself.

20.2.1 Scope

The scope clearly defines the product the release advice applies to and
what the advice is based on.

Test Object
Identifies the system that is to be tested. Specify the modules, versions
and build numbers of the systems that were tested.

The Anticipated Goal
The anticipated goal in terms of insight into and an overview of the
working and the quality of the software. The anticipated goal also con-
tains the minimization of uncertainties so that the trust in the software is
maximized and the “fit for purpose” guaranteed. This information ap-
pears in the Goal description that was created at the beginning of the
test project (see Chap. 6 Assessing the Anticipated Goal).

Test Base
Identifies the used test base. Include a reference to the specifications the
tests are based on or to whatever the test was run against.

Test Design
Identifies the used test design. Include a reference to the physical tests
that were run.

324 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

20.2.2 Release Advice

The release advice is the most important output of every test project.
The test manager has to indicate whether or not he thinks it makes sense
to move the test project into the next phase. The next phase can be a
next test level, a pilot or the live environment. The release advice will
mainly be based on the status of the product compared to the anticipated
goal. This is specified according to

• The outstanding product risks
• The tests that have not been yet been run
• The quality gap

The quality gap is the difference between the anticipated quality
and the actual quality. This difference is often measured by the
number of outstanding errors. The difference between the errors
found and the errors closed indicates the known gap between the
anticipated quality and the actual quality.

The release advice can read as follows:

Positive
The test team has sufficiently tested all of the risk areas and the system
meets expectations. The advantages of further testing do not outweigh
the risk of finding errors in the live environment.

Conditional
The product can be released, but only if the specified conditions are
met. A conditional release advice can be given if, for example, not all of
the tests have been completed yet but it is not expected that errors will
be found that influence the decision. A conditional release advice can
also be given if it is decided to take measures that offset the product
risks.

Example 20.1 Conditional release

A conditional release advice is given on Thursday. This advice is
the green light for the maintenance department to start preparing
the deployment. In the meantime, the remaining tests are run, but
it is not expected that anymore showstoppers will be found. The

20.2 Elements in the Test Report 325

St
ep

 5
 –

 E
xe

cu
tio

n

conditional release advice is changed to a positive release advice
when all of the tests have been completed and no showstoppers
have been found.

The system test reveals that two showstoppers have not been
solved. Even so, the test manager decides to give a conditional re-
lease advice for the pilot so the users can start getting used to the
new system. A prerequisite is that the errors are listed in the pilot
script so that the users know that two functions are not working as
they should. It is also decided that the showstoppers have to be
solved within four days and that the solutions are implemented in
the pilot environment over the weekend. The system test team
will test the bug fix, after which the pilot can be continued as
planned.

Negative
Considering the quality and the outstanding product risks it is not wise
to release the product for the next phase.

The release advice should supplemented with a suggestion for follow-
up actions, i. e. actions that are necessary to achieve a positive release
advice. It may also be desirable to make suggestions for a positive re-
lease advice.

The release advice is usually negative at the beginning of a test project
because the tests that cover the identified product risks still have to be
run.

20.2.3 Hour Estimate

The graphic in Fig. 20.1 provides an overview of the number of hours
estimated for the test project. The graphic consists of three elements.

Number of Hours Estimated
The number of hours estimated is the number of hours agreed for the
test project. This number is the same as the hour estimate in the test
plan.

Number of Hours Spent
The actual number of hours spent can differ from the expectation. Ac-
tivities can take more or less time than expected or unforeseen activities

326 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

may have to be carried out. The number of hours spent can usually be
traced using the project or organization’s hour administration.

Estimate to Completion
The estimate to completion (ETC) is an assessment of the number of
hours needed to achieve the agreed result. The ETC includes the experi-
ence of the previous period. For example, an activity is estimated to
take 10 hours, but 8 hours were needed to complete the first half of the
task. It is unlikely that the other half can be completed within the 2
hours that are left. It is more likely that the ETC will be 8 hours and that
the task will take a total of 16 hours.

Fig. 20.1 An hour estimate for the test project

The above graphic is a snapshot of the planned time in relation to the
time that was spent at that moment and the time expected to be needed.
If “Spent + ETC > Estimated,” it is realistic to expect that the project
will take longer than expected. In this case, the customer should be
given a choice of corrective measures.

20.2.4 Project Risks and Bottlenecks

The test report contains an overview of the risks and bottlenecks. State
the most important risks or bottlenecks that have occurred and jeopard-
ize the success of the project, and discuss them during the progress
meeting. Include improvement suggestions when reporting the bottle-
necks and risks. You can then decide which measures need to taken
during the progress meeting.

20.2 Elements in the Test Report 327

St
ep

 5
 –

 E
xe

cu
tio

n

20.2.5 Product Status

Indicate the status of the products that are stated in the WBS, for exam-
ple, using a percentage, a code “Ready Y/N” or the ETC. The ETC is
preferable because it provides the manager immediate insight into the
time that will be needed. A completed product is indicated with an ETC
of 0 hours.

Quality assurance is an important factor in any (test) project. The prod-
uct overview can specify whether products have been reviewed and ac-
cepted. Including these points in the overview ensures that the quality is
monitored and prevents documents never being completed.

Product ETC Review completed Accepted

Product A 8 hours
Product B 0 hours Y Y
Product C 0 hours Y

Product Ready Review completed Accepted

Product A N
Product B Y Y Y
Product C Y Y

Product Status Review completed Accepted

Product A 60%
Product B 100% Y Y
Product C 100% Y

20.2.6 Completed Versus Planned Tests

The tests are designed in step 3 of the Planning step. While creating the
design, additional reports are generated for the generic points of the
completed and planned tests.

Tests are structured in functional clusters that are derived from the test
tree that was defined during the TRA. The test cluster consists of, for
example, a function, a scenario or a covered risk. The progress of each
cluster is indicated in the Design step. Just as for the products, progress
can be reported as a percentage, a code or as an ETC (see Sect. 20.2.5).

328 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

When using percentages, make clear agreements on how they are de-
fined; does the percentage say something about the number of compo-
nents that have been completed or about the amount of work that has
been completed? Pareto’s famous 80-20 rule [Pareto] says that 80% of
the work is done in 20% of the time. Bear in mind that if 80% of the
work is reported completed, it doesn’t mean that 80% of the budgeted
time was used. It’s preferable to use ETC because it is the best way to
indicate how much work is needed to complete the task. If a report
needs to specify percentages, base them on the ETC.

Example 20.1

An example of using ETC as starting point:

Percentage = Hours Spent / (Hours Spent + ETC)

Explanation: In this formula, the number of hours spent is divided
by the total number of hours expected to be needed to complete
the task. If the task has been estimated correctly, Hours Estimated
equals Hours Spent + ETC. The percentage will then be Hours
Spent/Hours Estimated.

In other cases, the percentage is adapted to new insights. For ex-
ample, a task is estimated to take 100 hours. After spending 60
hours on the task, it is estimated that another 50 hours will be
needed to complete the task. In this case, the percentage will not
be 60/100 = 60%, but 60/(60+50) = 60/110 = 55%

20.2.7 Error Status

In Fig. 20.2, the cumulative number of errors is specified for a date. Er-
rors have the status Found, Solved or Closed.

Found
This curve indicates the total number of errors reported.

Solved
The total number of errors solved. These are errors that have been
solved by the developers and will be presented for retesting.
(Make sure the retest is included in the planning)

20.2 Elements in the Test Report 329

St
ep

 5
 –

 E
xe

cu
tio

n

Fig. 20.2 An error status overview

Closed
These are the errors that have been retested and approved by the test or-
ganization.

The graphic provides information about the number of errors found,
making it an indicator of the quality of the system. The difference bet-
ween the lines “Found” and “Closed” is indicative of the difference bet-
ween the anticipated quality and the achieved quality: the “quality gap.”
In practice, this quality gap will never be completely closed. This
means that there are risks for the live environment that have to be ex-
plained in progress meetings and in the release advice.

The graphic indicates where the workload lies. The difference between
the curves “Found” and “Solved” means that the workload lies with the
development team. The difference between the curves “Solved” and
“Closed” means that the workload lies with the test team.

The curve Found errors indicates how many errors have been logged.
Theoretically, this curve is an S-curve: It’s the beginning and the test
has yet to get going. Because the testers are not very familiar with the
system and configuration errors can slow down the test run, there will
be a limited number of errors logged per day. As the test gets going, the
number of errors will increase and the curve will become steeper until
the errors that are easy to find will have all been found. As it will take
more and more time to find new errors, the curve will decline.

In practice, the curve will be jagged, because the same amount of test-
ing will not be done every day, the composition of the team may
change, or a new release that works slightly differently will produce

330 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

fewer errors. On the other hand, a new release can also introduce new
errors, which can increase the number of errors logged.

The graphic can provide a lot of information about the progress of the test
project. The following aspects of the Found curve are interesting to moni-
tor: no new errors are reported, or a lot of errors are suddenly reported.

No Errors Are Reported

Fig. 20.3 No errors are reported

If no errors are reported, the “Found” line is horizontal: the number of
found errors stays the same. The fact that no errors are reported can
have a number of reasons:

• The quality of the system is such that it is difficult to find new errors.
In this case we say that the “defect detection rate” is low (see Sect.
20.2.8). This can indicate that the test is nearing its end because the
cost (= time) of finding the next error will be higher than the cost of
fixing it later.

• No errors are found because no testing is done. This can have a
number of reasons:
− No resources are available due to illness or vacation.
− No resources are available because other activities were assigned

a higher priority.
− No more testing can be done because errors have been logged that

make running further tests impossible. The test team is waiting
for a new release.

− No more testing can be done because there are problems with the
test environment.

• A lot of testing is done, but the testers aren’t very good.

20.2 Elements in the Test Report 331

St
ep

 5
 –

 E
xe

cu
tio

n

A Lot of Errors Are Suddenly Reported

Fig. 20.4 A lot of errors are suddenly reported

A number of factors can cause the “Found errors” line to be steep:

• A new release is delivered that makes it possible to carry on testing.
The tests are run on a poorly written function.

• A new release is delivered, but bug fixing introduced a lot of new er-
rors.

• There is an error in the configuration or the deployment of the soft-
ware, which causes the system to function inadequately.

• More testing is done or more resources are available for the project.
• There was a change in the test team or the team has become better at

finding errors.

The “Solved errors” curve indicates how many errors have been solved.
This curve should, with some delay, follow the “Open errors” curve.
This may not be the case if

• The development department does not give priority to or does not
have time to solve the errors. As soon as a release is handed over to
the test team, the development team’s priority shifts to the new re-
lease. The result of this is that error solving is not given enough at-
tention [Clermont, 2006].

• The errors were reported but were not flagged as “to be solved.” This
suggests that the error management process is behind on the test
process.

• A graphic is used that only indicates the errors that have a high prior-
ity; only low priority errors are solved.

332 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

The curve “Closed errors” indicates how many errors have been closed
after retesting. In principle, this curve should be the same as the solved
errors curve, but with some delay. This may not be the case if

• The test team does not give priority to or does not have time to retest
the solved errors.

• The errors were solved but the bug fix release is not yet available.
• Retesting shows that the errors have not or have only partly been

solved. The errors were reopened after retesting.

The graphic can be used to display all of the errors or only the errors in
a certain category, for example, a graphic that displays errors with “Se-
verity = High.” Include only the most important errors in the manage-
ment reports.

Curves can be added for other errors statuses, such as “Rejected errors”
or “Errors reopened after retesting.” The “Rejected errors” curve pro-
vides insight into the quality of the logged errors. If a lot of errors are
rejected, it may mean that they were wrongfully or inaccurately logged.
The number of reopened errors provides insight into the efficiency with
which errors are solved.

Be careful when adding additional curves. Make sure the message
does not get lost in the huge amount of data that is presented.
Keep graphics as simple as possible. Experience shows that the
chosen three curves are a good basis for test reporting.

20.2.8 Defect Detection Rate

The defect detection rate indicates the number of errors found for each
time unit of testing as a function of the date.

The graphic in Fig. 20.5 indicates how many new errors are expected to
be found for a given point in time if testing continues for an hour or a
day. This graphic can be used to determine whether further testing is
useful. If the cost of finding an error is higher than the expected cost of
fixing the error in the live system, further testing is open to debate.
Conversely, the project manager will not stop the test if the test coordi-
nator proves that an additional day of testing will most probably pro-
duce another eight showstoppers.

20.2 Elements in the Test Report 333

St
ep

 5
 –

 E
xe

cu
tio

n

Fig. 20.5 The defect detection rate

The graphic can display all of the errors or only the errors with a
specific priority. It can show new errors as well as solved and closed
errors.

A prerequisite of using this graphic is that the hour registration is accu-
rate. The hour registration should indicate the real number of hours
spent running the tests. All of the testers need to record their hours in
the same way. This is not always easy to do, meaning that the graphic is
not always accurate. It is, however, a useful guideline.

20.2.9 Open Errors

In addition to an overview of unsolved errors, it’s often desirable to
gain insight into them.

Logging all of the errors creates long lists. It’s best to attach them to the
test report rather than include them in the test report so that the test re-
port remains as simple and clear as possible. In this case the test report
will contain high-level information, such as an overview of errors by
severity or cause.

334 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

(c)

(a) (b)

Fig. 20.6 Errors by severity, status and type

20.2.10 Test Result by Risk Category or Test Cluster

The below test result graphics display the test results by risk category or
test cluster . A bar chart is use to indicate how many tests were success-
ful or have failed. The graphic provides insight into the quality of the
system and into the progress of the test project. The number of tests yet
to be run indicates how the test is progressing.

Depending on the target group, the test result can be displayed by risk
category or test cluster.

• Representation by Risk Category
The test results graphic by risk category can be used if the target
group does not have any knowledge of or interest in the system’s
functions. This will be the case for reports sent to upper manage-
ment, the program manager or the business manager. If management
is more interested in the risks than in the actual workings of the sys-
tem, it does not make much sense to indicate in which remote part of
the system an error was found. What they do want to know is

20.2 Elements in the Test Report 335

St
ep

 5
 –

 E
xe

cu
tio

n

whether the most important risks have been covered, which is why a
report by risk category is appropriate.

• Representation by Test Cluster
If a risk analysis was not done, reporting is done by system function
or test cluster. This graphic is suitable for those who are involved in
the content, such as a technical project leader who knows the content
of the clusters and knows which programmers are responsible. He is
also often aware of each of the cluster’s unsolved errors and change
requests. The tasks are often planned by cluster or function. This
graphic ties in better with the daily experience of those involved.
The graphic indicates precisely how many tests were run for each
cluster and what the quality of the cluster is.

Below is a profile of both kinds of graphics.

Test Result by Risk Category

The test result by risk category graphic provides an overview of the re-
sults of the tests that were run up to a specific point in time for each risk
category defined in the risk analysis. The graphic in Fig. 20.7 shows
how many tests were successful, how many failed and how many still
have to be run.

Fig. 20.7 Test result by risk category

This graphic indicates that most of the tests have been run for the two
highest risk categories. It looks like the risk was taken into account
when determining the sequence of the tests and that the tests in low risk
categories were assigned a low priority.

336 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

The graphic shows that about half of the tests have failed. A test fails
when the system behaves differently than expected. This is the case if
the system contains a bug, if the test was not run correctly or if the test
case was not correct. In the first case, the found error should be solved.
In the other cases, the test set will have to be modified. After the error
has been solved, a retest will be run to see whether the test is successful.

It is interesting to examine why some tests did not run. Tests are often
stopped by showstoppers, but can also stop because they are simply not
feasible. If a test is not feasible, determine whether the test is important
or not. If it is not important, remove it from the test set. If it is impor-
tant, the fact that it has not run is an outstanding risk.

Test Result by Cluster

The test result by cluster graphic (Fig. 20.8) provides insight into the
number of tests defined for each cluster, and into the test results for
each cluster. The clusters in this graphic correspond to the areas of at-
tention defined in the TRA.

Fig. 20.8 Test result by cluster

Noteworthy is that more tests are defined for some clusters than for oth-
ers. This difference is due to the size of the test cluster and the variation
in test coverage, which is determined by the clusters’ relative impor-
tance. Important clusters are tested thoroughly and with heavy tech-
niques and contain more test cases. The functions with fewer risks are
tested less thoroughly and contain fewer test cases.

20.2 Elements in the Test Report 337

St
ep

 5
 –

 E
xe

cu
tio

n

Depending on the target group, the graphic can also display the test re-
sults by function or quality attribute. By using percentages rather than
the absolute number of tests, the difference between the number of tests
for each risk area or cluster is filtered out of the report.

When a fourth status is used, the statuses become OK, NOK, To be run
and Not feasible. A disadvantage of this additional status is that a test
that is not feasible is quickly discarded. The report must clearly state
whether the test is important or not. This is why only three statuses are
used in the example in Fig. 20.8.

20.2.11 Test Progress – Executed Versus Planned Tests

Fig. 20.9 Executed versus planned tests

In the graphic in Fig. 20.9, the number of tests run is compared to the
goal. The counting unit will be different for each project and can consist
of the number of unit tests, the number of check marks (OK/NOK) or
the number of scenarios. For exploratory tests, this is the number of
completed test charters.

The graphic contains two curves.

Planned
This curve shows the total number of tests that should be completed at a
certain point in time according to the planning.

338 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

The curve is calculated using the planned available resources and the
planned execution speed (total number of tests/total number of available
resources).
The line is not straight because it depends on the number of available
test hours in each period; for example, fewer tests are run during vaca-
tion periods.

The graphic in Fig. 20.9 shows that there are periods in which few re-
sources are planned. The curve of the planned tests is horizontal. All of
the tests are planned to be run on September 3, at which time the line is
horizontal.

Executed
The curve displays the total number of tests that have actually been run
regardless of the result.

When studying the curve of the number of tests that were run, it is no-
table that the test was behind target at the beginning of the project.
Once it got going, the delay was made up for. Hardly any tests were run
from August 21 onwards, which again put the project behind target. It is
interesting to examine why this happened and if the error status graphic
shows a similar trend.

There are a number of reasons why the “executed tests” line is horizon-
tal.

• Fewer resources than expected are available
• Other tests are being run than those included in the planning; for ex-

ample, errors were retested or more testing was done on problematic
modules outside of the test design

• Testing cannot be continued because showstoppers have been found
or because the test environment is not available

• The planning is not feasible

The graphic can also show the results by risk category instead of the to-
tal number of tests. The figure also shows that tests have been run, but it
does not show whether they are the most important tests. This can be
deduced from the “Test result by risk category” graphic. The progress
can also be displayed in percentages instead of in absolute numbers.

20.2 Elements in the Test Report 339

St
ep

 5
 –

 E
xe

cu
tio

n

20.2.12 Outstanding Product Risks

The “Outstanding product risks” report indicates whether each of the
identified product risks has been covered by testing. The decision of go-
ing live with the system will mainly be based on the outstanding risks.
To cover the most important risks, tests were run that enable the tester
to make a statement about the degree to which the risks are real.

The degree to which the risks are a potential danger can be deduced
from the following information:

• The tests that have not been run (yet) (see Sect. 20.2.6 Executed ver-
sus planned tests)

• The quality gap (see Sect. 20.2.7 Error status)

The outstanding risks can be reported in a textual overview or a graphic
as shown in Fig. 20.10.

Fig. 20.10 Outstanding product risks by week

This graphic displays the risks that were identified during the 2D TRA
(see the example in Sect. 7.3). At the end of each week, it is indicated
whether the risk is still outstanding or whether it has been covered by
the tests. The graphic shows that all of the product risks were still out-
standing at the end of week 1. At the end of week 8, the number of out-

340 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

standing risks was reduced to 3, and the other risks were categorized as
no longer real. The tests either proved that the risks were not real, or the
source of the risk was fixed. Critical errors that were found during test-
ing were solved and retested.

Using this graphic has a number of advantages. The graphic illustrates
that testing provides clear insight into the outstanding risks and thus
adds value. Moreover, the graphic provides an instantaneous overview
of the risks that were covered and that are still outstanding. Manage-
ment can use this graphic to determine whether it is worth continuing
the tests or if the indicated risks should be accepted and the system go
live [Gerrard], [ISEB practitioner, 2004], [Gardiner, 2006].

20.3 The Dashboard

Including all of the reporting elements and an explanation in the test re-
port may make the test report too lengthy and take too long to write.
Consider using a dashboard in such situations [Clermont, 2006].

A dashboard is a clearly structured compilation of up-to-date con-
trol data.

The dashboard provides insight into the quality of the test object and the
progress of the test project. The stakeholders have specified the infor-
mation they think is important. This is the information they need to de-
termine the degree to which the anticipated goal has been achieved and
to control the test project. These controls are called Key Performance
Indicators (KPIs).

The dashboard must be updated regularly, for example, in real time
[Koomen et al, 2007]. In many projects, however, it is sufficient to up-
date the information once a day. Whatever you do, make sure you indi-
cate when the dashboard was last updated.

The dashboard should be in a central location and can consist, for ex-
ample, of a printout that is stuck to the water cooler, but it can also be
published on the Intranet or in a wiki (see Fig. 2.2). This last option is
especially effective when the work is done at more than one location.
The dashboard in Fig. 20.11 uses five elements that were discussed ear-
lier in this chapter. These elements provide insight into the quality, the
progress and the costs of the test project.

20.3 The Dashboard 341

St
ep

 5
 –

 E
xe

cu
tio

n

Fig. 20.11 A dashboard

The dashboard consists of the following elements:

Release Advice
Advice about the release moving to the next phase or going live. At the
beginning of the project the advice will be “Negative.” As soon as the
tests demonstrate that the quality is good enough, the advice will
change to Conditional or Positive.

Tests Run by Test Cluster, Risk Category, Function or Quality At-
tribute
The number of tests that finished with a negative or positive result is
indicated for each risk category, test cluster , function or quality attrib-
ute, as is the number of tests that still need to be run. The graphic pro-
vides a quick impression of the observed quality. This report format de-
pends on the target group of the report.

Error Status
The error status report indicates the number of critical errors that were
found, solved and closed. The report provides insight into the quality of

342 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

the system and indicates whether the workload lies with the develop-
ment team or the test team.

Executed Versus Planned Tests
This overview provides insight into the progress of the test run. Possi-
ble delays in the progress of the test will be clearly displayed.

Hour Estimate
The hour estimate overview indicates whether the project will be within
budget or if it will exceed it. This helps control the financial aspects of
the test project.

20.4 Clarity of the Test Report

A test project produces a lot of data. We need to know which data can
help us formulate a clear message and support it. This is the point in
time when data becomes information. As already mentioned, graphics
are a good way of providing stakeholders insight into the status of the
test project because they’re a good way of visually displaying informa-
tion. To ensure the message is understood, a number of issues need to
be given attention:

1. Place Yourself in the Position of the Receiving Party

Remember that project managers receive a lot of progress reports at the
end of the week. For this reason, progress reports should be simple and
short, and contain a clear and understandable message. Irrelevant in-
formation muddles the message.

2. Take the Perceptions of Others into Account

Each party will be inclined to extract the information that confirms their
perception. The tester will often be inclined to think in terms of errors.
A report stating that 90% of the tests were successful will be interpreted
by a tester as “10% of the tests were not successful.” Project managers,
on the other hand, will be very positive about “90% of the tests having
been successful.” This is why it’s often necessary to add an explanation.

Example 20.3: The Connecta Dashboard

The status and the progress of Connecta’s system test project are
reported using a dashboard, which contains a limited number of

20.4 Clarity of the Test Report 343

St
ep

 5
 –

 E
xe

cu
tio

n

graphics. To help the stakeholders interpret these graphics, David
Bloom explained at the beginning of the project how he intends to
report. He also indicates in the top right corner of the graphic
[Mash, 2006] whether the graphic bears good or bad news. To do
this, he established criteria together with the stakeholders.

Hour Estimate

If the number of hours spent + ETC < 90% of the num-
ber of hours estimated.

If the number of hours spent + ETC = 90-100% of the
number of hours estimated.

If the number of hours spent + ETC > 100% of the
number of hours estimated.

0 100 200 300 400 500 600 700

Used + ETC

Planned
Used

Planned

ETC

Fig. 20.12 The top bar is 83% of the bottom one. According to the criteria,
the indication is positive (sun)

Test Results

Different criteria are used for the test results of the test project. It
is expected that a number of tests will fail by the end of the first
test run, which is OK. However, the criteria are higher for the re-
gression tests, at the end of which all of the errors should be
solved. This is why different criteria are used to determine the in-
dicator during the regression test.

344 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

During the First Test Run

If > 80% of all of the tests run is OK

If 40-80% of all of the tests run is OK

If < 40% of all of the tests run is OK

During the regression test

If >90% of all of the tests run is OK

If 80-90% of all of the tests run is OK

If <80% of all of the tests run is OK

30

Test Results Per Quality Attribute

25

20

N
um

be
r

of
 te

st
s

Fun
cti

on
ali

ty

Sec
ur

ity

Per
fo

rm
an

ce

Usa
bil

ity

Effic
ien

cy

M
ain

ta
ina

bil
ity

Por
ta

bil
ity

15

10
To be done

NOK

OK

5

0

Fig. 20.13 79% of the tests have a positive result. For the first test run, this
means that the indication will be neutral (cloud-sun)

20.4 Clarity of the Test Report 345

St
ep

 5
 –

 E
xe

cu
tio

n

The indication enables the stakeholders to determine the amount
of attention they give to the graphic in question. They are also
prevented from interpreting the graphic as positive while David is
trying to issue a warning.

3. Include Underlying Data

To keep the report clear, the information is compiled and summarized.
To make the report reliable, underlying data is included in the formula-
tion of the message. Some specific problems will otherwise get buried.

Example 20.4: 90% was successful

In the meantime, the Connecta project has progressed quite
nicely. During the system test, two test runs were completed and
the development team has indicated that almost all of the errors
have been solved. It’s time for the final regression test. David re-
ports the progress of the regression test: 90% of all of the tests
were successful. Based on the graphic in Fig. 20.14, his test man-
ager, Yasmin Hassouni, informs him that she is very happy with
the quality of the system.

6%
4%

Test Results: 3 August

90%

OK

NOK

To be done

Fig. 20.14 The test results

David explains to Yasmin that appearance is deceptive: 6% of the
tests were not successful. Drilling down into the test results by
function shows that the failed tests can be traced back to one

346 20 Test Reporting

St
ep

 5
 –

 E
xe

cu
tio

n

function. The TRA shows that this function is crucial and that any
related errors have a high severity. It is therefore safe to conclude
that this function does not meet the requirements. Additional
measures will have to be taken before a positive release advice
can be given.

To be done

NOK

OK

Test Results per Function

25

20

N
um

be
r

of
 te

st
s

15

10

5

0

Fun
cti

on
 1

Fun
cti

on
 2

Fun
cti

on
 3

Fun
cti

on
 4

Fun
cti

on
 5

Fun
cti

on
 6

Fun
cti

on
 7

Fun
cti

on
 8

Fun
cti

on
 9

Fun
cti

on
 1

0

Fig. 20.15 The test results by function

4. Suggest Measures

Reporting that the test project deviates from plan is not a great
achievement and adds little value. The test report increases in value if it
also provides suggestions on identifying or eliminating the causes of the
deviation. This makes the test report part of Deming’s Plan-Do-Check-
Act (PDCA) circle [Deming]. Include a concrete suggestion for possible
measures and indicate who should implement them.

5. Have the Courage to Be Positive

A tester who only reports negative issues will soon lose the attention of
his audience. Experience shows that a lot of testers find it difficult to
point out positive things. This is often due to caution: “If I say the sys-
tem is of good quality, they will come directly to my desk when they
find an error.” Everyone has to realize that a common goal is being
pursued. This is why you should indicate what is going well and what
needs attention. Indicate what management needs to focus on, but have
the courage to give advice about the things that don’t require much
attention.

St
ep

 6
 –

 A
ss

ur
an

ce

Step 6 – Assurance

1. Goal

2. Approach

3. Design

4. Set up

5. Execution

6. Assurance

The Assurance step checks whether the test project’s anticipated goal
has been achieved. The organization of the test project is examined dur-
ing the evaluation of the test project; what went well and which meas-
ures need to be taken to prevent the same problems occurring in the fu-
ture. The test set is also evaluated to ensure it is reusable: superfluous
tests are deleted and new tests added. The products that were used and
developed during the test project are handed over, for example, by mak-
ing the test set available to the maintenance organization. The handover
ensures the receiving party knows how to use the products.

The Assurance step consists of the following activities and products:

Activity Product

Evaluate the test project
Determine the regression test set
Clean up the archive
Handover
Discharge

Lessons learned report
Regression test set
Updated test archive

D.-J. de Grood, TestGoal,
DOI: 10.1007/978-3-540-78828-7_21, © Collis B.V., Leiden, The Netherlands, 2008

St
ep

 6
 –

 A
ss

ur
an

ce

21 Assurance

21.1 Introduction

The test project is completed after all of the tests have been run and a
positive release advice has been given. The test plan is often pulled out
from the bottom of the pile because it contains most of the agreements
that were made. The test plan defines the goal, the products that should
have been created and to whom they have to be handed over. This chap-
ter describes the final activities of the test project:

• Evaluating the test project
• Determining the regression test set
• Archiving and securing the testware
• Handover
• Discharging the test team

The project is only really finished after the team has been discharged
and the testers can focus on their other activities or on new activities.

21.2 Evaluating the Test Project

21.2.1 Purpose of the Evaluation

In order to repeat successes and avoid mistakes in subsequent test pro-
jects, it is necessary to determine the lessons learned during a test pro-
ject. This enables upcoming test projects to be run more efficiently.

The evaluation can be part of the project evaluation, which is conducted
according to the applicable project management methodology. If it’s

350 21 Assurance

St
ep

 6
 –

 A
ss

ur
an

ce

not, the test coordinator will do the evaluation himself by formulating a
lessons learned report and handing it over to the right person. This can
be the manager of the test department or the QA department, or the test
manager who is responsible for the project’s other test projects. Note
that the test plan already determines how the handover is done.

During the evaluation of the test project, the actual results are compared
to the anticipated goal. The effect that the expected and unexpected
events have on the test projects is analyzed. This analysis is used to de-
termine the successes and failures of the test project:

• Successes (with underlying events and experiences) are documented
so they can be repeated

• Errors (with underlying events and experiences) are documented so
they can be avoided

During the evaluation, the test coordinator gathers information about
the events that occurred in the test project and asks the people involved
about their experiences. Information can be gathered in a number of
ways, for example, in group discussions or one-on-one interviews or by
writing up a short overview. The method the test coordinator chooses is
usually determined by the importance the project has for the organiza-
tion. Because the staff often has to quickly move on to other test pro-
jects, there is usually not much time for the evaluation. It will be espe-
cially hard to find the time to evaluate less exciting projects.

The test coordinator adds his own observations to the information he
has gathered and completes the lessons learned report, which he final-
izes after it’s been reviewed by the stakeholders. The lessons learned
report is handed over to the person who is responsible for the next test
project(s). The person accepts the lessons learned as advice and ensures
it is taken to heart.

21.2.2 Points of Attention

In order to compare the results of the test project to the original objec-
tives, the release advice and test reports are compared to the master test
plan and the detailed test plan. The actual results are compared to the
original plans.

To ensure that relevant events and experiences are revealed during the
evaluation, the tester takes a look at a number of aspects:

21.2 Evaluating the Test Project 351

St
ep

 6
 –

 A
ss

ur
an

ce

Project Management
How was the test project embedded in the project (in terms of control,
management and content)? Was quality given enough attention? How
were relations between the project manager and the test coordinator and
between the project manager and the test team?

Creation of the Product to Be Tested
How were the requirements, release and configuration management for
the project set up? Which elements were set up well and contributed to
a smooth test process? Which elements were missing and caused confu-
sion and disrupted the test project? How was the quality of the deliver-
able (product and release notes)? Which deliverables were useful and
which deliverables were poor? What were the consequences?

Test Strategy
To which extent did the test project enable the choices made in the test
strategy to be carried out? What are the most important reasons for pos-
sible deviations? And why was the course not adjusted or the strategy
adapted in the meantime?

Test Process
What phases was the testing divided in to? How did the preparation, the
execution and the completion go? How were exit and entry criteria han-
dled between the different process steps? Which entry and exit criteria
were ignored, and what were the consequences? How was the release
advice formulated, and the how were the decisions about the release and
the handover made?

Test Team
What was the composition of the test team in terms of knowledge and
experience, and in terms of their personalities and roles? Were system
developers, administrators and users sufficiently involved? What was
the atmosphere in the team? Why was this good or why does it need im-
proving? How were relations between the test coordinator and his team?
Were enough resources available, both in terms of quantity and quality?

Test Methods and Techniques
Which methods and techniques were chosen? Did they correspond to
the choices in the master and detailed test plans? If they did, did the
choices make the expected contribution? If they didn’t, why was the
plan not followed and why was the impact positive-negative?

Supporting Resources (Including Tools)
Were tools and other resources used? If they were, what are the experi-
ences and how did the tools and resources contribute to the result and the
goals? Were enough test environments available (quality and quantity)?

352 21 Assurance

St
ep

 6
 –

 A
ss

ur
an

ce

21.2.3 Lessons Learned Report

The evaluation produces a lessons learned report. The findings are
gathered for each finding, and for each finding the lessons learned are
indicated.

Below are a number of examples:

No. Finding ☺
or
/

Lesson learned

1 Some test cases require a lot of
preparation before they can be run.

/ The current test design clearly indi-
cates what the preconditions are.
These preconditions have to be cre-
ated manually. Preparing the opera-
tional data can save time during the
test run, but the test data needs to be
maintained properly.

Improvement suggestion: In subse-
quent test projects, schedule time to
set up good test data management.

2 The ad-hoc knowledge transfer
between the analysts and the test
team was experienced as useful.
The test team gained a better un-
derstanding of what it had to pay
attention to, which improved the
quality of the defined tests.

☺ Knowledge about the system that is
to be tested is needed to design the
tests.

Improvement suggestion: Organize
knowledge transfer sessions with
analysts and senior developers at the
beginning of every test project.

3 Using the X-simulator considera-
bly reduced testing time.

☺ Good use of tools improves the test
efficiency.

Improvement suggestion: Investigate
whether the other interfaces can also
be stimulated.

4 Deployment produced a lot of
problems. The test had to be inter-
rupted several times because the
test object was not properly con-
figured. The wrong modules were
delivered more than once.

/ Configuration management needs to
be improved.

Improvement suggestion: Determine
whether the configuration is OK
during the smoke test. Testing will
not start if this is not the case.

21.3 Determining the Regression Test Set 353

St
ep

 6
 –

 A
ss

ur
an

ce

21.3 Determining the Regression Test Set

The regression test set is one of the products that were defined in the
test plan as a project deliverable because the organization expects it will
need the tests again.

In a software development project in which a new system is built, the
new system will have to be maintained after it has gone live. Mainte-
nance is necessary to fix bugs or make changes to the functionality. If
the test object is approved during the conformity, interoperability and
certification tests, the object will not be resubmitted to this test set in
the near future. This doesn’t mean that the test set cannot be used to
certify other test objects that have to meet the same requirements. This
is a good reason to assure the tests can be reused.

Flaws in the test design will be discovered during the test run; interpre-
tation errors of the tester, an assumption that wasn’t entirely correct, or
a test base that was not tested after it was changed.

Experience shows that some of the test cases do not add value. Although
the tests are correct, it’s better to remove them from the test design. An
example is a function that uses generic code. If the testers do not know
that the function is based on generic code, more than one test case will
be designed to test the same code. In the regression test, one test case
will then be enough. Another example is a test whose results are unaf-
fected by change. This can be the case if the test did not produce any er-
rors during the entire test project, even though a lot of releases were
tested. This test will not have to be run in every regression test.

The purpose of the activity test is to clean up the existing tests. The re-
sult is a test set that indicates which tests are important for retesting.
The tests may be accompanied by an explanation. It is advisable to
specify the risk category a test belongs to the test design. This makes it
possible to distinguish between full regression tests and, for example,
quick scans. Indicating the importance of a test action enables the re-
gression test policy to be easily defined, as shown in the below table
(see also paragraph 13.4 Test actions):

Type of regression test Execute

Quick scan Only the tests in the risk category “critical”
Regression test Only the tests in the risk category “critical” and “high”
Full regression test All tests

354 21 Assurance

St
ep

 6
 –

 A
ss

ur
an

ce

Admittedly, determining the regression test set is not the most exciting
activity. It can even be hard to remember the whole process and all of
its details at the end of a project. However, it is important to do it fairly
soon after the completion of a project because it will only get harder as
time goes by.

21.4 Archiving and Securing the Testware

Not only the tests need to be secured, the testware does too. Once the
test project is finished, all of the products and tools need to be findable
and reusable, as do the manuals for the test tools. If the project is run in
a controlled way, many of these things will have been taken care of al-
ready. If not much attention has been paid to this, it is advisable to take
care of these things before the end of the test project. If there is no time
to document everything, it is definitely useful to document which pro-
ject members have knowledge of the testware.

The error logs, relevant e-mails and memos describing the agreements
also have to be secured. The testware is secured by saving it in the ar-
chived project directories or on an Intranet. Each organization will have
its own procedures.

21.5 Handover

In the test plan, we already defined to whom we would transfer what
knowledge. Now it is time to put these plans into effect. This activity
can be easily combined with the securing of the testware. The receiving
party often has its own wishes about how and where they want to store
the products.

Handover means that the products are not simply “thrown over the
fence,” but that it is checked whether the products have been accepted.
The receiving party also needs to take on the knowledge. In a good
handover, the receiving party determines whether sufficient knowledge
and material have been transferred.

21.6 Discharging the Test Team 355

St
ep

 6
 –

 A
ss

ur
an

ce

21.6 Discharging the Test Team

The achieved result has been evaluated and compared to the anticipated
goal. The products and knowledge have been secured and handed over.
The project has been completed and the test team can ask the customer
to discharge them. Discharge means that the test team members are
dismissed from their responsibilities.

Experience shows that customers often hesitate when it comes to writ-
ing a formal discharge. This may be due to a fear that they will have no
one to turn to when something goes wrong. This is a pity, and would
not be necessary if insight were provided during the test project into the
working method, the quality of the products and the risks.

If a formal discharge cannot be obtained, make sure you complete
the project anyway. Celebrate the success with a meal or a glass
of champagne and share the success with the rest of the organi-
zation.

May your test projects be successful!

Appendix A – Checklist:
Sanity Check on the Design

A.1 Conclusion

Conclusion Y / N

The specifications (test base) describe the system clearly and
precisely. They are therefore sufficient as the basis for
a structured test project.

If the conclusion is negative:

High-level errors that were recorded during the sanity check are dis-
played below. For each error, indicate the risks for the test design and
the measures needed to rectify them.

Error Risk Measure

358 Appendix A

A.2 Result

Description Y/N Not applicable Solution

The functionality, the processes and their
coherence is described sufficiently

The functionality, the processes
and their coherence concur with
the anticipated goal

All of the relevant quality requirements
have been sufficiently taken care of

The result of the risk analysis can be traced
in the test base

A.3 Control

Description Y/N Not applicable Solution

Contains history log
(including version administration)

Contains approval/distribution list

Contains document description
(including author)

The document has a status

Contains reference list

A.4 Structure

Description Y/N Not applicable Solution

Contains executive (or management)
summary

Contains table of contents (current)
Contains introduction
Contains chapter(s) with an overview
or description of the functionality (and
related screens/reports and messages)
Contains chapters with data models
and data descriptions

Contains chapters with functional
specifications

Contains chapters with non-functional
specifications

Contains chapters with interface
specifications

Appendix A 359

A.5 Content

Concerned functionality Y/N Not applicable Solution

Contains system overview
• System description
• Purpose of the system, what is the use

for the users and how does it support
their business processes (high level)

• Scope diagram/system diagram
• System environment and dependencies
• System owners, both functional

and technical
• Sites where the system will be

implemented

The system contains various subsystems
• For every subsystem: a short

description with basic functionality,
processes and related data

• Boundaries of and between subsystems
• Relations between subsystems

Quality attributes
• Quality attributes are defined in the

functional descriptions.
• Relevant quality attributes (e. g.

performance, security) are defined
for the whole system.

• Relevant quality attributes (e. g.
performance, security) are defined
for each subsystem

• Quality attributes are defined
in functional descriptions.

• Contains workflow/process
flow/state transition or other diagrams

• Description
• Lists actions, conditions and situations
• Describes actions, conditions

and situations

Contains use case (UC)
• Use case description
• Use case diagram (UCD)
• Connection between UCD and

relevant business processes
• UCD contains boundaries
• UCD contains primary and

secondary UC

360 Appendix A

Concerned functionality Y/N Not applicable Solution

• Connection between UC and
functionality

• UC contains primary scenario, alterna-
tive scenario and fallback scenario

Contains screen information
• Screen layout
• Screen/system navigation
• I/O information

Contains report information
• Report description
• Parameters
• Fields
• Grouping and sorting
• Report layout
• Contents

Data model and data description Y/N Not applicable Solution

Contains graphic model (ERD)

Contains description of the entities
• Entity definition: a clear and unambi-

guous definition of the notion of entity
• Attribute definition: a clear and unam-

biguous definition of every attribute of
the entity, including a reference to a
domain or description of a type of data,
length and permitted values

• Primary and foreign keys: the attributes
that identify the (related) entities

• Quantities: minimum, average
and maximum number of entities
and growth rate per period

Contains description of relations
• Name: of the relation and the

inverse relation
• Cardinality: how many entities

are linked to the relations
• Option: the extent to which the relation

is mandatory or optional for the entities
of the relation

• Constraints: have the regulations been
established that determine how the
system should react according to
the cardinality and possibilities
within the relations?

Appendix A 361

Data model and data description Y/N Not applicable Solution

Contains description of domains
• Name
• Data type and length
• Permitted values
Contains description of constraints
Contains description of regulations
Contains description of stored procedures
Contains description of triggers
Contains description of defaults

System interfaces Y/N Not applicable Solution

Contains the name of the interface;
for example <interface System A –
System B>

Contains description of the purpose
Contains workflow/scheme/diagram
Contains details about the process
Contains description of the type of
interface: operational/data/batch/online

Contains detailed information about
the format of the interface: structure,
data elements, data types, length,
permitted values

Contains description of error handling
Contains description of error logging
Contains description of constraints

Functional specifications Y/N Not applicable Solution

Contains name of the function
Contains purpose of the function
Contains process information
Contains I/O information
Contains description of data processing
Contains description of calculation
functionality

Contains description of constraints
(input checks)

Contains description of error handling

362 Appendix A

Authorization Y/N Not applicable Solution

Description of the required authorization
(profiles)

Contains authorization matrix

Technical architecture Y/N Not applicable Solution

Description and/or schemes of the infra-
structure, for example, network, servers,
DBMS, operating systems, middleware

Description of technical aspects
of interfaces

Appendix B – Checklist:
Sanity Check on the Testware

B.1 Conclusion

Conclusion Y / N

The testware is described accurately enough and/or works well
enough for reuse

If the conclusion is negative

High-level errors that were recorded during the sanity check are dis-
played below. For each error, indicate the risks for the test design and
the measures needed to rectify them.

Error Risk Measure

364 Appendix B

B.2 Result

Description Y/N Not applicable Solutions

The functionality that is to be tested
and the processes and their coherence
are sufficiently described

The functionality and the processes
and their coherence concur with the
anticipated goal

All of the relevant quality attributes
have been sufficiently taken care of

The outcome of the risk analysis is
traceable in the test design

Test results from the last time the testware
was used are available and provide insight
into the quality of the tests

Errors that were found after last time the
testware was used are available and
indicate on what points the coverage
of the testware is insufficient

B.3 Logical tests

Description Y/N Not applicable Solution

The test basis on which the logical test
is based is clearly specified

The logical test design is up to date,
there are no major outstanding issues
in the design specified in the test base

The structure of the test design is clear
Logical tests can be traced back to related
specification elements so changes in the
test base can efficiently implemented

Logical tests can be traced back to the
related risk category in the TRA so
changes in the TRA can be efficiently
implemented

Logical tests are set up on the basis
of test techniques

Where needed, test techniques are applied
correctly and completely

Choices that have been made in the
logical test design have been clearly
indicated (for example, deviations from
the technique)

Appendix B 365

B.4 Physical test

Description Y/N Not applicable Solution

The test base on which the physical test
case is based is clearly specified

The physical test design is up to date,
there are no major outstanding issues
in the design specified in the test base

The structure of the test design is clear
The physical tests can be traced back
to the related specification elements
so changes in the test base can be
efficiently implemented

Physical tests can be traced back to
the related risk category in the TRA
so changes in the TRA can be efficiently
implemented

Physical tests can be traced back to the
related logical test design so changes
in the logical test design can efficiently
implemented

B.5 Test cases

Description Y/N Not applicable Solution

Test cases have a unique ID
Test cases contain all the required fields
Test cases are detailed, it is clear what
the purpose of the test is and when the test
is successful

Test cases clearly describe which test
actions will be executed

Test cases describe the input data
that is used and the expected outcome

366 Appendix B

B.6 Test tools

Description Y/N Not applicable Solution

The test base on which the tooling
is based is clearly indicated

The tooling is up to date, there are no
major outstanding issues in the design
specified in the test base

There are errors in the tooling and they
have a clear status. It can be estimated
which bug fixes/ changes will have to
be performed on the tools

Documentation for the tooling is
available, so changes can be efficiently
implemented

The infrastructure is such that the tooling
can be tested before the actual test
run starts

Appendix C – Checklist:
Checklist smoke test system

C.1 Conclusion

Conclusion Y / N

The system can enter the planned test phase. It is expected that the
tests will run without too many obstacles or problems

The required products are available and their content is sufficient
The system is sufficiently stable and has enough functionality to
move on to the test phase

If the conclusion is negative

High-level errors that were recorded during the sanity check are dis-
played below. For each error, indicate the risks for the test design and
the measures needed to rectify them.

Error Risk Measure

368 Appendix C

C.2 Delivered products

Description Y/N Not applicable Solution

Release notes are available and contain
• The version of the release
• Changes in relation to the previous

release
• The errors that were fixed
• The implemented change requests

(RfCs)
• The known errors that can impact

the test process

Installation instructions
User guide
Test report for previous test phase
Release advice for previous test phase

C.3 General

Description Y/N Not applicable Solution

The application can be started
The user can access the application
The user can perform elementary
navigation without the application crashing

The new functions are available
and accessible

It is possible to request, change or delete
information (CRUD actions)

The user can navigate from the application
to interfacing systems without it crashing

C.4 QuickScan

Description Y/N Not applicable Solution

The most important correct path (feasible
path) can be fully executed
or
The (automated) QuickScan can be per-
formed without major problems

Appendix D – Checklist:
Test charter exploratory testing

Charter ID
Priority
Time available (h)

Conclusion Y / N

This charter has been completed
Extensions of this charter will not be needed in a next session
The anticipated goal of this charter has been achieved,
the risk is sufficiently covered

As far as this charter is concerned, can we go live?

If the conclusion is negative

Indicate which follow-up action is needed to achieve the anticipated
goal of this charter. Indicate which risks are not sufficiently covered
and if necessary make suggestions for follow-up charters.

Error Risk Activity

D.1 Preparation

Anticipated goal of this charter Priority

370

Exclude from this charter Motivation

Why test this charter

Expected problems

D.2 Test log

ID Test action(s) Expected system reaction Conclusion

D.3 Errors

ID Description Severity Follow up action

Appendix E – Glossary

1D TRA Test risk analysis during which the relative priority of
functions and areas that need attention are estimated.
The result in a one-dimensional risk matrix, i. e. a list
of the risk areas that is sorted by relative importance.

2D TRA For 2D TRA, the chance and the impact are estimated
separately for each of the areas that need attention.
The risk matrix displays the risks.

Acceptance criteria The exit criteria that a component or system must
satisfy in order to be accepted by a user, customer, or
other authorized entity [ISTQB, 2007]

Action word driven Test automation strategy that uses action words.

Anticipated goal The goal that has been set out to be achieved. In Test-
Goal, this is the result that supports the organization's
goals.

Baseline The state of a configuration, process or set of system
specifications that is established at a specific time.
For system specifications, this is a controlled set that
is used as a basis for testing and system development.

Black-box test A test that does not check the code and tests the sys-
tem from the outside. The tests are generally run
using existing system interfaces.

372 Appendix E

Boundary value The minimum or maximum value of an equivalence
class or domain.

Bug See Error

Build number Version number of the test object.

Chain test Test during which systems are linked to each other.
Focuses on finding errors that occur when systems do
not interact well. The chain test is also referred to as
system integration test (SIT), end-to-end test, or “in-
tegration in de large.”

Change The addition, deletion or change of things, such as
configuration items, processes and documentation
that can impact IT services. Also referred to as Re-
quest for Change (RfC).

Change Advisory Board
(CAB)

A group of people that help the change manager
evaluate, plan and prioritize a change. The CAB is
usually made up of business representatives and third
parties such as suppliers [ITIL, 2006].

Change Control Board Consultative body that decides which changes will be
implemented in the system.

Compliance The degree to which a process or system meets a
standard or a guideline.

Concurrency A measure for the number of users that can perform
an operation at the same time [ITIL, 2006].

Configuration data Data that determines the configuration of the system.
A requirement of testing is that the system is well
configured. That's why it's important to have the right
configuration data, which can be different at each test
level.

Configuration
management

The process that ensures that the configuration of the
test environment is controlled and known.

Configuration/release
version

The composition of a component or system as defined
by the number, nature, and interconnections of its
constituent parts [ISTQB, 2007].

Appendix E 373

Configure Set up software or make changes to the settings
of test equipment or the operating system/software
[SurfNet]

Conformance testing The process of testing to determine the compliance of
the component or system, also known as regulation,
compliance or standards testing.

Coverage See test coverage.

Cross-check matrix Matrix that specifies which physical test case is used
in which test scenario.

Dashboard A dashboard is a structured collection of current per-
formance indicators, for example, an online collection
of graphics that provide insight into the progress of
the test project and the quality of the test object.

Data cycle test Test technique that enables data to be added, deleted,
changed or displayed. This technique is also referred
to as CRUD test.

Data driven In the data-driven approach, the test data is separated
from the scripts. We call this parameterizing.

Defect A flaw in a component or system that can cause the
component or system to fail to perform its required
function, e. g. an incorrect statement or data defini-
tion. A defect, if encountered during execution, may
cause a failure of the component or system [ISTQB,
2007], also refered to as Error

Defect detection rate Ratio of the number of reported errors for each time
unit of testing.

Deliverable Any (work) product that must be delivered to some-
one other than the (work) product’s author [ISTQB,
2007].

Deployment Process that makes the code of the test object avail-
able in the test or live environment. Also referred to
as promotion, installation or roll-out.

374 Appendix E

Deployment cycle Speed at which deployments can be carried out. A
fast deployment cycle means that new system ver-
sions are deployed at short intervals. The time be-
tween which an error is found and the solution is
available can be short. An example of a very short
deployment cycle is a developer who runs the test,
corrects the errors and reruns the test himself. In long
deployment cycles, more time is needed before bug
fixes can be tested.

Depth See test depth.

Detailed test plan (DTP) Approach for a test project. Also known als level test-
plan or phase testplan indicating that the plan de-
scribes one test level or one testphase [ISTQB, 2007]

Diacritical characters Diacritical characters are characters that have an
accent. The accent can be placed above, below or
even through the letter to change its pronunciation.
For example: â, é, ë, ç, ħ, ø, ß, æ. Diacritical charac-
ters are frequently displayed in a special way in the
character set. In an HTML file, an à is entered as
à [Wikipedia].

Discharge Release someone of their duties. Discharging the
team releases it of its duties and responsibilities.

Domains An area, field: an area that is covered by a test tech-
nique.

Drill down Zoom into the underlying details of general informa-
tion. For example, investigating the total test result
for a system (general). Drilling down means looking
at the test result for each function, quality attribute or
risk category (underlying information) [Webopedia].

Driver, stub Pieces of code that replace absent program code.

Dynamic test tools Dynamic test tools are used for dynamic tests. These
are the tests whereby the system is really used.

Effective productivity The period during which an employee is really effec-
tive. An employee is effective for 60 to 80% of his
work time.

Appendix E 375

End-user See user.

Equivalence class A portion of an input or output domain for which the
behavior of a component or system is assumed to be
the same, based on the specification [ISTQB, 2007].

Error Deviation of the component or system from its ex-
pected delivery, service or result due to a human
action that produces an incorrect result, also known
as a failure. Free after [ISTQB, 2007].

Error analysis An (statistical) analysis method that provides infor-
mation about the reliability of the measurement result
or the result of a calculation.

Error guessing A test design technique where the experience of the
tester is used to anticipate what defects might be
present in the component or system under test as a
result of errors made, and to design tests specifically
to expose them [ISTQB, 2007]

Error management The process of recognizing, investigating, taking
action and disposing of errors. It involves recording
errors, classifying them and identifying the impact
After [ISTQB, 2007]. Also known as Defect or Prob-
lem management.

Estimate to Complete
(ETC)

An estimate of the total number of hours that are
needed to achieve the agreed result. In contrast to the
estimated date of completion, the ETC doesn't con-
tain any information about the date on which the task
will be completed.

Estimated Date of
Completion (EDC)

The date on which the agreed task is expected to be
completed. In contrast to the estimate to complete, the
EDC doesn't contain any information about the effort
required to complete the task.

Exit and entry criteria The criteria that have to be met before a process can
start or stop.

Failure See Error

Fault See Defect

376 Appendix E

Feasible path Sequence of valid tests. A path for which a set of
input values and preconditions exists which causes it
to be executed [ISTQB, 2007]. The tests focus on
how the system behaves under normal use and do not
take the system's error handling into account.

Finding Findings indicate an observed difference between
expected and implemented system behavior that can
jeopardize the anticipated goal. This definition in-
cludes both the experience of the tester and the an-
ticipated business goal. A finding can originate from
a test error, an error in the test base, or an error in the
code.

Fit for purpose Degree to which the system does what it's supposed
to do.

Fixed price Assignment for which the agreed result is delivered at
a previously agreed price.

Formal reviews and
inspections

Formal inspections carried out to find errors in the
documentation. A formal inspection is a technique
whereby the reviewers are trained for the process and
work according to clear procedures [Wikipedia].

Functional acceptance test
(FAT)

The functional acceptance test checks the functional
operation of the test object against the system re-
quirements and the functional design.

Functional decomposition The decomposition of a system into its individual
functions. The functional decomposition can be used
in the test rick analysis and is often displayed as a test
tree. The functional decomposition can contain qual-
ity criteria in addition to functions.

Functional design A detailed description of the user and other specifica-
tions of the information system or of the changes that
will be made to it so that they can be implemented
and tested unambiguously [ASL].

Functionality The capability of the software product to provide
functions which meet stated and implied needs when
the software is used under specified conditions
[ISTQB, 2007].

Appendix E 377

Generic test strategy Generic test strategy that is created for several master
projects or that specifies how tests should be run in
one or more organizational divisions.

Goal description Formulation of the assignment in which the antici-
pated goal of the test project is defined.

Heuristic The methodical way of learning by trial and error
[van Dale (Dutch dictionary)]. This includes using
checklists to reach a conclusion.

Impact A measure of the effect that an incident, problem or
risk has on the business or other processes. The im-
pact and the urgency determine the priority.

Improvement report Project evaluation report. The improvement report
contains the lessons learned during the project.

Input and output data Data is input during the test and the result of the test
action compared to the expected result. Input data can
be seen as data that is used to determine boundary
values, in syntax tests, etc. Output data can be, for
example, the results of a calculation, or it can consist
of data elements that are generated by the system for
messages or reports.

Installation or
deployment manual

The installation or deployment manual contains in-
structions for the system administrator. This manual
can be a checklist and defines which installations
have to be carried out. Deployment can be very com-
plex on large systems, which is why the sequence in
which the installations, upgrades, patches and con-
trols are carried out must be clearly described.

Interoperability Exchangeability of the test object in relation to other
systems.

Iterative process Process that falls back on previous steps. Parts of the
process are repeated one or more times.

Life cycle The subsequent steps that a test project or software
development project goes through. The life cycle of
the test project is described in the TestGoal step plan.

378 Appendix E

The steps in the V model provide a basic description
of the software development cycle.

Live A system that is actively being used to process busi-
ness data.

Live environment Hardware and software products installed at users’ or
customers’ sites where the component or system
under test will be used. The software may include
operating systems, database management systems,
and other applications [ISTQB, 2007]

Load A measure for the number of concurrent transactions
or users that a system can process.

Logical test design See test design.

Maintenance All of the tasks, responsibilities, and activities that are
required to keep objects in such a state that they con-
tinue to meet the defined requirements and needs of
their owners [ASL].

Master test plan (MTP) Approach for a master test project.

Master test project Type of structure in which test projects that belong
together are grouped. The master test project contains
all test levels.

Metadata Predefined data that is needed to create a specific
configuration. Metadata is also called master data.

Milestone A measurable status or deliverable that has been pre-
defined.

Moderator Person who monitors and supervises a process and
keeps it going. For example, a formal review or ex-
ploratory test debriefing.

Module test Test that focus on the code's elementary building
blocks or individual software components [ISTQB,
2007]. They show that the modules technically meet
the system requirements. Also referred to as unit
testing or component testing.

Appendix E 379

MTP Master test plan, approach for the master test project.

New development The making of a new application.

Null In computer science, the term “null” is used to desig-
nate a missing or unknown value. Null values are
used in a variety of programming languages and in
databases [Wikipedia]. Null is used to specify that
nothing is entered in a field, for example, to test that a
form can only be saved if all of the fields have been
filled in. The form cannot be saved if one of the man-
datory fields contains a null value.

Operational data Data or a process in a specific state that is present in
the existing data set and meets the preconditions of a
test case.

Organization chart Graphical display of the organization. The organiza-
tion chart displays the organizational divisions and
their hierarchical relationship.

Parsing The conversion of files or data to smaller or other
files or data.

Peer review Review by a colleague with experience with the cor-
responding topic.

Performance The degree to which a system or component accom-
plishes its designated functions within given con-
straints regarding processing time and throughput rate
[ISTQB, 2007].

Performance tests The process of testing to determine the performance
of a software Product [ISTQB, 2007].

Physical test cases See test design.

Pilot The pilot consists of testing the system in a simulated
live environment prior to deploying new functional-
ity. This ensures that errors that occur during the pilot
will not occur in the live environment.

PKI Public Key Infrastructure is a technology that plays a
crucial role in the creation of reliable electronic ser-

380 Appendix E

vices. PKI ensures that electronic transactions are
incontestable by placing a digital signature. PKI also
ensures that information is safely sent across the
Internet.

Pre-Condition Attribute of the physical test design that describes the
starting point of the test.

PRINCE2 PRINCE2 (PRojects IN a Controlled Environment) is
a structured method for effective project manage-
ment.

Priority The value of an activity compared to other activities,
which is expressed in the speed and/or thoroughness
with which and activity needs to be carried out or
completed compared to other activities [ASL]. The
level of (business) importance assigned to an item,
e. g. defect [ISTQB, 2007].

Product risks Risks that jeopardize the anticipated goal. The prod-
uct risks make a statement about the test object but
not the process that creates them. Its a risk directly
related to the test object [ISTQB, 2007].

Production acceptance test
(PAT)

The production acceptance test focuses on releasing
the system into the live environment and entering it
into maintenance.

Production likeness Degree to which the test environment resembles the
live environment.

Project A project is a unique set of coordinated and con-
trolled activities with start and finish dates under-
taken to achieve an objective conforming to specific
requirements, including the constraints of time, cost
and resources [ISTQB, 2007]

Project brief Document with general project information, such as
start and end date, users/project members, project
leader etc.

Quality The degree to which a component, system or process
meets specified requirements and/or user/customer
needs and expectations [ISTQB, 2007].

Appendix E 381

Quality attribute A quality attribute describes one aspect of the quality
a system must have. Quality attributes create a con-
ceptual framework that helps explicitly describe the
desired quality.

Quality gap The quality gap is the difference between the antici-
pated and the achieved quality. This difference is
frequently measured according to the number of open
errors. The quality gap is then the difference between
the number of found and solved errors. In practice,
the quality gap will never be closed. This means that
there are risks for the live environment that have to be
explained in progress meetings and in the release
advice.

Quick scan A fast and limited test where only tests in the risk
category “critical” are run.

RACI chart Matrix that contains responsibilities and involvement.

Record & Playback Possibility to record user actions carried out on the
test object in scripts and play them back, also known
als capture & playback.

Regression test Test that checks whether regression has occurred.
Regression is the phenomenon whereby unchanged
code no longer works as the result of changes made to
the environment or underlying system components.

Regression test set The test set that is used during the regression test.

Release All of the new, changed or existing program items
that are made available for exploitation at a given
point in time.

Release advice Advice to the customer concerning the test project's
transition to the next planned phase. The advice is
made based on the test results and the risks that are
jeopardizing the anticipated goal.

Release management The release management process ensures that changes
are applied at specific times and it is known which
changes will be applied.

382 Appendix E

Release note The release notes describe the characteristics of the
deliverable. They contain the version of the release,
the changes made since the previous release, the
solved errors, the implemented changes, and the
known problems that can impact the test process, also
known as item transmittal report.

Requirement A formally defined condition that the system must
fulfill [ASL].

Retest Test that is run to determine whether a previously
found problem has been correctly solved.

Review The test technique whereby one or more people com-
ments on a product. for the purpose of identifying
defects and improvements. After [ISTQB, 2007].

Review logging form Form in which the review findings are entered.

Risk category Collection of risks that have the same priority.

Risk matrix Graphical display of the risks in which the chance of
each risk is set off against the impact.

Risk-based test An approach to testing to reduce the level of product
risks and inform stakeholders on their status, starting
in the initial stages of a project. It involves the identi-
fication of product risks and their use in guiding the
test process [ISTQB, 2007]

Sanity check Activity that provides insight into the quality and
testability of the test base. The sanity check specifies
which measures need to be taken before a test object
can be used without risks. In the Netherlands, sanity
check is called “Test base intake.”

Sanity check report Result of the sanity test

Scripts Program code that runs the tests. The scripts can be
recorded with the automation tool’s record and play-
back function or coded manually.

Security test Tests that demonstrate that the system is sufficiently
protected against potential abuse.

Appendix E 383

See test depth Measure for the depth of the test technique.

Severity category Values that describe the severity of an error. Com-
monly used values are: high, medium and low.

Significant Non-negligible factor.

Simulator The test tool communicates with the test object and
simulates a user or the system.

Smoke test Activity that provides insight into the quality and
testability of the system. The smoke test specifies
which measures need to be taken before a test can be
started without risks. Also known as confidence test,
intake test or sanity test.

Sox The Sarbanes-Oxley Act was put in place to guaran-
tee the integrity of annual reports. The Act was im-
plemented in the United States in 2004. Companies
listed on the New York stock exchange must show
that they meet the requirements of the Act.

Stakeholder Person or party that is interested in the quality of the
test object. Stakeholders will want to influence the
project or will want to receive information. They also
provide the tester with important information about
the information he has to include in his report.

Standard deviation Term used in statistics to specify how measurement
values are spread. For normal distributions, 68.2% of
the measurement values are between the mean minus
the standard deviation and the mean plus the standard
deviation.

Static test tools A tool that carries out static analysis on software
artifacts, e. g. requirements or code, carried out with-
out execution of these software artifacts. After
[ISTQB, 2007].

Strong technique Test technique with a wide coverage. The technique
generates a large number of test cases.

Stubs, drivers See drivers, Stubs

384 Appendix E

Success factors Factors that determine the success of an activity or
project.

Supporting test tools In addition to tools that help test or analyze data,
there are also tools that support the test process. Ex-
amples:
• Error logging tools
• Planning tools
• Tools in which tests can be designed.
• Tools in which test results can be reported

(dashboard)
• Configuration management tools

System A collection of components organized to accomplish
a specific function or set of functions. [ISTQB,
2007]. Example: A computer system with hardware,
(embedded) software and applications.

System specifications Description of the desired operation of the system.

System test The process of testing an integrated system to verify
that it meets specified requirements [ISTQB, 2007].
If a customer-supplier relationship exists, the system
test is carried out by the supplier.

System under test (SUT) See test object.

Technique matrix Graphic in which test strength and domain coverage
are displayed.

Test The analysis of software items with the goal of find-
ing errors and differences with the specifications
[IEEE 829, 1998].

Test action Concrete description of an action that a tester has to
carry out when running a test case.

Test analyst The analyst uses the test plan to determine which
tests have to be run. The analyst creates the logical
tests.

Test automation The use of software to perform or support test activi-
ties, e. g. test management, test design, test execution
and results checking [ISTQB, 2007].

Appendix E 385

Test automator The team's automation expert.

Test base All documents from which the requirements of a
component or system can be inferred. The documen-
tation on which the test cases are based. [ISEB]

Test charter A statement of test objectives, and possibly test ideas
about how to test. Test charters are used in explora-
tory testing [ISTQB, 2007].

Test cluster Group of tests that belong together, for example, all
of the tests that cover a specific area of attention, or
tests that test the same function or subfunction. Test
clustering determines the structure of the test tree.
Each branch of the tree is a test cluster. The test clus-
ter can often be recognized in the TRA.

Test coordinator Tester who is responsible for the success for a test
project.

Test coverage The degree to which a specified coverage item has
been exercised by a test suite [ISTQB, 2007]

Test data Data that is used during the test run. TestGoal distin-
guishes four styles of test data, namely: Input and
output data, operational data, configuration data, and
metadata.

Test data repository A test data repository is a central storage area for test
data. Because all of the test data types (input and
output data, operational data, configuration data and
metadata) are strongly related to each other, it's effi-
cient to manage them as one set. This is done in a
central storage area, which can consist of a tool, a
database or an Excel sheet.

Test depth The test depth specifies how thoroughly each test
case/risk area has to be tested.

Test design The set of defined test cases. There is a logical and a
physical test design. The logical test design describes
what has to be tested. The physical test design de-
scribes how the test cases have to be run. The physi-
cal test design also contains test data.

386 Appendix E

Test design technique Technique that defines how test cases have to be
derived from the test base.

Test engineer Tester who is responsible for the physical test design
and the execution of the tests.

Test environment Environment (hardware and middleware) that is used
for the test system.

Test level A group of test activities that are run and controlled
together [Pol et al, 1999].

Test manager Tester who is responsible for the success of the mas-
ter test project.

Test object The system being tested. The object that is being
tested. The system for which a release advice is
given. Also called “System Under Test” (SUT).

Test project Type of organization in which test activities that
belong together are grouped. A test project is often
set up for each test level.

Test report A snapshot that specifies what the achieved result is.
This is done based on the progress of the test process
and the quality of the test object.

Test Risk Analysis The process of assessing identified risks to estimate
their impact and
probability of occurrence (likelihood) [ISTQB, 2007]

Test run A collection of test activities whereby all of the tests
have been run once. A test run can be conducted with
several versions of the test object. At the end of a test
run, all of the tests will have been carried out, but
they may not all have been successful.

Test scenarios Specifies the preferred sequence of the test cases. The
sequence is often determined in such a way that con-
necting tests can be run back to back.

Test set Collection of test cases, also known as test suite or
test case suite.

Appendix E 387

Test strategy The test strategy describes how the anticipated goal is
translated to the way in which the tests are conducted.
Among other things, the strategy describes the risk
categories and prescribes the test techniques, also
known as test approach.

Test strength Each risk area is assigned a test strength, which is
used to determine the test techniques.

Test tree The decomposition of the test object into functions
and areas of attention.

Testware Artifacts produced during the test process required to
plan, design, and execute tests, such as documenta-
tion, scripts, inputs, expected results, set-up and
clear-up procedures, files, databases, environment,
and any additional software or utilities used in test-
ing. [ISTQB, 2007]

Time stamp The registration of the date and time at which an
event takes place.

TRA See Test risk analysis

Transition Changeover

Triage meeting See Error management

UML Unified Modeling Language This is a model-based
language that was designed so that object-oriented
analyses and designs can be made for information
systems.

Use case Specification technique that originated in UML. User
scenarios are described as a sequence of transactions.
Describing the dialogue between a user and the sys-
tem with a tangible result. After [ISTQB, 2007].

User Person who uses one or more applications to perform
his daily activities. There is a difference between
the customer or end-user and the users in the orga-
nization.

388 Appendix E

User acceptance test
(UAT)

Validation test (fit for purpose) that checks whether
the users can use the system and whether the system
is well integrated with the workflow and processes.

Walk through A step-by-step presentation by the author of a docu-
ment in order to gather information and to establish a
common understanding of its content [ISTQB, 2007]
In this book primairy used as a tour through the test
design whereby the test coordinator describes how
the team approached the test design and how the risks
were included.

White-box test Testing based on an analysis of the internal structure
of the component or system [ISTQB, 2007].

Work breakdown structure
(WBS)

Planning technique that beaks the project down into
little pieces. Each piece consists of a product or an
activity. An estimate is provided of the number of
hours needed for each activity.

Workaround An alternative solution that ensures that the original
goal is achieved. In software development, the term is
used to specify that the function is not working prop-
erly due to a software error, but that there is a way to
work around the problem. This means that the impact
of the error is small.

References

[Akamai, 2006] Akamai technologies and JupiterResearch, 4 Seconds as the New Threshold of
Acceptability for Retail Web Page Response Times, Cambridge, (2006)

[Anderson, 1999] Anderson, M, The top 13 mistakes in load testing applications, STQmaga-
zine,Vol. 1, No. 5, SQE Pub, (1999)

[Ash, 2006] Edwin van Ash, Succes van SOA staat of valt met beheer, IT Beheer, issue 9, Sdu
publishers, (2006)

[ASL] ASL, ASL begrippenlijst (glossary), www.aslfoundation.org/
[Baars et al., 2006] Cor Baars, Gert Florijn, Practische Enterprise Architectuur, Seminar “En-

terprise Architectuur”, (2006)
[Basili] Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull1,

Sivert Sørumgård, Marvin V. Zelkowitz, The Empirical Investigation of Perceptive-Based
Reading, whitepaper, Nasa

[BCS SIGIST, 1997] British Computer Society Specialist Interest Group in Software Testing,
BS 7925 – 2 Standard for Software Component Testing Working Draft 3.3, (1997)

[Bilt] http://mot.vuse.vanderbilt.edu/mt322/Ishikawa.htm
[Black, 2002] Rex Black, Eurostar, (2002)
[Boehm, 1981] Boehm, B., Software Engineering Economics, Prentice-Hall Inc, (1981)
[Bouman, 2004] Egbert Bouman, SmarTest, Ten Hagen & Stam, (2004)
[Braspenning, 2006] Niels Braspenning, Asia van de Mortel-Fronczak, Koos Rooda, Model-

based integration and testing of high-tech multi-disciplinary systems, Dutch testing day,
(2006)

[Broekman et al., 2001] B. Broekman, C. Hoos, M. Paap, Automatisering van de testuitvoering,
Ten Hagen & Stam, (2001)

[Buchholtz, 2006] Eckhard Buchholtz, Controlling Mindsets As Key To Success In Testing,
Eurostar, (2006)

[BusinessFuture]
www.businessfuture.co.uk/html/ProjectManagement/Work_Breakdown_Structure.html

[Clermont, 2006] Markus Clermont, Surviving in a QA-Organisation, Dutch testing day, (2006)
[Computerwoorden] www.computerwoorden.nl
[Dale] Van Dale, One of leading Dutch dictionaries,
[DeMarco, 1999] Tom DeMarco, Liste Timothy, peopleware- productive projects and teams,

Dorset house, New York, (1999)
[Deming] www.12manage.com/methods_demingcycle_nl.html
[Dietz] Jan Dietz, De skills van de ICT-architect, Cibit advisers, Technical university Delft,

(1996)

390 References

[Dustin et al., 2005] E. Dustin, J. Rashka, J.Paul, Automated software testing, Addison Wesley,
(2005)

[Fewster et al., 1999] Mark Fewster, Dorothy Graham, Software Test Automation, Addison
Wesley, (1999)

[Fewster, 2006] Mark Fewster, Keyword-Driven Test Automation, Eurostar, (2006)
[Gardiner, 2006] Julie Gardiner, Risk based teststrategy, Event by Dutch test association, (2006)
[Gerrard] Paul Gerrard, risk based test reporting,
[Hansche et al.] Susan Hansche, John Berti, Chris Hare, Official (ISC)² Guide to the CISSP

EXAM, Auerbach, (2003)
[Hedeman, 2000] Drs. Ir. B.H. Hedeman, Prince-heerlijk, Ten Hagen & Stam, (2000)
[Herzog] Pete Herzog, Open Source Security Testing Methodology Manual, www.osstmm.org
[Hul, 2006] Erwin van den Hul, De stappen van een complexe risico analyse matrix naar con-

creet testen, versie 1.0- 10-08-2006, whitepaper, (2006)
[Hul2, 2006] Erwin van den Hul, Van een complexe risicomatrix naar concreet testen, Event by

Dutch test association, (2006)
[IEEE 829, 1998] Software Engineering Technical Committee of the IEEE Computer Society,

IEEE Std 829-1998 IEEE Standard for Documentation,
[ISEB practitioner, 2004] Improve QS, ISEB practitioner reader part 2- spring 2004, Reader,

(2004)
[ISTQB, 2007] International Software Testing Qualifications Board, Standard glossary of terms

used in Software Testing, Version 2.0 (dd. December, 2nd 2007), (2007)
[ITIL, 2006] ITIL, ITIL® Glossary v01, 1 May 2006,

www.itil.co.uk/glossary.htm] (2006)
[ITSMF, 2000] IT Service Management, een introductie v2.3, (2000)
[Jones, 2000] Capers Jones, Software assessments, benchmarks and best practices, (2000)
[Kent, 2005] John Kent, The econoomics of testautomation, Eurostar, (2005)
[Koomen et al., 2000] Tim koomen, Martin Pol, Test Proces Improvement, Ten Hagen & Stam,

(2000)
[Koomen et al., 2007] Koomen et al.l, T-map Next, Tutein Nolthenius, (2006)
[Kramers, 1987] Kramers woordenboek, Elsevier/Meulenhoff Educatied, (1987)
[Marselis et al., 2007] Rik Marselis, Jos van Rooyen, Chris Schotanus i.c.w.Iris Pinkster, Test-

Grip, LogicaCMG
[Mash, 2006] Richard Mash, Keeping your Metrics Message Simple, Eurostar, (2006)
[Mors, 1993] N.P.M. Mors, Beslissingstabellen, Lansa Publisching BV, (1993)
[Ommeren, 2006] Erik van Ommeren, De wereld op zijn kop, IT Beheer, issue 9, Sdu publishers,

(2006)
[OWASP] OWASP Guide 3.0, www.owasp.org
[Pareto] www.economische-begrippen.nl/pqrs.htm
[Pas, 2004] Jens Pas, Testwijzer, I2B, (2004)
[Pavankumar] P. Pavankumar, Test case design methodologies (black-box methods),
[Pinkster et al., 2004] Iris Pinkster, bob van de Burgt, Dennis Janssen, Erik van Veenendaal,

Succesful Testmanagement, Springer, (2004)
[Pol et al., 1999] Martin Pol, Erik van Veendendaal, Ruud Teunissen, Testen volgens T-map,

Tutein Nolthenius, (1999)
[Prince-2, 2005] Tso, Managing Successful Projects With Prince 2, THE STATIONERY

OFFICE, (2005)
[Quentin, 2006] Geof Quentin, Breakfast talkshow, Eurostar, (2006)
[Sambaer, 2006] Sven Sambaer, Alec Puype, Steven Mertens, STBox, Computer Task group,

(2006)
[Schaefer, 2004] Hans Schaefer, What we knew about testing 10 years ago- And still don't do,

Eurostar, (2005)
[Siteur, 2000] Maurice Siteur, Testen met testtools, Acidemic service, (2000)
[Siteur, 2005] Maurice Siteur, Automate your testing!,

References 391

[Spillner et al., 2003] Andreas Spillner, Tilo Linz, Martin Pol, Testen volgens ISEB, Tutein
Nolthenius, (2003)

[Steenberg, 2005] Bart Steenbergen, Bluf your way into Prince Bart Steenbergen, whitepaper,
(2005)

[SurfNet] www.surfkit.nl/tools/woordenlijst/c.html
[TestFrame, 1996] CMG, Testframe, Ten Hagen & Stam, (1999)
[Thillard, 2006] Edwin van den Thillard, De complexiteit van SOA, IT Beheer, issue 9 (Dutch

magazin on maintenance), Sdu publishers, (2006)
[Thompson, 2004] Neil Thompson, Risk Mitigation Trees, Eurostar, (2004)
[Tijman, 2007] Anko Tijman, Agile Testen- Testen als teamsport, (2007)
[van Es et al., 2005] Van Es, Gerwen, Graave, Lighthart, Rooij, Service-Oriented Architecture,

Sdu publishers, (2005)
[Veenendaal, 2002] Erik van Veenendaal, The testing practitioner, Tutein Nolthenius, (2002)
[Veenendaal, 2004] Erik van Veenendaal, Exploratory Testen, zinvol of onzin?, Software Re-

lease Magazine, Jaargang 9, November 2004, Nummer 7., (2004)
[Veenendaal] Erik van Veenendaal, Exploratory testing, wat is het nu echt ?, presentation
[Webopedia] www.webopedia.com/TERM/D/drill_down.html
[Wikipedia] http://nl.wikipedia.org
[Zambelich] Keith Zambelich, Totally Data-Driven Automated Testing, whitepaper
[ZBC] www.zbc.nu
[Zeist et al., 1996] Bob van Zeist Paul Hendriks Robbert Paulussen Jos Trienekens, Quint:

Kwaliteit van softwareprodukten Praktijkervaringen met een kwaliteitsmodel, PDF-version
1.0, mei 1996, (1996)

Index

1

1D TRA 102, 104

2

2D TRA 113

A

acceptance 61
acceptance criteria 5, 147
accreditation 70
action word 243, 287
agile 3, 22, 33, 150
algorithm test 210
analyst 8, 164, 210, 319
architect 8
assignment 89, 145
ATM 66, 290

B

back-up 136, 256, 264, 274
bank card 66, 290
Basel II 8
baseline 164, 242
black-box 42, 259
boundary value 185, 197, 199, 234, 247
branch coverage 213
budget 50, 89, 99, 125, 293, 328, 342
bug 3
bug fix 63, 324
build number 314, 323

business case 10, 87, 269, 283
business goal 5, 9–11, 16, 17, 27, 49,

88, 121
business manager 6, 13, 20, 105, 334

C

cause-effect graphing 203, 234
certification tests 69
chain test 43
change control board 62
change request 22, 63, 64, 273,

335, 368
CISSP 80
claim testing 43
closed loop strategy 253
commercial of the shelf (COTS) 43
common body of knowledge (CBK) 80
comparator 281
concurrency testing 74, 225
condition coverage 213
configuration 55, 57, 69, 76, 241, 257,

267, 295, 314
configuration data 248, 271
configuration management 20, 272,

282, 351
conformity 280, 283, 305
conformity testing 66
controller (stakeholder) 7
controller (test automation) 291
CRUD testing 208, 235
customer 9, 19, 46, 59, 88, 90, 94, 137,

167, 322, 355

394 Index

D

dashboard 61, 303, 340
data cycle test See CRUD testing
database size 76
data-driven scripting 287
debriefing 232
decision moments 138
decision table 204
defect 3
defect detection rate 307, 322, 330, 332
deployment 159, 324
deployment cycle 159, 259–261,

269, 318
deployment guide 273
designer 8
detailed test plan 32, 50, 119, 143, 350
developer 8
diacritical character 195
discharge 59, 65, 131, 170, 349, 355
domain 186, 188
drill down 345
drivers 259, 268
dynamic test tool 278

E

effective productivity 140
embedded software 66
EMV standard 66
entry and exit criteria 24, 158, 351
equivalence partitioning 196, 234
error 3
error analysis 77, 219
error guessing 157
error handling 115, 197
estimate to completion 326, 328
estimated time to completion 133
ETC See estimate to completion
experience data 134
exploratory testing 21, 227, 235, 256,

305, 337

F

failure 3
fault 3
feasible path 293
finding 3
fishbone diagram 114
fit for purpose 5, 40, 65, 323
functional acceptance test 42
functional acceptance tests (FAT) 260

functional decomposition 102
functional design 5, 42, 107, 147

G

generic test strategy 98, 119, 148
goal description 49, 50, 87, 98, 125, 137,

145, 175, 323

H

heuristic testing 226, 227, 235

I

impact 6, 102
impact analysis 63
implementation conformance statement

(ICS) 69
input data 190, 196, 238, 243, 247, 281
inspection 160, 181
installation manual

See deployment guide
interoperability 66
invalid 197, 198, 234, 243
Ishikawa diagram See fishbone
ISO 9126 80
ISO-9126 41

K

key performance indicators See KPI
KPI 14, 61, 303, 323, 340

L

lessons learned report 59, 352
linear scripting 286
live environment 43, 75, 250
load 75, 264

peak load 222
representative load 221

load testing 74, 215, 235
logical test case 183, 237
logical test design 183, 286, 289

M

maintenance environment 61, 284
master test plan 119, 148
meeting 169, 318
metadata 248, 249, 256, 271
milestone 26, 127

Index 395

mind map 106
moderator 104, 181, 228, 232
module integration test 42, 258
module test 42, 258

N

non-intrusion 76
null 199, 202

O

operational data 247–249
operational load profile 76
organization chart 167
output data 247–249, 256, 281

P

parameterization 287
parse 264
peer review 134
performance 34, 71, 215, 222, 224,

226, 264
performance tester 34, 74
performance testing 34, 71, 73, 264
perspective-based reading 161
physical test case 183, 191, 237, 238,

247, 249, 254, 285–288
physical test design 33, 54, 107, 289
pilot 43, 250, 263
planning 50, 99, 125, 326, 337
post-condition 240
PRINCE2 87, 167
priority 104, 180, 229
process cycle testing 208, 210, 235
product risk 138, 307, 339
production acceptance test (PAT)

43, 262
progress meeting 326
project brief 87
project manager 8

Q

quality 3, 6
quality assurance 61
quality attributes 5, 40, 41, 80, 102, 147,

151, 152, 258
quality gap 324, 329, 339
quick scan 244, 353

R

RACI chart 168
record and playback 55, 286, 288
regression test 57, 58, 233, 303, 305
regression test set 59, 65, 353
release advice 19, 163, 307, 324
release management 122, 123, 273
release notes 241
reliability testing 74, 223
request for change 309
requirements 5
requisites 171
restore 136, 256, 262, 274
result 10
result-driven 10, 12
result-driven testing 10, 11
retest 57, 68, 139, 233, 244, 271, 303,

305, 306, 311, 319
review 24, 35, 61, 101, 132, 134, 160,

175, 178, 179, 181, 192, 306, 327
review error form 180
risk analysis 28, 49, 50, 93, 98, 101, 130,

140, 147, 149, 151, 192, 335
risk category 105, 112, 244, 304, 334
risk-based testing 17, 101, 102, 149

S

sanity check 52, 130, 139, 160, 175, 293
Sarbanes-Oxley Act (SOx) 8
script 54, 57, 64, 74, 215, 228, 243, 255,

274, 277, 278, 280, 283, 285, 288
security 17

availability 77
confidentiality 77
integrity 77
physical security 268
software security 268

security attack 78
security exploit 78
security tester 34, 77, 89
security testing 22, 77, 89, 234, 265
security threat 78
security vulnerability 78
significance 34
simulator 260–262, 266, 282
smoke test 160
SOA 3, 66
stability (of test base) 68
stability (of the system)

See reliability testing

396 Index

stability (of the test base) 139, 147, 284
stakeholder 7, 11, 13, 94, 105, 116, 148,

299, 301, 306, 318, 323
state table 207
state transition diagram (STD) 206
state transition testing 206, 214, 234
statement coverage 213
static test tools 282
statistics 134, 135, 219
step plan 45
strategy matrix 155
stress testing 74, 221, 235
strong technique 187
stubs 259, 268
success (of a project) 9, 16
switch coverage 207
syntax testing 193, 198, 202, 234
system administrator 7
system boundary 40, 41, 93
system test (ST) 42, 259, 262
system under test (SUT) 146

T

technique matrix 157, 188
test action 237, 238, 240, 243, 249, 254,

286
test analyst 33, 52, 176
test automation 277, 278
test automation developer 34, 55
test charter 227, 229, 256, 305, 337
test cluster 154–157, 237, 304, 306, 322,

334, 335, 341
test coordinator 32, 44, 87, 90, 104, 162,

302, 318, 351
test coverage 32, 188, 282, 336
test data 53, 76, 237, 242, 246, 249, 259,

271, 274, 287
test data repository 249, 253–255, 287
test depth 99, 102, 179, 187, 192, 212
test design See logical or physical test-

design
test design technique 33, 35, 73, 101, 151,

185, 192, 305
test design techniques 79
test engineer 33, 177, 214, 295
test environment 26, 122, 136, 159, 241,

257, 314
test environment requirements checklist

267
test execution 299

its activities 301
metrics 132
when finished? 306

test harness 292
test level 24, 40, 42, 44, 89, 91, 94, 121,

143, 258
test manager 9, 32, 44, 87, 123, 143, 163,

228, 324
test methodology 15, 16, 24, 95
test object 93, 145, 271, 272, 314
test principles 38

applying the test principles 29
overview 16
what are they? 16

test progress 337
test project 44
test report 14, 25, 46, 60, 61, 71, 73, 306,

307, 321
dashboard 340
elements of… 322
tips for a clear test report 342

test risk analysis See risk analysis
test run 130, 301, 303, 304, 322
test scenario

in test automation 281, 291
in the logical test design 214, 225
in the physical test design 245

test script See script
test set 27, 58, 64, 65, 67, 336, 347, 353
test set up 167
test specialist 33
test strategy 13, 98, 119, 148, 149, 307,

351
test strength 188
test tool 53, 74, 76, 255, 278, 354
test tool architecture 291
test tree 50, 104, 107, 112, 130, 237, 245,

327
testware 25, 43, 159, 160, 179, 283, 285,

293
reusing 147, 164, 175, 354

time to market 284
TRA See risk analysis
TRA matrix 104, 117
training

for users 266
of the team 95, 131

triage meeting 318

U

UML 5, 33, 147
unsolved errors 306, 318, 333
use case 5, 33, 132, 211
user 7
user acceptance test (UAT) 41, 43, 261
user instructions 291

Index 397

V

valid 197, 198, 202, 234, 240, 243
validation 5
verification 5
version number See build number
V-model 158

W

walk-through 160, 162
WBS See work breakdown structure
weak technique 187
white-box 258, 267
wiki 242, 340
work breakdown structure 23, 125, 127,

170

