

1 C

Andrew B. Kahng • Jens Lienig
Igor L. Markov • Jin Hu

VLSI Physical Design:
From Graph Partitioning
to Timing Closure

ISBN 978-90-481-9590-9 e-ISBN 978-90-481-9591-6
DOI 10.1007/978-90-481-9591-6
Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Andrew B. Kahng
University of California at San Diego
Departments of CSE and ECE
Mailcode #0404
La Jolla, California 92093
USA
abk@ucsd.edu

Jens Lienig
Dresden University of Technology
Electrical Engineering and
Information Technology
Helmholtzstr. 10
01069 Dresden
Germany
jens@ieee.org

Igor L. Markov
University of Michigan
Electrical Engineering and
Computer Science
2260 Hayward St.
Ann Arbor, Michigan 48109
USA
imarkov@eecs.umich.edu

Jin Hu
University of Michigan
Electrical Engineering and
Computer Science
2260 Hayward St.
Ann Arbor, Michigan 48109
USA
jinhu@eecs.umich.edu

Foreword
Physical design of integrated circuits remains one of the most interesting and chal-
lenging arenas in the field of Electronic Design Automation. The ability to integrate
more and more devices on our silicon chips requires the algorithms to continuously
scale up. Nowadays we can integrate 2e9 transistors on a single 45nm-technology
chip. This number will continue to scale for the next couple of technology genera-
tions, requiring more transistors to be automatically placed on a chip and connected
together. In addition, more and more of the delay is contributed by the wires that
interconnect the devices on the chip. This has a profound effect on how physical
design flows need to be put together. In the 1990s, it was safe to assume that timing
goals of the design could be reached once the devices were placed well on the chip.
Today, one does not know whether the timing constraints can be satisfied until the
final routing has completed.

As far back as 10 or 15 years ago, people believed that most physical design prob-
lems had been solved. But, the continued increase in the number of transistors on
the chip, as well as the increased coupling between the physical, timing and logic
domains warrant a fresh look at the basic algorithmic foundations of chip implemen-
tation. That is exactly what this book provides. It covers the basic algorithms under-
lying all physical design steps and also shows how they are applied to current in-
stances of the design problems. For example, Chapter 7 provides a great deal of
information on special types of routing for specific design situations.

Several other books provide in-depth descriptions of core physical design algorithms
and the underlying mathematics, but this book goes a step further. The authors very
much realize that the era of individual point algorithms with single objectives is over.
Throughout the book they emphasize the multi-objective nature of modern design
problems and they bring all the pieces of a physical design flow together in Chapter
8. A complete flow chart, from design partitioning and floorplanning all the way to
electrical rule checking, describes all phases of the modern chip implementation
flow. Each step is described in the context of the overall flow with references to the
preceding chapters for the details.

This book will be appreciated by students and professionals alike. It starts from the
basics and provides sufficient background material to get the reader up to speed on
the real issues. Each of the chapters by itself provides sufficient introduction and
depth to be very valuable. This is especially important in the present era, where
experts in one area must understand the effects of their algorithms on the remainder
of the design flow. An expert in routing will derive great benefit from reading the
chapters on planning and placement. An expert in Design For Manufacturability
(DFM) who seeks a better understanding of routing algorithms, and of how these
algorithms can be affected by choices made in setting DFM requirements, will bene-
fit tremendously from the chapters on global and detailed routing.

v

The book is completed by a detailed set of solutions to the exercises that accompany
each chapter. The exercises force the student to truly understand the basic physical
design algorithms and apply them to small but insightful problem instances.

This book will serve the EDA and design community well. It will be a foundational
text and reference for the next generation of professionals who will be called on to
continue the advancement of our chip design tools.

Dr. Leon Stok
Vice President, Electronic Design Automation
IBM Systems and Technology Group
Hopewell Junction, NY

vi

Preface
VLSI physical design of integrated circuits underwent explosive development in the
1980s and 1990s. Many basic techniques were suggested by researchers and imple-
mented in commercial tools, but only described in brief conference publications
geared for experts in the field. In the 2000s, academic and industry researchers fo-
cused on comparative evaluation of basic techniques, their extension to large-scale
optimization, and the assembly of point optimizations into multi-objective design
flows. Our book covers these aspects of physical design in a consistent way, starting
with basic concepts in Chapter 1 and gradually increasing the depth to reach ad-
vanced concepts, such as physical synthesis. Readers seeking additional details, will
find a number of references discussed in each chapter, including specialized mono-
graphs and recent conference publications.

Chapter 2 covers netlist partitioning. It first discusses typical problem formulations
and proceeds to classic algorithms for balanced graph and hypergraph partitioning.
The last section covers an important application – system partitioning among multi-
ple FPGAs, used in the context of high-speed emulation in functional validation.

Chapter 3 is dedicated to chip planning, which includes floorplanning, power-
ground planning and I/O assignment. A broad range of topics and techniques are
covered, ranging from graph-theoretical aspects of block-packing to optimization by
simulated annealing and package-aware I/O planning.

Chapter 4 addresses VLSI placement and covers a number of practical problem
formulations. It distinguishes between global and detailed placement, and first cov-
ers several algorithmic frameworks traditionally used for global placement. De-
tailed placement algorithms are covered in a separate section. Current state of the art
in placement is reviewed, with suggestions to readers who might want to imple-
ment their own software tools for large-scale placement.

Chapters 5 and 6 discuss global and detailed routing, which have received signifi-
cant attention in research literature due to their interaction with manufacturability
and chip-yield optimizations. Topics covered include representing layout with graph
models and performing routing, for single and multiple nets, in these models. State-
of-the-art global routers are discussed, as well as yield optimizations performed in
detailed routing to address specific types of manufacturing faults.

Chapter 7 deals with several specialized types of routing which do not conform with
the global-detailed paradigm followed by Chapters 5 and 6. These include non-
Manhattan area routing, commonly used in PCBs, and clock-tree routing required
for every synchronous digital circuit. In addition to algorithmic aspects, we explore
the impact of process variability on clock-tree routing and means of decreasing this
impact.

vii

Chapter 8 focuses on timing closure, and its perspective is particularly unique. It
offers a comprehensive coverage of timing analysis and relevant optimizations in
placement, routing and netlist restructuring. Section 8.6 assembles all these tech-
niques, along with those covered in earlier chapters, into an extensive design flow,
illustrated in detail with a flow chart and discussed step-by-step with several figures
and many references.

This book does not assume prior exposure to physical design or other areas of EDA.
It introduces the reader to the EDA industry and basic EDA concepts, covers key
graph concepts and algorithm analysis, carefully defines terms and specifies basic
algorithms with pseudocode. Many illustrations are given throughout the book, and
every chapter includes a set of exercises, solutions to which are given in one of the
appendices. Unlike most other sources on physical design, we made an effort to
avoid impractical and unnecessarily complicated algorithms. In many cases we offer
comparisons between several leading algorithmic techniques and refer the reader to
publications with additional empirical results.

Some chapters are based on material in the book Layoutsynthese elektronischer
Schaltungen – Grundlegende Algorithmen für die Entwurfsautomatisierung, which
was published by Springer in 2006.

We are grateful to our colleagues and students who proofread earlier versions of this
book and suggested a number of improvements (in alphabetical order): Matthew
Guthaus, Kwangok Jeong, Johann Knechtel, Andreas Krinke, Nancy MacDonald,
Jarrod Roy, Yen-Kuan Wu and Hailong Yao.

Images for global placement and clock routing in Chapter 8 were provided by
Myung-Chul Kim and Dong-Jin Lee. Cell libraries in Appendix B were provided by
Bob Bullock, Dan Clein and Bill Lye from PMC Sierra; the layout and schematics in
Appendix B were generated by Matthias Thiele. The work on this book was partially
supported by the National Science Foundation (NSF) through the CAREER
award 0448189 as well as by Texas Instruments and Sun Microsystems.

We hope that you will find the book interesting to read and useful in your profes-
sional endeavors.

Sincerely,

Andrew, Jens, Igor and Jin

viii

Table of Contents
1 Introduction..3
1.1 Electronic Design Automation (EDA)... 4
1.2 VLSI Design Flow... 7
1.3 VLSI Design Styles .. 11
1.4 Layout Layers and Design Rules... 16
1.5 Physical Design Optimizations .. 18
1.6 Algorithms and Complexity .. 20
1.7 Graph Theory Terminology.. 24
1.8 Common EDA Terminology ... 26
Chapter 1 References.. 30

2 Netlist and System Partitioning33
2.1 Introduction... 33
2.2 Terminology.. 34
2.3 Optimization Goals... 35
2.4 Partitioning Algorithms ... 36

2.4.1 Kernighan-Lin (KL) Algorithm 36
2.4.2 Extensions of the Kernighan-Lin Algorithm 41
2.4.3 Fiduccia-Mattheyses (FM) Algorithm............................ 41

2.5 A Framework for Multilevel Partitioning ... 47
2.5.1 Clustering .. 48
2.5.2 Multilevel Partitioning .. 48

2.6 System Partitioning onto Multiple FPGAs...................................... 50
Chapter 2 Exercises... 53
Chapter 2 References.. 54

3 Chip Planning ..57
3.1 Introduction to Floorplanning ... 58
3.2 Optimization Goals in Floorplanning.. 59
3.3 Terminology.. 61
3.4 Floorplan Representations... 63

3.4.1 Floorplan to a Constraint-Graph Pair............................ 63
3.4.2 Floorplan to a Sequence Pair 64
3.4.3 Sequence Pair to a Floorplan 65

3.5 Floorplanning Algorithms ... 68
3.5.1 Floorplan Sizing .. 69
3.5.2 Cluster Growth .. 73
3.5.3 Simulated Annealing... 77
3.5.4 Integrated Floorplanning Algorithms............................. 81

3.6 Pin Assignment .. 82
3.7 Power and Ground Routing ... 86

3.7.1 Design of a Power-Ground Distribution Network 87
3.7.2 Planar Routing .. 87
3.7.3 Mesh Routing.. 89

Chapter 3 Exercises... 91
Chapter 3 References.. 92

ix

4 Global and Detailed Placement95
4.1 Introduction... 95
4.2 Optimization Objectives ... 96
4.3 Global Placement... 103

4.3.1 Min-Cut Placement ... 104
4.3.2 Analytic Placement ... 110
4.3.3 Simulated Annealing... 117
4.3.4 Modern Placement Algorithms 120

4.4 Legalization and Detailed Placement .. 122
Chapter 4 Exercises... 125
Chapter 4 References.. 126

5 Global Routing...131
5.1 Introduction... 131
5.2 Terminology and Definitions .. 133
5.3 Optimization Goals... 136
5.4 Representations of Routing Regions... 138
5.5 The Global Routing Flow ... 140
5.6 Single-Net Routing ... 141

5.6.1 Rectilinear Routing.. 141
5.6.2 Global Routing in a Connectivity Graph 146
5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm.......... 149
5.6.4 Finding Shortest Paths with A* Search 154

5.7 Full-Netlist Routing... 155
5.7.1 Routing by Integer Linear Programming 155
5.7.2 Rip-Up and Reroute (RRR) .. 158

5.8 Modern Global Routing .. 160
5.8.1 Pattern Routing ... 161
5.8.2 Negotiated Congestion Routing.................................... 162

Chapter 5 Exercises... 164
Chapter 5 References.. 165

6 Detailed Routing..169
6.1 Terminology.. 169
6.2 Horizontal and Vertical Constraint Graphs 172

6.2.1 Horizontal Constraint Graphs 172
6.2.2 Vertical Constraint Graphs.. 173

6.3 Channel Routing Algorithms .. 175
6.3.1 Left-Edge Algorithm .. 175
6.3.2 Dogleg Routing ... 178

6.4 Switchbox Routing ... 180
6.4.1 Terminology .. 180
6.4.2 Switchbox Routing Algorithms...................................... 181

6.5 Over-the-Cell Routing Algorithms .. 182
6.5.1 OTC Routing Methodology ... 183
6.5.2 OTC Routing Algorithms... 184

6.6 Modern Challenges in Detailed Routing .. 185
Chapter 6 Exercises... 187
Chapter 6 References.. 188

x

7 Specialized Routing..191
7.1 Introduction to Area Routing .. 191
7.2 Net Ordering in Area Routing... 193
7.3 Non-Manhattan Routing... 195

7.3.1 Octilinear Steiner Trees .. 195
7.3.2 Octilinear Maze Search .. 197

7.4 Basic Concepts in Clock Networks.. 197
7.4.1 Terminology .. 198
7.4.2 Problem Formulations for Clock-Tree Routing............. 201

7.5 Modern Clock Tree Synthesis.. 203
7.5.1 Constructing Trees with Zero Global Skew.................. 203
7.5.2 Clock Tree Buffering in the Presence of Variation 212

Chapter 7 Exercises... 215
Chapter 7 References.. 217

8 Timing Closure ..221
8.1 Introduction... 221
8.2 Timing Analysis and Performance Constraints 223

8.2.1 Static Timing Analysis... 224
8.2.2 Delay Budgeting with the Zero-Slack Algorithm........... 229

8.3 Timing-Driven Placement... 233
8.3.1 Net-Based Techniques ... 234
8.3.2 Embedding STA into Linear Programs for Placement . 237

8.4 Timing-Driven Routing ... 239
8.4.1 The Bounded-Radius, Bounded-Cost Algorithm.......... 240
8.4.2 Prim-Dijkstra Tradeoff ... 241
8.4.3 Minimization of Source-to-Sink Delay........................... 242

8.5 Physical Synthesis ... 244
8.5.1 Gate Sizing.. 244
8.5.2 Buffering.. 245
8.5.3 Netlist Restructuring.. 246

8.6 Performance-Driven Design Flow.. 250
8.7 Conclusions.. 258
Chapter 8 Exercises... 260
Chapter 8 References.. 262

A Solutions to Chapter Exercises267
Chapter 2: Netlist and System Partitioning.. 267
Chapter 3: Chip Planning... 270
Chapter 4: Global and Detailed Placement ... 273
Chapter 5: Global Routing.. 276
Chapter 6: Detailed Routing... 280
Chapter 7: Specialized Routing ... 284
Chapter 8: Timing Closure ... 292

B Example CMOS Cell Layouts.....................................299

xi

 3

1 Introduction

The design and optimization of integrated circuits (ICs) are essential to the produc-
tion of new semiconductor chips. Modern chip design has become so complex that it
is largely performed by specialized software, which is frequently updated to reflect
improvements in semiconductor technologies and increasing design complexities. A
user of this software needs a high-level understanding of the implemented algo-
rithms. On the other hand, a developer of this software must have a strong computer-
science background, including a keen understanding of how various algorithms
operate and interact, and what their performance bottlenecks are.

This book introduces and evaluates algorithms used during physical design to pro-
duce a geometric chip layout from an abstract circuit design. Rather than list every
relevant technique, however, it presents the essential and fundamental algorithms
used within each physical design stage.

– Partitioning (Chap. 2) and chip planning (Chap. 3) of design functionality

during the initial stages of physical design
– Geometric placement (Chap. 4) and routing (Chaps. 5-6) of circuit components
– Specialized routing and clock tree synthesis for synchronous circuits (Chap. 7)
– Meeting specific technology and performance requirements, i.e., timing closure,

such that the final fabricated layout satisfies system objectives (Chap. 8)

Other design steps, such as circuit design, logic synthesis, transistor-level layout and
verification, are not discussed in detail, but are covered in such references as [1.1].

This book emphasizes digital circuit design for very large-scale integration (VLSI);
the degree of automation for digital circuits is significantly higher than for analog
circuits. In particular, the focus is on algorithms for digital ICs, such as system parti-
tioning for field-programmable gate arrays (FPGAs) or clock network synthesis for
application-specific integrated circuits (ASICs). Similar design techniques can be
applied to other implementation contexts such as multi-chip modules (MCMs) and
printed circuit boards (PCBs).

The following broad questions, of interest to both students and designers, are ad-
ressed in the upcoming chapters. d

– How is functionally correct layout produced from a netlist?

 How do we develop and improve software for VLSI physical design?

More information about this book is at http://vlsicad.eecs.umich.edu/KLMH/.

– How does software for VLSI physical design work?
–

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_1, © Springer Science+Business Media B.V. 2011

4 1 Introduction

1.1 Electronic Design Automation (EDA) 1.1

The Electronic Design Automation (EDA) industry develops software to support
engineers in the creation of new integrated-circuit (IC) designs. Due to the high
complexity of modern designs, EDA touches almost every aspect of the IC design
flow, from high-level system design to fabrication. EDA addresses designers’ needs
at multiple levels of electronic system hierarchy, including integrated circuits (ICs),
multi-chip modules (MCMs), and printed circuit boards (PCBs).

Progress in semiconductor technology, based on Moore’s Law (Fig. 1.1), has led to
integrated circuits (1) comprised of hundreds of millions of transistors, (2) assem-
bled into packages, each having multiple chips and thousands of pins, and (3)
mounted onto high-density interconnect (HDI) circuit boards with dozens of wiring
layers. This design process is highly complex and heavily depends on automated
tools. That is, computer software is used to mostly automate design steps such as
logic design, simulation, physical design, and verification.

EDA was first used in the 1960s in the form of simple programs to automate place-
ment of a very small number of blocks on a circuit board. Over the next few years,
the advent of the integrated circuit created a need for software that could reduce the
total number of gates. Current software tools must additionally consider electrical
effects such as signal delays and capacitive coupling between adjacent wires. In the
modern VLSI design flow, nearly all steps use software to automate optimizations.

In the 1970s, semiconductor companies developed in-house EDA software, special-
ized programs to address their proprietary design styles. In the 1980s and 1990s,
independent software vendors created new tools for more widespread use. This gave
rise to an independent EDA industry, which now enjoys annual revenues of ap-
proximately five billion dollars and employs around twenty thousand people. Many
EDA companies have headquarters in Santa Clara county, in the state of California.
This area has been aptly dubbed the Silicon Valley.

Several annual conferences showcase the progress of the EDA industry and acade-
mia. The most notable one is the Design Automation Conference (DAC), which
holds an industry trade show as well as an academic symposium. The International
Conference on Computer-Aided Design (ICCAD) places emphasis on academic
research, with papers that relate to specialized algorithm development. PCB devel-
opers attend PCB Design Conference West in September. Overseas, Europe and
Asia host the Design, Automation and Test in Europe (DATE) conference and the
Asia and South Pacific Design Automation Conference (ASP-DAC), respectively.
The world-wide engineering association Institute of Electrical and Electronic Engi-
neers (IEEE) publishes the monthly IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), while the Association for Computing
Machinery (ACM) publishes ACM Transactions on Design Automation of Electronic
Systems (TODAES).

8 1 Introduction

– Integration of analog and mixed-signal blocks
– Memory management – serial or parallel – and the addressing scheme
– Number and types of computational cores, such as processors and digital signal

processing (DSP) units – and particular DSP algorithms
d protocols, etc. – Internal and external communication, support for standar

– Usage of hard and soft intellectual-property (IP) blocks
d the die-package interface

–

 determined. That is, each

are Verilog and VHDL. HDL mod-

l nets, or

uit-level design is

 design is a set of manufacturing specifications

esign
layout must be recreated in (migrated to) each new manufacturing technology.

– Pinout, packaging, an
– Power requirements
 Choice of process technology and layer stacks

Functional and logic design. Once the architecture is set, the functionality and
connectivity of each module (such as a processor core) must be defined. During
functional design, only the high-level behavior must be
module has a set of inputs, outputs, and timing behavior.

Logic design is performed at the register-transfer level (RTL) using a hardware
description language (HDL) by means of programs that define the functional and
timing behavior of a chip. Two common HDLs
ules must be thoroughly simulated and verified.

Logic synthesis tools automate the process of converting HDL into low-level circuit
elements. That is, given a Verilog or VHDL description and a technology library, a
logic synthesis tool can map the described functionality to a list of signa
netlist, and specific circuit elements such as standard cells and transistors.

Circuit design. For the bulk of digital logic on the chip, the logic synthesis tool
automatically converts Boolean expressions into what is referred to as a gate-level
netlist, at the granularity of standard cells or higher. However, a number of critical,
low-level elements must be designed at the transistor level; this is referred to as
circuit design. Example elements that are designed at the circuit level include static
RAM blocks, I/O, analog circuits, high-speed functions (multipliers), and electro-
static discharge (ESD) protection circuits. The correctness of circ
predominantly verified by circuit simulation tools such as SPICE.

Physical design. During physical design, all design components are instantiated
with their geometric representations. In other words, all macros, cells, gates, transis-
tors, etc., with fixed shapes and sizes per fabrication layer are assigned spatial loca-
tions (placement) and have appropriate routing connections (routing) completed in
metal layers. The result of physical
that must subsequently be verified.

Physical design is performed with respect to design rules that represent the physical
limitations of the fabrication medium. For instance, all wires must be a prescribed
minimum distance apart and have prescribed minimum width. As such, the d

 1.2 VLSI Design Flow 9

Physical design directly impacts circuit performance, area, reliability, power, and
manufacturing yield. Examples of these impacts are discussed below.

– Performance: long routes have significantly longer signal delays.
– Area: placing connected modules far apart results in larger and slower chips.
– Reliability: large number of vias can significantly reduce the reliability of the

circuit.
– Power: transistors with smaller gate lengths achieve greater switching speeds at

the cost of higher leakage current and manufacturing variability; larger transis-
tors and longer wires result in greater dynamic power dissipation.

– Yield: wires routed too close together may decrease yield due to electrical
shorts occurring during manufacturing, but spreading gates too far apart may
also undermine yield due to longer wires and a higher probability of opens.

ue to its high complexity, physical design is split into several key steps (Fig. 1.3).

– r subcircuits or modules,

– ts

b-

–

n channels and in switchboxes.

g resources.
– Timing closure (Chap. 8) optimizes circuit performance by specialized place-

or or an
insufficient design margin (guardband) against possible manufacturing and envi-

me-

D

Partitioning (Chap. 2) breaks up a circuit into smalle
which can each be designed or analyzed individually.
Floorplanning (Chap. 3) determines the shapes and arrangement of subcircui
or modules, as well as the locations of external ports and IP or macro blocks.
Power and ground routing (Chap. 3), often intrinsic to floorplanni– ng, distri
utes power (VDD) and ground (GND) nets throughout the chip.

– Placement (Chap. 4) finds the spatial locations of all cells within each block.
Clock network synthesis (Chap. 7) determines the buffering, gating (e.g., for
power management) and routing of the clock signal to meet prescribed skew
and delay requirements.

– Global routing (Chap. 5) allocates routing resources that are used for connec-
tions; example resources include routing tracks i

– Detailed routing (Chap. 6) assigns routes to specific metal layers and routing
tracks within the global routin

ment and routing techniques.

After detailed routing, electrically-accurate layout optimization is performed at a
small scale. Parasitic resistances (R), capacitances (C) and inductances (L) are ex-
tracted from the completed layout, and then passed to timing analysis tools to check
the functional behavior of the chip. If the analyses reveal erroneous behavi

ronmental variations, then incremental design optimizations are performed.

The physical design of analog circuits deviates from the above methodology, which
is geared primarily toward digital circuits. For analog physical design, the geometric
representation of a circuit element is created using layout generators or manual
drawing. These generators only use circuit elements with known electrical para

10 1 Introduction

ters, such as the resistance of a resistor, and accordingly generate the appropriate
geometric representation, e.g., a resistor layout with specified length and width.

Physical verification. After physical design is completed, the layout must be fully
verified to ensure correct electrical and logical functionality. Some problems found
during physical verification can be tolerated if their impact on chip yield is negligi-
le. In other cases, the layout must be changed, but these changes must be minimal

usual

hat are not connected to PN-junction nodes.

d numerical
methods. The choice of algorithms for these tasks is relatively straightforward, com-

cated silicon foundry (fab).
The handoff of the design to the manufacturing process is called tapeout, even

At the fab, the design is patterned onto different layers using photolithographic proc-

b
and should not introduce new problems. Therefore, at this stage, layout changes are

ly performed manually by experienced design engineers.

– Design rule checking (DRC) verifies that the layout meets all technology-
imposed constraints. DRC also verifies layer density for chemical-mechanical
polishing (CMP).

– Layout vs. schematic (LVS) checking verifies the functionality of the design.
From the layout, a netlist is derived and compared with the original netlist pro-
duced from logic synthesis or circuit design.

– Parasitic extraction derives electrical parameters of the layout elements from
their geometric representations; with the netlist, these are used to verify the
electrical characteristics of the circuit.

– Antenna rule checking seeks to prevent antenna effects, which may damage
transistor gates during manufacturing plasma-etch steps through accumulation
of excess charge on metal wires t

– Electrical rule checking (ERC) verifies the correctness of power and ground
connections, and that signal transition times (slew), capacitive loads and fan-
outs are appropriately bounded.

Both analysis and synthesis techniques are integral to the design of VLSI circuits.
Analysis typically entails the modeling of circuit parameters and signal transitions,
and often involves the solution of various equations using establishe

pared to the vast possibilities for syntheses and optimization. Therefore, this book
focuses on optimization algorithms used in IC physical design, and does not cover
computational techniques used during physical verification and signoff.

Fabrication. The final DRC-/LVS-/ERC-clean layout, usually represented in the
GDSII Stream format, is sent for manufacturing at a dedi

though data transmission from the design team to the silicon fab no longer relies on
magnetic tape [1.6]. Generation of the data for manufacturing is sometimes referred
to as streaming out, reflecting the use of GDSII Stream.

esses. Photomasks are used so that only certain patterns of silicon, specified by the
layout, are exposed to a laser light source. Producing an IC requires many masks;
modifying the design requires changes to some or all of the masks.

 1.3 VLSI Design Styles 11

ICs are manufactured on round silicon wafers with diameters ranging from 200 mm
(8 inches) to 300 mm (12 inches). The ICs must then be tested and labeled as either
functional or defective, sometimes according to bins depending on the functional or

-line packages
(DIPs), pin grid arrays (PGAs), and ball grid arrays (BGAs). After a die is posi-

integrated as bare dice into the MCM, which is pack-
aged separately at a later point. After packaging, the finished product may be tested
to ensure that it meets design requirements such as function (input/output relations),

cessors or FPGAs, where the high cost of design
effort is amortized over large production volumes. Semi-custom design is used more

e-
-market and overall cost as well.

The d.

– ls, the design has many
pre-designed elements such as logic gates that are copied from libraries.

d anywhere
on the chip without restriction. This approach usually results in a very compact chip

1.3

parametric (speed, power) tests that have failed. At the end of the manufacturing
process, the ICs are separated, or diced, by sawing the wafer into smaller pieces.

Packaging and testing. After dicing, functional chips are typically packaged. Pack-
aging is configured early in the design process, and reflects the application along
with cost and form factor requirements. Package types include dual in

tioned in the package cavity, its pins are connected to the package’s pins, e.g., with
wire bonding or solder bumps (flip-chip). The package is then sealed.

Manufacturing, assembly and testing can be sequenced in different ways. For exam-
ple, in the increasingly important wafer-level chip-scale packaging (WLCSP) meth-
odology, “bumping” with high-density solder bumps that facilitate delivery of power,
ground and signals from the package to the die is performed before the wafer is
diced. With multi-chip module based integration, chips are usually not packaged
individually; rather, they are

timing or power dissipation.

1.3 VLSI Design Styles

Selecting an appropriate circuit-design style is very important because this choice
affects time-to-market and design cost. VLSI design styles fall in two categories –
full-custom and semi-custom. Full-custom design is primarily seen with extremely
high-volume parts such as micropro

frequently because it reduces the complexity of the design process, and hence tim
to

following semi-custom standard design styles are the most commonly use

Cell-based: typically using standard cells and macro cel

– Array-based: typically either gate arrays or FPGAs, the design has a portion of
pre-fabricated elements connected by pre-routed wires.

Full-custom design. Among available design styles, a full-custom design style has
the fewest constraints during layout generation, e.g., blocks can be place

 1.4 Layout Layers and Design Rules 17

The wire resistance is usually given as sheet resistance in ohms per square (/).
That is, for a given wire thickness, the resistance per square area remains the same –
independent of the square size (a higher resistance for a longer length is compen-
sated by the increased width of the square).1 Hence, the resistance of any rectangular
interconnect shape can be easily calculated as the number of unit-square areas mul-
tiplied by the sheet resistance of the corresponding layer.

Individual transistors are created by overlapping poly and diffusion layers. Cells,
e.g., standard cells, are comprised of transistors but typically include one metal layer.

The routing between cells (Chaps. 5-7) is performed entirely within the metal layers.
This is a non-trivial task – not only are poly and Metal1 mostly reserved for cells,
but different layers have varying sheet resistances, which strongly affects timing
characteristics. For a typical 0.35 μm CMOS process, the sheet resistance of poly is
10 / , that of the diffusion layer is approximately 3 / , and that of aluminum is
0.06 / . Thus, poly should be used sparingly, and most of the routing done in
metal layers.

Routing through multiple metal layers requires vias. For the same 0.35 μm process,
the typical resistance of a via between two metal layers is 6 , while that of a con-
tact is significantly higher – 20 . As technology scales, modern copper intercon-
nects become highly resistive due to smaller cross sections, grain effects that cause
electron scattering, and the use of barrier materials to prevent reactive copper atoms
from leaching into the rest of the circuit. In a typical 65 nm CMOS process, the
sheet resistance of poly is 12 / , that of the diffusion layer is 17 / , and that of
the copper Metal1 layer is 0.16 / . Via and contact resistances are respectively
1.5 and 22 in a typical 65 nm process.

Design rules. An integrated circuit is fabricated by shining laser light through masks,
where each mask defines a certain layer pattern. For a mask to be effective, its lay-
out pattern must meet specific technology constraints. These constraints, or design
rules, ensure that (1) the design can be fabricated in the specified technology and (2)
the design will be electrically reliable and feasible. Design rules exist both for each
individual layer and for interactions across multiple layers. In particular, transistors
require structural overlaps of poly and diffusion layers.

Though design rules are complex, they can be broadly grouped into three categories.

– Size rules, such as minimum width: The dimensions of any component (shape),

e.g., length of a boundary edge or area of the shape, cannot be smaller than
given minimum values (a in Fig. 1.11). These values vary across different
metal layers.

1 Since [length/width] is dimensionless, sheet resistance is measured in the same units as resistance

(ohms). However, to distinguish it from resistance, it is specified in ohms per square (/).

 1.5 Physical Design Optimizations 19

where A is the chip area, L is the total wirelength, and w1 and w2 are weights that
represent the relative importance of A and L. In other words, the weights influence
the impact of each objective goal on the overall cost function. In practice, 0 w1 1,
0 w2 1, and w1 + w2 = 1.

During layout optimization, three types of constraints must be met.

– Technology constraints enable fabrication for a specific technology node and

are derived from technology restrictions. Examples include minimum layout
widths and spacing values between layout shapes.

– Electrical constraints ensure the desired electrical behavior of the design. Ex-
amples include meeting maximum timing constraints for signal delay and stay-
ing below maximum coupling capacitances.

– Geometry (design methodology) constraints are introduced to reduce the over-
all complexity of the design process. Examples include the use of preferred
wiring directions during routing, and the placement of standard cells in rows.

As technology scales further, electrical effects have become increasingly significant.
Thus, many types of electrical constraints have been introduced recently to ensure
correct behavior. Various constraints not required at earlier technology nodes are
necessary for modern designs. Such constraints may limit coupling capacitance to
ensure signal integrity, prevent electromigration effects in interconnects, and pre-
vent adverse temperature-related phenomena.

A basic challenge is that new electrical effects are not easily translated into new
geometric rules for layout design. For instance, is signal delay best minimized by
reducing total wirelength or by reducing coupling capacitance between the routes of
different nets? Such a question is further complicated by the fact that routes on other
metal layers, as well as their switching activity, also affect signal delay. Although
only loose geometric rules can be defined, electrical properties can be accurately
extracted from layout, and physical simulation enables precise estimation of timing,
noise and power. This allows designers to assess the impact of layout optimizations.

In summary, difficulties encountered when optimizing layout include the following.

– Optimization goals may conflict with each other. For example, minimizing

wirelength too aggressively can result in a congested region, and increase the
number of vias.

– Constraints often lead to discontinuous, qualitative effects even when objective
functions remain continuous. For example, the floorplan design might permit
only some of the bits of a 64-bit bus to be routed with short wires, while the

– re tight-
ening, with new constraint types added for each new technology node.

remaining bits must be detoured.
Constraints, due to scaling and increased interconnect requirements, a

20 1 Introduction

These difficulties motivate the following rules of thumb.

– m flow. That is, there is no universal

–

–

–

imal solu-
tion, the use of heuristics is a valid and effective option (Sec. 1.6).

1.6 Algorithms and Complexity

t(n) needed to place n blocks can be

 of “overhead” that is required independently

ion or O(…). Formally, the runtime t(n) is order f (n),
t(n) = O(f (n)) when

Each design style requires its own custo
EDA tool that supports all design styles.
When designing a chip, imposing geometric constraints can potentially make
the problem easier at the expense of layout optimization. For instance, a row-
based standard-cell design is much easier to implement than a full-custom lay-
out, but the latter could achieve significantly better electrical characteristics.
To further reduce complexity, the design process is divided into sequential
steps. For example, placement and routing are performed separately, each with
specific optimization goals and constraints that are evaluated independently.
When performing fundamental optimizations, the choice is often between (1)
an abstract model of circuit performance that admits a simple computation, or
(2) a realistic model that is computationally intractable. When no efficient algo-
rithm or closed-form expression is available to obtain a globally opt

A key criterion for assessing any algorithm is its runtime complexity, the time re-
quired by the algorithm to complete as a function of some natural measure of the
problem size. For example, in block placement, a natural measure of problem size is

e number of blocks to be placed, and the time th
expressed as

t(n) = f (n) + c

where f (0) = 0 and c is a fixed amount
of input size, e.g., during initialization.

While other measures of algorithm complexity such as memory (“space”) are also of
interest, runtime is the most important complexity metric for IC physical design
algorithms. Complexity is represented in an asymptotic sense, with respect to the

 size n, using big-Oh notatinput
written as

knt)(lim

!)
n) = n! is

1.6

nfn)(

here k is a real number. For example, if t(n) = 7n! + n2 + 100, then t(n) = O(nw
because ! is the fastest growing term as n .The real number k for f(n

 1.6 Algorithms and Complexity 21

7007100!7lim100 !7lim
22 nnnnk

!!!! nnnn nn

Pla ement problems and their associated computational complexities include c

wapping one pair of cells: O(n)
 Given a single-row placement of n cells, determine whether the wirelength can

e: O(n3)

xhaustively Enumerating All Placement Possibilities

at grow exponen-
n n

uristics. The primary
goal of algorithm development for EDA is to construct heuristics that can quickly

– Place n cells in a single row and return the wirelength: O(n)
– Given a single-row placement of n cells, determine whether the wirelength can

be improved by s 2

–
be improved by permuting a group of three cells at a tim

– Place n cells in a single row so as to minimize the wirelength: O(n! · n) with a
naive algorithm

Example: E
Given: n cells.
Task: find a linear (single-row) placement of n cells with minimum total wirelength by using
exhaustive enumeration.

Solution:
The solution space consists of n! placement options. If generating and evaluating the wire-
length of each possible placement solution takes 1 microsecond (s) and n = 20, the total time
needed to find an optimal solution would be 77,147 years!

The first three placement tasks are considered scalable, since their complexities can
be written as O(np) or O(np log n), where p is a small integer, usually p {1,2,3}.
Algorithms having complexities where p > 3 are often considered not scalable.
Furthermore, the last problem is considerably more difficult and is impractical for
even moderate values of n, despite the existence of clever algorithms. A number of
important problems have best-known algorithm complexities th
tially with n, e.g., O(n!), O(n), and O(e). Many of these problems are known to be
NP-hard,2 and no polynomial-time algorithms are currently known that solve these
problems. Thus, for such problems, no known algorithms can ensure, in a time-
efficient manner, that they will return a globally optimal solution.

Chaps. 2-8 all deal with physical design problems that are NP-hard. For these prob-
lems, heuristic algorithms are used to find near-optimal solutions within practical
runtime limits. In contrast to conventional algorithms, which are guaranteed to pro-
duce an optimal (valid) solution in a known amount of time, heuristics may produce
inferior solutions. Algorithms that have poor worst-case complexity, but produce
optimal solutions in all practical cases, are also considered he

2 NP stands for non-deterministic polynomial time, and refers to the ability to validate in polyno-

mial time any solution that was “non-deterministically guessed”. NP-hard problems are at least
as hard as the most difficult NP problems. For further reading, see [1.4] and [1.7].

 1.6 Algorithms and Complexity 23

wa , as described below. The graph structure can be explicit, as in wire routing, or
icit, with edges representing small differences between possible solutions, e.g.,
ping a pair of adjacent standard cells in placement.

Breadth-first search

y
impl
swap

– (BFS): When searching for goal node T from starting node

–

olution quality. Given th thms are heuristic in nature,
the assessment of soluti al solution is known, then
the heuristic solution can be judged by its suboptimality with respect to the optimal

lution

S0, the algorithm checks all adjacent nodes S1. If the goal T is not found in S1,
the algorithm searches all of S1’s adjacent nodes S2. This process continues, re-
sembling expansion of a “wave-front”, until T is found or all nodes have been
searched.
Depth-first search (DFS): From the starting node S0, the algorithm checks
nodes in order of increasing depth, i.e., traversing as far as possible and as soon
as possible. In contrast to BFS, the next-searched node Si+1 is a neighbor of Si
unless all neighbors of Si have already been searched, in which case the search
backtracks to the highest-index location that has an unsearched neighbor. Thus,
DFS traverses as far as possible as soon as possible.

– Best-first search: The direction of search is based on cost criteria, not simply on
adjacency. Every step taken considers a current cost as well as the remaining
cost to the goal. The algorithm always expands or grows from the current best
known node or solution. An example is Dijkstra’s algorithm (Sec. 5.6.3).

Finally, some algorithms used in physical design are greedy. An initial solution is
transformed into another solution only if the new solution is strictly better than the
previous solution. Such algorithms find locally optimal solutions. For further read-
ing on the theory of algorithms and complexity, see [1.4].

S at most physical design algori
on quality is difficult. If the optim

so

)(

)()(

opt

optH

Scost

ScostScost

where cost(SH) is the cost of the heuristic solution SH and cost(Sopt) is the cost of the

lutions are tested across a suite of benchmarks. These sets of (non-trivial)
problem instances represent different corner cases, as well as common cases, and are
inspired by either industry or academic research. They enable assessment of a given
heuristic’s scalability and solution quality against previously-obtained heuristic
solutions.

optimal solution Sopt. This notion applies to only a tiny fraction of design problems,
in that optimal solutions are known only for small (or artificially-created) instances.
On the other hand, bounds on suboptimality can sometimes be proven for particular
heuristics, and can provide useful guidance.

When finding an optimal solution is impractical, as typical for modern designs,
heuristic so

24 1 Introduction

1.7 Graph Theory Terminology 1.7

Graphs are heavily used in physical design algorithms to describe and represent
layout topologies. Thus, a basic understanding of graph theory terminology is vital
to understanding how the optimization algorithms work. The following is a list of
basic terms; subsequent chapters will introduce specialized terminology.

A graph G(V,E) is made up of two sets – the set of nodes or vertices (elements),
denoted as V, and the set of edges (relations between the elements), denoted as E
(Fig. 1.13(a)). The degree of a node is the number of its incident edges.

A hypergraph consists of nodes and hyperedges, with each hyperedge being a subset
of two or more nodes. Note that a graph is a hypergraph in which every hyperedge
has cardinality two. Hyperedges are commonly used to represent multi-pin nets or
multi-point connections within circuit hypergraphs (Fig. 1.13(b)).

A multigraph (Fig. 1.13(c)) is a graph that can have more than one edge between
two given nodes. Multigraphs can be used to represent varying net weights; an alter-
native is to use an edge-weighted graph representation, which is more compact and
supports non-integer weights.

a
b

c

d e

f

g

(a)

b
e

d
a

c
f

(b)

a

b

c

(c)
Fig. 1.13 (a) A graph with seven edges. (b) A hypergraph with three hyperedges having sizes four,
three and two respectively. (c) A multigraph with four edges, where a-b has weight = 3.

A path between two nodes is an ordered sequence of edges from the start node to the
end node (a-b-f-g-e in Fig. 1.13(a)).

A cycle (loop) is a closed path that starts and ends at the same node (c-f-g-e-d-c in
Fig. 1.13(a)).

An undirected graph is a graph that represents only unordered node relations and
does not have any directed edges. A directed graph is a graph where the direction of
the edge denotes a specific ordered relation between two nodes. For example, a
signal might be generated at the output pin of one gate and flow to an input pin of
another gate – but not the other way around. Directed edges are drawn as arrows
starting from one node and pointing to the other.

 1.8 Common EDA Terminology 27

Physical verification checks the correctness of the layout design. This includes veri-
fying that the layout

– Complies with all technology requirements – Design Rule Checking (DRC)
– Is consistent with the original netlist – Layout vs. Schematic (LVS)
– Has no antenna effects – Antenna Rule Checking
– Complies with all electrical requirements – Electrical Rule Checking (ERC)

A component is a basic functional element of a circuit. Examples include transistors,
resistors, and capacitors.

A module is a circuit partition or a grouped collection of components.

A block is a module with a shape, i.e., a circuit partition with fixed dimensions.

A cell is a logical or functional unit built from various components. In digital cir-
cuits, cells commonly refer to gates, e.g., INV, AND-OR-INVERTER (AOI),
NAND, NOR. In general, the term is used to refer to either standard cells or macros.

A standard cell is a cell with a pre-determined functionality. Its height is a multiple
of a library-specific fixed dimension. In the standard-cell methodology, the logic
design is implemented with standard cells that are arranged in rows.

A macro cell is a cell without pre-defined dimensions. This term may also refer to a
large physical layout, possibly containing millions of transistors, e.g., an SRAM or
CPU core, and possibly having discrete dimensions, that can be incorporated into the
IC physical design.

A pin is an electrical terminal used to connect a given component to its external
environment. At the level of block-to-block connections (internal to the IC), I/O pins
are present on lower-level metal layers such as Metal1, Metal2 and Metal3. A pad is
an electrical terminal used to connect externally to the IC. Often, bond pads are
present on topmost metal layers and interface between external connections (such as
to other chips) and internal connections.

A layer is a manufacturing process level in which design components are patterned.
During physical design, circuit components are assigned to different layers, e.g.,
transistors are assigned to poly and active layers, while interconnects are assigned to
poly and metal layers and are routed according to the netlist.

A contact is a direct connection between silicon (poly or another active level) and a
metal layer, typically Metal1. Contacts are often used inside cells.

A via is a connection between metal layers, usually to connect routing structures on
different layers.

28 1 Introduction

A net or signal is a set of pins or terminals that must be connected to have the same
potential.

Supply nets are power (VDD) and ground (GND) nets that provide current to cells.

A netlist is the collection of all signal nets and the components that they connect in a
design, or, a list of all the nets and connecting pins of a subsection of the design.
That is, netlists can be organized as (1) pin-oriented – each design component has a
list of associated nets (Fig. 1.17 center), or (2) net-oriented – each net has a list of
associated design components (Fig. 1.17 right). Netlists are created during logic
synthesis and are a key input to physical design.

a

b

x

y

z cN1 N2

N3

N4

(a: N1)
(b: N2)
(c: N5)
(x: IN1 N1, IN2 N2, OUT N3)
(y: IN1 N1, IN2 N2, OUT N4)
(z: IN1 N3, IN2 N4, OUT N5)

(N1: a, x.IN1, y.IN1)
(N2: b, x.IN2, y.IN2)
(N3: x.OUT, z.IN1)
(N4: y.OUT, z.IN2)
(N5: z.OUT, c)

Pin-Oriented Netlist Net-Oriented Netlist

N5

Fig. 1.17 Pin-oriented (center) and net-oriented (right) netlist examples for the sample circuit (left).

A net weight w(net) is a numerical (typically integer) value given to a net net (or
edge edge) to indicate its importance or criticality. Net weights are used primarily
during placement, e.g., to minimize distance between cells that are connected by
edges with high net weights, and routing, e.g., to set the priority of a net.

The connectivity degree or connection cost c(i,j) between cells i and j for un-
weighted nets is the number of connections between i and j. With weighted nets,
c(i,j) is the sum of the individual connection weight between i and j.

The connectivity c(i) of cell celli is given by

V

j

jicic
1

),()(

where |V| is the number of cells in the netlist, and c(i,j) is the connectivity degree
between cells i and j. For example, cell y in Fig. 1.18 has c(y) = 5 if each net’s
weight equals 1.

A connectivity graph is a representation of the netlist as a graph. Cells, blocks and
pads correspond to nodes, while their connections correspond to edges (Fig. 1.18). A

p-pin net is represented by total connections between its nodes. Multiple edges

between two nodes imply a stronger (weighted) connection.
2
p

30 1 Introduction

 Chapter 1 References

[1.1] C. J. Alpert, D. P. Mehta
and S. S. Sapatnekar, eds., Handbook
of Algorithms for Physical Design
Automation, CRC Press, 2009.

[1.2] D. Chen, J. Cong and P. Pan,
“FPGA Design Automation: A Survey”,
Foundations and Trends in EDA 1(3)
(2006), pp. 195-330.

[1.3] D. Clein, CMOS IC Layout:
Concepts, Methodologies, and Tools,
Newnes, 1999.

[1.4] T. Cormen, C. Leiserson,
R. Rivest and C. Stein, Introduction to
Algorithms, 2nd Edition, McGraw Hill,
2003.

[1.5] International Technology
 Roadmap for Semiconductors,
2009 edition, www.itrs.net/.

[1.6] H. Kaeslin, Digital Integrated
Circuit Design: From VLSI
Architectures to CMOS Fabrication,
Cambridge University Press, 2008.

[1.7] B. Korte and J. Vygen,
Combinatorial Optimization: Theory
and Algorithms, Springer, 3rd edition,
2006.

[1.8] I. Kuon and J. Rose,
“Measuring the Gap Between
FPGAs and ASICs”, IEEE Trans.
on CAD 26(2) (2007), pp. 203-215.

[1.9] C. Mead and L. Conway,
Introduction to VLSI Systems,
Addison-Wesley, 1979.

[1.10] G. Moore, “Cramming More
Components Onto Integrated Circuits”,
Electronics 38(8) (1965).

[1.11] L. Scheffer, L. Lavagno
and G. Martin, eds., EDA for IC
Implementation, Circuit Design, and
Process Technology, CRC Press, 2006.

[1.12] L.-T. Wang, Y.-W. Chang and
K.-T. Cheng, eds., Electronic Design
Automation: Synthesis, Verification,
and Test (Systems on Silicon), Morgan
Kaufmann, 2009.

 33

2 Netlist and System Partitioning

The design complexity of modern integrated circuits has reached unprecedented
scale, making full-chip layout, FPGA-based emulation and other important tasks
increasingly difficult. A common strategy is to partition or divide the design into
smaller portions, each of which can be processed with some degree of independence
and parallelism. A divide-and-conquer strategy for chip design can be implemented
by laying out each block individually and reassembling the results as geometric
partitions. Historically, this strategy was used for manual partitioning, but became
infeasible for large netlists. Instead, manual partitioning can be performed in the
context of system-level modules by viewing them as single entities, in cases where
hierarchical information is available. In contrast, automated netlist partitioning (Secs.
2.1-2.4) can handle large netlists and can redefine a physical hierarchy of an elec-
tronic system, ranging from boards to chips and from chips to blocks. Traditional
netlist partitioning can be extended to multilevel partitioning (Sec. 2.5), which can
be used to handle large-scale circuits and system partitioning on FPGAs (Sec. 2.6).

2.1 Introduction

A popular approach to decrease the design complexity of modern integrated circuits
is to partition them into smaller modules. These modules can range from a small set
of electrical components to fully functional integrated circuits (ICs). The partitioner
divides the circuit into several subcircuits (partitions or blocks) while minimizing
the number of connections between partitions, subject to design constraints such as
maximum partition sizes and maximum path delay.

If each block is implemented independently, i.e., without considering other parti-
tions, then connections between these partitions may negatively affect the overall
design performance such as increased circuit delay or decreased reliability. More-
over, a large number of connections between partitions may introduce inter-block
dependencies that hamper design productivity.1 Therefore, the primary goal of parti-
tioning is to divide the circuit such that the number of connections between subcir-
cuits is minimized (Fig. 2.1). Each partition must also meet all design constraints.
For example, the amount of logic in a partition can be limited by the size of an
FPGA chip. The number of external connections of a partition may also be limited,
e.g., by the number of I/O pins in the chip package.

1 The empirical observation known as Rent’s rule suggests a power-law relationship between the
number of cells nG and the number of external connections nP = t nG

 r, for any subcircuit of a “well-
designed” system. Here, t is the number of pins per cell and r, referred to as the Rent’s exponent or
the Rent parameter, is a constant < 1. In particular, Rent’s rule quantifies the prevalence of short
wires in ICs, which is consistent with a hierarchical organization.

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_2, © Springer Science+Business Media B.V. 2011

2.1

 2.3 Optimization Goals 35

Though this chapter discusses the partitioning problem and partitioning algorithms
within the graph context, logic circuits are more accurately represented using hyper-
graphs, where each hyperedge2 connects two or more cells. Many graph-based algo-
rithms can be directly extended to hypergraphs.

The set of all partitions |Part| is disjoint if each node v V is assigned to exactly one
of the partitions.

An edge between two nodes i and j is cut if i and j belong to different partitions A
and B, i.e., i A, j B, and (i,j) E (Fig. 2.3).

A cut set is the collection of all cut edges.

A

B

a

b

c e

d

f

g

Fig. 2.3 A 2-way partitioning of the circuit in Fig. 2.2.
A contains nodes a, b and f. B contains nodes c, d, e
and g. Edges (a,c), (b,c) and (e,f) are cut. Edges (c,e),
(c,g), (d,e) and (e,g) are not cut.

2.3 Optimization Goals 2.3

The most common partitioning objective is to minimize the number or total weight
of cut edges while balancing the sizes of the partitions. If denotes the set of cut
edges, the minimization objective is

e

ew)(

Often, partition area is limited due to packing considerations and other boundary
conditions implied by system hierarchy, chip size, or floorplan restrictions. For any
subset of nodes V’ V, let area(V’) be the total area of all cells represented by the
nodes of V’. Bounded-size partitioning enforces an upper bound UB on the total area
of each partition V’. That is, area(Vi) UBi, where Vi V, i = 1, … , k, and k is the
number of partitions. Often, a circuit must be divided evenly, with

)(1)(1)()(Varea
k

varea
k

vareaVarea
VvVv

i
i

2 For convenience, hyperedges may be referred to as edges. However, graph edges are formally
defined as node pairs.

36 2 Netlist and System Partitioning

For the special case where all nodes have unit area, the balance criterion is

k
V

Vi

2.4 Partitioning Algorithms 2.4

Circuit partitioning, like many other combinatorial optimization problems discussed
in this book, is NP-hard. That is, as the problem size grows linearly, the effort
needed to find an optimal solution grows faster than any polynomial function. To
date, there is no known polynomial-time, globally optimal algorithm for balance-
constrained partitioning (Sec. 1.6). However, several efficient heuristics were devel-
oped in the 1970s and 1980s. These algorithms find high-quality circuit partitioning
solutions and in practice are implemented to run in low-order polynomial time – the
Kernighan-Lin (KL) algorithm (Sec. 2.4.1), its extensions (Sec. 2.4.2) and the Fi-
duccia-Mattheyses (FM) algorithm (Sec. 2.4.3). Additionally, optimization by simu-
lated annealing can be used to solve particularly difficult partitioning formulations.
In general, stochastic hill-climbing algorithms require more than polynomial time to
produce high-quality solutions, but can be accelerated by sacrificing solution quality.
In practice, simulated annealing is rarely competitive.

 2.4.1 Kernighan-Lin (KL) Algorithm

The Kernighan-Lin (KL) algorithm performs partitioning through iterative-
improvement steps. It was proposed by B. W. Kernighan and S. Lin in 1970 [2.6] for
bipartitioning (k = 2) graphs, where every node has unit weight. This algorithm has
been extended to support k-way partitioning (k > 2) as well as cells with arbitrary
areas (Sec. 2.4.2).

Introduction. The KL algorithm operates on a graph representation of the circuit,
where nodes (edges) represent cells (connections between cells). Formally, let a
graph G(V,E) have |V| = 2n nodes, where each node v V has the same weight, and
each edge e E has a non-negative edge weight. The KL algorithm partitions V into
two disjoint subsets A and B with minimum cut cost and |A| = |B| = n.

The KL algorithm is based on exchanging (swapping) pairs of nodes, each node
from a different partition. The two nodes that generate the highest reduction in cut
size are swapped. To prevent immediate move reversal (undo) and subsequent infi-
nite loops, the KL algorithm fixes nodes after swapping them. Fixed nodes cannot be
swapped until they are released, i.e., become free.

 2.4 Partitioning Algorithms 37

Execution of the KL algorithm proceeds in passes. Typically, the first pass or itera-
tion begins with an arbitrary initial partition. In a given pass, after all nodes become
fixed, the algorithm determines the prefix of the sequence of swaps within this pass
that produces the largest gain, i.e., reduction of cut cost. All nodes included in this
sequence are moved accordingly. The pass finishes by releasing all fixed nodes, so
that all nodes are once again free. In each subsequent pass, the algorithm starts with
the two partitions from the previous pass. All possible pair swaps are then re-
evaluated. If no improvement is found during a given pass, the algorithm terminates.

Terminology. The following terms are specifically relevant to the KL algorithm.

The cut size or cut cost of a graph with either unweighted or uniform-weight edges
is the number of edges that have nodes in more than one partition. With weighted
edges, the cut cost is the sum of the weights of all cut edges.

The cost D(v) of moving a node v V in a graph from partition A to B is

D(v) = |EB(v)| – |EA(v)|

where EB(v) is the set of v’s incident edges that are cut by the cut line, and EA(v) is
the set of v’s incident edges that are not cut by the cut line. High costs (D > 0) indi-
cate that the node should move, while low costs (D < 0) indicate that the node
should stay within the same partition.

The gain g(a,b) of swapping a pair of nodes a and b is the improvement in overall
cut cost that would result from the node swap. A positive gain (g > 0) means that
the cut cost is decreased, while a negative gain (g < 0) means that the cut cost is
increased. The gain of swapping two nodes a and b is

g(a,b) = D(a) + D(b) – 2c(a,b)

where D(a) and D(b) are the respective costs of nodes a and b, and c(a,b) is the
connection weight between a and b. If an edge exists between a and b, then c(a,b) =
the edge weight between a and b. Otherwise, c(a,b) = 0.

Notice that simply adding D(a) and D(b) when calculating g assumes that an edge
is cut (uncut) before the swap and will be uncut (cut) after the swap. However, this
does not apply if the nodes are connected by an edge e, as it will be cut both before
and after the swap. Therefore, the term 2c(a,b) corrects for this overestimation of
gain from the swap.

The maximum positive gain Gm corresponds to the best prefix of m swaps within the
swap sequence of a given pass. These m swaps lead to the partition with the mini-
mum cut cost encountered during the pass. Gm is computed as the sum of g values
over the first m swaps of the pass, with m chosen such that Gm is maximized.

40 2 Netlist and System Partitioning

Notice that g cannot always be positive: after all nodes have been swapped be-
tween two partitions, the cut cost will be exactly the same as the initial cut cost, so
some best-gain values during the pass can be negative. However, since other moves
(gains) might compensate for this, the entire pass should be completed, computing
all moves until all cells are fixed.

The runtime of the KL algorithm is dominated by two factors – gain updates and
pair selection. The KL algorithm selects n pairs of nodes to swap, where n is the
number of nodes in each partition. For each node v, the required time to update the
gains and compare is on the order of O(n). That is, after swapping ai and bi in move i,
at most (2n – 2i) gains of free nodes must be updated. Therefore, the time spent
updating gains over the n moves in a pass is at most

)(22 2

1

nOin
n

i

During pair comparison in a given move i, there are as many as (n – i + 1)2 = O(n2)
pairs to choose from. The time to perform n pair comparisons is bounded by

)()1(3

1

2 nOin
n

i

Therefore, the KL algorithm requires a total of O(n2) + O(n3) = O(n3) time.

An optimized KL implementation has O(n2 log n) runtime complexity. To speed up
pair comparison, node pairs can be sorted ahead of time. Since the goal is to maxi-
mize g(a,b) = D(a) + D(b) – 2c(a,b), the gains of each node move can be sorted in
descending order. That is, for each node a A, order the gains D(a) such that

D(a1) D(a2) … D(an i+1)

Similarly, for each node b B, order the gains D(b) such that

D(b1) D(b2) … D(bn i+1)

Then, evaluate pairwise gains, starting with the first elements from both lists. A
clever order of evaluation – exploiting advanced data structures and bounded node
degrees [2.3] – allows the pair evaluation process to stop once a pair of gains D(aj)
and D(bk) is found with D(aj) + D(bk) is less than the best previously-found gain (no
better pair-swap can exist). In practice, the best pair-swap at the kth move can be
found in O(n – k) time after sorting the free node gains in O((n – k) log (n – k)) time
[2.2]. The time required to perform pair comparison is thus reduced from O(n2) time
to O(n log n) time.

 2.4 Partitioning Algorithms 41

2.4.2 Extensions of the Kernighan-Lin Algorithm

To accommodate unequal partition sizes |A| |B|, arbitrarily split the nodes among
the two partitions A and B, where one partition contains min(|A|,|B|) nodes and the
other max(|A|,|B|) nodes. Apply the KL algorithm with the restriction that only
min(|A|,|B|) node pairs can be swapped.

To accommodate unequal cell sizes or unequal node weights, assign a unit area that
denotes the smallest cell area, i.e., the greatest common divisor of all cell areas. All
unequal node sizes are then cast as integer multiples of the unit area. Each node
portion (all parts of an original node that was split up) is connected to each of its
counterparts by infinite-weight, i.e., high-priority edges. Apply the KL algorithm.

To perform k-way partitioning, arbitrarily assign all k · n nodes to partitions such that
each partition has n nodes. Apply the KL 2-way partitioning algorithm to all possi-
ble pairs of subsets (1 and 2, 2 and 3, etc.) until none of the consecutive KL applica-
tions obtains any improvement on the cut size.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

Given a graph G(V,E) with nodes and weighted edges, the goal of (bi)partitioning is
to assign all nodes to disjoint partitions, so as to minimize the total cost (weight) of
all cut nets while satisfying partition size constraints. The Fiduccia-Mattheyses (FM)
algorithm is a partitioning heuristic, published in 1982 by C. M. Fiduccia and R. M.
Mattheyses [2.4], offers substantial improvements over the KL algorithm.

– Single cells are moved independently instead of swapping pairs of cells. Thus,

this algorithm is more naturally applicable to partitions of unequal size or the
presence of initially fixed cells.

– Cut costs are extended to include hypergraphs (Sec. 1.8). Thus, all nets with
two or more pins can be considered. While the KL algorithm aims to minimize
cut costs based on edges, the FM algorithm minimizes cut costs based on nets.

– The area of each individual cell is taken into account.
– The selection of cells to move is much faster. The FM algorithm has runtime

complexity of (|Pins|) per pass, where |Pins| is the total number of pins, de-
fined as the sum of all edge degrees |e| over all edges e E.

Introduction. The FM algorithm is typically applied to large circuit netlists. For this
section, all nodes and subgraphs are referred to as cells and blocks, respectively.

The FM move selection process is similar to that of the KL algorithm, with the un-
derlying objective being to minimize cut cost. However, the FM algorithm computes
the gain of each individual cell move, rather than that of each pair-swap. Like the
KL algorithm, the FM algorithm selects the best prefix of moves from within a pass.

42 2 Netlist and System Partitioning

During an FM pass, once a cell is moved, it becomes fixed and cannot be moved for
the remainder of the pass. The cells that are moved during the FM algorithm are
denoted by the sequence <c1 … cm>, whereas the KL algorithm swaps the first m
pairs.

Terminology. The following definitions are relevant to the FM algorithm.

A net is cut if its cells occupy more than one partition. Otherwise, the net is uncut.

The cut set of a partition part is the set of all nets that are marked as cut within part.

The gain g(c) for cell c is the change in the cut set size if c moves. The higher the
gain g(c), the higher is the priority to move the cell c to the other partition. For-
mally, the cell gain is defined as

)()()(cTEcFScg

where FS(c) is the number of nets connected to c but not connected to any other
cells within c’s partition, i.e., cut nets that connect only to c, and TE(c) is the number
of uncut nets connected to c. Informally, FS(c) is like a moving force – the higher
the FS(c) value, the stronger the pull to move c to the other partition. TE(c) is like a
retention force – the higher the TE(c) value, the stronger the desire to remain in the
current partition.

The maximum positive gain Gm of a pass is the cumulative cell gain of m moves that
produce a minimum cut cost. Gm is determined by the maximum sum of cell gains

g over a prefix of m moves in a pass

m

i
im gG

1

As in the KL algorithm, all moves in a pass are used to determine Gm and the move
sequence <c1 … cm>. Only at the end of the pass, i.e., after determining Gm and the
corresponding m moves, are the cell positions updated (moved).

The ratio factor is the relative balance between the two partitions with respect to cell
area. This ratio factor is used to prevent all cells from clustering into one partition.
The ratio factor r is defined as

)()(
)(

BareaAarea
Aarear

where area(A) and area(B) are the total respective areas of partitions A and B, and

area(A) + area(B) = area(V)

 2.4 Partitioning Algorithms 43

where area(V) is the total area of all cells c V, and is defined as

Vc

careaVarea)()(

The balance criterion enforces the ratio factor. To ensure feasibility, the maximum
cell area areamax(V) must be taken into account. A partitioning of V into two parti-
tions A and B is said to be balanced if

r · area(V) – areamax(V) area(A) r · area(V) + areamax(V)

A base cell is a cell c that has maximum cell gain g(c) among all free cells, and
whose move does not violate the balance criterion.

The pin distribution of a net net is given as a pair (A(net),B(net)), where A(net) is the
number of pins in partition A and B(net) is the number of pins in partition B.

A net net is critical if it contains a cell c whose move changes the cut state of net. A
critical net is either contained completely within a partition, or has exactly one of its
cells in one partition and all of its other cells in the other partition. If net is critical,
then either A(net) = 0, A(net) = 1, B(net) = 0, or B(net) = 1 must hold (Fig. 2.4).

(b) A(net) = 1

A B

(a) A(net) = 0

A B

(d) B(net) = 1

A B

(c) B(net) = 0

A B

Fig. 2.4 Cases when a net net is critical. (a) A(net) = 0. (b) A(net) = 1. (c) B(net) = 0. (d) B(net) = 1.

Critical nets simplify the calculation of cell gains. Only cells belonging to critical
nets need to be considered in the gain computation, as it is only for such nets that the
movement of a single cell can change the cut state. B. Krishnamurthy [2.8] general-
ized the concept of criticality and improved the FM algorithm such that it compre-
hends how many cell moves nets are away from being critical. This results in a gain
vector for each cell instead of a single gain value – the ith element of the gain vector
for a free cell cf records how many nets will become i cell moves away from being
uncut if cf moves.

The from-block F and to-block T define the direction in which a cell moves. That is,
a cell moves from F to T.

46 2 Netlist and System Partitioning

Update gains for all free cells that are connected by critical nets to a. To determine whether a
given net is critical, the number of cells associated with that net in each partition is counted
before and after the move.

For a given net net, let the number of cells in the from-block and to-block before the move be
F(net) and T(net), respectively. Let the number of cells in the from-block and to-block after
the move be F’(net) and T’(net), respectively. If any of these values is 0 or 1, then net is criti-
cal. For nets N1, N2, N3, N4, T(N1) = 0 and T(N2) = T(N3) = T(N4) = 1. Therefore, cells b, c, d
and e need updating. The gain values do not have to be computed explicitly but can be derived
from T(net).

If T(net) = 0, all gain values of free cells connected to net increase by 1. Since T(N1) = 0, cell b
has updated gain value of g1(b) = g1(b) + 1. That is, net N1 (connected to cell b) has in-
creased the cut set of the partition. The increase in g(b) reflects the motivation to move cell b.
Since net N1 is now cut, moving cell b is justified.

If T(net) = 1, all gain values of free cells connected to net decrease by 1. Since T(N2) = T(N3)
= T(N4) = 1, cells c, d and e have updated gain values of g1(c,d,e) = g1(c,d,e) – 1. That is,
nets N2, N3 and N4 (connected to cells c, d and e, respectively) have decreased the cut set of
the partition. This reduction in g1(c,d,e) reflects the motivation to not move cells c, d and e.
Similarly, when F’(net) = 0, all cell gains connected to net are reduced by 1, and when F’(net)
= 1, all cell gains connected to n are increased by 1.

The updated g values are
 b: FS(b) = 2 TE(b) = 0 g1(b) = 2
 c: FS(c) = 0 TE(c) = 1 g1(c) = -1
 d: FS(d) = 0 TE(d) = 2 g1(d) = -2
 e: FS(e) = 0 TE(e) = 1 g1(e) = -1

Iteration i = 1
Partitions: A1 = {b}, B1 = {a,c,d,e}, with fixed cells {a}.

Iteration i = 2
Cell b has maximum gain g2 = 2, area(A) = 0, balance criterion is violated.
Cell c has next maximum gain g2 = -1, area(A) = 5, balance criterion is met.
Cell e has next maximum gain g2= -1, area(A) = 9, balance criterion is met.
Move cell c, updated partitions: A2 = {b,c}, B2 = {a,d,e}, with fixed cells {a,c}.

Iteration i = 3
Gain values: g3(b) = 1, g3(d) = 0, g3(e) = -1.
Cell b has maximum gain g3 = 1, area(A) = 1, balance criterion is met.
Move cell b, updated partitions: A3 = {c}, B3 = {a,b,d,e}, with fixed cells {a,b,c}.

Iteration i = 4
Gain values: g4(d) = 0, g4(e) = -1.
Cell d has maximum gain g4 = 0, area(A) = 5, balance criterion is met.
Move cell d, updated partitions: A4 = {c,d}, B4 = {a,b,e}, with fixed cells {a,b,c,d}.

48 2 Netlist and System Partitioning

ond, FM is applied to the clustered netlist. Third, the netlist is partially unclustered
during the uncoarsening phase. Fourth, during the refinement phase, FM is applied
incrementally to the partially unclustered netlist. The third and fourth steps are con-
tinued until the netlist is fully unclustered. In other words, FM is applied to the par-
tially unclustered netlist and the solution is unclustered further – with this process
repeating until the solution is completely flat.

For circuits with hundreds of thousands of gates, the multilevel framework dramati-
cally improves runtime because many of the FM calls operate on smaller netlists,
and each incremental FM call has a relatively high-quality initial solution. Further-
more, solution quality is improved, as applying FM to clustered netlists allows the
algorithm to reassign entire clusters to different partitions where appropriate.

2.5.1 Clustering

To construct a coarsened netlist, groups of tightly-connected nodes can be clustered,
absorbing connections between these nodes (Fig. 2.5). The remaining connections
between clusters retain the overall structure of the original netlist. In specific appli-
cations, the size of each cluster is often limited so as to prevent degenerate cluster-
ing, where a single large cluster dominates other clusters.

When merging nodes, a cluster is assigned the sum of the weights of its constituent
nodes. As closed-form objective functions for clustering are difficult to formulate,
clustering is performed by application-specific algorithms. Additionally, clustering
must be performed quickly to ensure the scalability of multilevel partitioning.

a

b c

d

e

a,b,c

d

e

a

b

d

c,e

Fig. 2.5 An initial graph (left), and possible clusterings of the graph (right).

2.5.2 Multilevel Partitioning

Multilevel partitioning techniques begin with a coarsening phase in which the
input graph G is clustered into a smaller graph G’, which, in turn, can also be
clustered into another graph G”, and so on. Let l be the number of levels, i.e.,
times, that G goes through the coarsening stage. Each node at level l represents a
cluster of nodes at level l + 1. For large-scale applications, the clustering ratio, i.e.,
the average number of nodes per cluster, is often 1.3 (Hypergraph Partitioning
and Clustering, Chap. 61 in [2.5]). For a graph with |V| nodes, the number of lev-
els can be estimated as

50 2 Netlist and System Partitioning

2.6 2.6 System Partitioning onto Multiple FPGAs

System implementation using field-programmable gate arrays (FPGAs), such as
those manufactured by Xilinx or Altera, is an increasingly important application of
partitioning. There are two main reasons for this trend. First, FPGA-based system
prototyping allows products to meet shorter time-to-market windows, since embed-
ded software development and design debugging can proceed concurrently with
hardware design, rather than having to wait until the packaged dies arrive from the
foundry. Second, with increased non-recurring engineering costs (mask sets and
probe cards) in advanced technology nodes, products with lower production vol-
umes become economically feasible only when implemented using field-
programmable devices. However, field-programmability (e.g., using SRAM-based
lookup tables to implement reconfigurable logic and interconnect) comes at the cost
of density, speed and power. Hence, even if a system easily fits onto a single ASIC,
its prototype may require multiple FPGA devices.

Functionally, FPGA-based systems may be viewed as logic (implemented using
reprogrammable FPGAs) and interconnects (implemented using field-programmable
interconnect chips, or FPICs). Many system components, including embedded proc-
essor cores, embedded memories, and standard interfaces, are available as configur-
able IPs on modern FPGA devices. Moreover, FPICs themselves can be imple-
mented using FPGAs. An example FPGA-based system topology is illustrated in
Fig. 2.7(a), where the FPGA and FPIC devices are connected using a Clos network
topology, which allows any two devices to communicate directly (or a small number
of hops). Fig. 2.7(b) demonstrates how a typical system architecture of logic and
memory can be mapped onto multiple FPGA devices.

FPGA FPGA FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA
RAM Logic Logic

(a) (b)
Fig. 2.7 (a) Reconfigurable system with multiple FPGA and FPIC devices. (b) Mapping of a typical
system architecture onto multiple FPGAs.

Key challenges for multi-way system partitioning onto FPGAs include (1) low utili-
zation of FPGA gate capacity because of hard I/O pin limits, (2) low clock speeds
due to long interconnect delays between multiple FPGAs, and (3) long runtimes for
the system partitioning process itself. This section discusses the associated algo-
rithmic challenges in physical design that are unique to system implementation with
multiple FPGAs.

 2.6 System Partitioning onto Multiple FPGAs 51

Variant multi-way partitioning formulations. Multi-way partitioning for system
prototyping seeks to minimize the number of FPGA devices needed while taking
into account both area constraints, i.e., the partitions must each fit into individual
FPGAs, and I/O constraints, i.e., each FPGA has a fixed number of pins. In contrast
to the single-chip context, a small change in balance or cut size can make a feasible
solution infeasible. Thus, a challenge for partitioning algorithms is to achieve high
utilization of the FPGA devices while meeting all I/O constraints.

Once the number of FPGA devices has been determined, the secondary optimization
objective is to minimize the amount of communication between the connected de-
vices. Adopting general techniques for minimizing the net cut to FPGA-based archi-
tectures can significantly improve the overall speed of the system. However, the
traditional net cut objective does not distinguish whether the gates of a five-pin net
are split across two, three, four of five FPGA devices. However, splitting a net
across k FPGA devices consumes k I/O pins. Hence, k should be minimized first.

Variant placement formulations. The reprogrammable nature of FPGAs allows
systems to be implemented as true reconfigurable computing machines, where de-
vice configuration bits are updated to match the implemented logic to the required
computation. This induces an extra “dimension” to the problems of logic partition-
ing and placement – the solution must explicitly evolve through time, i.e., through
the course of the computation.

System implementation degrees of freedom. More performance optimizations are
available, and needed, at the system level than during place-and-route. System pro-
totyping may need to explore netlist transformations such as cloning (Sec. 8.5.3) and
retiming (Sec. 8.6) in order to minimize cut size (I/O usage) or system cycle time.
Such transformations are needed as inter-device delays can be relatively large and
because devices are often I/O-limited. L.-T. Liu et al. [2.9] proposed a partitioning
algorithm that permits logic replication to minimize both cut size and clock cycle of
sequential circuits. Given a netlist G = (V,E), their approach chooses two modules as
seeds s and t and constructs a “replication graph” that is twice the size of the original
circuit. This graph has the special property that a type of directed minimum cut
yields the replication cut, i.e., a decomposition of V into S, T and R, where s S, t
T and R = V S T is the replicated logic, that is optimal. A directed version of the
Fiduccia-Mattheyses algorithm (Sec. 2.4.3) is used to find a heuristic directed mini-
mum cut in the replication graph.

“Flow-based” multi-way partitioning method. To decompose a system into mul-
tiple devices, C.-W. Yeh et al. [2.10] proposed a “flow-based” algorithm inspired by
the relationship between multi-commodity flow [2.2] and the traditional problem of
min-cut partitioning. The algorithm constructs a flow network wherein each signal
net initially corresponds to an edge with unit flow cost. To visualize this, one can
imagine a network of roads, where each road corresponds to a signal net in the net-
list, and where driving along each individual road requires a unit toll. Two random
modules in the network are chosen, and the shortest (lowest-cost) path between them

52 2 Netlist and System Partitioning

is computed. A constant < 1 is added to the flow for each net in the shortest path,
and the cost for every net in the path is incremented. Adjusting the cost penalizes
paths through congested areas and forces alternative shortest paths. This random
shortest path computation is repeated until every path between the chosen pair of
modules passes through at least one “saturated” net (in the analogy, this would be a
“congested road”). The set of saturated nets induces a multi-way partitioning in
which two modules belong to the same cluster if and only if there is a path of un-
saturated nets between them. A second phase of the algorithm makes the multi-way
partitioning more balanced. Since this approach has efficient runtime and is easily
parallelizable, it is well-suited for large-scale multi-way system partitioning.

Commercial tools for partitioning large systems onto FPGAs typically base their
algorithms on the multilevel extensions of the FM algorithm (Sec. 2.4.3). While it is
not always possible to modify such algorithms to track relevant partitioning objec-
tives directly, these algorithms often produce reasonable initial partitions when
guided by the net cut objective and its variants.

 Chapter 2 Exercises 53

 Chapter 2 Exercises

Exercise 1: KL Algorithm
The graph to the right (nodes a-f) can be optimally partitioned using
the Kernighan-Lin algorithm. Perform the first pass of the algo-
rithm. The dotted line represents the initial partitioning. Assume all
nodes have the same weight and all edges have the same priority.

Note: Clearly describe each step of the algorithm. Also, show the
resulting partitioning (after one pass) in graphical form.

A B
a

b

c

e

d

f

Exercise 2: Critical Nets and Gain During the FM Algorithm
(a) For cells a-i, determine the critical nets connected to these cells and which criti-
cal nets remain after partitioning. For the first iteration of the FM algorithm, deter-
mine which cells would need to have their gains updated due to a move. Hint: It may
be helpful to prepare a table with one row per move that records (1) the cell moved,
(2) critical nets before the move, (3) critical nets after the move, and (4) which cells
require a gain update.

N1

a

b

h

c

d

i

N2

e

f

g

N3

(b) Determine g(c) for each cell c V.

Exercise 3: FM Algorithm
Perform Pass 2 of the FM algorithm example given in Sec. 2.4.3. Clearly describe
each step. Show the result of each iteration in both numerical and graphical form.

Exercise 4: System and Netlist Partitioning
Explain key differences between partitioning formulations used for FPGA-based
system emulation and traditional min-cut partitioning.

Exercise 5: Multilevel FM Partitioning
List and explain the advantages that a multilevel framework offers compared to the
FM algorithm alone.

Exercise 6: Clustering
Consider a partitioned netlist. Clustering algorithms covered in this chapter do not
take a given partitioning into account. Explain how these algorithms can be modi-
ied such that each new cluster is consistent with one of the initial partitions. f

54 Netlist and System Partitioning

 Chapter 2 References

[2.1] A. E. Caldwell, A. B. Kahng
and I. L. Markov, “Design and Imple-
mentation of Move-Based Heuristics
for VLSI Hypergraph Partitioning”, J.
Experimental Algorithmics 5 (2000),
pp. 1-21.

[2.2] T. Cormen, C. Leiserson,
R. Rivest and C. Stein, Introduction to
Algorithms, 2nd Edition, McGraw Hill,
2003.

[2.3] S. Dutt, “New Faster
Kernighan-Lin-Type Graph-Partitioning
Algorithms”, Proc. Intl. Conf. on CAD,
1993, pp. 370-377.

[2.4] C. M. Fiduccia and
R. M. Mattheyses, “A Linear-Time
Heuristic for Improving Network
Partitions”, Proc. Design Autom. Conf.,
1982, pp. 175-181.

[2.5] T. F. Gonzalez, ed., Handbook
 of Approximation Algorithms and
Metaheuristics, CRC Press, 2007.

[2.6] G. Karypis, R. Aggarwal,
V. Kumar and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application
in VLSI Domain”, Proc. Design Autom.
Conf., 1997, pp. 526-529.

[2.7] B. W. Kernighan and S. Lin,
“An Efficient Heuristic Procedure for
Partitioning Graphs”, Bell Sys. Tech. J.
49(2) (1970), pp. 291-307.

[2.8] B. Krishnamurthy, “An Improved
Min-Cut Algorithm for Partitioning
VLSI Networks”, IEEE Trans. on
Computers 33(5) (1984), pp. 438-446.

[2.9] L.-T. Liu, M.-T. Kuo,
C.-K. Cheng and T. C. Hu,
“A Replication Cut for Two-Way
Partitioning”, IEEE Trans. on CAD
14(5) (1995), pp. 623-630.

[2.10] C.-W. Yeh, C.-K. Cheng and
T.-T. Y. Lin, “A General Purpose,
Multiple-Way Partitioning Algorithm”,
IEEE Trans. on CAD 13(12) (1994),
pp. 1480-1488.

3 Chapter 3

Chip Planning

 3.2 Optimization Goals in Floorplanning 59

3.2 Optimization Goals in Floorplanning 3.2

Floorplan design optimizes both the locations and the aspect ratios of the individual
blocks, using simple objective functions to capture practically desirable floorplan
attributes. This section introduces several objective functions for floorplanning.
Goals for pin assignment are discussed in Sec. 3.6, and goals for power planning are
described in Sec. 3.7.

Area and shape of the global bounding box. The global bounding box of a
floorplan is the minimum axis-aligned (isothetic) rectangle that contains all
floorplan blocks. The area of the global bounding box represents the area of the
top-level floorplan (the full design) and directly impacts circuit performance, yield,
and manufacturing cost. Minimizing the area of the global bounding box involves
finding (x,y) locations, as well as shapes, of the individual modules such that they
pack densely together.

Beyond area minimization, another optimization objective is to keep the aspect ratio
of the global bounding box as close as possible to a given target value. For instance,
due to manufacturing and package size considerations, a square chip (aspect ratio
1) may be preferable to a non-square chip. To this end, the shape flexibility of the
individual modules can be exploited. Area and aspect ratio of the global bounding
box are interrelated, and these two objectives are often considered together.

Total wirelength. Long connections between floorplan blocks may increase signal
propagation delays in the design. Therefore, layout of high-performance circuits
seeks to shorten such interconnects. Switching the logic value carried by a particular
net requires energy dissipation that grows with wire capacitance. Therefore, power
minimization may also seek to shorten all routes. A third context for wirelength
minimization involves routability and manufacturing cost. When the total length of
all connections is too high or when the connections are overly dense in a particular
region, there may not be enough routing resources to complete all connections.
Although circuit blocks may be spread further apart to add new routing tracks, this
increases chip size and manufacturing cost, and may further increase net length.

To simplify computation of the total wirelength of the floorplan, one option is to
connect all nets to the centers of the blocks. Although this technique does not yield a
precise wirelength estimate, it is relatively accurate for medium-sized and small
blocks, and enables rapid interconnect evaluation [3.17]. Two common approaches
to model connectivity within a floorplan are to use (1) a connection matrix C (Sec.
1.8) representing the union of all nets, along with pairwise distances between blocks,
or (2) a minimum spanning tree for each net (Sec. 5.6). Using the first model, the
total connection length L(F) of the floorplan F is estimated as

Fji
M jidjiCFL

,

),(]][[)(

60 3 Chip Planning

where element C[i][j] of C is the degree of connectivity between blocks i and j, and
dM(i,j) is the Manhattan distance between the center points of i and j (Sec. 1.8).

Using the second model, the total connection length L(F) is estimated as

Fnet
MST netLFL)()(

where LMST(net) is the minimal spanning tree cost of net net.

In practice, more sophisticated wirelength objectives are often used. The center-pin
location assumption may be improved by using actual pin locations [3.17]. The
Manhattan distance wiring cost approximation may be improved by using pin-to-pin
shortest paths in a graph representation of available routing resources. This can
reflect not only distance, but routing congestion, signal delay, obstacles, and routing
channels as well. With these refinements, wiring estimation in a floorplan relies on
the construction of heuristic Steiner minimum trees in a weighted graph (Chap. 5).

Combination of area and total wirelength. To reduce both the total area area(F)
and the total wirelength L(F) of floorplan F, it is common to minimize

 · area(F) + (1 –) · L(F)

where the parameter 0 1 gives the relative importance between area(F) and
L(F). Other terms, such as the aspect ratio of the floorplan, can be added to this
objective function [3.3]. In practice, the area of the global bounding box may be a
constraint rather than an optimization objective. This is appropriate when the
package size and its cavity dimensions are fixed, or when the global bounding box is
part of a higher-level system organization across multiple chips. In this case,
wirelength and other objectives are optimized subject to the constraint that the
floorplan fits inside a prescribed global bounding box (the fixed-outline
floorplanning problem).

Signal delays. Until the 1990s, transistors that made up logic gates were the greatest
contributor to chip delay. Since then, due to different delay scaling rates,
interconnect delays have gradually become more important, and increasingly
determine the chip’s achievable clock frequency. Delays of long wires are
particularly sensitive to the locations and shapes of floorplan blocks. A desirable
quality of a floorplan is short wires connecting its blocks, such that all timing
requirements are met. Often, critical paths and nets are given priority during
floorplanning so that they span short distances.

Floorplan optimization techniques have been developed that use static timing
analysis (Sec. 8.2.1) to identify the interconnects that lie on critical paths. If timing
is violated, i.e., path delays exceed given constraints, the floorplan is modified to
shorten critical interconnects and meet timing constraints [3.7].

 3.4 Floorplan Representations 67

Task: generate the corresponding floorplan.

Solution:
widths[a b c d e] = [8 4 4 4 4] heights[a b c d e] = [4 3 5 5 6]

Find x-coordinates.
S1 = S+ = <acdbe>, S2 = S = <cdaeb>
weights[a b c d e] = widths[a b c d e] = [8 4 4 4 4]
block_order[a b c d e] = [3 5 1 2 4]
lengths = [0 0 0 0 0]

Iteration i = 1: block = a
index = block_order[a] = 3
positions[a] = lengths[index] = lengths[3] = 0
t_span = positions[a] + weights[a] = 0 + 8 = 8
Update lengths vector from index = 3 to n = 5: lengths = [0 0 8 8 8]

Iteration i = 2: block = c
index = block_order[c] = 1
positions[c] = lengths[index] = lengths[1] = 0
t_span = positions[c] + weights[c] = 0 + 4 = 4
Update lengths vector from index = 1 to n = 5: lengths = [4 4 8 8 8]

Iteration i = 3: block = d
index = block_order[d] = 2
positions[d] = lengths[index] = lengths[2] = 4
t_span = positions[d] + weights[d] = 4 + 4 = 8
Update lengths vector from index = 2 to n = 5: lengths = [4 8 8 8 8]

Iteration i = 4: block = b
index = block_order[b] = 5
positions[b] = lengths[index] = lengths[5] = 8
t_span = positions[b] + weights[b] = 8 + 4 = 12
Update lengths vector from index = 5 to n = 5: lengths = [4 8 8 8 12]

Iteration i = 5: block = e
index = block_order[e] = 4
positions[e] = lengths[index] = lengths[4] = 8
t_span = positions[e] + weights[e] = 8 + 4 = 12
Update lengths vector from index = 4 to n = 5: lengths = [4 8 8 12 12]

x-coordinates: positions[a b c d e] = [0 8 0 4 8], width of floorplan W = lengths[5] = 12.

Find y-coordinates.
S1 = S+

R = <ebdca>, S2 = S = <cdaeb>
weights[a b c d e] = heights[a b c d e] = [4 3 5 5 6]
block_order[a b c d e] = [3 5 1 2 4]
lengths = [0 0 0 0 0]

 3.5 Floorplanning Algorithms 79

As the cooling process continues, the atoms eventually will settle in a local, and
possibly global, minimum-energy configuration. Both the rate and step size of the
temperature decrease will affect how the atoms will settle. If the rate is sufficiently
slow and the increment is sufficiently small, the atoms will settle, with high
probability, at a global minimum. On the other hand, if cooling is too fast or the
increment is too large, then the atoms are less likely to attain the global minimum-
energy configuration, and instead will settle in a local minimum instead.

Annealing-based optimization. The principle of annealing can be applied to solve
combinatorial optimization problems. In the context of minimization, finding the
lowest-cost solution in an optimization problem is analogous to finding a
minimum-energy state of a material. Thus, simulated annealing algorithms take a
“chaotic” (higher-cost) solution and emulate physical annealing to produce a
“structured” (lower-cost) solution.

The simulated annealing algorithm generates an initial solution and evaluates its cost.
At each step, the algorithm generates a new solution by performing a random walk
in the solution by applying a small perturbation (change in structure). This new
solution is then accepted or rejected based on a temperature parameter T. When T is
high (low), the algorithm has a higher (lower) chance of accepting a solution with
higher cost. Analogous to physical annealing, the algorithm slowly decreases T,
which correspondingly decreases the probability of accepting an inferior, higher-cost
solution. One method for probabilistically accepting moves is based on the
Boltzmann acceptance criterion, where the new solution is acceptance if

re T
next_solcostcurr_solcost)()(

Here, curr_sol is the current solution, next_sol is the new solution after a
perturbation, T is the current temperature, and r is a random number between [0,1)
based on a uniform distribution. For a minimization problem, the final solution will
be in a valley; for a maximization problem, it will be at a peak.

The rate of temperature decrease is extremely important – it (1) must enable
sufficient high-temperature exploration of the solution space at the beginning, while
(2) allowing enough time at low temperatures to have sufficient probability of
settling at a near-optimal solution. Just as slow cooling of high-temperature metal
has a high probability of finding a globally optimal, energy-minimal crystal lattice, a
simulated annealing algorithm with a sufficiently slow cooling schedule has high
probability of finding a high-quality solution for a given optimization problem [3.5].

The simulated annealing algorithm is stochastic by nature – two runs usually yield
two different results. The difference in quality stems from probabilistic decisions
such as generation of new, perturbed solutions (e.g., by a cell swap), and the
acceptance or rejection of moves.

 3.5 Floorplanning Algorithms 81

Simulated annealing-based floorplanning. The first simulated annealing algorithm
for floorplanning was proposed in 1984 by R. Otten and L. van Ginneken [3.9].
Since then, simulated annealing has become one of the most common iterative
methods used in floorplanning.

In the direct approach, SA is applied directly to the physical layout, using the actual
coordinates, sizes, and shapes of the blocks. However, finding a fully legal solution
– a floorplan with no block overlaps – is difficult. Thus, intermediate solutions are
allowed to have overlapping blocks, and a penalty function is incorporated to
encourage legal solutions. The final produced solution, though, must be completely
legal (see [3.10] for further reading).

In the indirect approach, simulated annealing is applied to an abstraction of the
physical layout. Abstract representations capture the floorplan using trees or
constraint graphs. A final mapping is also required to generate the floorplan from the
abstract representation. One advantage of this process over the direct approach is
that all intermediate solutions are overlap-free.

For further reading on simulated annealing-based floorplanning, see [3.1], [3.3],
[3.14] and [3.15].

 3.5.4 Integrated Floorplanning Algorithms

Analytic techniques map the floorplanning problem to a set of equations where the
variables represent block locations. These equations describe boundary conditions,
attempt to prevent block overlap, and capture other relations between blocks. In
addition, an objective function quantifies the important parameters of the floorplan.

One well-known analytic method is mixed integer-linear programming (MILP),
where the location variables are integers. This technique does not allow for overlaps
and seeks globally optimal solutions. However, it is limited due to its computational
complexity. For a problem size of 100 blocks, the integer program can have over
10,000 variables and over 20,000 equations. Thus, MILP is usable only for small (10
or fewer blocks) instances.

A faster alternative that offers some compromises is to use a linear programming
(LP) relaxation. Compared to MILP, the LP formulation does not limit the locations
to be integers. However, LP can be used for larger problem instances.

For further discussion of floorplanning with analytic methods, see [3.1]. A technique
for floorplan repair (legalization) is described in [3.7].

 3.7 Power and Ground Routing 87

This section discusses the physical design of power-ground distribution networks.
Fig. 3.20 illustrates conceptually how a floorplan in a custom design approach might
associate supply rings with each block, for later connection to a chip-level power
distribution plan such as those discussed below.

 3.7.1 Design of a Power-Ground Distribution Network

The supply nets, VDD and GND, connect each cell in the design to a power source.
As each cell must have both VDD and GND connections, the supply nets (1) are
large, (2) span across the entire chip, and (3) are routed first before any signal
routing. Core supply nets are distinguished I/O supply nets, which are typically at a
higher voltage. In many applications, one core power net and one core ground net
are sufficient. Some ICs, such as mixed-signal or low-power (supply-gated or
multiple voltage level) designs, can have multiple power and ground nets.

Routing of supply nets is different from routing of signals. Power and ground nets
should have dedicated metal layers to avoid consuming signal routing resources. In
addition, supply nets prefer thick metal layers – typically, the top two layers in the
back-end-of-line process – due to their low resistance. When the power-ground
network traverses multiple layers, there must be sufficient vias to carry current while
avoiding electromigration and other reliability issues.

Since supply nets have high current loads, they are often much wider than standard
signal routes. The widths of the individual wire segments may be tailored to
accommodate their respective estimated branch currents. For logic gates to have
correct timing performance, the net segment width must be chosen to keep the
voltage drop, V = IR, within a specified tolerance, e.g., 5% of VDD. Wider segments
have lower resistance, and hence lower voltage drop.3

There are two approaches to the physical design of power-ground distribution – the
planar approach, which is used primarily in analog or custom blocks, and the mesh
approach, which is predominant in digital ICs.

3.7.2 Planar Routing

Power supply nets can be laid out using planar routing when (1) only two supply
nets are present in the design, and (2) a cell needs a connection to both supply nets.
Planar routing separates the two supply regions by a Hamiltonian path that connects
all the cells, such that each supply net can be attached either to the left or right of
every cell. The Hamiltonian path allows both supply nets to be routed across the
layout – one to the left and one to the right of the path– with no conflicts (Fig. 3.21).

3 Some design manuals will refer to an IR drop limit of 10% of VDD. This means that the supply

can drop (droop) by 5% of VDD and the ground can bounce by 5% as well, resulting in a
worst-case of 10% supply reduction.

92 3 Chip Planning

 Chapter 3 References

[3.1] C. J. Alpert, D. P. Mehta and
S. S. Sapatnekar, eds., Handbook of
Algorithms for Physical Design
Automation, CRC Press, 2009.

[3.2] H. N. Brady, “An Approach to
Topological Pin Assignment”, IEEE
Trans. on CAD 3(3) (1984), pp. 250-255.

[3.3] T.-C. Chen and Y.-W. Chang,
“Modern Floorplanning Based on
B*-Tree and Fast Simulated Annealing”,
IEEE Trans. on CAD 25(4) (2006), pp.
637-650.

[3.4] S. Kang, “Linear Ordering and
Application to Placement”, Proc.
Design Autom. Conf., 1983, pp. 457-464.

[3.5] S. Kirkpatrick, C. D. Gelatt and
M. P. Vecchi, “Optimization by
Simulated Annealing”, Science
220(4598) (1983), pp. 671-680.

[3.6] N. L. Koren, “Pin Assignment
in Automated Printed Circuit Board
Design”, Proc. Design Autom. Workshop,
1972, pp. 72-79.

[3.7] M. D. Moffitt, J. A. Roy,
I. L. Markov and M. E. Pollack,
“Constraint-Driven Floorplan Repair”,
ACM Trans. on Design Autom. of
Electronic Sys. 13(4) (2008), pp. 1-13.

[3.8] R. H. J. M. Otten, “Efficient
Floorplan Optimization”, Proc. Intl.
Conf. on Computer Design, 1983,
pp. 499-502.

[3.9] R. H. J. M. Otten and
L. P. P. P. van Ginneken, “Floorplan
Design Using Simulated Annealing”,
Proc. Intl. Conf. on CAD, 1984,
pp. 96-98.

[3.10] C. Sechen, “Chip Planning,
Placement and Global Routing of
Macro/Custom Cell Integrated Circuits
Using Simulated Annealing”, Proc.
Design Autom. Conf., 1988, pp. 73-80.

[3.11] L. Stockmeyer, “Optimal
Orientation of Cells in Slicing
Floorplan Designs”, Information
and Control 57 (1983), pp. 91-101.

[3.12] S. Sutanthavibul,
E. Shragowitz and J. B. Rosen,
“An Analytical Approach to Floorplan
Design and Optimization”, IEEE Trans.
on CAD 10 (1991), pp. 761-769.

[3.13] X. Tang, R. Tian and D. F. Wong,
“Fast Evaluation of Sequence Pair in
Block Placement by Longest Common
Subsequence Computation”, Proc.
Design, Autom. and Test in Europe,
2000, pp. 106-111.

[3.14] D. F. Wong and C. L. Liu,
“A New Algorithm for Floorplan
Design”, Proc. Design Autom. Conf.,
1986, pp. 101-107.

[3.15] J. Xiong, Y.-C. Wong, E. Sarto
and L. He, “Constraint Driven I/O
Planning and Placement for Chip-
Package Co-Design”, Proc. Asia and
South Pacific Design Autom. Conf.,
2006, pp. 207-212.

[3.16] J. Z. Yan and C. Chu,
“DeFer: Deferred Decision Making
Enabled Fixed-Outline Floorplanner”,
Proc. Design Autom. Conf., 2008,
pp. 161-166.

[3.17] T. Yan and H. Murata,
“Fast Wire Length Estimation by Net
Bundling for Block Placement”, Proc.
Intl. Conf. on CAD, 2006, pp. 172-178.

110 4 Global and Detailed Placement

 4.3.2 Analytic Placement

Analytic placement minimizes a given objective, such as wirelength or circuit delay,
using mathematical techniques such as numerical analysis or linear programming.
Such methods often require certain assumptions, such as the differentiability of the
objective function or the treatment of placeable objects as dimensionless points. For
example, to facilitate the calculation of partial derivatives, it is common to optimize
quadratic, rather than linear wirelength. When such algorithms place cells too close,
i.e., creating overlaps, the cell locations must be spread further apart by dedicated
post-processing techniques, so as to remove overlap.

Quadratic placement. The squared Euclidean distance

n

ji
jiji yyxxjicPL

1,1

22)()(),()(

is used as the cost function, n is the total number of cells, and c(i,j) is the connection
cost between cells i and j. If cells i and j are not connected, then c(i,j) = 0. The terms
(xi – xj)2 and (yi – yj)2 respectively give the squared horizontal and vertical distances
between the centers of i and j. This formulation implicitly decomposes all nets into
two-pin subnets. The quadratic form emphasizes the minimization of long
connections, which tend to have negative impacts on timing.

Quadratic placement consists of two stages. During global placement (first stage),
cells are placed so as to minimize the quadratic function with respect to the cell
centers. Note that this placement is not legal. Usually, cells appear in large clusters
with many cell overlaps. During detailed placement (second stage), these large
clusters are broken up and all cells are placed such that no overlap occurs. That is,
detailed placement legalizes all the cell locations and produces a high-quality,
non-overlapping placement.

During global placement, each dimension can be considered independently.
Therefore, the cost function L(P) can be separated into x- and y-components

2

1,1

)(),()(ji

n

ji
x xxjicPL and 2

1,1

)(),()(ji

n

ji
y yyjicPL

With these cost functions, the placement problem becomes a convex quadratic
optimization problem. Convexity implies that any local minimum solution is also a
global minimum. Hence, the optimal x- and y-coordinates can be found by setting
the partial derivatives of Lx(P) and Ly(P) to zero, i.e.,

0)(
x

x bAX
X

PL and 0
)(

y
y bAY
Y

PL

 4.3 Global Placement 119

The window size (wT,hT) depends on the current temperature T, and decreases as
temperature reduces. The window size for the next iteration is based on the current
temperature Tcurr and the next iteration’s temperature Tnext using

)log(
)log(

curr

next
TT T

Tww
currnext

 and
)log(
)log(

curr

next
TT T

Thh
currnext

Cost. The COST function in TimberWolf (v3.2) is defined as = 1 + 2 + 3, the
sum of three parameters – (1) total estimated wirelength 1, (2) amount of overlap 2,
and (3) row inequality length 3.

1 is computed as the summation of each net’s half-perimeter wirelength (HPWL),
which is defined as its horizontal span plus its vertical span. Weights for each
direction, horizontal weight wH and vertical weight wV, can also be applied. Given a
priority weight 1, 1 is defined as the sum of the total wirelength over all nets net
Netlist, where Netlist is the set of all nets.

Netlistnet
netVnetH ynetwxnetw)()(11

A higher weight value for net gives higher emphasis on reducing net’s wirelength.
Weights can also be used for direction control – giving preference to a certain wiring
direction. During standard-cell placement where feedthrough cells are limited, low
horizontal weights wH(net) encourage the usage of horizontal channels rather than
the vertical connections.

2 represents the total cell overlap of the placement. Let o(i,j) represent the area of
overlap between cells i and j. Given a priority weight 2, 2 is defined as the sum of
the square of all cell overlaps between cells i and j, where i V, j V, i j, with V
being the set of all cells.

jiVjVi

jio
,,

2
22),(

Larger overlaps, which require more effort to correct, are penalized more heavily
due to the quadratic form.

3 represents the cost of all row lengths L(row) that deviate from the goal length
Lopt(row) during placement. Cell movement can often lead to row length variation,
where the resulting rows lengths deviate from the goal length. In practice, uneven
rows can waste area and induce uneven wire distributions. Both phenomena can lead
to increased total wirelength and total congestion. Given a priority factor 3, 3 is
defined as the sum of row length deviation for all rows row Rows, where Rows is
the set of all rows.

120 4 Global and Detailed Placement

Rowsrow
opt rowLrowL)()(33

Temperature Reduction. The temperature T is reduced by a cooling factor . This
value is empirically chosen and often depends on the temperature range. The
annealing process starts at a high temperature, such as 4·106 (units do not play a
role). Initially, the temperature is reduced quickly (0.8). After a certain number
of iterations, the temperature reduces at a slower rate (0.95), when the placement
is being fine-tuned. Toward the end, the temperature is again reduced at a fast pace
(0.8), corresponding to a “quenching” step. TimberWolf finishes when T < Tmin
where Tmin = 1.

Number of Times Through the Inner Loop. At each temperature, a number of calls
are made to PERTURB to generate new placements. This number is intended to
achieve equilibrium at the given temperature, and depends on the size of the design.
The authors of [4.29] experimentally determined that designs with ~200 cells require
100 iterations per cell, or roughly 2·104 runs per temperature step. Other simulated
annealing approaches use acceptance ratio as an equilibrium criterion, e.g., Lam
[4.20] shows that a target acceptance ratio of 44% produces competitive results.

4.3.4 Modern Placement Algorithms

Algorithms for global placement have been studied by many researchers since the
late 1980s, and the prevailing paradigm has changed several times to address new
challenges arising in commercial chip designs [4.6][4.22]. This section reviews
modern algorithms for global placement, while the next section covers legalization
and detailed placement, as well as the need for such a separation of concerns.
Timing-driven placement is discussed in Sec. 8.3.

The global placement algorithms in use today can handle extremely large netlists
using analytic techniques, i.e., by modeling interconnect length with mathematical
functions and optimizing these functions with numerical methods. Dimensions and
sizes of standard cells are initially ignored to quickly find a seed placement, but are
then gradually factored into the placement optimization so as to avoid uneven
densities or routing congestion. Two common paradigms are based on quadratic and
force-directed placement, and on nonlinear optimization. The former was introduced
earlier and seeks to approximate wirelength by quadratic functions, which can be
minimized by solving linear systems of equations (Sec. 4.3.2). The latter relies on
more sophisticated functions to approximate interconnect length, and requires more
sophisticated numerical optimization algorithms [4.4][4.16][4.17].

Of the two types, quadratic methods are easier to implement and appear to be more
scalable in terms of runtime. Nonlinear methods require careful tuning to achieve
numerical stability and often run much slower than quadratic methods. However,
nonlinear methods can better account for the shapes and sizes of standard cells and

 4.3 Global Placement 121

especially macro blocks, whereas quadratic placement requires dedicated spreading
techniques. Both placement techniques are often combined with netlist clustering to
reduce runtime [4.4][4.16][4.17][4.34], in a manner that is conceptually similar to
multilevel partitioning (Chap. 2). However, the use of clustering in placement often
leads to losses in solution quality. Thus, it is an open question whether the multilevel
approach can outperform the flat approach in terms of runtime and solution quality
for placement, as is the case for partitioning [4.5].

The aspects of quadratic placement that appear most impactful in practice are (1) the
representation of multi-pin nets by sets of graph edges (net modeling), (2) the choice
of algorithms for spreading, and (3) the strategy for interleaving spreading with
quadratic optimization. Two common net models include cliques, where every pair
of pins is connected by an edge with a small weight, and stars, where every pin is
connected to a “star-point” that represents the net (or hyperedge) itself [4.12]. Edges
representing a net are given fractional weights that add up to the net’s weight (or to
unity). For nets with fewer pins, cliques are preferred because they do not introduce
new variables. For larger nets, stars are useful because they entail only a linear
number of graph edges [4.34]. The star-point can be movable or placed in the
centroid (average location or barycenter) of its neighbors. The latter option is
preferred in practice because (1) it corresponds to the optimal location of the
star-point in quadratic placement, and (2) it saves two (x,y) variables. Some placers
additionally use a linearization technique that assigns a constant weight

ji xx
jiw 1),(

to each quadratic term (xi – xj)2 within the objective function. The weight w(i,j) has
the effect of turning each such squared wirelength term into a linear wirelength term,
and can therefore be truer to an underlying linear wirelength objective. These
weights are treated as constants, and then updated between rounds of quadratic
optimization. A more accurate placement-dependent net model is proposed in [4.32].

Spreading is based on estimates of cell density in different regions of the chip. These
estimates are computed by allocating movable objects into bins of a regular grid, and
comparing their total area to available capacity per bin. Spreading can be performed
after quadratic optimization using a combination of sorting by location and
geometric scaling [4.32]. For example, cells in a dense region may be sorted by their
x-coordinates and then re-placed in this order, so as to avoid overlaps. An implicit
spreading method to reduce overlap is to enclose a set of cells in a rectangular region
and then perform linear scaling [4.18].

Spreading can also be integrated directly into quadratic optimization by adding
spreading forces that push movable objects away from dense regions. These
additional forces are modeled by imaginary fixed pins (anchor points) and imaginary
wires pulling individual standard cells toward fixed pins [4.11]. This integration
allows conventional quadratic placement to trade interconnect minimization for

122 4 Global and Detailed Placement

smaller overlaps between modules. FastPlace [4.34] first performs simple geometric
scaling and then uses the resulting locations as anchor points during quadratic
optimization. These steps of spreading and quadratic optimization are interleaved in
FastPlace to encourage spreading that does not conflict with interconnect
optimization. Researchers have also sought to develop spreading algorithms that are
sufficiently accurate to be invoked only once after quadratic optimization [4.35].

Analytic placement can be extended to optimize not only interconnect length, but
also routing congestion [4.31]. This requires wiring congestion estimation, which is
similar to density estimation and is also maintained on a regular grid. Congestion
information can be used in the same ways as density estimation to perform
spreading. Some researchers have developed post-processors to improve congestion
properties of a given placement [4.21].

Several modern placers are available free of charge for research purposes. As of
2010, the most accessible placers are APlace [4.16][4.17], Capo [4.2][4.26],
FastPlace 3.0 [4.34], mPL6 [4.4], and simPL [4.18]. All except simPL3 are equipped
with legalizers and detailed placers so as to produce legal and highly optimized
solutions. mPL6 is significantly slower than FastPlace, but finds solutions with
smaller total interconnect length. Capo, a min-cut placer, is available in C++ source
code. Its runtime is between that of mPL6 and FastPlace, but in many cases it
produces solutions that are inferior to FastPlace solutions in terms of total
interconnect length. However, for designs where achieving routability is difficult,
Capo offers a better chance to produce a routable placement. It is also competitive
on smaller designs (below 50,000 movable objects), especially those with high
density and many fixed obstacles.

4.4 4.4 Legalization and Detailed Placement

Global placement assigns locations to standard cells and larger circuit modules, e.g.,
macro blocks. However, these locations typically do not align with power rails, and
may have continuous (real) coordinates rather than discrete coordinates. Therefore,
the global placement must be legalized. The allowed legal locations are equally
spaced within pre-defined rows, and the point-locations from global placement
should be snapped to the closest possible legal locations (Fig. 4.11).

Legalization is necessary not only after global placement, but also after incremental
changes such as cell resizing and buffer insertion during physical synthesis (Sec.
8.5). Legalization seeks to find legal, non-overlapping placements for all placeable
modules so as to minimize any adverse impact on wirelength, timing and other
design objectives. Unlike algorithms for “cell spreading” during global placement
(Sec. 4.3), legalization typically assumes that the cells are distributed fairly well

3 simPL uses FastPlace-DP [4.23] for both legalization and detailed placement.

124 4 Global and Detailed Placement

another group of cells is snapped to legal sites, and the process continues until all
cells have been given legal locations.

A common problem with simple and fast legalization algorithms is that some cells
may travel a long distance, thus significantly increasing the length and, hence, delay
of incident nets. This phenomenon can be mitigated by detailed placement. For
example, optimal branch-and-bound placers [4.3] can reorder groups of neighboring
cells in a row. Such groups of cells are often located in a sliding window; the
optimal placer reorders cells in a given window so as to improve total wirelength
(accounting for connections to cells with fixed locations outside the window).

A more scalable optimization splits the cells in a given window into left and right
halves, and optimally interleaves the two groups while preserving the relative order
of cells from each group [4.12]. Up to 20 cells per window can be interleaved
efficiently during detailed placement, whereas branch-and-bound placement can
typically handle only up to eight cells [4.3]. These two optimizations can be
combined for greater impact.

Sometimes, wirelength can be improved by reordering cells that are not adjacent.
For example, pairs of non-adjacent cells connected by a net can be swapped [4.23],
and sets of three such cells can be cycled. Yet another detailed placement
optimization is possible when unused space is available between cells placed in a
row. These cells can be shifted to either side, or to intermediate locations. Optimal
locations to minimize wirelength can be found by a polynomial-time algorithm
[4.15], which is practical in many applications.

Software implementations of legalization and detailed placement are often bundled,
but are sometimes independent of global placement. One example is FastPlace-DP
[4.23] (binary available from the authors). FastPlace-DP works best when the input
placement is almost legal or requires only a small number of local changes.
FastPlace-DP performs a series of simple but efficient incremental optimizations
which typically decrease interconnect length by several percent. On the other end of
the spectrum is ECO-System [4.25]. It is integrated with the Capo placer [4.2][4.26]
and uses more sophisticated yet slower optimizations. ECO-System first analyzes a
given placement and identifies regions where cells overlap so much that they need to
be re-placed. The Capo algorithm is then applied simultaneously to each region so as
to ensure consistency. Capo integrates legalization and detailed placement into
global min-cut placement. Therefore, ECO-System will produce a legal placement
even if the initial placement requires significant changes.

Other strategies, such as the use of linear programming [4.7] and dynamic
programming [4.14], have been integrated into legalization and detailed placement
with promising results. The legalization of mixed-size netlists that contain large
movable blocks is particularly challenging [4.14].

126 4 Global and Detailed Placement

 Chapter 4 References

[4.1] M. Breuer, “Min-Cut Placement”,
J. Design Autom. and Fault-Tolerant
Computing 10 (1977), pp. 343-382.

[4.2] A. E. Caldwell, A. B. Kahng
and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable
Placements?”, Proc. Design Autom.
Conf., 2000, pp. 477-482.

[4.3] A. E. Caldwell, A. B. Kahng
and I. L. Markov, “Optimal Partitioners
and End-Case Placers for Standard-Cell
Layout”, IEEE Trans. on CAD 19(11)
(2000), pp. 1304-1313.

[4.4] T. F. Chan, J. Cong,
J. R. Shinnerl, K. Sze and M. Xie,
“mPL6: Enhanced Multilevel
Mixed-Size Placement”, Proc. Intl.
Symp. on Phys. Design, 2006,
pp. 212-221.

[4.5] H. Chen, C.-K. Cheng,
N.-C. Chou, A. B. Kahng,
J. F. MacDonald, P. Suaris,
B. Yao and Z. Zhu, “An Algebraic
Multigrid Solver for Analytical
Placement with Layout Based
Clustering”, Proc. Design Autom.
Conf., 2003, pp. 794-799.

[4.6] J. Cong, J. R. Shinnerl,
M. Xie, T. Kong and X. Yuan,
“Large-Scale Circuit Placement”,
ACM Trans. on Design Autom. of
Electronic Sys. 10(2) (2005),
pp. 389-430.

[4.7] J. Cong and M. Xie, “A Robust
Detailed Placement for Mixed-Size IC
Designs”, Proc. Asia and South Pacific
Design Autom. Conf., 2006, pp. 188-194.

[4.8] A. E. Dunlop and
B. W. Kernighan, “A Procedure
for Placement of Standard-Cell VLSI
Circuits”, IEEE Trans. on CAD 4(1)
(1985), pp. 92-98.

[4.9] H. Eisenmann and F. Johannes,
“Generic Global Placement and
Floorplanning”, Proc. Design Autom.
Conf., 1998, pp. 269-274.

[4.10] D. Hill, Method and System
for High Speed Detailed Placement
of Cells Within an Integrated Circuit
Design, U.S. Patent 6370673, 2001.

[4.11] B. Hu, Y. Zeng and
M. Marek-Sadowska, “mFAR:
Fixed-Points-Addition-Based VLSI
Placement Algorithm”, Proc. Intl. Symp.
on Phys. Design, 2005, pp. 239-241.

[4.12] T. C. Hu and K. Moerder,
“Multiterminal Flows in a Hypergraph”,
in VLSI Circuit Layout: Theory and
Design (T. C. Hu and E. S. Kuh, eds.),
IEEE, 1985.

[4.13] S. W. Hur and J. Lillis, “Mongrel:
Hybrid Techniques for Standard Cell
Placement”, Proc. Intl. Conf. on CAD,
2000, pp. 165-170.

 Chapter 4 References 127

[4.14] A. B. Kahng, I. L. Markov and
S. Reda, “On Legalization of Row-
Based Placements”, Proc. Great Lakes
Symp. on VLSI, 2004, pp. 214-219.

[4.15] A. B. Kahng, P. Tucker and
A. Zelikovsky, “Optimization of Linear
Placements for Wirelength Minimization
with Free Sites”, Proc. Asia and South
Pacific Design Autom. Conf., 1999,
pp. 241-244.

[4.16] A. B. Kahng and Q. Wang,
“Implementation and Extensibility
of an Analytic Placer”, IEEE Trans.
on CAD 24(5) (2005), pp. 734-747.

[4.17] A. B. Kahng and Q. Wang,
“A Faster Implementation of APlace”,
Proc. Intl. Symp. on Phys. Design,
2006, pp. 218-220.

[4.18] M.-C. Kim, D.-J. Lee and
I. L. Markov, “simPL: An Effective
Placement Algorithm”, Proc. Intl.
Conf. on CAD, 2010.

[4.19] J. B. Kruskal, “On the Shortest
Spanning Subtree of a Graph and the
Traveling Salesman Problem”,
Proc. Amer. Math. Soc. 7(1) (1956),
pp. 8-50.

[4.20] J. K. Lam, An Efficient
Simulated Annealing Schedule
(Doctoral Dissertation), Yale
University, 1988.

[4.21] C. Li, M. Xie, C.-K. Koh, J. Cong
and P. H. Madden, “Routability-Driven
Placement and White Space Allocation”,
IEEE Trans. on CAD 26(5) (2007),
pp. 858-871.

[4.22] G.-J. Nam and J. Cong, eds.,
Modern Circuit Placement: Best
Practices and Results, Springer, 2007.

[4.23] M. Pan, N. Viswanathan and
C. Chu, “An Efficient and Effective
Detailed Placement Algorithm”, Proc.
Intl. Conf. on CAD, 2005, pp. 48-55.

[4.24] N. R. Quinn, “The Placement
Problem as Viewed from the Physics
of Classical Mechanics”, Proc. Design
Autom. Conf., 1975, pp. 173-178.

[4.25] J. A. Roy and I. L. Markov,
“ECO-System: Embracing the Change
in Placement,” IEEE Trans. on CAD
26(12) (2007), pp. 2173-2185.

[4.26] J. A. Roy, D. A. Papa,
S. N. Adya, H. H. Chan, A. N. Ng,
J. F. Lu and I. L. Markov, “Capo:
Robust and Scalable Open-Source
Min-Cut Floorplacer”, Proc. Intl. Symp.
on Phys. Design, 2005, pp. 224-226,
vlsicad.eecs.umich.edu/BK/PDtools/.

[4.27] Y. Saad, Iterative Methods for
Sparse Linear Systems, Soc. of Industrial
and App. Math., 2003.

128 4 Global and Detailed Placement

[4.28] C. Sechen, “Chip-Planning,
Placement and Global Routing of
Macro/Custom Cell Integrated Circuits
Using Simulated Annealing”, Proc.
Design Autom. Conf., 1988, pp. 73-80.

[4.29] C. Sechen and A. Sangiovanni-
Vincentelli, “TimberWolf 3.2: A New
Standard Cell Placement and Global
Routing Package”, Proc. Design Autom.
Conf., 1986, pp. 432-439.

[4.30] K. Shahookar and P. Mazumder,
“VLSI Cell Placement Techniques”,
ACM Computing Surveys 23(2) (1991),
pp. 143-220.

[4.31] P. Spindler and F. M. Johannes,
“Fast and Accurate Routing Demand
Estimation for Efficient Routability-
Driven Placement”, Proc. Design,
Autom. and Test in Europe, 2007,
pp. 1226-1231.

[4.32] P. Spindler, U. Schlichtmann and
F. M. Johannes, “Kraftwerk2 – A Fast
Force-Directed Quadratic Placement
Approach Using an Accurate Net
Model”, IEEE Trans. on CAD 27(8)
(2008), pp. 1398-1411.

[4.33] R.-S. Tsay, E. S. Kuh and
C.-P. Hsu, “PROUD: A Sea-of-Gates
Placement Algorithm”, IEEE Design
and Test 5(6) (1988), pp. 44-56.

[4.34] N. Viswanathan, M. Pan and
C. Chu, “FastPlace 3.0: A Fast Multi-
level Quadratic Placement Algorithm
with Placement Congestion Control”,
Proc. Asia and South Pacific Design
Autom. Conf., 2007, pp. 135-140.

[4.35] Z. Xiu and R. A. Rutenbar,
“Mixed-Size Placement With Fixed
Macrocells Using Grid-Warping”,
Proc. Intl. Symp. on Phys. Design,
2007, pp. 103-110.

 131

5 Global Routing

During global routing, pins with the same electric potential are connected using wire
segments. Specifically, after placement (Chap. 4), the layout area is represented as
routing regions (Sec. 5.4) and all nets in the netlist are routed in a systematic manner
(Sec. 5.5). To minimize total routed length, or optimize other objectives (Sec. 5.3),
the route of each net should be short (Sec. 5.6). However, these routes often compete
for the same set of limited resources. Such conflicts can be resolved by concurrent
routing of all nets (Sec. 5.7), e.g., integer linear programming (ILP), or by
sequential routing techniques, e.g., rip-up and reroute. Several algorithmic
techniques enable scalability of modern global routers (Sec. 5.8).

5.1 Introduction

A net is a set of two or more pins that have the same electric potential. In the final
chip design, they must be connected. A typical p-pin net connects one output pin of
a gate and p – 1 input pins of other gates; its fanout is equal to p – 1. The term netlist
refers collectively to all nets.

Given a placement and a netlist, determine the necessary wiring, e.g., net topologies
and specific routing segments, to connect these cells while respecting constraints,
e.g., design rules and routing resource capacities, and optimizing routing objectives,
e.g., minimizing total wirelength and maximizing timing slack.

In area-limited designs, standard cells may be packed densely without unused space.
This often leads to routing congestion, where the shortest routes of several nets are
incompatible because they traverse the same tracks. Congestion forces some routes
to detour; thus, in congested regions, it can be difficult to predict the eventual length
of wire segments. However, the total wirelength cannot exceed the available routing
resources, and in some cases the chip area must be increased to ensure successful
routing. Fixed-die routing, where the chip outline and all routing resources are fixed,
is distinguished from variable-die routing, where new routing tracks can be added as
needed. For the fixed-die routing problem,1 100% routing completion is not always
possible a priori, but may be possible after changes to placement. On the other hand,
in older standard-cell circuits with two or three metal layers, new tracks can be
inserted as needed, resulting in the classical variable-die channel routing problem for
which 100% routing completion is always possible. Fig. 5.1 outlines the major
categories of routing algorithms discussed in this book.

1 The fixed-die routing problem is so named because the layout bounding box and the number of

routing tracks are predetermined due to the fixed floorplan and power-ground distribution.

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_5, © Springer Science+Business Media B.V. 2011

5.1

 5.2 Terminology and Definitions 133

To determine the net ordering, each net is given a numerical indicator of importance
(priority), known as a net weight. High priority can be given to nets that are
timing-critical, connect to numerous pins, or carry specific functions such as
delivering clock signals. High-priority nets should avoid unnecessary detours, even
at the cost of detouring other nets. Pin ordering is typically performed using either
tree-based algorithms (Sec. 5.6.1) or geometric criteria based on pin locations.

Specializing routing into global and detailed stages is common for digital circuits.
For analog circuits, multi-chip modules (MCMs), and printed circuit boards (PCBs),
global routing is sometimes unnecessary due to the smaller number of nets involved,
and only detailed routing is performed.

5.2 Terminology and Definitions 5.2

The following terms are relevant to global routing in general. Terms pertaining to
specific algorithms and techniques will be introduced in their respective sections.

A routing track (column) is an available horizontal (vertical) wiring path. A signal
net often uses a sequence of alternating horizontal tracks and vertical columns,
where adjacent tracks and columns are connected by inter-layer vias.

A routing region is a region that contains routing tracks and/or columns.

A uniform routing region is formed by evenly spaced horizontal and vertical grid
lines that induce a uniform grid over the chip area. This grid is sometimes referred to
as a ggrid (global grid); it is composed of unit gcells (global cells). Grid lines are
typically spaced seven to 40 routing tracks [5.18] apart to balance the complexities
of the chip-scale global routing and gcell-scale detailed routing problems.

A non-uniform routing region is formed by horizontal and vertical boundaries that
are aligned to external pin connections or macro-cell boundaries. This results in
channels and switchboxes – routing regions that have differing sizes. During global
routing, nets are assigned to these routing regions. During detailed routing, the nets
within each routing region are assigned to specific wiring paths.

A channel is a rectangular routing region with pins on two opposite (usually the
longer) sides and no pins on the other (usually the shorter) sides. There are two types
of channels – horizontal and vertical.

A horizontal channel is a channel with pins on the top and bottom boundaries (Fig.
5.3).

A vertical channel is a channel with pins on the left and right boundaries (Fig. 5.4).

 5.6 Single-Net Routing 141

5.6 Single-Net Routing 5.6

The following techniques for single-net routing are commonly used within larger
full-chip routing tools.

5.6.1 Rectilinear Routing

Multi-pin nets – nets with more than two pins – are often decomposed into two-pin
subnets, followed by point-to-point routing of each subnet according to some
ordering. Such net decomposition is performed at the beginning of global routing
and can affect the quality of the final routing solution.

Rectilinear spanning tree. A rectilinear spanning tree connects all terminals (pins)
using only pin-to-pin connections that are composed of vertical and horizontal
segments. Pin-to-pin connections can meet only at a pin, i.e., “crossing” edges do
not intersect, and no additional junctions (Steiner points) are allowed. If the total
length of segments used to create the spanning tree is minimal, then the tree is a
rectilinear minimum spanning tree (RMST). An RMST can be computed in O(p2)
time, where p is the number of terminals in the net, using methods such as Prim’s
algorithm [5.19]. This algorithm builds an MST by starting with a single terminal
and greedily adding least-cost edges to the partially-constructed tree until all
terminals are connected. Advanced computational-geometric techniques reduce the
runtime to O(p log p).

Rectilinear Steiner tree (RST). A rectilinear Steiner tree (RST) connects all p pin
locations and possibly some additional locations (Steiner points). While any
rectilinear spanning tree for a p-pin net is also a rectilinear Steiner tree, the addition
of carefully-placed Steiner points often reduces the total net length.4 An RST is a
rectilinear Steiner minimum tree (RSMT) if the total length of net segments used to
connect all p pins is minimal. For instance, in a uniform routing grid, let a unit net
segment be an edge that connects two adjacent gcells; an RST is an RSMT if it has
the minimum number of unit net segments.

The following facts are known about RSMTs.

– An RSMT for a p-pin net has between 0 and p – 2 (inclusive) Steiner points.
– The degree of any terminal pin is 1, 2, 3, or 4. The degree of a Steiner point is

either 3 or 4.
– A RSMT is always enclo in the minimum bounding box (MBB) of the net.
– The total edge length L

sed
RSMT of the RSMT is at least half the perimeter of the

minimum bounding box of the net: L L / 2. RSMT MBB

4 In Manhattan routing, the corner of an L-shape connection between two points is not considered a

Steiner point.

 5.7 Full-Netlist Routing 155

5.7 5.7 Full-Netlist Routing

In order to successfully route multiple nets, global routers must properly match nets
with routing resources, without oversubscribing resources in any part of the chip. All
signal nets are either routed simultaneously, e.g., using (integer) linear programming
(Sec. 5.7.1), or sequentially, e.g., one net at a time (Sec. 5.6). When certain nets
cause resource contention or overflow for routing edges, sequential routing requires
multiple iterations. These iterations are performed by ripping up the nets that cause
violations (Sec. 5.7.2) and rerouting them with fewer violations. The iterations
continue until all nets are routed without violating capacities of routing-grid edges or
until a timeout is exceeded.

 5.7.1 Routing by Integer Linear Programming

A linear program (LP) consists of a set of constraints and an optional objective
function. This function is maximized or minimized subject to these constraints. Both
the constraints and the objective function must be linear. In particular, the
constraints form a system of linear equations and inequalities. An integer linear
program (ILP) is a linear program where every variable can only assume integer
values. ILPs where all variables are binary are called 0-1 ILPs. (Integer) Linear
programs can be solved using a variety of available software tools such as GLPK
[5.7], CPLEX [5.13], and MOSEK [5.17]. There are several ways to formulate the
global routing problem as an ILP, one of which is presented below.

The ILP takes three inputs – (1) an W × H routing grid G, (2) routing edge capacities,
and (3) the netlist Netlist. For exploitation purposes, a horizontal edge is considered
to run left to right – G(i,j) ~ G(i+1,j) – and a vertical edge is considered to run
bottom to top – G(i,j) ~ G(i,j+1).

The ILP uses two sets of variables. The first set contains k Boolean variables xnet1,
xnet2, … , xnetk, each of which serves as an indicator for one of k specific paths or
route options, for each net net Netlist. If xnetk = 1, (respectively, = 0), then the route
option netk is used (respectively, not used). The second set contains k real variables
wnet1, wnet2, … , wnetk, each of which represents a net weight for a specific route
option for net Netlist. This net weight reflects the desirability of each route option
for net (a larger wnetm means that the route option netm is more desirable – e.g., has
fewer bends). With |Netlist| nets, and k available routes for each net net Netlist, the
total number of variables in each set is k · |Netlist|.

Next, the ILP formulation relies on two types of constraints. First, each net must
select a single route (mutual exclusion). Second, to prevent overflows, the number
of routes assigned to each edge (total usage) cannot exceed its capacity. The ILP
maximizes the total number of nets routed, but may leave some nets unrouted. That

156 5 Global Routing

is, if a selected route causes overflow in the existing solution, then the route will not
be chosen. If all routes for a particular net cause overflow, then no routes will be
chosen and thus the net will not be routed.

Integer Linear Programming (ILP) Global Routing Formulation
Inputs:
 W,H : width W and height H of routing grid G
 G(i,j) : grid cell at location (i,j) in routing grid G
 (G(i,j)~G(i + 1,j)) : capacity of horizontal edge G(i,j) ~ G(i + 1,j)
 (G(i,j)~G(i,j + 1)) : capacity of vertical edge G(i,j) ~ G(i,j + 1)
 Netlist : netlist
Variables:
 xnet1, ... , xnetk : k Boolean path variables for each net net Netlist
 wnet1, ... , wnetk : k net weights, one for each path of net net Netlist

Maximize:

Netlistnet
netnetnetnet kk

xwxw
11

Subject to:
Variable Ranges:
 xnet1, … , xnetk [0,1] Netlistnet

Net Constraints:

 xnet1 + … + xnetk 1 Netlistnet

Capacity Constraints:

knet that use G(i,j) ~ G(i,j + 1),))1,(~),((
1

jiGjiGxx
Netlistnet

netnet k

0 i < W, 0 j < H – 1

knet that use G(i,j) ~ G(i +1,j),

),1(~),((
1

jiGjiGxx
Netlistnet

netnet k

0 i < W – 1, 0 j < H

In practice, most pin-to-pin connections are routed using L-shapes or straight wires
(connections without bends). In this formulation, straight connections can be routed
using a straight path or a U-shape; non-straight connections can use both L-shapes.
For unrouted nets, other topologies can be found using maze routing (Sec. 5.6.3).

ILP-based global routers include Sidewinder [5.12] and BoxRouter 1.0 [5.4]. Both
decompose multi-pin nets into two-pin nets using FLUTE [5.5], and the route of
each net is selected from two alternatives or left unselected. If neither of the two
routes available for a net is chosen, Sidewinder performs maze routing to find an
alternate route and replaces one of the unused routes in the ILP formulation. On the
other hand, nets that were successfully routed and do not interfere with unrouted
nets can be removed from the ILP formulation. Thus, Sidewinder solves multiple
ILPs until no further improvement is observed. In contrast, BoxRouter 1.0
post-processes the results of its ILP using maze-routing techniques.

158 5 Global Routing

Vertical Edge Capacity Constraints:
 G(0,0) ~ G(0,1) : xC2 + xC4 (G(0,0) ~ G(0,1)) = 1
 G(1,0) ~ G(1,1) : xC3 (G(1,0) ~ G(1,1)) = 1
 G(2,0) ~ G(2,1) : xB2 + xC1 (G(2,0) ~ G(2,1)) = 1
 G(3,0) ~ G(3,1) : xB3 (G(3,0) ~ G(3,1)) = 1
 G(4,0) ~ G(4,1) : xB1 (G(4,0) ~ G(4,1)) = 1
 G(0,1) ~ G(0,2) : xA2 + xC2 (G(0,1) ~ G(0,2)) = 1
 G(1,1) ~ G(1,2) : xA3 + xC3 (G(1,1) ~ G(1,2)) = 1
 G(2,1) ~ G(2,2) : xA1 + xA4 + xC1 + xC4 (G(2,1) ~ G(2,2)) = 1
 G(0,2) ~ G(0,3) : xA2 + xA4 (G(0,2) ~ G(0,3)) = 1
 G(1,2) ~ G(1,3) : xA3 (G(1,2) ~ G(1,3)) = 1
 G(2,2) ~ G(2,3) : xA1 (G(2,2) ~ G(2,3)) = 1

Objective Function:

 xA1 + xA2 + 0.99 · xA3 + 0.99 · xA4
+ xB1 + xB2 + 0.99 · xB3

Maximize

+ xC1 + xC2 + 0.99 · xC3 + 0.99 · xC4

 5.7.2 Rip-Up and Reroute (RRR)

Modern ILP solvers help advanced ILP-based global routers to successfully
complete hundreds of thousands of routes within hours [5.4][5.12]. However,
commercial EDA tools require greater scalability and lower runtimes. These
performance requirements are typically satisfied using the rip-up and reroute (RRR)
framework, which focuses on problematic nets. If a net cannot be routed, this is
often due to physical obstacles or other routed nets being in the way. The key idea is
to allow temporary violations, so that all nets are routed, but then iteratively remove
some nets (rip-up), and route them differently (reroute) so as to decrease the number
of violations. In contrast, push-and-shove strategies [5.16] move currently routed
nets to new locations (without rip-up) to relieve wire congestion or to allow
previously unroutable nets to become routable.

An intuitive, greedy approach to routing would route nets sequentially and insist on
violation-free routes where such routes are possible, even at the cost of large detours.
On the other hand, the RRR framework allows nets to (temporarily) route through
over-capacity regions.5 This helps decide which nets should detour, rather than
detouring the net routed most recently. In the example of Fig. 5.20(a), assume that
the nets are routed in an order based on the size of the net’s aspect ratio and MBB
(A-B-C-D). If each net is routed without violations (Fig. 5.20(b)), then net D is
forced to detour heavily. However, if nets are allowed to route with violations, then
some nets are ripped up and rerouted, enabling D to use fewer routing segments (Fig.
5.20(c)).

5 Allowing temporary violations is a common tactic for routing large-scale modern (ASIC) designs,

while routing nets without violations is common for PCBs.

160 5 Global Routing

To improve computational scalability, a modern global router keeps track of all nets
that are routed with violations – the nets go through at least one edge that is
over-capacity. All these nets are added to an ordered list v_nets (lines 1-5).
Optionally, v_nets can be sorted to suit a different ordering (line 7). For each net net
in v_nets (line 8), the router first checks whether net still has violations (line 10). If
net has no violations, i.e., some other nets have been rerouted away from congested
edges used by net, then net is skipped. Otherwise, the router rips up and reroutes net
(lines 11-12). If net still has violations, then the router adds net to v_nets. This
process continues until all nets have been processed or a stopping condition is
reached (lines 6-15). Variants of this framework include (1) ripping up all violating
nets at once, and then rerouting nets one by one, and (2) checking for violations after
rerouting all nets.

Notice that in this RRR framework, not all nets are necessarily ripped up. To further
reduce runtime, some violating nets can be selectively chosen (temporarily) not to
be ripped up. This typically causes wirelength to increase by a small amount, but
reduces runtime by a large amount [5.11]. In the context of negotiated congestion
routing (Sec. 5.8.2), nets are ripped-up and rerouted to also build up appropriate
history costs on congested edges. Maintaining these history costs improves the
success of rip-up and reroute and decreases the significance of ordering.

5.8 5.8 Modern Global Routing

As chip complexity grows, routers must limit both routed interconnect length and
the number of vias, as this greatly affects the chip’s performance, dynamic power
consumption, and yield. Violation-free global routing solutions facilitate smooth
transitions to design for manufacturability (DFM) optimizations. Completing global
routing without violations allows the physical design process to move on to detailed
routing and ensuing steps of the flow. However, if a placed design is inevitably
unroutable or if a routed design exhibits violations, then a secondary step must
isolate problematic regions. In cases where numerous violations are found, repair
is commonly performed by repeating global or detailed placement and injecting
whitespace into congested regions.

Several notable global routers have been developed for the ISPD 2007 and 2008
Global Routing Contests [5.18]. In 2007, FGR [5.21], MaizeRouter [5.16], and
BoxRouter [5.4] claimed the top three places. In 2008, NTHU-Route 2.0 [5.2] and
NTUgr [5.3], which focused on better solution quality, and FastRoute 3.0 [5.23],
which focused on runtime, took the top three places.6 Fig. 5.21 shows the general
flow for several global routers, where each router uses a unique set of
optimizations targeting a particular tradeoff between runtime and solution quality.

6 FastRoute 4.0 [5.22] was released shortly after the contest, with both solution quality and runtime

improvements compared to FastRoute 3.0.

 Chapter 5 References 165

Exercise 4: ILP-Based Global Routing
Modify the example given in Sec. 5.7.1 by disallowing Z-shape routes. Give the full
ILP instance and state whether it is feasible, i.e., has a valid solution. If a solution
exists, then illustrate the routes on the grid. Otherwise, explain why no solution
exists.

Exercise 5: Shortest Path with A* Search
Modify the example illustrated in Fig. 5.19 by removing one obstacle. Number the
nodes searched as in Fig. 5.19(b).

Exercise 6: Rip-Up and Reroute
Consider rip-up and reroute on an m × m grid with n nets. Estimate the required
memory usage. Choose from the following.

 O(m2) O(m2 + n) O(m

2 · n2)
 O(m 2 · n) O(n2) O(m · n) O(m · n 2)

 Chapter 5 References

[5.1] S. Batterywala, N. Shenoy,
W. Nicholls and H. Zhou, “Track
Assignment: A Desirable Intermediate
Step Between Global and Detailed
Routing”, Proc. Intl. Conf. on CAD,
2002, pp. 59-66.

[5.2] Y.-J. Chang, Y.-T. Lee and
T.-C. Wang, “NTHU-Route 2.0:
A Fast and Stable Global Router”,
Proc. Intl. Conf. on CAD, 2008,
pp. 338-343.

[5.3] H.-Y. Chen, C.-H. Hsu and
Y.-W. Chang, “High-Performance
Global Routing with Fast Overflow
Reduction”, Proc. Asia and South
Pacific Design Autom. Conf., 2009,
pp. 582-587.

[5.4] M. Cho and D. Pan, “BoxRouter:
A New Global Router Based on Box
Expansion”, IEEE Trans. on CAD 26(12)
(2007), pp. 2130-2143.

166 5 Global Routing

[5.5] C. Chu and Y. Wong, “FLUTE:
Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for
VLSI Design”, IEEE Trans. on CAD
27(1) (2008), pp. 70-83.

[5.6] E. Dijkstra, “A Note on Two
Problems in Connexion With Graphs”,
Num. Math. 1 (1959), pp. 269-271.

[5.7] GLPK, gnu.org/software/glpk.

[5.8] M. Hanan, “On Steiner’s Problem
with Rectilinear Distance”, SIAM J. on
App. Math. 14(2) (1966), pp. 255-265.

[5.9] P. E. Hart, N. J. Nilsson and
B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum
Cost Paths”, IEEE Trans. on Sys. Sci.
and Cybernetics 4(2) (1968),
pp. 100-107.

[5.10] J.-M. Ho, G. Vijayan and
C. K. Wong, “New Algorithms for the
Rectilinear Steiner Tree Problem”, IEEE
Trans. on CAD 9(2) (1990), pp. 185-193.

[5.11] J. Hu, J. Roy and I. Markov,
“Completing High-Quality Global
Routes”, Proc. Intl. Symp. on Phys.
Design, 2010, pp. 35-41.

[5.12] J. Hu, J. Roy and I. Markov,
“Sidewinder: A Scalable ILP-Based
Router”, Proc. Sys. Level Interconnect
Prediction, 2008, pp. 73-80.

[5.13] ILOG CPLEX, www.cplex.com.

[5.14] E. S. Kuh and T. Ohtsuki,
“Recent Advances in VLSI Layout”,
Proc. IEEE 78(2) (1990), pp. 237-263.

[5.15] L. McMurchie and C. Ebeling,
“Pathfinder: A Negotiation-Based
Performance-Driven Router for FPGAs”,
Proc. Intl. Symp. on FPGAs, 1995,
pp. 111-117.

[5.16] M. Moffitt, “MaizeRouter:
Engineering an Effective Global Router”,
IEEE Trans. on CAD 27(11) (2008),
pp. 2017-2026.

[5.17] MOSEK, www.mosek.com.

[5.18] G.-J. Nam, C. Sze and M. Yildiz,
“The ISPD Global Routing Benchmark
Suite”, Proc. Intl. Symp. on Phys.
Design, 2008, pp. 156-159.

[5.19] R. C. Prim, “Shortest Connection
Networks and Some Generalizations”,
Bell Sys. Tech. J. 36(6) (1957),
pp. 1389-1401.

[5.20] H.-J. Rothermel and D. Mlynski,
“Automatic Variable-Width Routing for
VLSI”, IEEE Trans. on CAD 2(4) (1983),
pp. 271-284.

[5.21] J. A. Roy and I. L. Markov,
“High-Performance Routing at the
Nanometer Scale”, IEEE Trans. on CAD
27(6) (2008), pp. 1066-1077.

[5.22] Y. Xu, Y. Zhang and C. Chu,
“FastRoute 4.0: Global Router with
Efficient Via Minimization”, Proc. Asia
and South Pac. Design Autom. Conf.,
2009, pp. 576-581.

[5.23] Y. Zheng, Y. Xu and C. Chu,
“FastRoute 3.0: A Fast and High
Quality Global Router Based on Virtual
Capacity”, Proc. Intl. Conf. on CAD,
2008, pp. 344-349.

6 Chapter 6

Detailed Routing

 169

6 Detailed Routing

Recall from Chap. 5 that the layout region is represented by a coarse grid consisting
of global routing cells (gcells) or more general routing regions (channels,
switchboxes) during global routing. Afterward, each net undergoes detailed routing.

The objective of detailed routing is to assign route segments of signal nets to specific
routing tracks, vias, and metal layers in a manner consistent with given global
routes of those nets. These route assignments must respect all design rules.

Each gcell is orders of magnitude smaller than the entire chip, e.g., 10 10 routing
tracks, regardless of the actual chip size. As long as the routes remain properly
connected across all neighboring gcells, the detailed routing of one gcell can be
performed independently of the routing of other gcells. This facilitates an efficient
divide-and-conquer framework and also enables parallel algorithms. Thus, detailed
routing runtime can (theoretically) scale linearly with the size of the layout.
Traditional detailed routing techniques are applied within routing regions, such as
channels (Sec. 6.3) and switchboxes (Sec. 6.4). For modern designs, over-the-cell
(OTC) routing (Sec. 6.5) allows wires to be routed over standard cells. Due to
technology scaling, modern detailed routers must account for manufacturing rules
and the impact of manufacturing faults (Sec. 6.6).

6.1 6.1 Terminology

Channel routing is a special case of detailed routing where the connections between
terminal pins are routed within a routing region (channel) that has no obstacles. The
pins are located on opposite sides of the channel (Fig. 6.1, left). By convention, the
channel is oriented horizontally – pins are on the top and bottom of the channel. In
row-based layouts, in a given block, the routing channels typically have uniform
channel width. In gate-array and standard-cell circuits that use more than three
layers of metal, channel height, the number of routing tracks between the top and
bottom boundaries of the channel, is also uniform.

Switchbox routing is performed when pin locations are given on all four sides of a
fixed-size routing region (switchbox, Fig. 6.1, right). This makes the detailed routing
significantly more difficult than in channel routing. Switchbox routing is further
discussed in Sec. 6.4.

OTC (over-the-cell) routing uses additional metal tracks, e.g., on Metal3 and Metal4,
that are not obstructed by cells, allowing routes to cross cells and channels. An
example is shown in Fig. 6.2. OTC routing can use only the metal layers and tracks

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_6, © Springer Science+Business Media B.V. 2011

 6.6 Modern Challenges in Detailed Routing 185

6.6 Modern Challenges in Detailed Routing 6.6

The need for low-cost, high-performance and low-power ICs has driven technology
scaling since the 1960s [6.11]. An important aspect of modern technology scaling is
the use of wires of different widths on different metal layers. In general, wider wires
on higher metal layers allow signals to travel much faster than on thinner wires on
lower metal layers. This helps to recover some benefits from scaling in terms of
performance, but at the cost of fewer routing tracks. Thicker wires are typically used
for clock (Sec. 7.5) and supply routing (Sec. 3.7), as well as for global interconnect.

Manufacturers today use different configurations of metal layers and widths to
accommodate high-performance designs. However, such a variety of routing
resources makes detailed routing more challenging. Vias connecting wires of
different widths inevitably block additional routing resources on the layer with the
smaller wire pitch. For example, layer stacks in some IBM designs for 130 nm-32
nm technologies are illustrated in Fig. 6.17 [6.1]. Wires on layers M have the
smallest possible width , while the wires on layers C, B, E, U and W are wider –
1.3 , 2 , 4 , 10 , and 16 , respectively. The 90 nm technology node was the first to
introduce different metal layer thicknesses, with thinner wires on the top two layers.
Today’s 32 nm metal layer stacks often incorporate four to six distinct wire
thicknesses. Advanced lithography techniques used in manufacturing lead to stricter
enforcement of preferred routing direction on each layer.

130 nm 90 nm 65 nm 45 nm 32 nm
M1
M2
M3
M4
M5
M6

M1
M2
M3
M4
M5
B1
B2

M1
M2
M3
M4
B1
B2
B3
E1

E2

M1
M2
M3
M4

B1
B2

C1
C2

B3
E1

U1

U2

M1
M2
M3
M4

B1
B2
B3
E1

E2

M5

W1

W2

Fig. 6.17 Representative layer stacks for 130 nm - 32 nm technology nodes (scaled to minimum
feature size at each technology node).

186 6 Detailed Routing

Semiconductor manufacturing yield is a key concern in detailed routing. To
safeguard against manufacturing defects, via doubling and non-tree routing insert
redundant vias and wiring segments as backups in case an electrical connection is
lost. At advanced technology nodes, manufacturability constraints (design rules)
become more restrictive and notably complicate detailed routing. For example,
design rules specify minimum allowed spacing between wires and vias depending
on their widths and proximity to wire corners. More recent spacing rules take into
account multiple neighboring polygons. Forbidden pitch rules prohibit routing wires
at certain distances apart, but allows smaller or greater spacings.

Via defects. Recall that a (single) via connects two wires on different metal layers.
However, vias can be misaligned during manufacturing, and are susceptible to
electromigration effects during the chip’s lifetime [6.13]. A partially failing via with
increased resistance may cause timing violations in the circuit. A via that has failed
completely may disconnect a net, altering the circuit’s function. To protect against
via failures, modern IC designs often employ double vias. Such protection requires
additional resources (area), and must obey all design rules. These resources may be
unavailable around some vias. In some congested areas, only a small subset of vias
can be doubled [6.17]. Via doubling can be performed by modern commercial
routers or by standalone yield enhancement tools after detailed routing.

Interconnect defects. The two most common manufacturing defects in wires are
shorts (undesired connections) and opens (broken connections). To address shorts,
adjacent wires can be spread further apart, which also decreases electromagnetic
interference. However, spreading the wires too far can increase total wirelength,
thereby increasing the design’s exposure to opens. To address opens, non-tree
routing [6.12] adds redundant wires to already routed nets. However, since
increasing wirelength directly contradicts traditional routing objectives (Chaps. 5-6),
this step is usually a post-processing step after detailed routing. Redundant wires
increase the design’s susceptibility to shorts, but make it immune to some opens.

Antenna-induced defects. Another type of manufacturing defect affects transistors,
but can be mitigated by constraining routing topologies. It occurs after the transistor
and one or more metal layers have been fabricated, but before other layers are
completed. During plasma etching, metal wires not connected to PN-junction nodes
may collect significant electric charges which, discharged through the gate dielectric
(SiO2 at older technology nodes, high-k dielectric at newer nodes), can irreversibly
damage transistor gates. To prevent these antenna effects, detailed routers limit the
ratio of metal to gate area on each metal layer. Specifically, they restrict the area of
metal polygons connected to gates without being connected to a source/drain
implant. When such antenna rules are violated, the simplest fix is to transfer a
fraction of a route to a higher layer through a new or relocated via.

Some researchers have also proposed manufacturability-aware routers, where
detailed routing explicitly optimizes yield. However, it is difficult to objectively
quantify the benefit of such optimizations before manufacturing. As a result, such
techniques have not yet caught on in the industry.

 Chapter 6 Exercises 187

 Chapter 6 Exercises

Exercise 1: Left-Edge Algorithm
Given a channel with the following pin connections (ordered left to right).
TOP = [A B A 0 E D 0 F] and BOT = [B C D A C F E 0].
(a) Find S(col) for columns a-h and the minimum number of routing tracks.
(b) Draw the HCG and VCG.
(c) Use the left-edge algorithm to route this channel. For each track, mark the

placed nets and draw the updated VCG from (b). Draw the channel with the
fully routed nets.

Exercise 2: Dogleg Left-Edge Algorithm
Given a channel with the following pin connections (ordered left to right).
TOP = [A A B 0 A D C E] and BOT = [0 B C A C E D D].
(a) Draw the vertical constraint graph (VCG) without splitting the nets.
(b) Determine the zone representation for nets A-E. Find S(col) for columns a-h.
(c) Draw the vertical constraint graph (VCG) with net splitting.
(d) Find the minimum number of required tracks with net splitting and without net

splitting.
(e) Use the Dogleg left-edge algorithm to route this channel. For each track, state

which nets are assigned. Draw the final routed channel.

Exercise 3: Switchbox Routing
Given the nets on each side of a switchbox,
(ordered bottom-to-top) LEFT = [0 G A F B 0] RIGHT = [0 D C E G 0]
(ordered left-to-right) BOT = [0 A F G D 0] TOP = [0 A C E B D]
Route the switchbox using the approach shown in the example in Sec. 6.4.2. For
each column, mark the routed nets and their corresponding tracks. Draw the
switchbox with all nets routed.

Exercise 4: Manufacturing Defects
Consider a region with high wiring congestion and a region where routes can be
completed easily. For each type of manufacturing defect discussed in Sec. 6.6, is it
more likely to occur in a congested region? Explain your answers. You may find it
useful to visualize congested and uncongested regions using small examples.

Exercise 5: Modern Challenges in Detailed Routing
Develop an algorithmic approach to double-via insertion.

Exercise 6: Non-Tree Routing
Dis uss advantages and drawbacks of non-tree routing (Sec. 6.6). c

188 6 Detailed Routing

 Chapter 6 References

[6.1] C. J. Alpert, Z. Li, M. D. Moffitt,
G.-J. Nam, J. A. Roy and G. Tellez,
“What Makes a Design Difficult to
Route”, Proc. Intl. Symp. on Phys.
Design, 2010, pp. 7-12.

[6.2] D. Braun et al., “Techniques for
Multilayer Channel Routing”, IEEE
Trans. on CAD 7(6) (1988), pp. 698-712.

[6.3] J. P. Cohoon and P. L. Heck,
“BEAVER: A Computational-
Geometry-Based Tool for Switchbox
Routing”, IEEE Trans. on CAD 7(6)
(1988), pp. 684-697.

[6.4] J. Cong and C. L. Liu, “Over-the-
Cell Channel Routing”, IEEE Trans.
on CAD 9(4) (1990), pp. 408-418.

[6.5] J. Cong, D. F. Wong and
C. L. Liu, “A New Approach to
Three- or Four-Layer Channel Routing”,
IEEE Trans. on CAD 7(10) (1988),
pp. 1094-1104.

[6.6] D. N. Deutsch, “A ‘Dogleg’
Channel Router”, Proc. Design Autom.
Conf., 1976, pp. 425-433.

[6.7] S. H. Gerez and O. E. Herrmann,
“Switchbox Routing by Stepwise
Reshaping”, IEEE Trans. on CAD
8(12) (1989), pp. 1350-1361.

[6.8] A. Hashimoto and J. Stevens,
“Wire Routing by Optimizing Channel
Assignment within Large Apertures”,
Proc. Design Autom. Workshop, 1971,
pp. 155-169.

[6.9] T.-T. Ho, S. S. Iyengar and
S.-Q. Zheng, “A General Greedy
Channel Routing Algorithm”,
IEEE Trans. on CAD 10(2) (1991),
pp. 204-211.

[6.10] N. D. Holmes, N. A. Sherwani
and M. Sarrafzadeh, “Utilization of
Vacant Terminals for Improved Over-
the-Cell Channel Routing”, IEEE Trans.
on CAD 12(6) (1993), pp. 780-792.

[6.11] International Technology
Roadmap for Semiconductors,
2009 edition, www.itrs.net.

[6.12] A. Kahng, B. Liu and I. M ndoiu,
“Non-Tree Routing for Reliability and
Yield Improvement”, Proc. Intl. Conf.
on CAD, 2002, pp. 260-266.

[6.13] J. Lienig, “Introduction to
Electromigration-Aware Physical
Design”, Proc. Intl. Symp. on Phys.
Design, 2006, pp. 39-46.

[6.14] W. K. Luk, “A Greedy Switchbox
Router”, Integration, the VLSI J. 3(2)
(1985), pp. 129-149.

[6.15] J. K. Ousterhout et al., “Magic: A
VLSI Layout System”, Proc. Design
Autom. Conf., 1984, pp. 152-159.

[6.16] R. Rivest and C. Fiduccia, “A
‘Greedy’ Channel Router”, Proc.
Design Autom. Conf., 1982, pp. 418-424.

[6.17] G. Xu, L.-D. Huang, D. Pan and
M. Wong, “Redundant-Via Enhanced
Maze Routing for Yield Improvement”,
Proc. Asia and South Pacific Design
Autom. Conf., 2005, pp. 1148-1151.

[6.18] T. Yoshimura, “An Efficient
Channel Router”, Proc. Design Autom.
Conf., 1984, pp. 38-44.

[6.19] T. Yoshimura and E. S. Kuh,
“Efficient Algorithms for Channel
Routing”, IEEE Trans. on CAD 1(1)
(1982), pp. 25-35.

7 Chapter 7

Specialized Routing

 7.3 Non-Manhattan Routing 195

7.3 7.3 Non-Manhattan Routing

Recall from Sec. 7.1 that traditional Manhattan routing allows only vertical and
horizontal segments. Shorter paths are possible with diagonal segments. However,
arbitrary diagonal segments cannot be effectively manufactured. A possible
compromise is to allow 45-degree or 60-degree segments in addition to horizontal
and vertical segments. Such non-orthogonal routing configurations are commonly
described by -geometry, where represents the number of possible routing
directions1 and the angles / at which they can be oriented.

– = 2 (90 degrees): Manhattan routing (four routing directions)
– = 3 (60 degrees): Y-routing (six routing directions)
– = 4 (45 degrees): X-routing (eight routing directions)

The advantages of the latter two routing styles over Manhattan-based routing are
decreased wirelength and via count. However, other steps in the physical design
flow, such as physical verification, could take significantly longer. Additionally,
non-Manhattan routing becomes prohibitively difficult at recent technology nodes
due to limitations of optical lithography. Therefore, non-Manhattan routing is
primarily employed on printed circuit boards (PCBs). This is illustrated by octilinear
route planning in Sec. 7.3.1 and eight-directional path search in Sec. 7.3.2.

 7.3.1 Octilinear Steiner Trees

Octilinear Steiner minimum trees (OSMT) generalize rectilinear Steiner trees by
allowing segments that extend in eight directions. The inclusion of diagonal
segments gives more freedom when placing Steiner points, which may reduce total
net length. Several OSMT algorithms have been proposed, such as in [7.9] and
[7.19]. The following approach was developed by Ho et al. [7.9] (refer to the
pseudocode on the next page).

First, find the shortest three-pin subnets of the net under consideration. To identify
these three-pin groups, the Delaunay triangulation2 is found over all pins (line 2).
Second, sort all the groups in ascending order of their minimum octilinear routed
lengths (line 3). Then, integrate these three-pin subnets into the overall OSMT. For
each group subT in sorted order (line 4), (1) route subT with the minimum octilinear
length (line 5), (2) merge subT with the current octilinear Steiner tree OST (line 6),
nd (3) locally optimize OST based on subT (line 7). a

1 Not to be confused with the layout-scaling parameter .
2 The Delaunay triangulation for a set of points P in a plane is a triangulation DT(P) such that no

points in P lie inside the circumcircle of any triangle in DT(P). The circumcircle of a triangle tri is
defined as a circle which passes through all the vertices of tri.

 7.4 Basic Concepts in Clock Networks 199

Signal delay is the time required for a signal transition (low to high, or high to
low) to propagate from one node to another node, e.g., in a routing tree. Signal
transitions are initiated at the outputs of logic gates, which are constructed from
transistors that have highly nonlinear behavior. The transitions propagate through
complex wire and via structures that have parasitic resistances, capacitances and
inductances. Hence, it is difficult to exactly calculate signal delay. Circuit
simulators such as SPICE, or commercial timing analysis tools such as
PrimeTime, are used to obtain accurate “signoff delay” calculations during the
final checking steps before the design is sent to production. However, to guide
place-and-route algorithms, considerably less accuracy is needed. Two common
signal delay estimates used in timing-driven routing are the linear and Elmore
delay models. The following is a reproduction of the development given in [7.11].

In the linear delay model, signal delay from si to sj is proportional to the length of
the si ~ sj path in the routing tree and is independent of the rest of the connection
topology. Thus, the normalized linear delay between any two nodes u and w in a
source-sink path is the sum of the edge lengths |e| in the u ~ w path

)~(

),(
wue

LD ewut

On-chip wires are passive, resistive-capacitive (RC) structures, for which both
resistance (R) and capacitance (C) typically grow in proportion to the length of the
wire. Thus, the linear delay model does not accurately capture the “quadratically
growing” RC component of wire delay. On the other hand, the linear
approximation provides reasonable guidance to design tools, especially for older
technologies that have smaller drive resistance of transistors and larger wire
widths (smaller wire resistances). In practice, the linear delay model is very
convenient to use in EDA software tools because of its ease of evaluation.

In the Elmore delay model, given the routing tree T with root (source) node s0,

– (p,v) denotes the edge connecting node v to its parent node p in T
– R(e) and C(e) denote the respective resistance and capacitance of edge e T
– Tv denotes the subtree of T rooted at v
– C(v) denotes the sink capacitance of v
– C(Tv) denotes the tree capacitance of T , i.e., the sum of sink and edge

capacitances in T
v

v

v

v

If node v is a terminal, then C(v) is typically the capacitance of the input pin to
which the clock signal is routed. If node v is a Steiner node, then C(v) = 0. If T is
a single (leaf) node, C(T) is equal to v’s sink capacitance C(v).

200 7 Specialized Routing

Using this notation, th edge (p,v) is e Elmore delay approximation for an

)(),(),(),(vCvpCvpRvpt

e on-resistance of
e output transistor at the source (“stronger” driving gates will have smaller

on-resistance values Rd r sink s

2ED

This can be seen as a sum of RC delay products, with the factor of one-half
corresponding to a ~63% threshold delay. Last, if Rd denotes th
th

), then the Elmore delay tED(s) fo

),(0 sse

Physical design tools use the Elmore delay approximation for three main reasons.
First, it accounts for the sink delay impact of off-path wire capacitance – the edges
of the routing tree that are not directly on the source-to-sink path. Second, it offers
reasonable accuracy and good fidelity (correlation) with respect to accurate delay
estimates from circuit simulators. Third, it can be evaluated at all nodes of a tree
in time that is linear in tree size (number of edges). This is realized by two
depth-first tr

0)()()(EDdED etsCRst

aversals: the first calculates the tree capacitance C(Tv) below each
node in the tree, while the second calculates the delays from the source to each

tant, since the clock signal
must be delivered to all sinks at the same time. If t(u,v) denotes the signal delay
between nodes u and

|),(),(|max)(sstsstTskew

node [7.11].

Clock skew is the (maximum) difference in clock signal arrival times between
sinks. This parameter of the clock tree solution is impor

v, then the skew of clock tree T is

00
,

jiSss ji

If there exists a path of combinational logic from the (data) ou

tput pin of one sink
to the (data) input pin of another sink, then the two sinks are said to be related or

Local skew is the maximum difference in arrival times of the clock signal at the

inks – i.e., the difference between
shortest and longest source-sink path delays in the clock distribution network. In
practice, skew typically refers to global skew.

sequentially adjacent. Otherwise, the two sinks are unrelated.

clock pins of two or more related sinks.

Global skew is the maximum difference in arrival times of the clock signal at the
clock pins of any two (related or unrelated) s

 7.4 Basic Concepts in Clock Networks 201

 7.4.2 Problem Formulations for Clock-Tree Routing

This section presents some basic clock routing formulations. The most fundamental
is the zero-skew tree problem. Practical variations include the bounded-skew tree
and useful-skew tree problems. The integration of zero-skew trees in a modern,
low-power clock-network design flow is further discussed in Sec. 7.5.2, with more
details in [7.14]. It relies on SPICE – software for circuit simulation – for a high
degree of accuracy.

Zero skew. If a clock tree exhibits zero skew, then it is a zero-skew tree (ZST). For
skew to be well-defined, a delay estimate (e.g., linear or Elmore delay) is implicit.

Zero-Skew Tree (ZST) Problem. Given a set S of sink locations, construct a ZST
T(S) with minimum cost. In some contexts, a connection topology G is also given.

Bounded skew. While the ZST problem leads to elegant physical design
algorithms that form the basis of commercial solutions, practical clock tree routing
does not typically achieve exact zero skew.

In practice, a “true ZST” is not desirable. ZSTs can use a significant amount of
wirelength, increasing the total capacitance of the network. Moreover, a true ZST
is also not achievable in practice – manufacturing variability for both transistors
and interconnects can cause differences in the RC constants of wire segments of a
given layer. Thus, signoff timing analysis is with respect to a non-zero skew bound
that must be achieved by the clock routing tool.

Bounded-Skew Tree (BST) Problem. Given a set S of sink locations and a skew
bound UB > 0, construct a clock tree T(S) with skew(T(S)) UB having minimum
cost. As with the ZST problem, in certain contexts a topology G may be specified.
Notice that when the skew is unbounded (UB =), the BST problem becomes the
classic RSMT problem (Chap. 5).

Useful skew. Clock trees do not always require bounded global skew. Correct chip
timing only requires control of the local skews between pairs of related flip-flops
or latches. While the clock tree routing problem can be conveniently formulated in
terms of global skew, this actually over-constrains the problem. The increasingly
prominent useful skew formulation is based on analysis of local skew constraints.

In synchronous circuits, the data signal that propagates from a flip-flop (sink)
output to the next flip-flop input should arrive neither too late nor too early. The
former failure mode (late arrival) is zero clocking, while the latter (early arrival) is
double clocking [7.7]. In contrast to formulations that minimize or bound global
skew, Fishburn [7.7] proposed a clock skew optimization method that introduces
useful skew – perturbing clock arrival times at sinks – in the clock tree to either
minimize the clock period or maximize the clock safety margin. The clock period
P can be reduced by appropriate choices of sink arrival times (Fig. 7.9).

202 7 Specialized Routing

FF2FF1 2 ns

x1= 0 ns

(a) Minimum clock period
P = 6 ns with zero skew

(b) Minimum clock period
P = 4 ns with 2 ns (useful) skew

FF1 FF2: P 2 ns – (0 ns – 0 ns) = 2 ns
FF2 FF3: P 6 ns – (0 ns – 0 ns) = 6 ns

P 2 ns – (0 ns – 2 ns) = 4 ns
P 6 ns – (2 ns – 0 ns) = 4 ns

x2= 0 ns

6 ns FF3

x3= 0 ns

FF2FF1 2 ns

x1= 2 ns x2= 0 ns

6 ns FF3

x3= 2 ns

Fig. 7.9 Example of useful skew for clock cycle time reduction. (a) Zero skew results in a 6 ns
clock period. (b) Useful skews of 2 ns, 0 ns and 2 ns at x1, x2 and x3 result in a 4 ns clock period.

To avoid zero clocking, the data edge generated by FFi due to a clock edge must
arrive at FFj no later than tsetup before the earliest arrival of the next clock edge.
Formally, xi + tsetup + max(i,j) xj + P must be met with clock period P, where

– xi is the latest time at which the clock edge can arrive at FFi
– max(i,j) is the slowest (longest) signal propagation from FF to FFj i

– xj + P is the earliest arrival time of the next clock edge at FFj

To avoid double clocking between two flip-flops FFi and FFj, the data edge
generated at FFi due to a clock edge must arrive at FFj no sooner than thold after
the latest possible arrival of the same clock edge. Formally, xi + min(i,j) xj + thold

ust be met, where m

– xi is the earliest time at which the clock edge can arrive at FFi

agation from FF to FF – min(i,j) denote the fastest (shortest) signal prop i j

– xj be the latest arrival time of the clock at FFj

ze clock period (LP_SPEED), or (2)
maximize the safety margin (LP_SAFETY).

xi for all sinks to minimize clock period P, subject to the following
onstraints.

d (i, j)
xi tmin for all i

Fishburn observed that linear programming can be used to find optimal clock arrival
times xi at all sinks to either (1) minimi

Useful Skew Problem (LP_SPEED). Given (1) constant values of tsetup and thold, (2)
maximum and minimum signal propagation times max(i,j) and min(i,j) between all
pairs (i,j) of related sinks, and (3) minimum source-sink delay tmin, determine clock
arrival times
c

xi – xj thold – min(i,j) for all related (i, j)
xj – xi + P tsetup + max(i,j) for all relate

 7.5 Modern Clock Tree Synthesis 203

Useful Skew Problem (LP_SAFETY). Given (1) constant values of tsetup and thold, (2)
maximum and minimum signal propagation times max(i,j) and min(i,j) between all
pairs (i,j) of related sinks, and (3) minimum source-sink delay tmin, determine clock
arrival times xi for all sinks to maximize safety margin SM, subject to

xi – xj – SM thold – min(i,j) for all related (i, j)
xj – xi – SM tsetup + max(i,j) – P for all related (i, j)
xi tmin for all i

7.5 7.5 Modern Clock Tree Synthesis

Clock trees play a vital role in modern synchronous designs and significantly impact
the circuit’s performance and power consumption. A clock tree should have low
skew, simultaneously delivering the same signal to every sequential gate. After the
initial tree construction (Sec. 7.5.1), the clock tree undergoes clock buffer insertion
and several subsequent skew optimizations (Sec. 7.5.2).

7.5.1 Constructing Trees with Zero Global Skew

This section presents five early algorithms for clock tree construction whose
underlying concepts are still used in today’s commercial EDA tools. Several
scenarios are covered, including algorithms that (1) construct a clock tree
independent of the clock sink locations, (2) construct the clock tree topology and
embedding simultaneously, and (3) construct only the embedding given a clock tree
topology as input.

H-tree. The H-tree is a self-similar, fractal structure (Fig. 7.10) with exact zero skew
due to its symmetry. It was first popularized by Bakoglu [7.2]. In the unit square, a
segment is passed through the root node at center, then two shorter line segments are
constructed at right angles to the first segment, to the centers of the four quadrants;
this process continues recursively until the sinks are reached. The H-tree is
frequently used for top-level clock distribution, but cannot be employed directly for
the entire clock tree due to (1) blockages, (2) irregularly placed clock sinks, and (3)
excessive routing cost. That is, to reach all n = 4k sinks uniformly located in the unit
square, where k 1 is the number of levels in the H-tree, the wirelength of the
H-tree grows as 2/3 n . To minimize signal reflections at branching points, the
wire segments can be tapered – halving the wire width at each branching point
encountered as one moves away from the source.

 7.5 Modern Clock Tree Synthesis 213

High-level skew optimization. In the 1980s, the entire clock tree could be driven by
a single buffer. However, with technology scaling, wires have become more
resistive and clock trees today can no longer be driven by a single buffer. Therefore,
clock buffers are inserted at multiple locations in the tree to ensure that the clock
signal has sufficient strength to propagate to all sinks (timing points). The locations
and sizes of buffers are used to control the propagation delay within each branch of
the tree. Though not intended for clock trees, the algorithm proposed by L. van
Ginneken [7.8] optimally buffers a tree to minimize Elmore delay between the
source and every sink in O(n2) time, where n is the total number of possible buffer
locations. The O(n log n)-time variant proposed in [7.16] is more scalable. These
algorithms also avoid insertion of unnecessary buffers on fast paths, thus achieving
lower skew if the initial tree was balanced. After initial buffer insertion, subsequent
optimizations are performed to minimize skew, decrease power consumption, and
improve robustness of the clock tree to unforeseen changes to buffer characteristics,
e.g., manufacturing process variations.

Clock buffer sizing. The choice of the clock buffer size for initial buffer insertion
affects downstream optimizations, as most of the buffers’ sizes and locations are
unlikely to change. However, the best-performing size is difficult to identify
analytically. Therefore, it is often determined by trial and error, e.g., using binary
search. Clock buffer sizes can be further adjusted as follows. For a pair of sinks s1
and s2 with significant skew, find the unique path in the tree connecting s1 and s2.
Upsize the buffers on according to a pre-computed table (discussed below) that
matches an appropriate buffer size to each path length and fanout. In practice, larger
buffers improve the robustness of the circuit, but consume more power and may
introduce additional delay.

Wire sizing. The choice of wire width affects both power and susceptibility to
manufacturing defects. Wider wires are more resilient to variation, but have greater
capacitance and consume more dynamic power than thinner wires. Wider wires (and
wider spacings to neighbors) are preferred for high-performance designs; thinner
wires are preferred for low-power or less aggressive designs. After the initial wire
width is chosen, it can be adjusted for individual segments based on timing analysis.

Low-level skew optimization. Compared to the global impact of high-level skew
optimizations, low-level skew optimizations cause smaller, localized changes. The
precision of low-level skew optimizations is typically much greater than that of
high-level skew optimizations. Low-level optimizations, such as wire sizing and
wire snaking, are preferred for fine-tuning skew. To slow down fast sinks, the length
of the path can be increased by purposely detouring the wire. This increases the total
capacitance and resistance of the path, thus increasing the propagation delay.

Variation modeling. Due to randomness in the semiconductor manufacturing
process, every transistor in every chip is slightly different. In addition, every chip
can be used at different ambient temperature, and will locally heat up or cool down
depending on activity patterns. Supply voltage may also change depending on

214 7 Specialized Routing

manufacturing variation and power drawn by other parts of the chip. Nevertheless,
modern clock trees must operate as expected under a variety of circumstances. To
ensure such robustness, an efficient and accurate variation model encapsulates the
different parameters, e.g., wire width and thickness, of each library element as
well-defined random variables. However, predicting the impact of process variations
is difficult. One option is to run a large number of individual simulations with
different parameter settings (Monte-Carlo simulation), but this is slow and
impractical in an optimization flow.

A second option is to generate a lookup table that captures worst-case skew
variations between pairs of sinks based on (1) technology node, (2) clock buffer and
wire library, (3) tree path length, (4) variation model, and (5) desired yield. Though
creating this table requires extensive simulations, this only needs to be done once for
a given technology. The resulting table can be used for any compatible clock tree
optimization, e.g., for clock buffer sizing, as previously explained in this section. In
general, this lookup table approach facilitates a fast and accurate optimization.

Further clock network design techniques are discussed in Chaps. 42-43 of [7.1],
including active deskewing and clock meshes, common in modern CPUs, as well as
clock gating, used to decrease clock power dissipation. The book [7.18] focuses on
clocking in modern VLSI systems from a designer perspective and recommends a
number of techniques to minimize the impact of process variations. The book [7.15]
discusses clocking for high-performance and low-power applications.

 Chapter 7 References 217

 Chapter 7 References

[7.1] C. J. Alpert, D. P. Mehta
and S. S. Sapatnekar, eds., Handbook
of Algorithms for Physical Design
Automation, CRC Press, 2009.

[7.2] H. B. Bakoglu, Circuits,
Interconnections and Packaging
for VLSI, Addison-Wesley, 1990.

[7.3] K. D. Boese and A. B. Kahng,
“Zero-Skew Clock Routing Trees with
Minimum Wirelength”, Proc. Intl. Conf.
on ASIC, 1992, pp. 1.1.1-1.1.5.

[7.4] T.-H. Chao, J.-M. Ho and
Y.-C. Hsu, “Zero Skew Clock Net
Routing”, Proc. Design Autom. Conf.,
1992, pp. 518-523.

[7.5] J. Cong, A. B. Kahng,
C.-K. Koh and C.-W. A. Tsao,
“Bounded-Skew Clock and
Steiner Routing”, ACM Trans. on
Design Autom. of Electronic Sys.
3(3) (1998), pp. 341-388.

[7.6] M. Edahiro, “An Efficient
Zero-Skew Routing Algorithm”,
Proc. Design Autom. Conf., 1994,
pp. 375-380.

[7.7] J. P. Fishburn, “Clock
Skew Optimization”, IEEE Trans.
on Computers 39(7) (1990),
pp. 945-951.

[7.8] L. P. P. P. van Ginneken,
“Buffer Placement in Distributed
RC-Tree Networks for Minimal
Elmore Delay”, Proc. Intl. Symp.
on Circuits and Sys., 1990,
pp. 865-868.

[7.9] T.-Y. Ho, C.-F. Chang,
Y.-W. Chang and S.-J. Chen,
“Multilevel Full-Chip Routing
for the X-Based Architecture”,
Proc. Design Autom. Conf., 2005,
pp. 597-602.

[7.10] M. A. B. Jackson,
A. Srinivasan and E. S. Kuh,
“Clock Routing for High-
Performance ICs”, Proc.
Design Autom. Conf., 1990,
pp. 573-579.

[7.11] A. B. Kahng and G. Robins,
On Optimal Interconnections for
VLSI, Kluwer Academic Publishers,
1995.

[7.12] A. B. Kahng, J. Cong and
G. Robins, “High-Performance
Clock Routing Based on Recursive
Geometric Matching”, Proc. Design
Autom. Conf., 1991, pp. 322-327.

[7.13] C. Y. Lee, “An Algorithm for
Path Connection and Its Applications”,
IRE Trans. on Electronic Computers
10 (1961), pp. 346-365.

218 7 Specialized Routing

[7.14] D. Lee and I. L. Markov,
“CONTANGO: Integrated Optimization
for SoC Clock Networks”, Proc. Design,
Autom. and Test in Europe, 2010,
pp. 1468-1473.

[7.15] V. G. Oklobdzija,
V. M. Stojanovic, D. M. Markovic
and N. M. Nedovic, Digital System
Clocking: High-Performance and
Low-Power Aspects, Wiley-IEEE Press,
2003.

[7.16] W. Shi and Z. Li, “A Fast
Algorithm for Optimal Buffer Insertion”,
IEEE Trans. on CAD 24(6) (2005),
pp. 879-891.

[7.17] R.-S. Tsay, “Exact Zero Skew”,
Proc. Intl. Conf. on CAD, 1991,
pp. 336-339.

[7.18] T. Xanthopoulos, ed., Clocking in
Modern VLSI Systems, Springer, 2009.

[7.19] Q. Zhu, H. Zhou, T. Jing,
X. Hong and Y. Yang, “Efficient
Octilinear Steiner Tree Construction
Based on Spanning Graphs”, Proc.
Asia and South Pacific Design Autom.
Conf., 2004, pp. 687-690.

 221

8 Timing Closure

The layout of an integrated circuit (IC) must not only satisfy geometric requirements,
e.g., non-overlapping cells and routability, but also meet the design’s timing
constraints, e.g., setup (long-path) and hold (short-path) constraints. The
optimization process that meets these requirements and constraints is often called
timing closure. It integrates point optimizations discussed in previous chapters, such
as placement (Chap. 4) and routing (Chaps. 5-7), with specialized methods to
improve circuit performance. The following components of timing closure are
covered in this chapter.

– Timing-driven placement (Sec. 8.3) minimizes signal delays when assigning

locations to circuit elements.
– Timing-driven routing (Sec. 8.4) minimizes signal delays when selecting

routing topologies and specific routes.
– Physical synthesis (Sec. 8.5) improves timing by changing the netlist.

– Sizing transistors or gates: increasing the width:length ratio of transistors
). to decrease the delay or increase the drive strength of a gate (Sec. 8.5.1

– Inserting buffers into nets to decrease propagation delays (Sec. 8.5.2).
– Restructuring the circuit along its critical paths (Sec. 8.5.3).

Sec. 8.6 integrates these optimizations in a performance-driven physical design flow.

duced
delays, making high-quality placement and routing critical for timing closure.

circuit
omponents, with the primary goal of satisfying timing constraints, including

–
teady) before the clock edge for each storage element

– data
input signal should be stable after the clock edge at each storage element.

 8.1

8.1 Introduction

For many years, signal propagation delay in logic gates was the main contributor to
circuit delay, while wire delay was negligible. Therefore, cell placement and wire
routing did not noticeably affect circuit performance. Starting in the mid-1990s,
technology scaling significantly increased the relative impact of wiring-in

Timing optimization engines must estimate circuit delays quickly and accurately to
improve circuit timing. Timing optimizers adjust propagation delays through
c

Setup (long-path) constraints, which specify the amount of time a data input
signal should be stable (s
(e.g., flip-flop or latch).
Hold-time (short-path) constraints, which specify the amount of time a

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_8, © Springer Science+Business Media B.V. 2011

222 8 Timing Closure

Setup constraints ensure that no signal transition occurs too late. Initial phases of
timing closure focus on these types of constraints, which are formulated as follows.

tcycle tcombDelay + tsetup + tskew

Here, tcycle is the clock period, tcombDelay is the longest path delay through
combinational logic, tsetup is the setup time of the receiving storage element (e.g.,
flip-flop), and tskew is the clock skew (Sec. 7.4). Checking whether a circuit meets
setup constraints requires estimating how long signal transitions will take to
propagate from one storage element to the next. Such delay estimation is typically
based on static timing analysis (STA), which propagates actual arrival times (AATs)
and required arrival times (RATs) to the pins of every gate or cell. STA quickly
identifies timing violations, and diagnoses them by tracing out critical paths in the
circuit that are responsible for these timing failures (Sec. 8.2.1).

Motivated by efficiency considerations, STA does not consider circuit functionality
and specific signal transitions. Instead, STA assumes that every cell propagates
every 0-1 (1-0) transition from its input(s) to its output, and that every such
propagation occurs with the worst possible delay1. Therefore, STA results are often
pessimistic for large circuits. This pessimism is generally acceptable during
optimization because it affects competing layouts equally, without biasing the
optimization toward a particular layout. It is also possible to evaluate the timing of
several competing layouts with more accurate techniques in order to choose the best
solution.

One approach to mitigate pessimism in STA is to analyze the most critical paths.
Some of these can be false paths – those that cannot be sensitized by any input
transition because of the logic functions implemented by the gates or cells. IC
designers often enumerate false paths that are likely to become timing-critical to
exclude them from STA results and ignore them during timing optimization.

STA results are used to estimate how important each cell and each net are in a
particular layout. A key metric for a given timing point g – that is, a pin of a gate or
cell – is timing slack, the difference between g’s RAT and AAT: slack(g) = RAT(g)

 AAT(g). Positive slack indicates that timing is met – the signal arrives before it is
required – while negative slack indicates that timing is violated – the signal arrives
after its required time. Algorithms for timing-driven layout guide the placement and
routing processes according to timing slack values.

Guided by slack values, physical synthesis restructures the netlist to make it more
suitable for high-performance layout implementation. For instance, given an
unbalanced tree of gates, (1) the gates that lie on many critical paths can be upsized
to propagate signals faster, (2) buffers may be inserted into long critical wires, and
(3) the tree can be restructured to decrease its overall depth.

1 Path-based approaches for timing optimizations are discussed in Secs. 8.3-8.4.

224 8 Timing Closure

The maximum clock frequency for a given design depends upon (1) gate delays,
which are the signal delays due to gate transitions, (2) wire delays, which are the
delays associated with signal propagation along wires, and (3) clock skew (Sec. 7.4).
In practice, the predominant sources of delay in standard signals come from gate and
wire delays. Therefore, when analyzing setup constraints, this section considers
clock skew negligible. A lower bound on the design’s clock period is given by the
sum of gate and wire delays along any timing path through combinational logic –
from the output of a storage element to the input of the next storage element. This
lower bound on the clock period determines an upper bound on the clock frequency.

In earlier technologies, gate delays accounted for the majority of circuit delay, and
the number of gates on a timing path provided a reasonable estimate of path delay.
However, in recent technologies, wire delay, along with the component of gate delay
that is dependent on capacitive loading, comprises a substantial portion of overall
path delay. This adds complexity to the task of estimating path delays and, hence,
achievable (maximum) clock frequency.

For a chip to function correctly, path delay constraints (Sec. 8.3.2) must be satisfied
whenever a signal transition traverses a path through combinational logic. The most
critical verification task faced by the designer is to confirm that all path delay
constraints are satisfied. To do this dynamically, i.e., using circuit simulation is
infeasible for two reasons. First, it is computationally intractable to enumerate all
possible combinations of state and input variables that can cause a transition, i.e.,
sensitize, a given combinational logic path. Second, there can be an exponential
number of paths through the combinational logic. Consequently, design teams often
signoff on circuit timing statically, using a methodology that pessimistically assumes
all combinational logic paths can be sensitized. This framework for timing closure is
based on static timing analysis (STA) (Sec. 8.2.1), an efficient, linear-time
verification process that identifies critical paths.

After critical paths have been identified, delay budgeting2 (Secs. 8.2.2 and 8.3.1) sets
upper bounds on the lengths or propagation delays for these paths, e.g., using the
zero-slack algorithm [8.19], which is covered in Sec. 8.2.2. Other delay budgeting
techniques are described in [8.29].

8.2.1 Static Timing Analysis

In STA, a combinational logic network is represented as a directed acyclic graph
(DAG) (Sec. 1.7). Fig. 8.2 illustrates a network of four combinational logic gates x,
y, z and w, three inputs a, b and c, and one output f. The inputs are annotated with
times 0, 0 and 0.6 time units, respectively, at which signal transitions occur relative

2 This methodology is intended for layout of circuits directly represented by graphs rather than

circuits partitioned into high-level modules. However, this methodology can also be adapted to
assign budgets to entire modules instead of circuit elements.

 8.2 Timing Analysis and Performance Constraints 229

Signal integrity extensions to STA consider changes in delay due to switching
activity on neighboring wires of the path under analysis. For signal integrity
analysis, the STA engine keeps track of windows (intervals) of AATs and RATs,
and typically executes multiple timing analysis iterations before these timing
windows stabilize to a clean and accurate result.

Statistical STA (SSTA) is a generalization of STA where gate and wire delays are
modeled by random variables and represented by probability distributions [8.21].
Propagated AATs, RATs and timing slacks are also random variables. In this
context, timing constraints can be satisfied with high probability (e.g., 95%). SSTA
is an increasingly popular methodology choice for leading-edge designs, due to the
increased manufacturing variability in advanced process nodes. Propagating
statistical distributions instead of intervals avoids some of STA’s inherent
pessimism. This reduces the costly power, area and schedule impacts of overdesign.

The static verification approach is continually challenged by two fundamental
weaknesses – (1) the assumption of a clock and (2) the assumption that all paths are
sensitizable. First, STA is not applicable in asynchronous contexts, which are
increasingly prevalent in modern designs, e.g., asynchronous interfaces in
systems-on-chips (SoCs), asynchronous logic design styles to improve speed and
power. Second, optimization tools waste considerable runtime and chip resources –
e.g., power, area and speed – satisfying “phantom” constraints. In practice, designers
can manually or semi-automatically specify false and multicycle paths – paths
whose signal transitions do not need to finish within one clock cycle. Methodologies
to fully exploit the availability of such timing exceptions are still under development.

 8.2.2 Delay Budgeting with the Zero-Slack Algorithm

In timing-driven physical design, both gate and wire delays must be optimized to
obtain a timing-correct layout. However, there is a chicken-and-egg dilemma: (1)
timing optimization requires knowledge of capacitive loads and, hence, actual
wirelength, but (2) wirelengths are unknown until placement and routing are
completed. To help resolve this dilemma, timing budgets are used to establish
delay and wirelength constraints for each net, thereby guiding placement and
routing to a timing-correct result. The best-known approach to timing budgeting is
the zero-slack algorithm (ZSA) [8.19], which is widely used in practice.

Algorithm. Consider a netlist consisting of logic gates v1, v2, … , vn and nets e1, e2,
… , en, where ei is the output net of gate vi. Let t(v) be the gate delay of v, and let
t(e) be the wire delay of e.3 The ZSA takes the netlist as input, and seeks to
decrease positive slacks of all nodes to zero by increasing t(v) and t(e) values.
These increased delay values together constitute the timing budget TB(v) of node
v, which should not be exceeded during placement and routing.

3 A multi-fanout net ei has multiple source-sink delays, so ZSA must be adjusted accordingly.

 8.3 Timing-Driven Placement 233

In relation to the ZSA pseudocode, the procedure BACKWARD_PATH_EM(vmin,G)
is equivalent to BACKWARD_PATH(vmin,G), and FORWARD_PATH_EM(vmin,G) is
the equivalent to FORWARD_PATH(vmin,G), except that early-mode analysis is
used for all arrival and required times.

Compared to the original ZSA, the two differences are (1) the use of early-mode
timing constraints and (2) the handling of the Boolean flag done(v). Lines 1-2 set
done(v) to false for every node v in V. If t(ei) reaches zero for a node vi, done(vi) is
set to true (lines 23-24). In subsequent iterations (lines 3-25), if vi is the minimum
slack node of G, it will be skipped (line 9) because t(ei) cannot be decreased
further. After the algorithm completes, each node v will either have slack(v) = 0 or
done(v) = true.

In practice, if the delay of a node does not satisfy its early-mode timing budget, the
delay constraint can be satisfied by adding additional delay (padding) to appropriate
components. However, there is always the danger that additional delay may cause
violations of late-mode timing constraints. Thus, a circuit should be first designed
with ZSA and late-mode analysis. Early-mode analysis may then be used to confirm
that early-mode constraints are satisfied, or to guide circuit modifications to satisfy
such constraints.

8.3 8.3 Timing-Driven Placement

Timing-driven placement (TDP) optimizes circuit delay, either to satisfy all timing
constraints or to achieve the greatest possible clock frequency. It uses the results of
STA (Sec. 8.2.1) to identify critical nets and attempts to improve signal propagation
delay through those nets. Typically, TDP minimizes one or both of the following. (1)
worst negative slack (WNS)

)(min slackWNS

where is the set of timing endpoints, e.g., primary outputs and inputs to flip-flops,
and (2) total negative slack (TNS)

0)(,

)(
slack

slackTNS

Algorithmic techniques for timing-driven placement can be categorized as net-based
(Sec. 8.3.1), path-based or integrated (Sec. 8.3.2). There are two types of net-based
techniques – (1) delay budgeting assigns upper bounds to the timing or length of
individual nets, and (2) net weighting assigns higher priorities to critical nets during
placement. Path-based placement seeks to shorten or speed up entire timing-critical
paths rather than individual nets. While more accurate than net-based placement,
path-based placement does not scale to large, modern designs because the number of

234 8 Timing Closure

paths in some circuits, such as multipliers, can grow exponentially with the number
of gates. Both path-based and net-based approaches (1) rely on support within the
placement algorithm, and (2) require a dedicated infrastructure for (incremental)
calculation of timing statistics and parameters. Some placement approaches facilitate
integration with timing-driven techniques. For instance, net weighting is naturally
supported by simulated annealing and all analytic algorithms. Netlist partitioning
algorithms support small integer net weights, but can usually be extended to support
non-integer weights, either by scaling or by replacing bucket-based data structures
with more general priority queues.

Timing-driven placement algorithms often operate in multiple iterations, during
which the delay budgets or net weights are adjusted based on the results of STA.
Integrated algorithms typically use constraint-driven mathematical formulations in
which STA results are incorporated as constraints and possibly in the objective
function. Several TDP methods are discussed below, while more advanced
algorithms can be found in [8.8], [8.17], [8.20], and Chap. 21 of [8.5].

In practice, some industrial flows do not incorporate timing-driven methods during
initial placement because timing information can be very inaccurate until locations
are available. Instead, subsequent placement iterations, especially during detailed
placement, perform timing optimizations. Integrated methods are commonly used;
for example, the linear programming formulation (Sec. 8.3.2) is generally more
accurate than net-weighting or delay budgeting, at the cost of increased runtime. A
practical design flow for timing closure is introduced in Sec. 8.6.

 8.3.1 Net-Based Techniques

Net-based approaches impose either quantitative priorities that reflect timing
criticality (net weights), or upper bounds on the timing of nets, in the form of net
constraints (delay budgets). Net weights are more effective at the early design stages,
while delay budgets are more meaningful if timing analysis is more accurate. More
information on net weighting can be found in [8.12].

Net weighting. Recall that a traditional placer optimizes total wirelength and
routability. To account for timing, a placer can minimize the total weighted
wirelength, where each net is assigned a net weight (Chap. 4). Typically, the higher
the net weight is, the more timing-critical the net is considered. In practice, net
weights are assigned either statically or dynamically to improve timing.

Static net weights are computed before placement and do not change. They are
usually based on slack – the more critical the net (the smaller the slack), the greater
the weight. Static net weights can be either discrete, e.g.,

0 if
0 if

2

1

slack
slack

w , where 1 > 0, 2 > 0, and 2 > 1

 8.3 Timing-Driven Placement 235

where 1 < 2 are constants greater than zero, or continuous, e.g.,

1
t

slackw

where t is the longest path delay and is a criticality exponent.

In addition to slack, various other parameters can be accounted for, such as net size
and the number of critical paths traversing a given net. However, assigning too
many higher weights may lead to increased total wirelength, routability difficulties,
and the emergence of new critical paths. In other words, excessive net weighting
may eventually lead to inferior timing. To this end, net weights can be assigned
based on sensitivity, or how each net affects TNS. For example, the authors of [8.27]
define the net weight of net as follows. Let

– w (net) be the original net weight of net o

– slack(net) be the slack of net
– slack be the target slack of the design target

– SLACK(net) be the slack sensitivity to the net weight of net ws

– TNS
ws

– and be constant bounds on the net weight change that control the tradeoff
between WNS and TNS

(net) be the TNS sensitivity to the net weight of net

hen, if slack(net) 0, T

w(net) = w (net) + · (slack – slack(net)) ·o target

SLACK
ws (net) + · net) TNS

ws (

Otherwise, if slack(net) > 0, then w(net) remains the same, i.e., w(net) = w (net). o

Dynamic net weights are computed during placement iterations and keep an updated
timing profile. This can be more effective than static net weights, since they are
computed before placement, and can become outdated when net lengths change. An
example method updates slack values based on efficient calculation of incremental

ack for each net net [8.7]. For a given iteration k, let sl

– slackk–1(net) be the slack at iteration k – 1
– DELAY

Ls (net) be the delay sensitivity to the wirelength of net
– L(net) be the change in wirelength between iteration k – 1 and k for net

hen, the estimated slack of net at iteration k is

T

slackk(net) = slackk–1(net) – DELAY
Ls (net) · L(net)

236 8 Timing Closure

After the timing information has been updated, the net weights should be adjusted
accordingly. In general, this incremental method of weight modification is based on
revious iterations. For instance, for each net net, the authors of [8.14] first compute

the net criticality ti

+ 1) ong the 3% most critical nets
k(net) =

p
 at itera on k as

(k–1(net) if net is am

1
2
1

herwise

and then update the net w

Variants include using the previous j iterations and using different relations between

of
placer; their computation is integrated with the placement algorithm. To be scalable,

od to calculate delay budgets is
the zero-slack algorithm (ZSA), previously discussed in Sec. 8.2.2. Other advanced

 are in balance with those forces on
other nets. More advanced algorithms for min-cut and force-directed placers on TDP
can be found in [8.16] and [8.26], respectively.

2 k–1(net) ot

eights as

wk(net) = wk–1(net) · (1 + k(net))

the net weight and criticality.

In practice, dynamic methods can be more effective than using static net weights,
but require careful net weight assignment. Unlike static net weights, which are
relevant to any placer, dynamic net weights are typically tailored to each type

the re-computation of timing information and net weights must be efficient [8.7].

Delay budgeting. An alternative to using net weights is to limit the delay, or the
total length, of each net by using net constraints. This mitigates several drawbacks
of net weighting. First, predicting the exact effect of a net weight on timing or total
wirelength is difficult. For example, increasing weights of multiple nets may lead to
the same (or very similar) placement. Second, there is no guarantee that a net’s
timing or length will decrease because of a higher net weight. Instead, net-constraint
methods have better control and explicitly limit the length or slack of nets. However,
to ensure scalability, net constraints must be generated such that they do not
over-constrain the solution space or limit the total number of solutions, thereby
hurting solution quality. In practice, these net constraints can be generated statically,
before placement, or dynamically, when the net constraints are added or modified
during each iteration of placement. A common meth

methods for delay budgeting can be found in [8.15].

The support for constraints in each type of placer must be implemented carefully so
as to not sacrifice runtime or solution quality. For instance, min-cut placers must
choose how to assign cells to partitions while meeting wirelength constraints. To
meet these constraints, some cells may have to be assigned to certain partitions.
Force-directed placers can adjust the attraction force on certain nets that exceed a
certain length, but must ensure that these forces

 8.3 Timing-Driven Placement 237

 8.3.2 Embedding STA into Linear Programs for Placement

Unlike net-based methods, where the timing requirements are mapped to net weights
or net constraints, path-based methods for timing-driven placement directly optimize
the design’s timing. However, as the number of (critical) paths of concern can grow
quickly, this method is much slower than net-based approaches. To improve
scalability, timing analysis may be captured by a set of constraints and an
optimization objective within a mathematical programming framework, such as
linear programming. In the context of timing-driven placement, a linear program
(LP) minimizes a function of slack, such as TNS, subject to two major types of
constraints: (1) physical, which define the locations of the cells, and (2) timing,
which define the slack requirements. Other constraints such as electrical constraints
may also be incorporated.

Physical constraints. The physical constraints can be defined as follows. Given the
set of cells V and the set of nets E, let

– xv and yv be the center of cell v V
– V be the set of cells connected to net e E e

– left(e), right(e), bottom(e), and top(e) respectively be the coordinates of the left,
right, bottom, and top boundaries of e’s bounding box

– x(v,e) and y(v,e) be pin offsets from xv and yv for v’s pin connected to e

hen, for all v VT

e,

),()(

),()(
),()(
),()(

evyetop

evyebottom
evxeright
evxeleft

yv

yv

xv

xv

That is, every pin of a given net e must be contained within e’s bounding box. Then,
’s half-perimeter wirelength (HPWL) (Sec. 4.2) is defined as e

)()()()()(ebottometopelefterighteL

Timing constraints. The timing constraints can be defined as follows. Let

– tGATE(vi,vo) be the gate delay from an input pin vi to the output pin vo for cell v
– tNET(e,uo,vi) be net e’s delay from cell u’s output pin uo to cell v’s input pin vi
 AAT(v) be the arrival time on pin j of cell v

onstraints – those that account for input pins, and
those that account for output pins.

– j

Then, define two types of timing c

238 8 Timing Closure

For every input pin vi of cell v, the arrival time at each vi is the arrival time at the
previous output pin uo of cell u plus the net delay.

AAT(vi) = AAT(uo) + tNET(uo,vi)

For every output pin vo of cell v, the arrival time at vo should be greater than or equal
to the arrival time plus gate delay of each input vi. That is, for each input vi of cell v,

AAT(vo) AAT(vi) + tGATE(vi,vo)

For every pin p in a sequential cell , the slack is computed as the difference
between the required arrival time RAT(p) and actual arrival time AAT(p).

slack(p) RAT(p) – AAT(p)

The required time RAT(p) is specified at every input pin of a flip-flop and all
primary outputs, and the arrival time AAT(p) is specified at each output pin of a
flip-flop and all primary inputs. To ensure that the program does not over-optimize,
i.e., does not optimize beyond what is required to (safely) meet timing, upper bound
all pin slacks by zero (or a small positive value).

slack(p) 0

Objective functions. Using the above constraints and definitions, the LP can
optimize (1) total negative slack (TNS)

),(

)(:max
Pins

p
p

slack

where Pins() is the set of pins of cell , and is again the set of all sequential
elements or endpoints, or (2) worst-negative slack (WNS)

WNS:max

where WNS slack(p) for all pins, or (3) a combination of wirelength and slack

Ee

WNSeL)(:min

where E is the set of all nets, is a constant between 0 and 1 that trades off WNS
and wirelength, and L(e) is the HPWL of net e.

 8.4 Timing-Driven Routing 243

Critical-sink routing tree (CSRT) problem. Given a signal net net with source s0,
sinks S = {s1, … ,sn}, and sink criticalities (i) 0 for each si S, construct a
routing tree T such that

n

i
issti

1
0),()(

is minimized, where t(s0,si) is the signal delay from source s0 to sink si. The sink
criticality (i) reflects the timing criticality of the corresponding sink si. If a sink is
on a critical path, then its timing criticality will be greater than that of other sinks.

A critical-sink Steiner tree heuristic [8.18] for the CSRT problem [8.6] first
constructs a heuristic minimum-cost Steiner tree T0 over all terminals of S except the
critical sink sc, the sink with the highest criticality. Then, to reduce t(s0,sc), the
heuristic adds sc into T0 by heuristic variants, e.g., such as the following approaches.

– H0: introduce a single wire from s to s . c 0

– H1: introduce the shortest possible wire that can join sc to T0, so long as the path
from s to s is monotone, i.e., of shortest possible total length. 0 c

– HBest: try all shortest connections from sc to edges in T0, as well as from sc to s0.
Perform timing analysis on each of these trees and return the one with the
lowest delay at sc.

The time complexity of the critical-sink Steiner heuristic is dominated by the
construction of T0, or by the timing analysis in the HBest variant. Though HBest
achieves the best routing solution in terms of timing slack, the other two variants
may also provide acceptable combinations of runtime efficiency and solution quality.
For high-performance designs, even more comprehensively timing-driven routing
tree constructions are needed. Available slack along each source-sink timing arc is
best reflected by the required arrival time (RAT) at each sink. In the following RAT
tree problem formulation, each sink of the signal net has a required arrival time
which should not be exceeded by the source-sink delay in the routing tree.

RAT tree problem. For a signal net with source s0 and sink set S, find a
minimum-cost routing tree T such that

0),()(min 0 sstsRAT

Ss

Here, RAT(s) is the required arrival time for sink s, and t(s0,s) is the signal delay in T
from source s0 to sink s. Effective algorithms to solve the RAT tree problem can be
found in [8.19]. More information on timing-driven routing can be found in [8.3].

 8.5 Physical Synthesis 245

A gate with larger size has lower output resistance and can drive a larger load
capacitance with smaller load-dependent delay. However, a gate with larger size
also has a larger intrinsic delay due to the parasitic output capacitance of the gate
itself. Thus, when the load capacitance is large,

t(vC) < t(vB) < t(vA)

because the load-dependent delay dominates. When the load capacitance is small,

t(vA) < t(vB) < t(vC)

because the intrinsic delay dominates. Increasing size(v) also increases the gate
capacitance of v, which, in turn, increases the load capacitance seen by fanin drivers.
Although this relationship is not shown, the effects of gate capacitance on the delays
of fanin gates will be considered below.

Resizing transformations adjust the size of v to achieve a lower delay (Fig. 8.13). Let
C(p) denote the load capacitance of pin p. In Fig. 8.13 (top), the total load
capacitance drive by gate v is C(d) + C(e) + C(f) = 3 fF. Using gate size A (Fig.
8.13, lower left), the gate delay will be t(vA) = 40 ps, assuming the load-delay
relations in Fig. 8.12. However, using gate size C (Fig. 8.13, lower right), the gate
delay is t(vC) = 28 ps. Thus, for a load capacitance value of 3 fF, gate delay is
improved by 12 ps if vC is used instead of vA. Recall that vC has larger input
capacitance at pins a and b, which increases delays of fanin gates. Details of resizing
strategies can be found in [8.34]. More information on gate sizing can be found in
[8.33].

b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f) = 0.5

v

b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f) = 0.5t(vA) = 40

vA b
a

d
e
f

C(d) = 1.5
C(e) = 1.0
C(f) = 0.5

t(vC) = 28

vC

Fig. 8.13 Resizing gate v from gate size A to size C (Fig. 8.12) can achieve a lower gate delay.

 8.5.2 Buffering

A buffer is a gate, typically two serially-connected inverters, that regenerates a
signal without changing functionality. Buffers can (1) improve timing delays
either by speeding up the circuit or by serving as delay elements, and (2) modify
transition times to improve signal integrity and coupling-induced delay variation.

246 8 Timing Closure

In Fig. 8.14 (left), the (actual) arrival time at fanout pins d-h for gate vB is t(vB) =
45 ps. Let pins d and e be on the critical path with required arrival times below 35
ps, and let the input pin capacitance of buffer y be 1 fF. Then, adding y reduces the
load capacitance of vB from 5 to 3, and reduces the arrival times at d and e to t(vB)
= 33 ps. That is, the delay of gate vB is improved by using y to shield vB from
some portion of its initial load capacitance. In Fig. 8.14 (right), after y is inserted,
the arrival time at pins f, g and h becomes t(vB) + t(y) = 33 + 33 = 66 ps.

d
e
f
g
h

C(e) = 1
C(d) = 1

C(f) = 1
C(g) = 1
C(h) = 1

b
a

b
a

d
e

f
g

h

C(e) = 1
C(d) = 1

C(f) = 1
C(g) = 1

C(h) = 1

vB
y

vB

Fig. 8.14 Improving t(vB) by inserting buffer y to partially shield vB’s load capacitance.

A major drawback of buffering techniques is that they consume the available area
and increase power consumption. Despite the judicious use of buffering by
modern tools, the number of buffers has been steadily increasing in large designs
due to technology scaling trends, where interconnect is becoming relatively slower
compared to gates. In modern high-performance designs, buffers can comprise
10-20% of all standard cell instances, and up to 44% in some designs [8.31].

8.5.3 Netlist Restructuring

Often, the netlist itself can be modified to improve timing. Such changes should
not alter the functionality of the circuit, but can use additional gates or modify
(rewire) the connections between existing gates to improve driving strength and
signal integrity. This section discusses common netlist modifications. More
advanced methods for restructuring can be found in [8.25].

Cloning (Replication). Duplicating gates can reduce delay in two situations – (1)
when a gate with significant fanout may be slow due to its fanout capacitance, and
(2) when a gate’s output fans out in two different directions, making it impossible
to find a good placement for this gate. The effect on cloning (replication) is to split
the driven capacitance between two equivalent gates, at the cost of increasing the
fanout of upstream gates.

In Fig. 8.15 (left), using the same load-delay relations of Fig. 8.12, the gate delay
t(vB) of gate vB is 45 ps. However, In Fig. 8.15 (right), after cloning, t(vA) = 30 ps
and t(vB) = 33 ps. Cloning also increases the input pin capacitance seen by the
fanin gates that generate signals a and b. In general, cloning allows more freedom
for local placement, e.g., the instance vA can be placed close to sinks d and e,
while the instance vB can be placed close to sinks f, g and h, with the tradeoff of
increased congestion and routing cost.

 8.5 Physical Synthesis 247

d
e
f
g
h

C(e) = 1
C(d) = 1

C(f) = 1

C(g) = 1
C(h) = 1

b
a b

a d
e

f
g
h

vB

vA

vB

C(e) = 1
C(d) = 1

C(f) = 1

C(g) = 1
C(h) = 1

Fig. 8.15 Cloning or duplicating gates to reduce maximum local fanout.

When the downstream capacitance is large, buffering may be a better alternative
than cloning because buffers do not increase the fanout capacitance of upstream
gates. However, buffering cannot replace placement-driven cloning. An exercise
at the end of this chapter expands further upon this concept.

The second application of cloning allows the designers to replicate gates and place
each clone closer to its downstream logic. In Fig. 8.16, v drives five signals d-h,
where signals d, e and f are close, and g and h are located much farther away. To
mitigate the large fanout of v and the large interconnect delay caused by remote
signals, gate v is cloned. The original gate v remains with only signals d, e, and f,
and a new copy of v (v’) is placed closer to g and h.

d
e

f
g
h

b
a

b
a

d
e

f

…
v

v

…
g
h

v’ …

Fig. 8.16 Cloning transformation: a driving gate is duplicated to reduce remoteness of its fanouts.

Redesign of fanin tree. The logic design phase often provides a circuit with the
minimum number of logic levels. Minimizing the maximum number of gates on a
path between sequential elements tends to produce a balanced circuit with similar
path delays from inputs to outputs. However, input signals may arrive at varied
times, so the minimum-level circuit may not be timing-optimal. In Fig. 8.17, the
arrival time AAT(f) of pin f is 6 no matter how the input signals are mapped to
gate input pins. However, the unbalanced network has a shorter input-output path
which can be used by a later-arriving signal, where AAT(f) = 5.

(1)

(1)

(1)

(1)
(1)

(1)
a <4>
b <3>

c <1>
d <0>

f <6>

a <4>
b <3>
c <1>
d <0>

f <5>

Fig. 8.17 Redesigning a fanin tree to have smaller input-to-output delay. The arrival times are
denoted in angular brackets, and the delay are denoted in parentheses.

248 8 Timing Closure

Redesign of fanout tree. In the same spirit as Fig. 8.17, it is possible to improve
timing by rebalancing the output load capacitance in a fanout tree so as to reduce
the delay of the longest path. In Fig. 8.18, buffer y1 is needed because the load
capacitance of critical path path1 is large. However, by redesigning the fanout tree
to reduce the load capacitance of path1, use of the buffer y1 can be avoided.
Increased delay on path2 may be acceptable if that path is not critical even after
the load capacitance of buffer y2 is increased.

path1

path2

(1)

y1 (1)

y2 (1)

path1

path2

y2 (1)

(1) (1) (1)

Fig. 8.18 Redesign of a fanout tree to reduce the load capacitance of path1.

Swapping commutative pins. Although the input pins of, e.g., a two-input
NAND gate are logically equivalent, in the actual transistor network they will
have different delays to the output pin. When the pin node convention is used for
STA (Sec. 8.2.1), the internal input-output arcs will have different delays. Hence,
path delays can change when the input pin assignment is changed. The rule of
thumb for pin assignment is to assign a later- (sooner-) arriving signal to an
equivalent input pin with shorter (longer) input-output delay.

In Fig. 8.19, the internal timing arcs are labeled with corresponding delays in
parentheses, and pins a, b, c and f are labeled with corresponding arrival times in
angular brackets. In the circuit on the left, the arrival time at f can be improved
from 5 to 3 by swapping pins a and c.

(1)
(1)

(2)
(1)

(1)
(1)

(2)
(1)

a <0>

b <1>

c <2> a <0>

b <1>

c <2>
f <5> f <3>

Fig. 8.19 Swapping commutative pins to reduce the arrival time at f.

More advanced techniques for pin assignment and swapping of commutative pins
can be found in [8.9].

 8.5 Physical Synthesis 249

Gate decomposition. In CMOS designs, a gate with multiple inputs usually has
larger size and capacitance, as well as a more complex transistor-level network
topology that is less efficient with respect to speed metrics such as logical effort
[8.32]. Decomposition of multiple-input gates into smaller, more efficient gates
can decrease delay and capacitance while retaining the same Boolean
functionality. Fig. 8.20 illustrates the decomposition of a multiple-input gate into
equivalent networks of two- and three-input gates.

Fig. 8.20 Gate decomposition of a complex network into alternative networks.

Boolean restructuring. In digital circuits, Boolean logic can be implemented in
multiple ways. In the example of Fig. 8.21, f(a,b,c) = (a + b)(a + c) a + bc
(distributive law) can be exploited to improve timing when two functions have
overlapping logic or share logic nodes. The figure shows two functions x = a + bc
and y = ab + c with arrival times AAT(a) = 4, AAT(b) = 1, and AAT(c) = 2. When
implemented using a common node a + c, the arrival times of x and y are AAT(x) =
AAT(y) = 6. However, implementing x and y separately achieves AAT(x) = 5 and
AAT(y) = 6.

(1)a <4>
b <1>

c <2>
(1)

(1)

(1)

(1)

x <6>

y <6>

(1)

(1)

(1)

(1)

x <5>

y <6>

a <4>

b <1>
c <2>

Fig. 8.21 Restructuring using logic properties, e.g., the distributive law, to improve timing.

Reverse transformations. Timing optimizations such as buffering, sizing, and
cloning increase the original area of the design. This change can cause the design to
be illegal, as some new cells can now overlap with others. To maintain legality,
either (1) perform the respective reverse operations unbuffering, downsizing, and
merging, or (2) perform placement legalization after all timing corrections.

254 8 Timing Closure

Performance-driven physical design flow. Extending the baseline design flow,
contemporary industrial flows are typically built around static timing analysis and
seek to minimize the amount of change required to close on timing. Some flows start
timing-driven optimizations as early as the chip planning stage, while others do not
account for timing until detailed placement to ensure accuracy of timing results. This
section discusses the timing-driven flow illustrated in Fig. 8.26 with gray boxes.
Advanced methods for physical synthesis are found in [8.4].

Chip planning and logic design. Starting with a high-level design, performance-
driven chip planning generates the I/O placement of the pins and rectangular blocks
for each circuit module while accounting for block-level timing, and the power
supply network. Then, logic synthesis and technology mapping produces a netlist
based on delay budgets.

Performance-driven chip planning. Once the locations and shapes of the blocks are
determined, global routes are generated for each top-level net, and buffers are
inserted to better estimate timing [8.2]. Since chip planning occurs before global
placement or global routing, there is no detailed knowledge of where the logic cells
will be placed within each block or how they will be connected. Therefore, buffer
insertion makes optimistic assumptions.

After buffering, STA checks the design for timing errors. If there are a sufficient
number of violations, then the logic blocks must be re-floorplanned. In practice,
modifications to existing floorplans to meet timing are performed by experienced
designers with little to no automation. Once the design has satisfied or mostly met
timing constraints, the I/O pins can be placed, and power (VDD) and ground (GND)
supply rails can be routed around floorplan blocks.

Timing budgeting. After performance-driven floorplanning, delay budgeting sets
upper bounds on setup (long path) timing for each block. These constraints guide
logic synthesis and technology mapping to produce a performance-optimized
gate-level netlist, using standard cells from a given library.

Block-level or top-level global placement. Starting at global placement, timing-
driven optimizations can be performed at the block level, where each individual
block is optimized, or top level, where transformations are global, i.e., cross block
boundaries, and all movable objects are optimized.4 Block-level approaches are
useful for designs that have many macro blocks or intellectual properties (IPs) that
have already been optimized and have specific shapes and sizes. Top-level
approaches are useful for designs that have more freedom or do not reuse
previously-designed logic; a hierarchical methodology offers more parallelism and
is more common for large design teams.

4 In hierarchical design flows, different designers concurrently perform top-level placement and

block-level placement.

256 8 Timing Closure

Physical synthesis. After buffer insertion, physical synthesis applies several timing
correction techniques (Sec. 8.5) such as operations that modify the pin ordering or
the netlist at the gate level, to improve delay on critical paths.

Timing correction. Methods such as gate sizing increase (decrease) the size of a
physical gate to speed up (slow down) the circuit. Other techniques such as redesign
of fanin and fanout trees, cloning, and pin swapping reduce timing by rebalancing
existing logic to reduce load capacitance for timing-critical nets. Transformations
such as gate decomposition and Boolean restructuring modify logic locally to
improve timing by merging or splitting logic nodes from different signals. After
physical synthesis, another timing check is performed. If it fails, another pass of
timing correction attempts to fix timing violations.

Routing. After physical synthesis, all combinational and sequential elements in the
design are connected during global and clock routing, respectively. First, the
sequential elements of the design, e.g., flip-flop and latches, are legalized (Sec. 4.4).
Then, clock network synthesis generates the clock tree or mesh to connect all
sequential elements to the clock source. Modern clock networks require a number of
large clock buffers;5 performing clock-network design before detailed placement
allows these buffers to be placed appropriately. Given the clock network, the design
can be checked for hold-time (short path) constraints, since the clock skews are now
known, whereas only setup (long path) constraints could be checked before.

Layer assignment. After clock-network synthesis, global routing assigns global route
topologies to connect the combinational elements. Then, layer assignment matches
each global route to a specific metal layer. This step improves the accuracy of delay
estimation because it allows the use of appropriate resistance-capacitance (RC)
parasitics for each net. Note that clock routing is performed before signal-net routing
when the two share the same metal layers – clock routes take precedence and should
not detour around signal nets.

Timing-driven detailed placement. The results of global routing and layer
assignment provide accurate estimates of wire congestion, which is then used by a
congestion-driven detailed placer [8.10][8.35]. The cells are (1) spread to remove
overlap among objects and decrease routing congestion, (2) snapped to standard-cell
rows and legal cell sites, and then (3) optimized by swaps, shifts and other local
changes. To incorporate timing optimizations, either perform (1) non-timing-driven
legalization followed by timing-driven detailed placement, or (2) perform
timing-driven legalization followed by non-timing-driven detailed placement. After
detailed placement, another timing check is performed. If timing fails, the design
could be globally re-routed or, in severe cases, globally re-placed.

To give higher priority to the clock network, the sequential elements can be
legalized first, and then followed by global and detailed routing. With this approach,

5 These buffers are legalized immediately when added to the clock network.

 8.6 Performance-Driven Design Flow 257

signal nets must route around the clock network. This is advantageous for
large-scale designs, as clock trees are increasingly becoming a performance
bottleneck. A variant flow, such as the industrial flow described in [8.28], first fully
legalizes the locations of all cells, and then performs detailed placement to recover
wirelength.

Another variant performs detailed placement before clock network synthesis, and
then is followed by legalization and several optimization steps.6 After the clock
network has been synthesized, another pass of setup optimization is performed. Hold
violations may be addressed at this time or, optionally, after routing and initial STA.

Timing-driven routing. After detailed placement, clock network synthesis and
post-clock network optimization, the timing-driven routing phase aims to fix the
remaining timing violations. Algorithms discussed in Sec. 8.4 include generating
minimum-cost, minimum-radius trees for critical nets (Secs. 8.4.1-8.4.2), and
minimizing the source-to-sink delay of critical sinks (Sec. 8.4.3).

If there are still outstanding timing violations, further optimizations such as
re-buffering and late timing corrections are applied. An alternative is to have
designers manually tune or fix the design by relaxing some design constraints, using
additional logic libraries, or exploiting design structure neglected by automated tools.
After this time-consuming process, another timing check is performed. If timing is
met, then the design is sent to detailed routing, where each signal net is assigned to
specific routing tracks. Typically, incremental STA-driven Engineering Change
Orders (ECOs) are applied to fix timing violations after detailed placement; this is
followed by ECO placement and routing. Then, 2.5D or 3D parasitic extraction
determines the electromagnetic impact on timing based on the routes’ shapes and
lengths, and other technology-dependent parameters.

Signoff. The last few steps of the design flow validate the layout and timing, as well
as fix any outstanding errors. If a timing check fails, ECO minimally modifies the
placement and routing such that the violation is fixed and no new errors are
introduced. Since the changes made are very local, the algorithms for ECO
placement and ECO routing differ from the traditional place and route techniques
discussed in Chaps. 4-7.

After completing timing closure, manufacturability, reliability and electrical
verification ensure that the design can be successfully fabricated and will function
correctly under various environmental conditions. The four main components are
equally important and can be performed in parallel to improve runtime.

– Design Rule Checking (DRC) ensures that the placed-and-routed layout meets
all technology-specified design rules e.g., minimum wire spacing and width.

6 These include post-clock-network-synthesis optimizations, post-global-routing optimizations, and

post-detailed-routing optimizations.

258 8 Timing Closure

– Layout vs. Schematic (LVS) checking ensures the placed-and-routed layout
matches the original netlist.

– Antenna Checks seek to detect undesirable antenna effects, which may damage
a transistor during plasma-etching steps of manufacturing by collecting excess
charge on metal wires that are connected to PN-junction nodes. This can occur
when a route consists of multiple metal layers and a charge is induced on a
metal layer during fabrication.

– Electric Rule Checking (ERC) finds all potentially dangerous electric
connections, such as floating inputs and shorted outputs.

Once the design has been physically verified, optical-lithography masks are
generated for manufacturing.

8.7 8.7 Conclusions

This chapter explained how to combine timing optimizations into a comprehensive
physical design flow. In practice, the flow described in Sec. 8.6 (Fig. 8.26) can be

odified based on several factors, including m

– Design type.

– ASIC, microprocessor, IP, analog, mixed-mode.
Datapath-heavy specifications may require specialized tools for structured
placement or manual placement. Datapaths typically h

–
ave shorter wires

er buffers for high-performance layout.
–

te

– d

ome
er at others, to adjust timing.

– Add
dustrial ASICs

er different

–
–

lumped-capacitance models are inadequate for performance estimation.

and require few
Design objectives.
– High-performance, low-power or low-cost.

ance optimizations, such as buffering and ga– Some high-perform
sizing, increase circuit area, thus increasing circuit power and chip cost.

Ad itional optimizations.
– Retiming shifts locations of registers among combinational gates to better

balance delay.
– Useful skew scheduling, where the clock signal arrives earlier at s

flip-flops and lat
– Adaptive body-biasing can improve the leakage current of transistors.

itional analyses.
– Multi-corner and multi-mode static timing analysis, as in

and microprocessors are often optimized to operate und
temperatures and supply voltages.

– Thermal analysis is required for high-performance CPUs.
Technology node, typically specified by the minimum feature size.

Nodes < 180 nm require timing-driven placement and routing flows, as

 8.7 Conclusions 259

–
delay increase

 in the opposite (same) direction.

detailed routing, known
sure manufacturability.

–
–

–

– D si es.
– To shorten time-to-market, one can leverage a large design team by

cessary for
FPGAs, but technology mapping is more challenging, as it affects the area and

in device
parameters [8.22]. Further increase in transistor counts may require integrating
multiple chips into three-dimensional integrated circuits, thus changing the geometry
of fundamental physical design optimizations [8.36]. Nevertheless, the core
optimizations described in this chapter will remain vital in chip design.

Nodes < 130 nm require timing analysis with signal integrity, i.e.,
interconnect coupling capacitances and the resulting
(decrease) of a given victim net when a neighboring aggressor net
switches simultaneously

– Nodes < 90 nm require additional resolution enhancement techniques
(RET) for lithography.

– Nodes < 65 nm require power-integrity (e.g., IR drop-aware timing,
electromigration reliability) analysis flows.

– Nodes < 45 nm require additional statistical power-performance tradeoffs
tor level. at the transis

– Nodes < 32 nm impose significant limitations on
as restricted design rules (RDRs), to en

Available tools.
In-house software, commercial EDA tools [8.34].

 Design size and the extent of design reuse.
– Larger designs often include more global interconnect, which may

become a performance bottleneck and typically requires buffering.
– IP blocks are typically represented by hard blocks during floorplanning.

e gn team size, required time-to-market, available computing resourc

partitioning the design into blocks and assigning blocks to teams.
– After floorplanning, each block can be laid out in parallel; however, flat

optimization (no partitioning) sometimes produces better results.

Reconfigurable fabrics such as FPGAs require less attention to buffering, due to
already-buffered programmable interconnect. Wire congestion is often negligible for
FPGAs because interconnect resources are overprovisioned. However, FPGA
detailed placement must satisfy a greater number of constraints than placement for
other circuit types, and global routing must select from a greater variety of
interconnect types. Electrical and manufacturability checks are unne

timing to a greater extent, and can benefit more from the use of physical information.
Therefore, modern physical-synthesis flows for FPGAs perform global placement,
often in a trial mode, between logic synthesis and technology mapping.

Physical design flows will require additional sophistication to support increasing
transistor densities in semiconductor chips. The advent of future technology nodes –
28 nm, 22 nm and 16 nm – will bring into consideration new electrical and
manufacturing-related phenomena, while increasing uncertainty

 Chapter 8 Exercises 261

b

a
c

d
e

C(c) = 2.5

C(d) = 1.5
C(e) = 0.5

vB

y

Exercise 4: Timing Optimization
List at least two timing optimizations covered only in this chapter (not mentioned
beforehand). Describe these optimizations in your own words and discuss scenarios
in which (1) they can be useful and (2) they can be harmful.

Exercise 5: Cloning vs. Buffering
List and explain scenarios where cloning results in better timing improvements than
buffering, and vice-versa. Explain why both methods are necessary for
timing-driven physical synthesis.

Exercise 6: Physical Synthesis
In terms of timing corrections such as buffering, gate sizing, and cloning, when are
their reverse transformations useful? In what situations will a given timing
correction cause the design to be illegal? Explain for each timing correction.

262 8 Timing Closure

 Chapter 8 References

[8.1] C. J. Alpert, M. Hrkic, J. Hu and
S. T. Quay, “Fast and Flexible Buffer
Trees that Navigate the Physical Layout
Environment”, Proc. Design Autom.
Conf., 2004, pp. 24-29.

[8.2] C. J. Alpert, J. Hu,
S. S. Sapatnekar and C. N. Sze,
“Accurate Estimation of Global
Buffer Delay Within a Floorplan”,
IEEE Trans. on CAD 25(6) (2006),
pp. 1140-1146.

[8.3] C. J. Alpert, T. C. Hu,
J. H. Huang and A. B. Kahng, “A
Direct Combination of the Prim and
Dijkstra Constructions for Improved
Performance-Driven Global Routing”,
Proc. Intl. Conf. on Circuits and Sys.,
1993, pp. 1869-1872.

[8.4] C. J. Alpert, S. K. Karandikar,
Z. Li, G.-J. Nam, S. T. Quay, H. Ren,
C. N. Sze, P. G. Villarrubia and
M. C. Yildiz, “Techniques for Fast
Physical Synthesis”, Proc. IEEE 95(3)
(2007), pp. 573-599.

[8.5] C. J. Alpert, D. P. Mehta and
S. S. Sapatnekar, eds., Handbook of
Algorithms for Physical Design
Automation, CRC Press, 2009.

[8.6] K. D. Boese, A. B. Kahng and
G. Robins, “High-Performance Routing
Trees with Identified Critical Sinks”,
Proc. Design Autom. Conf., 1993,
pp. 182-187.

[8.7] M. Burstein and M. N. Youssef,
“Timing Influenced Layout Design”,
Proc. Design Autom. Conf., 1985,
pp. 124-130.

[8.8] T. F. Chan, J. Cong and
E. Radke, “A Rigorous Framework for
Convergent Net Weighting Schemes in
Timing-Driven Placement”, Proc. Intl
Conf. on CAD, 2009, pp. 288-294.

[8.9] K.-H. Chang, I. L. Markov and
V. Bertacco, “Postplacement Rewiring
by Exhaustive Search for Functional
Symmetries”, ACM Trans. on Design
Autom. of Electronic Sys. 12(3) (2007),
pp. 1-21.

[8.10] A. Chowdhary, K. Rajagopal,
S. Venkatesan, T. Cao, V. Tiourin,
Y. Parasuram and B. Halpin, “How
Accurately Can We Model Timing
in a Placement Engine?”, Proc. Design
Autom. Conf., 2005, pp. 801-806.

[8.11] J. Cong, A. B. Kahng, G. Robins,
M. Sarrafzadeh and C. K. Wong,
“Provably Good Algorithms for
Performance-Driven Global Routing”,
Proc. Intl. Symp. on Circuits and Sys.,
1992, pp. 2240-2243.

[8.12] A. E. Dunlop, V. D. Agrawal,
D. N. Deutsch, M. F. Jukl, P. Kozak and
M. Wiesel, “Chip Layout Optimization
Using Critical Path Weighting”, Proc.
Design Autom. Conf., 1984, pp. 133-136.

 Chapter 8 References 263

[8.13] W. C. Elmore, “The Transient
Response of Damped Linear Networks
with Particular Regard to Wideband
Amplifiers”, J. Applied Physics 19(1)
(1948), pp. 55-63.

[8.14] H. Eisenmann and
F. M. Johannes, “Generic Global
Placement and Floorplanning”,
Proc. Design Autom. Conf., 1998,
pp. 269-274.

[8.15] S. Ghiasi, E. Bozorgzadeh,
P.-K. Huang, R. Jafari and
M. Sarrafzadeh, “A Unified Theory
of Timing Budget Management”,
IEEE Trans. on CAD 25(11) (2006),
pp. 2364-2375.

[8.16] B. Halpin, C. Y. R. Chen and
N. Sehgal, “Timing Driven Placement
Using Physical Net Constraints”, Proc.
Design Autom. Conf., 2001, pp. 780-783.

[8.17] P. S. Hauge, R. Nair and
E. J. Yoffa, “Circuit Placement for
Predictable Performance”, Proc.
Intl. Conf. on CAD, 1987, pp. 88-91.

[8.18] T. I. Kirkpatrick and N. R. Clark,
“PERT as an Aid to Logic Design”,
IBM J. Research and Development 10(2)
(1966), pp. 135-141.

[8.19] J. Lillis, C.-K. Cheng,
T.-T. Y. Lin and C.-Y. Ho, “New
Performance Driven Routing Techniques
With Explicit Area/Delay Tradeoff and
Simultaneous Wire Sizing”, Proc.
Design Autom. Conf., 1996, pp. 395-400.

[8.20] R. Nair, C. L. Berman,
P. S. Hauge and E. J. Yoffa, “Generation
of Performance Constraints for Layout”,
IEEE Trans. on CAD 8(8) (1989),
pp. 860-874.

[8.21] M. Orshansky and K. Keutzer,
“A General Probabilistic Framework for
Worst Case Timing Analysis”, Proc.
Design Autom. Conf., 2002, pp. 556-561.

[8.22] M. Orshansky, S. Nassif and
D. Boning, Design for Manufacturability
and Statistical Design: A Constructive
Approach, Springer, 2008.

[8.23] R. H. J. M. Otten and
R. K. Brayton, “Planning for
Performance”, Proc. Design
Autom. Conf., 1998, pp. 122-127.

[8.24] D. A. Papa, T. Luo, M. D. Moffitt,
C. N. Sze, Z. Li, G.-J. Nam, C. J. Alpert
and I. L. Markov, “RUMBLE: An
Incremental, Timing-Driven,
Physical-Synthesis Optimization
Algorithm”, IEEE Trans. on CAD
27(12) (2008), pp. 2156-2168.

[8.25] S. M. Plaza, I. L. Markov and
V. Bertacco, “Optimizing
Nonmonotonic Interconnect Using
Functional Simulation and Logic
Restructuring”, IEEE Trans. on CAD
27(12) (2008), pp. 2107-2119.

[8.26] K. Rajagopal, T. Shaked,
Y. Parasuram, T. Cao, A. Chowdhary
and B. Halpin, “Timing Driven Force
Directed Placement with Physical Net
Constraints”, Proc. Intl. Symp. on Phys.
Design, 2003, pp. 60-66.

264 8 Timing Closure

[8.27] H. Ren, D. Z. Pan and
D. S. Kung, “Sensitivity Guided Net
Weighting for Placement Driven
Synthesis”, IEEE Trans. on CAD 24(5)
(2005) pp. 711-721.

[8.28] J. A. Roy, N. Viswanathan,
G.-J. Nam, C. J. Alpert and I. L. Markov,
“CRISP: Congestion Reduction by
Iterated Spreading During Placement”,
Proc. Intl. Conf. on CAD, 2009,
pp. 357-362.

[8.29] M. Sarrafzadeh, M. Wang and
X. Yang, Modern Placement Techniques,
Kluwer, 2003.

[8.30] R. S. Shelar, “Routing With
Constraints for Post-Grid Clock
Distribution in Microprocessors”,
IEEE Trans. on CAD 29(2) (2010),
pp. 245-249.

[8.31] R. S. Shelar and M. Patyra,
“Impact of Local Interconnects on
Timing and Power in a High
Performance Microprocessor”,
Proc. Intl. Symp. on Phys. Design,
2010, pp. 145-152.

[8.32] I. Sutherland, R. F. Sproull and
D. Harris, Logical Effort: Designing
Fast CMOS Circuits, Morgan Kaufmann,
1999.

[8.33] H. Tennakoon and C. Sechen,
“Nonconvex Gate Delay Modeling and
Delay Optimization”, IEEE Trans. on
CAD 27(9) (2008), pp. 1583-1594.

[8.34] M. Vujkovic, D. Wadkins,
B. Swartz and C. Sechen, “Efficient
Timing Closure Without Timing Driven
Placement and Routing”, Proc. Design
Autom. Conf., 2004, pp. 268-273.

[8.35] J. Westra and P. Groeneveld,
“Is Probabilistic Congestion
Estimation Worthwhile?”, Proc.
Sys. Level Interconnect Prediction,
2005, pp. 99-106.

[8.36] Y. Xie, J. Cong and S. Sapatnekar,
eds., Three-Dimensional Integrated
Circuit Design: EDA, Design and
Microarchitectures, Springer, 2010.

268 A Solutions to Chapter Exercises

Exercise 3: FM Algorithm
Pass 2, iteration i = 1
Gain values: g1(a) = -1, g1(b) = -1, g1(c) = 0, g1(d) = 0, g1(e) = -1.
Cells c and d have maximum gain value g1 = 0.
Balance criterion after moving cell c: area(A) = 4.
Balance criterion after moving cell d: area(A) = 1.
Cell c meets the balance criterion better.
Move cell c, updated partitions: A1 = {d}, B1 = {a,b,c,e}, with fixed cells {c}.

Pass 2, iteration i = 2
Gain values: g2(a) = -2, g2(b) = -2, g2(d) = 2, g2(e) = -1.
Cell d has maximum gain g2 = 2, area(A) = 0, balance criterion is violated.
Cell e has next maximum gain g2 = -1, area(A) = 9, balance criterion is met.
Move cell e, updated partitions: A2 = {d,e}, B2 = {a,b,c}, with fixed cells {c,e}.

Pass 2, iteration i = 3
Gain values: g3(a) = 0, g3(b) = -2, g3(d) = 2.
Cell d has maximum gain g3 = 2, area(A) = 5, balance criterion is met.
Move cell d, updated partitions: A3 = {e}, B3 = {a,b,c,d}, with fixed cells {c,d,e}.

Pass 2, iteration i = 4
Gain values: g4(a) = -2, g4(b) = -2.
Cells a and b have maximum gain g4 = -2.
Balance criterion after moving cell a: area(A) = 7.
Balance criterion after moving cell b: area(A) = 9.
Cell a meets the balance criterion better.
Move cell a, updated partitions: A4 = {a,e}, B4 = {b,c,d}, with fixed cells {a,c,d,e}.

Pass 2, iteration i = 5
Gain values: g5(b) = 1.
Balance criterion after moving b: area(A) = 11.
Move cell b, updated partitions: A5 = {a,b,e}, B5 = {c,d}, with fixed cells {a,b,c,d,e}.

Find best move sequence <c1 … cm>
 G1 = g1 = 0
 G2 = g1 + g2 = -1
 G3 = g1 + g2 + g3 = 1
 G4 = g1 + g2 + g3 + g4 = -1
 G5 = g1 + g2 + g3 + g4 + g5 = 0

Chapter 2: Netlist and System Partitioning 269

Maximum positive gain = 1 occurs when m = 3.
Cells c, e and d are moved.

The result after Pass 2 is illustrated on the right. N1

N2

N3

N4

N5B

Aa

b c

d

e

Exercise 4: System and Netlist Partitioning
One key difference is that traditional min-cut partitioning only accounts for mini-
mizing net costs across k partitions. FPGA-based partitioning involves first deter-
mining the number of devices and then minimizing the total communication be-
tween devices as well as the device logic. For instance, traditional min-cut
partitioning does not distinguish how many devices a p-pin net is split across. Fur-
thermore, min-cut partitioning does not account for FPGA reconfigurability.

Exercise 5: Multilevel FM Partitioning
One major advantage is scalability. Traditional FM partitioning scales to ~200 nodes
whereas multilevel FM can efficiently handle large-scale modern designs. The
coarsening stage clusters nodes together, thereby reducing the number of nodes that
FM interacts with. FM produces near-optimal solutions for netlists with fewer than
200 nodes, but solution quality deteriorates for larger netlists. In contrast, multilevel
FM produces great solution quality without sacrificing large amounts of runtime.

Exercise 6: Clustering
Nodes that have either single connections to multiple other nodes or multiple con-
nections to a single node are candidates for clustering. If a net net is contained
within a single partition, then net does not contribute to the cut cost of the partition.
If net spans multiple partitions, then one option is to place net’s cluster in the parti-
tion where net’s net weight is the greatest. Another option is to limit the size of the
clusters such that the individual nodes of net are clustered within each partition.

Gm

274 A Solutions to Chapter Exercises

Exercise 3: Force-Directed Placement
Solve for xa

0 and xb
0:

0
00

0
21

0),(

0),(

0

0

5.0
8

4
422
40202

),()2,()1,(
),()2,()1,(

),(

),(

b
bb

bInIn

jac

jac
j

a

xxx

bacInacInac
xbacxInacxInac

jac

xjac

x

0
0

2
0

0),(

0),(

0

0

5.05.0
224

22024

),()2,(),(
),()2,(),(

),(

),(

a
a

OutIna

jbc

jbc
j

b

xx

OutbcInbcabc
xOutbcxInbcxabc

jbc

xjbc

x

3/2)5.0(5.05.0
5.05.0

5.0 00
00

00

bb
ab

ba xx
xx

xx

3/1)3/2(5.05.0 00
ba xx

Rounded, xa
0 0 and xb

0 1.

Solve for ya

0 and yb
0:

0
0

0
21

0),(

0),(

0

0

5.05.0
422
40222

),()2,()1,(
),()2,()1,(

),(

),(

b
b

bInIn

jac

jac
j

a

yy

bacInacInac
ybacyInacyInac

jac

yjac

y

0
0

2
0

0),(

0),(

0

0

5.025.0
224

12024

),()2,(),(
),()2,(),(

),(

),(

a
a

OutIna

jbc

jbc
j

b

yy

OutbcInbcabc
yOutbcyInbcyabc

jbc

yjbc

y

3/2)5.05.0(5.025.0
5.025.0

5.05.0 00
00

00

bb
ab

ba yy
yy

yy

6/5)3/2(5.05.05.05.0 00
ba yy

Rounded, ya
0 1 and yb

0 1.

290 A Solutions to Chapter Exercises

0945.0

03.0
2
03.03.0)()(

2
)~()~(

01.0
2
07.07.0)()(

2
)~()~()(

33
32

32

11
21

212

stsCsuCsuR

stsCusCusRut

ED

EDED

Find the x- and y-coordinates of u3 – on segment between s2 and s4.
tED(s2)= 0, tED(s4) = 0, C(s2) = 0.2, C(s4) = 0.2, = 0.1, = 0.01, L(s2,s4) = 8

5.0
384.0
192.0

)2.02.0801.0(81.0
2

801.02.081.0)00(

))()(),((),(
2

),()(),())()((

424242

42
44224

~ 32 sCsCssLssL

ssLsCssLstst
z

EDED

us

zs2 ~ u3

 · L(s2,s4) = 0.5 8 = 4, x- and y-coordinates for u3 = (10,7).

Find the capacitance C(u3).
C(s2) = 0.2, C(s4) = 0.2, = 0.01, L(s2,s4) = 8

C(u3) = C(s2) + C(s4) + · L(s2,s4) = 0.2 + 0.2 + 0.01 8 = 0.48

Find the delay tED(u3).
tED(s2) = 0, tED(s4) = 0, zs2 ~ u3

 = 0.5, zu3 ~ s4
 = 1 zs2 ~ u3

 = 1 0.5 = 0.5

R(s2 ~ u3) = · zs2 ~ u3

 · L(s2,s4) = 0.1 · 0.5 · 8 = 0.4
C(s2 ~ u3) = · zs2 ~ u3

 · L(s2,s4) = 0.01 · 0.5 · 8 = 0.04

R(u3 ~ s4) = · zu3 ~ s4

 · L(s2,s4) = 0.1 · 0.5 · 8 = 0.4
C(u3 ~ s4) = · zu3 ~ s4

 · L(s2,s4) = 0.01 · 0.5 · 8 = 0.04

088.0

02.0
2
04.04.0)()(

2
)~()~(

02.0
2
04.04.0)()(

2
)~()~()(

44
43

43

22
32

323

stsCsuCsuR

stsCusCusRut

ED

EDED

Find the x- and y-coordinates of u1 – on segment between u2 and u3.
tED(u2) = 0.0945, tED(u3) = 0.088, C(u2) = 0.5, C(u3) = 0.48, = 0.1, = 0.01
L(u2,u3) = |xu2

 xu3
| + |yu2

 yu3
| = |4 10| + |4 7| = 9

Chapter 8: Timing Closure 295

Exercise 3: Buffer Insertion for Timing Improvement
With Fig. 8.12, the delay of each gate can be calculated with its load capacitance.
Buffer y always has a load capacitance of 2.5 fF.

Buffer y with size A: vB has load capacitance = 2.5 fF, which results in t(vB) = 30 ps.
AAT(c) = t(vB) + t(yA) = 30 + 35 = 65 ps.

Buffer y with size B, vB has load capacitance = 3 fF, which results in t(vB) = 33 ps.
AAT(c) = t(vB) + t(yB) = 33 + 30 = 63 ps.

Buffer y with size C: vB has load capacitance = 4 fF, which results in t(vB) = 39 ps.
AAT(c) = t(vB) + t(yC) = 39 + 27 = 66 ps.

The best size for buffer y is B.

Exercise 4: Timing Optimization
1. Delay budgeting: assigning upper bounds on timing or length for nets. These

limits restrict the maximum amount of time a signal travels along critical nets.
However, if too many nets are constrained, this can lead to wirelength degrada-
tion or highly-congested regions.

2. Physical synthesis, such as gate sizing and cloning. Sizing up gates can improve
the delay on specific paths at the cost of increased area and power. Cloning can
mitigate long interconnect delays by duplicating gates or signals at locations
closer to the desired location.

Exercise 5: Cloning vs. Buffering
Cloning is more advantageous than buffering when the same timing-critical signal is
needed in multiple locations that are relatively far apart. The signal can just be re-
produced locally. This can save on area and routing resources. Buffering can be
more advantageous than cloning since buffers do not increase the upstream capaci-
tance of the gate, which is helpful in terms of circuit delay and power.

Exercise 6: Physical Synthesis
Buffer removal (vs. buffer insertion): If the placement or routing of the buffered net
changes, some buffers may no longer be necessary to meet timing constraints. Alter-
natively, buffers can be removed if the net is not timing-critical or has positive slack.

Gate downsizing (vs. gate upsizing): If the path that goes through the gate can be
slowed down without slack violations, then the gate can be downsized.

Merging (vs. cloning): If the netlist, placement or routing of the design changes,
some nodes could be removed due to redundancy.

For all three transforms, increasing the area can cause illegality (overlap) in the
placement. Therefore, the reverse transforms can be necessary to meet area con-
straints or relax timing for non-critical paths.

303

Index

. See lambda

A
A* search algorithm, 154
AAT. See actual arrival time
ACM. See Association for Computing

Machinery
ACM Transactions on Design Automation

of Electronic Systems (TODAES), 4
actual arrival time (AAT), 222, 225
acyclic graph, 25
adaptive body-biasing, 258
admissibility criterion, 154
algorithm, 20
algorithm complexity, 20
Altera, 50
analog circuit, 3
analytic placement, 110
analytic technique, 103
AND logic gate, 12
antenna effect, 10, 27, 186, 258
antenna rule checking, 10, 27, 258
APlace, 122
application-specific integrated circuit

(ASIC), 3
architectural design, 7
area routing, 191
array-based design, 11
Asia and South Pacific Design Automation

Conference (ASP-DAC), 4
ASIC. See application-specific integrated

circuit
ASP-DAC. See Asia and South Pacific

Design Automation Conference
aspect ratio, 59
Association for Computing Machinery

(ACM), 4

B
balance criterion, 43
ball grid array (BGA), 11
base cell, 43
BEAVER, 182
benchmark, 23
best-first search, 23
BFS. See breadth-first search
BGA. See ball grid array
bidirectional A* search algorithm, 154
big-Oh notation, 20
binary tree, 61
bipartitioning, 36
bisection, 105
block, 27, 34, 57
Boltzmann acceptance criterion, 79
Boolean restructuring, 249
bounded skew, 201
bounded-radius, bounded-cost (BRBC)

algorithm, 240
bounded-skew tree (BST), 201
bounding box, 59, 97
BoxRouter, 156, 160
branch-and-bound, 123
BRBC. See bounded-radius, bounded-cost

algorithm
breadth-first search (BFS), 23, 154
BST. See bounded-skew tree
buffer, 245
buffering, 245, 253

C
Cadence Design Systems, 6
Capo, 122
cell, 27, 34
cell connectivity, 28
cell gain, 42
cell library, 12
cell spreading, 121
cell-based design, 11
CG. See conjugate gradient method
chain move, 115

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6, © Springer Science+Business Media B.V. 2011

304 Index

channel, 13, 133, 169
channel connectivity graph, 139
channel definition, 136
channel ordering, 136
channel routing, 169, 175
channel-less gate array, 16
chip planning, 57, 253
circuit design, 3, 8
clique, 98, 121
clock buffer, 213
clock net, 198
clock routing, 9, 197, 253
clock signal, 197
clock tree embedding, 198
clock tree topology, 198
cloning, 246
cluster growth, 73
clustering, 48
clustering ratio, 48
coarsening, 47
combinational logic, 223
complete graph, 25, 98
component, 27
conjugate gradient (CG) method, 111
connected graph, 25
connection cost, 28
connectivity, 60
connectivity degree, 28
connectivity graph, 28
connectivity matrix, 29
connectivity-preserving local

transformations (CPLT), 182
constraint, 19
constraint-graph pair, 62
constructive algorithm, 22
contact, 16, 27
continuing net, 74
corner point, 69
coupling capacitance, 19
CPLT. See connectivity-preserving local

transformations
critical net, 43
critical path, 60, 228, 233
critical-sink routing tree (CSRT), 243
crosspoint assignment, 140
CSRT. See critical-sink routing tree
cut cost, 37
cut edge, 35
cut net, 42

cut set, 35, 42
cut size, 37, 100
cutline, 100
cycle, 24
cyclic graph, 25

D
DAC. See Design Automation Conference
DAG. See directed acyclic graph
DATE. See Design, Automation and Test in

Europe
deadspace, 76
DeFer, 70
deferred-merge embedding (DME)

algorithm, 208
degree, 24
Delaunay triangulation, 195
delay budgeting, 229, 236, 253
delay-locked loop, 197
depth-first search (DFS), 23
Design Automation Conference (DAC), 4
design for manufacturability (DFM), 160
design methodology constraint, 19
design productivity gap, 5
design rule, 16, 17, 186
design rule checking (DRC), 10, 27, 257
Design, Automation and Test in Europe

(DATE), 4
detailed placement, 9, 96, 111, 122, 253
detailed placement optimization goal, 96
detailed routing, 9, 132, 169, 253
deterministic algorithm, 22
Deutsch Difficult Example, 184
DFM. See design for manufacturability
DFS. See depth-first search
diffusion layer, 16
Dijkstra’s algorithm, 137, 149, 241
DIP. See dual in-line package
directed acyclic graph (DAG), 25, 224
directed graph, 24
divide-and-conquer strategy, 33
DME. See deferred-merge embedding

algorithm
dogleg routing, 178
DRC. See design rule checking
dual in-line package (DIP), 11
dynamic programming, 124

Index 305

E
early-mode analysis, 231
ECO. See Engineering Change Order
ECO-System, 124
EDA. See Electronic Design Automation
edge, 24, 41
edge weight, 149
electrical constraint, 19, 191
electrical equivalence, 83
electrical rule checking (ERC), 10, 27, 258
electromigration, 19, 87, 186
Electronic Design Automation (EDA), 4
Elmore delay, 199, 230
Elmore routing tree (ERT) algorithm, 242
Engineering Change Order (ECO), 257
equipotential, 83
ERC. See electrical rule checking
ERT. See Elmore routing tree algorithm
Euclidean distance, 29, 110, 192
exact zero skew algorithm, 206
external pin assignment, 82

F
fab, 10
fabrication, 10
fall delay, 228
false path, 222, 229
fanin tree design, 247
fanout, 131
fanout tree design, 248
FastPlace, 122
FastPlace-DP, 124
FastRoute, 160
feedthrough cell, 13, 137
FGR, 160
Fiduccia-Mattheyses (FM) algorithm, 41
field-programmable gate array (FPGA), 3,

15, 50
finite state machine (FSM), 223
fixed-die routing, 131
fixed-outline floorplanning, 60
flip-chip, 11
floorplan, 61
floorplan repair, 81
floorplan representation, 63
floorplan sizing, 69
floorplan tree, 61

floorplanning, 9, 57, 253
floorplanning optimization goal, 59
FLUTE, 142, 156
FM algorithm. See Fiduccia-Mattheyses

algorithm
force-directed placement, 112, 120
foundry, 10
FPGA. See field-programmable gate array
FSM. See finite state machine
full-custom design, 11, 136
functional design, 8
functional equivalence, 83

G
gain, 37, 43
gate array, 15
gate decomposition, 249
gate delay, 224
gate node convention, 225
gate sizing, 244, 255
gate-array design, 138
GDSII Stream format, 10, 26
geometry constraint, 19, 191
global minimum, 78
global placement, 9, 96, 103, 110, 253
global placement optimization goal, 96
global routing, 9, 132, 253
global routing flow, 140
global routing grid cell, 133, 169
global routing optimization goal, 136
GND. See ground net
graph, 24
greedy algorithm, 23, 77
grid graph, 139
ground net (GND), 12, 28, 57, 86

H
half-perimeter wirelength (HPWL), 97, 237
Hamiltonian path, 87
Hanan grid, 142
hard block, 58
hardware description language (HDL), 8
HCG. See horizontal constraint graph
HDI. See high-density interconnect
HDL. See hardware description language
heuristic algorithm, 21
high-density interconnect (HDI), 4

306 Index

hill-climb, 78
hMetis, 49
hold-time constraint, 221
horizontal composition, 71
horizontal constraint, 171
horizontal constraint graph (HCG), 62, 172
horizontal cut, 61
H-tree, 203
hyperedge, 24, 35
hypergraph, 24, 35, 41

I
I/O pin, 82
I/O placement, 57, 253
IC. See integrated circuit
ICCAD. See International Conference on

Computer-Aided Design
IEEE. See Institute of Electrical and

Electronic Engineers
IEEE Transactions on Computer-Aided

Design of Integrated Circuits and
Systems (TCAD), 4

ILP. See integer linear programming
Institute of Electrical and Electronic

Engineers (IEEE), 4
integer linear programming (ILP), 81, 155
integrated circuit (IC), 3
integrated timing-driven placement, 237
intellectual property (IP), 58, 254
intercell routing, 15
interconnect, 4, 15
internal pin, 83
internal pin assignment, 83
International Conference on Computer-

Aided Design (ICCAD), 4
International Technology Roadmap for

Semiconductors (ITRS), 5
intracell routing, 15
intrinsic delay, 245
INV (inverter) logic gate, 12
IP. See intellectual property
ISPD Global Routing Contest, 160
iterative algorithm, 22
ITRS. See International Technology

Roadmap for Semiconductors

K
Kernighan-Lin (KL) algorithm, 36
KL algorithm. See Kernighan-Lin algorithm
Kruskal’s algorithm, 98
k-way partitioning, 34, 41

L
lambda (), 18
late-mode analysis, 229
layer, 27
layer assignment, 161, 253, 256
layout generator, 9
layout layer, 16
layout optimization, 9, 19
layout versus schematic (LVS), 10, 27, 258
LCS. See longest common subsequence
leaf, 25, 61
Lee’s algorithm, 197
left-edge algorithm, 175
legalization, 81, 122, 253
linear delay, 199
linear ordering, 74
linear programming (LP), 81, 124, 155, 202,

237
linearization, 121
load-dependent delay, 245
local minimum, 78
logic design, 8, 26, 253
logic synthesis, 3
logical effort, 249
longest common subsequence (LCS), 65
lookup table (LUT), 15
loop, 24
LP. See linear programming
LUT. See lookup table
LVS. See layout versus schematic

M
macro cell, 14, 27
MaizeRouter, 160
Manhattan arc, 208
Manhattan distance, 29, 97, 192
mask, 17, 258
MCM. See multi-chip module
Mentor Graphics, 6
mesh routing, 89

Index 307

method of means and medians (MMM),
204

microprocessor, 11
midway routing, 140
MILP. See mixed-integer linear

programming
min-cut placement, 104
minimum feature size, 258
minimum overlap, 18
minimum separation, 18
minimum spanning tree (MST), 26, 59
minimum width, 17
mixed-integer linear programming (MILP),

81
MLPart, 49
MMM. See method of means and medians
modern global routing, 160
modern placement, 120
module, 27
monotone chain, 98
Monte-Carlo simulation, 214
Moore’s Law, 4
mPL6, 122
MST. See minimum spanning tree
multi-chip module (MCM), 3, 133
multi-commodity flow, 51
multigraph, 24
multilevel partitioning, 47
multi-pin net, 97, 141

N
NAND logic gate, 12
NCR. See negotiated congestion routing
near zero-slack algorithm, 232
negotiated congestion routing (NCR), 162
net, 28, 41, 131
net constraint, 236
net ordering, 132, 147, 193
net weight, 99, 133, 234
net weighting, 234
net-based timing-driven placement, 234
netlist, 8, 28, 131
netlist partitioning, 33, 57
netlist restructuring, 246, 255
new net, 74
node, 24
nonlinear optimization, 120
non-slicing floorplan, 61

non-tree routing, 186
NOR logic gate, 12
NP-hard, 21, 36, 70
NTHU-Route, 160
NTUgr, 160

O
objective function, 18
octilinear maze search, 197
octilinear Steiner minimum tree (OSMT),

195
open, 186
optimization problem, 18
OR logic gate, 12
order, 20
OSMT. See octilinear Steiner minimum tree
OTC routing. See over-the-cell routing
overlap rule, 18
over-the-cell (OTC) routing, 13, 134, 169,

182

P
packaging, 11
PACKER, 182
pad, 27
partition, 34
partition-based algorithm, 103
partitioning, 9
partitioning algorithm, 36
partitioning optimization goal, 35
path, 24
path-based timing-driven placement, 233
path-delay constraint, 224
pattern routing, 161
PCB. See printed circuit board
PCB Design Conference West, 4
performance-driven design flow, 250
PGA. See pin grid array
phase-locked loop, 197
physical design, 3, 8, 26
physical synthesis, 222, 244, 253, 256
physical verification, 10, 27
pin, 27
pin assignment, 57, 82
pin distribution, 43
pin grid array (PGA), 11
pin node convention, 225, 248

308 Index

pin ordering, 132
pin swapping, 248
planar routing, 87
poly. See polysilicon
polysilicon (poly), 16
power and ground routing, 9, 86
power net (VDD), 12, 28, 57, 86
power planning, 57, 86
preferred routing direction, 185
Prim’s algorithm, 141, 241
Prim-Dijkstra (PD) tradeoff, 241
PrimeTime, 199
printed circuit board (PCB), 3, 133
process, voltage and temperature (PVT)

variation, 212
push-and-shove, 158
PVT. See process, voltage and temperature

variation

Q
quadratic placement, 110, 120
quadratic wirelength, 110

R
random walk, 79
RAT. See required arrival time
RAT tree problem, 243
ratio factor, 42
RDR. See restricted design rule
rebudgeting, 230
rectangular dissection, 61
rectilinear minimum spanning tree (RMST),

26, 98, 141
rectilinear routing, 141
rectilinear Steiner arborescence (RSA), 99
rectilinear Steiner minimum tree (RSMT),

26, 99
rectilinear Steiner tree (RST), 141
recursive geometric matching (RGM)

algorithm, 205
refinement, 48
register-transfer level (RTL), 8
Rent’s rule, 33
replication, 246
required arrival time (RAT), 222, 226
resolution enhancement technique (RET),

259

restricted design rule (RDR), 259
RET. See resolution enhancement technique
retiming, 258
RGM. See recursive geometric matching

algorithm
ripple move, 115
rip-up and reroute, 158
rise delay, 228
RMST. See rectilinear minimum spanning

tree
root, 25
routability, 101, 137
routing column, 133, 170
routing congestion, 101, 131
routing region, 138, 169
routing track, 133, 170
RSA. See rectilinear Steiner arborescence
RSMT. See rectilinear Steiner minimum

tree
RTL. See register-transfer level

S
semi-custom design, 11
separation rule, 18
sequence pair, 62
sequential element, 223
sequential machine, 223
setup constraint, 221, 227
shape curve, 69
shape function, 69
sheet resistance, 17
short, 186
Sidewinder, 156
signal, 28
signal delay, 60, 103, 199, 221
signal integrity, 19, 229
signoff, 10, 224, 253, 257
Silicon Valley, 4
simulated annealing, 77, 117
single-trunk Steiner tree (STST), 99
sink node, 98
size rule, 17
skew, 200, 224
skew bound, 201
slack, 222
slew, 10
slicing floorplan, 61
slicing floorplan tree, 61

Index 309

slicing tree, 61
SMT. See Steiner minimum tree
soft block, 58
solution quality, 23
SOR. See successive over-relaxation

method
source node, 98, 149
spanning tree, 25
SPICE, 199
spreading force, 121
SSTA. See statistical STA
STA. See static timing analysis
standard cell, 27
standard-cell design, 12, 137
star, 98, 121
static timing analysis (STA), 222
statistical STA (SSTA), 229
Steiner minimum tree (SMT), 26
Steiner point, 26, 99, 141
Steiner tree, 26
stochastic algorithm, 22, 79, 103
storage element, 223
streaming out, 10
structured ASIC, 16
STST. See single-trunk Steiner tree
suboptimality, 23
successive over-relaxation (SOR) method,

111
supply net, 28, 57, 87
switchbox, 15, 134, 139, 169, 180
switchbox connectivity graph, 139
switchbox routing, 169, 180
Synopsys, 6
system partitioning, 50
system specification, 7

T
tapeout, 10
TCAD. See IEEE Transactions on

Computer-Aided Design of Integrated
Circuits and Systems

technology constraint, 19, 191
terminal propagation, 108
terminating net, 74
testing, 11
Tetris algorithm, 123
tilted rectangular region (TRR), 209
TimberWolf, 118

timing budgeting, 229, 244
timing closure, 9, 221
timing constraint, 233
timing correction, 244, 253, 256
timing path, 224
timing-driven optimization, 221, 254
timing-driven placement, 233, 253, 256
timing-driven routing, 239, 253, 257
TNS. See total negative slack
TODAES. See ACM Transactions on

Design Automation of Electronic
Systems

top-level assembly, 14
top-level floorplan, 58
topological ordering, 226
topological pin assignment, 84
total negative slack (TNS), 233
transistor-level layout, 3
tree, 25
TRR. See tilted rectangular region

U
uncoarsening, 48
uncut net, 42
undirected graph, 24
useful skew, 201, 258

V
variable-die routing, 131
variation, 212
variation model, 213
VCG. See vertical constraint graph
VDD. See power net
verification, 3
Verilog, 8
vertex. See node
vertical composition, 71
vertical constraint, 171
vertical constraint graph (VCG), 62, 173
vertical cut, 61
very large-scale integration (VLSI), 3
VHDL, 8
via, 16, 27
via doubling, 186
virtual buffering, 255
VLSI. See very large-scale integration
VLSI design flow, 7

310 Index

VLSI design style, 11

W
wafer-level chip-scale packaging (WLCSP),

11
weighted wirelength, 99
wheel, 61
wire bonding, 11
wire delay, 224
wire sizing, 213
wire snaking, 213
wirelength, 59, 239
wirelength estimation, 97
WISER, 184
WLCSP. See wafer-level chip-scale

packaging
WNS. See worst negative slack
worst negative slack (WNS), 233

X
Xilinx, 50
X-routing, 195

Y
Y-routing, 195

Z
zero skew, 201
zero-force target (ZFT), 112
zero-skew tree (ZST), 201
zero-slack algorithm (ZSA), 229
ZFT. See zero-force target
zone representation, 172
ZSA. See zero-slack algorithm
ZST. See zero-skew tree

	Team rebOOk

