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Foreword
Physical design of integrated circuits remains one of the most interesting and chal-
lenging arenas in the field of Electronic Design Automation. The ability to integrate
more and more devices on our silicon chips requires the algorithms to continuously
scale up. Nowadays we can integrate 2e9 transistors on a single 45nm-technology
chip. This number will continue to scale for the next couple of technology genera-
tions, requiring more transistors to be automatically placed on a chip and connected
together.  In addition, more and more of the delay is contributed by the wires that
interconnect the devices on the chip.  This has a profound effect on how physical
design flows need to be put together. In the 1990s, it was safe to assume that timing
goals of the design could be reached once the devices were placed well on the chip. 
Today, one does not know whether the timing constraints can be satisfied until the
final routing has completed.

As far back as 10 or 15 years ago, people believed that most physical design prob-
lems had been solved.  But, the continued increase in the number of transistors on 
the chip, as well as the increased coupling between the physical, timing and logic
domains warrant a fresh look at the basic algorithmic foundations of chip implemen-
tation. That is exactly what this book provides. It covers the basic algorithms under-
lying all physical design steps and also shows how they are applied to current in-
stances of the design problems. For example, Chapter 7 provides a great deal of 
information on special types of routing for specific design situations.

Several other books provide in-depth descriptions of core physical design algorithms
and the underlying mathematics, but this book goes a step further. The authors very
much realize that the era of individual point algorithms with single objectives is over. 
Throughout the book they emphasize the multi-objective nature of modern design
problems and they bring all the pieces of a physical design flow together in Chapter
8.  A complete flow chart, from design partitioning and floorplanning all the way to
electrical rule checking, describes all phases of the modern chip implementation
flow. Each step is described in the context of the overall flow with references to the
preceding chapters for the details.

This book will be appreciated by students and professionals alike. It starts from the
basics and provides sufficient background material to get the reader up to speed on 
the real issues.  Each of the chapters by itself provides sufficient introduction and
depth to be very valuable. This is especially important in the present era, where 
experts in one area must understand the effects of their algorithms on the remainder
of the design flow. An expert in routing will derive great benefit from reading the
chapters on planning and placement.  An expert in Design For Manufacturability
(DFM) who seeks a better understanding of routing algorithms, and of how these
algorithms can be affected by choices made in setting DFM requirements, will bene-
fit tremendously from the chapters on global and detailed routing.
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The book is completed by a detailed set of solutions to the exercises that accompany
each chapter. The exercises force the student to truly understand the basic physical
design algorithms and apply them to small but insightful problem instances.

This book will serve the EDA and design community well. It will be a foundational 
text and reference for the next generation of professionals who will be called on to
continue the advancement of our chip design tools.

Dr. Leon Stok
Vice President, Electronic Design Automation
IBM Systems and Technology Group
Hopewell Junction, NY 
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Preface
VLSI physical design of integrated circuits underwent explosive development in the
1980s and 1990s. Many basic techniques were suggested by researchers and imple-
mented in commercial tools, but only described in brief conference publications
geared for experts in the field. In the 2000s, academic and industry researchers fo-
cused on comparative evaluation of basic techniques, their extension to large-scale
optimization, and the assembly of point optimizations into multi-objective design
flows. Our book covers these aspects of physical design in a consistent way, starting
with basic concepts in Chapter 1 and gradually increasing the depth to reach ad-
vanced concepts, such as physical synthesis. Readers seeking additional details, will
find a number of references discussed in each chapter, including specialized mono-
graphs and recent conference publications. 

Chapter 2 covers netlist partitioning. It first discusses typical problem formulations
and proceeds to classic algorithms for balanced graph and hypergraph partitioning.
The last section covers an important application – system partitioning among multi-
ple FPGAs, used in the context of high-speed emulation in functional validation.

Chapter 3 is dedicated to chip planning, which includes floorplanning, power-
ground planning and I/O assignment. A broad range of topics and techniques are
covered, ranging from graph-theoretical aspects of block-packing to optimization by
simulated annealing and package-aware I/O planning.

Chapter 4 addresses VLSI placement and covers a number of practical problem
formulations. It distinguishes between global and detailed placement, and first cov-
ers several algorithmic frameworks traditionally used for global placement. De-
tailed placement algorithms are covered in a separate section. Current state of the art
in placement is reviewed, with suggestions to readers who might want to imple-
ment their own software tools for large-scale placement.

Chapters 5 and 6 discuss global and detailed routing, which have received signifi-
cant attention in research literature due to their interaction with manufacturability
and chip-yield optimizations. Topics covered include representing layout with graph 
models and performing routing, for single and multiple nets, in these models. State-
of-the-art global routers are discussed, as well as yield optimizations performed in
detailed routing to address specific types of manufacturing faults.

Chapter 7 deals with several specialized types of routing which do not conform with
the global-detailed paradigm followed by Chapters 5 and 6. These include non-
Manhattan area routing, commonly used in PCBs, and clock-tree routing required
for every synchronous digital circuit. In addition to algorithmic aspects, we explore
the impact of process variability on clock-tree routing and means of decreasing this
impact.
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Chapter 8 focuses on timing closure, and its perspective is particularly unique. It 
offers a comprehensive coverage of timing analysis and relevant optimizations in
placement, routing and netlist restructuring. Section 8.6 assembles all these tech-
niques, along with those covered in earlier chapters, into an extensive design flow,
illustrated in detail with a flow chart and discussed step-by-step with several figures
and many references.

This book does not assume prior exposure to physical design or other areas of EDA.
It introduces the reader to the EDA industry and basic EDA concepts, covers key 
graph concepts and algorithm analysis, carefully defines terms and specifies basic
algorithms with pseudocode. Many illustrations are given throughout the book, and
every chapter includes a set of exercises, solutions to which are given in one of the
appendices. Unlike most other sources on physical design, we made an effort to
avoid impractical and unnecessarily complicated algorithms. In many cases we offer
comparisons between several leading algorithmic techniques and refer the reader to
publications with additional empirical results.

Some chapters are based on material in the book Layoutsynthese elektronischer
Schaltungen – Grundlegende Algorithmen für die Entwurfsautomatisierung, which 
was published by Springer in 2006.

We are grateful to our colleagues and students who proofread earlier versions of this
book and suggested a number of improvements (in alphabetical order): Matthew
Guthaus, Kwangok Jeong, Johann Knechtel, Andreas Krinke, Nancy MacDonald,
Jarrod Roy, Yen-Kuan Wu and Hailong Yao. 

Images for global placement and clock routing in Chapter 8 were provided by 
Myung-Chul Kim and Dong-Jin Lee. Cell libraries in Appendix B were provided by
Bob Bullock, Dan Clein and Bill Lye from PMC Sierra; the layout and schematics in
Appendix B were generated by Matthias Thiele. The work on this book was partially
supported by the National Science Foundation (NSF) through the CAREER
award 0448189 as well as by Texas Instruments and Sun Microsystems.

We hope that you will find the book interesting to read and useful in your profes-
sional endeavors.

Sincerely,

Andrew, Jens, Igor and Jin
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1 Introduction 

The design and optimization of integrated circuits (ICs) are essential to the produc-
tion of new semiconductor chips. Modern chip design has become so complex that it 
is largely performed by specialized software, which is frequently updated to reflect 
improvements in semiconductor technologies and increasing design complexities. A 
user of this software needs a high-level understanding of the implemented algo-
rithms. On the other hand, a developer of this software must have a strong computer-
science background, including a keen understanding of how various algorithms 
operate and interact, and what their performance bottlenecks are. 

This book introduces and evaluates algorithms used during physical design to pro-
duce a geometric chip layout from an abstract circuit design. Rather than list every 
relevant technique, however, it presents the essential and fundamental algorithms 
used within each physical design stage. 
 
– Partitioning (Chap. 2) and chip planning (Chap. 3) of design functionality 

during the initial stages of physical design 
– Geometric placement (Chap. 4) and routing (Chaps. 5-6) of circuit components 
– Specialized routing and clock tree synthesis for synchronous circuits (Chap. 7) 
– Meeting specific technology and performance requirements, i.e., timing closure, 

such that the final fabricated layout satisfies system objectives (Chap. 8) 
 
Other design steps, such as circuit design, logic synthesis, transistor-level layout and 
verification, are not discussed in detail, but are covered in such references as [1.1]. 

This book emphasizes digital circuit design for very large-scale integration (VLSI); 
the degree of automation for digital circuits is significantly higher than for analog 
circuits. In particular, the focus is on algorithms for digital ICs, such as system parti-
tioning for field-programmable gate arrays (FPGAs) or clock network synthesis for 
application-specific integrated circuits (ASICs). Similar design techniques can be 
applied to other implementation contexts such as multi-chip modules (MCMs) and 
printed circuit boards (PCBs). 

The following broad questions, of interest to both students and designers, are ad-
ressed in the upcoming chapters. d

 
– How is functionally correct layout produced from a netlist? 

 How do we develop and improve software for VLSI physical design? 

More information about this book is at http://vlsicad.eecs.umich.edu/KLMH/. 

– How does software for VLSI physical design work? 
–
 

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_1, © Springer Science+Business Media B.V. 2011



4 1 Introduction 

1.1 Electronic Design Automation (EDA) 1.1 

The Electronic Design Automation (EDA) industry develops software to support 
engineers in the creation of new integrated-circuit (IC) designs. Due to the high 
complexity of modern designs, EDA touches almost every aspect of the IC design 
flow, from high-level system design to fabrication. EDA addresses designers’ needs 
at multiple levels of electronic system hierarchy, including integrated circuits (ICs), 
multi-chip modules (MCMs), and printed circuit boards (PCBs). 

Progress in semiconductor technology, based on Moore’s Law (Fig. 1.1), has led to 
integrated circuits (1) comprised of hundreds of millions of transistors, (2) assem-
bled into packages, each having multiple chips and thousands of pins, and (3) 
mounted onto high-density interconnect (HDI) circuit boards with dozens of wiring 
layers. This design process is highly complex and heavily depends on automated 
tools. That is, computer software is used to mostly automate design steps such as 
logic design, simulation, physical design, and verification. 

EDA was first used in the 1960s in the form of simple programs to automate place-
ment of a very small number of blocks on a circuit board. Over the next few years, 
the advent of the integrated circuit created a need for software that could reduce the 
total number of gates. Current software tools must additionally consider electrical 
effects such as signal delays and capacitive coupling between adjacent wires. In the 
modern VLSI design flow, nearly all steps use software to automate optimizations. 

In the 1970s, semiconductor companies developed in-house EDA software, special-
ized programs to address their proprietary design styles. In the 1980s and 1990s, 
independent software vendors created new tools for more widespread use. This gave 
rise to an independent EDA industry, which now enjoys annual revenues of ap-
proximately five billion dollars and employs around twenty thousand people. Many 
EDA companies have headquarters in Santa Clara county, in the state of California. 
This area has been aptly dubbed the Silicon Valley. 

Several annual conferences showcase the progress of the EDA industry and acade-
mia. The most notable one is the Design Automation Conference (DAC), which 
holds an industry trade show as well as an academic symposium. The International 
Conference on Computer-Aided Design (ICCAD) places emphasis on academic 
research, with papers that relate to specialized algorithm development. PCB devel-
opers attend PCB Design Conference West in September. Overseas, Europe and 
Asia host the Design, Automation and Test in Europe (DATE) conference and the 
Asia and South Pacific Design Automation Conference (ASP-DAC), respectively. 
The world-wide engineering association Institute of Electrical and Electronic Engi-
neers (IEEE) publishes the monthly IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems (TCAD), while the Association for Computing 
Machinery (ACM) publishes ACM Transactions on Design Automation of Electronic 
Systems (TODAES). 
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– Integration of analog and mixed-signal blocks 
– Memory management – serial or parallel – and the addressing scheme 
– Number and types of computational cores, such as processors and digital signal 

processing (DSP) units – and particular DSP algorithms 
d protocols, etc. – Internal and external communication, support for standar

– Usage of hard and soft intellectual-property (IP) blocks 
d the die-package interface 

–

 determined. That is, each 

are Verilog and VHDL. HDL mod-

l nets, or 

uit-level design is 

 design is a set of manufacturing specifications 

esign 
layout must be recreated in (migrated to) each new manufacturing technology. 

– Pinout, packaging, an
– Power requirements 
 Choice of process technology and layer stacks 

Functional and logic design. Once the architecture is set, the functionality and 
connectivity of each module (such as a processor core) must be defined. During 
functional design, only the high-level behavior must be
module has a set of inputs, outputs, and timing behavior. 

Logic design is performed at the register-transfer level (RTL) using a hardware 
description language (HDL) by means of programs that define the functional and 
timing behavior of a chip. Two common HDLs 
ules must be thoroughly simulated and verified. 

Logic synthesis tools automate the process of converting HDL into low-level circuit 
elements. That is, given a Verilog or VHDL description and a technology library, a 
logic synthesis tool can map the described functionality to a list of signa
netlist, and specific circuit elements such as standard cells and transistors. 

Circuit design. For the bulk of digital logic on the chip, the logic synthesis tool 
automatically converts Boolean expressions into what is referred to as a gate-level 
netlist, at the granularity of standard cells or higher. However, a number of critical, 
low-level elements must be designed at the transistor level; this is referred to as 
circuit design. Example elements that are designed at the circuit level include static 
RAM blocks, I/O, analog circuits, high-speed functions (multipliers), and electro-
static discharge (ESD) protection circuits. The correctness of circ
predominantly verified by circuit simulation tools such as SPICE. 

Physical design. During physical design, all design components are instantiated 
with their geometric representations. In other words, all macros, cells, gates, transis-
tors, etc., with fixed shapes and sizes per fabrication layer are assigned spatial loca-
tions (placement) and have appropriate routing connections (routing) completed in 
metal layers. The result of physical
that must subsequently be verified. 

Physical design is performed with respect to design rules that represent the physical 
limitations of the fabrication medium. For instance, all wires must be a prescribed 
minimum distance apart and have prescribed minimum width. As such, the d
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Physical design directly impacts circuit performance, area, reliability, power, and 
manufacturing yield. Examples of these impacts are discussed below. 
 
– Performance: long routes have significantly longer signal delays. 
– Area: placing connected modules far apart results in larger and slower chips. 
– Reliability: large number of vias can significantly reduce the reliability of the 

circuit. 
– Power: transistors with smaller gate lengths achieve greater switching speeds at 

the cost of higher leakage current and manufacturing variability; larger transis-
tors and longer wires result in greater dynamic power dissipation. 

– Yield: wires routed too close together may decrease yield due to electrical 
shorts occurring during manufacturing, but spreading gates too far apart may 
also undermine yield due to longer wires and a higher probability of opens. 

ue to its high complexity, physical design is split into several key steps (Fig. 1.3). 

– r subcircuits or modules, 

– ts 

b-

– 

n channels and in switchboxes. 

g resources. 
– Timing closure (Chap. 8) optimizes circuit performance by specialized place-

or or an 
insufficient design margin (guardband) against possible manufacturing and envi-

me-

D
 

Partitioning (Chap. 2) breaks up a circuit into smalle
which can each be designed or analyzed individually. 
Floorplanning (Chap. 3) determines the shapes and arrangement of subcircui
or modules, as well as the locations of external ports and IP or macro blocks. 
Power and ground routing (Chap. 3), often intrinsic to floorplanni– ng, distri
utes power (VDD) and ground (GND) nets throughout the chip. 

– Placement (Chap. 4) finds the spatial locations of all cells within each block. 
Clock network synthesis (Chap. 7) determines the buffering, gating (e.g., for 
power management) and routing of the clock signal to meet prescribed skew 
and delay requirements. 

– Global routing (Chap. 5) allocates routing resources that are used for connec-
tions; example resources include routing tracks i

– Detailed routing (Chap. 6) assigns routes to specific metal layers and routing 
tracks within the global routin

ment and routing techniques. 

After detailed routing, electrically-accurate layout optimization is performed at a 
small scale. Parasitic resistances (R), capacitances (C) and inductances (L) are ex-
tracted from the completed layout, and then passed to timing analysis tools to check 
the functional behavior of the chip. If the analyses reveal erroneous behavi

ronmental variations, then incremental design optimizations are performed. 

The physical design of analog circuits deviates from the above methodology, which 
is geared primarily toward digital circuits. For analog physical design, the geometric 
representation of a circuit element is created using layout generators or manual 
drawing. These generators only use circuit elements with known electrical para
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ters, such as the resistance of a resistor, and accordingly generate the appropriate 
geometric representation, e.g., a resistor layout with specified length and width. 

Physical verification. After physical design is completed, the layout must be fully 
verified to ensure correct electrical and logical functionality. Some problems found 
during physical verification can be tolerated if their impact on chip yield is negligi-
le. In other cases, the layout must be changed, but these changes must be minimal 

usual
 

hat are not connected to PN-junction nodes. 

d numerical 
methods. The choice of algorithms for these tasks is relatively straightforward, com-

cated silicon foundry (fab). 
The handoff of the design to the manufacturing process is called tapeout, even 

At the fab, the design is patterned onto different layers using photolithographic proc-

b
and should not introduce new problems. Therefore, at this stage, layout changes are 

ly performed manually by experienced design engineers. 

– Design rule checking (DRC) verifies that the layout meets all technology-
imposed constraints. DRC also verifies layer density for chemical-mechanical 
polishing (CMP). 

– Layout vs. schematic (LVS) checking verifies the functionality of the design. 
From the layout, a netlist is derived and compared with the original netlist pro-
duced from logic synthesis or circuit design. 

– Parasitic extraction derives electrical parameters of the layout elements from 
their geometric representations; with the netlist, these are used to verify the 
electrical characteristics of the circuit. 

– Antenna rule checking seeks to prevent antenna effects, which may damage 
transistor gates during manufacturing plasma-etch steps through accumulation 
of excess charge on metal wires t

– Electrical rule checking (ERC) verifies the correctness of power and ground 
connections, and that signal transition times (slew), capacitive loads and fan-
outs are appropriately bounded. 

Both analysis and synthesis techniques are integral to the design of VLSI circuits. 
Analysis typically entails the modeling of circuit parameters and signal transitions, 
and often involves the solution of various equations using establishe

pared to the vast possibilities for syntheses and optimization. Therefore, this book 
focuses on optimization algorithms used in IC physical design, and does not cover 
computational techniques used during physical verification and signoff. 

Fabrication. The final DRC-/LVS-/ERC-clean layout, usually represented in the 
GDSII Stream format, is sent for manufacturing at a dedi

though data transmission from the design team to the silicon fab no longer relies on 
magnetic tape [1.6]. Generation of the data for manufacturing is sometimes referred 
to as streaming out, reflecting the use of GDSII Stream. 

esses. Photomasks are used so that only certain patterns of silicon, specified by the 
layout, are exposed to a laser light source. Producing an IC requires many masks; 
modifying the design requires changes to some or all of the masks. 
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ICs are manufactured on round silicon wafers with diameters ranging from 200 mm 
(8 inches) to 300 mm (12 inches). The ICs must then be tested and labeled as either 
functional or defective, sometimes according to bins depending on the functional or 

-line packages 
(DIPs), pin grid arrays (PGAs), and ball grid arrays (BGAs). After a die is posi-

 

integrated as bare dice into the MCM, which is pack-
aged separately at a later point. After packaging, the finished product may be tested 
to ensure that it meets design requirements such as function (input/output relations), 

cessors or FPGAs, where the high cost of design 
effort is amortized over large production volumes. Semi-custom design is used more 

e-
-market and overall cost as well. 

The d. 

– ls, the design has many 
pre-designed elements such as logic gates that are copied from libraries. 

d anywhere 
on the chip without restriction. This approach usually results in a very compact chip 

1.3 

parametric (speed, power) tests that have failed. At the end of the manufacturing 
process, the ICs are separated, or diced, by sawing the wafer into smaller pieces. 

Packaging and testing. After dicing, functional chips are typically packaged. Pack-
aging is configured early in the design process, and reflects the application along 
with cost and form factor requirements. Package types include dual in

tioned in the package cavity, its pins are connected to the package’s pins, e.g., with 
wire bonding or solder bumps (flip-chip). The package is then sealed. 

Manufacturing, assembly and testing can be sequenced in different ways. For exam-
ple, in the increasingly important wafer-level chip-scale packaging (WLCSP) meth-
odology, “bumping” with high-density solder bumps that facilitate delivery of power,
ground and signals from the package to the die is performed before the wafer is 
diced. With multi-chip module based integration, chips are usually not packaged 
individually; rather, they are 

timing or power dissipation. 

1.3 VLSI Design Styles 

Selecting an appropriate circuit-design style is very important because this choice 
affects time-to-market and design cost. VLSI design styles fall in two categories – 
full-custom and semi-custom. Full-custom design is primarily seen with extremely 
high-volume parts such as micropro

frequently because it reduces the complexity of the design process, and hence tim
to

following semi-custom standard design styles are the most commonly use
 

Cell-based: typically using standard cells and macro cel

– Array-based: typically either gate arrays or FPGAs, the design has a portion of 
pre-fabricated elements connected by pre-routed wires. 

Full-custom design. Among available design styles, a full-custom design style has 
the fewest constraints during layout generation, e.g., blocks can be place
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The wire resistance is usually given as sheet resistance in ohms per square ( / ). 
That is, for a given wire thickness, the resistance per square area remains the same – 
independent of the square size (a higher resistance for a longer length is compen-
sated by the increased width of the square).1 Hence, the resistance of any rectangular 
interconnect shape can be easily calculated as the number of unit-square areas mul-
tiplied by the sheet resistance of the corresponding layer.  

Individual transistors are created by overlapping poly and diffusion layers. Cells, 
e.g., standard cells, are comprised of transistors but typically include one metal layer. 

The routing between cells (Chaps. 5-7) is performed entirely within the metal layers. 
This is a non-trivial task – not only are poly and Metal1 mostly reserved for cells, 
but different layers have varying sheet resistances, which strongly affects timing 
characteristics. For a typical 0.35 μm CMOS process, the sheet resistance of poly is 
10 / , that of the diffusion layer is approximately 3 / , and that of aluminum is 
0.06 / . Thus, poly should be used sparingly, and most of the routing done in 
metal layers. 

Routing through multiple metal layers requires vias. For the same 0.35 μm process, 
the typical resistance of a via between two metal layers is 6 , while that of a con-
tact is significantly higher – 20 . As technology scales, modern copper intercon-
nects become highly resistive due to smaller cross sections, grain effects that cause 
electron scattering, and the use of barrier materials to prevent reactive copper atoms 
from leaching into the rest of the circuit. In a typical 65 nm CMOS process, the 
sheet resistance of poly is 12 / , that of the diffusion layer is 17 / , and that of 
the copper Metal1 layer is 0.16 / . Via and contact resistances are respectively 
1.5  and 22  in a typical 65 nm process. 

Design rules. An integrated circuit is fabricated by shining laser light through masks, 
where each mask defines a certain layer pattern. For a mask to be effective, its lay-
out pattern must meet specific technology constraints. These constraints, or design 
rules, ensure that (1) the design can be fabricated in the specified technology and (2) 
the design will be electrically reliable and feasible. Design rules exist both for each 
individual layer and for interactions across multiple layers. In particular, transistors 
require structural overlaps of poly and diffusion layers. 

Though design rules are complex, they can be broadly grouped into three categories. 
 
– Size rules, such as minimum width: The dimensions of any component (shape), 

e.g., length of a boundary edge or area of the shape, cannot be smaller than 
given minimum values (a in Fig. 1.11). These values vary across different 
metal layers. 

                                                           
1 Since [length/width] is dimensionless, sheet resistance is measured in the same units as resistance 

(ohms). However, to distinguish it from resistance, it is specified in ohms per square (  / ). 
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where A is the chip area, L is the total wirelength, and w1 and w2 are weights that 
represent the relative importance of A and L. In other words, the weights influence 
the impact of each objective goal on the overall cost function. In practice, 0  w1  1, 
0  w2  1, and w1 + w2 = 1. 

During layout optimization, three types of constraints must be met. 
 
– Technology constraints enable fabrication for a specific technology node and 

are derived from technology restrictions. Examples include minimum layout 
widths and spacing values between layout shapes. 

– Electrical constraints ensure the desired electrical behavior of the design. Ex-
amples include meeting maximum timing constraints for signal delay and stay-
ing below maximum coupling capacitances. 

– Geometry (design methodology) constraints are introduced to reduce the over-
all complexity of the design process. Examples include the use of preferred 
wiring directions during routing, and the placement of standard cells in rows. 

As technology scales further, electrical effects have become increasingly significant. 
Thus, many types of electrical constraints have been introduced recently to ensure 
correct behavior. Various constraints not required at earlier technology nodes are 
necessary for modern designs. Such constraints may limit coupling capacitance to 
ensure signal integrity, prevent electromigration effects in interconnects, and pre-
vent adverse temperature-related phenomena. 

A basic challenge is that new electrical effects are not easily translated into new 
geometric rules for layout design. For instance, is signal delay best minimized by 
reducing total wirelength or by reducing coupling capacitance between the routes of 
different nets? Such a question is further complicated by the fact that routes on other 
metal layers, as well as their switching activity, also affect signal delay. Although 
only loose geometric rules can be defined, electrical properties can be accurately 
extracted from layout, and physical simulation enables precise estimation of timing, 
noise and power. This allows designers to assess the impact of layout optimizations. 

In summary, difficulties encountered when optimizing layout include the following. 
 
– Optimization goals may conflict with each other. For example, minimizing 

wirelength too aggressively can result in a congested region, and increase the 
number of vias. 

– Constraints often lead to discontinuous, qualitative effects even when objective 
functions remain continuous. For example, the floorplan design might permit 
only some of the bits of a 64-bit bus to be routed with short wires, while the 

– re tight-
ening, with new constraint types added for each new technology node. 

remaining bits must be detoured. 
Constraints, due to scaling and increased interconnect requirements, a
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These difficulties motivate the following rules of thumb. 

– m flow. That is, there is no universal 

– 

– 

– 

imal solu-
tion, the use of heuristics is a valid and effective option (Sec. 1.6). 

1.6 Algorithms and Complexity 

t(n) needed to place n blocks can be 

  of “overhead” that is required independently 

ion or O(…). Formally, the runtime t(n) is order f (n), 
t(n) = O(f (n)) when 

 

 
Each design style requires its own custo
EDA tool that supports all design styles. 
When designing a chip, imposing geometric constraints can potentially make 
the problem easier at the expense of layout optimization. For instance, a row-
based standard-cell design is much easier to implement than a full-custom lay-
out, but the latter could achieve significantly better electrical characteristics. 
To further reduce complexity, the design process is divided into sequential 
steps. For example, placement and routing are performed separately, each with 
specific optimization goals and constraints that are evaluated independently. 
When performing fundamental optimizations, the choice is often between (1) 
an abstract model of circuit performance that admits a simple computation, or 
(2) a realistic model that is computationally intractable. When no efficient algo-
rithm or closed-form expression is available to obtain a globally opt

A key criterion for assessing any algorithm is its runtime complexity, the time re-
quired by the algorithm to complete as a function of some natural measure of the 
problem size. For example, in block placement, a natural measure of problem size is 

e number of blocks to be placed, and the time th
expressed as 
 

t(n) = f (n) + c
 
where f (0) = 0 and c is a fixed amount
of input size, e.g., during initialization. 

While other measures of algorithm complexity such as memory (“space”) are also of 
interest, runtime is the most important complexity metric for IC physical design 
algorithms. Complexity is represented in an asymptotic sense, with respect to the 

 size n, using big-Oh notatinput
written as 

knt )(lim  

!) 
n ) = n! is 

 

1.6 

nfn )(
 

here k is a real number. For example, if t(n) = 7n! + n2 + 100, then t(n) = O(nw
because ! is the fastest growing term as n  .The real number k for f(n
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Pla ement problems and their associated computational complexities include c

wapping one pair of cells: O(n ) 
 Given a single-row placement of n cells, determine whether the wirelength can 

e: O(n3) 

xhaustively Enumerating All Placement Possibilities 

at grow exponen-
n n  

uristics. The primary 
goal of algorithm development for EDA is to construct heuristics that can quickly 

                                                          

 
– Place n cells in a single row and return the wirelength: O(n) 
– Given a single-row placement of n cells, determine whether the wirelength can 

be improved by s 2

–
be improved by permuting a group of three cells at a tim

– Place n cells in a single row so as to minimize the wirelength: O(n! · n) with a 
naive algorithm 

 
Example: E
Given: n cells. 
Task: find a linear (single-row) placement of n cells with minimum total wirelength by using 
exhaustive enumeration. 
 
Solution: 
The solution space consists of n! placement options. If generating and evaluating the wire-
length of each possible placement solution takes 1 microsecond ( s) and n = 20, the total time 
needed to find an optimal solution would be 77,147 years! 

The first three placement tasks are considered scalable, since their complexities can 
be written as O(np) or O(np log n), where p is a small integer, usually p  {1,2,3}. 
Algorithms having complexities where p > 3 are often considered not scalable. 
Furthermore, the last problem is considerably more difficult and is impractical for 
even moderate values of n, despite the existence of clever algorithms. A number of 
important problems have best-known algorithm complexities th
tially with n, e.g., O(n!), O(n ), and O(e ). Many of these problems are known to be
NP-hard,2 and no polynomial-time algorithms are currently known that solve these 
problems. Thus, for such problems, no known algorithms can ensure, in a time-
efficient manner, that they will return a globally optimal solution. 

Chaps. 2-8 all deal with physical design problems that are NP-hard. For these prob-
lems, heuristic algorithms are used to find near-optimal solutions within practical 
runtime limits. In contrast to conventional algorithms, which are guaranteed to pro-
duce an optimal (valid) solution in a known amount of time, heuristics may produce 
inferior solutions. Algorithms that have poor worst-case complexity, but produce 
optimal solutions in all practical cases, are also considered he

 
2   NP stands for non-deterministic polynomial time, and refers to the ability to validate in polyno-

mial time any solution that was “non-deterministically guessed”. NP-hard problems are at least 
as hard as the most difficult NP problems. For further reading, see [1.4] and [1.7]. 
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wa , as described below. The graph structure can be explicit, as in wire routing, or 
icit, with edges representing small differences between possible solutions, e.g., 
ping a pair of adjacent standard cells in placement. 

Breadth-first search 

y
impl
swap
 
– (BFS): When searching for goal node T from starting node 

– 

olution quality. Given th thms are heuristic in nature, 
the assessment of soluti al solution is known, then 
the heuristic solution can be judged by its suboptimality  with respect to the optimal 

lution 

S0, the algorithm checks all adjacent nodes S1. If the goal T is not found in S1, 
the algorithm searches all of S1’s adjacent nodes S2. This process continues, re-
sembling expansion of a “wave-front”, until T is found or all nodes have been 
searched. 
Depth-first search (DFS): From the starting node S0, the algorithm checks 
nodes in order of increasing depth, i.e., traversing as far as possible and as soon 
as possible. In contrast to BFS, the next-searched node Si+1 is a neighbor of Si 
unless all neighbors of Si have already been searched, in which case the search 
backtracks to the highest-index location that has an unsearched neighbor. Thus, 
DFS traverses as far as possible as soon as possible. 

– Best-first search: The direction of search is based on cost criteria, not simply on 
adjacency. Every step taken considers a current cost as well as the remaining 
cost to the goal. The algorithm always expands or grows from the current best 
known node or solution. An example is Dijkstra’s algorithm (Sec. 5.6.3). 

Finally, some algorithms used in physical design are greedy. An initial solution is 
transformed into another solution only if the new solution is strictly better than the 
previous solution. Such algorithms find locally optimal solutions. For further read-
ing on the theory of algorithms and complexity, see [1.4]. 

S at most physical design algori
on quality is difficult. If the optim

so
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optH
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where cost(SH) is the cost of the heuristic solution SH and cost(Sopt) is the cost of the 

lutions are tested across a suite of benchmarks. These sets of (non-trivial) 
problem instances represent different corner cases, as well as common cases, and are 
inspired by either industry or academic research. They enable assessment of a given 
heuristic’s scalability and solution quality against previously-obtained heuristic 
solutions. 

optimal solution Sopt. This notion applies to only a tiny fraction of design problems, 
in that optimal solutions are known only for small (or artificially-created) instances. 
On the other hand, bounds on suboptimality can sometimes be proven for particular 
heuristics, and can provide useful guidance. 

When finding an optimal solution is impractical, as typical for modern designs, 
heuristic so
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1.7 Graph Theory Terminology 1.7 

Graphs are heavily used in physical design algorithms to describe and represent 
layout topologies. Thus, a basic understanding of graph theory terminology is vital 
to understanding how the optimization algorithms work. The following is a list of 
basic terms; subsequent chapters will introduce specialized terminology. 

A graph G(V,E) is made up of two sets – the set of nodes or vertices (elements), 
denoted as V, and the set of edges (relations between the elements), denoted as E 
(Fig. 1.13(a)). The degree of a node is the number of its incident edges. 

A hypergraph consists of nodes and hyperedges, with each hyperedge being a subset 
of two or more nodes. Note that a graph is a hypergraph in which every hyperedge 
has cardinality two. Hyperedges are commonly used to represent multi-pin nets or 
multi-point connections within circuit hypergraphs (Fig. 1.13(b)). 

A multigraph (Fig. 1.13(c)) is a graph that can have more than one edge between 
two given nodes. Multigraphs can be used to represent varying net weights; an alter-
native is to use an edge-weighted graph representation, which is more compact and 
supports non-integer weights. 

a
b

c

d e

f

g

(a)

b
e

d
a

c
f

(b)

a

b

c

(c)  
Fig. 1.13 (a) A graph with seven edges. (b) A hypergraph with three hyperedges having sizes four, 
three and two respectively. (c) A multigraph with four edges, where a-b has weight = 3. 

A path between two nodes is an ordered sequence of edges from the start node to the 
end node (a-b-f-g-e in Fig. 1.13(a)). 

A cycle (loop) is a closed path that starts and ends at the same node (c-f-g-e-d-c in 
Fig. 1.13(a)). 

An undirected graph is a graph that represents only unordered node relations and 
does not have any directed edges. A directed graph is a graph where the direction of 
the edge denotes a specific ordered relation between two nodes. For example, a 
signal might be generated at the output pin of one gate and flow to an input pin of 
another gate – but not the other way around. Directed edges are drawn as arrows 
starting from one node and pointing to the other. 
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Physical verification checks the correctness of the layout design. This includes veri-
fying that the layout 

– Complies with all technology requirements – Design Rule Checking (DRC) 
– Is consistent with the original netlist – Layout vs. Schematic (LVS) 
– Has no antenna effects – Antenna Rule Checking 
– Complies with all electrical requirements – Electrical Rule Checking (ERC) 

A component is a basic functional element of a circuit. Examples include transistors, 
resistors, and capacitors. 

A module is a circuit partition or a grouped collection of components. 

A block is a module with a shape, i.e., a circuit partition with fixed dimensions. 

A cell is a logical or functional unit built from various components. In digital cir-
cuits, cells commonly refer to gates, e.g., INV, AND-OR-INVERTER (AOI), 
NAND, NOR. In general, the term is used to refer to either standard cells or macros. 

A standard cell is a cell with a pre-determined functionality. Its height is a multiple 
of a library-specific fixed dimension. In the standard-cell methodology, the logic 
design is implemented with standard cells that are arranged in rows. 

A macro cell is a cell without pre-defined dimensions. This term may also refer to a 
large physical layout, possibly containing millions of transistors, e.g., an SRAM or 
CPU core, and possibly having discrete dimensions, that can be incorporated into the 
IC physical design. 

A pin is an electrical terminal used to connect a given component to its external 
environment. At the level of block-to-block connections (internal to the IC), I/O pins 
are present on lower-level metal layers such as Metal1, Metal2 and Metal3. A pad is 
an electrical terminal used to connect externally to the IC. Often, bond pads are 
present on topmost metal layers and interface between external connections (such as 
to other chips) and internal connections. 

A layer is a manufacturing process level in which design components are patterned. 
During physical design, circuit components are assigned to different layers, e.g., 
transistors are assigned to poly and active layers, while interconnects are assigned to 
poly and metal layers and are routed according to the netlist. 

A contact is a direct connection between silicon (poly or another active level) and a 
metal layer, typically Metal1. Contacts are often used inside cells. 

A via is a connection between metal layers, usually to connect routing structures on 
different layers. 
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A net or signal is a set of pins or terminals that must be connected to have the same 
potential. 

Supply nets are power (VDD) and ground (GND) nets that provide current to cells. 

A netlist is the collection of all signal nets and the components that they connect in a 
design, or, a list of all the nets and connecting pins of a subsection of the design. 
That is, netlists can be organized as (1) pin-oriented – each design component has a 
list of associated nets (Fig. 1.17 center), or (2) net-oriented – each net has a list of 
associated design components (Fig. 1.17 right). Netlists are created during logic 
synthesis and are a key input to physical design. 

a

b

x

y

z cN1 N2

N3

N4

(a: N1)
(b: N2)
(c: N5)
(x: IN1 N1, IN2 N2, OUT N3)
(y: IN1 N1, IN2 N2, OUT N4)
(z: IN1 N3, IN2 N4, OUT N5)

(N1: a, x.IN1, y.IN1)
(N2: b, x.IN2, y.IN2)
(N3: x.OUT, z.IN1)
(N4: y.OUT, z.IN2)
(N5: z.OUT, c)

Pin-Oriented Netlist Net-Oriented Netlist

N5

 
Fig. 1.17 Pin-oriented (center) and net-oriented (right) netlist examples for the sample circuit (left). 

A net weight w(net) is a numerical (typically integer) value given to a net net (or 
edge edge) to indicate its importance or criticality. Net weights are used primarily 
during placement, e.g., to minimize distance between cells that are connected by 
edges with high net weights, and routing, e.g., to set the priority of a net. 

The connectivity degree or connection cost c(i,j) between cells i and j for un-
weighted nets is the number of connections between i and j. With weighted nets, 
c(i,j) is the sum of the individual connection weight between i and j. 

The connectivity c(i) of cell celli is given by 
 

V

j

jicic
1

),()(  

 
where |V| is the number of cells in the netlist, and c(i,j) is the connectivity degree 
between cells i and j. For example, cell y in Fig. 1.18 has c(y) = 5 if each net’s 
weight equals 1. 

A connectivity graph is a representation of the netlist as a graph. Cells, blocks and 
pads correspond to nodes, while their connections correspond to edges (Fig. 1.18). A 

p-pin net is represented by  total connections between its nodes. Multiple edges 

between two nodes imply a stronger (weighted) connection. 
2
p
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2 Netlist and System Partitioning 

The design complexity of modern integrated circuits has reached unprecedented 
scale, making full-chip layout, FPGA-based emulation and other important tasks 
increasingly difficult. A common strategy is to partition or divide the design into 
smaller portions, each of which can be processed with some degree of independence 
and parallelism. A divide-and-conquer strategy for chip design can be implemented 
by laying out each block individually and reassembling the results as geometric 
partitions. Historically, this strategy was used for manual partitioning, but became 
infeasible for large netlists. Instead, manual partitioning can be performed in the 
context of system-level modules by viewing them as single entities, in cases where 
hierarchical information is available. In contrast, automated netlist partitioning (Secs. 
2.1-2.4) can handle large netlists and can redefine a physical hierarchy of an elec-
tronic system, ranging from boards to chips and from chips to blocks. Traditional 
netlist partitioning can be extended to multilevel partitioning (Sec. 2.5), which can 
be used to handle large-scale circuits and system partitioning on FPGAs (Sec. 2.6). 

2.1 Introduction 

A popular approach to decrease the design complexity of modern integrated circuits 
is to partition them into smaller modules. These modules can range from a small set 
of electrical components to fully functional integrated circuits (ICs). The partitioner 
divides the circuit into several subcircuits (partitions or blocks) while minimizing 
the number of connections between partitions, subject to design constraints such as 
maximum partition sizes and maximum path delay. 

If each block is implemented independently, i.e., without considering other parti-
tions, then connections between these partitions may negatively affect the overall 
design performance such as increased circuit delay or decreased reliability. More-
over, a large number of connections between partitions may introduce inter-block 
dependencies that hamper design productivity.1 Therefore, the primary goal of parti-
tioning is to divide the circuit such that the number of connections between subcir-
cuits is minimized (Fig. 2.1). Each partition must also meet all design constraints. 
For example, the amount of logic in a partition can be limited by the size of an 
FPGA chip. The number of external connections of a partition may also be limited, 
e.g., by the number of I/O pins in the chip package. 
                                                           
1  The empirical observation known as Rent’s rule suggests a power-law relationship between the 
number of cells nG and the number of external connections nP = t  nG

 r, for any subcircuit of a “well-
designed” system. Here, t is the number of pins per cell and r, referred to as the Rent’s exponent or 
the Rent parameter, is a constant < 1. In particular, Rent’s rule quantifies the prevalence of short 
wires in ICs, which is consistent with a hierarchical organization. 

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_2, © Springer Science+Business Media B.V. 2011
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Though this chapter discusses the partitioning problem and partitioning algorithms 
within the graph context, logic circuits are more accurately represented using hyper-
graphs, where each hyperedge2 connects two or more cells. Many graph-based algo-
rithms can be directly extended to hypergraphs. 

The set of all partitions |Part| is disjoint if each node v  V is assigned to exactly one 
of the partitions. 

An edge between two nodes i and j is cut if i and j belong to different partitions A 
and B, i.e., i  A, j  B, and (i,j)  E (Fig. 2.3). 

A cut set  is the collection of all cut edges. 

A

B

a

b

c e

d

f

g

Fig. 2.3 A 2-way partitioning of the circuit in Fig. 2.2. 
A contains nodes a, b and f. B contains nodes c, d, e 
and g. Edges (a,c), (b,c) and (e,f ) are cut. Edges (c,e), 
(c,g), (d,e) and (e,g) are not cut. 

2.3 Optimization Goals 2.3 

The most common partitioning objective is to minimize the number or total weight 
of cut edges while balancing the sizes of the partitions. If  denotes the set of cut 
edges, the minimization objective is 

 

e

ew )(  

Often, partition area is limited due to packing considerations and other boundary 
conditions implied by system hierarchy, chip size, or floorplan restrictions. For any 
subset of nodes V’  V, let area(V’) be the total area of all cells represented by the 
nodes of V’. Bounded-size partitioning enforces an upper bound UB on the total area 
of each partition V’. That is, area(Vi)  UBi, where Vi  V, i = 1, … , k, and k is the 
number of partitions. Often, a circuit must be divided evenly, with 
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2  For convenience, hyperedges may be referred to as edges. However, graph edges are formally 
defined as node pairs. 
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For the special case where all nodes have unit area, the balance criterion is  
 

k
V

Vi  

2.4 Partitioning Algorithms 2.4 

Circuit partitioning, like many other combinatorial optimization problems discussed 
in this book, is NP-hard. That is, as the problem size grows linearly, the effort 
needed to find an optimal solution grows faster than any polynomial function. To 
date, there is no known polynomial-time, globally optimal algorithm for balance-
constrained partitioning (Sec. 1.6). However, several efficient heuristics were devel-
oped in the 1970s and 1980s. These algorithms find high-quality circuit partitioning 
solutions and in practice are implemented to run in low-order polynomial time – the 
Kernighan-Lin (KL) algorithm (Sec. 2.4.1), its extensions (Sec. 2.4.2) and the Fi-
duccia-Mattheyses (FM) algorithm (Sec. 2.4.3). Additionally, optimization by simu-
lated annealing can be used to solve particularly difficult partitioning formulations. 
In general, stochastic hill-climbing algorithms require more than polynomial time to 
produce high-quality solutions, but can be accelerated by sacrificing solution quality. 
In practice, simulated annealing is rarely competitive. 

 2.4.1 Kernighan-Lin (KL) Algorithm 

The Kernighan-Lin (KL) algorithm performs partitioning through iterative-
improvement steps. It was proposed by B. W. Kernighan and S. Lin in 1970 [2.6] for 
bipartitioning (k = 2) graphs, where every node has unit weight. This algorithm has 
been extended to support k-way partitioning (k > 2) as well as cells with arbitrary 
areas (Sec. 2.4.2).

Introduction. The KL algorithm operates on a graph representation of the circuit, 
where nodes (edges) represent cells (connections between cells). Formally, let a 
graph G(V,E) have |V| = 2n nodes, where each node v  V has the same weight, and 
each edge e  E has a non-negative edge weight. The KL algorithm partitions V into 
two disjoint subsets A and B with minimum cut cost and |A| = |B| = n. 

The KL algorithm is based on exchanging (swapping) pairs of nodes, each node 
from a different partition. The two nodes that generate the highest reduction in cut 
size are swapped. To prevent immediate move reversal (undo) and subsequent infi-
nite loops, the KL algorithm fixes nodes after swapping them. Fixed nodes cannot be 
swapped until they are released, i.e., become free. 
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Execution of the KL algorithm proceeds in passes. Typically, the first pass or itera-
tion begins with an arbitrary initial partition. In a given pass, after all nodes become 
fixed, the algorithm determines the prefix of the sequence of swaps within this pass 
that produces the largest gain, i.e., reduction of cut cost. All nodes included in this 
sequence are moved accordingly. The pass finishes by releasing all fixed nodes, so 
that all nodes are once again free. In each subsequent pass, the algorithm starts with 
the two partitions from the previous pass. All possible pair swaps are then re-
evaluated. If no improvement is found during a given pass, the algorithm terminates. 

Terminology. The following terms are specifically relevant to the KL algorithm. 

The cut size or cut cost of a graph with either unweighted or uniform-weight edges 
is the number of edges that have nodes in more than one partition. With weighted 
edges, the cut cost is the sum of the weights of all cut edges. 

The cost D(v) of moving a node v  V in a graph from partition A to B is 
 

D(v) = |EB(v)| – |EA(v)|
 
where EB(v) is the set of v’s incident edges that are cut by the cut line, and EA(v) is 
the set of v’s incident edges that are not cut by the cut line. High costs (D > 0) indi-
cate that the node should move, while low costs (D < 0) indicate that the node 
should stay within the same partition. 

The gain g(a,b) of swapping a pair of nodes a and b is the improvement in overall 
cut cost that would result from the node swap. A positive gain ( g > 0) means that 
the cut cost is decreased, while a negative gain ( g < 0) means that the cut cost is 
increased. The gain of swapping two nodes a and b is 
 

g(a,b) = D(a) + D(b) – 2c(a,b) 

where D(a) and D(b) are the respective costs of nodes a and b, and c(a,b) is the 
connection weight between a and b. If an edge exists between a and b, then c(a,b) = 
the edge weight between a and b. Otherwise, c(a,b) = 0. 

Notice that simply adding D(a) and D(b) when calculating g assumes that an edge 
is cut (uncut) before the swap and will be uncut (cut) after the swap. However, this 
does not apply if the nodes are connected by an edge e, as it will be cut both before 
and after the swap. Therefore, the term 2c(a,b) corrects for this overestimation of 
gain from the swap. 

The maximum positive gain Gm corresponds to the best prefix of m swaps within the 
swap sequence of a given pass. These m swaps lead to the partition with the mini-
mum cut cost encountered during the pass. Gm is computed as the sum of g values 
over the first m swaps of the pass, with m chosen such that Gm is maximized. 
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Notice that g cannot always be positive: after all nodes have been swapped be-
tween two partitions, the cut cost will be exactly the same as the initial cut cost, so 
some best-gain values during the pass can be negative. However, since other moves 
(gains) might compensate for this, the entire pass should be completed, computing 
all moves until all cells are fixed. 

The runtime of the KL algorithm is dominated by two factors – gain updates and 
pair selection. The KL algorithm selects n pairs of nodes to swap, where n is the 
number of nodes in each partition. For each node v, the required time to update the 
gains and compare is on the order of O(n). That is, after swapping ai and bi in move i, 
at most (2n – 2i) gains of free nodes must be updated. Therefore, the time spent 
updating gains over the n moves in a pass is at most 
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During pair comparison in a given move i, there are as many as (n – i + 1)2 = O(n2) 
pairs to choose from. The time to perform n pair comparisons is bounded by  
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Therefore, the KL algorithm requires a total of O(n2) + O(n3) = O(n3) time. 

An optimized KL implementation has O(n2 log n) runtime complexity. To speed up 
pair comparison, node pairs can be sorted ahead of time. Since the goal is to maxi-
mize g(a,b) = D(a) + D(b) – 2c(a,b), the gains of each node move can be sorted in 
descending order. That is, for each node a  A, order the gains D(a) such that  

D(a1)  D(a2)  …  D(an i+1) 

Similarly, for each node b  B, order the gains D(b) such that 

D(b1)  D(b2)  …  D(bn i+1) 

Then, evaluate pairwise gains, starting with the first elements from both lists. A 
clever order of evaluation – exploiting advanced data structures and bounded node 
degrees [2.3] – allows the pair evaluation process to stop once a pair of gains D(aj) 
and D(bk) is found with D(aj) + D(bk) is less than the best previously-found gain (no 
better pair-swap can exist). In practice, the best pair-swap at the kth move can be 
found in O(n – k) time after sorting the free node gains in O((n – k) log (n – k)) time 
[2.2]. The time required to perform pair comparison is thus reduced from O(n2) time 
to O(n log n) time. 
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2.4.2 Extensions of the Kernighan-Lin Algorithm  

To accommodate unequal partition sizes |A|  |B|, arbitrarily split the nodes among 
the two partitions A and B, where one partition contains min(|A|,|B|) nodes and the 
other max(|A|,|B|) nodes. Apply the KL algorithm with the restriction that only 
min(|A|,|B|) node pairs can be swapped. 

To accommodate unequal cell sizes or unequal node weights, assign a unit area that 
denotes the smallest cell area, i.e., the greatest common divisor of all cell areas. All 
unequal node sizes are then cast as integer multiples of the unit area. Each node 
portion (all parts of an original node that was split up) is connected to each of its 
counterparts by infinite-weight, i.e., high-priority edges. Apply the KL algorithm. 

To perform k-way partitioning, arbitrarily assign all k · n nodes to partitions such that 
each partition has n nodes. Apply the KL 2-way partitioning algorithm to all possi-
ble pairs of subsets (1 and 2, 2 and 3, etc.) until none of the consecutive KL applica-
tions obtains any improvement on the cut size. 

2.4.3 Fiduccia-Mattheyses (FM) Algorithm  

Given a graph G(V,E) with nodes and weighted edges, the goal of (bi)partitioning is 
to assign all nodes to disjoint partitions, so as to minimize the total cost (weight) of 
all cut nets while satisfying partition size constraints. The Fiduccia-Mattheyses (FM) 
algorithm is a partitioning heuristic, published in 1982 by C. M. Fiduccia and R. M. 
Mattheyses [2.4], offers substantial improvements over the KL algorithm. 
 
– Single cells are moved independently instead of swapping pairs of cells. Thus, 

this algorithm is more naturally applicable to partitions of unequal size or the 
presence of initially fixed cells. 

– Cut costs are extended to include hypergraphs (Sec. 1.8). Thus, all nets with 
two or more pins can be considered. While the KL algorithm aims to minimize 
cut costs based on edges, the FM algorithm minimizes cut costs based on nets. 

– The area of each individual cell is taken into account. 
– The selection of cells to move is much faster. The FM algorithm has runtime 

complexity of (|Pins|) per pass, where |Pins| is the total number of pins, de-
fined as the sum of all edge degrees |e| over all edges e  E. 

Introduction. The FM algorithm is typically applied to large circuit netlists. For this 
section, all nodes and subgraphs are referred to as cells and blocks, respectively. 

The FM move selection process is similar to that of the KL algorithm, with the un-
derlying objective being to minimize cut cost. However, the FM algorithm computes 
the gain of each individual cell move, rather than that of each pair-swap. Like the 
KL algorithm, the FM algorithm selects the best prefix of moves from within a pass. 
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During an FM pass, once a cell is moved, it becomes fixed and cannot be moved for 
the remainder of the pass. The cells that are moved during the FM algorithm are 
denoted by the sequence <c1 … cm>, whereas the KL algorithm swaps the first m 
pairs. 

Terminology. The following definitions are relevant to the FM algorithm. 

A net is cut if its cells occupy more than one partition. Otherwise, the net is uncut. 

The cut set of a partition part is the set of all nets that are marked as cut within part. 

The gain g(c) for cell c is the change in the cut set size if c moves. The higher the 
gain g(c), the higher is the priority to move the cell c to the other partition. For-
mally, the cell gain is defined as 

)()()( cTEcFScg  

where FS(c) is the number of nets connected to c but not connected to any other 
cells within c’s partition, i.e., cut nets that connect only to c, and TE(c) is the number 
of uncut nets connected to c. Informally, FS(c) is like a moving force – the higher 
the FS(c) value, the stronger the pull to move c to the other partition. TE(c) is like a 
retention force – the higher the TE(c) value, the stronger the desire to remain in the 
current partition. 

The maximum positive gain Gm of a pass is the cumulative cell gain of m moves that 
produce a minimum cut cost. Gm is determined by the maximum sum of cell gains 

g over a prefix of m moves in a pass 
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As in the KL algorithm, all moves in a pass are used to determine Gm and the move 
sequence <c1 … cm>. Only at the end of the pass, i.e., after determining Gm and the 
corresponding m moves, are the cell positions updated (moved). 

The ratio factor is the relative balance between the two partitions with respect to cell 
area. This ratio factor is used to prevent all cells from clustering into one partition. 
The ratio factor r is defined as 
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where area(A) and area(B) are the total respective areas of partitions A and B, and  
 

area(A) + area(B) = area(V) 
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where area(V) is the total area of all cells c  V, and is defined as  
 

Vc

careaVarea )()(  

 

The balance criterion enforces the ratio factor. To ensure feasibility, the maximum 
cell area areamax(V) must be taken into account. A partitioning of V into two parti-
tions A and B is said to be balanced if  
 

r · area(V) – areamax(V)  area(A)  r · area(V) + areamax(V) 

A base cell is a cell c that has maximum cell gain g(c) among all free cells, and 
whose move does not violate the balance criterion. 

The pin distribution of a net net is given as a pair (A(net),B(net)), where A(net) is the 
number of pins in partition A and B(net) is the number of pins in partition B. 

A net net is critical if it contains a cell c whose move changes the cut state of net. A 
critical net is either contained completely within a partition, or has exactly one of its 
cells in one partition and all of its other cells in the other partition. If net is critical, 
then either A(net) = 0, A(net) = 1, B(net) = 0, or B(net) = 1 must hold (Fig. 2.4). 

(b) A(net) = 1

A B

(a) A(net) = 0

A B

(d) B(net) = 1

A B

(c) B(net) = 0

A B

 
Fig. 2.4 Cases when a net net is critical. (a) A(net) = 0. (b) A(net) = 1. (c) B(net) = 0. (d) B(net) = 1. 

Critical nets simplify the calculation of cell gains. Only cells belonging to critical 
nets need to be considered in the gain computation, as it is only for such nets that the 
movement of a single cell can change the cut state. B. Krishnamurthy [2.8] general-
ized the concept of criticality and improved the FM algorithm such that it compre-
hends how many cell moves nets are away from being critical. This results in a gain 
vector for each cell instead of a single gain value – the ith element of the gain vector 
for a free cell cf records how many nets will become i cell moves away from being 
uncut if cf moves. 

The from-block F and to-block T define the direction in which a cell moves. That is, 
a cell moves from F to T. 
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Update gains for all free cells that are connected by critical nets to a. To determine whether a 
given net is critical, the number of cells associated with that net in each partition is counted 
before and after the move.  
 
For a given net net, let the number of cells in the from-block and to-block before the move be 
F(net) and T(net), respectively. Let the number of cells in the from-block and to-block after 
the move be F’(net) and T’(net), respectively. If any of these values is 0 or 1, then net is criti-
cal. For nets N1, N2, N3, N4, T(N1) = 0 and T(N2) = T(N3) = T(N4) = 1. Therefore, cells b, c, d 
and e need updating. The gain values do not have to be computed explicitly but can be derived 
from T(net). 
 
If T(net) = 0, all gain values of free cells connected to net increase by 1. Since T(N1) = 0, cell b 
has updated gain value of g1(b) = g1(b) + 1. That is, net N1 (connected to cell b) has in-
creased the cut set of the partition. The increase in g(b) reflects the motivation to move cell b. 
Since net N1 is now cut, moving cell b is justified. 
 
If T(net) = 1, all gain values of free cells connected to net decrease by 1. Since T(N2) = T(N3) 
= T(N4) = 1, cells c, d and e have updated gain values of g1(c,d,e) = g1(c,d,e) – 1. That is, 
nets N2, N3 and N4 (connected to cells c, d and e, respectively) have decreased the cut set of 
the partition. This reduction in g1(c,d,e) reflects the motivation to not move cells c, d and e. 
Similarly, when F’(net) = 0, all cell gains connected to net are reduced by 1, and when F’(net) 
= 1, all cell gains connected to n are increased by 1. 
 
The updated g values are 
 b:      FS(b) = 2 TE(b) = 0  g1(b) = 2 
 c:      FS(c) = 0 TE(c) = 1  g1(c) = -1 
 d:      FS(d) = 0 TE(d) = 2  g1(d) = -2 
 e:      FS(e) = 0 TE(e) = 1  g1(e) = -1 
 
Iteration i = 1 
Partitions: A1 = {b}, B1 = {a,c,d,e}, with fixed cells {a}. 
 
Iteration i = 2 
Cell b has maximum gain g2 = 2, area(A) = 0, balance criterion is violated. 
Cell c has next maximum gain g2 = -1, area(A) = 5, balance criterion is met. 
Cell e has next maximum gain g2= -1, area(A) = 9, balance criterion is met. 
Move cell c, updated partitions: A2 = {b,c}, B2 = {a,d,e}, with fixed cells {a,c}. 
 
Iteration i = 3 
Gain values: g3(b) = 1, g3(d) = 0, g3(e) = -1. 
Cell b has maximum gain g3 = 1, area(A) = 1, balance criterion is met. 
Move cell b, updated partitions: A3 = {c}, B3 = {a,b,d,e}, with fixed cells {a,b,c}. 
 
Iteration i = 4 
Gain values: g4(d) = 0, g4(e) = -1. 
Cell d has maximum gain g4 = 0, area(A) = 5, balance criterion is met. 
Move cell d, updated partitions: A4 = {c,d}, B4 = {a,b,e}, with fixed cells {a,b,c,d}. 
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ond, FM is applied to the clustered netlist. Third, the netlist is partially unclustered 
during the uncoarsening phase. Fourth, during the refinement phase, FM is applied 
incrementally to the partially unclustered netlist. The third and fourth steps are con-
tinued until the netlist is fully unclustered. In other words, FM is applied to the par-
tially unclustered netlist and the solution is unclustered further – with this process 
repeating until the solution is completely flat. 

For circuits with hundreds of thousands of gates, the multilevel framework dramati-
cally improves runtime because many of the FM calls operate on smaller netlists, 
and each incremental FM call has a relatively high-quality initial solution. Further-
more, solution quality is improved, as applying FM to clustered netlists allows the 
algorithm to reassign entire clusters to different partitions where appropriate. 

2.5.1 Clustering  

To construct a coarsened netlist, groups of tightly-connected nodes can be clustered, 
absorbing connections between these nodes (Fig. 2.5). The remaining connections 
between clusters retain the overall structure of the original netlist. In specific appli-
cations, the size of each cluster is often limited so as to prevent degenerate cluster-
ing, where a single large cluster dominates other clusters. 

When merging nodes, a cluster is assigned the sum of the weights of its constituent 
nodes. As closed-form objective functions for clustering are difficult to formulate, 
clustering is performed by application-specific algorithms. Additionally, clustering 
must be performed quickly to ensure the scalability of multilevel partitioning. 

a

b c

d

e

a,b,c

d

e

a

b

d

c,e
 

Fig. 2.5 An initial graph (left), and possible clusterings of the graph (right). 

2.5.2 Multilevel Partitioning  

Multilevel partitioning techniques begin with a coarsening phase in which the 
input graph G is clustered into a smaller graph G’, which, in turn, can also be 
clustered into another graph G”, and so on. Let l be the number of levels, i.e., 
times, that G goes through the coarsening stage. Each node at level l represents a 
cluster of nodes at level l + 1. For large-scale applications, the clustering ratio, i.e., 
the average number of nodes per cluster, is often 1.3 (Hypergraph Partitioning 
and Clustering, Chap. 61 in [2.5]). For a graph with |V| nodes, the number of lev-
els can be estimated as  
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2.6 2.6 System Partitioning onto Multiple FPGAs 

System implementation using field-programmable gate arrays (FPGAs), such as 
those manufactured by Xilinx or Altera, is an increasingly important application of 
partitioning. There are two main reasons for this trend. First, FPGA-based system 
prototyping allows products to meet shorter time-to-market windows, since embed-
ded software development and design debugging can proceed concurrently with 
hardware design, rather than having to wait until the packaged dies arrive from the 
foundry. Second, with increased non-recurring engineering costs (mask sets and 
probe cards) in advanced technology nodes, products with lower production vol-
umes become economically feasible only when implemented using field-
programmable devices. However, field-programmability (e.g., using SRAM-based 
lookup tables to implement reconfigurable logic and interconnect) comes at the cost 
of density, speed and power. Hence, even if a system easily fits onto a single ASIC, 
its prototype may require multiple FPGA devices. 

Functionally, FPGA-based systems may be viewed as logic (implemented using 
reprogrammable FPGAs) and interconnects (implemented using field-programmable 
interconnect chips, or FPICs). Many system components, including embedded proc-
essor cores, embedded memories, and standard interfaces, are available as configur-
able IPs on modern FPGA devices. Moreover, FPICs themselves can be imple-
mented using FPGAs. An example FPGA-based system topology is illustrated in 
Fig. 2.7(a), where the FPGA and FPIC devices are connected using a Clos network 
topology, which allows any two devices to communicate directly (or a small number 
of hops). Fig. 2.7(b) demonstrates how a typical system architecture of logic and 
memory can be mapped onto multiple FPGA devices. 

FPGA FPGA FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA
RAM Logic Logic

(a) (b)  
Fig. 2.7 (a) Reconfigurable system with multiple FPGA and FPIC devices. (b) Mapping of a typical 
system architecture onto multiple FPGAs. 

Key challenges for multi-way system partitioning onto FPGAs include (1) low utili-
zation of FPGA gate capacity because of hard I/O pin limits, (2) low clock speeds 
due to long interconnect delays between multiple FPGAs, and (3) long runtimes for 
the system partitioning process itself. This section discusses the associated algo-
rithmic challenges in physical design that are unique to system implementation with 
multiple FPGAs. 
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Variant multi-way partitioning formulations. Multi-way partitioning for system 
prototyping seeks to minimize the number of FPGA devices needed while taking 
into account both area constraints, i.e., the partitions must each fit into individual 
FPGAs, and I/O constraints, i.e., each FPGA has a fixed number of pins. In contrast 
to the single-chip context, a small change in balance or cut size can make a feasible 
solution infeasible. Thus, a challenge for partitioning algorithms is to achieve high 
utilization of the FPGA devices while meeting all I/O constraints. 

Once the number of FPGA devices has been determined, the secondary optimization 
objective is to minimize the amount of communication between the connected de-
vices. Adopting general techniques for minimizing the net cut to FPGA-based archi-
tectures can significantly improve the overall speed of the system. However, the 
traditional net cut objective does not distinguish whether the gates of a five-pin net 
are split across two, three, four of five FPGA devices. However, splitting a net 
across k FPGA devices consumes k I/O pins. Hence, k should be minimized first. 

Variant placement formulations. The reprogrammable nature of FPGAs allows 
systems to be implemented as true reconfigurable computing machines, where de-
vice configuration bits are updated to match the implemented logic to the required 
computation. This induces an extra “dimension” to the problems of logic partition-
ing and placement – the solution must explicitly evolve through time, i.e., through 
the course of the computation. 

System implementation degrees of freedom. More performance optimizations are 
available, and needed, at the system level than during place-and-route. System pro-
totyping may need to explore netlist transformations such as cloning (Sec. 8.5.3) and 
retiming (Sec. 8.6) in order to minimize cut size (I/O usage) or system cycle time. 
Such transformations are needed as inter-device delays can be relatively large and 
because devices are often I/O-limited. L.-T. Liu et al. [2.9] proposed a partitioning 
algorithm that permits logic replication to minimize both cut size and clock cycle of 
sequential circuits. Given a netlist G = (V,E), their approach chooses two modules as 
seeds s and t and constructs a “replication graph” that is twice the size of the original 
circuit. This graph has the special property that a type of directed minimum cut 
yields the replication cut, i.e., a decomposition of V into S, T and R, where s  S, t  
T and R = V  S  T is the replicated logic, that is optimal. A directed version of the 
Fiduccia-Mattheyses algorithm (Sec. 2.4.3) is used to find a heuristic directed mini-
mum cut in the replication graph.  

“Flow-based” multi-way partitioning method. To decompose a system into mul-
tiple devices, C.-W. Yeh et al. [2.10] proposed a “flow-based” algorithm inspired by 
the relationship between multi-commodity flow [2.2] and the traditional problem of 
min-cut partitioning. The algorithm constructs a flow network wherein each signal 
net initially corresponds to an edge with unit flow cost. To visualize this, one can 
imagine a network of roads, where each road corresponds to a signal net in the net-
list, and where driving along each individual road requires a unit toll. Two random 
modules in the network are chosen, and the shortest (lowest-cost) path between them 
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is computed. A constant  < 1 is added to the flow for each net in the shortest path, 
and the cost for every net in the path is incremented. Adjusting the cost penalizes 
paths through congested areas and forces alternative shortest paths. This random 
shortest path computation is repeated until every path between the chosen pair of 
modules passes through at least one “saturated” net (in the analogy, this would be a 
“congested road”). The set of saturated nets induces a multi-way partitioning in 
which two modules belong to the same cluster if and only if there is a path of un-
saturated nets between them. A second phase of the algorithm makes the multi-way 
partitioning more balanced. Since this approach has efficient runtime and is easily 
parallelizable, it is well-suited for large-scale multi-way system partitioning. 

Commercial tools for partitioning large systems onto FPGAs typically base their 
algorithms on the multilevel extensions of the FM algorithm (Sec. 2.4.3). While it is 
not always possible to modify such algorithms to track relevant partitioning objec-
tives directly, these algorithms often produce reasonable initial partitions when 
guided by the net cut objective and its variants. 
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 Chapter 2 Exercises 

Exercise 1: KL Algorithm 
The graph to the right (nodes a-f ) can be optimally partitioned using 
the Kernighan-Lin algorithm. Perform the first pass of the algo-
rithm. The dotted line represents the initial partitioning. Assume all 
nodes have the same weight and all edges have the same priority.  
 
Note: Clearly describe each step of the algorithm. Also, show the 
resulting partitioning (after one pass) in graphical form. 

A B
a

b

c

e

d

f  
 
Exercise 2: Critical Nets and Gain During the FM Algorithm 
(a) For cells a-i, determine the critical nets connected to these cells and which criti-
cal nets remain after partitioning. For the first iteration of the FM algorithm, deter-
mine which cells would need to have their gains updated due to a move. Hint: It may 
be helpful to prepare a table with one row per move that records (1) the cell moved, 
(2) critical nets before the move, (3) critical nets after the move, and (4) which cells 
require a gain update.  

N1

a

b

h

c

d

i

N2

e

f

g

N3

 
 
(b) Determine g(c) for each cell c  V. 

Exercise 3: FM Algorithm 
Perform Pass 2 of the FM algorithm example given in Sec. 2.4.3. Clearly describe 
each step. Show the result of each iteration in both numerical and graphical form. 

Exercise 4: System and Netlist Partitioning 
Explain key differences between partitioning formulations used for FPGA-based 
system emulation and traditional min-cut partitioning. 

Exercise 5: Multilevel FM Partitioning 
List and explain the advantages that a multilevel framework offers compared to the 
FM algorithm alone. 

Exercise 6: Clustering 
Consider a partitioned netlist. Clustering algorithms covered in this chapter do not 
take a given partitioning into account. Explain how these algorithms can be modi-
ied such that each new cluster is consistent with one of the initial partitions. f 
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3.2 Optimization Goals in Floorplanning 3.2 

Floorplan design optimizes both the locations and the aspect ratios of the individual 
blocks, using simple objective functions to capture practically desirable floorplan 
attributes. This section introduces several objective functions for floorplanning. 
Goals for pin assignment are discussed in Sec. 3.6, and goals for power planning are 
described in Sec. 3.7. 

Area and shape of the global bounding box. The global bounding box of a 
floorplan is the minimum axis-aligned (isothetic) rectangle that contains all 
floorplan blocks. The area of the global bounding box represents the area of the 
top-level floorplan (the full design) and directly impacts circuit performance, yield, 
and manufacturing cost. Minimizing the area of the global bounding box involves 
finding (x,y) locations, as well as shapes, of the individual modules such that they 
pack densely together. 

Beyond area minimization, another optimization objective is to keep the aspect ratio 
of the global bounding box as close as possible to a given target value. For instance, 
due to manufacturing and package size considerations, a square chip (aspect ratio  
1) may be preferable to a non-square chip. To this end, the shape flexibility of the 
individual modules can be exploited. Area and aspect ratio of the global bounding 
box are interrelated, and these two objectives are often considered together. 

Total wirelength. Long connections between floorplan blocks may increase signal 
propagation delays in the design. Therefore, layout of high-performance circuits 
seeks to shorten such interconnects. Switching the logic value carried by a particular 
net requires energy dissipation that grows with wire capacitance. Therefore, power 
minimization may also seek to shorten all routes. A third context for wirelength 
minimization involves routability and manufacturing cost. When the total length of 
all connections is too high or when the connections are overly dense in a particular 
region, there may not be enough routing resources to complete all connections. 
Although circuit blocks may be spread further apart to add new routing tracks, this 
increases chip size and manufacturing cost, and may further increase net length. 

To simplify computation of the total wirelength of the floorplan, one option is to 
connect all nets to the centers of the blocks. Although this technique does not yield a 
precise wirelength estimate, it is relatively accurate for medium-sized and small 
blocks, and enables rapid interconnect evaluation [3.17]. Two common approaches 
to model connectivity within a floorplan are to use (1) a connection matrix C (Sec. 
1.8) representing the union of all nets, along with pairwise distances between blocks, 
or (2) a minimum spanning tree for each net (Sec. 5.6). Using the first model, the 
total connection length L(F) of the floorplan F is estimated as 
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where element C[i][j] of C is the degree of connectivity between blocks i and j, and 
dM(i,j) is the Manhattan distance between the center points of i and j (Sec. 1.8).  
 
Using the second model, the total connection length L(F) is estimated as 
 

Fnet
MST netLFL )()(  

 
where LMST(net) is the minimal spanning tree cost of net net. 

In practice, more sophisticated wirelength objectives are often used. The center-pin 
location assumption may be improved by using actual pin locations [3.17]. The 
Manhattan distance wiring cost approximation may be improved by using pin-to-pin 
shortest paths in a graph representation of available routing resources. This can 
reflect not only distance, but routing congestion, signal delay, obstacles, and routing 
channels as well. With these refinements, wiring estimation in a floorplan relies on 
the construction of heuristic Steiner minimum trees in a weighted graph (Chap. 5). 

Combination of area and total wirelength. To reduce both the total area area(F) 
and the total wirelength L(F) of floorplan F, it is common to minimize 

 
 · area(F) + (1 – ) · L(F) 

 
where the parameter 0    1 gives the relative importance between area(F) and 
L(F). Other terms, such as the aspect ratio of the floorplan, can be added to this 
objective function [3.3]. In practice, the area of the global bounding box may be a 
constraint rather than an optimization objective. This is appropriate when the 
package size and its cavity dimensions are fixed, or when the global bounding box is 
part of a higher-level system organization across multiple chips. In this case, 
wirelength and other objectives are optimized subject to the constraint that the 
floorplan fits inside a prescribed global bounding box (the fixed-outline 
floorplanning problem). 

Signal delays. Until the 1990s, transistors that made up logic gates were the greatest 
contributor to chip delay. Since then, due to different delay scaling rates, 
interconnect delays have gradually become more important, and increasingly 
determine the chip’s achievable clock frequency. Delays of long wires are 
particularly sensitive to the locations and shapes of floorplan blocks. A desirable 
quality of a floorplan is short wires connecting its blocks, such that all timing 
requirements are met. Often, critical paths and nets are given priority during 
floorplanning so that they span short distances. 

Floorplan optimization techniques have been developed that use static timing 
analysis (Sec. 8.2.1) to identify the interconnects that lie on critical paths. If timing 
is violated, i.e., path delays exceed given constraints, the floorplan is modified to 
shorten critical interconnects and meet timing constraints [3.7]. 
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Task: generate the corresponding floorplan. 
 
Solution: 
widths[a b c d e] = [8 4 4 4 4]   heights[a b c d e] = [4 3 5 5 6] 
 
Find x-coordinates. 
S1 = S+ = <acdbe>, S2 = S  = <cdaeb> 
weights[a b c d e] = widths[a b c d e] = [8 4 4 4 4] 
block_order[a b c d e] = [3 5 1 2 4] 
lengths = [0 0 0 0 0] 
 
Iteration i = 1: block = a 
index = block_order[a] = 3 
positions[a] = lengths[index] = lengths[3] = 0 
t_span = positions[a] + weights[a] = 0 + 8 = 8 
Update lengths vector from index = 3 to n = 5: lengths = [0 0 8 8 8] 
 
Iteration i = 2: block = c 
index = block_order[c] = 1 
positions[c] = lengths[index] = lengths[1] = 0 
t_span = positions[c] + weights[c] = 0 + 4 = 4 
Update lengths vector from index = 1 to n = 5: lengths = [4 4 8 8 8] 
 
Iteration i = 3: block = d 
index = block_order[d] = 2 
positions[d] = lengths[index] = lengths[2] = 4 
t_span = positions[d] + weights[d] = 4 + 4 = 8 
Update lengths vector from index = 2 to n = 5: lengths = [4 8 8 8 8] 
 
Iteration i = 4: block = b 
index = block_order[b] = 5 
positions[b] = lengths[index] = lengths[5] = 8 
t_span = positions[b] + weights[b] = 8 + 4 = 12 
Update lengths vector from index = 5 to n = 5: lengths = [4 8 8 8 12] 
 
Iteration i = 5: block = e 
index = block_order[e] = 4 
positions[e] = lengths[index] = lengths[4] = 8 
t_span = positions[e] + weights[e] = 8 + 4 = 12 
Update lengths vector from index = 4 to n = 5: lengths = [4 8 8 12 12] 
 
x-coordinates: positions[a b c d e] = [0 8 0 4 8], width of floorplan W = lengths[5] = 12. 
 
Find y-coordinates. 
S1 = S+

R = <ebdca>, S2 = S  = <cdaeb> 
weights[a b c d e] = heights[a b c d e] = [4 3 5 5 6] 
block_order[a b c d e] = [3 5 1 2 4] 
lengths = [0 0 0 0 0] 
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As the cooling process continues, the atoms eventually will settle in a local, and 
possibly global, minimum-energy configuration. Both the rate and step size of the 
temperature decrease will affect how the atoms will settle. If the rate is sufficiently 
slow and the increment is sufficiently small, the atoms will settle, with high 
probability, at a global minimum. On the other hand, if cooling is too fast or the 
increment is too large, then the atoms are less likely to attain the global minimum- 
energy configuration, and instead will settle in a local minimum instead. 

Annealing-based optimization. The principle of annealing can be applied to solve 
combinatorial optimization problems. In the context of minimization, finding the 
lowest-cost solution in an optimization problem is analogous to finding a 
minimum-energy state of a material. Thus, simulated annealing algorithms take a 
“chaotic” (higher-cost) solution and emulate physical annealing to produce a 
“structured” (lower-cost) solution. 

The simulated annealing algorithm generates an initial solution and evaluates its cost. 
At each step, the algorithm generates a new solution by performing a random walk 
in the solution by applying a small perturbation (change in structure). This new 
solution is then accepted or rejected based on a temperature parameter T. When T is 
high (low), the algorithm has a higher (lower) chance of accepting a solution with 
higher cost. Analogous to physical annealing, the algorithm slowly decreases T, 
which correspondingly decreases the probability of accepting an inferior, higher-cost 
solution. One method for probabilistically accepting moves is based on the 
Boltzmann acceptance criterion, where the new solution is acceptance if 

re T
next_solcostcurr_solcost )()(

 

Here, curr_sol is the current solution, next_sol is the new solution after a 
perturbation, T is the current temperature, and r is a random number between [0,1) 
based on a uniform distribution. For a minimization problem, the final solution will 
be in a valley; for a maximization problem, it will be at a peak. 

The rate of temperature decrease is extremely important – it (1) must enable 
sufficient high-temperature exploration of the solution space at the beginning, while 
(2) allowing enough time at low temperatures to have sufficient probability of 
settling at a near-optimal solution. Just as slow cooling of high-temperature metal 
has a high probability of finding a globally optimal, energy-minimal crystal lattice, a 
simulated annealing algorithm with a sufficiently slow cooling schedule has high 
probability of finding a high-quality solution for a given optimization problem [3.5]. 

The simulated annealing algorithm is stochastic by nature – two runs usually yield 
two different results. The difference in quality stems from probabilistic decisions 
such as generation of new, perturbed solutions (e.g., by a cell swap), and the 
acceptance or rejection of moves. 
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Simulated annealing-based floorplanning. The first simulated annealing algorithm 
for floorplanning was proposed in 1984 by R. Otten and L. van Ginneken [3.9]. 
Since then, simulated annealing has become one of the most common iterative 
methods used in floorplanning.  

In the direct approach, SA is applied directly to the physical layout, using the actual 
coordinates, sizes, and shapes of the blocks. However, finding a fully legal solution 
– a floorplan with no block overlaps – is difficult. Thus, intermediate solutions are 
allowed to have overlapping blocks, and a penalty function is incorporated to 
encourage legal solutions. The final produced solution, though, must be completely 
legal (see [3.10] for further reading). 

In the indirect approach, simulated annealing is applied to an abstraction of the 
physical layout. Abstract representations capture the floorplan using trees or 
constraint graphs. A final mapping is also required to generate the floorplan from the 
abstract representation. One advantage of this process over the direct approach is 
that all intermediate solutions are overlap-free. 

For further reading on simulated annealing-based floorplanning, see [3.1], [3.3], 
[3.14] and [3.15]. 

 3.5.4 Integrated Floorplanning Algorithms 

Analytic techniques map the floorplanning problem to a set of equations where the 
variables represent block locations. These equations describe boundary conditions, 
attempt to prevent block overlap, and capture other relations between blocks. In 
addition, an objective function quantifies the important parameters of the floorplan. 

One well-known analytic method is mixed integer-linear programming (MILP), 
where the location variables are integers. This technique does not allow for overlaps 
and seeks globally optimal solutions. However, it is limited due to its computational 
complexity. For a problem size of 100 blocks, the integer program can have over 
10,000 variables and over 20,000 equations. Thus, MILP is usable only for small (10 
or fewer blocks) instances. 

A faster alternative that offers some compromises is to use a linear programming 
(LP) relaxation. Compared to MILP, the LP formulation does not limit the locations 
to be integers. However, LP can be used for larger problem instances. 

For further discussion of floorplanning with analytic methods, see [3.1]. A technique 
for floorplan repair (legalization) is described in [3.7]. 
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This section discusses the physical design of power-ground distribution networks. 
Fig. 3.20 illustrates conceptually how a floorplan in a custom design approach might 
associate supply rings with each block, for later connection to a chip-level power 
distribution plan such as those discussed below. 

 3.7.1 Design of a Power-Ground Distribution Network 

The supply nets, VDD and GND, connect each cell in the design to a power source. 
As each cell must have both VDD and GND connections, the supply nets (1) are 
large, (2) span across the entire chip, and (3) are routed first before any signal 
routing. Core supply nets are distinguished I/O supply nets, which are typically at a 
higher voltage. In many applications, one core power net and one core ground net 
are sufficient. Some ICs, such as mixed-signal or low-power (supply-gated or 
multiple voltage level) designs, can have multiple power and ground nets. 

Routing of supply nets is different from routing of signals. Power and ground nets 
should have dedicated metal layers to avoid consuming signal routing resources. In 
addition, supply nets prefer thick metal layers – typically, the top two layers in the 
back-end-of-line process – due to their low resistance. When the power-ground 
network traverses multiple layers, there must be sufficient vias to carry current while 
avoiding electromigration and other reliability issues. 

Since supply nets have high current loads, they are often much wider than standard 
signal routes. The widths of the individual wire segments may be tailored to 
accommodate their respective estimated branch currents. For logic gates to have 
correct timing performance, the net segment width must be chosen to keep the 
voltage drop, V = IR, within a specified tolerance, e.g., 5% of VDD. Wider segments 
have lower resistance, and hence lower voltage drop.3

There are two approaches to the physical design of power-ground distribution – the 
planar approach, which is used primarily in analog or custom blocks, and the mesh 
approach, which is predominant in digital ICs. 

3.7.2 Planar Routing  

Power supply nets can be laid out using planar routing when (1) only two supply 
nets are present in the design, and (2) a cell needs a connection to both supply nets. 
Planar routing separates the two supply regions by a Hamiltonian path that connects 
all the cells, such that each supply net can be attached either to the left or right of 
every cell. The Hamiltonian path allows both supply nets to be routed across the 
layout – one to the left and one to the right of the path– with no conflicts (Fig. 3.21). 
                                                           
3 Some design manuals will refer to an IR drop limit of 10% of VDD. This means that the supply 

can drop (droop) by 5% of VDD and the ground can bounce by 5% as well, resulting in a 
worst-case of 10% supply reduction. 
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 4.3.2 Analytic Placement 

Analytic placement minimizes a given objective, such as wirelength or circuit delay, 
using mathematical techniques such as numerical analysis or linear programming. 
Such methods often require certain assumptions, such as the differentiability of the 
objective function or the treatment of placeable objects as dimensionless points. For 
example, to facilitate the calculation of partial derivatives, it is common to optimize 
quadratic, rather than linear wirelength. When such algorithms place cells too close, 
i.e., creating overlaps, the cell locations must be spread further apart by dedicated 
post-processing techniques, so as to remove overlap. 

Quadratic placement. The squared Euclidean distance 
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is used as the cost function, n is the total number of cells, and c(i,j) is the connection 
cost between cells i and j. If cells i and j are not connected, then c(i,j) = 0. The terms 
(xi – xj)2 and (yi – yj)2 respectively give the squared horizontal and vertical distances 
between the centers of i and j. This formulation implicitly decomposes all nets into 
two-pin subnets. The quadratic form emphasizes the minimization of long 
connections, which tend to have negative impacts on timing. 

Quadratic placement consists of two stages. During global placement (first stage), 
cells are placed so as to minimize the quadratic function with respect to the cell 
centers. Note that this placement is not legal. Usually, cells appear in large clusters 
with many cell overlaps. During detailed placement (second stage), these large 
clusters are broken up and all cells are placed such that no overlap occurs. That is, 
detailed placement legalizes all the cell locations and produces a high-quality, 
non-overlapping placement. 

During global placement, each dimension can be considered independently. 
Therefore, the cost function L(P) can be separated into x- and y-components 
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With these cost functions, the placement problem becomes a convex quadratic 
optimization problem. Convexity implies that any local minimum solution is also a 
global minimum. Hence, the optimal x- and y-coordinates can be found by setting 
the partial derivatives of Lx(P) and Ly(P) to zero, i.e.,  
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The window size (wT,hT) depends on the current temperature T, and decreases as 
temperature reduces. The window size for the next iteration is based on the current 
temperature Tcurr and the next iteration’s temperature Tnext using 
 

)log(
)log(

curr

next
TT T

Tww
currnext

 and 
)log(
)log(

curr

next
TT T

Thh
currnext

 

Cost. The COST function in TimberWolf (v3.2) is defined as  = 1 + 2 + 3, the 
sum of three parameters – (1) total estimated wirelength 1, (2) amount of overlap 2, 
and (3) row inequality length 3. 

1 is computed as the summation of each net’s half-perimeter wirelength (HPWL), 
which is defined as its horizontal span plus its vertical span. Weights for each 
direction, horizontal weight wH and vertical weight wV, can also be applied. Given a 
priority weight 1, 1 is defined as the sum of the total wirelength over all nets net  
Netlist, where Netlist is the set of all nets. 
 

Netlistnet
netVnetH ynetwxnetw )()(11  

A higher weight value for net gives higher emphasis on reducing net’s wirelength. 
Weights can also be used for direction control – giving preference to a certain wiring 
direction. During standard-cell placement where feedthrough cells are limited, low 
horizontal weights wH(net) encourage the usage of horizontal channels rather than 
the vertical connections. 

2 represents the total cell overlap of the placement. Let o(i,j) represent the area of 
overlap between cells i and j. Given a priority weight 2, 2 is defined as the sum of 
the square of all cell overlaps between cells i and j, where i  V, j  V, i  j, with V 
being the set of all cells. 
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Larger overlaps, which require more effort to correct, are penalized more heavily 
due to the quadratic form. 

3 represents the cost of all row lengths L(row) that deviate from the goal length 
Lopt(row) during placement. Cell movement can often lead to row length variation, 
where the resulting rows lengths deviate from the goal length. In practice, uneven 
rows can waste area and induce uneven wire distributions. Both phenomena can lead 
to increased total wirelength and total congestion. Given a priority factor 3, 3 is 
defined as the sum of row length deviation for all rows row  Rows, where Rows is 
the set of all rows. 
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Temperature Reduction. The temperature T is reduced by a cooling factor . This 
value is empirically chosen and often depends on the temperature range. The 
annealing process starts at a high temperature, such as 4·106 (units do not play a 
role). Initially, the temperature is reduced quickly (   0.8). After a certain number 
of iterations, the temperature reduces at a slower rate (   0.95), when the placement 
is being fine-tuned. Toward the end, the temperature is again reduced at a fast pace 
(   0.8), corresponding to a “quenching” step. TimberWolf finishes when T < Tmin 
where Tmin = 1. 

Number of Times Through the Inner Loop. At each temperature, a number of calls 
are made to PERTURB to generate new placements. This number is intended to 
achieve equilibrium at the given temperature, and depends on the size of the design. 
The authors of [4.29] experimentally determined that designs with ~200 cells require 
100 iterations per cell, or roughly 2·104 runs per temperature step. Other simulated 
annealing approaches use acceptance ratio as an equilibrium criterion, e.g., Lam 
[4.20] shows that a target acceptance ratio of 44% produces competitive results. 

4.3.4 Modern Placement Algorithms  

Algorithms for global placement have been studied by many researchers since the 
late 1980s, and the prevailing paradigm has changed several times to address new 
challenges arising in commercial chip designs [4.6][4.22]. This section reviews 
modern algorithms for global placement, while the next section covers legalization 
and detailed placement, as well as the need for such a separation of concerns. 
Timing-driven placement is discussed in Sec. 8.3. 

The global placement algorithms in use today can handle extremely large netlists 
using analytic techniques, i.e., by modeling interconnect length with mathematical 
functions and optimizing these functions with numerical methods. Dimensions and 
sizes of standard cells are initially ignored to quickly find a seed placement, but are 
then gradually factored into the placement optimization so as to avoid uneven 
densities or routing congestion. Two common paradigms are based on quadratic and 
force-directed placement, and on nonlinear optimization. The former was introduced 
earlier and seeks to approximate wirelength by quadratic functions, which can be 
minimized by solving linear systems of equations (Sec. 4.3.2). The latter relies on 
more sophisticated functions to approximate interconnect length, and requires more 
sophisticated numerical optimization algorithms [4.4][4.16][4.17]. 

Of the two types, quadratic methods are easier to implement and appear to be more 
scalable in terms of runtime. Nonlinear methods require careful tuning to achieve 
numerical stability and often run much slower than quadratic methods. However, 
nonlinear methods can better account for the shapes and sizes of standard cells and 
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especially macro blocks, whereas quadratic placement requires dedicated spreading 
techniques. Both placement techniques are often combined with netlist clustering to 
reduce runtime [4.4][4.16][4.17][4.34], in a manner that is conceptually similar to 
multilevel partitioning (Chap. 2). However, the use of clustering in placement often 
leads to losses in solution quality. Thus, it is an open question whether the multilevel 
approach can outperform the flat approach in terms of runtime and solution quality 
for placement, as is the case for partitioning [4.5]. 

The aspects of quadratic placement that appear most impactful in practice are (1) the 
representation of multi-pin nets by sets of graph edges (net modeling), (2) the choice 
of algorithms for spreading, and (3) the strategy for interleaving spreading with 
quadratic optimization. Two common net models include cliques, where every pair 
of pins is connected by an edge with a small weight, and stars, where every pin is 
connected to a “star-point” that represents the net (or hyperedge) itself [4.12]. Edges 
representing a net are given fractional weights that add up to the net’s weight (or to 
unity). For nets with fewer pins, cliques are preferred because they do not introduce 
new variables. For larger nets, stars are useful because they entail only a linear 
number of graph edges [4.34]. The star-point can be movable or placed in the 
centroid (average location or barycenter) of its neighbors. The latter option is 
preferred in practice because (1) it corresponds to the optimal location of the 
star-point in quadratic placement, and (2) it saves two (x,y) variables. Some placers 
additionally use a linearization technique that assigns a constant weight 
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to each quadratic term (xi – xj)2 within the objective function. The weight w(i,j) has 
the effect of turning each such squared wirelength term into a linear wirelength term, 
and can therefore be truer to an underlying linear wirelength objective. These 
weights are treated as constants, and then updated between rounds of quadratic 
optimization. A more accurate placement-dependent net model is proposed in [4.32]. 

Spreading is based on estimates of cell density in different regions of the chip. These 
estimates are computed by allocating movable objects into bins of a regular grid, and 
comparing their total area to available capacity per bin. Spreading can be performed 
after quadratic optimization using a combination of sorting by location and 
geometric scaling [4.32]. For example, cells in a dense region may be sorted by their 
x-coordinates and then re-placed in this order, so as to avoid overlaps. An implicit 
spreading method to reduce overlap is to enclose a set of cells in a rectangular region 
and then perform linear scaling [4.18]. 

Spreading can also be integrated directly into quadratic optimization by adding 
spreading forces that push movable objects away from dense regions. These 
additional forces are modeled by imaginary fixed pins (anchor points) and imaginary 
wires pulling individual standard cells toward fixed pins [4.11]. This integration 
allows conventional quadratic placement to trade interconnect minimization for 
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smaller overlaps between modules. FastPlace [4.34] first performs simple geometric 
scaling and then uses the resulting locations as anchor points during quadratic 
optimization. These steps of spreading and quadratic optimization are interleaved in 
FastPlace to encourage spreading that does not conflict with interconnect 
optimization. Researchers have also sought to develop spreading algorithms that are 
sufficiently accurate to be invoked only once after quadratic optimization [4.35]. 

Analytic placement can be extended to optimize not only interconnect length, but 
also routing congestion [4.31]. This requires wiring congestion estimation, which is 
similar to density estimation and is also maintained on a regular grid. Congestion 
information can be used in the same ways as density estimation to perform 
spreading. Some researchers have developed post-processors to improve congestion 
properties of a given placement [4.21]. 

Several modern placers are available free of charge for research purposes. As of 
2010, the most accessible placers are APlace [4.16][4.17], Capo [4.2][4.26], 
FastPlace 3.0 [4.34], mPL6 [4.4], and simPL [4.18]. All except simPL3 are equipped 
with legalizers and detailed placers so as to produce legal and highly optimized 
solutions. mPL6 is significantly slower than FastPlace, but finds solutions with 
smaller total interconnect length. Capo, a min-cut placer, is available in C++ source 
code. Its runtime is between that of mPL6 and FastPlace, but in many cases it 
produces solutions that are inferior to FastPlace solutions in terms of total 
interconnect length. However, for designs where achieving routability is difficult, 
Capo offers a better chance to produce a routable placement. It is also competitive 
on smaller designs (below 50,000 movable objects), especially those with high 
density and many fixed obstacles. 

4.4 4.4 Legalization and Detailed Placement 

Global placement assigns locations to standard cells and larger circuit modules, e.g., 
macro blocks. However, these locations typically do not align with power rails, and 
may have continuous (real) coordinates rather than discrete coordinates. Therefore, 
the global placement must be legalized. The allowed legal locations are equally 
spaced within pre-defined rows, and the point-locations from global placement 
should be snapped to the closest possible legal locations (Fig. 4.11). 

Legalization is necessary not only after global placement, but also after incremental 
changes such as cell resizing and buffer insertion during physical synthesis (Sec. 
8.5). Legalization seeks to find legal, non-overlapping placements for all placeable 
modules so as to minimize any adverse impact on wirelength, timing and other 
design objectives. Unlike algorithms for “cell spreading” during global placement 
(Sec. 4.3), legalization typically assumes that the cells are distributed fairly well 

                                                           
3 simPL uses FastPlace-DP [4.23] for both legalization and detailed placement. 
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another group of cells is snapped to legal sites, and the process continues until all 
cells have been given legal locations. 

A common problem with simple and fast legalization algorithms is that some cells 
may travel a long distance, thus significantly increasing the length and, hence, delay 
of incident nets. This phenomenon can be mitigated by detailed placement. For 
example, optimal branch-and-bound placers [4.3] can reorder groups of neighboring 
cells in a row. Such groups of cells are often located in a sliding window; the 
optimal placer reorders cells in a given window so as to improve total wirelength 
(accounting for connections to cells with fixed locations outside the window).  

A more scalable optimization splits the cells in a given window into left and right 
halves, and optimally interleaves the two groups while preserving the relative order 
of cells from each group [4.12]. Up to 20 cells per window can be interleaved 
efficiently during detailed placement, whereas branch-and-bound placement can 
typically handle only up to eight cells [4.3]. These two optimizations can be 
combined for greater impact. 

Sometimes, wirelength can be improved by reordering cells that are not adjacent. 
For example, pairs of non-adjacent cells connected by a net can be swapped [4.23], 
and sets of three such cells can be cycled. Yet another detailed placement 
optimization is possible when unused space is available between cells placed in a 
row. These cells can be shifted to either side, or to intermediate locations. Optimal 
locations to minimize wirelength can be found by a polynomial-time algorithm 
[4.15], which is practical in many applications. 

Software implementations of legalization and detailed placement are often bundled, 
but are sometimes independent of global placement. One example is FastPlace-DP 
[4.23] (binary available from the authors). FastPlace-DP works best when the input 
placement is almost legal or requires only a small number of local changes. 
FastPlace-DP performs a series of simple but efficient incremental optimizations 
which typically decrease interconnect length by several percent. On the other end of 
the spectrum is ECO-System [4.25]. It is integrated with the Capo placer [4.2][4.26] 
and uses more sophisticated yet slower optimizations. ECO-System first analyzes a 
given placement and identifies regions where cells overlap so much that they need to 
be re-placed. The Capo algorithm is then applied simultaneously to each region so as 
to ensure consistency. Capo integrates legalization and detailed placement into 
global min-cut placement. Therefore, ECO-System will produce a legal placement 
even if the initial placement requires significant changes. 

Other strategies, such as the use of linear programming [4.7] and dynamic 
programming [4.14], have been integrated into legalization and detailed placement 
with promising results. The legalization of mixed-size netlists that contain large 
movable blocks is particularly challenging [4.14]. 
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5 Global Routing 

During global routing, pins with the same electric potential are connected using wire 
segments. Specifically, after placement (Chap. 4), the layout area is represented as 
routing regions (Sec. 5.4) and all nets in the netlist are routed in a systematic manner 
(Sec. 5.5). To minimize total routed length, or optimize other objectives (Sec. 5.3), 
the route of each net should be short (Sec. 5.6). However, these routes often compete 
for the same set of limited resources. Such conflicts can be resolved by concurrent 
routing of all nets (Sec. 5.7), e.g., integer linear programming (ILP), or by 
sequential routing techniques, e.g., rip-up and reroute. Several algorithmic 
techniques enable scalability of modern global routers (Sec. 5.8). 

5.1 Introduction 

A net is a set of two or more pins that have the same electric potential. In the final 
chip design, they must be connected. A typical p-pin net connects one output pin of 
a gate and p – 1 input pins of other gates; its fanout is equal to p – 1. The term netlist 
refers collectively to all nets. 

Given a placement and a netlist, determine the necessary wiring, e.g., net topologies 
and specific routing segments, to connect these cells while respecting constraints, 
e.g., design rules and routing resource capacities, and optimizing routing objectives, 
e.g., minimizing total wirelength and maximizing timing slack.

In area-limited designs, standard cells may be packed densely without unused space. 
This often leads to routing congestion, where the shortest routes of several nets are 
incompatible because they traverse the same tracks. Congestion forces some routes 
to detour; thus, in congested regions, it can be difficult to predict the eventual length 
of wire segments. However, the total wirelength cannot exceed the available routing 
resources, and in some cases the chip area must be increased to ensure successful 
routing. Fixed-die routing, where the chip outline and all routing resources are fixed, 
is distinguished from variable-die routing, where new routing tracks can be added as 
needed. For the fixed-die routing problem,1 100% routing completion is not always 
possible a priori, but may be possible after changes to placement. On the other hand, 
in older standard-cell circuits with two or three metal layers, new tracks can be 
inserted as needed, resulting in the classical variable-die channel routing problem for 
which 100% routing completion is always possible. Fig. 5.1 outlines the major 
categories of routing algorithms discussed in this book. 

                                                           
1 The fixed-die routing problem is so named because the layout bounding box and the number of 

routing tracks are predetermined due to the fixed floorplan and power-ground distribution. 
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To determine the net ordering, each net is given a numerical indicator of importance 
(priority), known as a net weight. High priority can be given to nets that are 
timing-critical, connect to numerous pins, or carry specific functions such as 
delivering clock signals. High-priority nets should avoid unnecessary detours, even 
at the cost of detouring other nets. Pin ordering is typically performed using either 
tree-based algorithms (Sec. 5.6.1) or geometric criteria based on pin locations. 

Specializing routing into global and detailed stages is common for digital circuits. 
For analog circuits, multi-chip modules (MCMs), and printed circuit boards (PCBs), 
global routing is sometimes unnecessary due to the smaller number of nets involved, 
and only detailed routing is performed. 

5.2 Terminology and Definitions 5.2 

The following terms are relevant to global routing in general. Terms pertaining to 
specific algorithms and techniques will be introduced in their respective sections. 

A routing track (column) is an available horizontal (vertical) wiring path. A signal 
net often uses a sequence of alternating horizontal tracks and vertical columns, 
where adjacent tracks and columns are connected by inter-layer vias. 

A routing region is a region that contains routing tracks and/or columns.  

A uniform routing region is formed by evenly spaced horizontal and vertical grid 
lines that induce a uniform grid over the chip area. This grid is sometimes referred to 
as a ggrid (global grid); it is composed of unit gcells (global cells). Grid lines are 
typically spaced seven to 40 routing tracks [5.18] apart to balance the complexities 
of the chip-scale global routing and gcell-scale detailed routing problems. 

A non-uniform routing region is formed by horizontal and vertical boundaries that 
are aligned to external pin connections or macro-cell boundaries. This results in 
channels and switchboxes – routing regions that have differing sizes. During global 
routing, nets are assigned to these routing regions. During detailed routing, the nets 
within each routing region are assigned to specific wiring paths. 

A channel is a rectangular routing region with pins on two opposite (usually the 
longer) sides and no pins on the other (usually the shorter) sides. There are two types 
of channels – horizontal and vertical. 

A horizontal channel is a channel with pins on the top and bottom boundaries (Fig. 
5.3). 

A vertical channel is a channel with pins on the left and right boundaries (Fig. 5.4). 
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5.6 Single-Net Routing 5.6 

The following techniques for single-net routing are commonly used within larger 
full-chip routing tools. 

5.6.1 Rectilinear Routing  

Multi-pin nets – nets with more than two pins – are often decomposed into two-pin 
subnets, followed by point-to-point routing of each subnet according to some 
ordering. Such net decomposition is performed at the beginning of global routing 
and can affect the quality of the final routing solution. 

Rectilinear spanning tree. A rectilinear spanning tree connects all terminals (pins) 
using only pin-to-pin connections that are composed of vertical and horizontal 
segments. Pin-to-pin connections can meet only at a pin, i.e., “crossing” edges do 
not intersect, and no additional junctions (Steiner points) are allowed. If the total 
length of segments used to create the spanning tree is minimal, then the tree is a 
rectilinear minimum spanning tree (RMST). An RMST can be computed in O(p2) 
time, where p is the number of terminals in the net, using methods such as Prim’s 
algorithm [5.19]. This algorithm builds an MST by starting with a single terminal 
and greedily adding least-cost edges to the partially-constructed tree until all 
terminals are connected. Advanced computational-geometric techniques reduce the 
runtime to O(p log p). 

Rectilinear Steiner tree (RST). A rectilinear Steiner tree (RST) connects all p pin 
locations and possibly some additional locations (Steiner points). While any 
rectilinear spanning tree for a p-pin net is also a rectilinear Steiner tree, the addition 
of carefully-placed Steiner points often reduces the total net length.4 An RST is a 
rectilinear Steiner minimum tree (RSMT) if the total length of net segments used to 
connect all p pins is minimal. For instance, in a uniform routing grid, let a unit net 
segment be an edge that connects two adjacent gcells; an RST is an RSMT if it has 
the minimum number of unit net segments. 

The following facts are known about RSMTs. 
 
– An RSMT for a p-pin net has between 0 and p – 2 (inclusive) Steiner points. 
– The degree of any terminal pin is 1, 2, 3, or 4. The degree of a Steiner point is 

either 3 or 4. 
– A RSMT is always enclo  in the minimum bounding box (MBB) of the net. 
– The total edge length L

sed
RSMT of the RSMT is at least half the perimeter of the 

minimum bounding box of the net: L   L  / 2. RSMT MBB

                                                           
4 In Manhattan routing, the corner of an L-shape connection between two points is not considered a 

Steiner point. 
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5.7 5.7 Full-Netlist Routing 

In order to successfully route multiple nets, global routers must properly match nets 
with routing resources, without oversubscribing resources in any part of the chip. All 
signal nets are either routed simultaneously, e.g., using (integer) linear programming 
(Sec. 5.7.1), or sequentially, e.g., one net at a time (Sec. 5.6). When certain nets 
cause resource contention or overflow for routing edges, sequential routing requires 
multiple iterations. These iterations are performed by ripping up the nets that cause 
violations (Sec. 5.7.2) and rerouting them with fewer violations. The iterations 
continue until all nets are routed without violating capacities of routing-grid edges or 
until a timeout is exceeded. 

 5.7.1 Routing by Integer Linear Programming 

A linear program (LP) consists of a set of constraints and an optional objective 
function. This function is maximized or minimized subject to these constraints. Both 
the constraints and the objective function must be linear. In particular, the 
constraints form a system of linear equations and inequalities. An integer linear 
program (ILP) is a linear program where every variable can only assume integer 
values. ILPs where all variables are binary are called 0-1 ILPs. (Integer) Linear 
programs can be solved using a variety of available software tools such as GLPK 
[5.7], CPLEX [5.13], and MOSEK [5.17]. There are several ways to formulate the 
global routing problem as an ILP, one of which is presented below. 

The ILP takes three inputs – (1) an W × H routing grid G, (2) routing edge capacities, 
and (3) the netlist Netlist. For exploitation purposes, a horizontal edge is considered 
to run left to right – G(i,j) ~ G(i+1,j) – and a vertical edge is considered to run 
bottom to top – G(i,j) ~ G(i,j+1).  

The ILP uses two sets of variables. The first set contains k Boolean variables xnet1, 
xnet2, … , xnetk, each of which serves as an indicator for one of k specific paths or 
route options, for each net net  Netlist. If xnetk = 1, (respectively, = 0), then the route 
option netk is used (respectively, not used). The second set contains k real variables 
wnet1, wnet2, … , wnetk, each of which represents a net weight for a specific route 
option for net  Netlist. This net weight reflects the desirability of each route option 
for net (a larger wnetm means that the route option netm is more desirable – e.g., has 
fewer bends). With |Netlist| nets, and k available routes for each net net  Netlist, the 
total number of variables in each set is k · |Netlist|. 

Next, the ILP formulation relies on two types of constraints. First, each net must 
select a single route (mutual exclusion). Second, to prevent overflows, the number 
of routes assigned to each edge (total usage) cannot exceed its capacity. The ILP 
maximizes the total number of nets routed, but may leave some nets unrouted. That 
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is, if a selected route causes overflow in the existing solution, then the route will not 
be chosen. If all routes for a particular net cause overflow, then no routes will be 
chosen and thus the net will not be routed. 
 
Integer Linear Programming (ILP) Global Routing Formulation 
Inputs: 
 W,H    : width W and height H of routing grid G 
 G(i,j)    : grid cell at location (i,j) in routing grid G 
 (G(i,j)~G(i + 1,j)) : capacity of horizontal edge G(i,j) ~ G(i + 1,j) 
 (G(i,j)~G(i,j + 1)) : capacity of vertical edge G(i,j) ~ G(i,j + 1) 
 Netlist   : netlist 
Variables: 
 xnet1, ... , xnetk  : k Boolean path variables for each net net  Netlist 
 wnet1, ... , wnetk  : k net weights, one for each path of net net  Netlist 
 
Maximize: 

Netlistnet
netnetnetnet kk

xwxw
11

 

Subject to: 
Variable Ranges:  
 xnet1, … , xnetk  [0,1] Netlistnet  
 
Net Constraints: 

 

 xnet1 + … + xnetk  1 Netlistnet  
 
Capacity Constraints: 

 

knet that use G(i,j) ~ G(i,j + 1), ))1,(~),((
1

jiGjiGxx
Netlistnet

netnet k
 

0  i < W, 0  j < H – 1 
 

knet that use G(i,j) ~ G(i +1,j), 
 

),1(~),((
1

jiGjiGxx
Netlistnet

netnet k
 

0  i < W – 1, 0  j < H 

In practice, most pin-to-pin connections are routed using L-shapes or straight wires 
(connections without bends). In this formulation, straight connections can be routed 
using a straight path or a U-shape; non-straight connections can use both L-shapes. 
For unrouted nets, other topologies can be found using maze routing (Sec. 5.6.3). 

ILP-based global routers include Sidewinder [5.12] and BoxRouter 1.0 [5.4]. Both 
decompose multi-pin nets into two-pin nets using FLUTE [5.5], and the route of 
each net is selected from two alternatives or left unselected. If neither of the two 
routes available for a net is chosen, Sidewinder performs maze routing to find an 
alternate route and replaces one of the unused routes in the ILP formulation. On the 
other hand, nets that were successfully routed and do not interfere with unrouted 
nets can be removed from the ILP formulation. Thus, Sidewinder solves multiple 
ILPs until no further improvement is observed. In contrast, BoxRouter 1.0 
post-processes the results of its ILP using maze-routing techniques. 
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Vertical Edge Capacity Constraints: 
 G(0,0) ~ G(0,1) : xC2 + xC4    (G(0,0) ~ G(0,1)) = 1 
 G(1,0) ~ G(1,1) : xC3     (G(1,0) ~ G(1,1)) = 1 
 G(2,0) ~ G(2,1) : xB2 + xC1    (G(2,0) ~ G(2,1)) = 1 
 G(3,0) ~ G(3,1) : xB3      (G(3,0) ~ G(3,1)) = 1 
 G(4,0) ~ G(4,1) : xB1      (G(4,0) ~ G(4,1)) = 1 
 G(0,1) ~ G(0,2) : xA2 + xC2    (G(0,1) ~ G(0,2)) = 1 
 G(1,1) ~ G(1,2) : xA3 + xC3    (G(1,1) ~ G(1,2)) = 1 
 G(2,1) ~ G(2,2) : xA1 + xA4 + xC1 + xC4  (G(2,1) ~ G(2,2)) = 1 
 G(0,2) ~ G(0,3) : xA2 + xA4    (G(0,2) ~ G(0,3)) = 1 
 G(1,2) ~ G(1,3) : xA3     (G(1,2) ~ G(1,3)) = 1 
 G(2,2) ~ G(2,3) : xA1     (G(2,2) ~ G(2,3)) = 1 
 
Objective Function: 

 xA1 + xA2 + 0.99 · xA3 + 0.99 · xA4
+ xB1 + xB2 + 0.99 · xB3

Maximize 

+ xC1 + xC2 + 0.99 · xC3 + 0.99 · xC4

 5.7.2 Rip-Up and Reroute (RRR) 

Modern ILP solvers help advanced ILP-based global routers to successfully 
complete hundreds of thousands of routes within hours [5.4][5.12]. However, 
commercial EDA tools require greater scalability and lower runtimes. These 
performance requirements are typically satisfied using the rip-up and reroute (RRR) 
framework, which focuses on problematic nets. If a net cannot be routed, this is 
often due to physical obstacles or other routed nets being in the way. The key idea is 
to allow temporary violations, so that all nets are routed, but then iteratively remove 
some nets (rip-up), and route them differently (reroute) so as to decrease the number 
of violations. In contrast, push-and-shove strategies [5.16] move currently routed 
nets to new locations (without rip-up) to relieve wire congestion or to allow 
previously unroutable nets to become routable. 

An intuitive, greedy approach to routing would route nets sequentially and insist on 
violation-free routes where such routes are possible, even at the cost of large detours. 
On the other hand, the RRR framework allows nets to (temporarily) route through 
over-capacity regions.5 This helps decide which nets should detour, rather than 
detouring the net routed most recently. In the example of Fig. 5.20(a), assume that 
the nets are routed in an order based on the size of the net’s aspect ratio and MBB 
(A-B-C-D). If each net is routed without violations (Fig. 5.20(b)), then net D is 
forced to detour heavily. However, if nets are allowed to route with violations, then 
some nets are ripped up and rerouted, enabling D to use fewer routing segments (Fig. 
5.20(c)). 
                                                           
5 Allowing temporary violations is a common tactic for routing large-scale modern (ASIC) designs, 

while routing nets without violations is common for PCBs. 
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To improve computational scalability, a modern global router keeps track of all nets 
that are routed with violations – the nets go through at least one edge that is 
over-capacity. All these nets are added to an ordered list v_nets (lines 1-5). 
Optionally, v_nets can be sorted to suit a different ordering (line 7). For each net net 
in v_nets (line 8), the router first checks whether net still has violations (line 10). If 
net has no violations, i.e., some other nets have been rerouted away from congested 
edges used by net, then net is skipped. Otherwise, the router rips up and reroutes net 
(lines 11-12). If net still has violations, then the router adds net to v_nets. This 
process continues until all nets have been processed or a stopping condition is 
reached (lines 6-15). Variants of this framework include (1) ripping up all violating 
nets at once, and then rerouting nets one by one, and (2) checking for violations after 
rerouting all nets. 

Notice that in this RRR framework, not all nets are necessarily ripped up. To further 
reduce runtime, some violating nets can be selectively chosen (temporarily) not to 
be ripped up. This typically causes wirelength to increase by a small amount, but 
reduces runtime by a large amount [5.11]. In the context of negotiated congestion 
routing (Sec. 5.8.2), nets are ripped-up and rerouted to also build up appropriate 
history costs on congested edges. Maintaining these history costs improves the 
success of rip-up and reroute and decreases the significance of ordering. 

5.8 5.8 Modern Global Routing 

As chip complexity grows, routers must limit both routed interconnect length and 
the number of vias, as this greatly affects the chip’s performance, dynamic power 
consumption, and yield. Violation-free global routing solutions facilitate smooth 
transitions to design for manufacturability (DFM) optimizations. Completing global 
routing without violations allows the physical design process to move on to detailed 
routing and ensuing steps of the flow. However, if a placed design is inevitably 
unroutable or if a routed design exhibits violations, then a secondary step must 
isolate problematic regions. In cases where numerous violations are found, repair 
is commonly performed by repeating global or detailed placement and injecting 
whitespace into congested regions. 

Several notable global routers have been developed for the ISPD 2007 and 2008 
Global Routing Contests [5.18]. In 2007, FGR [5.21], MaizeRouter [5.16], and 
BoxRouter [5.4] claimed the top three places. In 2008, NTHU-Route 2.0 [5.2] and 
NTUgr [5.3], which focused on better solution quality, and FastRoute 3.0 [5.23], 
which focused on runtime, took the top three places.6 Fig. 5.21 shows the general 
flow for several global routers, where each router uses a unique set of 
optimizations targeting a particular tradeoff between runtime and solution quality. 

                                                           
6 FastRoute 4.0 [5.22] was released shortly after the contest, with both solution quality and runtime 

improvements compared to FastRoute 3.0. 
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Exercise 4: ILP-Based Global Routing 
Modify the example given in Sec. 5.7.1 by disallowing Z-shape routes. Give the full 
ILP instance and state whether it is feasible, i.e., has a valid solution. If a solution 
exists, then illustrate the routes on the grid. Otherwise, explain why no solution 
exists. 
 
Exercise 5: Shortest Path with A* Search 
Modify the example illustrated in Fig. 5.19 by removing one obstacle. Number the 
nodes searched as in Fig. 5.19(b). 
 
Exercise 6: Rip-Up and Reroute 
Consider rip-up and reroute on an m × m grid with n nets. Estimate the required 
memory usage. Choose from the following. 
 
   O(m2)  O(m2 + n)  O(m 

2 · n2) 
   O(m 2 · n)  O(n2)  O(m · n)  O(m · n 2) 
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6 Detailed Routing 

Recall from Chap. 5 that the layout region is represented by a coarse grid consisting 
of global routing cells (gcells) or more general routing regions (channels, 
switchboxes) during global routing. Afterward, each net undergoes detailed routing. 

The objective of detailed routing is to assign route segments of signal nets to specific 
routing tracks, vias, and metal layers in a manner consistent with given global 
routes of those nets. These route assignments must respect all design rules. 

Each gcell is orders of magnitude smaller than the entire chip, e.g., 10  10 routing 
tracks, regardless of the actual chip size. As long as the routes remain properly 
connected across all neighboring gcells, the detailed routing of one gcell can be 
performed independently of the routing of other gcells. This facilitates an efficient 
divide-and-conquer framework and also enables parallel algorithms. Thus, detailed 
routing runtime can (theoretically) scale linearly with the size of the layout. 
Traditional detailed routing techniques are applied within routing regions, such as 
channels (Sec. 6.3) and switchboxes (Sec. 6.4). For modern designs, over-the-cell 
(OTC) routing (Sec. 6.5) allows wires to be routed over standard cells. Due to 
technology scaling, modern detailed routers must account for manufacturing rules 
and the impact of manufacturing faults (Sec. 6.6). 

6.1 6.1  Terminology 

Channel routing is a special case of detailed routing where the connections between 
terminal pins are routed within a routing region (channel) that has no obstacles. The 
pins are located on opposite sides of the channel (Fig. 6.1, left). By convention, the 
channel is oriented horizontally – pins are on the top and bottom of the channel. In 
row-based layouts, in a given block, the routing channels typically have uniform 
channel width. In gate-array and standard-cell circuits that use more than three 
layers of metal, channel height, the number of routing tracks between the top and 
bottom boundaries of the channel, is also uniform. 

Switchbox routing is performed when pin locations are given on all four sides of a 
fixed-size routing region (switchbox, Fig. 6.1, right). This makes the detailed routing 
significantly more difficult than in channel routing. Switchbox routing is further 
discussed in Sec. 6.4. 

OTC (over-the-cell) routing uses additional metal tracks, e.g., on Metal3 and Metal4, 
that are not obstructed by cells, allowing routes to cross cells and channels. An 
example is shown in Fig. 6.2. OTC routing can use only the metal layers and tracks 

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_6, © Springer Science+Business Media B.V. 2011
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6.6 Modern Challenges in Detailed Routing 6.6 

The need for low-cost, high-performance and low-power ICs has driven technology 
scaling since the 1960s [6.11]. An important aspect of modern technology scaling is 
the use of wires of different widths on different metal layers. In general, wider wires 
on higher metal layers allow signals to travel much faster than on thinner wires on 
lower metal layers. This helps to recover some benefits from scaling in terms of 
performance, but at the cost of fewer routing tracks. Thicker wires are typically used 
for clock (Sec. 7.5) and supply routing (Sec. 3.7), as well as for global interconnect. 

Manufacturers today use different configurations of metal layers and widths to 
accommodate high-performance designs. However, such a variety of routing 
resources makes detailed routing more challenging. Vias connecting wires of 
different widths inevitably block additional routing resources on the layer with the 
smaller wire pitch. For example, layer stacks in some IBM designs for 130 nm-32 
nm technologies are illustrated in Fig. 6.17 [6.1]. Wires on layers M have the 
smallest possible width , while the wires on layers C, B, E, U and W are wider – 
1.3 , 2 , 4 , 10 , and 16 , respectively. The 90 nm technology node was the first to 
introduce different metal layer thicknesses, with thinner wires on the top two layers. 
Today’s 32 nm metal layer stacks often incorporate four to six distinct wire 
thicknesses. Advanced lithography techniques used in manufacturing lead to stricter 
enforcement of preferred routing direction on each layer. 

130 nm 90 nm 65 nm 45 nm 32 nm
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M4
M5
M6

M1
M2
M3
M4
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B2

M1
M2
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E2

M1
M2
M3
M4

B1
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C1
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U1

U2

M1
M2
M3
M4

B1
B2
B3
E1

E2

M5

W1

W2

 
Fig. 6.17 Representative layer stacks for 130 nm - 32 nm technology nodes (scaled to minimum 
feature size at each technology node). 
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Semiconductor manufacturing yield is a key concern in detailed routing. To 
safeguard against manufacturing defects, via doubling and non-tree routing insert 
redundant vias and wiring segments as backups in case an electrical connection is 
lost. At advanced technology nodes, manufacturability constraints (design rules) 
become more restrictive and notably complicate detailed routing. For example, 
design rules specify minimum allowed spacing between wires and vias depending 
on their widths and proximity to wire corners. More recent spacing rules take into 
account multiple neighboring polygons. Forbidden pitch rules prohibit routing wires 
at certain distances apart, but allows smaller or greater spacings. 

Via defects. Recall that a (single) via connects two wires on different metal layers. 
However, vias can be misaligned during manufacturing, and are susceptible to 
electromigration effects during the chip’s lifetime [6.13]. A partially failing via with 
increased resistance may cause timing violations in the circuit. A via that has failed 
completely may disconnect a net, altering the circuit’s function. To protect against 
via failures, modern IC designs often employ double vias. Such protection requires 
additional resources (area), and must obey all design rules. These resources may be 
unavailable around some vias. In some congested areas, only a small subset of vias 
can be doubled [6.17]. Via doubling can be performed by modern commercial 
routers or by standalone yield enhancement tools after detailed routing. 

Interconnect defects. The two most common manufacturing defects in wires are 
shorts (undesired connections) and opens (broken connections). To address shorts, 
adjacent wires can be spread further apart, which also decreases electromagnetic 
interference. However, spreading the wires too far can increase total wirelength, 
thereby increasing the design’s exposure to opens. To address opens, non-tree 
routing [6.12] adds redundant wires to already routed nets. However, since 
increasing wirelength directly contradicts traditional routing objectives (Chaps. 5-6), 
this step is usually a post-processing step after detailed routing. Redundant wires 
increase the design’s susceptibility to shorts, but make it immune to some opens. 

Antenna-induced defects. Another type of manufacturing defect affects transistors, 
but can be mitigated by constraining routing topologies. It occurs after the transistor 
and one or more metal layers have been fabricated, but before other layers are 
completed. During plasma etching, metal wires not connected to PN-junction nodes 
may collect significant electric charges which, discharged through the gate dielectric 
(SiO2 at older technology nodes, high-k dielectric at newer nodes), can irreversibly 
damage transistor gates. To prevent these antenna effects, detailed routers limit the 
ratio of metal to gate area on each metal layer. Specifically, they restrict the area of 
metal polygons connected to gates without being connected to a source/drain 
implant. When such antenna rules are violated, the simplest fix is to transfer a 
fraction of a route to a higher layer through a new or relocated via. 

Some researchers have also proposed manufacturability-aware routers, where 
detailed routing explicitly optimizes yield. However, it is difficult to objectively 
quantify the benefit of such optimizations before manufacturing. As a result, such 
techniques have not yet caught on in the industry. 
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 Chapter 6 Exercises 

Exercise 1: Left-Edge Algorithm 
Given a channel with the following pin connections (ordered left to right). 
TOP = [A B A 0 E D 0 F] and BOT = [B C D A C F E 0]. 
(a) Find S(col) for columns a-h and the minimum number of routing tracks. 
(b) Draw the HCG and VCG. 
(c) Use the left-edge algorithm to route this channel. For each track, mark the 

placed nets and draw the updated VCG from (b). Draw the channel with the 
fully routed nets. 

Exercise 2: Dogleg Left-Edge Algorithm 
Given a channel with the following pin connections (ordered left to right). 
TOP = [A A B 0 A D C E] and BOT = [0 B C A C E D D]. 
(a) Draw the vertical constraint graph (VCG) without splitting the nets. 
(b) Determine the zone representation for nets A-E. Find S(col) for columns a-h. 
(c) Draw the vertical constraint graph (VCG) with net splitting. 
(d) Find the minimum number of required tracks with net splitting and without net 

splitting. 
(e) Use the Dogleg left-edge algorithm to route this channel. For each track, state 

which nets are assigned. Draw the final routed channel. 

Exercise 3: Switchbox Routing 
Given the nets on each side of a switchbox, 
(ordered bottom-to-top)   LEFT = [0 G A F B 0]   RIGHT = [0 D C E G 0] 
(ordered left-to-right)     BOT  = [0 A F G D 0] TOP = [0 A C E B D] 
Route the switchbox using the approach shown in the example in Sec. 6.4.2. For 
each column, mark the routed nets and their corresponding tracks. Draw the 
switchbox with all nets routed. 

Exercise 4: Manufacturing Defects 
Consider a region with high wiring congestion and a region where routes can be 
completed easily. For each type of manufacturing defect discussed in Sec. 6.6, is it 
more likely to occur in a congested region? Explain your answers. You may find it 
useful to visualize congested and uncongested regions using small examples. 

Exercise 5: Modern Challenges in Detailed Routing 
Develop an algorithmic approach to double-via insertion. 

Exercise 6: Non-Tree Routing 
Dis uss advantages and drawbacks of non-tree routing (Sec. 6.6). c 
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7.3 7.3 Non-Manhattan Routing 

Recall from Sec. 7.1 that traditional Manhattan routing allows only vertical and 
horizontal segments. Shorter paths are possible with diagonal segments. However, 
arbitrary diagonal segments cannot be effectively manufactured. A possible 
compromise is to allow 45-degree or 60-degree segments in addition to horizontal 
and vertical segments. Such non-orthogonal routing configurations are commonly 
described by -geometry, where  represents the number of possible routing 
directions1 and the angles  /  at which they can be oriented. 
 
–  = 2 (90 degrees): Manhattan routing (four routing directions) 
–  = 3 (60 degrees): Y-routing (six routing directions) 
–  = 4 (45 degrees): X-routing (eight routing directions) 

The advantages of the latter two routing styles over Manhattan-based routing are 
decreased wirelength and via count. However, other steps in the physical design 
flow, such as physical verification, could take significantly longer. Additionally, 
non-Manhattan routing becomes prohibitively difficult at recent technology nodes 
due to limitations of optical lithography. Therefore, non-Manhattan routing is 
primarily employed on printed circuit boards (PCBs). This is illustrated by octilinear 
route planning in Sec. 7.3.1 and eight-directional path search in Sec. 7.3.2. 

 7.3.1 Octilinear Steiner Trees 

Octilinear Steiner minimum trees (OSMT) generalize rectilinear Steiner trees by 
allowing segments that extend in eight directions. The inclusion of diagonal 
segments gives more freedom when placing Steiner points, which may reduce total 
net length. Several OSMT algorithms have been proposed, such as in [7.9] and 
[7.19]. The following approach was developed by Ho et al. [7.9] (refer to the 
pseudocode on the next page). 

First, find the shortest three-pin subnets of the net under consideration. To identify 
these three-pin groups, the Delaunay triangulation2 is found over all pins (line 2). 
Second, sort all the groups in ascending order of their minimum octilinear routed 
lengths (line 3). Then, integrate these three-pin subnets into the overall OSMT. For 
each group subT in sorted order (line 4), (1) route subT with the minimum octilinear 
length (line 5), (2) merge subT with the current octilinear Steiner tree OST (line 6), 
nd (3) locally optimize OST based on subT (line 7). a

 

                                                           
1 Not to be confused with the layout-scaling parameter . 
2 The Delaunay triangulation for a set of points P in a plane is a triangulation DT(P) such that no 

points in P lie inside the circumcircle of any triangle in DT(P). The circumcircle of a triangle tri is 
defined as a circle which passes through all the vertices of tri. 
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Signal delay is the time required for a signal transition (low to high, or high to 
low) to propagate from one node to another node, e.g., in a routing tree. Signal 
transitions are initiated at the outputs of logic gates, which are constructed from 
transistors that have highly nonlinear behavior. The transitions propagate through 
complex wire and via structures that have parasitic resistances, capacitances and 
inductances. Hence, it is difficult to exactly calculate signal delay. Circuit 
simulators such as SPICE, or commercial timing analysis tools such as 
PrimeTime, are used to obtain accurate “signoff delay” calculations during the 
final checking steps before the design is sent to production. However, to guide 
place-and-route algorithms, considerably less accuracy is needed. Two common 
signal delay estimates used in timing-driven routing are the linear and Elmore 
delay models. The following is a reproduction of the development given in [7.11]. 

In the linear delay model, signal delay from si to sj is proportional to the length of 
the si ~ sj path in the routing tree and is independent of the rest of the connection 
topology. Thus, the normalized linear delay between any two nodes u and w in a 
source-sink path is the sum of the edge lengths |e| in the u ~ w path 
 

)~(

),(
wue

LD ewut  

On-chip wires are passive, resistive-capacitive (RC) structures, for which both 
resistance (R) and capacitance (C) typically grow in proportion to the length of the 
wire. Thus, the linear delay model does not accurately capture the “quadratically 
growing” RC component of wire delay. On the other hand, the linear 
approximation provides reasonable guidance to design tools, especially for older 
technologies that have smaller drive resistance of transistors and larger wire 
widths (smaller wire resistances). In practice, the linear delay model is very 
convenient to use in EDA software tools because of its ease of evaluation. 

In the Elmore delay model, given the routing tree T with root (source) node s0, 
 
– (p,v) denotes the edge connecting node v to its parent node p in T 
– R(e) and C(e) denote the respective resistance and capacitance of edge e  T 
– Tv denotes the subtree of T rooted at v 
– C(v) denotes the sink capacitance of v 
– C(Tv) denotes the tree capacitance of T , i.e., the sum of sink and edge 

capacitances in T  
v

v

v

v

If node v is a terminal, then C(v) is typically the capacitance of the input pin to 
which the clock signal is routed. If node v is a Steiner node, then C(v) = 0. If T  is 
a single (leaf) node, C(T ) is equal to v’s sink capacitance C(v). 
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Using this notation, th edge (p,v) is e Elmore delay approximation for an 

)(),(),(),( vCvpCvpRvpt  

e on-resistance of 
e output transistor at the source (“stronger” driving gates will have smaller 

on-resistance values Rd r sink s 
 

2ED

This can be seen as a sum of RC delay products, with the factor of one-half 
corresponding to a ~63% threshold delay. Last, if Rd denotes th
th

), then the Elmore delay tED(s) fo

),( 0 sse

Physical design tools use the Elmore delay approximation for three main reasons. 
First, it accounts for the sink delay impact of off-path wire capacitance – the edges 
of the routing tree that are not directly on the source-to-sink path. Second, it offers 
reasonable accuracy and good fidelity (correlation) with respect to accurate delay 
estimates from circuit simulators. Third, it can be evaluated at all nodes of a tree 
in time that is linear in tree size (number of edges). This is realized by two 
depth-first tr

0 )()()( EDdED etsCRst  

aversals: the first calculates the tree capacitance C(Tv) below each 
node in the tree, while the second calculates the delays from the source to each 

tant, since the clock signal 
must be delivered to all sinks at the same time. If t(u,v) denotes the signal delay 
between nodes u and 

|),(),(|max)( sstsstTskew

node [7.11]. 

Clock skew is the (maximum) difference in clock signal arrival times between 
sinks. This parameter of the clock tree solution is impor

v, then the skew of clock tree T is 

00
,

jiSss ji

If there exists a path of combinational logic from the (data) ou

 

tput pin of one sink 
to the (data) input pin of another sink, then the two sinks are said to be related or 

Local skew is the maximum difference in arrival times of the clock signal at the 

inks – i.e., the difference between 
shortest and longest source-sink path delays in the clock distribution network. In 
practice, skew typically refers to global skew. 

sequentially adjacent. Otherwise, the two sinks are unrelated. 

clock pins of two or more related sinks. 

Global skew is the maximum difference in arrival times of the clock signal at the 
clock pins of any two (related or unrelated) s
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 7.4.2 Problem Formulations for Clock-Tree Routing 

This section presents some basic clock routing formulations. The most fundamental 
is the zero-skew tree problem. Practical variations include the bounded-skew tree 
and useful-skew tree problems. The integration of zero-skew trees in a modern, 
low-power clock-network design flow is further discussed in Sec. 7.5.2, with more 
details in [7.14]. It relies on SPICE – software for circuit simulation – for a high 
degree of accuracy. 

Zero skew. If a clock tree exhibits zero skew, then it is a zero-skew tree (ZST). For 
skew to be well-defined, a delay estimate (e.g., linear or Elmore delay) is implicit. 

Zero-Skew Tree (ZST) Problem. Given a set S of sink locations, construct a ZST 
T(S) with minimum cost. In some contexts, a connection topology G is also given. 

Bounded skew. While the ZST problem leads to elegant physical design 
algorithms that form the basis of commercial solutions, practical clock tree routing 
does not typically achieve exact zero skew. 

In practice, a “true ZST” is not desirable. ZSTs can use a significant amount of 
wirelength, increasing the total capacitance of the network. Moreover, a true ZST 
is also not achievable in practice – manufacturing variability for both transistors 
and interconnects can cause differences in the RC constants of wire segments of a 
given layer. Thus, signoff timing analysis is with respect to a non-zero skew bound 
that must be achieved by the clock routing tool. 

Bounded-Skew Tree (BST) Problem. Given a set S of sink locations and a skew 
bound UB > 0, construct a clock tree T(S) with skew(T(S))  UB having minimum 
cost. As with the ZST problem, in certain contexts a topology G may be specified. 
Notice that when the skew is unbounded (UB = ), the BST problem becomes the 
classic RSMT problem (Chap. 5). 

Useful skew. Clock trees do not always require bounded global skew. Correct chip 
timing only requires control of the local skews between pairs of related flip-flops 
or latches. While the clock tree routing problem can be conveniently formulated in 
terms of global skew, this actually over-constrains the problem. The increasingly 
prominent useful skew formulation is based on analysis of local skew constraints. 

In synchronous circuits, the data signal that propagates from a flip-flop (sink) 
output to the next flip-flop input should arrive neither too late nor too early. The 
former failure mode (late arrival) is zero clocking, while the latter (early arrival) is 
double clocking [7.7]. In contrast to formulations that minimize or bound global 
skew, Fishburn [7.7] proposed a clock skew optimization method that introduces 
useful skew – perturbing clock arrival times at sinks – in the clock tree to either 
minimize the clock period or maximize the clock safety margin. The clock period 
P can be reduced by appropriate choices of sink arrival times (Fig. 7.9). 



202 7 Specialized Routing 

FF2FF1 2 ns

x1= 0 ns

(a) Minimum clock period 
P = 6 ns with zero skew

(b) Minimum clock period 
P = 4 ns with 2 ns (useful) skew

FF1 FF2: P 2 ns – (0 ns – 0 ns) = 2 ns
FF2 FF3: P 6 ns – (0 ns – 0 ns) = 6 ns

P 2 ns – (0 ns – 2 ns) = 4 ns 
P 6 ns – (2 ns – 0 ns) = 4 ns

x2= 0 ns

6 ns FF3

x3= 0 ns

FF2FF1 2 ns

x1= 2 ns x2= 0 ns

6 ns FF3

x3= 2 ns

 
Fig. 7.9 Example of useful skew for clock cycle time reduction. (a) Zero skew results in a 6 ns 
clock period. (b) Useful skews of 2 ns, 0 ns and 2 ns at x1, x2 and x3 result in a 4 ns clock period. 

To avoid zero clocking, the data edge generated by FFi due to a clock edge must 
arrive at FFj no later than tsetup before the earliest arrival of the next clock edge. 
Formally, xi + tsetup + max(i,j)  xj + P must be met with clock period P, where 
 
– xi is the latest time at which the clock edge can arrive at FFi 
– max(i,j) is the slowest (longest) signal propagation from FF  to FFj i

– xj + P is the earliest arrival time of the next clock edge at FFj 

To avoid double clocking between two flip-flops FFi and FFj, the data edge 
generated at FFi due to a clock edge must arrive at FFj no sooner than thold after 
the latest possible arrival of the same clock edge. Formally, xi + min(i,j)  xj + thold 

ust be met, where m
 
– xi is the earliest time at which the clock edge can arrive at FFi 

agation from FF  to FF  – min(i,j) denote the fastest (shortest) signal prop i j

– xj be the latest arrival time of the clock at FFj 

ze clock period (LP_SPEED), or (2) 
maximize the safety margin (LP_SAFETY). 

xi for all sinks to minimize clock period P, subject to the following 
onstraints. 

 

d (i, j) 
xi  tmin       for all i 

Fishburn observed that linear programming can be used to find optimal clock arrival 
times xi at all sinks to either (1) minimi

Useful Skew Problem (LP_SPEED). Given (1) constant values of tsetup and thold, (2) 
maximum and minimum signal propagation times max(i,j) and min(i,j) between all 
pairs (i,j) of related sinks, and (3) minimum source-sink delay tmin, determine clock 
arrival times 
c

xi – xj  thold – min(i,j)    for all related (i, j) 
xj – xi + P  tsetup + max(i,j)   for all relate
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Useful Skew Problem (LP_SAFETY). Given (1) constant values of tsetup and thold, (2) 
maximum and minimum signal propagation times max(i,j) and min(i,j) between all 
pairs (i,j) of related sinks, and (3) minimum source-sink delay tmin, determine clock 
arrival times xi for all sinks to maximize safety margin SM, subject to 

 
xi – xj – SM  thold – min(i,j)  for all related (i, j) 
xj – xi – SM  tsetup + max(i,j) – P  for all related (i, j) 
xi  tmin        for all i 

7.5 7.5 Modern Clock Tree Synthesis 

Clock trees play a vital role in modern synchronous designs and significantly impact 
the circuit’s performance and power consumption. A clock tree should have low 
skew, simultaneously delivering the same signal to every sequential gate. After the 
initial tree construction (Sec. 7.5.1), the clock tree undergoes clock buffer insertion 
and several subsequent skew optimizations (Sec. 7.5.2). 

7.5.1 Constructing Trees with Zero Global Skew  

This section presents five early algorithms for clock tree construction whose 
underlying concepts are still used in today’s commercial EDA tools. Several 
scenarios are covered, including algorithms that (1) construct a clock tree 
independent of the clock sink locations, (2) construct the clock tree topology and 
embedding simultaneously, and (3) construct only the embedding given a clock tree 
topology as input. 

H-tree. The H-tree is a self-similar, fractal structure (Fig. 7.10) with exact zero skew 
due to its symmetry. It was first popularized by Bakoglu [7.2]. In the unit square, a 
segment is passed through the root node at center, then two shorter line segments are 
constructed at right angles to the first segment, to the centers of the four quadrants; 
this process continues recursively until the sinks are reached. The H-tree is 
frequently used for top-level clock distribution, but cannot be employed directly for 
the entire clock tree due to (1) blockages, (2) irregularly placed clock sinks, and (3) 
excessive routing cost. That is, to reach all n = 4k sinks uniformly located in the unit 
square, where k  1 is the number of levels in the H-tree, the wirelength of the 
H-tree grows as 2/3 n . To minimize signal reflections at branching points, the 
wire segments can be tapered – halving the wire width at each branching point 
encountered as one moves away from the source. 
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High-level skew optimization. In the 1980s, the entire clock tree could be driven by 
a single buffer. However, with technology scaling, wires have become more 
resistive and clock trees today can no longer be driven by a single buffer. Therefore, 
clock buffers are inserted at multiple locations in the tree to ensure that the clock 
signal has sufficient strength to propagate to all sinks (timing points). The locations 
and sizes of buffers are used to control the propagation delay within each branch of 
the tree. Though not intended for clock trees, the algorithm proposed by L. van 
Ginneken [7.8] optimally buffers a tree to minimize Elmore delay between the 
source and every sink in O(n2) time, where n is the total number of possible buffer 
locations. The O(n log n)-time variant proposed in [7.16] is more scalable. These 
algorithms also avoid insertion of unnecessary buffers on fast paths, thus achieving 
lower skew if the initial tree was balanced. After initial buffer insertion, subsequent 
optimizations are performed to minimize skew, decrease power consumption, and 
improve robustness of the clock tree to unforeseen changes to buffer characteristics, 
e.g., manufacturing process variations. 

Clock buffer sizing. The choice of the clock buffer size for initial buffer insertion 
affects downstream optimizations, as most of the buffers’ sizes and locations are 
unlikely to change. However, the best-performing size is difficult to identify 
analytically. Therefore, it is often determined by trial and error, e.g., using binary 
search. Clock buffer sizes can be further adjusted as follows. For a pair of sinks s1 
and s2 with significant skew, find the unique path  in the tree connecting s1 and s2. 
Upsize the buffers on  according to a pre-computed table (discussed below) that 
matches an appropriate buffer size to each path length and fanout. In practice, larger 
buffers improve the robustness of the circuit, but consume more power and may 
introduce additional delay. 

Wire sizing. The choice of wire width affects both power and susceptibility to 
manufacturing defects. Wider wires are more resilient to variation, but have greater 
capacitance and consume more dynamic power than thinner wires. Wider wires (and 
wider spacings to neighbors) are preferred for high-performance designs; thinner 
wires are preferred for low-power or less aggressive designs. After the initial wire 
width is chosen, it can be adjusted for individual segments based on timing analysis. 

Low-level skew optimization. Compared to the global impact of high-level skew 
optimizations, low-level skew optimizations cause smaller, localized changes. The 
precision of low-level skew optimizations is typically much greater than that of 
high-level skew optimizations. Low-level optimizations, such as wire sizing and 
wire snaking, are preferred for fine-tuning skew. To slow down fast sinks, the length 
of the path can be increased by purposely detouring the wire. This increases the total 
capacitance and resistance of the path, thus increasing the propagation delay. 

Variation modeling. Due to randomness in the semiconductor manufacturing 
process, every transistor in every chip is slightly different. In addition, every chip 
can be used at different ambient temperature, and will locally heat up or cool down 
depending on activity patterns. Supply voltage may also change depending on 
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manufacturing variation and power drawn by other parts of the chip. Nevertheless, 
modern clock trees must operate as expected under a variety of circumstances. To 
ensure such robustness, an efficient and accurate variation model encapsulates the 
different parameters, e.g., wire width and thickness, of each library element as 
well-defined random variables. However, predicting the impact of process variations 
is difficult. One option is to run a large number of individual simulations with 
different parameter settings (Monte-Carlo simulation), but this is slow and 
impractical in an optimization flow. 

A second option is to generate a lookup table that captures worst-case skew 
variations between pairs of sinks based on (1) technology node, (2) clock buffer and 
wire library, (3) tree path length, (4) variation model, and (5) desired yield. Though 
creating this table requires extensive simulations, this only needs to be done once for 
a given technology. The resulting table can be used for any compatible clock tree 
optimization, e.g., for clock buffer sizing, as previously explained in this section. In 
general, this lookup table approach facilitates a fast and accurate optimization. 

Further clock network design techniques are discussed in Chaps. 42-43 of [7.1], 
including active deskewing and clock meshes, common in modern CPUs, as well as 
clock gating, used to decrease clock power dissipation. The book [7.18] focuses on 
clocking in modern VLSI systems from a designer perspective and recommends a 
number of techniques to minimize the impact of process variations. The book [7.15] 
discusses clocking for high-performance and low-power applications. 
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8 Timing Closure 

The layout of an integrated circuit (IC) must not only satisfy geometric requirements, 
e.g., non-overlapping cells and routability, but also meet the design’s timing 
constraints, e.g., setup (long-path) and hold (short-path) constraints. The 
optimization process that meets these requirements and constraints is often called 
timing closure. It integrates point optimizations discussed in previous chapters, such 
as placement (Chap. 4) and routing (Chaps. 5-7), with specialized methods to 
improve circuit performance. The following components of timing closure are 
covered in this chapter. 
 
– Timing-driven placement (Sec. 8.3) minimizes signal delays when assigning 

locations to circuit elements. 
– Timing-driven routing (Sec. 8.4) minimizes signal delays when selecting 

routing topologies and specific routes. 
– Physical synthesis (Sec. 8.5) improves timing by changing the netlist. 

– Sizing transistors or gates: increasing the width:length ratio of transistors 
). to decrease the delay or increase the drive strength of a gate (Sec. 8.5.1

– Inserting buffers into nets to decrease propagation delays (Sec. 8.5.2). 
– Restructuring the circuit along its critical paths (Sec. 8.5.3). 

Sec. 8.6 integrates these optimizations in a performance-driven physical design flow. 

duced 
delays, making high-quality placement and routing critical for timing closure. 

circuit 
omponents, with the primary goal of satisfying timing constraints, including 

– 
teady) before the clock edge for each storage element 

–  data 
input signal should be stable after the clock edge at each storage element. 

 8.1

 

8.1 Introduction 

For many years, signal propagation delay in logic gates was the main contributor to 
circuit delay, while wire delay was negligible. Therefore, cell placement and wire 
routing did not noticeably affect circuit performance. Starting in the mid-1990s, 
technology scaling significantly increased the relative impact of wiring-in

Timing optimization engines must estimate circuit delays quickly and accurately to 
improve circuit timing. Timing optimizers adjust propagation delays through 
c
 

Setup (long-path) constraints, which specify the amount of time a data input 
signal should be stable (s
(e.g., flip-flop or latch). 
Hold-time (short-path) constraints, which specify the amount of time a

A. B. Kahng et al., VLSI Physical Design: From Graph Partitioning to Timing Closure,
DOI 10.1007/978-90-481-9591-6_8, © Springer Science+Business Media B.V. 2011
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Setup constraints ensure that no signal transition occurs too late. Initial phases of 
timing closure focus on these types of constraints, which are formulated as follows. 

tcycle  tcombDelay + tsetup + tskew 

Here, tcycle is the clock period, tcombDelay is the longest path delay through 
combinational logic, tsetup is the setup time of the receiving storage element (e.g., 
flip-flop), and tskew is the clock skew (Sec. 7.4). Checking whether a circuit meets 
setup constraints requires estimating how long signal transitions will take to 
propagate from one storage element to the next. Such delay estimation is typically 
based on static timing analysis (STA), which propagates actual arrival times (AATs) 
and required arrival times (RATs) to the pins of every gate or cell. STA quickly 
identifies timing violations, and diagnoses them by tracing out critical paths in the 
circuit that are responsible for these timing failures (Sec. 8.2.1). 

Motivated by efficiency considerations, STA does not consider circuit functionality 
and specific signal transitions. Instead, STA assumes that every cell propagates 
every 0-1 (1-0) transition from its input(s) to its output, and that every such 
propagation occurs with the worst possible delay1. Therefore, STA results are often 
pessimistic for large circuits. This pessimism is generally acceptable during 
optimization because it affects competing layouts equally, without biasing the 
optimization toward a particular layout. It is also possible to evaluate the timing of 
several competing layouts with more accurate techniques in order to choose the best 
solution. 

One approach to mitigate pessimism in STA is to analyze the most critical paths. 
Some of these can be false paths – those that cannot be sensitized by any input 
transition because of the logic functions implemented by the gates or cells. IC 
designers often enumerate false paths that are likely to become timing-critical to 
exclude them from STA results and ignore them during timing optimization. 

STA results are used to estimate how important each cell and each net are in a 
particular layout. A key metric for a given timing point g – that is, a pin of a gate or 
cell – is timing slack, the difference between g’s RAT and AAT: slack(g) = RAT(g) 

 AAT(g). Positive slack indicates that timing is met – the signal arrives before it is 
required – while negative slack indicates that timing is violated – the signal arrives 
after its required time. Algorithms for timing-driven layout guide the placement and 
routing processes according to timing slack values. 

Guided by slack values, physical synthesis restructures the netlist to make it more 
suitable for high-performance layout implementation. For instance, given an 
unbalanced tree of gates, (1) the gates that lie on many critical paths can be upsized 
to propagate signals faster, (2) buffers may be inserted into long critical wires, and 
(3) the tree can be restructured to decrease its overall depth. 

                                                           
1 Path-based approaches for timing optimizations are discussed in Secs. 8.3-8.4. 





224 8 Timing Closure 

The maximum clock frequency for a given design depends upon (1) gate delays, 
which are the signal delays due to gate transitions, (2) wire delays, which are the 
delays associated with signal propagation along wires, and (3) clock skew (Sec. 7.4). 
In practice, the predominant sources of delay in standard signals come from gate and 
wire delays. Therefore, when analyzing setup constraints, this section considers 
clock skew negligible. A lower bound on the design’s clock period is given by the 
sum of gate and wire delays along any timing path through combinational logic – 
from the output of a storage element to the input of the next storage element. This 
lower bound on the clock period determines an upper bound on the clock frequency. 

In earlier technologies, gate delays accounted for the majority of circuit delay, and 
the number of gates on a timing path provided a reasonable estimate of path delay. 
However, in recent technologies, wire delay, along with the component of gate delay 
that is dependent on capacitive loading, comprises a substantial portion of overall 
path delay. This adds complexity to the task of estimating path delays and, hence, 
achievable (maximum) clock frequency. 

For a chip to function correctly, path delay constraints (Sec. 8.3.2) must be satisfied 
whenever a signal transition traverses a path through combinational logic. The most 
critical verification task faced by the designer is to confirm that all path delay 
constraints are satisfied. To do this dynamically, i.e., using circuit simulation is 
infeasible for two reasons. First, it is computationally intractable to enumerate all 
possible combinations of state and input variables that can cause a transition, i.e., 
sensitize, a given combinational logic path. Second, there can be an exponential 
number of paths through the combinational logic. Consequently, design teams often 
signoff on circuit timing statically, using a methodology that pessimistically assumes 
all combinational logic paths can be sensitized. This framework for timing closure is 
based on static timing analysis (STA) (Sec. 8.2.1), an efficient, linear-time 
verification process that identifies critical paths. 

After critical paths have been identified, delay budgeting2 (Secs. 8.2.2 and 8.3.1) sets 
upper bounds on the lengths or propagation delays for these paths, e.g., using the 
zero-slack algorithm [8.19], which is covered in Sec. 8.2.2. Other delay budgeting 
techniques are described in [8.29]. 

8.2.1 Static Timing Analysis  

In STA, a combinational logic network is represented as a directed acyclic graph 
(DAG) (Sec. 1.7). Fig. 8.2 illustrates a network of four combinational logic gates x, 
y, z and w, three inputs a, b and c, and one output f. The inputs are annotated with 
times 0, 0 and 0.6 time units, respectively, at which signal transitions occur relative 

                                                           
2 This methodology is intended for layout of circuits directly represented by graphs rather than 

circuits partitioned into high-level modules. However, this methodology can also be adapted to 
assign budgets to entire modules instead of circuit elements.  
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Signal integrity extensions to STA consider changes in delay due to switching 
activity on neighboring wires of the path under analysis. For signal integrity 
analysis, the STA engine keeps track of windows (intervals) of AATs and RATs, 
and typically executes multiple timing analysis iterations before these timing 
windows stabilize to a clean and accurate result. 

Statistical STA (SSTA) is a generalization of STA where gate and wire delays are 
modeled by random variables and represented by probability distributions [8.21]. 
Propagated AATs, RATs and timing slacks are also random variables. In this 
context, timing constraints can be satisfied with high probability (e.g., 95%). SSTA 
is an increasingly popular methodology choice for leading-edge designs, due to the 
increased manufacturing variability in advanced process nodes. Propagating 
statistical distributions instead of intervals avoids some of STA’s inherent 
pessimism. This reduces the costly power, area and schedule impacts of overdesign. 

The static verification approach is continually challenged by two fundamental 
weaknesses – (1) the assumption of a clock and (2) the assumption that all paths are 
sensitizable. First, STA is not applicable in asynchronous contexts, which are 
increasingly prevalent in modern designs, e.g., asynchronous interfaces in 
systems-on-chips (SoCs), asynchronous logic design styles to improve speed and 
power. Second, optimization tools waste considerable runtime and chip resources – 
e.g., power, area and speed – satisfying “phantom” constraints. In practice, designers 
can manually or semi-automatically specify false and multicycle paths – paths 
whose signal transitions do not need to finish within one clock cycle. Methodologies 
to fully exploit the availability of such timing exceptions are still under development. 

 8.2.2 Delay Budgeting with the Zero-Slack Algorithm 

In timing-driven physical design, both gate and wire delays must be optimized to 
obtain a timing-correct layout. However, there is a chicken-and-egg dilemma: (1) 
timing optimization requires knowledge of capacitive loads and, hence, actual 
wirelength, but (2) wirelengths are unknown until placement and routing are 
completed. To help resolve this dilemma, timing budgets are used to establish 
delay and wirelength constraints for each net, thereby guiding placement and 
routing to a timing-correct result. The best-known approach to timing budgeting is 
the zero-slack algorithm (ZSA) [8.19], which is widely used in practice. 

Algorithm. Consider a netlist consisting of logic gates v1, v2, … , vn and nets e1, e2, 
… , en, where ei is the output net of gate vi. Let t(v) be the gate delay of v, and let 
t(e) be the wire delay of e.3 The ZSA takes the netlist as input, and seeks to 
decrease positive slacks of all nodes to zero by increasing t(v) and t(e) values. 
These increased delay values together constitute the timing budget TB(v) of node 
v, which should not be exceeded during placement and routing. 

                                                           
3 A multi-fanout net ei has multiple source-sink delays, so ZSA must be adjusted accordingly. 
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In relation to the ZSA pseudocode, the procedure BACKWARD_PATH_EM(vmin,G) 
is equivalent to BACKWARD_PATH(vmin,G), and FORWARD_PATH_EM(vmin,G) is 
the equivalent to FORWARD_PATH(vmin,G), except that early-mode analysis is 
used for all arrival and required times. 

Compared to the original ZSA, the two differences are (1) the use of early-mode 
timing constraints and (2) the handling of the Boolean flag done(v). Lines 1-2 set 
done(v) to false for every node v in V. If t(ei) reaches zero for a node vi, done(vi) is 
set to true (lines 23-24). In subsequent iterations (lines 3-25), if vi is the minimum 
slack node of G, it will be skipped (line 9) because t(ei) cannot be decreased 
further. After the algorithm completes, each node v will either have slack(v) = 0 or 
done(v) = true. 

In practice, if the delay of a node does not satisfy its early-mode timing budget, the 
delay constraint can be satisfied by adding additional delay (padding) to appropriate 
components. However, there is always the danger that additional delay may cause 
violations of late-mode timing constraints. Thus, a circuit should be first designed 
with ZSA and late-mode analysis. Early-mode analysis may then be used to confirm 
that early-mode constraints are satisfied, or to guide circuit modifications to satisfy 
such constraints. 

8.3 8.3 Timing-Driven Placement 

Timing-driven placement (TDP) optimizes circuit delay, either to satisfy all timing 
constraints or to achieve the greatest possible clock frequency. It uses the results of 
STA (Sec. 8.2.1) to identify critical nets and attempts to improve signal propagation 
delay through those nets. Typically, TDP minimizes one or both of the following. (1) 
worst negative slack (WNS) 
 

)(min slackWNS

 
where  is the set of timing endpoints, e.g., primary outputs and inputs to flip-flops, 
and (2) total negative slack (TNS) 
 

0)(,

)(
slack

slackTNS  

Algorithmic techniques for timing-driven placement can be categorized as net-based 
(Sec. 8.3.1), path-based or integrated (Sec. 8.3.2). There are two types of net-based 
techniques – (1) delay budgeting assigns upper bounds to the timing or length of 
individual nets, and (2) net weighting assigns higher priorities to critical nets during 
placement. Path-based placement seeks to shorten or speed up entire timing-critical 
paths rather than individual nets. While more accurate than net-based placement, 
path-based placement does not scale to large, modern designs because the number of 
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paths in some circuits, such as multipliers, can grow exponentially with the number 
of gates. Both path-based and net-based approaches (1) rely on support within the 
placement algorithm, and (2) require a dedicated infrastructure for (incremental) 
calculation of timing statistics and parameters. Some placement approaches facilitate 
integration with timing-driven techniques. For instance, net weighting is naturally 
supported by simulated annealing and all analytic algorithms. Netlist partitioning 
algorithms support small integer net weights, but can usually be extended to support 
non-integer weights, either by scaling or by replacing bucket-based data structures 
with more general priority queues. 

Timing-driven placement algorithms often operate in multiple iterations, during 
which the delay budgets or net weights are adjusted based on the results of STA. 
Integrated algorithms typically use constraint-driven mathematical formulations in 
which STA results are incorporated as constraints and possibly in the objective 
function. Several TDP methods are discussed below, while more advanced 
algorithms can be found in [8.8], [8.17], [8.20], and Chap. 21 of [8.5]. 

In practice, some industrial flows do not incorporate timing-driven methods during 
initial placement because timing information can be very inaccurate until locations 
are available. Instead, subsequent placement iterations, especially during detailed 
placement, perform timing optimizations. Integrated methods are commonly used; 
for example, the linear programming formulation (Sec. 8.3.2) is generally more 
accurate than net-weighting or delay budgeting, at the cost of increased runtime. A 
practical design flow for timing closure is introduced in Sec. 8.6. 

 8.3.1 Net-Based Techniques 

Net-based approaches impose either quantitative priorities that reflect timing 
criticality (net weights), or upper bounds on the timing of nets, in the form of net 
constraints (delay budgets). Net weights are more effective at the early design stages, 
while delay budgets are more meaningful if timing analysis is more accurate. More 
information on net weighting can be found in [8.12]. 

Net weighting. Recall that a traditional placer optimizes total wirelength and 
routability. To account for timing, a placer can minimize the total weighted 
wirelength, where each net is assigned a net weight (Chap. 4). Typically, the higher 
the net weight is, the more timing-critical the net is considered. In practice, net 
weights are assigned either statically or dynamically to improve timing. 

Static net weights are computed before placement and do not change. They are 
usually based on slack – the more critical the net (the smaller the slack), the greater 
the weight. Static net weights can be either discrete, e.g., 
 

0 if  
0 if  

2

1

slack
slack

w , where 1 > 0, 2 > 0, and 2 > 1 
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where 1 < 2 are constants greater than zero, or continuous, e.g., 
 

1
t

slackw  

 
where t is the longest path delay and  is a criticality exponent. 

In addition to slack, various other parameters can be accounted for, such as net size 
and the number of critical paths traversing a given net. However, assigning too 
many higher weights may lead to increased total wirelength, routability difficulties, 
and the emergence of new critical paths. In other words, excessive net weighting 
may eventually lead to inferior timing. To this end, net weights can be assigned 
based on sensitivity, or how each net affects TNS. For example, the authors of [8.27] 
define the net weight of net as follows. Let 
 
– w (net) be the original net weight of net o

– slack(net) be the slack of net 
– slack  be the target slack of the design target

– SLACK(net) be the slack sensitivity to the net weight of net ws

– TNS
ws

–  and  be constant bounds on the net weight change that control the tradeoff 
between WNS and TNS 

(net) be the TNS sensitivity to the net weight of net 

 
hen, if slack(net)  0, T

 
w(net) = w (net) +  · (slack  – slack(net)) ·o target

SLACK
ws (net) +  · net) TNS

ws (
 
Otherwise, if slack(net) > 0, then w(net) remains the same, i.e., w(net) = w (net). o

Dynamic net weights are computed during placement iterations and keep an updated 
timing profile. This can be more effective than static net weights, since they are 
computed before placement, and can become outdated when net lengths change. An 
example method updates slack values based on efficient calculation of incremental 

ack for each net net [8.7]. For a given iteration k, let  sl
 
– slackk–1(net) be the slack at iteration k – 1 
– DELAY

Ls (net) be the delay sensitivity to the wirelength of net 
– L(net) be the change in wirelength between iteration k – 1 and k for net  

hen, the estimated slack of net at iteration k is 
 

 
T

slackk(net) = slackk–1(net) – DELAY
Ls (net) · L(net) 



236 8 Timing Closure 

After the timing information has been updated, the net weights should be adjusted 
accordingly. In general, this incremental method of weight modification is based on 
revious iterations. For instance, for each net net, the authors of [8.14] first compute 

the net criticality ti
 

+ 1) ong the 3% most critical nets 
k(net) =

p
 at itera on k as 

( k–1(net) if net is am

1
2
1

herwise 

and then update the net w

Variants include using the previous j iterations and using different relations between 

of 
placer; their computation is integrated with the placement algorithm. To be scalable, 

od to calculate delay budgets is 
the zero-slack algorithm (ZSA), previously discussed in Sec. 8.2.2. Other advanced 

 are in balance with those forces on 
other nets. More advanced algorithms for min-cut and force-directed placers on TDP 
can be found in [8.16] and [8.26], respectively. 

2 k–1(net) ot

 
eights as 

 
wk(net) = wk–1(net) · (1 + k(net)) 

 

the net weight and criticality. 

In practice, dynamic methods can be more effective than using static net weights, 
but require careful net weight assignment. Unlike static net weights, which are 
relevant to any placer, dynamic net weights are typically tailored to each type 

the re-computation of timing information and net weights must be efficient [8.7]. 

Delay budgeting. An alternative to using net weights is to limit the delay, or the 
total length, of each net by using net constraints. This mitigates several drawbacks 
of net weighting. First, predicting the exact effect of a net weight on timing or total 
wirelength is difficult. For example, increasing weights of multiple nets may lead to 
the same (or very similar) placement. Second, there is no guarantee that a net’s 
timing or length will decrease because of a higher net weight. Instead, net-constraint 
methods have better control and explicitly limit the length or slack of nets. However, 
to ensure scalability, net constraints must be generated such that they do not 
over-constrain the solution space or limit the total number of solutions, thereby 
hurting solution quality. In practice, these net constraints can be generated statically, 
before placement, or dynamically, when the net constraints are added or modified 
during each iteration of placement. A common meth

methods for delay budgeting can be found in [8.15]. 

The support for constraints in each type of placer must be implemented carefully so 
as to not sacrifice runtime or solution quality. For instance, min-cut placers must 
choose how to assign cells to partitions while meeting wirelength constraints. To 
meet these constraints, some cells may have to be assigned to certain partitions. 
Force-directed placers can adjust the attraction force on certain nets that exceed a 
certain length, but must ensure that these forces
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 8.3.2 Embedding STA into Linear Programs for Placement 

Unlike net-based methods, where the timing requirements are mapped to net weights 
or net constraints, path-based methods for timing-driven placement directly optimize 
the design’s timing. However, as the number of (critical) paths of concern can grow 
quickly, this method is much slower than net-based approaches. To improve 
scalability, timing analysis may be captured by a set of constraints and an 
optimization objective within a mathematical programming framework, such as 
linear programming. In the context of timing-driven placement, a linear program 
(LP) minimizes a function of slack, such as TNS, subject to two major types of 
constraints: (1) physical, which define the locations of the cells, and (2) timing, 
which define the slack requirements. Other constraints such as electrical constraints 
may also be incorporated. 

Physical constraints. The physical constraints can be defined as follows. Given the 
set of cells V and the set of nets E, let 
 
– xv and yv be the center of cell v  V 
– V  be the set of cells connected to net e  E e

– left(e), right(e), bottom(e), and top(e) respectively be the coordinates of the left, 
right, bottom, and top boundaries of e’s bounding box 

– x(v,e) and y(v,e) be pin offsets from xv and yv for v’s pin connected to e 
 

hen, for all v  VT
 

e, 

),()(

),()(
),()(
),()(

evyetop

evyebottom
evxeright
evxeleft

yv

yv

xv

xv

 

 
That is, every pin of a given net e must be contained within e’s bounding box. Then, 
’s half-perimeter wirelength (HPWL) (Sec. 4.2) is defined as e

 
)()()()()( ebottometopelefterighteL  

Timing constraints. The timing constraints can be defined as follows. Let 
 
– tGATE(vi,vo) be the gate delay from an input pin vi to the output pin vo for cell v 
– tNET(e,uo,vi) be net e’s delay from cell u’s output pin uo to cell v’s input pin vi 
 AAT(v ) be the arrival time on pin j of cell v 

onstraints – those that account for input pins, and 
those that account for output pins. 

– j
 
Then, define two types of timing c
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For every input pin vi of cell v, the arrival time at each vi is the arrival time at the 
previous output pin uo of cell u plus the net delay. 
 

AAT(vi) = AAT(uo) + tNET(uo,vi) 

For every output pin vo of cell v, the arrival time at vo should be greater than or equal 
to the arrival time plus gate delay of each input vi. That is, for each input vi of cell v, 

 
AAT(vo)  AAT(vi) + tGATE(vi,vo) 

For every pin p in a sequential cell , the slack is computed as the difference 
between the required arrival time RAT( p) and actual arrival time AAT( p). 
 

slack( p)  RAT( p) – AAT( p) 
 
The required time RAT( p) is specified at every input pin of a flip-flop and all 
primary outputs, and the arrival time AAT( p) is specified at each output pin of a 
flip-flop and all primary inputs. To ensure that the program does not over-optimize, 
i.e., does not optimize beyond what is required to (safely) meet timing, upper bound 
all pin slacks by zero (or a small positive value). 
 

slack( p)  0 

Objective functions. Using the above constraints and definitions, the LP can 
optimize (1) total negative slack (TNS) 
 

),(

)(:max
Pins

p
p

slack  

 
where Pins( ) is the set of pins of cell , and  is again the set of all sequential 
elements or endpoints, or (2) worst-negative slack (WNS) 
 

WNS:max  
 
where WNS  slack( p) for all pins, or (3) a combination of wirelength and slack 
 

Ee

WNSeL )(:min  

 
where E is the set of all nets,  is a constant between 0 and 1 that trades off WNS 
and wirelength, and L(e) is the HPWL of net e. 
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Critical-sink routing tree (CSRT) problem. Given a signal net net with source s0, 
sinks S = {s1, … ,sn}, and sink criticalities (i)  0 for each si  S, construct a 
routing tree T such that 

n

i
issti

1
0 ),()(  

is minimized, where t(s0,si) is the signal delay from source s0 to sink si. The sink 
criticality (i) reflects the timing criticality of the corresponding sink si. If a sink is 
on a critical path, then its timing criticality will be greater than that of other sinks. 

A critical-sink Steiner tree heuristic [8.18] for the CSRT problem [8.6] first 
constructs a heuristic minimum-cost Steiner tree T0 over all terminals of S except the 
critical sink sc, the sink with the highest criticality. Then, to reduce t(s0,sc), the 
heuristic adds sc into T0 by heuristic variants, e.g., such as the following approaches. 
 
– H0: introduce a single wire from s  to s . c 0

– H1: introduce the shortest possible wire that can join sc to T0, so long as the path 
from s  to s  is monotone, i.e., of shortest possible total length. 0 c

– HBest: try all shortest connections from sc to edges in T0, as well as from sc to s0. 
Perform timing analysis on each of these trees and return the one with the 
lowest delay at sc. 

The time complexity of the critical-sink Steiner heuristic is dominated by the 
construction of T0, or by the timing analysis in the HBest variant. Though HBest 
achieves the best routing solution in terms of timing slack, the other two variants 
may also provide acceptable combinations of runtime efficiency and solution quality. 
For high-performance designs, even more comprehensively timing-driven routing 
tree constructions are needed. Available slack along each source-sink timing arc is 
best reflected by the required arrival time (RAT) at each sink. In the following RAT 
tree problem formulation, each sink of the signal net has a required arrival time 
which should not be exceeded by the source-sink delay in the routing tree. 

RAT tree problem. For a signal net with source s0 and sink set S, find a 
minimum-cost routing tree T such that 

 
0),()(min 0 sstsRAT

Ss
 

Here, RAT(s) is the required arrival time for sink s, and t(s0,s) is the signal delay in T 
from source s0 to sink s. Effective algorithms to solve the RAT tree problem can be 
found in [8.19]. More information on timing-driven routing can be found in [8.3]. 
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A gate with larger size has lower output resistance and can drive a larger load 
capacitance with smaller load-dependent delay. However, a gate with larger size 
also has a larger intrinsic delay due to the parasitic output capacitance of the gate 
itself. Thus, when the load capacitance is large, 

t(vC) < t(vB) < t(vA) 

because the load-dependent delay dominates. When the load capacitance is small, 

t(vA) < t(vB) < t(vC) 

because the intrinsic delay dominates. Increasing size(v) also increases the gate 
capacitance of v, which, in turn, increases the load capacitance seen by fanin drivers. 
Although this relationship is not shown, the effects of gate capacitance on the delays 
of fanin gates will be considered below. 

Resizing transformations adjust the size of v to achieve a lower delay (Fig. 8.13). Let 
C(p) denote the load capacitance of pin p. In Fig. 8.13 (top), the total load 
capacitance drive by gate v is C(d) + C(e) + C(f ) = 3 fF. Using gate size A (Fig. 
8.13, lower left), the gate delay will be t(vA) = 40 ps, assuming the load-delay 
relations in Fig. 8.12. However, using gate size C (Fig. 8.13, lower right), the gate 
delay is t(vC) = 28 ps. Thus, for a load capacitance value of 3 fF, gate delay is 
improved by 12 ps if vC is used instead of vA. Recall that vC has larger input 
capacitance at pins a and b, which increases delays of fanin gates. Details of resizing 
strategies can be found in [8.34]. More information on gate sizing can be found in 
[8.33]. 
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Fig. 8.13 Resizing gate v from gate size A to size C (Fig. 8.12) can achieve a lower gate delay. 

 8.5.2 Buffering 

A buffer is a gate, typically two serially-connected inverters, that regenerates a 
signal without changing functionality. Buffers can (1) improve timing delays 
either by speeding up the circuit or by serving as delay elements, and (2) modify 
transition times to improve signal integrity and coupling-induced delay variation. 
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In Fig. 8.14 (left), the (actual) arrival time at fanout pins d-h for gate vB is t(vB) = 
45 ps. Let pins d and e be on the critical path with required arrival times below 35 
ps, and let the input pin capacitance of buffer y be 1 fF. Then, adding y reduces the 
load capacitance of vB from 5 to 3, and reduces the arrival times at d and e to t(vB) 
= 33 ps. That is, the delay of gate vB is improved by using y to shield vB from 
some portion of its initial load capacitance. In Fig. 8.14 (right), after y is inserted, 
the arrival time at pins f, g and h becomes t(vB) + t(y) = 33 + 33 = 66 ps. 
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Fig. 8.14 Improving t(vB) by inserting buffer y to partially shield vB’s load capacitance. 

A major drawback of buffering techniques is that they consume the available area 
and increase power consumption. Despite the judicious use of buffering by 
modern tools, the number of buffers has been steadily increasing in large designs 
due to technology scaling trends, where interconnect is becoming relatively slower 
compared to gates. In modern high-performance designs, buffers can comprise 
10-20% of all standard cell instances, and up to 44% in some designs [8.31]. 

8.5.3 Netlist Restructuring  

Often, the netlist itself can be modified to improve timing. Such changes should 
not alter the functionality of the circuit, but can use additional gates or modify 
(rewire) the connections between existing gates to improve driving strength and 
signal integrity. This section discusses common netlist modifications. More 
advanced methods for restructuring can be found in [8.25]. 

Cloning (Replication). Duplicating gates can reduce delay in two situations – (1) 
when a gate with significant fanout may be slow due to its fanout capacitance, and 
(2) when a gate’s output fans out in two different directions, making it impossible 
to find a good placement for this gate. The effect on cloning (replication) is to split 
the driven capacitance between two equivalent gates, at the cost of increasing the 
fanout of upstream gates. 

In Fig. 8.15 (left), using the same load-delay relations of Fig. 8.12, the gate delay 
t(vB) of gate vB is 45 ps. However, In Fig. 8.15 (right), after cloning, t(vA) = 30 ps 
and t(vB) = 33 ps. Cloning also increases the input pin capacitance seen by the 
fanin gates that generate signals a and b. In general, cloning allows more freedom 
for local placement, e.g., the instance vA can be placed close to sinks d and e, 
while the instance vB can be placed close to sinks f, g and h, with the tradeoff of 
increased congestion and routing cost. 
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Fig. 8.15 Cloning or duplicating gates to reduce maximum local fanout. 

When the downstream capacitance is large, buffering may be a better alternative 
than cloning because buffers do not increase the fanout capacitance of upstream 
gates. However, buffering cannot replace placement-driven cloning. An exercise 
at the end of this chapter expands further upon this concept. 

The second application of cloning allows the designers to replicate gates and place 
each clone closer to its downstream logic. In Fig. 8.16, v drives five signals d-h, 
where signals d, e and f are close, and g and h are located much farther away. To 
mitigate the large fanout of v and the large interconnect delay caused by remote 
signals, gate v is cloned. The original gate v remains with only signals d, e, and f, 
and a new copy of v (v’) is placed closer to g and h. 
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Fig. 8.16 Cloning transformation: a driving gate is duplicated to reduce remoteness of its fanouts. 

Redesign of fanin tree. The logic design phase often provides a circuit with the 
minimum number of logic levels. Minimizing the maximum number of gates on a 
path between sequential elements tends to produce a balanced circuit with similar 
path delays from inputs to outputs. However, input signals may arrive at varied 
times, so the minimum-level circuit may not be timing-optimal. In Fig. 8.17, the 
arrival time AAT(f ) of pin f is 6 no matter how the input signals are mapped to 
gate input pins. However, the unbalanced network has a shorter input-output path 
which can be used by a later-arriving signal, where AAT(f ) = 5. 

(1)

(1)

(1)

(1)
(1)

(1)
a <4>
b <3>

c <1>
d <0>

f <6>

a <4>
b <3>
c <1>
d <0>

f <5>

 
Fig. 8.17 Redesigning a fanin tree to have smaller input-to-output delay. The arrival times are 
denoted in angular brackets, and the delay are denoted in parentheses. 
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Redesign of fanout tree. In the same spirit as Fig. 8.17, it is possible to improve 
timing by rebalancing the output load capacitance in a fanout tree so as to reduce 
the delay of the longest path. In Fig. 8.18, buffer y1 is needed because the load 
capacitance of critical path path1 is large. However, by redesigning the fanout tree 
to reduce the load capacitance of path1, use of the buffer y1 can be avoided. 
Increased delay on path2 may be acceptable if that path is not critical even after 
the load capacitance of buffer y2 is increased. 

path1

path2

(1)

y1 (1)

y2 (1)

path1

path2

y2 (1)

(1) (1) (1)

 
Fig. 8.18 Redesign of a fanout tree to reduce the load capacitance of path1. 

Swapping commutative pins. Although the input pins of, e.g., a two-input 
NAND gate are logically equivalent, in the actual transistor network they will 
have different delays to the output pin. When the pin node convention is used for 
STA (Sec. 8.2.1), the internal input-output arcs will have different delays. Hence, 
path delays can change when the input pin assignment is changed. The rule of 
thumb for pin assignment is to assign a later- (sooner-) arriving signal to an 
equivalent input pin with shorter (longer) input-output delay.  

In Fig. 8.19, the internal timing arcs are labeled with corresponding delays in 
parentheses, and pins a, b, c and f are labeled with corresponding arrival times in 
angular brackets. In the circuit on the left, the arrival time at f can be improved 
from 5 to 3 by swapping pins a and c. 

(1)
(1)

(2)
(1)

(1)
(1)

(2)
(1)

a <0>

b <1>

c <2> a <0>

b <1>
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Fig. 8.19 Swapping commutative pins to reduce the arrival time at f. 

More advanced techniques for pin assignment and swapping of commutative pins 
can be found in [8.9]. 
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Gate decomposition. In CMOS designs, a gate with multiple inputs usually has 
larger size and capacitance, as well as a more complex transistor-level network 
topology that is less efficient with respect to speed metrics such as logical effort 
[8.32]. Decomposition of multiple-input gates into smaller, more efficient gates 
can decrease delay and capacitance while retaining the same Boolean 
functionality. Fig. 8.20 illustrates the decomposition of a multiple-input gate into 
equivalent networks of two- and three-input gates. 

 
Fig. 8.20 Gate decomposition of a complex network into alternative networks. 

Boolean restructuring. In digital circuits, Boolean logic can be implemented in 
multiple ways. In the example of Fig. 8.21, f(a,b,c) = (a + b)(a + c)  a + bc 
(distributive law) can be exploited to improve timing when two functions have 
overlapping logic or share logic nodes. The figure shows two functions x = a + bc 
and y = ab + c with arrival times AAT(a) = 4, AAT(b) = 1, and AAT(c) = 2. When 
implemented using a common node a + c, the arrival times of x and y are AAT(x) = 
AAT(y) = 6. However, implementing x and y separately achieves AAT(x) = 5 and 
AAT(y) = 6. 
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Fig. 8.21 Restructuring using logic properties, e.g., the distributive law, to improve timing. 

Reverse transformations. Timing optimizations such as buffering, sizing, and 
cloning increase the original area of the design. This change can cause the design to 
be illegal, as some new cells can now overlap with others. To maintain legality, 
either (1) perform the respective reverse operations unbuffering, downsizing, and 
merging, or (2) perform placement legalization after all timing corrections. 
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Performance-driven physical design flow. Extending the baseline design flow, 
contemporary industrial flows are typically built around static timing analysis and 
seek to minimize the amount of change required to close on timing. Some flows start 
timing-driven optimizations as early as the chip planning stage, while others do not 
account for timing until detailed placement to ensure accuracy of timing results. This 
section discusses the timing-driven flow illustrated in Fig. 8.26 with gray boxes. 
Advanced methods for physical synthesis are found in [8.4]. 

Chip planning and logic design. Starting with a high-level design, performance-  
driven chip planning generates the I/O placement of the pins and rectangular blocks 
for each circuit module while accounting for block-level timing, and the power 
supply network. Then, logic synthesis and technology mapping produces a netlist 
based on delay budgets. 

Performance-driven chip planning. Once the locations and shapes of the blocks are 
determined, global routes are generated for each top-level net, and buffers are 
inserted to better estimate timing [8.2]. Since chip planning occurs before global 
placement or global routing, there is no detailed knowledge of where the logic cells 
will be placed within each block or how they will be connected. Therefore, buffer 
insertion makes optimistic assumptions. 

After buffering, STA checks the design for timing errors. If there are a sufficient 
number of violations, then the logic blocks must be re-floorplanned. In practice, 
modifications to existing floorplans to meet timing are performed by experienced 
designers with little to no automation. Once the design has satisfied or mostly met 
timing constraints, the I/O pins can be placed, and power (VDD) and ground (GND) 
supply rails can be routed around floorplan blocks. 

Timing budgeting. After performance-driven floorplanning, delay budgeting sets 
upper bounds on setup (long path) timing for each block. These constraints guide 
logic synthesis and technology mapping to produce a performance-optimized 
gate-level netlist, using standard cells from a given library. 

Block-level or top-level global placement. Starting at global placement, timing-
driven optimizations can be performed at the block level, where each individual 
block is optimized, or top level, where transformations are global, i.e., cross block 
boundaries, and all movable objects are optimized.4 Block-level approaches are 
useful for designs that have many macro blocks or intellectual properties (IPs) that 
have already been optimized and have specific shapes and sizes. Top-level 
approaches are useful for designs that have more freedom or do not reuse 
previously-designed logic; a hierarchical methodology offers more parallelism and 
is more common for large design teams. 

                                                           
4 In hierarchical design flows, different designers concurrently perform top-level placement and 

block-level placement. 
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Physical synthesis. After buffer insertion, physical synthesis applies several timing 
correction techniques (Sec. 8.5) such as operations that modify the pin ordering or 
the netlist at the gate level, to improve delay on critical paths. 

Timing correction. Methods such as gate sizing increase (decrease) the size of a 
physical gate to speed up (slow down) the circuit. Other techniques such as redesign 
of fanin and fanout trees, cloning, and pin swapping reduce timing by rebalancing 
existing logic to reduce load capacitance for timing-critical nets. Transformations 
such as gate decomposition and Boolean restructuring modify logic locally to 
improve timing by merging or splitting logic nodes from different signals. After 
physical synthesis, another timing check is performed. If it fails, another pass of 
timing correction attempts to fix timing violations. 

Routing. After physical synthesis, all combinational and sequential elements in the 
design are connected during global and clock routing, respectively. First, the 
sequential elements of the design, e.g., flip-flop and latches, are legalized (Sec. 4.4). 
Then, clock network synthesis generates the clock tree or mesh to connect all 
sequential elements to the clock source. Modern clock networks require a number of 
large clock buffers;5 performing clock-network design before detailed placement 
allows these buffers to be placed appropriately. Given the clock network, the design 
can be checked for hold-time (short path) constraints, since the clock skews are now 
known, whereas only setup (long path) constraints could be checked before. 

Layer assignment. After clock-network synthesis, global routing assigns global route 
topologies to connect the combinational elements. Then, layer assignment matches 
each global route to a specific metal layer. This step improves the accuracy of delay 
estimation because it allows the use of appropriate resistance-capacitance (RC) 
parasitics for each net. Note that clock routing is performed before signal-net routing 
when the two share the same metal layers – clock routes take precedence and should 
not detour around signal nets. 

Timing-driven detailed placement. The results of global routing and layer 
assignment provide accurate estimates of wire congestion, which is then used by a 
congestion-driven detailed placer [8.10][8.35]. The cells are (1) spread to remove 
overlap among objects and decrease routing congestion, (2) snapped to standard-cell 
rows and legal cell sites, and then (3) optimized by swaps, shifts and other local 
changes. To incorporate timing optimizations, either perform (1) non-timing-driven 
legalization followed by timing-driven detailed placement, or (2) perform 
timing-driven legalization followed by non-timing-driven detailed placement. After 
detailed placement, another timing check is performed. If timing fails, the design 
could be globally re-routed or, in severe cases, globally re-placed. 

To give higher priority to the clock network, the sequential elements can be 
legalized first, and then followed by global and detailed routing. With this approach, 

                                                           
5 These buffers are legalized immediately when added to the clock network. 
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signal nets must route around the clock network. This is advantageous for 
large-scale designs, as clock trees are increasingly becoming a performance 
bottleneck. A variant flow, such as the industrial flow described in [8.28], first fully 
legalizes the locations of all cells, and then performs detailed placement to recover 
wirelength. 

Another variant performs detailed placement before clock network synthesis, and 
then is followed by legalization and several optimization steps.6 After the clock 
network has been synthesized, another pass of setup optimization is performed. Hold 
violations may be addressed at this time or, optionally, after routing and initial STA. 

Timing-driven routing. After detailed placement, clock network synthesis and 
post-clock network optimization, the timing-driven routing phase aims to fix the 
remaining timing violations. Algorithms discussed in Sec. 8.4 include generating 
minimum-cost, minimum-radius trees for critical nets (Secs. 8.4.1-8.4.2), and 
minimizing the source-to-sink delay of critical sinks (Sec. 8.4.3).  

If there are still outstanding timing violations, further optimizations such as 
re-buffering and late timing corrections are applied. An alternative is to have 
designers manually tune or fix the design by relaxing some design constraints, using 
additional logic libraries, or exploiting design structure neglected by automated tools. 
After this time-consuming process, another timing check is performed. If timing is 
met, then the design is sent to detailed routing, where each signal net is assigned to 
specific routing tracks. Typically, incremental STA-driven Engineering Change 
Orders (ECOs) are applied to fix timing violations after detailed placement; this is 
followed by ECO placement and routing. Then, 2.5D or 3D parasitic extraction 
determines the electromagnetic impact on timing based on the routes’ shapes and 
lengths, and other technology-dependent parameters. 

Signoff. The last few steps of the design flow validate the layout and timing, as well 
as fix any outstanding errors. If a timing check fails, ECO minimally modifies the 
placement and routing such that the violation is fixed and no new errors are 
introduced. Since the changes made are very local, the algorithms for ECO 
placement and ECO routing differ from the traditional place and route techniques 
discussed in Chaps. 4-7. 

After completing timing closure, manufacturability, reliability and electrical 
verification ensure that the design can be successfully fabricated and will function 
correctly under various environmental conditions. The four main components are 
equally important and can be performed in parallel to improve runtime. 

– Design Rule Checking (DRC) ensures that the placed-and-routed layout meets 
all technology-specified design rules e.g., minimum wire spacing and width. 

                                                           
6 These include post-clock-network-synthesis optimizations, post-global-routing optimizations, and 

post-detailed-routing optimizations. 



258 8 Timing Closure 

– Layout vs. Schematic (LVS) checking ensures the placed-and-routed layout 
matches the original netlist. 

– Antenna Checks seek to detect undesirable antenna effects, which may damage 
a transistor during plasma-etching steps of manufacturing by collecting excess 
charge on metal wires that are connected to PN-junction nodes. This can occur 
when a route consists of multiple metal layers and a charge is induced on a 
metal layer during fabrication. 

– Electric Rule Checking (ERC) finds all potentially dangerous electric 
connections, such as floating inputs and shorted outputs. 

Once the design has been physically verified, optical-lithography masks are 
generated for manufacturing. 

8.7 8.7 Conclusions 

This chapter explained how to combine timing optimizations into a comprehensive 
physical design flow. In practice, the flow described in Sec. 8.6 (Fig. 8.26) can be 

odified based on several factors, including m
 
– Design type. 

– ASIC, microprocessor, IP, analog, mixed-mode. 
Datapath-heavy specifications may require specialized tools for structured 
placement or manual placement. Datapaths typically h

– 
ave shorter wires 

er buffers for high-performance layout. 
– 

te 

– d

ome 
er at others, to adjust timing. 

– Add
dustrial ASICs 

er different 

– 
– 

lumped-capacitance models are inadequate for performance estimation. 

and require few
Design objectives. 
– High-performance, low-power or low-cost. 

ance optimizations, such as buffering and ga– Some high-perform
sizing, increase circuit area, thus increasing circuit power and chip cost. 

Ad itional optimizations. 
– Retiming shifts locations of registers among combinational gates to better 

balance delay. 
– Useful skew scheduling, where the clock signal arrives earlier at s

flip-flops and lat
– Adaptive body-biasing can improve the leakage current of transistors. 

itional analyses. 
– Multi-corner and multi-mode static timing analysis, as in

and microprocessors are often optimized to operate und
temperatures and supply voltages. 

– Thermal analysis is required for high-performance CPUs. 
Technology node, typically specified by the minimum feature size. 

Nodes < 180 nm require timing-driven placement and routing flows, as 
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– 
delay increase 

 in the opposite (same) direction. 

detailed routing, known 
sure manufacturability. 

– 
– 

–

– D si es. 
– To shorten time-to-market, one can leverage a large design team by 

cessary for 
FPGAs, but technology mapping is more challenging, as it affects the area and 

in device 
parameters [8.22]. Further increase in transistor counts may require integrating 
multiple chips into three-dimensional integrated circuits, thus changing the geometry 
of fundamental physical design optimizations [8.36]. Nevertheless, the core 
optimizations described in this chapter will remain vital in chip design. 

Nodes < 130 nm require timing analysis with signal integrity, i.e., 
interconnect coupling capacitances and the resulting 
(decrease) of a given victim net when a neighboring aggressor net 
switches simultaneously

– Nodes < 90 nm require additional resolution enhancement techniques 
(RET) for lithography. 

– Nodes < 65 nm require power-integrity (e.g., IR drop-aware timing, 
electromigration reliability) analysis flows. 

– Nodes < 45 nm require additional statistical power-performance tradeoffs 
tor level. at the transis

– Nodes < 32 nm impose significant limitations on 
as restricted design rules (RDRs), to en

Available tools. 
In-house software, commercial EDA tools [8.34]. 

 Design size and the extent of design reuse. 
– Larger designs often include more global interconnect, which may 

become a performance bottleneck and typically requires buffering. 
– IP blocks are typically represented by hard blocks during floorplanning. 

e gn team size, required time-to-market, available computing resourc

partitioning the design into blocks and assigning blocks to teams. 
– After floorplanning, each block can be laid out in parallel; however, flat 

optimization (no partitioning) sometimes produces better results. 
 
Reconfigurable fabrics such as FPGAs require less attention to buffering, due to 
already-buffered programmable interconnect. Wire congestion is often negligible for 
FPGAs because interconnect resources are overprovisioned. However, FPGA 
detailed placement must satisfy a greater number of constraints than placement for 
other circuit types, and global routing must select from a greater variety of 
interconnect types. Electrical and manufacturability checks are unne

timing to a greater extent, and can benefit more from the use of physical information. 
Therefore, modern physical-synthesis flows for FPGAs perform global placement, 
often in a trial mode, between logic synthesis and technology mapping. 

Physical design flows will require additional sophistication to support increasing 
transistor densities in semiconductor chips. The advent of future technology nodes – 
28 nm, 22 nm and 16 nm – will bring into consideration new electrical and 
manufacturing-related phenomena, while increasing uncertainty 
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Exercise 4: Timing Optimization 
List at least two timing optimizations covered only in this chapter (not mentioned 
beforehand). Describe these optimizations in your own words and discuss scenarios 
in which (1) they can be useful and (2) they can be harmful. 
 
Exercise 5: Cloning vs. Buffering 
List and explain scenarios where cloning results in better timing improvements than 
buffering, and vice-versa. Explain why both methods are necessary for 
timing-driven physical synthesis. 
 
Exercise 6: Physical Synthesis 
In terms of timing corrections such as buffering, gate sizing, and cloning, when are 
their reverse transformations useful? In what situations will a given timing 
correction cause the design to be illegal? Explain for each timing correction. 
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Exercise 3: FM Algorithm 
Pass 2, iteration i = 1 
Gain values: g1(a) = -1, g1(b) = -1, g1(c) = 0, g1(d) = 0, g1(e) = -1. 
Cells c and d have maximum gain value g1 = 0. 
Balance criterion after moving cell c: area(A) = 4. 
Balance criterion after moving cell d: area(A) = 1. 
Cell c meets the balance criterion better. 
Move cell c, updated partitions: A1 = {d}, B1 = {a,b,c,e}, with fixed cells {c}. 
 
Pass 2, iteration i = 2 
Gain values: g2(a) = -2, g2(b) = -2, g2(d) = 2, g2(e) = -1. 
Cell d has maximum gain g2 = 2, area(A) = 0, balance criterion is violated. 
Cell e has next maximum gain g2 = -1, area(A) = 9, balance criterion is met. 
Move cell e, updated partitions: A2 = {d,e}, B2 = {a,b,c}, with fixed cells {c,e}. 
 
Pass 2, iteration i = 3 
Gain values: g3(a) = 0, g3(b) = -2, g3(d) = 2. 
Cell d has maximum gain g3 = 2, area(A) = 5, balance criterion is met. 
Move cell d, updated partitions: A3 = {e}, B3 = {a,b,c,d}, with fixed cells {c,d,e}. 
 
Pass 2, iteration i = 4 
Gain values: g4(a) = -2, g4(b) = -2. 
Cells a and b have maximum gain g4 = -2.  
Balance criterion after moving cell a: area(A) = 7. 
Balance criterion after moving cell b: area(A) = 9.  
Cell a meets the balance criterion better. 
Move cell a, updated partitions: A4 = {a,e}, B4 = {b,c,d}, with fixed cells {a,c,d,e}.  
 
Pass 2, iteration i = 5 
Gain values: g5(b) = 1. 
Balance criterion after moving b: area(A) = 11. 
Move cell b, updated partitions: A5 = {a,b,e}, B5 = {c,d}, with fixed cells {a,b,c,d,e}.  
 
Find best move sequence <c1 … cm> 
 G1 = g1 = 0 
 G2 = g1 + g2 = -1 
 G3 = g1 + g2 + g3 = 1 
 G4 = g1 + g2 + g3 + g4 = -1 
 G5 = g1 + g2 + g3 + g4 + g5 = 0 
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Maximum positive gain  = 1 occurs when m = 3. 
Cells c, e and d are moved. 
 
The result after Pass 2 is illustrated on the right. N1

N2

N3

N4

N5B

Aa

b c

d

e
 

Exercise 4: System and Netlist Partitioning 
One key difference is that traditional min-cut partitioning only accounts for mini-
mizing net costs across k partitions. FPGA-based partitioning involves first deter-
mining the number of devices and then minimizing the total communication be-
tween devices as well as the device logic. For instance, traditional min-cut 
partitioning does not distinguish how many devices a p-pin net is split across. Fur-
thermore, min-cut partitioning does not account for FPGA reconfigurability. 

Exercise 5: Multilevel FM Partitioning 
One major advantage is scalability. Traditional FM partitioning scales to ~200 nodes 
whereas multilevel FM can efficiently handle large-scale modern designs. The 
coarsening stage clusters nodes together, thereby reducing the number of nodes that 
FM interacts with. FM produces near-optimal solutions for netlists with fewer than 
200 nodes, but solution quality deteriorates for larger netlists. In contrast, multilevel 
FM produces great solution quality without sacrificing large amounts of runtime. 

Exercise 6: Clustering 
Nodes that have either single connections to multiple other nodes or multiple con-
nections to a single node are candidates for clustering. If a net net is contained 
within a single partition, then net does not contribute to the cut cost of the partition. 
If net spans multiple partitions, then one option is to place net’s cluster in the parti-
tion where net’s net weight is the greatest. Another option is to limit the size of the 
clusters such that the individual nodes of net are clustered within each partition. 
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Exercise 3: Force-Directed Placement 
Solve for xa
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Find the x- and y-coordinates of u3 – on segment between s2 and s4. 
tED(s2)= 0, tED(s4) = 0, C(s2) = 0.2, C(s4) = 0.2,  = 0.1,  = 0.01, L(s2,s4) = 8 
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zs2 ~ u3

 · L(s2,s4) = 0.5  8 = 4, x- and y-coordinates for u3 = (10,7). 
 
Find the capacitance C(u3). 
C(s2) = 0.2, C(s4) = 0.2,  = 0.01, L(s2,s4) = 8 
 
C(u3) = C(s2) + C(s4) +  · L(s2,s4) = 0.2 + 0.2 + 0.01  8 = 0.48 
 
Find the delay tED(u3). 
tED(s2) = 0, tED(s4) = 0, zs2 ~ u3

 = 0.5, zu3 ~ s4
 = 1  zs2 ~ u3

 = 1  0.5 = 0.5 
 
R(s2 ~ u3) =  · zs2 ~ u3

 · L(s2,s4) = 0.1 · 0.5 · 8 = 0.4 
C(s2 ~ u3) =  · zs2 ~ u3

 · L(s2,s4) = 0.01 · 0.5 · 8 = 0.04 
 
R(u3 ~ s4) =  · zu3 ~ s4

 · L(s2,s4) = 0.1 · 0.5 · 8 = 0.4 
C(u3 ~ s4) =  · zu3 ~ s4

 · L(s2,s4) = 0.01 · 0.5 · 8 = 0.04 
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Find the x- and y-coordinates of u1 – on segment between u2 and u3. 
tED(u2) = 0.0945, tED(u3) = 0.088, C(u2) = 0.5, C(u3) = 0.48,  = 0.1,  = 0.01 
L(u2,u3) = |xu2

  xu3
| + |yu2

  yu3
| = |4  10| + |4  7| = 9 
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Exercise 3: Buffer Insertion for Timing Improvement 
With Fig. 8.12, the delay of each gate can be calculated with its load capacitance. 
Buffer y always has a load capacitance of 2.5 fF. 
 
Buffer y with size A: vB has load capacitance = 2.5 fF, which results in t(vB) = 30 ps. 
AAT(c) = t(vB) + t(yA) = 30 + 35 = 65 ps. 
 
Buffer y with size B, vB has load capacitance = 3 fF, which results in t(vB) = 33 ps. 
AAT(c) = t(vB) + t(yB) = 33 + 30 = 63 ps. 
 
Buffer y with size C: vB has load capacitance = 4 fF, which results in t(vB) = 39 ps. 
AAT(c) = t(vB) + t(yC) = 39 + 27 = 66 ps. 
 
The best size for buffer y is B. 

Exercise 4: Timing Optimization 
1. Delay budgeting: assigning upper bounds on timing or length for nets. These 

limits restrict the maximum amount of time a signal travels along critical nets. 
However, if too many nets are constrained, this can lead to wirelength degrada-
tion or highly-congested regions. 

2. Physical synthesis, such as gate sizing and cloning. Sizing up gates can improve 
the delay on specific paths at the cost of increased area and power. Cloning can 
mitigate long interconnect delays by duplicating gates or signals at locations 
closer to the desired location. 

Exercise 5: Cloning vs. Buffering 
Cloning is more advantageous than buffering when the same timing-critical signal is 
needed in multiple locations that are relatively far apart. The signal can just be re-
produced locally. This can save on area and routing resources. Buffering can be 
more advantageous than cloning since buffers do not increase the upstream capaci-
tance of the gate, which is helpful in terms of circuit delay and power. 

Exercise 6: Physical Synthesis 
Buffer removal (vs. buffer insertion): If the placement or routing of the buffered net 
changes, some buffers may no longer be necessary to meet timing constraints. Alter-
natively, buffers can be removed if the net is not timing-critical or has positive slack. 
 
Gate downsizing (vs. gate upsizing): If the path that goes through the gate can be 
slowed down without slack violations, then the gate can be downsized. 
 
Merging (vs. cloning): If the netlist, placement or routing of the design changes, 
some nodes could be removed due to redundancy. 
 
For all three transforms, increasing the area can cause illegality (overlap) in the 
placement. Therefore, the reverse transforms can be necessary to meet area con-
straints or relax timing for non-critical paths. 
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