
HTMI5 and CSS3
Develop with Tomorrow's Standards Today

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pragmatic
Bookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear In this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed In Initial capital letters or In all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken In the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of Information (Including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more Information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book Includes:

Editor: Susannah Pfalzer
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wlmpsett
Layout: Steve Peter
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored In a retrieval system, or transmit-
ted, In any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed In the United States of America.

ISBN-10: 1-934356-68-9

ISBN-13: 978-1-934356-68-5

Printed on acid-free paper.

P1.0 printing, December 2010

Version: 2011-1-4

Contents
Acknowledgments 8

Preface 10
HTML5: The Platform vs. the Specification 10
How This Works 11
What's in This Book 12
Prerequisites 12
Online Resources 13

1 An Overview of HTML5 and CSS3 14
1.1 A Platform for Web Development 14
1.2 Backward Compatibility 17
1.3 The Road to the Future Is Bumpy 17

Part I—Improving User Interfaces 23

2 New Structural Tags and Attributes 24
Tip 1 Redefining a Blog Using Semantic Markup 27
Tip 2 Creating Pop-up Windows with Custom Data Attri-

butes 40

3 Creating User-Friendly Web Forms 45
Tip 3 Describing Data with New Input Fields 48
Tip 4 Jumping to the First Field with Autofocus 56
Tip 5 Providing Hints with Placeholder Text 58
Tip 6 In-Place Editing with contenteditable 65

C O N T E N T S M 6

4 Making Better User Interfaces with CSS3 72
Tip 7 Styling Tables with Pseudoclasses 74
Tip 8 Making Links Printable with : after and content. . 83
Tip 9 Creating Multicolumn Layouts 87
Tip 10 Building Mobile Interfaces with Media Queries . . 94

5 Improving Accessibility 97
Tip 11 Providing Navigation Hints with ARIA Roles 99
Tip 12 Creating an Accessible Updatable Region 104

Part II—New Sights and Sounds 110

6 Drawing on the Canvas 111
Tip 13 Drawing a Logo 112
Tip 14 Graphing Statistics with RGraph 119

7 Embedding Audio and Video 127
7.1 A Bit of Histoiy 128
7.2 Containers and Codecs 129
Tip 15 Working with Audio 133
Tip 16 Embedding Video 137

8 Eye Candy 144
Tip 17 Rounding Rough Edges 146
Tip 18 Working with Shadows, Gradients, and Transfor-

mations 154
Tip 19 Using Real Fonts 165

Part III—Beyond HTML5 171

9 Working with Client-Side Data 172
Tip 20 Saving Preferences with localStorage 175
Tip 21 Storing Data in a Client-Side Relational Database 181
Tip 22 Working Offline 193

10 Playing Nicely with Other APIs 196
Tip 23 Preserving Histoiy 197
Tip 24 Talking Across Domains 200
Tip 25 Chatting with Web Sockets 207
Tip 26 Finding Yourself: Geolocation 214

Report erratum

C O N T E N T S M 7

11 Where to Go Next 218
11.1 CSS3 Transitions 219
11.2 Web Workers 221
11.3 Native Drag-and-Drop Support 223
11.4 WebGL 229
11.5 Indexed Database API 229
11.6 Client-Side Form Validation 230
11.7 Onward! 231

A Features Quick Reference 232
A. 1 New Elements 232
A. 2 Attributes 233
A. 3 Forms 233
A. 4 Form Field Attributes 234
A. 5 Accessibility 235
A. 6 Multimedia 235
A. 7 CSS3 235
A. 8 Client-Side Storage 238
A. 9 Additional APIs 238

B jQuery Primer 240
B.l Loading jQueiy 240
B.2 jQueiy Basics 241
B.3 Methods to Modify Content 241
B.4 Creating Elements 244
B.5 Events 244
B.6 Document Ready 245

C Encoding Audio and Video 247
C.l Encoding Audio 247
C.2 Encoding Video for the Web 248

D Resources 249

D. 1 Resources on the Web 249

E Bibliography 251

Index 252

Report erratum

Acknowledgments
I jumped into writing this book before I had even finished my previous
one, and although most of my friends, family, and probably the pub-
lisher thought I was crazy for not taking a bit of a break, they have
all been so supportive. This book is a result of so many wonderful and
helpful people.

First, I can't thank Dave Thomas and Andy Hunt enough for giving
me the opportunity to work with them a second time. Their feedback
throughout this process has helped shape this book quite a bit, and
I'm honored to be a Pragmatic Bookshelf author.

Daniel Steinberg helped me get this book started, signed, and on the
right track early on, and I'm very grateful for all the support he gave
and the things he taught me about how to write clearly. Whenever I
write, I still hear his voice guiding me in the right direction.

Daniel was unable to continue working with me on this book, but he
left me in unbelievably good hands. Susannah Pfalzer has been so
amazingly helpful throughout this entire process, keeping me on track,
pushing me to do better, and always knowing exactly the right ques-
tions to ask me at exactly the right times. Without Susannah, this book
wouldn't be nearly as good.

My technical reviewers for both rounds were extremely helpful in shap-
ing a lot of the content and its presentation. Thank you, Aaron Godin,
Ali Raza, Charles Leffingwell, Daniel Steinberg, David Kulberg, Don
Henton, Doug Rhoten, Edi Schlechtinger, Jon Mischo, Jon Oebser,
Kevin Gisi, Marc Harter, Mark Nichols, Noel Rappin, Paul Neibarger,
Sam Elliott, Sean Canton, Srdjan Pejic, Stephen Wolff, Todd Dahl, and
Erik Watson.

ACKNOWLEDGMENTS M 9

Special thanks to the fine folks at ZenCoder for assisting with the video
encoding for the sample files and for making it much easier for content
producers to prepare video for HTML5.

Thank you to my business associates Chris Johnson, Chris Warren,
Mike Weber, Jon Kinney, Adam Ludwig, Gary Crabtree, Carl Hoover,
Josh Anderson, Austen Ott, and Nick Lamuro for the support on this
and many other projects. Special thanks to Erich Tesky for the reality
checks and for being a great friend when things got frustrating.

I also want to thank my dad for always expecting me to do my best and
for pushing me to not give up when things looked impossible. That's
made anything possible.

Finally, my wonderful wife, Carissa, and my daughters, Ana and Lisa,
have my eternal gratitude and love. They gave up a lot of weekends
and evenings so that I could hammer away in the office writing. Every
time I got stuck, Carissa's constant reassurance that I'd "figure it out"
always seemed to make it better. I am extremely lucky to have them in
my corner.

Report erratum

I ™
Three months on the Web is like a year in real time.

Web developers pretty much think this way, since we're always hearing
about something new. A year ago HTML5 and CSS3 seemed so far off
in the distance, but already companies are using these technologies in
their work today, because browsers like Google Chrome, Safari, Firefox,
and Opera are starting to implement pieces of the specification.

HTML5 and CSS3 help lay the groundwork for the next generation of
web applications. They let us build sites that are simpler to develop,
easier to maintain, and more user-friendly. HTML5 has new elements
for defining site structure and embedding content, which means we
don't have to resort to extra markup or plug-ins. CSS3 provides ad-
vanced selectors, graphical enhancements, and better font support that
makes our sites more visually appealing without using font image re-
placement techniques, complex JavaScript, or graphics tools. Improved
accessibility support will improve Ajax applications for people with dis-
abilities, and offline support lets us start building working applications
that don't need an Internet connection.

In this book, you're going to find out about all of the ways you can use
HTML5 and CSS3 right now, even if your users don't have browsers
that can support all of these features yet. Before we get started, let's
take a second and talk about HTML5 and buzzwords.

HTML5: The Platform vs. the Specification

HTML5 is a specification that describes some new tags and markup, as
well as some wonderful JavaScript APIs, but it's getting caught up in
a whirlwind of hype and promises. Unfortunately, HTML5 the standard
has evolved into HTML5 the platform, creating an awful lot of confusion
among developers, customers, and even authors. In some cases, pieces

H o w THIS WORKS M 11

from the CSS3 specification such as shadows, gradients, and transfor-
mations are being called "HTML." Browser makers are trying to one-up
each other with how much "HTML5" they support. People are starting
to make strange requests like "My site will be in HTML5, right?"

For the majority of the book, we'll focus on the HTML5 and CSS3 speci-
fications themselves and how you can use the techniques they describe.
In the last part of the book, we'll look into a suite of closely related
specifications that were once part of HTML5 but are in use right now
on multiple platforms. These include Web SQL Databases, Geolocation,
and Web Sockets. Although these things aren't technically HTML5, they
can help you build incredible things when combined with HTML5 and
CSS3.

How This Works

Each chapter in this book focuses on a specific group of problems that
we can solve with HTML5 and CSS3. Each chapter has an overview
and a table summarizing the tags, features, or concepts covered in the
chapter. The main content of each chapter is broken apart into "tips,"
which introduce you to a specific concept and walk you through build-
ing a simple example using the concept. The chapters in this book are
grouped topically. Rather than group things into an HTML5 part and a
CSS3 part, it made more sense to group them based on the problems
they solve.

Each tip contains a section called "Falling Back," which shows you
methods for addressing the users who use browsers that don't offer
HTML5 and CSS3 support. We'll be using a variety of techniques to
make these fallbacks work, from third-party libraries to our own jQuery
plug-ins. These tips can be read in any order you like.

Finally, each chapter wraps up with a section called "The Future,"
where we discuss how the concept can be applied as it becomes more
widely adopted.

This book focuses on what you can use today. There are more HTML5
and CSS3 features that aren't in widespread use yet. You'll learn more
about them in the final chapter, Chapter 11, Where to Go Next, on
page 218.

Report erratum

W H A T ' S I N T H I S B O O K M 1 2

What's in This Book

We'll start off with a brief overview of HTML5 and CSS3 and take a look
at some of the new structural tags you can use to describe your page
content. Then we'll work with forms, and you'll get a chance to use some
of the form fields and features such as autofocus and placeholders.
From there, you'll get to play with CSS3's new selectors so you can
learn how to apply styles to elements without adding extra markup to
your content.

Then we'll explore HTML's audio and video support, and you'll learn
how to use the canvas to draw shapes. You'll also get to see how to
use CSS3's shadows, gradients, and transformations, as well as how to
learn how to work with fonts.

In the last section, we'll use HTML5's client-side features such as Web
Storage, Web SQL Databases, and offline support to build client-side
applications. We'll use Web Sockets to talk to a simple chat service,
and you'll see how HTML5 makes it possible to send messages and data
across domains. You'll also get a chance to play with the Geolocation
API and learn how to manipulate the browser's history. We'll then wrap
up by taking a look at a few things that aren't immediately useful but
will become important in the near future.

In Appendix A, on page 232, you'll find a listing of all the features cov-
ered in this book with a quick reference to those chapters that ref-
erence those features. We'll be using a lot of jQuery in this book, so
Appendix B, on page 240, gives you a short primer. You'll also find a
small appendix explaining how to encode audio and video files for use
with HTML5.

Prerequisites

This book is aimed primarily at web developers who have a good under-
standing of HTML and CSS. If you're just starting out, you'll still find
this book valuable, but I recommend you check out Designing with Web
Standards [Zel09] and my book, Web Design for Developers [>g0!].

I also assume that you have a basic understanding of JavaScript and
jQuery,1 which we will be using to implement many of our fallback

1. http://www.jquery.com

Report erratum

O N L I N E R E S O U R C E S M 13

solutions. Appendix B, on page 240, is a brief introduction to jQuery
that covers the basic methods we'll be using.

You'll need Firefox 3.6, Google Chrome 5, Opera 10.6, or Safari 5 to
test the code in this book. You'll probably need all of these browsers to
test everything we'll be building, since each browser does things a little
differently.

You'll also need a way to test your sites with Internet Explorer so you
can ensure that the fallback solutions we create actually work. If you
need to be able to test your examples in multiple versions of Internet
Explorer, you can download IETester for Windows, because it supports
IE 6, 7, and 8 in a single application. If you're not running Windows,
you should consider using a virtual machine like VirtualBox or VMware
or using a service like CrossBrowserTesting2 or MogoTest.3

Online Resources

The book's website4 has links to an interactive discussion forum as
well as errata for the book. You can also find the source code for all the
examples in this book linked on that page. Additionally, readers of the
eBook can click on the gray box above the code excerpts to download
that snippet directly

If you find a mistake, please create an entry on the Errata page so we
can get it addressed. If you have an electronic copy of this book, there
are links in the footer of each page that you can use to easily submit
errata.

Finally, be sure to visit this book's blog, Beyond HTML5 and CSS3.5 I'll
be posting related material, updates, and working examples from this
book.

Ready to go? Great! Let's get started with HTML5 and CSS3.

2. http://crossbrowsertesting.com/
3. http://www.mogotest.com/
4. http://www.pragprog.com/titles/bhh5/
5. http://www.beyondhtml5andcss3.com/

Report erratum

Chapter 1

An Overview nf HTMlii and CSS3
HTML51 and CSS32 are more than just two new standards proposed by
the World Wide Web Consortium (W3C) and its working groups. They
are the next iteration of technologies you use every day, and they're
here to help you build better modern web applications. Before we dive
into the deep details of HTML5 and CSS3, let's talk about some benefits
of HTML5 and CSS3, as well as some of the challenges we'll face.

1.1 A Platform for Web Development

A lot of the new features of HTML center around creating a better
platform for web-based applications. From more descriptive tags and
better cross-site and cross-window communication to animations and
improved multimedia support, developers using HTML5 have a lot of
new tools to build better user experiences.

More Descriptive Markup
Each version of HTML introduces some new markup, but never before
have there been so many new additions that directly relate to describ-
ing content. You'll learn about elements for defining headings, footers,
navigation sections, sidebars, and articles in Chapter 2, New Struc-
tural Tags and Attributes, on page 24. You'll also learn about meters,
progress bars, and how custom data attributes can help you mark up
data.

1. The HTML5 specification is at http://www.w3.org/TR/html5/.
2. CSS3 is split across multiple modules, and you can follow its progress at
http://www.w3.org/Style/CSS/current-work.

A PLATFORM FOR WEB DEVELOPMENT M 15

Multimedia with Less Reliance on Plug-ins
You don't need Flash or SUverlight for video, audio, and vector graph-
ics anymore. Although Flash-based video players are relatively simple
to use, they don't work on Apple's mobile devices. That's a significant
market, so you'll need to learn how to use non-Flash video alternatives.
In Chapter 7, Embedding Audio and Video, on page 127, you'll see how
to use HTML5 audio and video with effective fallbacks.

Better Applications
Developers have tried all kinds of things to make richer, more interac-
tive applications on the Web, from ActiveX controls to Flash. HTML5
offers amazing features that, in some cases, completely eliminate the
need for third-party technologies.

Cross-Document Messaging
Web browsers prevent us from using scripts on one domain to affect
or interact with scripts on another domain. This restriction keeps end
users safe from cross-site scripting, which has been used to do all sorts
of nasty things to unsuspecting site visitors.

However, this prevents all scripts from working, even when we write
them ourselves and know we can trust the content. HTML5 includes a
workaround that is both safe and simple to implement. You'll see how
to make this work in Talking Across Domains, on page 200.

Web Sockets
HTML5 offers support for Web Sockets, which give you a persistent
connection to a server. Instead of constantly polling a back end for
progress updates, your web page can subscribe to a socket, and the
back end can push notifications to your users. We'll play with that a bit
in Chatting with Web Sockets, on page 207.

Client-Side Storage
We tend to think of HTML5 as a web technology, but with the addition of
the Web Storage and Web SQL Database APIs, we can build applications
in the browser that can persist data entirely on the client's machine.
You'll see how to use those APIs in Chapter 9, Working with Client-Side
Data, on page 172.

Report erratum

A PLATFORM FOR WEB DEVELOPMENT M 16

Better Interfaces
The user interface is such an important part of web applications, and
we jump through hoops every day to make browsers do what we want.
To style a table or round corners, we either use JavaScript libraries
or add tons of additional markup so we can apply styles. HTML5 and
CSS3 make that practice a thing of the past.

Better Forms
HTML5 promises better user interface controls. For ages, we've been
forced to use JavaScript and CSS to construct sliders, calendar date
pickers, and color pickers. These are all defined as real elements in
HTML5, just like drop-downs, checkboxes, and radio buttons. You'll
learn about how to use them in Chapter 3, Creating User-Friendly Web
Forms, on page 45. Although this isn't quite ready yet for every browser,
it's something you need to keep your eye on, especially if you develop
web-based applications. In addition to improved usability without re-
liance on JavaScript libraries, there's another benefit—improved acces-
sibility. Screen readers and other browsers can implement these con-
trols in specific ways so that they work easily for the disabled.

Improved Accessibility
Using the new HTML5 elements in HTML5 to clearly describe our con-
tent makes it easier for programs like screen readers to easily consume
the content. A site's navigation, for example, is much easier to find if
you can look for the nav tag instead of a specific div or unordered list.
Footers, sidebars, and other content can be easily reordered or skipped
altogether. Parsing pages in general becomes much less painful, which
can lead to better experiences for people relying on assistive technolo-
gies. In addition, new attributes on elements can specify the roles of
elements so that screen readers can work with them easier. In Chap-
ter 5, Improving Accessibility, on page 97, you'll learn how to use those
new attributes so that today's screen readers can use them.

Advanced Selectors
CSS3 has selectors that let you identify odd and even rows of tables, all
selected check boxes, or even the last paragraph in a group. You can
accomplish more with less code and less markup. This also makes it
much easier to style HTML you can't edit. In Chapter 4, Making Bet-
ter User Interfaces with CSS3, on page 72, you'll see how to use these
selectors effectively.

Report erratum

BACKWARD COMPATIBILITY M 17

Visual Effects
Drop shadows on text and Images help bring depth to a web page, and
gradients can also add dimension. CSS3 lets you add shadows and
gradients to elements without resorting to background images or extra
markup. In addition, you can use transformations to round corners or
skew and rotate elements. You'll see how all of those things work in
Chapter 8, Eye Candy, on page 144.

1.2 Backward Compatibility

One of the best reasons for you to embrace HTML5 today is that it
works in most existing browsers. Right now, even in Internet Explorer
6, you can start using HTML5 and slowly transition your markup. It'll
even validate with the W3C's validation service (conditionally, of course,
because the standards are still evolving).

If you've worked with HTML or XML, you've come across the doctype
declaration before. It's used to tell validators and editors what tags and
attributes you can use and how the document should be formed. It's
also used by a lot of web browsers to determine how the browser will
render the page. A valid doctype often causes browsers to render pages
in "standards mode."

Compared to the rather verbose XHTML 1.0 Transitional doctype used
by many sites:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

the HTML5 doctype is ridiculously simple:

Down! oad html5_why/index.html

<!DOCTYPE html>

Place that at the top of the document, and you're using HTML5.

Of course, you can't use any of the new HTML5 elements that your
target browsers don't yet support, but your document will validate as
HTML5.

1.3 The Road to the Future Is Bumpy

There are a few roadblocks that continue to impede the widespread
adoption of HTML5 and CSS3. Some are obvious, and some are less so.

Report erratum

y/ Joe Asks...
^ But I Like My XHTML Self-Closing Tags. Can I Still Use Them?

You sure can! Many developers fell In love with XHTML because
of the stricter requirements on markup. XHTML documents
forced quoted attributes, made you self-close content tags,
required that you use lowercase attribute names, and brought
well-formed markup onto the World Wide Web. Moving to
HTML5 doesn't mean you have to change your ways. HTML5
documents will be valid If you use the HTML5-style syntax or the
XHTML syntax, but you need to understand the Implications of
using self-closing tags.

Most web servers serve HTML pages with the text/html MIME
type because of Internet Explorer's Inability to properly han-
dle the application/xml+xhtml MIME type associated with XHTML
pages. Because of this, browsers tend to strip off self-closing
tags because self-closing tags were not considered valid HTML
before HTML5. For example, if you had a self-closing script tag
above a div like this:
<script language="javascript" src="app1ication.js" />
<h2>Help</h2>

the browser would remove the self-closing forward slash, and
then the renderer would think that the h2 was within the script
tag, which never closes! This is why you see script tags coded
with an explicit closing tag, even though a self-closing tag is
valid XHTML markup.

So, be aware of possible issues like this if you do use self-
closing tags In your HTML5 documents, because they will be
served with the text/html MIME type. You can learn more
about this Issue and others at http://www.webdevout.net/articles/
beware-of-xhtml#myths.

T H E R O A D TO THE F U T U R E IS B U M P Y M 19

f <
Cake and Frosting

I like cake. I like pie better, but cake Is pretty good stuff. I prefer
cake with frosting on It.

When you're developing web applications, you have to keep
In mind that all the pretty user Interfaces and fancy JavaScript
stuff Is the frosting on the cake. Your website can be really good
without that stuff, and just like a cake, you need a foundation
on which to put your frosting.

I've met some people who don't like frosting. They scrape It
off the cake. I've also met people who use web applications
without JavaScript for varying reasons.

Bake these people a really awesome cake. Then add frosting.

Internet Explorer

Internet Explorer currently has the largest user base, and versions 8
and below have very weak HTML5 and CSS3 support. IE 9 improves this
situation, but it's not widely used yet. That doesn't mean we can't use
HTML5 and CSS3 in our sites anyway. We can make our sites work in
Internet Explorer, but they don't have to work the same as the versions
we develop for Chrome and Firefox. We'll just provide fallback solutions
so we don't anger users and lose customers. Accessibility
Our users must be able to interact with our websites, whether they are
visually impaired, hearing impaired, on older browsers, on slow con-
nections, or on mobile devices. HTML5 introduces some new elements,
such as audio, video, and canvas. Audio and video have always had
accessibility issues, but the canvas element presents new challenges.
The canvas element lets us create vector images within the HTML docu-
ment using JavaScript. This creates issues for the visually impaired but
also causes problems for the 5 percent of web users who have disabled
JavaScript.3

3. http://visualrevenue.com/blog/2007/08/eu-and-us-javascript-disabled-index.html

Report erratum

T H E R O A D T O THE F U T U R E I S B U M P Y M 2 0

We need to be mindful of accessibility when we push ahead with new
technologies and provide suitable fallbacks for these HTML5 elements,
just like we would for people using Internet Explorer.

Deprecated Tags
HTML5 has introduced a lot of new elements, but the specification also
deprecates quite a few common elements that you might find in your
web pages.4 You'll want to remove those moving forward.

First, several presentational elements are gone. If you find these in your
code, get rid of them! Replace them with semantically correct elements
and use CSS to make them look nice.

• basefont

• big
• center
• font
• s
• strike
• tt
• u

Some of those tags are pretty obscure, but you will find a lot of pages
out there maintained with visual editors such as Dreamweaver that still
contain a lot of font and center tags.

Aside from the presentational elements, support for frames has been
removed. Frames have always been popular in enterprise web appli-
cations such as PeopleSoft, Microsoft Outlook Web Access, and even
custom-built portals. Despite the widespread use, frames caused so
many usability and accessibility issues that they just had to go. That
means these elements are gone:

• frame
• frameset
• noframes

You should be looking at ways to lay out your interfaces without frames,
using regular CSS or some JavaScript. If you're using frames to ensure
the same header, footer, and navigation appears on each page of your

4. http://www.w3. org/TR/html5-diff/

Report erratum

THE ROAD TO THE FUTURE IS BUMPY M 21

application, you should be able to accomplish the same thing with the
tools provided by your web development framework. A few other ele-
ments are gone because there are better options available:

• acronym gets replaced by abbr.
• applet gets replaced by object.
• dir gets replaced by ul.

In addition to deprecated elements, there are many attributes that are
no longer valid. These include presentational attributes such as the
following:

• align
• link, vlink, alink, and text attributes on the body tag
• bgcolor
• height and width
• scrolling on the ¡frame element
• valign
• hspace and vspace

• cellpadding, cellspacing, and border on table

If you use target on your links, like this:

you'll want to look at using JavaScript instead, because target is depre-
cated.

The profile attribute on the head tag is no longer supported either, and
this is something you tend to see in a lot of WordPress templates.

Finally, the longdesc attribute for img and ¡frame elements is gone, which
is a bit of a disappointment to accessibility advocates, because longdesc
was an accepted way of providing additional descriptive information to
users of screen readers.

If you plan on using HTML5 with your existing sites, you'll want to look
for these elements and remove them or replace them with more seman-
tic ones. Be sure to validate your pages with the W3C Validator service,5

because this will help you locate deprecated tags and attributes.

5. http://validator.w3.org/

Report erratum

THE ROAD TO THE FUTURE IS BUMPY M 22

Competing Corporate Interests
Internet Explorer is not the only browser slowing adoption of HTML5
and CSS3. Google, Apple, and the Mozilla Foundation have their own
agendas as well, and they're battling it out for supremacy. They're argu-
ing over video and audio codec support, and they're including their
opinions in their browser releases. For example, Safari will play MP3
audio with the audio element, but ogg files won't work. Firefox, how-
ever, supports ogg files instead of mp3 files.

Eventually these differences will be resolved. In the meantime, we can
make smart choices about what we support either by limiting what we
implement to the browsers used by our target audiences or by imple-
menting things multiple times, once for each browser until the stan-
dards are finalized. It's not as painful as it sounds. We'll discuss this
more in Chapter 7, Embedding Audio and Video, on page 127.

HTML5 and CSS3 Are Still Works in Progress
They're not final specifications, and that means anything in those spec-
ifications could change. While Firefox, Chrome, and Safari have strong
HTML5 support, if the specification changes, the browsers will change
with it, and this could lead to some deprecated, broken websites.
During the course of writing this book, CSS3 box shadows have been
removed and re-added to the specification, and the Web Sockets proto-
col has been modified, breaking client-server communications entirely.

If you follow the progress of HTML5 and CSS3 and stay up-to-date with
what's happening, you'll be fine. A good portion of the things we'll be
discussing in this book are going to work for a long time.

When you come across something that doesn't work in one of your
target browsers, you just fill in the gaps as you go, using JavaScript
and Flash as your putty. You'll build solid solutions that work for all
our users, and as time goes on, you'll be able to remove the JavaScript
and other fallback solutions without changing your implementations.

But before you think too much about the future, let's start working with
HTML5. There are a bunch of new structural tags waiting to meet you
over in the next chapter. So, let's not keep them waiting, shall we?

Report erratum

Part I

Improving User Interfaces

Chapter 2

New Structural Tags
and Attributes

In the first few chapters of this book, we'll talk about how we can use
HTML5's and CSS's features to improve the interfaces we present to
our users. We'll see how we can create better forms, easily style tables,
and improve the accessibility of our pages for assistive devices. We'll
also see how we can use content generation to improve the usability of
our print style sheets, and we'll explore in-place editing with the new
contenteditable attribute. First, though, let's take a look at how HTML5's
new elements can help us structure our pages better.

I'd like to talk to you about a serious problem affecting many web devel-
opers today. Divitis—a chronic syndrome that causes web developers to
wrap elements with extra div tags with IDs such as banner, sidebar, arti-
cle, and footer—is rampant. It's also highly contagious. Developers pass
Divitis to each other extremely quickly, and since divs are invisible to
the naked eye, even mild cases of Divitis may go unnoticed for years.

Here's a common symptom of Divitis:

<div id="navbar_wrapper">
<div id="navbar">

<1 i ><a h ref = "/">Home</ax/l i >
<1 i ><a h ref = "/">Home</ax/l i >

</div>

</div>

CHAPTER 2. NEW STRUCTURAL TAGS AND ATTRIBUTES M 25

Here we have an unordered list, which is already a block element,1

wrapped with two div tags that are also block elements. The id attributes
on these wrapper elements tell us what they do, but you can remove at
least one of these wrappers to get the same result. Overuse of markup
leads to bloat and pages that are difficult to style and maintain.

There is hope, though. The HTML5 specification provides a cure in
the form of new semantic tags that describe the content they contain.
Because so many developers have made sidebars, headers, footers, and
sections in their designs, the HTML5 specification introduces new tags
specifically designed to divide a page into logical regions. Let's put those
new elements to work. Together with HTML5, we can help wipe out Divi-
tis in our lifetime.

In addition to these new structural tags, we'll also talk about the meter
element and discuss how we can use the new custom attributes feature
in HTML5 so we can embed data into our elements instead of hijacking
classes or existing attributes. In a nutshell, we're going to find out how
to use the right tag for the right job.

In this chapter, we'll explore these new elements and features:2

<header>

Defines a header region of a page or section. [C5, F3.6, IE8, S4,
010]

<footer>

Defines a footer region of a page or section. [C5, F3.6, IE8, S4, Ol 0]

<nav>

Defines a navigation region of a page or section. [C5, F3.6, IE8, S4,

010]

<section>

Defines a logical region of a page or a grouping of content. [C5,
F3.6, IE8, S4, 010]

1. Remember, block elements fall on their own line, whereas Inline elements do not force
a line break.
2. In the descriptions that follow, browser support Is shown In square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Flrefox, IE: Internet Explorer, O: Opera, S: Safari, JOS: IOS devices
with Mobile Safari, and A: Android Browser.

Report erratum

CHAPTER 2. NEW STRUCTURAL TAGS AND ATTRIBUTES M 26

<article>
Defines an article or complete piece of content. [C5, F3.6, IE8, S4,
010]

<aside>
Defines secondaiy or related content. [C5, F3.6, IE8, S4, 010]

Custom data attributes
Allows addition of custom attributes to any elements using the
data- pattern. [All browsers support reading these via JavaScript's
getAttributeO method.]

<meter>

Describes an amount within a range. [C5, F3.5, S4, 010]

<progress>

Control that shows real-time progress toward a goal. [Unsupported
at publication time.]

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 27

•

Redefining a Blog Using
Semantic Markup

One place you're sure to find lots of content in need of structured
markup is a blog. You're going to have headers, footers, multiple types
of navigation (archives, blogrolls, and internal links), and, of course,
articles or posts. Let's use HTML5 markup to mock up the front page of
the blog for AwesomeCo, a company on the cutting edge of
Awesomeness.

To get an idea of what we're going to build, take a look at Figure 2.1,
on the following page. It's a fairly typical blog structure, with a main
header with horizontal navigation below the header. In the main sec-
tion, each article has a header and a footer. An article may also have a
pull quote, or an aside. There's a sidebar that contains additional navi-
gation elements. Finally, the page has a footer for contact and copyright
information. There's nothing new about this structure, except that this
time, instead of coding it up with lots of div tags, we're going to use
specific tags to describe these regions.

When we're all done, we'll have something that looks like Figure 2.2, on
page 29.

It All Starts with the Right Doctype
We want to use HTML5's new elements, and that means we need to let
browsers and validators know about the tags we'll be using. Create a
new page called index.html, and place this basic HTML5 template into
that file.

Down! oad html5newtags/index.html

Line l < ! D O C T Y P E h t m l >

2 <html lang="en-US">
3 <head>
4 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
5 <title>AwesomeCo Blog</title>
6 </head>

8 <body>
9 </body>
10 </html>

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 28

body

header

11
L^— — -

nav 1 1
— —1 j

section
I1 section

1 1 header 1 1 1 1
j I B

header
j 1

article
i 11 1

• 1 i1 1

• J I ,ii

nav 1

1 l
header

i 11 1

• 1 i1 1

• J I ,ii |
r

P ® i | 1
1 r P _ j L aside • i I i | |

footer
~' _i | i

article 1

• i

I 1

1 1 1
header

1

• i m^m
m^mm

P

P 1 J 1

ii
footer • i

• _ . I1

1

footer

r
footer

i

J

Figure 2.1: The blog structure using HTML5 semantic markup

Take a look at the doctype on line 1 of that example. This is all we
need for an HTML5 doctype. If you're used to doing web pages, you're
probably familiar with the long, hard-to-remember doctypes for XHTML
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtmll-transitional.dtd">

Now, take another look at the HTML5 doctype:

<!DOCTYPE HTML>

That's much simpler and much easier to remember.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 29

AwesomeCo Blog!
Latest Posts Archives Contributors Contact Us

How Many Should We Put You Down For?
Posted by Brian on October 1st, 2010 at 2:39PM

The first big rule in sales Is that if the person leaves empty-
handed, they're likely not going to come back. That's why
you have to be somewhat aggressive when you're working
with a customer, but you have to make sure you don't
overdo it and scare them away.

"Never give someone a
chance to say no when
selling your product."

One way you can keep a conversation going is to avoid asking questions that have yes or no
answers. For example, if you're selling a service plan, don't ever ask "Are you interested in our 3 or
5 year service plan?" Instead, ask "Are you Interested in the 3 year service plan or the 5 year plan,
which is a better value?" At first glance, they appear to be asking the same thing, and while a
customer can still opt out, it's harder for them to opt out of the second question because they have
to say more than just "no."

25 Comments...

p October 2010
» September 2010
• August 2010
. July 2010
• June 2010
. May 2010
. April 2010
. March 2010
« February 2010
• January 2010

©2010 AwesomeCo.

Home About Terms of Service Privacy

Figure 2.2: The finished layout

The point of a doctype is twofold. First, it's to help validators determine
what validation rules it needs to use when validating the code. Sec-
ond, a doctype forces Internet Explorer versions 6, 7, and 8 to go into
"standards mode," which is vitally important if you're trying to build
pages that work across all browsers. The HTML5 doctype satisfies both
of these needs and is even recognized by Internet Explorer 6.

Headers
Headers, not to be confused with headings such as hi, h2, and h3, may
contain all sorts of content, from the company logo to the search box.
Our blog header will contain only the blog's title for now.

D o w n ! o a d h tm l5newtags/ index .h tm l

Une l <header id="page_header">
2 <hl>AwesomeCo Blog!</hl>
3 </header>

You're not restricted to having just one header on a page. Each indi-
vidual section or article can also have a header, so it can be helpful to
use the ID attribute like I did on 1 to uniquely identify your elements. A
unique ID makes it easy to style elements with CSS or locate elements
with JavaScript.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 30

Semantic markup is all about describing your content. If you've
been developing web pages for a few years, you've probably
divided your pages Into various regions such as header, footer,
and sidebar so that you could more easily identify the regions of
the page when applying style sheets and other formatting.

Semantic markup makes It easy for machines and people alike
to understand the meaning and context of the content. The
new HTML5 markup tags such as section, header, and nav help
you do just that.

Footers
The footer element defines footer information for a document or an adja-
cent section. You've seen footers before on websites. They usually con-
tain information like the copyright date and information on who owns
the site. The specification says we can have multiple footers in a doc-
ument too, so that means we could use the footers within our blog
articles too.

For now, let's just define a simple footer for our page. Since we can
have more than one footer, we'll give this one an ID just like we did with
the header. It'll help us uniquely identify this particular footer when we
want to add styles to this element and its children.

Down! oad html5newtags/index.html

<footer id="page_footer">
<p>© 2010 AwesomeCo.</p>

</footer>

This footer simply contains a copyright date. However, like headers,
footers on pages often contain other elements, including navigational
elements.

Navigation
Navigation is vital to the success of a website. People simply aren't going
to stick around if you make it too hard for them to find what they're
looking for, so it makes sense for navigation to get its own HTML tag.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 31

Let's add a navigation section to our document's header. We'll add links
to the blog's home page, the archives, a page that lists the contributors
to the blog, and a link to a contact page.

Down! oad html5newtags/index.html

Une l <header id="page_header">
<hl>AwesomeCo Blog!</hl>
<nav>

5 < l i x a href="/">Latest Posts</ax/l i>

<1 i x a href="archives">Archi ves</ax/l i>
<1 i x a href="contributors">Contri butors</ax/l i>
< l i x a href="contact">Contact Us</ax/li>

io </nav>

</header>

Like headers and footers, your page can have multiple navigation ele-
ments. You often find navigation in your header and in your footer, so
now you can identify those explicitly. Our blog's footer needs to have
links to the AwesomeCo home page, the company's "about us" page,
and links to the company's terms of service and privacy policies. We'll
add these as another unordered list within the page's footer element.

Down! oad html5newtags/index.html

<footer id="page_footer">
<p>© 2010 AwesomeCo.</p>
<nav>

<1 i x a href="http://awesomeco.com/">Home</ax/l i>
<1 i x a href="about">About</ax/l i>
< l i x a href="terms.html">Terms of Servi ce</ax/l i>
<1 i x a href="privacy.html ">Pri vacy</ax/l i>

</nav>

</footer>

We will use CSS to change how both of these navigation bars look, so
don't worry too much about the appearance yet. The point of these new
elements is to describe the content, not to describe how the content
looks.

Sections and Articles
Sections are the logical regions of a page, and the section element is
here to replace the abused div tag when it comes to describing logical
sections of a page.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 32

Down! oad html5newtags/index.html

<section id="posts">
</section>

Don't get carried away with sections, though. Use them to logically
group your content! Here we've created a section that will hold all the
blog posts. However, each post shouldn't be in its own section. We have
a more appropriate tag for that.

Articles
The article tag is the perfect element to describe the actual content
of a web page. With so many elements on a page, including headers,
footers, navigational elements, advertisements, widgets, blogrolls, and
social media bookmarks, it might be easy to forget that people come
to your site because they're interested in the content you're providing.
The article tag helps you describe that content.

Each of our articles will have a header, some content, and a footer. We
can define an entire article like this:
Down! oad html5newtags/index.html

<article class="post">
<header>

<h2>How Many Should We Put You Down For?</h2>
<p>Posted by Brian on

<time datetime="2010-10-01T14:39">0ctober 1st, 2010 at 2:39PM</time>
</p>

</header>
<p>

The first big rule in sales is that if the person leaves empty-handed,
they're likely not going to come back. That's why you have to be
somewhat aggressive when you're working with a customer, but you have
to make sure you don't overdo it and scare them away.

</p>
<p>

One way you can keep a conversation going is to avoid asking questions
that have yes or no answers. For example, if you're selling a service
plan, don't ever ask "Are you interested in our 3 or 5 year
service plan?" Instead, ask "Are you interested in the 3
year service plan or the 5 year plan, which is a better value?"
At first glance, they appear to be asking the same thing, and while
a customer can still opt out, it's harder for them to opt out of
the second question because they have to say more than just
"no."

</p>
<footer>

< p x a href="comments"xi>2 5 Comments</ix/a> . . .</p>
</footer>

</article>

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 33

f <
Joe Asks...

2: What's the Difference Between Articles and Sections?
Think of a section as a logical part of a document. Think of an
article as actual content, such as a magazine article, blog post,
or news item.

These new tags describe the content they contain. Sections
can have many articles, and articles can also have many sec-
tions. A section Is like the sports section of a newspaper. The
sports section has many articles. Each of those articles may
again be divided Into its own bunch of sections. Some sections
like headers and footers have proper tags. A section Is a more
generic element you can use to logically group other elements.

Semantic markup Is all about conveying the meaning of your
content.

We can use header and footer elements inside of our articles, which
makes it much easier to describe those specific sections. We can also
divide our article into multiple sections using the section element.

Asides and Sidebars
Sometimes you have content that adds something extra to your main
content, such as pullout quotes, diagrams, additional thoughts, or re-
lated links. You can use the new aside tag to identify these elements.

Down! oad html5newtags/index.html

<aside>

<P>
"Never give someone a chance to say no when
selling your product."

</p>
</aside>

We'll place the callout quote in an aside element. We'll nest this aside
within the article, keeping it close to its related content.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 34

Our completed section, with the aside, looks like this:

Down! oad html5newtags/index.html

<section id="posts">
orticle class="post">

<header>
<h2>How Many Should We Put You Down For?</h2>
<p>Posted by Brian on

<time datetime="2010-10-01T14:39">0ctober 1st, 2010 at 2:39PM</time>
</p>

</header>

<aside>
<p>

"Never give someone a chance to say no when
selling your product."

</p>
</aside>
<p>

The first big rule in sales is that if the person leaves empty-handed,
they're likely not going to come back. That's why you have to be
somewhat aggressive when you're working with a customer, but you have
to make sure you don't overdo it and scare them away.

</p>
<p>

One way you can keep a conversation going is to avoid asking questions
that have yes or no answers. For example, if you're selling a service
plan, don't ever ask "Are you interested in our 3 or 5 year
service plan?" Instead, ask "Are you interested in the 3
year service plan or the 5 year plan, which is a better value?"
At first glance, they appear to be asking the same thing, and while
a customer can still opt out, it's harder for them to opt out of
the second question because they have to say more than just
"no."

</p>
<footer>

< p x a href="comments"xi>2 5 Comments</ix/a> . . .</p>
</footer>

</article>
</section>

Now we just have to add the sidebar section.

Asides Are Not Page Sidebars!
Our blog has a sidebar on the right side that contains links to the
archives for the blog. If you're thinking that we could use the aside
tag to define the sidebar of our blog, you'd be wrong. You could do it
that way, but it goes against the spirit of the specification. The aside is

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 35

designed to show content related to an article. It's a good place to show
related links, a glossary, or a pull out quote.

To mark up our sidebar that contains our list of prior archives, we'll
just use another section tag and a nav tag.

Down! oad html5newtags/index.html

<section id="sidebar">
<nav>

<h3>Archives</h3>

<1 i x a href="2010/10">0ctober 2010</ax/l i>
<1 i x a href="2010/09">September 2010</ax/li>
<1 i x a href="2010/08">August 2010</ax/li>
<1 i x a href="2010/07">July 2010</ax/li>
<1 i x a href="2010/06">June 2010</ax/li>
<1 i x a href="2010/05">May 2010</ax/li>
<1 i x a href="2010/04">Apri 1 2010</ax/li>
<1 i x a href="2010/03">March 2010</ax/li>
<1 i x a href="2010/02">February 2010</ax/li>
<1 i x a href="2010/01">January 2010</ax/li>

</nav>
</section>

That's it for our blog's structure. Now we can start applying styles to
these new elements.

Styling
We can apply styles to these new elements just like we'd style div tags.
First, we create a new style sheet file called style.ess and attach it to our
HTML document by placing a style sheet link in the header, like this:

Down! oad html5newtags/index.html

<link rel="stylesheet" href="style.ess" type="text/css">

Let's first center the page's content and set some basic font styles.

Down! oad html5newtags/style.css

body{
width:960px;
margin:15px auto;
font-family: Arial, "MS Trebuchet", sans-serif;

p{
margin:0 0 20px 0;

}
Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 36

P, 1 U
line-height:20px;

}

Next, we define the header's width.

Down! oad html5newtags/style.css

header#page_header{
width:100%;

We style the navigation links by transforming the bulleted lists into
horizontal navigation bars.

Down! oad html5newtags/style.css

header#page_header nav ul, #page_footer nav ul{
list-style: none;
margin: 0;
padding: 0;

}
#page_header nav ul li, footer#page_footer nav ul li{

padding:0;
margin: 0 20px 0 0;
display ¡inline;

}

The posts section needs to be floated left and given a width, and we also
need to float the callout inside the article. While we're doing that, let's
bump up the font size for the callout.

Down! oad html5newtags/style.css

section#posts{
float: left;
width: 74%;

section#posts aside{
float: right;
width: 35%;
margin-left: 5%;
font-size: 20px;
line-height: 40px;

}

We'll also need to float the sidebar and define its width.

Down! oad html5newtags/style.css

section#sidebar{
float: left;
width: 2 5%;

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 37

If you need to implement a pledge meter or an upload
progress bar in a web application, you should investigate the
meter and progress elements introduced in HTML5.

The meter element lets us semantically describe an actual fixed
point on a meter with a minimum and maximum value. For your
meter to be in harmony with the specification, you shouldn't
use your meter for things with arbitrary minimum or maximum
values like height and weight, unless you are talking about
something specific where you have set a specific boundary.
For example, if we have a fundraising website and we want to
show how close we are to our goal of $5,000, we can describe
that easily:

Down! oad html5_meter/index.html

<section id="pledge">
<header>

<h3>0ur Fundraising Goal</h3>
</header>
<meter ti tl e= "L/SD" id="pledge_goal "

value= "2500" min="0" max= "5000">
$2500.00

</meter>
<p>Help us reach our goal of $5000!</p>

</section>

The progress element is very similar to a meter, but it's designed
to show active progress like you'd see if you were uploading a
file. A meter, by comparison, is designed to show a measure-
ment that's not currently moving, like a snapshot of available
storage space on the server for a given user. The markup for a
progress bar is very similar to the meter element.

Down! oad html5_meter/progress.html

<progress id="progressbar" max=100xspan>0%</progress>

The meter and progress elements aren't styled by any browsers
yet, but you can use JavaScript to grab the values in the meter
and build your own visualization, using the meter or progress to
semantically describe the data. You can see an example of
how you might do that by looking at the book's example files
for the meter element.

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 38

And we need to define the footer. We'll clear the floats on the footer so
that it sits at the bottom of the page.

Down! oad html5newtags/style.css

footer#page_footer{
clear: both;
width: 100%;
display: block;
text-align: center;

}

These are just basic styles. From here, I'm confident you can make this
look much, much better.

Falling Back
Although this all works great in Firefox, Chrome, and Safari, the people
in management aren't going to be too happy when they see the mess
that Internet Explorer makes out of our page. The content displays fine,
but since IE doesn't understand these elements, it can't apply styles to
them, and the whole page resembles something from the mid-1990s.

The only way to make IE style these elements is to use JavaScript to
define the elements as part of the document. That turns out to be really
easy. We'll add this code to our head section of the page so it executes
before the browser renders any elements. We'll place it inside a condi-
tional comment, a special type of comment that only Internet Explorer
will read.

Down! oad html5newtags/index.html

<! -- [i f It IE 9]>
<script type="text/javascript">

document.createElementC"nav");
document.createElementC"header");
document.createElementC"footer");
document.createElementC"section") ;
document.createElementC"aside");
document.createElementC"article") ;

</scri pt>
<![endif]-->

This particular comment targets any version of Internet Explorer older
than version 9.0. If we reload our page, it looks correct now.

We are creating a dependency on JavaScript, though, so you need to
take that into consideration. The improved organization and readability

Report erratum

REDEFINING A BLOG USING SEMANTIC MARKUP M 39

of the document make it worth it, and since there are no accessibility
concerns, because the contents still display and are read by a screen
reader, you're only making the presentation seem grossly out-of-date to
your users who have disabled JavaScript intentionally.

This approach is fine for adding support for a handful of elements or for
understanding how you can add support. Remy Sharp's brilliant HTML-
Shiv3 takes this approach much further and might be more appropri-
ate for incorporating fallback support if you're looking to support many
more elements.

3. http://code.google.eom/p/html5shiv/

Report erratum

CREATING POP-UP WINDOWS WITH CUSTOM DATA ATTRIBUTES M 40

•

Creating Pop-up Windows with
Custom Data Attributes

If you've built any web application that uses JavaScript to grab infor-
mation out of the document, you know that it can sometimes involve a
bit of hackery and parsing to make things work. You'll end up insert-
ing extra information into event handlers or abusing the rel or class
attributes to inject behavior. Those days are now over thanks to the
introduction of custom data attributes.

Custom data attributes all start with the prefix data- and are ignored
by the validator for HTML5 documents. You can attach a custom data
attribute to any element you'd like, whether it be metadata about a
photograph, latitude and longitude coordinates, or, as you'll see in this
tip, dimensions for a pop-up window. Best of all, you can use custom
data attributes right now in nearly every web browser, since they can
be easily grabbed with JavaScript.

Separating Behavior from Content, or Why onclick Is Bad
Over the years, pop-up windows have gotten a bad reputation, and
often rightly so. They're often used to get you to look at an ad, to con-
vince unsuspecting web surfers to install spyware or viruses, or, worse,
to give away personal information that is then resold. It's no wonder
most browsers have some type of pop-up blocker available.

Pop-ups aren't all bad, though. Web application developers often rely
on pop-up windows to display online help, additional options, or other
important user interface features. To make pop-ups less annoying, we
need to implement them in an unobtrusive manner. When you look at
AwesomeCo's human resources page, you see several links that display
policies in pop-up windows. Most of them look like this:

Down! oad html5_popups_with_custom_data/original_example_l .html

<a href='#'
onclick="window.open('holiday_pay.html',WinName, 'width=300,height=300);">
Holiday pay

This is a pretty common way to build links that spawn pop-ups. In
fact, this is the way JavaScript newbies often learn how to make pop-

Report erratum

CREATING POP-UP WINDOWS WITH CUSTOM DATA ATTRIBUTES M 41

up windows. There are a couple of problems that we should address
with this approach before moving on, though.

Improve Accessibility
The link destination isn't set! If JavaScript is disabled, the link won't
take the user to the page. That's a huge problem we need to address
immediately. Do not ever omit the href attribute or give it a value like
this under any circumstances. Give it the address of the resource that
would normally pop up.

Down! oad html5_popups_with_custom_data/original_example_2.html

<a href='holiday_pay.html'
oncl i ck= "window. open(this.href, WinName, 'width=300, height=300) ; ">
Holiday pay

The JavaScript code then reads the attached element's href attribute for
the link's location.

The first step toward building accessible pages is to ensure that all the
functionality works without JavaScript.

Abolish the onclick
Keep the behavior separate from the content, just like you keep the
presentation information separate by using linked style sheets. Using
onclick is easy at first, but imagine a page with fifty links, and you'll
see how the onclick method gets out of hand. You'll be repeating that
JavaScript over and over again. And if you generate this code from
some server-side code, you're just increasing the number of JavaScript
events and making the resulting HTML much bigger than it needs to be.

Instead, give each of the anchors on the page a class that identifies
them.

Down! oad html5_popups_with_custom_data/original_example_3.html

Holiday Pay

Down! oad html5_popups_with_custom_data/original_example_3.html

var links = $("a.popup")]

1 i nks.cli ck(function(event){
event.preventDefault() ;
window.open($(this).attrC'href'));

}) ;

Report erratum

CREATING POP-UP WINDOWS WITH CUSTOM DATA ATTRIBUTES M 42

We use a jQuery selector to grab the element with the class of popup,
and then we add an observer to each element's click event. The code we
pass to the click method will be executed when someone clicks the link.
The preventDefault method prevents the default click event behavior. In
this case, it prevents the browser from following the link and displaying
a new page.

One thing we've lost, though, is the information on how to size and
position the window, which is something we had in the original exam-
ple. We want a page designer who isn't that familiar with JavaScript to
still be able to set the dimensions of a window on a per-link basis.

Custom Data Attributes to the Rescue!
Situations like this are common when building any JavaScript-enabled
application. As we've seen, storing the window's desired height and
width with the code is desirable, but the onclick approach has lots of
drawbacks. What we can do instead is embed these attributes as attri-
butes on the element. All we have to do is construct the link like this:

Down! oad html5_popups_with_custom_data/popup.html

<a href="he!p/holi day_pay.html"
data-width="600"

data-height="400"
title="Holiday Pay"
cl ass="popup">Holiday pay

Now we just modify the click event we wrote to grab the options from
the custom data attributes of the link and pass them to the window.open
method.

Down! oad html5_popups_with_custom_data/popup.html

$(function(){
$(".popup") . cl i ckCfuncti on (event) {

event.preventDefaul t();
var href = $(this) .attr("href") ;
var width = $(this) ,attr("data-width") ;
var height = $(this).attr("data-height") ;
var popup = window.open (href,"popup",

"height=" + height +",width=" + width + "");
}) ;

That's all there is to it! The link now opens in a new window.

Report erratum

CREATING POP-UP WINDOWS WITH CUSTOM DATA ATTRIBUTES M 43

A Word of Caution

In this example, we used custom data attributes to pro-
vide additional information to a client-side script. It's a clever
approach to a specific problem and Illustrates one way to use
these attributes. It does tend to mix presentation Information
with our markup, but it's a simple way to show you how easy It
is to use JavaScript to read values you embed in your page.

Falling Back
These attributes work in older browsers right now as long as they sup-
port JavaScript. The custom data attributes won't trip up the browser,
and your document will be valid since you're using the HTML5 doctype,
since the attributes that start with data- will all be ignored.

The Future

We can do some interesting things with these new tags and attributes
once they're widely supported. We can identify and disable navigation
and article footers very easily using print style sheets,
nav, arti cle>footer{di splay:none}

We can use scripting languages to quickly identify all of the articles
on a page or on a site. But most important, we mark up content with
appropriate tags that describe it so we can write better style sheets and
better JavaScript.

Custom data attributes give developers the flexibility to embed all sorts
of information in their markup. In fact, we'll use them again in Chap-
ter 6, Drawing on the Canvas, on page 111.

You can use them with JavaScript to determine whether a form tag
should submit via Ajax, by simply locating any form tag with data-
remote=true, which is something that the Ruby on Rails framework is
doing.

Report erratum

CREATING POP-UP WINDOWS WITH CUSTOM DATA ATTRIBUTES M 44

You can also use them to display dates and times in a user's time zone
while still caching the page. Simply put the date on the HTML page as
UTC, and convert it to the user's local time on the client side. These
attributes allow you to embed real, usable data in your pages, and
you can expect to see more and more frameworks and libraries tak-
ing advantage of them. I'm sure you'll find lots of great uses for them in
your own work.

And we can help wipe out Divitis once and for all!

Report erratum

Chapter 3

Creating
User-Friendly Web Forms

If you've ever designed a complicated user interface, you know how
limiting the basic HTML form controls are. You're stuck using text
fields, select menus, radio buttons, checkboxes, and sometimes the
even clunkier multiple select lists that you constantly have to explain to
your users how to use. ("Hold down the Ctrl key and click the entries
you want, unless you're on a Mac, in which case use the Cmd key.")

So, you do what all good web developers do—you turn to Prototype or
j Query, or you roll your own controls and features using a combination
of HTML, CSS, and JavaScript. But when you look at a form that has
sliders, calendar controls, spinboxes, autocomplete fields, and visual
editors, you quickly realize that you've created a nightmare for your-
self. You'll have to make sure that the controls you include on your page
don't conflict with any of the other controls you've included or any of
the other JavaScript libraries on the page. You can spend hours imple-
menting a calendar picker only to find out later that now the Prototype
library is having problems because jQuery took over the $() function.
So, you use jQuery's noConflictO method, but then you find out that
the color picker control you used no longer works because that plug-in
wasn't written carefully enough.

If you're smiling, it's because you've been there. If you're fuming, I'm
guessing it's for the same reason. There is hope, though. In this chap-
ter, we're going to build a couple of web forms using some new form
field types, and we'll also implement autofocusing and placeholder text.

CHAPTER 3. CREATING USER-FRIENDLY WEB FORMS M 46

Finally, we'll discuss how to use the new contenteditable attribute to

turn any HTML field into a user input control.

Specifically, we'll cover the following features:1

Email field [<input type="email">]
Displays a form field for email addresses. [Ol 0.1, IOS]

URL field [<input type="url">]
Displays a form field for URLs. [OlO.l, IOS]

Telephone field [<input type="tel">]
Displays a form field for telephone numbers. [OlO.l, IOS]

Search field [<input type="search">
Displays a form field for search keywords. [C5, S4, OlO.l, IOS]

Slider (range) [<input type="range">]
Displays a slider control. [C5, S4, OlO.l]

Number [<input type="number">]
Displays a form field for numbers, often as a spinbox. [C5, S5,

OlO.l, IOS]

Date fields [<input type="date">]
Displays a form field for dates. Supports date, month, or week. [C5,
S5, OlO.l]

Dates with Times [<input type="datetime">]
Displays a form field for dates with times. Supports datetime,
datetime-local, or time. [C5, S5, OlO.l]

Color [<input type="color">]
Displays a field for specifying colors. [C5, S5] (Chrome 5 and Safari
5 understand the Color field but do not display any specific
control.)

Autofocus support [<input type="text" autofocus>]
Support for placing the focus on a specific form element. [C5, S4]

1. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, IOS: iOS devices
with Mobile Safari, and A: Android Browser.

Report erratum

CHAPTER 3. CREATING USER-FRIENDLY WEB FORMS M 47

Placeholder support [<input type="email" placeholder="me@example.com">]
Support for displaying placeholder text inside of a form field. [C5,

S4, F4]

In-place editing support [<p contenteditable>lorem ipsum</p>]
Support for in-place editing of content via the browser. [C4, S3.2,

IE6, OlO.l]

Let's start by learning about some of the extremely useful form field
types.

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 48

B Describing Data with New Input
Fields

HTML5 introduces several new input types that you can use to better
describe the type of data your users are entering. In addition to the
standard text fields, radio buttons, and checkbox elements, you can
use elements such as email fields, calendars, color pickers, spinboxes,
and sliders. Browsers can use these new fields to display better con-
trols to the user without the need for JavaScript. Mobile devices and
virtual keyboards for tablets and touchscreens can use the field types
to display different keyboard layouts. For example, the iPhone's Mobile
Safari browser displays alternate keyboard layouts when the user is
entering data into the URL and email types, making special characters
like (@), (7), (7), and [/) easily accessible.

Improving the AwesomeCo Projects Form
AwesomeCo is working on creating a new project management web
application to make it easier for developers and managers to keep up
with the progress of the many projects they have going on. Each project
has a name, a contact email address, and a staging URL so managers
can preview the website as it's being built. There are also fields for the
start date, priority, and estimated number of hours the project should
take to complete. Finally, the development manager would like to give
each project a color so he can quickly identify each project when he
looks at reports.

Let's mock up a quick project preferences page using the new HTML5
fields.

Setting Up the Basic Form
Let's create a basic HTML form that does a POST request. Since there's
nothing special about the name field, we'll use the trusty text field.

Down! oad html5forms/index.html

<form method="post" action="/projects/l">

<fieldset id="personal_information">
<1egend>Proj ect Information</legencb

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 49

<label for="name">Name</label>
<input type="text" name="name" autofocus id="name">

<input type="submit" value="Submit">

</fieldset>

</form>

Notice that we are marking this form up with labels wrapped in an
ordered list. Labels are essential when creating accessible forms. The
for attribute of the label references the id of its associated form element.
This helps screen readers identify fields on a page. The ordered list
provides a good way of listing the fields without resorting to complex
table or div structures. This also gives you a way to mark up the order
in which you'd like people to fill out the fields.

Creating a Slider Using Range
Sliders are commonly used to let users decrease or increase a numer-
ical value and could be a great way to quickly allow managers to both
visualize and modify the priority of the project. You implement a slider
with the range type.

Down! oad html5forms/index.html

<label for="priority">Priori ty</label>
<input type= "range" min="0" max= "10"

name= "priority" value="0" id ="priority">

Add this to the form, within a new li element just like the previous field.

Chrome and Opera both implement a Slider widget, which looks like
this:

Notice that we've also set the min and max range for the slider. That will
constrain the value of the form field.

Priority

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 50

Handling Numbers with Spinboxes
We use numbers a lot, and although typing numbers is fairly simple,
spinboxes can make making minor adjustments easier. A spinbox is a
control with arrows that increment or decrement the value in the box.
Let's use the spinbox for estimated hours. That way, the hours can be
easily adjusted.

Down! oad html5forms/index.html

<label for="estimated_hours">Estimated Hours</label>
<input type="number" name="estimated_hours"

min="0" max="1000"
i d="estimated_hours">

Opera supports the spinbox control, which looks like this:

Estimated Hours

The spinbox also allows typing by default, and like range sliders, we
can set minimum and maximum values. However, those minimum and
maximum ranges won't be applied to any value you type into the field.

Also notice that you can control the size of the increment step by giving
a value to the step parameter. It defaults to 1 but can be any numerical
value.

Dates
Recording the start date of the project is pretty important, and we want
to make that as easy as possible. The date input type is a perfect fit
here.

Down! oad html5forms/index.html

<label for="start_date">Start date</label>
<input type= "date" name="start_date" id ="start_date"

value="2010-12-01">

At the time of writing, Opera is the only browser that currently supports
a full calendar picker.

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 51

Here's an example of its implementation:

Start date 2010-12-0

Email contact

Staging URL

Project color

December (•) 2010 -
Email contact

Staging URL

Project color

W u t Mon Tu« Wid Thu Frl Sat tun
as 29 JO 1 2 3 4 5
49 6 7 S 9 10 I I 12

13 14 15 16 17 IS 19
20 21 22 23 24 25 26
27 28 29 30 31 2

1 3 4 5 6 7 8 9 1 Submit 1

W u t Mon Tu« Wid Thu Frl Sat tun
as 29 JO 1 2 3 4 5
49 6 7 S 9 10 I I 12

13 14 15 16 17 IS 19
20 21 22 23 24 25 26
27 28 29 30 31 2

1 3 4 5 6 7 8 9

[Todav Y None

Safari 5.0 displays a field similar to the number field with arrows to
increment and decrement the date. It defaults to "1582" if left blank.
Other browsers render a text field.

Email
The HTML5 specification says that the email input type is designed to
hold either a single email address or an email address list, so that's the
perfect candidate for our email field.

Down! oad html5forms/index.html

<label for="email">Emai 1 contact</label>
<input type="email" name="email" id="email">

Mobile devices get the most benefit from this type of form field, because
the virtual keyboard layouts change to make entering email addresses
easier.

There's a field type designed to handle URLs too. This one is especially
nice if your visitor uses an iPhone, because it displays a much different
keyboard layout, displaying helper buttons for quickly entering web
addresses, similar to the keyboard displayed when entering a URL into
Mobile Safari's address bar. Adding the staging URL field is as simple
as adding this code:

Down! oad html5forms/index.html

<label for="url"»Staging URL</label>
<input type="url" name="url" id="url">

Virtual keyboards use this field type to display a different layout as
well.

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 52

ft o O

jj[o Project Information
Project Information

+
] I J j [I [Li f i!e-// loca[host/User t | || (- « | -- search with Google

-Project Information -

Name

Priority

Estimated Hours

Start date

Email contact

Staging URL

Project color

Submit

2 0 1 0 - 1 2 - 0 T '

December (») ?010{*J
WeEk Mon Tub WEd Thu Frl Sat £un
4S 30 1 2 3 4 S

5 1 I 9 ÜL l i l i
15 I 17 IB M

1 l i II II I i II II
21 28 39 M li

1 3 4 5 6 7 B - i

I Today V None

toi ,Vi™(130K!

Figure 3.1: Some form controls are already supported in Opera.

Color
Finally, we need to provide a way to enter a color code, and we'll use
the color type for that.

Down! oad html5forms/index.html

<label for="project_color">Project color</label>
<input type="color" name="project_color" id="project_color">

At the time of writing, no browsers display a color picker control, but
that shouldn't stop you from using this field. You're using proper mark-
up to describe your content, and that's going to come in handy in the
future, especially when you need to provide fallback support.

Opera supports most of these new controls right now, as you can see
in Figure 3.1, but when you open the page in Firefox, Safari, or Google
Chrome, you won't see much of a difference. We'll need to fix that.

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 53

Falling Back
Browsers that don't understand these new types simply fall back to the
text type, so your forms will still be usable. At that point, you can bind
one of the jQuery UI or YUI widgets to that field to transform it. As time
goes on and more browsers support these controls, you can remove the
JavaScript hooks.

Replacing the Color Picker
We can easily identify and replace the color picker using jQuery with
CSS3's attribute selectors. We locate any input field with the type of
color and apply a jQuery plug-in called SimpleColor.

Down! oad html5forms/index.html

if (!hasColorSupportO){
$C'input[type=color]') .simpleColorO ;

}

Since we used the new form types in our markup, we don't have to add
an additional class name or other markup to identify the color pickers.
Attribute selectors and HTML5 go together quite well.

We don't want to use this color picker plug-in if the browser has native
support for it, so we will use some JavaScript to detect whether the
browser supports input fields with a type of color.

Down! oad html5forms/index.html

Une l function hasColorSupport(){
input = document.createElementC"input") ;
input.setAttributeC"type", "co7or") ;
var hasColorType = (input.type !== "text");

5 // handle Safari/Chrome partial implementation
if(hasColorType){

var testString = "foo";
i nput.value=testStri ng;
hasColorType = (input.value != testString);

10 }

return(hasColorType);
}

First, we use plain JavaScript to create an element and set its type
attribute to color. Then, we retrieve the type attribute to see whether
the browser allowed us to set the attribute. If it comes back with a
value of color, then we have support for that type. If not, we'll have to
apply our script.

Report erratum

DESCRIBING DATA WITH N E W INPUT FIELDS M 54

Things get interesting on line 6. Safari 5 and Google Chrome 5 have
partially implemented the color type. They support the field, but they
don't actually display a color widget. We still end up with a text field on
the page. So, in our detection method, we set the value for our input
field and see whether the value sticks around. If it doesn't, we can
assume that the browser has implemented a color picker because the
input field isn't acting like a text box.

The whole bit of code to replace the color picker looks like this:

Down! oad html5forms/index.html

if (!hasColorSupportO){
$C'input[type=color]') .simpleColorO ;

}

That solution works, but it's very brittle. It targets a specific set of
browsers and only for the color control. Other controls have their own
quirks that you need to learn. Thankfully, there's an alternative solu-
tion.

Modernizr
The Modernizr2 library can detect support for many HTML5 and CSS3
features. It doesn't add the missing functionality, but it does provide
several mechanisms similar to the solution we implemented for detect-
ing form fields that are more bulletproof.

Before you start throwing Modernizr in your projects, be sure you take
some time to understand how it works. Whether you wrote the code
yourself or not, if you use it in your project, you're responsible for it.
Modernizr wasn't ready to handle Safari's partial support of the color
field right away. When the next version of Chrome or Firefox comes out,
you may have to hack together a solution. Who knows, maybe you'll be
able to contribute that solution back to Modernizr!

You'll implement fallbacks for controls such as the date picker and
the slider in the same manner. Sliders and date pickers are included
as components in the jQuery UI library.3 You'll include the jQuery
UI library on the page, detect whether the browser supports the con-
trol natively, and, if it doesn't, apply the JavaScript version instead.

2. http://www.modernizr.com/
3. http://jqueryui.com/

Report erratum

DESCRIBING DATA WITH NEW INPUT FIELDS M 55

Eventually you'll be able to phase out the JavaScript controls and rely
completely on the controls in the browser. Because of the complex-
ity involved with detecting these types, Modernizer will be very helpful
to you. However, we'll continue writing our own detection techniques
throughout the rest of this book so you can see how they work.

Aside from new form field types, HTML5 introduces a few other attri-
butes for form fields that can help improve usability. Let's take a look
at autofocus next.

Report erratum

JUMPING TO THE FIRST FIELD WITH AUTOFOCUS M 56

19 Jumping to the First Field with
| Autofocus

You can really speed up data entry if you place the user's cursor in the
first field on the form when they load the page. Many search engines do
this using JavaScript, and now HTML5 provides this capability as part
of the language.

All you have to do is add the autofocus attribute to any form field, like
we already did on the profile page we built in Describing Data with New
Input Fields, on page 48.

Down! oad html5forms/index.html

<label for="name">Name</label>
<input type="text" name="name" autofocus id="name">

You can have only one autofocus attribute on a page for it to work reli-
ably. If you have more than one, the browser will focus the user's cursor
onto the last autofocused form field.

Falling Back
We can detect the presence of the autofocus attribute with a little bit
of JavaScript and then use j Query to focus on the element when the
user's browser doesn't have autofocus support. This is probably the
easiest fallback solution you'll come across.

Down! oad html5forms/autofocus.js

function hasAutofocusO {
var element = document.createElementC 'input') ;
return 'autofocus' in element;

$(function(){
i f(!hasAutofocus()){

$('input[autofocus=true] ') .focusO ;
}

Report erratum

JUMPING TO THE FIRST FIELD WITH AUTOFOCUS M 57

Just include this JavaScript on your page, and you'll have autofocus
support where you need it.

Autofocus makes it a little easier for users to start working with your
forms when they load, but you may want to give them a little more
information about the type of information you'd like them to provide.
Let's take a look at the placeholder attribute next.

Report erratum

PROVIDING HINTS WITH PLACEHOLDER TEXT M 58

B Providing Hints with Placeholder
Text

Placeholder text provides users with instructions on how they should
fill in the fields. A sign-up form with placeholder text is shown in Fig-
ure 3.2, on the next page. We're going to construct that form now.

A Simple Sign-Up Form
AwesomeCo's support site requires users to sign up for an account, and
one of the biggest problems with the sign-ups is that users keep trying
to use insecure passwords. Let's use placeholder text to give the users a
little guidance on our password requirements. For consistency's sake,
we'll add placeholder text to the other fields too.

To add placeholder text, you just add the placeholder attribute to each
input field, like this:

Down! oad html5placeholdertext/index.html

<input id= "email" type="emai1"
name= "emai 1" placeholder "user@example. com">

Our entire form's markup looks something like this, with placeholder
text for each field:

Down! oad html5placeholdertext/index.html

<form id="create_account" action="/signup" method="post">
<fieldset id="signup">

<legend>Create New Account</legend>

<label for="first_name">Fi rst Name</1abel>
<input id ="first_name" type="text"

autofocus="true"
name= "first_name" placeholder " 'John ' ">

<label for="last_name">Last Name</1abel>
<input id="last_name" type="text"

name= "last_name" placeholder " 'Smith ' ">

<label for="email ">Emai l</label>

Report erratum

PROVIDING HINTS WITH PLACEHOLDER TEXT M 59

—Create New Account—

First Name
|'John' |

Last Name
['Smith']

Email
|user@example.com j

Password
j 8—10 characters

Password Confirmation
jType your password |

Figure 3.2: Placeholders can help users understand what you're asking
them to do.

<input id="email" type="emai1"
name="emai1" placeholder="user@example.com">

<1abel for="password">Password</label>
<input id="password" type="password" name="password" value=""

autocomplete= "off" placeholder="8-10 characters" />

<label for="password_confirmation">Password Confi rmation</label>
<input id ="password_confirmation" type= "password"

name= "password_confirmation" value= ""
autocomplete="off" piaceholder="Type your password again" />

<lixinput type="submit" value="Sign Up"x/li>

</fieldset>

</form>

Report erratum

PROVIDING HINTS WITH PLACEHOLDER TEXT M 60

Preventing Autocompletion
You may have noticed we've added the autocomplete attribute to the
password fields on this form. HTML5 introduces an autocomplete attri-
bute that tells web browsers that they should not attempt to auto-
matically fill in data for the field. Some browsers remember data that
users have previously typed in, and in some cases, we want to tell the
browsers that we'd rather not let users do that.

Since we're once again using the ordered list element to hold our form
fields, we'll add a bit of basic CSS to make the form look nicer.

Down! oad html5placeholdertext/style.css

fieldset{
width: 216px;

fieldset ol{
list-style: none;
padding:0;
margin:2px;

}

fieldset ol li{
margin:0 0 9px 0;
padding:0;

}

/* Make inputs go to their own line */
fieldset input{

display:block;
}

Now, users of Safari, Opera, and Chrome will have helpful text inside
the form fields. Now let's make Firefox and Internet Explorer play along.

Falling Back
You can use JavaScript to put placeholder text on form fields without
too much work. You test the value of each form field, and if it's empty,
you set its value to the placeholder value. When the form receives focus,
you clear out the value, and when the field loses focus, you test the
value again. If it's different, you leave it alone, and if it's empty, you
replace it with the placeholder text.

You test for placeholder support just like you test for autofocus support.

Report erratum

Down! oad html5placeholdertext/index.html

function hasPlaceholderSupportO {
var i = document.createElement('input') ;
return 'placeholder' in i;

Then you just write your JavaScript to handle the changes. We'll use a
solution based on work by Andrew January4 and others to make this
work. We'll fill in the values of all form fields with the text stored in the
placeholder attribute. When a user selects a field, we'll remove the text
we placed in the field. Let's wrap this up in a jQuery plug-in so that it's
easy to apply the behavior to our form. See the sidebar on page 63 to
learn how plug-ins work.
Down! oad html5placeholdertext/jquery.placeholder.js

(function«) {

$.fn.placeholder = function(){

function valuelsPlaceholder(input){
return ($(input) .val 0 == SCinput) .attrC'placeholder")) ;

}

return this.each(functionC) {

SCthis) .findC": input") .each(function(){

if($(this).attr("type") == "password"){

var new_field = $("<input type='text'>");

new_field .attr("re7 " , $(this) .attr("i'd")) ;
new_fi eld .attr("value" , SCthis) .attrC'placeholder")) ;
SCthis).parentC).appendCnew_field);
new_field.hideC) ;
function showPasswordPIaceHolderCinput){

ifC SCinput) .val C) == "" || valuelsPlaceholderCinput)){
SCinput) .hideC) ;
$C ' input[rel=' + SCinput) .attrC'i'd") + 'J').showO;

} ;
} ;

new_fi eld.focus Cfunction O{
SCthis) .hideC) ;
SC 'input#' + SCthis),attrC"re7")).showC).focusC);

});

4. The original script is at http://www.morethannothing.co.uk/wp-content/uploads/2010/01/placeholder.js
but didn't support password fields in IE.

$(this) .blur(function(){
showPasswordPlaceHolder(this, false);

}) ;

showPasswordPlaceHolder(this) ;

}el se{

// Replace the value with the placeholder text.
// optional reload parameter solves FF and
// IE caching values on fields,
function showPlaceholder(input, reload){

if($ (input) ,va"l() == "" | |
(reload && valuelsPlaceholder(input))){

$(input) .val ($(input) .attrÇ"placeholder")) ;
}

} ;

$(this).focus(function(){
if($(this).val() == $(this),attr("placeholder")){

$(this).val("");
} ;

}) ;

$(this) .blur(function(){
showPlaceholder($(this) , false)

}) ;

showPlaceholder(this, true);
} ;

}) ;

// Prevent forms from submitting default values
$(this).submit(function(){

$(this) .find(":input") .each(function(){
if($(this).val() == $(this),attr("placeholder")){

$(this) .val ("") ;
}

}) ;
}) ;

}) ;
} ;

}) (jQuery) ;

There are a couple of interesting things in this plug-in that you should
know about. On line 45, we're reloading the placeholder text into the
fields if they have no value but also if we've refreshed the page. Firefox

PROVIDING HINTS WITH PLACEHOLDER TEXT M 63

jQuery Plug-ins

You can extend jQuery by writing your own plug-ins. You
add your own methods on to the jQuery function, and your
plug-in seamlessly becomes available to any developer who
includes your library. Here's a really trivial example that displays
a JavaScript alert box:
jQuery.fn.debug = functionO {

return this.each(functionO{
alertCthis.html ()) ;

});

If you wanted to see a pop-up box appear for every paragraph
on the page, you'd call it like this:
$("p") .debugO ;

jQuery plug-ins are designed to iterate over a collection of
jQuery objects, and they also return that object collection so
that you can chain them. For example, since our debug plug-
in also returns the jQuery collection, we can use jQuery's ess
method to change the color of the text of these paragraphs,
all on one line.
$("p") .debugO.css("co7or", "red");

We'll make use of jQuery plug-ins a few times throughout this
book to help us keep our code organized when we create fall-
back solutions. You can learn more at jQuery's documentation
site.*
*. http://docs.jquery.com/Plugins/Authoring

and other browsers persist the values of forms. We're setting the value
attribute to the placeholder, and we certainly don't want that to acci-
dentally become the user's actual value. When we load the page, we
pass true to this method, which you can see on line 61.

Password fields behave a little differently than other form fields, so we
have to handle those differently as well. Take a look at line 12. We're
detecting the presence of a password field, and we have to change its
type to a regular text field so that the value doesn't show up masked
with asterisks. Some browsers throw errors if you try to convert pass-
word fields, so we'll have to swap out the password field for a text field.
We'll swap those fields in and out as the user interacts with the fields.

Report erratum

PROVIDING HINTS WITH PLACEHOLDER TEXT M 64

This hack changes the values on the forms, and you probably want to
prevent those placeholders from making their way back to the server.
Since we're hacking in this placeholder code only when JavaScript is
enabled, we can use JavaScript to inspect the form submission and
strip out any values that match the placeholder text. On line 66, we
capture the form submission and clear out the values of any input
fields that equal the placeholder values.

Now that it's all written up as a plug-in, we can invoke it on the page
by attaching it to the form like this:

Down! oad html5placeholdertext/index.html

$(function(){
function hasPlaceholderSupportO {

var i = document.createElementC 'input') ;
return 'placeholder' in i;

}

if(! hasPlaceholderSupportO){
$("#create_account").placeholder^);
//END placeholder_fallback

$('input[autofocus=true] ') .focusO ;

} ;

Now we have a pretty decent solution that makes placeholder text a
viable option for your web apps, no matter what browser you use.

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 65

In-Place Editing with
contenteditable

We're always looking for ways to make it easier for people to interact
with our applications. Sometimes we want a user of our site to edit
some information about themselves without having to navigate to a
different form. We traditionally implement in-place editing by watch-
ing text regions for clicks and replacing those regions with text fields.
These fields send the changed text back to the server via Ajax. HTML5's
contenteditable tag takes care of the data-entry part automatically. We'll
still have to write some JavaScript to send the data back to the server
so we can save it, but we no longer have to create and toggle hidden
forms.

One of AwesomeCo's current projects lets users review their account
profile. It displays their name, city, state, postal code, and email ad-
dress. Let's add some in-place editing to this profile page so that we
end up with an interface like Figure 3.3, on the next page.

Before we get started, I want you to know that implementing a fea-
ture that relies on JavaScript without first implementing a server-side
solution goes against everything I believe in when it comes to build-
ing accessible web applications. We're doing it this way here because I
want to focus on the features of the contenteditable attribute, and this
is not production code. Always, and I mean always, build the solution
that does not require JavaScript, then build the version that relies on
scripting, and finally be sure to write automated tests for both paths so
that you're more likely to catch bugs if you change one version and not
the other.

The Profile Form
HTML5 introduces the contenteditable attribute that is available on
almost every element. Simply adding this attribute turns it into an
editable field.

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 66

User information
Name Hugh Mann
City Anytown
State OH
Postal Code 92110
Email boss@awcsomccompany.com

Figure 3.3: In-place editing made easy

Down! oad html5_content_editable/show.html

<hl>User information</hl>
<div id="status"x/div>

Name
Hugh Mann

</l i>

Ci ty
Anytown

</l i>

State
OH

</l i>

Postal Code
92110
</l i>

Email
boss@awesomecompany.com

</l i>
</u1>

We can style this up with some CSS too. We'll use some CSS3 selectors
to identify the editable fields so they change color when our users hover
over or select them.

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 67

Down! oad html5_content_editable/show.html

Line l ul{1ist-style:none;}

1i{clear:both;}

5 li>b, li>span{
display: block;
float: left;
width: lOOpx;

}

li>span{
width:500px;
margin-left: 20px;

}

1i>span[contenteditable=true]:hover{
background-color: #ffc;

}

20 1i>span[contenteditable=true]:focus{
background-color: #ffa;
border: lpx shaded #000;

}

That's it for the front end. Users can modify the data on the page easily.
Now we have to save it.

Persisting the Data
Although the users can change the data, their changes will be lost if
they refresh the page or navigate away. We need a way to submit those
changes to our back end, and we can do that easily with jQuery. If
you've ever done any Ajax before, this won't be anything new to you.
Down! oad html5_content_editable/show.html

$(function(){
var status = $("#status");
$ C"span[contented!table=trueJ").blur(function 0{

var field = $(this) .attr("id") ;
var value = $(this) .text() ;
$.postC'http://localhost:4567/users/l" ,

field + "=" + value,
function(data){

status.text(data);

}
) ;

}) ;

}) ;

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 68

We'll add an event listener to every span on the page that has the con-
tenteditable attribute set to true. Then, all we have to do is submit the
data to our server-side script.

Falling Back
We've done a bunch of things that won't work for some of our audi-
ence. First, we've created a dependency on JavaScript to save the edited
results back to the server, which is a Bad Thing. Next, we're using the
focus pseudoclass to highlight the fields when they receive focus, and
some versions of IE don't support that. Let's handle the functionality
first, and then we'll deal with the visual effects.

Creating an Edit Page
Rather than worrying too much about various situations that might
prevent a user from using our technique, let's just give them the option
to go to a separate page with its own form. Sure, it's more coding, but
think about the possible scenarios:

• A user doesn't have JavaScript turned on and is using Internet
Explorer 7.

• A user doesn't have an HTML5-compatible browser.
• A user is using the latest Firefox with HTML5 support but still

disabled JavaScript simply because they don't like JavaScript (it
happens all the time...more than you'd think).

When it comes down to it, making a form that does a POST to the
same action that handled the Ajax update makes the most sense. How
you do this is up to you, but many frameworks let you detect the type
of request by looking at the accept headers to determine whether the
request came from a regular POST or an XMLHttpRequest. That way,
you keep the server-side code DRY.5 We will hide the link to this form
if the browser supports contenteditable and JavaScript.

So, create a new page called edit.html, and code up a standard edit form
that posts to the same update action that our Ajax version uses.

5. DRY stands for "Don't Repeat Yourself' and Is a term coined by Dave Thomas and
Andy Hunt in The Pragmatic Programmer [TKH].

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 69

Downl oad html5_content_editable/edit.html

<!DOCTYPE html>
<html lang="en-US">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Edi ti ng Profi 1e</title>
<link href="style.css" rel="stylesheet" media="screen">

</head>
<body>

<form action="/users/l" method="post" accept-charset="utf-8">
<fieldset id="your_information">

<1egend>Your Information</legend>

<label
<input

<label
<input

<label
<input

<label
<input

<label
<input

</fieldset>

<pxinput type="submit" value="Save"x/p>
</form>

</body>
</html>
Then, add a link to this page on show.html.
Downl oad html5_content_editable/show.html

<hl>User information</hl>
<section id="edit_profile_link">

< p x a href="edit.html">Edit Your Profi 1 e</ax/p>
</section>
<div id="status"x/div>

for="name">Your Name</label>
type="text" name="name" value="" id="name">

for="ci ty'VCi ty</l abel >
type="text" name="city" value="" id="city">

for="state">State</label>
type="text" name="state" value="" id="state">

for="postal_code">Postal Code</label>
type="text" name="postal_code" value="" id="postal_code">

for="email ">Emai l</label>
type="email" name="email" value="" id="email">

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 70

With the link added, we just need to modify our script a bit. We want
to hide the link to the edit page and enable the Ajax support only if we
have support for editable content.

Down! oad html5_content_editable/show.html

if (document. getElementById("ech't_prof"! 7e_7in/c") . contentEdi tabl e != null){

With the detection in place, our script looks like this:

Down! oad html5_content_editable/show.html

$(function(){
if (document. getElementById("ech't_prof"! 7e_7in/c") . contentEdi tabl e != null){

$C'#edit_profile_link") .hideO ;
var status = $("#status");
$("span[contented!table=true]").blur(function(){

var field = $(this) .attr("id") ;
var value = $(this) .text() ;
$.postC'http://Iocalhost:4567/users/l" ,

field + "=" + value,
function(data){

status.text(data);

}
) ;

}) ;

With that in place, our users have the ability to use a standard interface
or a quicker "in-place" mode. Now that you know how to implement this
interface, remember to implement the fallback solution first. Unlike the
other fallback solutions, this particular one cripples functionality if not
implemented.

The Future

Right now, if you add a JavaScript-based date picker to your site, your
users have to learn how it works. If you've ever shopped online for
plane tickets and made hotel reservations, you're already familiar with
the different ways people implement custom form controls on sites. It's
akin to using an ATM—the interface is often different enough to slow
you down.

Imagine, though, if each website used the HTML5 date field, and the
browser had to create the interface. Each site a user visited would dis-

Report erratum

IN-PLACE EDITING WITH CONTENTEDITABLE M 71

play the exact same date picker. Screen-reading software could even
implement a standard mechanism to allow the blind to enter dates eas-
ily. Now think about how useful placeholder text and autofocus can be
for users once it's everywhere. Placeholder text can help screen read-
ers explain to users how form fields should work, and autofocus could
help people navigate more easily without a mouse, which is handy for
the blind but also for users with motor impairments who may not use
the mouse.

The ability for developers to turn any element into an editable region
makes it easy to do in-place editing, but it could potentially change how
we build interfaces for content management systems.

The modern Web is all about interactivity, and forms are an essential
part of that interactivity. The enhancements provided by HTML5 give
us a whole new set of tools we can use to help our users.

Report erratum

Chapter 4

Making Better User Interfaces
with CSS3

For far too long, we developers have hacked around CSS to get the
effects we need in our code. We've used JavaScript or server-side code
to stripe table rows or put focus and blur effects on our forms. We've
had to litter our tags with additional class attributes just so we could
identify which of our fifty form inputs we want to style.

But no more! CSS3 has some amazing selectors that make some of
this work trivial. In case you forgot, a selector is a pattern that you
use to help you find elements in the HTML document so you can apply
styles to those elements. We'll use these new selectors to style a table.
Then we'll take a look at how we can use some other CSS3 features to
improve our site's print style sheets, and we'll split content into multiple
columns.

We'll look at these CSS features in this chapter:1

:nth-of-type [p:nth-of-type(2n+l){color: red;}]
Finds all n elements of a certain type. [C2, F3.5, S3, IE9, 09.5,
IOS3, A2]

:first-child [p:first-child{color:blue;}]
Finds the first child element. [C2, F3.5, S3, IE9, Q9.5, IOS3, A2]

1. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, JOS: iOS devices
with Mobile Safari, and A: Android Browser.

CHAPTER 4. MAKING BETTER USER INTERFACES WITH C S S 3 M 73

:nth-child [p:nth-child(2n+l){color: red;}]
Finds a specific child element counting forward. [C2, F3.5, S3, IE9,

09.5, IOS3, A2]

:last-child [p:last-child{color:blue;}]
Finds the last child element. [C2, F3.5, S3, IE9, 09.5, IOS3, A2]

:nth-last-child [p:nth-last-child(2){color: red;}]
Finds a specific child element counting backward. [C2, F3.5, S3,

IE9, 09.5, IOS3, A2]

:first-of-type [p:first-of-type{color:blue;}]
Finds the first element of the given type. [C2, F3.5, S3, IE9, 09.5,

IOS3, A2\

:last-of-type [p:last-of-type{color:blue;}]
Finds the last element of the given type. [C2, F3.5, S3, IE9, 09.5,
IOS3, A2\

Column support [#content{ column-count: 2; column-gap: 20px;
column-rule: 1 px solid #ddccb5;}]

Divides a content area into multiple columns. [C2, F3.5, S3, 09.5,

IOS3, A2\

:after [span.weight:after { content: "lbs"; color: #bbb;}]
Used with content to insert content after the specified element. [C2,

F3.5, S3, IE8, 09.5, IOS3, A2]

Media Queries [media="only all and (max-width: 480)"]
Apply styles based on device settings. [C3, F3.5, S4, IE9, OlO.l,
IOS3, A2\

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 74

Styling Tables with Pseudoclasses

A pseudoclass in CSS is a way to select elements based on information
that lies outside the document or information that can't be expressed
using normal selectors. You've probably used pseudoclasses like :hover
before to change the color of a link when the user hovers over it with
their mouse pointer. CSS3 has several new pseudoclasses that make
locating elements much easier.

Improving an Invoice
AwesomeCo uses a third-party billing and invoicing system for products
it ships. You see, one of AwesomeCo's biggest markets is conference
swag, such as pens, cups, shirts, and anything else you can slap your
logo on. You've been asked to make the invoice more readable. Right
now, the developers are producing a standard HTML table that looks
like the one in Figure 4.1, on the following page.

It's a pretty standard invoice with prices, quantities, row totals, a subto-
tal, a shipping total, and a grand total for the order. It would be easier to
read if every other row were colored differently. It would also be helpful
if the grand total was a different color so that it stands out more.

The code for the table looks like this. Copy it into your own file so you
can work with it.

Down! oad css3advancedselectors/table.html

<table >
<tr>

<th>Item</th>
<th>Pri ce</th>
<th>Quanti ty</th>
<th>Total</th>

</tr>
<tr>

<td>Coffee mug</td>
<td>$10.00</td>
<td>5</td>
<td>$50.00</td>

</tr>
<tr>

<td>Polo shirt</td>
<td>$20.00</td>
<td>5</td>

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 75

Item Price Quantity Total
Coffee mug $10.00 5 $50.00
Polo shirt $20.00 5 $100.00
Red stapler $9.00 4 $36.00
Subtotal $186.00
Shipping $12.00
Total Due $198.00

Figure 4.1: The current invoice uses an unstyled HTML table.

<td>$100.00</td>
</tr>
<tr>

<td>Red stapler</td>
<td>$9.00</td>
<td>4</td>
<td>$36.00</td>

</tr>
<tr>

<td colspan="3">Subtotal</td>
<td>$186.00</td>

</tr>
<tr>

<td col span="3">Shi ppi ng</td>
<td>$12.00</td>

</tr>
<tr>

<td colspan="3">Total Due</td>
<td>$198.00</td>

</tr>
</table>

First, let's get rid of the hideous default table border.

Downl oad css3advancedselectors/table.css

table{
wi dth:
border

th, td{
border: none;

600px;
-collapse: collapse;

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 76

We'll also style the header a bit by giving it a black background with
white text.

Download css3advancedselectors/table.css

th{
background-color: #000;
color: #fff;

Apply that style, and the table looks like this:

Item Price Quantity Total
Coffee mug $10.00 5 $50.00
Polo shirt $20.00 5 $100.00
Red stapler $9.00 4 $36.00
Subtotal $186.00
Shipping $12.00
Total Due $198.00

With the table's borders and spacing cleaned up a bit, we can start
using the pseudoclasses to style individual rows and columns. We'll
start by striping the table.

Str iping Rows with :nth-of-type

Adding "zebra striping" to tables is something we've all seen. It's useful
because it gives users horizontal lines to follow. This kind of styling is
best done in CSS, the presentation layer. That has traditionally meant
adding additional class names to our table rows like "odd" and "even."
We don't want to pollute our table's markup like that, because the
HTML5 specification encourages us to avoid using class names that
define presentation. Using some new selectors, we can get what we
want without changing our markup at all, truly separating presenta-
tion from content.

The nth-of-type selector finds every nth element of a specific type using
either a formula or keywords. We'll get into the formula in more detail
soon, but first, let's focus on the keywords, because they're immediately
easier to grasp.

We want to stripe every other row of the table with a different color, and
the easiest way to do that is to find every even row of the table and give
it a background color. We then do the same thing with the odd rows.
CSS3 has even and odd keywords that support this exact situation.

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 77

Down! oad css3advancedselectors/table.css

tr:nth-of-type(even){
background-color: #F3F3F3;

}
tr:nth-of-type(odd) {
background-col or:#ddd;

}

So, this selector says, "Find me every even table row and color it. Then
find every odd row and color that too." That takes care of our zebra
striping, without resorting to any scripting or extra class names on
rows.

With the styles applied, our table looks like this:

1 Item Price Quantity Total
Coffee mug $10.00 5 $50.00
Polo shirt $20.00 5 $100.00
Red stapler $9.00 4 $36.00
Subtotal $186.00
Shipping $12.00
Total Due $198.00

Now let's work on aligning the columns in the table.

Aligning Column Text with :nth-child
By default, all of the columns in our invoice table are left-aligned. Let's
right-align every column except for the first column. This way, our price
and quantity columns will be right-aligned and easier to read. To do
that, we can use nth-child, but first we have to learn how it works.

The nth-child selector looks for child elements of an element and, like
nth-of-type, can use keywords or a formula.

The formula is an+b, where b is the offset, and a is a multiple. That
description is not particularly helpful without some context, so let's
look at it in the context of our table.

If we wanted to select all of the table rows, we could use this selector:

table tr:nth-child(n)

We're not using any multiple, nor are we using an offset.

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 78

However, if we wanted to select all rows of the table except for the first
row, which is the row containing the column headings, we would use
this selector that uses an offset:
table tr:nth-child(n+2)

If we wanted to select every other row of our table, we'd use a multiple,
or 2n.

table tr:nth-child(2n)

If you wanted every third row, you'd use 3n.

You can also use the offset so that you can start further down the table.
This selector would find every other row, starting with the fourth row:
table tr:nth-child(2n+4)

So, we can align every column except the first one with this rule:

Down! oad css3advancedselectors/table.css

td:nth-child(n+2){
text-align: right;

}

At this point, our table is really shaping up:

1 Item Price Quantity Total I
Coffee mug $10.00 5 $50.00
Polo shirt $20.00 5 $100.00
Red stapler $9.00 4 $36.00
Subtotal $186.00
Shipping $12.00
Total Due $198.00

Now, let's style the last row of the table.

Bolding the Last Row with :last-child
The invoice is looking pretty good right now, but one of the managers
would like the bottom row of the table to be bolder than the other rows
so it stands out more. We can use last-child for that too, which grabs the
last child in a group.

Applying a bottom margin to paragraphs so that they are evenly spaced
on a page is a common practice among many web developers. This can
sometimes lead to an extra bottom margin at the end of a group, and
that might be undesirable. For example, if the paragraphs are sitting

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 79

inside of a sidebar or callout box, we may want to remove the bot-
tom margin from the last paragraph so that there's not wasted space
between the bottom of the last paragraph and the border of the box.
The last-child selector is the perfect tool for this. We can use it to remove
the margin from the last paragraph.
p{ margin-bottom: 20px }
#sidebar p:last-child{ margin-bottom: 0; }

Let's use this same technique to bold the contents of the last row.
Down! oad css3advancedselectors/table.css

tr:last-child{
font-weight: bolder;

}

Let's do the same thing with the last column of the table. This will help
the line totals stand out too.
Down! oad css3advancedselectors/table.css

td:last-child{
font-weight: bolder;

}

Finally, we'll make the total's font size bigger by using last-child with
descendant selectors. We'll find the last column of the last row and
style it with this:
Down! oad css3advancedselectors/table.css

tr:last-child td:last-child{
font-size:24px;

}
1 Item Price Quantity Total I
Coffee mug $10 00 5 $50.00
Polo shirt $20 00 5 $100.00
Red stapler $9 00 4 $36.00
Subtotal $186.00
Shipping $12.00
Total Due $ 1 9 8 . 0 0

We're almost done, but there are a few things left to do with the last
three rows of the table.

Counting Backward with :nth-last-child
We'd like to highlight the shipping row of the table when there's a
discounted shipping rate. We'll use nth-last-child to quickly locate that
row. You saw how you can use nth-child and the formula an+b to select

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 80

specific child elements in Section 7, Aligning Column Text with :nth-
child, on page 77. The nth-last-child selector works exactly the same way,
except that it counts backward through the children, starting at the
last child first. This makes it easy to grab the second-to-last element in
a group. It turns out we need to do just that with our invoice table.

So, to find our shipping row, we'd use this code:

Down! oad css3advancedselectors/table.css

tr:nth-last-child (2){
color: green;

}

Here, we're just specifying a specific child, the second to the last.

There's one last thing we should do with this table, though. Earlier, we
right-aligned all the columns except for the first column, and although
that looks fine for the rows of the table with the item descriptions and
prices, it makes the last three rows of the table look a little funny. Let's
right-align the bottom three rows as well. We can do that by using nth-
last-child with a negative value for n and a positive value for a in our
formula, like this:

Down! oad css3advancedselectors/table.css

tr:nth-last-child(-n+3) td{
text-align: right;

}

You can think of this as a range selector...it's using the offset of 3, and
since we're using nth-last-child, it's grabbing every element before the
offset. If you were using nth-child, this formula would grab every row up
to the offset.

Our newly styled table, shown in Figure 4.2, on the following page,
looks much better now, and we didn't have to change the underly-
ing markup one bit. Many of the selectors we used to accomplish this
are not yet available to people using Internet Explorer, so we need a
workaround for them.

Falling Back
Current versions of Opera, Firefox, Safari, and Chrome all understand
these selectors, but Internet Explorer versions 8.0 and older will just
ignore these entirely. You'll need a good fallback solution, and you have
a choice to make.

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 81

Coffee mug
Polo shirt
Red stapler

S10.00
$20.00

S9.00

Subtotal
Shipping

Total Due

5

5

4

$50.00

$100.00
$36.00

$186.00

$12.00
$198.00

Figure 4.2: Our styled table, with striping and alignment done entirely
with CSS3

Change the HTML Code
The most obvious solution that works everywhere is to modify the
underlying code. You could attach classes to all the cells in the table
and apply basic CSS to each class. This is the worst choice, because it
mixes presentation and content and is exactly the kind of thing we're
using CSS3 to avoid. Someday we wouldn't need all that extra markup,
and it would be painful to remove it.

Use JavaScript
The j Query library already understands most of the CSS3 selectors we
used, so we could quickly write a method to style the table that way,
but there's an easier way.

Keith Clark has written a great little library called IE-css32 that adds
support for CSS3 selectors to Internet Explorer. All we need to do is add
a couple of scripts to our page.

The IE-CSS3 library can use jQuery, Prototype, or several other libra-
ries under the hood, but I prefer to use the DOMAssistant3 library
because it has the best support for all the pseudoclasses we've used
here.

Download both of those libraries, and then link them to your document.
Since this is for IE only, you can place them in a conditional comment
so they'll be used only by your IE users.

2. http://www.keithclark.co.uk/labs/ie-css3/
3. http://www.domassistant.com/

Report erratum

STYLING TABLES WITH PSEUDOCLASSES M 82

Ù & ¡g Table |_J a ' ai

1 Item Price Quantity Total I
Coffee mug $10.00 5 S50.00
Polo shirt $20.00 5 $100.00
Red stapler $9.00 4 $36.00

Subtotal $186.00
Shipping $12.00

Total Due $198.00

Figure 4.3: Our table looks great in Internet Explorer.

Down! oad css3advancedselectors/table.html

<! — [i f (gte IE 5.5)&(lte IE 8)]>
<script type="text/javascript"

src=" j s/DOMAssi stantCompressed-2 .8. j s " x/scri pt>
<script type="text/javascript"

src=" j s/i e-css3 . j s " x/scri pt>
<![endif]-->

Placing those scripts in the page makes things look just great in Inter-
net Explorer. You can see what it looks like in Figure 4.3.

Although this will require the user to have JavaScript turned on, the
table styling is mainly there to make the content easier to see. Lack of
styling doesn't prevent anyone from reading the invoice.

Styling elements is a whole lot easier with CSS3, especially if we don't
have the ability to modify the HTML we're targeting. When you're styling
interfaces, use the semantic hierarchy and these new selectors before
you add additional markup. You will find your code much easier to
maintain.

Report erratum

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT M 83

Making Links Printable with ¡after
and content

CSS can style existing elements, but it can also inject content into a
document. There are a few cases where content generation with CSS
makes sense, and the most obvious one is appending the URL of a
hyperlink next to the link's text when a user prints the page. When
you're looking at a document on the screen, you can just hover over a
link and see where it goes by looking at the status bar. However, when
you look at a printout of a page, you have absolutely no idea where
those links go.

AwesomeCo is working up a new page for its forms and policies, and
one of the members of the redesign committee insists on printing out a
copy of the site each time. He wants to be able to know exactly where all
of the links go on the page so that he can determine whether they need
to be moved. With just a little bit of CSS, we can add that functionality,
and it will work in IE 8, Firefox, Safari, and Chrome. We can use some
proprietary JavaScript to make it work in IE 6 and 7.

The page itself has nothing more than a list of links on it right now.
Eventually it'll get put into a template.

Down! oad css3_prmt_links/mdex.html

Travel Authorization Form

Travel Reimbursement Form

Travel Guidelines

</body>

If you were to look at that page on a printout, you'd have no idea where
those links go. Let's fix that.

Report erratum

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT M 84

The CSS
When we add a style sheet to a page, we can specify the media type that
the styles apply to. Most of the time, we use the screen type. However,
we can use the print type to define a style sheet that loads only when
the page is printed (or when the user uses the print preview function).

Down! oad css3_prmt_links/mdex.html

<link rel="stylesheet" href="print.css" type="text/css" media="print">

We can then create a print.css style sheet file with this simple rule:

Down! oad css3_prmt_lmks/pnnt.css

a:after {
content: " (" attr(href) ") ";

}

This takes every link on the page and adds the value of the href value
inside parentheses after the link's text. When you print it from a mod-
ern browser, it looks just like this:

Forms and Policies
• Travel Authorization Form (travel/index .html)
• Travel Reimbursement Form (travel/expenses .html ^
• Travel Guidelines itra vcl/g ui dclmc s .htmll

If you want to see it in action without actually using up paper, you can
use your browser's Print Preview feature, which also triggers this style
sheet.

That handles everything except for Internet Explorer 6 and 7. Let's fix
that, shall we?

Falling Back
Internet Explorer has a couple of JavaScript events that I wish every
browser would adopt: onbeforeprint and onafterprint. Using those events,
we can modify the hyperlink text when the printing is triggered and
then revert the links when printing is finished. Our users will never
notice the difference.4

4. This technique is outlined nicely at http://beckelman.net/post/2009/02/! 6/Use-jQuery-to-Show-a-Linke28099s-Address-After-

Report erratum

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT M 85

We just need to create a file called print.js and add this code:

Down! oad css3_print_links/print.js

Une l $ (function () {
if (window.onbeforeprint !== undefined) {

window.onbeforeprint = ShowLinks;
window, onafterprint = HideLinks;

5 }
}) ;

function ShowLinks() {
$("a") .each(function() {

io $(this) .data("7in/c7~ext" , $(this) .textO) ;
$(this) .append(" (" + $(this) .attr('7iref") + ")");

});
}

15 function HideLinksO {
$("a") .each(function() {

$(this) .text($(this) .data("7in/cText")) ;
});

}

Then we just need to attach it to our page. We only need this fallback
for IE 6 and 7, so we'll use a conditional comment for that. This code
relies on jQuery, so we have to make sure that we link in the jQuery
library as well.

Down! oad css3_prmt_links/mdex.html

<scri pt
charset= "utf-8"
src='http://ajax.googleapis.eom/ajax/libs/jquery/l.4.2/jquery.min.js'
type='text/j avascri pt'>

</script>
<! — [i f lte IE 7]>
<script type="text/javascript" src="print.js"x/script>
<![endif]-->

</head>
<body>

<hl>Forms and Policies</hl>

Travel Authorization Form

Travel Reimbursement Form

Report erratum

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT M 86

Travel Guidelines

</l i>

With the JavaScript linked, the link URLs will print on all of our target
browsers. You can use this print style sheet as the basis for a more
comprehensive one, and you may choose to apply this behavior to only
some links on your site, not to every link like we did here.

Report erratum

CREATING MULTICOLUMN LAYOUTS M 87

^^ Creating Multicolumn Layouts

The print industry has had columns for years, and web designers have
looked at those publications with envy. Narrow columns make it easier
for readers to read your content, and with displays getting wider, devel-
opers are looking for ways to preserve comfortable column widths. After
all, nobody wants to follow multiple lines of text across the monitor any
more than they want a line of text to flow across the whole page of a
newspaper. There have been some pretty clever solutions in the past
ten years, but none of those solutions are as simple and easy as the
method provided by the CSS3 specification.

Splitting Columns
Each month, AwesomeCo publishes a newsletter for its employees. The
company happens to use a popular web-based email system. Email-
based newsletters don't quite look good and are very hard to maintain.
They've decided to put the newsletter on the intranet site and are plan-
ning to just send emails to employees with a link to pull up the newslet-
ter in their browsers. For a mocked-up version of this new newsletter,
see Figure 4.4, on the following page.

The new director of communications, who has a background in print
publications, has decided that she would like the newsletter to look
more like an actual newsletter, with two columns instead of one.

If you've ever tried to split some text into multiple columns using divs
and floats, you know how hard that can be. The first big hurdle you run
into is that you have to manually decide where to split the text. In pub-
lishing software such as InDesign, you can "link" text boxes together so
that when one fills up with text, the text flows into the linked text area.
We don't have anything quite like that on the Web just yet, but we have
something that works really well and is quite easy to use. We can take
an element and split its contents into multiple columns, each with the
same width.

We'll start with the markup for the newsletter. It's fairly basic HTML.
Since its content will change once it's written, we're just going to use
placeholder text for the content. If you're wondering why we're not using

Report erratum

CREATING MULTICOLUMN LAYOUTS M 88

AwesomeCo Newsletter
Volume 3, Issue 12

News From The Director
Lorcm ipsum dolor sit amet, conscctctur adipisicing clit, scd do eiusmod tempor incididunt ut laborc er dolore magna aliqua. Ut cnim ad miolm veniam,

quis nostrud excrcitation ullamco laboris nisi ut aliquip cx ea commodo conscquat.

Duis autc irure dolor in reprchcnderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint

occaecat cupidatat non proidcnt, sunt in culpa qui officia descrunt mo Hit anim id est laborum.

Quick Bits of Awesome
Lorcm ipsum dolor sit amet, conscctetur adipisicing elit, sed do eiusmod tempor incididunt ut laborc et dolore magna

aliqua. Ut cnim ad minim veniam, quis nostrud excrcitation ullamco laboris nisi ut aliquip ex ea commodo consequat,

Duis autc irure dolor in reprchcnderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Exceptcur sint

occaecat cupidatat non proidcnt, sunt in culpa qui officia dcscrunt mollit anim id est laborum.

Birthdays
Lorcm ipsum dolor sit amet, consectetur adipisicing clit, scd do eiusmod tempor incididunt ut laborc et dolore magna aliqua. Ut enim ad minim veniam,

quis nostrud excrcitation ullamco laboris nisi ut aliquip ex ea commodo conscquat.

Duis autc irure dolor in reprchcnderit in voluptate velit esse cillum dolore cu fugiat nulla pariatur. Exceptcur sint occaccat cupidatat non proidcnt, sunt in

culpa qui officia deserunt mollit anim id est laborum.

Send newsworthy things to newŝ 'a weso roeco -co m.

Figure 4.4: Our single-column newsletter is harder to read because it's
very wide.

the new HTML5 markup elements like section and such for this newslet-
ter, it's because our fallback method isn't compatible with those ele-
ments in Internet Explorer.

Down! oad css3columns/condensed_newsletter.html

<body>
<div id="header">

<hl>AwesomeCo Newsletter</hl>
<p>Volume 3, Issue 12</p>

</div>
<div id="newsletter">

<div id="director_news">
<div>

<h2>News From The Director</h2>
</div>
<div>

<P>
Lorem ipsum dolor...

</p>

Being Awesome

"Lorem ipsum dolor sit amet,

consectetur adipisicing elit, scd

do eiusmod tempor incididunt

ut laborc et dolore magna

aliqua. Ut enim ad minim

veniam."

Report erratum

CREATING MULTICOLUMN LAYOUTS M 89

<div class="callout">

<h4>Being Awesome</h4>
<P>

"Lorem ipsum dolor sit amet..."
</p>

</div>
<P>

Dui s aute i rure...
</p>

</div>
</div>
<div id="awesome_bits">

<div>
<h2>Quick Bits of Awesome</h2>

</div>
<div>

<p>
Lorem ipsum...

</p>
<p>

Dui s aute i rure...
</p>

</div>
</div>

<div id="birthdays">
<div>

<h2>Bi rthdays</h2>
</div>
<div>

<p>
Lorem ipsum dolor...

</p>
<p>

Dui s aute i rure...
</p>

</div>
</div>

</div>
<div id="footer">

<h6>Send newsworthy things to
news@awesomeco.com.

</h6>
</div>

</body>

Report erratum

CREATING MULTICOLUMN LAYOUTS M 90

AwesomeCo Newsletter
Volume 3, Issue 12

News From The Director
Lorem ipsum dolor sit amet, conscctetur adipisicing elit, sed do eiusmod

tcmpor incididunt ut labore ei dolore magna aliqua. Ui enim ad minim

veniam, quis nostrud cxercitation ullamco laboris nisi ut aliquip cx ea

commodo conscquat.

Being Awesome

"Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do ciusmod tcmpor incididunt

ut labore ct dolorc magna

aliqua. Ut enim ad minim

veniam."

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tcmpor incididunt ut labore et dolorc magna aliqua. Ut enim ad minim

veniam, quis nostrud cxercitation ullamco laboris nisi ut aliquip ex ea

commodo conscquat.

Duis aute irure dolor in rcprehenderit in voluptate velit esse cillum dolore

eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,

sunt in culpa qui off icia deserunt mollit anim id est laborum.

Birthdays
Lorcm ipsum dolor sit amet, conscctetur adipisicing elit, sed do ciusmod

tempor incididunt ut laborc et dolorc magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip cx ea

commodo consequat.

Duis autc irure dolor in rcprehenderit in voluptate velit esse cillum dolore

eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,

sunt in culpa qui off icia deserunt mollit anim id est laborum.

Duis aute irure dolor in rcprchcndcrit in

voluptate velit esse cillum dolorc eu

fugiat nulla pariatur. Exccpteur sint

occaecat cupidatat non proident, sunt in

culpa qui off icia deserunt mollit anim id

est laborum.

Quick Bits of Awesome

Send newsworthy things to ntws<Sawosounto xom•

Figure 4.5: Our new two-column newsletter

To split this into a two-column layout, all we need to do is add this to
our style sheet:

Down! oad css3columns/newsletter.html

#newsletter{
-moz-column-count: 2;
-webkit-column-count: 2;
-moz-column-gap: 20px;
-webkit-column-gap: 20px;
-moz-column-rule: lpx solid #ddccb5;
-webkit-column-rule: lpx solid #ddccb5;

Now we have something much nicer, like you see in Figure 4.5. We can
add more content, and the browser will automatically determine how to
split the content evenly. Also, notice that the floated elements float to
the columns that contain them.

Report erratum

C R E A T I N G M U L T I C O L U M N L A Y O U T S M 9 1

f <
Joe Asks...

Can I Specify Different Widths for Each Column?

Nope. Your columns must each be the same size. I was a lit-
tle surprised too at first, so I double-checked the specification,
and at the time of writing, there was no provision for specifying
multiple column widths.

However, when you think about how columns are traditionally
used, it makes sense. Columns are not meant to be a hack to
easily make a sidebar for your website any more than tables
are. Columns are meant to make reading long areas of text
easier, and equal width columns are perfect for that.

Falling Back
CSS3 columns don't work in Internet Explorer 8 and older, so we'll use
the j Query Columnizer plug-in5 as a fallback. Columnizer will let us
split our content evenly by simply using code like this:
Down! oad css3columns/newsletter.html

$("#newsletter").columnize({ columns: 2 }) ;

People without JavaScript are going to be stuck with a single column
of text, but they'll still be able to read the content, because we marked
it up in a linear fashion, so we have them covered. However, we can
use JavaScript to detect browser support for certain elements. If we
retrieve a CSS property that exists, we'll get an empty string. If we get
a null value back, we don't have that property available.
Down! oad css3columns/newsletter.html

<scri pt
charset="utf-8"
src='http://ajax.googleapis.eom/ajax/libs/jquery/l.4.2/jquery.min.js'
type='text/j avascri pt'>

</scri pt>

<scri pt
charset="utf-8"
src="javascri pts/autocol umn . j s"
type='text/j avascri pt' >

</scri pt>

5. http://welcome.totheinter.net/columnizer-jquery-plugin/

Report erratum

CREATING MULTICOLUMN LAYOUTS M 92

W g* flwesomeCo Newsleter | | Qt •* ËS • ̂ *
AwesomeCo Newsletter

Volume 3. Issue 12

News F r o m The Di rec to r
Lorem ipsum dolor sit amet. consectetur adipisicing elit. sed do eiusmod
tempor inddidunt ut labore et dolore magna afiqua. Ut enim ad minim
veniam. quis nostrud esercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.

Duis aute ¡rure dolor in reprehenderit in Being Awesome
voiuptate veEt esse cflhim dolore eu

fiigiat nulla pariatur. Excepteur sint "Lorem ipsum dolor sit amet

occaecat cupidatat non proident sunt m c onsec ,etur adipisicing eKt sed

culpa qui officia deserunt mol t anim id do gjusmod t e m p 0 r inddidunt ut

est laborum. labore et dolore magna afiqua.

Ut enim ad minim veniam." Quick Bits of Awesome
Lorem ipsum dolor sit amet, consectetur adipisicing eht sed do eiusmod
tempor inddidunt ut labore et dolore magna aliqua. Ut

enim ad minim veniam. quis nostrud exerdtation ullamco laboris nisi ut aliquip

ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voiuptate velit esse cillum dolore eu
fiigiat nulla pariatur. Excepteur sint occaecat cupidatat non proident. sunt in
culpa qui offida deserunt motKt anim id est laborum.

Bir thdays
Lorem ipsum dolor sit amet. consectetur adipisicing eKt. sed do eiusmod
tempor inddidunt ut labore et dolore magna afiqua. Ut enim ad minim
veniam, quis nostrud exercitation uDamco laboris nisi ut afiquip ex ea
commodo consequat.

Duis aute irure dolor in reprehenderit in voiuptate vefit esse cillum dolore eu
fiigiat nulla pariatur. Excepteur sint occaecat cupidatat non proident. sunt in
culpa qui officia deserunt molit anim id est laborum.

zi

Figure 4.6: Our Internet Explorer version works but needs some minor
adjustments.

<script type="text/javascript">
function hasColumnSupportO{

var element = document.documentElement;
var style = element.style;
if (style){

return typeof style.columnCount == "string" ||
typeof style.MozColumnCount == "string" ||
typeof style.WebkitColumnCount == "string" ||
typeof style.KhtmlColumnCount == "string";

}
return nul1 ;

$(function(){
if C! hasCol umnSupportO) {
$C"#newsletter").columnize({ columns: 2 });

}
});

</scri pt>

We simply check for column support, and if none exists, we apply our
plug-in.

Report erratum

CREATING MULTICOLUMN LAYOUTS M 93

Refresh the page in Internet Explorer, and you'll now see your two-
column newsletter. It may not be perfect, as you can see in Figure 4.6,
on the preceding page, so you'll need to use a little CSS or JavaScript
to fix any elements that don't quite look right, but I'm leaving that exer-
cise up to you. Take advantage of conditional comments like we used
in Section 7, Use JavaScript, on page 81 to target specific versions of
Internet Explorer if needed.

Separating your content into multiple columns can make your content
easier to read. However, if your page is longer, your users might find it
annoying to have to scroll back to the top to read the columns. Use this
with care.

Report erratum

BUILDING MOBILE INTERFACES WITH MEDIA QUERIES M 94

II Building Mobile Interfaces with
| Media Queries

We've been able to define media-specific style sheets for quite a while,
but we've been limited to the type of output, as you saw In Making
Links Printable with :ajter and content, on page 83, when we defined our
print style sheet. CSS3's media queries6 let us change the presentation
of a page based on the screen size our visitors use. Web developers
have done screen size detection for years using JavaScript to obtain
Information about the user's screen size. But we can start to do that
with style sheets alone. We can use media queries to determine the
following:

• Resolution

• Orientation (portrait or landscape mode)

• Device width and height

• Width and height of the browser window

Because of this, media queries make It very easy for us to create alter-
native style sheets for mobile users.

It turns out that the AwesomeCo executive staff have all just dumped
their BlackBerry devices for shiny new IPhones. The marketing director
would love to see an IPhone-ready version of the blog template we built
In Redefining a Blog Using Semantic Markup, on page 27. We can do
that very quickly.

Our current blog Is a two-column layout, with a main content region
and a sidebar. The easiest way to make this more readable on the
IPhone Is to remove the floating elements so that the sidebar falls be-
neath the main content. That way, the reader won't have to scroll side-
ways on the device.

6. http://www.w3. org/TR/css3-mediaqueries/

Report erratum

BUILDING MOBILE INTERFACES WITH MEDIA QUERIES M 95

f <

Joe Asks...
^ What About the Handheld Media Type?

The Handheld media type was designed to let us target mobile
devices like we target printers, but most mobile devices want
to show you the "real Internet" and so they ignore that media
type, serving the style sheet associated with the screen media
type instead.

To make this work, we'll add this code to the bottom of the blog's style
sheet:

Down! oad css3mediaquery/style.css

@media only screen and (max-device-width: 480px) {
body{

width:460px;

section#sidebar, section#posts{
float: none;
width: 100%;

You can think of the code we put within the media query braces as
its own style sheet, invoked when the conditions of the query are met.
In this case, we resize the body of the page and turn our two-column
layout into a single-column layout.

We could also use media queries when we link the style sheet, so we
can keep our mobile style sheet in a separate file, like this:

<link rel="stylesheet" type="text/ess"
href="CSS/mobi le. ess" media="on7y screen and (max-device-width: 480px)">

With that, our blog immediately becomes more readable on the iPhone.
You can use this approach to build style sheets for other displays as
well, such as kiosks, tablets, and displays of various sizes so that your
content is readable in more places.

Report erratum

BUILDING MOBILE INTERFACES WITH MEDIA QUERIES M 96

Falling Back
Media queries are supported in Firefox, Chrome, Safari, Opera, and
Internet Explorer 9. You'll have to rely on JavaScript fallback solutions
to load additional style sheets based on the user's device. Our example
targets iPhones, so we don't need a fallback solution—our content is
readable without the media query.

However, if you want to experiment with media queries in other
browsers, there is a jQuery plug-in7 that adds basic media query sup-
port to other browsers. It's limited in that it works only with linked style
sheets, and it only supports min-width and max-width in pixels. Even with
those limitations, it works very well for creating different interfaces for
different window sizes.

The Future

The things we talked about in this chapter improve the user interface,
but people can still work with our products if their browsers don't sup-
port these new features. People can still read the data in the table if it's
not styled with stripes; the forms will still work, even if they don't have
rounded corners on the interface elements; and the newsletter won't
be laid out in multiple columns. It's good to know that we can use the
presentation layer to achieve these effects instead of having to resort to
JavaScript or server-side solutions.

Almost all browsers support these selectors now, with the exception
of Internet Explorer. As we move forward, you can expect to see IE
moving to support these as well, especially the pseudoclasses. When
the specification becomes final, the vendor-specific prefixes like moz
and webkit- go away. Once that happens, you'll be able to remove your
fallback code.

7. http://plugins.jquery.com/project/MediaQueries

Report erratum

Chapter 5

mpmving Accessibility
Many of the new elements in HTML5 help you more accurately describe
your content. This becomes more important when other programs start
interpreting your code. For example, some people use software called
screen readers to translate the graphical contents of the screen to text
that's read aloud. Screen readers work by interpreting the text on the
screen and the corresponding markup to identify links, images, and
other elements. Screen readers have made amazing advances, but they
are always lagging behind the current trends. Live regions on pages,
where polling or Ajax requests alter content on the page, are difficult to
detect. More complex pages can be difficult to navigate because of the
screen reader needing to read a lot of the content aloud.

Accessibility for Rich Internet Applications (WLA-ARIA)1 is a specifica-
tion that provides ways to improve the accessibility of websites, espe-
cially web applications. It is especially useful if you are developing
applications with JavaScript controls and Ajax. Some parts of the WIA-
ARIA specification have been rolled into HTML5, while others remain
separate and can complement the HTML5 specification. Many screen
readers are already using features of the WIA_ARIA specification, in-
cluding JAWS, WindowEyes, and even Apple's built-in VoiceOver
feature. WIA-ARIA also introduces additional markup that assistive
technology can use as hints for discovering regions that are updatable.

In this chapter, we'll see how HTML5 can improve the experience of
your visitors who use these assistive devices. Most importantly, the

1. http://www.w3.org/WAI/intro/aria.php

CHAPTER 5. IMPROVING ACCESSIBILITY M 98

techniques in this chapter require no fallback support, because many
screen readers are already able to take advantage of these techniques
right now.

These techniques include:2

The role attribute [<div role="document">]
Identifies responsibility of an element to screen readers. [C3, F3.6,
S4, IE8, 09.6]

aria-live [<div aria-live="polite">]
Identifies a region that updates automatically, possibly by Ajax.
[F3.6 (Windows), S4, IE8]

aria-atomic [<div aria-live="polite" aria-atomic="true">]
Identifies whether the entire content of a live region should be read
or just the elements that changed. [F3.6 (Windows), S4, IE8]

2. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, JOS: iOS devices
with Mobile Safari, and A: Android Browser.

Report erratum

PROVIDING NAVIGATION HINTS WITH A R I A ROLES M 99

•

Providing Navigation Hints with
ARIA Roles

Most websites share a common structure: there's a header, a navigation
section, some main content, and a footer. Most of these sites are coded
just like that, in a linear fashion. Unfortunately, this means that a
screen reader may have to read the site to its user in that order. Since
most sites repeat the same header and navigation on each page, the
user will have to hear these elements each time they visit another page.

The recommended fix is to provide a hidden "skip navigation" link that
screen readers will read aloud, which simply links to an anchor some-
where near the main content. However, that's not something that's built
in, and it's not something that everyone knows how (or remembers)
to do.

HTML5's new role attribute lets us assign a "responsibility" to each ele-
ment on your page. A screen reader can then very easily parse the page
and categorize all of those responsibilities so that you can create a sim-
ple index for the page. For example, it can find all the navigation roles
on the page and present them to the user so they can quickly navigate
around your application.

These roles come from the WLA-ARIA specification3 and have been in-
corporated into the HTML5 specification. There are two specific classi-
fications of roles that you can put to use right now: landmark roles and
document roles.

Landmark Roles
Landmark roles identify "points of interest" on your site, such as the
banner, search area, or navigation that screen readers can quickly
identify.

3. http://www.w3.org/WAI/PF/aria/roles

Report erratum

PROVIDING NAVIGATION HINTS WITH A R I A ROLES M 100

Role
banner
search
navigation
main
contentinfo

Use
Identifies the banner area of your page
Identifies the search area of your page
Identifies navigational elements on your page
Identifies where your page's main content begins
Identifies where information about the content exists,
such as copyright information and publication date
Identifies content on a page that complements the
main content but is meaningful on its own
Identifies a region of a page that contains a web appli-
cation as opposed to a web document

We can apply a few of these roles to the AwesomeCo blog template we
worked on in Redefining a Blog Using Semantic Markup, on page 27.

complementary

application

For the overall header, let's apply the banner role like this:

Down! oad html5_ar¡a/blog/¡ndex.html

<header id="page_header" role="banner">
<hl>AwesomeCo Blog!</hl>

</header>

All that's needed is the addition of the role="banner" to the existing
header tag.

We can identify our navigation the same way:

Down! oad html5_aria/blog/index.html

<nav role="navigation">

< l i x a href="/">Latest Posts</ax/l i>
<1 i x a href="/archives">Archives</ax/l i>
<1 i x a href="/contributors">Contributors</ax/l i>
< l i x a href="/contact">Contact Us</ax/li>

</nav>

The HTML5 specification says that some elements have default roles
and can't be overridden. The nav element must have the role of naviga-
tion and technically doesn't need to be specified. Screen readers aren't
quite ready to accept that default yet, but many of them do understand
these ARIA roles.

Report erratum

PROVIDING NAVIGATION HINTS WITH A R I A ROLES M 101

Our main and sidebar regions can be identified as follows:

Down! oad html5_aria/blog/mdex.html

<section id="posts" role="main">
</section>

Down! oad html5_aria/blog/index.html

<section id="sidebar" role="complementary">

<nav>
<h3>Archives</h3>

<1 i x a href="2010/10">0ctober 2010</ax/l i>
<1 i x a href="2010/09">September 2010</ax/l i>
<1 i x a href="2010/08">August 2010</ax/li>
<1 i x a href="2010/07">July 2010</ax/li>
<1 i x a href="2010/06">June 2010</ax/li>
<1 i x a href="2010/05">May 2010</ax/li>
<1 i x a href="2010/04">Apri 1 2010</ax/li>
<1 i x a href="2010/03">March 2010</ax/li>
<1 i x a href="2010/02">February 2010</ax/li>
<1 i x a href="2010/01">January 2010</ax/li>

</nav>
</section> <!-- sidebar -->

We identify the publication and copyright info in our footer using the
contentinfo role like this:

Down! oad html5_aria/blog/index.html

<footer id="page_footer" role="contentinfo">
<p>© 2010 AwesomeCo.</p>

</footer> <!-- footer -->

If we had a search for our blog, we could identify that region as well.
Now that we've identified the landmarks, let's take this a step further
and help identify some of the document elements.

Document Structure Roles
Document structure roles help screen readers identify parts of static
content easily, which can help better organize content for navigation.

Report erratum

PROVIDING NAVIGATION HINTS WITH A R I A ROLES M 102

Role
document

Use
Identifies a region containing document content, as
opposed to application content.
Identifies a composition that forms an independent
part of a document.
Identifies a definition of a term or subject.
Identifies a list of references to a group, like a table of
contents. Used for static content.
Identifies a heading for a section of a page.
Identifies a section that contains elements of an
image. This may be image elements as well as cap-
tions and descriptive text.
Identifies a group of noninteractive list items.
Identifies a single member of a group of noninterac-
tive list items.
Identifies a mathematical expression.
Identifies content that is parenthetic or ancillary to
the main content of the resource.
Identifies content that is for presentation and can be
ignored by assistive technology.
Identifies a row of cells in a grid.
Identifies a cell containing header information for a
row in a grid.

Many of the document roles are implicitly defined by HTML tags, such
as articles and headers. However, the document role isn't, and it's a very
helpful role, especially in applications with a mix of dynamic and static
content. For example, a web-based email client may have the document
role attached to the element that contains the body of the email mes-
sage. This is useful because screen readers often have different meth-
ods for navigating using the keyboard. When the screen reader's focus
is on an application element, it may need to allow keypresses through
to the web application. However, when the focus is on static content, it
could allow the screen reader's key bindings to work differently.

We can apply the document role to our blog by adding it to the body
element.
Down! oad html5_aria/blog/mdex.html

<body role="document">

article

definition
directory

heading
img

list
listitem

math
note

presentation

row
rowheader

Report erratum

PROVIDING NAVIGATION HINTS WITH A R I A ROLES M 103

Joe Asks...
2: Do We Need These Landmark Roles If We Have Elements

Such As nav and header?

The landmark roles may at first seem redundant, but they pro-
vide you with the flexibility you need for situations where you
can't use the new elements.

Using the search role, you can direct your users to the region of
the page that not only contains the search field but also links to
a site map, a drop-down list of "aulck links," or other elements
that will help your users find information auickly, as opposed to
just directing them to the actual search field.

There are also a lot more roles Introduced by the specification
than there are new elements and form controls.

This can help ensure that a screen reader will treat this page as static
content.

Falling Back
These roles are already usable on the latest browsers with the latest
screen readers, so you can start working with them now. Browsers that
don't support them are just going to ignore them, so you're really only
helping those people who can use them.

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 104

I
We do a lot of things with Ajax In our web applications these days. Stan-
dard practice Is to fire off some sort of visual effect to give the user a
clue that something has changed on the page. However, a person using
a screen reader obviously isn't going to be able to see any visual cues.
The WLA-ARLA specification provides a pretty nice alternative solution
that currently works in IE, Firefox, and Safari with various popular
screen readers.

The AwesomeCo executive director of communications wants a new
home page. It should have links to a "services" section, a "contact" sec-
tion, and an "about" section. He insists that the home page shouldn't
scroll because "people hate scrolling." He would like you to implement
a prototype for the page with a horizontal menu that changes the page's
main content when clicked. That's easy enough to Implement, and with
the aria-live attribute, we can do something we haven't been able to do
well before—implement this type of interface in a way that's friendly to
screen readers.

Let's build a simple interface like Figure 5.1, on page 106. We'll put
all the content on the home page, and if JavaScript is available to us,
we'll hide all but the first entry. We'll make the navigation links point to
each section using page anchors, and we'll use jQuery to change those
anchor links into events that swap out the main content. People with
JavaScript will see what our director wants, and people without will
still be able to see all the content on the page.

Creating the Page
We'll start by creating a basic HTML5 page, and we'll add our Welcome
section, which will be the default section displayed to users when they
visit the page. Here's the code for the page with the navigation bar and
the jump links:
Down! oad html5_aria/homepage/index.html

<!DOCTYPE html>
<html lang="en-US">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<t i tle>Awe someCo</ti tl e>

Creating an Accessible
Updatable Region

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 105

<1 ink rel="stylesheet" href="style.css" type="text/css">
</head>
<body>

<header id="header">
<hl>AwesomeCo </hl>
<nav>

<1 i x a href="#wel come'VWel come</ax/l i>
<1 i x a href="#services">Servi ces</ax/l i>
<1 i x a href="#contact">Contact</ax/l i>
<1 i x a href="#about">About</ax/l i>

</nav>

</header>
<section id="content"

role="document" aria-1ive="assertive" aria-atomic="true">

<section id="welcome">
<header>

<h2>Welcome</h2>
</header>
<p>The welcome section</p>

</section>
</section>
<footer id="footer">

<p>© 2010 AwesomeCo.</p>
<nav>

<1 i x a href="http://awesomeco.com/">Home</ax/l i>
<1 i x a href="about">About</ax/l i>
< l i x a href="terms.html">Terms of Servi ce</ax/l i>
<1 i x a href="privacy.html ">Pri vacy</ax/l i>

</nav>

</footer>

</body>
</html>

The Welcome section has an ID of welcome, which matches the anchor
in the navigation bar. We can declare our additional page sections in
the same fashion.
Down! oad html5_aria/homepage/index.html

<section id="services">
<header>

<h2>Servi ces</h2>
</header>
<p>The services section</p>

</section>

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 106

AwesomeCo

Welcome Services Contact About

Welcome
The welcome section

© 2 0 1 0 AwesomeCo.

H o m e About Terms of Service Privacy

Figure 5.1: A mock-up of the home page using jQuery to change the
main content

<section id="contact">
<header>

<h2>Contact</h2>
</header>
<p>The contact section</p>

</section>

<section id="about">
<header>

<h2>About</h2>
</header>
<p>The about section</p>

</section>

Our four content regions are wrapped by this markup:

Downl oad html5_aria/homepage/index.html

<section id="content"
role="document" aria-1ive="assertive" aria-atomic="true">

The attributes on this line tell screen readers that this region of the
page updates.

Polite and Assertive Updating
There are two types of methods for alerting the user to changes on the
page when using aria-live. The polite method is designed to not interrupt
the user's workflow. For example, if the user's screen reader is read-
ing a sentence and another region of the page updates and the mode
is set to polite, then the screen reader will finish reading the current

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 107

sentence. However, if the mode was set to assertive, then it's considered
high priority, and the screen reader will stop and begin reading the new
content. It's really important that you use the appropriate type of inter-
ruption when you're developing your site. Overuse of "assertive" can
disorient and confuse your users. Only use assertive if you absolutely
must. In our case, it's the right choice, because we will be hiding the
other content.

Atomic Updating
The second parameter, aria-atomic=true, instructs the screen reader to
read the entire contents of the changed region. If we set it to false, it
would tell the screen reader to only read nodes that changed. We're
replacing the entire content, so telling the screen reader to read it all
makes sense in this case. If we were replacing a single list item or
appending to a table with Ajax, we would want to use false instead.

Hiding Regions
To hide the regions, we need to write a little bit of JavaScript and attach
it to our page. We'll create a file called application.js, and then we include
this file as well as the jQuery library on our page.

Down! oad html5_aria/homepage/index.html

<script type="text/javascript"
charset= "utf-8"
src="http://ajax.googleapis.com/ajax/1ibs/jquery/1.4.2/jquery.min.js">

</script>

<script type="text/javascript"
charset= "utf-8"
src="javascripts/application.js">

</script>

Our application.js file contains this simple script:

Down! oad html5_aria/homepage/javascripts/application.js

Une l // HTML5 structural element support for IE 6, 7, and 8
document.createElementC"header");
document.createElementC"footer");
document.createElement("section");

5 document.createElementC'aside") ;
document.createElement("artic7e") ;
document.createElementC"nav");

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 108

$ (function (){

$("#services, #about, #contact") .hide() .addCl ass ("hidden") ;
$("#welcome").addClass("visib7e");

$("nav ul").click(function(event){

target = $(event.target);
if(target.is("a")){

event.preventDefault();
if ($(target.attr("href")) .hasdass("hidden")){

20 $(" .visible") . removed ass ("vi si ble")
.addClass("hidden")
,hide() ;

$(target.attr("href"))
.removed ass("hidden")

25 . addCl ass ("visible")
. show() ;

} ;
} ;

so }) ;

}) ;

On line 11, we hide the "services," "about," and "contact" sections. We
also apply a class of "hidden" to them, and then on the next line we apply
a class of "visible" to the default "welcome" section. Adding these classes
makes it really easy to identify which sections need to be turned off and
on when we do the toggle.

We capture any clicks to the navigation bar on line 14, and then we
determine which element was clicked on 17. If the user clicked a link,
we check to see whether the corresponding section is hidden. The href
attribute of the clicked link can easily help us locate the corresponding
section using jQuery selectors, which you can see on line 19.

If it's hidden, we hide everything else and then show the selected sec-
tion. That's all there is to it. The screen readers should detect the region
changes.

Falling Back
Like roles, this solution can be used right now by the latest versions
of screen readers. By following good practices such as unobtrusive
JavaScript, we have a simple implementation that can work for a rea-

Report erratum

CREATING AN ACCESSIBLE UPDATABLE REGION M 109

sonably wide audience. Older browsers and screen readers will ignore
the additional attributes, so there's no danger in adding them to our
markup.

The Future

HTML5 and the WIA-ARIA specification have paved the way for a much
more accessible Web. With the ability to identify changing regions on
the page, developers can develop richer JavaScript applications without
worrying so much about accessibility issues.

Report erratum

Part II

New Sights and Sounds

Chapter 6

Drawing on the Canvas
In the second part of this book, we'll shift from talking about structure
and Interfaces to looking at how we can use HTML5 and CSS3 to draw,
work with multimedia files, and create our own interface elements. We'll
start off by spending some time making some graphics using HTML5's
new canvas element.

If you wanted an image in a web application, you'd traditionally open
your graphics software of choice, create an image, and embed it on
your page with an img tag. If you wanted animations, you'd use Flash.
HTML5's canvas element lets developers create images and animations
in the browser programmatically using JavaScript. We can use the
canvas to create simple or complex shapes or even create graphs and
charts without resorting to server-side libraries, Flash, or other plug-
ins. Coincidentally, we'll do both of these things in this chapter.1

<canvas> [<audio src="drums.mp3"x/audio>]
Supports creation of vector-based graphics via JavaScript. [C4,
F3, IE9, S3.2, OlO.l, IOS3.2, A2]

First we'll get familiar with how we use JavaScript and the canvas ele-
ment together by drawing some simple shapes as we construct a version
of the AwesomeCo logo. Then we'll use a graphing library that's specifi-
cally designed to work with the canvas to create a bar graph of browser
statistics. We'll also discuss some of the special fallback challenges that
we'll face because the canvas is more of a programming interface than
an element.

1. In the description that follows, browser support Is shown In square brackets. The
codes used are C: Google Chrome, F: Flrefox, IE: Internet Explorer, O: Opera, S: Safari,
JOS: IOS devices with Mobile Safari, and A: Android Browser.

DRAWING A LOGO - ^ 1 1 2

I
The canvas element is a container element much like the script element.
It's a blank slate we can draw on. We define a canvas with a width and
height like this:

Down! oad html5canvasgraph/canvas_simple_drawing.html

<canvas id="my_canvas" width="150" height="150">
Fallback content here

</canvas>

Unfortunately, you can't use CSS to control or alter the width and
height of a canvas element without distorting the contents, so you need
to decide on your canvas dimensions when you declare it.

We use JavaScript to put shapes on the canvas. Even if you provided
fallback content to those browsers without the canvas element, you still
need to prevent the JavaScript code from trying to manipulate it. Find
the canvas by its ID, and see whether the browser supports the canvas'
getContext method.

Down! oad html5canvasgraph/canvas_simple_drawing.html

var canvas = document.getElementById('my_canvas');
if (canvas.getContext){

var context = canvas.getContext('2d');

}else{
// do something to show the canvas' hidden contents
// or let the browser display the text within the <canvas> element.

}

If we get a response from the getContext method, we grab the 2D context
for the canvas so we can add objects. If we don't have a context, we need
to devise a way to display the fallback content. Since we know that the
canvas element requires JavaScript in order to work, we're building a
framework to handle fallbacks from the beginning.

Once you have the canvas' context, you simply add elements to that
context. To add a red box, you set the fill color and then create the box,
like this:

Down! oad html5canvasgraph/canvas_simple_drawing.html

context.fi 11 Style = "rgb(200,0,0)" ;
context.fillRect (10, 10, 100, 100);

Drawing a Logo

Report erratum

DRAWING A LOGO - ^ 1 1 3

The canvas's 2D context is a grid, with the top-left corner as the default
origin. When you create a shape, you specify the starting X and Y coor-
dinates and the width and height.

0
o

Each shape is added onto its own layer, so you could create three boxes
with a 10-pixel offset, like this:

Download html5canvasgraph/canvas_simple_drawing html

context, f i l l Style = "rgb(200,0,0)";
context. fillRect (10, 10, 100, 100);
context.fill Style = "rgb(0,200,0)";
context.fillRect (20, 20, 100, 100);

context.fill Style = "rgb(0,0,200)";
context.fillRect (30, 30, 100, 100);

and they'll stack on top of each other, like this:

Now that you have an understanding of the basics of drawing, let's put
together the AwesomeCo logo. It's pretty simple, as you can see from
Figure 6.1, on the following page.

Report erratum

DRAWING A LOGO - ^ 1 1 4

/n\AwesomeCo
Figure 6.1: The AwesomeCo logo

Drawing the Logo
The logo consists of a string of text, an angled path, a square, and
a triangle. Let's start by creating a new HTML5 document, adding a
canvas element to the page, and then creating a JavaScript function for
drawing the logo, which detects whether we can use the 2D canvas.

Down! oad html5canvasgraph/logo.html

var drawLogo = function(){
var canvas = document.getElementByld('logo');
var context = canvas.getContext('2d');

} ;

We invoke this method after first checking for the existence of the canvas
element, like this:
Down! oad html5canvasgraph/logo.html

$(function(){
var canvas = document.getElementByld('logo');
if (canvas.getContext){

drawLogo() ;
}

Notice here we're using the j Query function again to ensure that the
event fires when the document is ready. We're looking for an element
on the page with the ID of logo, so we'd better make sure we add our
canvas element to the document so it can be found, and our detection
will work.

Down! oad html5canvasgraph/logo.html

<canvas id="logo" width="900" height="80">
<hl>AwesomeCo</hl>

</canvas>

Next, let's add the "AwesomeCo" text to the canvas.

Report erratum

DRAWING A LOGO - ^ 1 1 5

Adding Text
Adding text to the canvas involves choosing a font, a font size, and an
alignment, and then applying the text to the appropriate coordinates
on the grid. We can add the text "AwesomeCo" to our canvas like this:

Downl oad htmlôcanvasgraph/logo.html

context.font = 'italic 40px sans-serif';
context.textBaseline = 'top';
context.fillTextC'AwesomeCo', 60, 0);

We're defining the text type and setting its baseline, or vertical align-
ment, before we apply it to the canvas. We're using the fillText method
so we get text that's filled in with the fill color, and we're setting it 60
pixels to the right so we can make room for the large triangle-shaped
path we'll draw next.

Drawing Lines
We draw lines on the canvas by playing a game of "connect-the-dots."
We specify a starting point on the canvas grid and then specify addi-
tional points on the grid to move to. As we move around the canvas, the
dots get connected, like this:

We use the beginPathO method to start drawing a line, and then we
create our path, like this:
Downl oad htmlôcanvasgraph/logo.html

context.lineWidth = 2;
context.begi nPath Q;
context.moveTo(0, 40);
context.lineTo(30, 0);
context.lineTo(60, 40);
context.lineTo(285, 40);
context. strokeO ;
context.closePathQ ;

Report erratum

DRAWING A LOGO - ^ 1 1 6

When we're all done moving around the canvas, we have to call the
stroke method to draw the line and then call the closePath method to
stop drawing.

Now all that's left is the box and triangle combination that sits within
the big triangle.

Moving the Origin
We need to draw a small square and triangle inside the larger triangle.
When we draw shapes and paths, we can specify the X and Y coordi-
nates from the origin at the top-left corner of the canvas, but we can
also just move the origin to a new location.

Let's draw the smaller inner square by moving the origin.

Down! oad html5canvasgraph/logo.html

context.save();
context.translate(20,20) ;
context.fillRect(0,0,20,20);

Notice that before we move the origin, we call the save() method. This
saves the previous state of the canvas so we can revert easily. It's like
a restore point, and you can think of it as a stack. Every time you
call save(), you get a new entry. When we're all done, we'll call restoreO,
which will restore the top savepoint on the stack.

Now let's use paths to draw the inner triangle, but instead of using a
stroke, we'll use a fill to create the illusion that the triangle is "cutting
into" the square.

Down! oad html5canvasgraph/logo.html

context.fi11 Style = '#fff';
context.strokeStyle = '#fff';

context.lineWidth = 2;
context.beginPathO ;
context.moveTo(0, 20);
context.lineTo(10, 0);
context.lineTo(20, 20) ;
context.lineTo(0, 20);
context.fi11();
context.closePathO ;
context. restoreO ;

Report erratum

DRAWING A LOGO - ^ 1 1 7

Here we set the stroke and fill to white (#fff) before we begin drawing.
Then we draw our lines, and since we moved the origin previously, we're
relative to the top-left corner of the square we just drew.

We're almost done, but it needs a little color.

Adding Colors
In Section 13, Moving the Origin, on the previous page, you saw briefly
how to set the stroke and fill color for the drawing tools. We could set
the color of everything to red just by adding this code before we draw
anything:

Down! oad html5canvasgraph/logo.html

context.fi11 Style = "#fOO";
context.strokeStyle = "#fOO";

But that's a little boring. We can create gradients and assign those to
strokes and fills like this:

Down! oad html5canvasgraph/logo_gradient.html

// context.fi11 Style = "#fOO";
// context.strokeStyle = "#fOO";
var gradient = context.createLinearGradient(0, 0, 0, 40);
gradient.addColorStopCO, '#a00'); // red
gradient.addColorStop(l, '#f00'); // red
context.fi11 Style = gradient;
context.strokeStyle = gradient;

We just create a gradient object and set the color stops of the gradient.
In this example, we're just going between two shades of red, but we
could do a rainbow if we wanted.2

Note that we have to set the color of things before we draw them.

At this point, our logo is complete, and we have a better understanding
of how we draw simple shapes on the canvas. However, versions of
Internet Explorer prior to IE9 don't have any support for the canvas
element. Let's fix that.

2. Do not do a rainbow, please!

Report erratum

D R A W I N G A L O G O - ^ 1 1 8

Falling Back
Google released a library called ExplorerCanvas3 that makes most of
the Canvas API available to Internet Explorer users. All we have to do
is include this library on our page:

Down! oad html5canvasgraph/logo_gradient.html

<! — [i f lte IE 8]>
<script src="javascripts/excanvas.js"x/script>
<![endif]-->

and things should work just fine in Internet Explorer—but they don't
work just yet. At the time of writing, the most stable release doesn't sup-
port adding text at all, and the version from the Subversion repository4

doesn't use the correct fonts. Also, there's no support yet for adding
gradients on strokes with this library.

So, instead, we rely on other solutions, such as placing a PNG of the
logo inside the canvas element, or we simply don't use the canvas at all.
Since this was just an exercise to show you how to draw, it's not the end
of the world if we can't use this particular example in a cross-platform
production system yet.

3. http://c0de.g00gle.c0m/p/expl0rercanvas/
4. http://explorercanvas.googlecode.com/svn/trunk/excanvas.js

Report erratum

GRAPHING STATISTICS WITH RGRAPH - ^ 1 1 9

Graphing Statistics with RGraph

AwesomeCo is doing a lot of work on the website, and senior manage-
ment would like to see a graph of the web stats. The back-end pro-
grammers will be able to get the data in real time, but first they'd like
to see whether you can come up with a way to display the graph in the
browser, so they've provided you with some test data. Our goal is to
transform that test data into something that resembles Figure 6.2, on
the following page.

There are lots of ways to draw graphs on a web page. Developers use
Flash for graphs all the time, but that has the limitation of not working
on some mobile devices like the iPad or iPhone. There are server-side
solutions that work well, but those might be too processor-intensive if
you're working with real-time data. A standards-based client-side solu-
tion like the canvas is a great option as long as we're careful to ensure it
works in older browsers. You've already seen how to draw squares, but
drawing something complex requires a lot more JavaScript. We need a
graphing library to help us along.

The fact that HTML5 isn't available everywhere yet hasn't stopped the
developers of the RGraph library.5 RGraph makes it ridiculously simple
to draw graphs using the HTML5 canvas. It's a pure JavaScript solu-
tion, though, so it won't work for those user agents that don't have
JavaScript available, but then again, neither will the canvas. Here's the
code for a very simple bar graph:

Down! oad html5canvasgraph/rgraph_bar_example.html

<canvas width="500" height="250" id="test">[no canvas support]</canvas>

<script type="text/javascript" charset="utf-8">
var bar = new RGraph.BarC'test', [50,25,15,10]);
bar.SetC'chart.gutter', 50);
bar.Set('chart.colors', ['red']) ;
bar.SetC'chart.title', "A bar graph of my favorite pies");
bar.SetC'chart.labels', ["Banana Creme", "Pumpkin", "Apple", "Cherry"]);
bar.DrawC) ;

</script>

5. http://www.rgraph.net/

Report erratum

GRAPHING STATISTICS WITH R G R A P H -^120

Browser share for this site

Safari 4 Internet Explorer Firefox Google Chrome

Figure 6.2: A client-side bar graph using the canvas

All we have to do is create a couple of JavaScript arrays, and the library
draws the graph on the canvas for us.

Describing Data with HTML
We could hard-code the values for the browser statistics in the Java-
Script code, but then only users with JavaScript would be able to see
the values. Instead, let's put the data right on the page as text. We can
read the data with JavaScript and feed it to the graphing library later.

Downl oad html5canvasgraph/canvas_graph.html

<div id="graph_data">
<hl>Browser share for this site</hl>

<p data-name="Safari 4" data-percent="15">

Safari 4 - 15%
</p>

<p data-name="Internet Explorer" data-percent="55">
Internet Explorer - 55%

</p>

<p data-name="Firefox" data-percent="14">
Firefox - 14%

</p>

Report erratum

GRAPHING STATISTICS WITH RGRAPH -^121

Browser share for this site
. Safari 4 - 15%
• Internet Explorer - 55%

• Fircfox -14%

• Google Chrome -16%

Figure 6.3: Our graph as HTML

<p data-name="Google Chrome" data-percent="16">

Google Chrome - 16%
</p>

</div>

We're using the HTML5 data attributes to store the browser names and
the percentages. Although we have that information in the text, it's
so much easier to work with programmatically since we won't have to
parse strings.

If you open up the page in your browser or just look at Figure 6.3,
you'll see that the graph data is nicely displayed and readable even
without the graph. This will be your fallback content for mobile devices
and other users where either the canvas element or JavaScript is not
available.

Now, let's turn this markup into a graph.

Turning Our HTML into a Bar Graph
We're going to use a bar graph, so we'll need to require both the RGraph
Bar graph library as well as the main RGraph library. We'll also use
j Query to grab the data out of the document. In the head section of the
HTML page, we need to load the libraries we need.

Report erratum

GRAPHING STATISTICS WITH RGRAPH -^122

Down! oad html5canvasgraph/canvas_graph.html

<script type="text/javascript"
charset= "utf-8"
src="http://ajax.googleapis.com/ajax/1ibs/jquery/1.4.2/jquery.min.js">

</scri pt>
<script src="javascri pts/RCraph. common, js" ></script>
<script src="javascripts/RCraph.bar.js" ></script>

To build the graph, we need to grab the graph's title, the labels, and
the data from the HTML document and pass it to the RGraph library.
RGraph takes in arrays for both the labels and the data. We can use
j Query to quickly build those arrays.

Down! oad html5canvasgraph/canvas_graph.html

Une l function canvasGraph(){
var title = $('#graph_data hi') .textO ;

var labels = $C"#graph_data>ul>li>p[data-name]").map(function(){
5 return $(this),attr("data-name");

}) ;

var percents = $C"#graph_data>ul>li>p[data-percent]").map(function(){
return parselnt($(this).attr("data-percent")) ;

io }) ;

var bar = new RGraph.Bar('browsers', percents);
bar.SetC 'chart.gutter' , 50);
bar.Set('chart.colors', ['red']) ;

15 bar. Set C 'chart, title' , title);
bar.Set('chart.labels ' , labels);
bar.DrawO ;

}

First, on line 2, we grab the text for the header. Then, on line 4, we select
all the elements that have the data-name attribute. We use jQuery's map
function to turn the values from those elements into an array.

We use that same logic again on line 8 to grab an array of the percent-
ages.

With the data collected, RGraph has no trouble drawing our graph.

Displaying Alternative Content
In Section 14, Describing Data with HTML, on page 120, I could have
placed the graph between the starting and ending canvas tags. This

Report erratum

GRAPHING STATISTICS WITH RGRAPH -^123

f <
jQuery CSS vs. CSS

In this chapter, we used jQuery to apply styles to the elements
as we created them. A lot of that style Information, such as the
colors of labels and the color of the bars, should be offloaded
to a separate style sheet, especially if you want to be able to
change the styles independently of the script. For a prototype,
this approach is fine, but for a production version, always sepa-
rate presentation, behavior, and content.

would hide these elements on browsers that support the canvas while
displaying them to browsers that don't. However, the content would
still be hidden if the user's browser supports the canvas element but
the user has disabled JavaScript.

We simply leave the data outside the canvas and then hide it with
jQuery once we've checked that the canvas exists.

Down! oad html5canvasgraph/canvas_graph.html

var canvas = document.getElementByld('browsers');
if (canvas.getContext){

$C'#graph_data') .hideO ;
canvasGraphO ;

}

With that, our graph is ready, except for people using browsers that
don't support the canvas element.

Falling Back
When building this solution, we already covered fallbacks for accessi-
bility and lack of JavaScript, but we can create an alternative graph for
people who don't have canvas support but can use JavaScript.

There are a ton of graphing libraries out there, but each one has its
own way of grabbing data. Bar graphs are just rectangles with specific
heights, and we have all the data on the page we need to construct this
graph by hand.

Report erratum

GRAPHING STATISTICS WITH RGRAPH -^124

Down! oad html5canvasgraph/canvas_graph.html

Line l function divGraph(barColor, textColor, width, spacer, lblHeight){
$('#graph_data ul').hide();
var container = $C'#graph_data") ;

5 container.css({
"display" : "block",
"position" : "relative",
"height": "300px"}

) ;

$ C"#graph_data>ul>li>p").each(function(i){

var bar = $("<div>" + $(this) .attrC'data-percent") + "%</div>") ;
var label = $("<div>" + $(this) ,attr("data-name") + "</ch'v>");

var commonCSS = {
"width": width + "px",
"position" : "absolute",
"left" : i * (width + spacer) + "px"};

var barCSS = {
"background-color" : barColor,
"color" : textColor,
"bottom" : lblHeight + "px",

25 "height" : $(this) .attr("data-percent") + "%"
} ;
var labelCSS = {"bottom" : "0", "text-align" : "center"};

bar.cssC $.extend(barCSS, commonCSS));
30 label.css($. extend (label CSS, commonCSS));

container.append(bar);
container.append(label);

});

}

On line 2, we hide the unordered list so that the text values are hidden.
We then grab the element containing the graph data and apply some
basic CSS styles. We set the positioning of the element to relative on 6,
which will let us absolutely position our bar graphs and labels within
this container.

Then we loop over the paragraphs in the bulleted list (line 11) and create
the bars. Each iteration over the labels creates two div elements, one for
the bar itself and another for the label, which we position below it. So,
with just a little bit of math and some j Query, we are able to re-create

Report erratum

GRAPHING STATISTICS WITH RGRAPH - ^ 1 2 5

Browser share for this site

Safari 4 Internet Explorer F i r e f ox G o o g l e Chrome

Figure 6.4: Our graph now displays in Internet Explorer.

the graph. Although it doesn't look exactly the same, it's close enough
to prove the concept.

We then just need to hook it into our canvas detection, like this:

Downl oad html5canvasgraph/canvas_graph.html

var canvas = document.getElementById(1 browsers');
if (canvas.getContext){

S('#graph_data').h i de();
canvasGraphO;

}
else{

divGraph("#f 00", "#fff", 140, 10, 20);
}

You can see the fallback version in Figure 6.4. With a combination
of JavaScript, HTML, and CSS, we've provided a client-side bar graph
and statistical information about browser usage to any platform that
requires it. Using the canvas has an additional benefit—it got us to
start thinking about a fallback solution from the beginning, rather than
trying to wedge something in later. That's really good for accessibility.

This is one of the most accessible and versatile methods of graphing
data available. You can easily create the visual representation as well
as a text-based alternative. This way, everyone can use the important
data you're sharing.

Report erratum

GRAPHING STATISTICS WITH RGRAPH -^126

f <
Joe Asks . . .

Why Didn't We Try ExplorerCanvas Here?

ExplorerCanvas, which we talked about in Section 13, Falling
Back, on page 118, and RGraph can work really well together.
RGraph even bundles a version of ExplorerCanvas in Its distribu-
tion. However, this combination works only with Internet Explorer
8. If you're working with IE 7 or older, you'll have to use an alter-
native solution like the one we discussed. I encourage you to
keep an eye on ExplorerCanvas, because It is actively main-
tained. You might even consider hacking on It yourself to make
It work for you.

The Future

Now that you know a little about how the canvas works, you can start
thinking of other ways you might use it. You could use it to create
a game, create a user interface for a media player, or use it to build
a better image gallery. All you need to start painting is a little bit of
JavaScript and a little bit of imagination.

Right now, Flash has an advantage over the canvas because it has
wider support, but as HTML5 picks up and the canvas is available to a
wider audience, more developers will embrace it for simple 2D graph-
ics in the browser. The canvas doesn't require any additional plug-ins
and uses less CPU than Flash, especially on Linux and OS X. Finally,
the canvas provides you with a mechanism to do 2D graphics in envi-
ronments where Flash isn't available. As more platforms support the
canvas, you can expect the speed and features to improve, and you'll
see more developer tools and libraries appear to help you build amazing
things.

But it doesn't stop with 2D graphics. The canvas specification will even-
tually support 3D graphics as well, and browser manufacturers are
implementing hardware acceleration. The canvas will make it possi-
ble to create intriguing user interfaces and engaging games using only
JavaScript.

Report erratum

Chapter 7

Embedding Audio and Video
Audio and video are such an Important part of the modern Internet.
Podcasts, audio previews, and even how-to videos are everywhere, and
until now, they've only been truly usable using browser plug-ins.
HTML5 introduces new methods to embed audio and video files into
a page. In this chapter, we'll explore a few methods we can use to not
only embed the audio and video content but also to ensure that it is
available to people using older browsers.

We'll discuss the following two elements in this chapter:1

<audio> [<audio src="drums.mp3"x/audio>]
Play audio natively in the browser. [C4, F3.6, IE9, S3.2, OlO.l,

IOS3, A2]

<video> [<video src="tutorial.m4v"x/video>]

Play video natively in the browser. [C4, F3.6, IE9, S3.2, 010.5,

IOS3, A21

Before we do that, we need to talk about the history of audio and video
on the Web. After all, to understand where we're going, we have to
understand where we've been.

1. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: IE, O: Opera, S: Safari, JOS: iOS devices with Mobile Safari,
and A: Android Browser.

A BIT OF HISTORY M 128

7.1 A Bit of History

People have been trying to use audio and video on web pages for a long
time. It started with people embedding MIDI files on their home pages
and using the embed tag to reference the file, like this:

<embed src="awesome.mp3" a u t o s t a r t = " t r u e "
1oop="true" c o n t r o l 1er="true"></embed>

The embed tag never became a standard, so people started using the
object tag instead, which is an accepted W3C standard. To support
older browsers that don't understand the object tag, you often see an
embed tag nested within the object tag, like this:

<object>
<param name="src" va"lue="simpsons.mp3">
<param name="autoplay" value="false">
<param name="contro"ner" value="true">
<embed src="awesome.mp3" a u t o s t a r t = " f a 7 s e "

1 oop="false" c o n t r o l 1 er="true"></embed>
</object>

Not every browser could stream the content this way, though, and not
every server was configured properly to serve it correctly. Things got
even more complicated when video on the Web became more popu-
lar. We went through lots of iterations of audio and video content on
the Web, from RealPlayer to Windows Media to QuickTime. Every com-
pany had a video strategy, and it seemed like every site used a different
method and format for encoding their video on the Web.

Macromedia (now Adobe) realized early on that its Flash Player could
be the perfect vehicle for delivering audio and video content across plat-
forms. Flash is available on close to 97 percent of web browsers already.
Once content producers discovered they could encode once and play
anywhere, thousands of sites turned to Flash streaming for both audio
and video.

Then Apple came along in 2007 with the iPhone and iPod touch and
decided that Apple would not support Flash on those devices. Content
providers responded by making video streams available that would play
right in the Mobile Safari browser. These videos, using the H.264 codec,
were also playable via the normal Flash Player, which allowed content
providers to still encode once while targeting multiple platforms.

The creators of the HTML5 specification believe that the browser should
support audio and video natively rather than relying on a plug-in that

Report erratum

CONTAINERS AND CODECS M 129

f <
Joe Asks . . .

Flash Already Works Across Browsers, So Why Not Use That?

The simple answer is that there are no vendor restrictions on
what you as a developer can do with the content once you've
emPedded it on the page. You can use CSS and JavaScript
to manipulate the element, and you don't need to fiddle with
parameter passing to the Flash movie. Plus, the situation will
improve as the standard becomes more mature.

requires a lot of boilerplate HTML. This is where HTML5 audio and
video start to make more sense: by treating audio and video as first-
class citizens in terms of web content.

7.2 Containers and Codecs

When we talk about video on the Web, we talk in terms of containers
and codecs. You might think of a video you get off your digital camera as
an AVI or an MPEG file, but that's actually an oversimplification. Con-
tainers are like an envelope that contains audio streams, video streams,
and sometimes additional metadata such as subtitles. These audio and
video streams need to be encoded, and that's where codecs come in.
Video and audio can be encoded in hundreds of different ways, but
when it comes to HTML5 video, only a few matter.

Video Codecs
When you watch a video, your video player has to decode it. Unfortu-
nately, the player you're using might not be able to decode the video you
want to watch. Some players use software to decode video, which can
be slower or more CPU intensive. Other players use hardware decoders
and are thus limited to what they can play. Right now, there are three
video formats that you need to know about if you want to start using
the HTML5 video tag in your work today: H.264, Theora, and VP8.

Report erratum

CONTAINERS AND CODECS M 130

Codec and Supported Browsers

H.264
[IE9, S4, C3, IOS]

Theora
[F3.5, C4, 010]

VP8

[IE9 (if codec installed), F4, C5, 010.7]

H.264
H.264 is a high-quality codec that was standardized in 2003 and cre-
ated by the MPEG group. To support low-end devices such as mobile
phones, while at the same time handling video for high-definition de-
vices, the H.264 specification is split into various profiles. These profiles
share a set of common features, but higher-end profiles offer additional
options that improve quality. For example, the iPhone and Flash Player
can both play videos encoded with H.264, but the iPhone only sup-
ports the lower-quality "baseline" profile, while Flash Player supports
higher-quality streams. It's possible to encode a video one time and
embed multiple profiles so that it looks nice on various platforms.
H.264 is a de facto standard because of support from Microsoft and
Apple, which are licensees. On top of that, Google's YouTube converted
its videos to the H.264 codec so it could play on the iPhone, and Adobe's
Flash Player supports it as well. However, it's not an open technology. It
is patented, and its use is subject to licensing terms. Content producers
must pay a royalty to encode videos using H.264, but these royalties do
not apply to content that is made freely available to end users.2

Proponents of free software are concerned that eventually, the rights
holders may begin demanding high royalties from content producers.
That concern has led to the creation and promotion of alternative
codecs.

Theora
Theora is a royalty-free codec developed by the Xiph.Org Foundation.
Although content producers can create videos of similar quality with
Theora, device manufacturers have been slow to adopt it. Firefox,

2. http://www.reelseo.com/mpeg-la-announces-avc-h264-free-license-lifetime/

Report erratum

CONTAINERS AND CODECS M 131

Chrome, and Opera can play videos encoded with Theora on any plat-
form without additional software, but Internet Explorer, Safari, and
the iOS devices will not. Apple and Microsoft are wary of "submarine
patents," a term used to describe patents in which the patent appli-
cation purposely delays the publication and issuance of the patent in
order to lay low while others implement the technology. When the time
is right, the patent applicant "emerges" and begins demanding royalties
on an unsuspecting market.

VP8
Google's VP8 is a completely open, royalty-free codec with quality sim-
ilar to H.264. It is supported by Mozilla, Google Chrome, and Opera,
and Microsoft's Internet Explorer 9 promises to support VP8 as long as
the user has installed a codec already. It's also supported in Adobe's
Flash Player, making it an interesting alternative. It is not supported in
Safari or the iOS devices, which means that although this codec is free
to use, content producers wanting to deliver video content to iPhones
or iPads still need to use the H.264 codec.

Audio Codecs
As if competing standards for video weren't complicating matters
enough, we also have to be concerned with competing standards for
audio.

Codec and Supported Browsers

AAC
[S4, C3, IOS]

MP3
[IE9, S4, C3, IOS]

Vorbis (OGG)
[F3, C4, 010]

Advanced Audio Coding (AAC)
This is the audio format that Apple uses in its iTunes Store. It is de-
signed to have better audio quality than MP3s for around the same file
size, and it also offers multiple audio profiles similar to H.264. Also,
like H.264, it's not a free codec and does have associated licensing fees.

All Apple products play AAC files. So does Adobe's Flash Player and the
open source VLC player.

Report erratum

CONTAINERS AND CODECS M 132

Vorbis (OGG)
This open source royalty-free format is supported by Firefox, Opera,
and Chrome. You'll find it used with the Theora and VP8 video codecs
as well. Vorbis files have very good audio quality but are not widely
supported by hardware music players.

MP3s
The MP3 format, although extremely common and popular, isn't sup-
ported in Firefox and Opera because it's also patent-encumbered. It is
supported in Safari and Google Chrome.

Video codecs and audio codecs need to be packaged together for distri-
bution and playback. Let's talk about video containers.

Containers and Codecs, Working Together
A container is a metadata file that identifies and interleaves audio or
video files. A container doesn't actually contain any information about
how the information it contains is encoded. Essentially, a container
"wraps" audio and video streams. Containers can often hold any com-
bination of encoded media, but we'll see these combinations when it
comes to working with video on the Web:

• The OGG container, with Theora video and Vorbis audio, which
will work in Firefox, Chrome, and Opera.

• The MP4 container, with H.264 video and AAC audio, which will
work in Safari and Chrome. It will also play through Adobe Flash
Player and on iPhones, iPods, and iPads.

• The WebM container, using VP8 video and Vorbis audio, which will
work in Firefox, Chrome, Opera, and Adobe Flash Player.

Given that Google and Mozilla are moving ahead with VP8 and WebM,
we can eliminate Theora from the mix eventually, but from the looks of
things, we're still looking at encoding our videos twice—once for Apple
users (who have a small desktop share but a large mobile device share
in the United States) and then again for Firefox and Opera users, since
both of those browsers refuse to play H.264.3

That's a lot to take in, but now that you understand the history and the
limitations, let's dig in to some actual implementation, starting with
audio.

3. http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-June/020620.html
Report erratum

WORKING WITH AUDIO - ^ 1 3 3

I
AwesomeCo is developing a site to showcase some royalty-free audio
loops for use in screencasts, and it would like to see a demo page
mocked up of a single loop collection. When we're done, we'll have a list
of the audio loops, and a visitor will be able to quickly audition each
one. We don't have to worry about finding audio loops for this project,
because the client's sound engineer has already provided us with the
samples we'll need in both MP3 and OGG formats. You can find a small
bit of information on how to encode your own audio files in Appendix C,
on page 247.

Building the Basic List
The audio engineer has provided us with four samples: drums, organ,
bass, and guitar. We need to describe each one of these samples using
HTML markup. Here's the markup for the drums loop:

Down! oad html5_audio/audio.html

<article class="sample">
<headerxh2>Drums</h2x/header>
<audio id="drums" controls»

<source src="sounds/ogg/drums.ogg" type="audio/ogg">
<source src="sounds/mp3/drums.mp3" type="audio/mpeg">
Download drums.mp3

</audio>
</article>

We define the audio element first and tell it that we want to have some
controls displayed. Next, we define multiple sources for the file. We first
define the MP3 and OGG versions of the sample, and then we display a
link to allow the visitor to download the MP3 file directly if the browser
doesn't support the audio element.

This very basic bit of code will work in Chrome, Safari, and Firefox. Let's
put it inside an HTML5 template with the three other sound samples.
Down! oad html5_audio/audio.html

<article class="sample">
<headerxh2>Drums</h2x/header>
<audio id="drums" controls»

<source src="sounds/ogg/drums.ogg" type="audio/ogg">
<source src="sounds/mp3/drums.mp3" type="audio/mpeg">
Download drums.mp3

</audio>
</article>

Report erratum

Working with Audio

WORKING WITH AUDIO - ^ 1 3 4

<article class="sample">
<headerxh2>Gui t a r</h2x/header>
<audio id="guitar" controls»

<source src="sounds/ogg/guitar.ogg" type="audio/ogg">
<source src="sounds/mp3/guitar.mp3" type="audio/mpeg">
Download gu i ta r .mp3

</audio>
</article>

<article class="sample">
<headerxh2>Organ</h2x/header>
<audio id="organ" controls»

<source src="sounds/ogg/organ.ogg" type="audio/ogg">
<source src="sounds/mp3/organ.mp3" type="audio/mpeg">
Download organ.mp3

</audio>
</article>

<article class="sample">
<headerxh2>Bass</h2x/header>
<audio id="bass" controls»

<source src="sounds/ogg/bass.ogg" type="audio/ogg">
<source src="sounds/mp3/bass.mp3" type="audio/mpeg">
Download bass.mp3

</audio>
</article>

</body>
</html>

When we open the page in an HTML5-compatible browser, each entry
in the list will have its own audio player, as you see in Figure 7.1, on
the following page. The browser itself handles the playback of the audio
when you press the Play button.

When we open the page in Internet Explorer, the download links show
since the browser doesn't understand the audio element. This makes
for a decent fallback solution, but let's see whether we can do better.

Falling Back
Audio fallback support is built into the element itself. We've defined
multiple sources for our audio using the source element and have pro-
vided links to download the audio files. If the browser cannot render
the audio element, it will display the link we've placed inside the field.
We could even go a step further and use Flash as a fallback after we
define our sources.

Report erratum

WORKING WITH AUDIO - ^ 1 3 5

« O B untitled
n r p u C I/O.- Googie
m =•

Samples:

Drums

Guitar

Organ

Bass

Figure 7.1: Our page in Safari

However, this might not be the best possible approach. You may en-
counter a browser that supports the audio element but doesn't support
the formats you've supplied. For example, you may decide it's not worth
your time to provide audio in multiple formats. Additionally, the HTML5
specification specifically mentions that the fallback support for audio is
not to be used to place content that would be read by screen readers.

The simplest solution is to move the download link outside the audio
element and use JavaScript to hide it, like this:

Down! oad html5_audio/advanced_audio.html

orticle class="sample">
<headerxh2>Drums</h2x/header>
<audio id="drums" controls»

<source src="sounds/ogg/drums.ogg" type="audio/ogg">
<source src="sounds/mp3/drums.mp3" type="audio/mpeg">

</audio>
Download drums.mp3

</article>

Report erratum

WORKING WITH AUDIO - ^ 1 3 6

Then we just need to detect support for audio and hide the links. We do
that by creating a new audio element in JavaScript and checking to see
whether it responds to the canPlayTypeO method, like this:

Down! oad html5_audio/advanced_audio.html

var c a n P l a y A u d i o F i l e s = ! ! (d o c u m e n t . c r e a t e E l e m e n t C ' a u d i o ') . c a n P l a y T y p e) ;

We evaluate the response and then hide any anchors that are nested
within our sample sections.

Down! oad html5_audio/advanced_audio.html

$(function(){
var c a n P l a y A u d i o F i l e s = ! ! (d o c u m e n t . c r e a t e E l e m e n t (' a u d i o ') . c a n P l a y T y p e) ;

i f (c a n P l a y A u d i o F i l e s) {
$(".sample a ") . h i d e () ;

} ;

Fallbacks with audio are relatively easy, and some of your users may
actually appreciate the ability to easily download the file.

Playing audio in the browser natively is just the beginning. Browsers
are just starting to support the HTML5 JavaScript APIs for audio and
video, which you can read about in the sidebar on page 141.

Report erratum

EMBEDDING VIDEO - ^ 1 3 7

I
AwesomeCo wants to showcase its new series of training videos on its
website, and it wants the videos to be viewable on as many devices
as possible, especially on the iPad. As a trial, we've been provided two
videos in the "Photoshop Tips" series that we'll use to build a prototype.
Thankfully, we've been given the video files in H.264, Theora, and VP8
format, so we can focus on creating the page.4

The video tag works exactly like the audio element. We just need to
provide our sources, and Chrome, Firefox, Safari, the iPhone, the iPad,
and Internet Explorer 9 will display the video without any additional
plug-ins. The markup for our first video file, 01_blur, looks like this:

Embedding Video

Down! oad html5video/index.html

<article>
<header>

<h2>Satura te w i t h B lur</h2>
</header>
<video controls»

<source src="video/h264/01_blur.mp4">
<source src="video/theora/01_blur.ogv">
<source src="video/webm/01_blur.webm">
<p>Your browser does not suppor t the v i deo tag.</p>

</video>
</article>

We're defining the video tag with controls. We're implicitly telling it that
it should not play automatically by not including the autoplay attribute.
At this point, our videos play in a wide variety of browsers, and our
users will see a video player similar to the one shown in Figure 7.2, on
the next page.

We still can't reach users of Internet Explorer 8 and older. We'll need to
use Flash to make that work.

4. If you want to learn more about encoding your own video files, check out Appendix C,
on page 247.

Report erratum

EMBEDDING VIDEO - ^ 1 3 8

Saturate with Blur
B a C- iw • Q i i -

Duplicate the layer
,50) • 00:00" * -01:02

Figure 7.2: Our video displayed using Safari's HTML5 video player

Falling Back
To properly support a Flash-based fallback and still use HTML5 video,
we place the Flash object code within the video tag. The site Video For
Everybody5 outlines this process in great detail, but we'll go over a basic
implementation here.

Flowplayer6 is a Flash-based player that can play our already-encoded
H.264 video. We'll download the open source version of the player, and
we'll place the flowplayer-x.x.x.swf and flowplayer-controls-x.x.x.swf files in
our project's swf folder to keep things organized.

We then place this code inside our video tag, right after our last source
element:

Down! oad html5video/index.html

< o b j e c t w i d t h = " 6 4 0 " h e i g h t = " 4 8 0 " type="application/x-shockwave-flash"
data="swf/flowplayer-3.2.2 ,swf">
<param name="movie" value="swf/flowplayer-3.2.2.swf" />
<param name="allowfullscreen" value="true" />
<param name="flashvars"

5. http://videoforeverybody
6. http://flowplayer.org/download/index.html

Report erratum

EMBEDDING VIDEO - ^ 1 3 9

va l ue=' c o n f i g = { "clip" : { "url " : ". ./video/h264/01_blur.mp4" ,
"autoPlay":false,
"autoBuffering": t r u e

}
} ' />

<img src= "video/thumbs/01_blur.prig"
w i d t h = " 6 4 0 " he ight="264" a l t="Poster Image"
t i t l e = " N o video playback capabilities." />

</object>

Pay close attention to this part:

Down! oad html5video/index.html

<param name="flashvars"
va l ue=' c o n f i g = { "clip" : { "url " : ". ./video/h264/01_blur.mp4" ,

"autoPlay":false,
"autoBuffering": t r u e

}
} ' />

The video file's source needs to be relative to the location of Flowplayer.
Since we placed Flowplayer in the swf folder, we need to use the path
,./video/h264/01_blur.mp4 to get the player to see our video.

When we bring up our page in Internet Explorer, our video plays, and
we don't need to encode to another format, thanks to Flowplayer. Our
Internet Explorer friends will see Figure 7.3, on the following page.

Of course, we still have to come up with a way for people who don't
have native video support and don't have Flash installed. To make that
happen, we'll let people download our video content by adding another
section with download links.

Down! oad html5video/index.html

<section class="downloads">
<header>

<h3>Downloads</h3>
</header>

< l i x a href="video/h264/01_b1ur.mp4">H264, p l a y a b l e on most p l a t f o r m s</ax/l i>
< l i x a href="video/theora/01_b1ur.ogv'VOGG format</1 i>
< l i x a href="video/webm/01_b1ur.webm 'VWebM f o r m a t</ax/1 i>

</u"l>
</section>

Report erratum

EMBEDDING VIDEO -^140

Saturate with Blur
• « r - * • ¡8- si-

Figure 7.3: Our video in Internet Explorer using Flowplayer

We could use JavaScript to hide these videos if HTML5 video isn't sup-
ported, like this:
function c a n P l a y V i d e o O {

return ! ! d o c u m e n t . c r e a t e E l e m e n t C ' v i d e o ') . c a n P l a y T y p e ;

}
i f (c a n P l a y V i d e o ()) {

$ (# v i d e o s . d o w n l o a d s) . h i d e () ;

}

This uses a detection technique very similar to the one we used in Work-
ing with Audio, on page 133. In our case, it makes more sense to let
people download these videos for use on their iPods or iPads so they
can watch them later.

Limitations of HTML5 Video
There are three very important limitations that currently limit the use-
fulness of HTML5 video.

First, HTML5 video has no provisions for streaming the video files.
Users have become accustomed to being able to seek to a specific part
of a video. This is something that Flash-based video players excel at,
because of the amount of effort Adobe has put into Flash as a video

Report erratum

EMBEDDING VIDEO -^141

Media Content JavaScript API
In this chapter, we just briefly touched on the JavaScript APIs for
the audio and video elements. The full API can detect the types
of audio files the browser can play, and it provides methods to
control the playback of the audio elements.

In Working with Audio, on page 133, we built a page with mul-
tiple sound samples. We could use the JavaScript API to make
all the sounds play at (roughly) the same time. Here's a really
simplified approach:
Down! oad html5_audio/advanced_audio.html

var e lemen t = $ (" < p x i n p u t type='button' value='Play all'/></p>")
e l e m e n t . c l i ck(function(){

$ (" a u d i o ") .each(function(){
t h i s . p l a y O ;

})

SC'body") . a p p e n d (e l e m e n t) ;

We're creating a "Play all" button that, when pressed, cycles
through all the audio elements on the page and calls the piayO
method on each element.

We can do similar things with videos. There are methods to start
and pause elements and even auery the current time.

Unfortunately, at the time of writing, the JavaScript API isn't well
supported everywhere. That shouldn't discourage you from
looking at the possibilities outlined in the specification* to see
what's possible.

*. http://www.w3.org/TR/html5/video. html#media-elements

Report erratum

EMBEDDING VIDEO -^142

Keep an Eye on the Adult Entertainment Industry
The adult entertainment industry has strongly influenced Inter-
net technology, from e-commerce to the rise of Flash.* They're
doing so again with HTML5 video.f Devices such as the
¡Phone and ¡Pad are more personal than desktop and laptops,
and they don't run Flash. Many adult-oriented wePsites have
already started switching video delivery from Flash to HTML5
with H.264 video for this reason. Interestingly enough, they do
not seem to care that HTML5 video currently doesn't provide
any rights management.

The adult industry Is never afraid to take chances, and you may
see some Interesting advances In HTML5 video coming as a
result of their Interest In the technology.

t.
http://chicagopressrelease.com/news/in-tech-world-porn-quietly-leads-the-way
http://news.avn.com/articles/Joone-Points-to-HTML-5-as-Future-of-Web-Content-Deiivery-i01434.html

delivery platform. To seek with HTML5 video, the file must be down-
loaded completely on browsers. This may change in time.

Second, there's no way to manage rights. Sites such as Hulu7 that
want to prevent piracy of their content can't rely on HTML5 video. Flash
remains a viable solution for these situations.

Finally, and most importantly, the process of encoding videos is costly
and time-consuming. The need to encode in multiple formats makes
HTML5 video much less attractive. For that reason, you see many sites
supplying video in the patent-encumbered H.264 format so that it can
be played on the iPod and iPad, using a combination of the HTML5
video tag and Flash.

These issues aren't going to derail HTML5, but they are things to be
aware of before we can use HTML5 video to replace Flash as a video
delivery vehicle.

Audio, Video, and Accessibility
None of the fallback solutions works really well for users with disabili-
ties. In fact, the HTML5 specification explicitly points that out. A hear-

7. http://www.huiu.com

Report erratum

EMBEDDING VIDEO -^143

ing Impaired user won't find any value in being able to download the
audio file, and a visually impaired user won't have much use for a video
file they can view outside of the browser. When we provide content to
our users, we should provide usable alternatives whenever possible.
Video and audio files should have transcripts that people can view. If
you produce your own content, transcripts are easy to make if you plan
them from the start because they can come right from the script you
write. If a transcript isn't possible, consider a summary that highlights
the important parts of the video.

Down! oad html5video/index.html

<section class="transcript">
<h2> T r a n s c r i p t</h2>
<p> W e ' l l d r a g t h e e x i s t i n g l a y e r t o t h e new b u t t o n o n t h e b o t t o m o f

t h e Laye rs p a l e t t e to c r e a t e a new copy.</p>
<p>Next w e ' l l go to t h e F i l t e r menu and choose "Gaussian Blur".

W e ' l l change t h e b l u r amount j u s t enough s o t h a t w e l o s e a l i t t l e
b i t o f t h e d e t a i l o f t h e image.</p>

<p>Now w e ' l l d o u b l e - c l i c k o n t h e l a y e r t o e d i t t h e l a y e r and
change t h e b l e n d i n g mode to "Overlay". We can t h e n a d j u s t t h e
amount o f t h e e f f e c t b y c h a n g i n g t h e o p a c i t y s l i d e r . < / p >

<p>Now we have a s l i g h t l y enhanced image.</p>
</section>

You can hide the transcript or link to it from the main video page. As
long as you make it easy to find and easy to follow, it's going to be really
helpful.

The Future

First-class audio support in the browser opens up a ton of new possi-
bilities for developers. JavaScript web applications can easily trigger
sound effects and alerts without having to use Flash to embed the
audio. Native video makes it possible to make video available to devices
such as iPhones, but it also gives us an open, standard method of inter-
acting with videos using JavaScript. Most importantly, we'll be able to
treat video and audio clips just like we treat images, by marking them
up semantically and making them easier to identify.

Report erratum

Chapter 8

Eve Candy
As web developers, we're always interested in making our user inter-
faces a little more eye-catching, and CSS3 provides quite a few ways for
us to do that. We can use our own custom fonts on our pages. We can
create elements with rounded corners and drop shadows. We can use
gradients as backgrounds, and we can even rotate elements so things
don't look so blocky and boring all the time. We can do all of these
things without resorting to Photoshop or other graphics programs, and
this chapter will show you how. We'll start off by softening up a form's
appearance by rounding some corners. Then, we'll construct a proto-
type banner for an upcoming trade show, where we'll learn how to add
shadows, rotations, gradients, and opacity. Finally, we'll talk about how
to use CSS3's @font-face feature so we can use nicer fonts on the com-
pany blog.

Specifically, we'll explore the following CSS3 features in this chapter:1

border-radius [border-radius: 10px;]
Rounds corners of elements. [C4, F3, IE9, S3.2, 010.5]

RGBa Suppr t [background-color: rgba(255,0,0,0.5);]
Uses RGB color instead of hex codes along with transparency. [C4,

F3.5, IE9, S3.2, OlO.l]

box-shadow [box-shadow: lOpx lOpx 5px #333;]
Creates drop shadows on elements. [C3, F3.5, IE9, S3.2, 010.5]

1. In the descriptions that follow, browser support Is shown In square brackets. The
codes used are C: Google Chrome, F: Flrefox, IE: Internet Explorer, O: Opera, S: Safari,
JOS: IOS devices with Mobile Safari, and A: Android Browser.

CHAPTER 8 . EYE CANDY - ^ 1 4 5

Rotat ion: [transform: rotate(7.5deg);]
Rotates any element. [C3, F3.5, IE9, S3.2, 010.5]

Gradients: [linear-gradient(top, #fff, #efefef);]
Creates gradients for use as images. [C4, F3.5, S4]

@font-face [@font-face {font-family: AwesomeFont;]
src: url(http://example.com/awesomeco.ttf); font-weight: bold;}]

Allows use of specific fonts via CSS. [C4, F3.5, IE5+, S3.2, OlO.lJ

Report erratum

ROUNDING ROUGH EDGES M 146

Rounding Rough Edges

On the Web, everything is a rectangle by default. Form fields, tables,
and even sections of web pages all have a blocky, sharp-edged look, so
many designers have turned to different techniques over the years to
add rounded corners to these elements to soften up the interface a bit.

CSS3 has support for easily rounding corners, and Firefox and Safari
have supported this for quite a long time. Unfortunately, Internet Ex-
plorer hasn't jumped on board yet. But we can get around that simply
enough.

Softening Up a Login Form
The wireframes and mock-ups you received for your current project
show form fields with rounded corners. Let's round those corners using
only CSS3 first. Our goal is to create something that looks like Fig-
ure 8.1, on the next page.

For the login form, we'll use some very simple HTML.

Down! oad css3roughedges/rounded_corners.html

< f o r m a c t i o n = " / l o g i n " m e t h o d = " p o s t " >
< f i e l d s e t i d = " l o g i n " >

< l e g e n d > L o g i n < / l e g e n d >
< o l >

< l i >
< l a b e l f o r = " e m a i 1 ">Emai l < / l a b e l >
< i n p u t i d = " e m a i l " t y p e = " e m a i l " name="ema i1 ">

< l i >

< l a b e l f o r = " p a s s w o r d " > P a s s w o r d < / l a b e l >
< i n p u t i d = " p a s s w o r d " t y p e = " p a s s w o r d "

name="password " v a l u e = " " a u t o c o m p l e t e = " o f f " / >

< l i x i n p u t t y p e = " s u b m i t " v a l u e = " L o g i n " x / l i >

< / f i e l d s e t >

< / f o r m >

Report erratum

ROUNDING ROUGH EDGES M 147

Log in

Email
(user@example.com

Password
(8-10 characters

Log in

Figure 8.1: Our form with round corners

We'll style the form a bit to give It a slightly better look.

Down! oad css3roughedges/style.css

f i e l d s e t {
w i d t h : 2 1 6 p x ;
b o r d e r : none ;
b a c k g r o u n d - c o l o r : #ddd;

}

f i e l d s e t l e g e n d {
b a c k g r o u n d - c o l o r : #ddd;
p a d d i n g : 0 64px 0 2 p x ;

}

f i e l d s e t > o l { l i s t - s t y l e : none ;
p a d d i n g : 0 ;
m a r g i n : 2 p x ;

}
f i e l d s e t > o l > l i {

m a r g i n : 0 0 9px 0;
p a d d i n g : 0 ;

}

/ * Make i n p u t s g o t o t h e i r own l i n e * /
f i e l d s e t i n p u t {

d i s p l a y : b l o c k ;

}

Report erratum

ROUNDING ROUGH EDGES M 148

i n p u t {
w i d t h : 2 0 0 p x ;
b a c k g r o u n d - c o l o r : #fff;
b o r d e r : l p x s o l i d #bbb;

i n p u t [t y p e = " s u b m i t "] {
w i d t h : 2 0 2 p x ;
p a d d i n g : 0 ;
b a c k g r o u n d - c o l o r : #bbb;

}

These basic styles remove the bullets from the list and ensure that the
input fields are all the same size. With that in place, we can apply the
rounding effects to our elements.

Browser-Specific Selectors
Since the CSS3 specification isn't final, browser makers have added
some features themselves and have decided to prefix their own imple-
mentations. These prefixes let browser makers introduce features early
before they become part of a final specification, and since they don't
follow the actual specification, the browser makers can implement the
actual specification while keeping their own implementation as well.
Most of the time, the vendor-prefixed version matches the CSS specifi-
cation, but occasionally you'll encounter differences. Unfortunately for
you, that means you'll need to declare the border radius once for each
type of browser.

Firefox uses this selector:
Down! oad css3roughedges/style.css

- m o z - b o r d e r - r a d i u s : 5px ;

WebKit-based browsers, such as Safari and Chrome, use this selector:
Down! oad css3roughedges/style.css

- w e b k i t - b o r d e r - r a d i u s : 5px ;

To round all the input fields on our form, we need a CSS rule like this:
Down! oad css3roughedges/style.css

i n p u t , f i e l d s e t , l e g e n d {
b o r d e r - r a d i u s : 5px ;
- m o z - b o r d e r - r a d i u s : 5px ;
- w e b k i t - b o r d e r - r a d i u s : 5px ;

Add that to your style.ess file, and you have rounded corners.

Report erratum

ROUNDING ROUGH EDGES M 149

Falling Back
You have everything working in Firefox, Safari, and Google Chrome, but
you know it doesn't work in Internet Explorer and you know it needs to,
so you'll need to implement something that gets it as close as possible.

Web developers have been rounding corners for a while now using back-
ground images and other techniques, but we're going to keep it as sim-
ple as possible. We can detect corner radius with JavaScript and round
the corners using any number of rounding techniques. For this exam-
ple, we'll use j Query, the j Query Corner plug-in, and a modification of
the Corner plug-in that rounds text fields.

Detecting Rounded Corners Support
Our fallback solution looks very much like the one we used in Section 9,
Falling Back, on page 91. We'll include the jQuery library and the plug-
in, we'll detect whether the browser supports our attribute, and if it
doesn't, we'll activate the plug-in. In this case, we need to detect the
presence of the border-radius CSS property, but we also need to check
for browser-specific prefixes such as webkit and moz.

Create corner.js, and add this function:
Down! oad css3roughedges/corner.js

function h a s B o r d e r R a d i u s O {
var e l e m e n t = d o c u m e n t . d o c u m e n t E l e m e n t ;
var s t y l e = e l e m e n t . s t y l e ;
i f (s t y l e) {

return t y p e o f s t y l e . b o r d e r R a d i u s == "string" ||
t y p e o f s t y l e . M o z B o r d e r R a d i u s == "string" ||
t y p e o f s t y l e . W e b k i t B o r d e r R a d i u s == "string" ||
t y p e o f s t y l e . K h t m l B o r d e r R a d i u s == "string";

}
return null;

We can now detect whether our browser is missing support for rounded
corners, so let's write the code to do the actual rounding. Thankfully,
there's a plug-in that can get us started.

jQuery Corners
jQuery Corners2 is a small plug-in that rounds corners by wrapping
elements with additional div tags and styling them so that the target

2. http://www.malsup.com/jquery/corner/

Report erratum

ROUNDING ROUGH EDGES M 150

Decide Whether It's Worth the Effort
In our example, the client really wanted rounded corners for all
browsers. However, you should always keep these kinds of fea-
tures optional if you can. Although some people may argue
that there's a real benefit to softening up the way the form
looks, you should first have an Idea of how many people use
browsers that don't support CSS-based rounding. If your visitors
are mostly Safari and Flrefox users, It may not be worth your time
to write and maintain a detection and fallback script.

element looks rounded. It doesn't work for form fields; however, with a
little imagination, we can use this plug-in and a little bit of j Query to
make it work.

First, grab jQuery Corners, and link to it from your HTML page. While
there, also link up your corner.js file.
Down! oad css3roughedges/rounded_corners.html

<script src="jquery.corner.js" charset="utf-8" type='text/javascript'></script>
<script src="corner.js" charset="utf-8" type='text/javascript'></script>

Now we just have to write the code that actually invokes the rounding.

Our formCorners Plug-in
We're going to write a jQuery plug-in so that we can easily apply this
rounding to all of the form fields. We already talked about writing
jQuery plug-ins in Section 5, Falling Back, on page 60, so I don't need
to cover that again. Instead, I'll just walk you through the code for this
plug-in, which is based in part on a solution by Tony Amoyal.3

3. http://wwwionyamoyal.com/2009/06/23/text-inputs-with-rounded-corners-using-jquery-without-image/

Report erratum

ROUNDING ROUGH EDGES M 151

Add this to your corners.js file:

Down! oad css3roughedges/corner.js

(function«) {

$. f n . f o r m C o r n e r = function(){
return this . each(function() {

var i n p u t = $(this);
var i n p u t _ b a c k g r o u n d = input.css("background-color");
var i n p u t _ b o r d e r = i n p u t .cssC'border-color");
i n p u t . e s s (" b o r d e r " , "none") ;
var w r a p _ w i d t h = p a r s e l n t (i n p u t . c s s (" w i d t h ")) + 4;
var w r a p p e r = i n p u t . w r a p ("<divx/div>") . p a r e n t O ;
var b o r d e r = w r a p p e r .wrapC "<divx/div>") . p a r e n t O ;
w r a p p e r .ess C'background-col or", i n p u t _ b a c k g r o u n d)

.essC'padding", " l p x ") ;
b o r d e r . ess C'backg round-col or" , i n p u t _ b o r d e r)

. essC"width" , w r a p _ w i d t h + " p x ")

. c s s (' p a d d i n g ' , 'lpx');
w r a p p e r . c o r n e r C"round 5px");
b o r d e r . c o r n e r C"round 5px") ;

}) ;

} ;
}) C jQuery) ;

We're taking a jQuery object that could be an element or a collection of
elements, and we're wrapping it with two div tags that we then round.
We first make the innermost div the same color as the background of the
original input, and we turn off the border of the actual form field. Then
we wrap that field with another field with its own background color,
which is the color of the original input's border color, and give it a little
bit of padding. This padding is what makes the border's outline visible.
Imagine two pieces of construction paper—a green one that's 4 inches
wide and the other a red one that's 3 inches wide. When you place the
smaller one atop the larger one, you'll see a green border around the
red one. That's how this works.

Invoking the Rounding
With the plug-in and our detection library in place, we can now invoke
the rounding.

Report erratum

ROUNDING ROUGH EDGES M 152

û ¿ V @ Login

Log in
Email

Password

Log in

Figure 8.2: Our forms have round corners in Internet Explorer.

Add this to the corners.js file:
Down! oad css3roughedges/corner.js

We're rounding the three form fields and the fieldset, and finally, on
line 5, we're rounding only the top part of the legend and specifying
that the cutout of the corner should use white. The plug-in uses the
background color of the parent for its cutaway color, and that's not
appropriate here.

If the browser has support for the border-radius property, then it runs
our plug-in. If not, then it'll use the CSS we added earlier.

A Minor Nudge
IE treats legends a little differently. We can add in a small style fix for
IE that pushes the fieldset's legend up a bit so that it looks the same
as it does in Firefox and Chrome.

$(function O {
i f (! h a s B o r d e r R a d i u s ()) {

$("input").formCornerO;
SC'fi eldset") . corner Ç" round 5px") ;
$("legend").corner("round t o p 5px c c : # f f f ") ;

} }) ;

Report erratum

ROUNDING ROUGH EDGES M 153

Down! oad css3roughedges/rounded_corners.html

< l i n k r e l = " s t y l e s h e e t " h r e f = " s t y l e . e s s " t y p e = " t e x t / c s s " m e d i a = " s c r e e n " >
< ! — [i f I E] >

< s t y l e >
f i e l d s e t 1 e g e n d { m a r g i n - t o p : - l O p x }

< / s t y l e >
< ! [e n d i f] - - >

Now things look relatively similar on all of the major browsers; you can
see the Internet Explorer version in Figure 8.2, on the preceding page.

Rounded corners add a bit of softness to your interfaces, and it is ex-
tremely easy to use. That said, it's important to be consistent with your
use and to not overuse this technique, just like any other aspect of
design.

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 154

I
While rounded corners get a lot of attention, that's just the beginning
of what we can do with CSS3. We can add drop shadows to elements to
make them stand out from the rest of the content, we can use gradients
to make backgrounds look more defined, and we can use transforma-
tions to rotate elements. Let's put several of these techniques together
to mock up a banner for the upcoming AwesomeConf, a trade show and
conference that AwesomeCo puts on each year. The graphic designer
has sent over a PSD that looks like Figure 8.3, on the next page. We
can do the badge, shadow, and even the transparency all in CSS. The
only thing we'll need from the graphic designer is the background image
of the people.

The Basic Structure
Let's start by marking up the basic structure of the page in HTML.

Down! oad css3banner/index.html

<div id="conference">
<section id="badge">

<h3>Hi , My Name Is</h3>
<h2>Barney</h2>

</section>

<section id="info">
</section>

</div>

We can style the basics with this:
Down! oad css3banner/style.css

c o n f e r e n c e {
b a c k g r o u n d - c o l o r : #000;
w i d t h : 960px ;
f l o a t : l e f t ;
b a c k g r o u n d - i m a g e : u r l (' i m a g e s / a w e s o m e c o n f . j p g ') ;
b a c k g r o u n d - p o s i t i o n : c e n t e r ;
h e i g h t : 240px ;

}

Working with Shadows,
Gradients, and Transformations

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 155

Figure 8.3: The original concept, which we can re-create using CSS3

#badge {
t e x t - a l i g n : c e n t e r ;
w i d t h : 2 0 0 p x ;
b o r d e r : 2px s o l i d b l u e ;

}

i n f o {
m a r g i n : 2 0 p x ;
p a d d i n g : 2 0 p x ;
w i d t h : 6 6 0 p x ;
h e i g h t : 1 6 0 p x ;

}

#badge , # i n f o {
f l o a t : l e f t ;
b a c k g r o u n d - c o l o r : #fff;

}

#badge h 2 {
m a r g i n : 0 ;
c o l o r : r e d ;
f o n t - s i z e : 4 0 p x ;

}

#badge h 3 {
m a r g i n : 0 ;
b a c k g r o u n d - c o l o r : b l u e ;
c o l o r : #fff;

}

Once we apply that style sheet to our page, we have our badge and
content region displayed side-by-side, as shown in Figure 8.4, on the
following page, so let's start styling the badge.

Report erratum

Figure 8.4: Our basic banner

Adding a Gradient
We can add definition to the badge by changing the white background
to a subtle gradient that goes from white to light gray. This gradient
will work in Firefox, Safari, and Chrome, but the implementation is
different for Firefox. Chrome and Safari use WebKit's syntax, which
was the original proposal, whereas Firefox uses a syntax that's close to
the W3C proposal. Once again, we're using browser prefixes, which you
saw in Section 17, Browser-Specific Selectors, on page 148.4

Down! oad css3banner/style.css

b a d g e {
b a c k g r o u n d - i m a g e : - m o z - 1 i n e a r - g r a d i e n t (

t o p , # f f f , # e f e f e f

) ;

b a c k g r o u n d - i m a g e : - w e b k i t - g r a d i e n t (
l i n e a r , l e f t t o p , l e f t b o t t o m ,
c o l o r - s t o p C O , # f f f) ,
c o l o r - s t o p C l , # e f e f e f)

) ;

b a c k g r o u n d - i m a g e : 1 i n e a r - g r a d i e n t (
t o p , # f f f , # e f e f e f

) ;

Firefox uses the -moz-linear-gradient method, in which we specify the
starting point of the gradient, followed by the starting color, and, finally,
the ending color.

4. http://dev.w3.Org/csswg/css3-images/#linear-gradients

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 157

WebKit-based browsers let us set color stops. In our example, we only
need to go from white to gray, but if we needed to add colors, we'd just
need to add an additional color stop in the definition.

Adding a Shadow to the Badge
We can easily make the badge appear to be sitting above the banner by
adding a drop shadow. Traditionally, we'd do this shadow in Photoshop
by adding it to the image or by inserting it as a background image.
However, the CSS3 box-shadow property lets us quickly define a shadow
on our elements.5

We'll apply this rule to our style sheet to give the badge a shadow:

Down! oad css3banner/style.css

b a d g e {
- m o z - b o x - s h a d o w : 5px 5px 5px #333;
- w e b k i t - b o x - s h a d o w : 5px 5px 5px #333;
- o - b o x - s h a d o w : 5px 5px 5px #333;
b o x - s h a d o w : 5px 5px 5px #333;

}

The box-shadow property has four parameters. The first is the horizontal
offset. A positive number means the shadow will fall to the right of the
object; a negative number means it falls to the left. The second parame-
ter is the vertical offset. With the vertical offset, positive numbers make
the shadow appear below the box, whereas negative values make the
shadow appear above the element.

The third parameter is the blur radius. A value of 0 gives a very sharp
value, and a higher value makes the shadow blurrier. The final param-
eter defines the color of the shadow.

You should experiment with these values to get a feel for how they work
and to find values that look appropriate to you. When working with
shadows, you should take a moment to investigate how shadows work
in the physical world. Grab a flashlight and shine it on objects, or go
outside and observe how the sun casts shadows on objects. This use
of perspective is important, because creating inconsistent shadows can
make your interface more confusing, especially if you apply shadows to
multiple elements incorrectly. The easiest approach you can take is to
use the same settings for each shadow you create.

5. http://www.w3.orgAR/css3-background/#the-box-shadow

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 158

f <
Shadows on Text

In addition to adding styles on elements, you can easily apply
shadows to your text as well. It works just like box-shadow.
h l { t e x t - s h a d o w : 2px 2px 2px #bbbbbb;}

You specify the X and Y offsets, the amount of the blur, and the
color of the shadow. IE 6, 7, and 8 have support for this as well,
using the Shadow filter.
f i l t e r : S h a d o w (C o l o r = # b b b b b b ,

D i r e c t i o n = 1 3 5 ,
S t r e n g t h = 3) ;

This is the same approach to apply a drop shadow to an ele-
ment. Shadows on text create a neat effect, but they can
make text harder to read If you make the shadow too strong.

Rotating the Badge
You can use CSS3 transformations to rotate, scale, and skew elements
much like you can with vector graphics programs such as Flash, Illus-
trator, or Inkscape.6 This can help make elements stand out a bit more
and Is another way to make a web page not look so "boxy." Let's rotate
the badge just a bit so It breaks out of the straight edge of the banner.

Down! oad css3banner/style.css

b a d g e {
- m o z - t r a n s f o r m : r o t a t e (- 7 . 5 d e g) ;
- o - t r a n s f o r m : r o t a t e (- 7 . 5 d e g) ;
- w e b k i t - t r a n s f o r m : r o t a t e (- 7 . 5 d e g) ;
- m s - t r a n s f o r m : r o t a t e (- 7 . 5 d e g) ;
t r a n s f o r m : r o t a t e (- 7 . 5deg) ;

}

Rotation with CSS3 Is pretty simple. All we have to do Is provide the
degree of rotation, and the rendering just works. All the elements con-
tained within the element we rotate are rotated as well.

Rotating Is just as easy as rounding corners, but don't overuse It. The
goal of Interface design Is to make the Interface usable. If you rotate
elements containing a lot of content, ensure that your viewers can read
the content without turning their heads too far In one direction!

6. http://www.w3.orgAR/css3-2d-transforms/#transform-property

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 159

Transparent Backgrounds
Graphic designers have used semitransparent layers behind text for
quite some time, and that process usually involves either making a
complete image in Photoshop or layering a transparent PNG on top of
another element with CSS. CSS3 lets us define background colors with
a new syntax that supports transparency.

When you first learn about web development, you learn to define your
colors using hexadecimal color codes. You define the amount of red,
green, and blue using pairs of numbers. 00 is "all off' or "none," and FF
is "all on." So, the color red would be FF0000 or "all on for red, all off for
blue, and all off for green."

CSS3 introduces the rgb and rgba functions. The rgb function works
like the hexadecimal counterpart, but you use values from 0 to 255 for
each color. You'd define the color red as rgb(255,0,0).

The rgba function works the same way as the rgb function, but it takes
a fourth parameter to define the amount of opacity, from 0 to 1. If you
use 0, you'll see no color at all, because it's completely transparent. To
make the white box semitransparent, we'll add this style rule:

Down! oad css3banner/style.css

i n f o {
b a c k g r o u n d - c o l o r : r g b a (2 5 5 , 2 5 5 , 2 5 5 , 0 . 9 5) ;

}

When working with transparency values like this, your users' contrast
settings can sometimes impact the resulting appearance, so be sure to
experiment with the value and check on multiple displays to ensure
you get a consistent result.

While we're working with the info section of our banner, let's round the
corners a bit.
Down! oad css3banner/style.css

i n f o {
m o z - b o r d e r - r a d i u s : 1 2 p x ;
w e b k i t - b o r d e r - r a d i u s : 1 2 p x ;
o - b o r d e r - r a d i u s : 1 2 p x ;
b o r d e r - r a d i u s : 1 2 p x ;

}

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 160

With that, our banner looks pretty good in Safari, Firefox, and Chrome.
Now let's implement a style sheet for Internet Explorer.

Falling Back
The techniques we used in this section work fine in IE 9, but they're
all possible with Internet Explorer 6, 7, and 8 too! We just have to use
Microsoft's DirectX filters to pull them off. That means we'll want to
rely on a conditional comment to load a specific IE-only style sheet.
We'll also need to use JavaScript to create the section element so we
can style it with CSS since these versions of IE don't recognize that
element natively.

Down! oad css3banner/index.html

<! — [i f l t e IE 8]>

<script>

document .createElement("section") ;
</script>

<link rel="stylesheet" href="ie.css" type="text/css" media="screen">

< ! [e n d i f] - - >
</head>
<body>

<div id="conference">
<section id="badge">

<h3>Hi, My Name Is</h3>
<h2>Barney</h2>

</section>

<section id="info">
</section>

</div>

</body>
</html>

The DirectX filters work in IE 6, 7, and 8, but in IE 8 the filters are
invoked differently, so you'll be declaring each of these filters twice.
Let's start by looking at how we rotate elements.

Rotation
We can rotate elements using these filters, but it's not as easy as just
specifying a degree of rotation. To get the effect we want, we need to

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 161

use the Matrix filter and specify cosines and sines of the angle we want.
Specifically, we need to pass the cosine, the negative value of sine, the
sine, and the cosine again,7 like this:

Down! oad css3banner/filters.css

f i l t e r : p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . M a t r i x (
s i z i n g M e t h o d = ' a u t o e x p a n d ' ,

M11=0.9914448613738104,
M12=0.13052619222005157,
M21=-0 .13052619222005157,
M22=0.9914448613738104

) ;

- m s - f i l t e r : " p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . M a t r i x (
s i z i n g M e t h o d = ' a u t o e x p a n d ' ,

M11=0.9914448613738104,
M12=0.13052619222005157,
M21=-0 .13052619222005157,
M22=0.9914448613738104

) " ;

Complicated? Yes, and more so when you look at the previous exam-
ple more closely. Remember that our original angle was negative 7.5
degrees. So, for our negative sine, we need a positive value, and our
sine gets a negative value.

Math is hard. Let's make gradients instead.

Gradients
IE's Gradient filter works just like the one in the standard, except that
you have to type a lot more characters. You provide the starting color
and the ending color, and the gradient just shows up.

Down! oad css3banner/filters.css

f i I t e r : p r o g i d :DX ImageTrans fo rm .M i c r o s o f t . g r a d i e n t (
s t a r t C o l o r S t r = # F F F F F F , endColorSt r=#EFEFEF

) ;
- m s - f i l t e r : " p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (

s t a r t C o l o r S t r = # F F F F F F , endColorSt r=#EFEFEF

Unlike the other browsers, you're applying the gradient directly to the
element, rather than to the background-image property.

7. We're doing a linear transformation using a 2x2 matrix.

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 162

Let's use this filter again to define the transparent background for our
info section.

Transparency
The Gradient filter can take extended hexadecimal values for the start
and end colors, using the first two digits to define the amount of trans-
parency. We can get very close to the effect we want with this code:

Down! oad css3banner/filters.css

b a c k g r o u n d : none ;
f i l t e r :

p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (
s t a r t C o l o r S t r = # B B F F F F F F , endCo lo rS t r=#BBFFFFFF

- m s - f i l t e r : " p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (
s t a r t C o l o r S t r = ' # B B F F F F F F ' , E n d C o l o r S t r = ' # B B F F F F F F '

These eight-digit hex codes work very much like the rgba function,
except that the transparency value comes first rather than last. So,
we're really looking at alpha, red, green, and blue.

We have to remove the background properties on that element to make
this work in IE 7. Now, if you've been following along trying to build this
style sheet up, you've noticed that it doesn't actually work yet, but we
can fix that.

Putting It All Together
One of the more difficult problems with these IE filters is that we can't
define them in pieces. To apply multiple filters to a single element, we
have to define the filters as a comma-separated list. Here's what the
actual IE style sheet looks like:

Down! oad css3banner/ie.css

i n f o {
b a c k g r o u n d : none ;
f i l t e r :

p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (
s t a r t C o l o r S t r = # B B F F F F F F , endCo lo rS t r=#BBFFFFFF

) ;
- m s - f i l t e r : " p r o g i d ¡ D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (

s t a r t C o l o r S t r = ' # B B F F F F F F ' , E n d C o l o r S t r = ' # B B F F F F F F '

) " ;

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 163

Figure 8.5: Our banner as shown in Internet Explorer 8

b a d g e {
f i l t e r :

p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . M a t r i x C
s i z i n g M e t h o d = ' a u t o e x p a n d ' ,

M11=0 .9914448613738104 ,
M12=0 .13052619222005157 ,
M 2 1 = - 0 . 1 3 0 5 2 6 1 9 2 2 2 0 0 5 1 5 7 ,
M22=0.9914448613738104

),
p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (

s t a r t C o l o r S t r = # F F F F F F , endCo lo rS t r=#EFEFEF
),
p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . S h a d o w C

c o l o r = # 3 3 3 3 3 3 , D i r e c t i o n = 1 3 5 , S t r e n g t h = 3
) ;

- m s - f i l t e r : " p r o g i d ¡ D X I m a g e T r a n s f o r m . M i c r o s o f t . M a t r i x C
s i z i n g M e t h o d = ' a u t o e x p a n d ' ,

M11=0 .9914448613738104 ,
M12=0 .13052619222005157 ,
M 2 1 = - 0 . 1 3 0 5 2 6 1 9 2 2 2 0 0 5 1 5 7 ,
M22=0.9914448613738104

),
p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . g r a d i e n t (

s t a r t C o l o r S t r = # F F F F F F , endCo lo rS t r=#EFEFEF
),
p r o g i d : D X I m a g e T r a n s f o r m . M i c r o s o f t . S h a d o w C

c o l o r = # 3 3 3 3 3 3 , D i r e c t i o n = 1 3 5 , S t r e n g t h = 3
) " ;

That's a lot of code to get the desired result, but it shows that it is
possible to use these features. If you look at Figure 8.5, you'll see we
got pretty close. All we have to do now is round the corners on the info

Report erratum

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS M 164

section, and you can refer to Rounding Rough Edges, on page 146 to
see how to do that.

Although these filters are clunky and a little bit quirky, you should still
investigate them further in your own projects because you'll be able to
provide a similar user experience to your IE users.

Remember that the effects we explored in this section are all presenta-
tional. When we created the initial style sheet, we made sure to apply
background colors so that text would be readable. Browsers that can-
not understand the CSS3 syntax can still display the page in a readable
manner.

Report erratum

USING REAL FONTS - ^ 1 6 5

I
Typography is so important to user experience. The book you're reading
right now has fonts that were carefully selected by people who under-
stand how choosing the right fonts and the right spacing can make it
much easier for people to read this book. These concepts are just as
important to understand on the Web.

The fonts we choose when conveying our message to our readers impact
how our readers interpret that message. Here's a font that's perfectly
appropriate for a loud heavy-metal band:

But that might not work out so well for the font on the cover of this
book:

mi ^ w
As you can see, choosing a font that matches your message is really
important. The problem with fonts on the Web is that we web developers
have been limited to a handful of fonts, commonly known as "web-
safe" fonts. These are the fonts that are in wide use across most users'
operating systems.

To get around that, we've historically used images for our fonts and
either directly added them to our page's markup or used other methods
like CSS background images or sIFR,8 which renders fonts using Flash.
CSS3's Fonts module offers a much nicer approach.

@font-face
The @font-face directive was actually introduced as part of the CSS2
specification and was implemented in Internet Explorer 5. However,

8. http://www.mikeindustries.com/blog/sifr

Using Real Fonts

Report erratum

USING REAL FONTS - ^ 1 6 6

Fonts and Rights
Some fonts aren't free. Like stock photography or other copy-
righted material, you are expected to comply with the rights
and licenses of the material you use on your website. If you
purchase a font, you're usually within your rights to use it in
your logo and images on your pages. These are called usage
rights. However, the @font-face approach brings a different kind
of licensing into play—redistribution rights.

When you embed a font on your page, your users will have
to download that font, meaning your site is now distributing
this font to others. You need to be absolutely positive the fonts
you're using on your pages allow for this type of usage.

Typekit* has a large library of licensed fonts available, and they
provide tools and code that make it easy to integrate with your
website. They are not a free service, but they are quite afford-
able if you need to use a specific font.

Google provides the Google Font APIf, which is similar to Typekit
but contains only open source fonts.

Both of these services use JavaScript to load the fonts, so you
will need to ensure that your content is easy to read for users
without JavaScript.

As long as you remember to treat fonts like any other asset, you
shouldn't run into any problems.

*. http://www.typekit.com/
f. http://code.google.com/apis/webtonts/

Microsoft's implementation used a font format called Embedded Open-
Type (EOT), and most fonts today are in TrueType or OpenType format.
Other browsers support the OpenType and TrueType fonts currently.

AwesomeCo's director of marketing has decided that the company
should standardize on a font for both print and the Web. You've been
asked to investigate a font called Garogier, a simple, thin font that is
completely free for commercial use. As a trial run, we'll apply this font
to the blog example we created in Redefining a Blog Using Semantic
Markup, on page 27. That way, everyone can see the font in action.

Report erratum

USING REAL FONTS - ^ 1 6 7

f <
Joe Asks . . .

HOW DO I Convert My Own Fonts?

If you have developed your own font or have purchased the
rights to a font and need to make It available In multiple for-
mats, the website FontSaulrrel has a converter* you can use
that will provide you with the converted fonts as well as a style
sheet with the @font-face code you'll need. Be sure your font's
license allows this type of usage, though.

*. http://www.fontsquirrel.com/fontface/generator

••

Font Formats
Fonts are available in a variety of formats, and the browsers you're tar-
geting will determine what format you'll need to serve to your visitors.

Format and Supported Browsers

Embedded OpenType (EOT) [IE5-8]

TrueType (TTF) [IE9, F3.5, C4, S4]

OpenType (OTF) [IE9, F3.5, C4, S4, 010.5J

Scalable Vector Graphics (SVG) [IOSJ

Web Open Font (WOFF) [IE9, F3.6]

Internet Explorer browsers prior to 9 only support a format called
Embedded OpenType (EOT). Other browsers support the more common
TrueType and OpenType fonts quite well.

Microsoft, Opera, and Mozilla jointly created the Web Open Font For-
mat, which allows lossless compression and better licensing options for
font makers.

To hit all of these browsers, you have to make your fonts available in
multiple formats.

Report erratum

USING REAL FONTS - ^ 1 6 8

Changing Our Font
The font we're looking at is available at FontSquirrel9 in TrueType,
WOFF, SVG, and EOT formats, which will work just perfectly.

Using the font involves two steps—defining the font and attaching the
font to elements. In the style sheet for the blog, add this code:

Down! oad css3fonts/style.css

@ f o n t - f a c e {
f o n t - f a m i l y : ' G a r o g i e r R e g u l a r ' ;
s r c : u r l (' f o n t s / G a r o g i e r _ u n h i n t e d - w e b f o n t . e o t ') ;
s r c : u r l (' f o n t s / G a r o g i e r _ u n h i n t e d - w e b f o n t . w o f f ') f o r m a t C ' w o f f ') ,

u r l C ' f o n t s / G a r o g i e r _ u n h i n t e d - w e b f o n t . t t f ') f o r m a t (' t r u e t y p e ') ,
u r l (' f o n t s / G a r o g i e r _ u n h i n t e d - w e b f o n t . s v g # w e b f o n t e w 0 q E 0 0 9 ') f o r m a t (' s v g ') ;

f o n t - w e i g h t : n o r m a l ;

}

We're defining the font family first, giving it a name, and then supplying
the font sources. We're putting the Embedded OpenType version first
so that IE sees it right away, and then we provide the other sources.
A user's browser is going to just keep trying sources until it finds one
that works.

Now that we've defined the font family, we can use it in our style sheet.
We'll change our original font style so it looks like this:

Down! oad css3fonts/style.css

body {
f o n t - f a m i l y : " G a r o g i e r R e g u l a r " ;

}

With that simple change, our page's text displays in the new font, like
the example in Figure 8.6, on the next page.

Applying a font is relatively easy in modern browsers, but we need to
consider browsers that don't support this yet.

9. You can grab it from http://www.fontsquirrel.com/fonts/Garogier and also in the book's
downloadable code.

Report erratum

USING REAL FONTS - ^ 1 6 9

AwesomeCo Blog!

Latest Posts Archives Contributors Contact Us

How Many Should We Put You Down For?
Posted by Brian on October 1st, zoio at 2:39PM

Tile first big rule in sales is tliat if the person leaves empty-handed
they're likely not going to come back. That's why you have to be
somewhat aggressive when you're working wi th ;i customer, but
you have to make sure you don't overdo it and scare them away.

One way you can keep a conversation gj ing is to avoid asking questions that have yes or no answers. For
example, if you're selling a service plan, don't ever "Are you interested in our <1 c year service plan?"

N e v e r g i v e s o m e o n e a chance
t o say n o w h e n se l l ing y o u r
p r o d u c t . "

Figure 8.6: The blog with the new font applied

Falling Back
We've already provided fallbacks for various versions of IE and other
browsers, but we still need to ensure our pages are readable in browsers
that lack support for the @font-face feature.

We provided alternate versions of the Garogier font, but when we ap-
plied the font, we didn't specify any fallback fonts. That means if the
browser doesn't support displaying our Garogier font, it's just going to
use the browser's default font. That might not be ideal.

Font stacks are lists of fonts ordered by priority. You specify the font
you really want your users to see first and then specify other fonts that
are suitable fallbacks afterwards.

When creating a font stack, take the extra time to find truly suitable
fallback fonts. Letter spacing, stroke width, and general appearance
should be similar. The website Unitlnteractive has an excellent article
on this.10

Let's alter our font like this:
Down! oad css3fonts/style.css

f o n t - f a m i l y : " G a r o g i e r R e g u l a r " , G e o r g i a ,
" P a l a t i n o " , " P a l a t i n o L i n o t y p e " ,
" T i m e s " , " T i m e s New Roman", s e r i f ;

10. http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/

Report erratum

USING REAL FONTS - ^ 1 7 0

We're providing a large array of fallbacks here, which should help us
maintain a similar appearance. It's not perfect in all cases, but it's bet-
ter than relying on the default font, which can sometimes be quite hard
to read.

Fonts can go a long way to make your page more attractive and easier
to read. Experiment with your own work. There are a large number of
fonts, both free and commercial, waiting for you.

The Future

In this chapter, we explored a few ways CSS3 replaces traditional web
development techniques, but we only scratched the surface. The CSS3
specification talks about 3D transformations and even simple anima-
tions, meaning that we can use style sheets instead of JavaScript to
provide interaction cues to users, much like we do with :hover.

In addition, some browsers are already supporting multiple background
images and gradient borders. Finally, keep an eye out for improvements
in paged content, such as running headers and footers and page num-
ber support.

The CSS3 modules, when completed, will make it much easier for us to
create richer, better, and more inviting interface elements for our users,
so be sure to keep an eye out for new features.

Report erratum

Part III

Beyond HTML5

Chapter 9

Working with Client-Side Data
We have talked about HTML5 and CSS3 markup, but now let's turn
our attention to some of the technologies and features associated with
HTML5. Cross-document Messaging and offline support, for example,
let us communicate across domains and create solutions that let our
users work offline.

Some features such as Web Storage, Web SQL Databases, and Web
Sockets were spun off from the HTML5 specification. Others, such as
Geolocation, were never part of the specification at all, but browser
makers and developers have associated Geolocation with HTML5 be-
cause the specification is being implemented alongside other features.

This part of the book covers these features, with more attention given
to those features that are already usable right now. We'll also spend a
chapter discussing things that are coming next. Let's start by looking at
Web Storage and Web SQL Storage, two specifications that let us store
data on the client.

Remember when cookies were awesome? Neither do I. Cookies have
been rather painful to deal with since they came on the scene, but we
have put up with the hassle because they've been the only way to store
information on the clients' machines. To use them, we have to name
the cookie and set its expiration.

CHAPTER 9. WORKING WITH CL IENT-S IDE DATA M 173

This involves a bunch of JavaScript code we wrap in a function so we
never have to think about how it actually works, kind of like this:

Down! oad html5_localstorage/setcookie.js

/ / v i a h t t p : / / w w w . j a v a s c r i p t e r . n e t / f a q / s e t t i n g a . h t m
function S e t C o o k i e (c o o k i e N a m e , c o o k i e V a l u e , n D a y s) {
var t o d a y = new D a t e O ;
var e x p i r e = new D a t e O ;
if (n D a y s==null | | n D a y s = = 0) n D a y s = l ;
e x p i r e . s e t T i m e C t o d a y . g e t T i m e C) + 3 6 0 0 0 0 0 * 2 4 * n D a y s) ;
d o c u m e n t . c o o k i e = c o o k i e N a m e + " = " + e s c a p e (c o o k i e V a l u e)

+ "; expi res= " + e x p i re . t o G M T S t r i n g O ;

}

Aside from the hard-to-remember syntax, there are also the security
concerns. Some sites use cookies to track users' surfing behavior, so
users disable cookies in some fashion.

HTML5 introduced a few new options for storing data on the client:
Web Storage (using either localStorage or sessionStorage)1 and Web SQL
Databases.2 They're easy to use, incredibly powerful, and reasonably
secure. Best of all, they're implemented today by several browsers,
including iOS's Mobile Safari and Android 2.0's web browser. However,
they are no longer part of the HTML5 specification—they've been spun
off into their own specifications.

While localStorage, sessionStorage, and Web SQL Databases can't replace
cookies intended to be shared between the client and the server—like
in the case of web frameworks that use the cookies to maintain state
across requests—they can be used to store data that only users care
about, such as visual settings or preferences. They also come in handy
for building mobile applications that can run in the browser but are not
connected to the Internet. Many web applications currently call back to
a server to save user data, but with these new storage mechanisms,
an Internet connection is no longer an absolute dependency. User data
could be stored locally and backed up when necessary.

When you combine these methods with HTML5's new offline features,
you can build complete database applications right in the browser that
work on a wide variety of platforms, from desktops to iPads and Android

1. http://www.whatwg.org/specs/web-apps/2007-10-26/#storage
2. http://www.whatwg.Org/specs/web-apps/2007-10-26/#sql

Report erratum

CHAPTER 9. WORKING WITH CLIENT-SIDE DATA M 174

phones. In this chapter, you'll learn how to use these techniques to
persist user settings and create a simple notes database.

In this chapter, we'll get acquainted with the following features:3

localStorage
Stores data in key/value pairs, tied to a domain, and persists
across browser sessions. [C5, F3.5, S4, IE8, 010.5, IOS, A]

sessionStorage
Stores data in key/value pairs, tied to a domain, and is erased
when a browser session ends. [C5, F3.5, S4, IE8, 010.5, IOS, A]

Web SQL Databases
Fully relational databases with support for creating tables, inserts,
updates, deletes, and selects, with transactions. Tied to a domain
and persists across sessions. [C5, S3.2, 010.5, IOS3.2, A2]

Offline Web Applications
Defines files to be cached for offline use, allowing applications to
run without an Internet connection. [C4, S4, F3.5, 010.6, IOS3.2,
A2]

3. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, IOS: iOS devices
with Mobile Safari, and A: Android Browser.

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 175

Saving Preferences with
localStorage

The localStorage mechanism provides a very simple method for develop-
ers to persist data on the client's machine. The localStorage mechanism
Is simply a name/value store built In to the web browser.

Information stored In localStorage persists between browser sessions
and can't be read by other websites, because It's restricted to the do-
main you're currently visiting.4

AwesomeCo Is In the process of developing a new customer service por-
tal and wants users to be able to change the text size, background, and
text color of the site. Let's Implement that using localStorage so that
when we save the changes, they persist from one browser session to
the next. When we're done, we'll end up with a prototype that looks like
Figure 9.1, on the following page.

Building the Preferences Form
Let's craft a form using some semantic HTML5 markup and some of
the new form controls you learned about In Chapter 3, Creating User-
Friendly Web Forms, on page 45. We want to let the user change the
foreground color, change the background color, and adjust their font
size.

Down! oad html5_localstorage/index.html

<pxstrong>Pre fe rences</strongx/p>
<form i d= "preferences" a c t i o n ="save_prefs"

method="post" accep t -charse t="utf-8">
<fieldset id="colors" class="">

<1egend>Colo rs</legencb

< l i >
<label for="background_color">Background co lor</label>
< i n p u t t y p e = " c o 7 o r " name="background_color"

v a l u e = " " i d= "background_color">

4. Just watch out when you're developing things locally. If you're working on localhost,
for example, you can easily get your variables mixed up!

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 176

flOO Developer Tools f i le / / loca!host /Users/br ianhoga.. . Preferences til E <->i « 3 f f c i B i s
Elements Resources Scripts Time ine Profiles Storage Console

—Colors Key Value — —Colors
LOCAL STORAGE te«_size 24

1. Background color mm mm textjcolor #000

2, Text color mc SESSON STORAGE
COOKIES

3, Text size [aa.» •; j j^J^jJ Local Files

L
£ Save changes)

C X

m
A r

Figure 9.1: Values for the users' preferences are stored in locally via the
localStorage approach.

<label for="text_color">Text co lor</label>
< i n p u t t y p e = " c o 7 o r " name="text_color"

v a l u e = " " id="text_color">

<label for="text_size">Text s ize</label>
<select name="text_size" id="text_size">

<option value="16">16px</option>
<option value="20">20px</option>
<option value="24">24px</option>
<option value="32">32px</option>

</select>

</fieldset>

<input type="submit" value="Save changes"»
</form>

We'll just use HTML color codes for the color.

Saving and Loading the Settings
To work with the localStorage system, you use JavaScript to access the
window.localStorageO object. Setting a name and value pair is as simple
as this:
Down! oad html5_localstorage/index.html

l o c a l Storage . setItem("background_color" , $("#background_color") .val O) ;

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 177

Grabbing a value back out is just as easy.

Down! oad html5_localstorage/index.html

var b g c o l o r = 1o c a l S t o r a g e . g e t l t e m C"background_color");

Let's create a method for saving all the settings from the form.

Down! oad html5_localstorage/index.html

f u n c t i o n s a v e _ s e t t i n g s () {
l o c a l S to rage .setltemC"background_color", $("#background_color").val());
l o c a l S t o r a g e . s e t l t e m C"text_color" , $ (" # t e x t _ c o 7 o r ") . v a l ()) ;
l o c a l S t o r a g e . s e t l t e m C"text_size", $("#text_size").val());
a p p l y _ p r e f e r e n c e s _ t o _ p a g e () ;

}

Next, let's build a similar method that will load the data from the local-
Storage system and place it into the form fields.
Down! oad html5_localstorage/index.html

f u n c t i o n l o a d _ s e t t i n g s () {
v a r b g c o l o r = 1 o c a l S t o r a g e . g e t l t e m C"background_color") ;
v a r t e x t _ c o l o r = l o c a l S t o r a g e . g e t l t e m C " t e x t _ c o 7 o r ") ;
v a r t e x t _ s i z e = 1 o c a l S t o r a g e . g e t l t e m C"text_size") ;

$C'#background_color") . v a l C b g c o l o r) ;
$ C " # t e x t _ c o 7 o r ") . v a l C t e x t _ c o l o r) ;
$("#text_size").valCtext_size);

a p p l y _ p r e f e r e n c e s _ t o _ p a g e O ;

}

This method also calls a method that will apply the settings to the page
itself, which we'll write next.

Applying the Settings
Now that we can retrieve the settings from localStorage, we need to apply
them to the page. The preferences we're working with are all related to
CSS in some way, and we can use jQuery to modify any element's styles.

Down! oad html5_localstorage/index.html

f u n c t i o n a p p l y _ p r e f e r e n c e s _ t o _ p a g e O {
SC'body") .cssC'backgroundColor" , $C'#background_color") . v a l O) ;
$C'body") . c s s C " c o 7 o r " , $ C " # t e x t _ c o 7 o r ") . v a l O) ;
SC'body") .cssC'fontSize" , $C'#text_size") . v a l O + "px") ;

}

Finally, we need to fire all of this when the document is ready.

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 178

Down! oad html5_localstorage/index.html

$ (f u n c t i o n O {

l o a d _ s e t t i n g s O ;

$ C ' f o r m # p r e f e r e n c e s ') . s u b m i t (f u n c t i o n (e v e n t) {
e v e n t . p r e v e n t D e f a u l t () ;
s a v e _ s e t t i n g s O ;

}) ;

Falling Back
The localStorage method works only on the latest Internet Explorer,
Firefox, Chrome, and Safari, so we'll need a fallback method for older
browsers. We have a couple of approaches. We can save the informa-
tion on the server, or we persist the preferences on the client side using
cookies.

Server-Side Storage
If you have user accounts in your system, consider making the prefer-
ences page persist the settings to the user's record in your application.
When they log in, you can check to see whether any client-side settings
exist and, if they don't, load them from the server. This way, your users
keep their settings across browsers and across computers.

To persist to the server, simply ensure your form posts to the server—
don't prevent the default submit behavior with JavaScript if there's no
support for cookies.

Server-side storage is really the only method that will work if the user
disables JavaScript, because you could code your application to fetch
the settings from the database and not the localStorage hash. Also, this
is the only approach you can take if you're storing more than 4KB of
data, since that's the maximum amount of data you can store in a
cookie.

Cookies and JavaScript
The tried-and-true combination of cookies and JavaScript can act as a
decent fallback. Using the well-known cookie script from Quirksmode,5

we can build our own localStorage fallback solution.

5. http://www.quirksmode.org/js/cookies.htm

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 179

Detecting localStorage support In the browser Is pretty simple. We just
check for the existence of a localStorage method on the window object:

Down! oad html5_localstorage/index.html

i f (! w i n d o w . l o c a l S t o r a g e) {
}

Next, we need methods to write the cookies, which we'll borrow from
the Quirksmode article. Add these JavaScript functions to your script
block, within the braces:

Down! oad html5_localstorage/index.html

f u n c t i o n c r e a t e C o o k i e C n a m e , v a l u e , d a y s) {
i f (d a y s) {

v a r d a t e = new D a t e O ;
d a t e . s e t T i m e (d a t e . g e t T i m e () + (d a y s * 2 4 * 6 0 * 6 0 * 1 0 0 0)) ;
v a r e x p i r e s = " ; e x p i r e s = " + d a t e . t o G M T S t r i n g C) ;

}
e l s e v a r e x p i r e s = " " ;
d o c u m e n t . c o o k i e = n a m e + " = " + v a l u e + e x p i r e s + " ; path=/";

}

f u n c t i o n r e a d C o o k i e (n a m e) {
v a r r e s u l t = " "
v a r nameEQ = name + " = " ;
v a r c a = d o c u m e n t . c o o k i e . s p l i t C ; ') ;
f o r C v a r i = 0 ; i < c a . l e n g t h ; i + +) {

v a r c = c a [i] ;
w h i l e (c . c h a r A t (0) = = ' ') c = c . s u b s t r i n g (l , c . l e n g t h) ;
i f (c . i n d e x O f (n a m e E Q) = = 0) {

r e s u l t = c . s u b s t r i n g C n a m e E Q . l e n g t h , c . l e n g t h) ;
} e l s e {

r e s u l t = " " ;

}
}

r e t u r n (r e s u l t) ;

}

Finally, we want to make a localStorage object that uses the cookies as
Its back end. A very hackish example that just barely makes this work
might look like this:

Down! oad html5_localstorage/index.html

Une l l o c a l S t o r a g e = (f u n c t i o n () {
r e t u r n {

s e t l t e m : f u n c t i o n (k e y , v a l u e) {
c r e a t e C o o k i e (k e y , v a l u e , 3000)

5 } ,

Report erratum

SAVING PREFERENCES WITH LOCALSTORAGE M 180

We can use localStorage for things that we want to persist even
after our users close their web browsers, but sometimes we
need a way to store some information while the browser is open
and throw it away once the session is over. That's where ses-
sionStorage comes into play. It works the same way as localStor-
age, but the contents of the sessionStorage are cleared out once
the browser session ends. Instead of grabbing the localStorage
object, you grab the sessionStorage object.
s e s s i o n S t o r a g e . s e t l t e m C ' n a m e ' , 'Brian Hogan');
var name = s e s s i o n S t o r a g e . g e t l t e m C 'name ') ;

Creating a fallback solution for this is as simple as ensuring that
the cookies you create expire when the browser closes.

g e t l t e m : f u n c t i o n (k e y) {
r e t u r n (r e a d C o o k i e (k e y)) ;

}
10 } ;

}) 0 ;
Take note of line 4. We're creating a cookie with an expiration date of
3,000 days from now. We can't create cookies that never expire, so I'm
setting this to a ridiculously long time into the future.

We've kept the basic implementation of localStorage the same from the
outside. If you need to remove items or clear everything out, you'll
need to get a little more creative. Ideally, in the near future, we can
remove this hackish solution and rely only on the browser's localStor-
age() methods.

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 181

Storing Data in a Client-Side
Relational Database

The localStorage and sessionStorage methods give us an easy way to store
simple name/value pairs on the client's computer, but sometimes we
need more than that. The HTML5 specification initially introduced the
ability to store data in relational databases. It's since been spun off
into a separate specification called Web SQL Storage.6 If you have even
a basic background in writing SQL statements, you'll feel right at home
in no time. To get you comfortable, we'll use Web SQL Storage to create,
retrieve, update, and destroy notes in a client-side database.

CRUD in Your Browser
The term CRUD, an acronym for "Create, Retrieve, Update, and De-
lete,"7 pretty much describes what we can do with our client-side data-
base. The specification and implementations allow us to insert, select,
update, and delete records.

AwesomeCo wants to equip their sales team with a simple application
to collect notes while they're on the road. This application will need to
let users create new notes, as well as update and delete existing ones.
To change existing notes, we'll need to let users retrieve them from the
database.

Here are the SQL statements we'll need to write in order to make this
happen:

Type Statement
Create a note INSERT INTO notes (title, note) VALUESC'Test", "This is a note");
Retrieve al l SELECT id, title, note FROM notes;
notes
Retrieve a spe- SELECT id, title, note FROM notes where id = 1;
cific note
Update a note UPDATE notes set title = "bar", note = "Changed" where id =

1;
Delete a note DELETE FROM notes where id = 1;

6. http://dev.w3.org/html5/webdatabase/
7. Or "Create, Read, Update, and Destroy," if you prefer

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 182

Joe Asks . . .

2: Isn't the Web SQL Database specification dead?
In November of 2010, the working group that maintains the
specification declared that they are not moving forward with
the specification and are Instead focusing on the IndexedDB
specification. We're discussing It in this book because it's
already been Implemented In Webkit-based browsers, Includ-
ing all ¡OS and Android devices, Safari, and Google Chrome.
Unlike IndexedDB, which Isn't Implemented anywhere at the
time of writing, you can use Web SQL Databases In your projects
right now. It may be just the right fit for your needs.

The Notes Interface
The Interface for the notes application consists of a left sidebar that will
have a list of the notes already taken and a form on the right side with
a title field and a larger text area for the note itself. Look at Figure 9.2,
on the following page to see what we're building.

To start, we need to code up the interface.
Down! oad html5sql/index.html

< !doc type html>

<html>
<head>

<title>AwesomeNotes</title>
<1 ink rel="stylesheet" href="style.css">

< s c r i p t t ype=" tex t /javascript"
charse t= "utf-8"
src=
"http://aj ax.googleapis.com/ajax/1ibs/jquery/1.4.2/jquery.min.js">

</script>

< s c r i p t type="text/javascript"
charset="utf-8" src="javascripts/notes.js">

</script>

</head>

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 183

First note

Second note

(S a v e) (P e i e r e j

Tit le

First note
Note
This program lets you take n n the offline database.

Figure 9.2: Our notes application interface

<body>
<section id="sidebar">

<input type="button" id="new_button" value="New note">
<ul id="notes">

</section>

<section id="main">
<form>

<input type="submit" id="save_button" value="Save">
<input type="submit" id="delete_button" value="Delete">

<1abel for="title">Title</label>
<input type="text" id="title">

<label for="note">Note</label>
<textarea id="note "x/textarea>

</form>
</section>

</body>
</html>

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 184

We define the sidebar and main regions using section tags, and we have
given IDs to each of the important user interface controls like the Save
button. This will make it easier for us to locate elements so that we can
attach event listeners.

We'll also need a style sheet so that we can make this look more like
the figure, style.ess looks like this:

Down! oad html5sql/style.css

s i d e b a r , # m a i n {
d i s p l a y : b l o c k ;
f l o a t : l e f t ;

s i d e b a r {
w i d t h : 2 5%;

#mai n {
w i d t h : 75%;

f o r m o l {
l i s t - s t y l e : none ;
m a r g i n : 0 ;
p a d d i n g : 0 ;

}

f o rm 1 i {
p a d d i n g : 0 ;
m a r g i n : 0 ;

}

f o r m l i l a b e l {
d i s p l a y : b l o c k ;

}

t i t l e , # n o t e {
w i d t h : 100%;
f o n t - s i z e : 2 0 p x ;
b o r d e r : l p x s o l i d #000;

t i t l e {
h e i g h t : 2 0 p x ;

}

n o t e {
h e i g h t : 4 0 p x ;

}

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 185

This style sheet turns off the bullet points, sizes the text areas, and
lays things out in two columns. Now that we have the interface done,
we can build the JavaScript we need to make this work.

Connecting to the Database
We need to make a connection and create a database:

Down! oad html5sql/javascripts/notes.js

/ / Database r e f e r e n c e
var db = null ;

/ / C r e a t e s a c o n n e c t i o n t o t h e l o c a l da tabase
connectToDB = functionO

{
db = w indow.openDatabaseC'awesome_notes', '1.0' ,

'AwesomeNotes Database', 1 0 2 4 * 1 0 2 4 * 3) ;

We're declaring the db variable at the top of our script. Doing this makes
it available to the rest of the methods we'll create.8 We then declare the
method to connect to the database by using the window.openDatabase
method. This takes the name of the database, a version number, a
description, and a size parameter.

Creating the Notes Table
Our notes table needs three columns:
Field Description
id Uniquely identifies the note. Primary key, integer,

auto-incrementing,
title The title of the note, for easy reference.
Note The note itself.

Let's create a method to create this table:
Down! oad html5sql/javascripts/notes.js

c r e a t e N o t e s T a b l e = functionO
{

d b . t r a n s a c t ! o n (f u n c t i o n (t x) {
t x . e x e c u t e S q l (

"CREATE TABLE n o t e s (i d INTEGER \
PRIMARY KEY, t i t l e TEXT, n o t e T E X T) " , [] ,

function(){ a l e r t (' N o t e s database created successfully!'); },
function (t x , e r r o r) { a l e r t (e r r o r . m e s s a g e) ; }) ;

}) ;

8. This puts the variable into the global scope, and that's not always a good idea. For
this example, we're keeping the JavaScript code as simple as possible.

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 186

We fire the SQL statement inside a transaction, and the transaction
has two callback methods: one for a successful execution and one for a
failure. This is the pattern we'll use for each of our actions.

Note that the executeSqK) method also takes an array as its second
parameter. This array is for binding placeholders in the SQL to vari-
ables. This lets us avoid string concatenation and is similar to prepared
statements in other languages. In this case, the array is empty because
we have no placeholders in our query to populate.

Now that we have our first table, we can make this application actually
do something.

Loading Notes
When the application loads, we want to connect to the database, create
the table if it doesn't already exist, and then fetch any existing notes
from the database.

Down! oad html5sql/javascripts/notes.js

/ / l o a d s a l l r e c o r d s f r o m t h e n o t e s t a b l e o f t h e d a t a b a s e ;
f e t c h N o t e s = function(){

d b . t r a n s a c t i o n (f u n c t i o n (t x) {
t x . e x e c u t e S q l ('SELECT id, title, note FROM notes ' , [] ,

f u n c t i o n C S Q L T r a n s a c t i o n , d a t a) {
for (var i = 0 ; i < d a t a . r o w s . 1 e n g t h ; + + i) {

var row = d a t a . r o w s . i t e r n (i) ;
var i d = row ['id'] ;
var t i t l e = row [' ti tie '] ;

addToNotesL i s t (i d , t i t l e) ;

}
}) ;

}) ;

This method grabs the results from the database. If it's successful, it
loops over the results and calls the addNoteToList method that we define
to look like this:

Down! oad html5sql/javascripts/notes.js

/ / Adds t h e l i s t i t e m t o t h e l i s t o f n o t e s , g i v e n a n i d and a t i t l e .
addToNotesL i s t = function (i d , t i t l e) {

var n o t e s = $ ("#notes");
var i t e m = $ (" < l i > ") ;
i t e m . a t t r C " d a t a - i d " , i d) ;
i t e m . h t m l (t i t l e) ;
n o t e s . a p p e n d (i t e m) ;

} ;
Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 187

We're embedding the ID of the record Into a custom data attribute.
We'll use that ID to locate the record to load when the user clicks the
list Item. We then add the new list Item we create to the unordered list
In our Interface with the ID of notes. Now we need to add code to load
that Item Into the form when we select a note from this list.

Fetching a Specific Record
We could add a click event to each list Item, but a more practical ap-
proach Is to watch any clicks on the unordered list and then determine
which one was clicked. This way, when we add new entries to the list
(like when we add a new note), we don't have to add the click event to
the list.

Within our jQuery function, we'll add this code:

Down! oad html5sql/javascripts/notes.js

$("#notes").cli ck(function(event){
if (SCevent.target),is('li ')) {

var element = SCevent.target);
loadNoteCelement.attr("data-id")) ;

}

This fires off the loadNoteO method, which looks like this:

Down! oad html5sql/javascripts/notes.js

loadNote = function(id){
db.transaction(function(tx) {

tx.executeSql ('SELECT id, title, note FROM notes where id = ?', [id],
functionCSQLTransaction, data){

var row = data.rows.itern(0);
var title = $("#tit7e") ;
var note = $("#note");

title.val (row["ti t7e"]) ;
ti tl e .attrC "data-id" , row["id"]) ;
note.val(row["note"]);
$C "#delete_button") . showO ;

}) ;
}) ;

This method looks a lot like the previous fetchNotesO method. It fires a
SQL statement, and we then handle the success path. This time, the

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 188

statement contains a question-mark placeholder, and the actual value
is in the second parameter as a member of the array.

When we have found a record, we display it in the form. This method
also activates the Delete button and embeds the ID of the record into a
custom data attribute so that updates can easily be handled. Our Save
button will check for the existence of the ID. If one exists, we'll update
the record. If one is missing, we'll assume it's a new record. Let's write
that bit of logic next.

Inserting, Updating, and Deleting Records
When a user clicks the Save button, we want to trigger code to either in-
sert a new record or update the existing one. We'll add a click event han-
dler to the Save button by placing this code inside the j Query function:

Down! oad html5sql/javascripts/notes.js

$("#save_button").cli ck(function(event){
event.preventDefault();
var title = $("#tit7e") ;
var note = $("#note");

i f (t i tle.attr("data-id")){
updateNote(title, note);

}el se{
insertNoteCtitle, note);

}

This method checks the data-id attribute of the form's title field. If it has
no ID, the form assumes we're inserting a new record and invokes the
insertNote method, which looks like this:

Down! oad html5sql/javascripts/notes.js

insertNote = functionCtitle, note) {
db.transact!on(function(tx){

tx.executeSql ("INSERT INTO notes (title, note) VALUES (?, ?)",
[title.val () , note .val ()] ,

function(tx, result){
var id = result.insertld ;
al ert('Record ' + id+ ' saved!');
title.attr("data-id", result.insertld);
addToNotesLi st(id , title.val ()) ;
$ C"#delete_button").show();

} ,

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 189

functionO {
a l e r t C ' T h e note could not be saved.');

}
) ;

}) ;

The insertNoteO method inserts the record into the database and uses
the insertld property of the resultset to get the ID that was just inserted.
We then apply this to the "title" form field as a custom data attribute
and invoke the addToNotesListO method to add the note to our list on the
side of the page.

Next, we need to handle updates. The updateNoteO method looks just
like the rest of the methods we've added so far:

Down! oad html5sql/javascripts/notes.js

updateNote = f u n c t i o n (t i t l e , n o t e)
{

var i d = t i t l e . a t t r C " d a t a - i d ") ;
d b . t r a n s a c t i o n (f u n c t i o n (t x) {

t x . e x e c u t e S q l ("UPDATE notes set title = ?, note = ? where id = ?",
[t i t l e . v a l () , no te . val 0 , i d] ,

function (t x , r e s u l t) {
a l e r t ('Record ' + id + ' updated!');
$C"#notes>li[data-id=" + id + "] ") . h t m l (t i t l e .val ()) ;

},
functionO {

a l e r t C ' T h e note was not updated!');

}
) ;

}) ;

When the update statement is successful, we update the title of the note
in our list of notes by finding the element with the data-id field with the
value of the ID we just updated.

As for deleting records, it's almost the same. We need a handler for the
delete event like this:

Down! oad html5sql/javascripts/notes.js

$ C"#delete_button").c l i ckCfunction (e v e n t) {
e v e n t . p r e v e n t D e f a u l t () ;
var t i t l e = $ (" # t i t 7 e ") ;
d e l e t e N o t e (t i t l e) ;

}) ;

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 190

Then we need the delete method itself, which not only removes the
record from the database but also removes it from the list of notes in
the sidebar.

Down! oad html5sql/javascripts/notes.js

d e l e t e N o t e = f u n c t i o n (t i t l e)
{

var i d = t i t l e . a t t r (" d a t a - i d ") ;
d b . t r a n s a c t i o n (f u n c t i o n (t x) {

t x . e x e c u t e S q l ("DELETE from notes where id = ? " , [i d] ,
function (t x , r e s u l t) {

a l e r t (' R e c o r d ' + id + ' deleted!');
$("#notes>li[data-id=" + id + "] ") . remove() ;

} ,

functionO {
a l e r t (' T h e note was not deleted!') ;

}
) ;

}) ;

Now we just need to clear out the form so we can create a new record
without accidentally duplicating an existing one.

Wrapping Up
Our notes application is mostly complete. We just have to activate the
New button, which clears the form out when clicked so a user can
create a new note after they've edited an existing one. We'll use the
same pattern as before—we'll start with the event handler inside the
j Query function for the New button:

Down! oad html5sql/javascripts/notes.js

$("#new_button").cli c k(function (e v e n t) {
e v e n t . p r e v e n t D e f a u l t () ;
newNoteO ;

}) ;

/ / e n d : n e w b u t t o n

newNoteO ;

Next we'll clear out the data-id attribute of the "title" field and remove
the values from the forms. We'll also hide the Delete button from the
interface.

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 191

Down! oad html5sql/javascripts/notes.js

newNote = function(){
$("#delete_button") . h i d e O ;
var t i t l e = $ (" # t i ' t 7 e ") ;
t i t l e . r e m o v e A t t r C " d a t a - i d ") ;
t i t l e . v a l ("") ;
var n o t e = $ (" # n o t e ") ;
n o t e . val("") ;

}

We should call this newForm method from within our jQuery function
when the page loads so that the form Is ready to be used. This way, the
Delete button Is hidden too.

That's all there Is to It. Our application works on IPhones, Android
devices, and desktop machines running Chrome, Safari, and Opera.
However, there's little chance this will ever work In Flrefox, and It's not
supported In Internet Explorer either.

Falling Back
Unlike our other solutions, there are no good libraries available that
would let us Implement SQL storage ourselves, so we have no way to
provide support to Internet Explorer users natively. However, if this
type of application is something you think could be useful, you could
convince your users to use Google Chrome, which works on all plat-
forms, for this specific application. That's not an unheard of practice,
especially if using an alternative browser allows you to build an internal
application that could be made to work on mobile devices as well.

Another alternative is to use the Google Chrome Frame plug-in.9 Add
this to the top of your HTML page right below the head tag:

Down! oad html5sql/index.html

<meta http-equiv="X-UA-Compatible" content="chrome=l">

This snippet gets read by the Google Chrome Frame plug-in and acti-
vates it for this page.

9. http://code.google.com/chrome/chromeframe/

Report erratum

STORING DATA IN A CLIENT-SIDE RELATIONAL DATABASE M 192

If you want to detect the presence of the plug-in and prompt your users
to install it if it doesn't exist, you can add this snippet right above the
closing body tag:

Down! oad html5sql/index.html

< s c r i p t t y p e = " t e x t /javascript"
s rc=
"http://aj ax.googleapis.com/aj ax/1i bs/ch rome-frame/l/CFInstall.min.js">

</script>

<script>

w i n d o w . a t t a c h E v e n t C " o n 7 o a d " , f u n c t i o n O {
C F I n s t a l 1 . c h e c k ({

mode: "inline", / / t he d e f a u l t
node: "prompt"

});
});

</script>

This will give the user an option to install the plug-in so they can work
with your site.

Google Chrome Frame may not be a viable solution for a web applica-
tion meant to be used by the general public, but it works well for inter-
nal applications like the one we just wrote. There may be corporate IT
policies that prohibit something like this, but I'll leave that up to you
to work out how you can get something like this approved if you're in
that situation. Installing a plug-in is certainly more cost-effective than
writing your own SQL database system.

Report erratum

WORKING OFFLINE M 193

H \ A / ^ r l / i n g O f f | | n e

With HTML5's Offline support,10 we can use HTML and related tech-
nologies to build applications that can still function while disconnected
from the Internet. This is especially useful for developing applications
for mobile devices that may drop connections.

This technique works in Firefox, Chrome, and Safari, as well as on the
iOS and Android 2.0 devices, but there's no fallback solution that will
work to provide offline support for Internet Explorer.

AwesomeCo just bought its sales team some iPads, and they'd like to
make the notes application we developed in Storing Data in a Client-Side
Relational Database, on page 181, work offline. Thanks to the HTML5
manifest file, that will be a simple task.

Defining a Cache with the Manifest
The manifest file contains a list of all the web application's client-side
files that need to exist in the client browser's cache in order to work
offline. Every file that the application will reference needs to be listed
here in order for things to work properly. The only exception to this is
that the file that includes the manifest doesn't need to be listed; it is
cached implicitly.

Create a file called notes.manifest. Its contents should look like this:

Down! oad html5offline/notes.manifest

CACHE MANIFEST
v = 1 . 0 . 0
/ s t y l e . e s s
/ j a v a s c r i p t s / n o t e s . j s
/ j a v a s c r i p t s / j q u e r y . m i n . j s

The version comment in this file gives us something we can change so
that browsers will know that they should fetch new versions of our files.
When we change our code, we need to modify the manifest.

Also, we've been letting Google host jQuery for us, but that won't work if
we want our application to work offline, so we need to download jQuery
and modify our script tag to load jQuery from our javascripts folder.

10. http://www.w3.org/TR/html5/offline.html

Report erratum

WORKING OFFLINE M 194

Down! oad html5offline/mdex.html

< s c r i p t t y p e = " t e x t / j a v a s c r i p t "
c h a r s e t = "utf-8"
src="javascripts/jquery.min.js">

< / s c r i p t >

Next, we need to link the manifest file to our HTML document. We do
this by changing the html element to this:

Down! oad html5offline/mdex.html

<h tm l m a n i f e s t ="notes.manifest">

That's all we need to do. There's just one little catch—the manifest file
has to be served by a web server, because the manifest must be served
using the text/cache-manifest MIME type. If you're using Apache, you
can set the MIME type in an .htaccess like this:

Down! oad html5offline/.htaccess

AddType t e x t / c a c h e - m a n i f e s t . m a n i f e s t

After we request our notes application the first time, the files listed in
the manifest get downloaded and cached. We can then disconnect from
the network and use this application offline as many times as we want.

Be sure to investigate the specification. The manifest file has more
complex options you can use. For example, you can specify that cer-
tain things should not be cached and should never be accessed offline,
which is useful for ignoring certain dynamic files.

Manifest and Caching
When you're working with your application in development mode, you
are going to want to disable any caching on your web server. By default,
many web servers cache files by setting headers that tell browsers not
to fetch a new copy of a file for a given time. This can trip you up while
you're adding things to your manifest file.

If you use Apache, you can disable caching by adding this to your .htac-
cess file.

Down! oad html5offline/.htaccess

E x p i r e s A c t i v e On
E x p i r e s D e f a u l t "access"

Report erratum

WORKING OFFLINE M 195

This disables caching on the entire directory, so It's not something you
want to do In production. But this will ensure that your browser will
always request a new version of your manifest file.

If you change a file listed In your manifest, you'll want to modify the
manifest file too, by changing the version number comment we added.

The Future

Features like localStorage and Web SQL Databases give developers the
ability to build applications In the browser that don't have to be con-
nected to a web server. Applications like the ones we worked on run
on an IPad or Android device as well, and when we combine them with
the HTML5 manifest file, we can build offline rich applications using
familiar tools Instead of proprietary platforms. As more browsers enable
support, developers will be able to leverage them more, creating appli-
cations that run on multiple platforms and devices, that store data
locally, and that could sync up when connected.

The future of Web SQL Storage Is unknown. Mozllla has no plans to
Implement It In Flrefox, and the W3C Is choosing Instead to move for-
ward Implementing the IndexedDB specification. We'll talk more about
that specification In Section 11.5, Indexed Database API, on page 229.
However, Web SQL Storage has been In use on the IOS and Android
devices for a while, and It's likely to stay. This specification could be
extremely useful to you if you're developing applications in that space.

Report erratum

Chapter 10

Playing Nicely with Other APIs
Many interesting APIs that started out as part of the HTML5 specifi-
cation were eventually spun off into their own projects. Others have
become so associated with HTML5 that sometimes it's hard for devel-
opers (and even authors) to really tell the difference. In this chapter,
we'll talk about those APIs. We'll spend a little time working with the
HTML5 history API, and then we'll make pages on different servers talk
with Cross-document Messaging, Then we'll look at Web Sockets and
Geolocation, two very powerful APIs that can help you make even more
interactive applications.

We'll use the following APIs to build those applications:1

History
Manages the browser history. [C5, S4, IE8, F3, OlO.l IOS3.2, A2]

Cross-document Messaging
Sends messages between windows with content loaded on differ-
ent domains. [C5, S5, F4, IOS4.1, A2]

Web Sockets
Creates a stateful connection between a browser and a server. [C5,
S5, F4, IOS4.2]

Geolocation
Gets latitude and longitude from the client's browser. [C5, S5,
F3.5, 010.6, IOS3.2, A2]

1. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, JOS: iOS devices
with Mobile Safari, and A: Android Browser.

PRESERVING HISTORY M 197

^J~~Preserving History

The HTML5 specification introduces an API to manage the browser his-
tory.2 In Creating an Accessible Updatable Region, on page 104, we built
a prototype for AwesomeCo's new home page that switched out the
main content when we clicked one of the navigation tabs. One drawback
with the approach we used is that there's no support for the browser's
Back button. We can fix that with some hacks, but we will eventually
be able to solve it for good with the History API.

We can detect support for this API like this:

Down! oad html5history/javascripts/application.js

function s u p p o r t s H i s t o r y O {
return ! ! (w i n d o w . h i s t o r y && w i n d o w . h i s t o r y . p u s h S t a t e) ;

}

We use this method whenever we need to work with the History objects.

Storing the Current State
When a visitor brings up a new web page, the browser adds that page
to its history. When a user brings up a new tab, we need to add the new
tab to the history ourselves, like this:
Down! oad html5history/javascripts/application.js

Une l $("nav ul ") . cl i c k(function (e v e n t) {
t a r g e t = $ (e v e n t . t a r g e t) ;
i f (t a r g e t . i s (" a ")) {

e v e n t . p r e v e n t D e f a u l t () ;
5 if ($ (t a r g e t . a t t r (" h r e f ")) .hasCl ass (" h i d d e n ")) {

i f (s u p p o r t s H i s t o r y ()) {
I- var t a b = $ (t a r g e t) . a t t r (" h r e f ") ;
I- var s t a t e O b j e c t = { t a b : t a b } ;

! • w i n d o w . h i s t o r y . p u s h S t a t e (s t a t e O b j e c t , t a b) ;
} ;

$(" .visible") . r e m o v e d ass (" v i si b 7 e ") . addCl as s("hidden") . h i d e () ;
$ (t a r g e t . a t t r ("href")) . r e m o v e d ass ("hidden") . a d d C l a s s ("visible") . show() ;

is } ;
} ;

}) ;

}) ;

2. http://www.w3. org/TR/html5/history. html

Report erratum

PRESERVING HISTORY M 198

We snag the ID of the element that's visible, and then we add a history
state to the browser. The first parameter of the pushstateO method is an
object that we'll be able to interact with later. We'll use this to store the
ID of the tab we want to display when our user navigates back to this
point. For example, when the user clicks the Services tab, we'll store
#services in the state object.

The second parameter is a title that we can use to identify the state in
our history. It has nothing to do with the title element of the page; it's
just a way to identify the entry in the browser's history. We'll use the ID
of the tab again.

Retrieving the Previous State
Although this adds a history state, we still have to write the code to
handle the history state change. When the user clicks the Back button,
the window.onpopstateO event gets fired. We use this hook to display the
tab we stored in the state object.

Down! oad html5history/javascripts/application.js

i f (s u p p o r t s H i s t o r y O) {
w i n d o w . o n p o p s t a t e = function (e v e n t) {

i f (e v e n t . s t a t e) {
var t a b = (e v e n t . s t a t e [" t a b "]) ;
$(". visible")

. r e m o v e d ass{"visible")

. a d d C l a s s ("hidden")

. h i d e O ;
$ (t a b)

. r e m o v e d a s s (" h i d d e n ")

. a d d C l a s s (" v i s i b 7 e ")

. show() ;

}
} ;

We fetch the name of the tab and then use jQuery to locate the element
to hide by its ID. The code that hides and shows the tabs is repeated
here from the original code. We should refactor this to remove the
duplication.

Defaulting
When we first bring up our page, our history state is going to be null,
so we'll need to set it ourselves. We can do that right above where we
defined our window.onpopstateO method.

Report erratum

PRESERVING HISTORY M 199

Down! oad html5history/javascripts/application.js

i f (s u p p o r t s H i s t o r y O) {
w i n d o w . h i s t o r y . p u s h S t a t e C { t a b : "#we7come"}, '^welcome');
w i n d o w . o n p o p s t a t e = function (e v e n t) {

i f (e v e n t . s t a t e) {
var t a b = (e v e n t . s t a t e [" t a b "]) ;
$(". visible")

. r e m o v e d ass("visible")

. a d d C l a s s ("hidden")

. h i d e O ;
$ (t a b)

. r e m o v e d a s s (" h i d d e n ")

. a d d d a s s (" v i s i b 7 e ")

. show() ;

}
} ;

} ;

Now, when we bring up the page, we can cycle through our tabs using
the browser history.3

Falling Back
This works in Firefox 4 and Safari 4, as well as in Chrome 5, but it
doesn't work in Internet Explorer. Solutions like the jQuery Address
plug-in4 provide the same functionality, but we won't go into imple-
menting that as a fallback solution because it's less of a fallback and
more of a complete replacement with a lot of additional features. Keep
an eye on browser support for history manipulation, though, because
you'll be able to easily provide much more user-friendly applications
when you can use this API in every browser.

3. You'll want to constantly close your browser and clear your history when testing this.
It can be quite painful at times.
4. http://www.asual.com/jquery/address/

Report erratum

TALKING ACROSS DOMAINS M 200

Talking Across Domains

Client-side web applications have always been restricted from talking
directly to scripts on other domains, a restriction designed to protect
users.5 There are numerous clever ways around this restriction, includ-
ing the use of server-side proxies and clever URL hacks. But now there's
a better way.

The HTML5 specification introduced Cross-document Messaging, an API
that makes it possible for scripts hosted on different domains to pass
messages back and forth. For example, we can have a form on http://
support.awesomecompany.com post content to another window or ¡frame
whose content is hosted on http://www.awesomecompany.com. It turns
out that for our current project, we need to do just that.

AwesomeCo's new support site will have a contact form, and the sup-
port manager wants to list all the support contacts and their email
addresses next to the contact form. The support contacts will eventu-
ally come from a content management system on another server, so we
can embed the contact list alongside the form using an ¡frame. The catch
is that the support manager would love it if we could let users click a
name from the contact list and have the email automatically added to
our form.

We can do this quite easily, but you'll need to use web servers to prop-
erly test everything on your own setup. The examples we're working on
here don't work in every browser unless we use a server. See the sidebar
on the following page for more on this.

The Contact List
We'll create the contact list first. Our basic markup will look like this:

Down! oad html5xdomain/contactlist/public/index.html

<ul id="contacts">

<h2>Sales</h2>
<p class="name">James N o r r i s</p>
<p class="email " > j . n o r r i s@awesomeco.com</p>

5. This is known as the Same Origin Policy and is explained more at
https://developer.mozilla.org/en/Same_origin_policy_tor_JavaScript.

Report erratum

TALKING ACROSS DOMAINS M 201

I f you d o n ' t w a n t to go through the t rouble of conf igur ing
A p a c h e instances or setting up your own servers, you c a n use
the simple Ruby-based servers inc luded in the book's example
c o d e files. For instructions on get t ing Ruby working on your sys-
t em, see the file RUBY_README.txt within the book 's source c o d e
files.

To start t he servers, first go into the html5xdomain/contactlist a n d
run the server.rb file like this:

ruby s e r v e r . r b

I t will start on port 4567. You c a n then do the same for the
server.rb in html5xdomain/supportpage, wh ich will start on port
3000. You c a n edi t the port for e a c h of these by edi t ing the
server.rb file.

<h2>Opera t ions</h2>
<p class="name">Tony Raymond</p>
<p class="email "> t . raymond@awesomeco. com</p>

<h2>Accounts Payable</h2>
<p class="name ">C la rk Greenwood</p>
<p class="email">c .greenwood@awesomeco. com</p>

<h2>Accounts Rece ivab le</h2>
<p class="name ">Herber t Whi tmore</p>
<p class="email">h.whitmore@awesomeco.com</p>

</l i>
< / u l >

On that page, we'll also load both the jQuery library and our own cus-
tom application.js file and a simple style sheet. We'll place this in our
head section:

Down! oad html5xdomain/contactlist/public/index.html

< s c r i p t t y p e = " t e x t /javascript"
c h a r s e t = "utf-8"
src="http://ajax.googleapis.com/ajax/1ibs/jquery/1.4.2/jquery.min.js">

</script>

Report erratum

TALKING ACROSS DOMAINS M 202

< s c r i p t t y p e = " t e x t / j a v a s c r i p t "
src="javascripts/application.js">

</script>
<link rel="stylesheet" href="style.css" type="text/css" media="screen">

The style sheet for the contact list looks like this:

Down! oad html5xdomain/contactlist/public/style.css

Ul {
l i s t - s t y l e : none;

}

u l h2 , u l p { m a r g i n : 0 ; }
u l l i { m a r g i n - b o t t o m : 2 0 p x ; }

It's just a couple of small tweaks to make the list look a little cleaner.

Posting the Message
When a user clicks an entry in our contact list, we'll grab the email
from the list item and post a message back to the parent window. The
postMessage() method takes two parameters: the message itself and the
target window's origin. Here's how the entire event handler looks:

Down! oad html5xdomam/contactlist/public/javascripts/application.js

$ (f u n c t i o n () {
$("^contacts li").click(function(event){

v a r ema i l = ($ (t h i s) . f i n d (" . e m a i 7 ") . h t m l ()) ;
v a r o r i g i n = "http://192.168.1.244:3000/index.html";

w i n d o w . p a r e n t . p o s t M e s s a g e (e m a i l , o r i g i n) ;

}) ;

You'll need to change the origin if you're following along, since it has to
match the URL of the parent window.6

Now we need to implement the page that will hold this frame and receive
its messages.

The Support Site
The support site's structure is going to look very similar, but to keep
things separate, we should work in a different folder, especially since
this site will need to be placed on a different web server. We'll need

6. That's not entirely true. You can use just the domain or even a wildcard. But our
fallback solution requires the complete URL, and it's also good security.

Report erratum

TALKING ACROSS DOMAINS M 203

to make sure you include links to a style sheet, jQuery, and a new
application.js file.

Our support page needs a contact form and an ¡frame that points to our
contact list. We'll do something like this:

Down! oad html5xdomain/supportpage/public/index.html

<div id="form">
<form id="supportform">

<fieldset>

<label for="to">To</label >
<input type="email" name="to" id="to">

< l i >

<label for="from">From</label>
<input type="text" name="from" id="from">

< l i >

<1abel for="message">Message</label>
<textarea name="message" id="message"x/textarea>

< / l i >

<input type="submit" value="Send!">

</fieldset>
</form>

< / d i v >

<div id="contacts">
<i frame src="http://192.168.1.244:4567/index.html"x/i frame>

< / d i v >

We'll style it up with this CSS that we add to style.ess:
Down! oad html5xdomain/supportpage/public/style.css

#fo rm{
w i d t h : 400px;
f l o a t : l e f t ;

}
c o n t a c t s {

w i d t h : 200px;
f l o a t : l e f t ;

}
#con tac t s i f r a m e {

bo rde r : none;
h e i g h t : 400px;

}

Report erratum

TALKING ACROSS DOMAINS M 2 0 4

To

h.whitmore@awesomeco.com

From

Message

Sales
James Norris
j .norris @ awcsomeco .com

Operat ions
Tony Raymond
i.raymond@awesomeeo.com

Accounts Payable
Clark Greenwood
c.grcenwood@awesomeco.com

Accounts Receivable
Herbert Whitmorc
h .whi tmore @ awcsomeco .com

Figure 10.1: Our completed support site

f i e l d s e t {
w i d t h : 4 0 0 p x ;
b o r d e r : none ;

f i e l d s e t l e g e n d {
b a c k g r o u n d - c o l o r : #ddd;
p a d d i n g : 0 64px 0 2 p x ;

}

f i e l d s e t > o l {
l i s t - s t y l e : none ;
p a d d i n g : 0 ;
m a r g i n : 2 p x ;

}

f i e l d s e t > o l > l i {
m a r g i n : 0 0 9px 0;
p a d d i n g : 0 ;

}

/ * Make i n p u t s g o t o t h e i r own l i n e * /
f i e l d s e t i n p u t , f i e l d s e t t e x t a r e a {

d i s p l a y : b l o c k ;
w i d t h : 380px ;

}
f i e l d s e t i n p u t [t y p e = s u b m i t] {

w i d t h : 390px ;

f i e l d s e t t e x t a r e a {
h e i g h t : lOOpx ;

}

Report erratum

TALKING ACROSS DOMAINS M 205

This places the form and the ¡frame side by side and modifies the form
so it looks like Figure 10.1, on the previous page.

Receiving the Messages
The onmessage event fires whenever the current window receives a mes-
sage. The message comes back as a property of the event. We'll register
this event using jQuery's bind() method so it works the same in all
browsers.

Down! oad html5xdomain/supportpage/public/javascripts/application.js

$ (function (){
$ (w i n d o w) . b i n d ("message",function (e v e n t) {

$ (" # t o ") .val (e v e n t , o r i g i n a l E v e n t , d a t a) ;
}) ;

}) ;

jQuery's bind() method wraps the event and doesn't expose every prop-
erty. We can get what we need by accessing it through the event's origi-
nalEvent property instead.

If you open this in Firefox, Chrome, Safari, or Internet Explorer 8, you'll
see that it works extremely well. Now let's make it work for IE 6 and 7.

Falling Back
To support IE 6 and 7, we'll use the jQuery Postback plug-in, which
emulates cross-domain messaging. We'll use jQuery's getScript() method
to pull that library in only when we need it. To do that, we'll just detect
whether the postMessage() method exists.

First, we'll modify our contact list.

Down! oad html5xdomam/contactlist/public/javascripts/application.js

i f (w i n d o w . p o s t M e s s a g e) {
w i n d o w . p a r e n t . p o s t M e s s a g e (e m a i l , o r i g i n) ;

} e l s e {
$. g e t S c r i p t ("javascripts/jquery.postmessage.js" , f u n c t i o n O {

$. p o s t M e s s a g e (e m a i l , o r i g i n , w i n d o w . p a r e n t) ;

}) ;
}

The jQuery Postmessage plug-in adds a postMessage() method, which
works almost exactly like the standard postMessage() method.

Report erratum

TALKING ACROSS DOMAINS M 206

Now, let's turn our attention to the support site. We'll use the same
approach here, pulling in the library and calling the newly added re-
ceiveMessage() method.

Down! oad html5xdomain/supportpage/public/javascripts/application.js

i f (w indow .pos tMessage) {
$ (w i n d o w) . b i nd ("message",function (even t) {

$ (" # t o ") .val (e v e n t . o r i g i n a l E v e n t . d a t a) ;
}) ;

}else{
$.ge tSc r i p t ("javascripts/jquery.postmessage.js", functionO{

$. r e c e i v e M e s s a g e (
function (e v e n t) {

$ (" # t o ") . v a l (e v e n t . d a t a) ;
}) ;

}) ;
}

That's it! We can now talk across windows in a whole bunch of
browsers. This is just the beginning, though; you can expand this tech-
nique to do two-way communication, too. Any window can be a sender
or a receiver, so take a look at the specification and see what you can
build!

Report erratum

CHATTING WITH WEB SOCKETS M 207

H r h ^ n g with Web Sockets

Real-time interaction has been something web developers have been
trying to do for many years, but most of the implementations have
involved using JavaScript to periodically hit the remote server to check
for changes. HTTP is a stateless protocol, so a web browser makes a
connection to a server, gets a response, and disconnects. Doing any
kind of real-time work over a stateless protocol can be quite rough. The
HTML5 specification introduced Web Sockets, which let the browser
make a stateful connection to a remote server.7 We can use Web Sock-
ets to build all kinds of great applications. One of the best ways to get
a feel for how Web Sockets work is to write a chat client, which, coinci-
dentally, AwesomeCo wants for its support site.

AwesomeCo wants to create a simple web-based chat interface on its
support site that will let members of the support staff communicate
internally, because the support staff is located in different cities. We'll
use Web Sockets to implement the web interface for the chat server.
Users can connect and send a message to the server. Every connected
user will see the message. Our visitors can assign themselves a nick-
name by sending a message such as "/nick brian," mimicking the IRC
chat protocol. We won't be writing the actual server for this, because
that has thankfully already been written by another developer.8

The Chat Interface
We're looking to build a very simple chat interface that looks like Fig-
ure 10.2, on the next page, with a form to change the user's nickname,
a large area where the messages will appear, and, finally, a form to post
a message to the chat.

In a new HTML5 page, we'll add the markup for the chat interface,
which consists of two forms and a div that will contain the chat
messages.

7. Web Sockets have been spun off into their own specification, which you can find at
http://www.w3.org/TR/websockets/.
8. Take a look at Section 25, Servers, on page 213 for more about the servers.

Report erratum

CHATTING WITH WEB SOCKETS M 208

AwesomeCo Help!
Nickname CjisFusër ' Change^

connecting....
Connection closed

Message Spnd)

Figure 10.2: Our chat interface

D o w n ! o a d h tm l5_websocket s/pub l ic/ index .h tml

<div id="chat_wrapper">
<h2>AwesomeCo Help!</h2>
<form id="nick_form" action="#" method="post" accept-charset="utf-8">

<p>
<label>Ni ckname

<input id="nickname" type="text" value="Guestl)ser"/>
</label>
<input type="submit" value="Change">

</p>
</form>

<div id="chat">connect ing....</div>

<form id="chat_form" action="#" method="post" accept-charset="utf-8">
<p>

<label>Message
<input id="message" type="text" />

</label>
<input type="submit" value="Send">

</p>
</form>

< / d i v >

Report erratum

CHATTING WITH WEB SOCKETS M 209

We'll also need to add links to a style sheet and a JavaScript file that
will contain our code to communicate with our Web Sockets server.

Down! oad html5_websockets/public/index.html

<script src='chat.js' type='text/javascript'></script>
<link rel="stylesheet" href="style.css" media="screen">

Our style sheet contains these style definitions:

Down! oad htm!5_websockets/public/style.css

Une l # c h a t _ w r a p p e r {
w i d t h : 320px ;
h e i g h t : 4 4 0 p x ;
b a c k g r o u n d - c o l o r : #ddd;

5 p a d d i n g : l O p x ;
}

c h a t _ w r a p p e r h 2 {
m a r g i n : 0 ;

}

c h a t {
w i d t h : 300px ;
h e i g h t : 300px ;
o v e r f l o w : a u t o ;

15 b a c k g r o u n d - c o l o r : #fff;
p a d d i n g : l O p x ;

}

On line 14, we set the overflow property on the chat message area so
that its height is fixed and any text that doesn't fit should be hidden,
viewable with scrollbars.

With our interface in place, we can get to work on the JavaScript that
will make it talk with our chat server.

Talking to the Server
No matter what Web Sockets server we're working with, we'll use the
same pattern over and over. We'll make a connection to the server, and
then we'll listen for events from the server and respond appropriately.

Event Description
onopen() Fires when the connection with the server has been

established
onmessageO Fires when the connection with the server sends a

message
oncloseO Fires when the connection with the server has been

lost or closed

Report erratum

CHATTING WITH WEB SOCKETS M 2 1 0

In our chat.js file, we first need to connect to our Web Sockets server,
like this:

Down! oad html5_websockets/public/chat.js

v a r webSocke t = new W e b S o c k e t (' w s : / / l o c a l h o s t : 9 3 9 4 / ') ;

When we connect to the server, we should let the user know. We define
the onopen() method like this:

Down! oad html5_websockets/public/chat.js

w e b S o c k e t . o n o p e n = f u n c t i o n (e v e n t) {
$ (' # c h a t ') . a p p e n d (' < b r > C o n n e c t e d t o t h e s e r v e r ') ;

} ;

When the browser opens the connection to the server, we put a message
in the chat window. Next, we need to display the messages sent to the
chat server. We do that by defining the onmessage() method like this:

Down! oad html5_websockets/public/chat.js

webSocke t . onmessage = f u n c t i o n (e v e n t) {
$ (' # c h a t ') . a p p e n d (" < b r > " + e v e n t . d a t a) ;
$ (' # c h a t ') . a n i m a t e ({ s c r o l l T o p : $ (' # c h a t ') . h e i g h t O }) ;

} ;

The message comes back to us via the event object's data property. We
just add it to our chat window. We'll prepend a break so each response
falls on its own line, but you could mark this up any way you wanted.

Next we'll handle disconnections. The onclose() method fires whenever
the connection is closed.
Down! oad html5_websockets/public/chat.js

w e b S o c k e t . o n c l o s e = f u n c t i o n (e v e n t) {
$ (" # c h a t ") . a p p e n d (' < b r > C o n n e c t i o n c l o s e d ') ;

} ;

Now we just need to hook up the text area for the chat form so we can
send our messages to the chat server.

Down! oad html5_websockets/public/chat.js

$ (f u n c t i o n () {
$("form#chat_form") . submi t (f u n c t i o n (e) {

e . p r e v e n t D e f a u l t () ;
v a r t e x t f i e l d = $("#message") ;
w e b S o c k e t . s e n d (t e x t f i e l d . v a l ()) ;
t e x t f i e l d . v a l (" ") ;

}) ;

Report erratum

CHATTING WITH WEB SOCKETS M 211

We hook into the form submit event, grab the value of the form field,
and send it to the chat server using the send() method.

We implement the nickname-changing feature the same way, except we
prefix the message we're sending with "/nick." The chat server will see
that and change the user's name.
Down! oad html5_websockets/public/chat.js

$("form#nick_form") . submi t (f u n c t i o n (e) {
e . p r e v e n t D e f a u l t () ;
va r t e x t f i e l d = $("#m'c/cname") ;
webSocket .send(" /m'c /c " + t e x t f i e l d . v a l ()) ;

}) ;

That's all there is to it. Safari 5 and Chrome 5 users can immediately
participate in real-time chats using this client. Of course, we still need
to support browsers without native Web Sockets support. We'll do that
using Flash.

Falling Back
Browsers may not all have support for making socket connections, but
Adobe Flash has had it for quite some time. We can use Flash to act
as our socket communication layer, and thanks to the web-socket-js9

library, implementing a Flash fallback is a piece of cake.

We can download a copy of the plug-in10 and place it within our project.
We then need to include the three JavaScript files on our page:
Down! oad html5_websockets/public/index.html

<script type="text/javascript" src="websocket_js/swfobject.js"x/script>
<script type="text/javascript" src="websocket_js/FABridge.js"x/script>
<script type="text/javascript" src="websocket_js/web_socket.js"x/script>

<script src='chat.js' type='text/javascript'></script>
<link rel="stylesheet" href="style.css" media="screen">

</head>
<body>
<div id="chat_wrapper">

<h2>AwesomeCo Help!</h2>
<form id="nick_form" action="#" method="post" accept-charset="utf-8">

<p>
<label>Ni ckname

<input id="nickname" type="text" value="Guestl)ser"/>
</label>

9. http://github.com/gimite/web-socket-js/
10. http://github.com/gimite/web-socket-js/archives/master

Report erratum

CHATTING WITH WEB SOCKETS M 212

<input type="submit" value="Change">
</p>

</form>

<div id="chat ">connec t ing</div>

<form id="chat_form" action="#" method="post" accept-charset="utf-8">
<p>

<label>Message
<input id="message" type="text" />

</label>
<input type="submit" value="Send">

</p>
</form>

< / d i v >

</body>
</html>

The only change we need to make to our chat.js file Is to set a variable
that specifies the location of the WebSocketMain file.

Down! oad html5_websockets/public/chat.js

WEB_SOCKET_SWF_|_OCATION "websocket_js/WebSocketMain. swf" ;

With that In place, our chat application will work on all major browsers,
provided that the server hosting your chat server also serves a Flash
Socket Policy file.

Flash Socket Policy What?
For security purposes, Flash Player will only communicate via sock-
ets with servers that allow connections to Flash Player. Flash Player
attempts to retrieve a Flash Socket Policy file first on port 843 and then
on the same port your server uses. It will expect the server to return a
response like this:

<cross-domain-policy>
<allow-access-from domain="*" to-ports="*" />

</cross-domain-policy>

This Is a very generic policy file that allows everyone to connect to this
service. You'd want to specify the policy to be more restrictive if you
were working with more sensitive data. Just remember that you have
to serve this file from the same server that's serving your Web Sockets
server, on either the same port or the port 843.

The example code for this section contains a simple Flash Socket Policy
server written in Ruby that you can use for testing. See Section 25,

Report erratum

CHATTING WITH WEB SOCKETS M 213

Servers, for more on how to set that up on your own environment for
testing.

Chat servers are just the beginning. With Web Sockets, we now have a
robust and simple way to push data to our visitors' browsers.

Servers
The book's source code distribution contains a version of the Web Sock-
ets server we're targeting. It's written in Ruby, so you'll need a Ruby
interpreter. For instructions on getting Ruby working on your system,
see the file RUBY_README.txt within the book's source code files.

You can start it up by navigating to its containing folder and typing
this:

r u b y s e r v e r . r b

In addition to the chat server, there are two other servers you may
want to use while testing the examples in this chapter. The first server,
client.rb, serves the chat interface and JavaScript files. The other server,
flashpolicyserver, serves a Flash Policy file that our Flash-based Web
Sockets fallback code will need to contact in order to connect to the
actual chat server. Flash Player uses these policy files to determine
whether it is allowed to talk to a remote domain.

If you're running on a Mac or a Linux-based operating system, you can
start all these servers at once with this:
r a k e s t a r t

from the html5_websockets folder.

Report erratum

FINDING YOURSELF: GEOLOCATION - ^ 2 1 4

Finding Yourself: Geolocation

Geolocation is a technique for discovering where people are, based
on their computer's location. Of course, "computer" really can mean
smart phone, tablet, or other portable device as well as a desktop com-
puter. Geolocation determines a person's whereabouts by looking at
their computer's IP address, MAC address, Wi-Fi hotspot location, or
even GPS coordinates if available. Although not strictly part of HTML5
the specification, Geolocation is often associated with HTML5 because
it's coming on the scene at the same time. Unlike Web Storage, Geolo-
cation was never part of the HTML5 specification. Like Web Storage, it's
a very useful technology that is already implemented in Firefox, Safari,
and Chrome. Let's see how we can use it.

Locating Awesomeness
We've been asked to create a contact page for the AwesomeCo website,
and the CIO has asked whether we could show people's location on a
map along with the various AwesomeCo support centers. He'd love to
see a prototype, so we'll get one up and running quickly.

We'll use Google's Static Map API for this because it doesn't require an
API key and we're just going to generate a very simple map.

AwesomeCo service centers are located in Portland, Oregon; Chicago,
Illinois; and Providence, Rhode Island. Google's Static Map API makes
it really easy to plot these points on a map. All we have to do is construct
an img tag and pass the addresses in the URL, like this:

Down! oad html5geo/index.html

<img i d = " m a p " a l t = " M a p of AwesomeCo Service Center locations"
s r c = " h t t p : / / m a p s . g o o g l e . c o m / m a p s / a p i / s t a t i cmap?
& a m p ; s i ze=900x300
& a m p ; s e n s o r = f a l s e
&maptype=roadmap
& a m p ; m a r k e r s = c o l o r : g r e e n | l a b e l : A | 1 + D a v o l + s q u a r e , + P r o v i d e n c e , + R I + 0 2 9 0 6 - 3 8 1 0
& a m p ; m a r k e r s = c o l o r : g r e e n | l a b e l : B | 2 2 + S o u t h w e s t + 3 r d + A v e n u e , P o r t l a n d , + O R
& a m p ; m a r k e r s = c o l o r : g r e e n | l a b e l : C | 7 7 + W e s t + W a c k e r + D r i v e + C h i c a g o + I L " >

We define the size of the image, and then we tell the Maps API that we
did not use any sensor device, such as a GPS or client-side geolocation
with the information we're passing to this map. Then we define each

Report erratum

FINDING YOURSELF: GEOLOCATION - ^ 2 1 5

marker on the map by giving it a label and the address. We could use a
comma-separated pair of coordinates for these markers if we had them,
but this is easier for our demonstration.

How to Be Found
We need to plot our visitor's current location on this map, and we'll do
that by providing another marker on the map by using our latitude and
longitude for a new marker. We can ask the browser to grab our visitor's
latitude and longitude, like this:

Down! oad html5geo/index.html

n a v i g a t o r . g e o l o c a t i o n . g e t C u r r e n t P o s i t i o n (f u n c t i o n (p o s i t i o n) {
s h o w L o c a t i o n (p o s i t i o n . c o o r d s . 1 a t i t u d e , p o s i t i o n . c o o r d s . 1 o n g i t u d e) ;

}) ;

This method prompts the user to provide us with their coordinates.
If the visitor allows us to use their location information, we call the
showLocation() method.

The showLocation() method takes the latitude and longitude and recon-
structs the image, replacing the existing image source with the new
one. Here's how we implement that method:

Down! oad html5geo/index.html

Une l v a r s h o w L o c a t i on = f u n c t i o n (l a t , l n g) {
2 v a r f r a g m e n t = "&markers=color:redlcolor:redllabel :YI" + l a t + ", " + l n g ;
3 v a r image = $ (" # m a p ") ;
4 v a r s o u r c e = i m a g e . a t t r (" s r c ") + f r a g m e n t ;
5 s o u r c e = s o u r c e . r e p l a c e ("sensor=false" , "sensor=true") ;
6 i m a g e . a t t r (" s r c " , s o u r c e) ;

7 } ;

Rather than duplicate the entire image source code, we'll append our
location's latitude and longitude to the existing image's source.

Before we assign the modified image source back to the document, we
need to change the sensor parameter from false to true. We'll do that on
line 5 with the replace() method.

When we bring it up in our browser, we'll see our location, marked
with a "Y" among the other locations. To see an example, take a look at
Figure 10.3, on the next page.

Report erratum

FINDING YOURSELF: GEOLOCATION - ^ 2 1 6

1 fci'
i f ; Vance I J1/?'

• i C a l g a r /

Seams p̂ojcan̂ -
ijngton

Oregon

' Salt Leake

Sä*.

Wyoming

^ ^ 1 V
Winnipeg!-̂

qO

aSS California KJWERED ev O
¡.as , /egsb Alb'. ^üö q Lê

Norh
Dakofa

Soin i
Dakota

Iowa Nebraska 03ms. ,

ujhqukt

Linea:' kânSBâ
Çtty

PfiCl'j I o 1
üiiviianai

Ohio

Ka
Wich i î -G

Uli n o i i I n d i a n a phiie.flelpBis

£ West
Missouri Virginia

Kentucky Virginia
Tennesse« Norh

Arkansas Map data ©201 (fiPFlBi'Hrropa T f̂l

Figure 10.3: Our current location is marked on the map with a Y.

Falling Back
As it stands, visitors to the page will still see the map with the locations
of the AwesomeCo support centers, but we will get a JavaScript error
if we try to load our page. We need to detect support for geolocation
before we attempt to get the visitor's location, like this:

D o w n ! o a d h t m l 5 g e o / i n d e x . h t m l

i f (n a v i g a t o r . g e o l o c a t i o n) {
n a v i g a t o r . g e o l o c a t i o n . g e t C u r r e n t P o s i t i o n (f u n c t i o n (p o s i t i o n) {

s h o w L o c a t i o n (p o s i t i o n . c o o r d s . 1 a t i t u d e , p o s i t i o n . c o o r d s . 1 o n g i t u d e) ;
}) ;

} e l s e {

Google's Ajax API11 does location lookup, so it's a great fallback solu-
tion. You will need to obtain an API key to use this on your site when
you go live, but you don't need one to try this locally.12

11. http://code.google.com/apis/ajax/documentation/#ClientLocation
12. You will need a key If you host v ia http://localhost/ too. You can get one at
http://code.googie.com/apis/ajaxsearch/signup.htmi.

Report erratum

FINDING YOURSELF: GEOLOCATION - ^ 2 1 7

Our fallback looks like this:

Down! oad html5geo/index.html

Une i v a r key = "your_key" ;

v a r s c r i p t = "http://www.google.com/jsapi?key=" + key ;
$. g e t S c r i p t (s c r i p t , f u n c t i o n O {

i f (C t y p e o f g o o g l e = = ' o b j e c t ') & &
5 g o o g l e . l o a d e r && g o o g l e . l o a d e r . C l i e n t L o c a t i o n) {

showLoca t i o n (g o o g l e . 1 o a d e r . C I i e n t L o c a t i o n . 1 a t i t u d e ,
g o o g l e . 1 o a d e r . C I i e n t L o c a t i o n . 1 o n g i t u d e) ;

} e l s e {
v a r message = $("<p>Couldn't find your address.</p>");

io message . i n s e r t A f t e r C "#map") ;

} ;
}) ;

We're using jQuery's getScript() method to load the Google Ajax API.
We then use Google's ClientLocation() method on line 5 to get a visitor's
location and invoke our showLocation() method to plot the location on
our map.

Unfortunately, Google can't geolocate every IP address out there, so we
may still not be able to plot the user on our map; therefore, we account
for that by placing a message underneath our image on line 9. Our
fallback solution isn't foolproof, but it does give us a greater chance of
locating our visitor.

Without a reliable method of getting coordinates from the client, we'll
just need to provide a way for the user to provide us with an address,
but that's an exercise I'll leave up to you.

The Future

The techniques we talked about in this chapter, although not all part of
HTML5 proper, represent the future of web development. We'll be push-
ing many more things to the client side. Better history management will
make Ajax and client-side applications much more intuitive. Web Sock-
ets can replace periodic polling of remote services for the display of
real-time data. Cross-document Messaging lets us merge web applica-
tions that usually would never be able to interact, and Geolocation will
eventually let us build better location-aware web applications, which
become more and more relevant every day with the growing mobile
computing market.

Explore these APIs and keep an eye on their adoption. You may soon
find these to be invaluable tools in your web development toolbox.

Report erratum

Chapter 11

Where to Gn Next
Most of this book focuses on things you can do right now, but there
are some other things you will be able to start using very soon that will
make standards-based web development even more interesting, from
3D canvas support with WebGL to new storage APIs, CSS3 transitions,
and native drag-and-drop support. This chapter discusses some of the
things on the horizon, so you can get an idea of what to expect. We'll
talk about things that you may be able to use in at least one browser
but don't have good enough fallback solutions or are too far undefined
to start working with right now:1

CSS3 transitions
Animations on interaction. [C3, S3.2, F4, 010.5, IOS3.2, A2]

Web Workers
Background processing for JavaScript. [C3, S4, F3.5, 010.6]

3D canvas with WebGL.2

Creating 3D objects on the canvas. [C5, F4]

IndexedDB
Advanced client-side key/value database storage similar to NoSQL
solutions. [F4]

Drag and Drop
API for drag-and-drop interaction. [C3, S4, F3.5, IE6, A2]

1. In the descriptions that follow, browser support is shown in square brackets using
a shorthand code and the minimum supported version number. The codes used are C:
Google Chrome, F: Firefox, IE: Internet Explorer, O: Opera, S: Safari, JOS: iOS devices
with Mobile Safari, and A: Android Browser.

C S S 3 TRANSITIONS - ^ 2 1 9

Form validation
Client-side validation of inputs. [C5, S5, 10.6]

We'll start by looking at CSS3 transitions and how we can use them in
WebKit browsers.

11.1 CSS3 Transitions

Interaction invitations are important to good user experience design,
and CSS has supported the :hover pseudoclass for some time so that
we can do some basic interaction cues on our elements. Here's some
CSS markup that styles a link so it looks like a button:

Down! oad css3transitions/style.css

a . b u t t o n {
p a d d i n g : l O p x ;
b o r d e r : l p x s o l i d #000;
t e x t - d e c o r a t i o n : none ;

}
a . b u t t o n : h o v e r {

b a c k g r o u n d - c o l o r : #bbb;
c o l o r : # f f f

}

When we place our cursor over the button, the background changes
from white to gray, and the text changes from black to white. It's an
instant transition. CSS3 transitions3 let us do quite a bit more, includ-
ing simple animations that were possible only with JavaScript. For
example, we can make this transition into a cross-fade by adding the
following highlighted code to the style definition:

Down! oad css3transitions/style.css

Une l a . b u t t o n {
p a d d i n g : l O p x ;
b o r d e r : l p x s o l i d #000;
t e x t - d e c o r a t i o n : none ;

• - w e b k i t - t r a n s i t i o n - p r o p e r t y : b a c k g r o u n d - c o l o r , c o l o r ;
- w e b k i t - t r a n s i t i o n - d u r a t i o n : I s ;
- w e b k i t - t r a n s i t i o n - t i m i n g - f u n c t i o n : e a s e - o u t ;

}

3. http://dev.w3.org/csswg/css3-transitions/

Report erratum

C S S 3 TRANSITIONS M 220

a . b u t t o n : h o v e r {
b a c k g r o u n d - c o l o r : #bbb;
c o l o r : # f f f

On line 5, we specify what properties get the transition applied. In this
case, we're changing the background and foreground colors. We specify
the duration of the animation on line 6, and we specify the transition's
timing function on line 7.

Timing Functions
The transition-timing-function property describes how transitions happen
over time in relation to the duration you've set. We specify this timing
function using a cubic Bezier curve, which is defined by four control
points on a graph. Each point has an X value and a Y value, from 0
to 1. The first and last control points are always set to (0.0,0.0) and
(1.0,1.0), and the two middle points determine the shape of the curve.

A linear curve has its control points set to the two end points, which
creates a straight line at a 45-degree angle. The four points for a linear
curve are ((0.0, 0.0), (0.0,0.0), (1.0, 1.0), (1.0, 1.0)), and it looks like
this:

A more complex curve, with points ((0.0, 0.0), (0.42,0.0), (1.0, 1.0), (1.0,
1.0)), called an ease-in curve, looks like this:

This time, only the second point has changed, which is what causes the
bottom-left part of the line to curve.

Report erratum

WEB WORKERS ^ 2 2 1

Even more complex is the ease-in-out curve, which has a curve at the
bottom and at the top, like this:

1 . 0)) .

We can specify these points right in the CSS property, or we can use
some predefined ones like we did in our example.

Our choices are default, ease-in, ease-out, ease-in-out, ease-out-in, and
cubic-bezier, in which you set the points of the curve yourself.

If you want the rate to be constant, you'd use linear. If you want the
animation to start slow and speed up, you'd use ease-in. If you want
to learn a little more about making these curves, there's a great pub-
lic domain script4 that shows you examples and helps you see the
coordinates.

Play around with transitions, but keep in mind that you want your
interface to be usable first and pretty second. Don't build transitions
that frustrate the user, such as things that flicker or take too long to
animate. You may also want to investigate CSS3 animations,5 another
method for changing CSS properties over time.

11.2 Web Workers

Web Workers6 are not part of the HTML5 specification, but you may
find them useful if you need to do some background processing on the
client side, so they're worth mentioning.

We use JavaScript for all of our client-side coding, but JavaScript is
a single-threaded language—only one thing can happen at a time. If

4. http://www.netzgesta.de/dev/cubic-bezier-timing-function.html
5. http://www.w3.org/TR/css3-animations/
6. http://www.whatwg.org/specs/web-workers/current-work/

Report erratum

WEB WORKERS 222

a task takes a long time, we force the user to wait until the task has
finished. Web Workers solve this problem by creating a simple way to
write concurrent programs.

If we have a script called worker.js that does some image processing, we
can invoke it like this:

Down! oad webworkers/application.js

var w o r k e r = new WorkerC"wor /ce r . j s ") ;

Any JavaScript file can be launched as a worker, but in order for the
worker to be independent, your worker script can't access the DOM.
That means you can't manipulate elements directly.

Our main script can send messages to the worker script using postMes-
sage() like this:

Down! oad webworkers/application.js

$("#button").cli ckCfunction (e v e n t) {
$ C " # o u t p u t ") . h t m l (" s t a r t i n g . . . ") ;
w o r k e r . p o s t M e s s a g e (" s t a r t ") ;

}) ;

Our worker script can then send messages back to the main page, also
using the postmessage() method.

Down! oad webworkers/worker.js

onmessage = function (e v e n t) {
i f C e v e n t . d a t a === " s t a r t ") {

/ / t h i s l o o p c o u n t s . D o some th ing awesome i n s t e a d ,
for (var x = 1; x <= 100000; x + +) {

p o s t M e s s a g e (x) ;

}

We respond to those events by listening to the onmessage event in our
main script. Every time the worker posts back, this code will fire:

Down! oad webworkers/application.js

worke r .onmessage = function (e v e n t) {
$("#output").html(event.data);

}

This API works just like the API for cross-domain messaging, which
we talked about in Talking Across Domains, on page 200. There's no
support for Web Workers in Internet Explorer, so you'd need to rely on

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 223

Google Chrome Frame, but if you're looking to do some heavier non-
blocking client-side work, you'll want to look into this further.

11.3 Native Drag-and-Drop Support

Letting users drag and drop interface elements is something we've been
able to do with JavaScript libraries for quite a while, but the W3C
has adopted Microsoft's Drag and Drop implementation as part of the
HTML5 specification.7 It's supported by Firefox, Safari, Internet Ex-
plorer, and Chrome, but in actuality it's a mess.

The implementation at first appears to be straightforward; we designate
an element as "draggable," we then designate an element that watches
for a dropped object, and we execute some code when that happens.

In reality, it's not nearly that simple. To demonstrate, let's create a
simple drag-and-drop interface that lets us drag small images into a
drop area that will load the larger version.

Down! oad html5drag/index.html

<div id="images">
<i mg s rc="images/red_thumb.jpg"

d a t a - l a r g e = " images / red .jpg" a l t=" /A red flower">
<i mg s rc="images/purp1e_thumb.jpg"

data-~\arge="images/purple .jpg" a l t=" /A white and purple flower">
<i mg src="images/white_thumb.jpg"

data-~\arge="images/white.jpg" a l t=" /A white flower">

< / d i v >

<div id="preview">
<p>Drop images here</p>

< / d i v >

We're using custom data attributes here to hold the source of the larger
version of our photos.

7. http://dev.w3.Org/html5/spec/dnd.html#dnd

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 224

Drop images here

Figure 11.1: Our photo viewer

Next we'll add some basic styles to float the two columns:

Down! oad html5drag/style.css

#images img {
- w e b k i t - u s e r - d r a g

}

images {
f l o a t :
w i d t h :
marg i n

}

p r e v i ew{
f l o a t : l e f t ;
w i d t h : 500px;
b a c k g r o u n d - c o l o r : #ddd;

h e i g h t : 335px ;

}

. h o v e r {
b o r d e r : lOpx s o l i d #000;

b a c k g r o u n d - c o l o r : #bbb ¡ i m p o r t a n t ;

}

l e f t ;
240px ;

- r i g h t : l O p x ;

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 225

At this point, our Interface looks like the one In Figure 11.1, on the
previous page. Now let's add some events so we can drag the photos.

Drag-and-Drop Events
We'll need to work with several events related to dragging and dropping
elements.

Event Description
ondragstart Fires when the user starts dragging the object
ondragend Fires when the user stops dragging the object for any

reason
ondragenter Fires when a draggable element Is moved Into a drop

listener
ondragover Fires when the user drags an element over a drop

listener
ondreagleave Fires when the user drags an element out of drop

listener
ondrop Fires when the user drops an element Into a drop

listener successfully
ondrag Fires when the user drags an element anywhere; fires

constantly but can give X and Y coordinates of the
mouse cursor

That's a total of seven events just to handle dragging and dropping
elements, and some of the events have default behaviors. If we don't
override them, the whole thing fails.

First, we need to define all of our list items as draggable.

Down! oad html5drag/application.js

v a r c o n t a c t s = $ (' # i m a g e s i m g ') ;
c o n t a c t s . a t t r C ' d r a g g a b l e ' , ' t r u e ') ;

We're adding the draggable HTML5 attribute. We could do this in our
markup, but since we require JavaScript to do the interaction, we'll
apply this attribute with our script.

When we drag the image, we want to grab the address of the large Image
and store it. We'll bind to the ondragstart event, and to keep it simple
and cross-platform, we'll use jQuery's bind() method.8

8. Remember, we omit the on prefix for these events when we use that method.

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 226

Down! oad html5drag/application.js

Une l c o n t a c t s . b i n d (' d r a g s t a r t ' , f u n c t i o n (e v e n t) {
2 v a r d a t a = e v e n t . o r i g i n a l E v e n t . d a t a T r a n s f e r ;
3 v a r s r c = $ (t h i s) . a t t r (" d a t a - 7 a r g e ") ;
4 d a t a . s e t D a t a C " T e x t " , s r c) ;
5 r e t u r n t r u e ;

6 }) ;

The specification provides a datastorage mechanism that lets us specify
the type of data and the data itself, which is passed along as part of the
event. jQuery's bind() method wraps the event in its own object, so we
use the originalevent property on 2 to access the real event. We store the
URL to the image on the event by using the setData() method on line 4,
using Text as the data type.

Now that we can drag elements, let's talk about how we fire events when
the user drops the elements.

Dropping Elements
We want our "To" form field to act as our drop target, so we'll locate it
and bind the drop event.

Down! oad html5drag/application.js

Une l v a r t a r g e t = $ (' # p r e v i e w ') ;

t a r g e t . b i n d C ' d r o p ' , f u n c t i o n (e v e n t) {

v a r d a t a = e v e n t . o r i g i n a l E v e n t . d a t a T r a n s f e r ;
5 v a r s r c = (d a t a . g e t D a t a (' T e x t ')) ;

v a r img = $ (" < i m g x / i m g > ") . a t t r (" s r c " , s r c) ;
$ (t h i s) . h t m l (i m g) ;
i f (e v e n t . p r e v e n t D e f a u l t) e v e n t . p r e v e n t D e f a u l t () ;

io r e t u r n (f a l se) ;
}) ;

We retrieve the image address we passed with the event using the get-
Data () method on line 5, and we then create a new image element that
we push into our content region.

We need to cancel the default ondrop event so it won't fire when our
user drops the element onto the target. To do that, we need to use both
preventdefault() and return false. Internet Explorer needs return false, and
other browsers need preventDefault().

If we try to use this in Chrome or Safari right now, it won't work quite
right. At a minimum, we have to override the ondragover element. If we

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 2 2 7

don't, our ondrag event won't respond. So, we'll do that by using this
code:

Down! oad html5drag/application.js

t a r g e t . b i n d C ' d r a g o v e r ' , f u n c t i o n (e v e n t) {
i f (e v e n t . p r e v e n t D e f a u l t) e v e n t . p r e v e n t D e f a u l t () ;
r e t u r n f a l s e ;

We're just canceling out the default event again the same way we did
with the ondrop event. Let's do the same with the ondragend event too.

Down! oad html5drag/application.js

c o n t a c t s . b i n d C ' d r a g e n d ' , f u n c t i o n (e v e n t) {
i f (e v e n t . p r e v e n t D e f a u l t) e v e n t . p r e v e n t D e f a u l t () ;
r e t u r n f a l s e ;

This will cancel out any browser events that fire when our user stops
dragging an element, but it won't interfere with our defined ondrop
event.

Changing Styles
We want to let the user know they have dragged an element over a
drop target, and we can do that using the ondragenter and ondragleave
methods.

Down! oad html5drag/application.js

c o n t a c t s . b i n d C ' d r a g e n d ' , f u n c t i o n (e v e n t) {
i f (e v e n t . p r e v e n t D e f a u l t) e v e n t . p r e v e n t D e f a u l t () ;
r e t u r n f a l s e ;

This applies our hover class in our style sheet, which will be applied
and removed when these events fire.

File Dragging
Moving text and elements around the page is just the beginning. The
specification allows developers to create interfaces that can receive files
from the user's computer. Uploading a photo or attaching a file is as
easy as dragging the file onto a specified target. In fact, Google's Gmail
supports this if you are using Firefox 3.6 or Chrome 5.

Report erratum

NATIVE DRAG-AND-DROP SUPPORT M 228

If you want to explore this further, take a look at the excellent article9

by Leslie Michael Orchard.

All Is Not Well
The behavior in various browsers is, to be kind, inconsistent. IE 8
works, but it breaks if we try to set the data type for setData() to Url
instead of Text.

Additionally, in order to support dragging of elements that are not
images or links in Safari 4, we'd need to add additional CSS to our
style sheet.

c o n t e n t s l i {
- w e b k i t - u s e r - d r a g

}

Throughout this book, we've discussed how important it is to keep style
and behavior separated from content, and this flies right in the face of
that concept.

Don't try dragging text onto form fields. Modern browsers already let
you do this, but there's no good way to override that behavior.

As it stands, we can get much better results with much less code by
using a JavaScript library that supports dragging and dropping like
jQuery UI.10

Even with a library, we still have one last thing to worry about: accessi-
bility. The specification doesn't say anything about how to handle users
who can't use a mouse. If we implemented drag-and-drop functionality
on our interfaces, we'd need to develop a secondary method that didn't
require JavaScript or a mouse to work, and that method would depend
on what we're trying to do.

This specification has a lot of potential, but it also has some things
that need to be addressed. Use it if it makes sense, but ensure you
don't force your users into something they can't use.

9. http://decafbad.eom/blog/2009/07/l 5/html5-drag-and-drop
10. http://docs.jquery.com/UI/Draggable

Report erratum

W E B G L M 229

11.4 WebGL

We talked about the canvas element's 2D context in this book, but
there's another specification in progress that describes how to work
with 3D objects. The WebGL11 specification isn't part of HTML5, but
Apple, Google, Opera, and Mozilla are part of the working group and
have implemented some support in their browsers.

Working with 3D graphics is well beyond the scope of this book, but the
site Learning WebGL12 has some great examples and tutorials.

11.5 Indexed Database API

In this book, we talked about two methods for storing data on the client:
Web Storage and Web SQL Storage. The Mozilla foundation took issue
with the Web SQL specification, stating that they didn't think it was
a good idea to base the specification on a specific SQL engine. They
introduced a new specification called the Indexed Database API, which
is scheduled to become a standard of its own.13

The Indexed Database API is a key/value store similar to the Web Stor-
age APIs like localStorage and sessionStorage, but it provides methods
for performing advanced queries. Unfortunately, at the time of writ-
ing, there are no implementations of this specification available, so it's
not even worth going into any implementation details because they will
most likely change between now and the time it's implemented. Firefox
4 and Chrome 7 are expected to include support.

This is the specification you'll want to watch closely, because Web SQL
is at an impasse, and Mozilla has stated numerous times that it has no
plans to ever implement Web SQL in Firefox, because Mozilla is uncom-
fortable with the SQL dialect and doesn't think that the specification
should be based on one particular database implementation. The Web
SQL specification uses the SQLite database dialect, which could change
independent of the specification. It's very likely that Internet Explorer
will implement this specification as well, because Microsoft has taken
an interest in its development.14

11. https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
12. ht tp: / / learningwebgl .com/blog/?p=l 1
13. http://www.w3.org/TR/lndexedDB/
14. http://hacks.mozii ia.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/

Report erratum

CLIENT-SIDE FORM VALIDATION - ^ 2 3 0

- Project Information
Name
Priority

Estimated Hours

You have to spec i fy a
va lue

m

Stan date 12010-12-0: >1

Email contact

Figure 11.2: Opera displays a highlighted warning.

11.6 Client-Side Form Validation

The HTML5 specification lists several attributes we can use to validate
user input on the client side, so we can catch simple input errors before
the user sends the requests to the server. We've been able to do this for
years using JavaScript, but HTML5 forms can use new attributes to
specify the behavior.

We can ensure that a user has required a form field by adding the
required attribute like this:

<label for="name">Name</label>
<input type="text" name="name" autofocus required id="name">

Browsers can then prevent the form from submitting and display a nice
error message, and we don't have to write a single line of JavaScript
validation. Opera does this right now, as you can see in Figure 11.2.

This lets users fail early, without waiting for a server response to find
out whether they made a mistake. This behavior could be disabled or
unavailable or just simply not correctly implemented, so you still need
to make sure you have a server-side strategy for validating data. It's
definitely something to start thinking about now, though, because you
can then easily locate the required fields and style the interface with
CSS so that the required fields stand out from the rest.

You can take this one step further with the pattern attribute, which lets
you specify a regular expression to ensure that the content meets your
criteria.

Downl oad html5valldatlon/lndex.html

Report erratum

ONWARD! - ^ 2 3 1

Down! oad html5validation/index.html

<label for="name">Name</label>
<input type="text" name="name" autofocus required id="name">

Although no current browser uses this through the user interface,
using this markup as the basis for a JavaScript validation library would
be easy to implement.

11.7 Onward!

It's an exciting time to be a developer. This book just barely scrapes the
surface of what the future holds for web developers. There's so much
more to the specifications, and I encourage you to dig deeper. I hope
you take the things you learned here and continue to build and explore,
watching the various specifications as you do so.

Now go build something awesome!

Report erratum

Appendix A

Matures Quick Reference
In the descriptions that follow, browser support is shown in square
brackets using a shorthand code and the minimum supported version
number. The codes used are C: Google Chrome, F: Firefox, IE: Internet
Explorer, O: Opera, S: Safari, IOS: iOS devices with Mobile Safari, and
A: Android Browser.

New Elements

Referenced in Redefining a Blog Using Semantic Markup, on page 27

<header>

Defines a header region of a page or section. [C5, F3.6, IE8, S4,
010]

<footer>

Defines a footer region of a page or section. [C5, F3.6, IE8, S4, Ol 0]

<nav>

Defines a navigation region of a page or section. [C5, F3.6, IE8, S4,

010]

<section>

Defines a logical region of a page or a grouping of content. [C5,
F3.6, IE8, S4, 010]

<article>

Defines an article or complete piece of content. [C5, F3.6, IE8, S4,
010]

ATTRIBUTES M 2 3 3

<aside>

Defines secondaiy or related content. [C5, F3.6, IE8, S4, OIO]

<meter>

Describes an amount within a range. [C5, F3.5, S4, OIO]

<progress>

Control that shows real-time progress toward a goal. [Unsupported
at publication time.].

A.2 Attributes

Custom data attributes
Allows addition of custom attributes to any elements using the
data- pattern. [All browsers support reading these via JavaScript's
getAttributeO method.]

Referenced in Creating Pop-up Windows with Custom Data Attri-
butes, on page 40

In-place editing support [<p contenteditable>lorem ipsum</p>]
Support for in-place editing of content via the browser. [C4, S3.2,

IE6, OlO.l]

Referenced in In-Place Editing with contenteditable, on page 65

A.3 Forms

Referenced in Describing Data with New Input Fields, on page 48

Email field [<input type="email">]
Displays a form field for email addresses. [OlO.l, IOS]

URL field [<input type="url">]
Displays a form field for URLs. [OlO.l, IOS]

Telephone field [<input type="tel">]
Displays a form field for telephone numbers. [OlO.l, IOS]

Search field [<input type="search">
Displays a form field for search keywords. [C5, S4, OlO.l, IOS]

Slider (range) [<input type="range">]
Displays a slider control. [C5, S4, OlO.l]

Report erratum

FORM FIELD ATTRIBUTES M 2 3 4

Number [<input type="number">]
Displays a form field for numbers, offen as a spinbox. [C5, S5,

OlO.l, IOS]

Date fields [<input type="date">]
Displays a form field for dates. Supports date, month, or week. [C5,
S5, OlO.l]

Dates with Times [<input type="datetime">]
Displays a form field for dates with times. Supports datetime,
datetime-local, or time. [C5, S5, OlO.l]

Color [<input type="color">]
Displays a field for specifying colors. [C5, S5] (Chrome 5 and Safari
5 understand the Color field but do not display any specific
control.)

A.4 Form Field Attributes

Autofocus support [<input type="text" autofocus>]
Support for placing the focus on a specific form element. [C5, S4]

Referenced in Jumping to the First Field with Autofocus, on page
56

Placeholder support [<input type="email" placeholder="me@example.com">]
Support for displaying placeholder text inside of a form field. [C5,
S4, F4]

Referenced in Providing Hints with Placeholder Text, on page 58

required [<input type="email" required >]
Makes a field required. [C5, S5, 010.6]

Referenced in Section 11.6, Client-Side Form Validation, on page
230

pattern [<input type="text" pattern="A[l-9]+[0-9]*$">]

Validates form field data to match the specified regular expression
pattern. [C5, S5, 010.6]

Referenced in Section 11.6, Client-Side Form Validation, on page
230

Report erratum

ACCESSIBILITY M 2 3 5

A.5 Accessibility

The role a t t r ibu te [<div role="document">]

Identifies responsibility of an element to screen readers. [C3, F3.6,
S4, IE8, 09.6]

Referenced in Providing Navigation Hints with ARIA Roles, on page
99

aria-live [<div aria-live="polite">]

Identifies a region that updates automatically, possibly by Ajax.
[F3.6 (Windows), S4, IE8]

Referenced in Creating an Accessible Updatable Region, on page
104

aria-atomic [<div aria-live="polite" aria-atomic="true">]

Identifies whether the entire content of a live region should be read
or just the elements that changed. [F3.6 (Windows), S4, IE8]

Referenced in Creating an Accessible Updatable Region, on page
104

A.6 Multimedia

<canvas> [<audio src="drums.mp3"x/audio>]
Supports creation of vector-based graphics via JavaScript. [C4,

F3, IE9, S3.2, OlO.l, IOS3.2, A2]

Referenced in Chapter 6, Drawing on the Canvas, on page 111

<audio> [<audio src="drums.mp3"x/audio>]
Play audio natively in the browser. [C4, F3.6, IE9, S3.2, OlO.l,
IOS3, A2\

Referenced in Working with Audio, on page 133

<video> [<video src="tutorial.m4v"x/video>]
Play video natively in the browser. [C4, F3.6, IE9, S3.2, 010.5,
IOS3, A2\

Referenced in Embedding Video, on page 137

A. 7 CSS3

Referenced in Section 11.1, CSS3 Transitions, on page 219

Report erratum

C S S 3 M 2 3 6

:nth-of-type [p:nth-of-type(2n+l){color: red;}]

Finds all n elements of a certain type. [C2, F3.5, S3, IE9, 09.5, IOS]

Referenced in Styling Tables with Pseudoclasses, on page 74

:first-child [p:first-child{color:blue;}]
Finds the first child element. [C2, F3.5, S3, IE9, 09.5, IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

:nth-child [p:nth-child(2n+l){color: red;}]
Finds a specific child element counting forward. [C2, F3.5, S3, IE9,

09.5, IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

:last-child [p:last-child{color:blue;}]
Finds the last child element. [C2, F3.5, S3, IE9, 09.5, IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

:nth-last-child [p:nth-last-child(2){color: red;}]
Finds a specific child element counting backward. [C2, F3.5, S3,
IE9, 09.5, IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

:first-of-type [p:first-of-type{color:blue;}]
Finds the first element of the given type. [C2, F3.5, S3, IE9, 09.5,
IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

:last-of-type [p:last-of-type{color:blue;}]
Finds the last element of the given type. [C2, F3.5, S3, IE9, 09.5,
IOS3, A2]

Referenced in Styling Tables with Pseudoclasses, on page 74

Column support [#content{ column-count: 2; column-gap: 20px;
column-rule: 1 px solid #ddccb5;}]

Divides a content area into multiple columns. [C2, F3.5, S3, 09.5,
IOS3, A2]

Referenced in Creating Multicolumn Layouts, on page 87

:after [span.weight:after { content: "lbs"; color: #bbb;}]
Used with content to insert content after the specified element. [C2,
F3.5, S3, IE8, 09.5, IOS3, A2]

Report erratum

C S S 3 M 2 3 7

Referenced in Making Links Printable with -.after and content, on
page 83

Media Queries [media="only all and (max-width: 480)"]

Apply styles based on device settings. [C3, F3.5, S4, IE9, OlO.l,
IOS3, A2]

Referenced in Building Mobile Interfaces with Media Queries, on
page 94

border-radius [border-radius: 10px;]

Rounds corners of elements. [C4, F3, IE9, S3.2, 010.5]

Referenced in Rounding Rough Edges, on page 146

RGBa Suppr t [background-color: rgba(255,0,0,0.5);]
Uses RGB color instead of hex codes along with transparency. [C4,
F3.5, IE9, S3.2, OlO.l]

Referenced in Working with Shadows, Gradients, and Transforma-
tions, on page 154

box-shadow [box-shadow: lOpx lOpx 5px #333;]
Creates drop shadows on elements. [C3, F3.5, IE9, S3.2, 010.5]

Referenced in Working with Shadows, Gradients, and Transforma-
tions, on page 154

Rotat ion: [transform: rotate(7.5deg);]
Rotates any element. [C3, F3.5, IE9, S3.2, 010.5]

Referenced in Working with Shadows, Gradients, and Transforma-
tions, on page 154

Gradients: [linear-gradient(top, #fff, #efefef);]
Creates gradients for use as images. [C4, F3.5, S4]

Referenced in Working with Shadows, Gradients, and Transforma-
tions, on page 154

@font-face [@font-face {font-family: AwesomeFont;
src: url(http://example.com/awesomeco.ttf); font-weight: bold;}]

Allows use of specific fonts via CSS. [C4, F3.5, IE5+, S3.2, OlO.l]

Referenced in Using Real Fonts, on page 165

Report erratum

CLIENT-SIDE STORAGE M 2 3 8

A.8 Client-Side Storage

localStorage
Stores data in key/value pairs, tied to a domain, and persists
across browser sessions. [C5, F3.5, S4, IE8, 010.5, IOS, A]

Referenced in Saving Preferences with localStorage, on page 175

sessionStorage
Stores data in key/value pairs, tied to a domain, and is erased
when a browser session ends. [C5, F3.5, S4, IE8, 010.5, IOS, A]

Referenced in Saving Preferences with localStorage, on page 175

Web SQL Databases
Fully relational databases with support for creating tables, inserts,
updates, deletes, and selects, with transactions. Tied to a domain
and persists across sessions. [C5, S3.2, 010.5, IOS3.2, A2]

Referenced in Storing Data in a Client-Side Relational Database, on
page 181

A.9 Additional APIs

Offline Web Applications
Defines files to be cached for offline use, allowing applications to
run without an Internet connection. [C4, S4, F3.5, 010.6, IOS3.2,
A2]

Referenced in Working Offline, on page 193

History
Manages the browser histoiy. [C5, S4, IE8, F3, OlO.l IOS3.2, A2]

Referenced in Preserving History, on page 197

Cross-document Messaging
Sends messages between windows with content loaded on differ-
ent domains. [C5, S5, F4, IOS4.1, A2]

Referenced in Talking Across Domains, on page 200

Web Sockets
Creates a stateful connection between a browser and a server. [C5,
S5, F4, IOS4.2]

Referenced in Chatting with Web Sockets, on page 207

Report erratum

ADDITIONAL A P I S M 239

Geolocation
Gets latitude and longitude from the client's browser. [C5, S5,
F3.5, 010.6, IOS3.2, A2]

Referenced in Finding Yourself: Geolocation, on page 214

Web Workers

Background processing for JavaScript. [C3, S4, F3.5, 010.61

Referenced in Section 11.2, Web Workers, on page 221

3D canvas with WebGL.1

Creating 3D objects on the canvas. [C5, F4]

Referenced in Section 11.4, WebGL, on page 229

Drag and Drop API for drag-and-drop interaction. [C3, S4, F3.5, IE6, A2]

Referenced in Section 11.3, Native Drag-and-Drop Support, on page
223

Report erratum

Appendix B

jQuery Primer
Writing JavaScript that works well across all major web browsers in a
clean and concise way is a difficult chore. There are many libraries that
make this process less painful, and jQuery is one of the most popular.
It's easy to use, has a wide array of existing libraries, and is a good fit
for easily creating fallback solutions.

This appendix introduces you to the parts of the jQuery library that
we use elsewhere in the book. It's not meant to be a replacement for
jQuery's excellent documentation,1 nor is it going to be an exhaustive
list of the features and methods available. It will, however, give you a
good place to start.

Loading jQuery

You can grab the jQuery library from the jQuery website2 and link to
the jQuery script directly, but we'll load jQuery from Google's servers,
like this:

Down! oad jquery/simple_selection.html

< s c r i p t t ype=" tex t /javascript"
charse t= "utf-8"
src="http://ajax.googleapis.com/ajax/1ibs/jquery/1.4.2/jquery.min.js">

< / s c r i p t>

Browsers can make only a few connections to a server at a time. If
we distribute our images and scripts to multiple servers, our users can

1. http://docs.jquery.com
2. http://www.jquery.com

J Q U E R Y BASICS M 2 4 1

download our pages faster. Using Google's content delivery network has
an additional benefit as well—since other sites link to the jQuery library
at Google, our visitors may already have the library cached by their
browser. As you probably already know, browsers use the full URL to
a file to decide whether it has a cached copy. If you plan to work with
jQuery on a laptop or on a computer without constant Internet access,
you will want to link to a local copy instead.

B.2 jQuery Basics

Once you have loaded the jQuery library on your page, you can start
working with elements. jQuery has a function called the jQueryO func-
tion. This one function is the heart of the jQuery library. We use this
function to fetch elements using CSS selectors and wrap them in jQuery
objects so we can manipulate them. There's a shorter version of the
jQueryO function, $();, and that's what we use in this book. Through-
out the rest of this appendix, I'll refer to this function as "the jQuery
function." Here's how it works:

If you wanted to find the hi tag on a page, you'd use the following:

Down! oad jquery/simple_selection.html

If you were looking for all elements with the class of important, you'd do
this:

Down! oad jquery/simple_selection.html

$(". important") ;

Take a look at that again. The only difference between those two exam-
ples is the CSS selector we used. The jQuery function returns a jQuery
object, which is a special JavaScript object containing an array of the
DOM elements that match the selector. This object has many useful
predefined methods we can use to manipulate the elements we selected.
Let's take a look at a few of those in detail.

B.3 Methods to Modify Content

We use several jQuery methods to modify our HTML content as we work
through this book.

Report erratum

METHODS TO MODIFY CONTENT M 2 4 2

Hide and Show
The hide() and show() methods make it easy to hide and show user
interface elements. We can hide one or many elements on a page like
this:

Down! oad jquery/simple_selection.html

$ (' 7) 1 ") . h i d e O ;

To show them, we simply call the show() method instead. We use the
hide() method throughout this book to hide page sections that only
need to appear when JavaScript is disabled, such as transcripts or
other fallback content.

html, val, and attr
We use the html()method to get and set the inner content of the specified
element.

Down! oad jquery/methods.html

$ (" m e s s a g e ") . h t m l ("Hello World! ") ;

Here, we're setting the content between the opening and closing hi tags
to "Hello World."

The val() method sets and retrieves the value from a form field. It works
exactly like the html() method.

The attr() method lets us retrieve and set attributes on elements,

append, prepend, and wrap
The append() method adds a new child element after the existing ele-
ments. Given we have a simple form and an empty unordered list, like
this:
Down! oad jquery/methods.html

< f o r m i d = " a d d " >
< l a b e l f o r = " t a s / c " > T a s k < / l a b e l >
< i n p u t t y p e = " t e x t " i d = " t a s / c " >
< i n p u t t y p e ="submit" v a l u e = " A d d " >

< / f o r m >
< u l id="links">
< / u l >

we can create new elements in the list by appending these new elements
when we submit the form.

Report erratum

METHODS TO MODIFY CONTENT M 243

Down! oad jquery/methods.html

$ (function (){
$ (" # a d d ") . s u b m i t(function (e v e n t) {

e v e n t . p r e v e n t D e f a u l t () ;
var new_element = $("" + $ ("#ema i ' 7 ") .val () + " < / 7 i > ") ;
$("#li nks") .append(new_element) ;

}) ;

The prepend() method works the same way as the append() method
but inserts the new element before any of the existing ones. The wrap()
method wraps the selected element with the element represented by the
jQuery object you specify.

Down! oad jquery/methods.html

var wrapper = $("#message") .wrap("<divxh2>Message</h2x/div>") . p a r e n t O ;

We'll create a few complex structures programmatically using these
techniques.

CSS and Classes
We can use the css() method to define styles on elements, like this:

Downl oad jquery/methods.html

}("label").css("co7or", " # f 0 0 ") ;

We can define these one at a time, but we can also use a JavaScript
hash to assign many CSS rules to the element:

Downl oad jquery/methods.html

$("hl").css({"color" : "red",
"text-decoration" : "underline"}

) ;

However, it's not a good idea to mix style with scripts. We can use
jQuery's addClass() and removeClass() methods to add and remove
classes when certain events occur. We can then associate styles with
these classes. We can change the background on our form fields when
they receive and lose focus by combining jQuery events and classes.

Downl oad jquery/methods.html

$("input").focus(function(event){

$(this) .addClass("focused");
}) ;

$("input").blur(function(event){
$(this) . r e m o v e d ass ("focused") ;

}) ;
Report erratum

CREATING ELEMENTS M 244

This is a trivial example that can be replaced by the :focus pseudoclass
in CSS3 but that isn't supported in some browsers.

Chaining
Methods on jQuery objects return jQuery objects, which means we can
chain methods indefinitely, like this:
Down! oad jquery/simple_selection.html

$("h2").addClass("hidden").removeClass("visib7e");

You should take care not to abuse this, because this can make code
harder to follow.

B.4 Creating Elements

From time to time, we need to create new HTML elements so we can
insert them into our document. We can use jQuery's jQueryO method to
create these elements.
Down! oad jquery/create_elements.html

var i n p u t = $("input");

Although we can use document.createElement("input"); to accomplish this,
we can call additional methods easily if we use the jQuery function.

Down! oad jquery/create_elements.html

var e l emen t = $("<p>Hello World</p>");
e l e m e n t .css("color" , " # f 0 0 ") . i n s e r t A f t e r (" # h e a d e r ") ;

This is another example where jQuery's chaining helps us build and
manipulate structures quickly.

B.5 Events

We often need to fire events when users interact with our page, and
jQuery makes this very easy. In jQuery, many common events are sim-
ply methods on the jQuery object that take a function. For example, we
can make all the links on a page with the class of popup open in a new
window like this:
Download jquery/popup.html

Une l var l i n k s = $("#links a ") ;
2 1 i n k s . c l i c k (f u n c t i o n (e v e n t) {
3 var a d d r e s s = $(this) . a t t r ('href') ;
4 e v e n t . p r e v e n t D e f a u l t () ;
5 w i n d o w . o p e n (a d d r e s s) ;

6 }) ;
Report erratum

DOCUMENT READY M 245

Inside our j Query event handler, we can access the element we're work-
ing with by using the this keyword. On line 3, we pass this to the jQuery
function so we can call the attr() method on it to quickly retrieve the
link's destination address.

We use the preventDefault() function to keep the original event from fir-
ing so it doesn't interfere with what we're doing.

Bind
Some events aren't directly supported by jQuery, and we can use the
bind() method to handle them. For example, when implementing the
Drag and Drop part of the HTML5 specification, we need to cancel out
the ondragover event. We use the bind() like this:

Download ¡query/bind.html

t a r g e t = $C'#droparea")
t a r g e t . b i n d (' d r a g o v e r ' , function (e v e n t) {

if (e v e n t . p r e v e n t D e f a u l t) e v e n t . p r e v e n t D e f a u l t () ;
return false;

});

Notice that we drop the on prefix for the event we're watching.

The Original Event
When we use any of the jQuery event functions like bind() or click(),
jQuery wraps the JavaScript event in its own object and copies only
some of the properties across. Sometimes we need to get to the actual
event so we can access those properties that didn't get cloned. jQuery
events give us access to the original event with the appropriately named
originalEvent property. We can access the data property of the onmessage
event like this:
$ (w i n d o w) . b i n d ("message",function (e v e n t) {

var message_data = e v e n t . o r i g i n a l E v e n t . d a t a ;

}) ;

You can use this technique to call any of the original event's properties
or methods.

B.6 Document Ready

The phrase "unobtrusive JavaScript" refers to JavaScript that's kept
completely separate from the content. Instead of adding onclick attri-

Report erratum

DOCUMENT READY M 246

butes to our HTML elements, we use event handlers like we just talked
about in Section B.5, Events, on page 244. We unobtrusively add behav-
ior to our document, without modifying the document itself. Our HTML
is not dependent on our users having JavaScript enabled.

One drawback to this method is that JavaScript can't "see" any of the
elements in our document until they've been declared. We could include
our JavaScript code in a script block at the bottom of the page after
everything else has been rendered, but that isn't reusable across pages.

We could wrap our code in JavaScript's window.onLoadO event handler,
but that event gets fired after all the content has loaded. This could
cause a delay, meaning your users could be interacting with things
before your events have been attached. We need a way to add our events
when the DOM is loaded but before it's been displayed.

jQuery's document.ready function does exactly this, in a way that works
across browsers. We use it like this:
Down! oad jquery/ready.html

SCdocument).ready(functionC) {
a l e r t (" H i / L am a popup that displays when the page loads");

}) ;

There's a shorter, more compact version that we'll be using throughout
our code, which looks like this:

Down! oad jquery/ready.html

$(function() {
a l e r t (" H i / L am a popup that displays when the page loads");

});

We use this pattern in almost every example in this book so that we can
easily, unobtrusively add fallback solutions to our projects.

This is only a small sampling of what we can do with j Query. Aside
from the document manipulation features, jQuery provides methods for
serializing forms and making Ajax requests and includes some utility
functions that make looping and DOM traversal much easier. Once you
become more comfortable with its use, you'll no doubt find many more
ways to use it in your projects.

Report erratum

Appendix C

Encoding Audio and Video
Encoding audio and video for use with HTML5's audio and video tags
is a complex subject that's out of scope for this book, but this short
appendix will get you going in the right direction if you ever need to
prepare your own content.

Encoding Audio

You'll need to prepare your audio files in both MP3 and Vorbis formats
to reach the widest possible audience, and to do that, you'll use a couple
of tools.

For encoding MP3 files, Lame is going to give you the best quality. You'll
want to use a variable bit rate when you encode. You can get a high-
quality encode using something like this:
lame i n . w a v ou t .mp3 -V2 - - v b r - n e w -qO - - l o w p a s s 1 9 . 7

For Vorbis audio, you'll use Oggenc to encode the audio. To encode a
good-sounding Vorbis file using a variable bitrate, you'd use something
like this:

oggenc -q 3 i n p u t f i l e . w a v

Learn more about MP3 and Vorbis encoding at Hydrogen Audio.1 The
information there is excellent, but you'll need to experiment with set-
tings that will work for you and your listeners.

1. Lame is at http://wiki.hydrogenaudio.org/index.php?title=Lame#Quick_start_.28short_answer.29,
and Vorbis is at http://wiki.hydrogenaudio.org/index.php?title=Recommended_Ogg_Vorbis.o

ENCODING VIDEO FOR THE WEB M 248

C.2 Encoding Video for the Web

You need to encode your video files to multiple formats if you want
to reach every platform when using HTML5 video. Encoding to H.264,
Theora, and VP8 can be a time-consuming practice, both in terms of
setting up an open source encoders like FFMpeg2 and actually running
the encoding jobs. Encoding videos properly is beyond the scope of this
book. We don't have enough pages to explain this command, which
converts a file to VP8 using the WebM container:

f f m p e g - i b l u r . m o v
- f webm - v c o d e c l i b v p x _ v p 8 - a c o d e c l i b v o r b i s
- a b 160000 -sameq
b l u r . w e b m

If you don't want to mess with the settings yourself, the web service
Zencoder3 can take your videos and encode them to all the formats
necessary for use with HTML5 video. You place your video on Amazon
S3 or another public URL, and you can then set up jobs to encode that
video file to multiple formats using their web interface or via API calls.
Zencoder will fetch the video files, do the encoding, and then transfer
the new videos back to your servers. The service is not free, but it does
produce excellent results and can save you a lot of time if you have a
lot of content to encode.4

If you just want to experiment with these formats on your own, Miro
Video Converter5 is another nice option. It has presets for converting
your video files to multiple outputs, and it's open source.

2. http://www.ffmpeg.org/
3. http://www.zencoder.com/
4. In the interest of full disclosure, I know a couple of developers at Zencoder, but I
would still recommend the service if I didn't.
5. http://mirovideoconverter.com/

Report erratum

Appendix D

Resources
Resources on the Web

Apple—HTML5 h t t p : / / w w w . a p p l e . c o m / h t m l 5 /

Apple's page on HTML5 and web standards as supported by its Safari 5 web
browser.

CSS3.Info h t tp : / /www.css3. in fo /

Lots of background information and examples related to the various modules
that make up CSS3.

Font Squirrel h t tp : / /www. fon tsqu i r re l . com

Provides royalty-free fonts in various formats suitable for distribution on the
Web.

HTML5 h t tp : / /www.w3.org /TR/h tml5 /

The actual HTML5 specification at the W3C.

HTML5—Mozilla Developer Center...
. . . h t tps : / /deve loper .moz i l la .o rg /en /h tml /h tml5

Mozilla Developer Center's page on HTML5.

Implementing Web Socket Servers with Node.js ...
. . . h t tp : / /www.web2med ia .ne t / l ak tek /2010 /05 /04 / imp lemen t ing -web-socke t -se rve rs -w i th -node- j s /

How to write Web Sockets servers with Node.js.

Microsoft IE9 Test-Drive h t tp : / / i e .m ic roso f t . com/ tes td r i ve /

Demonstrations of HTML5 (and related) features in Internet Explorer 9.

Ruby and WebSockets—TCP for the Browser...
. . . h t tp : / /www. igv i ta .com/2009 /12 /22 / ruby -websocke ts - t cp - fo r - the -b rowser /

Information on e m - w e b s o c k e t , a Ruby library for building Web Sockets servers.

RESOURCES ON THE W E B M 2 5 0

Setting Up a Flash Policy File...
. . . h t t p : / / w w w . l i g h t s p h e r e . c o m / d e v / a r t i c l e s / f l a s h _ s o c k e t _ p o l i c y . h t m l

Contains a detailed description ol Flash Socket Policy tiles.

Typekit h t t p : / / w w w . 1 y p e k i t . c o m

Service that lets you use licensed fonts on your website using a simple JavaScript
API.

Unit Interactive: "Better CSS Font Stacks"...
. . . h t t p : / / u n i t i n t e r a c t i v e . c o m / b l o g / 2 0 0 8 / 0 6 / 2 6 / b e t t e r - c s s - f o n t - s t a c k s /

Discussion ol font stacks, with some excellent examples.

Video for Everybody! h t t p : / / c a m e n d e s i g n . c o m / c o d e / v i d e o _ f o r _ e v e r y b o d y

Information on HTML5 video, with code to play video on all browsers.

Video.js h t t p : / / v i d e o j s . c o m

JavaScript library to aid in playing HTML5 videos.

When Can I Use h t t p : / / c a n i u s e . c o m /

Browser compatibility tables for HTML5, CSS3, and related technologies.

Report erratum

[Hog09]

[HTOO]

[Zel09]

Appendix E

Bihliography

Brian P. Hogan. Web Design For Developers. The Pragmatic
Programmers, LLC, Raieigh, NC, and Dallas, TX, 2009.

Andrew Hunt and David Thomas. The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley, Reading,
MA, 2000.

Jeffrey Zeldman. Designing With Web Standards. New Rid-
ers Press, New York, third edition, 2009.

m
A
AAC (Advanced Audio Coding), 131
accessibility

of audio, 142
creating updatable regions, 103,

104-109
falling back, 123
overview, 16, 19, 97
quick reference of features, 235
of video, 142

Accessibility for Rich Internet
Applications (WIA-ARIA), 97, 99

addClassO method, 243
addToNotesListO method, 189
Adobe, see Flash (Adobe)
adult entertainment industry, use of

Internet technology by, 142
Advanced Audio Coding (AAC), 131
¡after, 83
Ajax API (Google), 217
Apache, caching, 194
APIs

browser history, 197
Cross-document Messaging,

200-206
Geolocatlon, 214-217
quick reference of features, 238
Web Sockets, 207-213

appearance (user Interface)
fonts, 165-170
overview, 144

rounding rough edges, 146-153
shadows, gradients, and

transformations, 154-164
appendO method, 242
Apple, 22, 128

see also Safari (Apple
applications, 15

ARIA roles
document structure roles, 101
falling back, 103
landmark roles, 99, 103

article tag, 25, 32
aside tag, 25, 33
assertive method, 106
atomic updating, 107
attrO method, 242
attributes

autocomplete, 60
autofocus, 56
data, 40-43
draggable HTML5, 225
form Held, 234
ID, 29
longdesc, 21
placeholder, 58
presentational, 21
profile, 21
quick reference of features, 233
see also con ten ted i tab le attribute

audio
accessibility of, 142
codecs, 131
embedding, 133-136
encoding, 247
falling back, 134
see also video

audio tag, 133
autocomplete attribute, 60
autofocus attribute, 56

E
backgrounds, transparency of, 159
backward compatibility, 17
bar graph, turning HTML into, 121
beginPathO method, 115

BEHAVIOR CROSS-DOMAIN MESSAGING

behavior, separating from content, 40
benefits of HTML5 and CSS3, 14-17
bindO method, 225, 245
block element, 25, 25n
blogs, redefining using semantic

markup, 27-37
box-shadow property, 157
browser-specific selectors, 148
browsers

managing history with APIs, 197
overview, 22
resources, 250
selectors support, 96
see also specific browsers

c
cache

Apache, 194
defining with manifests, 193

canPlayTypeO method, 136
canvas element

graphing statistics with RGraph,
119-126

canvas tag, 111
drawing logos, 112-118

chaining methods, 244
challenges of HTML5 and CSS3, 17-22
Chrome

Frame plug-in, 191
Chrome (Google)

browser history, 199
gradients in, 156
localStorage, 178
media queries, 96
offline support, 193
selectors, 148
Slider widget, 49

Clark, Keith, 81
client-side data

client-side relational database,
181-192

localStorage, 175-180
overview, 172

client-side form validation, 230
client-side relational database

activating New button, 190
creating notes tables, 185
CRUD, 181
falling back, 191
finding records, 187

loading notes, 186
manipulating records, 188
notes interface, 182
working offline, 193

client-side relational databases,
connecting to, 185

client-side storage, 15, 238
ClientLocationO method, 217
codecs, see containers and codecs
color

adding to canvas, 117
input type, 52

Color Picker, 53
columns

aligning text, 77
specifying widths, 91
splitting, 87

compatibility (backward), 17
conditional comment, 38
containers and codecs

Advanced Audio Coding (AAC), 131
audio codecs, 131
H.264, 130
MP3s, 132
Theora, 130
video codecs, 129
Vorbis (OGG), 132
VP8, 131
working together, 132

content
displaying, 122
generating with CSS, 83
separating from behavior, 40

contenteditable attribute
creating edit pages, 68
falling back, 68
overview, 65
persisting data, 67
profile form, 65

cookies

JavaScript and, 178
overview, 172

corners, see rounding corners
Create, Retrieve, Update, and Delete

(CRUD), 181, 181n
Cross-document Messaging, 15

overview, 200
cross-domain messaging

falling back, 205
posting messages, 202

C R U D (CREATE FILES

receiving messages, 205
support site, 202
web servers, 201

CRUD (Create, Retrieve, Update, and
Delete), 181, 18 In

CSS
content generation with, 83
jQuery versus, 123

cssO method, 243
CSS3

benefits of, 14-17
challenges of, 17-22
features, 72
future of, 22
quick reference of features, 235
resources, 249
transitions, 219

custom data attributes, 26, 233

B
data

attributes, 40-43
describing with HTML, 120
persisting, 67
see also client-side data

databases, 185
see also client-side relational

database
dates, 50
deprecated tags, 20
detecting rounded corners support, 149
DirectX filters (Microsoft), 160
Divitis, 24
doc type

declaration, 17
HTML5, 27-29

document structure roles, 101
document, ready function, 246
Don't Repeat Yourself (DRY), 68, 68n
Drag and Drop implementation

(Microsoft), 223
drag-and-drop events, 225
draggable HTML5 attribute, 225
dragging files, 227
dropping elements, 226
DRY (Don't Repeat Yourself), 68, 68n

E
ease-in curve, 220
ease-in-out curve, 221

edges, see rounding corners
effects (visual), 17
elements

block, 25, 25n
creating, 244
dropping, 226
quick reference of features, 232
rotating, 158, 160
see also tags

Email input type, 51
embed tag, 128
Embedded Open1>pe (EOT), 166
embedding

audio, 133-136
containers and codecs, 129-132
history of, 128
overview, 127
video, 137-143

encoding audio and video, 247
EOT (Embedded Openiype), 166
executeSqIO method, 186
ExplorerCanvas library, 118, 126

E
falling back

accessibility, 123
ARIA roles, 103
audio, 134
browser history, 199
canvas, 118
client-side relational database, 191
ContentEditable attribute, 68
cross-domain messaging, 205
CSS3 columns, 91
custom data attributes, 43
fonts, 169
Geolocation, 216
Internet Explorer, 160
localStorage, 178
media queries, 96
placeholder attribute, 60
printable links and, 84
rounding corners, 149
selectors, 80
semantic markup, 38
updatable regions, 108
video, 138
Web Sockets, 211

FFMpeg, 248
files

F ILTERS (DIRECTX) INTERFACES

dragging, 227
manifest, 193
MP3, 132, 247

filters (DirectX), 160
Firefox (Mozilla)

browser history, 199
gradients in, 156
localStorage, 178
media queries, 96
-moz-linear-gradient method, 156
offline support, 193
selectors, 148
support for rounding corners, 146

Flash (Adobe)
availability of, 128
compared with canvas, 126
cross-browser compatibility, 129
Web Sockets with, 211

Flash Policy file, 250
Flash Socket Policy, 212
Flowplayer video player, 138
font stacks, 169, 250
@font-face directive, 165
fonts

changing, 168
converting, 167
falling back, 169
@font-face directive, 165
formats, 167
overview, 165
resources, 250
rights and, 166

FontSquirrel font, 168, 249
footer tag, 25, 30
form field attributes, 234
formats

font, 167
video, 129

formCorners plug-in, 150
forms, see web forms
frame support, 20
functions, timing, 220
future of HTML5 and CSS3, 22

G
Geolocation, 214, 216
get-Context method, 112
getScriptO method, 205, 217
Google

adoption of HTML5 and CSS3 by, 22

Ajax API, 217
Chrome Frame plug-in, 191
Static Map API, 214
VP8, 131
see also Chrome (Google)

Gradient filter (Internet Explorer), 161
gradients, 156

H
H.264, 130
handheld media type, 95
header tag, 25, 29
hideO method, 242
hiding updatable regions, 107
history of embedding, 128
HTML

changing code, 81
describing data with, 120
turning into bar graph, 121

htmlO method, 242
HTML5

benefits of, 14-17
challenges of, 17-22
creating pages, 104
doctype, 27
future of, 22
offline support, 193

HTML5 markup, see semantic markup
HTMLShiv, 39
Hydrogen Audio, 247

I
ID attribute, 29
Indexed Database API, 229
input fields

color, 52
creating sliders, 49
dates, 50
Email, 51
falling back, 53
Modernizr, 54
overview, 48
replacing Color Picker, 53
setting up forms, 48
spinboxes, 50
URL, 51

insertNoteO method, 189
interaction invitations, 219
interfaces

INTERNET EXPLORER OFFLINE SUPPORT

notes, 182
overview, 16
see also user interfaces

Internet Explorer
browser history, 199
Embedded Openiype, 167
falling back, 160
Gradient filter, 161
localStorage, 178
overview, 19
rounding corners, 146, 152
semantic markup and, 38
style sheets, 159, 162

Invoking rounding, 151

J
JavaScript

cookies and, 178
custom data attributes and, 43
defining elements with, 38
launching files as workers, 221
styling tables with, 81
unobtrusive, 245

jQueiy
Address plug-In, 199
basics, 81
bindO method, 225
Corners plug-In, 150
CSS versus, 123
Postback plug-In, 205
replacing color picker using, 53
selector, 42

jQuery Columnlzer plug-In, 91
jQuery library

basics, 81, 241
creating elements, 244
document ready, 245
events, 244
loading, 240

methods to modify content, 241
jQueryO method, 244

L
landmark roles, 99, 103
:last-child selector, 78
layouts (multlcolumn), 87-91
Learning WebGL, 229
lines, drawing on canvas, 115
loadNoteO method, 187
localStorage

applying settings, 177
building preferences forms, 175
falling back, 178
overview, 173, 175

logos, drawing, 112-118
longdesc attribute, 21

M
Macromedia, 128
manifest file, 193
markup, see semantic markup
Media Content JavaScript API, 141
media queries

building mobile Interfaces with, 94
in Chrome, 96

messages, see cross-domain messaging
meter tag, 25, 37
methods, see specific methods
Microsoft

DirectX filters, 160
Drag and Drop Implementation, 223
Web Open Font Format, 167

Mlro Video Converter, 248
mobile interfaces, 94
Mobile Safari browser, 128
Modernlzr library, 54
Mozllla

adoption of CSS3 and HTML5 by, 22
Web Open Font Format, 167
see also Firefox (Mozilla)

-moz-linear-gradient method, 156
MP3 files, 132, 247
MP4 container, 132
multimedia

overview, 15

quick reference of features, 235

N
nav tag, 25, 30
notes

Interface, 182
loading, 186
tables, 185

:nth-child selector, 77
:nth-last-child selector, 79
:nth-of-type selector, 76

Q
offline support, 193

O G G (VORBIS)

OGG (Vorbis), 132
OGG container, 132
onclick method, 40
oncloseO method, 210
onmessageO method, 205, 210
onopenO method, 210
Openiype, 166
Opera

calendar picker, 50
color controls, 52
media queries, 96
Slider widget, 49
splnbox control, 50
Web Open Font Format, 167

origin, moving, 116

E
placeholder a t t r ibute , 58
plug-Ins

formCorners, 150
Google Chrome Frame, 191
jQuery Address, 199
jQuery Columnlzer, 91
jQuery Corners, 150
jQuery Postback, 205

polite method, 106
pop-up windows, 40 -43
postMessageO method, 202, 205, 222
preferences, saving with localStorage,

175-180
prependO method, 243
print type, 84
profile attribute, 21
progress tag, 25, 37
pseudoclasses, 74—82
pushstateO method, 198

E
records

finding, 187
manipulating, 188

regions (updatable)
atomic updating, 107
creating HTML5 pages, 104
falling back, 108
hiding, 107
overview, 104
polite and assertive updating, 106

removeClassO method, 243
resources (Web), 250

SEMANTIC MARKUP

rgba function, 159
RGraph, 119-126
rights, fonts and, 166
roles, see ARIA roles
rotating elements, 158, 160
rounding corners

browser-specific selectors, 148
detecting support, 149
falling back, 149
formCorners plug-in, 150
Internet Explorer, 152
invoking rounding, 151
jQuery Corners plug-in, 150
overview, 146

Ruby on Rails framework, 43, 249
Ruby-based servers, 201

s
Safari (Apple)

browser history, 199
date field, 51
gradients in, 156
localStorage, 178
media queries, 96
offline support, 193
selectors, 148
support for rounding corners, 146

saveO method, 116
screen readers, 97
section tag, 25, 31
selectors

browser support, 96
browser-specific, 148
defined, 72
jQuery, 42
:last-child, 78
:nth-child, 77
:nth-last-child, 79
:nth-of-type, 76
overview, 16

self-closing tags, 18
semantic markup

article tag, 25, 31
aside tag, 25, 33
doctype, 27-29
falling back, 38
footer tag, 25, 30
header tag, 25, 29
meter tag, 25, 37
nav tag, 25, 30

SERVER-SIDE STORAGE WEB FORMS

overview, 30
progress tag, 25, 37
redefining blogs using, 27-37
section tag, 25, 31
sidebars, 33
styling, 35

server-side storage, 178
servers, see web servers
sessionStorage, 173, 180
settings

applying, 177
saving and loading, 176

shadows
adding, 157
text, 158

Sharp, Remy, 39
showO method, 242
showLocationO method, 215, 217
sidebars, 33
sliders, 49
spinboxes, 50

Static Map API (Google), 214
statistics

graphing with RGraph, 119-126
storage

client-side, 15, 238
server-side, 178

style sheets
applying to pages, 155
Internet Explorer, 159, 162

styles
applying to elements, 35
changing, 227

submarine patents, 130
support

detecting for rounded corners, 149
offline, 193

T
tables, styling with pseudoclasses,

74-82
tags

deprecated, 20
self-closing, 18
see also specific tags

text
adding to canvas, 115
aligning in columns, 77
shadows on, 158

Theora, 130

timing functions, 220
transitions (CSS3), 219
transition-timing-function property, 220
transparency values, 162
transparent backgrounds, 159
TrueType, 166

II
unobtrusive JavaScript, 245
updateNoteO method, 189
URL input type, 51
user interfaces

with CSS3, 72-96
fonts, 165-170
overview, 144
rounding rough edges, 146-153
shadows, gradients, and

transformations, 153-164
structural tags and attributes, 24-43
web forms, 45-70

Y
va 10 method, 242
video

accessibility of, 142
codecs, 129
embedding, 137-143
encoding, 248
falling back, 138
formats, 129
limitations of HTML5, 140
resources, 250
see also audio

Video For Everybody, 138
video tag, 137
Vorbis (OGG), 132
Vorbis audio, 247
VP8, 131

w.
W3C Validator service, 21
web development, 14—17
web forms

autofocus attribute, 56
client-side validation, 230
contenteditable attribute, 65-70
describing data with new input

fields, 48-54
overview, 16, 45

W E B OPEN FONT FORMAT ZENCODER

placeholder attribute, 58 -63
quick reference of features, 233
setting up basic, 48

Web Open Font Format, 167
web resources, 250
web servers

cross-domain messaging, 201
talking to, 209
Web Sockets, 213

Web Sockets

chat interface, 207
falling back, 211
overview, 15, 207
servers, 209, 213, 249

Web SQL Databases, 173
Web SQL Storage, 229
Web Workers, 221

web-sockets-js library, 211
WebGL, 229
WebKit-based browsers, 157
WebM container, 132
WIA-ARIA (Accessibility for Rich

Internet Applications), 97, 99
window. localStorageO object, 176
window.onpopstateO method, 198
windows (pop-up), 4 0 - 4 3
wrapO method, 243

X
XHTML syntax, 18

z
zebra striping, 76
Zencoder, 248

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of December 2010: be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages
Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails 2009 9781934356166 792

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple's API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java. Python, and More

2005 9780974514079 208

Debug It! Find. Repair and Prevent Bugs in Your

Code

2009 9781934356289 232

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Driving Technical Change: Why People on Your

Team Don't Act on Good Ideas, and How to

Convince Them They Should

2010 9781934356609 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams.

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240
Continued on next page

Title Year ISBN Pages
GIS for Web Developers: Adding Where to Your
Web Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your
Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google's Mobile
Development Platform

2010 9781934356562 320

Interface Oriented Design 2006 9780976694052 240

iPad Programming: A Quick-Start Guide for
iPhone Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your
Own Domain-Specific and General Programming
Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic
Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your
Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for
Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby
Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications
with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way
to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to
Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Guide to Git 2010 9781934356722 168

Pragmatic Guide to JavaScript 2010 9781934356678 150

Pragmatic Guide to Subversion 2010 9781934356616 150

Pragmatic Project Automation: How to Build,
Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your
Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160
Continued on next page

Title Year ISBN Pages
Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create
Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent
World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for
the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic
Programmers' Guide

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic
Programmers' Guide

2009 9781934356081 944

Programming S cala: Tackle Multi-Core
Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew
JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rails Recipes 2006 9780977616602 350

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready
Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Seven Languages in Seven Weeks: A Pragmatic
Guide to Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software
Projects

2005 9780974514048 224

SQL Antipatterns: Avoiding the Pitfalls of
Database Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun
Again

2008 9781934356210 375

Test-Drive ASP NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Agile Samurai: How Agile Masters Deliver
Great Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building
Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a
Remarkable Career in Software Development

2009 9781934356340 200

Continued on next page

Title Year ISBN Pages

The RSpec Book: Behaviour-Driven Development
with RSpec, Cucumber, and Friends

ThoughtWorks Anthology

Ubuntu Kung Fa: Tips, Tricks, Hints, and Hacks

Web Design for Developers: A Programmer's
Guide to Design Tools and Techniques

2010 9781934356371 448

2008 9781934356142 240

2008 9781934356227 400

2009 9781934356135 300

