VISUAL QUICKPRO GUIDE

Flash Professional
CS5 Advanced

RUSSELL CHUN

@® LEARN THE QUICK AND EASY WAY!

VISUAL QUICKPRO GUIDE

Flash Professional
CS5 Advanced

FOR WINDOWS AND MACINTOSH

RUSSELL CHUN

Visual QuickPro Guide
Flash Professional CS5 Advanced for Windows and Macintosh
Russell Chun

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2011 by Russell Chun

Editor: Rebecca Gulick

Copy Editor: Liz Welch

Proofreader: Patricia Pane
Production Coordinator: Myrna Vladic
Compositor: David Van Ness

Indexer: Valerie Haynes Perry
Technical Reviewer: Matthew Newton
Cover Design: Peachpit Press

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Flash is a registered trademark of Adobe Systems, Inc., in the United States and in other countries. Macintosh
and Mac OS X are registered trademarks of Apple, Inc. Microsoft, Windows, Windows XP, and Windows Vista
are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN 13: 978-0-321-72034-4
ISBN 10: 0-321-72034-2

987654321

Printed and bound in the United States of America

www.peachpit.com

Thank you

Bringing this book to you, as always, took the efforts of a team, to which
| owe my gratitude. | want to thank my editor, Liz Welch; project editor,
Rebecca Gulick; production coordinator, Myrna Vladic; compositor, David
Van Ness; and proofreader, Patricia Pane. | would like to especially thank
Matthew Newton, whose keen insight and detailed technical review
were invaluable.

Finally, | want to thank readers like you. When | first discovered Flash,
it fired up my imagination and challenged me to see how | could use
the tool to deliver richer and more immersive content. Flash has come
a long way since then, and despite new technologies and an evolving
environment, it remains a vital part of the online experience. Readers
like you will continue to push Flash forward and make the Web even
more interesting by transforming your creativity into reality.

—Russell Chun

Contents at a Glance

Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 7
Chapter 8

Chapter 9

Chapter 10
Chapter 11
Chapter 12

Appendix

Introduction. ix

PART I: APPROACHING ADVANCED ANIMATION

Building Complexity 1
Working with Video. 57

PART II: INTERACTIVITY

Getting a Handle on ActionScript. 85
Advanced Buttons and Event Handling 125
Controlling Multiple Timelines. 169
Managing External Communication 187

PART IlIl: TRANSFORMING GRAPHICS AND SOUND

Controlling and Displaying Graphics. 231
Controlling Sound. 321

PART IV: WORKING WITH INFORMATION

Controlling Information Flow. 343
Controlling Text 383
Manipulating Information 435
Managing Content and Troubleshooting 471
Keyboard Key Codes 495
Index 497

iv Contents at a Glance

Table of Contents

Introduction. ix

PART I: APPROACHING ADVANCED ANIMATION

Chapter 1 Building Complexity 1
Motion Tweening Strategies 2
DuplicatingMotion 16
Shape Tweening Strategies 28
Using Inverse Kinematics. 33
Creating Special Effects 48
UsingMaskso 51

Chapter2 Working with Video. 57
Preparing VideoforFlash 58
Using Adobe Media Encoder. 59
Understanding Encoding Options. 62
Embedding VideointoFlash. 70
Playback of External Video. 73
Adding Cue Points to External Video 79
Detecting and Responding to Cue Points 82

PART II: INTERACTIVITY

Chapter 3 Getting a Handle on ActionScript 85
What Is ActionScript3?. 86
About ObjectsandClasses 87
About Methods and Properties 88
Writing with Dot Syntax. 89
More on Punctuation o1
The ActionsPanel. 92
Editing ActionScript.o oo 101
UsingObjects 104
About Functions. L oL 14
Using Code Snippets 119
UsingComments 123

Table of Contents v

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Advanced Buttons and Event Handling. 125

ListeningforEvents. 126
Mouse Detectiono 128
The SimpleButtonClass 133
Invisible Buttons. oL 137
Animated Buttons and the Movie Clip Symbol. 139
ComplexButtons oL 142
Button-tracking Options 146
Changing Button Behavior. 148
Creating Buttons Dynamically 151
Keyboard Detection. 153
The ContextualMenu. 157
Creating Continuous Actions 163
ASummaryofEvents. 168
Controlling Multiple Timelines. 169
Navigating Timelines with Movie Clips 170
TargetPathso 171
Absolute and Relative Paths 175
Using the with Action to Target Objects 177
Movie Clips as Containers 179
Using FramelLabels. 183
Managing External Communication 187
Communicating with the Web Browser. 188
Loading External Flash Movies. 200
Controlling Loaded Flash Movies 206
Loading Externallmages 212
Communicating with External Video 215
Detecting Download Progress: Preloaders. 222

PART llI: TRANSFORMING GRAPHICS AND SOUND

Controlling and Displaying Graphics 231
Understanding the Display List 232
Changing Visual Properties 233
Modifyingthe Color. 240
BlendingColors 246
Applying Special Effects with Filters 250
Creating Drag-and-Drop Interactivity. 253

vi

Table of Contents

Detecting Collisions. 258

Generating Graphics Dynamically. 261
Controlling StackingOrder. 264
Creating Vector Shapes Dynamically 267
Using DynamicMasks. 282
Generating Motion Tweens Dynamically 288
Customizing Your Pointer. 292
Putting It Together: Animating Graphics
with ActionScript Lo 294
About Bitmaplmages. 296
Creating and Accessing Bitmap Data. 297
Manipulating BitmapImages. 303
Using Filters on BitmapIlmages 313
Putting It Together: Animating Bitmap Images. 316
Chapter8 ControllingSound. 321
UsingSounds 322
Playing Sounds from the Library. 323
Loading and Playing External Sounds. 325
Controlling Sound Playback 326
Tracking Sound Progress. 330
Modifying Volume and Balance 332
Detecting SoundEvents 336
Working with MP3 Song Information 338
VisualizingSoundData. 341

PART IV: WORKING WITH INFORMATION

Chapter 9 Controlling Information Flow 343
Using Variables and Expressions 344
Loading External Variables. 346
Storing and Sharing Information. 354
Loading and Saving Files on the Hard Drive 360
Modifying Variables. 364
Concatenating Variables and Dynamic Referencing . 366
Testing Information with Conditional Statements . . . 368
Providing Alternatives to Conditions 372
Branching Conditional Statements 374
Combining Conditions with Logical Operators. 378
Looping Statements. 380

Table of Contents vii

Chapter 10

Chapter 11

Chapter 12

Appendix

ControllingText 383
Understanding TLF and Classic Text 384
Creating Wrapping Text. 387
Creating Multicolumn Text 390
Controlling Text Field Contents 392
DisplayingHTML. 395
Modifying Text Field Appearances 399
Generating Text Dynamically: Classic vs. TLF Text . . 401
CreatingClassicText 402
Creating TLF TextFields 408
Getting Text into the TextFlow. 410
TLF Text Containers and Controllers 414
Formatting the TextFlow 418
Making Text Selectable or Editable 420
Detecting TextFocus 422
AnalyzingText. 424
Manipulating Information. 435
Making Calculations with the Math Class. 436
CalculatingAngles 438
Creating Directional Movement 446
Calculating Distances. 450
Generating Random Numbers. 453
Ordering Information with Arrays 454
Keeping Track of Objects with Arrays. 460
Usingthe Dateand Time 464
Managing Content and Troubleshooting. 471
Sharing Library Symbols 472
Saving Files in an Uncompressed Format 479
Tracking, Finding, and Managing Flash Elements . . . 481
Optimizing YourMovie 488
Avoiding Common Mistakes 493
Keyboard KeyCodes. 495
Index 497

viii

Table of Contents

Introduction

Flash is one of the most pervasive tech-

nologies on the Web, delivering interactive
and immersive multimedia. Leading corpo-
rate Web sites use its streamlined graphics
to communicate their brands, major motion
picture studios promote theatrical releases
with Flash video, and online news and edu-

cational sites provide rich user experiences.

Adobe Flash Professional CS5 is the pro-
gram for industry professionals to create
Flash content. As a vector-based animation
and authoring application, Flash is ideal

for creating high-impact, low-bandwidth
sites incorporating animation, text, video,
sound, and database integration. With
robust support for complex interactivity
and server-side communication, Flash is

an ideal solution for developing Internet
applications as well as sophisticated Web
site designs. From designer to programmer,
Flash is an indispensable tool for delivering
dynamic content across various browsers,
platforms, and devices.

As the popularity of Flash remains high, so
does the demand for designers and devel-
opers who know how to tap its power. This
book is designed to help you meet that

challenge. Learn how to build complex ani-
mations; integrate sophisticated interfaces
and navigation schemes; and dynamically
control graphics, video, sound, and text.
Experiment with the techniques discussed
in this book to create the compelling media
that Flash makes possible. It's not an exag-
geration to say that Flash has revolution-
ized the Web. This book will help you be

a part of that revolution—so boot up your
computer and let’s get started!

Who Should Use
This Book

This book is for designers, animators, and
developers who want to take their Flash
skills to the next level. You've already
mastered the basics of tweening and are
ready to move on to more complex tasks,
such as importing video, masking, control-
ling dynamic sound, or detecting collisions
between graphics on the Stage. You may
be familiar with Flash CS4, but you are
eager to explore the new features in CS5—
the completely revamped text engine, the

Introduction ix

Code Snippets panel, or the ability to add
cue points to external video from the Stage.
You may not be a hard-core programmer,
but you’re ready to learn how ActionScript
can control vector and bitmap graphics,
sounds, and text. You want to integrate
interactivity with your animations to create
more responsive environments, to create
complex user interface elements like pull-
down menus, and to learn how Flash com-
municates with outside applications such as
Web browsers. If this description fits, then
this book is right for you.

This book explores the advanced aspects
of Flash Professional CS5 and some of the
key new features, so you should already
be comfortable with the basic tools and
commands for creating simple Flash mov-
ies. You should know how to create and
modify shapes and text with the drawing
tools and be able to create symbols. You
should also know how to create simple
motion tweens and know how to work with
shape tweens. You should know your way
around the Flash interface: how to move
from the Stage to symbol-editing mode

to the Timeline and how to manipulate
layers and frames. You should also be
familiar with importing and using bitmaps
and sounds, and assigning basic actions to
frames for navigation. To get up to speed,
review the tutorials that come with the soft-
ware, or pick up a copy of Flash Profes-
sional CS5 for Windows and Macintosh:
Visual QuickStart Guide by Katherine
Ulrich (Peachpit, 2010).

Goals of This Book

The aim of this book is to demonstrate the
advanced features of Flash Professional
CS5 through a logical approach, empha-
sizing how techniques are applied. You'll

learn how techniques build on each other
and how groups of techniques can be com-
bined to solve a particular problem. Each
example you work through puts another
skill under your belt; by the end of this
book, you’ll be able to create sophisticated
interactive Flash projects.

For example, creating a pull-down menu
illustrates how simple elements—event
handlers, button-tracking options, and
movie clips—come together to make more
complex behaviors. Examples illustrate the
practical application of techniques, and
additional tips explain how to apply these
techniques in other contexts.

How to use this book

The concepts in this book build on each
other: The material at the end is more
complex than that at the beginning. If you're
familiar with some of the material, you can
skip around to the subjects that interest you,
but you'll find it most useful to learn the tech-
niques in the order in which they appear.

As with other books in the Visual QuickPro
Guide series, tasks are presented for you
to do as you read about them, so that you
can see how a technique is applied. Follow
the step-by-step instructions, look at the
figures, and try the tasks on your computer.
You'll learn more by doing and by taking
an active role in experimenting with these
exercises. Many of the completed tasks
are provided as FLA and SWF files on the
companion Web site: Go to www.peachpit.
com/flashcs5vgp to download the sample
files and study how they were made.

When code is presented, it is set apartin a
different font. When a line of code is meant
to be typed on a single line but is forced
onto a second line in this book, you’ll see
a small arrow like this () indicating the
continuation of the code.

x Introduction

www.peachpit.com/flashcs5vqp
www.peachpit.com/flashcs5vqp

Tips follow the tasks to give you hints about
how to use a shortcut, warnings about com-
mon mistakes, and suggestions about how

techniques can be extended.

Occasionally, you'll see sidebars in gray
boxes. Sidebars discuss related matters that
aren’t directly task oriented. They include
interesting and useful concepts that can help
you better understand how Flash works.

What's in this book
This book is organized into four parts:

m Part I: Approaching Advanced
Animation

Chapters 1and 2 cover advanced
techniques for graphics and anima-

tion, including motion tweening and the
Motion Editor, inverse kinematics, and
the new Spring option to simulate phys-
ics, as well as strategies for shape tween-
ing, masking, and using digital video.

m Part II: Interactivity

Chapters 3 though 6 introduce Action-
Script 3, the scripting language Flash
uses to add interactivity to a movie.
You'll learn the ways in which Flash can
respond to input from the viewer and
how you can create complex navigation
schemes with multiple timelines. You'll
also see how Flash communicates with
external files and applications such as
Web browsers.

m Part lll: Transforming Graphics and
Sound

Chapters 7 and 8 demonstrate how to
dynamically control the basic elements
of any Flash movie—its graphics and
sound—through ActionScript.

m Part IV: Working with Information

Chapters 9 through 12 focus on how
to retrieve, store, modify, and test

information to create complex Flash
environments that can respond to
changing conditions. They also explore
the new text engine, called Text Layout
Framework, and how you can use it to
create sophisticated layouts.

= Appendix: Keyboard Key Codes

The appendix gives you quick access
to the key code values and matching
keyboard constants for the keys on
your keyboard.

What's on the companion Web site

Accompanying this book is a Web site

at www.peachpit.com/flashcs5vgp that
contains many of the Flash source files for
the tasks. You can download the files and
see how each task was created, study the
ActionScript, and use the ActionScript to
do further experimentation. Sample media
such as audio and video files are provided
for your use. You'll also find a list of Web
links to sites that are devoted to Flash and
that showcase the latest Flash techniques
and provide tutorials, articles, and advice.

Additional resources

Use the Web to your advantage. There is a
thriving, active, international community of
Flash developers; within it, you can share
your frustrations, seek help, and show off
your latest Flash masterpiece. Free forums
and a significant number of Flash-related
blogs exist for all levels of Flash users.
Begin your search for Flash resources with
the list of Web sites on the companion
Web site and by choosing Help in the Flash
application, which provides access to an
online searchable ActionScript 3 language
reference and Flash manual.

Introduction xi

www.peachpit.com/flashcs5vqp

What's New in Flash
Professional CS5

Whether you’re a beginner or an advanced
user, a designer or a programmer, a num-
ber of new features in Flash Professional
CS5 will appeal to you. The following are
just a few of the capabilities that make the
software even more powerful, flexible, and
easy to use.

New text capabilities

A completely new text engine called Text
Layout Framework, or TLF, provides you
with more sophisticated and nuanced con-
trol over text layouts and nearly all aspects
of typography. For example, you can create
text that wraps around photos or anima-
tions on the Stage for more visually appeal-
ing designs, or you can quickly make text
flow in multiple columns within the same
text field. TLF text comes with a host of
new ActionScript classes that enable you
to dynamically create, format, display, and
control text. If you’re into text, Flash Profes-
sional CS5 was made for you.

Video enhancements

Using Flash to download and play external
video has become even easier, with more
options for interactivity. New in CS5 is the
ability to preview your external video on
the Stage, making timing and placement
of your video more precise. There are
additional video skins that you can choose,
and you can now add cue points directly to
your video through the Properties inspec-
tor in authoring mode.

ActionScript support

ActionScript 3 continues to expand with
new language elements that give you more
power to build richer and more interactive
applications. To help you and your team
of developers create interactivity quickly
and consistently, Flash Professional CS5
has added a new panel called Code Snip-
pets. The Code Snippets panel makes
adding ActionScript easy—simply select
the desired interactivity from the panel
and assign it to your movie. You can add
your own code to the panel, and share
code snippets with your team. The Code
Snippets panel will save you time and
even help you learn ActionScript quicker
because you can study the code and its
application.

Animation and drawing
improvements

Inverse kinematics gets better with a new
feature called the Spring option. Designed
to simulate physics, the Spring option lets
you create armatures that wiggle, bounce,
and shimmer as they react to the effects of
gravity or their own motion. Waving flags,
swaying branches, or undulating under-
water creatures can move more realisti-
cally with ease. The Deco tool in your
Tools panel now comes with more options,
with numerous new brushes for complex,
expressive patterns. While not explored in
this book, the Deco tool is yet one more
reason to use Flash Professional CS5 to
transform your creative energies into rich,
interactive online content.

xii Introduction

Building Complexity

The key to creating complex animations

in Flash Professional CS5 is to build them
from simpler parts. You should think of your
Flash project as a collection of simpler
motions, just as the movement of a runner
is essentially a collection of rotating limbs.
Isolating individual components of a much
larger, complicated motion allows you to
treat each component with the most appro-
priate technique, simplifies the tweening,
and gives you better control with more
refined results.

To animate a runner, for example, you
would first consider how to simplify the
animation into separate motions. Animat-
ing the entire sequence at the same time
would be impossible, because the many
elements making up the motion change in
different ways as they move. The rotation
of her legs and arms can be created with
different poses using inverse kinemat-
ics. Her hair could be a shape tween that
lets you show its flow, swing, and slight
bouncing effect as she runs. And her entire
body can move across the Stage as a
motion tween.

In This Chapter

Motion Tweening Strategies 2
Duplicating Motion 16
Shape Tweening Strategies 28
Using Inverse Kinematics 33
Creating Special Effects 48
Using Masks 51

Learning to combine different techniques
and break animation into simpler parts not
only solves difficult animation problems
but also forces you to use multiple layers
and think in smaller, independent compo-
nents. By doing so, you set up the anima-
tion so that it's easy to manage now and
revise later.

This chapter describes some advanced
approaches to basic animation techniques
such as motion tweening, shape tweening,
inverse kinematics, and masking.

Motion Tweening
Strategies

Motion tweening lets you interpolate any
of the instance properties of a symbol,
such as its location, size, rotation, color,
and transparency, as well as any filters that
have been applied to the symbol instance.
Because of its versatility, motion tweening
can be applied to a variety of animation
tasks, making it the foundation of most
Flash projects. Because motion tweening
deals with instance properties, it's a good
idea to think of the technique in terms of
instance tweening. Regardless of whether
actual motion across the Stage is involved,
changing instance properties through time
requires motion tweening. Thinking of it as
instance tweening will help you distinguish
when and where to use motion tweening
as opposed to shape tweening, inverse
kinematics, or frame-by-frame animation.

The motion tween model

You should already know how to create a
basic motion tween in Flash Professional
CSb5. This book will help you move forward
and understand tweening’s more advanced
features. However, a quick review of the
key points in the motion tween model is
helpful:

® Motion tweens are object based, so
tweens are applied directly to objects
(rather than keyframes). The target
object of a motion tween can easily be
swapped with a different instance.

m Motion tweens are separated on a
special layer called a tween layer in a
tween span. The tween span can be
selected as a single object and moved,
expanded, and contracted to change its
duration, or copied and pasted. Flash
does not allow any drawing or other
objects placed within a tween span.

® You have independent control over
each property of the instance (posi-
tion, scale, color effect, filter) and can
change property values over time with
curves in the Motion Editor panel.

m The path of the motion is part of the
motion tween. The path can be directly
manipulated with Bézier precision or
freely scaled, skewed, rotated, or even
replaced.

2 Chapter1

Create Motion Tween
Create Shape Tween

Cut

Copy
Paste

o Right-click (Windows) or Ctrl-click (Mac) directly
on the object you want to animate, and choose
Create Motion Tween.

The selected item cannot be tweened. You must convert this to a symbol in
@ order to tween. Do you want to convert and create a tween?

] Don't show again.

Cone] [Cox]

0 Motion tweens require that the object be either
a symbol or text.

o A Tween layer is reserved for motion tweening.

2a0r s 10%“1|5”'

0 This instance of a star moves from left to right
in a motion tween. The black triangle in the last
frame of the tween span represents a keyframe for
the new position.

To create a motion tween:

1. Right-click (Windows) or Ctrl-click (Mac)
on an object on the Stage, and choose
Create Motion Tween from the context
menu that appears @.

Flash may ask to convert the selected
object into a symbol for it to be
tweened. Click OK @.

Flash automatically converts your
selection to a movie clip symbol, which
is saved in your Library. Flash also

puts the symbol instance in a separate
Tween layer and adds one second of
frames so you can begin to animate
the instance. Tween layers are distin-
guished by a special icon in front of the
layer name, and the frames are tinted
blue @. Tween layers are reserved for
motion tweens, and hence, no drawing
is allowed on a Tween layer.

2. Move the playhead to a desired end
point on the Tween layer.

3. Move the instance to a different posi-
tion on the Stage.

Flash smoothly animates the change in
positions @.

@D If you are more comfortable working
with the older way of animating, you can do
so by relying on the Classic Tween option.
Create a beginning keyframe and an ending
keyframe containing a symbol instance. Select
the first keyframe, and then choose Insert >
Classic Tween. However, many features, such
as the Motion Editor, are not available for
classic tweens.

Building Complexity 3

Editing the path of the motion

The path that an instance moves during
a motion tween is graphically shown as a
stroke on the Stage. Dots along the path
indicate the instance’s position at each
frame @. You can directly manipulate
the path with a variety of tools, includ-
ing the Selection tool, the Subselection
tool, the Delete Anchor Point tool, the
Convert Anchor Point tool, or the Free
Transform tool.

To change the location of the path:

1. Click on the motion path with the Selec-
tion tool.

The motion path becomes highlighted,
indicating that the whole path is
selected.

2. Click and drag the motion path to a new
location on the Stage @.

The motion path is moved. The motion
tween proceeds from its new location.

or

Select the motion path and change the
X and Y values in the Properties inspec-
tor under Path @.

G The curved line on the Stage represents the
path of motion of an object. The dots on the line
represent the location of the object at each frame
during the tween span.

o Move the path to move the location of the
motion tween.

< PATH

Y. 114.2

X 176.0

] w: 240.0 H: 43.0

| |
Horizontal position Vertical position
of the path of the path

@ Change the X and Y values in the Properties
inspector to change the location of the motion
tween.

4 Chapter1

— Scale

\ —— Change height

}-’ \, } —— Skew (tilt)
}l o _\. -
e e
J"'_ _"‘"\\ il ‘ —— Free distort
. o W (hold down
e . ﬁ Ctrl key for Win,
Cmd key for Mac)

0 Use the Free Transform tool to change the
shape of the path.

To change the shape of the path:

1. Select the Free Transform tool and click
on the motion path on the Stage.

The Free Transform control points
appear around the motion path.

2. Drag the Free Transform control
points to change the overall shape
of the motion path. The position of
your mouse pointer on various con-
trol points determines the type of
transformation @:

On corner points. Changes the over-
all width and height of the path. Hold
down the Shift key to constrain the
proportions.

Near corner points. Rotates the path.

Side points. Changes either the width
or the height of the path.

Sides. Skews (tilts) the path.
or

Select the motion path and change
the W and H values in the Properties
inspector under Path.

The W and H values change the width
and the height of the motion path.

When using the Free Transform tool, you
can move the white circle, which represents
the center point around which all transforma-
tions are made. Double-click the white circle to
reset its position.

Building Complexity 5

To change the curvature of the path: .
Choose the Selection tool and drag a < K @ Drag a segment of the
portion of the motion path to change its - motion path to change its
curvature @. curvature.
or
. -~ o Move individual
Choose the Subselection tool and move A control points with the
the individual control points to new 5‘/ \ Subselection tool, or
positions, or drag the control handles to move the control handles
to change the curvature of

change the curvature @. the motion path.
or
Choose the Delete Anchor Point t<?ol and O Delete individual
click on a control point on the motion path. \3 7 . control points with

. . . - the Delete Anchor
The control point and its associated curve Point tool.

are deleted @.
or

Choose the Convert Anchor Point tool and _ .
click on a control point on the motion path o
and drag out the control handles.

o Use the Convert
Anchor Point tool to
click on an individual
control point (top) and
drag out the handles
to create curves at that
point (bottom).

The control handles change the curvature
of the path at that point @.

Multiple Motion Paths

If you are designing multiple motion tweens with
intersecting motion paths, it is often helpful to see all
the motion paths for all the tweens simultaneously.
Select a tween on the Timeline or its motion path on
the Stage, and from the Properties inspector options
menu, choose Always Show Motion Paths (.

Always Show Motion Paths 1,

@ Choose Always Show Motion Paths from

Flash displays all the motion paths so you can edit the Properties inspector options menu to
one while seeing its relationship to the others @). display motion paths for all your layers.
If you only want to see a subset of all the motion

paths, simply click on the Hide Layer options in the .

layers that you want to hide.

0 These three motion tweens are
on separate layers, but their motion .
paths are displayed simultaneously.

6 Chapter1

To delete the path:

Select the path and press the Delete key
on the keyboard.

The path is deleted (but the tween still
exists), and the object of the motion tween
remains stationary.

To reverse the path:

Right-click (Windows) or Ctrl-click (Mac)
the motion path and choose Motion Path >
Reverse Path.

The path remains the same; however, the
target object begins at the end point and
travels in the reverse direction.

Roving and Non-roving Keyframes

Flash automatically adjusts the positions of property
keyframes so that the speed of the motion is consistent
throughout a tween. As you edit the motion path, the
property keyframes adjust so the object moves the same
distance in each frame @. This way of automatically adjust-
ing keyframes is known as roving keyframes.

However, you may not want your motion to be consis-

tent throughout the path. You can change the tween to
non-roving keyframes by right-clicking (Windows) or Ctrl-
clicking (Mac) the motion path and choosing Motion Path >

To copy and paste a motion path:

1. Select a stroke on a different layer or a
motion path from another tween, and
copy the stroke (Edit > Copy).

2. Select the motion path and paste the
stroke (Edit > Paste in Center).

The pasted stroke replaces the motion
path.

0 Roving keyframes automatically
distribute the object’s position
along its path equally.

Switch keyframes to non-roving @. Flash will fix the posi-

tions of the keyframes in the tween span so that any further
edits to the path will increase or decrease the speed of the
object in particular segments of the tween @.

Distribute to Layers

Motion Path Switch keyframes to roving

Convert to Symbel...

| Path

Switch keyframes to non-roving

o Roving keyframes is the default setting. Choose

non-roving keyframes to prevent Flash from
automatically distributing the object’s position.

0 With non-roving keyframes,
this object moves along different
segments on its path at different
speeds.

Building Complexity 7

Using the Motion Editor

Keyframes are specific to each property of
an instance. For example, a single motion
tween can have keyframes for position
and different keyframes for alpha. Manag-
ing these property keyframes may seem
daunting, but fortunately you can use the
Motion Editor (Window > Motion Editor) to
visualize and keep track of all your prop-
erty keyframes.

The Motion Editor provides a graphical
representation of the changing values for
all the properties of an instance in a motion
tween. For example, if an object moves
from left to right on the Stage, the Motion
Editor shows the change in the X position
values as a line on a graph @. Learning to

read and understand the Motion Editor is
essential for creating more sophisticated,
advanced animations.

You can add any number of keyframes
along the graph for any of the properties
and change their values.

To open the Motion Editor:

1. Select a tween span on the Timeline or
a tweened object on the Stage.

2. Click on the Motion Editor tab behind
the Timeline, or choose Window >
Motion Editor.

The Motion Editor displays the graphs
for the selected motion tween @.

Propety | value | Ease | Keyframe | Graph 1
P N IR
 Basic mation [[No Ease L=] S| =t e i
x 1614 px M(Hokase iv] 4 @ b /

0 The Motion Editor shows the X position of this object changing

from frame 1to frame 16.

Property values Keyframe controls Playhead
Fraperty | vaia [Fase | eyl ame. | |.raph] o
= P - D e —— | imeline
¥ Basic motion [[No Ease Lx] | S =1
x eram SlReme —1v)|d 0 nl/
¥ 230 px @(fame —1¥] | ¢ b pb—— : | _______
Sl o‘ M Ho Ezse L 1 bl e o o e e e
Properties —j |7 Transformation Bl & 9| =~ W Graphs
Skoew X 0* [+ [o Ease = 4 e b ke
Skew¥ o e R e
Seale X 100% 4@ ([o Ease = dob 0L L L L
Scale ¥ 100% 4 H(Fokse T o b pM
Color Effect = &) T
Filters = =
T BT
IE 23 B 5 |]_il [« »
L)
T
Motion Editor viewing options Add and delete properties

o The Motion Editor displays the properties of the instance on the

left and their changing values on the r

ight.

8 Chapter1

o

o The graph
4 portion of the
Motion Editor
has a vertical
red playhead,
just as the

o LlLobdettt T TR Timeline does.

— e Lfaee | Kayframe | Leaph -
Ve o o 3 0 :
— ST e—]
X B —— :
0 e TR ENT" EEEEE e
z i =g . T
T G o
Codr Efery -3
== i~ R
Mo 0% e 4 60
-
Filers s
= S
R : o B 0 =
== @w o 15 - :
Add keyframe Keyframe

0 Click on the diamond to add a keyframe to the
currently selected property. Here, a keyframe for
Alpha (transparency) has been inserted at frame 8.

Graph . . L]
RO T [| ARy

L] Oads

el ewae keyframe
directly from the
context menu
(right-click for
Windows, Ctrl-

Lo LLft-]] "|'"|'"|'"|'"|'"r" click for Mac).

To add a property keyframe:

1. Move the playhead to the desired frame
on the Timeline in the Motion Editor @.

2. Click the diamond icon next to the
selected property.
A keyframe at that point in time, indi-
cated by a black square, is inserted for
the property @.

or
Right-click (Windows) or Ctrl-click (Mac)
on any point along the graph and
choose Add Keyframe @).
A keyframe at that point in time, indi-
cated by a black square, is inserted for
the property.

or
Ctrl-click (Windows) or Cmd-click (Mac)
on any point along the graph @.

A keyframe at that point in time, indi-
cated by a black square, is inserted for
the property.

| Graph

v

P D Adda
d [mb keyframe by
) holding down
* the Ctrl key

(Windows) or
Cmd key (Mac)
and clicking on

d LIt Ef T T T T TR e graph.

Building Complexity 9

To change the value of a
property keyframe:

Drag the keyframe up or down to its new
value.

The value for the property keyframe
changes @.

or

Drag the playhead to the selected key-

frame and change the value under the
Value column.

The value for the property keyframe
changes @.

Change the value of multiple keyframes
at once by holding down the Shift key and
selecting multiple keyframes and then drag-
ging the multiple keyframes to new values.
The line segment or segments between the
selected keyframes will move together.

Move quickly between keyframes by
clicking on the left-facing or the right-facing
arrowhead. The adjacent keyframes will be
selected.

To remove a property keyframe:

Right-click (Windows) or Ctrl-click (Mac)
on any keyframe and choose Remove
Keyframe.

The selected keyframe is removed @.
or

Select a keyframe and click the yellow
diamond icon.

The selected keyframe is removed.
or

Ctrl-click (Windows) or Cmd-click (Mac) on
any keyframe.

The selected keyframe is removed.

Propery | Vabee | base. | Kayframe: | Ceaph L
1 3 SO M
B mation [Efry T —] @
x Dije Fomse w4 - b [[T L1 1]
v e i rre— 1T
Roaion 2] Elia— 5K} L3
» Transformien [T ~r— Y
Codor et = G
Ak [EET T r— @
180
Mohaamoust BL3% i~ —
Filers. a %
¥ L - %
Smple (low) 2 o acpe
(=] @ o o s = D

o The keyframe at frame 6 for the Alpha property
has been dragged down to about 92.5%. The
resulting tween will show the object fade slightly
from frame 1to frame 6.

¥ Color #ffect: o ok
* Algha [Ty —]
L LT i e—_y)

0 Change the value for any keyframe directly
with numerical precision. The value column for the
Alpha property at this keyframe shows 92.5429%.

[Granh
e o M o O

[e
|

o

=

- Remove Keyframe

e Choose Remove

Roving Keyframe to delete
Corner point 1 a keyframe along
Smooth point 1 the graph

10 Chapter1

Plus button for Color Effect To reset the value of a

oo = property keyframe:
Filters -
e — LR Click the Reset Values button in the upper-

Advanced Color

right corner of the property category.

) i) The property returns to its initial value.
m In this example, the Brightness property is

being added to the Motion Editor.
To add a property:

Mi button for Color Effect
fnus button for ~-ofor |ec Click the plus button next to the Property

o S . mm category (Color Effect, Filters, or Eases)
s Peme 7] 28 and select the desired property @.
Filters. . ap
- = @ The selected property is added to the
5 Motion Editor.

In this example, the Brightness property is
being deleted from the Motion Editor. To remove a property:

Click the minus button next to the property
category (Color Effect, Filters, or Eases)
and select the property to remove @).

The selected property is removed from the
Motion Editor.

Motion Editor Display Options

There are many options you can set in the Motion Editor to help you be more comfortable access-
ing its information.

You can move the horizontal splitter bar that separates the Motion Editor from the Stage to
increase the height of the panel. You can also expand or collapse any of the property categories
by clicking on the small triangles next to the property category names. When you select a specific
property, the graph expands to show more of that property.

At the bottom left of the Motion Editor, three buttons change the viewing area of the properties
and their graphs @®. The Graph Size button changes the height of the rows of unselected proper-
ties. The Expanded Graph Size button changes the height of the row of the selected property. The
Viewable Frames button changes the number of frames that are viewable along the Timeline.

Graph Size Expanded Graph Size Viewable Frames

B 2o B 70 0 1s

@ Change the viewing options for the Motion
Editor to best suit your working environment.

Building Complexity 11

Easing in the Motion Editor

You can also change the curvature of the
graph at any keyframe of all the proper-
ties except for X, Y, and Z. Changing the
curvature affects how fast or slow the
values change. A straight line represents a
linear change—an equal amount of change
happens throughout the tween. A curved
line represents a nonlinear change known
as an ease.

Easing shows how fast or slow the change
in values happens. You could have your
tween start slowly and end quickly (ease-in),
or your tween could start quickly and gradu-
ally slow down (ease-out). Easing is a way
to add a sense of acceleration and decel-
eration, which can give weight and natural-
ness to an otherwise mechanical animation.

Flash also provides a number of preset
eases that you can apply to any property,
including X, Y, and Z (.

Using the preset eases is an easy way of
making complex motions without explicitly
defining keyframes. For example, you can
quickly create bounces or shudders in a
motion tween by simply applying a custom
ease that moves back and forth between
the values of a property keyframe.

¥ Eases oy N

1-Simple (Slow)

2-Simple (Medium)

3-5imple (Fast)

a-Simple (Fastest)

S=5top and Start [..

G=5top and Start (..

7-5top and Start (..

Bls|ls 888 B|°

B-5top and Start ...

G-Bounce

10-Bounce In

11-5pring

12-5ine Wawe

13-5awtooth Wae

14-5quare Wave

15-Random

16-Dampes) Wave

e_ﬁ_ﬂoppé‘-l_eql_ﬂpeep.ppa

|1o (w0 [t (s e [[|

17-Custom = 1% b

@The Preset eases available in the Motion
Editor.

12 Chapter1

|t Remove Keyframe

\

Roving

Corner point
Smooth point
Smooth left

Smooth right

@Choose one of the Smooth
options to change the curvature of the
graph at any keyframe (except for the
X, Y, or Z properties).

mThe handles affect the curvature
of the graph at the keyframe.

To create a smooth curve:

Right-click (Windows) or Ctrl-click (Mac) a
property keyframe (except for X, Y, or Z),
and choose Smooth point, Smooth left, or
Smooth right @.

Smooth point. Control handles appear
from both sides of the keyframe, which you
can move to change the curvature of the
graph.

Smooth left. A control handle appears from
the left side of the keyframe, which you
can move to change the curvature of the
graph to the left of the keyframe.

Smooth right. A control handle appears
from the right side of the keyframe, which
you can move to change the curvature of
the graph to the right of the keyframe.

or
Alt-click (Windows) or Option-click (Mac) a
property keyframe (except for X, Y, or Z),

and drag out the control handles to change
the curvature of the graph @.

To remove a curve:

Right-click (Windows) or Ctrl-click (Mac) a
property keyframe (except for X, Y, or Z),
and choose Corner point.

The control handles disappear from the
keyframe, and the graph on both sides of
the keyframe becomes a straight line.

Building Complexity 13

To apply a preset ease:

1. Click the plus button on the Eases cat-
egory and choose a preset ease.

The selected preset ease appears in
the Motion Editor @.

2. Select the preset ease and change its
value.

The value of the preset ease deter-
mines the strength and direction of the
ease. You can visually see the effect in
the graph G.

3. Choose the ease in the Ease pull-down
menu next to the property you want it
to affect @D.

The preset ease is applied to the prop-
erty. The ease curve is superimposed
on the graph to show how it affects the
property values over time @D.

You can also apply ease-in and ease-out
effects from the Properties inspector. In the
Timeline (not the Motion Editor), select the
motion tween. In the Properties inspector,
enter a value for the ease between -100 (ease-
in) and 100 (ease-out). Eases applied via the
Properties inspector, however, will be applied
globally to all the properties throughout the
entire motion tween. With the Motion Editor,
you have precise control over individual prop-
erties and eases between keyframes.

For classic tweens, you can edit the
easing profile from the Properties inspector.
Select the Edit easing button to access the
Custom Ease-in/Ease-out editor.

Property. | Valur | Eavr | ¥ryfeame | Graph
1 ¥ o,
¥ Baskc motion [[Bo Ease 3 &5
> [L e L1x]]
Calor Fffect = @
Filters =
* Eases S
Simple (Slow) 0 Simple (Slow)
Simple (Medium)

Simple (Fastest)

Srop and Sram (Slow)
Stop and Start (Medium)
Stop and Start (Fast)
Srop and Stam (Fastest)
Bounce

@ Choose a preset ease from the plus button
next to the Ease category.

 Eases = @
1-Simple (Slow) 0 9,

2-Simple (Fast)

@The Strength value of a preset ease changes
its curvature.

mAppIy the preset ease to a property. Here,
the preset ease is applied to the Basic Motion
category, so the X, Y, and Z changes of the object
will be affected by the ease.

1 » w0
¥ Ragkc mscion ([2-Nimpie (Fary__ 1% |
x sdee Mcamperan v 4 @
T, legpn BiZ-Smplefad_ix] 4 ¢
Rotation 2 o B (ZSimpke Fasg_x] 4
- [o e =] -
* Color EMect - g
Filters : &
w Eases = O
L-Simpile (iom) 1 B ey
-Simple (Fasty 60 0 =

mThe curved dotted line superimposed over
the X graph shows how the preset ease affects the
X property.

14 Chapter 1

Interpreting the Ease Curves

The ease curves indicate how a property value changes over
time. The x-axis of the graph represents time, and the y-axis
represents the property value. If the change is uniform—that is,
the value changes an equal amount at every frame—the graph
is a straight line. If there is an upward sloping curve at the
beginning and a flattening out at the end (@, that means that
there is a greater change in the y-axis (the property value) for
the frames at the beginning and a smaller change in the y-axis
for the frames at the end. The result is a rapid acceleration of
the property at the start and a gradual slowdown at the end.

The curve doesn’t always have to travel in one direction only,
and the curve doesn’t have to end at the last property value.

In fact, interesting effects can be achieved if the curve moves
back and forth between property values. For example, the
curve of the Spring ease @ moves rapidly from the beginning
property value to the ending property value in the first few
frames, and then moves back and forth until finally settling at

a point a little more than halfway between the beginning and
end values. If this ease is applied to a motion tween of position,
the result would be a springing action back and forth between
two points on the Stage until the object rests about halfway
between.

mA graph showing an
ease-out.

100

n

mThe Spring ease rapidly
moves from the beginning
value (0) to the end value (100)
and swings back and forth
until settling somewhere in the

middle.

The value of the ease curves
determines their strength

and direction. The curvature
becomes more pronounced in
both directions, and the result on
the ease becomes more notice-

4-5ine Wave 11

able. For other ease curves, the
value determines the frequency,
or the number of waves or
bumps in the curve @D.

Simple (Slow)

Simple (Medium)
Simple (Fast)

Simple (Fastest)

Stop and Start (Slow)
Stop and Start (Medium)
Stop and Start (Fast)
Stop and Start (Fastest)
Bounce

Bounce In

Spring

Sine Wave

Sawtooth Wave

Square Wave

Random

Damped Wave

Custom

For total control, you can
choose Custom from the Ease
menu (ﬂD The Custom ease lets
you create your own curve and
apply it to any of the properties.

@This Sine Wave ease has 11 peaks and valleys.

m Choose the bottom
option from the preset Ease
menu for a custom graph.

Building Complexity 15

Duplicating Motion

If you've created a motion tween that you
want to duplicate with a different object, or
you want to create multiple objects going
through the same motion, you can easily
do so with a variety of copy-and-paste and
swapping options. For example, imagine
that you’ve created a transition for the first
slide of a photo slide show. Now you want
to duplicate that transition with the next ten
slides. You can select the motion tween of
the first slide and copy all the character-
istics of that tween—its rotation, scaling,
position, color, or filter changes. Then you
can apply the characteristics of that tween
to the subsequent slides.

Copying and pasting motion and swap-
ping out the tweened object make it easy
to create complex animations with repeti-
tive motion, such as a photo slide show or
perhaps a group of fluttering leaves.

To duplicate a motion tween:

Hold down the Alt key (Windows) or the
Option key (Mac) and drag a tween span
to a new layer on the Timeline.

Flash duplicates the motion tween @.
or

1. Inthe Timeline, right-click (Windows)
or Ctrl-click (Mac) on a tween span and
choose Copy Frames.

The selected tween span is copied.

2. Right-click (Windows) or Ctrl-click (Mac)
on a destination frame and choose
Paste Frames.

The copied tween is duplicated in the
new location.

o This tween span from Layer 1is copied and
pasted into Layer 2.

16 Chapter1

0 The existing tween uses the square movie clip.
Drag another instance from the Library onto the
tween to swap instances.

Do you wish to replace the existing tween target object?

[] Don't show again.

[cancet | | ok |

o Click OK to accept the Flash dialog
warning box.

0 The original tween with the square movie clip
is replaced with the circle movie clip.

Swap Symbol
_%mm | T
* L] square |
|

G Choose a different symbol in the Swap Symbol
dialog box to swap for the original. The original
symbol is marked with a black dot.

To swap the target
object of a tween:

1.

or

Drag a new symbol from the Library and
drop it on an existing tweened object
on the Stage @.

A warning dialog box appears ask-
ing whether you want to replace the
tweened object @.

. In the dialog box, click OK.

Flash replaces the existing object
with the one you dragged out of the
Library ©@.

Right-click (Windows) or Ctrl-click (Mac)
on the tweened object and choose
Swap Symbol.

The Swap Symbol dialog box

appears @.

. In the dialog box, select your replace-

ment symbol and click OK.

Flash swaps the symbols, aligning their
registration points.

Building Complexity 17

To copy motion and apply
it to another object:

1. In the Timeline, right-click (Windows)
or Ctrl-click (Mac) on a tween span and
choose Copy Motion.

The selected motion of the tween span
is copied.

2. On the Stage or on the Timeline, right-
click (Windows) or Ctrl-click (Mac) a
different symbol instance and choose
Paste Motion from the context menu @.

Flash duplicates the motion of the first
tween and applies it to the second sym-
bol instance @.

Paste Motion Special (not discussed
here) is for classic tweening.

Saving tweens as motion presets

If you want to save your motion tweens,
perhaps to apply them in future projects or
to share them with other developers, you
can do so in the Motion Presets panel. The
Motion Presets panel (Window > Motion
Presets) is much like a library of favorite or
useful tweens. The Motion Presets panel
comes loaded with many basic tweens that
you can use @.

You can also save your own tweens and
share them with others. Using the Motion
Presets panel will save you time and effort.

Create Motion Tween
Create Shape Tween

Cut

Copy
Paste

Copy Maorion
Copy Motion as ActionScript 3.0...
Paste Motion [
Paste Motion Special...)
Save as Motion Preset...

o Choose Paste Motion to apply the copied
motion to a different instance.

@ The copied motion from the tween with the
circle is pasted and applied to the square.

MOTION PRESETS

33 items @]

|v 9 Default Presets =
" bounce-in-3D

| & bounce-out-3D
+ bounce-smoosh
" fy-in-blur-bottom
27 My-in-blur-left
&7 My=in-blur-right
& fly-in-hlur-top

m The Motion
Presets panel

" fly-in-bottom contains premade
| = fly-in-left * | tweens and lets
- L ou save tweens
A v

that you create.

18 Chapter1

Remove Tween
Create Shape Tween

Cut
Copy
Paste

Copy Motion
Copy Motion as ActionScript 3.0...
Paste Motion

Paste Motlon Special...
Save as Motion Preset...

Select All
Deselect All

o Choose Save as Motion Preset to keep
frequently used tweens.

Preset name: |curveball || ox |

o This tween will be saved in the Motion Presets
panel as curveball.

L E—

» Default Presets
¥ [Custom Presets o The tween
=" curveball called curveball

can be applied to
other instances.

Import...
Export...
Rename...
New Folder...
Remove

Apply at current location
End at current location

Help
28 items -] Close
|- B Default Presets Close Group

Save Selection as
Preset button

o You can also save a tween from the Motion
Presets options menu (top) or from the Save
Selection as Preset button (bottom).

|
RO e Apply

To save a tween as a motion preset:

1. Right-click (Windows) or Ctrl-click (Mac)
on a tween span in the Timeline or on
a tweened object on the Stage and
choose Save as Motion Preset @.

The Save Preset As dialog box appears.

2. Enter a name to identify your tween and
click OK @.

Your tween is saved in the Custom Pre-
sets folder in the Motion Presets panel
and is available to be applied to other
objects (.

1. Select a tween span on the Timeline or
a tweened object on the Stage.

2. In the Motion Presets panel, click the
Save Selection as Preset button. Alter-
natively, choose Save from the Motion
Presets options menu @.

Your tween is saved in the Custom
Presets folder in the Motion Presets
panel and is available to be applied to
other objects.

Building Complexity 19

To apply a motion preset:
1. Select a symbol instance on the Stage.

2. In the Motion Presets panel, select
a motion preset and click the Apply
button @. Alternatively, right-click
(Windows) or Ctrl-click (Mac) the motion
preset and choose “Apply at current
location.”

The motion preset is applied to

your instance. The current position of
the instance on the Stage is used as
the initial position of the tween).

If you want the selected symbol instance
to be the ending position of the motion preset,
choose End at Current Location from the

Motion Presets panel options pull-down menu.

To delete a motion preset:

Select the motion preset and click the
Trash icon. Alternatively, right-click (Win-
dows) or Ctrl-click (Mac) on the motion
preset and choose Remove 0.

A dialog box appears asking you to confirm
your choice. When you click Delete, Flash
deletes the motion preset from the Motion
Presets panel.

MOTION PRESETS

34 items o

v [Default Presers =
=" bounce-in-30
hounce-our-3n
" hounce-smaosh
& fly-in-hiur-bomam
& fly-In-hiur-lefr
& fly-in-hlur-right

& fly-in-blur-top m Choose a

=" fly-in-bottom preset and a
- =" fly-in-laft o Ll preview of the .
0o s e tween appears in

the top window.

0 The preset tween is applied to your own
instance.

& spiral-3D

Fatlawesah

& wave

" zoom-out-2D

" zwom-vut-3D ||
v [cuswom presers
& curveball

Apply at current location
End art current location

0 Choose Remove to delete a tween
from the Motion Presets panel.

20 Chapter1

Rename...
New Folder...
Remove

Apply at current location
End at current location

Help

Close
Close Group

o Choose Export from the Motion Presets options
menu to save a tween to an external file.

Save As: [curveball xmi | &

0 This tween is saved as the XML document
curveball.xml.

To organize your motion presets:

m Double-click the name of your motion
preset to rename it. Or right-click (Win-
dows) or Ctrl-click (Mac) and choose
Rename.

m Click the New Folder icon to create
a new folder to organize your motion
presets.

m Double-click the name of your folder. Or
right-click (Windows) or Ctrl-click (Mac)
on the folder and choose Rename.

m Drag your motion presets and drop

them on the highlighted folders to move
them into different folders.

You cannot rename, move, or delete the
motion presets that are provided in the Default
Presets folder.

To export a motion preset:
1. Select a motion preset.

2. In the Motion Presets panel options
menu, choose Export. Or right-click
(Windows) or Ctrl-click (Mac) the motion
preset and choose Export @.

The Save As dialog box appears.

3. Provide a name for the motion preset
file. Click OK or Save @.

The file will be saved as an XML file,
which you can share with fellow anima-
tors or developers.

To import a motion preset:

1. In the Motion Presets panel options
menu, choose Import.

The Open dialog box appears.

2. Choose the XML file of the motion pre-
set. Click Open.

The motion preset is imported into the
Motion Presets panel.

Building Complexity 21

Animating in 3D

Animating in 3D presents the thrill (but
complication) of a third (z) axis for depth in
addition to the horizontal (x) and vertical (y)
axes. You can move or rotate any movie clip
instance or Text Layout Framework (TLF)
text (or dynamically created instances of the
DisplayObject class, discussed in Chapter
7, “Controlling and Displaying Graphics”) in
three dimensions with full control over the
amount of perspective distortion and the
location of the vanishing point.

Use the 3D Rotation tool to rotate an
object along any of its three axes and
the 3D Translation tool to move an object
along any of its three axes.

For example, create a Star Wars-style open-
ing scrolling text screen by rotating the text
along its x-axis to tilt it, and then translating
it along the y- and z-axes to have it disap-
pear in the horizon. Create confetti that
realistically tumble in 3D, or develop games
with cards that flip as they are dealt. Your
only limit is your imagination.

To rotate an object in 3D space:

1. Begin with a movie clip instance or TLF
text on the Stage.

2. Select the 3D Rotation tool and click on
your object on the Stage.

A 3D rotation display appears on your
object @. The colored lines indicate the
axes along which your object can move.

Red. Drag the red line to move the
object around the x-axis.

Green. Drag the green line to move the
object around the y-axis.

Blue. Drag the blue circle to move the
object around the z-axis.

Orange. Drag the orange circle to move
the object freely around all three axes.

0 Use the 3D Rotation tool to rotate an object in
3D space. This rectangle can be rotated along the
X-, y-, or z-axis, or freely along any three of the axes.

22 Chapter1

/T\\/ Center of

rotation

Target
object

o The 3D display is moved off the object,
changing its center of rotation.

m

+ 100.0% § 1000% €3 @

@ Rotate
< 0.0*
O Skew
s q-e

3D Rotation

X 0.0° ¥ 00°

3D Center point
X 4040 Y. 152.0 Z: 0.0

G tF

0 Use the 3D Translation tool to

move an object in 3D space. This
rectangle can be moved along
the x- (horizontal), y- (vertical), or
z- (in and out) axis.

0 The Transform panel
shows the values for
the 3D rotation and 3D
center point, which you
can change.

To change the center
point of 3D rotation:

Move the white circle of the 3D display.

Subsequent 3D rotations will move the
object relative to the new center point @.

To reset the center point
of 3D rotation:

Double-click the white circle of the 3D
display.

The 3D center point is restored.

To move an object in 3D space:

1. Begin with a movie clip instance or TLF
text on the Stage.

2. Select the 3D Translation tool and click
on your object on the Stage.

A 3D translation display appears on
your object @. The colored lines indi-
cate the axes along which your object
can move.

Red. Drag the red line to move the
object along the x-axis.

Green. Drag the green line to move the
object along the y-axis.

Blue. Drag the blue circle to move the
object along the z-axis.

You can also rotate an object in 3D or
change its center point in the Transform panel
(Window > Transform) 0

Continues on next page

Building Complexity 23

You can also rotate or move multiple
objects in 3D. Use the Shift key to select addi-
tional instances. Double-clicking the center
point of the 3D display for multiple selections
will place the center point between all the
selected instances 0

You can turn on or off the 3D display that
appears over your objects in the General Pref-
erences dialog box (Flash > Preferences).

You cannot Edit in Place an instance that
has been rotated or moved in 3D space. You
must edit the instance in symbol editing mode.

3D objects are not supported in mask
layers.

Global vs. Local Transformations

0 These two rectangles are rotated together in
3D space using the single 3D display, which has
been centered between both instances.

When you choose the 3D Rotation or 3D Translation tool, you need to be aware of the Global
Transform option at the bottom of the Tools panel). The Global Transform option toggles
between a global option (button depressed) and a local option (button raised).

Moving an object with the global option on makes the transformations relative to the global (Stage)
coordinate system. The 3D display shows the three axes in constant position, no matter how the

object is rotated or moved €.

However, moving an object with the global option turned off makes the transformation relative to
itself. The 3D display shows the three axes oriented relative to the object).

S

&

)

a9

iE. T Global Transform
option

@ The Global Transform
option is at the bottom of
the Tools panel.

o With the Global Transform option
on, the 3D rotation and 3D translation
displays are always perpendicular to
the Stage and remain constant.

0 With the Global Transform option
off, the 3D rotation and 3D translation
displays are oriented to the object,
not to the Stage. Notice that the 3D
Rotation tool (left) shows a globe
with the three axes relative to the
rectangle, and the 3D Translation

tool (right) shows the z-axis pointing
out from the rectangle, not from

the Stage.

24 Chapter1

R T R —
’_@ [cmtanceRame= |G
Movie Clip [E3
Instance of: Symbol 1
[+ POSITION AND SIZE
=+ 3D POSITION AND VIEW

X:2168 Y:1836 Z:42
W:1350 H: 1740

L] B = Perspective

& X750 ¥:2000 angle

0 Change the Perspective angle in the
Properties inspector.

L degree

—— 55 degrees

.

L. L 55 degrees

>

mThe perspective angle affects the degree
of distortion of objects in perspective and how
quickly parallel lines recede in the distance.

PROPERTIES
[cnsuncebame> | @
Instance of: Symbel 1
[+ POSITION AND SIZE
+r 30 POSITION AND VIEW
¥:2210 Y1990 Z:0.0
wofe Wi | Vanishing point
B 140 X position
& x2r50 Y2000 — Vanishing point
Y position

Change the vanishing point in the
Properties inspector.

To change the perspective:

1.
2.

Select a 3D object on the Stage.

In the Properties inspector, change the
value of the perspective angle @.

The default perspective angle is 55
degrees, which is similar to a normal
camera. You can change the value from
1to 180 degrees, which determines the
amount of distortion due to perspective
rendering @. The greater the angle,
the more severe the objects appear to
recede in the distance.

To change the vanishing point:

1.
2.

Select a 3D object on the Stage.

In the Properties inspector, change the
value of the X and Y vanishing point
positions @D.

The default position of the vanishing
point is in the middle of the Stage.
The vanishing point represents the
point on the horizon at which parallel
lines disappear, just like the tracks of
a railroad (9.

@D Changing the perspective angle or the
vanishing point changes the settings for all the
3D objects on the Stage.

Vanishing point

@The vanishing point is represented by a
horizontal and a vertical line.

Building Complexity 25

Animating titles

Frequently, splash screens on Flash Web
sites feature animated titles and other
text-related materials that twirl, tumble,
and spin until they all come into place as

a complete design. Several techniques
can help you accomplish these kinds of
effects quickly and easily. The Break Apart
command, when applied to text, breaks
the text into its component parts (Clas-

sic text breaks apart into editable letters
while TLF text breaks apart into drawing
objects). This command lets you painlessly
create separate letters that make up a
word or title. You can then use the Distrib-
ute to Layers command to isolate each of
those characters on its own layer, ready for
motion tweening.

When you begin applying motion tweens
to your individual letters or words, it's use-
ful to think and work backward from the
final design. Establish the end keyframes
containing the final positions of all your
characters, for example. Then, in the first
keyframes, you can change the characters’
positions and apply as many transforma-
tions as you like, knowing that the final
resting spots are secured.

To animate the letters of a title:

1. Select the Text tool, and choose TLF
Text and Read Only in the Properties
inspector.

2. On the Stage, type a title you want to

animate @D.

3. Choose Modify > Break Apart (Ctrl-B for
Windows, Cmd-B for Mac).

Flash replaces the text title with indi-
vidual drawing groups of the letters @.

SH

@ Create TLF text on the Stage with the Text tool.

FLASH

@ Breaking apart a block of Read Only text
results in grouped drawing objects.

w8
T Layer 1 -

B s

@l Layer 3
] Layer 4
&l Layer 5

o
=]
]
O
O
al Layer & |

m Distribute to Layers
separates the selected
items into their own layers.

TIMELINE

#a01 5 10 15 20 Dzs

&l Layer 1 ..|l]| |

H layer 3 « « @,
H layer 4 « « @,
H layer 5 « o O
Layer 6 « » Wi

@ Each letter has its own tween.

26 Chapter1

Insert Frame oy

Remove Frames Position
Scale

Insert Keyframe Skew

Insert Blank Keyframe Rotation

Clear Keyframe > Color

View Keyframes > Filter

i v pe——

@ Insert a keyframe at the last frame in all the
tween spans.

mThe last keyframe fixes the final
position for all the letters.

al Laver 1 ml

A Layer 2 15 4
" Layer 3 £ of
Layer 4 [=]9 4
Layer s O 4
Layer 6 ll. 4

mThe letters tumble and fall into place at the
last keyframe.

. Choose Modify > Timeline > Distribute

to Layers (Ctrl-Shift-D for Windows,
Cmd-Shift-D for Mac).

Each selected item on the Stage is
placed in its own layer below the exist-
ing layer @.

. Select each letter in turn and, choose

Insert > Motion Tween, or right-click
(Windows) or Ctrl-click (Mac) and
choose Create Motion Tween from the
context menu.

Flash may ask to convert the selected
object into a symbol for it to be
tweened. Click OK.

Flash creates a tween span for each let-
ter in each layer and adds one second’s
worth of frames on the Timeline .

. Hold down the Citrl key (Windows) or

the Cmd key (Mac) and select the last
frames of all the layers.

Right-click (Windows) or Ctrl-click (Mac)
on the selected frames and choose
Insert Keyframe > All D).

A keyframe for all properties is inserted
in the last frame for all the selected

layers @D.

. In the first keyframe of each layer,

rearrange and transform the letters
according to your creative urges.

Flash animates all these text elements
coming together as a complete title @.

Building Complexity 27

Shape Tweening
Strategies

Shape tweening is a technique for inter-
polating amorphous changes that can’t be
accomplished with instance transforma-
tions such as rotation, scale, and skew. Fill,
stroke, gradient, and alpha are all shape
attributes that can be shape tweened.
While motion tweening is based on an
object model, shape tweening still relies on
a keyframe model where you establish a
beginning keyframe and an end keyframe
with a shape tween applied to the frames
in between.

Flash applies a shape tween by using
what it considers to be the most efficient,
direct route. This method sometimes has
unpredictable results, creating overlapping
shapes or seemingly random holes that
appear and merge @). These undesirable
effects usually are the result of keyframes
containing shapes that are too complex to
tween at the same time.

Simplifying a complicated shape tween
into more basic parts and separating those
parts in layers results in a more successful
interpolation. Shape hints give you a way
to tell Flash what point on the first shape
corresponds to what point on the second
shape. Sometimes, adding intermediate
keyframes helps a complicated tween by
providing a transition state and making the
tween go through many more manageable
stages.

Using shape hints

Shape hints force Flash to map points on
the first shape to corresponding points
on the second shape. By placing multiple
shape hints, you can control more pre-
cisely the way your shapes will tween.

To add a shape hint:

1. Select the first keyframe of the shape
tween, and choose Modify > Shape >
Add Shape Hint (Ctrl-Shift-H for Win-
dows, Cmd-Shift-H for Mac).

A letter in a red circle appears in the
middle of your shape @.

2. Move the first shape hint to a point on
your shape.

Make sure that the Snap to Objects
modifier for the Selection tool is turned
on to snap your selections to vertices
and edges.

— Hole

— Intersecting shapes

shape

o An attempt to shape tween the word “flash” to
the word “shape” all at once in a single layer has
poor results. Notice the breakups between the

s and the p and the hole that appears between
the h and the e.

® —————— First shape hint

TIMELINE

sanfl] s 10
szu

0 Select the first keyframe of the shape tween,
and choose Modify > Shape > Add Shape Hint. The
first shape hint appears in the center of the Stage.

28 Chapter1

T
TIMLLING

o a DE|.,?.,..,1P

TIMELINE

G The first shape hint in the
first keyframe (top) and its match
in the last keyframe (bottom).

The cross of the
T is absorbed
into the |

This T goes through some
unnecessary changes to
result in the |

0 Changing from a T to an / with shape hints (left)
and without shape hints (right).

3. Select the last keyframe of the shape
tween, and move the matching circled
letter to a corresponding point on the
end shape.

This shape hint turns green and the
first shape hint turns yellow, signifying
that both have been moved into place
correctly @.

4. Continue adding shape hints, up to a
maximum of 26, to refine the shape
tween @.

To delete a shape hint:
Drag the shape hint off the Stage.

The matching shape hint in the other key-
frame is deleted automatically.

To remove all shape hints:

While on the first keyframe of a shape
tween, choose Modify > Shape > Remove
All Hints.

Place shape hints in order either clock-
wise or counterclockwise. Flash more easily
understands a sequential placement than one
that jumps around.

Shape hints need to be placed on an
edge or a corner of the shape. If you place a
shape hint in the fill or outside the shape, the
original and corresponding shape hints will
remain red, and Flash will ignore them.

To view your animation without the
shape hints, choose View > Show Shape Hints
(Ctrl-Alt-H for Windows, Cmd-Option-H for
Mac). Flash deselects the Show Shape Hints
option, and the shape hints are hidden.

If you move your entire shape tween
by using Edit Multiple Frames, you’ll have to
reposition your shape hints. Unfortunately,
you can’t move all the shape hints at the
same time.

Building Complexity 29

Using intermediate keyframes

Adding intermediate keyframes can help a
complicated tween by providing a transi-
tion state that creates smaller changes
that are more manageable. Think about
this process in terms of motion tween-

ing. Imagine that you want to create the
motion of a ball starting from the top left
of the Stage, moving to the top right, then
to the bottom left, and finally to the bottom
right. You can’t create just two position
keyframes—one with the ball at the top-left
corner of the Stage and one with the ball in
the bottom-right corner—and expect Flash
to tween the zigzag motion. You need to
establish the intermediate position so that
Flash can create the motion in stages. The
same is true with shape tweening. You

can better handle one dramatic change
between two shapes by using simpler,
intermediate keyframes.

To create an intermediate keyframe:

1. Study how an existing shape tween fails
to produce satisfactory results when
tweening the letter Z to the letter S 0.

2. Insert a keyframe (F6) at an intermedi-
ate point within the tween.

3. In the newly created keyframe, edit the
shape to provide a kind of stepping
stone for the final shape @.

The shape tween has smaller changes
to go through with smoother results @.

Using layers to simplify
shape changes

Shape tweening lets you create complex
shape tweens on a single layer, but doing
so can produce unpredictable results. Use
layers to separate complex shapes and
create multiple but simpler shape tweens.

Intersecting shapes

G Changing a Zto an S all at once causes the
shape to flip and cross over itself.

G An intermediate shape.

155

@ The Z makes an easy transition to the
intermediate shape (middle) from which the
S can tween smoothly.

30 Chapter1

0 A hole appears at the
outline of the first shape when
a shape tween is applied to
change an Fto a D.

eao 5 B 15 w2

Wl hole « « @,
o—

o The hole and the solid shapes are
separated on two layers.

1 Free Transform Tool (@)
® (T Gradient Transform Tool (F) &

Gradient Transform
+~ tool control points

\

Rectangular shape

o Use the Gradient Transform tool from the
Toolbox to change the way a gradient fill is
applied to a shape.

When a shape tween is applied to change
the letter F to the letter D, for example, the
hole in the last shape appears at the edges
of the first shape @). Separating the hole in
the D and treating it as a white shape allows
you to control when and how it appears.
Insert a new layer, and create a second
tween for the hole. The compound tween
gives you better, more refined results @.

Using shape tweens for
gradient transitions

It helps to think about shape tweening

as a technique that does more than just
morphing, or interpolating one amorphous
contour to another. After all, shape tween-
ing can be used on any of the attributes of
a shape, such as line weight; stroke color,
including its alpha or gradient; and fill color,
including its alpha or gradient. You can cre-
ate interesting effects just by shape tween-
ing color gradients. For example, changing
the way a gradient is applied to a particular
fill using the Gradient Transform tool can
be an easy way to move a gradient across
the Stage; combined with changing con-
tours, it can produce atmospheric anima-
tions like clouds or puffs of smoke.

To create a gradient transition
with shape tweening:

1. Select the Rectangle tool, and draw a
large rectangle on the Stage.

2. Fill the shape with a radial or linear
gradient.

3. Select the Gradient Transform tool by
clicking and holding down the Free
Transform tool and selecting the second
option. Click the rectangle on the Stage.

The control handles for the Gradient
Transform tool appear for the gradient @.

Continues on next page

Building Complexity 31

4. For this task, move the center point
handle of the gradient to the left side
of your rectangle.

5. Create a new keyframe later on the
Timeline.

6. Select the last keyframe, and click the
rectangle with the Gradient Transform
tool.

The control handles for the Gradient
Transform tool appear for the gradient
in the last keyframe.

7. Move the center point handle of the
gradient to the far right side of the rect-
angle, and change the rotation, scale,
or angle of the gradient as you desire.

Your two keyframes contain the same
rectangular shape, but the gradient fills
are applied differently @.

8. Select the first keyframe and choose
Insert > Shape Tween (or right-click
[Windows], Ctrl-click [Mac] on the first
keyframe and choose Create Shape
Tween).

Flash tweens the transformation of the
gradient fills from the first keyframe to
the last keyframe. The actual contour
of the rectangle remains constant.

9. Delete the outlines of the rectangle.

The gradient moves from left to right @.

You can’t shape tween between differ-
ent kinds of gradients; that is, you can’t shape
tween from a radial gradient to a linear gradi-
ent, or vice versa.

Rotation handle of Gradient Transform tool

Center point of linear gradient

Width handle of Gradient Transform tool

0 In the last keyframe, use the Gradient Transform
tool to change the way the linear gradient fills the
rectangle. Here, the linear gradient is moved to the
far right side, tilted, and made narrower.

oa0:r 5| w 15 20 25 30 3

o The final shape tween makes the gradient
twist, widen, and move across the rectangle.

32 Chapter1

Using Inverse
Kinematics

When you want to animate an object that
has multiple parts connected with joints,
such as a walking person, Flash makes

it easy to do so with inverse kinematics.
Inverse kinematics is a mathematical way
to calculate the different angles of a jointed
object to achieve a certain configuration.
You can pose your object in a beginning
keyframe, and then set a different pose

at a later keyframe. Flash will use inverse
kinematics to figure out the different
angles for all the joints to get from the first
pose to the next pose.

Inverse kinematics makes animating easy
because you don’t have to worry about ani-
mating each segment of an object or limb
of a character. You just focus on the overall
poses. Flash Professional CS5 introduces

a physics simulation feature for inverse
kinematics called Spring. The Spring option
helps make objects jiggle and move as if
they were affected by the force of gravity
or the force of their own motion.

There are two ways of using inverse kine-
matics: the first is to join together several

movie clip instances, and the second is to
define individual segments inside a single
shape.

Inverse kinematics with movie clips

The first step when using inverse kinemat-
ics is to define the bones of your object.
You use the Bone tool to do that. The Bone
tool tells Flash how a series of movie clip
instances are connected to each other. The
set of connected movie clips is known as
the armature, and each of the movie clips
is known as a node.

Building Complexity 33

To create an armature:

1. Position several movie clip instances on
the Stage in roughly the layout in which
you want them to be linked @.

2. Select the Bone tool in the Tools panel.

3. Click on the top of the first movie clip
and drag the Bone tool to the top of the
second movie clip @.

Your first bone is defined. Flash shows
the bone as a skinny triangle with a
round joint at its head and a round joint
at its tail. Each bone is defined from the
base of the first instance to the base of
the second. For example, to build an
arm, you would click on the shoulder
side of the upper arm and drag it to the
elbow side of the lower arm.

Flash creates a new layer for your
armature called a pose layer, a special
layer that supports inverse kinemat-
ics. Motion tweens, shape tweens, and
drawing are not allowed in pose layers.

4. Continue adding nodes to the armature
by clicking on the tip of the first bone
and dragging it to the base of the next
object @.

To add additional nodes to an armature,
you must place the movie clips you want to
add in a different layer. Then use the Bone tool
to link the existing armature in the pose layer
to the movie clips in the other layer. Flash will
add the movie clips as additional nodes.

If you want your bones to connect to the
registration points of your objects, you can
select the Snap to Objects option at the bot-
tom of the Tools panel.

N
5

(

0 Use the Bone
tool to link the first
instance to the

0 Three movie
clip instances are
placed on the

Stage, arranged second.
end to end.
Bone —
—— Armature
Node — @1 |
(individual movie
clip instance) +
Pose layer o
e [| comuen smons [ononepon ||
s 8 0 5 10 15
Sl Layer 1 . . H

0 The Bone tool links these three instances
together in an armature. The armature is separated
on its own layer in the Timeline.

34 Chapter1

LI beleabiis b onial bt e e i i

Remave Armature
Convert to Frame by Frame Animation

Clear Pose

Insert Frame
Remove Frames

0 A new pose will be inserted in frame 20.

G In the second pose, move the armature to a
new position. The connections make it easy to
animate the entire object at once.

To insert a pose:

1. Select a later frame on the Timeline and
right-click (Windows) or Ctrl-click (Mac)
and choose Insert Pose.

A new pose is created, which is very
much like a new keyframe for the
armature @.

2. Inthe second pose, move the armature
into another position.

Flash automatically animates the arma-
ture from the first pose to the second @.

To isolate the rotation of an individual
node, hold down the Shift key as you pose
the armature. You’ll find that making minor
adjustments to the armature is easier and
more exact.

To delete a pose:

Right-click (Windows) or Ctrl-click (Mac) on
a pose on the Timeline and choose Clear
Pose.

The selected pose on the Timeline is
removed.

To move a pose on the Timeline:
Ctrl-click (Windows) or Cmd-click (Mac) to

select a pose, and then drag it to a differ-
ent position along the Timeline.

The selected pose moves to a different
position on the Timeline.

To edit an armature:

m Use the Free Transform tool to scale,
rotate, or move individual nodes.

= Hold down the Alt key (Windows) or the
Option key (Mac) to drag a node to a
new position.

m Select a bone and press the Delete key
to remove a bone and all the bones
connected to it down the chain.

Building Complexity 35

Armature Hierarchy

The first bone of an armature is referred to as the parent, and the bone that is linked to it is called
the child. A bone can have more than one child attached to it as well. For example, an armature of
a person would have a pelvis connected to two thighs, which in turn are attached to two lower legs
of their own. The pelvis is the parent, each thigh is a child, and the thighs are siblings to each other.
As your armature becomes more complicated, you can use the Properties inspector to navigate up
and down the hierarchy using these relationships.

When you select a bone in an armature, the top of the Properties inspector displays a series of
arrows @.

You can click the arrows to move through the hierarchy and quickly select and view the properties
of each node. If the parent bone is selected, you can click the down arrow to select the child. If a
child bone is selected, you can click the up arrow to select its parent, or click the down arrow to
select its own child, if it has one. The sideways arrows navigate between sibling nodes.

Select next sibling ~ Select child

Select previous sibling Select parent

5 o R

ikBoneName2 |

o Navigate through the armature hierarchy with the arrows
in the Properties inspector.

36 Chapter1

4 —
] \i
ﬂ E
@ Individual movie clips are arranged for
a branching armature.

O
o

S | R e 1)

L
I L

0 Begin building the armature from the
parent node (the body) to a child node (an

upper limb).

] @t |

[
I [

o One branch of the armature is complete.

To create a branching armature:

1.

Position several movie clip instances

on the Stage in roughly the layout in
which you want them to be linked. This
example shows a typical puppet with
arms and legs branching from its central

body @.

2. Select the Bone tool in the Tools panel.

3. Begin with the anchor movie clip, which

is the body. Click on the top of the body
and drag the Bone tool to the top of the

upper arm @.
Your first bone is defined.

. Click on the end of the first bone and

drag it to the top of the lower arm @.

The armature of one arm is complete.

. Now click on the top of the first bone

in the body and drag it to the top of the
other arm @.

Your first branching bone is defined,
which is a sibling to the bone of the
first arm.

Continues on next page

O

L
! L

o The second branch of the armature
begins from the head of an existing bone
(here, from the parent node).

Building Complexity 37

6. Continue extending the branch to
the lower arm and create additional
branches to the legs .

Your completed armature has multiple
nodes connected to a single central
(parent) node.

Notice, however, that the limbs rotate
around the head of the parent bone,
which is unrealistic for this puppet @.
To prevent the limbs from rotating
freely around the head of the parent
bone, you must restrict the rotation of O The final branching armature.
that bone.

7. Select any of the bones in the body (the O Rotation possible
parent node), and in the Joint: Rota- around this joint
tion section of the Properties inspector, | eisy &
deselect the Enable option @.

The selected bone and its siblings will
not rotate around its head, creating a
more realistic range of motion for the
puppet @. You'll learn more about
restricting joint rotation in the upcoming
sections of this chapter.

o Without any constraints, the arms of this
puppet rotate too freely and unrealistically.

== JOINT: ROTATION
Rotation disabled

[] Enable around this joint

@ Deselect the Enable option for Joint: Rotation
in the Properties inspector for the parent bone.

o When rotation for the parent node is disabled,
only the head of the child bones can rotate,
enabling the shoulders and hips to rotate from
their fixed positions.

38 Chapter1

First bone Shape
| |
c—----%> @

0 Use the Bone tool to start an armature inside a
single shape.

Bone Shape
| |
| |
|
Pose layer Armature

W Layer 1 « « @

o The Bone tool creates an armature of five
segments inside this rectangular shape. The
armature is separated on its own layer in the
Timeline.

@ In new poses, you can move any bone to
change the shape around it.

Inverse kinematics with shapes

Another way you can use inverse kine-
matics is to define several bones inside

a single shape. By providing an internal
armature to a shape, you can control

how the contours of the shape move and
bend, somewhat like shape tweening. Use
inverse kinematics with shapes to create
the undulating motion of a snake or the
flexing of someone’s biceps.

To create an armature
inside a shape:

1. Create a single shape on the Stage. The
shape can be drawn in either Drawing
mode or Object Drawing mode.

2. Select the Bone tool in the Tools panel.

3. Click inside the shape and drag the
Bone tool a little ways inside the
shape @.

Your first bone is defined.

Flash puts your armature in a pose
layer, a special layer that supports

inverse kinematics. Motion tweens,
shape tweens, and drawing are not
allowed in pose layers.

4. Click on the narrow end of the first
bone and drag out the next bone a little
farther inside the shape.

5. Continue adding bones until the arma-
ture extends throughout the shape @.

Using the Selection tool, you can click
and drag any of the bones to create

a pose and the shape will deform to
match the internal armature @. Animat-
ing an armature inside a shape is the
same process as animating an armature
of separate movie clips (see the previ-
ous tasks in this chapter, “To insert a
pose,” “To delete a pose,” and “To move
a pose on the Timeline”).

Building Complexity 39

To edit the shape around
an armature:

m Use the Paintbucket tool to change the
fill color of the shape.

m Use the Inkbottle tool to change the
stroke color and stroke height of the
shape.

m Use the Subselection tool to change
the contours of the shape.

m Use the Add Anchor Point tool to add
new points on the contour of the shape.

m Use the Delete Anchor Point tool to
delete points on the contour of the
shape.

= Hold down the Alt key (Windows) or the
Option key (Mac) and drag the entire
shape with its armature to a new posi-
tion on the Stage.

To edit the bones of the armature:

m Use the Subselection tool to move the
base or the tips of the bones into new
positions within the shape. You can only
do this with the initial armature in the
first pose.

m Select a bone with the Selection tool
and press the Delete key to remove a
bone and all the bones connected to it
down the chain.

40 Chapter1

Refining Shape Behavior with the Bind tool

The organic control of a shape by its armature is a result of a mapping between control points
along the shape and its bones. Hence, where the bones rotate, the shape follows.

You can edit the connections between the bones and their control points with the Bind tool, which
is hidden under the Bone tool. The Bind tool displays which control points are connected to which
bones and lets you break those connections and make new ones.

When you choose the Bind tool and select a bone, all the connected control points on the shape
are highlighted in yellow @.

If you want to redefine which control points are connected to the selected bone, you can do the
following:

m Shift-click to add additional associations to existing control points to the bone.
m Cirl-click (Windows) or Cmd-click (Mac) to remove associations to control points from the bone.
® Drag a connection line between the bone and the control point.

You can also click on any control point on the shape. The selected control point is highlighted in
red, and all the connected bones are highlighted in yellow @.

If you want to redefine which bones are connected to the selected control point, you can do the
following:

m Shift-click to add additional bones to the control point.
m Ctrl-click (Windows) or Cmd-click (Mac) to remove bones from the control point.
m Drag a connection line between the control point and the bone.

Selected bone Selected control point
\

\
o ’ S g

—(— o>

One of four control points Bone connected Bone connected
connected to the bone to control point to control point
0 The Bind tool defines the connections o The Bind tool also shows the connections between a
between a bone and its control points on particular control point on the shape and its associated
the shape. This last selected bone shows bone or bones. This selected point is associated with the
that it is associated with four control last two bones of this armature.

points around it.

Building Complexity 41

Options for joint rotation
and translation

When you build your armature, the vari-
ous joints freely rotate, which may not be
particularly realistic. Many armatures in real
life are constrained to certain angles of
rotation. For example, you can rotate your
lower leg to be parallel with your thigh, but
you can’t rotate it past the knee (at least |
hope you can’t!). When working with arma-
tures, whether they are in a shape or part
of a series of linked movie clips, you can
choose to constrain the rotation around the
head of the joints, or even constrain the
translation (side-to-side or up-and-down
movement) of the joints.

To constrain the rotation of joints:
1. Click on a bone to select it.

2. In the Properties inspector, select
the Constrain check box under Joint:
Rotation @.

The joint for the selected bone is
constrained.

3. Change the values for Min and Max to
set the minimum and maximum degrees
of rotation for the selected joint.

The allowable range of rotation appears
on the joint on the Stage @. The Min
and Max values are relative to the cur-
rent position of the bone.

To enable joint translation:
1. Click on a bone to select it.

2. In the Properties inspector, select the
Enable check box under Joint: X Trans-
lation and/or Joint: Y Translation).

The joint for the selected bone can now
freely move around on the Stage.

iKBone (o)l || <)(k)
<
= LOCATION
Pusition X: 276.00 ¥:166.15

Length: 103.7 px Angle:-G67.85*
Speed: 100%
= JOINT: ROTATION

Constrain option | &enable
for joint rotation — ¥ constrain Min: =45* Max: 44*

o Enable the Constrain option in the Properties
inspector to limit the rotation of any joint.

/ Current position

Maximum angle

Minimum angle
< JOINT: ROTATION

[Enable

M Constrain Min: -63° Max: 26°

0 The middle node is constrained from its current
position from 63 degrees counterclockwise to 26
degrees clockwise.

T —
e SRR
IkBoneNamel
< LOCATION
Position ¥: 276.00 ¥:58.15

Length: 108.0 px Angle:-2.59"

Speed: 100%

Enable option for | [jomT: raTaTion

horizontal motion | IOINT: X TRANSLATION
of this joint — Enable

[Constrain ~ Min: 0.0 Max: 0.0

0 Choose the Enable option for Joint: X Translation
or Joint: Y Translation in the Properties inspector to
enable movement of the joint.

42 Chapter1

[Current position

»——m' —— Minimum X position

Maximum X position

=7 JOINT: X TRANSLATION

[Enable

[Constrain Min: =500 Max: 50.0

@ The top node can move left and right, indicated
by the horizontal line. It is constrained from its
current position to 50 pixels to the left and 50
pixels to the right.

Constraining the Last Node

Joint constraints are always on the head of
the selected bone. This means that the last
bone in an armature can never be constrained
because it is linked to the tail of the previ-

ous bone. However, you can get around this
restriction by creating an “invisible” node past
your last node. By setting the alpha value of
this node to O, the user never sees it, but it
helps you constrain the joints of all the nodes
up the hierarchy @.

3. Select the Constrain check box and
change the values for Min and Max to
set the minimum and maximum amount
of movement for the selected joint.

The allowable range of motion appears
on the joint on the Stage @. The Min
and Max values are relative to the cur-
rent position of the bone.

If you enable joint translation, it’s a good
idea to also disable joint rotation to prevent
wild joint movements. An armature with

both joint translation and rotation is difficult
to control.

Constrained joint

Constrained joint

Node set to
0% Alpha

0 Creating an extra, invisible node at the end of
an armature will let you constrain the rotation of
the last visible bone.

Building Complexity 43

Changing joint speed

Joint speed refers to the stickiness, or
stiffness, of a joint. A joint with a low value
for joint speed will be sluggish. A joint with
a high value for joint speed will be more
responsive. You can set the joint speed
value for any selected joint in the Proper-
ties inspector.

The joint speed is apparent when you drag
the very end of an armature. If there are
slow joints higher up on the armature chain,
those particular joints will be less respon-
sive and will rotate to a lesser degree than
the others. Changing joint speed will help
you pose your armatures more realistically,
but it does not affect the actual animation.

To change joint speed:

Select a bone and, in the Properties
inspector, change the value of Speed .

The Speed values can range from 0%
(frozen) to 100% (normal).

Controlling armature easing

Armatures do not have access to the
Motion Editor and its sophisticated controls
for eases. However, a few standard eases
are available from the Properties inspec-
tor. Easing can make your armatures move
with a sense of gravity due to acceleration
or deceleration of their motion.

To control easing:

Select a pose layer and, in the Proper-
ties inspector, choose the Type of ease
and change the Strength value @. Type
indicates the kind of easing, and Strength
determines the direction and severity of
the ease.

Ease-in. To start gradually and quickly
come to a stop, set Type to any of the

T T =
IK Bone @@

[ikBoneName2 |

= LOCATION

Position X: 226.00 ¥:166.05

Length: 103.8 px Angle: 0.00"

Speed: I5U I

0 A Speed value of 50 makes this joint a
little more sluggish than normal.

PROPERTIES

IK Armature

]
G? [Armature_1 |

< EASE

¥ none
Simple (Slow)
Simple (Medium)
Simple (Fast)
Simple (Fastest)
Stop and Start (Slow)
Stop and Start (Medium)
Stop and Start (Fast)
Stop and Start (Fastest)

0 Change the Type and Strength values to
control the easing of your armature.

44 Chapter1

PROPERTIES

IK Armature

o]
& [Armature_1 |

< EASE

¥ Runtime

mChoose Runtime in the Properties
inspector to enable interactive control of
your armature. Choose Authortime to set
multiple poses along the Timeline for Flash
to animate.

a0 5

eoce

The Runtime option is only allowed when
your armature has a single pose. In the Test Movie
environment, viewers can move your armature
interactively.

Simple options and set the Strength to a
negative number.

Ease-out. To start quickly and gradually
come to a stop, set Type to any of the
Simple options and set Strength to a posi-
tive number.

Ease-in and Ease-out. To start gradually,
speed up in the middle, and then gradu-
ally come to a stop, set Type to any of the
Stop and Start options and set Strength to
a negative number.

Ease-out and Ease-in. To start quickly, slow
down in the middle, and then end quickly,
set Type to any of the Stop and Start
options and set Strength to a positive num-
ber. This setting creates an unusual motion,
which you probably won’t use very much.

Runtime and authortime armatures

Authortime armatures are those that

you pose along the Timeline and play as
straightforward animations. Runtime arma-
tures are interactive and allow the user to
move your armature. You can make any of
your armatures—whether they are made
with a series of movie clips or made with

a shape—into an authortime or a runtime
armature. Runtime armatures, however, are
restricted to armatures that only have a
single pose.

To make a runtime armature:

Select a pose layer and, in the Proper-
ties inspector, choose Runtime under the
Options section @D.

A tiny armature icon appears in the pose
layer to indicate the Runtime option. When
you test your movie (Control > Test Movie >
in Flash Professional), you can interact with
the armature @D.

Building Complexity 45

Simulating physics with
the Spring option

Flash Professional CS5 adds a new feature
to inverse kinematics called Spring, which
simulates physics and the internal jig-
gling of an armature. For example, if you
were to animate a small tree reacting to a
strong gust of wind, you’d expect to see
the tree and its branches quiver and wave
in response to the wind, and continue to
quiver even after the wind has stopped.
The Spring option lets you set the amount
of jiggling and how long the jiggling lasts.

To add Spring to an armature:

1. Select any bone in an armature ®@.
Your armature can be made of separate
movie clips or be enclosed within a
shape.

2. In the Properties inspector, under
the Spring section, set a value for
Strength @.

Strength values can range from O (stiff)
to 100 (very loose). Each bone can have
a different Strength value for its Spring,
which affects the overall way an arma-
ture reacts to motion.

@ Select the bone to
which you want to add
some springiness.

< SPRING

Strength: plY Damping: 0

@ In the Properties inspector, set
the value of Strength to determine
the amount of springiness of the
selected bone.

46 Chapter1

T @ i 5 1ater pose, move
the armature. In this
example, the straight
armature is moved to the
right (by holding down
the Alt/Option key).

TIMELINE

Armature_4 #

mThe Spring option causes the armature to
waver as it animates, simulating its reaction to the
physical forces acting on the different bones.

3. Create a new pose where the armature
changes pose or moves its position @.

Flash simulates the physics of a motion
on the loose, springy armature @.

You’ll see the effects of the Spring option
on an armature more clearly if you have
additional frames after its final pose. The extra
frames give Flash time to continue jiggling the
armature after its motion stops.

To dampen the Spring option:

1. Select any bone in an armature that has
Spring.

2. In the Properties inspector, under the
Spring section, set a value for Damping.

Damping values can range from O
(none) to 100 (high). The higher the
Damping, the quicker the armature
will cease its jiggling.

Building Complexity 47

Creating Special
Effects

Because Flash’s drawing tools are vec-

tor based, you normally wouldn’t think of
incorporating special effects, such as a
motion blur or color blending, which are
associated with bitmap applications like
Adobe Photoshop or After Effects. But
using filters and blends, those special
effects can be created directly in Flash.
This technique can give your Flash movies
more depth and richness by going beyond
the simple flat shapes and gradients of
vector drawings.

The following tasks demonstrate a blur
effect using filters and a color-blending
effect using blends.

A blur is an effect that occurs when the
camera is out of focus. Blurs are particularly
effective for transitions; you can animate a
blurry image coming into sharp focus.

To create a blur-to-focus effect:

1. In Flash, create the image you want
to blur using the drawing tools or by
importing an image to the Stage. In this
example, we use a photo.

2. Right-click (Windows) or Ctrl-click
(Mac) on the image and choose Create
Motion Tween.

Flash asks whether you want to convert
the selection to a movie clip symbol to
begin motion tweening. Click OK.

Flash converts the selection to a movie
clip symbol and adds one second’s
worth of frames to the newly created
tween span on the Timeline @.

In Flash, filters can only be applied to
a movie clip symbol, a button symbol,
or text.

0 This imported photo is converted to a movie
clip symbol and motion tweened.

Fropesty | vakee |t | Enyframe | Crgh L
— — — S [P e e
Bk motion [— Y s
Tramilormation. =y ~r—; k]
ol Eect A b
Fiters. = A
Drop Shadow
Claw
| Bevel
| Gradient Glow

0 In the Motion Editor, add the Blur filter to the
Filters category.

S~~—=+,
1!] 5 18
* Filers. - G
o [r—
N TN - i r— R S
/
= . A —
Qualey (ow __iv]

O Increase the value of the Blur filter to 50 pixels.

48 Chapter1

T e TP

* Fiers.
s @

—x namun T

v - Oms v 490 (g T]

Quabey

0 In the last frame of the motion tween, decrease
the value of the Blur filter to O pixels. The downward
sloping graph shows the gradual transition.

G The resulting tween of the Blur filter makes an
effective transition.

[DISPLAY

=7 FILTERS

Proapemy | Value |

¥ Elur
Blur X 50px L
Blur ¥ 50px -
Quality Low Lx

o The various filters are also
available from the Properties
inspector in the Filters section.

3. Open the Motion Editor (Window >
Motion Editor).

4. Move the red playhead to the first frame
of the tween.

5. Click the plus button next to Filters and
choose Blur ©@.

The Blur filter is added to the list of
properties.

6. Make sure the Link icon is selected so
the Blur X and Blur Y change together.
Increase the values of Blur X and Blur Y
to the desired blurriness @.

Blur X indicates how much blurring
should be applied to the object in the
horizontal (x-axis). Blur Y does the same
for vertical (y-axis) blur. Because these
are independent values, you can create
a blur in just one direction if you choose
to unlink the properties.

7. Move the red playhead to the last frame
of the tween.

8. Change the value of Blur X and Blur Y
to 0 @.

Flash animates your image’s change
from blurred to focused @.

@D You can also access and apply the vari-
ous filters from the Filters section of the Prop-
erties inspector. Choose your tweened object
and, in the Properties inspector, click the Add
Filter button and choose Blur 0

@D The Quality property controls how
smooth the blur will be. A higher-quality blur
will be smoother and closer to what you might
get using a Blur filter in Photoshop, but it

also makes the Flash Player work harder, so

it could slow down the playback of your movie.

You can use any filter in this manner
to create a transition. Experiment with the
numerous filters to suit your movie.

@D A movie clip instance can have more
than one filter applied to it.

Building Complexity 49

To blend colors from one
object on another:

1. Create or import an image in a new
layer.

2. Create a new layer above the first, and
then create or import an image in this
top layer.

In this example, Classic static text is
placed in the top layer, and a photo is
imported in the bottom layer @.

3. Select the text in the top layer and
choose Modify > Convert to Symbol
(F8). Choose movie clip as the type of
symbol.

Flash converts your selection into a
movie clip symbol. Blend effects from
the Properties inspector can only be
applied to movie clips, button instances,
or TLF text.

4. Select the movie clip instance on the
Stage. In the Properties inspector,
choose a blending mode from the pull-
down menu @.

Flash blends the colors of the movie
clip instance with all the images in the
layers below it. The different blend-
ing modes determine how the colors
interact. Some blending modes darken
the colors, whereas others lighten or
even reverse them. The best way to
understand the blending modes is to
experiment! (For more detailed informa-
tion about color-blending modes and
how you can control them purely with
ActionScript, see the section “Blending
Colors” in Chapter 7))

A movie clip instance can only have one
blending effect.

Blending effects cannot be motion
tweened.

Movie clip instance in top layer

Photo in bottom layer
|

@ The text is a movie clip instance in a layer
above the photo.

TR -1 —
[Mavecio v
Instance of: Symbol 1
7 POSITION AND SIZE
X 3009 Y. 308.4
@ owoanle H: 74.0

[+ 3D POSITION AND VIEW
[+ COLOR EFFECT
o DESPLAY

Blending:

¥ Normal

Layer

Darken
Multiply

I AL

Lighten
Screen

Overlay
Hard Light

Subtract
Difference

0 Choosing a Blending mode in the Properties
inspector makes colors of the movie clip instance
blend in different ways with the image below it.

50 Chapter1

Using Masks

Masking is a simple way to reveal portions
of a layer or the layers below it. This tech-
nique requires making one layer a mask
layer and the layers below it the masked
layers.

By adding tweening to the mask layer, the
masked layers, or both, you can go beyond
simple, static peepholes and create masks
that move, change shape, and reveal
moving images. Use animated masks to
achieve such complex effects as moving
spotlights, magnifying lenses that enlarge
underlying pictures, or “x-ray” types of
interactions that show more detail within
the mask area. Animated masks are also
useful for creating cinematic transitions
such as wipes, in which the first scene is
covered as a second scene is revealed,
and iris effects, in which the first scene
collapses in a shrinking circle, leaving a
second scene on the screen.

In the mask layer, Flash sees all fills as
opaque shapes, even if you use a transpar-
ent solid or gradient. As a result, all masks
have hard edges. You must use Action-
Script if you want to create a mask with
different alpha (transparency) levels.

Using movie clips in mask layers provides
more possibilities, including multiple masks
and even dynamically generated masks
that respond to the user. Because dynamic
masks rely on ActionScript, however, they’ll
be covered in detail later (in the section
“Using Blending Masks” in Chapter 7) after
you’ve learned more about Flash’s script-
ing language.

Building Complexity 51

To tween the mask |ayer; Mask layer (will affect the masked layer)

1. In Layer 1, create a background image

= a8 0 5

or import a bitmap. Lo

— B Layer 2 « o+ []

2. Insert a new layer above the first layer.

3. Select the top layer, and choose
Modify > Timeline > Layer Properties.

or Masked layer

Double-click the layer icon in the top @ Layer 2 is the mask layer, and Layer 1is the
layer. masked layer.

The Layer Properties dialog box Diverin Layer 1 Shape tween in Layer 2
appears.

4. Select Layer Type: Mask.

5. Select the bottom layer, and choose
Modify > Timeline > Layer Properties.

6. Select Layer Type: Masked.

The top layer becomes the mask layer,
and the bottom layer becomes the
masked layer (the layer that is affected
by the mask) @.

7. Create a tween in the mask layer (the
top layer) and insert sufficient frames in
the masked layer (the bottom layer) to

match o TIMELINE : T
) saol ;0 s e s
You can create a motion tween, a
classic tween, a shape tween, or even B Layer 1 - -0
inverse kinematics in the mask layer.
(However, 3D objects are not supported © A shape tween of a growing shape created
in mask |ayer5). with the Paintbrush tool is on the mask layer. The

diver image is on the masked layer.
8. Lock both layers to see the effects of

your animated mask on the image in
the masked layer @.

0 The shape tween
uncovers the image
of the diver. Only the
part of the photo that
is under the mask is
revealed.

52 Chapter1

10 15

+
0
0

Wl dark bitmap

0 The moving spotlight in the mask layer
(spotlight) uncovers the stained-glass image in the
masked layer (bitmap). A duplicate darker image
resides in the bottom, normal layer (dark bitmap).

Motion tween
\

B image1
W image2

Image 1
being
revealed

Image 2
being
covered

G The mask layer contains a large motion tween
that covers the entire Stage. This technique creates
a cinematic wipe between an image in the masked
layer (image 1) and an image in the bottom, normal
layer (image 2).

Use two images that vary slightly, one

in the masked layer and one in a normal layer
under the masked layer. This technique makes
the animated mask act as a kind of filter that
exposes the underlying image. For example,
add a bright image in the masked layer and

a dark version of the same image in a normal
layer under the masked layer. The mask cre-
ates a spotlight effect on the image 0

Place a tween of an expanding box in the
mask layer that covers the Stage to simulate
cinematic wipes between images G

Building Complexity 53

To tween the masked layer:

1

Beginning with two layers, modify the
top to be the mask layer and the bot-
tom to be the masked layer.

Draw a filled shape or shapes in the
mask layer (the top layer) @.

This area becomes the area through
which you see your animation on the
masked layer.

Create a shape tween or a motion
tween in masked layers (the bottom
layers) that pass under the shapes in
the mask layer. You can have as many
masked layers as you want under a
single mask layer @.

Lock both layers to see the effects of
your animated masked layers as they
show up behind your mask layer @).

i oo | wom s ||

W Inreriorear
B windshields

o The windshield shapes are in the
mask layer called windshields. The
drawing of the car interior is in a normal
layer above the windshields layer.

&l interiorcar

@ windshiclds . .

@ Several motion tweens in masked layers (cow
and sky) move under the windshield shapes in the
mask layer.

0 The images of the cow, ground, and
sky show under the mask, creating the
illusion of the car’s forward motion.

54 Chapter1

zX

0 The fuse of a bomb shortens.

Mask
|

Shrinking rectangle in fuse fill layer

TIMELINE

3

al bomb
I fuse (mask)

- @ Wl

|

e [oureur | coupnen enons [[momoneomon | |
oao:, 0.0 5.2, %,;
+ A B

o The bomb’s fuse is a thin shape in the mask
layer. The rectangle is a motion tween in the
masked layer that shrinks, making the fuse appear
to be shortening.

— This layer will
not work as a
mask layer

0 Layer 1 and Layer 2 are both defined as mask
layers, but only Layer 2 affects Layer 3—the
masked layer.

o Two independent spotlights moving, each
uncovering portions of the image.

This approach is a useful alternative to
using shape tweens to animate borders or
similar types of objects that grow, shrink, or fill
in. Imagine animating a fuse that shortens to
reach a bomb o Create a mask of the fuse,
and animate the masked layer to become
smaller slowly, making it look like the fuse is
shortening o Other examples that could ben-
efit from this technique include trees growing,
pipes or blood vessels flowing with liquid, text
that appears as it’s filled with color, or drawing
a pathway on a map. Just remember that Flash
doesn’t recognize strokes in the mask layer; if
you want to create thin lines in the mask layer,
use fills only.

Creating multiple masks

Although Flash allows multiple masked
layers under a single mask layer, you can’t
have more than one mask layer affecting
any number of masked layers 0. To create
more than one mask, you must use movie
clips. Why would you need multiple masks?
Imagine creating an animation that has two
spotlights moving independently on top

of an image ©. Because the two moving
spotlights are tweened, they have to be on
separate layers. The solution is to incor-
porate the two moving spotlights into a
movie clip and place the movie clip on the
mask layer.

You’'ll learn much more about movie clips
in Chapter 5, “Controlling Multiple Time-
lines.” If you'd like, skip ahead to read
about movie clips and return when you feel
comfortable.

Building Complexity 55

To create multiple masks:

1. Create a mask layer and a masked
layer.

2. Place your image on the masked layer
(the bottom layer).

3. Choose Insert > New Symbol (Ctrl-F8
for Windows, Cmd-F8 for Mac).

The Create New Symbol dialog box
appears.

4. Enter a descriptive name, and choose
Movie Clip @); then click OK.

Flash creates a movie clip symbol, and
you enter symbol-editing mode for that
symbol.

5. Create two motion tweens of spotlights
moving in different directions on the
Timeline of your movie clip symbol @.

6. Return to the main Stage, and drag an
instance of your movie clip symbol into
the mask layer (the top layer) @.

7. Choose Control > Test Movie > in Flash
Professional to see the effects of the
movie clip mask.

The two motion tweens inside the
movie clip both mask the image on the
masked layer.

To see what your masks are uncovering,
use a transparent fill or choose the View Layer
as Outlines option in the Layer Properties
dialog box.

To prevent the animation inside the
movie clip from looping constantly, add a
keyframe to its last frame and add a stop ()
action.

ORI = .Y ... /.- N

Name: | movieclipmask | I Ok I

Type: [Movie Clip | =

m Choose Movie Clip to create a new movie clip
symbol.

TIMELINE

spotlight2 .« H 4

0 The two moving spotlights are motion tweens
inside a movie clip.

0 An instance of the movie clip is in the top
(mask) layer, and the image of the bikers is in the
bottom (masked) layer.

56 Chapter1

Working with Video

Flash is the most popular method of deliv-

ering video on the Web. Video-sharing In This Chapter

sites like YouTube, news sites like the New

York Times, and entertainment sites like Preparing Video for Flash 58

Hulu use Flash to play video for its image Using Adobe Media Encoder 59

guallty, compresgon, a.nd wide compatibil- Understanding Encoding Options 62

ity and penetration. This chapter explores

the exciting possibilities of integrating Embedding Video into Flash 70

video in your Flash project. Flash makes Playback of External Video 73
ki ith vi ith the |

working with video easy with the Import Adding Cue Points to External Video 79

Video wizard, which takes you step by step

through the process, and Adobe Media Detecting and Responding to Cue Points 82
Encoder, a stand-alone application that
converts your video to the proper format
and gives you options for editing, cropping,
resizing, and setting levels of compression.

There are two main ways to use video in
Flash. One way is to embed video directly
within your Flash movie, and the other is to
keep video separate and stream it to play
through Flash. When you embed video
into Flash, it's easy to integrate other Flash
elements and interactivity. For playback of
external video, you can embed cue points,
which are special markers in the video that
you can use to trigger other events.

Preparing Video
for Flash

Whether you embed video into Flash or
play back external video, you need to for-
mat your video correctly. The appropriate
video format for Flash is Flash Video, which
uses the extension flv or the extension .f4v.
F4V is the latest Flash Video format that
supports the H.264 standard, a modern
video codec that delivers high quality with
remarkably efficient compression. A codec
stands for compression-decompression,
and it is a method for the computer to com-
press a video file to save space, and then
decompress it to play it back. FLV is the
standard format for previous versions of
Flash and uses an older codec, On2 VP6.

You have several ways to acquire digital
video. You can shoot your own footage
using a video camera and transfer it to
your computer. Alternatively, you can use
copyright-free video clips that are available
on a CD or DVD, or on the Web from com-
mercial image stock houses. Any way you
go, adding digital video is an exciting way
to enrich a Flash Web site.

Flash can actually play back any video
encoded in H.264, so your video file doesn’t
have to have the .f4v extension. For example,
a video with a .mov extension encoded by
QuickTime Pro with H.264 is compatible with
Flash.

What Makes a Good Video?

We all know a good video when we see
one. But how do you create and prepare
digitized videos so they play well and
look good within Flash? Knowing a little
about the video compression that is built
into Flash will help.

The various codecs compress video both
spatially and temporally. Spatial com-
pression happens within a single frame,
much like JPEG compression on an
image. Temporal compression happens
between frames, so the only information
that is stored is the differences between
two frames. Therefore, videos that com-
press well contain localized motion or
very little motion (such as a talking head),
because the differences between frames
are minimal. (In a talking-head video,
only the mouth is moving.) For the same
reasons, transitions, zooms, and fades
don’t compress or display well—stick
with quick cuts if possible.

58 Chapter 2

Using Adobe
Media Encoder

You can convert your video files into the
proper FLV or F4V format using Adobe
Media Encoder CS5, a stand-alone appli-
cation that comes with Flash Professional
CSb5. You can convert single files or mul-
tiple files (known as batch processing) to
make your workflow easier.

Several popular formats for digital video

are QuickTime (MOV), MPEG, AVI, and DV.

Fortunately, Adobe Media Encoder sup-
ports all of them.

To add a video file to Adobe Media:

1. Launch Adobe Media Encoder, which
comes installed with Adobe Flash Pro-
fessional CS5.

Source Name Format Preset Output File

To add items to the render queue, dragq files here or click Add. To start encodina, click Start Queue

Source Name Format Preset Output File

[/Volume...ncinghorse.mov [¥ FLV|.. [+

The opening screen has a window that
lists any current video files that have
been added for processing. The win-
dow should be empty @.

2. Choose File > Add or click the Add but-
ton on the right.

A dialog box opens for you to select a
video file.

3. Navigate to your video file and click
Open (Windows) or OK (Mac).

The selected video file is added to the
display list and is ready for conversion
to an FLV or F4V format @©.

You can also add video files to Adobe
Media Encoder by simply dragging your video
file from your desktop and dropping it in the
display list.

Status

O Adobe Media
Encoder prepares
videos in the
correct format for
Flash. The large
central window

is the display list,
which lists the
videos that you
want to encode.
The display list is
currently empty.

Status Start Queue
Waiti...

Add...

Duplicate

© This display list
R in Adobe Media
Encoder contains
Settings... one video that has
been added.

Working with Video 59

To remove a video file from
Adobe Media Encoder:

1. In the display list, select the video file.
2. Click the Remove button.

A dialog box appears asking you to
confirm whether you want to remove
the selected video and its settings.
Click Yes to remove the video file from
the display list.

You can select multiple files for removal
by holding down the Ctrl key (Windows) or
Shift key (Mac) and selecting multiple video
files in the display list.

To convert a video file
to Flash Video:

1. In the display list, select the FLV | F4V
option for Format @.

2. Under the Preset options, choose your
desired encoding profile @.

You can choose one of many of the
standard preset options from the menu.
The options determine the format
(either the newer F4V or the older FLV)
and the size of the video. In parenthe-
ses, Flash indicates the minimum Flash
Player version required to play the
selected video format.

Choose Match Source Attributes if your
source video is already sized to the cor-
rect dimensions that you desire.

Source Name Format Preset

[Volume...ncinghorse.mov i d

O FLV | FAV

@ Choose FLV | F4V from the Format pull-down
menu to select the encoding format.

Output File Status Start Queue

© F4Y - Match Source Attributes (High Quality)
F4V - Match Source Attributes (Medium Quality)
FLV - Match Source Attributes (High Quality)
FLV - Match Source Attributes (Medium Quality)
F4V - 1080p Source, Quarter Size (Flash 9.0.r115 and Hig

0 Choose your desired setting from the Preset
pull-down menu. Choose F4V Match Source
Attributes or FLV Match Source Attributes if your
video is already at your desired dimensions.

60 Chapter 2

3. Click on the Output File.

You can choose to save the converted
file in a different location on your com-
puter and choose a different filename.
Your original video will not be deleted
or altered in any way.

4. Click Start Queue.

Adobe Media Encoder begins the
encoding process @. The Media
Encoder displays the settings for the
encoded video, shows the progress,
and shows a preview of the video.
When the encoding process finishes, a
green check in the display window indi-
cates that the file has been converted
successfully.

Message: Encoding item 1 of 1
Video: 360x240, Same as source fps, Progressive
Audio: AAC, 128 kbps, 44.1 kHz, Stereo
Bitrate: VER, 1 Pass, Target 0.42 Mbps, Max 0.51 Mbps

Encodin...ancinghorse.mov® (Pass 1 of 1)

Elapsed Queue Time: 00:00:05

Elapsed Time: 00:00:03

If you have multiple video files to encode
to F4V or FLV format, you can do so with
Adobe Media Encoder all at once easily in a
process known as batch processing. Each file
can even have its own settings. Click the Add
button to add additional videos to the display
list. Choose a different format for each file, if
desired. Click Start Queue to begin the batch
processing.

You can change the status of individual
files in the queue by selecting the file in the
display list and choosing Edit > Reset Status or
Edit > Skip Selection. Reset Status will remove
the green check from a completed file so it can
be encoded again, whereas Skip Selection will
make Adobe Media Encoder skip that particu-
lar file in the batch processing.

-

§
=
2

#

Estimated Remaining: 00:00:03

G During the encoding process, Adobe Media Encoder shows the progress, the output specifications, and a
preview of the video. The process may take seconds or several minutes, depending on the length and size of
your video. This may be a good time to get yourself a cup of coffee.

Working with Video 61

Understanding
Encoding Options

You can customize many settings in the
conversion of your original video to the
Flash Video format.

In some situations, you may want to crop
the edges of a video to remove unsightly
background or to display your video in an
unconventional format. Or, you may decide
to use just a portion of the video rather
than all of it. Using Adobe Media Encoder,
you can make the necessary adjustments
to crop the video frame, resize the video,
change the starting and ending points of
the video, adjust the type of compression
and the compression levels, or even apply
filters to the video.

Output tab

Preset menu

To display encoding options:

Click on the Preset selection in the display
window.

or

Choose Edit > Export Settings.

or

Click the Settings button.

The Export Settings dialog box appears @.
A summary of the current output specifica-
tions is listed on the upper-right corner,
cropping and trimming options are on the
left, and advanced options for video and
audio compression are on the bottom right.

Save, Import, and Delete Presets

Cropping

Preview
window

Trimming |
options
+ -

Cue Point Mame

Cue Point
options

00,00;23;10 :

* Summary
Outp:

Summary
of export
settings

Advanced
export
settings

o The Export Settings dialog box contains options for customizing, cropping and
resizing, trimming video length, adding cue points, and changing the video and

audio compression levels.

62 Chapter 2

Crop button Selected area

9 Select the Crop button to select only a portion
of your video. Drag the sides or corners of the
selection to cut unwanted material from the edges
of the video. Enter numeric values in the Left, Top,
Right, and Bottom fields for pixel-level precision.

Righr: Bormom:

Crop
Proportions

G Constrain the crop with the Crop Proportions
pull-down menu. A 4:3 proportion is the traditional
aspect ratio for standard-definition video. A 16:9
proportion is the aspect ratio for high-definition
video and cinematic presentations.

To crop your video:

1. Click the Crop button at the upper-left
corner of the Export Settings dialog
box.

The cropping box appears over the
video preview window 0

2. Drag the sides inward to crop from the
top, bottom, left, or right.

The grayed-out portions outside the
box will be discarded. Adobe Media
Encoder displays the new dimensions
next to your cursor. You can also use
the Left, Top, Right, and Bottom settings
above the preview window to enter
exact pixel values.

3. If you want to keep the crop in a
standard proportion, click the Crop
Proportions menu and choose a
desired ratio @.

The cropping box will be constrained to
the selected proportions.

4. To see the effects of the crop, click the
Output tab.

5. Change the Crop Setting pull-down
menu to your desired output.

Scale to Fit. Maintains the final output
size but enlarges the final crop to fit the
dimensions. Your video may lose quality
if you enlarge beyond the resolution of
the source.

Continues on next page

Working with Video 63

Black Borders. Maintains the final

+ Seale To Fit

output size and adds black to the areas black Borders Crop Setting pull-down

Change Output Size

that are cropped. menu

Change Output Size. Changes the final
output size to the dimensions of the
crop.

Crop selection over
original video

The preview window shows how your
final video will appear @.

6. Click OK to accept the crop settings.

Scale to Fit
or
Exit the Crop tool without accepting the
crop settings by clicking the Crop but-
ton again under the Source tab. Block Borders

To adjust the video length:

1. Click and drag the playhead (top
marker) to scrub through your video to
preview the footage. Place the play-
head at the desired beginning point of
your video.

Change Output Size

Time markers indicate the number of

seconds that have elapsed o 0 The Output tab shows the final cropped

appearance. Choose the options under the
Crop Setting pull-down menu to determine the
relationship between the crop and the output size.

Time indicator

00;00;23;10

(S
Source Range: Entire Clip

Playhead

G Move the playhead to the point at which you
want the video to begin.

64 Chapter 2

Set In Point

00;00;20;03

5

Source Hange: Custom

In point marker

O Click the Set In Point icon to mark the
beginning of the video.

Set Out Point

00;00;12;06

Source Hange: Custom

Out point marker
@ Click the Set Out Point icon to mark the end of
the video.

Resize video
option Video tab

Video

¥ Basic Video Sewings
Codec: MainConcept H.264 Video
¥ Resize Video
Frarme Width : pinels

Frame Height : piwels
0 Click the Video tab to resize your video.
Constrain width/height

Frame Width : pixels

Frame Height : pixels

o The Resize video option lets you set how your
video’s size will be scaled. Click the Constrain
button to keep the dimensions of your video
proportional.

2. Click the Set In Point icon.

The In point moves to the current posi-
tion of the playhead @.

3. Drag the playhead to the desired end-
ing point of your video.

4. Click the Set Out Point icon.

The Out point moves to the current
position of the playhead @.

5. You can also simply drag the In and Out
markers to bracket the desired video
segment.

6. Click OK to accept the new settings to
trim the length of your video.

When the playhead is selected, you can
use the left or right arrow key on your key-
board to move back or ahead frame by frame
for finer control.

@D You can double-click the time marker to
enter an exact numerical value for the time.

To resize your video:

1. Click the Video tab on the right side of
the screen under the Export Settings .

2. Select the Resize Video check box.

3. Change the values for Frame Width and

Frame Height to change the dimensions
of your video.

If you want to maintain the original
aspect ratio of your video, click the
Constrain box @.

4. Click OK to accept the new resize
settings.

Working with Video 65

To select your own video
compression settings:

1. Click the Format tab on the right side of
the screen under the Export Settings.

2. Choose either the FLV format or the
newer F4V format @.

Embedding video into Flash requires
the FLV format. To download external
video, you can use either the FLV or the
F4V format.

3. Click the Video tab. Choose the video
settings that will give the best trade-off
between video file size and image qual-
ity for your movie. Depending on the
format that you’ve chosen in step 2, you
will be presented with different options:

Codec. If you've selected the FLV
format, Flash uses the On2 VP6
codec to compress your video, which
requires Flash Player 8 or later. The
codec is lossy, meaning some (usually
less important or less visible) video
information is discarded to make the
file smaller. The compressed movie
appears similar to the original but not
exactly the same @.

Encode Alpha Channel. If your video
has an alpha channel (transparent
background), select this option. Alpha
channels are only supported in the FLV
format with the On2 VP6 codec.

Resize Video. You can change the
width and height or constrain the pro-
portions for the new width and height.
Refer to the task “To resize your video,”
earlier.

Frame rate. Lets you choose whether
to match the frame rate of your video to
the frame rate of your Flash movie. For
embedded video, you’ll want to choose
the same frame rate of your Flash

Formar

¥ Basic Settings

Multiplexing: * FLV

o Choose FLV if you want to embed your video in
Flash. Choose either FLV or F4V if you want to play
back external video from Flash.

Video
¥ Basic Video Semtings
Codec: OnZ VPG
Encode Alpha Channel
Resize Video

Frame Width :

Frame Height

o On2 VP6 is the codec for the FLV format, which
requires Flash Player 8 or later.

66 Chapter 2

Frame Rate [fps] as source

Same as source |

Render at Maximum |

¥ Ritrate Sertings
Bitrate Encoding:

Encoding Passes:

o If you plan to embed video into Flash, you must

set the frame rate of your video to be identical to

the frame rate of your Flash movie. Choose “Same

as source” only if you want to play back external
video from Flash.

¥ Bitrate Settings
Bitrate Encoding: =
Encoding Passes: + One

Bitrats

Bitrate [kl

m The Bitrate Settings determine the bandwidth
required to download the video.

movie. This choice ensures that an
embedded video plays at its intended
speed even if its frame rate is different
than that of the Flash document. With
the “Same as source” setting, a video
shot at 30 frames per second (fps) and
brought into a Flash movie running at
15 fps will last twice as long (and play
twice as slowly) as the original source
video. You should choose “Same as
source” only when encoding for play-
back of external video @.

Bitrate Settings. Determines the bitrate,
which is the quality of video based on
download speeds measured in kilobits
per second (kbps). Flash may alter the
quality of individual frames to keep
the download at a consistent speed.
Remember, the higher the kilobits

per second of your chosen setting,
the higher the quality of your video
but the larger the file size. The higher
the bitrate, the higher quality of the
video (.

Advanced Settings. Select the Set
Key Frame Distance option to change
the keyframe distance. The keyframe
distance is how frequently complete
frames of your video are stored. The
frames between keyframes (known as
delta frames) store only the data that
differs between the delta frame and
the preceding keyframe. A keyframe
interval of 24, for example, stores the
complete frame every twenty-fourth
frame of your video. If your video
contains the action of someone raising
his hand between frames 17 and 18,
only the portion of the image where
the hand is being raised is stored in
memory until frame 24 when the full
frame is stored. The lower you set the

Continues on next page

Working with Video 67

keyframe interval, the more keyframes
are stored and the larger the file. For

¥ Advanced Settings

video where the image doesn’t change 7| Set Key Frame Distance
much (such as a talking head in front of Key Frame Distance :

a solid background), a higher keyframe Simple Profile
interval works well. For video with lots % target]:

of movement and changing images, a it P

lower keyframe interval is necessary to

. Adjust the Key Frame Distance option based
keep the image clear). O Aqi y P

on how often significant visual changes occur

in your video. A higher Key Frame Distance

. setting means there are fewer keyframes, so less
settings. information is recorded.

4. Click OK to accept your custom video

To select your own audio v Export settings
compression settings: Format. [FLV Fav

Preset C

1. Select the Export Audio option under
Export Settings if you want audio
exported with your video. Deselect the

Comments:

Output Name:

+ Export Video ' Export Audio
option if you just want to export video
with no audio @. Export Audio option
2. Click the Audio tab on the right side of @ select the Export Audio check box if you want
the screen under Export Settings. to keep audio in your video. Deselect the check

box if you only want to export video.
3. Choose the audio settings that will give

the best trade-off between file size and Audio settings for FLV format
audio quality for your movie. Depend-
ing on the format you’ve chosen (FLV or v Easic Audio Settings

F4V), you will be presented with differ- Codec: MPEG Layer Ill (MP3)
ent audio options @.

Output Channels Mono = Stereo
Codec. AAC is a high-quality audio
compression scheme for the F4V
format. MP3 is the older audio compres-
sion scheme for the FLV format.

¥ Bitrate Settings

Bitrate [kbps): 256

Audio settings for F4V format
Output Channels. Choose Mono for a

single channel or Stereo for two chan-
nels (left and right).

¥ Basic Audio Settings

Codec AAC
Frequency. The higher the frequency,
the higher quality the sound. Select 441
kHz for CD-quality sound.

Output Channels Maonn

Frequency: ' 44.1 kHz

Audio Quality: ' High

Bitrate Settings. The higher the bitrate,

the higher quality the sound. 0 There are different audio settings, depending on

4. Click OK to accept your custom audio if you’ve chosen the FLV format or the F4V format.
. Bitrate and Frequency determine the audio quality
settings. (the higher the number, the better the quality).

68 Chapter 2

¥ Export Settings

Format: FLV | FAV

Preset

Save Preset

Q You can save your custom Export Settings to
apply to other videos.

Please name this preset:

Save Filter Settings

Save FTP Settings

Cancel

0 Provide a name for your custom setting.

Preset Output File

= e
© rodeoproject

F4V - Match Source Attributes (High Quali
F4V - Match Source Attributes (Medium Q
FLV - Match Source Attributes (High Quali

o Your custom setting is available under the
Preset pull-down menu.

To save your custom
encoding options:

1. In the Export Settings dialog box, click
the Save Preset button @.

2. In the dialog box that opens, provide
a descriptive name for the video and
audio options. Click OK @.

3. Return to the queue of videos. You can
apply your custom setting to additional
videos by simply choosing it from the
Preset pull-down menu @.

Working with Video 69

Embedding Video
into Flash

Everybody loves movies. So when you can
add video to your Flash Web site, you'll
likely create a richer and more compelling
experience for your viewers.

You can embed an FLV file into Flash (but
not F4V), and then add effects such as
graphics, animation, masking, and interac-
tivity; you can even apply motion tweens to
your embedded video. Embedding video

is the simplest way to add video and an
easy way to integrate video with other
Flash elements on your Timeline. However,
embedding video has several limitations.
Embedded video is only good for short
video because Flash cannot maintain audio
synchronization beyond about 2 minutes.
There is also a maximum length of 16,000
frames for embedded movies. Another
drawback is the increase in file size of your

Select Video

Where is your viden flle?
%) On your computer:

File path: (_Browse...)

Q The Import Video wizard guides you through
the process of integrating video with your Flash
projects. The first step is to tell Flash where to find
your video.

Flash movie. Embedding video puts the
video file inside your Flash document, so
be aware of the longer download times for
your audience and the more tedious test-
ing and authoring sessions for you.

To embed a video in Flash:

1. From the File menu, choose Import >
Import Video.

The Import Video wizard appears @.

2. Click the Browse button; in the dialog
box that appears, select the FLV file you
want to embed and click Open.

3. Back in the Import Video wizard,
choose “Embed FLV in SWF and play
in timeline” @. Click Next (Windows) or
Continue (Mac).

If you have not yet converted your
video to the FLV format, you can launch
Adobe Media Encoder by clicking the
Launch Adobe Media Encoder button.

() Load external video with playback component
#) Embed FLV in SWF and play in timeline
) Import as mobile device videa bundled in SWF

0 Choose “Embed FLV in SWF and play in
timeline” to embed your video.

70 Chapter 2

Embedding

How would you like to embed the vides? G The

Embedding step
lets you choose
different options
for embedding
your video.

Symbol type: | Embedded video

™ Place instance on stage
B Expand timeline if nesded
M incluede audia

Embedded video
on the Stage
|

Embedded video
in the Library

0 The embedded video is placed on the Stage and
Flash adds frames to the Timeline to accommodate
the video. The video is stored in the Library.

Video

¥ Rauic Vides Settings

G For videos with an alpha channel (transparency),
choose FLV for the format and select the Encode
Alpha Channel option (top). This allows you to
embed video with transparent backgrounds
(bottom), such as a weatherperson in front of a
weather map.

4. The next screen of the Import Video
wizard presents the Embedding
options. Set the Symbol type to Embed-
ded video; select the options “Place
instance on stage,” “Expand timeline if
needed,” and “Include audio” @. Click
Next/Continue.

5. The Import Video wizard proceeds
to the final screen, summarizing your
video embedding settings.

6. Click Finish.

Flash embeds the video in your docu-
ment, putting a video symbol in your
Library and an instance of the video on
the Stage in the active layer @).

When embedding an FLV into Flash,
remember to encode the FLV at the same
frame rate as your Flash file. This is an impor-
tant step to keep the frame rate of your video
consistent with the frame rate of your Flash
movie. This ensures your video plays at its
intended speed.

@D Flash can’t display the soundtrack of
embedded FLVs, so if your original video file
has sound, you won’t hear it within the Flash
authoring environment. When you pub-

lish your Flash movie or test it by choosing
Control > Test Movie > in Flash Professional,
the sound will be audible.

@D If you do not have sound, check your
source video clip. Sometimes a QuickTime file
uses an audio compression scheme that Flash
doesn’t recognize. You may have to export
your video with a different audio compression
from another application.

If you have video with a transparent
background (an alpha channel), you can
import it into Flash and still preserve the
transparency. In Adobe Media Encoder, click
the Video tab and select the Encode Alpha
Channel option G Alpha channels are only
supported with the On2 VP6 video codec
(Flash Player 8 and later).

Working with Video 71

To swap an embedded video:

1. Double-click the video icon or the pre-
view window in your Library.

or

Click the video symbol in the Library;
then, from the Library window’s Options
menu, choose Properties @.

The Video Properties dialog box
appears showing the symbol name and
the original video file’s location @.

2. Click Import.
3. Choose a new FLV file and click Open.

Flash swaps the existing FLV video with
the newly selected FLV.

4. Click OK.

The new FLV replaces the old FLV in the
Library and on any existing instances on
the Stage @.

LEEARY. New Symbol...
[DlembedVidea fla Ix] 4 & New Folder
== New Fonr...
New Video...

Rename
Delete
Duplicate...
Move to...

Edit
Edir with. ..
Edir with Soundbooth

= Play
e = | Lo Update...
Y& prancinghocse.flv
Component Dennition...

Shared Library Properties...

Select Unused items

o Select the video in your Library and choose
Properties from the Options menu.

Video Propertics
Symibol:| T Tiv | [—|
Type: (8) Embedded (synchronized with Timeline) S—
O Video (ActionSeript-controlled)

Imparr... |
Suurce. 5
Friday, May 25, 2007 1:32 PM updare |
320 x 240 pinels o

303 frames (12,62 secands at 24.00 fs), 646.0 Kb of video data

@ The Video Properties dialog box shows the
name of the symbol and the location of the
original video file, as well as the properties of the
compressed video (dimensions, time, and size).

LIBRARY

[0lembedVideo.fla

1 item [,O
MName | Linkage
prancinghorse.flv

Q The newly selected video replaces
the previous one in the Library.

72 Chapter 2

Playback of
External Video

So far, you've learned how to encode

your videos and embed them in Flash.
However, embedded video has a length
restriction (16,000 frames, or approximately
8.5 minutes of 30 fps video). Also, embed-
ded video begins to lose synchronization
with its audio after about 2 minutes. Most
important, embedded video significantly
increases the file size of your Flash movie.
You can bypass these problems by loading
an external video file with a Flash playback

component. This means that Flash dynami-
cally loads video that is kept separate from
the Flash file.

Playback of external video requires that
your video be in the FLV or F4V file format.

Flash provides a special component known
as a skin to give you control over the
playback of your external video. Chapter 6,
“Managing External Communication,” looks
at more advanced ways to load and control
external video just using ActionScript.

Refer to Table 2.1 for a summary comparison
of embedded video and external playback.

TABLE 2.1 Embed vs. External Playback
Embed

External Playback

Video length Under 2 min with audio, or 16,000 No restriction
frames total
Flash Player Versions 6 and later Versions 7 and later
Usage Short, small (320 x 240) video clips Longer, larger (720 x 580) video clips that do

that need to be synchronized to other
Flash elements on the Timeline

not need to be synchronized to other Flash
elements on the Timeline

Video frame rate

Must be the same frame rate as Flash

Can be at a different frame rate than Flash

File size

Increases because video is contained
within SWF

No effect, but FLV/F4V must accompany your
SWEF (or your SWF must be given the correct
path to find the FLV/F4V)

Interface

None

Ready-made interfaces, or “skins,” are
available to control the playback of the video.
Flash Player skins are small SWF files that are
also kept external to your main Flash movie
and must accompany your SWF.

Editability

Edit video and reimport into Flash

Edit video and convert to FLV/FV without
opening Flash

Working with Video 73

To play back external video:

1. Choose File > Import > Import Video to
open the Import Video wizard.

2. Use the Browse button to select the
video file that you want O and click
Next/Continue. Your video must be an
FLV or an F4V formatted video.

If you have not yet converted your
video to the FLV/F4V format, you can
launch Adobe Media Encoder by click-
ing the Launch Adobe Media Encoder
button.

3. Select “Load external video with
playback component” @. Click Next/
Continue.

4. On the Skinning screen, choose a
player skin and a color for your video
player from the menu @. Click Next/
Continue.

The player skin provides a viewing
window and playback controls for

your video. From the pull-down menu,
choose a skin that includes different
playback controls and from the adjacent
color chip choose a color (or a transpar-
ency level). In the preview window you
can see how your skin will appear. Note
that some skins add the controls over
the video, and some add the controls
under the video.

If you do not want any playback con-
trols for your video, choose None from
the top of the menu @.

Select Video

Where is your video file?

 On your computer:

File path:

0 The Import Video wizard. The first step is to
tell Flash where your video is located. Flash keeps
track of the path to your external video relative to
the location of your Flash file.

® Load external video with playback component
() Embed FLV in SWF and play in timeline
(O Import as mobile device video bundled in SWF

0 After you’'ve selected your video file, choose
the first option, “Load external video with playback
component.”

Skins Preview of skin Color menu

Minimum width: 320 No minimum height

skin: | MinimaFlatCustomColarAlls. . I'q Color: E_

| |(EER

LIRL:

0 Select a video player skin from the pull-down
menu. Click the color chip to change the color
and transparency of the skin. The preview window
shows you how the controls will appear with your
video.

Skin:

MinimaFlatCustomColorAllswl

URL: MinimaFlatCustomColorPlayBackSeekCounterVolMute, swi
MinimaFlatCustomColorPlayBackSeekCounterVolMuteFull.swi

0 Choose the top option, None, to present your
video without controls.

74 Chapter 2

1 item L
Name | Linkag]
B ruveiayback M|

a0 3E] I 11

G The video playback component is placed on
the Stage with a preview of your video. The video
playback component is also added to your Library.

Pause
Rewind

Add Cue Point
v Preview

Set Source

Export Frame

o You can preview your video on the Stage by
using the controls of the skin or right-clicking
(Windows) or Ctrl-clicking (Mac) the video and
using the contextual menu.

1 T

externalvideo.fla externalvideo.swf

I‘ 2y,

MinimaSilverPlayBackSeek
CounterVolMute.swf

prancinghorse.f4v

@ For playback of external video to work
properly, your Flash movie (SWF) must be able to
find and access the video file (FLV/F4V). If you are
using a skin, the SWF file for the skin must also
accompany your Flash movie. All three of these
files are required to play.

5. On the final screen, review the sum-
mary of settings, and then click Finish.

A video playback component appears
on the Stage and in the Library @. This
component controls the playback of
your external FLV/F4YV file. Position the
component anywhere on the Stage and
at the keyframe at which you want the
video to begin playing.

6. To see your video, click on the controls
on your skin. If you don’t have a skin
on your video, right-click (Windows) or
Ctrl-click (Mac) on the video and choose
Play, Pause, or Rewind @.

Flash plays the external FLV/F4V file
with the video playback component and
the skin that you chose.

7. Choose Control > Test Movie > in Flash
Professional.

Flash publishes a SWF for you to
preview your movie. In addition to your
project SWF, Flash generates a small
SWEF for your skin and saves it in the
same folder as your Flash document.
Keep the skin SWF together with your
project so Flash can find it and display
it correctly @.

If you don’t see a preview of your video
on the Stage in the playback component, right-
click (Windows) or Ctrl-click (Mac) and make
sure the Preview option is checked.

Working with Video 75

Changing video playback options

You can change the way your video plays
within Flash by changing the options in
the video playback component. The video
playback component is simply the player
for the external video. By changing the
options in the Parameters panel, you can
change the “skin,” or the appearance,

of the player as well as other playback
features.

To change the skin of the
video playback component:

1. Click the video playback component on
the Stage to select it.

Parameters for the video playback com-
ponent appear in the Properties inspec-
tor under the Component Parameters
section @).

2. Find the skin parameter (in the first
column) and click the current value (in
the second column). Click the pencil
icon @.

The Select Skin dialog box appears.

3. Choose a different skin and/or color for
your player @. Click OK.

Your newly selected skin appears on
your video. Once you test (Control >
Test Movie > in Flash Professional) or
publish your Flash movie, a new skin
SWF will be generated in the same
folder as your Flash document.

PROPLRTICS
M SWE @
dnstance Names
Instance of: FLVPlayback a
= POSITION AND SIZE =]

X: 95.45 ¥ 79.95

W 240,00

PARAMFTERS

:’mm | value | 0 The Component
alian Loenter 1] Parameters section
autoley B of the Properties
Bl = inspector lets you
preview None set options for your
:“"""‘""' ’m video player skin.
A o The first column is

the parameter, and
the second column

skinBac e 1
skinRackgroundColor [l

e prancingho... & is the value for that
s . parameter.
preview None
scaleMode
skin MinimaSilv... &#
skinAutoHide]

skinBackgroundAlp...

skinBackgroundColor .
source prancingho... gf

0 The “skin” parameter determines which
playback interface to use.

Minimum whith: 304 Mo minimum heighs

skin: itver : : w8 Color: [m)

o Set a new skin.

76 Chapter 2

Skin transparency (0 to 1.0) Skin color

skinAutoHide]

skinBackgroundAlp... |1—

0 Set a new skin color and transparency directly
in the Property inspector.

scaleMode
skin MinimaSilv... f
skinAutoHide [

skinBackgroundalp. ..

skinBackgroundColor .

o Select skinAutoHide to hide the interface. Be
careful when hiding the interface because users
won’t necessarily know how to access the controls.

Property | value |
align
autoPlay]
cuePoints Mone
isLive]

@ Select autoPlay to make the video play auto-
matically. Deselect it to pause the video at the first
frame.

4. In the Properties inspector, find the
parameters for skinBackgroundAlpha
and skinBackgroundColor. Click the
current value (in the second column) to
change the transparency of the skin or
the background color of the skin .

5. In the Properties inspector, find the
parameter for skinAutoHide. Click
the empty check box (in the second
column) to change whether or not the
interface is always visible @.

» Select skinAutoHide to keep the
interface hidden until the mouse
pointer moves over the video.

» Deselect skinAutoHide to have the
interface be visible all the time.

To change the playback of
the external video:

1. Click the video playback component on
the Stage to select it.

Parameters for the video playback com-
ponent appear in the Properties inspec-
tor under the Component Parameters
section.

2. Find the autoPlay parameter (in the first
column) and click the empty check box
(in the second column) @.

» Select autoPlay to have the video
automatically begin playing.

» Deselect autoPlay to have the video
paused at the first frame.

Working with Video 77

To change the path to
the external video:

1.

Click the video playback component on
the Stage to select it.

In the Properties inspector, find the
source parameter (in the first column)
and click the current value (in the sec-
ond column). Click the pencil icon.

The Content Path dialog box appears).

Click the folder icon to browse to the
new location of your FLV/F4V file.

Flash changes the path to your video
file in the Parameters panel so that the
video playback component can find the
file and play it.

I horse. fa] U

M Match source dimensions

o Change the source value to modify the name
or location of the file that the video player loads.

78 Chapter 2

Video playhead

00;00;23;10

Source Range: | Envre Clip

o The video playhead in this example is placed
at 5 seconds into the video.

Add Cue Point button

- @B
Cue PoinT Name Time Type
Cue Point 00;00;05;00 Event

0 The cue point called “Cue Point” is added at
the 5-second mark for this video.

Delete Cue Point button

ue nt Name
Cue Point o Use the Delete Cue
Point button to remove

a cue point from the list.

Adding Cue Points
to External Video

Although external video plays indepen-
dently of the Timeline, you can synchronize
external video with other Flash elements
by using cue points. Cue points are special
markers that you add to your video that
Flash can detect and respond to with
ActionScript.

There are three kinds of cue points:
Navigation cue points allow you to jump
to a particular point in the video. Event
cue points allow you to trigger other ele-
ments from a particular point in the video.
Both Navigation and Event cue points are
embedded in the video during the encod-
ing process with Adobe Media Encoder.
ActionScript cue points are added to an
already encoded video through Action-
Script, or through the Properties inspector.

To add embedded cue points

from Adobe Media Encoder:

1. In the Export Settings dialog box, move
the yellow video playhead to the point
when you want a cue point @.

2. Click the Add Cue Point button.

A cue point is added to the video @.

3. Click the name of the cue point to
rename it or click the time to change
its time.

4. Choose Event or Navigation for the
Type.

To delete cue points from
Adobe Media Encoder:
Select a cue point in the Properties

inspector and click the Delete Cue Point
button @.

Working with Video 79

To add ActionScript cue points

from the Properties inspector:

1. Move the video playhead or pause the
video at the point when you want a cue
point @.

2. In the Properties inspector, in the Cue
Points section, click the Add Action-
Script Cue Point button.

A cue point is added to the video @.

3. Click the name of the cue point to
rename it or click and drag the time
to change its time.

Double-click the cue point in the Type
column to quickly jump to that point in time
in your video.

To delete cue points from
the Properties inspector:
Select a cue point in the Properties inspec-

tor and click the Delete ActionScript Cue
Point button.

or

Right-click (Windows) or Ctrl-click (Mac) on
a cue point in the Properties inspector and
choose Delete @.

0 In this example, the video is paused at
5 seconds.

<+ CUE POINTS
| je | 1 found
+ —-mBA
Add —
Cue Point Name | Time | Type
button Cue Pain... 00,00,03,00 ActionScript

G In the Properties inspector, the cue point called
“Cue Point” is added at the 5-second mark for
this video.

< CUE POINTS
| je | 1 found
+-mB
Delete]
Cue Point || Name | Time | Type
button Cue Poin... | . Delete

o Use the Delete Cue Point button or right-click
(Windows) or Ctrl-click (Mac) to remove a cue point
from the list.

80 Chapter 2

To add ActionScript cue
points with ActionScript:

1. Select the video playback component
and give it an instance name in the
Properties inspector @.

In this example, the video playback
component is called myvideo.

2. Select the first frame of the Timeline
and open the Actions panel.

3. Enter the instance name of the video
playback component, a dot, and then
the method, addASCuePoint().

4. The method addASCuePoint() can take
either an object as a single parameter
or two parameters—time (in seconds)
and the cue point name. For example:

myvideo.addASCuePoint({time:5,
name:"mycuepoint”,
type:"actionscript"})

creates a cue point with an object as its
single parameter. The object has three

@
Instance of: FLVPlayback &;

ACTIONS - FRAME

2 PLPOVEEREUEYPOO R

properties: time, name, and type @.
(The curly braces are a shorthand way
of creating an object and defining its
properties all at once).

The method myvideo.addASCuePoint
(5, "mycuepoint"); creates a cue
point at 5 seconds with the name
mycuepoint @.

In general, cue points added via Action-
Script are less accurate than those embed-
ded in videos during the encoding process.
ActionScript cue points are accurate to a tenth
of a second.

You cannot change or delete embedded
cue points with ActionScript, but you can add
new ones to existing embedded cue points.

Cue point information is wiped out when
you set the source property of a video play-
back component. Be sure to set the source
property first, and then add cue points.

@ Name the video playback component on
the Stage. Do not use spaces or punctuation,
or begin your name with a number.

1 myvideo.addASCuePoint({time:5, name:"mycuepoint™, type:"actionscript"});
2

mThis ActionScript code adds a cue point called mycuepoint at 5 seconds to the
video on the Stage.

R POHYERELEISEYODODOEH

1 myvideo.addASCuePoint(5, "mycuepoint™):
2

o Similar ActionScript code to add a cue point
called mycuepoint at 5 seconds to the video on
the Stage.

Working with Video 81

Detecting and
Responding to
Cue Points

Cue points can be used as chapter
points—for example, you can make buttons
that navigate to different sections of a
video. Or cue points can be used to trigger
Flash elements that are synchronized to
the video. For example, as a speaker in the
video mentions a product, an ad for that
product could pop up next to the video.

Detecting and responding to cue points
requires ActionScript and an understand-
ing of event listeners. You can jump ahead
to Chapter 3, “Getting a Handle on Action-
Script,” and Chapter 4, “Advanced Buttons
and Event Handling,” and return when
you’re more comfortable with coding.

To detect cue points:

1. Select the video playback component
and make sure it has an instance name
in the Properties inspector @).

In this example, the video playback
component is called myvideo.

2. Select the first frame of the Timeline
and open the Actions panel.

3. Enter an import statement that imports
the necessary ActionScript classes for
the video playback component @:

import fl.video.*

The asterisk is a wildcard symbol that
means all the classes in the fl.video
package are imported.

PROPERTIES

@

Instance of: FLVPlayback &;,

0 Name the video playback component on the
Stage. Do not use spaces or punctuation, or begin
your name with a number.

ACTIONS - FRAME

R ABvEEREOEYTOONOAE

1 import fl.video.*;
2

0 The import statement provides the ActionScript
that isn’t normally included.

82 Chapter 2

4. On the next line, create an event

listener for your video playback compo-

nent that listens for the MetadataEvent.

CUE_POINT event. This particular event
happens when Flash encounters a cue
point in a video. Your code should look
similar to this:

myvideo.addEventListener
(MetadataEvent.CUE_POINT,
cuepointfound);

. Add the function that responds to

the event; in this example, it’s called
cuepointfound. Within the function,
you can add a conditional statement
that checks the name of the cue point
that was encountered, as shown here:

function cuepointfound
(e:MetadataEvent):void {
if (e.info.name=="mycuepoint") {
//respond to cue point

}

In this example @, when a cue point is
encountered during the video playback,
the function called cuepointfound is
triggered. The function checks whether
the cue point’s name matches mycue-
point, and if it does, it will execute

any of the commands within the curly
braces of the if statement. The event,
in this example, is referred to with the
variable e.

» e.target refers to the video playback
instance.

» e.info.name refers to the cue point’s
name.

» e.info.time refers to the cue point’s
time.

import fl.video.*;

I
b

myvideo.addEventListener(MetadataEvent .CUE_POINT, cuepointfound);
function cuepointfound(e:MetadataEvent):void {
if (e.info.name=="mycuepoint") {
//respond to cuepoint

O This ActionScript code detects a cue point in the video called myvideo,
and includes a conditional statement that checks whether the cue point’s

name matches mycuepoint.

Working with Video 83

To jump to a navigation cue point:

Use the method seekToNavCuePoint(),
which takes the name of the cue point as
its parameter, for example:

myvideo.seekToNavCuePoint
("mycuepoint");

In this statement, Flash will make the video
jump to the cue point named mycuepoint
in the video playback component named
myvideo @.

Using the Code Snippets Panel

Flash Professional CS5 contains a new panel called
the Code Snippets panel that you’ll learn more
about in the next chapter. The Code Snippets panel
makes it easy for you to add ActionScript code

for common interactive tasks. For example, if you
want to detect a cue point in an external video, you
can use the Code Snippets panel rather than write
the code yourself, as you've done in this section.
You still have to add and edit some of the code to
tailor it for your own project, but it can make the job
easier and it can help you learn ActionScript.

To access the Code Snippets panel, choose Win-
dow > Code Snippets. The snippets are grouped
in different folders. Open the Audio and Video
folder to find the snippets for cue points. Select
your video playback component on the Stage and
double-click On Cue Point Event @. ActionScript
code that detects cue points in your video auto-
matically gets added to your Timeline. Follow the
directions in the Actions panel to add and modify
the code to fit your own needs.

If you want to add code that jumps to a navigation
cue point, select your video playback component
on the Stage and double-click Click to Seek to Cue
Point @. Follow the directions in the Actions panel
to add and modify the code to fit your own needs.

myvideo.seekToNavCuePoint("mycuepoint”);

0 This ActionScript code makes the video
component called myvideo jump to the navigation
cue point called mycuepoint.

8| | |3
» (3 Actions
» 3 Timeline Navigation
» (1 Animation
» (1 Load and Unload
¥ By Audio and Video
|_] Click to Play/Stop Sound
|_] Click to Stop All Sounds
_]1©n Cue Point Event
|_] Click to Play Video
|_] Click to Pause Video

G The Code Snippets panel provides a
quick way to add ActionScript for different
tasks. Choose On Cue Point Event to detect
cue points in your video.

¥ By Audio and Video
|_] Click to Play/Stop Sound
|_] Click to Stop All Sounds
_]©n Cue Point Event
|_] Click to Play Video
|_] Click to Pause Video
|_] Click to Rewind Video
|_] Click to Set Video Source
|_] Click to Seek to Cue Point
] Create a NetStream Video
» (3 Event Handlers

o In the Code Snippets panel, choose Click
to Seek to Cue Point to jump to a cue point
in your video.

84 Chapter 2

Getting a Handle on
ActionScript

ActionScript is Flash’s programming
language for adding interactivity to your
project. You can use ActionScript to create
anything from simple navigation within
your Flash movie to complex interfaces
that react to the location of the viewer’s
pointer, arcade-style games, and even
full-blown e-commerce sites with dynami-
cally updating data. In this chapter, you’ll
learn how to write ActionScript to create
effective Flash interaction. Think of the pro-
cess as learning the grammar of a foreign
language: First, you must learn how to put
nouns and verbs together and integrate
adjectives and prepositions; then you can
expand your communication skills and
have meaningful conversations by build-
ing your vocabulary. This chapter will give
you a sound ActionScript foundation upon
which you can build your Flash literacy.

If you’re familiar with object-oriented
programming languages such as Java,

C++, or JavaScript, you'll recognize the
similarities in ActionScript. Although there
are slight differences, the basic syntax and
the handling of objects—reusable pieces of
code—remain the same.

In This Chapter

What Is ActionScript 3?7 86
About Objects and Classes 87
About Methods and Properties 88
Writing with Dot Syntax 89
More on Punctuation 91
The Actions Panel 92
Editing ActionScript 101
Using Objects 104
About Functions 14
Using Code Snippets 19
Using Comments 123

Even if you don’t have any programming
experience, you’ll see in this chapter that
Flash provides ways to help you write
script, such as code hinting as you com-
pose code, or tools to quickly add script,
such as the new Code Snippets panel.

What Is ActionScript 3?

Like any language, ActionScript evolves
over time. Introduced in Flash CS3, Action-
Script 3 is the latest version of the Flash
programming language that lets you control
graphics, animation, sound, and interactiv-
ity. ActionScript 3 is significantly different
from the previous version of the language,
ActionScript 2, so be aware of which version
you're dealing with, whether you’re search-
ing the Web for help or talking with a client
about a new project. Major differences
between the languages include:

m A different model for detecting and
responding to events (like a mouse
click or a keyboard input).

m Adisplay list in ActionScript 3, which
manages the dynamic display of all
kinds of graphics on the Stage.

m | ess dependence on the movie clip sym-
bol as the main actor in advanced Flash
projects. ActionScript 3 provides differ-
ent objects that are more specific to the
task rather than relying on the movie clip
for a wide variety of purposes.

m Changes in the actual language, so
users familiar with ActionScript 2 will
have to relearn commands (getURL is
instead navigateToURL, _root is root,
properties like _x are simply x).

You’ll begin your study of ActionScript 3
with its basic building blocks: objects and
classes.

86 Chapter3

o Objects in the real world include things like a
cow, a tree, and a person.

Human class

Adam Betty Zeke

0 Adam, Betty, and Zeke are three objects of the
Human class. Flash doesn’t have such a class, but
this analogy is useful for understanding objects.

About Objects and Classes

At the heart of ActionScript are objects

and classes. Objects are specific pieces of
data—such as sound, graphics, text, and
numeric values—that you create in Flash
and use to control the movie. A date object,
for example, retrieves information about
the time and the date, and an array object
manipulates data stored in a particular order.

All the objects you use and create are gen-
erated from blueprints known as classes.
Flash provides certain classes for you to
use in your movie. These built-in classes
handle a wide range of Flash elements
such as data (Array class, Math class) and
sound and video (Sound class, Video class).

Learning to code in ActionScript centers on
understanding the capabilities of objects
and their classes, and using them to inter-
act with one another and with the viewer.

In the real world, you’re familiar with
objects such as a cow, a tree, and a per-
son @). Flash objects range from visible
things, such as a movie clip of a spinning
ball, to more abstract concepts, such as
the date, pieces of data, or the handling

of keyboard inputs. Whether concrete or
abstract, however, Flash objects are versa-
tile because after you create them, you can
reuse them in different contexts.

Before you can use objects, you need to

be able to identify them, and you do so

by name just as you do in the real world.
Say you have three people in front of you:
Adam, Betty, and Zeke. All three are objects
that can be distinguished by name. All three
are made from a blueprint called humans.
You can also say that Adam, Betty, and Zeke
are all instances of the Human class @.

In ActionScript, instances and objects are
synonymous, and the terms are used inter-
changeably in this book.

Getting a Handle on ActionScript 87

About Methods
and Properties

Each object of a class (Zeke of the humans,
for example) differs from the others in its
class by more than just its name. Each per-
son is different because of several defin-
ing characteristics, such as height, weight,
gender, and hair color. In object-oriented
programming, you say that objects and
classes have properties. Height, weight,
sex, and hair color are all properties of the
Human class @.

In Flash, each class has a predefined

set of properties that lets you establish
the uniqueness of the object. The Sound
class has many properties, one of which
is 1length, which measures the duration of
a sound in milliseconds. The MovieClip
class, on the other hand, has different
properties, such as height, width, and
rotation, which are measures of the
dimensions and orientation of a particular
movie clip object. By defining and chang-
ing the properties of objects, you control
what each object is like and how each
object appears, sounds, and behaves.

Objects also do things. Zeke can run,
sleep, and talk. The things that objects can
do are known as methods. Each class has
its own set of methods. The MovieClip
class, for example, has a gotoAndStop()
method that sends the Flash playhead to

a particular frame on its Timeline, and the
Date class has a getDay() method that
retrieves the day of the week. When an
object does something by using a method,
you say that the method is called or that
the object calls the method.

Understanding the relationships between
objects, classes, properties, and methods
is important. Putting objects together so
that the methods and properties of one

Human class
Height
Properties Weight

Sex

Hair color
Adam Betty Zeke
Height: 69 Height: 68 Height: 66
Weight: 140 Weight: 135 Weight: 188
Sex: M Sex: F Sex: M
Hair color: Hair color: Hair color:
black black brown

0 Adam, Betty, and Zeke are human objects
with different properties. Names and properties
differentiate objects of the same class.

influence the methods and properties of
another is what drives Flash interactiv-
ity. The key to building your ActionScript
vocabulary is learning the properties and
methods of different classes.

@D 1t helps to think of objects as nouns,
properties as adjectives, and methods as
verbs. Properties describe their objects,
whereas methods are the actions that the
objects perform.

88 Chapter 3

Betty.weight=135 Zeke.weight=188

o The hypothetical weight property describes
Betty and Zeke. In Flash, many properties of
objects can be both read and modified with
ActionScript.

Symbols and Classes

Symbols aren’t classes. Symbols aren’t
even objects. It’s true that most types

of symbols (like movie clips, buttons,
bitmaps, and video) have an associ-
ated class, which is perhaps the source
of some confusion. For the most part,
symbols that appear in the Library aren’t
objects or classes because they don’t
have methods and properties that you
can control with ActionScript.

Symbols are simply reusable assets
created in or imported to the Library.
You create instances, or copies, of the
symbols to use in your movie. When you
place an instance of certain symbols,
such as a button or a movie clip, on the
Stage and give it a name, it becomes

an instance of the corresponding class
(SimpleButton or MovieClip) that you
can manipulate using ActionScript.

Writing with
Dot Syntax

As with other foreign languages, you
must learn the rules of grammar to put
words together. Dot syntax is the conven-
tion that ActionScript uses to put objects,
properties, and methods together into
statements. You connect objects, proper-
ties, and methods with dots (periods) to
describe a particular object or process.
Here are two examples:

Zeke.weight = 188
Betty.weight = 135

The first statement assigns the value 188 to
the weight of Zeke. The second statement
assigns the value 135 to the weight of Betty.
The dot separates the object name (Zeke,
Betty) from the property (weight) @.

In this statement, the object Betty is linked
to the object shirt:

Betty.shirt.color = "gray"

The object shirt, in turn, has the prop-
erty color, which is assigned the value
gray. Notice that with dot syntax you use
multiple dots to maintain object hierarchy.
When you have multiple objects linked in
this fashion, it's often easier to read the
statement backward. So you could read it
as “Gray is the color of the shirt of Betty.”

Continues on next page

Getting a Handle on ActionScript 89

Now consider the following statement:
Zeke.run()

This statement causes Flash to call the
method run() on the object Zeke, which
causes him to do something. The paren-
theses after run signify that run is a
method, not a property. You can think of
this construction as noun-dot-verb @.
Methods often have parameters (also
called arguments) within the parentheses.
These parameters affect how the method
is executed.

For example, both of these statements will
make the Zeke and Adam objects perform
the run() method, but because each
method contains a different parameter, the
way the run is performed is different—Zeke
runs fast, and Adam runs slowly:

Zeke.run("fast")
Adam.run("slow")

Each method has its own set of parameters
that you must learn. Consider the basic
Flash action gotoAndPlay(20, "Scene1").
The method gotoAndPlay() belongs to
the MovieClip class. The parenthetical
parameters, (20, "Scene1"), refer to the
frame number and the scene, so calling
this method makes the playhead of the
object jump to Scenel, frame 20, and begin
playing. Some parameters may require
quotation marks, while others may require
none—you’ll learn the reason when you
learn about data types later in this chapter.

h

Mouse.hide()

Adam.run()

0 Dot syntax lets you make objects call methods.
Just as the hypothetical method run() could make
the Adam object begin to jog, the real Flash method
hide(), when applied to the Mouse object, makes
the pointer disappear.

90 Chapter 3

More on Punctuation

Dot syntax allows you to construct mean-
ingful processes and assignments with
objects, properties, and methods. Addi-
tional punctuation symbols let you do more
with these single statements.

The semicolon

To terminate individual ActionScript state-
ments and start new ones, you use the
semicolon (;). The semicolon functions as
a period does in a sentence—it concludes
one idea and lets another one begin. Here
are two examples:

myMovieClip.stop();
myMovieClip.rotation = 45;

The semicolons separate the statements
so that the object called myMovieClip
stops playing, and then it is rotated 45
degrees. Each statement is executed in
order from the top down, like a set of
instructions or a cookbook recipe.

Flash will still understand ActionScript
statements even if you don’t use semicolons
to terminate each one. It’s good practice, how-
ever, to include them in your scripts.

Curly braces

Curly braces ({}) are another kind of
punctuation that ActionScript uses fre-
quently. Curly braces group related blocks
of ActionScript statements. When you
assign actions to respond to an event, for
example, those actions appear within curly
braces in a statement called a function:

function doThisAfterButtonClick () {
myMovieClip.stop();
myMovieClip.rotation = 45;

In this case, both the stop action and the
change in rotation are executed when
this function is called. Notice how the curly
braces are separated on different lines to
make the related ActionScript statements
easier to read.

Commas

Commas (,) separate the parameters of a
method. A method can take many param-
eters. The gotoAndPlay() method, for
example, can take two: a frame number
and a scene name. With commas separat-
ing the parameters, the ActionScript code
looks like this:

gotoAndPlay(20, "Scene 1");

Some methods may have three, four, or

perhaps even ten parameters, but as long
as you separate the parameters with com-
mas, Flash knows how to handle the code.

Capitalization

ActionScript 3 is case sensitive. That is, it
knows the difference between lowercase
letters and uppercase letters, so you must
be very careful and conscientious about
capitalization in all your code.

Colons

Colons () identify the type of object. When
you first encounter Zeke, for example,

you can identify him with the statement,
Zeke:Human because Zeke is an instance
of the Human class. Colons are important
whenever new instances are introduced
so that Flash knows what kind of data to
associate with the object. You'll learn more
about colons and the process of strict typ-
ing later in this chapter.

Getting a Handle on ActionScript 91

The Actions Panel

The Actions panel is a Flash dialog box
that lets you access all the actions that
control your Flash movie. The Actions
panel provides Script Assist, a mode in
which you are guided through the process
of writing code by using a fill-in-the-blanks
style to write commands. However, writing
ActionScript code directly is far more effi-
cient and in the long run the better way to
learn because you won’t spend your time
hunting for a command buried deep within
menus. This book will not show you how to
write code with Script Assist.

However, don’t worry that you’ll be left
alone in your code writing. As you write
your own ActionScript, the Actions panel
provides hints as you enter code and also
automates some of the formatting. The
Actions panel can also check for errors and
give you access to the ActionScript Refer-
ence Guide.

To open the Actions panel:

From the Window menu, choose Actions
(F9 on Windows, Option-F9 on the Mac).

or

Alt-double-click (Windows) or Option-dou-
ble-click (Mac) a keyframe in the Timeline.

or

Right-click (Windows) or Ctrl-click (Mac)
a keyframe in the Timeline and choose
Actions at the bottom of the context menu.

or

Select a keyframe and click the Actions
icon on the top-right corner of the Proper-
ties inspector @.

PROPERTIES

Frame @—— Open
Actions
panel
== LABEL
Name: | |
Type: [Name IV]
=7 SOUND
Name: [None Iv]
Effect: | None | > _)j
Sync: [Event |v]
Repeat Iv| x 1
No sound selected

o In the Properties inspector, click the icon with
the arrow to open the Actions panel.

92 Chapter 3

Collapse or
expand

(A) ACTIONS ...

0 The Actions panel, as well as the other
panels, can be viewed as icons or icons and
text by clicking the double-headed arrow at
the top-right corner.

To undock the Actions panel:

Grab the Actions panel by its tab and drag
it out of its current location.

The Actions panel undocks with its panel
set and becomes a free-floating window.

To redock the Actions panel:

1. Grab the Actions panel by its tab or top
horizontal bar and drag it over the dif-
ferent panels on your desktop.

The different panels will highlight,
indicating that you can dock the Actions
panel in that location.

2. Drop the Actions panel.

The Actions panel docks with the high-
lighted panels.

@D You can choose to view your Actions
panel, as well as all your other panels, as icons
and text, thus freeing up more of your screen.
Choose the double-headed arrow icon at the
top-right corner of the Actions panel to col-
lapse or expand it 0

The Actions panel can be minimized

just like other windows by clicking on the top
light-gray horizontal bar. Expand the panel by
clicking on the light-gray horizontal bar again.

Resize the Actions panel by clicking and
dragging the bottom-right corner.

Getting a Handle on ActionScript 93

Actions panel layout

The Actions panel features several sec-
tions and multiple ways to enter Action-
Script statements @. The Actions toolbox
on the left side displays all the available
commands, organized by packages, which
are groups of related classes. At the bot-
tom of the categories colored in yellow, an
index lists all the ActionScript commands
in alphabetical order. You can use the
Script navigator in the lower-left portion of
the Actions panel to navigate to different
scripts within your Flash movie. In the right
section, your completed script appears in
the Script pane. This part of the Actions
panel also offers additional functions when
the panel is in the special Script Assist
mode. At the top, a row of buttons and an
options pop-up menu provide additional
features.

Plus button Buttons to help write
adds statements and check script

| @) TopLevel l
@) Language Elements m

(5] adobe unis
&) airdeskrop

Actions toolbox —) sicupdare.events
contains actions B R.accessibiliny

@) Ncontainers I

organized in @ f.conrals -

COtegOrfes B Acontrols dataGridClass
El DataGridCellEditor

(= Crrent Selu.llun

m_|¥|——\ﬁ— Options pop-up

ey R BRIV DDA [Hccdesapm & &

menu

— Help button

Script pane

. . o Laver 1:Frame 1 |
Script navigator ——j— & scenet

Line 1 of 1, Col 1

Pin or Unpin
Script button

G The Actions panel.

94 Chapter 3

Eemm

Actionseript 3.0 B (& P dvE 28 HE T §)codsipe
é ;lmml_m; —~ 1 not_set_yet . gotoAndPlay(])

® glohalTalocs

@ gotoandpiay

@ gotcandstop

0 Add an action by choosing a statement from the
Actions toolbox. Here, the action gotoAndPlay()
has been added to the Script pane, and Flash
indicates that there is still code missing before it.

Tlask. deskiop

GraphicsSaroks
CraphicsTrianglePath

G Add an action by choosing it from the plus
button’s pull-down menus.

Adding ActionScript

Now that you know where the Actions
panel is located, how do you add Action-
Script code? You must first select a key-
frame on the Timeline in which you want
to add ActionScript. This tells Flash when
to carry out those instructions. Most often,
ActionScript is put on the very first key-
frame of your Flash movie.

Next, open the Actions panel and add
code by directly typing in the Script pane
or by choosing code from the categories
or menus provided.

To add an action in the Script pane:

1. Select the keyframe on the Timeline
where you want to assign an action.

2. In the Script pane of the Actions panel,
begin typing the desired action.

or

Open a category from the left toolbox of
the Actions panel and double-click the
desired action or drag it into the Script
pane.

The action appears in the Script pane.
The action may be incomplete, and
Flash tells you what additional elements
need to be provided to complete the
statement @.

or

Click the plus button above the Script
pane and choose the action from the
pull-down menus @.

The action appears in the Script pane.

While making your selection in the
Actions toolbox, you can use the arrow keys,
the Page Up and Page Down keys, or the
Home and End keys to navigate through the
list. Press Enter or the spacebar to open or
close categories or to choose an action to put
in the Script pane.

Getting a Handle on ActionScript 95

To edit actions in the Script pane:

Highlight the action, and then click and drag
it to a new position in the Script pane.

or

Highlight the action and use Copy, Cut,

or Paste from the keyboard (Ctrl-C, Ctrl-X,
or Ctrl-V on Windows; Cmd-C, Cmd-X, or
Cmd-V on the Mac) or from the context
menu (right-click on Windows, Ctrl-click

on the Mac). Don’t use Copy, Cut, or Paste
from the Edit menu because those com-
mands only affect the objects on the Stage.

To remove an action from
the Script pane:

Highlight the action and use the Delete key
to remove it from the Script pane.

To modify the Actions panel display:

Drag or double-click the vertical splitter
bar, or click the arrow button that divides
the Actions toolbox and Script pane, to col-
lapse or expand an area @.

or

Drag or double-click the horizontal splitter
bar, or click the arrow button that divides
the Actions toolbox and Script navigator, to
collapse or expand an area @.

To show earlier versions
of ActionScript:

If you are authoring for earlier versions of
the Flash Player and need to use com-
mands from ActionScript 1 or 2, click the
pull-down menu above the Actions toolbox
and select a different version).

The categories in the Actions toolbox
change to only show actions that you can
use for that version.

Moving the vertical splitter bar

PSR me——— ee—
[ActionScript 3.0 Ml | & 2 &y = BL
Top Level 1
Language Elements ﬂJ
adobe.utils
air.desktop
@ air.net b —
air.update
air.update.evenls H
fl.accessibility
fl.containers
fl.controls
fl.controls.dataGridCzads
S —
Lurrent Selection
B Layer 1 : Fran

% Scene 1

alr(

T
[

i
Line 1 of 1, Col 1

o Resize the Script pane by dragging or clicking
the vertical splitter bar that separates it from the
Actions toolbox.

Moving the horizontal splitter bar
|
air.update J

@] air.update.event E|
fl.accessibility
0 W T
@] fl.controls H
fl.controls.dataC v
 ——
E Layer 1: Fi F
% Scene 1

Line 1 of 1, Col 1

@ Resize the Actions toolbox by dragging or
clicking the horizontal splitter bar that separates
it from the Script navigator.

ActionScript 1.0 & 2.0
ActionScript 3.0
Flash Lite 1.0 ActionScript ™
Flash Lite 1.1 ActionScript
Flash Lite 2.0 ActionScript
Flash Lite 2.1 ActionScript
Flash Lite 3.0 ActionScript
Flash Lite 3.1 ActionScript
Flash Lite 4.0 ActionScript
[A] air.update.event [
@ flaccessibility v
—— —
Current Selecti

EI Layer 1 : Fi

0 Choose an ActionScript version
from the top pull-down menu.

96 Chapter 3

Other Places for ActionScript

The Timeline isn’t the only place you can
put ActionScript. More advanced coders
often will create their own ActionScript
classes or extend the functionality of
Flash’s preexisting classes. In those
cases, ActionScript is written in a sepa-
rate text file (the filename is identical to
the custom class name with the exten-
sion .as to indicate that it is ActionScript).
The text file is saved in the same direc-
tory as the Flash file. When you create
your own classes this way, you must use
the import statement in the script to use
the preexisting classes to build upon.

Actions panel options

The Actions panel provides many fea-
tures that can help you write reliable code
quickly and easily. Chapter 12, “Managing
Content and Troubleshooting,” explains
many other debugging tools in detail.

When you’re writing ActionScript in the
Script pane, you can use code hints, which
appear as you type. Code hints recognize
what kind of action you’re typing and offer
choices and prompts on how to complete
it. Flash makes it easy to be an expert! You
can also customize the format options so
that your code looks just the way you want
it for ease of reading and understanding.

Coding help is always available in the
Actions panel. The Help button, for exam-
ple, calls up the Help site on the Adobe
Flash Web site and sends you directly to
the description and usage of any action
selected in the Actions toolbox in case you
have trouble remembering what a particu-
lar action does or how it’s used.

If you want to keep an ActionScript visible
as you select other elements in your Flash
movie, you can do so by pinning your
script. Pinning makes your script “stick” in
the Script pane until you unpin it. This tech-
nique is useful if you've forgotten the name
of a text box or a movie clip and need to
reference it in an ActionScript statement.
You can pin your current script, and then
go look for your text box or movie clip.
Your script remains in place so that you can
make the necessary edits.

Getting a Handle on ActionScript 97

To use code hints:

1. Enter an object target path and then a
period or a colon.

Flash anticipates that you will enter a
method or property after a period or a
data type after a colon. A menu-style
code hint appears to guide you @.

2. Choose the appropriate term from
the menu.

Flash fills in your choice, completing
that part of your code.

or

1. Enter an action in the Script pane, and
then type the opening parenthesis.

Flash detects the action and anticipates
that you will enter its parameters. A
code hint appears to guide you @.

2. Enter the first parameter and then
a comma.

The bold in the code hint advances
to highlight the next required
parameter 3.

w

Continue entering the required param-
eters and type a closing parenthesis to
finish the action.

The code hint disappears @.

RLOVERREIEY DD F

JFCode Snippets \)

1 this.

alpha : Mumber - DisplayObject
blendMade : String - DisplayObject
blendShader : Shader - DisplayObject
buttonMode : Boolean - Sprite
cacheAsBitmap : Boolean - DisplayObject

o & 0 0 © 0 0 O

accessibilitylmplementation : Accessibilitylmplementation - Irm
accessibilityProperties : AccessibilityProperties - DisplayObjed

contextMenu : ContextMenu - InteractiveChiect

0 A code hint guides you
as you enter ActionScript.
The scrolling menu lists code

4|

[appropriate for the preceding

object.

RPLPOYERRLUEYDODDO M@

= Code Sni|
{2 Code Snippets OThe play() method requires

1 this.gotoAndPlay(

a parameter in between its

|gotoAndPIay{frame:0hjecL scene:Sstring=null) : void |

parentheses. The first required

parameter is the frame.

RPLPOVERRLIBYODA M

0 After you enter the first

| Code Snippets
JFl Code Snippe parameter (the frame), the code

1 this.gotoAndPlay(1@,

hint directs you to the next

|go‘(oAndPIaﬂframe:0bject. scene:String=null} : mid| parameter. The next parameter

for this action is the scene.

WROVERRIDIBEY DO

JFlCode Snippets

1 this.gotoAndPlay(1@,"SceneZ")

0 When you enter the closing
parenthesis, the code hint
disappears.

98 Chapter 3

Show Code Hint button
|

e povEeuunYyPOO @ |

m The Show Code Hint button is above the Script
pane.

Editing: Hﬂummallc close brace

P Automatic indentation

Tab size: 4
™ Code hints

Delay: E}" ='| 0 seconds

0 In the Preferences dialog box, you can change
the time that it takes for code hints to appear or
turn off that feature completely.

Dismiss a code hint by pressing the Esc
key or clicking a different place in your script.

Navigate the menu-style code hints

by using the arrow keys, the Page Up and
Page Down keys, or the Home and End keys.
You can also start typing, and the entry that
begins with the letter you type will appear in
the code hint. Press Enter or the key that will
follow the method or property (for example, a
space, comma, or parenthesis) to choose the
selection.

You can call up code hints manually by
pressing Ctrl-spacebar or by clicking the Show
Code Hint button above the Script pane when
your pointer is in a spot where code hints are

appropriate m

Change the delay time for code hints
to appear or turn off code hints by choos-
ing Preferences from the Actions panel’s
Options menu. When the Preferences dialog
box appears, change your preferences in the
ActionScript options category 0

@D Code hinting can also work with custom
classes. If you create your own ActionScript
classes and save them as external .as files in
your Flash’s source path (where it looks for
external ActionScript), Flash will automati-
cally detect and display code hints for those
classes.

To set formatting options:

1. From the Actions panel’s Options menu,
choose Preferences.

The Flash Preferences dialog box
appears.

2. Choose the Auto Format category.

Continues on next page

Getting a Handle on ActionScript 99

3. Set the different formatting options and
specify the way a typical block of code
should appear @; then click OK.

4. Choose Auto Format from the Actions
panel’s Options menu (Ctrl-Shift-F for
Windows, Cmd-Shift-F for Mac), or click
the Auto Format button above the
Script pane @.

Flash formats your script in the Script
pane according to the preferences you
set in the Auto Format category of the
Flash Preferences dialog box (step 3).

To get information about an action:

Select an ActionScript term in the Actions
toolbox or in the Script pane, and then click
the Help button above and to the right of
the Script pane @.

or

Right-click (Windows) or Ctrl-click (Mac)

an action in the Actions toolbox or in the
Script pane and select View Help from the
context menu that appears.

The Adobe Help application opens (which
mirrors the content in the Help section of
the Adobe Web site) with information on
the selected ActionScript term. The typical
entry in the Help site contains information
about usage and syntax, lists parameters
and their availability in various Flash ver-
sions, and shows sample code.

To pin or unpin a script
in the Script pane:

With ActionScript visible in the Script pane,
click the Pin Active Script button at the bot-
tom of the Actions panel @.

To unpin the script, click the button again.

Category Auto Format
Ganeral =
ArtionSeripe [_! Insert | on line after if, for, switch, while, etc.
#uato Format =
Clipboard [Insert | on line after function, class, and interface keywords
?::':‘“ ! Don't cuddle } and else
Wamings [ingert Frer functi in functi !
T orcer Dl insare space ahar fuacrion nama in funcron calls
Al File mparter [Insert spaces around operatars.

[Don't format multiline comments

Preview:

Tfunction fx) {
if Cnosl)
retuen 1

¥

s |
return at(aell;

b

0 The Auto Format category in the Flash Prefer-
ences gives you a preview of how a typical block
of code will look with the selections you make.

Auto Format button
|

X POVEEREEY DD @

0 The Auto Format button is above the
Script pane.

JF Code Snippets G T Help button

0 Make liberal use of the Help button to access
ActionScript references.

Pin Active Script button
|

—
=

Line 1 of 1, Col 2

Close Pinned Script button

lElLayerZ:l@ H

Line 1 of 1, Col 2

0 The Pin Active Script button (top) toggles to
Close Pinned Script (bottom).

100 Chapter 3

Editing ActionScript

When the code in the Script pane of the
Actions panel becomes long and complex,
you can check, edit, and manage it using
the Options menu of the Actions panel.
There are menu options for searching and
replacing words, importing and exporting
scripts, and printing your scripts, as well
as for different ways to display your script,
such as using word wrap @.

You can use the Find and Replace func-
tions in the Actions panel to quickly
change variable names, properties, or

Reload Code Hints

*_@ Pin Script =
Close Script 38
Close All Scripts {r 38
Go to Line... 8,
Find and Replace... ®F
Find Again 4
Auto Format 4+ 88F
Check Syntax ®T
Show Code Hint i
Import Script... 381
Export Script... 3P
Print...
Script Assist {+3BE
Esc Shortcut Keys
Hidden Characters {r3£8

+ Line Numbers 38L
+ Word Wrap GHEW -

Preferences... %U
Help
Close
Close Group

Q The Options menu of the Actions panel
contains editing functions for the Script pane.

even actions. For example, if you create

a lengthy script involving the variable
redTeamStatus but change your mind and
want to change the variable name, you can
replace all instances of redTeamStatus
with blueTeamStatus. You can find all

the occurrences of the property height
and replace them with width, or you can
locate all the occurrences of the action
gotoAndStop and replace them with
gotoAndPlay.

The Import Script and Export Script func-
tions of the Actions panel let you work with
external text editors.

Selects a specific statement line
Replaces a word or phrase with another

Formats the Script pane according to your Auto Format
settings in Flash Preferences

Checks the Script pane for errors

Inserts ActionScript code from an external text file
Saves the Script pane as a text file
Prints the Script pane

Displays line numbers in the Script pane

Fits the contents of the Script pane into the available
view by word wrapping

Opens the Preferences dialog box

Getting a Handle on ActionScript 101

To check the syntax in
the Script pane:

In the Actions panel, choose Options >
Check Syntax (Ctrl-T for Windows, Cmd-T
for Mac).

or

Click the Check Syntax button above the
Script pane ©@.

Flash checks the script in the Script pane
for errors in syntax. It reports any errors
in a Compiler Errors window, which tells
you the location and description of each

error @.

Check Syntax only reports the errors
in the current Script pane, not for the entire
movie.

To find and replace ActionScript
terms in the Script pane:

1. In the Actions panel, choose Options >
Find and Replace (Ctrl-F for Windows,
Cmd-F for Mac).

The Find and Replace dialog box
appears.

2. In the Find what field, enter a word or
words that you want Flash to find. In
the Replace with field, enter a word or
words that you want the found words
to be replaced with. Select the Match
Case check box to make Flash distin-
guish between uppercase and lower-
case letters @.

Check Syntax button
|

&2 PDOVE @Y

0 The Check Syntax button is the
check-mark icon above the Script
pane.

this, stop(3y;]

COMPMLER ERRORS
& P

Lecaton |
Scene 1, Layer Layer 1', Frame 1, Line 1 1086: preting semicolon hefare rightparen.

G The compiler error for a bad script. The Script
pane (top) contains an extra closing parenthesis.
Flash notifies you of the nature and location of the
error in the Compiler Errors window (bottom).

findjand Replace
Find what: [bluc | [Find hext |
Replace with; [red | [_Replace |
[march Case
Close

0 Every occurrence of blue will be
replaced with red.

102 Chapter 3

3. Click Replace to replace the first
instance of the found word, or click
Replace All to replace all instances of
the found word.

The Find and Replace dialog box
replaces all the occurrences of a particular
word or phrase only in the current Script pane
of the Actions panel. To replace every occur-
rence of a certain word in the whole movie,
you need to go to each script and repeat this
process.

To import an ActionScript:

1. Select Options > Import Script (Ctrl-
Shift-I for Windows, Cmd-Shift-l for Mac).

2. In the dialog box that appears,
choose the text file that contains the
ActionScript you want to import and
click Open.

Flash inserts the ActionScript contained
in the text file into the current Script
pane at the insertion point.

To export an ActionScript:

1. Select Options > Export Script
(Ctrl-Shift-P for Windows, Cmd-Shift-P
for Mac).

2. Enter a destination filename and click
Save.

Flash saves a text file that contains the
entire contents of the current Script
pane. The recommended extension for
external ActionScript files is .as, as in
myCode.as.

Getting a Handle on ActionScript 103

Using Objects

Now that you know what objects are and
how to operate the Actions panel, you
can begin to script with objects and call
their methods or evaluate and assign new
properties.

Flash provides existing classes (grouped in

packages) that reside in the Actions toolbox.

These Flash classes have methods and
properties that control different elements of
your Flash movie, such as graphics, sound,
data, time, and mathematical calculations.
You can also build your own classes or
extend the functions of an existing class, a
topic that we won’t delve into in this book.

Variables, data types,
and strict typing

In ActionScript, like most programming
languages, you access and manipulate
objects using variables. Variables are
containers that hold information. You can
create, change the contents of, and discard
variables at any time. In ActionScript 3,

it's necessary to define the existence of

a variable, which is known as declaring the
variable, before you use it. To declare a vari-
able, you use the ActionScript keyword var
followed by the name of the variable, which
is followed in turn by a colon and the type of
information the variable will be used to store.
The different kinds of information that vari-
ables can contain are known as data types.

Examples of typical types of variables are a
user’s score (Number data type), an Internet
address (String data type), a date object
(Date data type), and the on/off state of

a toggle button (Boolean data type). In
ActionScript 3, you specify the data type
of your variable when you create it; Flash
will allow only values of that data type to
be stored in the variable. This is called
strict typing. Strict data typing prevents
you from accidentally assigning the wrong
type of data to a variable, which can cause
problems during the playback of your
movie. Strict data typing involves adding a
colon (:) and the data type after the name
of your variable. For example, if you want
to create a variable called myScore to hold
a number, you write var myScore:Number.

TABLE 3.1 Some Data Types

Data Type Description Example Example

Number A numeric value var myTemp:Number = 98.6

int An integer (whole number) var myGolfScore:int = -4

uint An unsigned integer (a non-negative whole number) ~ var myZipCode:uint = 11215

String A sequence of characters, numbers, or symbols. A var yourEmail:String =
string is always contained within quotation marks. "johndoe@domain.com"

Boolean A value of either true or false. The words aren’t var buttonPressed:Boolean =
enclosed in quotation marks. true

Object A generic object to which you can add properties var myObj:Object =

or methods. Used in cases where a simple object is
needed.

new Object()

Any of the Flash
classes

An object type

var myMusic:Sound =
new Sound()

104 Chapter 3

dh B S E @KL Y

i § war myScore:Number = 28;

o Variables can be initialized to hold different
kinds of information. The word var indicates that
myScore is a variable, the colon and word Number
indicate that the variable can only hold numbers,
and the equals sign assigns the numerical value
20 to the variable.

It’'s good practice to initialize your vari-
ables in the first frame of your Timeline. That
way, you keep them all in the same place and
can edit their initial values easily.

When you assign a value that is one

of the intrinsic data types (Number, String,
Boolean) to a variable, even if you’re assign-
ing to one variable the value in another, Flash
determines the value and puts it in your
variable at that moment. If the property or the
referenced variable subsequently changes,
the value of your variable won’t change unless
you reassign it. Consider this example: var
xPosition:Numbexr = mouseX;. When you
initialize the variable called xPosition in the
first frame of your movie, it holds the x-coor-
dinate of the pointer. As you move the pointer
around the screen, the property mouseX
changes but the variable xPosition does not.
The variable xPosition still holds the original
x-coordinate from when it was initialized.

Table 31 lists the most basic data types that
variables can hold. However, a variable can
be declared with any ActionScript class as
its data type, including any of the built-in
classes and classes you create yourself.

Once you declare a variable, you initialize

it, or put information into the variable for the
first time. Initializing a variable in the Actions
panel involves using the equals sign (=),
which assigns a value to a variable. The
name of the variable goes on the left side of
the equals sign, and a value to be assigned
goes on the right side. This point is crucial:
the expression a = b is not the same as b = a.
So you can put a number in your myScore
variable like this: myScore = 20. It's common
to merge the declaration and initializing in

a single line like so: var myScore:Number

= 20. When you initialize a variable at the
same time you declare the variable, it’s clear
which part of the statement is the variable
and which part is the new value.

To declare and initialize a variable:

1. Select the first frame of the Timeline
and open the Actions panel.

2. In the Script pane, enter the keyword
var.

3. Next, enter a descriptive name for your
variable.

Your variable name should follow cer-
tain rules. See the sidebar “The Rules of
Naming” for more information.

4. Type a colon and then the data type of
the variable.

5. Type the equals sign (=) and then the
initial value that you want the variable
to hold.

The value on the right side of the
equals sign is assigned to the variable
on the left side @.

Getting a Handle on ActionScript 105

The Rules of Naming

Although you're free to make up descriptive names for your objects, you must adhere to the fol-
lowing simple rules. If you don’t, Flash won’t recognize your object’s name and will likely give you
an error:

Don’t use spaces or punctuation (such as slashes, dots, and parentheses), because these char-
acters often have a special meaning to Flash.

You can use letters, numbers, and underscore characters, but you must not begin the name
with a number.

You can’t use certain words for variable names because they are reserved for special functions
or for use as keywords in ActionScript. If you try to use them as variables, Flash will display an
error message when you test your movie. For example, you can’t name your variable “function”
because that word is part of the ActionScript language.

Those are the only three rules. Some additional general naming strategies, however, can make
your scripts easier to understand, debug, and share:

Variable names should describe the information that the variables hold. The variable names
playerScore and spaceshipVelocity, for example, are appropriate and will cause fewer
headaches than something like xyz or myVariable.

Use a consistent naming practice. A common method is to use multiple words to describe

an object and to capitalize the first letter of every word except the first. The names
spinningSquare1, spinningSquare2, and leftPaddle, for example, are intuitive, descriptive,
and easy to follow in a script. Remember that ActionScript 3 is case sensitive! Using a con-
sistent naming practice will help you avoid mismatches between your object name and your
ActionScript code due to capitalization.

It sometimes helps to add suffixes to names to describe the object type. Using the standard
suffix _mc for movie clips and _btn for buttons readily identifies the objects. Although strict
typing makes Flash recognize all variable names and their associated data type for code hint-
ing in the Actions panel, adding suffixes, especially to generic variable names, often makes the
code more understandable.

106 Chapter 3

war myared:Mumber = myLength #* mwWidih;
var dog¥earsilumber = 7 * Age;
war myProgress iNumber = currentFrame / totalFrames;

0 Some examples of expressions. The variable
names are on the left side of the equals signs, and
the expressions are on the right.

TABLE 3.2 Common Escape Sequences

Sequence Character

\b Backspace

\r New line

\t Tab

\" Quotation mark

\' Single quotation mark
\\ Backslash

Expressions and strings

Using expressions and using strings

are two important ways to describe and
manipulate data. An expression is a state-
ment that may include variables, proper-
ties, and objects, and must be resolved
(figured out) before Flash can determine its
value. Think of an expression as being an
algebraic formula, like a2 + b2 The value of
the expression has to be calculated before
it can be used @.

A string, on the other hand, is a statement
that Flash uses as is and considers to be a
collection of characters. The string “az + b?”
is literally a sequence of seven characters
(including the spaces around the plus sign
but not the quotation marks). When you ini-
tialize a variable with a literal string value,
you must enclose the characters in straight
quotation marks.

Expressions and strings aren’t mutually
exclusive—that is, sometimes you can have
an expression that includes strings! For
example, the statement "Current frame
is " + currentframe is an expression

that puts together a string and the frame
number of the main Timeline. You'll learn
more about this kind of operation, called
concatenation, in Chapter 11, “Manipulat-
ing Information.”

@D If quotation marks always surround a
string, how do you include quotation marks

in the actual string? You use the backslash (\)
character before including a quotation mark.
This technique is called escaping a character.
The string “The line \"Call me Shane\" is from
a 1953 movie Western” produces the following
result: The line “Call me Shane” is from a 1953
movie Western. Table 3.2 lists a few common
escape sequences for special characters.

Getting a Handle on ActionScript 107

Creating objects

The first step to add interactivity with Flash
objects is to create a new instance of a
class. You do this by using the keyword
new and then the name of the class and

a pair of parentheses: new Human(). This
creates a new Human object. However, the
new Human object needs a name. So you
give the object a name by declaring a vari-
able and assigning the new object to it.

var Zeke:Human = new Human();

You've just created Zeke! The variable
Zeke is strictly typed to hold a Human
type object, and with the variable name,
you can reference all the properties and
methods of the Human class. The process
is the same as creating an instance of, or
instantiating, a symbol on the Stage, but
here you do it purely with ActionScript.

Consider the following example:
var myData:Array = new Array();

This statement makes a new Array
instance called myData. The statement on
the right side of the equals sign is called a
constructor. Most classes have a construc-
tor method, a special method that creates
new instances of that class.

The following task demonstrates how to
create an instance of the Date class, but
the general technique works for instantia-
tion of all objects.

108 Chapter 3

wPGYEERETEY

1 wvar myDate:Date= new Dote);

G The finished statement creates an object called
myDate from the Date class.

Movie clip Movie clip Movie clip instance
instance on symbol in name in Properties
the Stage Library inspector

| e e

= |
Mae Clip .2
Instance of; Symbel 1 Sweap...
= POSITION AND ST [
x: B0 ¥: 529

e

Untaied-1 1=]

o W 1230 1230

1 item 12 > 30 POSITION AND VIEW
ame XE0 V0 ZoD
[i] Symibed 1

W.1230 1220

0 Instantiation of a movie clip symbol from the
Library to the Stage involves naming it in the
Properties inspector.

To instantiate an object:

1. Select the first frame on the main Time-
line and open the Actions panel.

N

. In the Script pane, type var.

3. Enter a space and then a name for your
new object.

4. ActionScript 3 requires strict typing, so
enter a colon and then the object type.
In this example, use Date.

5. Type an equals sign (=) and then the
constructor, new Date().

The full statement creates a new Date
object with the name you entered. Your
Date object is instantiated and ready
to use @.

Creating instances on the Stage

A few types of ActionScript objects, such
as movie clips, buttons, and text fields, are
unique because you can create them visu-
ally by adding an instance from the Library
(for button and movie clip symbols) or
using the drawing tools (for text). Instantia-
tion of these objects involves two steps:
placing an instance on the Stage and nam-
ing that instance in the Properties inspec-
tor. These two steps accomplish the same
task that the constructor function performs
for other Flash classes @. The result is the
same: A named object, or an instance, of
a class is created. You can manipulate that
object by calling its methods or evaluating
its properties.

Later in the book, you’ll learn how to cre-
ate SimpleButton instances (Chapter 4,
“Advanced Buttons and Event Handling”),
MovieClip instances (Chapter 7, “Con-
trolling and Displaying Graphics”), and
TLFTextField instances (Chapter 10,
“Controlling Text”), and place them on
the Stage using only code.

Getting a Handle on ActionScript 109

To name a movie clip instance
or a button instance:

1. Create a movie clip symbol or a button
symbol.

2. Drag an instance of the symbol from the
Library to the Stage.

3. Select the instance.

4. Atthe top of the Properties inspec-
tor, enter a unique name for your
instance @.

Now you can use this name to refer to
your movie clip instance or your button
instance with ActionScript.

The name of your symbol (the one that
appears in the Library) and the name you give
it in the Properties inspector are two differ-
ent identifiers @). The name that appears in
the Library is a symbol property and basically
is just an organizational reminder. The name
in the Properties inspector is more important
because it’s the actual name of the object and
will be used in targeting paths. End your movie
clip instance name with _mc and your button
instances with _btn so that the Actions panel
can identify the object type.

Calling methods

Often, the next step after creating a new
object involves calling the object’s methods.
You can call a method by using an object’s
name followed by a period and then the
method with its parameters within parenthe-
ses. All the methods of a particular class can
be found in the Methods category of that
class category in the Actions toolbox.

When you call an object’s method, the code
in the Script pane will look something like this:

myShape.startDrag();

This statement calls the method
startDrag() of the object called myShape,
and as a result, the graphic called myShape
will follow the mouse pointer.

PROPERTIES
’7 | myCircle_me | @
[Movie Clip | =]
Instance of: Symbol 1 Swap...

G The Properties inspector for a selected
movie clip. The name of this movie clip object
ismyCircle_mc.

Movie clip
symbol name

Movie clip
instance name

(T o —
Movie Clip I=
Instance of: Symbol 1
= POSITION AND SIZE il
item o | ¥ 82.0 ¥: 52.0
flame
L) symbol 1 w1230 H: 1230
= 30 POSITION AND VIEW
X820 Y-520 ZD0
W.123.0 H.123.0
- 55.0
T o

o The name of the movie clip symbol appears in
the Library (Symbol 1), and the name of the movie
clip instance appears in the Properties inspector
(myCircle_mc).

110 Chapter 3

1 wvar myDate:Date = new Date();
2 trace(myDate.getDate(}};

@ The Date object called myDate retrieves the
current date from your computer’s internal clock,
and the trace() command displays it when you
test the movie.

OUTPUT
28

Q The Output panel displays the results of the
trace. When this movie was tested, it was the 28th
day of the month.

Sometimes when you call an object’s
method, a value is returned. Essentially,
the object does something and then
comes back to you with an answer. In that
case, it's useful to put that answer or result
in another variable so you can store it and
analyze it. Your ActionScript would look
something like this:

var currentDate:Number =
myDate.getDate();

This statement calls the method getDate()
from the myDate object and puts the infor-
mation it retrieves into the variable called
currentDate.

The following task continues the task “To
instantiate an object” and calls a method
of your newly created Date object. Later
chapters introduce specific classes,
provide more information about the Date
class, and show you how to use methods
to control your Flash movie.

To call a method of an object:

1. Continuing with the task “To instantiate
an object,” open the Actions panel and
start a new line of code.

2. Enter a trace() statement so you
can see the results of the method in
this example. Between the parenthe-
ses of the trace() statement, enter
myDate.getDate() @.

The trace() statement is a debugging
tool that outputs messages in the Out-
put panel. See the sidebar, “Using the
trace() Statement.”

3. Test your movie by choosing Control >
Test Movie > in Flash Professional.

Flash instantiates a Date object (from
the earlier task) and then calls the
getDate() method. The returned value
(the day of the month) is displayed in
the Output window @.

Getting a Handle on ActionScript 111

Assigning properties

You can change the properties of objects
simply by assigning new values on the
right side of an equals (=) symbol. For
example, this statement changes the alpha
property of the object called myShape

so it becomes 50 percent transparent:
myShape.alpha = .5;.

Sometimes properties are read-only, which
means they can’t be changed, but you can
still use them in expressions to test certain
conditions.

To assign a value to a property:

1. In the Script pane, enter the object
name and then a dot.

The code hint pull-down menu appears,
displaying a list of choices available to
the particular object.

2. Select the desired property.

The statement consisting of the object
name, a dot, and the property appears.

3. Enter an equals (=) symbol and then a
value.

A new value is assigned to the
property @.

mybox.rotation=45;

o Assigning a value to a
property. The value of 45 is
assigned to the rotation
property of the object called
mybox, which results in the
object rotating 45 degrees.

112 Chapter 3

Using the trace() Statement

The first bit of ActionScript you should learn as you
forge ahead with objects, methods, and properties is
the trace() statement. The trace() statement gives
you feedback by displaying messages in the Output
panel, a panel that only shows up in the Flash authoring
environment.

Enter a string or an expression within the parentheses
of the trace() statement, and the results are displayed
when you test your movie. Traces are for debugging,
and they won’t show up in your final, published SWF
file. You'll often use the trace() statement to track the
value of variables at different points of your movie to
see whether or not your code is working correctly.

For example, in the Actions panel, enter

trace(stage.stageWidth);

o The trace() statement displays the
width of the Stage in the Output panel
when you test the movie (Control > Test
Movie > in Flash Professional).

stage width is 55@

0 Add text to your trace() statement
to make it more understandable.

When you test your movie, the Output panel appears and displays the value that represents the

width of your current Stage, in pixels @.

You can have multiple parameters within the trace() statement, separated by a comma. The Out-
put panel will display the multiple results separated by a space.

You can also combine strings to make the output easier to understand. For example, the statement
trace("stage width is "+stage.stageWidth) appends the string before the stage width so you

know what the number in the Output panel refers to (3.

Getting a Handle on ActionScript 113

About Functions

If objects and classes are at the heart of
ActionScript, functions must lie in the brain.
Functions are the organizers of Action-
Script. Functions group related Action-
Script statements to perform a specific
task. Often, you need to write code to do a
certain thing over and over. Functions elim-
inate the tedium of manually duplicating
the code by putting it in one place where
you can call on it to do its job from any-
where, at any time, as many times as nec-
essary. You'll see in Chapter 4, “Advanced
Buttons and Event Handling,” that functions
are essential for building responses to
events—creating true interactivity.

As you learned earlier in this chapter, the
objects Adam, Betty, and Zeke can per-
form certain tasks called methods. If these
objects were to put on a dinner party, they
could organize themselves and do the
following:

Adam.answerDoox();
Betty.serveDinner();
Zeke.chitChat();

But every Friday night when they have a
dinner party, you’ll have to write the same
three lines of code—not very efficient

if these objects plan to entertain often.
Instead, you can write a function that
groups the code in one spot:

function dinnerParty() {
Adam.answerDooxr();
Betty.serveDinner();
Zeke.chitChat();

}

Now, every Friday night you can invoke
the function by name and write the code
dinnerParty(). The three statements
inside the function’s curly braces will be
executed.

Building functions

To create a function, start the line of code
with the word function, then insert a
space, and then give your function a name.
The rules of naming functions are the same
as those for variables. Add a pair of paren-
theses and curly braces. Your statement
may look something like this:

function doExplosion() { }

Add actions within the curly braces. Then,
when you need the function, call it by
name, like this: doExplosion().

The following task builds a function that
loads a new Web site. Doing so requires
that you do two things: create an object
that holds the Web-site address, called

a URLRequest object, and then call the
navigateToURL() method. Consolidating
these statements into a single function
helps organize your code. You’ll learn more
communicating with the Web in Chapter 6,
“Managing External Communication,” so for
now focus on how the function works.

114 Chapter 3

Function loadnebsiteQ) { To build and call a function:

var mywebsite:URIRequest = new LURLRequest();

mywebsite.url-"http://www.adobe.com"; 1. Select the first keyframe of the main

sl

z

3

4 navigateToURL(mywebsite);) i :

5N 3 Timeline and open the Actions panel.
& loadwebsite();

2. Enter the following code:
function loadwebsite(){ }

8006

@ /;‘ L;‘_ http: / fwww.adobe.com/
The function called loadwebsite is cre-

ated. Statements within the curly braces
will be executed when the function is
called.

'\‘ Solutions Products Support Communities Compa
Adobe

3. Create a blank line between the curly
braces and enter the following code:

var mywebsite:URLRequest =
new URLRequest();

o 0 mywebsite.url =

When the function loadwebsite() is called, all " . n,

the statements between the function’s curly braces h‘ttp.//www.adobe.c?m 4

are executed, and the Adobe Web site opens in a navigateToURL(mywebsite);
browser (bottom).

The first line within the function cre-
ates a new object from the URLRequest
class. The second line assigns a Web
address to its url property, and the last
line loads the site.

4. On anew line outside the function, call
the function by entering the following:

loadwebsite();

Test your movie by choosing Control >
Test Movie > in Flash Professional €.
As soon as your movie plays, a browser
automatically opens and loads the
specified Web site.

Getting a Handle on ActionScript 115

Accepting parameters

When you define a function, you can

tell it to perform a certain task based on
parameters that you provide, or pass, to
the function at the time you call on it. This
approach makes functions much more flex-
ible because the work they do is tailored
to particular contexts. For example, in the
previous task, your function only loads the
Adobe Web site. But by enabling your func-
tion to accept a parameter, you can have
your function load any Web address.

To build a function that
accepts parameters:

1. Continuing with the file you used in the
preceding task, select the first keyframe
and open the Actions panel.

2. With your pointer between the paren-
theses of the function statement, enter:

whatsite:String

The variable whatsite is the parameter,
and it is strictly typed to hold a string
value.

3. Change the second line of the function
body so that it reads:

mywebsite.url = whatsite;

The parameter is used in one or more
of the function statements.

4. Change the call to the function with this:

loadwebsite(
"http://www.peachpit.com");

5. Test your movie by choosing Control >
Test Movie > in Flash Professional @.

The value that you provide in the initial
call ("http://www.peachpit.com")is
passed to the function. The function
uses that parameter to customize its
set of actions. You can call the function
many times with different parameters.

Data type of
Parameter parameter

[1=l]
function loadwebsite(whatsite:String) {
var mywebsite:URLRequest = new URLRequest();
mywebsite.url=whatsite;
navigateTolRL (mywehsite);

(= QT ST]

loadwebsite("http://www.peachpif.com");

|
Parameter used to customize the URL

8006 Peachpit: Publishers of techi

@ ‘I‘ O3 hitp:/ fwww. peachpit.com/

@ Peachpit

Publishers of technology books, eBook

Photoshop €55

¢ 2 PocketGuide
- Y —— -ﬁ

0 This function requires a parameter, which is
used to customize the Web site that opens (below).

When you define a function’s param-
eters, they should also be strictly typed. So
after the parameter name, be sure to include
a colon and the parameter’s data type.

116 Chapter 3

http://www.peachpit.com

Scope

Variables that are created inside a func-
tion only exist within that function. This is
the consequence of a variable’s scope.
Scope refers to the area of code where
your variable “belongs” (you can think of
it as its home) and where you can access
its contents. If you declare a variable
outside a function, it is a global variable,
which is accessible from all parts of the
code. If you declare a variable inside a
function, it is a local variable, which is
only accessible from within that function.

For example, in the example presented
in the tasks in this section, the variable
mywebsite only exists within the func-
tion called loadwebsite, and cannot be
referenced outside the function.

Returning a value

When you pass parameters to a func-
tion, you often want to know the results
of a particular calculation. To make your
function report a resulting calculation, use
the return statement. The return state-
ment, which you use within your function’s
body (between the curly braces), indicates
that the value of an expression should be
passed back when the function is called.

In the following task, you’ll build a simple
function that adds two numbers together
and returns the result.

To build a function that
returns a value:

1. Select the first keyframe of the main
Timeline and open the Actions panel.

2. Enter the word function, then a space,
and then enter a name for your func-
tion followed by open and closed
parentheses.

3. Between the parentheses of the func-
tion, enter the following parameters:

a:Numbexr, b:Number

4. After the parentheses, add a colon, and
then the data type Number.

5. Add an open and closed curly brace.

6. Between the curly braces for the func-
tion, enter the word return, followed
by an expression to add the two param-
eters. The full function code should look
like this:

function simpleAdd(a:Number,
b:Number):Number {
return (a + b);

}

Continues on next page

Getting a Handle on ActionScript 117

7. On a new line outside the function, call
the function inside a trace() action like
so: trace(simpleAdd(3, 5));

8. Test your movie by choosing Control >
Test Movie > in Flash Professional @.

The two values (3 and 5) pass to the
function, where they’re processed. The
function returns a value back to where
it was called. The returned value is
displayed in the Output panel. Use the
return statement whenever you need
to receive a value from a function.

The returned value of a function should
also be strictly typed. After the closing paren-
thesis of the function, enter a colon and then
the data type of the returned value. If the func-
tion doesn’t return a value, you should use the
keyword void.

R PLPOHOVYEERLIBYDODDODA M@

1 function simpleadd{o:Number, biNumber’:Number {
return (o + bj;

2
R
4 troce{simpleAdd(3, B));

OUTPUT

8

G This function requires two parameters and
returns a number. The trace() statement displays
the returned value in the Output panel when you
test the movie (below).

118 Chapter 3

Sl e

» [Actions

»[] Timeline Navigation
»] Animatien

» [Load and Unload

» [Audio and Video

» [Event Handlers

» [Actions

»[] Timeline Navigation
»] Animatien

» [Load and Unload

» [Audio and Video

» [Event Handlers

o The Code Snippets panel organizes common
interactivity in folders.

Using Code Snippets

Understanding the structure of ActionScript
and writing code yourself is essential for
your future success in Flash, especially for
more sophisticated projects. However, if
you don’t want to write code, or you just
need to quickly add some interactivity
without learning too much about what’s
behind the code, the new Code Snippets
panel can help. The Code Snippets panel
provides ActionScript code for common
interactive functions. For example, if you
want to make an object “drag-and-droppa-
ble,” you can add the interactivity from the
Code Snippets panel with just a few clicks.

The code snippets are saved in an external
XML document, which makes it easy to
edit, save your own version, or import one
from another developer.

To add interactivity from
the Code Snippets panel:

1. Open the Code Snippets panel (Win-
dow > Code Snippets, or click the Code
Snippets button in the Actions panel).

The Code Snippets panel organizes the
snippets in different folders, according
to their function @. Click the triangles
in front of the folders to expand or col-
lapse them.

Continues on next page

Getting a Handle on ActionScript 119

2. Select a code snippet and double-click it. oDt SNIPTETS | COMPONENTS | MOTION PRESETS | __»> | -=|
or hH]LEa) L

Sel . h lick ¥ [Actions =
elect a code snippet and then click on [Clck to Go to Web Page

the “Add to current frame” button. [Custom Mouse Cursor

|} brag and Drop
[} play a Movie Clip

Right-click (Windows) or Ctrl-click (Mac) [Stop a Movie Clip
on a code snippet and choose “Add to
frame.”

or

Flash automatica”y adds Actionscript —. This action requires an object to be selected on Stage.

to a layer named Actions in the cur-
rently selected keyframe, and then

opens the Actions panel. If the code

o Some actions like the one selected here, Drag

references an object or instance, Flash and Drop, requires a selected object, and Flash
will warn you and ask that you select provides a warning.
one on the Stage. Flash will automati-
cally convert selections to movie clip /* Click to Go to Frase and Play
' | AT T o o s P T o
.Symb0|s and glve them Instance names, g::be used on the main timeline or on movie clip timelines, |
if necessary o Instructions:
1. Replace the number 5 in the code below with the frame number you
3- View the ACtiOI’lSCI’ipt code in the :Tld like the ployhead to move to when the symbol instance is clicked|
Actions panel. novieClip_1 i cLIe
fl_ClickToGoToAndPlayFromFrame]);
The code is heavily commented (see function 1_click LayFromFrase(event yivotd
the next section to learn about com- i
ments) to explain what the code does
and how you can customize it to fit your G The ActionScript code that is automatically

situation. You may have to change a inserted in the Act_lon_s pane! provides instructions
on how to customize it. In this example, the

few parameters to make it work in your number 5 is a placeholder that should be replaced.
project @.

120 Chapter 3

Create New Code Snippet

Navigat! Edit Code Snippets XML

Delete Code Snippet

Refresh
Unload

[¥Iw

Reset to Default XML

0 Choose Create New Code Snippet to
save your own code snippet.

Title: [traceHello

Tooltip: Just a friendly greeting

Use code selected in Actions Panel? Aut

trace("hello friend");

Code:

| &=

[Automatically replace instance_name_here whe

G A simple code snippet that simply traces the
words “hello friend.”

| Just a friendly greeting |

[') traceHello
[Actlons
[Timeline Mavigation

o Your custom code snippet appears in the Code
Snippets panel.

Create New Code Snippet
Edit Code Snippets XML
Delete Code Snippet

Refresh

@ Choose Delete Code Snippet to
delete a code snippet.

To save code in the Code
Snippets panel:

1. In the Code Snippets panel, from the
Options menu choose Create New
Code Snippet ©@.

The Create New Code Snippet dialog
box opens @.

2. Enter a name in the Title field, a
description in the Tooltip field, and your
ActionScript code in the Code field.
Click Autofill if you've already selected
the desired code in the Actions panel.

3. Select the option “Automatically replace
instance_name_here when apply-
ing code snippet” if you want Flash to
replace instance_name_here in the
code with the actual selected instance
on the Stage. Click OK.

The title appears in the Code Snippet
panel under a Custom folder, and the
tooltip appears when you move your
mouse over the title @.

To delete a code snippet:

m Select a code snippet and, from the
Options menu, choose Delete Code
Snippet @.
or
Right-click (Windows) or Ctrl-click (Mac)
a code snippet and choose Delete
Code Snippet.

The selected snippet is deleted from
the Code Snippets panel.

Getting a Handle on ActionScript 121

To edit a code snippet:

1

In the Code Snippets panel, from the
Options menu choose Edit Code Snip-
pets XML.

An XML file opens that contains all the
code for each code snippet entry).

Edit the ActionScript code or the
desired XML code and choose File >
Save when you're done.

In the Code Snippets panel, from the
Options menu choose Refresh @.

Flash updates the Code Snippets panel
to reflect the edits you made to the
XML file.

To revert to the default
Code Snippets panel:

In the Code Snippets panel, from
the Options menu choose Reset to
Default XML.

To export the code snippets:

1.

In the Code Snippets panel, from the
Options menu choose Export Code
Snippets XML.

In the dialog box that appears, choose
a filename with an .xml extension and
save it in a location of your choosing.

The XML file that is saved contains the
contents of your Code Snippets panel;
you can share these contents with other
Flash developers.

To import code snippets:

1

In the Code Snippets panel, from the
Options menu choose Import Code
Snippets XML.

2. In the dialog box that appears, choose

your XML file containing your desired
code snippets and click Open.

X Codesnippetsxml

P vEREUIBYODO D

<fxml version="1.9" encoding="UTF-§"7>

<Codesnippetss

ales

This file determines which code snippets appear in the

isBranch ottribute - Set to "false” for snippets.

title - The nome of the snippet to display in the Code
description - The description of the snippet to displa
requiressymbol - Set to true if snippet requires an ob

[R T

18 code - The code to insert. Actual code should be plac
11 minPlayerversion - Require FLA file to meet a minimum
12 maxPlayerversion - Require FLA file to be less than o
13 minASversion - Require FLA file to meet a minimum Acti
14 maxaSversion - Require FLA file to be less than or equ

16 To create your own code snippets copy the following em

18 ssnippet isBranch="false"»>

19 <titlesCustom Snippet</titles

Fil <description>This is an exaomple of a custom code
21 <requiressymbol-true</requiressymbol:

22 <code=<! [CDATAL
23 7/ Code goes here
24 trace("A custom code snippet”):

25 1]=«/codex
26 </snippets
27 -

28 <snippetss

0 Code snippets are saved as an external XML
file, which you can easily edit and share with
others. It may look complicated, but the XML
structure is logical and straightforward. Edit the
contents between the opening (<code>) and
closing (</code>) XML tags.

* -
Create New Code Snlppe[tJ_J
Edit Code Snippets XML
Delete Code Snippet
Refresh
Reset to Default XML
Show All Warning Dlalogs

o Make sure you choose Refresh
from the Code Snippets Options menu
so your edits show up in the Code
Snippets panel.

122 Chapter 3

57
/f building a function example
£/ create a function that takes one parameter, a string

function loadwebsite(whatsite:String) {
var mywehsite:URLRequest = new URLRequest();
mywebsite.urlswhatsite; // the parameter is used as the url
navigateToURL{mywebsite);

¥

A

/¢ call the function and pass a web address to the function

loadwebsite!“http://www . peachpit.com™);

0 Comments interspersed with ActionScript
statements help make sense of the code.

Line comment button

|2 POvERR HEFIODO F

0 The Line comment button lets you insert
comments on a single line.

Using Comments

After you’ve built a strong vocabulary of
Flash actions and are constructing com-
plex statements in the Actions panel, you
should include remarks in your scripts to
remind you and your collaborators of the
goals of the ActionScript. Comments help
you keep things straight as you develop
intricate interactivity and relationships
among objects @.

To create a line comment:

Click the Line comment button at the top of
the Script pane, and then enter your com-
ments @.

or

In the Script pane, manually type two
slashes (//) followed by your comments.

Comments appear in a different color than
the rest of the script, making them easy to
locate.

Getting a Handle on ActionScript 123

To create a block comment:

Click the Block comment button at the top
of the Script pane, and then enter your
comments between the /* and the */ @.

Block comments can span multiple lines as
long as they lie between the slash-asterisk
and the asterisk-slash.

or

In the Script pane, manually type a slash
and an asterisk (/*) followed by your
comments. Close your comment with an
asterisk and slash (*/).

Don’t worry about creating too many
comments. Comments aren’t included when
you publish your final project, so they won’t
bog down performance. Also, because they
aren’t included in the exported SWF file, they
don’t increase the final file size.

The slash convention for creating com-
ments in ActionScript is the same for creating
them in keyframes. When you choose Com-
ment in the Label type pull-down menu in the
Properties inspector, the name in the <Frame
Label> field automatically begins with two
slashes (//). You can also enter two slashes
manually to begin a frame comment @).

Block comment button

|2 POvEECR HEFIDDO @

o The Block comment button lets you insert
multiline comments.

_
l' Frame @

= LABEL

[»

Mame: |//some note |

Type: [Comment | v]

0 In the Properties inspector, double slashes
indicate a comment in a frame label.

124 Chapter 3

Advanced Buttons
“vent Handling

and

Creating graphics and animation in Flash is
only half the story. The other half is interac-
tivity, which involves giving the viewer con-
trol of those graphics and animation. What
makes a movie interactive? It’s the back-
and-forth communication between the user
and the movie. Mouse movements, button
clicks, or keypresses are examples of
things that happen, called events. Events
form the basis of interactivity. There are
many kinds of events—some are user
driven whereas others are not. You'll learn
to make Flash listen for and respond to
these events (event handling).

This chapter first introduces events, listen-
ers, and functions used to respond to
events. Next, it explores the simplest class
for creating interactivity: the SimpleButton
class. You'll learn about invisible buttons,
animated buttons, and more complex but-
tons. You’ll also learn about the classes
and events that are involved in keyboard
input and the context menu. Additionally,
you’ll learn an important event known as
the ENTER_FRAME event, which you'll rely
on to create continuously running actions.
Understanding these classes and event

In This Chapter

Listening for Events
Mouse Detection

The SimpleButton Class
Invisible Buttons

Animated Buttons and the
Movie Clip Symbol

Complex Buttons
Button-tracking Options
Changing Button Behavior
Creating Buttons Dynamically
Keyboard Detection

The Contextual Menu
Creating Continuous Actions

A Summary of Events

126
128
133
137

139
142
146
148
151
153
157
163
168

handling is essential to creating Flash

interactivity because these elements are
the scaffold on which you’ll hang virtually

all your ActionScript.

Listening for Events

Events are things that happen that Flash
can recognize and respond to. A mouse
click is an event, as are mouse move-
ments and keypresses. Events can also
be things that the user doesn’t initiate.
The completion of a sound, for example,
is an event. Anytime an event happens, an
object of the Event class is created. When
the mouse button is clicked, a MouseEvent
object (a subclass of the Event class) is
created. When a key on the keyboard is
pressed, a KeyboardEvent object (another
subclass of the Event class) is created. It
may seem a little strange that an object
represents an event, but remember Flash
objects can be very abstract!

With all these events happening, you need
a way to detect and respond to them.

You detect an event by creating an event
handler. An event handler simply tells Flash
what to do when a specific kind of event
happens. Creating an event handler is a
two-part operation: first, you add, or “regis-
ter,” a listener to detect the event and trig-
ger a function, and second, you create the
function that tells Flash how to respond. (It
doesn’t matter if you register the listener
first or create the function first. As long as
they are both in the same block of code,
the event handler will work.)

For example, if you want to listen for a
mouse click on top of a particular button,
you add an event listener to that object as
follows:

myButton_btn.addEventListener(
MouseEvent.CLICK, reportClick);

The addEventListener() method takes
two parameters. The first is the specific
kind of event that you want to detect. All
the event objects have properties (like
MouseEvent.CLICK), which give more speci-
ficity to the event. The second parameter
is the name of your function, which is trig-
gered when the event is detected.

Next, add a function as the response to the
event. Create the function with a parame-
ter strictly typed to the MouseEvent object,
like so:

function reportClick(
myevent:MouseEvent):void {
/!l do something in response

}

Between the curly braces of the function,
you add actions as the response. The word
myevent in this example is the parameter
name that you make up that refers to the
event.

The actual object that receives the event
(in this example, it is the button called
myButton_btn) can be referenced in the
function by using the property target. In
the preceding example, the expression
myevent.target references myButton_btn.

When you no longer need to listen for an
event, you can delete the listener with
the method removeEventListener().
The method takes two parameters,
which are identical to the ones in the
addEventListener() method.

126 Chapter 4

Event Flow

Event handling is a little more involved than what is described here. When an event occurs and

an Event object is created, the Event object systematically moves through other objects on

the Flash Stage in a process known as the event flow. There are three parts to the event flow: a
capture phase, a target phase, and a bubbling phase. Imagine that a mouse click happens on a
button that is inside a movie clip on the Stage @). The MouseEvent object is created, is dispatched
from the Stage, and flows down to the movie clip and to the button inside the movie clip. That
downward flow through those objects is the capture phase. The target phase involves the time the
MouseEvent object is at the target (the button). Then the MouseEvent object proceeds to bubble,
or flow, up the hierarchy to the main Stage @. This round-trip flow is important because it lets

you put a listener at any point along its path and still detect the event. In other words, the listener
doesn’t have to be tied to the object where the event occurs.

However, many events don’t proceed through all three phases of the event flow. Some events,
such as the Event.ENTER_FRAME object, are dispatched directly to the target object and don’t par-
ticipate in a capture or bubbling phase. Consult the Adobe ActionScript 3.0 Language Reference
to learn more about each particular kind of event.

MouseEvent
PN object dispatched
el Yoy
Stage — : ~, >
I % T
; S Capture
phase

Movie clip - _
(on Stage) Sorc] _

Button (inside —C’%p‘)

movie clip)

Target phase
(event target is
the button)

o Events traverse the display list, which are
the objects on the Stage. This example shows
the main Stage with a movie clip on it. Inside the

movie clip is a button, where a mouse click occurs.

0 When a mouse click occurs on a target
(shown here as the button), a MouseEvent is
dispatched and travels from the Stage down to
the event target, and then bubbles upward back
to the Stage. Listeners are usually put on the
event target, but it is not required. For example,
a listener could be put on the movie clip, and it
would detect events happening on the movie clip
or on objects inside the movie clip.

Advanced Buttons and Event Handling 127

Mouse DeteCtion TABLE 4.1 MouseEvent Properties

Description

Happens when the mouse
button is clicked

Mouse events such as a button click, dou- Property
ble-click, or simply moving the mouse are CLICK
handled by the MouseEvent class. Since

the mouse is one of the primary means DOUBLE_CLICK

through which a user interacts with a Flash
movie, it’'s important to understand how to

Happens when the mouse
button is clicked twice in
rapid succession

Happens when the mouse
pointer moves

Happens when the mouse
button is pressed

listen and respond to mouse events. MOUSE_MOVE
Th(? simplest event is the button click, MOUSE_DOWN
which happens when the user presses and

then releases the mouse button. You can MOUSE_UP

detect and respond to a button click by

Happens when the mouse
button is released

first attaching a listener to the main Stage MOUSE OVER
(referred to as stage) and using the prop- -
erty MouseEvent.CLICK as follows:

Happens when the mouse
moves from a nontarget area
over a target area

Happens when the mouse
moves from a target area out
of the target area

stage.addEventListener(MOUSE_OUT
MouseEvent.CLICK, reportClick);
Next, create a function with a MouseEvent MOUSE_WHEEL

parameter:

Happens when the mouse
wheel is rotated

function reportClick(
myevent:MouseEvent):void {
/!l do something in response

}

If you want to detect a click on a particu-
lar object, use the object’s name instead
of the word stage. Flash can listen for

a mouse event on any object of the
InteractiveObject class displayed on the
Stage (button, text field, Loader, Sprite,
movie clip, or the Stage).

Table 4.1 details the specific properties
that describe the events of the MouseEvent
object.

128 Chapter 4

function repertClick(myevent:;MouseEvent):void {
trace("click™);

B

click

1
z
3
4

stage.addEventListener(MouseEvent.CLICK, reportClickd;

o The event handler in the Actions panel (above)

makes the Output panel display “click” in the
test movie mode whenever the mouse button is
clicked (below).

To detect a mouse click on the Stage:

1.

Select the first frame of the main Time-
line, and open the Actions panel.

. Assign a listener to the main Stage with

the following code:

stage.addEventListener(
MouseEvent.CLICK, reportClick);

When the MouseEvent.CLICK event is
detected on the main Stage, the func-
tion called reportClick is triggered.

On the next available line, enter the fol-
lowing function:
function reportClick(

myevent:MouseEvent):void {
/! do something in response

}

Between the curly braces, enter actions
as a response.

. Choose Control > Test Movie > in Flash

Professional.

Whenever you click the mouse button,
Flash performs the actions listed within
the reportClick function @. The func-
tion name reportClick and Event name
myevent are names that you make up
yourself, as long as they follow the stan-
dard naming rules laid out in Chapter 3,
“Managing External Communication.”

@D The MouseEvent.DOUBLE_CLICK

requires an additional bit of code to work
properly. The property doubleClickEnabled
for the button instance must be set to true for
double-click events to be captured.

@D The MouseEvents have shortcuts that
you can use instead of entering the full

MouseEvent class name and particular event.
For example, instead of MouseEvent.CLICK,

you can use "click", and instead of

MouseEvent.MOUSE_UP, you can use
"mouseUp". Check the Flash Help Action-
Script Language Reference for the full list of
shortcuts.

Advanced Buttons and Event Handling 129

To detect a mouse movement
on the Stage:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Assign a listener to the main Stage with
the following code:

stage.addEventListener(
MouseEvent.MOUSE_MOVE,
reportMove);

When the MouseEvent.MOUSE_MOVE
event is detected on the main Stage, the
function called reportMove is called.

3. On the next available line, enter the fol-
lowing function:

function reportMove(
myevent:MouseEvent):void {
/! do something in response

}

Between the curly braces, enter actions
as a response.

4. Choose Control > Test Movie > in Flash
Professional.

Whenever you move the mouse, Flash
performs the actions listed within the
reportMove function @.

The mouse wheel

The mouse wheel is a third button that

is nestled between the left and right
mouse buttons and spins forward or
backward like a wheel. By listening for the
MouseEvent.MOUSE_WHEEL event, you can
respond to the mouse wheel motion and
direction. For example, you can connect
the forward or backward motion of the
mouse wheel to the up or down scrolling
of text or to the selection of items in a pull-
down menu.

The MOUSE_WHEEL event has the property
delta, which is a number that indicates
how quickly and in what direction the user

stage .addEventlistener (MouseEvent .MOUSE_MOVE,, reportMove);
function reportMovemyevent :MouzeEvent) ivoid {

}

0 The full code that detects whenever the mouse
cursor moves over the Stage.

130 Chapter 4

Negative
delta

G The mouse wheel returns a positive delta when
it rolls forward and a negative delta when it rolls
backward.

Movie clip called
myRocket_mc

. I
> P I
l Positive |deh‘a

adds to its
X-position

Negative delta
subtracts from its
X-position

0 The movie clip on the Stage moves to the right
if the delta property is positive and moves to the
left if the delta property is negative.

stage.addEventlistener (MouseEvent .MOUSE_WHEEL , moweRocket);

function moveRocket (myevent :MouseEvent) rvoid]
myRocket_me . x+=myevent .delta;

G The full code for responding to the mouse
wheel on the Stage. When the mouse wheel rolls
forward, the movie clip moves to the right. When
the mouse wheels rolls backward, the movie clip
moves to the left.

spins the mouse wheel. A positive (+) delta
refers to a forward motion (away from the
user) of the mouse wheel @. A negative (-)
delta refers to a backward motion (toward
the user). The values of delta typically
range from —3 to 3. You can use the delta
property within the function of your event
handler to respond according to the direc-
tion of the mouse wheel.

Although you can author the MOUSE_WHEEL
event handler on either a Macintosh or
Windows, the playback functionality is only
available on Windows.

To detect mouse wheel motion:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Add the listener to the stage:

stage.addEventListener(
MouseEvent.MOUSE_WHEEL,
moveRocket);

3. On the next available line, create
the function that will respond to the
MouseEvent. Between the curly braces
of the function, incorporate the delta
property of the MouseEvent object to
reflect the forward or backward roll of
the mouse wheel:

function moveRocket(
myevent:MouseEvent):void {
myRocket_mc.x += myevent.delta;

}

In this event handler, the movement
of the mouse wheel adds or subtracts
from the horizontal position of the
movie clip called myRocket_mc @.

4. Choose Control > Test Movie > in Flash
Professional on a Windows computer.

As you move the mouse wheel back-
ward or forward, the movie clip on the
Stage changes its position @.

Advanced Buttons and Event Handling 131

To target an object to respond myRacket_nc.addEventL istener (NoussEvent . MOUSE_WHEEL , moveRockst);

to mouse wheel motion: e e e et
¥

1. Continue with the previous task.

. . o To detect the mouse wheel event just on the
2. Select the first frame of the main Time- target, add the listener to the target instead of

line, and open the Actions panel. the Stage.
3. Change the addEventListener()

method to target the movie clip
myRocket_mc instead of the stage @.

4. Choose Control > Test Movie > in Flash
Professional on a Windows computer.

Now the listener only detects the
MOUSE_WHEEL event over the movie clip
instance. When you move the mouse

wheel over the movie clip on the Stage,

L . . Th ie clip called myRocket ill ch
the movie clip changes its position @. @ The movie clip called myRocket_nc will change

its x-position only when the user rolls the mouse
wheel when it is over the movie clip.

Multiline Classic or TLF text fields
(discussed in Chapter 10, “Controlling
Text”) automatically scroll in response to
the mouse wheel. You can, however, dis-
able the mouse wheel with the text field
property mouselWheelEnabled. Set the
mouselWheelEnabled property of any text
field to false like this:

myTF_txt.mouseWheelEnabled = false;

The text field called myTF_txt will no longer
respond automatically to the mouse wheel.

132 Chapter4

&/ &~ el

o The four keyframes of a button symbol.

Button instance name in
the Properties inspector

Button instance
on the Stage

PROPERTIES
’T] [mybutten_btn ———— | @
[Button |~]
Instance of: Symbol 1

0 The button instance is named mybutton_btn in
the Properties inspector.

The SimpleButton
Class

In the previous section, you were able to
listen for a mouse click on the Stage. But
more often than not, you’ll want to detect a
mouse click when it happens on a specific
object on the Stage, like a button, movie
clip, or a text field. The SimpleButton class
handles the visual objects that interact with
the mouse pointer. Flash lets you define
four special keyframes of a button symbol
that describe how the button looks and
responds to the mouse: the Up, Over, Down,
and Hit states. The Up state shows what
the button looks like when the pointer isn’t
over the button. Over shows what the but-
ton looks like when the pointer is over the
button. Down shows what the button looks
like when the pointer is over the button
with the mouse button pressed. And Hit
defines the actual active, or hot, area of the
button €.

It's important to realize that events can
target many kinds of objects, not just but-
tons. Buttons just give you a convenient
way to create graphics that provide visual
feedback when the mouse is interacting
with them.

To detect a mouse event
on a button:

1. Create a button symbol (Insert > New
Symbol), and drag an instance of the
newly created button symbol from the
Library onto the Stage.

2. Select the button instance, and enter
a descriptive name in the Properties
inspector. Add the suffix _btn to the
name. In this example, the button name
is mybutton_btn @.

Continues on next page

Advanced Buttons and Event Handling 133

This name is the name of your button
object; you’ll use it to reference the
button from ActionScript. This name is
not the same one that appears in your
Library.

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. In the first line of the Script pane, assign
a listener to your button. The target
should be the name of your button,
like so:

mybutton_btn.addEventListener(
MouseEvent.CLICK, reportClick);

When the MouseEvent.CLICK event
happens on the button, the function
reportClick is called.

5. On the next available line, enter the fol-
lowing function:

function reportClick(
myevent:MouseEvent):void {
/! do something in response

}

The function name reportClick and
parameter name myevent can be any
name of your own choosing as long as
they conform to the standard naming
practice. In between the curly braces,
enter actions as a response @.

6. Choose Control > Test Movie > in Flash
Professional.

Whenever you click the mouse but-
ton on the button instance, Flash
performs the actions listed within the
reportClick function @.

mybutton_btn.addEventListensr (MouseEvent .CLICK, reportClick);

function reportClick{myevent :MouseEvent) void {
ston();

0 The event handler is a function that is tied to
an object via the addEventListener method. In
this example, the movie will stop when the button
is clicked.

—>

0 When the mouse click occurs over this
button, named mybutton_btn, the actions
in the function are executed.

As described in Chapter 3, “Getting a
Handle on ActionScript,” it’s recommended
that you end all instance names for buttons
with _btn so that Flash can provide the appro-
priate code hints in the Script pane. This tech-
nique also makes it easier to read your code.

When you create your event handler on
the main Timeline, your button must be pres-
ent on the Stage at the same time so Flash
knows what object it references. If you create
the event handler in keyframe 1, for example,
but your button doesn’t appear until keyframe
10, Flash will give you a compile error.

134 Chapter 4

mybutton_btn.addCventListener (MouseCvent HOUSC_OWER, reportClick);

function reportflick (nyevent :MoseFvent) svnid
/4 do something
¥

G Change the MouseEvent properties (highlighted
here) to listen for different kinds of mouse events.

9.|:|| up |Emwn HIII |

] button « « @

mybutton_btn_oddEventListener (MouseEvent MOUSE_OVER, reportClick);

function reportClick(mevent :MouseEvent)void
A7 o sumeLhing
+

o The keyframes of a button symbol (top) provide
the visual feedback to mouse interaction, and the
ActionScript code on the Timeline (bottom) tells
Flash what to do when an event happens.

To select different mouse events:

1. Highlight the existing first parameter of
the addEventListener() method, and
press the Delete key.

2. Type in the name of a different event
that should trigger the function
(such as MouseEvent.MOUSE_MOVE,
MouseEvent.MOUSE_OVER, and so on) @.

You can add more than one listener to
the same object. A MouseEvent.MOUSE_DOWN
may trigger one event handler, whereas a
MouseEvent.MOUSE_UP may trigger another,
like so:

myobject.addEventListener(
MouseEvent.MOUSE_DOWN,
downFunction);

myobject.addEventListener(
MouseEvent.MOUSE_UP, upFunction);

Don’t confuse the
MouseEvent.MOUSE_OVER event with the Over
keyframe of your button symbol. Both involve
detecting when the pointer is over the hit area.
But the Over state describes how your button
appears when the mouse is over the hit area,
whereas the MouseEvent.MOUSE_OVER event
triggers the function for that event. The key-
frames of a button symbol define how it looks,
and the event handler defines what it does @.

Advanced Buttons and Event Handling 135

Mouse Events in ActionScript 2

So far, you’ve seen only one way to manage event handling: by creating a function and using the
method addEventListener() to detect an event. However, if you're authoring under a previous
ActionScript version, you should use the older way of handling mouse clicks. First, in the Proper-
ties inspector, name the button or movie clip on the Stage. Then, in the Actions panel, target the
button or movie clip and assign a function to the first keyframe on the Timeline, like so:

myButton_btn.onRelease=function(){

/l do a response
}
There is an even older technique for handling events that involves attaching the event-handler
code directly to a button instance by selecting the button before typing in the code. You use a spe-
cial event-handler syntax, as in the following:

on (release) { //do a response }

It’s best to avoid the third way of handling events because your code becomes scattered among
individual buttons on the Stage. As your movie becomes more complex and you have more but-
tons to deal with, you'll find it difficult to isolate and revise button events. Putting the event handler
on the main Timeline is standard practice and the recommended route.

136 Chapter 4

- D| Up | Cwer Dow_

o An invisible button symbol has only its Hit
keyframe defined.

Two instances of the same invisible button
symbol cover different spots on this map
to make those areas interactive.

0 Two invisible button instances over a map.

Invisible Buttons

You can exploit the flexibility of Flash but-
ton symbols by defining only particular
states. If you leave empty keyframes in all
states except for the Hit state, you create
an invisible button @. An invisible button is
not visible to the audience, yet still main-
tains a clickable hot spot. Invisible buttons
are extremely useful for creating generic
hotspots to which you can assign actions.
By placing invisible button instances on
top of graphics, you essentially have the
power to make any area on the Stage react
to the mouse pointer. For example, you can
place several invisible buttons over a map
graphic to create hidden hotspots @.

When you drag an instance of an invisible
button onto the Stage, you see the hit area
as a transparent blue shape, which allows
you to place the button precisely. When
you choose Control > Enable Simple But-
tons (Ctrl-Alt-B for Windows, Cmd-Option-B
for Mac), the button disappears to show
you its playback appearance.

To create an invisible button:

1. Choose Insert > New Symbol (Ctrl-F8
for Windows, Cmd-F8 for Mac).

The Create New Symbol dialog box
appears.

2. Type the symbol name of your button,
choose Button as the Type, and click OK.

A new button symbol is created in the
Library, and you enter symbol-editing
mode.

3. Select the Hit keyframe.
4. Choose Insert > Timeline > Keyframe (F6).

A new keyframe is created in the
Hit state.

Continues on next page

Advanced Buttons and Event Handling 137

5. With the Hit keyframe selected, draw
a generic shape that serves as the
hotspot for your invisible button @.

6. Return to the main Timeline.

7. Drag an instance of the symbol from the
Library onto the Stage.

A transparent blue shape appears on

@ @ 0| up | Over |Down [CHIE]
the Stage, indicating the Hit state of Sl 72+ -\ , ol 4|
your invisible button @.

8. Move, scale, and rotate the invisible e b oRE W[4 1200

button instance to cover any graphic.
@ An invisible button symbol. The rectangle in the

When you choose Control > Enable Hit keyframe defines the active area of the button.

Simple Buttons, the transparent blue
nvisible button | ———

area disappears, but your pointer

changes to a hand to indicate the pres- instance on (T~
ence of a button. the Stage
9. Give the button instance a name in +
the Properties inspector and assign an
event listener for it in the Actions panel o | Litem 0

as described in the previous tasks.

Name
E Symbol 1

0 An invisible button, when placed from the
Library onto the Stage, will display a transparent
blue area that is identical to its Hit keyframe.

138 Chapter 4

The butterfly movie clip instance resides
in one frame of the main Timeline.

[P Layer 1 g+« 0

EEEI=: | 4 mH w1 g

All ten frames of the movie
clip symbol still play.

aa0y s 1
[P right wing « « @ ->_">_"
[P left wing al .| — | ——s
[body g+ [mly i

0§ it mE w0

o Movie clips have independent timelines.

Comparing a Movie Clip Instance
with a Graphic Instance

How does a movie clip instance differ
from a graphic instance? If you create
the same animation in both a movie

clip symbol and a graphic symbol and
then place both instances on the Stage,
the differences become clear. The
graphic instance shows its animation in
the authoring environment, displaying
however many frames are available in the
main Timeline. If the graphic symbol con-
tains an animation lasting ten frames and
the instance occupies four frames of the
main Timeline, you see only four frames
of the animation. Movie clips, on the other
hand, don’t work in the Flash authoring
environment. You need to export the
movie as a SWF file to see any movie
clip animation or functionality. When

you export the movie (you can do so by
choosing Control > Test Movie > in Flash
Professional), Flash plays the movie clip
instance continuously regardless of the
number of frames the instance occupies
and even when the movie has stopped.

Animated Buttons and
the Movie Clip Symbol

Animated buttons display an animation in
any of the first three keyframes (Up, Over,
and Down) of the button symbol. A button
can spin when the pointer rolls over it, for
example, because you have an animation
of a spinning graphic in the Over state.
How do you fit an animation into only one
keyframe of the button symbol? Use a
movie clip.

A movie clip is a special kind of symbol
that allows you to have animations that

run regardless of where they are or how
many actual frames the instance occupies.
This feature is possible because a movie
clip’s Timeline runs independently of any
other Timeline, including other movie clip
Timelines and the main movie Timeline in
which the movie clip resides. This indepen-
dence means that as long as you establish
an instance on the Stage, a movie clip
animation plays all its frames regardless of
where it is. Placing a movie clip instance

in a single keyframe of a button symbol
makes the movie clip play whenever that
particular keyframe is displayed. That is the
basis of an animated button.

An animation of a butterfly flapping its
wings, for example, may take ten frames in
a movie clip symbol. Placing an instance of
that movie clip on the Stage in a movie that
has only one frame still lets you see the
butterfly flapping its wings @). This func-
tionality is useful for cyclical animations
that play no matter what else may be going
on in the current timeline. Blinking eyes,
for example, can be a movie clip placed

on a character’s face. No matter what the
character does—whether it’s moving or
static in the current timeline—the eyes
blink continuously.

Advanced Buttons and Event Handling 139

To create a movie clip:
1. Choose Insert > New Symbol.

The Create New Symbol dialog box
appears.

2. Type a descriptive name for your movie
clip symbol, choose Movie Clip as the
Type, and click OK @.

You now enter symbol-editing mode.

3. Create the graphics and animation on
the movie clip timeline @.

Notice how the navigation bar above
the Timeline tells you that you're cur-
rently editing a symbol.

4. Return to the main Stage.

Your movie clip is stored in the Library
as a symbol, available for you to bring
onto the Stage as an instance @.

New instances of movie clips begin play-
ing automatically from the first frame.

%

Mame: Ipondl!ipple | | oK. |
Type: Cancel

Folder: Library roct

Advanced

0 Create a new movie clip symbol by naming it
and selecting the Movie Clip Type.

= é Scene 1 pondripple

@ & [1 ! 10

] ripple2 5 .o[llo>——>|o
Sl ripplel>——>|-|o|]

G The pondRipple movie clip symbol contains
two shape tweens of an oval getting bigger and
gradually fading.

Movie clip instance Movie clip symbol

(on Stage) (in Library)
e
(o8 fla i)
O
Mame -l
[£) pondripple

0 Bring an instance of a movie clip symbol onto
the Stage by dragging it from the Library.

140 Chapter 4

= é Scene 1 & animated button

= @ D-Over Down | Hit

=l graphic 9... |.

G A simple button symbol with ovals in all four
keyframes.

LIBRARY

[[0Gani fla 1x]
- O
2 items 7=
Namme 4
E animated button
[E] pondripple

o The Over state of the button symbol. Place
an instance of the pondRipple movie clip in
this keyframe to play the pond-ripple animation
whenever the pointer moves over the button.

-

@ The completed animated button.
When the pointer passes over the button,
the pondRipple movie clip plays.

= <N
-)J
0 A new
layer in the
@ (3 O|[Up [Ouer[Down] Hit button symbol
Doashic .« « @] . . [. | timeline helps
Paim 2+ « @ , w - 0 | organize the
animation.

To create an animated button:

1. Create a movie clip symbol that con-
tains an animation, as described in the
preceding task.

2. Create a button symbol, and define the
four keyframes for the Up, Over, Down,
and Hit states @.

3. In symbol-editing mode, select either
the Up, Over, or Down state for your but-
ton, depending on when you would like
to see the animation.

4. Drag your movie clip symbol from the
Library to the Stage @.

The movie clip instance is inside the
button symbol.

5. Return to the main movie Timeline, and
drag an instance of your button symbol
to the Stage.

6. Choose Control > Test Movie > in Flash
Professional.

Your button instance plays the movie
clip animation continuously as your
pointer interacts with the button @.

Stop the continuous cycling of your
movie clip by placing a stop() action in the
last keyframe of your movie clip symbol.
Because movie clips have independent time-
lines, they respond to frame actions. Graphic
symbols don’t respond to any frame actions.

To better organize animated buttons, it’s
useful to create a new layer in the timeline of
your button symbol and reserve it specifically
for the animation 0

Advanced Buttons and Event Handling 141

Complex Buttons

You can use a combination of invisible but-
tons, animated buttons, and movie clips to
create objects with complex behaviors such
as pull-down menus. The pull-down (or pop-
up) menu is a kind of button that is common
in operating systems and Web interfaces,
and is useful for presenting several choices
under a single heading. The functionality
consists of a single button that expands to
show more buttons and collapses when a
selection has been made @.

To build your own pull-down menu, one
effective strategy is to nest symbols inside
each other. A simple way is to place buttons
inside a movie clip. The buttons specify
which frames within the movie clip timeline
to play. Whether the menu is expanded or
collapsed is determined within the movie
clip. Placing an instance of this movie clip
on the Stage allows you to access either the
expanded or collapsed state independently
of what’s happening in your main movie.

To create a simple pull-down menu:

1. Create a button symbol that will be
used for the top menu button as well as
the choices in the expanded list.

2. Add afilled rectangle to the Up, Over,
Down, and Hit keyframes @.

3. Create a new movie clip symbol.

Enter symbol-editing mode for the
movie clip.

4. Insert a new keyframe at a later point in
the movie clip Timeline.

You now have two keyframes inside
your movie clip symbol. The first one
will contain the collapsed state of your
menu, and the second one will contain
its expanded state @.

VUM GCo Window Help
¥ All Products
as lcons ®1 ook
as List z Popular Music
¥ as Columns ¥3 Classical Music
DVD
Clean Up Selection VHS.
Arrange By » Toys
Video Games
Hide Toolbar NET Electronics
Customize Toolbar... ?&ra:u —
= o0ls al rare
Hide Status Bar -
= = Kitchen
Show View Options) P
S — AT
T—

0 Typical pull-down menus: a Mac OS system
menu (left) and a Web menu (right). You can build
similar menus in Flash with movie clips.

{7 & scenel (¥ button

QﬂDO‘verDown Hit

0 A generic button with the four keyframes
defined.

First Second
keyframe keyframe

=a0

o Ol=

o The pull-down menu movie clip timeline
contains two keyframes: one at frame 1 and
another at frame 9.

142 Chapter 4

QHEI! 5 10 15

al labels # + + W[} colapsed pF expanded

Sl buttons « -l [l

Pick + fruit

Sl labels . . .|Ec0llspsed o} expanded

&[] 5 %JO 15

0

= buttons S . . |:||

1

Pick & fruit
Apple
Banana
Blusberry
Orange

0 The two states of your pull-down menu. The
collapsed state is in the first keyframe (top);

the expanded state is in the second keyframe
(bottom). The expanded state contains the initial
button plus four button instances that represent
the menu choices.

. Drag one instance of your button

symbol into the first keyframe, and add
text over the instance to describe the
button.

This is the collapsed state of your
menu.

. Drag several instances of your button

symbol into the second keyframe, align
them with one another, and add text
over these instances to describe the
buttons.

This is the expanded state of your menu.

. Add a new layer, and place frame labels

to mark the collapsed and expanded
keyframes @.

In the Frame Label field of the Proper-
ties inspector, enter collapsed for the
first keyframe and expanded for the sec-
ond keyframe.

The frame labels let you see clearly
the collapsed and expanded states of
your movie clip, and let you use the
gotoAndStop() action with frame labels
instead of frame numbers.

. Select the button instance in the first

keyframe, and give it an instance name.

. Add a new layer; select the first key-

frame in that layer, and open the
Actions panel.

10. In the first line of the Script pane, add

the action stop().

Without this stop() in the first frame of
your movie clip, the menu would open
and close repeatedly because of the
automatic cycling of movie clips. The
stop() action ensures that the movie
clip stays on frame 1 until you click the
menu button @.

Continues on next page

Advanced Buttons and Event Handling 143

1".

12.

13.

14.

15.

On the next line of the Script pane, add
an event listener for the button that is
on the first keyframe of your movie clip:

pick_btn.addEventListener(
MouseEvent.CLICK, expandmenu);

This listener listens for a mouse click on
the button called pick_btn @.

On the next available line of the Script
pane, add a function that goes to the
expanded keyframe of the movie clip,
like so:

function expandmenu(
myevent:MouseEvent):void {
this.gotoAndStop("expanded");
}

When this function is called, the current
timeline is targeted (with the keyword
this) and the playhead goes to the
frame labeled expanded. Make sure that
the frame label is within quotation marks.

Select the first button instance on the last
keyframe, and give it an instance name.

In the layer with your ActionScript,
select the frame above the expanded
keyframe, and add a new keyframe.

In this keyframe, you’ll add the code for
the buttons in the expanded menu.

You have to put more code here
because you can’t add event-handler
code to buttons until they’re present on
the Stage. Otherwise, Flash won't find
the button instances and can’t refer-
ence them from the code @.

With your new keyframe selected,
open the Actions panel and add an
event listener for the first button in the
expanded keyframe:

pick2_btn.addEventListener(
MouseEvent.CLICK, collapsemenu);

This listener listens for a mouse click on
the button called pick2_btn.

stop() action

& @Ol 5] 1

[P actions « « [OI3
[P labels o o W|[joolapsed glrexpanded
. O

o The movie clip timeline for the pull-down menu.
A stop() action is assigned to the first frame in the
top layer.

New keyframe with actions for
buttons that show up here

. 0la 0
al labels +« + [H [} collapsed Dlaexpanded O
4] buttons - « 0 Ole i

@ When buttons appear on a later frame (frame
number 9), add a new keyframe at the same frame
number with event-handler code for those buttons.

144 Chapter 4

pirk?_htn_nddFvent] istener{MnuseFyent. 01 TEK, eol lonsemenis) 3

opple_btn.oddEventL istener {MoussEvent .CLICK, col lapsemenu);

banana_btn.oddEventListener (MouseEvent .CLICK, collopsemsnu);

blugberry_btn.addtventlistensr (Mousetvent.ULILK, collapsenenu);

orange_btn.oddlventlistener (MouseCvent .CLICK, collapsemeru);

function collap nt tHoussEvent Jrvoid(
qotoAndStop("col lapsed");

0 The ActionScript for the buttons in the
expanded keyframe sends the Flash playhead
to the frame labeled collapsed and stops there.

Movie clip in Movie clip in
collapsed keyframe expanded keyframe
| |

| |
Apple

Blueberry
Orange

o The two states of the pull-down menu work
independently of the main Timeline.

Use edit commands such as Copy and
Paste to create similar blocks of code such as
event handlers for several buttons. Once you
paste in a copy of the code, don’t forget to
change the name of the targets and functions
to which the event handler is assigned.

When you understand the concept
behind the simple pull-down menu, you can
create menus that are more sophisticated by
adding animation to the transition between
the collapsed state and the expanded state.
Instead of having the expanded state sud-
denly pop up, for example, you can create a
tween that makes the buttons scroll down
gently. Change the body of the function

on the first keyframe of your movie clip to
gotoAndPlay() instead of gotoAndStop()
to see the tweens.

16. Next, add a function that goes back to
the collapsed keyframe, like so:

function collapsemenu(
myevent:Mouse Event):void {
this.gotoAndStop("collapsed");
}

17. Assign instance names to each of the
remaining button instances on this key-
frame, and repeat step 15 to add event-
handler code for each of them @.

18. Return to the main movie Timeline, and
place an instance of your movie clip on
the Stage.

19. Choose Control > Test Movie > in Flash
Professional to see how your pull-down
menu works.

When you click the first button, the but-
tons for your choices appear because
you direct the playhead to go to the
expanded keyframe on the movie clip
timeline. When you click one of the
buttons in the expanded state, the
buttons disappear, returning you to the
collapsed keyframe of the movie clip
timeline. All this happens independently
of the main movie Timeline, where the
movie clip instance resides @.

At this point, you’ve created a complex
button that behaves like a pull-down
menu but doesn’t actually do anything
(except modify itself). In Chapter 5, “Con-
trolling Multiple Timelines,” you'll learn
how to make timelines communicate
with one another, which enables you to
create complex navigation systems.

Advanced Buttons and Event Handling 145

Button-tracking -

= [<Instance Names- | @
Options & = =
You can define a button instance in the Instanca of: huttan
Properties inspector in one of two ways: [POSITION AND SIZE
Track as Button or Track as Menu ltem @. [COLOR EFFECH
These two tracking options determine i:::::m
whether button instances can receive a Options: |EEad =l
button event even after the event has b ALTers | ¥ Track as Button
started on a different button instance. Track as Menu ltem

The Track as Menu Item option allows
this to happen; the Track as Button option © The button-tracking options in
doesn’t. The default option, Track as But- the Properties inspector.

ton, is the typical behavior for buttons; it

causes one button event to affect one but-

ton instance. More complex cases, such as

pull-down menus, require multiple button

instances working together.

Imagine that you click and hold down
the menu button to see the pop-up
choices, drag your pointer to your
selection, and then release the mouse
button. You need Flash to recognize

the MouseEvent.MOUSE_UP event in

the expanded menu even though the
MouseEvent.MOUSE_DOWN event occurred
in the collapsed menu for a different but-
ton instance (in fact, in a different frame
altogether). Choosing Track as Menu Item
allows these buttons to receive these
events and gives you more flexibility to
work with combinations of buttons and
events.

146 Chapter 4

stop(};
pick_btn.addEventListener (MouseEvent .HOUSE_DOWN, expondmenu);

TunCt1on expandnenuimyevent (Mousskvent Jivold 4
gotoAndStop“expanded” ;

0 The collapsed-menu button listens for the
MOUSE_DOWN event.

pick_htn? addFvent] istener (MouseFvent MILISE_IP, ol lopsenenn’;
apple_btn.addEventListencr (MouscEvent JMOUSE_UP, collapscmenu);
banana_btn.oddEventListener (HouseEvent .MOUSE_UP, col lapsemenu’);
hlueherry_htn_nddFventl istener(MouzeFvent MOISFE_IIP, ool lopsenen)
orangc_btn.addEventListencr (| MOUSE_UP, col lap: H
function collopsemenu (ivevent :MouseEvent) ivoid{
gotoindStop{“col lapeed®);
¥

o The expanded-menu buttons listen for the

MOUSE_UP event.

IT]{I |app|c_bln | (€
[Button | "]
Pick: fruit
Agble Instance of: button
Banana [> POSITION AND SIZE
COLOR EFFECT
Blusberry P
[» DISPLAY
IR = TRACKING
Options: l Track as Menu ltem | 'v]
[> FILTERS

0 You need to change the setting to Track
as Menu Item for each button instance in the
expanded section of the Timeline.

To set Track as Menu Item
for a pull-down menu:

1. Continue with the pull-down menu, as
described in the preceding task.

2. Go to symbol-editing mode for the
movie clip.

3. Select the keyframe on frame 1 contain-
ing the event handler for the button
instance, and change the mouse event
to MouseEvent.MOUSE_DOWN @.

4. Select the keyframe containing the
ActionScript for the expanded sec-
tion. Replace all the MouseEvent.CLICK
events with MouseEvent.MOUSE_UP @.

5. Select each button instance in the
expanded keyframe.

6. In the Properties inspector, choose
Track as Menu ltem @.

The button instances in the
expanded menu will now trigger a
MouseEvent.MOUSE_UP event even

if the MouseEvent.MOUSE_DOWN event
occurs on a different instance.

7. Return to the main Timeline, and test
your movie.

You now click and hold down the
mouse button to keep the menu open,
and then release the mouse button
when you’ve made your selection.

@D When you set Track as Menu Item for
this pull-down menu, the expanded button
instances display their Down state as you
move your pointer over them. This display
occurs because your mouse button is, in fact,
pressed, but that event occurred earlier on a
different instance.

Advanced Buttons and Event Handling 147

Changing Button
Behavior

Because the buttons you create are objects
of the SimpleButton class and objects of
the larger class InteractiveObject, you
can control their properties by using dot
syntax. Many button properties control

the way a button looks (such as its width,
height, and rotation) as well as the way the
button behaves (such as its button track-
ing). In Chapter 7, “Controlling and Display-
ing Graphics,” you will explore the ways

to manipulate graphics, including buttons.
Here, you will learn to change properties
that affect a button’s behavior.

To disable a button:
Set the mouseEnabled property to false.

If you name your button instance
mybutton_btn, enter the following
statement:

mybutton_btn.mouseEnabled = false;

Your button will no longer interact with the
mouse pointer and will no longer display
its Over or Down keyframes. In addition,
mouse events won’t be captured on this
button.

To remove an event listener:

Use the removeEventListener() method
with its two parameters set identical to
the ones used in the addEventListenex()
method.

If you name your button instance
mybutton_btn, enter the following
statement:

mybutton_btn.removeEventListener(
MouseEvent.CLICK, myfunction);

Although your button will still interact with
the mouse pointer, the listener will no
longer detect a mouse click and call on the
function called myfunction.

To disable the hand pointer:

Set the useHandCursor property to

false @.

If you name your button instance
mybutton_btn, enter the following
statement:

mybutton_btn.useHandCursor =
false;

—
——

o When the normal hand pointer (above) is
disabled, only the arrow pointer will show up
(below).

148 Chapter 4

Button Yellow
instance rectangular border

|
——

0 When you use the Tab key, buttons show their
focus with a yellow rectangular border in their
Over state.

G The automatic order of button focusing with
the Tab key is by position. The numbers show the
order in which the buttons will receive focus.

Some browsers intercept keypresses, so
you may have to click the Flash movie in your
browser window before you can use the Tab
key to focus on buttons.

Changing button focus
with the Tab key

The button focus is a way of selecting a
button with the Tab key. When a Flash movie
plays within a browser, you can press the
Tab key and navigate between buttons, text
fields, and movie clips. The currently focused
button displays its Over state with a yellow
rectangular border @. Pressing the Enter
key (or Return key on the Mac) is equiva-
lent to clicking the focused button. Several
properties of the InteractiveObject class
(of which the SimpleButton is a subclass)—
focusRect, tabEnabled, and tabIndex—
deal with controlling the button focus. The
property focusRect determines whether
the yellow rectangular border is visible. If
focusRect is set to false, a focused button
displays its Over state but doesn’t display
the yellow rectangular highlight. The prop-
erty tabEnabled, if set to false, disables a
button’s capability to receive focus from the
Tab key.

The order in which a button, movie clip, or
text field receives its focus is determined
by its position on the Stage. Objects focus
from left to right and then from top to bot-
tom. So, if you have a row of buttons at the
top of your movie and a column of buttons
on the left side below it, the Tab key will
focus each of the buttons in the top row
first and then focus on each of the but-
tons in the column @. After the last button
receives the focus, the tab order begins
again from the top row.

You can set your own tab order with the
property tabIndex. Assign a number to the
tabIndex for each button instance, and
Flash will organize the tab order using the
tabIndex in ascending order. Take control
of the tab order to create more helpful
forms, allowing the user to use the Tab and
Enter keys to fill out multiple text fields and
click multiple buttons.

Advanced Buttons and Event Handling 149

To hide the yellow rectangular
highlight over focused buttons:
Set the focusRect property to false.

If you name your button instance
mybutton_btn, for example, use the state-
ment mybutton_btn.focusRect = false;

To disable focusing with the Tab key:

Set the tabEnabled property to false.

If you name your button instance
mybutton_btn, for example, use the state-
ment mybutton_btn.tabEnabled = false;

To change the tab order
of button focus:

1. Give each button instance a name in
the Properties inspector.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. In the Script pane, enter your first but-
ton’s instance name followed by a dot.

4. Type tabIndex after the dot.

5. For the value, you must indicate where in
the tab order this object should be when
the user presses the Tab key. Enter an
equals symbol (=) and then a value @).

This button instance will be in the tab
order in the specified index.

6. Repeat steps 3-5 for each of your
button instances. Continue to assign
numbers in sequence to the tabIndex
property of each button instance @.

7. Choose File > Publish Preview > Default
to view your movie in a browser.

Click on the Flash movie in the browser
to give it focus. When you press the
Tab key, Flash follows the tabIndex in
ascending order for button focusing @.

1. What is your sex?
@ e

@ remas

2. What Is your age?
@ vandunder

3. Are you single or married?
© swoe
(L]

4. Where did you hear about us?

@ wagaaine

® »» ® R
© 2w © recisn
@ 3 @ Frend
@ sandower
1P Ow = R 18 Y
mule_bbn babhIndex = 15

0 The button called male_btn will receive the first
focus with the Tab key.

male_bthn.tabIndex = 13
female_btn.tablndex = 2;
agel9_btn.tablndex
agezd_btn.tablndex H
age2t_btn.tablndex H
age3l_btn.tablndex H
agel6_btn.tablndex H
zingle_btn.tablndex = §;
married_bth.toblndex = 9;
magazine_btn.tablndex = 18;
radio_btn.tablndex = 11;
televizion_btn.tablndex = 12;
friend_btn.tablndex = 13;

| L | I [§
=10 1N L

G This block of code assigns
the tabIndex properties for
13 different buttons.

1. What is your sex? | 3. Are you single or married?
® e @® sige

© Fe © Vo

2. What is your age? | 4. Where did you hear about us?
) 19and under @ rogorine

@ 2z @ ruio

®© =% @ reevisn

'l, 3135 ‘l’ Friend

‘I’ 36 and over

o Control the order of button focusing to
provide easier tab navigation through forms and
questionnaires. This movie focuses buttons in
columns to follow the question numbers rather
than relying on Flash’s automatic ordering.

150 Chapter 4

Creating Buttons
Dynamically

If you want to create a button dynami-
cally—that is, during runtime while your
Flash movie is playing—you can do so
with the constructor new SimpleButton().
Creating buttons on the fly allows you

to respond to your user and a changing
environment and not rely on buttons that
have been created in advance. After creat-
ing a new button from the SimpleButton
class, you define its four keyframes, the Up,
Over, Down, and Hit states, by assigning
other objects to the properties upState,
overState, downState, and hitTestState.

The upState, overState, downState, and
hitTestState properties can take any kind
of display object such as a loaded JPEG
image, a movie clip, text field, or a dynami-
cally drawn shape or sprite. In Chapter 7,
“Controlling and Displaying Graphics,”
you'll learn to create and manage the
graphics on the Stage. In this example
task, you'll create four shapes dynamically
with the new Shape() constructor, and then
assign those shapes to the keyframes of a
newly created button.

To create a button dynamically:

1. Select the first frame of the Timeline,
and open the Actions panel.

2. In the Script pane, enter the following
code that creates a new Shape object
and then draws a filled circle:
var myup:Shape = new Shape();
myup.graphics.beginFill(oxff4000);
myup.graphics.
drawCircle(1200,100,10);

Continues on next page

Advanced Buttons and Event Handling 151

The new Shape object called myup is
created. The beginFill() method
defines the color of the fill, and the
drawCircle() method defines its loca-
tion and size.

Create three more new shapes with dif-
ferent colors in the same manner @.

These four shapes will be assigned to
the four keyframes of the new button.

In the next line, instantiate a new button
from the SimpleButton class, like so:

var mybutton:SimpleButton =
new SimpleButton();

Next, assign the four shapes to the
properties of your new button as in the
following code:

mybutton.upState = myup;
mybutton.overState = myover;
mybutton.downState = mydown;
mybutton.hitTestState = myhit;

. To see the new button on the Stage,
you must add it to the Stage to be dis-
played with the following code:

stage.addChild(mybutton);

To see any dynamically generated
graphic, you always need to use the
method addChild(). The full Action-
Script code can be seen in ©@.

Test your movie by choosing Control >
Test Movie > in Flash Professional @.

war myup:Shape = new Shaped;
myup .graphics.beginfil L{BxFf40887;
myup .graphics..drowCirc (108,108,167 ;

war mydown:Shope = new Shape();
mydown .grophics .beginFil L {8x0048087;
mydown .grophics .drawCirc le{180,1080,183;

war myover:Shope = new Shape();
myover .grophics.beginFil L{@xf342837;
myover .grophics .drawCirc le{180,100,18%;

war myhit:iShape = new Shaped);
myhit.grophics.beginFill{B=f348847;
myhit.grophics.drowCircle(168,168,1687;

0 Four circles are created dynamically. Each
circle is an object of the Shape class.

var myup:Shope = new Shope (s
tiyup . graphics . beginF i L £ 4887 ;
myup.grophics . drowCire le (108,108,185 ;

var mydown:Shape = new Shape();
tgycdown .graphics . beqinF il L {AxBA4680 7 ;
nydown .grophics drawCircle (108,108,108);

var myover :Shape = new Shape();
yover .graphics.beqinF il L{Axf 342583);
myover .graphics .drawCircle (108,108,108);

var myhit:Shope = new Shape(;
tiyhit.graphics.beginfill {Axf 34064) ;
nyhit.grophics.drawCirele(168,168,16%;

var mybutton:SimpleButton=new SimpleButton(;
mybutton.upState = mvup;

mybutton.overState = myover ;
mybutton.dawnState = mydawn;
mybutton.hitTestState = myvhit;

stage.addChi ld{nybuttony;

0 A button is created dynamically, and the four
shapes are assigned to the button’s upState,
overState, downState, and hitTestState
(highlighted lines).

G The circle shape
appears on the Stage
and behaves as a
button.

152 Chapter 4

TABLE 4.2 KeyboardEvent Properties

Property Description
KEY_UP Happens when a key is released
KEY_DOWN Happens when a key is pressed

Keyboard Detection

The keyboard is just as important an inter-
face device as the mouse, and Flash lets
you detect events occurring from key-
strokes, both the downward keypress and
the upward key release. This ability opens
the possibility of having navigation based
on the keyboard (using the arrow keys or
the number keys, for example) or having
keyboard shortcuts that duplicate mouse-
based navigation schemes. Flash even
lets you control live text that the viewer
types in empty text fields in a movie; these
text fields merit a separate discussion in
Chapter 10, “Controlling Text.” This section
focuses on single or combination key-
strokes with modifiers (like the Ctrl or Shift
key) that trigger a response.

Just as a MouseEvent object is created
when the user does something with the
mouse, a KeyboardEvent object (another
subclass of the Event class) is created
when the keyboard is used.

You can detect and respond to the
KeyboardEvent object by first attach-
ing a listener to the main Stage (or
another object like a text field) using the
addEventListener method as follows:

stage.addEventListener(
KeyboardEvent.KEY_DOWN, detectText);

Next, create a function with a KeyboardEvent
parameter:

function detectText(
myevent:KeyboardEvent):void {
/!l do something in response

}

Table 4.2 details the specific properties that
describe the events of the KeyboardEvent
object.

Advanced Buttons and Event Handling 153

Key code values

The KeyboardEvent object is dispatched
whenever any key on the keyboard is
pressed. But to determine which particular
key has been pressed, you have to use key
code values. Key code values are specific
numbers associated with each key (see
Appendix A, “Keyboard Key Codes”). You
use these codes to construct a conditional
statement to determine a match. The key
code for the spacebar, for example, is 32.
So to see if the KeyboardEvent object’s
key code matches 32, you write the
following:

if (myevent.keyCode==32){
// spacebar was pressed

}

In this example, myevent is the name of
the KeyboardEvent object and keyCode is
a property whose value is the key code of
the key that was pressed. This conditional
statement checks if the key code of the
key that was pressed matches the code for
the spacebar.

Fortunately, you don’t have to use clumsy
numeric key codes all the time. The

most common keys are conveniently
assigned as properties of another class,
the Keyboard class. These properties are
constants that you can use in place of the
key codes. The statement Keyboard.SPACE,
for example, is the number 32. Appendix
A also lists all the matching Keyboard con-
stants for the key codes.

Two properties of the KeyboardEvent
object, shiftKey and ctrlKey, can be used
to test whether the Shift or the Ctrl key is
being held down. These properties are
either true or false.

To detect a keypress:

1. Select the first keyframe in the Timeline,
and open the Actions panel.

2. In the Script pane, add a listener to
the Stage with the addEventListener
method, as follows:

stage.addEventListener(
KeyboardEvent.KEY_DOWN,
detectText);

When this listener detects a keypress, it
triggers the function called detectText.

3. On the next available line, write a func-
tion with the KeyboardEvent object as a
parameter, like so:

function detectText(
myevent:Keyboard Event):void {
myarrow_mc.Xx += 5;

}

Between the curly braces of the
function, put actions you want as a
response. In this example, any keypress
makes a movie clip called myarrow_mc
move 5 pixels to the right.

4. Choose File > Publish Preview > Default
to test your movie @.

In the Flash testing mode (Control >
Test Movie > in Flash Professional), some
keypresses may be interpreted as shortcut
commands for the Flash tools, so use Choose
File > Publish Preview > Default to test in the
browser.

154 Chapter 4

—m To detect a specific keypress:

= [myarrow_mc 1. Continue with the file you created in the
|. previous task.

[Movie Clip |+
\nstanice of: Symbol 1 [Swap-—.| 2. Select the first frame of the Timeline,
— POSITION AND SIZE and open the Actions panel.

3. Select the code in between the curly

stage.addEventListener (KeyboordEvent .KEY_DOWM, detectText);

function detectText {myevent :KeyboardEvent jrvoid £ braces of the function and replace it
y e B with a conditional statement like this:
)) if (myevent.keyCode ==
o When the ActionScript code (below) detects b d
a keypress, it moves the movie clip called Keyboar ‘RIGHT) {
myarrow_mc (above) to the right. myarrow_mc.x += 5;
stoge .oddEventlistener(KeyboardEvent .KEY_DOWN, detectText); The double equals sym bol (==) checks
function detectText{myevent :KeyboardEvent):void { . . .
it (nvevent keytode == Keyboord RIGHT) { the equivalence of the items on either
MYarrow_me.x += 53 . . .
) } side. If they are equivalent, the actions
within the curly braces of the if state-
O It the right arrow key is pressed, Flash moves ment are executed.

the movie clip to the right. . . .
P 9 4. Choose File > Publish Preview >

Default.

When you press a key, Flash dis-
patches a KeyboardEvent object and
calls the function. Within the function,
Flash checks to see if the key that
was pressed matches the right-arrow
key. If so, the actions are carried out.
In this example, a movie clip called
myarrow_mc is moved 5 pixels to the

right @.

Advanced Buttons and Event Handling 155

To detect keystroke combinations: The logical and operator (&&) joins two
statements so that both must be true for

1. Continue with the file you created in the ;
the entire statement to be true.

previous task.
4. Choose File > Publish Preview >

2. Select the first frame of the Timeline,
Default.

and open the Actions panel.
The if statement will perform the action
within its curly braces only if both the
right-arrow key and the Shift key are
pressed at the same time @.

3. Change the code in between the paren-
theses of the if statement so that the
statement reads

if (myevent.keyCode ==
Keyboard.RIGHT &&

myevent.shiftKey == true) {
myarrow_mc.X += 5;

The property ctrlKey maps to the Ctrl
key on Windows and the Command (or Apple)
key on the Macintosh.

stage.oddEventl istener (KeyboordEvent .KEY_DOWN, detectText);

function detectText(myevent :KeyboordEvent yivoid {
if {myevent.keyCode == Keyboord .RIGHT && myevent.shiftkey == true) {
Myarrow_mc.x += 53
H

¥

G If the right arrow key and the Shift key are both pressed,
Flash moves the movie clip to the right. The operator &&
connects two statements, requiring both to be true.

Keyboard Events in ActionScript 2

If you are authoring for Flash Player 8 and must use ActionScript 2, you need to resort to the older
way of handling keyboard input. In the previous version of ActionScript, you also create listeners,
but they are constructed from the generic Object class. The syntax and methods for detecting a
particular keypress look like this:

var myListener:0Object = new Object();
myListener.onKeyDown = function() {
if (Key.isDown(Key.SPACE)) {
//Spacebar pressed

b
Key.addListener(myListener);

In this example, the isDown() method returns a true value if its parameter is the key code of the
key that was pressed. So you can enter a key code for its parameter or use a constant (Key.SPACE).
The last line is needed to register the listener to the Key class.

156 Chapter 4

Zoom In Cut
Zoom QOut Copy
v 100% Paste
Show All Delete
Quality » Select All
Play Settings...
+ Loop Clobal Settings...
Rewind
Forward
Back
Print...
Show Redraw Regions
Debugger
Settings...

Global Settings...

0 The standard contextual menu (left), and the
edit contextual menu that appears over selectable
text fields (right).

TABLE 4.3 builtInltems Properties

Property Value Menu Items
forwardAndBack true or false Forward,
Back
save true or false Save
zoom true or false Zoomin,
Zoom out,
100%,
Show all
quality true or false Quality
play true or false Play
loop true or false Loop
rewind true or false Rewind
print true or false Print

The Contextual Menu

In the playback of any Flash movie, a contex-
tual menu appears when you right-click (Win-
dows) or Ctrl-click (Mac) on the movie. There
are different types of contextual menus,
including a standard menu that appears over
any part of the Stage and an edit menu that
appears over text fields @. You can custom-
ize, to a certain extent, the items that appear
in the standard and edit menus through the
ContextMenu class. You can disable certain
items or create your own custom items with
the related ContextMenuItem class. You

can even make different contextual menus
appear over different objects like buttons,
movie clips, or text fields.

Manipulating the contextual menu first
requires that you instantiate a new object
of the ContextMenu class, like so:

var myMenu:ContextMenu =
new ContextMenu();

After you have a new ContextMenu object,
you can call its methods or set its proper-
ties to customize the items that appear. All
the default menu items are properties of the
object builtInItems. Setting each property
to true or false enables or disables that
particular item in the menu. For example, the
following statement disables the print item in
the ContextMenu object called myMenu:

myMenu.builtInItems.print = false;

See Table 4.3 for the builtInItems prop-
erties of the ContextMenu class.

Finally, you must associate your
ContextMenu object with the contextMenu
property of another object, such as the
main Stage, a text field, or a specific movie
clip, like so:

myObject_mc.contextMenu = myMenu;

Continues on next page

Advanced Buttons and Event Handling 157

If you associate your ContextMenu object
with a specific button or movie clip, your
custom contextual menu will appear when
the user activates the contextual menu
only while the mouse pointer is over that
object. For example, a map can have the
Zoom item in its contextual menu enabled,
whereas other objects may have the Zoom
item in their contextual menu disabled.

To disable the contextual menu:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. On the first line of the Script pane,
instantiate a new ContextMenu object:

var myMenu:ContextMenu =
new ContextMenu();

A new ContextMenu object is named
and created.

3. On the next line of the Script pane, call
the hideBuiltInItems() method of
your ContextMenu object, like so:

myMenu.hideBuiltInItems();

This method sets all the properties of
the builtInItems object of myMenu to
false, which hides the items of the con-
textual menu.

4. On the third line of the Script pane,
assign your ContextMenu object to the
contextMenu property of the Stage as
follows:

this.contextMenu = myMenu;

The ContextMenu object now becomes
associated with the main Timeline, so
the default items of the main Timeline’s
contextual menu are hidden. The only
items that remain are Settings, Show
Redraw Regions, and Global Settings @.

wor myMenuiContextMenu = new ContextMenu();
tiyMenu hideBui Lt Inltems) ;
this.contextMenu = myMenu;

Show Redraw Regions
Debugger

Settings...
Global Settings...

© By using the hideBuiltInItems() method, you
disable all built-in (default) items of the contextual
menu. The final code (top) hides all the default
items except for the Settings and Global Settings
(bottom). The Show Redraw Regions item appears
only in debugger versions of the Flash Player and
won’t appear for regular users.

158 Chapter 4

To associate custom contextual
menus with different objects:

1.

Continue with the preceding task.
Starting on the next available line

in the Script pane, declare another
ContextMenu object and instantiate the
object using the constructor function,
new ContextMenu().

A second ContextMenu object is named
(in this example, called myZoomMenu)
and created @.

Add a call to the hideBuiltInItems()
method for your new ContextMenu
instance.

war myMenusContextMenu = new ContextMenu);
nyMenu . hideBui lEInItems s
this.contextMenu = myMenu;

war myZoomMenu iContextMenu = new Cnntextﬁenu{);

G A new ContextMenu object named myZoomMenu
has been created.

The items of your second ContextMenu
object, like the first, are disabled.

Assign a true value to the zoom prop-
erty of the builtInItems object of your
second ContextMenu object, like so:

myZoomMenu.builtInItems.zoom =
true;

This enables the Zoom item in your
second ContextMenu instance.

On the next line of the Script pane,
assign your second contextual menu to
the contextMenu property of an object
on the Stage, like so:

map_mc.contextMenu = myZoomMenu;

In this example, the completed
statement associates the second
ContextMenu object with the movie clip
instance called map_mc @.

war = now C b
mytenu .nidebut LLInTtens();
this.contextMeru = myHenu;

war myZoontenu :Contextieny = new Contexthenu();
myZoomMenu . hideBui ltInltems{);

myZuvmten . bui LLInd Less . coom = Loue;
map_mc .contextMenu = mvZoonMerw;

To zoom in on the movie, night-click (Windows) or
control-click (Mac) over the map and select zoom in

Zoom In

Zoom Out
v 100%

Show All

Show Redraw Reglons
Debugger

setrings...
Global Settings...

Settings...
Clobal Settings...

Show Redraw Regions

Debugger

myZoomMenu over map_mc

—r— myMenu over Stage

0 The completed script (top). The
contextual menu that is attached
to the Stage has its default items
hidden. The contextual menu that
is attached to the movie clip called
map_mc contains the Zoom In item.

Advanced Buttons and Event Handling 159

Creating new contextual menu items

You can add your own items in the contex-
tual menu by creating new objects from
the ContextMenuItem class. Each new
item requires that you instantiate a sepa-
rate ContextMenuItem object with a string
parameter, as in the following code:

var myFirstItem:ContextMenuItem =
new ContextMenuItem("First Item");

The parameter represents the text that will
be displayed for the item in the contextual
menu. Because it’s a string, use quotation
marks around the enclosed text. There are
certain size and content restrictions on
new menu items—see the sidebar “Custom
Item Restrictions” for details.

Next, you must add your new
ContextMenuItem object to the
customItems property of your
ContextMenu object. However, the
customItems property is different from
the builtInItems property you learned
about in the preceding section. The
customItems property is an array, which is
an ordered list of values or objects. (You
can learn more about arrays in Chapter
11, “Manipulating Information.”) To add
your new ContextMenuItem object to the
customItems array, use the array method
push(), as in the following code:

mymenu.customItems.push(myFirstItem);

Finally, you have to create an event
handler to respond when the user selects
your new contextual item. The Event
object that is dispatched when an item
on the contextual menu is selected is a
ContextMenuEvent object. You can use
ContextMenuEvent.MENU_ITEM_SELECT as
the specific event type.

Custom Item Restrictions

The contextual menu has a maximum of
15 custom items, and each item can’t be
more than 100 characters long and must
fit on a single line.

Items that are identical to any built-in
menu item or another custom item will
be ignored.

The following words can’t be used in
custom items at all: Adobe, Macromedia,
Flash Player, Settings.

The following words can’t be used
alone but can be used in conjunction
with other words: Save, Zoom In, Zoom
Out, 100%, Show All, Quality, Play,
Loop, Rewind, Forward, Back, Movie
Not Loaded, About, Print, Show Redraw
Regions, Debugger, Undo, Cut, Copy,
Paste, Delete, Select All, Open, Open in
New Window, Copy Link.

160 Chapter 4

var mymenu:ContextMenu — new ContextMenu{);
wyneris i deRui 15 TnTtam=()

nymenu .custonl tems, push{nyF irstItem);
picture_mc.contextMenu = mymenu;

var myFirstItem:ContextMenulten = new ContextMenultem("Flip");

G A new ContextMenuItem object called
myFirstItem is created with one parameter: the
name of the item ("F1ip"). The ContextMenuItem
called myFirstItem is putinto the customItems
array.

To create a new item for
the contextual menu:

1.

Select the first frame of the main Time-
line, and open the Actions panel.

. In the Script pane, create a new

ContextMenu object as in previous tasks.
The completed code looks like this:

var mymenu:ContextMenu =
new ContextMenu();

. Starting on the next line, hide the

default items in the contextual menu:

mymenu.hideBuiltInItems();

. Next, instantiate a new

ContextMenuItem object for
your first item:

var myFirstItem:ContextMenuItem =
new ContextMenuItem("Flip");

A new ContextMenuItem is instanti-
ated. Be sure to enclose the parameter,
which represents the title of your item,
in quotation marks.

On the next line, add a call to the Array
class’s push() method with the name of
your ContextMenuItem as its parameter:

mymenu.customItems.push(
myFirstItem);

The completed statement adds
your ContextMenuItem objectto
the customItems array of your
ContextMenu object.

On the following line, assign

the ContextMenu object to the
contextMenu property of an object
on the Stage:

picture_mc.contextMenu = mymenu;

In this example, your contextual menu
now becomes associated with the
movie clip called picture_mc @.

Continues on next page

Advanced Buttons and Event Handling 161

7. You're not done yet! Finally, you must
create the event handler. Add the
listener:

myFirstItem.addEventListener
(ContextMenuEvent.
MENU_ITEM_SELECT, selectFlip);

Note that the listener goes on the
ContextMenuItem object, not on
the object on the Stage or on the
ContextMenu object.

8. Next, create a function with the
ContextMenuEvent object as its
parameter, like so:

function selectFlip(
myevent:ContextMenuEvent):void {
picture_mc.rotation += 180;

}

The actions that should happen when
the user selects your custom item in
the contextual menu go in between the
function’s curly braces.

The completed code @ attaches a cus-
tom item to the contextual menu. When
the user right-clicks on the object called
picture_mc and selects Flip, the object
rotates 180 degrees.

Custom items always appear above the
built-in items and are separated from the built-
in items by a horizontal bar.

If you have many custom items, you
can group them by adding another horizontal
bar @. Use the property separatorBefore
and set it to true for any ContextMenuItem
to add a horizontal bar before the item in the
list, like so:

myFirstItem.separatorBefore = true;

You can also use the property caption
to define the title of a new item. For a new
ContextMenuItem called myFirstItem, you
can use the statement myFirstItem.caption
= "Flop".

var mymern: e i
o mnwm mnnmo
war wyFirstTten: e ContectHeraTtan(F1ip*);
R wsmll.m msn(mucmn‘r
PlEtuTe_me CoNtACNAT = Myme
Wi irstiten odEventListener (ContextMenuEvent JENU_ITEN SELECT, selectFirstites);
function 36lectFirstites(mevent iContextionuEvent) ivold {
picture_ws.rotation += 1080;

Show Redraw Regions

Settings...
Global Setti

o The final code (top) makes the custom item
show up at the top of the contextual menu when
right-clicked over picture_mc (middle). When the
custom item is selected, the MENU_ITEM_SELECT
event occurs and Flash responds by rotating the
picture 180 degrees (bottom).

First Item

Second Item
—— Horizontal divider

Third Ttem

Zoom In

Qut

v 100%
Show All

Quality »
Print...

Show Redraw Regions

Debu igger

@ The custom item called Third Item has been
defined with a horizontal divider above it.

162 Chapter 4

m Document
Untitled-2

= PUBLISH

Player: Flash Player 10

Script: ActionScript 3.0

Class: &

Profile: Default
AIR Settings Edit.
ActinnScript Settings
< PROPERTIES
FPS: [24 ; — Frame rate
in frames
Size: 550 % 400 px (
per second)
Stage: l:l

o The ENTER_FRAME event happens at the frame
rate of the movie, which you can change in the
Properties inspector. Typical frame rates for online
playback are between 12 and 24 frames per
second.

Creating Continuous
Actions

So far, you've learned ways to execute an
action in response to events that happen
when the user does something—whether
it's a mouse click or a keyboard press. But
on many occasions, you'll want to perform
an action continuously. An if statement,
for example, often needs to be performed
continuously to check whether condi-
tions in the movie have changed. Another
example is if you want to continuously
change a property of an object to create
an animation.

The Event.ENTER_FRAME event happens
continuously. The event is triggered at the
frame rate of the movie, so if the frame
rate is set to 24 frames per second, the
ENTER_FRAME event is triggered 24 times
per second @). Even when the Timeline is
stopped, the event continues to happen.
This setup is an ideal way to make actions
run on automatic pilot; they will run as
soon as the event handler is established
and stop only when the event handler

is removed or the object on which it is
defined is removed.

Advanced Buttons and Event Handling 163

To create continuous actions
with the ENTER_FRAME event:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. In the Script pane, assign the
addEventListener() method to the
Stage or to an object:

car_mc.addEventListener(
Event.ENTER_FRAME, movecar);

In this example, the listener is added
to the movie clip object and will detect
the ENTER_FRAME event, which happens
continuously at the frame rate of the
Flash movie.

3. On the next line, create a function with
the Event object as its parameter:

function movecar(
myevent:Event):void {
car_mc.y -= 5;
b
In this example, when the function is
called, the movie clip called car_mc will
move 5 pixels upward @.

4. Create a movie clip symbol and place
an instance of it on the Stage. In the
Properties inspector, name it car_mc to
match the ActionScript code.

5. Choose Control > Test Movie > in Flash
Professional.

At the frame rate of the Flash movie
(24 times a second if the frame rate is
24 fps), the ENTER_FRAME event occurs
and your function is called, moving the
movie clip on the Stage upward con-
tinuously @.

Be careful of overusing the
ENTER_FRAME event handler, because it can
be processor intensive. After you no longer
need the event handler, it’s good practice to
use removeEventListener() to remove the
listener.

cor_mc .addtventLlstensr{bvent .ENIER_FRANE , movecar);
function movecar(myevent :Event y:void {
COr_mc.y -= 55
if (car_mc.y - 16873 {
rr_me rennveFvent] i stener{Fuant. FNTFR_FRANF , mowverar);
¥

}

o Flash continuously moves the movie clip called
car_mc 5 pixels up the Stage. An if statement has
been added to check if the movie clip has moved
beyond a certain point and, if so, removes the
event listener.

FROPERTIES

car_mdc

| Movie Clip

Instance of: car

= POSITION AND SIZE

X 3034 ¥

o The movie clip named car_mc is put on the
Stage.

164 Chapter 4

Using timers

The ENTER_FRAME event, although easy to
use and effective for creating continuous
actions, is restricted to the frame rate of
your Flash movie. If you want to perform an
action on a continuous basis and do so at
an interval that you specify, you should use
the Timer class instead.

When you create an object from the

Timer class, the new object dispatches a
TimerEvent event at regular intervals. You
specify how long those intervals are (in
milliseconds) and how many intervals there
will be. You can then add an event handler
to listen and respond to each event.

The TimerEvent has two specific

events: a TimerEvent.TIMER event

that happens at each interval and a
TimerEvent.TIMER_COMPLETE, which hap-
pens at the end of the timer.

To create continuous
actions with a timer:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Instantiate a new Timer object. The
constructor takes two parameters—the
first is @ number (in milliseconds) for
the timer interval, and the second is
the number of intervals. The second
parameter is optional, and if left out,
your timer will run forever until stopped.

var myTimer:Timer =
new Timer(10,1000);

The function will be called every 10 mil-
liseconds (1/100th of second). There will
be 1,000 intervals, so this timer lasts

10 seconds.

Continues on next page

Advanced Buttons and Event Handling 165

3. On the next line, call the start()
method to begin the timer:

myTimer.start();

The two lines of code so far create a
Timer object and start it @.

4. Next, add an event handler to detect
the TimerEvent.TIMER events that are

being dispatched every 10 milliseconds:

myTimer.addEventListener(
TimerEvent.TIMER, movecar);

function movecar(
myevent:TimerEvent):void{

car_mc.y -= 5;

Y

This listener detects the

TimerEvent.TIMER event and calls

the function called movecar, moving

the movie clip upward continuously

until the timer stops.

5. On the Stage, add a movie clip instance

called car_mc. Test your movie by
choosing Control > Test Movie > in
Flash Professional @.

Add the command updateAfterEvent
to your function if you’re modifying graphics
at a smaller interval than your movie frame
rate. This method forces Flash to refresh

the display, providing smoother results. The

updateAfterEvent command is called on the

Event object, so in this task, the code for the
function would be

function movecar(myevent:TimerEvent)

:void{
car_mc.y -= 5;
myevent.updateAfterEvent();

war myTimer :Timer = new Timer (18,1088%;
ny T imet start g

0 A new Timer object called myTimer is created
and started.

var myTimer:Timer = new Timer{18,1688%;
nyTimer .etort ()

iy Timer . addEventl istener {TimerEvent .TIMER, movecar);

function movecor (myevent :TimerEvent)ivoid {
car_mc.y -= b;

}

PROPERTIES

car_mc
Movie Clip

Instance of: car

= POSITION AND SIZE

]

G At each 10-millisecond interval for 1,000
intervals, a TIMER event happens. Each time it
happens, the movie clip called caxr_mc moves 5
pixels up the Stage, animating the graphic.

166 Chapter 4

To detect the end of a timer:

Add an event handler to detect the
TimerEvent.TIMER_COMPLETE event.
The following code is an example:

myTimer.addEventListener(
TimerEvent.TIMER_COMPLETE,
stoptimer);

function stoptimer(
myevent:TimerEvent):void {

// do something

¥

The function called stoptimer is called

only after the timer called myTimer has

completed all of its intervals.

Advanced Buttons and Event Handling 167

A Summary of Events

Table 4.4 lists the many basic events
discussed in this chapter. You'll learn about
many more events in the chapters that
follow. For more on the Event class and

its subclasses, see Flash Help > Action-
Script 3.0 Reference for the Adobe Flash

Platform > flash.events.

TABLE 4.4 Events

Event

Description

MouseEvent.CLICK

Mouse click

MouseEvent.DOUBLE_CLICK

Mouse double-click

MouseEvent.MOUSE_MOVE

Mouse move

MouseEvent.MOUSE_DOWN

Mouse button pressed

MouseEvent.MOUSE_UP

Mouse button released

MouseEvent.MOUSE_OVER

Mouse pointer moves over the target

MouseEvent.MOUSE_OUT

Mouse pointer moves off of the target

MouseEvent.MOUSE_WHEEL

Mouse wheel moves forward or backward

KeyboardEvent.KEY_DOWN

Key pressed

KeyboardEvent.KEY_UP

Key released

ContextMenuEvent.MENU_ITEM_SELECT

Contextual menu item selected

Event.ENTER_FRAME

Happens at the frame rate of the Flash movie (not user controlled)

TimerEvent.TIMER

Happens at every interval defined by the Timer object

TimerEvent.TIMER_COMPLETE

Happens when the Timer object finishes all of its intervals

168 Chapter 4

Controlling Multiple
Timelines

By default, the Flash playhead moves

forward on the Timeline from beginning In ThIS Chapter
to end. The playhead displays what is on
the Stage at any moment and triggers Navigating Timelines with Movie Clips 170
any actions attached to keyframes that Target Paths 17
it encounters. With ActionScript, you can)
" Absolute and Relative Paths 175

control the position of the playhead on the
main Timeline as well as the p|ayheads Using the with Action to Target ObjeCtS 177
of any movie clips that are on the Stage. Movie Clips as Containers 179
Controlling multiple timelines enables yo

roliing muttiple timet you Using Frame Labels 183

to organize your content into objects that
behave independently for more sophisti-
cated interactivity. You should already be
familiar with the basic navigation methods
such as gotoAndPlay(), gotoAndStop(),
play(), and stop(). These methods that
navigate the main Timeline are the same
ones used to navigate the timelines of
other movie clips. Your main Timeline can
control a movie clip’s timeline; a movie
clip’s timeline can, in turn, control the main
Timeline. You can even have the timeline
of one movie clip control the timeline of
another. Handling this complex interaction
and navigation between timelines is the
subject of this chapter.

Navigating Timelines
with Movie Clips

The independent timelines of movie clip
symbols make more complicated naviga-
tion and interactivity possible. While the
main Timeline is playing, other timelines of
movie clips can be playing as well, interact-
ing with one another and specifying which
frames to play or when to stop. In fact,

it's quite common to have multiple movie
clips on the Stage, all being controlled in a
single frame on the main Timeline. Driving
all this navigation between timelines is,

of course, ActionScript. The basic actions
used to navigate within the main Timeline
(gotoAndStop(), gotoAndPlay(), stop(),
play(), nextFrame(), and prevFrame())
can also be used to navigate the timeline
of any movie clip. To control a particu-

lar timeline, you give the movie clip an
instance name in the Properties inspector.
When an instance is named, you can target
it with ActionScript and give instructions
specifying where you want to move its
playhead.

170 Chapter 5

The Insert Target Path Option

The Insert Target Path button at the top
of the Script pane of the Actions panel
opens the Insert Target Path dialog box,
which provides a visual display of objects
on the Stage @. All movie clip instances,
button instances, and text fields are
shown in a hierarchical fashion in the
display window. You can click objects

to construct your target path, but in the
long run, it’s better to simply write your
target path directly in the Script pane. It’s
easier, and you’ll learn to code in Action-
Script quicker. You can use the Insert
Target Path dialog box as a visual refer-
ence for the hierarchical relationships
between your objects on the Stage, but
enter the target paths yourself.

Insert Target
Path button in
Actions panel

L

"L OYECBLIEYD
1

Insert Target
Path dialog box

00 M

ACTIONS - FRAN|

|
."InsenTametPﬂh

this.circle_me

¥ & om
] clrcle.me
square_mec

T P ——— — Y -
@ Relative (O Absalute

Available objects Target field

o The Insert Target Path dialog box displays
objects on the Stage in a visual hierarchy. You
can click on objects and Flash will automatically
construct the target path, but it’s best if you enter
the target path in the Script pane yourself.

Target Paths

A target path is essentially an object
name, or a series of object names sepa-
rated by dots, that tells Flash where to
find a particular object. To control movie
clip timelines, you specify the target

path for a particular movie clip followed
by a dot and then the method you want
to call. The target path tells Flash which
movie clip instance to look at, and the
method tells Flash what to do with that
movie clip instance. The methods of the
MovieClip class that control the play-
head are gotoAndStop(), gotoAndPlay(),
play(), stop(), nextFrame(), and
prevFrame(). If you name a movie clip
instance myClock_mc, for example, and
you write the ActionScript statement
myClock_mc.gotoAndStop(10), the play-
head within the movie clip instance called
myClock_mc will move to frame 10 and stop
there. myClock_mc is the target path, and
gotoAndStop() is the method.

Controlling Multiple Timelines 171

To target a movie clip instance
from the main Timeline:

1. Create a movie clip symbol and place
an instance of it on the Stage.

2. In the Properties inspector, give the
instance a name @.

3. Select the first keyframe of the main
Timeline, and open the Actions panel.

You’ll assign an action on the main
Timeline that will control the movie
clip instance.

4. Enter the instance name of your movie
clip in the Script pane (this is your
target path).

5. After the target path, enter a period
and then an action for the movie clip,
like assigning a new value to one of its
properties:

square_mc.rotation = 45;

This statement changes the angle of
the movie clip (called square_mc).

6. Test your movie (Control > Test Movie >
in Flash Professional).

The action you assign on the main
Timeline targets your movie clip and
changes its rotation to 45 degrees @.

PROPERTIES

Sqvare.me

|Mwieclin
Instance of: Symbol 1 (]

© This movie clip instance on the Stage is named
square_mc in the Properties inspector.

|2 P OVEERE IEYO

square_mc.rotation = 453

R 4

G The target path is square_mc, and the command
is to assign the value 45 to the rotation property.
The original movie clip instance (left) is rotated

45 degrees (right).

172 Chapter 5

LIBRARY
[chapDaciock fia Iv] & @
0 There are
two movie clip
symbols in
the Library, a
2 items I | clock face and
Narme = Linkags one arm of the
bighand clock (which
clock face is currently
selected).

Movie clip instance called bighand_mc
inside the symbol of the clock face

P 5 scene 1 [k clock fade

R |
’_ bighand_mc

CIID

Instance of; bighand

+ POSITION AND SIZE

o Place an instance of the child movie clip

inside the parent movie clip. In this example,
the clock arm is placed inside the symbol of
the clock face, and the name of the instance
is bighand_mc.

froreme: D
FII

Maovie ('Ilp

Instance of: clock face

«» POSITION AND SIZF

o The movie clip of the clock face is put on the
Stage and named clock_mc.

Target paths for nested movie clips

You can have a movie clip within another
movie clip, or as you saw in the previous
chapter with pull-down menus, you can
have buttons within a movie clip. The outer
movie clip is the parent, and the object
that’s nested inside it is the child. Because
the child is part of the parent, any graphical
transformations you do to the parent also
affect the child. To control the timeline or
properties of a child object from the main
Timeline, use the parent name followed

by the child name separated by a period
to form a hierarchical target path. In the
following task, the parent movie clip is the
clock (clock_mc), and the child movie clip
is its hand (bighand_mc).

To target a movie clip
within a movie clip:

1. Create the child movie clip symbol and
the parent movie clip symbol @.

2. Go to symbol-editing mode for the par-
ent movie clip, and drag an instance of
your child movie clip to the Stage.

3. In the Properties inspector, give the
child movie clip instance a name @.

You now have a named child movie clip
nested within the parent movie clip.

4. Exit symbol-editing mode, and return to
the main Stage.

5. Drag the parent movie clip from
the Library to the Stage and give it
an instance name in the Properties
inspector @.

Continues on next page

Controlling Multiple Timelines 173

6.

7.

Select the first keyframe in the main
Timeline, and open the Actions panel.

Enter the target path to the nested
movie clip (parent.child), a period after
the target path, and then an action. This
example uses

clock_mc.bighand_mc.rotation = 30;

Test your movie (Control > Test Movie >
in Flash Professional).

The action you assign on the main
Timeline targets the nested movie clip
called bighand_mc and assigns a new
value to its rotation property @.

clack_mc.bighand_mc.rotation = 30;

clock_mc
movie clip

\ bighand_mc

movie clip inside
clock_mc movie
clip

@ The ActionScript statement on the main
Timeline tells the bighand_mc movie clip inside
the clock_mc movie clip to rotate 30 degrees.

174 Chapter 5

Absolute and
Relative Paths

There are two types of target paths:
relative and absolute. In the preceding
example, the method
clock_mc.bighand_mc.gotoAndStop(20)
originated from the main Timeline. When
Flash executes that method, it looks within
its own timeline for the object called
clock_mc that contains another object
called bighand_mc. This is an example of
a relative path. Everything is relative to
where the ActionScript statement resides—
in this case, the main Timeline. An alterna-
tive way of inserting a target path is to use
an absolute path, which has no particular
frame of reference. You can think of rela-
tive target paths as directions given from
your present location, as in “Go two blocks
straight; then turn left.” Absolute target
paths, on the other hand, are directions
that work no matter where you are, as in
“Go to 555 University Avenue.”

Using this, root, and parent

In relative mode, the current timeline is
called this. The keyword this means
myself. All other timelines are relative to
the this timeline.

In absolute mode, the path starts with the
main movie Timeline and you drill down to
the timeline you want to target. To target
the main movie Timeline, you can use the
keyword root, but you must explicitly tell
Flash that you are using root to reference
a timeline. Timelines are a feature of the
MovieClip class, so you can reference the
main movie Timeline by using the state-
ment MovieClip(root).

Continues on next page

Controlling Multiple Timelines 175

You may find that you want to target a
movie clip that is above the current time-
line. In that case, you can use the relative
term parent. However, just as in the case
of root, you must tell Flash that you want
to refer to a timeline, so use the full state-
ment MovieClip(parent). For example,
MovieClip(parent).stop() would stop the
playhead of the parent’s timeline.

Table 51 and @ summarize the ways you
can use absolute and relative paths with
the keywords this, MovieClip(root), and
MovieClip(parent) to target different
movie clips.

Using this or an absolute path to
target a movie clip’s own timeline is unneces-
sary, just as it’s unnecessary to use this or
MovieClip(root) when navigating within
the main Timeline. It’s understood that actions
residing in one timeline pertain, or are scoped,
to that particular timeline.

2 You are

L J here

re 1 M drde (% iangle

o A representation of a movie with multiple
movie clips. The main Timeline (scene 1) contains
the square movie clip and the circle movie clip.
The circle movie clip contains the triangle movie
clip. These names represent instances rather than
symbol names. Table 5.1 summarizes the absolute
and relative target paths for calls made from the
circle movie clip (you are here).

TABLE 5.1 Absolute vs. Relative Target Paths

To Target... (From Circle) Absolute Path

Relative Path

Scene 1 MovieClip(root) MovieClip(parent)

square MovieClip(root).square MovieClip(parent).square
circle MovieClip(root).circle this

triangle MovieClip(root).circle.triangle triangle

176 Chapter 5

Scope

You've learned that to direct an Action-
Script statement to affect a different
timeline, you need a target path that
defines the scope. Without a target
path, the ActionScript would affect its
own timeline. An ActionScript state-
ment belongs, or is scoped, to a par-
ticular timeline or a particular object
where it resides. Everything you do in
ActionScript has a scope, so you must
be aware of it. You could be giving the
correct ActionScript instructions, but if
they aren’t scoped correctly, nothing—
or, worse, unexpected things—could
happen.

When you assign ActionScript to a frame

on the main Timeline, the statement is

scoped to that timeline. When you assign

ActionScript to a frame of a movie clip
timeline, the statement is scoped to that
movie clip timeline.

Using the with Action
to Target Objects

An alternative way to target movie clips
and other objects is to use the action with.
Instead of creating multiple target paths

to the same movie clip, you can use the
with action to target the movie clip only
once. Imagine creating these statements
to make the bighand_mc movie clip inside
the clock_mc movie clip stop and shrink
50 percent:

clock_mc.bighand_mc.stop();
clock_mc.bighand_mc.scaleX = .5;
clock_mc.bighand_mc.scaleY = .5;

You can rewrite those statements using the
with statement like this:

with (clock_mc.bighand_mc) {

stop();
scaleX = .5;
scaleY = .5;

}

This with action temporarily sets the
scope to clock_mc.bighand_mc so that
the method and properties between the
curly braces affect that particular tar-
get path. When the with action ends,
any subsequent statements refer to the
current timeline.

Controlling Multiple Timelines 177

To target objects using
the with action:

1. Open the Actions panel.

2. Enter the code as follows with the tar-
get path within the parentheses of the
with action:

with (clock_mc.bighand_mc) {
}

In this example, the target path is
clock_mc.bighand_mc.

3. Between the curly braces of the with
action, create your statements for the
targeted object.

Note that you don’t need to specify
a target path or put a dot before the
method or property name @.

with (clock_mc.bighand_mc) {
rotation = 30;

.5;

.5;

scaleX
scaleY

0 A with statement is an alternative to writing
out a target path in front of objects. The scaleX
and scaleY properties change the vertical and
horizontal dimensions, and the rotation property
changes the angle of clock_mc.bighand_mc.

178 Chapter 5

stop() action Movie clip timeline

5&-»1

*any s 1. .5 .20 5]
2. -0

U Layer1

INET=N | Bld T Wl 1 120 oos |

Main Timeline

0 The movie clip as a container. This figure
represents a main Timeline (scene 1) with a

movie clip on its Stage. The movie clip has a
stop() action in its first keyframe. The other
labeled keyframes can contain buttons, graphics,
animations, or any other kind of Flash information,
which you can access by targeting the movie

clip and moving its playhead to the appropriate
keyframe.

stop() action

MBI Sl e
(@ actions =+ B Olo
[P labels + + H|[irolapsed pFexpanded
|. (js

0 The pull-down-menu movie clip contains both
collapsed and expanded states.

Movie Clips as
Containers

So far in this chapter, you’ve learned how
to name your movie clip objects, target
each one, and navigate within their time-
lines from any other timeline in your movie.
But how does the ability to control movie
clip timelines translate into meaningful
interactivity for your Flash project? The key
is to think of movie clips as containers that
hold stuff: animation, graphics, sound, and
text. By moving the playhead back and
forth or playing certain parts of a particular
movie clip timeline, you can access those
items whenever you want, independently
of what else is going on @.

For example, movie clips are commonly
used to show objects with different states
that toggle from one to the other; the dif-
ferent states are contained in the movie
clip’s timeline. When you built pull-down
menus in Chapter 4, “Advanced Buttons
and Event Handling,” you used movie
clips to serve that purpose. The pull-down
menu is essentially a movie clip object
that toggles between a collapsed state
and an expanded state. The buttons inside
the movie clip control which of those two
states you see @.

Another example is a radio button. A radio
button is a kind of interactive element that
toggles between an “on” state and an
“off” state. Radio buttons are often used to
provide the reader a number of exclusive
choices, when only one choice is accept-
able. To answer the question of what your
favorite color is, you could display several
radio buttons next to color choices—only
one can be selected at any time.

The following task demonstrates how to
create a button with a toggle functionality
using a movie clip.

Controlling Multiple Timelines 179

To create a button with a
toggle functionality:

1. Create a movie clip symbol.

2. Go to symbol-editing mode for the
movie clip.

3. Inthe first keyframe, add a stop() action.

4. Insert another keyframe, and in this
second keyframe, add another stop()
action.

The stop() action in both keyframes
will prevent this movie clip from playing
automatically and will stop the playhead
on each keyframe @.

5. Insert a new layer.

6. Create graphics that correspond to the
off state in the first keyframe and graph-
ics that correspond to the on state in
the second keyframe @.

7. Exit symbol-editing mode, and return to
the main Stage.

8. Place an instance of your movie clip on
the Stage, and give it an instance name
in the Properties inspector.

9. Create a new layer, select the keyframe
on frame 1 of this layer, and open the
Actions panel. Make sure you are on
the main Timeline.

10. Create an event handler for your movie
clip instance as described in Chapter 4
to detect a mouse click. Inside the curly
braces of the event-handler function,
enter the target path for your movie
clip, then a period, and then the method

play() @.

Test your movie (Test > Control Movie >
in Flash Professional).

1

b

When you click the movie clip, Flash
targets the movie clip and moves the
playhead to the next keyframe and
stops. Each click toggles between two
different states @.

stop() actions

G The toggle-button movie clip contains a stop()
action in both keyframes.

&) graphics « « W
Il *any s
— —
Aoy ot we 3 7+ .l
al graphics « o« B
FET=N] Nt =%

0 The first keyframe contains graphics represent-
ing the button’s off state, and the second keyframe
contains graphics representing the button’s on, or
depressed, state.

togoleButton mwe.oddEventl iztener(MouseEvent .CLICK, doTogaled;
function doToogle(myevent :MouseEvent yavoid {
toggleButton_mc.ploy(};

G The full script on the main Timeline listens for a
mouse click and responds by playing the timeline
of the movie clip.

o When the movie clip plays, the playhead
moves from the first keyframe (left) to the second
keyframe (right). From the second keyframe, the
playhead loops back to the first keyframe (the
default movie clip behavior when it reaches the
end of its timeline).

180 Chapter 5

Second keyframe contains content
Empty keyframe —|

. 5

!il:lll

Bl 0 @ R !

@ A movie clip with an empty first keyframe
is invisible on the Stage. The second keyframe
contains hidden content.

Creating a movie clip
with hidden content

You can do the same thing to a movie
clip that you do to a button to make it
invisible—that is, leave the first keyframe
blank so that the instance is invisible on
the Stage initially. If the first keyframe of a
movie clip is blank and contains a stop()
action to keep it there, you can control
when to expose the other frames inside
that movie clip timeline. You could create
a movie clip with an embedded video but
keep the first keyframe blank. Then you
could place this movie clip on the Stage
and, at the appropriate time, advance

to the next frame to reveal the video to
the user.

Note that you have other ways of using
ActionScript to hide or reveal the con-
tents of a movie clip or to place content
on the Stage dynamically; you’ll learn
about these possibilities in upcoming
chapters. But being aware of both the
simple (frame-based, as described here)
and sophisticated (purely ActionScript-
based) approaches will help you tackle a
broader range of animation and interactiv-
ity challenges.

To create an “invisible” movie clip:
1. Create a movie clip symbol.

2. Go to symbol-editing mode for the
movie clip, and insert a new keyframe
on frame 2 of its timeline.

3. Leave the first keyframe of this layer
empty, and begin placing graphics and
animations in the second keyframe @.

4. Add a new layer to hold ActionScript.

Select the keyframe on frame 1 of this
layer, and open the Actions panel.

Continues on next page

Controlling Multiple Timelines 181

5. Add a stop() action .

6. Exit symbol-editing mode, and return to
the main Timeline.

7. Drag an instance of the movie clip from
the Library to the Stage.

The instance appears on the Stage as
an empty circle @. The empty circle
represents the registration point of
the instance, allowing you to place the
instance exactly where you want it.

stop() action

™ actions
@l content

= P OVEER

1

stop ()

0 This movie clip has a stop() action in its first

frame.

Movie clip symbol in the Library

[—
& G

100%

m

[Untitled-3
+
1 item 0
Name
Symbel 1

Movie clip instance placed on the Stage

o An instance of a movie clip with an empty first
frame appears as an empty circle.

182 Chapter 5

Frame label

Ta0: | s 10

F.myLabel

PROPLRTILS

T

. LARFL
Name: |rmyLabel
Type: | Name
= SOUND
Name: 'Nmi

O This timeline (left) has a frame label on its
first keyframe. Frame labels are added in the

Properties inspector (right).

Using Frame Labels

When you navigate different timelines,

it's useful to use frame labels, which are
names that you give specific keyframes on
a timeline. Frame labels are created in the
Properties inspector in the Frame Label
field and appear as tiny flags on the time-
line @. By using frame labels, you mark
important spots in your animation without
worrying about the exact frame numbers.

In ActionScript, you can retrieve the name
of any frame label with currentLabel,

a property of the MovieClip class. The
currentLabel property holds the most
recently encountered frame label name (a
string). For example, you can construct a
conditional statement to check on the loca-
tion of the playhead, like so:

if (this.currentLabel == "SomeLabel") {
// do something

}

Note that the frame label is in quotation
marks because it is a string value. If the
playhead isn’t on a frame with a frame
label, the property currentLabel returns
the last frame label encountered. The
useful counterpart to currentLabel is the
property currentFrame, which is the frame
number of the playhead.

You can also use ActionScript to retrieve
all the frame labels in a timeline and their
associated frame numbers. Each frame
label that you create on a timeline is auto-
matically represented in ActionScript as an
object of the FrameLabel class.

Continues on next page

Controlling Multiple Timelines 183

These objects have two properties: a name
property, which is the name of the frame
label, and a frame property, which is the
number of the frame. You can access the
properties of each FrameLabel object

by using the currentLabels property of
the MovieClip class (note the similarity

of the currentLabel and currentLabels
property, except for the plural). The
currentlLabels property returns an Array
of all the FrameLabel objects in the time-
line. (An Array is another type of object
that holds data in an orderly manner, which
you’ll learn more about in Chapter 11,
“Manipulating Information.”) You access the
data in an Array with the square brackets.
So, you can find out the name of the first
frame label in a timeline with the following
statement:

this.currentLabels[0].name;

And you can find out the frame number of
the first frame label with this statement:

this.currentLabels[0].frame;

The square brackets access the different
FrameLabel objects, beginning with the
number 0 @.

this.currentLabels[O].name is “intro”
this.currentLabels[O].frame is 1

this.currentLabels[1.name is “resume”
this.currentLabels[1].frame is 7

this.currentLabels[2].name is “photos”
this.currentLabels[2].frame is 14

this.currentLabels[3].name is “bio”
this.currentLabels[3].frame is 20

10

15 40 25

"‘E'Ijl 5

intro |:||E| resume DlE' phcmnsD|E bio |:||

0 Each frame label is an instance of the FrameLabel class. Each instance has a name
property and a frame property. Access each instance from the currentLabels array.

184 Chapter 5

a0 5 o

v LABEL
Name: |intro
Type: | Name

 SOUND

G The first keyframe of this timeline has the frame

label called intro.

=P OovEERKL Y

1 troce{this.currentlobel’;

OUTPUT
intro

0 The trace statement in the
Actions panel (above) shows up
in the Output panel (below).

To retrieve the current frame
label on a timeline:

trace(this.currentLabel);

1. On the timeline, select a keyframe and
in the Properties inspector, give it a
frame label @.

. Open the Actions panel, and in the
Script pane, enter

The trace command lets you display
expressions in the Output panel in Flash
authoring mode for testing purposes.
This statement displays the name of the
current frame label @.

Controlling Multiple Timelines

185

To retrieve any of the frame labels

and numbers on a timeline: N faous

1. On the timeline, create multiple
keyframes, each with its own frame

label @.

2. Select the first keyframe and open the
Actions panel. In the Script pane, first
enter a stop() command:

stop();

The stop() command will prevent the
playhead from moving.

G Create a timeline with multiple keyframes.

3. On the next line, enter the following
code:

for (var i:uint = 0; i <
this.currentLabels.length;
i++) {
trace("frame " +
this. currentLabels[i].frame +
": "+ this.currentLabels[i].name);

}

The for statement is a looping state-
ment that repeats actions within its
curly braces. This statement displays
the frame label number and frame label
name of each FrameLabel object, repre-
sented by this.currentLabels[i] @.

PovEErUEYPDPO @M
slup()s
for {var imint = A; i « thizs_frrent] ohels_ lengthy isa)
troce("frame * + this.currentlobels[i].frame + ": " + this.currentlobels[i].name};

frame 1: intro
frame 7: resume
frame 13: photos
frame 19: bio

o The code in the Actions panel (above) contains a looping
statement that displays all the frame label names and numbers in the
Output panel (below).

186 Chapter 5

Managing
Commun

Flash provides powerful tools to com-
municate with other applications, such as
Web browsers, and with other files, such
as images, videos, and other Flash mov-
ies. Flash can link to your favorite Web
sites, trigger a JavaScript function, or even
relay information to and from servers for
data-driven applications. Although many
of these functions that connect to data-
bases are beyond the scope of this book,
this chapter introduces you to some of the
most popular ways Flash can communicate
with HTML and JavaScript through the Web
browser.

You'll learn to work with external images,
video, and Flash movies. You can use
one main Flash movie to load in external
content to create modular projects that are
easier to edit and have smaller file sizes.
Your main Flash movie might serve simply
as an interface that loads your portfolio of
work when the viewer selects individual
samples. You can manage the commu-
nication from the main Flash movie to its
loaded movie to control its appearance
and playback.

-xternal
ication

In This Chapter

Communicating with the Web Browser 188

Loading External Flash Movies 200
Controlling Loaded Flash Movies 206
Loading External Images 212
Communicating with External Video 215

Detecting Download Progress:
Preloaders 222

Finally, you’ll learn to communicate with
your movie’s playback environment. You’ll
learn how to detect the amount of data that
has downloaded to users’ computers so
you can tell users how much longer they
have to wait before your movie begins.
Keeping track of these external factors will
help you provide a friendly and customized
user experience.

Communicating with
the Web Browser

Flash connects to the Web browser
through the method navigateToURL().
This method takes one parameter, which
is a URLRequest object that contains all the
information needed to make the connec-
tion, such as the address to the Web site.
The URL is the address that points to a
specific file, whether on the Internet or on
your local hard drive. Use an absolute URL
(a complete address to a specific file) to
link to any Web site, or use a relative URL
(a path to a file that’s described in relation
to the current directory) to link to pages in
the same Web site or local files contained
on your hard drive or a CD or DVD. The
navigateToURL() method also provides
ways to target different browser windows,
if you want to control where the new link
appears.

Connecting to the Web

Connecting to the Web requires sev-
eral steps. You must first instantiate the
URLRequest object and define the URL
as a property of the object, like so:

var myURL:URLRequest = new
URLRequest();
myURL.url="http://www.adobe.com";

Or, you can combine the two statements
and define the url property at the same
time you instantiate the object, like so:

var myURL:URLRequest = new
URLRequest("http://www.adobe.com");

Note that the url property is a string,

so it must be enclosed within quotation
marks. Next, use navigateToURL() with the
URLRequest object as its parameter, as in
the following:

navigateToURL(myURL);

If you test your Flash movie by choosing
Control > Test Movie > in Flash Profes-
sional or play it in Flash Player, the method
navigateToURL() automatically launches
the default browser and loads the specified
Web address in a new window.

To link to a Web site:

1. Create a button symbol, drag an
instance from the Library to the Stage,
and give it a name in the Properties
inspector.

You’ll assign the navigateToURL()
method to a mouse click on this button.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Instantiate a new object from the
URLRequest class with the Web address
as its parameter:

var myURL:URLRequest = new
URLRequest("http://www.adobe.com");

In this example, the new object called
myURL is created and the Adobe Web
site is assigned to its uxrl property.

188 Chapter 6

furclivn clickBullun{uyevenl ;MuuseEvenl) ovoid {
navigoteTolURL {mylRL) ;

war myURL:URLRequest = new URLRequest{"htip:/Awew.odobe.com”);
mybutton_btn.oddEventListener {MouseEvent .CLICK, clickButton);

o The navigateToURL() method requires

a URLRequest object as a parameter. The
URLRequest object (called myURL here) points to
the Web site address (http://www.adobe.com).

Local plavback security: | Access netwark only

Access |ocal files onl

. only

9 In the Publish Settings dialog box, set your
SWEF file to allow remote (network only) access.

4.

Create an event handler that detects
a mouse click on your button (see
Chapter 4, “Advanced Buttons and
Event Handling,” to learn more about
event handling), and in the func-

tion of your event handler, add the
navigateToURL() method, as in the
following statements:

mybutton_btn.addEventListener
(MouseEvent.CLICK, clickButton);

function clickButton(
myevent:MouseEvent):void {
navigateToURL(myURL);

}

In this example, when the mouse is
clicked on mybutton_btn, Flash uses
the myURL object to link to the Web @.

Choose File > Publish Settings.
The Publish Settings dialog box opens.
On the Flash tab, under the “Local play-

back security” option, choose “Access
network only” @. Click OK.

This will prevent you from getting a
security error message when you test
your SWF file and the file, which will
play locally from your hard drive, tries to
access a Web site on the Internet.

Continues on next page

Managing External Communication 189

http://www.adobe.com

7. Publish your Flash movie, and play it in
either the Flash Player or a browser.

When you click the button you created,
the Web site loads in a new window @.
Click the Close button in your browser

to close the window and return to your
Flash movie.

If you skip steps 5-6 (changing the
Publish Settings) and then test the movie in

a browser from your hard drive, you may see
a security warning when you click the button
that calls the navigateToURL() method. For
more about working around this issue, see the
sidebar “Flash Player Security: Mixing Local
and Remote Content,” later in this chapter.
However, testing the movie in Flash or over
the Internet in a Web browser won’t cause the
security warning to appear.

Hyperlinks in Text

You can also link to the Web from text. With
the Text tool, select either Classic Text >
Static, or TLF Text > Read Only or Selectable.
Create your text and select the characters
you want to be hyperlinked. In the Properties
inspector, enter the address of the Web site in
the Link field and choose where you want the
Web site to load in the Target field @. Your
text will display with an underline to show
that it’s linked to a URL. When your viewers
click the text, the Web site will load in the
browser window indicated by the Target field.
You can also create hyperlinks with Classic
Text > Dynamic, but the entire field becomes
clickable.

E.%O.- Coogle

| '\‘- Go to Adobe website
| Adobe

»y

s Adabe —
c A T hop: i wwwadobe.cor v b= ([~ Cooge ©

Products Support Communiies Company Downloads

0 The Flash movie (top) links to the Adobe site in
a new browser window (bottom).

Text field on the Stage

El;r, Visit the Adobe website [IL"

= ADVANCED CHARACTER

Link: [http://www.adobe.com |

Target: |_blank |v|

0 A Web address in the Link field of the
Properties inspector creates a hyperlink in the
selected text of a text field. The Target field in the
Properties inspector determines where the link will
open. In this figure, _blank is selected, so the link
will open in a new browser window.

190 Chapter 6

war iyl IR :1Rl Request. = new 1R Request."mi Itn: wurnoseddnmoin.com®)3
niybutton_btn . addEventListener (MouseEvent CLICK, clickButton);

function clickButton{myovent :MouscEvent jrvoid {
navigateloURLnvURL, © self=);
h

G Enter e-mail recipients after mailto: for the
URLRequest object. When the URLRequest object
is passed to the navigateToURL() method, the
browser will open the default mail application and
preaddress an e-mail message.

-y
H= New Message

! Fle Edt ‘iew Inset Formak Tools Message Help | A

»

. W n, =

= | % D oL
: Send Cut Copy Maskc Undo Checl
[To: fyournsme@domain.com
B |
Subject: |

|
4

o A new e-mail message appears in your default
mail program.

(Gonm: yourname@yourdomaln.mm)

@ This e-mail address is also a button that
connects to the browser via mailto:.

To preaddress an e-mail:

1. Instantiate a new object from the
URLRequest class with "mailto:" fol-
lowed by the e-mail address of the
person who should receive the e-mail
enclosed in quotation marks as its
parameter:

var myURL:URLRequest = new
URLRequest("mailto:yourname@
domain.com");

In this example, the new object is called
myURL and its url property is a different
scheme for sending e-mail.

2. Make a call to the navigateToURL()
method, like so:

navigateToURL(myURL, "_self");

The second parameter, _self, enclosed
in quotation marks, is intended to pre-
vent a new window from opening @.

When the code executes, the user’s
default e-mail application opens with a
new preaddressed e-mail message @.
The viewer then types a message and
clicks Send. Use this method to pread-
dress e-mail that viewers can use to
contact you about your Web site or to
request more information.

It's a good idea to spell out the e-mail
address of the mailto: recipient in your Flash
movie @ If a person’s browser isn’t config-
ured to send e-mail, an error message appears
instead of an e-mail form. By spelling out the
address, you allow users to enter it in their
e-mail applications.

Managing External Communication 191

Linking with a relative path

You can use relative paths rather than
absolute URLs to specify local files instead
of files on the Web. This method lets you
distribute your Flash movie on portable
media such as a DVD without requiring an
Internet connection. Instead of using the
complete URL http://www.myServer.com/
images/photo.jpg, for example, you can
specify just images/photo.jpg, and Flash
will look inside the folder called images to
find the file called photo.jpg.

To link to a file using a relative path:

When specifying the URL in the
URLRequest object, use a slash (/) to
separate directories and two periods (..)
to move up one directory (.

Be sure to place your published SWF and
your linked file in the correct level in the
folder hierarchy @.

Flash looks for the file using the rela-
tive path and loads it into a new browser
window @.

Working with browser windows

When you play your Flash movie in a
browser window, the navigateToURL()
method loads the new Web address in

a new, blank window if you provide the
URLRequest object as its only parameter.
To make the Web address load into the
same window or a named window, enter

" _self" or another name as the second
parameter in the navigateToURL() method
for the window.

war myURL :URLRequest = new URLRequest("../imoges/photo.jpg");
mybutton_btn.addEventlistencr {(MouscEvent .CLICK, clickButton);

function clickButton{myevent :MouseEvent yivoid {
navigataTolRL (myURL) ;

}

0 This relative URL defined in the URLRequest
object goes up one directory level and looks for a
folder called images, which contains a file called
photo.jpg.

SWF HTML photo.jpg

my_Files) B

-
Flash_[iles— images
78| ™
-
o Your Flash movie (SWF) and its accompanying

HTML file are in a directory that’s at the same level
as the directory that contains the file photo.jpg.

0006 O4linkTolocal
- & % [@ tiesvolumesiaci v |- ([G]- Google Q@

s

Link to pholo.jpg

0y

1G]~ Gof

T3

- @ A% B Fle: /1 Volumes/LaCie. ¥ | 1=

o The Flash movie (top) links to the local file in a
new browser window (bottom).

192 Chapter 6

http://www.myServer.com/images/photo.jpg
http://www.myServer.com/images/photo.jpg

To open a Web site in
the same window:

Specify _self, enclosed in quotation
marks, as the second parameter in the
navigateToURL() method, like so:

navigateToURL(myURL, " _self");

When you test your movie in a browser,
the new Web address loads in the same
window as the Flash movie, replacing

it. Use the back button to return to your
Flash movie.

Security restrictions prevent a Flash
movie from linking to a Web site with a win-
dow name of _self, _parent, or _top if the
SWEF is located in a different domain (different
Web site address) than its HTML page. This
issue is discussed in the sidebar “Flash Player
Security: Loading Across Domains,” below.

Flash Player Security: Mixing Local and Remote Content

This chapter is all about how a Flash movie communicates with its external environment to access
other scripts, files, and data. However, there are security features that restrict Flash movies from
communicating with and loading other files and data from locations other than its own. This pro-
tects users from the possibility of a Flash movie secretly loading a file from the user’s hard drive

and sending it over the Internet, for example.

You’ll come across this security issue when you mix local content (when you test Flash files on your
computer) with remote content (when you link to a Web site). You will see a security warning mes-
sage when the locally running SWF file tries to access any network resource @. This includes the
navigateToURL() method and many of the other actions I'll discuss in this chapter.

One way to prevent the warning is to change
the “Local playback security” setting in the
Publish Settings dialog box from “Access
local files only” to “Access network only,” as
explained in the task “To link to a Web site.”
However, you’ll have to remember to change
this setting for each Flash document you test
locally that accesses a remote resource.

You can make a single change to resolve
this issue for all your Flash documents. The
simplest way is to specify a trusted location
on your computer—a folder within which any
Flash movies are trusted by the Flash Player
and don’t cause this security warning. The
next task, “To designate a trusted location on
your computer,” shows you how.

B0 Adobe Flash Player Security

Adobe® Flash® Player has stopped a potentially unsafe operation.
The following local application on your compUTEr or nemwork:

JUsers /faculty/ Desktopblah.swf
I trying to communicate with this Internet-enabled location:
www.adobe.com

To let this application communicate with the Internet, click Settings.
You must restart this application after changing your settings.

(oK) (Bettings)
Ok | [Settings...

0 The Flash Player Security dialog indicates that
a SWF has tried to access the network and isn’t
allowed to. Click the Settings button to create a
trusted location on your computer, which prevents
this warning.

Managing External Communication 193

To designate a trusted location
on your computer:

1. Go to the Adobe Flash Player Global
Security Settings panel on any browser
(http://www.macromedia.com/support/
documentation/en/flashplayer/help/
settings_manager04.html).

N

In the Settings Manager, click the
Edit locations menu and choose Add
location @.

3. In the dialog box that appears, click the
“Browse for folder” button @); another
dialog box will allow you to choose a
folder whose contents will always be
trusted by the Flash Player.

In general, you should choose a folder
that contains your Flash projects (sub-

folders of this folder are trusted as well).

You also need to be careful to never
place in that folder any SWF files that
you don’t completely trust.

4. Click the Confirm button. The dialog
box closes, and you return to the Set-
tings Manager.

Your newly added location appears in
the bottom field @. With this setting,
the Flash Player will no longer trig-
ger the error message when you test
local SWF files that are in the trusted
location.

5. Restart the browser.

Adobe FlashPlayer™ SettingsManager Q

U L -0

Global Security Settings

Some websites may access information from other sites using an older
system of security. This is usually hamless, butitis possible that some
sites could obtsin unsuthorized information using the oldar system. When =
website attern pis to use te older system 1o access infomnaton:

@ 3 Mways ask O @ Mways slaw

O@ Mlways deny

Alupay's TUSTIES In hiese [0C3T0Ns: Cdit locations...

Add location. ..
Edit location...
Dielete location

Dedate all locations:

o You can specify a location on your computer
whose contents are trusted by the Flash Player.

Global Trust this locasion:

SiEs | Erowseforfies.. | [EBrowseforfolder. | 2

@A Tip:Theapplicati
the Intemetis:

ithat recently tiedt icate with

JUsers [faculty /Desktop/blah.swf
Alveay

[Confrm] [Cancel |

m Choose a single SWF file or a folder to
designate as trusted.

Adobe FlashPlayer™ SettingsManager @l

CICE WAL

Some websites may access infomation from other siles using an older
system of security. This is usually hamless, butitis possible that some
sites could obisin unauthorized information using the older system. When a
website attermpts 1o use the older system o access information:

@ @ Mways ask O @ Always slow O Aways deny

Alveays tust fles in these locations:
@ jUsers {faculty/Desktop/ blah.swf

Editlocations... : |

0 The newly designated folder appears in the
bottom field and is set to be a trusted location.

194 Chapter 6

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

Using JavaScript to control
new window parameters

When Flash opens new browser windows
to load a URL, the appearance and loca-
tion of these new windows are set by the
browser’s preferences. If you play a Flash
movie in a browser that shows the location
bar and the toolbar, for example, and you
open a new window, the new window also
has a location bar and a toolbar. You can’t
control these window parameters directly
with Flash, but you can control them indi-
rectly with JavaScript.

JavaScript is the scripting language for
your Web browser. Most of the time, your
Flash movie will play in an HTML file in a
Web browser. You can use the ActionScript
class ExternalInterface to communicate
with the JavaScript that is written in the
HTML file. Use the call() method from the
Flash movie, like so:

ExternalInterface.call(
"somefunction");

This statement triggers the JavaScript
function called somefunction in the HTML
page that plays your Flash movie. JavaS-
criptis in the head of an HTML file and
would look something like this:

<script language="javascript">

function somefunction() {
alert ("hello");}

</script>

The call() method can also pass param-
eters (Boolean, Number, or String data
types) to the JavaScript function. Simply
add additional parameters to the call()
method, like so:

ExternalInterface.call(
"somefunction", parami, param2);

The parameters called param1 and param2
will now be passed to the JavaScript
function.

Continues on next page

TABLE 6.1 JavaScript Window Properties

Property Description

height Vertical dimension, in pixels

width Horizontal dimension, in pixels

left X-coordinate of left edge

top Y-coordinate of top edge

resizable Resizable area in the bottom-right corner that allows the window to change dimensions

(yes/no or 1/0)

scrollbars Vertical and horizontal scroll bars (yes/no or 1/0)

directories Also called links, where certain bookmarks are accessible (yes/no or 1/0)

location Location bar, containing URL area (yes/no or 1/0)

menubar Menu bar, containing drop-down menus such as File and Edit; works only in the Windows
operating system (yes/no or 1/0)

status Status bar in the bottom-left corner, containing browser status and security (yes/no or 1/0)

toolbar Toolbar, containing the back and forward buttons and other navigation aides (yes/no or 1/0)

Managing External Communication 195

You can use the JavaScript function
window.open() to open a new window and
control several window properties. The
JavaScript function takes three parameters:
the URL, the new window name, and the
window properties. These properties spec-
ify the way the window looks, how it works,
and where it’s located on the screen @.
When you define these window properties,
use yes (1), no (0), or a number specifying
pixel dimensions or coordinates. Table 6.1
lists the most common window properties
that are compatible with all major Web

browsers.
Left Widih
| i >
Top — :
‘A Apple - Microsoft Internet Explorer X
Menu bar —I File Edit ‘iew Favorites Tools Help ‘ﬁ'
Toolbar —@ Back -) E @ .dj D Search 7 Favorites @ Media 42 =
Address |@ hikbp: e, apple, cormf V| Go Links **
R ~
Location I —1
Directories =3
Scroll bars
Resizable
Y -]

Status bar < 1l

I@ Done B nternet

0 You can set the properties of a browser window with JavaScript.

Height

196 Chapter 6

To open a custom window
with JavaScript:

1.

Create a button symbol and place an
instance of it on the Stage. In the Prop-
erties inspector, give it a name.

You will assign an event handler for a
button click on this button that opens
a new custom browser window using
JavaScript.

Select the first frame of the Timeline,
and open the Actions panel.

Add an event listener to detect a mouse
click over your button.

Create the event-handler function.
Between the curly braces of the function,
declare and initialize three variables for
your URL, your new window name, and
your window properties, like so:

var myurl:String =
"http://www.adobe.com";

var mywindow:String = "newwindow";

var myfeatures:String =
"width=200, height=250, left=80,
right=180, toolbar=0,
location=0, directories=0

These variables will be used as param-
eters for your JavaScript function.

5. On the next line, still within the event-

handler function, write the call()
method of the ExternalInterface
class with the name of the JavaScript
function and then the three variables as
parameters separated by commas, as in
the following @:

ExternalInterface.call(
"openwindow", myurl, mywindow,
myfeatures);

Flash makes the browser execute the
JavaScript function called openwindow
and passes three parameters.

Publish your Flash movie. Open the
HTML file that gets created in the
publishing process in an HTML editing
application like Dreamweaver. In the
head of the HTML file, add the following
JavaScript code @:

<script language="javascript">

function openwindow (URL,
windowname, windowfeatures){

window.open(URL, windowname,
windowfeatures);

}

</script>

Continues on next page

function clickButton{myevent :MouseEvent Jovoid {
var myurl:String = "http:/Awew . peachpit.com”
var mywindow:String = "newwindow";

}

nybutton_btn.addEventL istener {(MouseEvent .CLICK, clickButton);

var myfeatures:String = "width=280, height=2ER, left=88, top=18A, toolbar=A, location=A, directories=A";
ExternalInterfoce.cal L{"operwindow" , myurl, mwwindow, myfeotures);

0 The three variables myurl, mywindow, and myfeatures are strings that provide information
to pass to the JavaScript function in the HTML page. The call() method triggers the function
called openwindow and passes the three parameters to it.

<head >
‘meta http-equiv="Content-Type" content="text/html; charset=iso-2850-1" /»
{ti tlerOpenMewl indow /titlel
<body bgoolor="#ff{fff":

<script language="javascript"

function openwindow {URL, windowname, windowfeatures H
window.open{URL, windowname, windowfeatures};

{fscripty

</head>

Q You must add the JavaScript function
(highlighted in gray) in the head of the
HTML page that plays your Flash movie.

Managing External Communication 197

The openwindow function has three
parameters: URL, windowname, and
windowfeatures. When this function
is called, three parameters are passed
from Flash and used in this function.

7. Save the modified HTML page and
upload the HTML file and the SWF file
to your server to test it on the Web.

When you click the button that you
created, Flash passes the three param-
eters containing the Web address, the
window name, and the window features
to the JavaScript function in the HTML
page called openwindow. Then a new
window with those features opens @.

MO [
@ o @0 R e T
Getting Started Flickr Photo Downlo... |

-

Lo 20 i Width = 200
Launch ipit site
oo m— S
Top =180 e NN i A
Toolbar =0

Location =0

Directories = 0
Pei|
Height = 250

Publishe b

v

Done A
Transferring data from twitte... Y

0 The new window created by the JavaScript function
is a customized window without most features.

198 Chapter 6

It’s important that you test the
ExternalInterface.call() method over
the Internet, not locally on your hard drive.
Security restrictions won’t allow you to open
a new window to a Web site from your local
hard drive.

Some browsers and browser configura-
tions may block pop-up windows at any time,
so testing the functionality for your particular
target environment is important. Also, make
sure that the ExternalInterface.call()
method happens as a result of a direct user
action (clicking a button), and something that
happens automatically.

The ExternalInterface classis
supported in these environments: Internet
Explorer 5.0 and later for Windows, Firefox 1.0
and later, Mozilla 1.7.5 and later, Netscape 8.0
and later, or Safari 1.3 and later for the Mac.
The ExternalInterface class is not sup-
ported in a stand-alone player.

You can use the
ExternalInterface.call() method to
call other JavaScript functions defined in
your HTML page, not just to open custom
browser windows.

Make sure you don’t overwrite your
HTML file that contains the added JavaScript
function when you republish your Flash movie.
If you make changes to your Flash movie,
change the Publish Settings so you just pub-
lish a SWF file.

More JavaScript window properties are
available, but many of them work in only one
or some of the most popular browsers. The
properties innerHeight and innexWidth,
for example, define the dimensions of the
window content area, but these properties
are unique to Mozilla-based browsers such as
Netscape Navigator and Firefox. You’re safe if
you stick to the properties listed in Table 6.1.

Security restrictions only allow a Flash
movie to communicate with JavaScript on an
HTML page that is in the same sandbox (see
the Flash Player Security sidebars “Mixing
Local and Remote Content” and “Loading
Across Domains”). You can allow access by
changing the AllowScriptAccess parameter
to always (for both the embed and object
tags) in the HTML page and adding the follow-
ing statement in Flash:

flash.system.Security.allowDomain(
"domainName").

Managing External Communication 199

Loading External
Flash Movies

Another way to communicate with external
content is to load other Flash movies into
your first Flash movie. You use the Loader
class to do this. The Loader class provides
the load() method to combine many kinds
of external content into a Flash movie. The
original, container Flash movie establishes
the frame rate, the Stage size, and the
background color, but you can layer mul-
tiple external SWF files and even navigate
within their timelines.

Loading external Flash movies has many
benefits. It keeps your Flash project small
and lets you maintain quick download
times. It also lets you edit the external
Flash movies separately for a more modu-
lar way of working. For example, if you
build a Web site to showcase your Flash
animation work, you can keep all your
individual animations as separate SWF
files. Build the main interface so that your
potential clients can load each animation
as they request it. That way, your viewers
download only the content that’s needed,
as it’'s needed. The main interface doesn’t
become bloated with the inclusion of every
one of your Flash animations .

After you’ve loaded an external SWF file
into Flash with the Loadexr class, you must
add it to the display list, which makes it vis-
ible to the viewer. You’ll learn more about
the display list in the next chapter, “Con-
trolling and Displaying Graphics.” You add
objects to the display list with the method
addChild().

- |
\0 -
E@-
Cswr |
£ ~ f — External
= content
Interface.swf
swr [

f

o You can keep data-heavy content separate
by maintaining external SWF files. Here, the
interface.swf movie loads the animation files
one by one as they’re requested.

200 Chapter 6

9ﬂ|:|1! 5 10 15

=l animation

4l background

. ..44.

&+ B i

OAn animation of the letter A spins on a

vertical grid.

To load an external Flash movie:

1. Create the external Flash movie you
want to load.

For this example, keep the animation
at a relatively small Stage size @.

2. Publish your external movie as a
SWF file.

3. Open a new Flash document to create
the main, container movie that will load
your external Flash movie.

4. Select the first frame of the main Time-
line, and select the Actions panel.

5. Create a new URLRequest object with
the name of the external SWF file as the
url property, as in the following:

var myrequest:URLRequest = new
URLRequest("letterA.swf");

In this example, the external SWF that
you want to load is called letterA.swf,
and it lies in the same folder as the
main Flash movie. If your external movie
will be in a different directory, you can
specify the path by using the slash (/) to
drill down a directory or double periods
(..) to move up a directory. If your SWF
file resides on a Web site, you can enter
an absolute path to the file.

6. On the next line, create a new Loader
object with the following code:

var myloader:Loader =
new Loader();

7. On the next line, call the load() method
for your new Loader object and use the
URLRequest object as the parameter:

myloader.load(myrequest);

Managing External Communication 201

8. On the last line, call the addChild()
method to add the Loader object to
the Stage to display it @:

stage.addChild(myloader);

The Stage is the top-level dis-
play object. You can also add

the Loader object to other
DisplayObjectContainer objects
on the Stage, if you desire.

9. Publish your movie.

10. Place the SWF file, its HTML file, and
the external SWF file in the same
directory.

11. Play the main movie in Flash Player or
a browser.

Flash loads the external movie, which
sits on top of your original movie and

begins playing ©@.

Be careful when mixing Flash mov-

ies authored in ActionScript 3 and others
authored in previous versions, especially
when loading movies. ActionScript 2 movies
can’t load ActionScript 3 movies. ActionScript
3 movies can load ActionScript 2 movies

and earlier, but there are limitations, such as
not being able to access the loaded movie’s
variables or functions. In general, it’s best to
migrate all movies written in ActionScript 2 or
earlier to ActionScript 3 to keep all externally
loaded Flash content consistent.

var myrequest :URLRequest = new URLRequest (" letterd. suf");
war mylogder iLoader = new Loadsr();

iy loader . Load{myrequest)

stage .addChi Ld{my loader)

G The full code to load an external SWF file
called letterA.swf into your Flash movie. The
URLRequest object holds the information on what
file to get and where to get it, and the load()
method loads it into the Loader object. Do not
forget to display the Loader object on the Stage
with the addChild() method.

letterA.swf movie Main Flash movie

8686

0 The external movie of the spinning letter loads
into the bigger main Flash movie.

202 Chapter 6

To unload a movie:

m Use the unload() method on the
Loader object, like so:

myloader.unload();

This statement unloads the Flash movie
that was loaded into myloader from the
previous task.

or

m Use the unloadAndStop() method,
like so:

myloader.unloadAndStop();

This statement unloads the Flash movie
that was loaded into myloader and
shuts down any video or sounds that
may continue to play.

Flash Player Security: Loading Across Domains

Loading external SWFs and other content and data introduces data security issues and some
restrictions you should be aware of. Because SWFs published on the Internet can be loaded into
any Flash movie, the potential exists for private information and sensitive data held in variables in
the SWF to be accessed. To prevent this abuse, Flash movies operate in their own secure space,
called a sandbox. Only movies playing in the same sandbox can access and/or control each
other’s variables and other Flash elements. The sandbox is defined by the domain in which the
Flash movie resides. So, a movie on www.adobe.com can access other movies on www.adobe.
com without restriction, because they’re in the same domain.

If you need to load content or data that reside in different domains, you can call the ActionScript
method Security.allowDomain("domainName") within those SWFs, and movies from the speci-
fied domain can access their variables. For more specific information and details about domain-
based authentication and granting access, see the Flash Help topic (www.adobe.com/products/
flashplayer/security/). Current information is also available as a white paper on the Adobe Web site.

Managing External Communication 203

www.adobe.com
www.adobe.com
www.adobe.com
www.adobe.com/products/flashplayer/security/
www.adobe.com/products/flashplayer/security/

To replace a loaded movie:

Use the load() method with a different
URLRequest object. If you instantiate a
second URLRequest object with a second
SWF as its url property, you can load it
into the original Loader object. Continuing
with the previous task, add the following
code when you want to replace the loaded
movie:

var myrequest2:URLRequest =
new URLRequest("letterB.swf");
myloader.load(myrequest2);

This statement creates a new URLRequest
object and loads the second external
movie in the same loader, replacing the
first movie @.

You can change the location of the
loaded movie by assigning different values to
the X and Y properties of the Loader object.
For example, myloader.x = 40 positions the
Loader object 40 pixels from the left edge
of the Stage. Learn more about the differ-

ent properties of the Loader object in the
next chapter, which deals with manipulating
graphics.

myrequest in myloader

war myrequest :URLRequest = new URLRequest (" letterd.suf");
war mylooder:Loader = new Loader();

iy loader . load {myrequest)3

stoge . addChi Ld{my loader);

mybut ton_btn_oddEventListener (MouseEvent (CLICK, clickbutton);
funcbion clickbulLon{meevenl ;HoussEvenil)y {
war myrequest2:URLRequest = new URLRequest(" letterB.owf™);
iy Lloader . Load{nyrequests);

Replace koaded
miavie with another

86086

]

myrequest2 in myloader

G In the ActionScript code (top), the first external
SWF movie (letterA.swf) loads in automatically.
Then, when the user clicks the button on the
Stage, a second URLRequest object is created for
another external SWF movie (letterB.swf). When
it is loaded into the same Loader object, the first
movie is replaced.

204 Chapter 6

Characteristics of Loaded Flash Movies

The following is a list of things to keep in mind
when you’re loading external Flash movies:

m | oaded movies have transparent Stages.
To have an opaque Stage, create a filled
rectangle in the bottom layer of your
loaded movie @.

m | oaded movies are aligned with the reg-
istration point of the object that they are
loaded into. That means the loaded mov-
ies are aligned to the top-left corner of the
Stage (x =0 and y = O for both the loaded
movie and the Stage). So, loaded movies
with smaller Stage sizes still show objects
that are off their Stage @. Create a mask
to block objects that may go beyond
the Stage and that you don’t want your
audience to see. Likewise, loaded movies
with larger Stage sizes are cropped at the
bottom and right boundaries).

m Loader objects can have only one loaded
movie, so new calls to load() will bump
out the existing loaded movie and replace
it with the new loaded movie.

® You can have multiple loaded Flash mov-
ies as long as you have a unique Loader
object for each loaded movie. Each time
you use the addChild() method to dis-
play the loaded movie, it will be placed on
top of the previously loaded movies. See
the next section and Chapter 7, “Control-
ling and Displaying Graphics,” for more
information about managing depth levels
of objects on the display list.

Loaded SWF with
transparent Stage

External SWF

Main SWF

o The Stage of an external SWF is transparent
when the SWF is loaded into the main Flash movie.

External SWF Loaded SWF with
objects off its

Stage visible

Main SWF

@ Smaller external SWFs are aligned at the top-
left corner and display the work area off their
Stages. Consider using masks or external SWFs
with the same Stage dimensions.

External SWF
Loaded SWF with
contents cropped

Main SWF

0 Larger external SWFs get cropped when
they’re loaded in a smaller main Flash movie.

Managing External Communication 205

Controlling Loaded
Flash Movies

When you load an external Flash movie,
you'll likely want to control its timeline or
find out some information about the movie.
For example, to better fit your design, you
need to know the loaded movie’s width
and height so you can move it to an appro-
priate location on the Stage. Or, you can
stop or play the loaded movie, or navigate
to different spots on its timeline.

Before you can control the loaded Flash
movie or get information about its prop-
erties, however, you have to wait until
the entire external SWF has loaded. You
can detect when the loading process is
complete by accessing the LoaderInfo
object of your loaded object. The
LoaderInfo object provides events such
as Event.COMPLETE or Event.OPEN that
tells you the status of the load progress.
The LoaderInfo object also provides
information such as the amount of data
that has loaded, the total amount of data
of the loaded object, the loaded movie’s
SWEF version, its frame rate, the URL from
where it is being loaded, and other useful
properties.

Loaderinfo and contentLoaderinfo

To access the LoaderInfo object, you use
the contentLoaderInfo property of your
Loader object. For example, consider

the following statements that create a
URLRequest and a Loader, and then load
an external SWF file:

var myrequest:URLRequest =

new URLRequest("letterA.swf");
var myloader:Loader = new Loader();
myloader.load(myrequest);

After the load() call is made, you can
access the LoadexrInfo and its properties
with the contentLoaderInfo property,
like so:

myloader.contentLoaderInfo.bytesLoaded

206 Chapter 6

This statement returns the amount of data
that has loaded into the myloader object.
The next statement,

myloader.contentLoaderInfo.content

returns the object (in this case, the exter-
nal SWF) that is loaded into myloader.

Table 6.2 lists a few of the useful proper-
ties and events of the LoaderInfo object.

Detecting a successful load

Only after a load is successful is it safe
to control the loaded movie or access

its properties (like width or height). Cre-
ate an event handler that detects the
Event.COMPLETE event of the LoaderInfo
class as follows:

myloader.contentLoaderInfo.
addEventListener(Event.COMPLETE,
swfLoaded);

function swflLoaded(
myevent:Event):void {

var mycontent:MovieClip =
myevent.target.content;

/!l do something with mycontent

}

In this example, when Flash detects the
completion of a load process into the
myloader object, it calls the swfLoaded
function. The content of the event target
(the loaded SWF) is assigned to a movie
clip variable called mycontent for ease of
manipulation and control.

TABLE 6.2 LoaderInfo Properties and Events

Property Description

actionScriptVersion ActionScript version of the loaded SWF

bytesLoaded Amount of data that is loaded

bytesTotal Total amount of data in the file

content The loaded object associated with the LoaderInfo object
loader The Loader object associated with the LoaderInfo object
frameRate Frame rate of the loaded file

height Vertical dimension, in pixels

width Horizontal dimension, in pixels

loaderURL URL of the Flash movie that initiated the load

url URL of the file being loaded

swfVersion Player version of the loaded SWF

Event.COMPLETE

Dispatches when the file is completely downloaded

Event.OPEN

Dispatches when the file begins to load

ProgressEvent.PROGRESS

Dispatches when the file is loading

Event.UNLOAD

Dispatches when the loaded file is removed or replaced

IOErrorEvent.IO_ERROR

Dispatches when an error in the loading happens

Managing External Communication

207

To target and control a 4. On the next available line, display the
loaded Flash movie: Loader object with the addChild()

method, as follows:
1. Asin the preceding tasks, create an

animation to serve as an external Flash stage.addChild(myloader);

movie, and export it as a SWF file. The code so far should appear like the
2. Open a new Flash document, select the code in @.

first frame of the Timeline, and open the 5. Add an event listener to the

Actions panel. myloader.contentLoaderInfo
3. Instantiate a URLRequest object and a object (which references the

Loader object and make a call to the LoaderInfo object) and listen for

load() method to start loading the the Event.COMPLETE event, as in the fol-

external SWF, as in the following code: lowing ©@:

var myrequest:URLRequest = myloader.contentLoaderInfo.

new URLRequest("letterA.swf"); addEventListener(
var myloader:Loader = Event.COMPLETE, swflLoaded);

new Loader();
myloader.load(myrequest);

var myrequest :URLRequest = new URLRequest("letterA.swf");
war my looder sLoader = new Loader ()

iy looder . Load {nyrequest) ;

stage..addChi ld{my loader);

0 The external SWF called letterA.swf loads into the Loader object
called myloader and is displayed on the Stage.

war myrequest iURLRequest = new URLRequest(" letterd. swf");
war miylooder :Loader = new Loader();

iy Londer . Load {nyrequest 3

stage .addChi Ld{my Loader);

ny looder .contentLoader Info.addEventlistener {Event .COMPLETE, swflooded);

0 When the listener detects the completion of the loading, it triggers
the function called swfLoaded.

208 Chapter 6

6. On the next available line, create a
function with an Event type as the
parameter. In the body of the function,
assign the target.content property of
the event object to a new movie clip,
like so:

function swflLoaded(
myevent:Event):void {

var mycontent:MovieClip =
myevent.target.content;

}

This event handler, when executed,
puts the content of the event targetin a
variable typed to a movie clip. The con-
tent of the event target is the loaded
object, or the external SWF, which you
know belongs to the MovieClip class.
This helps you reference the external
SWF, change its properties, and navi-
gate its timeline.

Within the body of the event-handler
function, add additional statements that
navigate the timeline of the exter-

nal SWF or reference its properties.

For example, consider the following
statement:

mycontent.gotoAndStop(5);

This statement moves the playhead of
the loaded SWF to frame 5 and stops
there @.

. Publish your movie, and place the SWF

and its HTML in the same directory as
the external SWF file.

. Play the movie in Flash Player or a

browser.

Flash loads the external SWF. When
it detects the completion of the load,
Flash goes to a different spot on its
timeline @.

war niyrequest URLRequest = new URLRequest(" letterd.swf");

war my looder:loader = new Loader ()
iy Loadet . Load (nyt equest s
stage .addChi L {my Loader s

iy looder .contentLoader Inf o .addEventl istener (Event .COMPLETE, swflooded); G When the function called

function swflLooded{myevent :Event) svoid
var mycontent MovieClip = myevent.target.content;
mycontent .gotondStop(E);

swfLoaded is triggered, the external
SWF is assigned to the MovieClip
variable mycontent.The highlighted
portions of the code control the

playhead of the loaded external SWF.

ene

i

0 The playhead on the Timeline
of the loaded external SWF stops
at frame 5 (so this animated letter
“A” stops spinning).

Managing External Communication 209

Managing multiple Flash movies

When you load an external Flash movie
and use addChild() to display it on the
Stage, Flash adds the object to a display
list, which is a list that Flash uses to keep
track of the stacking order of objects. You'll
learn much more about the display list in
Chapter 7, because it is used to display

all sorts of objects on the Stage—movie
clips, bitmaps, graphics, as well as loaded
movies.

Think of the display list as a stack of

items, and each time you add an object

to the Stage with addChild(), you add to
the top of the stack. So the most recent
addChild() statement will be the topmost
object that overlaps all the other objects. If
you want to bring an object that’s lower in
the stack to the top, simply call addChild()
for that object, and Flash will pull it out of
the list and put it on the top. If you want to
remove an object from the stack entirely,
use removeChild() @.

To put a loaded movie
on top of others:

Make a call to the addChild() method,
like so:

stage.addChild(myloader);

This statement adds the Flash movie
loaded into myloader to the top of the
Stage, overlapping other objects that may
already be present on the Stage @.

Third addChild() method
Second addChild() method
First addChild() method

>

—

|

Stage

@ The addchild() method puts the Loader
object on display on the Stage. The most recent
addChild() method will be on top.

addChild() method called
for this Loader object

l Stage

Loader
object put
on top

Stage

o When you call an addChild() method for a
Loader object already displayed, it pulls it from
the display list and puts it on the top.

210 Chapter 6

removeChild() method called
for this Loader object

l Stage

Stage

@ When you call a removeChild() method for a
Loader object already displayed, it pulls it from the
display list so it is no longer visible.

Loaded Movies and root

If you’ve worked with previous versions
of ActionScript, you know that the _root
property always referred to the main
Timeline, even when an external SWF
was loaded into another Flash movie.
That made loaded Flash movies a little
tricky if ActionScript from their timeline
made reference to _root. In ActionScript
3, the new root property behaves a little
differently. The root property within

the loaded SWF represents the instance
of the main class of that SWF (the main
Timeline of that SWF, equivalent to the
Loader object’s content property).
Hence, there can be multiple root
instances in a Flash movie if external
content is loaded into the player with the
Loader class.

To remove a loaded movie
from the Stage:

Make a call to the removeChild() method,
like so:

stage.removeChild(myloader);

This statement removes the myloader
object from the Stage so it is no longer
visible. The myloader object, however, still
exists. It can be added to the Stage at a
later point in time or deleted entirely if it is
no longer needed @.

Managing External Communication 211

Loading External
Images

Using the same method that loads external
Flash files into your movie dynamically,
you can load images dynamically, includ-
ing JPEG, progressive JPEG, GIF, and PNG
images. The process is similar: create a
URLRequest object to define the URL or
path to your image file, create a Loader
object, and then use the load() method to
pull images into your Loader object. Finally,
display the loaded images by adding

the Loader object to the display list with
addChild(). As is the case with external
SWFs, keeping images separate from your
Flash movie reduces the size of your Flash
movie, saves download time, and makes
revisions quicker and easier because you
can edit the images without needing to
open the actual Flash file.

Loaded images follow many of the same
rules that loaded movies do, and those
rules are worth repeating here:

m | oaded images are aligned at the regis-
tration point of the object that they are
loaded into. That means images loaded
on the Stage are aligned at their top-left
corners (x =0 and y = O for both the
loaded movie and the Stage).

m Loader objects can have only one
loaded image, so new calls to load()
will bump out the existing loaded image
and replace it with the new loaded
image.

= You can have multiple loaded images
as long as you have a unique Loader
object for each loaded image. Each
time you use the addChild() method
to display the loaded image, it will be
placed on top of the previously loaded
image.

212 Chapter 6

war myrequest :URLRequest = new URLRequest("someimage.jpg") To Ioad an external |mage:
war my loader :Loader = new Loader();
iy Loader . load{myrequest.) ;

stage .oddChi Ld(ny Loader) 1. Select the first frame of the main

Timeline, and select the Actions panel.

0 This ActionScript code loads an image called

someimage.jpg and displays it on the Stage. 2. Create a new URLRequest object with
the name of the external image file as
Same directory the url property, as in the following:

var myrequest:URLRequest =
new URLRequest("someimage.jpg");

" a‘ 6 In this example, the external image that
- you want to load is called someimage.
jpg, and it is in the same folder as the
main Flash movie. If your external image
will be in a different directory, you can
specify the path by changing directories
using the slash (/) or double periods (..).
If your image file resides on a Web site,
you can enter an absolute path to the file.

SWF JPG HTML

3. Onthe next line, create a new Loader
object with the following code:

var myloader:Loader =
new Loader();

4. On the next line, call the load() method
for your new Loader object, and use the
URLRequest object as the parameter:

External image loaded into SWF

0 The image file, someimage.jpg, is in the same

directory as the SWF and HTML (top). When the myloader.load(myrequest);
Flash movie plays, the external image loads . .
(bottom). 5. On the last line, call the addChild()

method to add the Loader object to
the Stage to display it @:

stage.addChild(myloader);

The Stage is the top-level display object.
You can also add the Loader object to
other DisplayObjectContainer objects
on the Stage, if you desire.

6. Publish your movie, and place your
image in the correct directory so your
Flash movie can find it.

Flash loads the external image, which
sits on top of your original movie. The
top-left corner of the JPEG aligns with
the top-left corner of the Stage @.

Managing External Communication 213

To remove or replace var myrequest:URLRequest = new URLRequest(soueinage.ipg");
- wur my lowder sLuuder = rew Louder ()
aloaded image: iy LoGHE - 1o0a(yrequesty:
stoge.oddChi ld{my loader)
mwy | nnder Je=1ARA;

m To unload an image, make a call to the
unload() method of the Loader object. 8ene
To remove the image from the display,
make a call to the removeChild()

method of the Stage.

<—100 pixels —>

m To replace an image, use the load()
method, and load another URLRequest
object into the same Loader object. The
new image will replace the old one.

To change the properties
of a loaded image:

Assign new values to the Loader object
0 Assigning values for the X and Y properties

properties to <?hange the appearance of the Loader object puts it in a different position
of the loaded image. For example, on the Stage.

myloader.x = 100 moves the horizontal
position of the myloader object and its

loaded image @. Accessing the Loaded Content'’s
Properties

To put a loaded image Often, when you load external content

on top of others: (@ SWF or an image file), you'll want

Make a call to the addChild() method for i 178l QUIIS elimemns ans (gl s

width) so you can place it in the cor-
rect location on the Stage or scale it
stage.addChild(myloader); appropriately. However, it’s important
that you use an event listener to listen
for the Event.COMPLETE of the load (the
Loader’s contentLoaderInfo) before
you attempt to access the properties of
the external SWF or image. For example,
if you try to get the width or height of
the loaded image before it's completely
loaded, the information you receive will
not be correct.

the Loader object, like so:

This statement puts the image loaded into
myloader to the top of the Stage, overlap-
ping other objects that may already be
present on the Stage.

214 Chapter 6

LIBRARY

[untitled-2

1v] @& =

HName

= | Linkagy

New Symbol...
New Folder

New Font...
Empty library Rename

Delete
Duplicate...
Move to...

0 Choose New Video from the Library panel’s

Options menu.

Communicating with
External Video

In Chapter 2, “Working with Video,” you
learned how to embed video in a SWF file
and also how to create an external Flash
Video (FLV/F4V) file that loads into a player
skin in a SWF file. However, you don’t have
to rely on the preset skins that are provided
to you. Using ActionScript, you can control
the loading and playback of external video
to build your own playback features and use
video in a less conventional way.

Once you have an FLV/F4YV file, use a
NetConnection object and a NetStream
object to load the video stream into Flash.
The NetConnection object provides the
means to play back an FLV file from your
local drive or Web address, whereas the
NetStream object makes the actual con-
nection and tells Flash to play the video.
To receive the streaming video, you must
also have a video object on the Stage. You
can do this in one of two ways: create a
video symbol in your Library and place an
instance on the Stage where you want the
video to appear, or create a video sym-
bol and attach it to the Stage purely with
ActionScript using the Video class.

To dynamically load external
video with a video symbol
placed on the Stage:

1. Convert your video file to an FLV or F4V
file, as described in Chapter 2.

2. Open a new Flash document with its
Stage size large enough to accommo-
date the video file.

3. Open the Library. From the Library panel’s
Options menu, choose New Video @.

The Video Properties dialog box appears.

Continues on next page

Managing External Communication 215

. Give your symbol a name in the Symbol
field; in the Type field, choose Video
(ActionScript-controlled) @.

A new video symbol appears in the
Library.

. Place an instance of the video symbol
on the Stage.

. Modify its width and height to match the
external video file that will be loaded

in, and give it an instance name in the
Properties inspector. In this example,
the instance name is videoHolder @.

Your external video will play inside this
video instance.

Select the first frame of the main Time-
line, and in the Actions panel, create a
new instance from the NetConnection
class as follows:

var myVideo:NetConnection =
new NetConnection();

A new NetConnection object is
instantiated.

. On the next line, enter the name of the
NetConnection object you just created
followed by a period, and then enter
the connect() method with null as its
parameter:

myVideo.connect(null);

The null parameter tells Flash that it
isn’t connecting through the Flash Com-
munication Server but instead to expect
a download from the local hard drive or
a Web address.

. On the next line, declare and instanti-
ate a new NetStream object with the
NetConnection object as its parameter:

var newStream:NetStream =
new NetStream(myVideo);

A new NetStream object is instantiated.

Symbal: [Video 1

Sauree:

) |

Tywe: () Embedded {synchronized with Timeline)
1 Videc ActionSeript-controlled)

[Burndle source in SWF for mobile and devices (|

Expust... |

0 The Video Properties of your new video

symbol.

o E—
Linked Video

[®
videoHolder

Instance of: Video 1 Swal

Source: None (external video)

= POSITION AND SIZE

G A video symbol placeholder named
videoHolder is placed on the Stage. The
instance looks like a square with an x inside it.

216 Chapter 6

war myYideo:iMetConnection = new MetConnection();
W iden.connect.{nul L);

wor hewStream:NetStream = new NetStream(meVideo);
videoHo lder .ot tachNetStreondnewsStrean) ;
newstrean.play ("kayak..f lv");

0 A NetConnection object and a NetStream
object are used to load and play an external FLV.

var myWideosNetConnection = new NetConnection();

A e oL (il 1)

war rewstrean:NetStream - new MetStream{wy'ideo);
H

an(}
rewStream.play{ "kayak.f 1v*;

tunction errorhandler{myevent Asynckrrorkvent) |
Afignore error

el e P wen L i slener (AsyocF e roeFuenl, ASYNC_FRROR, rrrorhordler)3

G The ActionScript code (top) loads the external
FLV file named kayak.flv into the videoHolder
instance on the Stage and plays.

10.

1.

12.

13.

Enter the instance name of the video
symbol instance you placed on the
Stage followed by a period. Enter the
attachNetStream() method with the
video source parameter:

videoHolder.attachNetStream(
newStream);

In this example, the name of the new
NetStream object is the video source
parameter.

On the next line, enter the name of the
NetStream object followed by a period
and then the method, play(). As the
parameter for the play() method, enter
the name of the external FLV or F4V file
that you want to play on the Stage @.

newStream.play("kayak.flv");

As in this example, make sure the file-
name is enclosed by quotation marks.

On the next line, enter the following
event listener to detect asynchronous
error events and ignore them. See the
sidebar “Asynchronous Error Events” for
details regarding this error event.

newStream.addEventListener (
AsyncErrorEvent.ASYNC_ERROR,
asyncErrorHandler);
function asyncErrorHandler (
myevent:AsyncErrorEvent):void
{
/! ignore error

}

Publish your movie, and place the SWF
file in the same directory as the video
file whose name you entered.

Flash attaches your external video file
to the instance of the video symbol on
the Stage and begins to stream the
video @.

Managing External Communication 217

To dynamically load external
video with a video object:

1. Modify the file created in the previous
task by deleting the video instance on
the Stage.

2. Instead of creating a video symbol
in the Library beforehand (steps 3—-6
of the previous task), create a Video
object with ActionScript, like so:

var videoHolder:Video =
new Video(320, 240);

This statement creates a new object
called videoHolder from the Video
class, which is 320 pixels wide by
240 pixels high.

3. Add the new Video object to the Stage
with the addChild() method:

stage.addChild(videoHolder);

4. Publish your movie, and place the SWF
file in the same directory as the video
file whose name you entered.

The full ActionScript code @ is simi-
lar to the one in the previous task,
but Flash creates the Video object
dynamically.

Move the Video object, whether dynami-
cally generated or placed on the Stage manu-
ally, by assigning new values to its X and Y
properties. You’ll learn more about changing
graphics displayed on the Stage in the next
chapter.

When working with FLV or F4V files for
playback, you may need to configure your
server to handle the file type (by telling the
server its MIME type and file extension). Check
with your hosting service to make sure the
server can handle FLV and F4YV files.

var myVideo:NetC tion = now Netl ien}:
my¥ iueo . connecL{nul 1)
WAT PRUSTTROBIHRLSETRON = new NetStrenmumdden);

var videoHolder:Yideo - new Video(329, 248);
stoge.addChi ld{videoHo lder)3
videsHolder .ott ¥

newSLreun . pluy{kuyuk. L")

neustrean.addeventListensr (ASyncErrorEvent ASYNC_ERMM, errorhandler)
function errorhandler{myevent :AzyncErrorEvent [/ ignore error

19066

o The ActionScript code (top) loads the external

FLV file named kayak.flv into the dynamically

created Video object and plays. The Video object

is aligned at the top-left corner of the Stage, but

you can change its X and Y properties to move it
anywhere you want.

218 Chapter 6

Controlling playback of

TABLE 6.3 Playback Methods of the externally loaded video

NetStream Object
There are several methods that you can

Method Description
pause() b the vid call to control the playback of the video
auses the video L.
stream. See Table 6.3 for a description of
resume() Begins playing at the point the various commands. All of these meth-

where the video is paused

. — ods are called from the NetStream object.
seek() Seeks to any pointin the The following task creates buttons for the
stream provided by the
parameter, in seconds four methods to control the playback of
the video.

togglePause() Alternates between pausing
or resuming playback of the
video

Asynchronous Error Events

Cue points are information embedded in FLV and F4V files that you can create when you originally
encode your video, or in the Properties inspector. They provide a way for ActionScript to detect
the specific spots along the video stream with the MetaDataEvent event handler (see Chapter 2
for more information on creating and detecting cue points).

If your video has cue points, Flash requires that you write event handlers for them; otherwise,
errors may be generated. However, if you are not interested in cue points or metadata and simply
want to play the video, you must add the following bit of code to tell Flash to ignore any asynchro-
nous errors:

newStream.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);
function asyncErrorHandler(myevent:AsyncErrorEvent):void

{

// ignore error
}

The sample code adds a listener on the NetStream object called newStream for the asynchronous
error event, which happens when no event handler exists to deal with cue points and metadata
from an FLV/F4V.

Managing External Communication 219

To control playback of rauee)
externally loaded video:
Resume E
1. Continue with the file created in the
previous task in which you load and Tonole R
play an external video. “;:;““: — @ Four button instances
placed on the Stage.

2. Create a button symbol, and place four
instances of the button symbol on the

pause_btn.oddhventListensr {HouseDvent JILICK, pousefunction’;
Tl ion pousel el ion (revenl SHossEvenl) owid

Stage. et TR e)
b
3. In the Properties inspector, give unique recums_btn.oddEventL istener (HoussEvent .CLICK, recunefunction);
. function resumefunction (myevent sMouscEvent) w.nd
names to the four instances and add y Pordtrem.resume():
text to describe their function. In this topgla_btn.onuEventistenar (Nousevent LLICE, togglefunction);
example, name the four instances e soapiera gy ureEnt)votd {
+ ;
pause_btn, resume_btn, toggle_btn, _ _
- - - ek, bloedEventL isterer (HoussEvenl CLICK, seekfunclion);
and seek_btn @ rm&tﬁtﬁg;(w:m)mm{
i
4. Select the first frame of the Timeline
and open the Actions panel. @ The mouse click event handlers for the four
buttons on the Stage. Each button calls a different
5. On the next available line in the Script method of the NetStream object called newStream.
pane, create an event handler for each
of the four buttons to detect a mouse war myWideo:NetConnection = new NetConnection():

e ideu sconnecL (nul Ly;

|~ k wur rewSbreun:Nel3loeum = new NelSlooum(nyYideo);
ClicK. wur videoHulder (Video = new Video(320, 240);
sloge wouuChi LU (v ideoo Luer);
witketu luer Jul LuchieLStreun (e 3L ;

6. In the function of each event han-
dler, make a call to a method of the
pmsR_htn addFventl 1 stener{HnuseFyvent. 01 T0K, poussrunction);
NetStream Object 0. TURCEION POUSRTUNEE 1 on (iysvent SHOLSsEvent) svand |

newsStrean . pause]);
. . ¥
7' PUb“Sh your mOVIe’ and place the SWF reeuvgJJln.uddEuentL?stener_{Huu;eEwnt.[‘LIE‘K, r_eeuvefml:lion}:
file in the same directory as the video T otrom sy 7o ot HousEomb jivatd {
file that you want to load. !

newStremn . ploy(kmnk 7 1ve)3

toggle_btn istener(it CLICK, togglefunction);
N N functi t lefuncti t :MouscEvent Y ivoid
The full ActionScript code @ creates g s atiiiiisdiori i ventved {
p 0
. . ¥

the necessary objects to load the video) X
aGek_btn.uddErclvtL}atﬂhcr{ﬂouchveﬂt.DLIBIS, .fcckﬂ.n:twn};

file and provides event handlers to fumebion Sookruns et apovent:oussEvent) vold {

}

rew3Lreum uddEvenlL isLener (AsyncEr rorEvenl ASYNC_ERROR, wrrorhurdler)
Turecl ion errorhund Ler (rvevent sdsymcEr o Event){/7 e error

control its playback.

e
=)
e =
%4 baginning (Cmm—

0 The ActionScript code (top) loads
the external FLV. The buttons (bottom)
control its playback. Create your own
playback skin using these methods.

220 Chapter 6

Detecting the status of
the video stream

The NetStream object dispatches events
(NetStatusEvent) at various points during the
data stream. The different NetStatusEvent
conditions are captured in its property
info.code as a string. For example, if the
play() method can’t find the correct video
file, the info.code property returns a value
of NetStream.Play.StreamNotFound.

Two important string values, "NetStream.
Play.Start" and "NetStream.Play.Stop",
can help you detect the start and end of a
loaded video to better manage the video
streams. For example, you could create

an event handler to listen for the end of a
loaded video. When the video finishes play-
ing, you automatically load the next video
in the queue.

To detect the end of
externally loaded video:

1. Continue with the file created in the
previous task in which you loaded and
played an external video.

2. Select the first frame on the Timeline
and open the Actions panel.

3. On the next available line, add an event
listener on your NetStream object to
detect the NetStatusEvent.NET_STATUS
event as follows:

newStream.addEventListener(
NetStatusEvent.NET_STATUS,
statusHandler);

4. On the next line, create the function
with the NetStatusEvent as a param-
eter, like so:

function statusHandler(
myevent:NetStatusEvent):void {
/! do something
}

When there is a change in the condition
of the video stream, the function called
statusHandler will be triggered.

5. Between the curly braces of the func-
tion, add a conditional statement that
checks whether the info.code property
of the event matches a string that indi-
cates the video has finished:

if (myevent.info.code ==
"NetStream.Play.Stop") {
// video has stopped
}

6. Add additional statements to be carried
out when the video finishes @. Publish
your movie, and place the SWF file in
the same directory as the video file that
you want to load.

When Flash detects the end of the
video, myevent.info.code matches
the string "NetStream.Play.Stop" and
additional instructions can be given.

b
b

newStrean.addEventl istener (NetStatusEvent \NET_STATUS, statusHandler);
functioh stotusHand Ler{myeevent iNetStatusEvent hivoid {
if {myevent.info.code == "MetStream.Ploy.Stop") {
newdtrean.play("videoZ . f Lv");

o When Flash detects the end of the first video stream, it
automatically plays another video, called video2 flv.

Managing External Communication 221

Detecting Download
Progress: Preloaders

All the hard work you put into creating
complex interactivity in your movie will be
wasted if your viewers have to wait too long
to download the movie over the Web and
leave. You can avoid losing viewers by cre-
ating short animations that entertain them
while the rest of your movie downloads.
These diversions, or preloaders, tell your
viewers how much of the movie has down-
loaded and how much longer they have to
wait. When enough data has been delivered
over the Web to the viewers’ computers,
you can trigger your movie to start. In effect,
you hold back the playhead until you know
that all the frames are available to play. Only
then do you send the playhead to the start-
ing frame of your movie.

Preloaders must be small because you
want them to load almost immediately, and
they should be informative, letting your
viewers know what they’re waiting for.

Flash provides many ways to monitor

the state of the download progress. You
can test for the number of frames that
have downloaded with the MovieClip
class properties framesLoaded and
totalFrames. But the frames of your movie
most likely contain data that aren’t evenly
spread, so testing the amount of data
(measured in bytes) is a more accurate
gauge of download progress.

As you learned earlier in the section
“Controlling Loaded Flash Movies,” you can
access information about the status of any
load with the LoaderInfo object. Earlier
you used it to determine when an external
SWF had completely loaded. But you can
also use it to determine when the main
SWEF (or any loading file) has completely
loaded, or check on its download progress.
Use the ProgressEvent event with the
properties bytesLoaded and bytesTotal to
help you monitor the download progress.

The concept of a preloader is simple. You
tell Flash to compare the amount of data
loaded with the total data in the movie. As
this ratio changes, you can display the per-
centage numerically with a dynamic text
field or represent the changing ratio graph-
ically, such as with a growing, horizontal
progress bar. Because they often show the
progress of the download, these preload-
ers are sometimes known as progressive
preloaders.

222 Chapter 6

Registration point
\

o A rectangular movie clip with its registration
point on the far-left edge can be used as a
graphical representation of download progress.

stop action

0 The stop() method is put on the very first
frame on the Timeline to pause your movie until
all the data has downloaded.

To create a preloader
that graphically shows
download progress:

1. Create a long rectangular movie clip
symbol.

Make sure its registration point is at its
far-left edge @.

2. Place an instance of the symbol on the
Stage, and give it an instance name
(this example uses bar_mc).

Your preloader is a rectangle that grows
longer according to the percentage of
downloaded frames. Flash will dynami-
cally change the properties of the
rectangular movie clip to stretch it out.
Because the bar should grow from left
to right, the registration point is placed
on the left edge.

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. Enter stop().

The stop() method prevents your
movie from playing until it has down-
loaded completely @.

5. On the next line, add an event
listener on the main Timeline’s
loaderInfo property. Listen for the
ProgressEvent.PROGRESS event, like so:

root.loaderInfo.addEventListener (
ProgressEvent.PROGRESS,
progressHandler);

The loading of your main Flash movie is
happening on the root Timeline, so you
can use loaderInfo to access its load
properties. Whenever download prog-
ress is detected, the function called
progressHandler is called.

Continues on next page

Managing External Communication 223

6. On the next line, create the func-
tion called progressHandler with a
ProgressEvent event as its parameter:

function progressHandler(
myevent:ProgressEvent):void {
/!l show progress

}

7. Between the curly braces of the func-
tion, declare a variable and assign the
ratio of bytes downloaded to total bytes
with the following:

var myprogress:Number =
myevent.bytesLoaded /
myevent.bytesTotal;

The amount of data loaded is defined

in the ProgressEvent’s bytesLoaded
property. The total data is defined in the
ProgressEvent’s bytesTotal property.
Dividing the first over the second pro-
vides a ratio of the overall progress.

8. On the next line (but still within the func-
tion), add the following:

bar_mc.scaleX = myprogress;

The bar on the Stage is scaled horizon-
tally according to the download ratio @.

9. On a new line outside the event han-
dler, create a new listener on the root
Timeline’s loadexrInfo property to
detect the Event.COMPLETE event:

root.loaderInfo.addEventListener(
Event.COMPLETE, finished);

This second listener listens for the
completion of the download and will
call the function called finished.

10. On the next line, create the function
called finished with an Event event
as its parameter:

function finished(
myevent:Event):void {
play();
}

In this example, when the function
is called, the Flash movie begins

playing ©@.

stop();

root. loaderInfo.addEventListener (ProgressEvent .PROGRESS, progressHondler);
function progressHondler (myevent :ProgressEvent drvoid {
var myprogress iNumber = myevent .byteslooded/myevent.bytesTotal;
bar_mc.zcalex = myprogress

G As the movie downloads, its progress is captured in the variable
myprogress, which measures the ratio of bytesLoaded to bytesTotal
of the loading movie. This ratio is used to scale the rectangle on

the Stage.

stop(};
root . loader Info.addEventListener (ProgressEvent JPROGRESS, progressHandler);
function progressHandler (myevent :ProgressEvent divoid {
var myprogress :Number = myevent .bytesloaded/myevent.bytesTotal;
bar_mc.scaleX = myprogress

¥

root . loader Info.oddEventListener (Event .COMPLETE, finished);
function finished{myevent:Event)void {
play ()

Q When the loading process is complete, the function called
finished is triggered. Flash begins playing the main Timeline.

224 Chapter 6

Rectangular movie clip
removed at keyframe 2

a0

Q.

= O
] preloader o o Olald
&l content « « A

Movie begins from
this point forward

G The real movie begins at keyframe 2 after the
rectangular movie clip is removed.

Current location of playhead

Data transfer rate Progress of download
—
Mouie:

LAme 501 X 400 pissls
FrRare 17 0frtsee:
Sire 37 KR (3RRINE)
Duraticer 10 f1 (0.8 2]
Frelosd 30/ (753)
ettings.
Eardwidike 4300 Bl (100 Bifr)
Stae:
Frame 1
UkE[B2E)
Linaiect &35 3 [R fames)
JSKE (36233 B)

Causes delay during playback

o The Bandwidth Profiler shows the individual
frames that cause pauses during playback
because the amount of data exceeds the data
transfer rate. The alternating light and dark
bars represent different frames. Notice how
the progress of the download (about 8 out of
10 frames have loaded completely) affects the
proportion of the movie clip (about 80 percent).

11. Begin the actual content of your
Flash document from the second
keyframe @.

12. Test your movie (Control > Test Movie >
in Flash Professional).

13. Choose View > Bandwidth Profiler
(Ctrl-B for Windows, Cmd-B for Mac)
and choose View > Simulate Download.

The Bandwidth Profiler is an informa-
tion window above your movie in Test
Movie mode; it displays the number of
frames and the amount of data in each
frame as vertical bars. If the vertical
bars extend over the bottom of the red
horizontal line, there is too much data
to be downloaded at the bandwidth
setting without causing a stutter dur-
ing playback. The Simulate Download
option simulates actual download
performance @. The green bar at the
top shows the download progress. The
triangle marks the current location of
the playhead. The playhead remains
in frame 1 until the green progress bar
reaches the end of the timeline. Only
then does the playhead begin moving.

You won’t see your preloader working
unless you build an animation with many
frames containing fairly large graphics that
require lengthy download times. If your anima-
tion is small, you’ll see your preloader whiz by
because all the data will download quickly and
begin playing almost immediately.

@D Explore other graphical treatments of
the download progress. Stretching the length
of a movie clip is just one way to animate the
download process. With subtle changes to
your ActionScript, you can apply a variety of
animated effects to your preloader.

Managing External Communication 225

Showing numeric
download progress

Often, a preloader has an accompanying
display of the percentage of download
progress. This display is accomplished with
a text field placed on the Stage. You'll learn
more about text in Chapter 10, “Control-
ling Text,” but you can use the steps in the
following task now to add a simple numeric
display.

The Bandwidth Profiler

The Bandwidth Profiler is a handy option to see how data is distributed throughout your Flash
movie and how quickly (or slowly) it will download over the Web. In Test Movie mode (after choos-
ing Control > Test Movie > in Flash Professional), choose View > Bandwidth Profiler (Ctrl-B for
Windows, Cmd-B for Mac) to see this information.

The left side of the Bandwidth Profiler shows movie information, such as Stage dimensions, frame
rate, file size, total duration, and preload time in frames and seconds. It also shows the Bandwidth
setting, which simulates actual download performance at a specified rate. You can change that
rate in the View > Download Settings menu and choose the Internet connection speed that your
viewers are likely to have. Flash gives you options for DSL and T1 lines, for example.

The bar graph on the right side of the Bandwidth Profiler shows the amount of data in each frame
of your movie. You can view the graph as a streaming graph (choose View > Streaming Graph) or
as a frame-by-frame graph (choose View > Frame by Frame Graph). The streaming graph indicates
how the movie downloads over the Web by showing you how data streams from each frame,
whereas the frame-by-frame graph indicates the amount of data in each frame. In Streaming Graph
mode, you can tell which frames will cause hang-ups during playback by noting which bar exceeds
the given Bandwidth setting.

To watch the actual download performance of your movie, choose View > Simulate Download.
Flash simulates playback over the Web at the given Bandwidth setting. A green horizontal bar at
the top of the window indicates which frames have been downloaded, and the triangular playhead
marks the current frame.

226 Chapter 6

PROPERTIES

|r'ane wtField_txt |

[TLF Text Iv]

| Read Only

@ This TLF text field is called myTextField_txt.

Text field
|

|
41%

0 The text field displays the percentage of the
download progress along with the graphical
representation.

Main SWF Stage

t

Tz

Ioaderlnfo property

contentLoaderlnfo roperty

Loademfno t

loaderinfo property

External file

o In this figure, you can see the relationship
between the Loader object, the external file that
it loads, and the associated LoadexrInfo object
that provides information about the content

and the loading process (see Table 6.2). The
contentLoaderInfo property of the Loader
object references the LoaderInfo object.

The loaderInfo property of the content also
references the LoaderInfo object. So for loading
external content, use the contentLoaderInfo
property of the Loader object. For the main SWF,
use the loaderInfo property of root.

To add a numeric display
to the preloader:

1. Continuing with the file from the
preceding task, select the Text tool
and choose TLF Text > Read Only
(or Classic Text > Dynamic), and drag
out a text field on the Stage.

2. In the Properties inspector, give the text
field an instance name @.

As with buttons and movie clip symbols,
the instance name of the text field lets
you target the text field and control it
using ActionScript.

3. Select the first frame of the main
Timeline, and open the Actions panel.

4. Within the curly braces of the function
called progressHandler, enter the

following:
myTextField_txt.text = Math.round(
myprogress * 100) + "%";
The percentage of download progress
is rounded to a whole number by the
Math.round() method. The percent
(%) character is appended to the end,
and the result is assigned to the text
property of your text field, displaying it
on the Stage @.

Detecting download progress of
external images and movies

Monitoring the download progress of
external images and movies is very similar
to monitoring the download progress of the
main Flash movie. You can use the identi-
cal code, but instead of adding your lis-
tener to root.loaderInfo, you'll add your
listener to myloader.contentLoaderInfo
(provided that your Loader object is
named myloader). Recall that your
Loader’s contentLoaderInfo refers to the
LoaderInfo object of the loaded content.
You can visualize the relationship in @.

Managing External Communication 227

To create a preloader for
external images or movies:

1.

Create a small rectangular movie clip
symbol.

Make sure its registration point is at the
far-left edge.

Place an instance of the symbol on the
Stage, and give it a name in the Proper-
ties inspector @.

The properties of the rectangle will
change in proportion to the number of
bytes that are downloaded. This will
act as a visual indicator to the audience
that the movie is loading.

Select the Text tool and drag out a text
field on the Stage. In the Properties
inspector, select TLF Text and Read
Only from the drop-down lists (or Clas-
sic Text and Dynamic) and give the field
an instance name Q.

The text field will display the percent-
age of download progress.

Select the first frame of the main Time-
line, and open the Actions panel.

Create a new URLRequest object with
the name of the external file as the url
property as in the following:

var myrequest:URLRequest =
new URLRequest("someimage.jpg");

In this example, the external file is a
JPEG that you want to load, and it lies
in the same folder as the main Flash
movie. You can use an absolute URL to

an image or SWF on the Internet as well.

PROPERTIES _
[bar_me
- SN

Instance of: Symbel 1

o A new rectangular movie clip is given an
instance name of bar_mc.

PROPERTIES

myTextField_txt
T JLE Text
- Read Only

0 A TLF text field is given an instance name of
myTextField_txt.

228 Chapter 6

6. On the next line, create a new Loader 9. On the next line, enter the event-

object with the following code: handler function as you did for the
var myloader:Loader = previous task. The full code so far is
new Loader(); shown in @.
7. On the next line, call the load() method 10. Next, add a second event listener to the

Loader object’s contentLoaderInfo
property and listen for the
Event.COMPLETE event as in the follow-

for your new Loader object and use the
URLRequest object as the parameter.
Add the Loader object to the Stage @:

ing code:

myloader.load(myrequest);
stage.addChild(myloader); myloader.contentLoaderInfo.

addEventListener(Event.COMPLETE,
The code so far should be familiar if .

alldone);
you’ve read the previous section in this
chapter. As soon as the Event.COMPLETE event

has dispatched from the loading pro-
cess, the function called alldone will
be called.

8. On the next line, add an event
listener to the Loader object’s
contentLoaderInfo property and listen
for the ProgressEvent.PROGRESS event Continues on next page
as in the following code:

myloader.contentLoaderInfo.
addEventListener(ProgressEvent.
PROGRESS, progresshandler);

wor myrequest IURLRequest = new URLRequest("someimage.ipg"y;
wab My looder iLogder = new Loader();

my loader . Lood {nyrequest.) ;

gtage .addChi Lamy Loader)5

o An external file called someimage.jpg loads into the
Loader object called myloader.

var myrequest iURLRequest = new URLRequest ("someimage.jpg");
var myloader :Loader = new Loader();

niy Loadet . Load{myrequest

stoge.oddChi ld{my loader) ;

my loader .contentLoader Info.addEventL istener (ProgressEvent .PROGRESS, progresshandler’;
function progresshandler {myevent :ProgressEventzvoid

war nyprogress iMumber=myevent .bytesloaded / myevent .bytesTotal;

bar_m.sca leX=nyprogress ;

myTextField_txt.text = Moth.round{myprogress * 1887% + "&";

m When the external file begins to load, the Loader object’s contentLoaderInfo
property can be used to access the LoaderInfo object. The ProgressEvent.PROGRESS
event is dispatched as the load happens, and the ratio of downloaded data to total
data is displayed graphically with the movie clip and in a dynamic text field.

Managing External Communication 229

11. On a new line, enter the function called
alldone as follows:

function

alldone(myevent:Event):void {
removeChild(myTextField_txt);
removeChild(bar_mc);

}

When the load is complete, the text
field and movie clip are removed).

12. Test your movie.

As your external movie or image loads
into your Loader object, the text field
displays the percentage of total bytes
downloaded, and the rectangular movie
clip grows longer. When the entire
movie or image has loaded, the text
field and elongated rectangular movie
clip disappear @.

wab iy loodet sLooder = mew Looder ()
iy Looder . Load {nyrequest.) ;

stage .addChi Ladmy Loader)

bar_mc.scoled=myprogress;

¥

removeChi ld{myTextFie ld_txt);
removeChi ld{bar_mc} ;

var myreguest :URLRequest = new URLRequest(“someimuge.jpg");

niy Loadet .contentloader Inf o .addEventl istensr (ProaressEvent JPROGRESS, proaresshandler)
function progresshand ler{mpevent iProgressEvent) ivoid
var myprogress:Number=myevent .bytesLooded / myevent .bytesTobgl;

nyTextField_txt.text = Math.round(myprogress * 10875 + "%";

iy Loader .contentloader Inf o .addEventl istener (Event JCOMPLETE, alldone;
function alldone(myevent :Eventvoid

0 The complete code for a preloader for external content. The last event handler
detects when the load is complete. When the load is complete, the preloader
(movie clip and dynamic text field) are removed from the Stage.

ene

Q During the loading progress, Flash updates the
contents of the text field called myTextField_txt and
stretches the rectangular movie clip called bar_mc in
proportion to the percentage of downloaded bytes (top).
When loading is finished, the image called someimage.
jpg appears in the Loader and the text field and
rectangular movie clip disappears (bottom).

230 Chapter 6

Controlling anc
Displaying Graph

ActionScript’s ability to create, control, and
display graphical elements on the fly and
in response to events is what makes Flash
truly powerful. You can create and manipu-
late many objects such as movie clips, but-
tons, images, and even shapes and masks.
Properties that control how these objects
appear, such as position, scale, rotation,
transparency, color, and blending effects,
can all be changed with ActionScript. You
can even have control over motion tweens
that you create purely with ActionScript,

or control the individual pixels in bitmap
images.

Flash also gives you many methods to
control an object’s behavior. You can make
objects draggable so that viewers can pick
up puzzle pieces and put them in their
correct places, or you can develop a more
immersive online shopping experience in
which viewers can grab merchandise and
drop it into their shopping carts. In this
chapter, you'll learn how to control col-
lisions and overlaps with other objects,
and you’ll learn how to generate different
objects dynamically so that new instances
appear on the Stage during playback.

CS

In This Chapter

Understanding the Display List
Changing Visual Properties
Modifying the Color

Blending Colors

Applying Special Effects with Filters
Creating Drag-and-Drop Interactivity
Detecting Collisions

Generating Graphics Dynamically
Controlling Stacking Order

Creating Vector Shapes Dynamically
Using Dynamic Masks

Generating Motion Tweens Dynamically
Customizing Your Pointer

Putting It Together: Animating Graphics
with ActionScript

About Bitmap Images

Creating and Accessing Bitmap Data
Manipulating Bitmap Images

Using Filters on Bitmap Images

Putting It Together: Animating Bitmap
Images

232
233
240
246
250
253
258
261
264
267
282
288
292

294
296
297
303

313

316

Understanding
the Display List

The key to successfully manipulating graph-
ics on the Stage is to understand what is
known as the display list. The display list is

the hierarchy of visible objects on the Stage.

The display list lets Flash (and you) keep
track of what the user sees, the visual rela-
tionships between objects, and the stacking
order (or overlapping) of the objects.

Conceptually, it's much like the folder struc-
ture on your computer desktop and can be
represented as a tree structure €). The top-
level element is the Stage. Each time you
play a Flash movie in a Web browser, the
Flash Player opens your SWF and places it
on the Stage. So the Stage is the container
that holds your main SWF. Inside your

main SWF you can place other elements,
such as buttons, text, video, bitmaps, and
other objects—all of which are instances

of a big class known as DisplayObject.
You'll be using many of the properties of
the DisplayObject class to control the

DisplayObjectContainer

DisplayObject

DisplayObject
DisplayObjectContainer

objects’ appearances. You can also have
elements on your main SWF that contain
DisplayObject objects. These are known
as DisplayObjectContainer objects and
include objects like a Sprite object, a
Loader object, a MovieClip object, and the
Stage itself. So you can think of the main
SWF on the Stage as your desktop, the
DisplayObjects as individual files, and the
DisplayObjectContainers as folders that
can contain additional folders or files.

One of the most important meth-

ods of the DisplayObjectContainer

class is one that you've already used

in previous chapters—addChild().

This method adds an element (either
another DisplayObjectContainer or a
DisplayObject)to the display list and makes
it visible. As you add more DisplayObjects
and DisplayObjectContainers to your dis-
play list, you need to keep track of how they
overlap. Flash keeps track of each object
with a number, known as an index, that
begins at 0 and increases in whole numbers.
Objects with higher display list index num-
bers overlap those with lower numbers.

Stage

Main instance of the SWF file

Main instance of
the SWF file

Stage

0 The display list can be represented hierarchically like a tree (top) where the Stage is the top-level
DisplayObjectContainer. You can also think of the display list like your computer desktop, where the
Stage is at the bottom and the objects you add to it are folders (DisplayObjectContainers) or files
(DisplayObjects). The folders can contain other folders or files.

232 Chapter7

Changing Visual
Properties

Many DisplayObject properties—alpha,
rotatation, scaleX, scaleY—define how
the object looks. By using dot syntax, you

can target any object of the class and

change any of those characteristics during
playback. Table 71 summarizes many prop-
erties that are available to all the objects

in the DisplayObject class, which include
movie clips, text fields, videos, bitmaps,
buttons, dynamically drawn shapes, load-
ers, sprites, and the Stage. You've already
learned about some of these objects in
previous chapters, and you’ll learn about
the others in this and upcoming chapters.

The following tasks demonstrate how to
change a few of the common properties of
an object.

TABLE 7.1 DisplayObject Properties

Property Value Description

alpha Number (O to 1) Transparency, where O is totally transparent and 1is opaque.

visible true or false Whether an object can be seen.

name String Instance name of the object.

rotation Number Degree of rotation in a clockwise direction from the registration
point.

rotationX Number Degree of rotation around the x-axis from its original orientation.

rotationY Number Degree of rotation around the y-axis from its original orientation.

rotationZ Number Degree of rotation around the z-axis from its original orientation.

width Number in pixels Horizontal dimension.

height Number in pixels Vertical dimension.

x Number in pixels Horizontal position of the object’s registration point.

y Number in pixels Vertical position of the object’s registration point.

z Number in pixels Depth position of the object’s registration point.

scaleX Number (0 to 1) Percentage of the original object’s horizontal dimension.

scaleY Number (0 to 1) Percentage of the original object’s vertical dimension.

scaleZ Number (0 to 1) Percentage of the original object’s depth dimension.

blendMode String Which blend mode to use to visually combine colors.

cacheAsBitmap true or false Whether to redraw the contents of the object every frame
(false) or use a static bitmap of the object’s contents (txrue).

opaqueBackground Numeric color value Nontransparent background color for the instance.

scrollRect Rectangle object Window of visible content of the object, which can be changed
to efficiently simulate scrolling.

loaderInfo LoaderInfo object Returns a LoaderInfo object containing information about the
loading process.

mask DisplayObject Sets the mask area (visible area) of the object.

filters Array of filter objects Set of graphical filters to apply to this object.

scale9Grid Rectangle object Nine regions that control how the movie clip distorts when
scaling.

transform Transform object Values representing color, size, and position changes applied to

the instance.

Controlling and Displaying Graphics 233

To change the position of an object:

1

For this example, create a movie clip
and place an instance of it on the Stage.
In the Properties inspector, give it a

name @.

Select the first frame of the Timeline,
and open the Actions panel.

Enter the instance name, then a dot,
followed by the property x. Enter an
equals sign followed by a number in
pixels, like so:

myMovieClip_mc.x = 100;

This statement positions the movie clip
called myMovieClip_mc 100 pixels from
the left edge of the Stage.

On a new line, enter the instance name,
then a dot, followed by the property y.
Enter an equals sign followed by a num-
ber in pixels, like so:

myMovieClip_mc.y = 50;
This statement positions the movie clip

called myMovieClip_mc 50 pixels from
the top edge of the Stage.

Test your movie (Control > Test Movie >
in Flash Professional).

Both statements change the original
horizontal and vertical position of the
movie clip called myMovieClip_mc on
the Stage @.

[myMovieClip_mc

[Movie Clip

L J Instance of: globe @

== POSITION AND SIZE

X: 200.0 ¥: 150.0

0 This movie clip instance on the Stage is called
myMovieClip_mc.

myMovieClip_me.x = 188;
myMovieClip_mc.y = 58;

966

o
G’

50 pixels

100 pixels

o The instance moves position.

234 Chapter7

Positive values

X >
y
O P 0 = o
=
n)
] E
= &
SIS
S s
2= . .
3| |&: Negative Positive
all: values values
E < X >
B A [T o T
Y= :
Negative | |&:
values)
Y = +
Positive =
values §
v &

0 The coordinate space for the Stage (top). The

x position increases from the left and the y position
increases from the top. The coordinate space for a
movie clip (bottom) can go into negative values.

myMovieClip_mc.rotation = 45;

G The original instance (top) rotates
clockwise as a result of the new value
assigned to the rotation property.

The x- and y-coordinate space for the
main Timeline is different from movie clip time-
lines. In the main Timeline, the x-axis begins

at the left edge and increases to the right; the
y-axis begins at the top edge and increases

to the bottom. Thus, x = 0, y = 0 corresponds
to the top-left corner of the Stage. For movie
clips, the coordinates x = 0, y = O correspond to
the registration point (the crosshair). The value
of x increases to the right of the registration
point and decreases into negative values to
the left of the registration point. The value of

y increases to the bottom and decreases into
negative values to the top Q

To change the rotation of an object:

In the Actions panel, assign a number to
the property rotation of an instance,
like so:

myMovieClip_mc.rotation = 45;

This statement rotates the movie clip called
myMovieClip_mc 45 degrees clockwise
from its registration point @.

Controlling and Displaying Graphics 235

To change the 3D rotation
of an object:

In the Actions panel, assign a number to
the property rotationX, rotationY, or
rotationZ of an instance, like so:

myMovieClip_mc.rotationY = 45;

This statement rotates the movie clip called
myMovieClip_mc in 3D space around the
y-axis @.

To change the size of an object:

m |n the Actions panel, assign a decimal
to the property scaleX or scaleY of an
instance, like so:

myMovieClip_mc.scaleX = .5;

This statement makes the movie clip
called myMovieClip_mc scale down in
the horizontal direction 50 percent of its
original size @.

Or

m |n the Actions panel, assign a number
to the property width and height of an
instance, like so:

myMovieClip_mc.width = 250;

This statement makes the movie clip
called myMovieClip_mc change its hori-
zontal dimension to 250 pixels @).

The scaleX and scaleY properties
control the percentage of the original object,
which is different from what may be on the
Stage. For example, if you place an instance of
a movie clip on the Stage and manually shrink
it 50 percent with the Free Transform tool, and
then you assign 1to scaleX and assign 1to
scaleY during playback, your movie clip will
double in appearance.

o The original
instance (top) rotates
along the y-axis

in 3D (like a door
swinging along its
vertical hinge) as

a result of the new
value assigned

to the rotationYy

property.

myMovieClip_mc.rotationy = 45;

meMovieClip_mc.zcalay - J5;

@ The original
instance (top)
squishes horizontally
as a result of the
new value assigned
to the scaleX

property.

nyMovieClip_mc.width = 258;

<« 250pixels ———>»

0 The instance can squish or stretch to the
specified pixel dimension as a result of the new
value assigned to the width property.

236 Chapter7

myMovieClip_mc.alphg = .2;

o The original instance (top)
becomes more transparent as a
result of the new value assigned
to the alpha property.

To change the transparency
of an object:

In the Actions panel, assign a decimal to
the property alpha of an instance, like so:

myMovieClip_mc.alpha = .2;

This statement changes the transparency
of the movie clip called myMovieClip_mc
so it is 20 percent opaque @.

@D There is a difference between an alpha
of 0 and a visible of false, although the
result may look the same. When the visible
property is false, the object literally can’t be
seen. Buttons and other interactive objects
don’t respond. When alpha is 0, on the other
hand, buttons and other interactive objects are
transparent, but can still respond.

Controlling and Displaying Graphics 237

Assigning values that are relative

In the previous examples, you learned

to assign a fixed value to change vari-

ous properties of objects. However, often
you’ll want to change an object’s property
relative to its current value or relative to
another object’s property. You may want to
rotate a cannon 10 degrees each time your
viewer clicks a button, for example. Or you
may want to move an image to align its left
edge with another image. To change the
property of one object based on the prop-
erty of another object, simply reference
the second object on the right side of the
equals sign in an expression, like so:

myimage.x = myimage2.x +
myimage2.width;

The statement on the right side of the

equals sign is resolved and the result is

assigned to the property on the left side

of the equals sign. In this example, the

object called myimage moves so that its

left edge is aligned with the right edge of

myimage2 @.

To change an object’s property based on

its own current value, you can write the

expression:

myimage.rotation = myimage.rotation
+ 10;

This expression adds 10 degrees to

the current angle of the object named

myimage. A shortcut way of writing this
statement is as follows:

myimage.rotation += 10;

myimage

myim?gezx myimagIeZ.width

myimageZ2

o The top square (myimage) moves relative to
where the bottom square (myimage2) is located.

238 Chapter7

clockhand_mc .oddEventl istener (MouseEvent .CLICK, rotote);
function rotatemyevent iMouseEvent) ivoid {

clockhand_mc .rotation += 38;
i

o At each mouse click, 30 degrees is added to
the current value of rotation.

0 The instance called clockhand_mc rotates
30 degrees at each mouse click.

You can use shortcuts like the addition
assignment operator in this task to add and
subtract values by using combinations of the
arithmetic operators. You’ll learn about these
combinations in Chapter 9, “Controlling Infor-
mation Flow.”

To assign a property that is
relative to its current value:

1. Create a movie clip, place an instance
on the Stage, and give it an instance
name in the Properties inspector.

In this task, you’ll assign a new value
to the rotation property based on
the object’s current value of rotation.
Each time you click the object, it will
add 30 degrees.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Create an event handler by adding
a listener to the movie clip to detect
a mouse click, like so:

clockhand_mc.addEventListener(
MouseEvent.CLICK, rotate);

In this example, Flash listens for a
mouse click over the movie clip called
clockhand_mc and triggers a function
called rotate in response.

4. On the next available line, add the
event-handler function as follows:

function
rotate(myevent:MouseEvent):void {
clockhand_mc.rotation += 30;

}

The addition assignment operator is
the plus and equals signs together.

It will read the value of the rotation
property, add to it the amount written to
the right of the operator, and store the
result back in the property’s value 3.

5. Test your movie (Control > Test Movie >
in Flash Professional).

Each time the movie clip is clicked,
Flash will get the current value of
clockhand_mc and add 30 degrees
to its clockwise rotation @.

Controlling and Displaying Graphics 239

Modifying the Color

To modify the color of a DisplayObject
object, you can use the ColorTransform
class, which provides properties to which
you assign new colors or new values for
the red, blue, green, and alpha channels.

Every DisplayObject has a transform
property, which is an instance of the
Transform class. The Transfoxrm object
contains a snapshot of all the transforma-
tions that have been applied to the object,
including color changes, scaling, rotation,
and more. The color changes are specifi-
cally defined in another property called
coloxTransform, which is an instance of
the ColorTransform class. This means
you can retrieve or assign color transfor-
mations by referencing the target path
myimage.transform.colorTransform,
where myimage would be the name of the
object you want to modify.

The first step in modifying an object’s color
is instantiating a new ColorTransform

object. Then you define color changes as
a new value of the color property of your
new ColorTransform object. Your code
would look similar to this:

var mynewcolor:ColorTransform = new
ColoxTransform();
mynewcolor.color = OxO0D69F2;

In this example, mynewcolor is the name of
your new ColoxTransform object. The new
value of the color property is in the form
OxRRGGBB (hexadecimal equivalents for
the red, green, and blue components of a
color). You can find the code for any color
in the Color Mixer panel. Choose a color in
the color spectrum, and the hexadecimal
value for that color appears in the display
underneath .

Finally, once you’ve defined a new
color in the color property of your
ColoxTransform instance, you assign it
to your object like this:

myimage.transform.coloxTransform =
mynewcolor;

COLOR

-- | Solid color

Ix]

— Hex code

0 The Color Mixer panel has a display window to
show the selected RGB code in hexadecimal code.

240 Chapter?7

war mycolorchange:ColorTransform = new ColorTransformi); TO Set the C°|or Of an ObjeCt:

1. Create a movie clip symbol whose color
you want to modify, place an instance
of it on the Stage, and name it in the

var mycolorchange:ColorTransform = new ColorTransform); Properties inspector. This example

nycolorchange.color = BxADEOF2; uses a movie clip, but you can change

the color of any DisplayObject or

DisplayObjectContainer.

0 The new ColorTransform object is called
mycolorchange.

G A new color is assigned to the color property
of your ColoxrTransform object.

2. Select the first frame of the main Time-

var mycolorchonge :ColorTransform = new ColorTransform; Ilne, and open the Actions panel.
mycolorchange.color = BxBRGIFZ;
stoge .oddEventlistener (MouseEvent .CLICK, changecolor); 3. Create a new instance from the
function changecolor {myevent :MouseEvent) ivoid {

image_mc .transform.colorTransform = mycolorchange ; ColorTransform class 0

4. On the next line, enter the instance
© A mouse click will assign the new color to name of your new ColoxTransform
the transform.coloxTransform property of the biect th dot. th 1 t
instance called image_mc, changing its color. object, then a dot, the colox property,
and equals sign, and then the six-
digit hexadecimal code for your new

color @.

5. Assign an event handler to detect a
mouse click. When you click on the
Stage, you will change the color of
your movie clip.

6. Within the body of the event-handler
function, enter a statement that
assigns your new ColoxTransform
object to the movie clip’s

@ The original instance (top) transform.colorTransform property.

changes color (bottom) when it is The full code, including the event han-
clicked. Notice that the entire object dler. is shown in 0
changes color. ’

7. Test your movie (Control > Test Movie >
in Flash Professional).

In the first frame, a ColoxTransform
object is instantiated and a new
value is assigned to its coloxr prop-
erty. When you click the Stage, your
ColorTransform object is assigned to
your movie clip, changing its color @.

Controlling and Displaying Graphics 241

Making advanced color
transformations

The property color lets you change only
an object’s color. To change its brightness
or its transparency, or change each red,
green, or blue component separately, you
must specify multiplier and offset proper-
ties. There is one property to define a mul-
tiplier and one to specify an offset value
for each of the RGB components as well
as the alpha (transparency). These proper-
ties are the same as those in the Advanced
Effect dialog box that appears when you
apply an advanced color effect to an
instance @. The only difference is that in
the dialog box you specify the multiplier as
a percentage (0-100), but in ActionScript,
the multiplier properties are set as deci-
mal numbers. A multiplier is usually in the
range 0-1, which corresponds to 0—100%
(for example, 25% is specified as .25).
However, the multiplier can be any decimal
number (such as 2 to double the value, for
instance).

You can specify multiplier and offset prop-
erties in two ways. The ColoxTransform
class has individual multiplier and off-

set properties for each color channel,
described in Table 7.2. To change just one
of these properties, assign a new value to
the appropriate property.

You may want to set several of the
multiplier or offset properties for a
ColorTransform instance, which is cum-
bersome to do one property at a time. As
an alternative, you can specify the multi-
plier and offset values as parameters when
you call the constructor function to create
your ColoxrTransform instance. To set the
properties as parameters in the construc-
tor function, you must specify all eight in
the following order: red multiplier, green
multiplier, blue multiplier, alpha multiplier,

PROPERTIES

[<Instance Name> | @

[Movie Clip | =]

Instance of: Symbol 1 Swap...

[» POSITION AND SIZE
[+ 3D POSITION AND VIEW
w COLOR EFFECT

Style: | Advanced |«]

Alpha: 100% xA + 4]
Red: 100% xR + 1]
Green: 100% %G + o

Blue: 100% xB + 1]

o The options for advanced effects in the
Properties inspector control the RGB and alpha
percentages and offset values for any instance.

TABLE 7.2 ColorTransform Properties
Property Value

redMultiplier Decimal number to multiply

by the red component.

Offset (—255 to 255) of the
red component.

redOffset

greenMultipler Decimal number to multiply
by the green component.

Offset (—255 to 255) of the
green component.

greenOffset

blueMultiplier Decimal number to multiply
by the blue component.

blueOffset Offset (—255 to 255) of the
blue component.

alphaModifier Decimal number to multiply
by the alpha (transparency).

alphaOffset Offset (—255 to 255) of the

alpha (transparency).

color Hex color (OxRRGGBB)
Setting this property sets
the offset and multiplier
properties accordingly.

242 Chapter7

red offset, green offset, blue offset, alpha
offset. Here’s an example:

var mynewcolor:ColorTransform = new
ColorTransform (1, .3, .2, 1, 0, O,
0, 0);

When you call the ColoxrTransform con-
structor without parameters as you did
previously, the ColoxTransform object is
created with the default parameters that
maintain the movie clip’s color—1 for each
multiplier and O for each offset.

To transform the color and
alpha of an object:

1. Create a movie clip symbol whose color

you want to modify, place an instance
of it on the Stage, and name it in the
Properties inspector. This example
uses a movie clip, but you can change
the color of any DisplayObject or
DisplayObjectContainer.

2.

3.

Select the first frame of the main Time-
line, and open the Actions panel.

Create a new instance from the
ColoxTransform class. Provide eight
parameters in the constructor function
for the RGB and alpha multipliers and
the RGB and alpha offset values @.

The properties for the color transforma-
tion are defined in the parameters of
your ColoxTransform constructor call.

Assign an event handler to detect a
mouse click. When you click on the
Stage, you will change the color of your
movie clip.

Within the body of the event-handler
function, enter a statement that
assigns your new ColoxTransform
object to the movie clip’s
transform.colorTransform property.
The full code, including the event han-
dler, is shown in @.

Continues on next page

war mycolorchonge:ColorTransform = new ColorTronsform(l, .3, .2, 1, 8, 8, @, @3;

@ A new ColorTransform object is created with red, green, blue, and alpha
multiplier and offset values assigned as properties at the same time.

B

war mycolorchonge:ColorTransform = new ColorTronsform(l, .3, .2, 1, 8, 8, @, @3;
stoge .addEventL istener (MouseEvent .CLICK, changecolor’;
function chongecolor (mvevent :MouseEvent) ivoid

image_mc . transform.colorTransform = mycolorchange;

0 A mouse click will assign the color changes to the transform.coloxTransform
property of the instance called image_mc, changing its color and/or alpha.

Controlling and Displaying Graphics 243

6. Test your movie (Control > Test Movie >
in Flash Professional).

In the first frame, a ColoxTransform
object is instantiated and the new color
properties are defined. When you click
your movie clip, your ColoxrTransform
object is assigned to your movie clip,
changing its color and transparency @.

If you don’t want to define the color
transformation values when you instantiate
your new ColorTransform instance, you can
do so by specifying a value for each property,
like so:

var mynewcolor:ColorTransform=new
ColoxTransform();
mynewcolor.redMultiplier=.3;
mynewcolor.greenMultiplier=.2;
mynewcolor.blueMultiplier=1;
mynewcolor.alphaMultiplier=1;
mynewcolor.redOffset=0;
mynewcolor.greenOffset=0;
mynewcolor.blueOffset=0;
mynewcolor.alphaOffset=0;
image_mc.transform.colorTransform =
mynewcolor;

In this example, the transparency doesn’t
change, but the colors shift to a bluer hue.

o The original image (top) is assigned new
color values for its RGB and alpha channels,
and as a result, shifts colors (bottom).

244 Chapter?7

To change the brightness
of a movie clip:

Increase the offset parameters for the red,
green, and blue components equally, but
leave the other parameters unchanged.

If your ColoxTransfoxrm object is called
mynewcolor, for example, set its proper-
ties individually as follows to increase the
brightness about 50 percent:

mynewcolor.redMultiplier = 1;
mynewcolor.greenMultiplier = 1;
mynewcolor.blueMultiplier = 1;
mynewcolor.alphaMultiplier = 1;
mynewcolor.redOffset = 125;
mynewcolor.greenOffset = 125;
mynewcolor.blueOffset = 125;
mynewcolor.alphaOffset = 0;

Or, instantiate your ColoxTransform object
with these parameters:

var mynewcolor:ColoxrTransform= new
ColorTransform(1, 1, 1, 1, 125, 125,
125, 0);

If you want to increase the brightness
completely so your object turns white,
you can set the offset parameters of red,
green, and blue to their maximum (255),
as follows:

mynewcolor.redMultiplier = 1;
mynewcolor.greenMultiplier = 1;
mynewcolor.blueMultiplier = 1;
mynewcolor.alphaMultiplier = 1;
mynewcolor.redOffset = 255;
mynewcolor.greenOffset = 255;
mynewcolor.blueOffset = 255;
mynewcolor.alphaOffset = 0;

To change the transparency
of a movie clip:

Decrease either the offset or the per-
centage parameter for the alpha com-
ponent and leave the other parameters
unchanged.

Decrease alphaMultiplier to O or
decrease alphaOffset to —255 for total
transparency.

Controlling and Displaying Graphics 245

Blending Colors

If you've used a graphics manipulation
program such as Photoshop or Fireworks,
you've likely seen a blend mode option,
which is a way to control how the colors
of overlapping objects interact. Normally,
when one object overlaps another, the
object is opaque and completely blocks
the object below from view. By applying
a blend mode to the top object, you can
change this behavior and show a mix of
the colors of the two objects rather than
just the color of the top object.

You can manually apply a blend mode to

a movie clip or a button from within the
authoring tool by selecting an instance on
the Stage and choosing the desired mode
from the Blending menu in the Display sec-
tion of the Properties inspector @). You can
also apply a blend mode using ActionScript
by setting a value for a DisplayObject’s
blendMode property.

Each of the blend modes works by examin-
ing the overlapping portions of graphical
objects. The color value of each pixel from
the top (or blend) object is taken together
with the color of the pixel directly below it in
the bottom (or base) object. The two color

values are then plugged into a mathematical
formula to determine the resulting color dis-
played in that pixel location on the screen.
The blend mode you choose determines the
mathematical formula that’s used (and hence
the output color). Table 7.3 describes the
blend modes available in Flash.

To designate a blend mode for an instance,
set the blendMode property to the appro-
priate string, or use the properties from the
BlendMode class. The following two state-
ments are identical:

myMovieClip.blendMode
myMovieClip.blendMode
BlendMode.DARKEN;

Note that the blendMode property of the
DisplayObject starts with a lowercase
letter, but the BlendMode class that you
reference to assign different blend modes
starts with an uppercase letter.

"darken";

PROPERTIES

E <Instance Name> @
Mavie Clip Ix
Instance of: Symbuol 1

[POSITION AND SIZE
[+ 3D POSITION AND VIEW
[+ COLOR EFFECT

< DISPLAY

lending: [Remal]

v Normal
p ALTERs | Layer
Darken
Multiply

Lighten
Screen

Overlay
Hard Light

Add
Subtract
Difference

Invert
Alpha
Erase

"

0 The Blend mode menu in the
Properties inspector.

246 Chapter?7

TABLE 7.3 Blend Mode Properties

Blend Mode ActionScript Value Description
Darken BlendMode.DARKEN or Color values are compared and the darker of the two is
"darken" displayed, resulting in a darker image overall. Often used
to create a background for (light) text.
Lighten BlendMode.LIGHTEN or Lighter of the two color values is displayed, leading to a
"lighten" lighter image overall. Often used to create a background
for (dark) text.
Multiply BlendMode.MULTIPLY or Color values are multiplied to get the result, which is usually
"multiply” darker than either value.
Screen BlendMode.SCREEN or Opposite of Multiply; the result is lighter than either original
"screen" color. Typically used for highlighting or flare effects.
Overlay BlendMode.OVERLAY or Uses Multiply if the base color is darker than middle gray or
"overlay" Screen ifit’s lighter.
Hard Light BlendMode.HARDLIGHT or Opposite of Overlay; uses Screen if the base color is darker
"hardlight" than middle gray or Multiply if it's lighter.
Add BlendMode.ADD or "add" Adds the two colors together, making a lighter result. Often
used for a transition between images.
Subtract BlendMode.SUBTRACT or Subtracts the blend color from the base color, making the
"subtract" resulting color darker. Often used as a transition effect.
Difference BlendMode.DIFFERENCE or Darker color is subtracted from the lighter one, resulting in a
"difference" brighter image, often with unnatural results.
Invert BlendMode.INVERT or Displays the inverse of the base color anywhere the blend clip
"invert" overlaps.
Alpha BlendMode.ALPHA or Creates an alpha mask. The blend clip doesn’t show, but any
"alpha" alpha values of the blend clip are applied to the base clip,
making those areas transparent. The clips must be inside
another clip with Layer mode applied.
Erase BlendMode.ERASE or Inverse of Alpha mode. The blend clip doesn’t show. Under
"erase" opaque areas on the blend clip, the base clip becomes
transparent; beneath transparent areas on the blend image,
the base clip is visible, creating a stencil or cookie-cutter
effect. The clips must be inside a Layer mode clip.
Layer BlendMode.LAYER or Special container blend mode in Flash. Any blends inside a
"layer" display object set to Layer don’t affect images outside the
layer clip.
Normal BlendMode.NORMAL or Blend image is opaque (no blending takes place).
"normal”
Shader BlendMode.SHADER or Used to specify a custom blending effect created with Pixel

"shader"

Bender (see the sidebar “What Is Pixel Bender?”).

Controlling and Displaying Graphics 247

To change color blending
between two objects:

1. Create two movie clip symbols whose
colors will be blended.

2. Put one instance of each symbol on the
Stage, overlapping as desired. Give the
top (blend) movie clip an instance name
in the Properties inspector @.

3. Select the first keyframe, and open the
Actions panel.

4. Enter the target path of your blend
movie clip, a dot, the property
blendMode, and then an equals sign.

5. Continuing on the same line, enter a
string value for the desired blend mode,
or use the equivalent property from the
BlendMode class ®.

The blend mode is applied to the blend
movie clip, altering the color interaction
between the two movie clips.

What Is Pixel Bender?

Instance of: Symbul 1

0 The top image is a movie clip called cow_mc.

cow_mc.blendMode = BlendMode JMULTIPLY ;

@ Assign the value BlendMode .MULTIPLY to the
blendMode property of your instance. BlendMode.
MULTIPLY is a constant of the BlendMode class that
makes it easier for you to assign values.

You’ve seen how you can create special visual effects (such as blurs and drop shadows) with the
filter classes and apply them to images. If you want to create your own filters, you can use a tech-
nology from Adobe called Pixel Bender. Pixel Bender is a separate development platform and a
separate language that is more specialized than ActionScript.

Essentially, with Pixel Bender you can write code for your own custom filter and save it as a
.pbj file. In Flash, you load the .pbj filter and use two new classes, the Shader class and the
ShaderFilter class, to apply the new filter to an image.

Pixel Bender is an exciting tool that opens new visual possibilities that can unleash the creativity

of the Flash community.

248 Chapter?7

0 The top image interacts with the bottom image
in more complex ways with color blending.

6. Test your movie.

The colors of the movie clips on the
Stage blend together according to the
blend mode selected @.

Blend modes can only be applied

to movie clips, buttons, or TLF text in the
authoring environment of Flash, but can be
applied to all objects of the DisplayObject
or DisplayObjectContainer class with
ActionScript.

@D It’s helpful to use the Flash authoring
environment to experiment with different
blend modes using the images you want to
combine, even if you ultimately plan to apply
the effect using ActionScript.

The blendMode properties erase

and alpha (BlendMode.ERASE and
BlendMode.ALPHA) work a little differently in
that you need to assign BlendMode.LAYER
or the value layer to the blendMode
property of the parent. If you have your

two movie clips on the main Stage, you

can set MovieClip(root).blendMode =
BlendMode.LAYER.

Controlling and Displaying Graphics 249

Applying Special
Effects with Filters

Flash graphics can look nice, but it’s the
little finishing touches that turn a good
graphic into a great one. These finish-

ing touches are usually subtle—the soft
glow of light emanating from a mysterious
orb or the drop shadow behind an object
that creates a sense of depth. As men-
tioned in Chapter 1, “Building Complexity,”
Flash includes a number of filter effects
that can be used to create these finish-
ing touches and to manipulate complex
graphics. These filter effects are built into
Flash Player, so using them adds nothing
to the download size of your SWF file. For
advanced users, you can add these effects
not only within the authoring environment
but also dynamically using ActionScript.

In fact, in addition to the filters available
with the drawing tools, four filters—the

Convolution, Color Matrix, Displacement
Map, and Shader filters—can only be
applied using ActionScript.

Each filter is represented as a class in
ActionScript (Table 7.4). To apply a filter
effect to an object, you first create an
instance of the filter you want. Each filter
can be customized with several values,
which are usually set as parameters of the
constructor function that is called to create
the filter object, like this:

var myBlur:BlurFilter = new
BlurFilter(3, 0, 1);

Once you have defined one or more

filter objects, you apply them to a
DisplayObject instance to take effect.
Objects of the DisplayObject class have
a filters property that takes an Array
(an object that is a set of objects or values)
containing one or more filter objects.
(You’ll learn more about the Array class

in Chapter 11, “Manipulating Information.”)

TABLE 7.4 Filter Classes

Filter Class Name Description

BevelFilter Adds a beveled edge to an object, making it look three-dimensional.
BlurFilter Makes an object looked blurred.

ColorMatrixFilter Performs complex color transformations on an object.
ConvolutionFilter A highly customizable filter that can be used to create unique filter effects

beyond those included with Flash by combining pixels with neighboring pixels

in various ways.

DisplacementMapFilter Shifts pixel values according to values in a map image to create a textured or

distorted effect.

DropShadowFilter Adds a drop shadow to an object.

GlowFilter Adds a colored halo around an object.

GradientBevelFilter Like the Bevel filter, with the additional ability to specify a gradient color for
the bevel.

GradientGlowFilter Like the Glow filter, with the additional ability to specify a gradient color for
the glow.

ShaderFilter Applies a custom filter made with Pixel Bender (see the sidebar “What Is Pixel

Bender?”).

250 Chapter?7

This allows a single DisplayObject to be
affected by multiple filters—for example,

an object can have a beveled edge and
also cast a drop shadow. Most often, you
can create the Array instance and assign it
to the filters property in a single state-
ment. Pass your filter object or objects as
parameters of the new Array constructor
function, like this:

myimage_mc.filters = new
Array(myBlur);

When you pass objects as parameters to
the Array constructor, those objects are
automatically added into the Array object;
in this example, the new Array() construc-
tor function creates a new Array object,
and the object passed as a parameter
(the filter object) is added into the array.
The Array instance is then stored in the
object’s filters property, causing any
filter objects it contains (just one, in this
case) to be applied to the target object.

In the next task, you’ll see how to apply

a drop-shadow filter to a movie clip. The
procedure for applying any other filter to
aDisplayObject is the same; the only
difference is that with each one, you use
the specific parameters for that filter when
calling the constructor function to create
the filter object.

To dynamically add a drop-
shadow filter effect:

1. For this example, create a movie clip
symbol; place an instance on the Stage,
and give it an instance name in the
Properties inspector.

2. Select the first keyframe, and open the
Actions panel.

3. Instantiate a DropShadowFilter, like so:

var dropshadow:DropShadowFilter=
new DropShadowFilter();

The filter’s constructor function is
added without parameters. (You'll add
them next.)

4. Between the parentheses, enter values
separated by commas as parameters
for the constructor function €.

The DropShadowFilter constructor
takes up to 11 parameters, which match
different options. However, they’re all
optional, and you can specify just some
of them if you wish. To get you started,
the first six are the offset distance (a
number of pixels), the shadow angle (a
number of degrees), the shadow color
(a hexadecimal numeric color value),
alpha (a number from O to 1), and bluxX
and blurxY (both numbers).

Continues on next page

war dropshadow:DropShadowFilter = new DropShodowFilter 25, 45, @xARGAGRA, .7, 28, 28);

0 Create a new filter. Each filter has its own set of properties that you define when
you create a new instance. This DropShadowFilter object makes a shadow at
25 pixels distance, 45 degrees, with a black color, at 70% alpha, and with a horizontal

and vertical blur of 20.

Controlling and Displaying Graphics 251

5. On the next line, enter your target
object’s name, a dot, and then the
property filters.

6. On the same line, enter an equals sign
and the constructor new Array().

This creates a new Array object.

7. Between the parentheses of the Array
constructor, enter the name of your filter
object @.

Your filter object is added into the
new Array as it’s created. The Array
is assigned to the filtexrs property
of your movie clip and the filter takes
effect.

8. Test your movie.

Your movie clip instance on the Stage
has a drop shadow applied with the
properties you specified @.

To dynamically remove
a filter effect:

1. Enter the target path for your object, a
dot, and then the property filters.

2. Onthe same line, enter an equals sign
and the constructor new Array().

You assign a new array with no filters,
effectively removing any existing filters
on your object.

@D Because the filters property accepts
an Array, you can apply multiple filters to

an object. To add multiple filters to an object,
instantiate all the filter objects first, and

then add them all as parameters to the new
Array() constructor that is assigned to the
filters property (step 7). For instance, if you
create two filter objects named filter1 and
filter2, this line of code applies both filters
to a movie clip named myimage_mc:

myimage_mc.filters = new
Array(filteri, filter2);

war dropshadow :DropShadowF i Llter = new DropShadowFilter (26, 45, AxAA@aaa, .7, 28, 20);
nyimage_mc.filters = new Array(dropshadow’;

0 The new filter object is put in the filters array of your movie clip.

G This image of a ball has a drop shadow auto-
matically generated from the DropShadowFilter.

252 Chapter7

Creating Drag-and-
Drop Interactivity

Drag-and-drop behavior gives the viewer
one of the most direct interactions with
the Flash movie. Nothing is more satisfy-
ing than grabbing a graphic on the screen,
moving it around, and dropping it some-
where else. It's a natural way of interacting
with objects, and you can easily give your
viewers this experience. Creating drag-
and-drop behavior in Flash involves two
basic steps: assigning an event handler
that triggers the drag action on an object,
and assigning an event handler that trig-
gers the drop action.

Usually during drag-and-drop interactiv-
ity, the dragging begins when the viewer
presses the mouse button with the pointer
over the graphic. When the mouse button
is released, the dragging stops. Hence,

the action to start dragging is tied to
a MouseEvent.MOUSE_DOWN event, and
the action to stop dragging is tied to a
MouseEvent.MOUSE_UP event.

In many cases, you may want the drag-
gable graphic to snap to the center of the
user’s pointer as it’'s being dragged rather
than wherever the user happens to click,
described in the task “To center the drag-
gable object,” or you may want to limit the
area where viewers can drag graphics,

as described in the task “To constrain the
draggable object.”

The methods startDrag() and stopDrag()
are methods of the Sprite class, which is
a general DisplayObjectContainer class
for handling graphics. It is similar to the
MovieClip class, but it does not contain a
timeline. Movie clip objects are a subclass
of the Sprite class. In these examples,
you’ll use movie clips as the draggable
graphics.

Controlling and Displaying Graphics 253

To start dragging an object: 4. On the next line, create the func-
tion called startDragging with a
MouseEvent parameter. Between the
curly braces of the function, enter the

name of your movie clip followed by
2. Select the first frame of the main Time- the method startDrag(), like so:

line, and open the Actions panel.

1. Create a movie clip symbol, place an
instance of it on the Stage, and name it
in the Properties inspector).

function startDragging(

3. Enter the name of your movie myevent:MouseEvent):void {
clip, a dot, and then the method eyes_mc.startDrag();
addEventListener(). Between the } B

parentheses of the method, enter
MouseEvent.MOUSE_DOWN and a name
for a function, as follows:

The movie clip called eyes_mc will be
dragged when this function is called @.

eyes_mc.addEventListener(5. Testyour movie.

MouseEvent.MOUSE_DOWN, When your pointer is over the movie
startDragging); clip and you press your mouse button,

The completed statement listens for you can drag the clip around.

a MOUSE_DOWN event and triggers the
function called startDragging if it

detects that event.
3)°(I
O O

o I —
I— [eves_mc | &
[Movie Clip |+]

Instance of: eyes symbol

0 This movie clip instance on the Stage is called
eyes_mc.

eves_mc.oddEventListener (MouseEvent .MOUSE_DOWN, stortDrogging’;

function startDrogaingmyevent :MouseEvent)void {
eves_mc.startDrag);

i

0 The MouseEvent.MOUSE_DOWN event handler that makes the
movie clip instance start dragging.

254 Chapter 7

To stop dragging an object:

1. Using the file you created in the pre-
ceding task, select the first frame of the
Timeline and open the Actions panel.

2. On a new line, enter the name of your
movie clip, a dot, and then the method
addEventListener(). Between the
parentheses of the method, enter
MouseEvent.MOUSE_UP and a name for
a function, as follows:

eyes_mc.addEventListener(
MouseEvent.MOUSE_UP,
stopDragging);

The completed statement listens for a
MOUSE_UP event and triggers the func-
tion called stopDragging if it detects
that event.

3. On the next line, create the function
called stopDragging with a MouseEvent
parameter. Between the curly braces
of the function, enter the name of your
movie clip followed by the method
stopDrag(), like so:

function stopDragging(
myevent:MouseEvent):void {
eyes_mc.stopDrag();

The movie clip called eyes_mc will stop
being dragged when this function is
called @.

4. Test your movie.

When your pointer is over the movie
clip and you press your mouse button,
you can drag it. When you release your
mouse button, the dragging stops @.

@D Only one movie clip or sprite can be
dragged at a time using this method.

If you have multiple objects that you
want the user to drag and drop, you can make
your function more generic and refer to the
target of the mouse click. Use the target
property of the MouseEvent object to call

the startDrag() and stopDrag() methods,
like so:

function startDragging(
myevent:MouseEvent):void {
myevent.target.startDrag();
}
function stopDragging(
myevent:MouseEvent):void {
myevent.target.stopDrag();

eyes_me . stopbrag
¥

eyes_me .addEventLiztensr (MouseEvent .MOUSE_UP, stopDragging’;
function stopbrogging(myevent :MouseEvent hivoid £

G The MouseEvent.MOUSE_UP event handler that makes the movie

clip instance stop dragging.

0 The movie clip
instances of the eyes
dragged and dropped
around the Stage.

Controlling and Displaying Graphics 255

To center the draggable object:

Place your pointer inside the parenthe-
ses for the startDrag() method, and
enter the Boolean value true, as in
startDrag(true).

The startDrag() method’s first parameter,
lockCenter, is set to true. After you press
the mouse button when your pointer is
over the movie clip to begin dragging, the
registration point of your movie clip snaps
to the mouse pointer.

If you set the lockCenter parameter
to true, make sure the area of your object
covers its registration point. If it doesn’t, then
after the object snaps to your mouse pointer,

your pointer will no longer be over any graphic

area and Flash won’t be able to detect when
to stop the drag action G

To constrain the draggable object:

1. Insert a new line in the Actions
panel and create a new object of the
Rectangle class with four parameters—
x-position, y-position, width, and
height—like so @:

var myBoundaries:Rectangle = new
Rectangle(20, 30, 100, 50);

The Rectangle object is used to define
the boundaries of the draggable
motion. The Rectangle object isn’t

an actual visible graphic, but just an
abstract object to help do geometric
manipulations.

G If this movie clip (which has an
empty space in the middle) were
to be dragged and the lockCenter
parameter set to true, the mouse
pointer would hover over the
middle and not be able to stop the
dragging motion.

war myBoundaries:Rectangle = new Rectongle(2A,30,100,50%;

o The boundaries of a dragging motion can be restricted by first
creating a Rectangle object to act as the boundaries.

256 Chapter?7

2. Place your pointer inside the parenthe-
ses for the startDrag() method, and
enter true or false for its first param-
eter (the lockCenter parameter), then
a comma, and then the name of your
Rectangle object @.

The pixel coordinates of your
Rectangle object are relative to the
container object in which the movie clip
resides. If the draggable movie clip sits
on the Stage, the pixel coordinates cor-
respond to the Stage. If the draggable
movie clip is within another object, the
coordinates refer to the registration
point of the parent @.

You can use the dimensions of the
Rectangle object to force a dragging motion
along a horizontal or a vertical track, as in a
scroll bar. Set the width of your Rectangle
object to 1 pixel to restrict the motion to

up and down, or set the height of your
Rectangle object to 1 pixel to restrict the
motion to left and right.

To define the Rectangle object as the
second parameter to constrain the draggable
motion, you must also set the startDrag()
method’s first parameter (LockCenter) to
true or false.

@D A shortcut to coding the Rectangle
boundary is to create the new Rectangle
object within the startDrag() method. The
following statement is also valid:

eyes_mc.startDrag(false, new
Rectangle(o, 0, 100, 20));

war myBoundaries:Rectangle = new Rectongle(2A,30,100,50%;
eyes_mc.startiragltrue, myBoundaries);

@ Use the Rectangle object as the second parameter in the
startDrag() method to constrain the drag motion.

width =100

height = 50

0 The x- and y-coordinates of the eyes_mc object are constrained
by the bounds of the Rectangle object.

Controlling and Displaying Graphics 257

Detecting Collisions

Now that you can make an object that can
be dragged around the Stage, you'll likely
want to check whether that object inter-
sects another object. The game of Pong,
for example, detects collisions between
draggable paddles and a ball.

To detect collisions between objects, use
one of two methods of the DisplayObject
class: hitTestObject() or hitTestPoint().
The first method lets you check whether
the bounding boxes of any objects inter-
sect. The bounding box of an object is the
minimum rectangular area that contains the
graphics. This method is ideal for graphics
colliding with other graphics, such as a ball
with a paddle, a ship with an asteroid, or a
puzzle piece with its correct resting spot.
In the following example, if the object ball
intersects with the object called paddle,
the method returns a value of true:

ball.hitTestObject(paddle);

The second method checks whether a
certain x-y coordinate intersects with an
object. This method is point specific, which
makes it ideal for checking whether only
the registration point of a graphic or the
mouse pointer intersects with an object.
In this case, the hitTestPoint() method
is used, and you provide an x value, a

y value, and the shapeflag parameter
(which is true or false). The shapeflag
parameter indicates whether Flash should
use the bounding box of an object (false)
or the shape of the graphics it contains
(true) in deciding if the point is in contact
with the object @.

The hitTestObject() and hitTestPoint()
methods work for all objects in the
DisplayObject class, but in the follow-
ing examples, you’ll just use movie clip
objects.

— Bounding box

o When the shapeFlag is true (top), then
according to Flash, the two objects aren’t
intersecting; only the shapes are considered.
When the shapeFlag parameter is false (bottom),
the two objects are intersecting because the
bounding box is considered.

258 Chapter 7

To detect an intersection
between two objects:

1. Create a movie clip, place an instance
of it on the Stage, and name it in the

Properties inspector.

Create another movie clip, place an
instance of it on the Stage, and name
it in the Properties inspector.

Select the first frame of the main Time-
line and open the Actions panel; assign
actions to make the second movie clip

instance draggable.

Create a new line in the Script pane
at the end of the current script, and
add an event listener to detect the
Event.ENTER_FRAME event @.

The Event.ENTER_FRAME event occurs
at the frame rate of the movie, which
makes it ideal for checking the
hitTestObject() method continuously.

On the next line, create the function
that gets triggered for the ENTER_FRAME
event. Between the curly braces of the
function, enter the word if, then a set
of parentheses.

10.

For the condition (between the paren-
theses), enter the name of the drag-
gable movie clip followed by a period,
and then enter hitTestObject().

Within the parentheses of the
hitTestObject() method, enter the
name of the stationary movie clip.

Immediately after the hitTestObject()
method, enter two equals signs fol-
lowed by the Boolean value true.

Enter a set of curly braces to complete
the if statement. Between those curly
braces, choose an action to be per-
formed when this condition is met.

The final script should look like @.
Test your movie @.

Continues on next page

spaceship_mc.startirag{true);
stage.addEventlListener (Event .ENTER_FRAME, detectCollizion};

0 The Event.ENTER_FRAME event happens continuously at
the frame rate of your Flash movie.

spaceship_mc.stortDrog{true);
stage.addEventl istener (Event .ENTER_FRAME, detectCollision);

function detectCollision{mevent iEvent yivoid {

if {spoceship_mc.hitTestObject (osteroid_mc) == true) I
spaceship_mc.nextFrame s
1

i

0 Dragging the spaceship_mc
movie clip into the bounding box

G Flash monitors the intersection between the two objects
spaceship_mc and asteroid_mc. If there is a collision, the
spaceship_mc movie clip advances to the next frame.

of the asteroid_mc movie clip
advances the spaceship movie clip
to the next frame, which displays an
explosion.

Controlling and Displaying Graphics 259

If you’re only checking if something is
true (known as Boolean value) in an if state-
ment as you do in this task, you can leave out
the last part, == true. Flash returns true or
false when you call the hitTestObject()
method, and the if statement tests true and
false values. You’ll learn more about condi-
tional statements later in the book.

It doesn’t matter whether you test the

moving movie clip to the target or the target
to the moving movie clip. The following two

statements detect the same collision:

spaceship.hitTestObject(asteroid);
asteroid.hitTestObject(spaceship);

To detect an intersection
between a point and an object:

1. Continuing with the same file you cre-
ated in the preceding task, select the
first frame of the main Timeline and
open the Actions panel.

2. Place your pointer within the parenthe-
ses of the if statement.

3. Change the condition so it reads as
follows:

asteroid_mc.hitTestPoint(
spaceship_mc.x, spaceship_mc.y,
true)

The hitTestPoint() method now
checks whether the x and y positions of
the draggable movie clip spaceship_mc
intersect with the shape of the movie
clip asteroid_mc @.

4. Test your movie.

The properties mouseX and mouseY
are values of the current x and y positions
of the pointer on the screen. You can use
these properties in the parameters of the
hitTestPoint() method to check whether
the pointer intersects a movie clip. This
expression returns true if the pointer inter-
sects the movie clip asteroid_mc:

asteroid_mc.hitTestPoint(mouseX,
mouseY, true)

spaceship_mc.stortDrog{true);

spaceship_mc.nextFrame s

¥
¥

stage.addEventl istener (Event .ENTER_FRAME, detectCollision);

function detectCollision{mevent iEvent yivoid {
if {osteroid_mc.hitTestPoint{spaoceship_mc.x, spaceship_mc.y, true) == true) I

A

G The ActionScript (above) tests whether the registration point of the spaceship_mc
movie clip intersects with any shape in the asteroid_mc movie clip. Notice that the
spaceship is safe from collision because its registration point is within the crevice

and clear of the asteroid.

260 Chapter?7

Generating Graphics
Dynamically

Creating graphics on the fly—that is, during
playback—opens a new world of exciting
interactive possibilities. Imagine a game

of Asteroids in which enemy spaceships
appear as the game progresses. You can
store those enemy spaceships as movie
clip symbols in your Library and create
instances on the Stage with ActionScript as
you need them. Or, if you want an infinite
supply of a certain draggable item (such as
merchandise) to be pulled off the shelf of
an online store, you can make a duplicate
of the object each time the viewer drags

it away from its original spot. Or you can
create entirely new graphics by drawing
lines, shapes, and curves with solid color
or gradients. All the while, you maintain

the power to modify properties and control
color, blending, and filters for those objects.

Flash provides many ways to dynamically
generate graphics, and in the previous
chapter, you learned about one of them (by
loading external images). All the processes
begin with creating a new DisplayObject
or DisplayObjectContainer with the
constructor function, new. To create a new
Sprite object, for example, you can use
var myNewSprite:Sprite = new Sprite().
The next step would be to do something
with the new object (which depends on what
kind of object you decided to create), and
then display the object by putting it on the
display list with addChild(). The challenge is
knowing which object of the DisplayObject

or DisplayObjectContainer class to
choose from. Among the considerations:

m Create a new Loader object to load in
an external image or SWF (discussed in
the previous chapter).

m Create a new Sprite object or
MovieClip object for interactivity like
drag-and-drops, for dynamic drawing,
and for attaching other DisplayObject
or DisplayObjectContainer objects
with addChild(). The MovieClip object
differs from the Sprite object in that it
has a timeline.

m Create a new Shape object if you just
want to use ActionScript to draw lines,
curves, and shapes.

m Create a new BitMap object to display
bitmap images and manipulate the data
at a pixel level.

Creating new movie clips

You can dynamically create new instances
of existing movie clip symbols in your
Library.

You must first identify the movie clip sym-
bol in your Library so you can reference it
in ActionScript and make new instances.
You do so by setting the Linkage proper-
ties in the Symbol Properties dialog box.
In this panel, you indicate the class name
for your movie clip and the preexisting
class that you want Flash to extend to it. In
essence, you are creating your own cus-
tom class for your movie clip symbol and
extending a preexisting class to share its
methods and properties.

Controlling and Displaying Graphics 261

To create a movie clip instance
from a Library symbol:

1. Create a movie clip symbol.

The movie clip symbol is stored in your
Library.

2. From the Library Options menu, choose
Properties @.

The Symbol Properties dialog box
appears.

3. Click the Advanced button to expand
the dialog box. In the Linkage section,
select the Export for ActionScript check
box. Leave “Export in frame 1”7 selected.

4. In the Class field, enter a name to
identify your movie clip. Leave the Base
class as flash.display.MovieClip and
click OK @.

A dialog box may appear that warns
you that your class could not be found
and one will automatically be generated
for you @. Click OK. In this example,
the class name for your Library symbol
is BaldMan. This new class inherits from
the MovieClip class, which means it
has all the same methods and prop-
erties of the MovieClip class. Your
class name will be used to create new
instances of your movie clip. Make sure
that your class name doesn’t contain
any periods.

5. Select the first frame of the main Time-
line, and open the Actions panel.

6. On the first line, create a new instance
of your movie clip symbol, referencing
its class name (created in step 4), like
so:

var Larry:BaldMan = new BaldMan();

A new instance of a movie clip, specifi-
cally the movie clip in your Library, is
created.

[R New Symbol...
| 15creareMovieClip.fla =] & EJ Mew Folder
New Font...
New Video...
Rename
Delete
R ,:.) Duplicate...
= Move to...
Name o | Linkage
Symbol 1 EaldMan Edit
Edit with
Edit with Soundbooth
Edit Class
P ay
Update...

Properties...
Component Définition...

al 90 3=] *| Shared Library Properties...
o Choose Properties from the Options menu in
the Library.

Linkage

[Export in frame 1

[Export for ActionScript

Identifier: |

Class: [BaldMan

|
| [4] [2]

BaseCIass:|ﬂash.display.MovieCIip |

0 The new class name for your Library symbol

here is BaldMan, and it has

all the same methods

and properties of the MovieClip class.

O pon't show again.

Cancel

A definition for this class could not be found in the cdasspath, so one will be
@ automatically generated in the SWF file upon export.

T

O The warning dialog box, which you can ignore.

262 Chapter7

war Larry:BaldMan = new BaldMan{ s
stoge..addChi ld{Larry s

0 Create a new instance of your Library symbol
and add it to the display list.

09606

o When the new instance is put on the display
list, its registration point is aligned with the
registration point of the DisplayObjectContainer.
Since this instance was added to the Stage, its
center point is at the top-left corner of the Stage.

7. On the next line, enter stage, a period,
and then the method addChild().
Within the parentheses, put your new
movie clip instance @.

The addChild() method is required to
add your new instance to the display list
to see it. The new instance called Larry
is put on the Stage.

8. Test the movie @.

The default position of your new
instance is at the registration point of its
parent (the DisplayObjectContainer).
So, in this example, the registration
point of the new movie clip instance is
at the top-left corner of the Stage. Use
the properties x and y to move the new
instance to your desired position.

When you add objects to the display

list, they are affected by the properties of the
DisplayObjectContainer that you add
them to. For example, suppose you create a
new Sprite object, add it to the Stage, and
change its transparency to 50 percent, like so:

var mySprite:Sprite = new Sprite();
stage.addChild(mySprite);
mySprite.alpha = .5;

Now, if you created your new BaldMan
instance and attached it to the Sprite object,
the BaldMan instance would be 50 percent
transparent:

var Larry:BaldMan = new BaldMan();
mySprite.addChild(Larry);

Objects are also affected by
ActionScript that may be assigned to

the DisplayObjectContainer. If the
DisplayObjectContainer is draggable,
for example, the added object is also
draggable.

Controlling and Displaying Graphics 263

Controlling
Stacking Order

When you generate multiple
DisplayObjects and put them on the
display list, you need a way to control how
each one overlaps the other. If you have
multiple draggable objects, you’ll notice
that the objects maintain their depth level
even while they’re being dragged, which
can seem a little odd. In a drag-and-drop
interaction, you expect that the item you
pick up will come to the top, which requires
that you control the stacking order.

Controlling the stacking order is a simple
matter of reordering the objects on the
display list. Recall that Flash maintains a
tree-like hierarchy of the objects on the
display list, giving each object an index
number that determines which object is
overlapping others @.

The methods of the DisplayObjectContainer
class provide several ways to access the
objects on the Stage and to move them

to different levels, add new objects, or
remove them completely. These meth-

ods work for both dynamically generated
objects as well as objects you create on
the Stage manually. See Table 7.5 for a
description of the various methods.

DisplayObject

DisplayObjectContainer

index =3

index =2

index = 1 of this DisplayObject
within a DisplayObjectContainer

index =1

—-"‘e index = 0 of this DisplayObject

Wm a DisplayObjectContainer
index =0

O

Main instance
of the SWF

Stage

Q Controlling the stacking order or overlapping of objects on the display list depends on each object’s

index number.

264 Chapter?7

circle
|

To move an object to the front:

Before After

o The result of the statement addChild(circle).

square
|

Call the addChild() method, as in:
addChild(circle);

The circle object is added to the top of
the display list. If the object is already pres-
ent on the display list, it is pulled from its
current position and added to the top, and
all the objects are shuffled downward and
reassigned the appropriate index numbers
automatically @.

To move an object to the back:

After

G The result of the statement
setChildindex(square, 0).

Before

Call the setChildIndex() method and use
the object name and the index number O
as its parameters, as in:

setChildindex(square, 0);

The square object is placed at the bottom
of the display list. The object must already
be present on the display list @.

Continues on next page

TABLE 7.5 DisplayObjectContainer Methods

Method

Description

addChild(child)

Adds a child object.

addChildAt(child, index)

Adds a child object at the specified index.

getChildAt(index) Retrieves the child object at the specified index.
getChildByName(name) Retrieves the child object at the specified name (a string).
getChildIndex(child) Retrieves the index position of the child object.

getObjectsUnderPoint(point)

Returns an array of objects that lie under the specified point (a Point
object).

removeChild(child)

Removes a child object.

removeChildAt(index)

Removes a child object at the specified index level.

setChildIndex(child, index)

Changes the position of an existing child to the specified index.

swapChildren(child1, child2)

Swaps the stacking order of the two specified child objects.

swapChildrenAt(index1, index2)

Swaps the stacking order of two child objects at the specified index
numbers.

Controlling and Displaying Graphics 265

Or

Call the addChildAt() method and use
the name of the object and the index
number O as its parameters, as in:
addChildAt(square, 0);

The square object is placed at the bottom
of the display list. If the object is already
present on the display list, it is pulled from
its current position and placed at the bot-
tom, and all the objects are shuffled and
reassigned the appropriate index numbers
automatically.

To swap two objects:

Call the swapChildren() method and use
the two objects as its parameters, as in:

swapChildren(circle, square);

The circle and the square objects switch
places in the stacking order @.

To remove an object:

Call the removeChild() method and use
the object as its parameter, as in:

removeChild(triangle);

The triangle object is removed from
the display list and disappears from the
Stage @.

Or

If you don’t know the name of the object
but know its index (for example, it is at the
very bottom with an index of 0), use the
removeChildAt() method and use the
index number O as its parameter, as in:

removeChildAt(0);

The object at the very bottom of the dis-
play list (index 0) is removed and disap-

pears @.

square circle
| |

Before After

0 The result of the statement
swapChildren(circle, square).

triangle
|

Before After

G The result of the statement
removeChild(triangle).

Before After
o The result of the statement removeChildAt(0).

266 Chapter?7

Creating Vector
Shapes Dynamically

Drawing vector lines, curves, and shapes,
and using colors or gradients to fill those
shapes, is a process that you can do with
Flash’s drawing tools or purely with Action-
Script using the graphics property of the
Shape, Sprite, or MovieClip objects. You
can use the drawing methods to create
your own simple paint and coloring appli-
cation, or you can draw bar graphs or pie
charts or connect data points to visualize
numerical data that your viewer inputs.

To use the drawing methods, you must
start with a new object, and the simplest is
the Shape object. You create a new Shape
object like any other object, with a state-
ment such as var myShape:Shape = new
Shape(). You can also use a Sprite object
or a MovieClip object if you plan to have
your object contain other objects within

it (the Shape class is a subclass of the
DisplayObject class, whereas the Sprite
and MovieClip classes are subclasses of
the DisplayObjectContainer class), or if
you want additional functionality that the
Shape class doesn’t provide (such as drag
and drop). Your new object acts as the
canvas that holds the drawing you create.
It also acts as the point of reference for all
your drawing coordinates. If you place your
object at the top-left corner of the Stage
(at x =0,y = 0), all the drawing coordinates
are relative to that registration point.

The Shape, Sprite, and MovieClip classes
have a property called graphics. This
property is an instance of the Graphics
class, which provides many methods that
enable you to create vector graphics. The
process is straightforward: You define

the styles of your graphics (colors, line
weights, etc.), give Flash coordinates as to
where to begin the drawing, and then draw
your lines, curves, or shapes. See Table 7.6
(on the next page) for a description of the
Graphics class drawing methods.

Creating lines and curves

The lineStyle() method sets the char-
acteristics of your stroke, such as its point
size, color, and transparency. The moveTo()
method sets the beginning point of your
line or curve, like placing a pen on paper.
The 1ineTo() and curveTo() methods
draw lines and curves by setting the end
points and, in the case of curves, deter-
mine its curvature. The clear() method
erases all the drawing on an object.

Color, line width, and transparency are

just the beginning of the ways you can
style lines you draw in ActionScript. Flash
provides additional line-style properties to
control how lines scale and the style of the
corners (joints) and ends (caps) of the lines
you draw. You can also create lines that
use a gradient rather than a solid color. All
these techniques are demonstrated in the
next several tasks.

Controlling and Displaying Graphics 267

To create straight lines:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Declare a variable with the data type
Shape, enter an equals sign, and then
enter new Shape() to create a new
Shape instance.

An empty Shape object is created.

3. On the next line, enter the name of your
Shape object, followed by a period, fol-
lowed by the property graphics; then
call the 1ineStyle() method.

TABLE 7.6 Graphics Methods
Method

Description

beginBitmapFill(bitmap, matrix, repeat, smooth)

Fills a drawing area with a bitmap image.

beginFill(color, alpha)

Specifies the fill color as a hex code and
transparency.

beginGradientFill(type, colors, alphas, ratios,
matrix, spread, interpolation, focalpoint)

Specifies the gradient fill.

clear()

Clears the drawing and resets the fill and line
style settings.

curveTo(controlx, controly, x, y)

Draws a curve to the x, y point with the control
points controlx and controly that determine
curvature.

drawCircle(x, y, radius)

Draws a circle at location x, y with a specified
radius.

drawEllipse(x, y, width, height)

Draws an ellipse at location x, y with a specified
width and height.

drawRect(x, y, width, height)

Draws a rectangle at location x, y with a specified
width and height.

drawRoundRect(x, y, width, height, ellipsewidth,
ellipseheight)

Draws a rectangle at location x, y with a specified
width and height and rounded corners.

endFill()

Applies a fill.

lineGradientStyle(type, colors, alphas, ratios,
matrix, spread, interpolation, focalpoint)

Specifies a gradient for the line style.

lineStyle(thickness, color, alpha, pixelhinting,
scalemode, caps, joints, miter)

Specifies a line style.

lineTo(x, y)

Draws a line to the specified X, y location.

moveTo(x, y)

Moves the drawing position to the specified x, y
location.

268 Chapter?7

war myShope:Shape = new Shape();
myShope .graphics. lineStyle(4, @:006008, 1);

o Define the line style (stroke thickness, color,
and transparency) before you begin drawing.

war myShope:Shape = new Shape();
myShope .grophics. lineStyle(4, G:006008, 1);
myShape .graphics .moveTold, 1887;

0 The beginning of this line is at x = 0, y = 100.

war myShope:Shope = new Shape();

myShope .graphics. lineSty le4, A=AAARAA, 1);
myShope .graphics .moveTol®, 1887;

myShope .graphics. lineTo{408, 1667;

G This straight line is drawn with a 4-point black
stroke. The virtual pen tip is now positioned at x =

400, y =100 and ready for a new lineTo() method.

4. For the parameters of the 1ineStyle()

method, enter a number for thickness,
a hex number for the color (in the form
OxRRGGBB), and a number for the
transparency @.

The thickness is a number from O to 255;
0O is hairline thickness (which maintains
its hairline thickness even when scaled),
and 255 is the maximum point thickness.

The RGB parameter is the hex code
referring to the color of the line. You
can find the hex code for any color in
the Color Mixer panel below the color
picker. Red, for example, is 0xFF0000.

The transparency is a number from O to 1
for the line’s alpha value; O is completely
transparent, and 1is completely opaque.
The 1lineStyle() method can take up

to 8 parameters, but only the first (thick-
ness) is required.

. On the next line, enter your Shape

object’s name followed by a period and
the property graphics, and then call
the moveTo() method.

. With your pointer between the paren-

theses, enter the x- and y-coordinates
where you want your line to start, sepa-
rating the parameters with a comma @.

On the next line, enter your Shape
object’s name followed by a period and
the property graphics, and then call
the 1ineTo() method.

. With your pointer between the paren-

theses, enter the x- and y-coordinates
of the end point of your line, separating
the parameters with a comma @.

The end point of your line segment
automatically becomes the beginning
point for the next, so you don’t need to
use the moveTo() method to move the
coordinates.

Continues on next page

Controlling and Displaying Graphics 269

9. If you wish, continue adding more
lineTo() methods to draw more line
segments.

10.On the last line, enter stage, a period,
and the method addChild() with the
name of your Shape object within the
parentheses @.

The lines that you drew won’t be visible
unless you add them to the display list.

11. Test your movie.

You can change the line style at any time,
so multiple line segments can have differ-

ent thicknesses, colors, transparencies, and

so forth. Add a 1ineStyle() method before
the lineTo() method whose line you want

to modify.

After you finish your drawing, you can
modify its properties by modifying the proper-
ties of the Shape object—for example, by
rotating or scaling the entire object. Or you
can affect the behavior of your drawing by
calling a method. For example, if you used

a Sprite or MovieClip object instead of a
Shape, you could make your drawing drag-
gable by calling its startDrag() method!

To create paths with square
corners and ends:

Add additional parameters to the
lineStyle() call for pixel hinting, scale
mode, cap style, joint style, and miter limit:

Pixel hinting takes a true/false value.
With pixel hinting on, Flash draws anchor
and curve points on exact pixels rather
than fractions of pixels, leading to
smoother curves.

Scale mode determines what happens to
the line when the object’s size is scaled

up or down. It can be one of four values:
LineScaleMode.NORMAL means lines

scale normally; LineScaleMode.NONE
means line thickness doesn’t scale;
LineScaleMode.VERTICAL means line thick-
ness doesn’t scale in the vertical direction;
and LineScaleMode.HORIZONTAL means
line thickness doesn’t scale horizontally.

The remaining three parameters, cap style,
joint style, and miter limit, are described in
the sidebar “Cap and Joint Styles.”

var myShape :Shope = new Shape();

tyShape graphics. lineStyle(4, Bx0A0688, 1);
nyShope .graphics .moveTo (8, 168);

tyShape .graphics. lineTo{488, 108%;
stage.addChi ld{myShope)

0 The code (top) draws and displays the Shape
object on the Stage when you test the movie

(below).

270 Chapter7

Cap and Joint Styles

When line thickness becomes large, the corners and ends are rounded off unless you control the
cap and joint styles. Three parameters of the 1ineStyle() method allow greater control over this
aspect of line styling.

The cap style parameter controls what the start and end of the lines will look like. The three
options are G as follows:

= No cap (CapStyle.NONE): The end falls
exactly at the end coordinate, resulting - - _

in a squared-off end.

G The three cap styles are (left to right) no caps,

= Round (CapStyle.ROUND): The end is round, and square, drawn here with a thick line.
rounded and extends slightly beyond the The overlaid thin line shows the actual end point.
end x, y coordinate to add thickness to
the end.
m Square (CapStyle.SQUARE): The end is
squared off and extends slightly beyond
the end x, y coordinate to add thickness
to the end.
The joint style parameter determines the
appearance of corners where two line G The three joint styles, bevel (left), round
segments are joined. These are the three (Il eie]) el ol S (i

options @:

= Bevel (JointStyle.BEVEL): The corner is
flattened off perpendicular to the center
of the angle and extends only slightly
beyond the corner X, y coordinate.

® Round (JointStyle.ROUND): The corner
is rounded off and extends beyond the

corner x, y coordinate. @ This small angle is chopped off with miter limits
of 1, 2, and 3 but extends fully with a limit of 4 or
m Miter (JointStyle.MITER): The lines greater.

continue to a point beyond the corner
coordinate. The point may be chopped short depending on the miter limit setting.

The miter limit, which is used only when the joint style is set to JointStyle.MITER, determines
how far an angle extends beyond the true corner point before it’s chopped short. For small angles
without some sort of limit, the miter joint could extend across the width of the Stage or farther; the
miter limit sets constraints on the joint.

The value you set is a number between 1 and 255. How this value translates into the actual dis-
tance that the angle extends before being cut short depends on the angle of the corner and the
line thickness. In general, with small angles (smaller than 45 degrees), the default limit of 3 causes
some trimming. It's a good idea to experiment with the specific line thickness and angle before
using miter limits in a Flash movie. @ shows some examples of different miter limits.

Controlling and Displaying Graphics 271

To create curved lines:

1

As you did in the previous task, create a
new Shape object to serve as the draw-
ing space.

. On the next line, call the 1ineStyle()

method of the graphics property of
your Shape object, and enter the line
thickness parameter and other optional
parameters between the parentheses.

On the next line, enter your Shape
object’s name followed by a period and
the property graphics, and then call
the moveTo() method.

With your pointer between the paren-
theses, enter the x- and y-coordinates
where you want your line to start, sepa-
rating the parameters with a comma.

On the next line, enter your Shape
object’s name followed by a period and
the property graphics, and then call
the curveTo() method.

With your pointer between the paren-
theses, enter x- and y-coordinates for
the control point and x- and y-coordi-
nates for the end of the curve @.

The control point is a point that deter-
mines the amount of curvature. If you
were to extend a straight line from the
control point to the end point of the
curve, you would see that it functions
much like the handle of a curve @.

On the last line, enter the addChild()
method to add the Shape object to the
display list.

Test your movie @.

war myShape:Shape = new Shape(

myShape .graphics. lineSty le(2, BxFF@a6a, 13;
myShape .graphics.moveTo (208, 288);

myShape .grophics.curveTo(308, 108, 488, 260%;

0 The curveTo() method requires x- and
y-coordinates for its control point and for its end
point. This curve starts at (200,200) and ends
at (400,200), with the control point at (300,100)

(see @)).

(300,700)

(200,200) (400,200)

o By drawing a straight line from the control point
to the end point, you can visualize the curve’s
Bézier handle. The dots have been added to show
the two anchor points and the control point.

war myShope:Shape = new Shape()

myShape .graphics. lineSty le(Z2, BxFFe@6a, 1);
myShape .graphics.moveTo {268, 288%;

myShape .graphics.curveTo(388, 188, 468, 208);
addChi ld{myShape;

o The complete script draws and displays the
curved line on the Stage.

272 Chapter7

To reduce the repetition of writing the
graphics property of the Shape object, use a
with statement to change the scope tempo-
rarily. For example, note the savings in having
not to repeat the target path:

with (myShape.graphics) {
lineStyle(5, oxff0000, 100);
moveTo(200, 100);
curveTo(300, 100, 300, 200);
curveTo(300, 300, 200, 300);
curveTo(100, 300, 100, 200);
curveTo(100, 100, 200, 100);

}

Updating a drawing

The clear() method erases the drawings
made with the Graphics drawing methods.
In conjunction with an Event.ENTER_FRAME
event or a Timer object, you can make
Flash continually erase a drawing and
redraw itself. This is how you can cre-

ate curves and lines that aren’t static but
change.

The following task shows the dynamic
updates you can make in a drawing by
continuously redrawing lines.

war myShape:Shape = new Shope();
war counter:int = A;
stage .addEventl istener (Event .ENTER_FRAME, updateDrawing);

o The Event.ENTER_FRAME event will provide a
way to continuously update a drawing.

war myShape :Shape = new Shape();
wvar counter:int = A;
stage .addEventl istener (Event .ENTER_FRAME, updateDrawing);
function updateDrawing(myevent :Eventivoid {
nyShape .graphics.clear);
niyShape .araphics. lineStyled4);
nyShape .graphics . moveTo {168, 168%;
nyShape .graphics.curveTo (156, 108 + counter, 266, 168%;
stage.addChi Ld{myShape ;
counter++;

¥

o Within the function, the drawing is cleared and
a new curve is drawn with an increasing control
point, which increases the curvature.

To update a drawing dynamically:

1. As you did in the previous task, create a
new Shape object to serve as the draw-
ing space.

2. On the next line, declare a variable
called counter to hold an integer data
type, and assign the number O to it.

3. Onthe next line, add an event listener to
detect the Event.ENTER_FRAME event (3.

4. On the next ling, create the event-
handler function. Between the curly
braces of the function, add the follow-
ing statements @:

myShape.graphics.clear();
myShape.graphics.lineStyle(4);
myShape.graphics.moveTo(100,100);
myShape.graphics.curveTo(150, 100

+ counter, 200, 100);
stage.addChild(myShape);
counter++;

Each time the ENTER_FRAME event hap-
pens, Flash clears the current draw-
ing in the myShape object and creates
a new curve. Each curve is always a
little different than the one before it,
because the variable called counter
adds a small amount to the curvature.

5. Test your movie (.

The line bends dynamically, creating
a smile!

m The curve (top) is
dynamically erased and
redrawn to create an
animation as it bends
(bottom).

Controlling and Displaying Graphics 273

Creating fills and gradients

You can fill shapes with solid colors,
transparent colors, or radial or lin-

ear gradients by using the methods
beginFill(), beginGradientFill(), and
endFill(). Begin the shape to be filled
by calling either the beginFill() or the
beginGradientFill() method, and mark
the end of the shape with endFill(). If
your path isn’t closed (the end points don’t
match the beginning points), Flash auto-
matically closes it when the endFill()
method is applied.

Applying solid or transparent fills with
beginFill() is fairly straightforward; spec-
ify a hex code for the color and a value
from O to 1 for the transparency. Gradients
are more complex. You control the gradient
by adding up to eight parameters to the
beginGradientFill() method call. These
parameters are as follows:

Gradient type is either the value
GradientType.RADIAL or GradientType.
LINEAR. A radial gradient’s colors are
defined in rings from the inside to the out-
side. With a linear gradient, the colors are
defined from left to right.

Colors takes an Array object of numeric
color values. You must create an Array
object and put the hex codes for the gradi-
ent colors into the array in the order in
which you want them to appear. If you want
blue on the left side of a linear gradient
and red on the right side, for example, your
array is created like this:

var colors:Array = new
Array(Ox0000FF, OxFF0000);

Alphas is also an Array object and con-
tains the alpha values (0 through 1) cor-
responding to the colors in the order in

<o

0 127
\V4

which you want them to appear. If you want
your blue on one side to be 50 percent
transparent, you create an array like this:

var alphas:Array = new Array(.5, 1);

Ratios is an Array object containing values
(0 through 255) that correspond to the
colors, determining how they mix. The ratio
value defines the point along the gradient
where the color is at 100 percent. An array
like ratios = new Array(0, 127) means
that the blue is 100 percent at the left side
and the red is 100 percent starting at the
middle @.

255
\V4

63 190
\V4

0 Ratios determine the mixing of colors for your
gradient. The entire width of your gradient (or
radius, for a radial gradient) is represented on a
range from O through 255. Ratio values of (0,255)
represent the typical gradient where each color

is at one of the far sides (top). Ratio values of

(0,127) create a tighter mixing in the first half of the
gradient (middle). Ratio values of (63,190) create a
tighter mixing in the middle of the gradient (bottom).

274 Chapter7

Q Parameters for the matrix type. A radial
gradient (left) and a linear gradient (right) are
shown superimposed on a shape they would fill.
Its width and height are indicated by w and h; r is
the clockwise angle that it makes from the vertical;
x and y are the position offset coordinates for the
top-left corner of the gradient.

Reflect
Pad Repeat

=T

-- |L|neargmdtert rI
= e =

L] i [Linear RGB

0 The different spread methods are the same
options in the Color panel Flow options.

0

0 The focal point of the gradient on the left is O.

The focal point of the gradient on the right is —0.5.

Matrix type is an object that represents
size, position, scale, and rotation infor-
mation. You can define properties that
determine the size, position, and orienta-
tion of your gradient. You create a matrix
and specify width and height properties (in
pixels), an angle property (in radians), and
x and y offset (position) coordinates @.

Spread method determines how the gradi-
ent behaves when the shape is larger
than the gradient matrix. The parameter
takes a string with one of three values:
SpreadMethod.PAD fills out the shape

with solid color, using the end color of

the gradient; SpreadMethod.REPEAT
causes the gradient pattern to repeat; and
SpreadMethod.REFLECT causes the pattern
to repeat in a mirror image of itself @.

Interpolation method instructs Flash how
to calculate the blend between colors. The
two values are InterpolationMethod.RGB,
which blends colors more directly, result-
ing in a less spread-out appearance, and
InterpolationMethod.LINEAR_RGB, which
includes intermediate colors as part of
blending colors, resulting in a more spread-
out gradient.

Focal point ratio controls the focal point
(center point) of a radial gradient and takes
a number between —1 and 1. Normally, the
focal point is the center of the gradient

(0); a value between 0 and 1 (or —1) shifts
the center toward one or the other edge
by that percentage. For instance, a value
of —0.5 shifts the focal point 50 percent
between the center and the outer edge @.

Controlling and Displaying Graphics 275

To fill a shape with a solid color:

1

As you did in the previous task, create a
new Shape object.

On the next line, call the 1ineStyle()
method of the graphics property of
your Shape object, and enter the line
thickness parameter and other optional
parameters between the parentheses.

On the next line, enter your Shape
object’s name followed by a period and
the property graphics, and then call
the beginFill() method.

With your pointer between the paren-
theses, enter the hex code for a color
and a value for the alpha, separating
your parameters with a comma @.

On a new line, enter your Shape object’s
name followed by a period and the
property graphics, and then call the
moveTo() method to identify the begin-
ning of your drawing.

Use the 1ineTo() or curveTo() meth-
ods to draw a closed shape.

When the end point matches the begin-
ning point of your shape, enter your
Shape object’s name followed by a
period and the property graphics, and
call the method endFill().

No parameters are required for the
endFill() method. Flash fills the closed
shape with the specified color.

On the last line, enter the addChild()
method to add the Shape object to the
display list.

Test your movie @.

var myShope :Shape = new Shope()
nyShape .graphics. lineStyle(l, BxFFaa@a, 13;
nyShope .graphics .beginFil | (Bx7EGAES, 1);

o This fill is light blue at 100 percent opacity.

war my'Shape :Shape = new Shape ()

nyShope .graphics. lineStyle(l, B:FFaeea, 1);
nyShape .graphics . beqinFi L {(Ax7EGAES, 1);
nyShope .graphics .moveTo{108, 108%;

tyShape .graphics. lineTo{188, 268 %;

nyShope .graphics. lineTo{208, 288%;

tyShape .graphics. lineTo{208, 168 %;

nyShope .graphics. lineTo{108, 1868%;

tyShape .graphics..endFil [

addChi Ld{myShape 3

(100,100) (200,100)

(100,200) (200,200)

o The end point of the last 1ineTo() method
(100,100) matches the beginning point (100,100),
creating a closed shape that can be filled. A blue
box appears as a result of this code. The box was
drawn counterclockwise from its top-left corner,
but the order of line segments is irrelevant.

276 Chapter7

var myShope:Shape = new Shape();

vor colorsshrray = new Array(BxFFREEE, BxBAREFF);

0 The colors array is created with blue on one
side and red on the other. If this gradient will be
a linear gradient, blue (0x0000FF) will be on the
left. If it will be a radial gradient, blue will be in
the center.

vor myShope:Shape = new Shape();
var colors:Array
var alphas:Array

new Arrayi(l, 13;

hew Array(BxFFEE8a, Bxaaaary);

0 The alphas array is created with 100 percent

opacity for both the blue and the red. The ratios

array is created with blue on the far left side (or
the center, in the case of a radial gradient) and
with red on the far right side (or the edge of a
radial gradient).

To fill a shape with a gradient:

1.

2.

As you did in the previous task, create a
new Shape object.

On the next line, declare and instantiate
a new Array object to hold your gradi-
ent’s colors. In the parentheses of the
constructor function, enter the numeric
color values @.

By adding parameters to the new
Array() statement, you instantiate a
new Array object and populate the
array at the same time. The first color
refers to the left side of a linear gradient
or the center of a radial gradient.

. Create another Array object, adding

the alpha value corresponding to each
color as a parameter.

The constructor function call for this
Array object should have the same
number of parameters as the colors
Array 0.

. Create a third Array object, entering

ratio values defining the distribution of
the colors in the gradient.

Declare and instantiate a new Matrix
object. Don’t enter any parameters in
the constructor function call.

On the next line, enter the name
of your Matrix object and call the
createGradientBox() method.

The Matrix class’s
createGradientBox() method is
specially designed for creating Matrix
objects to use when drawing gradi-
ents. The parameters you enter in this
method call determine the size and
position of the gradient.

Continues on next page

Controlling and Displaying Graphics 277

7.

Inside the parentheses of the
createGradientBox() method call,
enter parameters for width, height,
rotation, x offset position, and y offset
position @:

Width and height (hnumbers in pixels)
determine the size of the gradient. Out-
side those dimensions, the colors will
end or repeat according to the spread
method you choose.

Rotation (hnumber in radians) indicates
how much to rotate the gradient—by
default, linear gradients go from left
to right, so if you want the gradient to
go from top to bottom or at an angle,
you must specify a rotation parameter.
Otherwise, use O.

X and y offset (numbers in pixels) indi-
cate at what coordinate (relative to the
movie clip’s registration point) to begin
the gradient.

. On the next line, call the 1ineStyle()

method of the graphics property of
your Shape object, and enter the line
thickness parameter between the
parentheses.

. On the following line, enter your

Shape object’s name and the
property graphics, and call the
beginGradientFill() method.

In the parentheses, add the fol-
lowing parameters: the gradient
type (GradientType.LINEAR or
GradientType.RADIAL), your colors
Array, your alphas Array, your ratios
Array, and your Matrix object. Be
sure to separate the parameters with
commas.

All the information about your gradi-
ent that you defined in your arrays and
Matrix object is fed into the param-
eters of the beginGradientFill()
method @.

var myShape :Shope = new Shape();

war colorsiArray = new Arroy(AxFFAB8E, axAeaare) ;
var alphas:Array = new Arrayil, 1)

war ratiosiArray = new Arravif, ZBR};

var matrix:Matrix = new Matrix);
matyix.creqteGrodientBox (168, 168, A, 168, 108%;

0 The width, height, rotation, and x, y coordinates
of the gradient are defined as parameters of the
createGradientBox method call.

War
WA
War
WA
War

matyix.createGrodientBox (188, 168, @, 168, 1085;
tiyShape .graphics. lineStyle(5, BxFFAG8a, 1%;
myShope .grophics . beginGradientF i L L{Gradient Tvpe .LINEAR ,

tiyShape :Shape = new Shape);

colors:Array = new Arroy(Ax<FFABEE, @xBEEEFF) ;
alphas tArray = new Array(l, 1);

ratiosidrray = new Arrayv(@, Z55);
matrixiMatrix = new Matrix);

colors, alphaz, ratios, matrix);

@ The beginGradientFill() method takes several
parameters that define how the gradient will be applied
to the fill.

278 Chapter 7

10. Still in the parentheses, if you wish to
do so, enter a gradient spread method,
interpolation method, and focal point
ratio.

11. Add moveTo() and 1ineTo() method
calls to draw a series of lines to create
a closed shape.

12.0n a new line, enter the name of
your Shape object, a period, and the
graphics property, and then call the
endFill() method.

13. On the last line, enter the addChild()
method to add the Shape object to the
display list.

14. Test your movie.

Flash fills your shape with the
gradient @.

The rotation parameter of the
createGradientBox() method takes
radians, not degrees. Using radians is a way
to measure angles using the mathematical
constant pi. To convert degrees to radians,
multiply by the number pi and then divide by
180. Using the Math class for pi (Math.PI),
you can use this formula:

radians = degrees * (Math.PI / 180);

var colors:Array

var ratios:Array

addChi Ld{myShape ;

var myShape :Shope = new Shape();
= new Array(AxFFAEaA, AxAaa6FF) ;
var alphas:Array = new Arrayil, 1)
= hew Arravif, ZBR};
var matrix:Matrix = new Matrix);
matyix.creqteGrodientBox (168, 168, &, 168, 1085;
nyShope .graphics. lineStyle(5, B:FFaeea, 1);
tiyShape .graphics .beqinGradientFi | L{GradientType LINEAR,
colors, dlphos, rotios, motrix);
tiyShape .graphics . moveTo {108, 108%;
nyShope .graphics. lineTo{108, 2868%;
tyShape .graphics. lineTo{208, 268 %;
nyShope .graphics. lineTo{208, 188%;
tyShape .graphics. lineTo{108, 168%;
nyShope .graphics..endFil 1)

o The complete ActionScript code (top) creates a box with a
linear gradient from blue to red (bottom).

Controlling and Displaying Graphics 279

Creating rectangles and circles

The Graphics class provides some meth-
ods to create common types of shapes—
circles, rectangles, ellipses, and rectangles
with rounded corners—saving you much
time and effort. The following tasks lead
you through creating a circle and rect-
angle, but the same process applies to
ellipses and rounded rectangles with
only different methods to consider. Refer
to Table 7.6 earlier in this chapter for a
description of all these methods.

When you use these methods, you still need
to define the line style and the fill colors.

To create a circle:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. As you did in the previous task, create a
new Shape object.

3. On the next line, enter the name of your
Shape object, a period, and the property
graphics; then call the 1lineStyle()
method. Enter parameters in between
the parentheses to define the thickness,
color, and/or transparency.

4. On the next line, enter your Shape
object’s name followed by a period and
the property graphics, and then call
the beginFill() method.

5. With your pointer between the paren-
theses, enter the hex code for a color
and a value for the alpha, separating
your parameters with a comma @.

6. On anew line, enter your Shape object’s
name followed by a period and the
property graphics, and then call the
drawCircle() method.

7. With your pointer between the paren-
theses, enter a number for the x loca-
tion, a number for the y location, and a
number for the radius of the circle @.

war myShope:Shape = new Shape();
myShope .grophics. lineStyle(l, @xFFEe8a, 13;
myShope .graphics..beginfil L{Bx7EGAES, 13;

0 Create a new Shape and define the line style
and fill color.

war myShope:Shape = new Shape();

myShope .grophics. lineStyle(l, @xFFEe8a, 13;
myShope .graphics..beginfil L{Bx7EGAES, 13;
myShope .grophics .drowCircledsd, 68, 367;

e The drawCircle() method is an easy way
to create circles at any x and y position with a
certain radius. This one is at x = 50, y = 60 with
a 30-pixel radius.

280 Chapter?7

var myShape:Shape = new Shape(); 8. On the last line, enter the addChild()

nyShope .graphics. lineStyle(l, B:FFaeea, 1); method to add the Shape object to the
nyShape .graphics .beqinFi L (Ax7EGAES, 1); . .
nyShope .graphics drowCircle(58, 68, 385; display list.

A L nyShape)3 9. Test your movie
Flash draws a circle positioned at the
x and y location with the specified

radius (.

@ The full code (top) includes the addchild() To create a rectangle:

method to display the shape. . . .
Replace steps 6—7 in the previous task with

the method drawRect().

The four parameters of this method are the
x and y positions of the top-left corner, and
the width and height in pixels. The follow-
ing statement creates a rectangle 200
pixels wide, 50 pixels tall, and snuggled in
the top-left corner:

myShape.graphics.drawRect(0, 0, 200,
50);

The endFill() method is unnecessary
when you use the methods that automatically
draw circles and squares.

Advanced Drawing Methods

In addition to the drawing methods that you’ve learned here, Flash Player 10 supports some new
advanced drawing methods that greatly expand the dynamic drawing capabilities.

In particular, drawPath() is a new method that consolidates the moveTo(), 1ineTo(), and
curveTo() methods in a single call to make defining shapes less code heavy. The drawPath()
method relies on a special kind of an array called a vector and represents the drawing methods as
numeric identifiers. The method also keeps track of the direction of how a shape is drawn, which is
called winding. You can draw a shape in either a clockwise direction or a counterclockwise direc-
tion, which has implications for intersecting shapes.

Another new method, drawTriangles(), can render triangles and map images to those triangles
with the purpose of distorting images for 3D rendering.

These are two of several new important additions to the ActionScript drawing tools. Although they
are substantially more complicated than the methods covered here, they can be powerful and
greatly enhance what can be dynamically rendered. See the Adobe Help site for more information
on the advanced methods of the Graphics class.

Controlling and Displaying Graphics 281

Using Dynamic Masks

You can turn any DisplayObject into a
mask and specify another DisplayObject
to be masked with mask, a property of the
DisplayObject class. To do so, you simply
assign one object as the mask property of
the other. For example, in the statement
mypicture.mask = mywindow, the object
mywindow acts as a mask over the object
mypicture. Recall that a mask is an area
that defines the “hole” through which you
can see content.

Because you can control all the properties
of DisplayObjects, you can make your
mask move or grow and shrink in response
to viewer interaction. You can even com-
bine a dynamic mask with the drawing
methods you learned earlier in the chapter
to create masks that change shape.

An effective combination assigns
startDrag() and stopDrag() meth-

ods to a mask and creates a draggable
mask. When you add startDrag() to a
MouseEvent.MOUSE_DOWN handler and
stopDrag() to a MouseEvent.MOUSE_UP
handler, your viewer can control the posi-
tion of the mask.

Traditional Masks

It seems counterintuitive that a mask is
the area in which the masked object is
visible. But if you think of a mask in terms
of how a photographer or a painter uses
one, it makes more sense. In traditional
darkroom photography or in painting,

a mask is something that protects the
image and keeps it visible. A photogra-
pher would shield areas of light-sensitive
paper from exposure to the light, and a
painter would shield certain areas of the
canvas from paint.

To set an object as a mask:

1.

L4

Create a DisplayObject for the object
that will be masked. For this example,
import a bitmap to the Stage and
convert it to a movie clip symbol. In the
Properties inspector, give it a name @.

This movie clip will be masked.

. Create another DisplayObject for the

object that will act as the mask. For this
example, you will create a Shape object
and dynamically draw a shape with the
Graphics class methods.

This Shape object will act as a mask.

. Select the first frame of the main Time-

line, and open the Actions panel.
Create a new Shape object.

On the next line, call the beginFill()
method of the Shape object’s graphics
property to define the color of the fill.

The actual color of the fill won’t mat-

ter for the mask object, since it simply
defines the area of the masked object
that is visible. However, you still need to
define a color.

On a new line, enter your Shape object’s
name followed by a period and the
property graphics, and then call the
drawCircle() method.

With your pointer between the paren-
theses, enter a number for the x loca-
tion, a number for the y location, and a
number for the radius of the circle @.

282 Chapter7

cityscape_mc
| e
[Movie clip I=]

Instance of: Sanfrancisco Swap...

o A movie clip containing a cityscape image will
be the masked movie clip.

war my'Shape:Shape = new Shape);
nyShope .graphics .beginFil | (Bx7EBBES, 1);
tyShape graphics .drowCirc le{208, 206, 128%;

0 A dynamic circle is drawn with the Sprite
object.

war myShope:Shape = new Shape();

myShope .graphics .beginfil L{Bx7EBRES, 17;
myShope .graphics .drowCircle(208, 2608, 12687;
addChi Ld{mwShape’;

cityscape_mc.mask = myShape;

G The mask property makes the circle act as a
mask over the cityscape_mc object.

8. On the next line, enter the addChild()
method to add the Shape object to the
display list.

Flash draws a circle positioned at the x
and y locations at the specified radius.

9. On the next line, enter the name of the
object that will be masked (your movie
clip on the Stage), a dot, the property
mask, an equals sign, and then the object
that will be the mask (the Shape object).

Flash assigns the Shape object as the
mask of the movie clip on the Stage.

10. Test your movie.

The circle of the Shape reveals portions
of the masked movie clip @.

To remove a mask:

To remove a mask, assign the null keyword
to the masked object’s mask property, as
follows:

myImage.mask = null;

The object called myImage will no longer
be masked.

You can specify the main Timeline as the
object to be masked, and all the graphics on
the main Timeline will be masked. To do so,
enter MovieClip(root) as the target path for
the mask property.

The stacking order of the mask object
and the masked object doesn’t matter when
you use ActionScript to create a mask. Either
of them can be in front or in back of the other,
although it is more intuitive to always keep the
mask in front of the masked object.

If the mask object is dynamically created,
it doesn’t necessarily have to be added to the
display list. However, if you want to change the
Stage (and the objects contained in it) or if you
want the user to interact with the mask, you
must put it on the display list before assigning
the mask property.

Controlling and Displaying Graphics 283

Transparent masks

Different levels of transparency in the mask
aren’t recognized and don’t normally affect
the mask. To make the mask function with
alpha levels, you must set both masked
and mask DisplayObjects to use runtime
bitmap caching, either by selecting the
“Use runtime bitmap caching” check box

in the Properties inspector (for objects on
the Stage) or by setting the cacheAsBitmap
property to true in ActionScript. Bitmap
caching is a mode in which Flash treats the
images as bitmaps, storing them in mem-
ory so it does not have to continuously
redraw them.

Transparent masks will reveal the masked
object in gradations, depending on the
alpha value of the mask. This allows you
to create masks with soft, feathered edges
and vignette images.

To make a mask with transparencies:

Set the cacheAsBitmap property of the
mask and the masked object to true before
you assign the mask property, like so:

myImage.cacheAsBitmap = true;
myShape.cacheAsBitmap = true;
myImage.mask = myShape;

The object called myShape will reveal por-
tions of the object called myImage, accord-
ing to its transparent gradient @.

Transparent masks only work in Action-
Script. Masks created on the Timeline by
defining the Layer properties (described in
Chapter 1) don’t support alpha transparencies
even when “Use runtime bitmap caching” is
turned on in the Properties inspector.

0 An object with alpha transparency (above) can
create a softer, more graduated mask (below) if
cacheAsBitmap is set to true.

284 Chapter7

PROPERTIES
[map_mc | @
[Movie clip |~]
Instance of: Symbol 1 Swap...

G You'll create a draggable mask to uncover this

movie clip of New York City called map_mc.

var mySprite:Sprite = new Sprite);
nySprite.grophics.beginfil [{Bx7EBRES, 1);
mySprite.grophics.drowCircle(208, 208, 1687 ;
addChi Ld{mySprite’;

o A simple circle created dynamically will act
as the mask. Use the Sprite object to create
the circle because the Sprite class includes the
startDrag() and stopDrag() methods, and the
Shape object does not.

To create a draggable mask:

1. Create a DisplayObject for the object
that will be masked. For this example,
import a bitmap to the Stage and
convert it to a movie clip symbol. In the
Properties inspector, give it a name @.

This movie clip will be masked.

2. Create another DisplayObject for the
object that will act as the mask. For
this example, you will create a Sprite
object and dynamically draw a shape
with the Graphics class methods.

This Sprite object will act as a dragga-
ble mask. (You can’t use a Shape object
in this example because it is too simple
of an object, and it doesn’t support
drag-and-drop methods).

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. Create a new Sprite object.

5. On the next line, call the beginFill()
method of the Sprite object’s
graphics property to define the color
of the fill.

6. On a new line, enter your Sprite
object’s name followed by a period and
the property graphics, and then call
the drawCircle() method.

7. With your pointer between the paren-
theses, enter a number for the x loca-
tion, a number for the y location, and a
number for the radius of the circle.

8. On the next line, enter the addChild()
method to add the Sprite object to the
display list.

Flash draws a circle positioned at

the x and y locations at the specified
radius @.

Continues on next page

Controlling and Displaying Graphics 285

9. On the next line, set the buttonMode
property of the Sprite object to true.

This allows the Sprite object to
receive MouseEvent events, like the
MOUSE_DOWN event that will be needed
for a drag action.

10. On the next line, enter the name of the
object that will be masked (your movie
clip on the Stage), a dot, the property
mask, an equals sign, and then the
object that will be the mask (the Sprite
object) @.

Flash assigns the Sprite object as the
mask of the movie clip on the Stage.

var mySprite:Sprite = new Sprite);
nySprite.grophics.beginfil [{Bx7EBRES, 1);
mySprite.grophics.drowCircle(208, 268, 1687 ;
addChi Ld{mySprite’;

mySprite.buttonMode = true;
map_mc.mask = mySprite;

@ Make sure that the buttonMode property for your Sprite object is
set to true.

var mySprite:Sprite = new Sprite);
nySprite.grophics.beginfil [{Bx7EBRES, 1);
mySprite.grophics.drowCirele(208, 268, 168);
addChi Ld{mySprite’;

mySprite.buttonMode = true;
map_mc.mask = mySprite;

nySpr ite .addEventListener (MouseEvent \MOUSE_DOWN, startdragging’;
function startdragaing(myevent :MouseEvent hivoid
nySprite. stortbrag

1

nySpr ite . .oddEventListener (MouseEvent JMOUSE_UP, stopdragging’;

function stopdragging(myevent :MouseEvent) ivoid §
nySprite . stopbragl);

0 The event handlers for the MouseEvent.MOUSE_DOWN and
MouseEvent.MOUSE_UP events trigger the dragging and dropping
actions on the Sprite object.

286 Chapter?7

o The circle becomes a draggable mask.

1.

12.

13.

On the next lines, create the

event handler to detect the
MouseEvent.MOUSE_DOWN event that
triggers a startDrag() method on
the Sprite object as follows:

mySprite.
addEventListener(MouseEvent.
MOUSE_DOWN, startdragging);
function startdragging (
myevent:MouseEvent):void {
mySprite.startDrag();
}

When the mouse button is pressed on
the mask, it becomes draggable.

On the next lines, create the event han-
dler to detect the MouseEvent.MOUSE_UP
event that triggers a stopDrag()
method on the Sprite object as follows:
mySprite.
addEventListener(MouseEvent.
MOUSE_UP, stopdragging);
function stopdragging (
myevent:MouseEvent):void {
mySprite.stopDrag();
}

When the mouse is released on the
mask, it stops being dragged @).

Test your movie.

The Sprite acts as a mask, and
the MOUSE_DOWN and MOUSE_UP han-
dlers provide the drag-and-drop
interactivity @.

Controlling and Displaying Graphics 287

Generating Motion
Tweens Dynamically

Motion tweens that are created dynami-
cally are animations generated and con-
trolled purely with ActionScript and are not
created on the Timeline at authortime. You
can use dynamic tweens to create more
responsive interactivity because the anima-
tion can be based entirely on user behav-
ior at runtime. Dynamic tweens also make
editing easier since you can modify the
animation by simply changing ActionScript
parameters rather than items on the Stage.

Dynamic motion tweens are generated
with the Tween class. The Tween class

isn’t normally included in the ActionScript
code, so to use it, you have to explicitly
include the code with the import state-
ment. To generate a tween, you instantiate
a new Tween object and provide seven
parameters:

Object is the instance name of the target
of the motion tween.

Property is the name of the property that
you want to animate. The property needs
to be enclosed in quotation marks. For

example, "x" or "alpha" are valid property
parameters.

Function determines the easing of the
tween. Flash provides many preset easing
classes that you can use; for example,
Strong.easeIn makes your tween ease in.
See Table 7.7 for a list of common easing
functions.

Begin is the starting value of your property.
Finish is the ending value of your property.

Duration determines how long your tween
lasts.

UseSeconds is a Boolean value that deter-
mines whether the Duration parameter is in
seconds (true) or in frames (false).

In addition to basic tweening, the Tween
class has many events that you can use to
detect critical points in the tween (when

it has been completed, for example), and
many methods to control the tweening.
See Table 7.8 for some of the events and
methods of the Tween class.

TABLE 7.7 Common Tween Easing Functions

Function Description
None.easeNone No ease.

Regular.easeln A slow start.
Regular.easeOut A slow end.

Regular.easeInOut

A slow start and a slow end.

Strong.easeln A dramatically slow start.

Strong.easeOut A dramatically slow end.

Strong.easeInOut

A dramatically slow start and end.

Bounce.easeOut

A bouncing effect at the end, where the ending value approaches after several

rebounds toward the beginning value.

Elastic.easeOut
wave manner.

A yo-yo effect at the end, where the ending value approaches in a decaying sine-

288 Chapter7

import fl.transitions.Tween;
import fl.transitions.easing.*;

To create a dynamic tween:

1. Any object of the DisplayObject or
O The import statements are required to include DisplayObjectContainer class can be
the code to use the Tween classes and associated dynamically animated. For this example,
classes. create a movie clip, place an instance
of it on the Stage, and name it in the
Properties inspector.
2. Select the first frame of the main Time-
line, and open the Actions panel.
3. Enter the following two import state-
ments to include the code for the
Tween class and associated classes as
follows @:
import fl.transitions.Tween;
import fl.transitions.easing.*;
The asterisk is a wildcard, meaning that
all the classes in the easing package
will be imported.
Continues on next page
TABLE 7.8 Some Tween Methods and Events
Method or Event Description
stop() Stops the tween.
start() Starts the tween from its beginning.
resume() Starts the tween at the point when it was stopped.
yoyo() Plays the tween in reverse.

TweenEvent.MOTION_FINISH Occurs when the tween finishes.

TweenEvent.MOTION_STOP Occurs when the tween is stopped with the stop() method.

TweenEvent.MOTION_START Occurs when the tween starts with the start() or yoyo() method, but will
not occur when the tween is instantiated.

TweenEvent.MOTION_RESUME Occurs when the tween starts with the resume() method.

Controlling and Displaying Graphics 289

4. On the next line, declare a variable for a
Tween object.

5. On the next line, enter your Tween
object, then an equals sign, followed
by the constructor for a new Tween.
Provide the seven required parameters
(the target object, its property, an easing
function, the beginning value, the end-
ing value, duration, and whether or not
the duration is measured in seconds) @:

mytween = new Tween(myimage, "x",
Strong.easeIn, 0, 100, 2, true);

As soon as the tween is instantiated,
the motion tween proceeds.

6. Test your movie @.

Flash dynamically animates the object
called myimage from x=0 to x=100 in 2
seconds.

To stop a dynamic tween:

Call the method stop() on your Tween
object, like so:

mytween.stop();

The animation stops.

To resume a dynamic tween:

Call the method resume() on your Tween
object, like so:

mytween.resume();

The animation plays from the point where it
was stopped.

To replay a dynamic tween:

Call the method start() on your Tween
object, like so:

mytween.start();

The animation plays from its beginning.

import fl.transitions.Tween;
import fl.transitions.easing.*;
var mytween:Tween;

mytween = new Tween(myimage, "x", Strong.easeTn, @, 108, 7, true);

0 The tween starts immediately when the new Tween is instantiated.

L!!lE;iE;ﬂIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

x=0 x=100
S |

myimage

0 As a result of the dynamic tween, this square
(called myimage) moves from x=0 to x=100 across

the Stage in 2 seconds.

290 Chapter?7

To detect the end of a
dynamic tween:

1.

2.

Continue with the earlier task, “To cre-
ate a dynamic tween.”

Select the first frame of the main Time-
line, and open the Actions panel.

Enter an additional import statement
to include the code for the TweenEvent
class:

import fl.transitions.TweenEvent;

On the next available line, enter an event
listener for your Tween object that listens
for the TweenEvent.MOTION_FINISH
event. For example:

mytween.addEventListenex(
TweenEvent.MOTION_FINISH,
tweendone);

When the animation defined by
mytween finishes, the function called
tweendone will be triggered.

Enter a function that responds to the
TweenEvent @:

function tweendone(myevent:
TweenEvent):void {
mytween.start();

}

In this example, when the tween called
mytween finishes, it repeats itself by
playing from its beginning @.

import fl.transitions.Tween;
import fl.transitions.easing.*;

var mytween:Tween;

mytween.start();

}

import fl.transitions.TweenEvent;

mytween =new Tween(myimage, "x", Strong.easelIn, @, 100, 2, true);

mytween . addEventListener (TweenEvent .MOTION_FINISH, tweendone);
function tweendone(myevent:TweenEvent):void {

0 The event handler listens for the end of the dynamic tween and

replays the animation.

A ——

G When the tween finishes (reaches x=100) at left, the square goes back to x=0 and repeats the

animation, right.

Controlling and Displaying Graphics 291

Customizing
Your Pointer

When you understand how to control
graphics on the display list, you can build
your own custom mouse pointer. Think
about all the different pointers you use in
Flash. As you choose different tools in the
Tools panel—the Paint Bucket, the Eye-
dropper, the Pencil—your pointer changes
to help you understand and apply them.
Similarly, you can tailor the pointer’s form
to match its function in your Flash projects.

Customizing the pointer involves first hiding
the default mouse pointer. Then you must
match the location of your new graphic to
the location of the hidden (but still func-
tional) pointer. To do this, continuously
assign the mouseX and mouseY properties to
the x and y properties of a DisplayObject.

To hide the mouse pointer:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Enter Mouse.hide().

When you test your movie, the mouse
pointer becomes invisible.

To show the mouse pointer:

Use the statement Mouse.show().

To create your own mouse pointer:

1. Create any DisplayObject for your
pointer. For this example, create a movie
clip, place an instance of it on the Stage,
and name it in the Properties inspector.

This movie clip will become your
pointer.

2. Select the first frame of the root Time-
line, and open the Actions panel.

3. Enter Mouse.hide().

When this movie begins, the mouse
pointer disappears.

4. On the next line, add an event listener
(like the following) to the Stage to
detect the MouseEvent.MOUSE_MOVE
event:

stage.addEventListener(MouseEvent.
MOUSE_MOVE, moveCursor);

When the mouse pointer moves on the
Stage, the function called moveCursor is
triggered.

292 Chapter7

Mouse.hide();

stage.addEventl istener (MouseEvent MOUSE_MOVE, moveCursor);
function moveCursor (myevent :MouseEvent) :void
CUrSOr_MC.x = MOUSEX;
CUrSOr_MC.Y = MOUSEY;

nyevent .updotedf terEvent g Q

o The X and Y properties for the movie clip
cursor_mc follow the mouse pointer’s position.
Add the updateAfterEvent() method to the event
object to force Flash to refresh the display and
create smoother motion.

5. On the next line, create the function
called moveCursor, like so:

function moveCursor(myevent:
MouseEvent):void {
cursor_mc.x = mouseX;
cursor_mc.y = mouseY;
myevent.updateAfterEvent();

}

The first two lines of the function assign
the location of the mouse pointer to
the position of the movie clip called
cursor_mc. The third line adds the
updateAfterEvent() method of the
event object, which forces Flash to
redraw the screen whenever the event
happens, independently of the frame
rate. This will create a smoother motion
of your mouse pointer because your
user may be moving the pointer faster
than the screen refresh rate.

6. Test your movie.

When the mouse pointer moves on the
Stage, the movie clip follows to act as
the custom pointer @.

To reactivate the hand cursor when roll-
ing over buttons or other interactive objects,
you must create new event handlers that set
the visibility of your custom cursor to false
for each button. The statement Mouse.show()
can then reactivate the hand cursor. Use a
MouseEvent.MOUSE_OUT event handler to
restore your original settings.

Controlling and Displaying Graphics 293

Putting It Together:
Animating Graphics
with ActionScript

One of the most important concepts in
interactivity is the idea of mapping, or
translating, the property of one object to
the property of another. Nearly all inter-
faces are based on this principle: In scroll-
bars, the vertical position (Y property) of a
slider maps directly to the vertical position
(Y property) of a block of text. In video con-
trols, the horizontal position (X property)

of the scrubber maps directly to the time
position of a video (the parameter in the
FLVPlayback.seek() method). In volume
controls, the rotation of a dial maps directly
to the volume property of a sound.

In the following task, you’ll see how the
Y position of the mouse cursor can map
to the horizontal and vertical scaling of
an image. You can break the interactivity
down to three parts:

Listen for the MouseEvent. MOUSE_MOVE
or Event.ENTER_FRAME event. You want
to provide an immediate visual transla-
tion based on your viewer’s input. As

your viewer moves their mouse over the
controls, they should receive visual/audi-
tory feedback. So, listen for the different
changes in mouse position.

Keep track of the mouseX and mouseY
properties. The mouseX and mouseY prop-
erties represents the horizontal and verti-
cal position of the mouse cursor. As the
user moves their mouse, you can track the
changing values of mouseX and mouseY.

Translate the changing values of mouseX
and mouseY to a range of values appropri-
ate for another set of properties. Do some
algebraic manipulation to map the mouseX
and/or mouseY values to a range that’s

acceptable to your target property. For
example, if you want the mouseX or mouseY
value to map to the transparency of an
object, you’ll want to generate a range of
values from O (transparent) to 1 (opaque).

To translate mouse movements
to visual changes:

1. Create a movie clip, put it on the Stage,
and name it in the Properties inspector.

This movie clip will visually change,
depending on the position of your
mouse cursor €.

2. Create a second movie clip, putin on
the Stage next to the first movie clip,
and name it in the Properties inspector.

The second movie clip will act as the
interface element for the user @.

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. Add an event listener to the interface
element (like the following) to detect
the MouseEvent.MOUSE_MOVE event:

scale_mc.addEventListener(
MouseEvent.MOUSE_MOVE,
scaleface);

The function called scaleface is
triggered whenever the mouse cur-
sor moves over the movie clip called
scale_mc.

5. On the next line, create a function
called scaleface, which changes the
scaleX and scaleY properties of the
first movie clip based on the mouseY
property, like so:

function scaleface(myevent:
MouseEvent):void {
face_mc.scaleX = .5 + (mouseY -
scale_mc.y) / scale_mc.height;
face_mc.scaleY = face_mc.scaleX;

294 Chapter 7

Instance of: ‘:rumbn! 1
== POSITION AND SIZE

|_ Mesvie: cIlp

0 The movie clip called face_mc is placed on the

Stage.

I_‘ 1scn[|: mc
tCID

0 Another movie

Instance of: Symhal 2
| = PosiTION AxD stz

first movie clip.

clip called scale_mc
is placed next to the

The final code can be seen in @. In this
example, we subtract the position of the
scale_mc movie clip from the position
of the mouse cursor, so the resulting
value ranges from O to the height of the
scale_mc movie clip. Dividing by the
height results in a range from O to 1. We
add .5 to this so the face doesn’t actu-
ally get so small that it disappears. So
the final range is from .5 to 1.5, which is
assigned to the scaleX and scaleY of
the Face movie clip.

Test your movie.

When you move your mouse cursor
over the interface element, the Face
movie clip scales up or down, from 50%
to 150% of its original size @.

function scaleface(myevent:MouseEvent):void {

face_mc.scaleY - face_mc.scaleX;

}

scale_mc.addCventListener(Mouselvent .MOUSC_MOVL, scaleface);

face_mc.scaleX = .5 + (mouseY - scale_mc.y) / scale_mc.height;

G The code listens for mouse movement over the movie clip called
scale_mc and translates the mouse position to scale changes of the

movie clip called scale_mc.

0 An example of interactivity that maps user
events to immediate visual changes. Moving the
mouse in the upper portion of the scale_mc movie
clip makes the image smaller (top), while moving
the mouse in the lower portion of the scale_mc
movie clip makes the image larger (bottom).

Controlling and Displaying Graphics 295

About Bitmap Images

One of the hallmark characteristics of Flash
is that the images you create are vector
images, whether you use the drawing
tools in the authoring environment or the
drawing methods of the Graphics class.
For computer-based drawing, vectors are
convenient because they allow you to deal
with lines, shapes, text, and other objects
as a single, resolution-independent unit
rather than as a collection of pixels that
must be controlled individually. However,
as part of the process of displaying the
Flash movie on a computer screen, the
Flash Player has always converted those
vectors to bitmap images behind the
scenes.

ActionScript allows you to directly manipu-
late bitmap images. You’ve already seen
some of the power of bitmap manipulation
when you learned to apply filters. Filters
are a bitmap manipulation technique, and
inside the Flash Player a vector-based
object is converted to a bitmap before
any filter effect is applied to it. Controlling
bitmap images requires that you use the
BitmapData class. Using the properties
and methods of the BitmapData class, you
can create your own filters and graphical
effects to enhance your Flash projects. You
can add subtle touches, like converting an
image to grayscale or fading two images
together. Or add textures and distortions
for more sophisticated visual displays.

296 Chapter?7

Creating and
Accessing Bitmap Data

A bitmap image consists of a series of rows
and columns of colored dots known as
pixels. Each pixel is assigned a single color
value containing a mix of red, green, blue,
and possibly alpha (transparency) values.
When you use the BitmapData class to
manipulate image information, all the
changes are made to the individual pixel’s
color values.

The first step to manipulating a bitmap
image is to create an instance of the
BitmapData class. Sometimes you’ll want
to start with a new, blank image, and many
times you’ll want to manipulate an existing
image, such as a digital photo.

As with most objects in ActionScript,

to create a new BitmapData object

you use the constructor function as in
var myBitmapData: BitmapData = new
BitmapData(100, 200). This statement
creates an object with a width of 100
pixels and a height of 200 pixels. The
BitmapData constructor takes up to four
parameters. You must use the first two
parameters: a width and height for the
image. You can optionally add two more
parameters to specify whether the image
will use transparency (alpha channel)
information and what color to fill the image
with initially.

Previously, you used hexadecimal num-
bers to specify color values in the form
OxRRGGBB, where RR is a two-digit value
for the amount of red in the image, GG

for the amount of green, and BB for the
amount of blue. Several of the BitmapData
methods require you to provide a numeric
color parameter. For a BitmapData object
with no alpha channel, the six-digit
hexadecimal format is still used. If the
BitmapData object has an alpha channel,
however, use eight digits instead of six, like
this: OXAARRGGBSB. In this case, you add
two extra digits that represent the alpha
value after the Ox prefix but before the two
red digits. These two digits indicate the
amount of transparency the color will have.
As with the other color values, the possible
alpha values range from O (00) to 255 (FF).
Note that this is different from the alpha
property of a DisplayObject, which uses a
decimal from O to 1.

After you create a BitmapData object, you
can use methods from the BitmapData
class to manipulate its pixels and colors.
The next step is to assign the BitmapData
object as the bitmapData property of a
Bitmap object. The Bitmap object is the
DisplayObject that you must add to the
display list to make your image visible.

Controlling and Displaying Graphics 297

To create new bitmap data:

1. Select the first frame of the Timeline
and open the Actions panel.

2. Create a new instance of the
BitmapData class, as in:

var myBitmapData:BitmapData =
new BitmapData(200, 100, false,
0x33ee44);

The four parameters are width, height,
alpha transparency, and color. Only the
first two are required. This instance, called
myBitmapData, is a 200-by-100-pixel rect-
angle filled with a certain solid color.

If you set the alpha transparency param-
eter to false, you should use a six-digit
number; otherwise, use an eight-digit
number to include the transparency
information.

At this point, no image is visible. The
BitmapData object is simply information
about a collection of pixels that you can
manipulate and then, at a later point,
put into a Bitmap object to display on
the Stage (explained later).

If you leave off the fourth parameter for
color in the BitmapData constructor func-
tion, the BitmapData object is filled with solid
white pixels by default.

Accessing images dynamically

In addition to creating an image filled with
a single color, as in the previous task,

you can create a BitmapData object with
more interesting image information. You
can create a new BitmapData object from
a bitmap symbol in your Library. Or you
can use the load() method of the Loader
class to retrieve an image from an external
image file, and then copy a snapshot of the
Loader object into a BitmapData object.
This transfer of image information from the
Loader object to the BitmapData object
requires the method draw().

To create bitmap data from
a Library symbol:

1. In your Flash document, add an image
to the Library by choosing File > Import >
Import to Library, browsing to your image
file in the dialog box, and clicking OK.

Your image appears in the Library and is
identified as a bitmap item.

2. Select the bitmap in the Library panel.
In the Library panel’s Options menu,
choose Properties.

The Symbol Properties dialog box
appears.

3. Click the Advanced button to reveal the
Linkage section.

4. In the Linkage section, select the Export
for ActionScript check box. Leave
“Export in frame 17 selected.

5. In the Class field, enter a name to
identify your bitmap. Leave the Base
class as flash display.BitmapData and
click OK @.

A dialog box appears, warning you that
your class could not be found so one
will automatically be generated. Click
OK. In this example, the class hame

for your Library symbol is Jumper. This
new class inherits from the BitmapData
class, which means it has all the

same methods and properties of the
BitmapData class. Your class name will
be used to create new instances of your
BitmapData. Make sure that your class
name doesn’t contain any periods.

6. Select the first frame of the main Time-
line, and open the Actions panel.

7. On the first line, create a new instance of

your BitmapData object, referencing its
class name (created in step 5), like so:

var myBitmapData:Jumper = new
Jumper(384, 256);

298 Chapter 7

Include two parameters for its width and To create bitmap data from an

height. These parameters are required externally loaded image:
as they are for all BitmapData objects.

A new instance of your Jumper class,
which has all the characteristics of the
BitmapData class, is created. The name
of your new instance is myBitmapData @.

1. As in the previous tasks covered in
Chapter 6, create a URLRequest object;
then create a Loader object and call
the load() method to load an external
image @.

2. Create the event handler to detect the
completion of the loading process @.

The bitmap image from the Library is
now stored in a BitmapData object.

Continues on next page

Linkage -
Export for ActionScript
Export in frame 1
Identifier: |
Class: Ijumper | | |
Base class: flash.display.BitmapData <&

Q The Linkage section of the Symbol Properties
dialog box. This Library symbol can be referenced
with the class name Jumper. It will have all the same
properties and methods of the BitmapData class.

var nyBitmophata:Jumper = new Jumper {354 ,2567%;

0 Create a new BitmapData object with the class name that
you defined in the Linkage section of the Symbol Properties
dialog box. The first two parameters of the constructor specify
the width and height of the bitmap, and are required.

var myrequest iURLRequest = new URLRequest ("gymnast.ipg"’;
war iy loader sLoader = new Loader();
iy loader . lood{myrequest ;

@ Create a new Loader object and load an external file as
described in the URLRequest object.

var myrequest iURLRequest = new URLRequest ("gymnast.ipg"’;
war iy loader sLoader = new Loader();
iy loader . lood{myrequest ;

ny loader .contentLoader Info.addEventListener (Event .COMPLETE, imgLooded’;
function imgloaded{event :Event)ivoid

i

0 Create an event handler to detect when the loading is complete.

Controlling and Displaying Graphics 299

3. Between the curly braces of the
event-handler function, create a new
BitmapData object and reference your
Loader object’s width and height prop-
erties to specify its exact dimensions,
like so:

var myBitmapData:BitmapData =
new BitmapData(myloader.width,
myloader.height);

4. On the next line, still within the curly
braces of the function, enter the name
of your BitmapData object, and then
call the draw() method. Provide the
Loader object as its parameter as in the
following:

myBitmapData.draw(myloader);

This draw() method copies the image
from the Loader object into the
BitmapData object.

Your BitmapData object now contains
the image information from the exter-
nally loaded file @.

You can use the draw() method to

copy image data from any DisplayObject
source into your BitmapData object, not just
a Loader object. For example, you can copy
an image from a text field and put it into your
BitmapData object and manipulate text at the
pixel level.

The draw() method has additional
optional parameters so you can alter the
image before putting it into your BitmapData
object. The full parameters for the draw()
method are as follows:

source: The BitmapData object from which
to copy pixel information. This is the first,
required parameter.

matrix: The Matrix object designating the
transformations to the image.

coloxTransform: The ColoxTransform
object designating the color changes to the
image.

blendMode: The way in which the resulting
bitmap will interact with colors below it. Use
constants from the BlendMode class such as
BlendMode.MULTIPLY.

clipRect: The Rectangle object designating
the portion of the source bitmap to copy.

smoothing: A true or false value indicating
whether the image will be smoothed when
scaled or rotated.

You can pass null values for the parameters
if you want to pass values for some but not all
the parameters.

war iy loader sLoader = new Loader();
iy loader . lood{myrequest ;

tieyB i tmapData . draw (my Loader) ;

i

var myrequest iURLRequest = new URLRequest ("gymnast.ipg"’;

ny loader .contentLoader Info.addEventListener (Event .COMPLETE, imgLooded’;
function imgloaded{event :Event)ivoid
var myBitmopbata:Bitmopbata = new BitmopData(my looder .width, mylooder .height;

G When the loading is complete, create a BitmapData object with dimensions
that match the Loader object. Then copy the image data from the Loader into the

BitmapData object.

300 Chapter?7

To remove bitmap data from
a BitmapData object:

In the Script pane, enter the name of your
BitmapData object and a period; then call
the method dispose().

This frees up Flash’s memory by setting
the width and height of the BitmapData
object to O.

Be careful not to try to manipulate or
access a BitmapData object once you have
called its dispose method; at that point, its

width and height are set to 0, and its methods

and properties won’t work.

Displaying the bitmap data

So far, you've only learned to create
bitmap data or load in bitmap data from
another source—either from a Library
symbol or an external file. To display your
bitmap data, you must assign the data to

the bitmapData property of a new object,
the Bitmap object. The Bitmap object is

a subclass of the DisplayObject class,
which you add to the display list.

To display bitmap data:

1. Create an instance of the Bitmap class,
like so:

var myBitmap:Bitmap = new Bitmap();
In this example, your new Bitmap object
is called myBitmap.

2. Assign your BitmapData object to the
Bitmap object’s bitmapData property,
like so:
myBitmap.bitmapData = myBitmapData;

3. Call the addChild() method to add the
Bitmap object to the display list:
addChild(myBitmap);

The bitmap data is now visible on the
Stage @.

Continues on next page

war myrequest :URLRequest = new URLRequest ("gynnast.ipg");
var mylooder :Loader = new Looder();
my looder . load {(myrequest’;

function imglooded(event :Event yivoid

my looder .contentloader Info.addEventl istener {Event (COMPLETE, imgLooded’;

war myBitmopData:Bitmopbata = new BitmopData{my loader .width, mylooder.height’;

myBitmupDutu.druwimylouderi;

@ The highlighted code creates
a new Bitmap object, puts the
BitmapData object into it, and
displays the image on the Stage
(below). Although the image
appears the same as if you added
the Loader object to the Stage,
the image is bitmap data and
you can manipulate all the color
and transparency information for
each pixel.

Controlling and Displaying Graphics 301

As a shortcut, you can pass the
BitmapData object as a parameter when

you create your Bitmap object, and it will be
assigned as the bitmapData property, like so:

var myBitmap:Bitmap = new
Bitmap(myBitmapData);

You can set the smoothing property of
a Bitmap object to true to smooth out the
image when it is scaled @

myBitmap.smoothing = true;

@ The smoothing property of the Bitmap object
helps smooth out rough edges due to scaling and
rotations. The top image has no smoothing, and
the image appears pixilated. The bottom image
has smoothing set to true.

302 Chapter?7

Manipulating
Bitmap Images

There is little use in creating a BitmapData
object just to hold an image and display it
through a Bitmap object. The real fun is in
manipulating the image’s pixels. The most
basic way to do this is to draw color onto
the bitmap.

You can change the color of a single

pixel at a time using the setPixel() and
setPixel32() methods. To cover a larger
area, use the fillRect() method to set

all the pixels in a rectangular portion of

a BitmapData object to the same color;
the floodFill() method lets you fill in a
region of color with a different color, similar
to the Paint Bucket tool in many graphics
programs. Finally, using the getPixel()
and getPixel32() methods you can
identify the color of a pixel in a BitmapData
object, much like the Eyedropper tool that
is common in image-editing programs.

To draw single pixels:

1. Select the first keyframe on the Time-
line, and open the Actions panel.

2. As you have done in the previous
tasks, declare and instantiate a new

BitmapData object with width and
height parameters like the following:

var myBitmapData:BitmapData = new
BitmapData(300, 300);
This new BitmapData object is called

myBitmapData and is 300 pixels by
300 pixels.

. On a new line, enter the name of your

BitmapData object and a period; then call

the setPixel() method. For its param-

eters, specify an x-coordinate, a y-coordi-

nate, and a color in hex code, like so:

myBitmapData.setPixel(100, 100,
0x993300);

This method creates a single pixel

at x =100, y = 100 at a certain color

specified by the hex code @.

. On the next line, create a new Bitmap

object.

. On the next line, assign the BitmapData

object to the bitmapData property of
your Bitmap object.

. On the last line, add a call to the

addChild() method to display the
Bitmap object on the Stage @.

You may have to squint to find the lone
pixel, but you’ll see a single dot rendered
on your Bitmap object on the Stage.

wvar nyBitmapbata:Bitmopbata = new BitmopData{368, 308%;
nyBitmophoto.setPixel (108, 108, Ax993308%;

o A new BitmapData object called myBitmapData is
created, which is 300 pixels square. The setPixel()
method is called. The three parameters of the setPixel()
method are the x- and y-coordinates and the color.

addChi ld{myBitmap);

var myBitmopDota:Bitmopbota = new BitmopDota(388, 388);
myBitmapbota.setPixel (168, 188, AxI93308%;

var nyBitmop:Bitmap = new Bitmap(l;

myBitmap.bitmopbata = myBitmapbaota;

0 The final code draws a red pixel at x =100, y = 100. The
bitmap information is put in a Bitmap object and displayed.

Controlling and Displaying Graphics 303

The setPixel() method only accepts
color values without an alpha channel; that is,
color values specified as six-digit hexadecimal
values. To change a pixel’s color to a color that
is partially transparent, use the setPixel32()
method instead and specify an eight-digit
hexadecimal code.

To fill a rectangle with a color:

1. Select the first keyframe on the Time-
line, and open the Actions panel.

2. As you have done in the previous
tasks, declare and instantiate a new
BitmapData object with width and
height parameters, and parameters
for alpha and the color.

3. On the nextline, create a Rectangle
object with parameters for the x and y
location, and the width and height @.

4. On anew line, enter the name of your
BitmapData object and a period; then

call the fillRect() method with two
parameters, like so:

myBitmapData.fillRect(myRectangle,
0x993300);

For the first parameter, enter the name
of your Rectangle object, indicating the
section of the BitmapData object that
should be colored.

For the second parameter, enter a
numeric color value indicating what
color to set the pixels in the rectangle.

The fillRect() method fills a rectan-
gular region with a solid color.

. On the next line, create a new Bitmap

object.

. On the next line, assign the BitmapData

object to the bitmapData property of
your Bitmap object.

On the last line, add a call to the
addChild() method to display the
Bitmap object on the Stage @.

wor myBitmopbota:Bitmopbato = new BitmopDotadB68, 568, false, Bx3leedd);
vor nyRectongle:Rectangle = new Rectangle(B, B, 106, 288);

o A new Rectangle object called myRectangle is created. This
object represents a rectangular region at the coordinate (0, 0) that

is 100 pixels wide and 200 pixels high.

addChi Ld{myBitmap s

war myBitmopDota:Bitmaplata = new BitmopDotadS68, 568, false, Bx3leedd;
wor myRectonglesRectangle = new Rectangledd, @, 188, 288%;

myBitmopDota.fil IRect{myRectangle, BxhA33087%;
war myBitmap:Bitmap = new Bitmap(y;
myBitmop.bitmopbato = myBitmopbota;

0 The fillRect() method fills the region defined by a Rectangle

object with the color 0xAA3300.

304 Chapter?7

8. Test your movie.

The Bitmap object is drawn on the
Stage, and the rectangular region is
filled in with the color you chose @.

To fill a region with a color:

1. As in the previous tasks, create a
BitmapData object. For this example,
import an image that has one or more
regions of solid color into the Library. In
the Linkage section of the Symbol Prop-
erties dialog box, identify the Library
symbol with its own class name that
extends the BitmapData class @.

G A rectangular portion of the BitmapData
object is filled with a color.

2. Inthe Actions panel, create a new
instance of your Library symbol, giving
parameters for its width and height @.

The new instance is a BitmapData
object.

3. On anew line, enter the name of your
BitmapData object and a period; then
call the floodFill() method with three

Export for ActionScript parameters 0:
Export in frame 1

Xx: The x-coordinate of the pixel to use
as the starting point for the fill operation

Identifier: I

Class: Mouselmage

y: The y-coordinate of the starting pixel

Base class: flash.display.BltmapData

color: The numeric color to set as the
color for the affected pixels

o This bitmap symbol is linked to the class
called MouseImage, which inherits the methods When the floodFill() call is made,

and properties of the BitmapData class. regions of similar color connected to
the x- and y-coordinates are filled with
the new color specified.

war myBitmopDoto:Mouselnage = new MouseImoge (422, 49273

@ A new Bitmapbata object is created from your 4. On the next line, create a new Bitmap
custom class (from the Library). object.

wor myBitmapData:Mouselnage = new MouseImoge(422, 492%; 5. O.n the foIIowmg “ne’ assign your
myBitmapbata.floodFil L(18, 38, Bx55cc33); BitmapData object (the one from the

Library) to the bitmapData property of
your Bitmap object.

Q The BitmapData class’s floodFill() method
takes three parameters: the x and y location of the

starting point of the fill and the fill color. Continues on next page

Controlling and Displaying Graphics 305

6. On the last line, add a call to the
addChild() method to display the
Bitmap object on the Stage @.

7. Test your movie.

Flash first creates an instance of your
Library symbol, which is a BitmapData
object. Then, at the specified coor-
dinate, the region of similar color is
filled with a new color. Finally, the
BitmapData is assigned to a Bitmap
object and displayed on the Stage @.

Unlike many image-editing programs,
which allow you to specify a tolerance level for
filling a region, the floodFill() method only
fills pixels whose color is exactly the same as
the starting pixel.

To get a color from an image:
Call the getPixel() method, as in:
myBitmapData.getPixel(100, 200);

The color information for the particular
pixel at x =100, y = 200 for the BitmapData
object called myBitmapData is returned.
The returned value, however, is not in

the familiar hexadecimal code. To con-
vert the returned value, use the method
toString(16).

The color value provided by the
getPixel() method only includes the red,
green, and blue color information for the
chosen pixel. If you want to know the alpha
channel value as well, you must use the
getPixel32() method instead.

var myBitmopDota:MouseInoge = new Mouselnoge(d22, 4920
myBitmapbata.floodFil {18, 38, BxE5cc3d);

var myBitmap:Bitnop = new Bitmap{myBitmopData);
addChi Ld{myBitmap’;

o The final code, which displays the manipulated
bitmap data in a Bitmap object.

o In this example, the BitmapData object is
filled with continuous regions of color starting
atx =10,y = 30.

306 Chapter?7

Copying, layering, and
blending images

In addition to setting colors directly on an
image, a common image-manipulation task
is to incorporate part or all of one image
into another image. Perhaps you want to
duplicate an image in multiple places on
the screen, or you want to copy several
images onto one for a collage effect. The
BitmapData class offers several ways to

accomplish the task of copying image data.

You have already used the draw() method
to copy a source image to a BitmapData
object; that same method can be used to
copy all or part of a BitmapData object
onto another using the optional param-
eters of the draw() method to manipulate
the image.

(I~] 4 &

1 item [0
Name | Linkage

Daisies.png

Linkage
M Export for ActionScript
™ Export in frame 1

Identifier: |

Class: {Daisies

Base class: flash.display.BitmapData

o This bitmap symbol is linked to the class
called Daisies, which inherits the methods and
properties of the BitmapData class.

In addition, you can make an exact copy
of a BitmapData object with the clone()
method, copy all the colors with the
copyPixels() method (or just a single
color channel using copyChannel()),

and even combine the colors of two
BitmapData objects with the merge()
method. The following tasks demonstrate
the use of these methods.

To make an exact copy of a bitmap:

Call the clone() method and assign the
returned value to another BitmapData
object, like so:

var myCopy:BitmapData =
myBitmapData.clone();

This statement creates an exact duplicate
of the myBitmapData object and assigns
it to the object called myCopy, another
BitmapData object.

To copy part of an image
onto another image:

1. As in the previous tasks, create a
BitmapData object. For this particular
example, import a bitmap image into
the Library. In the Linkage section of the
Symbol Properties dialog box, identify
the Library symbol with its own class
name that extends the BitmapData

class @.

2. Inthe Actions panel, create a new
instance of your Library symbol, giving
parameters for its width and height.

The new instance is a BitmapData
object. Don’t forget the width and
height parameters, because they are
required to create a new BitmapData
object.

Continues on next page

Controlling and Displaying Graphics 307

3. On a new line, create another

BitmapData object, specifying param-
eters for its width, height, alpha, and
color. This BitmapData object will be
the one that first image will be copied
onto. This BitmapData object can con-
tain an image, a solid color, or any other
bitmap information.

In this example, the second BitmapData
object will simply have a solid back-
ground color @.

. On the next line, create a Rectangle
object with four parameters: the x, y,
width, and height values corresponding

6.

On a new line, enter the name of the
second BitmapData object (the colored
rectangle) and then a period. Then call
the copyPixels() method with three
parameters):

sourceBitmap: The BitmapData object
from which to copy pixel information (in
this example, the new instance of the
Library symbol)

sourceRect: The Rectangle object
designating the portion of the source
bitmap to copy

destPoint: The Point object designat-
ing the x- and y-coordinates on the

to the rectangular portion of the source

destination image where the top-left
BitmapData object that you want to copy.

corner of the copied rectangle should
5. On the next line, create a Point object be positioned
with two parameters, which are the 7
x- and y-coordinates of the pixel in the
destination BitmapData object where

you want the top-left corner of the cop-

ied pixels to be placed @.

On the next line, create a new Bitmap
object.

wor srcBitmopDoto:Daizies = new Doisies (328, 212);
var destBitmopData:Bitmapbota = rew BitmopData{298, 212, false, BxffEE6E);

o The BitmapData object from the Library (the daisies picture) will be
the source bitmap, and another BitmapData object that is 290 wide by
212 high filled with a red color will be the destination bitmap.

vor sroBitmopbato:Daizies = new Doisies (320,2123%;
var destBitmopData:Bitmapbota = rew BitmopData{298, 212, false, BxffE06E);

wOr cropping:Rectongle = new Rectonale(75, 35, 163, 126%;
vor destBitmopDatoPoint:Point = new Point{43, 4333

@ The source cropping Rectangle and destination Point objects are
created, with values entered in their constructor functions.

wor srocBitmopDato:aizies = new Doisies (320,2120%;
vor destBitmopDato:Bitmapbato = new BitmapDatal298, 212, false, BxfTEE6A;

war cropping:Rectongle = new Rectongle(75, 35, 183, 126);
var destBitmopDataoPoint:Point = rew Point (43, 43);

destBitnopboto.copyPixe le(srcBitnopbata, cropping, destBitmapbatoPoint};

0 Using the source bitmap, cropping rectangle, and destination point
parameters for the copyPixels() method gives you fine-tuned control
over the copying and pasting of image data.

308 Chapter?7

Rectangle object —

8. On the following line, assign your

BitmapData object (the one that contains
the copied pixels) to the bitmapData
property of your Bitmap object.

9. On the last line, add a call to the

addChild() to display the Bitmap
object on the Stage.

10. Test your movie.

Flash copies the pixels from the first
BitmapData object onto the second
according to the boundaries indicated
by the Rectangle object and placed at
the point indicated by the Point object.
The BitmapData with the copied pixels
is assigned to a Bitmap object and
displayed on the Stage @.

If you want to copy the entire source
image, the easiest way to indicate this is to
use the source BitmapData object’s rect

property as the second parameter, like this:

sourceImage.rect. Any BitmapData

object’s rect property contains a Rectangle
object whose size and boundaries match those

of the BitmapData object.

To place the copied pixels at the
top-left corner of the destination image,
use the topLeft property of the destina-
tion BitmapData object’s rect prop-
erty for the third parameter, like this:
destImage.rect.toplLeft.

addChi ld{myEitmap’;

var srcBitmopboto:Doizies = new Doisies(328, 212%;
var destBitmapDato:BitmapData = new BitmopDota(298, 212, false, @xffEGEEY;

var cropping:Rectangle = new Rectungle(?S, 35, 183, 126);
var destBitmapDatoPoint:Point = new Point(43, 4333

destBitmopbata.copyPixe ls{srcBitnapbata, cropping, destBitmopDatoPoint);
var myBitmapiBitnop = new Bitmap(destBitmapDota’;

— Point object

destBitmapData

Test Movie mode

Q The final code (top) copies a cropped portion of the original
image and places it at a point 43 pixels over and 43 pixels down
from the top-left corner of the destination image.

Controlling and Displaying Graphics

309

To copy one color channel of an
image onto another image:

1. Continue working with the same docu-
ment from the previous task.

2. In the line with the copyPixels()
method call, change the method
copyPixels() to copyChannel().

The copyChannel() method works like
the copyPixels() method except that it
copies only one of the source image’s
color channels (red, green, blue, or
alpha) onto a single channel of the des-
tination image.

This is similar to the command in some
image-manipulation programs that
allows you to separate an image into its
component channels.

3.

Inside the parentheses of the
copyChannel() method call, add two
additional parameters after the three
parameters that are currently there @.
These two parameters are as follows:

sourceChannel: A Number indicating
which color channel should be cop-
ied from the source image. The value
must be 1 (red), 2 (green), 4 (blue), or
8 (alpha).

destChannel: A Number indicating the
color channel in the destination image
into which the copied pixels should be
placed. The possible values are the
same as for the sourceChannel param-
eter (1, 2, 4, or 8).

Test your movie.

This time, instead of copying the entire
image, only one of the color channels is
copied onto the destination image.

var srcBitmapbato:boizies = new Daisies (328, 212);

wor destBitmopDoto:BitmopDato = new BitmopDota(298, 212, folse, @xfFEE08%;
war cropping:Rectongle = new Rectangle(?s, 35, 183, 126);

var destBitmopbotaPoint:Point = new Point{43, 43);

wor myBitmop:Bitmop = new Bitmop{destBitmopDotal;
addChi Ld{myBitmap);

0 The copyChannel() method works like the copyPixels() method, but it copies
only a single color channel from the source image onto a single channel of the
destination image. Here the blue channel (4) of the source image has been copied
into the green channel (2) of the destination image.

310 Chapter7

The copied color channel is still only one
of four channels in the destination image. Any
color that was already present in the other
channels of the destination image will be used
together with the copied channel to determine
the actual color displayed. If you want the
destination image to show only the copied
channel, create the destination image as

solid black, which has a value of 0 in all color
channels.

For an interesting effect, try using the
same image as the source and destination,
and copy one channel (for example, red) into a
different channel (such as green). Depending
on the selected color channels and the bright-
ness of the colors in the original image, this
can create a muted effect or a wildly vivid one.

To create a grayscale representation

of a single color channel from the source
BitmapData object, call the copyChannel()
method three times. Use the same source
channel for all three method calls, and use

a different destination channel (1, 2, and 4)

in each. For example, to create a grayscale
image of the red channel, copy channel 1 to
destination channel 1, copy channel 1 to desti-
nation channel 2, and finally, copy channel 1 to
destination channel 4.

To blend an image onto another image:

1. As in previous tasks, create two
BitmapData objects that will be blended
together into a single image.

The source image will be combined
onto the destination image. The dimen-
sions of the destination image will be
used for the final image.

2. Declare and instantiate a Rectangle
object with parameters indicating the
portion of the source image to copy
onto the destination image.

If you want the entire source image to
be used, remember that you can use the
rect property for the Rectangle object.

3. Declare and instantiate a Point object
with parameters indicating the x- and
y-coordinates where the source image
should be placed in the destination image.

If you want to position the image at the top-
left corner of the destination object, remem-
ber that you can use the rect.topLeft
property for the Point parameter.

4. On anew line, enter the name of the des-
tination BitmapData object followed by a
period; then enter the method merge().

5. Inside the parentheses of the mexge()
method, enter seven parameters to
control how the BitmapData objects will
be blended together @.

Continues on next page

var sreBitmopDota:Surferl = new Surferl (588, 3687;
wvar destBitmapDato:Surfer? = new Surfer2(5AA, SAA%;

destBitmopData.mergelsrcBitmopDato,srcBitnapboto.rect ,
destBitmopData.rect . topleft, 1258, 128, 128, 1258);

Q To use the merge() method, you must create two BitmapData objects
and define the source rectangle and destination points. In this example,
the source rectangle is the entire dimension of the source image (using
the rect property), and the destination point is the top-left corner (using
the rect.topLeft property). Entering 128 for the merge() method’s final
four (multiplier) parameters creates an even blend between the two

BitmapData objects.

Controlling and Displaying Graphics 311

The first three parameters,
sourceBitmap, sourceRect, and
destPoint, are equivalent to those
parameters in the copyPixels() and
copyChannel() methods, as explained
in the previous tasks.

The last four parameters are multi-
plier numbers between 0 and 255,
which control the balance of the colors
between the two images. Each param-
eter represents the color balance of a
single channel (in the order red, green,
blue, and alpha). The larger the value,
the more the balance favors the source
image. For instance, entering 255 for

all the values shows only the source
image. For an even blend between
the two images, enter 128 for each
parameter.

Enter the remaining script to cre-
ate a Bitmap object, and assign the
destination BitmapData object to its
bitmapData property.

To see the resulting image, call
addChild() to put the Bitmap object
on the display list.

When you test your movie, you see a
new image composed of the two origi-
nal images blended together @.

addChi Ld{myBitmap);

var srcBitmapboto:Surferl = new Surferl (568, 5887 ;

wor destBitmopDoto:Surfer? = new Surfer2(588, 5668);

destBitmopData.merge(srcBitnopbata,srcBitmopbata.rect,
destBitmopDato.rect .topleft, 128, 128, 128, 1287;

wor myBitmop:Bitmop = new Bitmop({destBitmapDoto);

0 Using the merge() method, the two surfer images are blended
together. The destination image determines the size constraints.

312 Chapter7

Using Filters on
Bitmap Images

Previously, you learned how filters can

be applied to movie clips to add visual
interest. The same filters can be applied

to bitmap graphics as well, using the
BitmapData class’s applyFilter() method.
There are a few important differences
between applying filters to a BitmapData
object versus DisplayObjects like

movie clips.

First, with DisplayObjects, you use the
filters property, which you can use to
layer multiple filters at a time. Second, the
filters are just an enhancement; they can
be added or removed at any time without
altering the underlying object. However,
when a filter is applied to a BitmapData
object, the object (that is, the information
it contains about pixels and color values)
is directly modified; there is no way to
undo the change or remove a filter from a
BitmapData object.

However, you have a greater degree of
control over the end result when you

apply a filter to a BitmapData object.
Because the filter modifies the pixels of the
BitmapData object directly, any rotation,
scaling, or other transformations applied to
the BitmapData object are reflected in the
filtered result.

The applyFilter() method takes four
parameters. The first three parameters are
the source bitmap, the source rectangle,
and the destination point; these are the
same three parameters you used in the
copyPixels() method and the related
methods you learned about in the previ-
ous tasks. The fourth parameter is the
filter object that is to be applied to the
BitmapData object.

Controlling and Displaying Graphics 313

To apply a filter to a bitmap image:

1. Using any of the techniques described

previously, create your source
BitmapData object (the one that con-
tains the bitmap to which the filter will
be applied).

. On the next line, declare and instantiate
a destination BitmapData object, into
which the output of the filter operation
will be placed @.

If you don’t need to preserve the original
image, you can use the source BitmapData
object as the destination object as well.

Whether you’re using the source
BitmapData object or a new BitmapData
object as the destination object, there
are a few important details to keep in
mind—see the Tips following this task.

. As you did in previous tasks, create a
Rectangle object to define the region
of the source bitmap to which the filter
will be applied and a Point object
defining the point where the result

will be placed within the destination
BitmapData object.

If you want the entire image to be filtered
and positioned to fill the entire source
BitmapData object, remember that

you can use the rect property for the
Rectangle object and the rect.toplLeft
property for the Point property.

. On the following line, declare and

instantiate the filter object that will be
used to alter the bitmap. Enter param-
eters in the constructor function to set
the filter’s properties, or set the proper-
ties directly @.

. On a new line, enter the name of your

destination BitmapData object fol-
lowed by a period, and then enter
applyFilter().

. Enter as parameters for the

applyFilter() method the name of your
source BitmapData object, the name of
your source Rectangle object, the name
of your destination Point object, and the
name of your filter object @.

wvar srcBitmopbata:Daizies
waor destBitmopDoto:BitmopDato = new BitmopDota(328, 212%;

new Doisies (328, 2127;

0 A source bitmap (which will be filtered) and a destination
bitmap (where the filter’s result will be placed) are created.

var sreBitmopDota:Doisies = new Doisies(328, 2127;
war destBitmopData:BitmopDato = new BitmopData (326, 2127;

var myBlur:BlurFilter = new BlurFilter{15, 15);

0 A new BlurFilter object is created.

var srcBitmapbaotaiDaizies = new Doisies (328, 212);
var destBitmopDato:Bitnopbota = new BitmopDato (328, 2127,

war nyBlur iBlurFilter = new BlurFilter{1s, 153;
destBitnopbata.app lyFilter (srcBitmopbata, sreBitmopDato.rect,

destBitmopbota.rect .topleft, myBLur);

@ In this example the filter will be applied to the entire source
bitmap, and it will be placed in the top-left corner of the

destination bitmap.

314 Chapter7

7. Enter the remaining script to cre- Often, the output of a filter such as an
ate a Bitmap object, and assign the outer glow or drop shadow is larger than
destination BitmapData object to its the size of the BitmapData object (or the

. designated Rectangle). If the destination
bitmapData property. BitmapData object isn’t large enough (for

8. To see the resulting image, call example, if its dimensions are identical to the

addChild() to put the Bitmap object on source bitmap’s dimensions), the filter will be
the display list cropped and may not be displayed.

The destination BitmapData object, To know the output size of the filter before-
which contains a copy of the source hand, use the generateFilterRect()
BitmapData object with the filter method on the source I?ltmap. It takes two

)) parameters—the cropping rectangle and the
applied to it, appears on the Stage @. filter object that will be used—and returns a
Rectangle object whose dimensions match
the size of the output from the filter. Use those
dimensions to define the size of your destina-
tion BitmapData object and the destination
point to prevent the filter’s result from being
cropped.

Several of the filters (bevel, gradient
bevel, glow, gradient glow, blur, and drop
shadow) use alpha channel values; conse-
quently, the destination BitmapData object
must be able to store alpha channel values
(its transparent property must be true). If
your source BitmapData object doesn’t have
alpha channel information (its transparent
property is false), you must create a new
BitmapData object rather than using the
source object as the destination object.

wor srcBitmopDoto:Daizies = new Doisies (328, 212%;
var destBitmopData:BitmopData = new BitmopDota (328, 212);

war myBlur:BlurFilter = new BlurFilter({1s, 15%;
destBitmopDato.applyFilter{srcBitmapbota, srcBitmopDoto.rect,

destBitmopDota.rect . topleft, myBlur);

wor myBitmop:Bitmop = new Bitmop{destBitmopDota’;
addChi Ld{myBitmap);

Q The final code (top) and the resultant image (bottom).

Controlling and Displaying Graphics 315

Putting It Together:
Animating Bitmap
Images

Throughout the latter part of this chapter,
you’ve seen ways that bitmap images can
be created, drawn onto, copied, combined,
and changed. Putting these techniques
together allow for interesting and exciting
effects.

As you explore the bitmap-manipulation
capabilities of Flash, chances are you'll
continue to be impressed by their power
and by how quickly they perform. Not only
can you blend images and apply a filter
effect to them, but you can also do it in real
time, over and over again.

To help give your creativity a head start,
the following task demonstrates how to
combine the various bitmap manipulation
capabilities of Flash to create an animated
flame that follows the mouse pointer.

Creating animated flame

This task integrates several of the
techniques you have learned about
BitmapData objects. First, the draw()
method copies a movie clip, the source of
the fire color and shape, into a BitmapData
object. By default, the draw() method cop-
ies the pixels into the top-left corner of a
destination BitmapData object. In this case,
the copied pixels will be placed at the
mouse pointer, so an additional parameter
is used with the draw() method to control
the positioning. Unlike many methods that
accept a Point object to indicate the desti-
nation point, the draw() method requires a
Matrix object for that purpose.

Once the initial fire colors are drawn into
the bitmap, the copyPixels() method
animates the flame moving upward. To do
this, the image is copied onto itself, but the
destination point is set to (0, -3), which cop-
ies the image three pixels above its current
location and creates the illusion of upward
movement.

Finally, a blur filter is applied to the entire
image. As the image is blurred, the orange
of the flame blends with the black back-
ground, making the flame gradually blend
into the black and disappear.

These three tasks—drawing the flame
color, shifting the pixels upward, and
blurring the image—are placed in an
Event.ENTER_FRAME event-handler func-
tion that is called repeatedly, creating the
animation.

To create an animated flame:

1. Choose Insert > New Symbol to create
a new movie clip symbol that will pro-
vide the initial color and shape for the
fire.

2. In symbol-editing mode, select the Oval
tool and draw a small oval shape. Give
the shape a radial gradient fill.

In this example, the three gradient
colors are FFCCOO (75 percent alpha)

on the left, FF6600 (90 percent alpha)

in the middle, and FFFFFF (O percent
alpha) on the right. These values create
a radial gradient that is yellow in the
center and then dark orange fading to
transparent).

3. Using the Align panel, center the oval
over the registration point.

4. Exit symbol-editing mode.

316 Chapter 7

[=] & O

o A radial gradient with shades of yellow and
orange is used to create a movie clip oval to serve
as the basis of the flame.

Linkage
™ Export for ActionScript
Export in frame 1
identifier: | |
Class: [Flame]
Base class: flash.display.MovieClip @

0 In the Linkage section of the Symbol Properties
dialog box for the movie clip symbol, give it a class
name and extend the MovieClip class.

5. Select your new movie clip symbol
in the Library, and select Properties
from the Options menu. In the Linkage
section (you may have to expand the
dialog box by clicking the Advanced
button), identify the Library symbol with
its own class name that extends the
MovieClip class @.

6. Select the first keyframe, and open the
Actions panel.

7. Create a new instance of your movie
clip symbol in the Library.

8. On the next line, create a new instance
of a BitmapData object with parameters
for width, height, alpha, and color.

Use the dimensions of the Stage for
the width and height, false for alpha,
and 0x000000 for the color, making it
black @.

9. Next, add a listener and function to
handle the Event.ENTER_FRAME event.

10.Inside the curly braces of the event-
handler function, create a new Matrix
object.

A Matrix object contains information
about transformations (position and
size changes) that have been or will be
applied to an object. In this case, it will
define the destination position where
the fire movie clip is copied into the
BitmapData object.

Continues on next page

var nyF Lame :Flame = new Flome{);

war nyBitmopbata:Bitmopbota = new BitmopDatal46@, 588, false, AxAABAAAY;

G An instance of the gradient oval movie clip is created, and a new BitmapData
object is created that is 400 pixels by 500 pixels and filled with black.

Controlling and Displaying Graphics 317

1".

12.

On the following line, still within the
function, enter the name of the Matrix
object and a period; then call its
translate() method.

Inside the parentheses of the
translate() method, enter two param-
eters separated by a comma: mouseX
and mouseY + 3 @.

The translate() method adds a posi-
tion change to the transformations in
the Matrix object.

The Matrix object is assigned the
instruction to change position to the x-
and y-coordinates of the mouse pointer.
Whatever object the Matrix object

is applied to will have that position
change applied to it.

The extra three pixels on the y-axis
compensate for the three-pixel upward
motion that will be applied later to keep
the flame centered on the mouse pointer.

13.

14.

15.

16.

On the next line, still within the event-
handler function, enter the name of
your BitmapData object and a period,
and then call its draw() method.

For the parameters of the draw()
method, enter the name of your movie
clip (the color source) followed by the
name of your Matrix object.

On the following line, still within the
event-handler function, create a
BlurFilter object with the parameters
2,10, and 2, as in:

var myBlur:BlurFilter=new
BlurFilter(2,10,2);

This constructor creates a new
BlurFilter object that blurs two pixels
horizontally and ten pixels vertically,
and has a quality setting of 2.

Enter the name of your BitmapData
object and then a period, and then call
the applyFilter() method.

war myF lome:Flane = new Flome);

b

war myBitmopDota:Bitmopbota = new BitmapDato(488, 588, false, AxARABER);

stoge.addEventl istener (Event .ENTER_FRAME, drawF lame);

function drowf lamemyevent :Eventdivoid {
war myMatriz:Matriz = new Motrixz();
myMatrix.translotedmouses, mouseY + 373

0 A new Matrix object is created, and its translate() method is called.
The chosen parameters cause a copy of the oval movie clip to be placed

at the mouse pointer’s coordinates.

318 Chapter7

17.

18.

Inside the parentheses of the 19. On the following line, enter the name
applyFilter() method, enter these of the BitmapData object and a period,
four parameters @: and then call the copyPixels() method.
» The BitmapData object 20.Enter the following parameters for the

» The BitmapData object’s rect copyPixels() method @:

property » The BitmapData object
» The BitmapData object’s » The BitmapData object’s rect
rect.topLeft property property
» The BlurFilter object » The Point object
On the next line, create a Point object 21.0n a new line outside the event-handler
with parameters O and -3, as in var function, create a new Bitmap object

and assign the BitmapData object
to the Bitmap object’s bitmapData

myPoint:Point=new Point(0,-3).

This point will be used by the
copyPixels() method to copy the property.

image over itself three pixels higher Continues on next page

than before.

war nyF Lame :Flame = nes Flome
var myBitmopbato:Bitmopbota = new BitmopDota(48@, 508, false, BxBOAEEE%;

stage.addEventlListener (Event .ENTER_FRAME, drawF lame;
function drawF Lame(nyevent :Event) ivoid §
var myMatrix:Matrix = new Matrix();
yMaty ix.trans late(mousey, mouseY + 3);
nyBitmophata . drowmyF lame, nyMatrix;
war nyBlur iBlurFilter = new BlurFilter{2, 18, 23;
nyBitmophata.applyF i lter (myBitmopData, myBitmopDota.rect, myBitmopData.rect . topleft, myBlur);

i

G The draw() method is used to copy the gradient oval into the BitmapData object. The transforma-
tions in the Matrix object (a position change in this example) determine the placement of the copied
pixels. A blur filter is created and applied to the BitmapData object. This causes the color to fade away
as it moves upward.

war nyF Lame :Flame = nes Flome
var myBitmopbato:Bitmopbota = new BitmopDota(48@, 508, false, BxBOAEEE%;

stage.addEventlListener (Event .ENTER_FRAME, drawF lame;
function drawF Lame(nyevent :Event) ivoid §
var myMatrix:Matrix = new Matrix();
yMaty ix.trans late(mousey, mouseY + 3);
nyBitmophata . drowmyF lame, nyMatrix;
war nyBlur iBlurFilter = new BlurFilter{2, 18, 23;
nyBitmophata.applyF i lter (myBitmopData, myBitmopDota.rect, myBitmopDota.rect.topleft, myBlur);
war myPoint:Point = new Point(@, -33;
nyBitmopbata . copyPixe l={myBitmopbata, myBitmopbata.rect, myPoint);
b

o The copyPixels() method, using a destination Point object of (0, -3), copies the image onto itself,
shifted three pixels upward.

Controlling and Displaying Graphics

319

22.0n the next line, call the addChild()
method to add the Bitmap object to the
display list.

23.Test your movie.

With each passing frame, the movie clip
is copied onto the bitmap at the point
beneath the mouse cursor, blurred, and
shifted upward three pixels, creating an
interactive flame effect @.

var nyF Lame :Flame = new Flome{);
war nyBitmopbata:Bitmopbota = new BitmopDatal46@, 588, false, AxAABAAAY;

stage.addEventl istener (Event .ENTER_FRAME, drawF Lame;
function drowF Lome(myevent :Event hvoid £
war myMatrix:Matrix = new Matrix();
myMatrix.trons late(mouzeX, mousey + 3);
tiyB i tmaphata . draw(myF lame, nyMatrix;
var myBlur :BlurFilter = new BlurFilter{2, 18, 23;
tiyBitmaphata..applyF i Lter (myBitmaplata, myvBitmoplata.rect,
nyBitmophata. rect topleft, myElur);

var myPoint:Point = new Point{@, -3);
nyBitmopbata . copyPixe l={myBitmopbata, myBitmopbata.rect, myPoint);

i

wvar nyBitmap:Bitnap = new Bitnap{myBitmopData’;
addChi Ld{myBitmop’;

@ The final code (above) and the result (below) is a flame that trails from the
mouse pointer.

320 Chapter?7

Controlling Sound

Incorporating sound into your Flash movie
can enhance the animation and interactiv-
ity, and add excitement to even the simplest
project by engaging more of the user’s
senses. You can play background music to
establish the mood of your movie, use nar-
ration to accompany a story, or give audible
feedback to interactions such as button
clicks and drag-and-drop actions. Flash sup-
ports several audio formats for import, includ-
ing WAV, AIFF, and MP3, which enables you
to work with a broad spectrum of files. Flash
also gives you the option of dynamically
loading external MP3 files, providing an easy
way to manage large sound files.

This chapter explores sound and its
associated classes—Sound, SoundChannel,
SoundMixer, SoundTransform, and
SoundEvent. You'll learn how to play
sounds from the Library dynamically with-
out having to assign them to keyframes.
You'll learn how to load sounds that reside
outside your movie and how to start, stop,
and adjust the sound volume or its stereo
effect. You'll learn to access your sound’s
properties and events to time your sounds
with animations or with other sounds.

In This Chapter

Using Sounds 322
Playing Sounds from the Library 323
Loading and Playing External Sounds 325
Controlling Sound Playback 326
Tracking Sound Progress 330
Modifying Volume and Balance 332
Detecting Sound Events 336

Working with MP3 Song Information 338
Visualizing Sound Data 341

All these features give you the flexibility and
power to integrate sounds into your movies
creatively. You can create a slider bar that
lets your viewers change the volume, for
example, or add sounds to an arcade game
that are customized to the gameplay.

Using Sounds

There are several ways you can use
sounds in your Flash movie. The simplest
approach is to import a sound file into
Flash at authortime and manually put it

on a keyframe of your Timeline when you
want it to play. The sound waveform shows
up on your Timeline to give you an idea of
when and how long your sound plays @.
Another way is to import a sound file into
Flash at authortime and dynamically play it
at runtime. Your sound file remains in your
Library until you use ActionScript to play

it @. A third way to use sound is to dynam-
ically load and play an external sound @.
This chapter explores the second and

third ways to use sounds. They allow you
to control when a sound plays, change

its volume and playback through the left
and right speakers dynamically, or retrieve
information about the loading progress or

sound playback progress with ActionScript.

Each sound that you play requires an
instance of the Sound class. After you have
a sound instance, you can use the play()
method to play the sound. When you

play an individual sound, an instance of
the SoundChannel class is created, which
provides you with properties to control
the sound. One of the properties of the
SoundChannel object is a SoundTransform
object, which provides additional controls
for volume and balance between the left
and right speakers.

Sound in keyframe

o A sound placed in a keyframe on the Timeline
is the simplest way to play sound and requires no
ActionScript.

TIMELINE

sap0r s 10 15 20
=1 Layer 1 + +« +» LN

[[RoReRTiEs] Leany I
[_untitled-1 Iv] = o
AL

WO 1111711111 YR '||l.l AL Ll LU b il L
0 T
PR 1111111 ||ll\ ALl '-|.| TR YR btk "
o FIREY Irlr e o ‘H'Inll"r. ikl

1item (o
Name | Linkage
£]% music.mp3

Sound in Library

0 Imported sounds in the Library that are not
placed on the Timeline can still be played at
runtime with ActionScript.

Ed-
f oooocecccccccsnes

&IP3

SWEF file MP3 file

o A separate MP3 sound file can load into a Flash
(SWF) file and play at runtime using ActionScript.

322 Chapter 8

Options menu

—mﬁ New Symbol...

| untitiea-1 I*| & & New Folder
b New Font...
il - Ll New Video...
Rename
. ; | Delete
| W O e
Move to...
1item =] Edit with Adobe Photoshop
Kame = | Linkage Edit with...
)% music.mp3 Edit with Soundbooth
Play
Update...
Properties...
Al 20 FE] T H nent D¥

o Choose Properties from the Library options
menu for each sound you want to control with
ActionScript.

Playing Sounds
from the Library

You can import your sound files into your
Library during authortime, and use Action-
Script to play them when you want at
runtime. This requires that you make your
sound symbols in the Library available

to be called upon in ActionScript. You do
this just as you did in Chapter 7, “Control-
ling and Displaying Graphics,” when you
dynamically made an instance of a movie
clip or a bitmap symbol from the Library.
You extend the functionality of a preexist-
ing class to your Library symbol, so you can
dynamically create new instances of it with
the constructor function. In the case of a
sound symbol, the Sound class is extended.
Set the class name for your sound symbol
from the Linkage section of the Symbol
Properties dialog box, which is accessed
from your Library.

To prepare a sound symbol for
playback with ActionScript:

1. Import a sound file by choosing File >
Import > Import to Library and selecting
an audio file.

Your selected audio file appears in the
Library. You can import these sound
formats: AIFF (Mac), WAV (Windows),
and MP3 (Mac and Windows). More
formats may be available if QuickTime
is installed on your system.

2. Select the sound symbol in your Library.

3. From the Options menu, choose
Properties @).

The Symbol Properties dialog box
appears.

Continues on next page

Controlling Sound 323

4. Click the Advanced button. In the Link-
age section of the expanded dialog
box, select the Export for ActionScript
check box. Leave “Export in frame 1”
selected.

5. In the Class field, enter a name to
identify your sound class. Leave the
Base class as flash.media.Sound and
click OK ©.

A dialog box might appear that warns
you that your class could not be

found and will automatically be gener-
ated @. Click OK. In this example, the
class name for your Library symbol is
GuitarsLoop. This new class inherits
from the Sound class, which means it
has all the same methods and proper-
ties of the Sound class. Your class name
will be used to create new instances of
your sound. Make sure that your class
name doesn’t contain any periods.

To play a sound from the Library:

1. Continue with the previous task, and
select the first frame of the main Time-
line. Then open the Actions panel.

2. On the first line, create a new instance
of your sound symbol, referencing its
class name, like so:

var mySound:GuitarsLoop=new
GuitarsLoop()

A new instance of a Sound object,
specifically the sound in your Library,
is created.

3. Enter the name of your new sound
instance followed by a period and then
the method play() ©.

Your sound instance begins to play.
The sound will play through once and
then stop.

Linkage
W Expart for ActianSeript
W Export in frame 1
Identifier:
Class: |GuitarsLoop |[#] [
Base class: flash.media.Sound 1 [w] [#

0 The new class GuitarsLoop will be created for
this SWF file. It inherits the properties and methods
of the Sound class.

A definition for this class could not be found in the classpath, 50 one will be
' auromarically generated in the SWF file upon export.

7] Don't show again.

Lancel

o Click OK to dismiss the warning box. It tells you
that your custom class will be created for you.

war mySound:Guitarsloop = new GuitarsLoopd);
mySound .p Loy

0 A new instance of the GuitarsLoop class is
created and given the name mySound. This is an
instance of the sound in your Library. Then the
play() method plays the sound.

The play() method plays the sound
instance whenever it’s called, even when the
sound is already playing. This situation can
produce multiple, overlapping sounds. To pre-
vent overlaps of this type, use the stopAl1l()
method of the SoundMixer class before
playing the sound again. This technique
ensures that a sound always stops before it
plays again.

324 Chapter 8

Loading and Playing
External Sounds

Each time you import a sound into your
Library, that sound is added to your SWF
file, increasing its size. Sounds take up an

enormous amount of space, even with MP3

compression, so you have to be judicious
with your inclusion of sounds. One way
to manage sounds so that your file stays
small is to keep sounds as separate files
outside your Flash movie. Use the load()

method to bring MP3 audio files into Flash

and play them only when you need them.
(MP3 is the only format allowed.)

The method load() requires one param-
eter, which is a URLRequest object that
provides the path to the MP3 file.

wor myRequest:URLRequest = new URLRequest ("music.mp3®);

o A URLRequest object defines the path to the file

that you want to load. In this example, the file is

called music.mp3, and it resides in the same folder

as the Flash movie.

var myRequest :URLRequest = new URLRequest ("music.mp3");
wvar mySound:Sound = new Sound{)

0 The second line of code creates an object
called mySound, an instance of the Sound class.

var myRequest :URLRequest = new URLRequest ("music.mp3");
var mySound:Sound = new Sound{)

mySound . lood{myRequest) ;

mySound.p Loy

G The load() method loads the sound file from
the location provided in the URLRequest object,
and the play() method plays the sound.

AAC Sound Files

To load and play an external sound:

Declare and instantiate a URLRequest
object with the constructor function new
URLRequest(). Provide the path to the
MP3 file as the parameter @.

The path is a string, so enclose it in
quotation marks. You can load an MP3
file locally or from the Internet with an
absolute URL. If the file resides in the
same directory as your Flash movie, you
can enter just the name of the file.

. Declare and instantiate a Sound object

with the constructor function new

sound() ©.

. On the next line, enter the name of your

Sound object followed by a period. Enter
the method load() and provide the
URLRequest object as the parameter.

. On the next line, enter the name of

your Sound object followed by a period.
Enter the method play() and provide
optional parameters for the initial offset
or looping @.

As soon as your movie begins, it will
load the MP3 file and play.

. Save your Flash file in the same folder

as the MP3 file. Test your movie.

As soon as your movie begins, Flash
uses the URLRequest object to find your
external MP3 file, and then uses the
Sound object to load and play it.

You can also dynamically load and play AAC sound files by using the NetStream class just as you
do with external videos, as described in Chapter 6, “Managing External Communication.” The AAC
format is an alternative to the MP3 format and is the same sound codec used in the H.264 format

for F4V video files.

Controlling Sound 325

Controlling Sound
Playback

The play() method of the Sound object can
take three optional parameters. The first
parameter is the offset, which is a number
that determines how many milliseconds into
the sound it should begin playing. You can
set the sound to start from the beginning

or at some later point. If you have a 20-sec-
ond sound, for example, calling the method
play(10000) makes the sound play from the
middle at 10 seconds. It doesn’t delay the
sound for 10 seconds but begins immedi-
ately at the 10-second mark.

The second parameter is a number that
determines how many times the sound
loops. A setting of 2 plays the entire sound
two times with no delay in between. This is
useful for sounds that are specifically cre-
ated where the end matches seamlessly
with the beginning, so you can loop it over
and over again.

The third parameter for the play() method
takes a SoundTransform object, which
provides control over the volume and left-
right balance. You'll learn more about the
SoundTransfoxrm object later in this chapter.

If no parameters are defined for the play()
method, Flash plays the sound from the
beginning and plays one loop.

To set the initial starting
time for a sound:

Assign the first parameter of the play()
method of your Sound object in milliseconds.

Your sound plays from that point (in mil-
liseconds) forward @.

To set the number of loops:

Assign the second parameter of the play()
method of your Sound object to the num-
ber of times you want the sound to loop.

Your sound loops the specified number of
times @.

@D Unfortunately, you have no way of telling
the play() method to loop a sound indefi-
nitely. Instead, set the second parameter to a
ridiculously high number, such as 99999. An
alternate approach is to create an event han-
dler that plays the sound again when the end
is detected. Sound events are discussed later
in this chapter.

Stopping sounds

You stop a sound from playing by using a
method of the SoundChannel class. When
you call the play() method of a Sound
object, an instance of the SoundChannel
class is generated. There is one
SoundChannel instance for each sound
that plays.

var myJound:Sound = new Soundd);
tiySound . Load {myRequest.)3
nySound . p Loy {14888) ;

war myRequest iURLRequest = new URLRequest ("music.mp3")

0 In this example, the play() method
has a parameter of 14000, which makes
the sound play beginning at 14 seconds.

war my3ound:Sound = new Sound()
nySound . Lood {myRequest.)3
tiySound play (8,303

var myRequest iURLRequest = new URLRequest ("music.mp3");

0 In this example, the play() method has
its first parameter set at O and its second
parameter set at 3, which makes the sound
play from the beginning and loop three times.

326 Chapter 8

To assign the SoundChannel instance to a
variable that you can later reference, use
the following syntax:

var myChannel:SoundChannel =
mySound.play();

This statement plays the sound associ-
ated with the object called mySound. The
returned SoundChannel object is putin
the variable called myChannel. You can
now stop the sound by calling the stop()

method of the SoundChannel object, like so:

myChannel.stop();

Stop sound

“ |stopbutlon_bln
[Button G This button
instance on the

Instance of: Symbal 1 swq Stage is named
stopbutton_btn.

vor myRequest URLRequest = new URLRequest ("music.mp3");
war mySound:Sound = new Sound();
nySound . Load (nyRequest) ;

war myChanne L :SoundChanne | = mySound.ploy (s

0 When the play() method of a Sound object is
called, it returns a SoundChannel object. In this
example, the SoundChannel object is put in the
variable named myChannel.

stopbutton_bth.oddEventl istener (MouseEvent .CLICK, stopsound);
function stopsound{myevent :MouseEvent) {
myChonne | .stop) ;

G The event handler for the stopbutton_btn
button on the Stage. The stop() method to stop
a sound is called from the SoundChannel object
called myChannel.

To stop a sound:

1. Continue with the file you used in the
earlier task, “To load and play an exter-
nal sound.”

2. Create a button symbol and place an
instance of it on the Stage. In the Prop-
erties inspector, give it a name @.

In this example, you’ll assign an event
handler for a mouse click on the button
to stop the sound from playing.

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. Replace the statement with the play()
method with this one:

var myChannel:SoundChannel =
mySound.play();

This statement plays the sound and
puts the returned SoundChannel object
of the play() method in a new vari-
able (of a SoundChannel type) called
myChannel @.

5. Create an event handler to detect a
mouse click on the button on the Stage.

6. Between the curly braces of the event
handler function, enter the name of
your SoundChannel object, a period,
and then the method stop(), like so @:

myChannel.stop();
7. Test your movie.

The external sound begins to play.
When you click your button, the sound
stops.

@D You can also use the stopAll() method
of the SoundMixer class. This stops all
sounds in your Flash movie. Use the statement
like so: SoundMixer.stopAll().

Controlling Sound 327

Resuming sounds

You can keep track of the exact position of
your sound playback with a SoundChannel
property, position. The position prop-
erty indicates the current position in mil-
liseconds. This is a useful property if you
want to keep track of when a sound was
stopped so you can resume playback at
that same position.

When a user stops a sound, you can cap-
ture the SoundChannel position property
at that moment by putting it in a variable.
Then, when the user wants to resume the
sound, you can call the play() method of
the Sound object and provide the number
of offset seconds as the first parameter.

To resume playback of a sound:

1. Continuing with the file you used in the
preceding task, place another instance
of the button symbol on the Stage, and
give it an instance name in the Proper-
ties inspector @.

In this example, you’ll assign an event
handler for a mouse click on this sec-
ond button to resume the sound at the
point where it was stopped.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Insert a statement in your ActionScript
code to declare a variable of an integer
data type @.

This variable will hold the current posi-
tion of the sound playback. An integer
is any whole number (no decimals).
Since the current position is measured
in milliseconds (whole numbers), an
integer data type is appropriate.

Stop sound

=

Resume sound

PROPERTIES

’7“ |resumebutlon_btn |
[Button |+]

Instance of: Symbal 1

o A second button instance on the
Stage is named resumebutton_btn.

var myRegquest iURLRequest = new URLRequest ("music.mp3");
var myJound:Sound = new Sound();

mySJound . loodimyRequest);

var myChanne | :SoundCharnel = mySound . play s

war pausedposition:zint;

@ The highlighted statement declares a new
variable called pausedposition, which will hold an
integer data type.

328 Chapter 8

4. In the event handler for the button that

stops the sound, insert a statement
before the stop() method, like so @:

pausedposition = myChannel.
position;

Before the sound is stopped, the cur-
rent position in the playback of the
sound is assigned to your variable.

. Create another event handler to detect

a mouse click on your second button on
the Stage.

This event handler will resume playback
of the sound.

6.

Between the curly braces of the event
handler for the resume function, enter
the following statement @:

myChannel = mySound.play(
pausedposition);

The current position of the paused
sound is used as the first parameter

of the play method, which determines
the offset point. The sound plays at the
point where it was paused.

Test your movie.

The external sound begins to play.
When you click the first button, the
sound stops. When you click the sec-
ond button, the sound resumes.

tiyChanne L stop (s
¥

stopbutton_btn.oddEventListener (MouseEvent .CLICK, stopsound);
function stopsound{myevent :MouseEvent) §
pausedpozition = myChannel .position;

m Before the sound stops, capture the current position in the
sound and assign that value (in milliseconds) to the variable called

pausedposition

¥

resumebutton_btn.addEventl i stener (MouseEvent .CLICK, resumesound’;
function resumesound{myevent :MouseEvent)
yChannel = mySound .play (pousedposition);

o The event handler for the resumebutton_btn button on the
Stage. The play() method uses the variable pausedposition to
start playing at the point at which it stopped.

Controlling Sound 329

Tracking sound To track the sound progress:

1. Continue with the file you used in the

Progress task “To load and play an external

You can also compare the position prop- sound”

erty of a sound with the total 1length of a 2. Delete the last line of code (the play()
sound to keep track of its current progress method), and replace it with a statement
while it’s playing. that declares a SoundChannel object @.
position is a property of the SoundChannel 3. Add an event handler to the Sound
object, and length is a property of the object that detects the Event.COMPLETE
Sound object. However, keep in mind that event.

the length property reflects the total length 4. In the event-handler function,

of the downloaded file. If the sound hasn’t respond by playing the sound and
completely downloaded, the 1length prop- adding another listener for the

erty will be shorter than the actual length. Event.ENTER FRAME event @
To track the sound accurately, create an -

event handler to wait for the sound to com-
pletely download.

The ENTER_FRAME event happens at the
frame rate of your movie. You can use
this event to continuously monitor the

In the following example, you check progress of your sound.

whether the sound has been completely
downloaded using the Event.COMPLETE
event. Once the download is complete, you
begin playing the sound and display the
ratio of SoundChannel position to Sound
length as a proportion of a horizontal bar,
much like the progress bar of a preloader.

var myRequest :URLRequest = new URLRequest ("soulLoop.mp3™);
var mySound :5ound = new Sound();

mySound . load (myRequest);

var myChannel :SoundChannel;

0 The file called soulLoop.mp3 is loaded by a Sound object called
mySound. On the last line, a new SoundChannel object called
myChannel is then declared.

var myReguest :URLRequest = new URLRequest ("soulloop.mp3” J;
var mySound :Sound = new Sound();

mySound . load {(myRequest };

wvar myChannel : SoundChannel;

mySound .addEventListener (Event.COMPLETE , loaded};
function loaded(myevent :Event):void {

myChannel = mySound .play();

stage.addEventListener (Event.ENTER_FRAME , showprogress);
}

0 The listener on mySound listens for the completion of the loading
of the sound. When that happens, the sound plays and a new
listener is added.

330 Chapter8

5. In the ENTER_FRAME event-handler func-
tion, divide the SoundChannel position
property by the Sound length property
and assign the fraction to the horizontal
scale of a movie clip, like so @:

bar_mc.scaleX = myChannel.position
/ mySound.length;

The position property measures the
current location of the sound in millisec-
onds, and the 1length property is the
total length of the song in milliseconds.
The division creates a fraction that
changes the width of a movie clip called
bar_mc.

6. Create a rectangular movie clip and
place it on the Stage. In the Properties
inspector, name it bar_mc.

7. Test your movie @.

The bar_mc movie clip slowly grows to
its full width as the song progresses.

var myReguest :URLRequest = new URLRequest ("soulloop.mp3” J;
var mySound :Sound = new Sound();

mySound . load (myRequest };

wvar myChannel : SoundChannel;

mySound .addEventListener (Event.COMPLETE , loaded};
function loaded(myevent :Event):void {
myChannel = mySound .play(J);
stage.addEventListener (Event.ENTER_FRAME , showprogress);

function showprogress (myevent :Event) {
bar_mc.scaleX = myChannel .position / mySound .length;
i3

@ The function called showprogress scales a movie clip on the
Stage in proportion to the progress of the sound.

bar_mc

_ © e dork bar on the let s &
movie clip called bar_mc.

Controlling Sound 331

Modifying Volume
and Balance

Flash gives you full control of its volume

and its output through either the left or right
speaker, which is known as pan control. With
this level of sound control, you can let your
users set the volume to their own prefer-
ences, and you can create environments that
are more realistic. In a car game, for example,
you can vary the volume of the sound of
cars as they approach or pass you. Playing
with the pan controls, you can embellish the
classic Pong game by making the sounds of
the ball hitting the paddles and the walls play
from the appropriate sides.

To modify the volume and balance in a
sound, you must provide a third parameter
in the play() method (recall that the first
parameter determines the playback offset,
and the second parameter determines

the number of loops). The third parameter
requires an object of the SoundTransform
class, like so:

var newVolume:SoundTransform = new
SoundTransform();

Assign a new value for the volume prop-
erty of the SoundTransform object, and

then pass the object as the third parameter
of the play() method, like so:

newVolume.volume = .5;
mySound.play(0, 0, newVolume);

To change the volume or pan of a
sound that’s already playing, you can
assign the SoundTransform object to
the soundTransform property of the
SoundChannel object. For example:

var newVolume:SoundTransform = new
SoundTransform();

newVolume.volume = .5;

myChannel.soundTransform =
newVolume;

The first statement creates a new
SoundTransform object called newVolume.
Next, the volume property of the new
SoundTransform object is changed. Finally,
the SoundTransform object is assigned

to the soundTransfoxrm property of the
SoundChannel object associated with the
sound that’s playing.

The SoundTransform class has properties
such as volume for modifying the volume
and pan for modifying the left-right speaker
balance. See Table 8.1 for a descrip-

tion of these and other properties of the
SoundTransform class.

TABLE 8.1 SoundTransform Properties

Property Description

volume Number (O =silent to 1=full volume)

pan Number (-1=left to 1=right)

leftToLeft Number(0 to 1) determining how much of the left input plays in the left speaker
leftToRight Number(O to 1) determining how much of the left input plays in the right speaker
rightToleft Number(0 to 1) determining how much of the right input plays in the left speaker
rightToRight Number(O to 1) determining how much of the right input plays in the right speaker

332 Chapter 8

To change the volume or
balance before playback:

1.

Declare and instantiate a URLRequest
object with the constructor function new
URLRequest() and provide the path to
an MP3 file as the parameter.

On the next line, declare and instanti-
ate a Sound object with the constructor
function new Sound().

On the next line, enter the name

of your Sound object followed by a
period. Enter the method load() and
provide the URLRequest object as the
parameter.

Flash loads the external MP3 file
requested in the URLRequest object.

On a new line, declare and instan-
tiate a SoundTransform object
with the constructor function new
SoundTransform().

The SoundTransform object will provide
the properties to change a sound’s
volume and balance.

. On the next line, enter the name of your

SoundTransform object followed by a
period. Enter the property volume (to
control volume level) or pan (to control
balance) followed by an equals sign and
avalue @.

. On a new line, enter the name of your

Sound object followed by a period. Enter
the method play(). For the parameters,
enter 0, 5, and then the name of your
SoundTransform object @. Assign the
returned value of the play() method to
a SoundChannel object.

. Test your movie.

The play method plays your sound, and
it uses the SoundTransform object to
modify the volume or pan.

var myRequest iURLRequest = new URLRequest {"music.mp3");
war mySound:Sound = new Sound();
nySound . Lood {myRequest.) ;

var newdetting:SoundTransform = new SoundTransform);
newsetting.valume = 8.5;

0 The volume property of this SoundTransform object is set
to 50 percent of the full volume.

var myRequest iURLRequest = new URLRequest {"music.mp3");
war mySound:Sound = new Sound();
nySound . Lood {myRequest.) ;

var newdetting:SoundTransform = new SoundTransform);
newsetting.valume = 8.5;

var myChannel :SoundChanne | = mySound .play(@, &, newSetting};

0 Pass the SoundTransform object called newSetting as the
third parameter in the play() method. This sound will play
from the beginning, loop five times, and play at 50 percent

of its full volume.

Controlling Sound 333

To change the volume or
balance during playback:

1.

Create a button and place an instance
on the Stage. In the Properties inspec-
tor, give the button instance a name @.

You will assign an event handler to a
mouse click over this button that will
change the volume of a sound as it plays.

On the first frame of the Timeline in the
Actions panel, declare and instantiate a
URLRequest object with the constructor
function new URLRequest() and provide
the path to an external MP3 file as the
parameter.

On the next line, declare and instanti-
ate a Sound object with the constructor
function new Sound().

On the next ling, enter the name of your
Sound object followed by a period. Enter
the method load() and provide the
URLRequest object as the parameter.

Flash loads the external MP3 file
requested in the URLRequest object.

On a new line, declare and instan-
tiate a SoundTransform object
with the constructor function new
SoundTransform().

The SoundTransfoxrm object will provide
the properties to change a sound’s
volume and balance. In this example,
the SoundTransform object is called
newSetting.

On the next line, enter the code:

var myChannel:SoundChannel =
mySound.play();

This statement plays the sound and
puts the returned SoundChannel object
of the play() method in a new vari-
able (of a SoundChannel type) called
myChannel @.

7. On the next line, create an event

handler that detects a mouse click on
the button on the Stage. Between the
curly braces of the function, add the
statement:

newSetting.volume -= 0.1;

This statement subtracts 0.1 from the
volume property of the SoundTransform
object each time the button is clicked.

8. On the next line, still within the function
of the event handler, add the statement:

myChannel.soundTransform =
newSetting;

This statement assigns the
soundTransform property of the
sound to the settings in your

Decrease volume

b4

PROPERTIES

’_“ |decrease_btn
Button

Instance of: Symbaol 1 Sw

o This button instance on the
Stage is named decrease_btn.

var myRequest :URLRequest = new URLRequest ("music.mp3");
var myJound:Sound = new Sound();
mySound . load{myRequest) ;

var newSetting:SoundTronsform = new SoundTransformd);

war myChannel sSoundChanne L = mySound .play s

0 The external MP3 sound called music.mp3
plays.

334 Chapter 8

newSetting SoundTransform object
to decrease the volume level @.

9. Test your movie.

The external MP3 file loads and plays.
Each time the user clicks the button, the
volume property of the SoundTransform
object called newSetting decreases by
0.1. The new volume is then set while
the sound still plays.

To switch the left and right speakers:

Assign the following values for a
SoundTransform object:

leftToLeft = O;

leftToRight = 1;
rightToRight = 0;
rightToLeft = 1;

Changing these properties of the
SoundTransform object and passing it

to the soundTransform property of the
SoundChannel object or as the third param-
eter of the play() method redistributes the
sound inputs to switch the speakers @.

As a shortcut, you can also set the
properties of a new SoundTransform object
at the time you instantiate it. The first param-
eter in the constructor is the volume and

the second is the pan. For example, var
myNewSettings:SoundTransform = new
SoundTransform(.5, 1); is the same as the
following code:

var myNewSettings:SoundTransform =
new SoundTransform();
myNewSettings.volume = .5;
myNewSettings.pan = 1;

newSetting.volume —= 8.1;

h

decrease_bthn.addEventl istener(ﬁouseEvent .LCLICK, decreaseVo lume) H
function decreasevolume(nyevent iMouseEvent hivolid {

myChanne | . soundTransform = newSetting;

G The event handler for the decrease_btn button on the
Stage. Each time the button is clicked, the volume property of
the SoundTransform object called newSetting decreases by O.1.
The SoundTransform object is assigned to the soundTransform
property of the SoundChannel object to take effect.

Left input Right input

leftToLeft

Left speaker Right speaker

rightToRight

o The properties of the
SoundTransform object that
determine the distribution of
sounds between the left and
right speakers. The values are
measured between 0 and 1.

Controlling Sound 335

Detecting Sound
Events

You can detect when a sound finishes play-

ing by using the Event.SOUND_COMPLETE
event of the SoundChannel class. For
example, consider the following script:

myChannel.addEventListener(
Event.SOUND_COMPLETE, finished);

function finished(myevent:Event):void

{

// sound finished
}

In this script, when the sound associ-
ated with the SoundChannel object called
myChannel is complete, Flash triggers the

function called finished and executes any

actions there.

The Event.SOUND_COMPLETE event lets

you control and integrate your sounds in
several powerful ways. Imagine creating
a jukebox that randomly plays selections

from a bank of songs. When one song fin-
ishes, Flash knows to load a new song. Or
you could build a business presentation in
which the slides are timed to the end of the
narration. In the following task, the comple-

tion of the sound triggers the loading and
playing of a second sound.

To detect the completion of a sound:

1.

Declare and instantiate a URLRequest
object with the constructor function new
URLRequest() and provide the path to
an MP3 file as the parameter.

. On the next line, declare and instanti-

ate a Sound object with the constructor
function new Sound().

. On the next line, enter the name of your

Sound object followed by a period. Enter
the method load() and provide the
URLRequest object as the parameter.

Flash loads the external MP3 file
requested in the URLRequest object.

Warning! Event.SOUND_COMPLETE on Windows Vista

Be aware that the SOUND_COMPLETE event may not work reliably on Windows Vista. You should
keep your eyes (and ears) close to the Adobe Flash developer blogs for any new developments

on this issue.

If you do encounter problems, one workaround would be to use the SoundChannel object’s
position property and the Sound object’s 1length property to keep track of the progress of

the sound (see the task “To track the sound progress”).

336 Chapter 8

4. On a new line enter the name of your
Sound object followed by a period.
Enter the method play() without any
parameters. Assign the returned value
to a new SoundChannel object @.

The play() method plays your sound.

5. On the next line, add an event listener
to the SoundChannel object. Listen for
the Event.SOUND_COMPLETE event 0

6. Add the function that gets triggered at
the Event.SOUND_COMPLETE event 0.

When the sound finishes, the function
is called. In this example, a new Sound

object is created and loads and plays a
second sound.

I a sound is looping, the Event.SOUND_
COMPLETE event is triggered when all the
loops have finished.

Keep in mind that the Event.SOUND_
COMPLETE event is registered to the
SoundChannel object. If you stop the sound
and begin playing it again with the play()
method, a new SoundChannel instance is
generated, so your original listener will not
detect the completion of the sound. You’ll
need to register the listener again to the
new instance.

nySound . Lood {myRequest.) ;

var myRequest iURLRequest = new URLRequest {"musicl.mp3");
war mySound:Sound = new Sound();

war myChannel sSoundChanne = mySound . play (s

Q The external MP3 sound called musicl.mp3 plays.

war myRequest :URLRequest = new URLRequest {"musicl.mp3");
war my3ound:Sound = new Sound();
my3Jound . Lood{myRequest ;

war myChonnel :SoundChanne L = mySound.ploy);

myChannel .addEventl istener (Event .S0UND_COMPLETE, finished);

0 The event listener detects when the sound is completed and
will trigger the function (not yet written here) called finished.

war myRequest iURLRequest = new URLRequest {"musicl.mp3");
wor mySound:Sound = new Sound();
mySound . Load{myRequest;

war myChonnel :SoundChanne L = mySound.plow);

myChonnel .oddEventlistener (Event .SOUND_COMPLETE, finished);

function finished{myewvent :Event’y {
war myRequestZ:URLRequest = new URLRequest ("musicZ.mp3");
war mySoundZ:Sound = new Sound();
mySoundz . Lload{myRequesta);
myChonnel2 = mySoundZ.ploy);

G The function called finished begins playing a second
sound file.

Controlling Sound 337

Working with MP3
Song Information

MP3 files are one of the most popular for-
mats for storing and playing digital music.
The MP3 compression gives a dramatic
decrease in file size, yet the quality is main-
tained at near-CD levels. Another virtue of
MP3 files is that they are capable of car-
rying simple information about the actual
audio file. This metadata (descriptive
information about data) tag was originally
appended to the end of an MP3 file and
called ID3 version 1. Information about the
music file (such as song title, artist, album,
year, comment, and genre) could be stored
at the end of the song file in the ID3 tags
and then detected and read by decoders.

Currently, MP3 files use ID3 version 2. One
of the more notable improvements was
moving the data to the beginning of the
song file to better support streaming. It
now also supports several new fields, such
as composer, conductor, media type, copy-
right message, and recording date.

Flash can read the ID3v2 data of an MP3
file. Each bit of information about the song,
or tag, corresponds to a property of the
id3 object of the Sound object. So, for
example, mySound.id3.TALB refers to the
album name of the MP3 file. Table 8.2 cov-
ers all the ID3 version 2 Sound properties.

How do you retrieve these ID3 properties?
You must first create an event handler that
is triggered when available ID3 tags are
present after a play() method is called.
Using the event Event.ID3 is the only way
you can access the ID3 data.

In the following task, you’ll load an external
MP3 file and display the track information
in the Output panel.

TABLE 8.2 1D3v2 Sound Properties

Property Description

id3.COMM Comment

id3.TALB Album/movie/show title

id3.TBPM Beats per minute

id3.TCOM Composer

id3.TCOP Copyright message

id3.TDAT Date

id3.TDLY Playlist delay

id3.TENC Encoded by

id3.TEXT Lyricist/text writer

id3.TFLT File type

id3.TIME Time

id3.TIT1 Content group description

id3.TIT2 Title/song name/description

id3.TIT3 Subtitle/description refinement

id3.TKEY Initial key

id3.TLAN Languages

id3.TLEN Length

id3.TMED Media type

id3.TOAL Original album/movie/show title

id3.TOFN Original filename

id3.TOLY Original lyricists/text writer

id3.TOPE Original artists/performers

id3.TORY Original release year

id3.TOWN File owner/licensee

id3.TPE1 Lead performers/soloists

id3.TPE2 Band/orchestra/accompaniment

id3.TPE3 Conductor/performer refinement

id3.TPE4 Interpreted, remixed, or
otherwise modified by

id3.TPOS Part of a set

id3.TPUB Publisher

id3.TRCK Track number/position in set

id3.TRDA Recording dates

id3.TRSN Internet radio station name

id3.TRSO Internet radio station owner

id3.TS1Z Size

id3.TSRC International Standard Recording
Code (ISRC)

id3.TSSE Software/hardware and settings
used for encoding

id3.TYER Year

id3.WXXX URL link frame

338 Chapter 8

var myRequest :URLRequest = new URLRequest ("music.mp3");
war mySound:Sound = new Sound();
mySound . Lood {nyRequest. 3

mySound . play(3;

0 The external MP3 sound called music.mp3
plays.

mySound .addEventListener {(Event . ID3, gotmetodato);
function gotmetadotalmyevent :Event)ivoid {
trace! "title=" + mySound.id3.TIT2);

0 The Event.ID3 event happens when metadata
from the MP3 file is received. The property
id3.TIT2 refers to the artist’s name.

To retrieve song information
about an MP3 file:

1. Declare and instantiate a URLRequest
object with the constructor function new
URLRequest() and provide the path to
an MP3 file as the parameter.

2. On the next line, declare and instanti-
ate a Sound object with the constructor
function new Sound().

3. Onthe next line, enter the name of your
Sound object followed by a period. Enter
the method load() and provide the
URLRequest object as the parameter.

Flash loads the external MP3 file
requested in the URLRequest object.

4. On the next line, enter the name of
your Sound object followed by a period.
Enter the method play() without any
parameters).

The play() method plays your sound.

5. Add an event listener to your Sound
object. Listen for the Event.ID3 event
as in the following:

mySound.addEventListener(Event.
ID3, gotmetadata);

When Flash receives the ID3 metadata
from the loading MP3 file, it triggers the
function called gotmetadata.

6. Add the function called gotmetadata
that gets triggered by the Event.ID3
event. Between the curly braces of the
function, add a trace statement that
displays the ID3 property, like this @:

function gotmetadata(
myevent:Event):void {
trace("title=" +
mySound.id3.TIT2);
}

Continues on next page

Controlling Sound 339

In this example, the trace action displays
the title information of the MP3 song and
appends it to the string "title=".

7. Add more trace statements within the
curly braces of the function to retrieve
all the ID3 information you want @.

8. Save your FLA file in the location where
it can find your MP3 file based on
the target path you entered for your
URLRequest object.

When you test your movie in the Flash
authoring environment, the Output
panel displays the ID3 information @.

Using text fields, you can have Flash
dynamically display the ID3 information on the
Stage (rather than in the Output panel). You’ll
learn more about controlling text fields in
Chapter 10, “Controlling Text.”

When an MP3 file contains a mix of ID3v2
and ID3v1 tags, the event handler onID3 is trig-
gered twice.

To view the ID3 files of your MP3 files
outside of Flash:

In Windows: Right-click the MP3 file, and
select Properties > Details.

Using Mac OS X: In iTunes, select the song in
your playlist, and press Cmd-I.

var myRequest :URLRequest = new URLRequest (“music.mp3" s
var nySoundzSound = new Soundf)

mySound . load{myRequest 3

mySound .ploy(;

niySound .addEventL istener (Event . ID3, gotmetadata);
function gotmetadatolmyevent :Event)zvoid {
tracef "title=" + mySound.id3.TIT2);
tracef "ortist=" + mySound.id3.artist);

o The two trace statements display the artist’s
name and song title in the Output panel in test
movie mode when the Event.ID3 event occurs.

title=Hey Jack Kerouac
artist=18,088 Maniacs

0 The Output panel in
Flash test movie mode.

340 Chapter 8

Visualizing Sound Data

You’ve probably seen sound represented
visually as waves or vertical spikes like
mountain peaks, or perhaps even vibrating,
shimmering lines and colors on a computer
screen saver or a laser light show. These
graphical effects are tied to different aspects
of a sound; as the sound changes, so do
the graphics, giving the users a direct visual
representation of what they’re hearing. This
kind of visualization is an effective way of
providing feedback that a sound is playing.

You can provide similar graphical repre-
sentations of your sound in Flash. The
SoundChannel class provides two proper-
ties, leftPeak and rightPeak, that indicate
the volume levels for the left speaker and
right speaker at any given moment during
the sound. By continuously retrieving both
properties with the Event.ENTER_FRAME
event, or with a Timer object, you can
display their values graphically, perhaps by
scaling a vertical bar proportionately, for
example.

In the following task, an external MP3
file is loaded and plays dynamically, and
two rectangular movie clips change their
scaleY properties to reflect the values of
leftPeak and rightPeak.

0 Two rectangular
movie clips on
the Stage, the left

named barleft_mc
[P MBI ond the right (stown

= barnight_mc selected) named
barright_mc. Their
(Moviecle | registration points
Instance of: Symbol 1 [Swag| T at the bottom
edge.

To visualize left and
right volume levels:

1. Create a movie clip symbol of a verti-
cal bar and place two instances on the
Stage. In the Properties inspector, give
each instance a different name. Make
sure that the registration point for both
movie clips is at the bottom edge @.

These two bars will change in height
to reflect the volume levels of the right
and left speakers.

2. Declare and instantiate a Sound object
with the constructor function new
Sound().

3. Instantiate a URLRequest object with the
constructor function new URLRequest()
and provide the path to an MP3 file as
the parameter.

4. Enter the name of your Sound object
followed by a period. Enter the method
load() and provide the URLRequest
object as the parameter.

Flash loads the external MP3 file
requested in the URLRequest object.

5. Call the play() method for your Sound
object and assign the returned value to
a new variable typed to a SoundChannel
object, as follows:

var myChannel:SoundChannel =
mySound.play();

Flash plays the sound and a new
SoundChannel object is created for it @.

Continues on next page

war mySoundiSound = new Sound(;
wor myRequest :URLRequest = new URLRequest("music.mp3");
mySound . Load{nyRequest.)

war myChanne | sSoundChannel = mySound.ploy(s

o The external MP3 sound called music.mp3
plays.

Controlling Sound 341

6. Add an event listener to the stage that
detects the Event.ENTER_FRAME event,
like so:

stage.addEventListener(
Event.ENTER_FRAME, everyframe);

Flash triggers the function called
everyframe at the frame rate of the
Flash movie.

7. Add the function to respond to the
Event.ENTER_FRAME event.

8. Between the curly braces of the func-
tion, enter the statements that change
the movie clips, like so @:

function
everyframe(event:Event):void{
barleft_mc.scaleY =
myChannel.leftPeak;
barright_mc.scaleY =
myChannel.rightPeak;

}

The leftPeak and rightPeak proper-
ties of the SoundChannel object vary
from O to 1. They are assigned to the
scaleY property of the movie clips to
vary their heights.

9. Make sure your external MP3 file is in
the location where your Flash file can
find it based on the information you
provided in the URLRequest object. Test
your movie @.

Flash provides an even more sophisti-
cated way of looking at raw sound data with
the computeSpectrum() method of the
SoundMixer class. This method returns data
for the frequency spectrum, which is the mea-
sure of the strength of the sound at each tone
(where low frequencies are low-pitched tones
and high frequencies are high-pitched tones).
For more information and examples, look in
Flash Help. Choose the category ActionScript
3.0 and Components > ActionScript 3.0 Devel-
oper’s Guide > Rich Media Content > Working
with sound > Accessing raw sound data.

stoge.addEventlistener (Event .ENTER_FRAME, everyframe);
function everyframe{event :Event’rvoid
bor left_mc.scale¥ = myChannel . leftPeak;
borright_mc.zcale¥ = myChonnel.rightPeak;

G The Event.ENTER_FRAME event handler
continuously scales both rectangular movie clips
according to the sound’s leftPeak and rightPeak
properties.

8 o6

0 The two rectangular movie clips move up and
down synchronized to the sound.

342 Chapter 8

Controlling
Information Flow

As your Flash movie displays graphics and
animation and plays sounds, a lot can be
happening behind the scenes that is not
apparent to the viewer. Your Flash docu-
ment may be tracking many bits of informa-
tion, such as the number of lives a player
has left in a game, a user’s login name

and password, or the items a customer

has placed in a shopping cart. Getting and
storing this information requires variables,
which are containers for information. You've
worked with variables in previous chapters
when you created new instances and gave
them names. You'll see how variables are
essential in any Flash movie that involves
complex interactivity because they let you
create scenarios based on information that
changes. You can modify variables and

use them in expressions—formulas that
can combine variables with other variables
and values—and then test the information
against certain conditions to determine how
the Flash movie will unfold.

This chapter is about managing informa-
tion by using variables, expressions, and
conditional statements. When you under-
stand how to get, modify, and evaluate

In This Chapter

Using Variables and Expressions 344
Loading External Variables 346
Storing and Sharing Information 354
Loading and Saving Files on the

Hard Drive 360
Modifying Variables 364
Concatenating Variables and Dynamic

Referencing 366
Testing Information with Conditional

Statements 368
Providing Alternatives to Conditions 372
Branching Conditional Statements 374
Combining Conditions with Logical

Operators 378
Looping Statements 380

information, you can direct your Flash
movie and change the graphics, animation,
and sound in dynamic fashion.

Using Variables
and Expressions

In Chapter 3, “Getting a Handle on Action-
Script,” you learned the basics of variables—
how to declare them, assign values to them,
and combine them in expressions. Now that
you have more experience with variables

in different contexts, this chapter takes
another, more refined look at using vari-
ables and expressions in ActionScript.

You can use variables and expressions as
placeholders within your ActionScript. In
virtually every method that requires you
to enter a parameter, you can substitute
a variable or an expression instead of a
fixed value. You can also use variables or
expressions when you assign new val-
ues to an object’s property. For example,
instead of a frame number as the param-
eter for the basic method gotoAndStop(),
use a variable. Changing the variable
before calling the method makes Flash go
to different frames according to the value
of the variable.

You can also use a variable as a simple
counter. Rather than taking the place of a
parameter, a counter variable keeps track
of how many times certain things occur for
later retrieval and testing. A player’s score
can be stored in a variable so that Flash
knows when the player reaches enough
points to win the game. Or a variable can
keep track of a certain state. You can set
the variable myShield = true if a charac-
ter’s force field is turned on, for example,
and change the variable to myShield =
false if the force field is turned off.

344 Chapter 9

var frameNumber :Number = 5;

Q The variable frameNumber is defined to hold
Number values and initialized to 5.

To initialize a variable:

In the first keyframe of the main Timeline,
declare a variable using the var statement,
entering the name of the variable and a
colon, and then specifying a data type. This
example uses the data type Number. Assign
a numerical value to your variable).

It’'s important that your variable’s data
type be the same as the parameter or prop-
erty that you want it to replace. For example,
the gotoAndStop() method takes an Integer
as its parameter, which represents the frame
number. If you try to call the gotoAndStop()
method with a variable holding a Number
data type, the code may fail—not because a
Number can’t be used as its parameter, but
because a Number allows decimals, which the
gotoAndStop() method doesn’t understand.

The Scope of Variables

When you initialize variables, they belong
to the timeline where you create them.
This is known as the scope of a variable.
If you initialize a variable on the main
Timeline, the variable is scoped to the
main Timeline. If you initialize a variable
inside a movie clip’s timeline, the variable
is scoped to that movie clip.

Think of a variable’s scope as its home.
Variables live on certain timelines, and
if you want to use the information inside
a variable, first you must find it with a
target path. This process is analogous
to targeting objects. To access either an
object or a variable, you identify it with a
target path.

Controlling Information Flow 345

Loading External
Variables

You don’t have to store the initial value of
a variable inside your Flash movie. Flash
lets you keep variables outside your Flash
movie in a text document that you can load
whenever you need the variables. This
way, you can change the variables in the
text document easily and thereby change
the Flash movie without having to edit the
movie. You can build a quiz, for example,
with variables holding the questions and
answers. Keep the variables in a text docu-
ment, and when you want to change the
quiz, edit the text document.

There are many ways in which data can be
structured in an external document. One
common way is to write variables and their
values in the Multipurpose Internet Mail
Extensions (MIME) URL-encoded format

(or simply, URL variable format), which is a
standard format that HTML forms and CGI
scripts use. In the URL variable format, vari-
ables are written in the following form:

variablei=valuel8variable2=
value2&variable3=value3

Each variable/value pair is separated from
the next by a single ampersand (&) symbol.

captionl=Here's the new baby!EcoptionZ=0ur
trip to the Greot Wall of Ching.&coption3=A
bequtiful shot of the beach at sunset.

Q Three variables and their values written in URL
variable format. In this example, the variables are
called captioni, caption2, and caption3, and are
saved in a text document called data.txt.

The URLLoader and
URLVariables classes

To access the variables in your external
text document, use the URLLoader class. It
provides properties, methods, and events
to handle and manage incoming (and
outgoing) data. It is similar to the Loader
class that you learned about in Chapter 6,
“Managing External Communication,” to
load in external images and SWF files. You
use the method load() to begin loading
the data from the external text document.
The location of the file is provided in a
URLRequest object.

You can test how much of the external data
has loaded with the ProgressEvent.
PROGRESS event, or define actions to take
when external data finishes loading with
the Event.COMPLETE event handler.

When the download is complete, the
contents of the text file are put in the data
property of your URLLoader object, where
you can further process the data to getitin
the correct form that you want it in with the
URLVariables class.

To load external variables:

1. Launch a text editor, and create a new
document.

2. Write your variable names and their
values in the standard URL variable
format @.

3. Save your text document in the same
directory where your Flash movie will
be saved.

It doesn’t matter what you name your
file, but it helps to keep the name
simple and to stick to a standard three-
letter extension.

4. In Flash, open a new document.

5. Select the first keyframe of the root
Timeline, and open the Actions panel.

346 Chapter 9

6. In the Script pane, create a URLLoader
object. Don’t pass any parameters for
the constructor.

7. On anew line of the Script pane, create
a URLRequest object with the path to
the text file that contains your variables.

If your SWF file and the text file will
reside in the same directory, you can
enter just the text file’'s name, as in this
example. Enclose the path or filename
in quotation marks @.

8. On the next line, enter the name of your
URLLoader object, and then call the
method load().

9. As a parameter of the load() method,
enter the URLRequest object @.

Flash calls the 1load() method, which
loads the variable and value pairs from
the external text file into the URLLoader
object. The data comes into the
URLLoader object’s data property.

vor myURLLooder :URLLooder = new URLLooder();
vor myURLRequest :URLRequest = new URLRequest("doto.txt";

o The new URLLoader object and the URLRequest
object are created. The URLRequest object points
to the external file with the variables.

vor myURLLooder :URLLooder = new URLLooder();
vor myURLRequest :URLRequest = new URLRequest("doto.txt";
niyURLLooder . load{myURLRequest 3 ;

G The load() method loads the data.txt file into
Flash.

vor myURLLoader sURLLogder = new URLLoader();
var mylURLRequest iURLRequest = new URLRequest(“doto.txt");
nivURLLooder . load{myURLRequest ;

nivURLLooder .addEventL iztener (Event .COMPLETE, datalk;
function dotalk{myevent :Eventyrvoid {

/¢ do something with the looded doto
+

0 The Event.COMPLETE event handler for the
URLLoader object will be triggered when the
loading operation completes. Nothing is written
inside the event handler yet.

Receiving the loaded data

After you call the load() method for your
URLLoader object, the data isn’t always
immediately available to the Flash Player.
For instance, there is often a slight delay
as the data downloads, even if the text
document is local. You shouldn’t try to

do anything with the data until you know
all of it has downloaded. You can detect
when the data is completely loaded using
the Event.COMPLETE event handler of the
URLLoader object. Always wait for the
Event.COMPLETE event handler to be called
before attempting to use the loaded data.
Typically, this means that you place the
actions that use the loaded data within the
event-handler function.

To detect the completion
of loaded data:

1. Continuing with the file you used in the
preceding task, select the first frame
of the main Timeline, and open the
Actions panel.

2. On anew line at the end of the cur-
rent script, enter the name of your
URLLoader object followed by a period,
and then call the addEventListener()
method to detect the Event.COMPLETE
event.

3. On the next line, enter the function for
the event handler. Between the curly
braces of the function, add actions to
be performed using the loaded data 0.

The loaded variables are added as the
data property of the URLLoader object.
To access a variable and its value pair,
you use a URLVariables object, as
described in the next task.

Controlling Information Flow 347

Decoding the loaded data

If your external text document contains
data in the form of variable/value pairs as

in the example discussed earlier, you can
use the URLVariables object to parse the
data so you can use the variables. There
are several ways you can go about this. You
can create a URLVariables object, and then
call the decode() method and pass the
URLLoader object’s data property as the
parameter. This will put the variables in the
URLVariables object, as shown here:

var myURLVariables:URLVariables =
new URLVariables();

myURLVariables.decode(
myURLLoader.data);

You can also pass the URLLoader object’s
data property directly to the URLVariables
object when you create it. The preceding
statements can also be written as:

var myURLVariables:URLVariables =
new URLVariables(myURLLoader.data);

Now the loaded variables and values
can be used as long as you include your
URLVariables object in the target path,
such as:

myURLVariables.captioni

Another way to access the variable/value
pairs from your URLLoader object is to
define the dataFormat property of the
URLLoader object before you load the data
from the text document. You can set the
property like so:

myURLLoader.dataFormat =
URLLoaderDataFormat.VARIABLES;

Your variables would be available to
you through the data property of the
URLLoader object, such as:

myURLLoader.data.captioni

To decode URL-encoded data:

1. Continuing with the file you used in the
preceding task, select the first frame of
the main Timeline and open the Actions
panel.

2. Inside the function of the Event.
COMPLETE event handler, create a new
URLVariables object and pass the
URLLoader.data property to the con-
structor @.

A new URLVariables object is created,
and the data from the URLLoader object
is decoded.

3. Add statements to reference and use
the variables in the URLVariables
object. In this example, the variables
captioni, caption2, and caption3 are
used to assign text to three text fields
on the Stage @.

Or

1. Continuing with the file you used in the
preceding task, select the first frame of
the main Timeline and open the Actions
panel.

myURLLoader . Lood{myURLRequest 3

var myURLLooder :URLLoader = new URLLoader();
var myURLRequest :URLRequest = new URLRequest("data.txt");

myURLLoader .oddEventl istener (Event .COMPLETE, dotaOk);
function dotolk{myevent :Event’zvoid {
var myURLVoriobles:URLVaricbles = new URLMoriobles ({myURLLooder.data’;

G The URLLoader.data information is passed to the URLVariables
object for handling URL-encoded information.

348 Chapter 9

war mylURLLoader :URLLoader - new URLLoader{ s
wur myURLReyuesL URLRequest. = new URLReguesLd dulu, LxL");
A B L nader - | nod(nyl IR Beguest);

miyURLLoader .addCventListensr {Cvent LCONPLETE, catadk);
Tl ivn duludk {eyevent :Bvenl) ovwid {
wor myUKLVOr Lables sULVar 1ables - new UKLVariobles (nyUMLLoader .data);
textficldl.toxt = myURLVaricbles.coptiond;
textfisld2.text = myURL¥aricbles .caption2;
teytt {RIM3.tRYE = mylIRlWariah|es.coptinn;

!

— textfield1

—— textfield2

o ip o e e Wt f —7— tEXT field with
China.
contents of
Harer's the new baby! variables
A boutiful
shot of the
besch ot

sunsi.

o The full code (top) assigns the values of each
of the variables in the external text document to
three text fields on the Stage. These text fields
are captions to images (shown as generic gray
squares). Change the external text document to
change the captions without having to open and
edit your Flash document.

wir myURLLooder :URLLoader = new URLLooder(;

war myURLRequest tURLRequest = new URLRequest("data.txt"’;
myURLLoader .dataFormat = URLLoaderDataFormat .WARIABLES
myURLLoader . load{myURLRequest.) ;

myURLLoader .oddEventl istener {Event .COMPLETE, dotali);
function datalk{myevent:Event)ivoid {

@ An alternative way of loading URL-encoded data
is to set the dataFormat property of your URLLoader
object to the string “variables” or the equivalent
constant URLLoaderDataFormat.VARIABLES.

var myURLLooder :URLLoader = new URLLoader();
vor myURLRequest iURLRequest = new URLRequest(“dato.txt"y;
mylURLLoader .dataFormat = URLLoaderDataFormat MARIABLES;
nylURLLoader . Load {myURLRequest) ;
nyURLLoader .addEventlistener {Event .COMPLETE, datalk);
function datalk{myevent Event)avoid {
textfieldl.text = myURLLoader .data.coptionl;
textfieldZ.text = myURLLoader .data.captionz;
textfield3.text = myURLLoader .dota.coption3;
}

0 If you set the dataFormat of your URLLoader,
you can access the variables directly from the
data property.

2. Insert a new line before the load()
method of the URLLoader object. Assign
the URLLoaderDataFormat.VARIABLES
property to the dataFormat property of
the URLLoader object @.

The dataFormat property determines
how the data from the external text file
will load. Other options include BINARY
or TEXT. (TEXT is the default value.)

3. Inside the Event.COMPLETE event-
handler function, add statements to
reference and use the variables in the
URLLoader’s data object. In this exam-
ple, the variables captioni, caption2,
and caption3 are used to assign text to
three text fields on the Stage).

@D The default value for the dataFormat
property of the URLLoader object is
URLLoaderDataFormat.TEXT.

If you are loading numeric data from
external text files, you need to convert the
values into numeric values by using methods
such as int(), uint(), or Number().

Write your variable and value pairs in

an external text file without any line breaks

or spaces between the ampersand and equals
sign. Although you may have a harder time
reading the file, Flash will have an easier time
understanding it.

Controlling Information Flow 349

Using XML data

The previous examples showed you how
to load and decode URL-encoded vari-
ables that are in the format of variable/
value pairs. However, when you have more
complex data, using XML is a better way to
structure, read, and use the data.

XML is similar to other markup languages
such as HTML, which contains information
surrounded by tags that are interpreted by
a computer. HTML tells the Web browser
how to display information—make this text
bold, put this image on the left, and so on.
XML is more generic than HTML in that it
lets you define information according to
its content rather than its appearance. For
example, you can identify one piece of
information as a name and another piece
of information as an address. XML also lets
you order the data in an outline, or tree-
like, structure. For example, the data that
was loaded in the previous tasks (the cap-
tion text for three pictures on the Stage)
were represented in URL-encoded format,
like so:

captioni=Here's the new baby!&
caption2=Our trip to the Great
Wall of China.&caption3=A beautiful
shot of the beach at sunset.

In XML, you could write the same data as:

<slidecaptions>

<mycaption>Here's the new baby!
</mycaption>

<mycaption>Our trip to the Great
Wall of China.</mycaption>

<mycaption>A beautiful shot of the
beach at sunset.</mycaption>

</slidecaptions>

The data within the XML document is
clearer and gives more opportunities to
order the data. XML consists of nodes,
which are the individual parts that can be
arranged in a hierarchy. In the previous
example, <slidecaptions> is the root
node, with <mycaption> and the text val-
ues as child nodes.

In Flash, the process of loading XML data
is similar to other methods of loading data:
You use the URLLoader class and its load()
method to start loading an XML document,
and you define an Event.COMPLETE event
handler so you know when all the data

is loaded. Once the data is loaded, you
can use the methods of the XML object to
parse, or decode, the data and retrieve
the values. Use the dot operator (.) and
the array access operator ([]) to traverse
parent and child nodes to access their
properties.

Although it’s beyond the scope of this
book to cover XML in depth, the follow-
ing example will help you understand
how Flash can load simple XML data and
extract the information.

350 Chapter9

To decode XML data: 7. Inside the function of the
Event.COMPLETE event handler,
create a new XML object and

pass the URLLoaderx.data property
to the constructor 3.

1. Launch a text editor, and create a new
document.

2. Write your data in XML format, as

shown in @.
o Data from the external XML document

is put inside the XML object. You can
now use dot syntax to access the nodes

3. Save your text document in the same
directory where your Flash movie will

be saved. and information in the XML object (here,
In Flash, open a new document. it's called myXML).
5. Select the first keyframe of the main Continues on next page

Timeline, and open the Actions panel.

6. As described in the earlier tasks, create
a URLLoader and load the external XML
document. Create an event handler to
detect the completion of the loading
process @.

==lidecaptions=

-mycaption=Here is the new baby!</mycoptions=

-mycaption=0ur trip to the Great Wall of Ching.</mycaption=
amveaption= A& beautiful shot of the beach ot sunset.=/mycaption:

<"zl idecapt iong=

o Data in an XML format. This is a text document that is
saved in the same directory as your Flash file.

var myURLLoader :URLLoader = new URLLoader();
var myURLRequest :URLRequest = new URLRequest(“daota.xml");
niyURLLoader . load (nyURLRequest.’ ;
nyURLLoader .addEventListener (Event .COMPLETE, datadk’y;
function dotadk{myevent :Event:void {

Ad do something with dota
H

o Loading an XML document is the same as loading one
in URL variables format—creating the URLLoader object,
creating the URLRequest object, loading the document, and
listening for the completion of the load.

var myURLLoader :URLLoader = new URLLoader s
war myURLRequest :URLRequest = new URLRequest("data.xml"};
myURLLoader . Load {nyURLRequest) ;
myURLLoader . addEventL i stener (Event .COMPLETE, datalk);
function datadk{myevent :Eventivoid {

war myML ML = mes BMLmyURLLoader .data’ s
+

o Pass the URLLoader’s data property to the new XML object.

Controlling Information Flow 351

8. On the next line still within the function,

access the first piece of information in
the mycaption object of the XML object
with square brackets, and assign itto a
text field on the Stage, like so:

textfieldli.text =
myXML.mycaption[o0];

The square brackets access the first
item—which is the text “Here’s the new
baby!”—and displays it in a text field
on the Stage. The square brackets are
a way of accessing the contents of an
Array or of an object that has multiple
elements inside it. You’ll learn more
about the square brackets later in this
chapter and about the Array object in
Chapter 11, “Manipulating Information.”

. Continue accessing the rest of the infor-
mation and assign the results to the text
fields on the Stage @.

10. Create three TLF text fields on the
Stage and give them names in the Prop-
erties inspector that match the names
you used in your ActionScript.

11. Test your movie.

The data from the external XML docu-
ment is loaded into your URLLoader
object and then into the XML object.
Using dots and square brackets, you
can access the different information in
the XML, and in this example, populate
dynamic text fields for picture captions.
Simply change the information in the
XML document to have the changes be
reflected in your Flash movie.

If your XML element has an attri-
bute, as in <mycaption fontsize="14">,
you can access its value with the @
symbol. For example, the statement
myXML.mycaption[0].@fontsize would
retrieve the value 14.

¥

war niyURLLoader :URLLoader = new URLLoader ();
war myURLRequest tURLRequest = new URLRequest(“data.x:ml";
fiyURLLoader . Load {nyURLRequest
nyURLLoader . addEventL istener {Event .COMPLETE, datalk);
function datoOk{myevent :Eventy:void {
war myEMLTEML = new XMLmyURLLoader .data);
textficldl.text = myMML .mycaption[B];
textfieldZ. text = myMHL.mycoption[1];
textfieldd.text = myHL .mycaption[2];

=zl idecaptionz=

=/zlidecaoptions=

=mycaptions= Here is the new baby!</mycaoptions
=mycaption= Our trip to the Great Wall of |China.</mycaption=
=mycaption= A& beautiful shot of the|beach|at sunset.</Mmwcaption=

\
XML document ‘ myXML.mycaption[O]
myXML.mycaption[1]
myXML.mycaption[2]

o The information in the XML document can be accessed with
dot operators and square brackets (array access operators).

352 Chapter 9

Retrieving XML Data

The biggest challenge when using XML documents to store data is to correctly structure your XML
so you can efficiently extract the data. In the task “To decode XML data,” you extracted the caption
data by using the array access operators (the square brackets). Each caption could be referenced
by an index number in the mycaptions node. Let’s look at something a little more complex to see
how you use the array access operators to extract the data .

In this example, each slide has a path, where the image resides, and a caption, which describes
the photo. To get the caption for the second photo, you drill down the hierarchy with dot syntax—
first referencing the whole XML structure (myXML), then its second slide node (slide[1]), and finally
the caption (caption[0] or just caption since there’s only one entry). The complete path would
be myXML.slide[1].caption.

Typically, you’ll use loops (described later in this chapter) to go through all the nodes automatically
to extract the data.

myXML
|
I

<mydata>

<photo>
<path>/images/vacation/photol. jpg</path>
<caption>The beach was just steps away.</caption>
</photo:

myXML.photo[O] —

myXML.photo[1] — <photo>

myXML.photo[1].caption — </photo>

<photo>
<paths/images/vacation/photo4 . jpg</paths
<caption=We rode some horses to another cabin.</caption>
</photo>

myXML.photo[2] —

</mydata>

m In this XML document, there are three photo nodes, each with
their own path and caption nodes. If myXML is the name of the
XML object, then information in the document can be extracted.

Controlling Information Flow 353

Storing and Sharing
Information

Although variables enable you to keep
track of information, they do so only within
a single playing of a Flash movie. When
your viewer quits the movie, all the infor-
mation in variables is lost. When the viewer
returns to the movie, the variables are
again initialized to their starting values or
are loaded from external sources.

You can have Flash remember the cur-
rent values of your variables even after

a viewer quits the movie, however. The
solution is to use the SharedObject class.
SharedObject instances save information
on a viewer’s computer, much like brows-
ers save information in cookies. When a
viewer returns to a movie that has saved a
SharedObject, that object can be loaded
back in and the variables from the previous
visit can be used.

You can use the SharedObject class in

a variety of ways to make your Flash site
more convenient for repeat visitors. Store
visitors’ high scores in a game, or store
their login names so they don’t have

to type them again. If you've created a
complex puzzle game, you can store the
positions of the pieces for completion at a
later date; for a long animated story, you
can store the user’s current location; or for

a site with a collection of articles, you can
store information about which ones your
visitor has already read.

To store information in a SharedObject
instance, add a new property to the
SharedObject’s data property object. You
then store the information that you want
to keep in your new property. The state-
ment mySharedObject.data.highscore

= 200 stores the high-score informa-

tion in the SharedObject instance. The
method getLocal() creates or retrieves a
SharedObject, and the method flush()
causes the data properties to be written to
the computer’s hard drive.

In the following task, you’ll save a login
name from a text field (you’ll learn more
about text fields in the next chapter). When
you quit and then return to the movie, your
login name is retrieved and displayed.

To store information on
a user’s computer:

1. Select the Text tool, and in the Proper-
ties inspector, choose TLF Text and
Editable.

2. Drag a text field onto the Stage, and
give the text field the instance name
myLogin_txt @.

This text field allows users to enter
information via the keyboard.

Login name: E f — Text field
[myLogin_txt ——— Enter the instance name
[TLF Text =] of your text field here
Editable Iv] [~

o Create a TLF text field that is editable, and give it a name in the

Properties inspector.

354 Chapter 9

. Create a button, place an instance of
it on the Stage, and give it an instance
name in the Properties inspector.

You’ll assign actions to this button to
save the information in your text field
in a SharedObject.

. Select the first frame of the main Time-
line, and open the Actions panel.

. In the Script pane, declare a new
SharedObject by entering var
mySharedObject:SharedObject
followed by an equals sign.

. On the right side of the equals sign, enter

SharedObject.getLocal("myCookie") @.

Flash looks for a SharedObject, and
if it does not find one, it creates a
SharedObject instance that will be
stored on the user’s local hard drive.

On the next line, create a
MouseEvent.CLICK event handler
for your button.

. Between the curly braces of the event-
handler function, enter the following:

mySharedObject.data.loginData =
myLogin_txt.text

The content of your text field on the
Stage is saved in a property named
loginData in the data property of
your SharedObject.

9. On the next line, enter
mySharedObject. flush() @.

Calling the flush() method saves all
the information in the data property
of your SharedObject on the viewer’s
computer.

@D If the flush() method isn’t called
explicitly, the information in the data object
of your SharedObject is saved automati-
cally when the viewer quits the movie. The
flush() method lets you choose when to
save information.

@D Many kinds of information can be stored
in the data object of a SharedObject, such
as numbers, strings, and even objects such as
an array.

Just remember to assign the information to
the data object of a SharedObject, as in:

mySharedObject.data.name = "Russell”;

rather than

mySharedObject.data = "Russell";

wir myShoredObject:SharedObject = SharedObject.getlocal {"myCookie" ;

0 The getLocal() method creates a SharedObject that will

be stored on the user’s computer.

nyShareddbject.f lush();
h

var mySharedObject :SharedObject = SharedObject.getlocal ("myCookie" 3;

saveButton_btn.oddEventlistener (MouseEvent .CLICK, savedata’s;
function sovedata{myevent :MouseEvent yvoid {
mySharedObject.data.myloginbata = myLogin_txt.text;

@ Clicking the button called saveButton_btn puts the
contents of the text field in the myLoginData property of
the data property of your SharedObject and saves it on

the user’'s computer.

Controlling Information Flow 355

To retrieve information
from a user’s computer:

1. Continuing with the file you used in the

preceding task, create a second button,
place an instance of it on the Stage,
and give it a name in the Properties
inspector.

You'll assign actions to this second but-
ton, which will retrieve mySharedObject.
data and the most recently saved con-
tents of your text field.

. Select the main Timeline, and

in the Actions panel, assign a
MouseEvent.CLICK event handler
to this second button.

. Between the curly braces of the event-
handler function, enter the following
statement:

myLogin_txt.text =
mySharedObject.data.myLoginData;

This statement retrieves the information
in myLoginData that was saved on the

viewer’s computer in a SharedObject.
That information is used to change the
contents of your text field @.

Test your movie.

Enter your name in the text field on the
Stage, and then click the button to save
the information into a SharedObject.
Quit the movie. When you open the
movie again and click the second but-
ton, your name appears in the text field
because Flash retrieved the information
from your previous session @.

To clear information on
a user’s computer:

Call the method cleax() to clear informa-
tion saved in a SharedObject.

The statement:
mySharedObject.clear();

removes all the data from the
SharedObject.

nyShareddbject.f lush(};
H

var myShoredObject :SharedObject = SharedObject .getlocal {"myCookie");

saveButton_btn.oddEventl istener (MouseEvent .CLICK, savedata’;
function sovedatalmyevent :MouseEvent) ivoid
mySharedObject.data.myloginbata = mylogin_txt .text;

loodButton_btn.addEventlistener (MouseEvent .CLICK, looddata);
function looddotalmyevent :MouseEvent yivoid {
myLogin_txt.text = mySharedObject.dota.mLoginDaotas

0 Clicking the button called loadButton_btn puts the
saved data into the text field for display.

Login name: |FrodoHobbit

FrodoHobbit

Login name:

gi

G Enter your login name in the text field and click the
button to save it (top). Close the Flash movie, and then
open it again to return to it. When you click the second
button, your login name appears again so you don’t have
to retype it (bottom).

356 Chapter9

Sharing information among
multiple movies

Flash keeps track of a SharedObject saved
on the viewer’s computer by remembering
the name of the object as well as the loca-
tion of the movie in which it was created.
The location of the movie is known as the
SharedObject’s /local path. By default,

the local path is the relative path from the
domain name to the filename. If your movie
is at www.myDomain.com/flash/myMovie.
swf, the local path is /flash/myMovie.swf.
Flash lets you specify a different local path
when you use the getLocal() method so
that you can store a SharedObject in a dif-
ferent place. Why would you do this? If you
have multiple movies, you can define one
SharedObject and a common local path,
allowing all the movies to access the same
SharedObject and share its information.

Valid local paths for a SharedObject
include the directory in which your movie
sits or any of its parent directories sit.
Don’t include the domain name, and

don’t specify any other directories in the
domain. Remember, you aren’t telling Flash
to store information on the server; you'’re
telling Flash to store information locally on

the viewer’s computer (the host), and the
local path helps Flash keep track of the
SharedObject. Because local paths are rel-
ative to a single domain, a SharedObject
can be shared only with multiple movies in
the same domain.

To store information that
multiple movies can share:

1. Continuing with the file that you created
in the preceding task, in the Actions
panel add a forward slash as the
second parameter to the getLocal()
method. Make sure the forward slash is
between quotation marks @.

Flash will save the SharedObject
mySharedObject_so with the local path
"/". This entry represents the top-level
directory.

2. In a new Flash document, create
another text field on the Stage, and
give it the name myLogin2_txt in the
Properties inspector.

This text field will display information
stored in the SharedObject you created
in your first movie.

Continues on next page

var mySharedObject :SharedObject = Shareddbject.getlocal"myCookie", "/");

o The second parameter of the getLocal() method determines
the local path of the SharedObject and its location on the viewer’s
computer. The single slash indicates the top-level directory of the

domain where the Flash movie resides.

Controlling Information Flow 357

www.myDomain.com/flash/myMovie

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. In the Script pane, enter the following
statement:

var mySharedObject2:SharedObject
= SharedObject.getLocal(
"myCookie", "/");

Flash retrieves the SharedObject with
the local path "/" from the viewer’s
computer. Notice that the parameter
"myCookie" must be identical to the
one used in the first Flash movie, but
the SharedObject variable’s name
mySharedObject2 can be different.

5. On a new line of the Script pane, assign

the property myLoginData in the data
property of the SharedObject to the
contents of your input text field with the
following statement @:

myLogin2_txt.text =
mySharedObject2.data.myLoginData;
This statement retrieves the myLoginData

information from the SharedObject and
displays it in the text field.

. Test your movies.

Play the first movie, enter your name

in the text field, click the first button to
save its position in a SharedObject, and
close the movie. Now open your sec-
ond movie. Flash reads the information
in the SharedObject created by the first
movie and displays your name @.

var myShareddbject2 :ShoredObject = SharedObject.getlocal{"myCookie", "/"7;
myLoging_txt.text = myShoredibjectz.data.myLoginbata;

@ In this second Flash movie, the getLocal() method retrieves the
same SharedObject that was saved in the first Flash movie, because
the same name and local path are given in its parameters for both

movies.

Login name; [FrodoHobhit |

0 When the login name in the first Flash movie is saved

(top), you can open the second Flash movie (bottom), and

its text field displays the same login name. Both movies
access the same SharedObject on the user’s hard drive.

358 Chapter 9

SharedObjects, Permission, and Local Disk Space

The default amount of information that Flash Player allows a single domain to store on a viewer’s
computer is set at 100 KB, and users can configure the amount of space they allow to be used

by SharedObject data. When you call the flush() method, depending on the amount of data
you're trying to store and the viewer’s settings, different things happen. If the new data doesn’t
exceed the amount the viewer allows, the SharedObject is saved and flush() returns true. If
the new data exceeds the allowable amount and the viewer’s Flash Player is set to block requests
for more space, the SharedObject isn’t saved and flush() returns a value of false. Finally, if
the SharedObject data exceeds the amount the user has allowed and the Flash Player isn’t set to
block requests for more space, a dialog box appears over the Stage asking the viewer for per-
mission to store information @. In that case, the flush() method returns the string “pending” or
SharedObjectFlushStatus.PENDING. The viewer can allow the request or deny it.

Viewers can change their local storage settings at any time by right-clicking (Windows) or Ctrl-
clicking (Mac) the movie and then choosing Settings from the context menu @. The viewer can
choose never to accept information from a particular domain or to accept varying amounts (10
KB, 100 KB, 1 MB, 10 MB, or unlimited). Local storage permission is specific to the domain (which
appears in the dialog box), so future movies from the same domain can save SharedObjects
according to the same settings.

If you know that the information you save to a viewer’s computer will grow, you can request more
space ahead of time by defining a minimum disk space for the flush() method. Calling the
method mySharedObject.flush(1000000) saves the SharedObject and reserves 1,000,000
bytes (1 MB) for the information. If Flash asks the viewer to allow disk space for the SharedObject,
it will ask for 1 MB. After the permission is given, Flash won’t ask for more space until the data in
that domain’s SharedObject exceeds 1 MB or the viewer changes his local storage settings.

v Show All
Quality »
Print...
Adobe Flash Player Settings
Loca Storage) m
Jocalis requesting pemnission to store Global Settings...
information on your computer. About Adobe Flash Player 10...
o From the Flash Player context
Requested: upto 10KE A q
Currently Used: 0 KB Adobe Flash Plaver Settings AU (Wlth YLy r.nouise polinter
7 L Q over a Flash movie, right-click
ry & Alow & Deny ocal Storage for Wind Ctrl-click f
= Huawe much information canlocal store on or Windows or Ctrl-click for
yourcomputer? Mac), access the Settings dialog
o Flash asks to store more 10KE box. You can decide how much
information than the viewer [TNever dsk sgain Currerthy used: 1KB information a particular domain
currently allows. This request) E, { Lﬂ " can save on your computer. This
comes from local, which is the |] : - [Close] setting is for local, which is the
viewer’s computer. viewer’s computer.

Controlling Information Flow 359

Loading and Saving
Files on the Hard Drive

You can get and save information on the
user’s local hard drive by making Flash
open a file browser and having the user
choose a particular file. This works well
for creating more complex applications
that depend on data that the user can
save, modify, and retrieve, just like a word
processing program or an image-editing
program like Adobe Photoshop.

You can directly have your users load and
save files with the FileReference class.
The method browse() opens a file browser
to choose a file, and the method load()
loads in the data from a selected file. The
method save() opens a file browser to
save a file.

Event handlers for the events
Event.SELECT and Event.COMPLETE are
necessary to detect when a file has been
selected and when the loading or saving
process has been completed.

The methods of the FileReference
class can only be used if the user initiates
the process (such as clicking with the mouse
or pressing a key on the keyboard). This is a
safeguard so that malicious Flash code can-
not automatically open files on a user’s hard
drive or save files to the user’s hard drive.
Any attempt to call the methods without user
interaction will result in an error.

To open the file browser
to select a text file:

1. Create a button, place an instance of
it on the Stage, and give it an instance
name in the Properties inspector.

You'll assign actions to this button to
open the file browser to let users choose
a file to load from their hard drive.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. In the Script pane, declare a new

FileReference object by entering var
myfile:FileReference followed by an
equals sign and new FileReference().

4. On the next line, create a

MouseEvent.CLICK event handler for
your button.

5. Between the curly braces of the event
handler function, enter the following:

myfile.browse();

When the user clicks the button, the file
browser will open @.

var myfile:FileReference = new FileReference();
load_btn,addEventListener(MouseEvent . CLICK, loadfile);
function loadfile(myevent:MouseLvent):void {

myfile.browseC);
}

006 Select file to upload by localhost
L —
@ Network OB adobe -
. |4 AdobeStockPhotos -
) Macintosh HD .l:‘\ ° < o5
. |4 eFax Me__ser Data »
2 Untitied [Final Cu...cuments »
o LaCie [} Media Cache Files »
¥ Microso...ser Data »
[Deskiop 3 Parallels »
o faculy “ [unnamed siez »
o Applications [version Cue »
=
B Movies
& Music
54 Pictures -
(. New Folder) Select

o When you click the button called load_btn,
Flash opens the file browser (below) so the user
can choose a file from the hard drive.

360 Chapter9

To load a selected text file: 2.

1. Continue with the previous task, “To

open the file browser to select a text file.”

To load a file, you must create an event
handler to detect when the user selects
a file.

On the next line, create an Event.SELECT
event handler for your FileReference
object.

Between the curly braces of the event
handler function, enter the following:

myfile.load();

When the user selects a file from the file
browser, Flash begins loading that file @.

To retrieve the contents
of the text file:

1. Continue with the previous task, “To
load a selected text file.”

To retrieve the contents of a loaded file,
you must create an event handler to
detect the completion of the load.

On the next line, create an
Event.COMPLETE event handler
for your FileReference object.

Between the curly braces of the event-
handler function, enter the following:

mytextfield_txt.text =
myfile.data.readUTFBytes(
myfile.data.length);

When the loading process is com-
plete, Flash reads the data in the
file and puts it in a text field called
mytextfield_txt.

The data is in the data property of the
FileReference object, but because
the data property is a ByteArray
object, you must use the method
readUTFBytes() to extract the infor-
mation. The length property refers

to the total size of the file, so passing
myfile.data.length as the parameter
of readUTFBytes() makes Flash load
the entire contents of the file @.

Continues on next page

var myfile:FileReference = new FileReference();

load_btn.addEventListener{MouseEvent CLICK, loadfi

function loadfileCmyevent :MouseFvent):void {
myfile.browse();

myfile.addeventListener(kvent.SELECT, selectfile);

function selectfile(myevent:Event):vold {
myfile.load();

1

le);

0 The second event
handler detects when
the user selects a file.
When that happens, the
file is loaded into Flash.

var myfile:FileReference = new FileReference();

load_bhtn.addFventlistener{MouseFvent .Cl TCK, loadlilel);

function loadfile(myevent:MouseEvent):void {
mytile.browse(};

myfile.addCventlistener(Cvent.SCLLCT, selectfile);
function selectfile(myevent:Event):void {
mytile.load();

myfile.addCventListener{Cvent.COMPLCTC, completeloadingl;
function completeloading(myevent:Event):void {

H

mytextfield_txt.text = myfile.data.readUlFBytes(myfile.data. Length);

G The third event handler detects when
the file has completely loaded into Flash.
When that happens, the entire data in the
file is assigned to a text field on the Stage.

Controlling Information Flow 361

4. Choose the Text tool and, in the Proper-
ties inspector, choose TLF Text and
Read Only.

5. Create a text field on the Stage, and in
the Properties inspector, name the text
field mytextfield_txt.

6. Test your movie @.

To save a text file:

1. In a new Flash file, create a button,
place an instance of it on the Stage, and
give it an instance name in the Proper-
ties inspector.

You’ll assign actions to this button to
open the file browser to let users save
a file on their hard drive.

2. Choose the Text tool and in the Prop-
erties inspector, choose TLF Text and
Editable.

3. Create a text field on the Stage and name
the text field mytextfield_txt. Select a
colored border for the text field @.

You'll allow users to enter text in the
text field, and then save the results in
a file to their hard drive.

4. Select the first frame of the main Time-
line, and open the Actions panel.

0608 Select file to upload by localhost
e -E__E__l [Fpata m Q search
@ network [Adobe o CEEETTTE |
=] * The af
HD -
=] | L pata » lumes
B vnuitled [efax Me.. ser Dara » |
o Latie 3 Final Cu...cuments »
[media Cache Files »
[Desktop [Microso, ser Data »
A faculy | [parallels >
Ay Aoglications [unnamed sitez >
[Version Cue '
T Movies
& Music
[Pictures Lm" I o =
([Mew Folder | (" Cancel) §

- Thee quick brown fox jumps sver the lazy dog.

Text field

0 In this example, the text document called
sometext.txt is selected by the user (top). The
contents of the text document are displayed in
the text field next to the button.

Text field instance name

PROPERTIES

|mytextﬁe|d_txt |

[TLF Text Iv]

| Editable

o Name the TLF text field on the Stage
mytextfield_txt and choose the Editable option.

362 Chapter 9

var myfile:FileReference = new FileReference();

save_htn addfventlistener(Mouselvent CLTCK, savefile);
function sovefile{myevent:MouseEvent):void {
myfile.save(mytextfield txt.text);

[s.m file | [Now is the time for
% [all good men to come
to the aid of their —— Text field
country.

File browser

nOe Save I

Select locarion for download by localhost

Save As: [essay.l.l.t ‘ 8

o When the user clicks the save_btn button, the
contents of the input text field can be saved to a
file on the hard drive. The user can choose the
name of the file.

006 Save

Select location for download by localhost

Save As: [hello.txt E)

@ When you add a second parameter to the
save() method, a suggested filename appears
in the file browser.

5. In the Script pane, declare a new
FileReference object by entering var
myfile:FileReference followed by an
equals sign and new FileReference().

6. On the next line, create a MouseEvent.
CLICK event handler for your button.

7. Between the curly braces of the event
handler function, enter the following:

myfile.save(mytextfield_txt.text);

When the user clicks the button, the file
browser will open, allowing the user to
save the contents of the text field to a
file on the hard drive @.

If you want to prepopulate the file
browser with a filename, you can provide a
second parameter for the save() method.
The method save(mytextfield_txt.text,
"hello.txt") opens the file browser with the
filename hello.txt in the Save As field @

@D The Event.COMPLETE and Event.SELECT
events are triggered for both the save() and
the load() methods. If the event handlers
reference the same FileReference object,
you will likely get an error. So, it’s a good idea
to have two separate FileReference objects
if you are going to perform both methods.

@D You can load and save many other kinds
of files—not just text files. See the Flash Help
and ActionScript 3 language reference for
ways to handle other file types.

Controlling Information Flow 363

Modifying Variables

Variables are useful because you can
always change their contents with updated
information about the status of the movie
or your viewer. Sometimes, this change
involves assigning a new value to the vari-
able. At other times, the change means
adding, subtracting, multiplying, or dividing
the variable’s numeric values or modifying
a string by adding characters. The variable
myScore, for example, may be initialized

at 0. Then, for every goal a player makes,
the myScore variable changes in incre-
ments of 1. The job of modifying informa-
tion contained in variables falls upon
operators—symbols that operate on data.

Assignment and
arithmetic operators

The assignment operator (=) is a single
equals sign that assigns a value to a vari-
able. You've already used this operator
in initializing variables and creating new
objects. Table 91 lists the other common
operators.

Operators are the workhorses of Flash
interactivity. You'll use them often to
perform calculations behind the scenes—
adding the value of one variable to another
or changing the property of one object by
adding or subtracting the value of a vari-
able, for example.

TABLE 9.1 Common Operators

Symbol Description

+ Addition

- Subtraction

* Multiplication
/ Division
% Modulo division; calculates the

remainder of the first number
divided by the second number.
7 % 2 resultsin 1.

++ Increases the value by 1. x ++ is
equivalentto x = x + 1.

- Decreases the value by 1. x == is
equivalentto x = x - 1.

+= Adds a value to and assigns the
result to the variable. x += 5 is
equivalentto x = x + 5.

-= Subtracts a value from and assigns
the result to the variable. x -= 5 is
equivalentto x = x - 5.

Multiplies by a value and assigns
the result to the variable. x *= 5 is
equivalentto x = x * 5.

/= Divides by a value and assigns it to
the variable. x /= 5 is equivalent to
x=x/5.

364 Chapter 9

To incrementally increase
the value of a variable:
m Enter the name of your variable fol-

lowed by two plus symbols, such as
myVariable++.

The value of myVariable increases by 1.

or

m Enter the name of your variable fol-
lowed by a plus symbol and an equals
sign followed by the value of the incre-
ment, such as myVariable += 20.

The value of myVariable increases
by 20.

To incrementally decrease
the value of a variable:
m Enter the name of your variable fol-

lowed by two minus signs, such as
myVariable--.

The value of myVariable decreases by 1.
or

m Enter the name of your variable fol-
lowed by a minus symbol and an equals
sign followed by the value of the incre-
ment, such as myVariable -= 20.

The value of myVariable decreases
by 20.

To perform more complicated mathemat-
ical calculations (such as square root, sine,
and cosine) or string manipulations on your
variables and values, you must use the Math
class or the String class. You'll learn about
these objects in Chapters 10 and 11.

Remember that you can always change
the values of variables, but you can’t change
the type of data that the variables hold. So if
you’ve created a variable to hold a number,
you can’t assign a string to it.

The arithmetic rules of precedence
(remember them from math class?) apply when
Flash evaluates expressions, which means
that certain operators take priority over others.
The most important rule is that multiplication
and division are performed before addition
and subtraction. 3 + 4 * 2, for example, gives a
very different result than 3 * 4 + 2.

Use parentheses to group variables and
operators so those portions are calculated
before other parts of the expression are evalu-
ated. (3 + 2) * 4 returns a value of 20, but
without the parentheses, 3 + 2 * 4 returns a
value of 11.

Use the modulo division operator (%) to
check whether a variable is an even or an odd
number. The statement myNumber % 2 returns
0 if myNumber is even and 1if myNumber is
odd. You can use this logic to create toggling
functionality. You can count the number of
times a viewer clicks a light switch, for exam-
ple. If the count is even, you can turn on the
light; if the count is odd, you turn off the light.

Controlling Information Flow 365

Concatenating
Variables and Dynamic
Referencing

The addition operator (+) adds the values
of numeric data types. But it can also put
together string values. The expression
"Hello " + "world", for example, results in
the string “Hello world”. This kind of opera-
tion is called concatenation.

You use of concatenation to mix strings,
numbers, and variables to create expres-
sions that allow you to dynamically cre-

ate and access objects or variables. For
example, you can concatenate a string with
a variable to make Flash go to a specified
frame, depending on the current value of
the variable, as in:

gotoAndStop("Chapter" +
myChapterNumber);

The result of the concatenation is that
Flash goes to a frame labeled something
like Chapteri or Chapter2, depend-

ing on the value of the variable called
myChapterNumber. The frame label is
assigned dynamically with a concatenated
expression.

This kind of concatenation works because
the concatenated string is used as a
parameter of a method. Flash knows to
resolve the expression before using it as
the parameter. What happens in other
cases? Consider this statement in the
Script pane of the Actions panel:

var "myVariable" + counter = 5;

This statement doesn’t make sense to
Flash and causes an error. To construct a
dynamic variable name and assign a value
to that variable, you must instruct Flash to
resolve (or “figure out”) the left side first
and then treat the result as a concatenated

variable name before assigning a value to
it. The way to do that is to use the array
access operator.

Array access operator

To reference a variable or an object dynam-
ically, use the array access operators. The
array access operator is the square brack-
ets ([], located on the same keys as the
curly braces). It is called the array access
operator because it is typically used to
access the contents of an Array object, but
it can also be used to dynamically access
the contents of other objects.

What does this capability mean? Think

of the main Timeline as being a root
object; variables and objects sitting on the
main Timeline are its contents. A variable
myVariable initialized on the main Time-
line can be targeted with the array access
operator as follows:

root["myVariable"]

Notice that there is no dot between the
object (root) and the square brackets.
The array access operator automati-
cally resolves concatenated expressions
within the square brackets. For example,
the following statement puts together a
single variable name based on the value
of counter and then assigns the numeric
value of 5 to the variable:

root["myVariable" + counter] = 5;

If the value of counter is 7, Flash accesses
the variable named root.myVariable7 and
assigns the value 5 to that variable.

Using the array access operators also
enables you to call methods and change the
properties of dynamically referenced objects
with dot syntax. For example, you can
modify an object’s transparency this way:

root["mushroom_mc" + counter].alpha
= .5

366 Chapter 9

rookt ["myYarioble" + counter] = 6;

0 Flash resolves the expression in the square
brackets first, so if the value of counter is O, the
variable called myVariableo will be assigned the
value of 5.

root [MmyMovieClip" + counter].plav();

0 Use the array access operators to dynamically
reference an object and then call one of its
methods. If the value of counter is O, the movie
clip called myMovieClipo will begin to play.

root ["myMovieClip" + counter].rotation = 453

G Use the array access operators to dynamically
reference an object and then evaluate or modify
one of its properties. If the value of counter is

0, the movie clip called myMovieClipo will rotate
45 degrees clockwise.

A useful method to consider when
dynamically accessing objects is the

method of the DisplayObject class called
getChildByName(). This method returns
the DisplayObject that exists with the
specified name, which you can construct
dynamically with an expression. For example,
getChildByName("car" + counter) would
return the object whose name is based on
the string “car” and the value of the variable
counter. Assign the returned object into a
DisplayObject to manipulate, as in the fol-
lowing example:

var myObject:DisplayObject =
getChildByName("car" + counter);
myObject.alpha = .5;

If the value of counter is 3, the movie

clip in the root Timeline named
root.mushroom_mc3 becomes 50 percent
transparent. To make the movie clip play,
call the designated method, like this:

root["myClip_mc" + counter].play()

To reference a variable
dynamically and assign a value:

In the Script pane of the Actions panel,
enter the parent of the variable followed by
an opening square bracket, an expression,
a closing square bracket, an equals sign,
and a value.

Flash resolves the expression within the
square brackets and assigns the value to
the variable with that name @.

To reference an object
dynamically and call a method:

1. In the Script pane of the Actions panel,
enter the parent of the object fol-
lowed by an opening square bracket,
an expression, and a closing square
bracket.

2. On the same line, enter a period, and
then enter the method name @.

Flash resolves the expression between
the square brackets and calls the
method on that object.

To reference an object dynamically
and change a property:

In the Script pane of the Actions panel,
enter the parent of the object followed by
an opening square bracket, an expression,
a closing square bracket, a dot, a property,
an equals sign, and a value 0.

Flash resolves the expression between the
square brackets and assigns the value on
the right of the equals sign to the object.

Controlling Information Flow 367

Testing Information
with Conditional
Statements

Variables and expressions go hand in hand
with conditional statements. The informa-
tion you retrieve, store in variables, and
modify in expressions is useful only when
you can compare it with other pieces of
information. Conditional statements let
you do this kind of comparison and carry
out instructions based on the results. The
logic of conditional statements is the same
as the logic in the sentence “If abc is true,
then do xyz,” and in Flash, you define abc
(the condition) and xyz (the consequence).

Conditional statements are in the form

if (){}. You put a condition between

the parentheses and the consequences
between the curly braces. The condition—
a statement that can be resolved to a true
or false value—usually compares one thing
with another. Is the variable myScore greater
than the variable alltimeHighScore?
Does the bytesLoaded property equal the
bytesTotal property? Does the variable
myPassword equal “Abracadabra”? These
are typical examples of the types of things
that are compared in conditions.

How do you compare values? You use
comparison operators.

Comparison operators

A comparison operator evaluates the
expressions on both sides of itself and
returns a value of true or false. Table 9.2
summarizes the comparison operators.

When the statement is evaluated and the
condition holds true, Flash performs the
consequences within the if statement’s
curly braces. If the condition turns out to be
false, all the actions within the curly braces
are ignored @.

In the following task, you’ll create a
graphic that moves to the right. You want
to constrain the position of the graphic

so it doesn’t run off the Stage, so you’ll
construct a conditional statement to have
Flash test whether the value of its x posi-
tion is greater than 200 pixels. If it is, you'll
keep its current position.

TABLE 9.2 Comparison Operators

Symbol Description

== Equality

=== Strict equality (value and data type
must be equal)

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
I= Not equal to

== Strict inequality

368 Chapter 9

if {condition) {
consequence §
ConSequUence;
CconSequences;

i

o If, and only if, the condition within
the parentheses is true, consequencel,
consequence2, and consequence3 are
all performed. If the condition is false,
all three consequences are ignored.

wir myShope :Shope = new Shape();

myShape .graphics. lineStyle{1;

myShape .graphics .beginfil L {&xffBA68);
myShope .grophics .drowRect (168, 166, 58, BA);
addChi Ld{myShape

=tage .addEventl istener (Event .ENTER_FRAME, moveSquare);
function moveSquare(myevent :Event)void {
myShape .= += 5;

0 The code draws a square and moves the
myShape object continuously to the right across
the Stage.

war myShope :Shope = new Shape();

myShope .grophics. lineStyle{1);

myShape .grophics .beginfil {6 {8068
myShope .grophics .drowRect (168, 168, 50, 56);
addChi Ld{myShape

stage .addEventlistener (Event LENTER_FRAME, moveSquare);
function moveSquare(myevent :Event) ivoid {
mnyShape.x += 5;
if {myShope.x = 28873 1
myShape . = 2683
H

¥

o Add a condition that tests the x property of
myShape to see if its value exceeds 200. If so,

Flash keeps it at 200, preventing the square from

moving off the Stage.

x =200
|

.—— myShape

0 The myShape object is limited at x = 200
because of a conditional statement.

To create a conditional statement:

1. For this example, create a Shape object,
define a line style and fill style, and
call the drawRect() method to draw a
square.

2. Call the addChild() method to add the
Shape object to the display list.

3. Create an Event.ENTER_FRAME event
handler and, in the function of the event
handler, move the position of the Shape
to the right @.

The rectangle moves to the right
continuously.

4. Inside the event-handler function, after
the statement that adds to the position
of the rectangle, enter:

if (myShape.x > 200) {
}

Flash tests to see whether the rectan-
gle’s x position is greater than 200.

5. Between the curly braces of the if
statement, assign the value 200 to
the Shape’s x property @.

If the x property exceeds 200, Flash
resets it to 200. This setting prevents
the rectangle from moving past the
200-pixel point.

6. Test your movie @.

A common mistake is to mix up the
assignment operator (=) and the comparison
operator for equality (==). The single equals
sign assigns whatever is on the right side of it
to whatever is on the left side. Use the single
equals sign when you’re setting and modifying
properties and variables. The double equals
sign compares the equality of two things; use
it in conditional statements.

Controlling Information Flow 369

Creating a continuous-
feedback button

A simple but powerful and widely applicable
use of the if statement is to monitor the
state of a MouseEvent.MOUSE_DOWN event
and provide continuous actions as long as
the mouse button is held down. An object or
button that provides this kind of functionality
is sometimes called a continuous-feedback
button. When you hold down a button,

for example, you can increase the sound
volume (like a television remote control)
until you let go. A simple event handler can’t
accomplish this functionality.

Creating this functionality requires that
you use a Boolean variable to keep track
of the state of the button. When the but-
ton is depressed, the variable is set to
true. When the button is released or the
pointer is moved away from the but-

ton, the variable is set to false. Within

an Event.ENTER_FRAME handler, you can
monitor the status of the variable continu-
ously with an if statement. If the variable is
true, the code performs an action. As long
as the variable remains true (the button
continues to be held down), those actions
continue to be executed.

To create a continuous-
feedback button:

1. Create a button symbol (or any other
object that can receive MouseEvents),
place an instance of it on the Stage, and
give it an instance name in the Proper-
ties inspector.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Declare a Boolean variable, and set its
initial value to false.

This will be the variable that tracks
whether the button is being held down.

4. Add an event listener to your button
to detect the MouseEvent.MOUSE_DOWN
event.

5. Add the function that responds to the
MouseEvent.MOUSE_DOWN event. Between
the curly braces of the function, assign
the value true to your variable @.

The variable is set to true whenever
the button is pressed. Note that there
are no quotation marks around the
word true, so true is treated correctly
as a Boolean data type, not a string
data type.

6. Add another event listener to your but-
ton to detect the MouseEvent.MOUSE_UP
event.

7. Add the function that responds to the
MouseEvent.MOUSE_UP event. Between
the curly braces of the function, assign
the value false to your variable @.

The variable is set to false whenever
the button is released.

8. Add another event listener to the Stage
to detect the Event.ENTER_FRAME event.

vOr pressing:booledn = rolse;
but ton_btn_addEventListener {HouseEvent HOUSE_DOWM, pressdown’y
function pressdown (myevent :MouseEvent void {

pressing = true;

1

G The variable pressing keeps track of whether
the button is being pressed or released. When the
button is pressed, pressing is set to true.

var preszing:Boolean = false;
bl Luri_blr.uddEvenlL isLener (MuuseEvenl JHOUSE_DOWN, pressuuwn)
fimrtinn pressdnun (mvevent. :MnuseFyent Y svnid

preszing = true;

husttan_htn_nddFvent] istensr (MnuseFyent. MOISF_IP, eton)
function letgo (myevent:MouseEvent):void {
pressing = false;

o When the button is released, pressing is set
to false.

370 Chapter 9

9. Add the function that responds to the
Event.ENTER_FRAME event. Between the
curly braces of the function, enter the
statement if (){}.

10. For the condition (between the paren-
theses of the if statement), enter the
variable name followed by two equals
signs and then true.

The condition tests whether the button
is being pressed.

11. Between the curly braces of the if
statement, choose an action as a
consequence that you want to be
performed as long as the button is

held down @.

You can use a shorthand way of testing
whether a variable is true or false by elimi-
nating the comparison operator (==). The if
statement automatically tests whether its
condition is true, so you can test whether a
variable is true by entering the variable name
within the parentheses of the if statement,
like this:

if (myVariable) {
/!l myVariable is true

}

You can test whether a variable is false by pre-
ceding the variable name with an exclamation
point, which means “not,” like so:

if (!myvVariable) {

// myVariable is not true

}

var pressing:Boolean = false;

pressing = true;

i

function letgo {myevent :MouseEventivoid {
pressing = false;

i

button_btn.addEventlistener (MouseEvent JMOUSE_DOWN, pressdown’)
function pressdown {mysvent :MouseEvent) ivoid {

button_btn.addEventlizstener (MouseEvent MOUSE_UP, letgo)

stage .addEventliztener (Event .ENTER_FRAME, continuousiction)
function continuousAction{myevent :Eventvoid
if (pressing == true){
/¢ odd actions here

@ The status of the pressing
variable can be monitored
continuously by an if statement
inside an Event.ENTER_FRAME
handler. This is a useful method

if {pressing == true){
root .gotoAndP Lay (currentFrame — 23

¥

stage .addEventliztensr (Event .ENTER_FRAME, continuousiction)
function continuousiction{myevent :Eventivoid {

that has wide-ranging application.
For example, you can create

a rewind button to control the
Timeline (middle image) by
subtracting a few frames from

if {pressing == true’{
scrollBar.y += 5;
¥
¥

stage .addEventliztensr (Event .ENTER_FRAME, continuousiction)
function continuousiction{myevent :Eventivoid {

the current frame as long as the
button is held down (bottom
code). Another example shown
in the bottom code is moving an
object on the Stage as long as

the button is held down.

Controlling Information Flow 371

Providing Alternatives
to Conditions

In many cases, you need to provide an
alternative response to the conditional
statement. The else statement lets you
create consequences when the condition
in the if statement is false. The else state-
ment takes care of any condition that the
if statement doesn’t cover.

The else statement must be used in con-
junction with the if statement and follows
the syntax and logic of this hypothetical
example:

if (daytime) {
goTolWork();
} else {
goToSleep();
}

Use else for either-or conditions—some-
thing that can be just one of two options.
In the preceding example, there are only
two possibilities: It's either daytime or
nighttime. Situations in which the else
statement can be useful include collision
detection, true/false or right/wrong answer
checking, and password verification.

For this task, you’ll build an if-else state-
ment to detect the keyboard input given
to the question “Is the earth round?” The
answer can be only right or wrong—there
are no other alternatives.

To use else for the false condition:
1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Add an event listener to the Stage to
detect the KeyboardEvent.KEY_DOWN
event.

372 Chapter 9

stoge .addEventL i stener(KeyboardEvent KEY_DOWN, detectText);
function detectText{myevent :KeyboardEvent) :void {
if {myevent .keyCode == 89) {
answer_txt.text = "correct!";
T else
answer_txt.text = "wrong!";
¥

¥

O The if statement within the detectText
event handler checks whether the Y key, which
corresponds to the key code value of 89, is

pressed. The else statement triggers the “wrong!”

message if a key other than Y is pressed. Note
how the else statement is commonly written in
a group with the if statement, beginning on the
same line as the ending curly brace of the if
statement.

answer_txt text field

Is the Earth round? (Y/N)

0 The message is displayed in a text field on
the Stage.

8.

On the next line, create the func-
tion that gets triggered by the
KeyboardEvent.KEY_DOWN event.

Between the curly braces of the func-
tion, create an if statement as follows:

if (myevent.keyCode == 89) {
answer_txt.text = "correct!"

}

The function checks to see if the key
pressed matches the keycode for the
Y key, and if so, a message is displayed
in a text field called answer_txt.

On the same line as the closing curly
brace of the if statement, enter else
followed by an opening curly brace.

On the next line, choose another action
as a response to the false condition,
and then close the else statement with
a closing curly brace, like so @:

if (myevent.keyCode == 89) {

answer_txt.text = "correct!"
} else {
answer_txt.text = "wrong!"

}

In this example, if the key pressed is

Y, the correct-answer message is sent.
Otherwise, the incorrect-answer mes-
sage is sent. The else statement covers
any key other than Y.

On the Stage, create a TLF text field
and give it the name answer_txt in the
Properties inspector.

Test your movie @.

By convention, the else statement
cuddles the closing brace of the if statement
to show that they belong together. In the Auto
Format options, however, you can change the
Script pane’s formatting to put the else state-
ment on its own line.

Controlling Information Flow 373

Branching Conditional
Statements

If you have multiple possible conditions and
just as many consequences, you need to
use more complicated branching condi-
tional statements that provide functionality
a single else statement can't. If you create
an interface to a Web site or a game that
requires keyboard input, for example, you
need to test which keys are pressed and
respond appropriately to each keypress.
Flash gives you the else if statement,
which lets you construct multiple responses,
as in the following hypothetical example:

if (sunny) {
bringSunglasses();

} else if (raining) {
bringUmbrella();

} else if (snowing) {
bringSkis();

}

Each else if statement has its own condi-
tion that it evaluates and its own set of
consequences to perform if that condition
returns true. Only one condition in the
entire if-else if code block can be true.
If more than one condition is true, Flash
performs the consequences for the first
true condition it encounters and ignores
the rest. In the preceding example, even if
it'’s both sunny and snowing, Flash can per-
form the consequence only for the sunny
condition (bringSunglasses()) because

it appears before the snowing condi-

tion. If you want the possibility of multiple
conditions to be true, you must construct

separate if statements that are indepen-
dent, like the following:

if (sunny) {
bringSunglasses();

}

if (raining) {
bringUmbrella();

}

if (snowing) {
bringSkis();

}

The following example uses
KeyboardEvent.KEY_DOWN event handlers
and branching conditional statements to
move and rotate a movie clip according to
different keypresses.

To use else if for
branching alternatives:

1. Create a movie clip symbol, place an
instance of it on the Stage, and give
it an instance name in the Properties
inspector. In this example, the movie
clip is named beetle_mc.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Add an event listener to the Stage to
detect the KeyboardEvent.KEY_DOWN
event.

4. On the next line, create the func-
tion that gets triggered by the
KeyboardEvent.KEY_DOWN event.

5. Between the curly braces of the func-
tion, create an if statement as follows:

if (myevent.keyCode ==
Keyboard.UP) {
beetle_mc.rotation = 0;
beetle_mc.y -= 30;

}

As in the previous task, the if state-
ment checks if the key pressed on the

374 Chapter 9

stage.addEventListener (KeyboardEvent .KEV_DOWN, detectText);
function detectText{myevent :KeyboordEvent):void {
if {myevent.keyCode == Keyboard.UP}) {
beetle_mc.rotation = @;
beetle_mc.y -= 38;
¥
¥

0 If the up arrow key is pressed, this movie clip is
rotated to O degrees and is repositioned 30 pixels
up the Stage.

stage.addEventListener (KeyboardEvent .KEV_DOWN, detectText);
function detectText{myevent :KeyboordEvent):void {
if {myevent.keyCode == Kevboard.UP) {
beetle_mc.rotation = @;
beetle_mc.y -= 38;
T else if (myevent.keyCode == Keyboord.LEFT) {
beetle_mc.rotation = -98;
beetle_mc.x -= 38;
1 else if {myevent.keyCode == Keyboord.RIGHT} {
beetle_mc.rotation = 98;
beetle_mc.x += 38;
1 elze if (myevent _keyCnde == Keyhoord DOWNY f
beetle_mc.rotation = 158;
beetle_mc.y += 38;
}
+

&

®

0 The else if statement provides alternatives

to the first condition. The complete script has four
conditions that use if and else if to test whether
the up, left, right, or down arrow key is pressed.
The rotation and position of the movie clip change
depending on which condition holds true.

keyboard matches a particular key and
executes the two statements within
the curly braces to rotate and move
the object.

The two statements within the if state-
ment rotate the movie clip so that the
head faces the top and subtract 30
pixels from its current y position, making
it move up the Stage. Recall that the
operator -= means “subtract this amount
and assign the result to myself” €.

On the same line as the closing curly
brace of the if statement, enter else
if and another condition in parenthe-
ses and consequences in curly braces
as in the following:

if (myevent.keyCode ==
Keyboard.UP){
beetle_mc.rotation = 0;
beetle_mc.y -= 30;
} else if (myevent.keyCode ==
Keyboard.LEFT) {
beetle_mc.rotation = -90;
beetle_mc.x -= 30;

}

Add two more else if statements in
the manner described earlier to test
whether Key.DOWN is being pressed and
whether Key.RIGHT is being pressed.
Change the rotation and position of the
movie clip accordingly.

Test your movie.

Your series of if and else if state-
ments tests whether the user presses
the arrow keys and moves the movie
clip accordingly @. You now have the
beginnings of a gamel!

Controlling Information Flow 375

The switch, case, and
default actions

Another way to create alternatives to
conditions is to use the switch, case, and
default statements instead of the if state-
ment. These statements provide a different
way to test the equality of an expression.
The syntax and logic are shown in this
hypothetical example:

switch (weather) {

case sun :
bringSunglasses();
break;

case rain :
bringUmbrella();
break;

case snow :
bringSkis();
break;

default :
stayHome();
break;

}

Flash compares the expression in the
switch statement’s parentheses to each
of the expressions in the case statements.
If the two expressions are equivalent,
the actions after the colon are performed
(for example, if weather is equal to sun,
bringSunglasses happens). The break
action is necessary to break out of the
switch code block after a case has
matched. Without it, Flash runs through
all the actions. The default action, which
is optional, provides the actions to be
performed if no case matches the switch
expression.

In the following example, you’ll create the
same functionality as the previous task
(moving a movie clip instance around

the Stage with different keypresses), but
you’ll use the switch and case statements
instead of the if and else if statements.

376 Chapter 9

To use switch and case for
branching alternatives:

1.

Create a movie clip symbol, place an
instance of it on the Stage, and give
it an instance name in the Properties
inspector. In this example, the movie
clip is named beetle_mc.

Select the first frame of the main Time-
line, and open the Actions panel.

Add an event listener to the Stage to
detect the KeyboardEvent.KEY_DOWN
event.

On the next line, create the func-
tion that gets triggered by the
KeyboardEvent.KEY_DOWN event.

Between the curly braces of the func-
tion, enter switch followed by a pair
of parentheses with a condition inside
followed by curly braces, like so:

switch (myevent.keyCode) {
}

. Between the curly braces of the switch

statement, add the following:

case Keyboard.UP :
beetle_mc.y -= 30;
beetle_mc.rotation = 0;
break;

The switch statement will compare

the equality of the myevent.keyCode to
Keyboard.UP, and if they are equivalent,
the movie clip’s position and rotation
will be changed. The break action dis-
continues the current code block and
makes Flash go on to any ActionScript
after the switch statement.

Repeat step 6, but use different
Keyboard properties for the case state-
ments and different consequences @.

. Test your movie.

case Keyvboard.UP :

break ;

break ;

break ;

i
¥

stoge.addEventl istener (KeyvboordEvent JKEY_DOWN, detectText);
function detectText{myevent :KeyboardEvent):void {
switch (myevent.keyCode) {

beetle_mc.y -= 36;
beet le_mc.rotation

case Keyboard.LEFT :
beet le_mc.x -= 38;
beet le_mc.rotation

caze Kevboard.RIGHT :
beetle_mc.x += 36;
beet le_mc.rotation

case Kevboard.DOWN :
beetle_mc.y += 36;

beet le_mc.rototion = 188;

o The full script to move a beetle movie clip with the arrow
keys, using switch and case instead of the if statement.

Controlling Information Flow 377

Combining Conditions
with Logical Operators

You can create compound conditions with
the logical operators && (AND), || (OR), and

! (NOT). These operators combine two or
more conditions in one if statement to test
scenarios involving combinations of condi-
tions. You can test whether somebody has
entered the correct login and password,
for example. Or you can test whether a
draggable movie clip is dropped on one
valid target or another. You can use the NOT
operator to test whether a variable con-
tains a valid e-mail address whose domain
isn’t restricted.

To test if more than one
expression is true:

In the Script pane of the Actions panel,
enter the if statement, then an open
parenthesis, followed by the first expres-
sion. Enter two ampersands (&&) followed
by your second expression and a closing
parenthesis. Enter a pair of curly braces
and consequences between them @.

Flash checks whether both expressions
on either side of the && operator are true
before the consequences within the curly
braces are executed. Think of the &&
operator as the word and.

if (vourAge == 21 && yourGender == "Male") {

0 The logical && operator joins these two
expressions so that both must be true for the
whole condition to be true.

378 Chapter 9

if (yourdge == 158 || parentaldpproval == true) {

© The logical || operator joins these two
expressions so that either must be true for
the whole condition to be true.

if (lparentalépproval’y {

G The logical ! operator can be used to check
if the expression is false. If there is not parental
approval, then something will happen.

To test if one of many
expressions is true:

In the Script pane of the Actions panel,
enter the if statement, then an open
parenthesis, followed by the first expres-
sion. Enter two vertical bars (|]) followed
by your second expression and a closing
parenthesis. Enter a pair of curly braces
and consequences in between them @.

Flash checks whether one of the expres-
sions on either side of the || operator is
true before the consequences within the
curly braces are executed. Think of the ||
operator as the word or.

To test if an expression is not true:

In the Script pane of the Actions panel,
enter the if statement, then an open paren-
thesis, followed by the exclamation point
(1), followed by an expression and a closing
parenthesis. Enter a pair of curly braces and
consequences between them @.

Flash checks whether the expression fol-
lowing the ! operator is false before the
consequences within the curly braces are
executed. Think of the ! operator as the
word not.

@D You can nest if statements within other
if statements, which is equivalent to using the
logical && operator in a single if statement.
These two scripts test whether both conditions
are true before setting a new variable:

if (yourAge >= 12){
if (yourAge <= 20) {
status = "teenager";

}

or

if (yourAge >= 12 && yourAge <= 20) {
status = "teenager";

Controlling Information Flow 379

Looping Statements

With looping statements, you can create
an action or set of actions that repeats.
For example, you may have actions repeat
a certain number of times or as long as

a certain condition holds true. Repeating
actions are often used together with an
array, which is a special kind of object that
holds multiple values in a structured, easily
accessible way. Using a looping action

lets you add or retrieve the pieces of data
in a particular order. You'll learn more
about arrays in Chapter 11, “Manipulating
Information.”

In general, use looping statements to
execute actions automatically a specific
number of times by using an incrementing
counter variable. The counter variable is
used in parameters of methods called in
the loop or to modify properties of objects
that are created. For example, you can
generate intricate patterns by duplicating
dynamically drawn shapes with looping
statements. Use looping statements to
change the properties of a whole series of
DisplayObjects, modify multiple sound
settings, or alter the values of a set of
variables.

There are three kinds of looping state-
ments—the while, do while, and for
statements—but they all accomplish the
same task. The first two loop types repeat
as long as a certain condition holds true.
The third statement repeats using a
counter variable and a condition that is
checked each time the loop repeats. In
this example, a new shape is drawn on the
Stage and rotated in each loop, creating an
overlapping, complex pattern.

To use the while statement to
repeat a set of statements:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Declare an int variable named i, and
initialize it to 0.

The names i, j, k, and so forth are
often used as loop counter variables.

3. Onthe nextline, enter while, then a set
of parentheses and a set of curly braces.

4. In the parentheses, enter i < 361 0.

This expression acts as a condition, like
the condition of an if statement. As
long as the condition works out to true,
the actions in the curly braces of the
loop will repeat, but once it’s false, the
Flash Player will stop looping.

5. Assign any actions that you want to run
while the condition remains true (while
i is less than 361).

In this example, a Shape method is
created to draw an ellipse and put it on
the display list. The ellipse is rotated
according to the counter variable 0.

var itint = A;
while (i<361) {
b

0 Initialize the variable i and create the condition
that must be true for the loop to continue. As long
as the variable i is less than 361, this loop will run.

var izint = A;
while (i< 361% {
war my'Shape:Shape = new Shape);
nyShope .graphics. lineStyle(1);
tiyShape .graphics .dravEl Lipseda, A, 288, 98);
addChi Ld{myShape 3
myShape.x = 20883
myShape .y = 288;
myShope . rotation = 13

¥

0 The myShape object is created and an ellipse is
drawn and rotated based on the counter variable.

380 Chapter9

var idint = @83
while {i«<361) {
var myShape :Shape = new Shape();
myShape .graphics. lineStyle(1);
myShape .graphics.drowEl lip=e(d, 8, 268, 98);
addChi Ld{myShape
myShape . = 288 ;
myShape.y = 288,
myShape ..rotation = i;
i 4= 10;

o At the end of each loop, the variable i
increases by 10. This loop will run 37 times. The
pattern is formed by the combination of the

myShape objects drawn one at a time in the loop.

war iiint = 8;

do
war myShope:Shape = new Shape();
myShape .graphics. lineStyle{l);
myShape graphics .drawEl lipse(d, 8, 268, 98);
addChi Ld{mywShape
myShape.x = 2AA;
myShape .y = 268
myShape .rotation = i}
i+= 18;

Towhile (i< 361);

0 The equivalent do while statement.

for (var itint = B3 i < 3613 1 += 18) {
vor myShope :Shape = new Shoped);
myShope .grophics. lineStyle(1);
myShope .grophics.drovEl lipse(8, 8, 286, 98%;
addChi Ld{myShape) ;
myShape .x = 2883
myShape .y = 2883
myShape .rotation = i;

¥

G The equivalent for loop. You can read the
statements in the parentheses this way: Start

my counter at O; before each loop, check the
condition, and as long as it's smaller than 361,
perform the loop actions; after each loop, add
10 to my counter and repeat. The for loop is

the most efficient way of making loops.

6. On the next line, enter i += 10 or the
equivalent statement i = i + 10.

Each time the loop runs, the variable

i will increase by an increment of 10.
When it exceeds 361, the condition that
the while statement checks at each
pass will become false, and Flash will
end the loop @.

The do while statement

The do while statement is similar to the
while statement except that the condition
is checked at the end of the loop rather
than the beginning. This means the actions
in the loop are always executed at least
once. The script in the preceding task can
be written with the do while statement, as
shown in @.

The for statement

The for statement provides built-in places
to define a counter variable, condition, and
operation to increment or decrement the
counter, so you don’t have to write separate
statements. The three statements that go

in the parentheses of the for statement

are init, where you can initialize a counter
variable; condition, which is the expression
that is tested before each iteration of the
loop; and next, which defines a statement
to increment or decrement the counter
variable. The preceding task’s script can be
written with a for loop, as shown in 0.

Don’t use looping statements to

build continuous routines to check a cer-

tain condition over time. Real-time testing
should be done using an if statement in an
Event.ENTER_FRAME event handler or from

a TIMER event. When Flash executes looping
statements, the display remains frozen, and no
mouse or keyboard events can be detected.

Continues on next page

Controlling Information Flow 381

With the while and do while state-
ments, make sure the statement that modifies
the variable checked in the condition is inside
the curly braces. If it isn’t, the condition will
never be met, and Flash will be stuck execut-
ing the loop infinitely. Fortunately, Flash warns
you about this problem when it detects a prob-
lem in your script that causes it to stall 0

Note that the statements within the
parentheses of the for statement are sepa-
rated by semicolons, not by commas.

The fox..in loop and for each..in loop

Two other kinds of loops, called the for..in
loop and the for each..in loop, are used
specifically to look through the properties
of an object or elements of an array and to
look through the values of those properties
or elements. You don’t need to use a coun-
ter variable as you do for the other kinds

of loops. Instead, you use a variable called
an iterator, which is assigned a new value
each time the loop repeats.

The built-in properties for objects (the ones
that come with the preexisting classes)

are hidden from the for..in and the

for each..in loop—only properties that
you define or elements of an Array are
available.

To use the forx..in loop to
reference properties of an object:

In the Script pane of the Actions panel,
enter the code as follows:

for (var iterator:String in
myObject) {
/!l do something with iterator
trace (iterator);

You can name the iterator variable any-
thing you want and target any object you
want. Flash goes through each property
or element inside the object (here, called
myObject) and returns the name of that
property in your iterator variable. So, if
myObject contained the properties name
and age, the trace statement would return
name and age. You can also put the iterator
in square brackets for dynamic property
access.

To use the for each..in loop to
reference values of an object:

In the Script pane of the Actions panel,
enter the code as follows:

for each (var iterator:String in
myObject) {
/! do something with iterator
trace (iterator);

}

You can name the iterator variable any-
thing you want and target any object you
want. In the for each..in loop, the iterator
can be typed to any data type, not just a
String (for example, if you are looping
through an array and you know you’ve
only added int variables to the array, you
can type the iterator as int). Flash goes
through each property or element inside
the object (here, called myObject) and
returns the value of that property in your
iterator variable. This loop is useful to auto-
matically go through the elements of an
Array object or of an XML object to access
the data.

timeout period of 15 seconds.

Error: Error #1502: A script has executed for longer than the default

at Untitled_fla: :MainTimeldine/Tramel ()

o This warning dialog box appears when you inadvertently cause

an infinite loop.

382 Chapter 9

Controlling Text

Like graphic elements, text can be
dynamic, meaning that you can update
the text during playback by changing what
characters are displayed as well as how
they appear entirely with ActionScript.

Flash Professional CS5 introduces a

new and powerful way of working with
text, called the Text Layout Framework,

or TLF text. You can create layouts with
sophisticated typographic control using
TLF text. For example, you can make text
flow around photos, you can easily create
multiple columns, or you can create vertical
and right-to-left running text for foreign
language support. The older way of work-
ing with text, known as Classic text, is still
available, and is still a great way to work
with text when you don’t need the fine con-
trol that TLF text allows.

This chapter explores some of the many
possibilities of how ActionScript can
control both Classic and TLF text. You'll
learn to create, format, display, and even
analyze text and control the information
exchange between your Flash movie and
your audience.

In This Chapter

Understanding TLF and Classic Text
Creating Wrapping Text

Creating Multicolumn Text
Controlling Text Field Contents
Displaying HTML

Modifying Text Field Appearances

Generating Text Dynamically:
Classic vs. TLF Text

Creating Classic Text

Creating TLF Text Fields

Getting Text into the TextFlow

TLF Text Containers and Controllers
Formatting the TextFlow

Making Text Selectable or Editable
Detecting Text Focus

Analyzing Text

384
387
390
392
395
399

401
402
408

410

M4

418
420
422
424

Understanding TLF
and Classic Text

TLF stands for Text Layout Framework, and
it is the new text engine for Flash Player 10.
TLF text supports fine typographic controls—
for example, for text that flows around
photos or for multicolumn text fields. The
sophisticated controls over text are avail-
able to you in both the Properties inspector
and through ActionScript.

When you choose the Text tool, the Proper-
ties inspector provides you with several
options for text. You can choose either
TLF Text or Classic Text €). Classic text is
the older way of creating text. Although
Classic text doesn’t support many of the
new layout features, you can still dynami-
cally create, modify, and display Classic
text. Creating TLF text with ActionScript
requires a little more coding. The trade-
off is yours to decide; the choice to use
TLF text or Classic text should be made
based on the level of control your project
requires, and the amount of ActionScript
you’re willing to tackle.

TLF text has three main options: Read
Only, Selectable, and Editable @. All three
options enable you to control the text with
ActionScript. The options determine what
kind of interaction you want your viewers
to have with the text:

m Read Only. Choose the Read Only
option if you want your text to be for
display only. The viewer cannot select
or edit the text.

m Selectable. Choose the Selectable
option if you want your viewer to be
able to select the text for copying and
pasting. However, the viewer cannot
delete or edit the text.

m Editable. Choose the Editable option
if you want your viewer to be able
to select, delete, or edit the text. For
example, if you want to create a text
field for a login and a password, choose
the Editable option.

Classic Text also has additional options:
Static, Dynamic, and Input @. These
options determine whether the text can be
controlled by ActionScript, and whether
the text can be selected and edited by the
viewer:

m Static. Choose the Static Text option
if you want your text to be for display
only. You cannot control the text with
ActionScript and the viewer cannot
select or edit the text.

m Dynamic. Choose the Dynamic Text
option if you want to be able to control
the text with ActionScript and allow the
viewer to select the text for copying
and pasting.

® Input. Choose the Input Text option if
you want to be able to control the text
with ActionScript and allow the viewer
be able to select or edit the text.

384 Chapter 10

PROPERTIES

Text Tool

v TLF Text
Classic Text

0 You have two options for text. TLF text uses the
latest text engine in Flash Player 10. Classic text is
the older, but still useful, method.

EEE = —
Text Tool
[TLF Text lv|
v Read Only
Selectable — 77—
CHA
e Editable
Family: | cocoaranowrng *

0 The options for TLF text determine how the
user can interact with the text.

PROPERTIES

Text Tool
| Classic Text ||
 Static Text | E=

Dynamic Text
Input Text

Family:

G The options for Classic Text determine how the
user can interact with the text as well as whether
you can control the text with ActionScript.

N
[_swz_

0 TLF text depends on an
external ActionScript library,
which is published as a SWZ
file next to your SWF file.

The TLF Text ActionScript library

TLF text depends on a specific external
ActionScript library to function properly.
When you test or publish a movie that
contains TLF text, an additional Text Layout
SWZ file is created next to your SWF file.
The SWZ file is the external ActionScript
library that supports TLF text @.

How does your SWF file normally find this
ActionScript library? When a SWF file that
contains TLF text is playing from the Web,
the SWF looks for the library in a couple

of locations. First, the SWF looks for the
library on the local computer it is playing
on, where the library is usually cached from
normal Internet usage. The SWF also looks
on Adobe’s site for the library file, and if
that fails, it looks in the same directory as
the SWF.

You should always keep the SWZ file with
your SWF file so the TLF text features work
properly when you test your movies locally.
You should also have the SWZ file accom-
pany your SWF file when you upload it to
your Web server, just to be safe.

Although it’'s not recommended, you can
merge the required ActionScript library (the
SWZ file) with your Flash project. When
they are merged, you won’t have to main-
tain the separate SWZ file, but the size of
your published SWF file will be significantly
larger.

Controlling Text 385

To merge the TLF text library:

1. Choose File > Publish Settings. Click
the Flash tab and choose Settings for
ActionScript 3.0 @.

or

Click the Edit button next to Action-
Script settings in the Properties
inspector.

The Advanced ActionScript 3.0 settings
dialog box appears.

2. Click on the Library path tab; then click
on the arrow next to the textLayout.swc
listing in the display window.

The arrow points downward, expand-
ing the information about the TLF text
feature. Notice that the Link Type shows
that the Flash file depends on a runtime
shared library, and that the URL for the
library is on Adobe’s site. That is where
your Flash file looks for the ActionScript
library when it plays on the Web @.

3. In the Runtime Shared Library Settings
section, choose “Merged into code” for
the Default linkage @.

The Link Type changes to Merged

into code @. The current Flash file will
merge the TLF Text ActionScript library
into the published SWF file.

file: | Default

B b+ =l

g Fromete= NENEN = Y L=}

Player: [Flash Player 10 qu —

G Choose ActionScript 3.0 Settings to see the
TLF Text ActionScript library sharing options.

script: | ActionScript 3.0

[Source path - Library path-+ Config constants |

SWC files or folders containing SWC files ==
o [B=AE =]~

P2 StAopConfin)fActionScript 3.0/libs
¥ 4] wenlayoutswe - ${iAppConfighfActionScript 3.0/1ibs/11.0
B Feature: TUF Text
W Link Type: Uses default (Runtime shared library)
¥ @ RSLUAL: http://fpdownload.adobe.com/pul/swa/tf/ 1.0.0.595 /textlayou
[l Palicy File URL: hwxp:/ adobe. rml

o The Link Type for the textLayout.swc indicates
that the ActionScript library is shared (and external
to your final, published SWF).

Runtime Shared Library Settings gy ntime shared library (RSL) =
Defaut inkage: EIL TS >

Preloader method: | Preloader SWF

@ Choose “Merged into code” if you want to
merge the TLF Text ActionScript library with your
final, published SWF.

| Source path | Library path | Config constants |

SWC files or folders containing SWC files
[ol#[=120]=)=
* & $lappConfig)/ActionScript 3.0/libs
¥ £ textlayout.swe - SIAppConfig)/ActionSeript 3.0/libs/11.0
=i Feature; TLF Text
@8 Link Type: Lises default (Merged inta code)
@ RSLURL: (n/a)
[8] Puliey File URL: {n/a}

0 The Link Type for the textLayout.swc indicates
that the ActionScript library is merged.

386 Chapter 10

O Click the

white square at
the bottom right
of the text field.

O The icon
of a text field
indicates that
- K you can define

‘ the next linked
text field.

First text field

G Drag out a second text field.

0 The two text fields are linked, and they behave
as one container.

Creating
Wrapping Text

New in Flash Professional CS5 is the ability
to create threaded text fields using TLF
text. What this means is that individual text
fields can be linked to each other on the
Stage so that text that doesn’t fit in one
text field can overflow to the next linked
text field. By linking together many differ-
ent-sized text fields, you can make text
wrap around objects (such as photos or
animations) on the Stage for more complex
and visually interesting layouts.

To create wrapping text:

1. Choose the Text tool in the Tools panel,
and in the Properties inspector, choose
TLF Text.

2. Click on the Stage and drag out a
text field.

A single text field is placed on
the Stage.

3. Click the white box on the lower-right
corner of your text field .

Your cursor changes to an icon of the
corner of a text field indicating that you
can define the top-left corner of the
next linked text field @.

4. Click and drag a second text field on
the Stage or just click on the Stage to
define a second text field at the same
size as the first @.

The second text field is linked to the
first. Blue lines indicate the linkage @.

Continues on next page

Controlling Text 387

5. Continue adding additional linked text
fields and enter text to wrap your text
around any objects on the Stage @.

1 orem ipsum dolor §|t amet, consactetur-
adipiscing elit. Maecenas ut sapien nec
massa fermentum cursus id vitae erat.

The linked text fields behave as a single Sed ac nisi nec elit porta accumsan. &

container. As you add, delete, and edit
text, the contents reflow to fit. You can
select all (Edit > Select All), and the
contents of all the linked text boxes will
be selected.

tiam vitae risus est.
Ut sodales venenatis
arcu, ac eleifend justo
tincidunt in. Nam !
feugiat commodo
magna, at mattis nibh
To edit the text fields: Togestas sit amet. Morbi vel lectus sem,

id fringilla quam. Mauris vestibulum

L
mollis dolor at sollicitudin. Nulla congue
augue nec purus suscipit. E]

m Resize any of the text fields by clicking
and dragging on the control squares
around the blue bounding box @.

If a particular text field is too small to fit
its contents, and is not linked to another
text field to allow the overflow, a red
cross appears in the white box at the

G Three linked text fields wrap text around a
graphic element.

lower right of the text field to indicate T arem ipsum dolor st amet, consectetur|
that text is being cut off. adipiscing elit. Maecenas ut sapien nec
= Move any of the linked text fields to massa fermentum cursus id vitae erat.

new locations on the Stage @ ISed ac nisi nec elit Earta accumsan.

e o T f ______________ n

The linkages remain even after text
fields are rearranged.

0 Drag the square control points around the
bounding box to change the dimensions of any
text field. Here, the text field is becoming taller.

E[_lrarem ipsum dolor 5-|t amet, consactetur-
adipiscing elit. Maecenas ut sapien nec
massa fermentum cursus id vitae erat.

Sed ac nisi nec elit Eorr.a accumsan.

estas sit amet. Morbi vel
lectus sem, id fringilla quam.
Mauris vestibulum mollis dolor
at sollicitudin. Nulla congue
augue nec purus suscipit.

IEtiam vitae risus est.
Ut sodales venenatis
arcu, ac eleifend justo
tincidunt in. Nam !
feugiat commodo
magna, at mattis nibh &7

@ The flow of text through the text fields maintains its order despite
rearranging the text fields.

388 Chapter 10

dolor s-lt amet, consecietur-
Maecenas ut sapien nec
tum cursus id vitae erat.

c elit Eor‘ta accumsan.

tiam vitae risus est. e
Ut sodales venenatis &
arcu, ac eleifend justo
tincidunt in. Nam

0 The broken link icon
indicates that you can break
the link to the current text field
(the one below the cursor).

dolor S-lt amet, consectetur
Maecenas ut sapien nec
tum cursus id vitae erat. !
c elit Eor‘ta accumsan. H

®

o The link icon indicates
that you can establish a link
to the current text field (the
one below the cursor).

To delete a linked text field:

Select the text field and press Delete on
the keyboard.

The selected text field is deleted, but the
remaining linkages are maintained. For
example, if you had three linked text fields,
and you deleted the second one, then

the first text field would now be linked

to the third.

To insert a linked text field:

Click on the white box at the lower right of
a linked text field and drag out another text
field on an empty part of the Stage.

A new text field is inserted between the
existing linked text fields, and the text
reflows to fill the new container.

To break or create new
text field linkages:

Click on the white box at the lower right of
a linked text field and hover over another
text field.

If the second text field is linked to the first,
your mouse pointer changes to a broken
link icon, indicating that you can click on it
to break the existing link @.

If the second text field is not linked, your
mouse pointer changes to an intact link
icon, indicating that you can click on it to
create a new link to it @.

Controlling Text 389

= CONTAINER AND FLOW

Creating
Multicolumn Text

With TLF text, you can easily control how

Behavior: | Multiline Ix]

Max chars: - fg‘ ElElEl
Columns: [[] E g8 20.0px

R) Paddina: L:2.0px R:2.0px
the text fills its individual text field. For
. €2 T:20px B 2.0px
example, you can make the text flow in
o P P &[]

multiple columns, control the spacing in
between columns (called the gutter), and
even change the padding between the
text and the bounding box.

0 Enter an integer for the number
of columns; there are two columns
for this text field.

The options for creating multicolumn text

accumsan. Etiam
vitae risus est. Ut

E_orem ipsum dolor
sit amet, consectetur

and changing related properties are in the
Container and Flow section of the Proper-

ties inspector.

To create multicolumn text:

Select a TLF text field on the Stage and
change the value of the Columns field
in the Container and Flow section of the

adipiscing elit.
Maecenas ut sapien

L
nec massa

fermentum cursus id
vitae erat. Sed ac
nisi nec elit porta

sodales venenatis
arcu, ac eleifend
justo tincidunt in.
Nam feugiat
commodo magna.

Properties inspector @. O A two-column text field

The selected text field automatically makes
the contents of the text field flow in mul-
tiple columns @.

The maximum number of columns you
can set in the Properties inspector is 10. How-
ever, you can have more columns by chang-
ing the columnCount property of the text
field with ActionScript, described later in this
chapter.

390 Chapter 10

~ CONTAINER AND FLOW

Behavior: | Multiline =]
Max chars: - E"E“E'
Columns: [2, @D G A The

value is set at
40 pixels.

40 pixels
|

column gutters

E_orem ipsum dolor ‘ac nisi nec elit

sit amet, porta accumsan.
consectetur Etiam vitae risus
adipiscing elit. est. Ut sodales
Maecenas ut venenatis arcu, ac !
sapien nec massa eleifend justo
fermentum cursus tincidunt in. Nam

id vitae erat. Sed feugiat commodo H

0 The space between the two columns is 40
pixels.

Constrain the padding values

G The Left, Right, Top, and Bottom values are at
10 pixels.

10 pixels 10 pixels

ya)
%ra m \ipsu m
dolor sit amet,
consectetur
adipiscing elit.
Maecenas ut

sapien nec
massa fermentum

o There is a 10-pixel space between the text and
the outer bounding box.

To change the column spacing:

Select a TLF text field on the Stage and
change the value of the column gutters
field in the Container and Flow section of
the Properties inspector @.

The spacing between columns changes
based on the pixel value of the column
gutters field. All columns are spaced
uniformly @.

To add spacing around the columns:

Select a TLF text field on the Stage and
change the Padding values in the Con-
tainer and Flow section of the Properties
inspector. Change the L (left), R (right),

T (top), or B (bottom) values indepen-
dently, or click the Link icon to constrain
the spacing around all sides of the text
uniformly @.

The spacing between the text and its
bounding box (the blue outline) changes
based on the pixel values of the Padding
fields @.

Controlling Text 391

Controlling Text
Field Contents

You can control the contents of any text
field with ActionScript, giving you the
power to dynamically respond to your
viewer based on changing conditions in
your movie. A scoreboard, for example,
can be continuously updated to display the
most recent score in a game. Or a calcu-
lator can display the results of a custom
monthly mortgage on a real estate site.

The property that determines a text field’s
contents is the text property. Text fields of
Classic text (Dynamic or Input) or TLF text
can be given instance names in the Proper-
ties inspector. Once named, use the text
property in ActionScript to reference the
contents of the text field.

Classic text and TLF text are two different
ActionScript classes. Text fields of Classic
text are instances of the TextField class.
Text fields of TLF text are instances of the
TLFTextField class. However, both classes
use the text property to control their
contents.

The following task demonstrates how you
can access the contents of one editable
text field and assign new contents to
another. When viewers enter the tempera-
ture in Celsius in an editable text field and
press the Tab key, Flash will convert the
value to Fahrenheit and display it in a read-
only text field.

To control the contents
of text fields:

1. Choose the Text tool in the Tools
panel, and in the Properties inspector,
choose TLF Text and Editable.

2. Drag out a text field on the Stage and
in the Properties inspector, enter an
instance name @.

This first text field will accept a tem-
perature in Celsius.

3. Create a second text field, but make
this one TLF Text and Read Only.

4. In the Properties inspector, enter an
instance name @.

This second text field will display the
temperature in Fahrenheit.

5. Select the first frame of the main Time-
line, and open the Actions panel.

6. On the first line of the Script
pane, add a listener to detect a
KeyboardEvent.KEY_DOWN event on
your editable text field.

Instance name

PROPERTIES -

|celsius |
[TLF Text I>]
| Editable I~| [E =

0 The instance name for this editable text field is
celsius.

Instance name

PROPERTIES -

Ifahrenl'leit |
[TLF Text |v]
| Read Only x| [=

o The instance name for this read-only text field
is fahrenheit.

392 Chapter 10

7. On the next line, add the func-
tion that responds to the
KeyboardEvent.KEY_DOWN event. Within

9. Next, convert the result to a String and
assign it to the contents of the second
text field, as in the following @:

the curly braces of the function, add an
if statement to check if the key that is
pressed is the Tab key @.

fahrenheit.text = String(
conversion);

10. Test your movie.

8. As the consequence of the if state-
ment, perform calculations on the con-
tents of the editable text box (Celsius),
and assign the result to a variable that
holds Number data, as in the following:

When the user enters a number in the
editable text field and presses the Tab
key, Flash takes the contents and con-
verts them into a Fahrenheit number. It
then puts that number in the contents of

var conversion:Number = (9 / 5) * the second text field to be displayed @.

Number(celsius.text) + 32;

Notice that you must explicitly convert
the text property of the text field to a
number when doing calculations.

celsius.oddEventListener(KeyboardEvent . KEY_DOWN, doConversion);
function doConversion(myevent :KeybhoardEvent):void {
if (myevent.keyCode == Keyboard.TAB) {

}

¥

@ This event handler detects when the Tab key is pressed
within the text field called celsius.

celsius . addEventlistener(KeyboardEvent KEY_DOWN, doConversion);
function doConversion(myevent:KeyboardCvent):void {
if (myevent.keyCode == Keyboard.TAB) {
var conversion:Number = (9 / 5) * Number(celsius.text) + 3Z;
fohrenheit.text = String(conversion);

}

1

0 The contents of the read-only text field (fahrenheit.text)
are assigned the correct value from the editable text field
(celsius.text) when the Tab key is pressed. Use Number() and
String() to convert the data to numbers or text.

Celsius Editable text field

Fahrenheit

Read-only text field

G The user can convert Celsius to Fahrenheit.

Controlling Text 393

Embedding Fonts and Device Fonts

Normally when you include static or read-only text in Flash, all the font outlines are included in the
final SWF. However, for any text that may be edited during runtime, you should embed the fonts.
Because the user can enter any kind of text in editable text fields, you need to include those char-
acters in the final SWF to ensure that text appears as you expect it, with the same font that you've
chosen in the Properties inspector.

To embed fonts, choose

_Font Embedding
Text > Font Embedding, or FE oo]
click the Embed button in E— = | pame:
the Character section of the gt Fonc 1) fom! !
Properties inspector. The Font h:: .w',:@
Embedding dialog box that Characre ranges:
appears @ shows you what e T .
fonts you are currently using, O e Gt [
and provides options for you R T .
to select specific characters
of the font you want included. ‘
Be aware that embedding Estmased glyghi: 0

fonts dramatically increases
the size of your exported SWF
file, because the information
needed to render the fonts is

o The Font Embedding dialog box. Fonts appear on the left, and
options for embedding select character ranges appear on the right.

 CHARACTER
included. Keep the file size down by embedding only the it o E
characters your viewers use in the text field. o Wosans Sampia -
Another way to maintain small file sizes and eliminate the : . o
_typewriter i

potential problem caused by viewers not having the match-
ing font is to use device fonts. Device fonts are grouped @ Device fonts appear at the top of

at the top of your Famlly pU”-dOWn menu in the Character your Character Family pull-down menu.
section of the Properties inspector @. The three device

fonts are _sans, _serif, and _typewriter. These options find the fonts on a viewer’s computer
that most closely resemble the specified device font. The following are the corresponding fonts for
the device fonts:

On the Mac: In Windows:

® sans maps to Helvetica. ® sans maps to Arial.

m _serif maps to Times. m _serif maps to Times New Roman.
= _typewriter maps to Courier. = _typewriter maps to Courier New.

394 Chapter 10

Displaying HTML

Flash can display HTML-formatted text in
Classic text (Input or Dynamic) or in TLF
text. This means you can integrate HTML
content inside your Flash movie, maintain-
ing the styles and hyperlinks.

Displaying HTML works a little differently,
depending on whether you are using Clas-
sic text (Input or Dynamic) or TLF text. For
Classic text (Input or Dynamic), you must
select the Render as HTML option in the
Properties inspector and use the htmlText
property of a text field. When you mark up
text with HTML tags and assign the text to
the htmlText property, Flash interprets the
tags and preserves the formatting, includ-
ing image and anchor tags.

The following common HTML tags are sup-
ported by Classic text (Input or Dynamic):

m <a>: Anchor tag to create hot links with
href, target, and event attributes

= : Bold style
m
: Line break

m : Font style with color, face,
and size attributes

m : Image tag with src, width,
height, align, hspace, vspace, id,
and checkPolicyFile attributes

m <i>: ltalics style

m <1iy: List item style

m <p>: Paragraph style with 1left, right,
center, and justify attributes

m : For use with CSS text styles

m <textformats: For use with Flash’s
TextFormat class

= <u>: Underline style

For TLF text, you can also assign HTML-
formatted text to the htmlText property of
a text field. However, only a subset of the
tags listed above are supported (refer to
Help > ActionScript 3.0 Reference for the
Flash Platform > TLFTextField > htm|Text),
and embedding images are handled in

a much different, more sophisticated
approach that involves the interaction of
additional classes. Later in this chapter,
you’ll learn to import HTML-formatted text
and embed inline images for TLF Text.

In this task, you'll load HTML-formatted text
from an external document into a Classic
Text dynamic text field.

To load and display HTML in a
Classic Text dynamic text field:
1. Open a text-editing application or a

WYSIWYG HTML editor, and create your
HTML document @.

2. Save the file in the same direc-
tory where you’ll create your Flash
document.

Continues on next page

<hitml><body><prThi=z iz an HTHL page</pr<p:Thiz containz
<i>simple</i> HTHL tags that F lash</ font>
can understand. Flash will display HTHML formatted text
when the HTHL option is selected in Dgnomic Text in the
Property |hspector. {/prdpr<{font face="Courier">a href{/font>
will also work to create links to Heb sites! For example, if
you <ur
click heredfar<{/u>, you will be sent to Adobe's Heb
zite.{/p>¥ou can alse insert images, just like in normal HTHL,
like this </body></html >

o The HTML text is saved as a separate document.

Controlling Text 395

3. In Flash, select the Text tool, and in the [FropeaTiEs [uBRARY] =1

Properties inspector, choose Classic [display |
Text and Dynamic Text. [Classic Text =]
=
4. Drag out a large text field that nearly T T
covers the Stage. < CHARACTER
5. In the Properties inspector, give the text Family: [Times (=]
field an instance name and click the sy [Rrguiar | Embed...|
Render as HTML button @. Also, make Size: 12.0pt Letter spacing: 0.0

color: I [Auto kern

Anti-alias: [Ant-alias for ammation | |

sure that Multiline is selected in the
Paragraph section.

The Render as HTML button lets Flash

Render as

ﬁ] HTML

know to treat the contents of the text 0o Enter display as the instance name for your
field as HTML-formatted text. Multiline dynamicext field, and click the Render as HTML
allows multiple text lines.
6. Select the first frame of the main Time- var mylRLLoader:URLLoader = new URLLoader();
var myURLRequest:URLRequest = new URLRequest("mypage.html"};
line, and open the Actions panel. myURLLoader , Load(myURLRequest);

mylRLLoader addEventListener(Event COMPLETE, datalk);
function dataOK(myevent:Event):void {

}

7. Create a new URLLoader and a new

URLRequest object and provide the path

to the HTML page, like so: @ The external HTML document called “mypage.
html” is automatically loaded. When the load
var myURLLoader:URLLoader = new is complete, the function called data0K will get
URLLoadex(); triggered.

var myURLRequest:URLRequest = new
URLRequest("mypage.html");

If your HTML page is in the same folder
as your Flash movie, you can just enter
the filename, as in this example. You
can either load a local file or one that’s
on the Internet.

8. On the next available line, call the
load() method for your URLLoader
object with the URLRequest object
as its parameter.

9. On the next lines, create an Event.
COMPLETE event handler to detect the
completion of the loading process @.

396 Chapter 10

wvar mylRLLaader:URLLoader = new URLLoader();

myURLLoader . load(myURLRequest);

mylRLLoader addEventlistener(Event . COMPLETE, data0K);

function dataUK{myevent:Event):void {
display.htmlText = myURLLoader.data;

var myURLRequest:URLRequest = new URLRequest("mypage.html");

0 The data property of the myURLLoader object,
which contains the HTML text, is assigned to the
htmlText property of the display text field.

Dynamic text field
|

This is an HTML page

This contains simpie HTML tags that Flash can understand.
Flash will display HTML formatted text when the HTML option is
selected in Dynamic Text in the Property Inspector.

a href will also work to create links to Web sites! For example, if
you click here, you will be sent to Adobe’s Web site.

You can also insert images, just like in normal HTML, like this

Al

Adobe

G The dynamic text field displays the HTML-
formatted text, including hyperlinks and
embedded images.

10. Between the curly braces of the event-
handler function, assign the data prop-
erty of your URLLoader object to the
htmlText property of the dynamic text

field @:

display.htmlText =
myURLLoader.data;

When the load is complete, the con-
tents of the text file are assigned to
the dynamic text field. The htmlText
property displays HTML-tagged text
correctly, as would a browser.

11. Test your movie.

The text in the external text file is
loaded into the data property of the
URLLoader object. When the file has
completely loaded, Flash assigns the
information to the htmlText property of
the dynamic text. The dynamic text field
displays the information, preserving all
the style and format tags @.

@D Because only a limited number of HTML
tags are supported by text fields, you should
do a fair amount of testing to see how the
information displays. When Flash doesn’t
understand a tag, it ignores it.

The anchor tag (<a>) normally appears
underlined and in a different color in browser
environments. In Flash, however, the hot link
is indicated only by the pointer changing to

a finger. To create the underline and color
style for hot links manually, apply the under-
line tag (<u>) and the font-color tag ().

@D The HTML tags override any style set-
tings you assign in the Properties inspector for
your dynamic text. If you choose red for your
dynamic text, when you display HTML text in
the field the tag will modify the
text to a different color.

The tag supports PNG, JPEG,
GIF, and SWF files. So, you can even load in an
external Flash movie to play within a dynamic

text field!

Controlling Text 397

To display HTML directly in
a dynamic text field:

1. In Flash, select the Text tool, and in the
Properties inspector, choose Classic
Text and Dynamic Text.

2. Drag out a large text field that nearly
covers the Stage.

3. In the Properties inspector, give the
text field an instance name and click
the Render as HTML button. Also make
sure the Multiline is selected in the
Paragraph section.

The Render as HTML button lets Flash
know to treat the contents of the text
field as HTML-formatted text.

4. Enter HTML text within the dynamic text
field @.

5. Select the first frame of the main Time-
line, and open the Actions panel.

6. Assign the current contents of the
dynamic text field (the text property)
to its htmlText property as in the
following:

display.htmlText = display.text;

When you test your movie, the current
contents of your text field will be ren-
dered as HTML-formatted text @.

If you simply need to add a hyperlink in
some fixed text, you can do so from the Prop-
erties inspector. In a Classic Text static text
field, select the words you want hyperlinked,
and enter the URL in the Link field in the
Options section of the Properties inspector.

In a TLF text field, enter the URL in the Link
field in the Advanced Character section of the
Properties inspector.

Dynamic or input text field
|

cfont size = '+3'sItinbrary for our class trip to
Long Island</font»
<brMonday = </brCape Santa
Maria<hr f>Tuesday = Columbus Paint<br
/=Wednesday = Crooked Island
Caves
Thursday = Deadman's Cay Caves<br
/r<hb>Friday = Montauk Point
</p>

o Enter HTML code directly in a dynamic or input
text field.

Itinerary for our class trip to Long Island
= Capw Santa Maria

Tuesday = Columbus Point

(Wednesday = Crooked Island Cawves

Thursday = Deadman's Cay Caves

Friday = Montauk Point

@ At runtime, Flash correctly displays all the
HTML code in the text field.

398 Chapter 10

Modifying Text
Field Appearances

When you drag a text field on the Stage
with the Text tool and name it in the
Properties inspector, you’re creating an
instance of the TextField or TLFTextField
class.

The instance name identifies the text

field for targeting purposes. When you

can target the text field, you can evalu-

ate or change its many properties. These
properties determine the kind and display
of the text field. You’ve already used the
text property to retrieve and assign the
contents of text fields and the htmlText
property to render HTML-formatted text.
There are many other properties, including
columnCount, which defines the number of
columns in a TLF text field, or boxrderColox,
which determines the color of the TLF

text field’s border. In addition, since the
TextField and TLFTextField classes are
subclasses of the DisplayObject class,
they share the same properties to control
general appearance on the Stage, such as
rotation, alpha, x, y, z, scaleX, scaley,
scaleZ, and so on.

Refer to the ActionScript 3.0 Reference for
the Flash Platform in Help for the extensive
list of properties of the TextField and
TLFTextField classes. In this task, you'll
explore some of these properties.

Controlling Text 399

To modify the properties
of a text field:

1. In Flash, select the Text tool, and in the
Properties inspector, choose TLF Text.

2. Drag out a text field on the Stage.

3. In the Properties inspector, give the text
field an instance name.

4. Select the first frame of the main Time-
line, and open the Actions panel.

5. In the Script pane, enter the instance
name of your text field followed by a
period, and then enter a property. For
this example, choose textColor, and
enter an equals sign.

6. After the equals sign, enter oxff0000.

The completed statement changes the
color of the text to red @.

7. Repeat steps 5 and 6, choosing differ-
ent properties and values to modify
your text field @.

To modify the font, font size, and other
characteristics of the text, you must use the
TextFormat class for Classic text or the
TextLayoutFormat class for TLF text, which
is discussed later in this chapter.

If you modify the properties alpha and
rotation, you should embed the font out-
lines for your text field. If you don’t, the text
may not be rendered correctly.

The properties x and y refer to the top-
left corner of the text field.

The properties width and height
change the pixel dimensions of the text field
but don’t change the size of the text inside the
text field. The properties scaleX, scaleY, and
scaleZ, on the other hand, scale the text.

|mytext.text[olor = Oxffpeeo;

0 Change the property textColor for the

text field named mytext. In this example, the
textColor property of the text field mytext is set
to red.

mytext.textColor = @xff@oeo;
mytext.background = true;
mytext.backgroundColor = @x225566;
mytext.border = true;
mytext.borderColor = @x99ff77;
mytext.rotationY = 45;
mytext.width = 200;
mytext.height = 150;
mytext.columnCount = 2;
mytext.columnGap = 10;
mytext.multiline = true;
mytext.wordWrap = true;

0 The script modifies many properties of the

text field mytext, resulting in the text below.

Note that text can be affected by properties for
formatting as well as general appearances such as
transformations in 3D space. The text was already
in the text field on the Stage at authortime.

400 Chapter 10

Generating Text
Dynamically: Classic
vs. TLF Text

So far in this chapter, you’ve been control-
ling and modifying text fields that you’ve
created on the Stage with the Text tool
during authortime.

However, if you want to have text appear
in your movie based on a viewer’s inter-
action, you must be able to create a text
field during runtime. When you generate
text dynamically, you still have full control
over its formatting, style, and many other
characteristics.

The process of dynamically creating

text varies, depending on if you want to
work with Classic or TLF text. For Clas-
sic text, you generate text fields with the
TextField class and modify them with
the TextFormat class. For TLF text, you
can use the TLFTextField class and the
TextLayoutFormat class, but for complex
layouts, your text content as well as its
formatting, display, and control are sepa-
rated in different classes such as TextFlow,
ContainerController, TextConverter,
and SpanElement.

Controlling Text 401

Creating Classic Text

To create a Classic text field, use the
TextField class constructor function,
like so:

var myTextField:TextField = new
TextField();

This statement creates a new TextField
instance that you can now fill with text.
You can also change the appearance of
the text field and add it to the display list
to make it visible to the viewer. To assign
contents to your new TextField object,
assign a string to its text property, as

in mytextfield.text = "Hello". Make
the text visible by calling the addChild()
method, as in:

stage.addChild(mytextfield);

To create a Classic text field:

1. Select the first frame of the main Time-
line, and open the Actions panel.

2. Declare a variable using the var
statement, and assign it the data type
TextField. Enter an equals sign and
then new TextField(). Don’t pass any
parameters to the constructor.

Your statement looks something like:

var mytextfield:TextField = new
TextField();

3. On the next lines, add content to your
TextField object by assigning a string
to its text property.

4. Finally, add the TextField object to the
display list.

A text field is created and displayed,
with its default properties @.

The default size of a dynamically gener-
ated TextField object is 100 pixels wide by
100 pixels tall.

var mytextfield:TextField = new TextField();
mytextfield.text = "Welcome to Flash!";
stage.addChild(mytextfield);

8006

‘Welcome to Flash!

0 This code creates a new instance from the
TextField class, adds text, and displays the
instance on the Stage. The dynamically generated
text field is positioned at the registration point of
its parent, here shown at the top-left corner of
the Stage. The default format for a dynamically
created text field is black 12-point Times New
Roman (Windows) or Times (Mac).

402 Chapter 10

The Default Classic Text Field
Appearance

When you create a Classic text field
dynamically, it has the following default
properties:

type = dynamic

selectable = true

embedFonts = false

multiline = false

restrict = null
displayAsPassword = false
maxChars = null

wordWrap = false

background = false

autoSize = none

border = false
alwaysShowSelection = false
autoSize = none
antiAliasType = "normal"

The text field also has the following
default format properties (which you can
change with a TextFormat object):
font = Times New Roman (Windows)
font = Times (Mac)

leftMargin = o

rightMargin = 0

size = 12

indent = 0

textColor = 0x000000

leading = 0

bold = false

url = ""
target =
italic = false
underline = false
bullet = false
align = "left"

To remove a text field:

Call the removeChild() method and use
the text field as its parameter, as in:

removeChild(myTextField);

The TextField object is removed from the
display list and disappears from the Stage
or from its DisplayObjectContainer.

You can use removeChild() to take
away a text field generated dynamically or
one that was created at authortime with the
Text tool.

Modifying Classic text fields

The TextFormat class controls character
and paragraph formatting, and can be used
to modify a text field.

To change the formatting of a text field, first
create a new instance of the TextFormat
class, like so:

var myTF:TextFormat = new
TextFormat();

Then assign values to the properties of
your TextFormat object:

myTF.size = 48;

Finally, call the setTextFormat() method
for your text field. This method is a
method of the TextField class, not of the
TextFormat class:

mytextfield.setTextFormat(myTF);

This statement applies the formatting that
you define in the TextFormat object to

the text in the text field. In this example, it
changes the size of the text in the text field
mytextfield to 48 points.

For the full list of TextFormat properties,
refer to the ActionScript 3.0 Reference for
the Flash Platform in Help.

Controlling Text 403

To modify the formatting
of a Classic text field:

1.

Create a Classic text field, either by
generating one with ActionScript with
the TextField class or by creating one
on the Stage with the Text tool.

In this example, you’ll create a text field
dynamically @.

Declare a TextFormat object using the
var statement followed by an equals
sign and then the constructor function
new TextFormat().

A new TextFormat object is created.

On the next lines, enter the name of
your TextFormat object, followed by a
period, then a property name, an equals
sign, and a value. For example:

myTF.size = 48;
myTF.color = OxFF0000;
myTF.italic = true;

These three statements assign new
values for the size, color, and the italics
style @.

On a new line, enter the name of your
text field followed by a period. Then call
the setTextFormat() method and pass
your TextFormat object as the param-

eter @.

The TextFormat object provides the
information about all the formatting
of the text, and the setTextFormat()
method applies those changes.

var mytextfield:TextField = new TextField();
mytextfield.text="Welcome to Flash!";
stage.addChild(mytextfield);

0 Create a new text field from the TextField
class, assign text, and add it on the Stage.

var mytextfield:TextField = new TextField();
mytextfield.text="Welcome to Flash!";
stage.addChild(mytextfield);

var myTF:TextFormat=new TextFormat();
myTF.size=48;

myTF. color=0xFFO000;
myTF.italic=true;

0 Instantiate a TextFormat object called myTF,
and assign new values for its size, color, and
italics style.

var mytextfield:TextField = new TextField(D;
mytextfield.text="Welcome to Flash!";
stage.addChild(mytextfield);

var myTF:TextFormat=new TextFormat();
myTF.size=48;

myTF.color=0xFFO000;
myTF.italic=true;

mytextfield.setTextFormat(myTF);

0 Call the setTextFormat() method and pass
the TextFormat object to make the formatting
changes.

404 Chapter 10

var mytextfield:TextField = new TextField();
mytextfield.text="Welcome to Flash!";
stage.addChild(mytextfield);

var myTlr:Textlformat=new Textlormat();
myTF.size=48;

myTF.color=0xFFaoea;
myTF.italic=Lrue;

mytextfield.width=600;
mytextfield.helght=200;

mytextfield.setTextFormat(myTF);

anNno

Welcome to Flash!

G The new formatting applies to the entire text
field. The width and height properties expand the
text field to accommodate the text, but do not
change the actual size of the text itself.

5. Be sure to change the width and
height properties of the text field to
accommodate the text.

6. Test your movie.

Flash creates a TextFormat object. The
properties of the object are passed
through the setTextFormat() method
and modify the existing contents of the
text field @.

@D The setTextFormat() method changes
the formatting of existing text only, so you
should already have text in your text field to
see the changes. If you add more text after
setTextFormat() is called, that text will have
its original formatting.

@D You can pass two additional, optional
parameters for the setTextFormat() method
if you want to modify only a span of characters
in your text field. The first parameter is the
required name of your TextField object, the
second is the beginning position of the span,
and the third is the ending position of the span.
The position of each character is numbered
with an index starting at 0. So the statement
mytextfield.setTextFormat(myTF, 12, 24)
formats just the characters beginning at index
12 and up to, but not including, index 24.

Controlling Text 405

Embedding and applying fonts

When you want to format a Classic text
field with a particular font, you use the
font property of the TextFormat object to
provide the name of the font. However, you
must do two additional things: First, you
must set the embedFonts property of the
text field to true. Second, you must make
the font available to the exported SWF by
putting it in the Library and marking it in the
Linkage options of the Symbol Properties
dialog box.

To modify the font of a
Classic text field:

1. Inthe Library, choose New Font from
the Options menu @.

The Font Embedding dialog box
appears.

2. In the Font Embedding dialog box,
choose a font from the pull-down
menu @.

3. Click the ActionScript tab.

4. In the Linkage section, select Export for
ActionScript. Leave the base class as
flash.text.Font. Click OK .

Flash may warn you that it can’t find

a definition for the class. Click OK to
dismiss the dialog box. Flash will export
the font and include it in your SWF so
you can reference it from ActionScript.
Your embedded font appears in your
library @.

5. Select the first frame of the Timeline,
and open the Actions panel.

6. On the first line of the Script pane, cre-
ate a new TextField object and add it
to the Stage.

7. On the next line, assign some text to
the text property of your TextField
object.

LIERR New Symbol...

[[Untitled-4 =] & G MNew Folder
New Font...
New Video...
Preview not available
Rename
Delete
Empty libeary L 1 puyplicate...
Name | Linkage Move to..
Edit

o Choose New Font from the Library Options
menu.

Name:
[Fonr 1]
Family: [sans [=]
Style: T Bank Gothic Easm
Tr Baskerville Sl

] Al (1480793 O Baskerville Old Face Saunple
L] Uppercase Bauhaus 93 Jamale
|| Lowercase K

] Numerals [0 @ Bell Gothic Std

[Punctuation O Bell MT Sarmple
M1 Racir 1atin

Alsoinclude thess @ Bernard MT Condensed tamgie

@ Choose the font you want from the pull-down
menu.

Qutline format
(=) Classic (DF3)
(O TLF (DF4)
Linkage
[Fxparr for ActinnScripr

[Export in frame 1

Identifier:
Class: |Fontl |
Base Class: | flash.texcFon

0 The ActionScript tab of the Font Embedding
dialog box. Select the Export for ActionScript box
and leave the Base class as flash.text.Font.

LIBRARY
| Lintitled-a Iv| & L&
Preview not available
1item ¥e
Mame - | Linkage
A Font 1 Fontl oThe font

appears in your
library.

406 Chapter 10

var mytextfield:TextField = new TextField();
stage.addChild(mytextfield);
mytextfield.text = "New fonts!";
mytextfield.embedFonts = true;

0 The property embedFonts must be true if you
want to embed fonts for a dynamically generated
text field.

var mytextfield:TextField = new TextField();
stage.addChild(mytextfield);
mytextfield.text = "New fonts!";
mytextfield.embedFonts = true;

var myTF:TextFormat = new TextFormat();
myTF.font = "Bauhaus 93";

o Assign the new font to the font property of
your TextFormat object. The font is the name that
appears in the pull-down menu in your Properties
inspector; here it’s called “Bauhaus 93.” Be sure to
use quotation marks around your font name.

var mytextfield:TextField = new TextField();
stage.addChild(mytextfield);
mytextfield.text = "New fonts!";
mytextfield.embedFonts = true;

var myTF:TextFormat = new TextFormat();
myTF.font = "Bauhaus 93";

mytextfield.setTextFormat(myTF);

o The last step is to use the setTextFormat()
method and pass your TextFormat object. Be sure
that you’ve already assigned text to your text field.

0

New fonks!

m The text is displayed in the
specified font (Bauhaus 93).

8. On the following line, assign the value
true to the embedFonts property of
your TextField object @.

9. On the next line, create a new
TextFormat object.

10. On the following line, enter the name of
your TextFormat object, a period, the
property font, an equals sign, and then
the name of your font as it appears in
your Properties inspector. Make sure
you put quotation marks around the
font name.

Note that the font property takes a
string value. This is not the name of
your font symbol in the Library, nor is it
the class name in the Linkage prop-
erties. It is the name of the font that
appears in the Font field of the Font
Symbol Properties dialog box, which is
identical to the one that appears in the
pull-down menu of fonts in the Proper-
ties inspector @.

11. On a new line, enter the name of your
text field and a dot, and then call the
setTextFormat() method and pass the
TextFormat object as the parameter @.

12. Test your movie.

The font symbol in your Library is
marked for export into your SWF and is
available to be referenced by Action-
Script. Flash creates a TextFormat
object and assigns the font out-

line to its font property. When the
setTextFormat() method is called, the
font is applied to the text field ().

Setting the antialiasing of your text field
to an advanced setting may help with the
rendering and appearance of embedded fonts.
Use the statement:

mytextfield.antiAliasType =
AntiAliasType.ADVANCED;

Controlling Text 407

Creating TLF Text Fields

Using TLF text gives you more sophistica-
tion over the typography and layout, but it
comes with an added price. The low-level
and nuanced control over all the details
of your text comes with a proportionately
larger set of ActionScript code to handle
those details.

The simplest way to use TLF text is to cre-
ate a new text field with the TLFTextField
class and add it to the Stage. Assign con-
tents to the text field with its text property,
just as you would do with Classic text:

var mytextfield:TLFTextField =

new TLFTextField();
stage.addChild(mytextfield);
mytextfield.text = "hello world";

However, that’s where the similarities
between Classic and TLF text ends. TLF
text differs from Classic text in that all the
text is managed through another class
called TextFlow. To format a TLF text field,
you put the contents of your TLF text field
into a TextFlow object, and then assign a
TextLayoutFormat object to the format
property of your TextFlow object, much
like this:

var mytextflow:TextFlow =
new TextFlow();
mytextflow = mytextfield.textFlow;
var myformat:TextLayoutFormat =
new TextLayoutFormat();
myformat.fontSize = 14;
mytextflow.format = myformat;

Finally, you must call a method,
updateAllControllers(), to make the
formatting take effect:

mytextflow.flowComposer.
updateAllControllers();

To create TLF text:

1. Inthe Actions panel, enter an import
statement to include the code for the
TLFTextField class:

import fl.text.TLFTextField;

2. Create a new instance of a
TLFTextField and add it to the Stage:

var mytextfield:TLFTextField =
new TLFTextField();
stage.addChild(mytextfield);

3. Assign text to your text field’s text
property, and modify any other proper-
ties to change its appearance @.

import fl.text.TLFTextField;

var mytextfield:TLFTextField = new TLFTextField();
stage.addChild(mytextfield);
mytextfield.text = "Incy Wincy spider climbing up

mytextfield.width = 209,
mytextfield.height = 50;
mytextfield.multiline = true;
mytextfield.wordWrap = true;
mytextfield.columnCount = 2;
mytextfield.columnGap = 20;

Incy Wincy spout
spider climbing
up the water

o This code creates a new instance from the
TLFTextField class, assigns text, and adds the
instance to the Stage. The dynamically generated
text field is positioned at the registration point of
its parent, here shown at the top-left corner of the
Stage. The text field has some of its properties
modified: the text displays in two columns.

408 Chapter 10

import f1.text, TLFTextField;
import floshx. textloyout. formats. TextLoyoutFormat ;
import flashx.textlLayout. elements TextFlow;

wvor mytextfield:TLFTextField = new TLFTextField();
stage . addChild(mytextfield);
mytextfield.text = “Incy Wincy spider climbing up the water spout”;

mytextfield.width = 289;
mytextfield.height = 59;
mytextfield.multiline = true;
mytextfield. wordirap = true;
mytextfield. columnCount = 2;
mytextfield.columnbap = 20;

var myformat:TextLoyoutFormat = new TextLayoutFormat();
myformat, textIndent = @;

myformat.color = Bx336633;

myformat, fontFamily = "Lucida handwriting, _sans™;
myformat. fontSize = 12;

0 The highlighted portion of the code shows the
TextLayoutFormat object and some formatting
properties. You can specify the font family in
quotation marks, with alternative font families
separated by commas.

import f1.text TLFTextField;
import floshx. textloyout. formats. TextLoyoutFormat ;
import flashx.textlayout. elements TextFlow;

war mytextfield:TLFTextField = new TLFTextField();
stage.addChild(mytextfield);
mytextfield.text = “Incy Wincy spider climbing up the water spout”;

mytextfield.width = 788;
mytextfield.height = 59;
mytextfield.multiline = true;
mytextfield. wordirap = true;
mytextfield.columnCount = 2;
mytextfield.columnGap = 2@;

wor myformat : TextLoyoutFormat = new TextLayoutFormat();
myformat . textIndent = @;

myformat.color = Bx336633;

myformat , fontFomily = “lucido hondwriting, _sans™;
myformat . fontSize = 12;

wvar mytextflow: TextFlow = new TextFlow(};

mytextflow = mytextfield. textFlow;

mytextflow. format = myformat;

mytextflow, FlowComposer . updatedl 1Control lersg);

G The full code to create a TLFTextField and
format it with a TextLayoutFormat object. You
must use the TextFlow object to format the text
and to call the updateAllControllers() method.

Incy Wincy the water
spider spout
climbing up

0 The text displays according to the formatting in
the TextLayoutFormat object. Compare this text
with the example with default formatting in ©9.

To format TLF text:
1. Continue with the previous task.

2. Inthe Actions panel, enter an import
statement to include the code for the
TextLayoutFormat and TextFlow class:

import flashx.textlLayout.formats.
TextLayoutFormat;

import flashx.textlLayout.elements.
TextFlow;

3. Instantiate a TextLayoutFormat
object and assign new formatting
properties @.
The TextLayoutFormat object holds all
the formatting information.

4. Create a TextFlow object and assign
the textFlow property of your
TLFTextField to the new TextFlow
object.

5. Assign the TextLayoutFormat object to
the format property of your TextFlow
object.

Finally, call the updateAllControllers()
method on the flowComposer of your
TextFlow object. The full code can be
seen here @.

o

The text is modified according to
the formatting properties in the
TextLayoutFormat object @.

Controlling Text 409

Getting Text into
the TextFlow

Creating text with a TLFTextField object
allows you to work with only a single block
of text and hides much of the complex-

ity and possibilities behind the TLF text
engine. If you're going to use TLF text
extensively, you’ll want to start with the
TextFlow object to manage your text
rather than the TLFTextField.

The TextFlow object holds and organizes
all your text content. It allows for many dif-
ferent kinds of text content, which can be
highly structured, like an outline. The hier-
archy lets you organize your overall story
into paragraphs and individual elements
such as pieces of text, inline graphics, or
links. The TextFlow object is a complicated
beast! The TextFlow object is organized
like so: The TextFlow object can contain a
div element or a paragraph element. A div
element can contain another div element
or more paragraph elements. A paragraph
element can contain a span element (some
text), an inline graphic element (an image),
a link element (a hyperlink), and other less
common elements. @) shows the hierarchy
of elements within the TextFlow object.

There are several approaches to get text
into the TextFlow object. One approach is
to use the TextConverter class to import
text. Another is to define each element of
the TextFlow hierarchy.

Using the TextConverter

If you have a block of text, use the
TextConverter class to import the

text into your TextFlow object. Use

the importToFlow() method of the
TextConverter class to specify a specific
string and to indicate its format. There are
three formats. The string could be just
regular text, it could be HTML-formatted
text, or it could be structured in a TextFlow
hierarchy, marked up with div, paragraph,
and span elements. If text is marked up

in this manner, it is known to be in Text
Layout markup format. When you use the
TextConverter class, make sure you use
the import statement to include the code
in your final published SWF as follows:

import flashx.textLayout.conversion.
TextConverter;

TextFlow

div
alo

inlinegraphic

o The structure of the TextFlow
object. The TextFlow object can
contain a div element or a paragraph
element. The div element can contain
another div element or a paragraph
element. The paragraph element can
contain a span (text), inline graphic
(image), or link element (hyperlink).

410 Chapter 10

To import plain text
into the TextFlow:

In the Actions panel, enter the following
script:

import flashx.textLayout.conversion.
TextConverter;

var mystring:String = "Hello world";
var mytextflow:TextFlow = new
TextFlow();

mytextflow = TextConverter.
importToFlow(mystring,
TextConverter.PLAIN_TEXT_FORMAT);

You define your text in a variable that holds
String data, and then instantiate a new
TextFlow object. The last line converts the
contents of mystring from plain text and
puts it into the TextFlow object.

To import HTML text
into the TextFlow:

In the Actions panel, enter the following
script:

import flashx.textlLayout.conversion.
TextConverter;

var mystring:String = "Hello

Adobec";

var mytextflow:TextFlow = new
TextFlow();

mytextflow = TextConverter.
importToFlow(mystring,
TextConverter.
TEXT_FIELD_HTML_FORMAT);

You define your HTML-formatted text in a
variable that holds String data, and then
instantiate a new TextFlow object. The
last line converts the contents of mystring
from HTML text and puts it into the
TextFlow object. The HTML format will be
preserved.

To import Text Layout markup
text into the TextFlow:

In the Actions panel, enter the following
script:

import flashx.textlLayout.conversion.
TextConverter;

var mystring:String = "<TextFlow
xmlns="http://ns.adobe.com/
textLayout/2008'><p>Hello
world</p></TextFlow>";

var mytextflow:TextFlow = new
TextFlow();

mytextflow = TextConverter.
importToFlow(mystring,
TextConverter. TEXT_LAYOUT_FORMAT);

You define your Text Layout markup text

in a variable that holds String data. The
root node is TextFlow with a required
namespace attribute. This is a simple
example that contains a paragraph ele-
ment and a span element inside of it. The
last line converts the contents of mystring
from Text Layout markup text and puts it
into the TextFlow object.

Using the FlowElements

To get text into a TextFlow object, you
can also define each element separately
and add them to the TextFlow hierarchy.
The elements of a TextFlow hierarchy
are classes on their own, and part of a
larger collection called FlowElements.
Create new instances of a SpanElement,
DivElement, ParagraphElement,
InlineGraphicElement, and so on, and
use addChild() to assign them as children
of the TextFlow.

If you are defining different elements,
make sure you use the import statement
to include the code in your final published
SWEF as follows:

import flashx.textLayout.elements.*

Controlling Text 411

To assign a Span element

to the TextFlow:
In the Actions panel, enter the following
script:

import flashx.textLayout.elements.*
var myparagraphelement:
ParagraphElement =

span
"Hello world"

new ParagraphElement();

var myspanelement:SpanElement =
new SpanElement();

myspanelement.text = "Hello world";

myparagraphelement.addChild(
myspanelement);

var mytextflow:TextFlow = new
TextFlow();

mytextflow.addChild(
myparagraphelement);

In this example, a paragraph element
and a span element are created. Some
text is assigned to the span element. The
span element is added to the paragraph
element, which is added to the TextFlow
object @.

To assign an InlineGraphic
element to the TextFlow:

In the Actions panel, enter the following
script:

import flashx.textlLayout.elements.*
var mysquare:Sprite=new Sprite();
mysquare.graphics.beginFill(
0x000000);
mysquare.graphics.drawRect(0,0,20,20);
var myparagraphelement:
ParagraphElement =
new ParagraphElement();
var myinlinegraphicelement:
InlineGraphicElement =
new InlineGraphicElement();
myinlinegraphicelement.source =
mysquare;

0 In this example, the text
“Hello world” is assigned
to a span element, which
is attached to a paragraph
element, which is attached
to the TextFlow object.

412 Chapter 10

inlinegraphic

o In this example, the
black square image

is assigned to the
inline graphic element,
which is attached to

a paragraph element,
which is attached to
the TextFlow object.

myparagraphelement.addChild(
myinlinegraphicelement);

var mytextflow:TextFlow =
new TextFlow();

mytextflow.addChild(
myparagraphelement);

In this example, first a small black square
is created. Then, a paragraph element and
an inline graphic element are created. The
square called mysquare is assigned as

the source for the inline graphic element.
Finally, the inline graphic element is added
to the paragraph element, which is added
to the TextFlow object @.

@D Remember that a SpanElement,
InlineGraphicElement, or LinkElement
can’t be added to a TextFlow directly. They
must be a child of a ParagraphElement, and
the ParagraphElement must be a child of the
TextFlow object.

Notice that the dynamically generated
square for the inlinegraphic element did not
have to be added to the Stage. In the TLF text
model, a controller will eventually add all the
contents of the TextFlow to a container and
make it visible.

Controlling Text 413

TLF Text Containers
and Controllers

After you’ve assigned text to your
TextFlow object, how do you display it

on the Stage? If you wanted to wrap your
TextFlow contents around a photo, you’d
need to create multiple containers for the
text. Text from one container flows into
another, just like threaded text fields that
you create with the Text tool on the Stage.

You define a container by simply creat-

ing a rectangular Sprite on the Stage

(see Chapter 7, “Controlling and Display-
ing Graphics,” for more about creating a
Sprite). You can have just a single con-
tainer, or multiple containers. However,
each container must have its own control-
ler. A controller defines the size of the con-
tainer and manages its contents (text, links,
and inline graphics). The controller is cre-
ated from the ContainerController class.

After you have your containers and
controllers, you must hook up each
controller to your TextFlow object with
addController(), which is done through
the flowComposer. Finally, use the com-
mand updateAllControllers() via the
flowComposer, which makes the text flow
into the containers, updating any format-
ting or content changes, and rendering
each line of text.

It helps to visualize the process and
relationships O between the objects at
work: the containers (Sprite), controllers
(ContainerController), and the text con-
tent (TextFlow).

Stage
TextFlow == 1 ContainerController Hm Sprite
addController()
flowComposer
updateAliControllers() -
|
Final output

0 The model and processes that manage TLF text. The TextFlow object (at far left) holds all your
content. You put Sprite objects on the Stage as containers for your content (at far right). The
ContainerController and flowComposer control the flow of the content into the containers for

the final output to the viewer.

414 Chapter 10

To display TextFlow content:

1. Open the Actions panel, and import the

necessary ActionScript code for TLF
text as follows:

import flashx.textLayout.
container.*;

import flashx.textLayout.
elements.*

import flashx.textLayout.
conversion.TextConverter;

. Open the Actions panel, and create

a TextFlow object. Assign content to
the TextFlow object in any of the ways
described in the previous section, “Get-
ting Text into the TextFlow” @.

. On the next line, create a Sprite object
and add it to the Stage @.

The Sprite object will act as the con-
tainer for your text.

4. Next, create a ContainerController

object. The three parameters for the
constructor are the Sprite object, the
width, and the height:

var mycontainercontroller:
ContainerController =
new ContainerControllex(
mysprite,200,100);

In this example, the
ContainerController defines the
container as 200 pixels wide and 100
pixels high.

. Now add the controller to your

TextFlow object via the flowComposer:

mytextflow.flowComposer.
addController(
mycontainercontroller);

Continues on next page

import flashx.textLayout.container,+;
import flashx.textlayout.elements.*;

var mystring:string = “Hello world";

import flashx.textLayout.conversion.TextConverter;

var mytextflow:TextFlow = new TextFlow();
mytextflow = TextConverter.importToflow(mystring, TextConverter.PLAIN TCXT FORMAT);

0 In this example, the plain text “Hello world” is imported into the

TextFlow.

var mysprite:Sprite = new Sprite();
stage.addChild{mysprite);

G Create a Sprite object for

your container.

Controlling Text 415

6. Finally, call the To display TextFlow content

updateAllControllers() method in multiple containers:

ia the flowC :
v owtomposex 1. Continue with the previous task. You'll

mytextflow.flowComposer. add an additional container and control-

updateAllControllers(); ler to see how your text flows into both.
This example has only one controller 2. In the Actions panel, create a second
and one container, but if you did have Sprite and add it to the Stage 0.

multiple containers and controllers, this
single statement would update them all.
The full code and results appear in @.

Each new container requires another
Sprite object.

That’s a lot of code for just a simple
text display! But you can use the same
model for more complex layouts. In the
next task, you’ll have text that flows
through two containers.

import flashx.textLayout.container.*;
import flashx.textLayout.elements,®;
import flashx.textLayout.conversion,TextConverter;

var mystring:String = "Hello world";
var mytextflow:TextMlow = new TextlMlow();
mytextflow = TextConverter.importToFlow(mystring, TextConverter.PLAIN_TEXT_FORMATY;

var mysprite:sprite = new Sprite();
stage . addChild{mysprite);

var mycontainercontroller:ContainerController = new ContainerController(mysprite, 200,100);

mytextflow. flowComposer.addiontroller(mycontainercontroller);
mytextflow. flowComposer.updateAllControllers();

Hello world

Q The full code makes the TextFlow content flow into its container and displays it
on the Stage. The container is 200 pixels wide by 100 pixels high, and, by default, is
positioned at the upper-left corner of the Stage.

var mysprite:Sprite = new Sprite();
var mysprite2:Sprite = new Sprite(); o The second Sprite

stage.addChild(mysprite); : H
stug!.uddchild(m}rsprituzi; toobjtﬁztéiacgr:ated and added

var mycontainercontroller:Containeriontroller = new ContainerController(mysprite, 199, 59);
var mycontainercontrollerZ:ContainerController = new ContainerController(myspriteZ, S0, 150);

myspriteZ.x = 12@;
mysprited.y = 50;

o A second ContainerController is added for the second Sprite object, and makes
it 50 pixels wide and 150 pixels high. The Sprite is positioned in a different location on
the Stage. The controller for the first sprite has also been changed to 100 pixels wide
and 50 pixels high.

416 Chapter 10

3. Create a second ContainerController 4. Now add the second controller to your
and specify the second Sprite, its TextFlow object via the flowComposer.
width, and height. Also, position the The full code should look similar to @.
Sprites on the Stage where you want

5. Test your movie @.
by assigning new x and y values @.

The contents of your TextFlow object

Each new container requires another flows through two containers

controller.

@D The order in which you add the
ContainerControllers to the TextFlow
determines the order that the text flows
through the containers.

import flashx.textlayout.container.*;
import flashx.textLayout.elements.*;
import flashx.textLayout.conversion.TextConverter;

var mystring:string = “Star Light Star bright, The first star I see tonight, I wish I may, I
var mytextflow:TextFlow = new TextFlow();
mytextflow = TextConverter. importToFlow(mystring, TextConverter. PLATN_TEXT_FORMAT);

var mysprite:Sprite = new Sprite();
var myspriteZ:sprite = new sprite();
stage.addChild(mysprite);
stage . addChild(myspriteZ);

var mycontainercontroller:ContainerController = new ContainerController(mysprite, 180, 5@);
var mycontainercontrollerd:ContainerController = new ContainerController(mysprited, 5¢, 150);

mysprite. x
mysprite?.y

120;
50;

mytextflow. flowlomposer.addController(mycontainercontroller);
mytextflow. flowComposer.addiontroller(mycontainercontrollers);

mytextflow. flowComposer updateAllControllers();

@ The full script, with new text content flowing through two containers.

100 pixels 50 pixels
| |

Star Light Star
| bright, The first

star | see tonight, | —— T 50 pixels
wish |
may, |
. wish |
mysprite2 might
Have the
wish |
wish
tonight.

mysprite —

— 150 pixels

0 The TextFlow content flows into separate containers—
the first is a 100x50 pixel area, and the second is 50x150
pixel area to its lower right.

Controlling Text 417

Formatting the
TextFlow

There are two ways to format your text.
First, you can use the TextLayoutFormat
class and create a group of formatting
properties like so:

var myformat:TextLayoutFormat =
new TextLayoutFormat();
myFormat.color = 0x336633;
myFormat.fontFamily = "Arial";
myFormat.fontSize = 14;

Refer to the Flash Help > ActionScript

3.0 Reference for the Flash Platform for a
full list and explanation of all the format-
ting properties you can control. Next, you
assign the TextLayoutFormat object to the
format property of the TextFlow object:

mytextflow.format = myformat;

In this example, the entire contents of the
TextFlow object called mytextflow is for-
matted to display in 14 point green Arial.

Formatting the FlowElements

You can also just apply the TextLayoutFormat
object to certain elements of the TextFlow
object. Recall that the TextFlow is struc-
tured hierarchically with different elements.
For example, if you have several span
elements, you can just modify the format-
ting of one of them by assigning its format
property to the TextLayoutFormat object:

myspan:SpanElement =

new SpanElement();
myspan.text = "some other text";
myspan.format = myformat;

The second way of formatting the
TextFlow content is to add the format-
ting properties to the Text Layout markup
itself. For example, when you define Text
Layout markup text to import with the
TextConverter class, you can add attri-
butes to any of the nodes:

var mystring:String = "<TextFlow
xmlns="http://ns.adobe.com/
textLayout/2008'><p><span color=
'0x336633" fontFamily='Arial’
fontSize="14'>Hello world
</p></TextFlow>";

This example modifies the text “Hello
world” to display in 14 point green Arial.

You can also format the individual FlLowElements (span, paragraph, and so on) by assigning new
formatting properties directly on the FlowElement itself, and not through its format property. For
example, this statement changes the font size of this span element:

myspan.fontSize = 14;

However, if you apply a TextLayoutFormat object to this span element’s format property, the
previous formatting will be wiped out, and if you don’t redefine its fontSize property, it will remain

undefined.

418 Chapter 10

var myformat:TextLayoutFormat = new TextLayoutFormat();
myformat.color = Oxffoo0a;

myformat . fontFomily = “Marker felt™;

myformat. fontSize = 14;

To format TextFlow content
with the TextLayoutFormat:

1. Continue with the task, “To display
O A new TextLayoutFormat object holds TextFlow content in multiple containers.”
formatting properties for color, font, and font size.

2. In the Actions panel, make sure you
var myformat:TextLayoutFormat = new TextLayoutFormat(); prOV|de the 1mp°rt statement for the
myformat. color = Oxffouow; . code for the TextLayoutFormat class,
myformat, fontFamily = "Marker felt™;
myformat, fontsize = 14; as follows:
mytextflow. format = myformat; import flashx.textLayout.
0 The TextLayoutFormat object is assigned to formats.TextLayoutFormat;
the format property of the TextFlow object. 3. Instantiate a TextLayoutFormat object

and assign new formatting properties).
Star Light Star 4. Assign the TextLayoutFormat object

bright, The first
star | see tonight,

to the format property of either
your TextFlow object or individual

LV:L“;I FlowElement objects @.

wish i Assigning the TextLayoutFormat object
might, to the format property of the TextFlow
mﬁ ;rhe object modifies its entire contents 0o.
wish Assigning the TextLayoutFormat
tomight. object to the format property of a

FlowElement object modifies just that
single element. Make sure that the
updateAllControllers() method is
the last statement in your ActionScript
code so the formatting works.

o The text is modified with
14 point red Marker felt font.
Compare this example to the
unformatted example in (D in
the previous section.

To format TextFlow content
in the Text Layout markup:

Assign formatting properties in the particu-
lar nodes of your Text Layout markup.

If you assign properties at the root node
(in the <TextFlow> tag, then the entire
contents of the TextFlow will be modified.
If you assign properties in the individual
nodes (, for example), then only
those nodes will be modified.

Controlling Text 419

Making Text
Selectable or Editable

In addition to all the powerful text layout
and formatting tools, you can allow the
viewer to interact with the text. You can
make the text selectable so viewers can
copy it, or you can make it editable, so
viewers can also paste, delete, modify, or
add their own text.

Enabling text to be selectable or editable
differs, depending on whether you’re
working with TLF text (TextFlow objects)

or Classic text (TextField objects). If
you’re working with TLF text, you'll enlist
the help of the SelectionManager or the
EditManager class. If you’re working with
Classic text, you'll be modifying the proper-
ties of the TextField object.

To make TLF text selectable:

Assign a new SelectionManager object to
the interactionManager property of your
TextFlow, as in the following:

import flashx.textlLayout.edit.
SelectionManager;

mytextflow.interactionManager =
new SelectionManager();

The import statement includes the neces-
sary code for the SelectionManager. The
SelectionManager makes your TextFlow
selectable, so your user can select and
copy the text but not modify it). You also
have access to many of the methods of the
SelectionManager, which handles addi-
tional functions dealing with making and
detecting selections.

star | see tonight,

|
might,
Have the
wish |
wish
tonight.

0 Viewers can click in the containers and select
text. Notice how the selection spans multiple
containers.

420 Chapter 10

Twinkle, twinkle

little star how |

wonder how you
are. Up
above..]

0 Viewers can delete the contents and enter
their own. In this example, the viewer is entering a
new nursery rhyme, which flows through the same
two containers.

To make TLF text editable:

Assign a new EditManager object to the
interactionManager property of your
TextFlow, as in the following:

import flashx.textLayout.edit.
EditManager;

mytextflow.interactionManager =
new EditManager();

The import statement includes the
necessary code for the EditManager.

The EditManager makes your TextFlow
editable, so your user can select, copy,
paste, delete, or add text @. You also
have access to many of the methods of
the EditManager, which handles additional
editing functions.

To make Classic text selectable:

Assign the selectable property of a
TextField to true, as in the following:

var mytextfield:TextField =
new TextField();
mytextfield.selectable = true;

To make Classic text editable:

Assign the type property of a TextField to
TextFieldType.INPUT, as in the following:

var mytextfield:TextField =
new TextField();

mytextfield.type =
TextFieldType.INPUT;

Controlling Text 421

Detecting Text Focus

Sometimes it’s useful to be able to detect
when a user is interacting with text on

the Stage—you may want to know when
they’ve placed their mouse cursor in a text
field so you can provide additional relevant
feedback, or you may want to know when
they’ve moved off a particular text field.

You can detect when a text field is
focused, or active, by listening for the
FocusEvent.FOCUS_IN event. There can
only be one focused object, whether itis a
text field or a button or any other inter-
active object on the Stage. The focus is
changed when the user presses the Tab
key to move to the next interactive object,
or if the user uses the mouse to click on

Detecting Text Selections

another interactive object. You can detect
when the user moves away from a text
field with the event FocusEvent.FOCUS_OUT.

The FocusEvent events can be used for
either TextFlow objects or for TextField
objects.

To detect the focus of a text field:

1. Create text on the Stage, either with the
Text tool in authortime, or with Action-
Script during runtime. Make sure the
text is selectable.

In this example, a TLF text editable text
field is placed on the Stage. You will
detect the focus of this text field.

In addition to text focus, you can be even more specific and gather information about the

actual position of your viewer’s selection in a text field. For TextField objects, you can ref-

erence the properties caretIndex, selectionBeginIndex, and selectionEndIndex. The
property caretIndex provides the position of the cursor’s insertion point (known as a caret),
selectionBeginIndex provides the position of the first character of a selection span, and
selectionEndIndex provides the position of the last character of a selection span. The position of
a character is represented by an integer called an index, starting with 0. So the first character is O,
the second character is 1 (including spaces), and so on.

For TextFlow objects, it’s a little more complicated. You must first use the SelectionManager or the
EditManager to enable selections. Then you can use the event SelectionEvent.SELECTION_CHANGE
to detect when the user has made a selection. When the event is dispatched, use the event target’s
selectionState.absoluteStart to get the position of the first character of a selection span and
selectionState.absoluteEnd to get the last character. For example:

mytextflow.addEventListener(SelectionEvent.SELECTION_CHANGE, selectionChanged);

function selectionChanged(e:SelectionEvent):void {
trace(e.selectionState.absoluteStart)//beginning position
trace(e.selectionState.absoluteEnd)//ending position

422 Chapter 10

|dis-|::ala~1|I |
[TLF Text |v]
| Editable x| [E =

0 This editable text field that is created on the
Stage is named display.

display.addiventListener{FocusEvent FOCUS_IN, focusdetected);
function focusdetected(myevent:Focustvent):void {
trace("You are in the text field!");

e Listen for the FocusEvent.FOCUS_IN event on
the display text field.

display.addEventListener(FocusEvent,FOCUS_IN, focusdetected);
function focusdetected(myevent:FecusEvent):void {

troce("You are in the text field!");
}

display.addiventListener{FocusEvent FOCUS_OUT, focusgone);
function focusgone{myevent:FocusEvent):void {
trace("You are out of the text field!");

ouTPUT
You are in the text field!
You are out of the text field!
You are in the text field!

0 The script detects when the text field is
focused and when it goes out of focus. A message
is sent to the Output panel as notice. Clicking on
the Stage outside of the text field makes the text
field unfocused.

2. Inthe Properties inspector, enter an
instance name for the text field €.

3. Select the first frame of the Timeline,
and open the Actions panel.

4. Enter the name of your text field,
then a dot, and then call the
addEventListener() method to detect
the FocusEvent.FOCUS_IN event.

5. On the next line, create the func-
tion that will be triggered by the
FocusEvent.FOCUS_IN event. Between
the curly braces of the function, enter a
trace() statement to provide feedback
about the focused text field @.

Flash detects when the text field
receives focus, and when it does, dis-
plays a message in the Output panel in
testing mode.

6. Create another similar event
handler for the text field for the
FocusEvent.FOCUS_OUT event and
respond by displaying another
message in a trace() statement.

7. Test your movie @.

When your user puts their cur-

sor in the editable text field, the

text field becomes focused, and the
FocusEvent.FOCUS_IN event is dispatched,
displaying a trace message. When your
user clicks on the Stage outside the text
field, it becomes unfocused, triggering the
FocusEvent.FOCUS_IN event, and Flash
traces a different message.

Controlling Text 423

Analyzing Text

When you define a text field as Input (for
Classic text) or Editable (for TLF text), you
give your viewers the freedom to enter and
edit information. Often, however, you need
to analyze the text entered by the viewer
before using it. You may want to tease

out certain words or identify the location

of a particular character or sequence of
characters. If you require viewers to enter
an e-mail address in an input field, for
example, you can check to see whether
that address is in the correct format. Or you
can check a customer’s telephone number,
find out the area code based on the first
three digits, and personalize a directory or
news listing with local interests.

This kind of parsing, manipulation, and
control of the information within text fields
is done with the String class and the
RegExp class. The String class is a data
type that represents any sequence of
characters. You can create a string simply
by passing the piece of text in quota-

tion marks to the constructor function, or
more simply, by just assigning the text to
a variable. The following statements are
equivalent:

var myString:String =
new String("hello");
var myString:String = "hello";

The String class provides tools to search,
analyze, and replace pieces of text, and
compare them to patterns that you might
be interested in, which are called regular
expressions. Regular expressions (from
the RegExp class) are patterns that you
create to identify certain combinations

of letters. For example, you may want to
search input text for a particular person’s
name, or a sequence of specific numbers,
or any number of character combinations.
Regular expressions can be quite simple,
as in /hello/, which matches the word
“hello.” But they can also be quite complex
and difficult to create, and even more dif-
ficult to interpret, as in /~\d{5}(-\d{4})?$/,
which matches a five-digit zip code with
an optional dash and four-digit extension.
Learning and mastering regular expres-
sions is not an easy task. Entire books

are devoted to regular expressions, but if
you’re willing to put in the time and effort,
you’ll have a powerful tool for analyzing
text. This section covers regular expres-
sions only at a basic level and looks at how
Flash can detect and respond to them.

424 Chapter 10

Matching text patterns with
regular expressions

The first step in checking a piece of text for
a matching pattern is to create the regular
expression. You can do this in one of two
ways. You can either use the construc-

tor function of the RegExp class to define
the regular expression, or you can simply
declare a RegExp variable and assign the
regular expression between two forward
slashes (/). In the first approach, you pro-
vide the regular expression (in quotation
marks) and a flag that modifies the regular
expression. For example:

var myMatch:RegExp =
new RegExp("hello","i");

This statement creates a regular expres-
sion that matches the word “hello,” and the
second parameter (the flag) is the modifier
that indicates that case should be ignored,
so either uppercase or lowercase letters
would match.

The second way of creating a regular
expression is to simply assign it to a vari-
able, like so:

var myMatch:RegExp = /hello/i;

In this statement, the regular expression is
in between two forward slashes, and the
flag immediately follows.

You learned in Chapter 3, “Getting a
Handle on ActionScript,” that you include
special characters in a string by using the
backslash (\). The backslash marks an
escape sequence inside a string, so if you
want to include quotation marks around
the pattern “hello”, you would write:

var myMatch:RegExp =
new RegExp("\"hello\"", "i");

or simply:
var myMatch:RegExp = /"hello"/i

Regular expressions use special codes to
search for multiple characters and com-
binations. For example, \d is the code to
use to search for any digit. To incorporate
that code into your regular expression, you
would write:

var myMatch:RegExp =
new RegExp("\\d", "g");

or simply:
var myMatch:RegExp = /\d/g;

The g flag in the previous statements is the
global modifier that looks for the regular
expression throughout the text, not just
the first occurrence. Notice that creating
regular expressions with strings and the
constructor function (the first approach) is
a little cumbersome because you have to
use two backslashes—the first to escape
the character and the second to indicate
the code to search for any digit. For more
complex regular expressions, it becomes
difficult to read. For this reason, creat-
ing regular expressions by entering them
between two forward slashes is the pre-
ferred method.

Table 10.1 shows you some common codes
that are used to construct patterns for
regular expressions. Table 10.2 lists the
various flags that you can use to modify
your regular expressions.

Controlling Text 425

TABLE 10.1 Common Codes for Regular Expressions

Code Description Example

? Matches the previous character or group /ab?c/ matches abc or ac.
zero or one time (character is optional).

* Matches the previous character or group /ab*c/ matches abc or ac or abbbc, with b any
zero or more times. number of times.

+ Matches the previous character or group /ab+c/ matches abc or abbbc, with b any number
one or more times. of times.
Matches any one character (except /a.c/ matches aac, abc, a4c, and other
newline (\n) unless the dotall flag is set). combinations with any middle character.

| or /hilhello/ matches hi or hello.

0 Groups the regular expression to confine /h(iley)/ matches hi or hey.
scope.

[1 Groups possible characters. A dash (=) /[0-9]/ matches a number from O to 9, /[123]/
indicates a range of characters. matches 1, 2, or 3.

{n} Matches the previous character or group /a{3}bc/ matches aaabc.
exactly n times.

{n,} Matches the previous character or group /a{3,}bc/ matches aaabc, aaaabc, and other
at least n times. combinations where a is repeated.

{n, m} Matches the previous character or group /a{3,4}bc/ matches aaabc and aaaabc.
at least n times but no more than m times.

\d Matches any number. /a\dc/ matches alc or a2c, or other combinations

where the middle character is a number.

\D Matches any character other than a /a\Dc/ matches abc but not a2¢. Middle character
number. must not be a number.

\s Matches a whitespace character (space, /a\sc / matches a ¢ where the middle character
tab, etc.). is a whitespace character.

\S Matches any character other than a /a\Sc/ matches abc but not a c. Middle character
whitespace character. must not be a whitespace character.

\w Matches any word character. /a\wc/ matches abc but not a&c. Middle

character must be a word character.
\W Matches any character other than a word /a\Wc/ matches a&c but not abc. Middle

character.

character must not be a word character.

TABLE 10.2 Flags for Regular Expressions

Flag Description

g Global flag, matches more than one match.

i Ignore case flag; ignores uppercase or lowercase.

m Multiline flag.

d The dotall flag. A dot (.) can match the new line character (\n).
X Extended flag; allows spaces to be ignored for user readability.

426 Chapter 10

To create a regular expression:

1. Select the first frame of the Timeline,
and open the Actions panel.

2. Enter var, the name of your regular
expression, a colon, the RegExp data
type, an equals sign, a forward slash,
your regular expression, and finally
another forward slash. Include any of
the flag modifiers after the last forward

slash @.

Your regular expression is defined.

Searching text to match
a regular expression

You search text to match a regular expres-
sion with several methods. The String
method search() uses a regular expres-
sion as its parameter to scan the piece of
text and returns the index of the first occur-
rence of the matching text. The index is
the position of each character in a string. If
the search() method doesn’t find a match,
Flash returns a value of —1.

The String method match() also uses a
regular expression as its parameter to scan
the piece of text, but it returns an Array
object containing all the occurrences of the
actual matching text. If the match() method
doesn’t find a match, Flash returns a value
of null.

war myMatchiRegExp = A0w] [Coh=]04@0 O | =D e e 2,434+ 10

o This regular expression matches a correctly formed e-mail
address, with the global and the ignore case flags set.

Controlling Text 427

To find the position of a pattern
match in a piece of text:

1. Select the first frame of the Timeline,
and open the Actions panel.

2. Create a regular expression as
described in the previous task 0.

In this example, the regular expression
/Flash\s?\d+/ig matches the word
“Flash” followed by any series of num-
bers with an optional space in between.
The flags ignore case and will search
globally.

3. On the next line, obtain the text that
you want to search. This could be text
you assign to a String variable, text
that you load in from an external docu-
ment, or text from a text field.

In this example, just assign a simple
piece of text to a String variable 0.

4. On the next line, enter your String vari-
able, then a dot. Then call the method
search() and pass the regular expres-
sion as its parameter. Assign the results
to the trace() method @.

The search() method looks through
the text to find a match. It returns the
position of the match in the display
window in testing mode.

5. Test your movie.

To find the pattern matches
in a piece of text:

1. Select the first frame of the Timeline,
and open the Actions panel.

2. Create a regular expression as
described in the previous task.

In this example, the regular expression
/Flash\s?\d+/ig matches the word
“Flash” followed by any series of num-
bers with an optional space in between.

var myMatch:RegExp = /Flash\s?\d+/1g;

0 This regular expression matches the word
“Flash” and any number of digits, with an optional
space in between. The global and ignore case
flags are set.

var myMatch:RegExp = /Flashis?\d+/1g;
var mysrr!ng:srr'mg = "I5 Flash 1@ much better than Flash 977;

G Create a sample string to test your regular
expression.

var myMatch:RegExp = /Floshhs?de/ig;
var myString:String = “Is Flaosh 18 much better than Flash 9775
trace(myString. searchimyMarch));

OUTPUT

3

0 The search() method matches the regular
expression with your string and returns the
index position of the match. The word “Flash 10”
matched and was located at index 3.

428 Chapter 10

var myMatch:RegExp = /Flash\s7\d+/1g; The flags ignore case and will search
var myString:5tring = "Is Flash 1@ much better than Flash 977;

var myArray:Arroy = myString.match(myMatchl; globally

@ The match() method matches the regular 3. Onthe nextline, obtalr? the text that

expression with your string and returns an Array you want to search. This could be text

object containing the matched substrings. that you assign to a String variable,

text that you load in from an external

tch:RegExp = /Flash\sT\d+/ig; :

::: mmr:ng:ggr:ﬁg= "IgsF‘l:sn ia‘:uch better than Flash 97°; dOCUment, or text from a text fleld'

var myArray:Array = myString.match{myMatch};)) .)

trace(myArray[0]); In this example, just assign a simple

rrace(myArray[1]);

piece of text to a String variable.

H:z: ;ﬁ 4. On the next line, enter your String vari-
able, then a dot. Then call the method

match() and pass the regular expres-

sion as its parameter. Assign the results

o To see the matched terms, display the

elements in the Array to the Output panel. Here, to an Array object G
you see that two matches were found: “Flash 10”
and “Flash 9”. The match() method looks through the

text to find a match. It returns an Array
object that contains all the occurrences
of the match.

5. Onthe next line, enter the trace()
method to display the elements of the
Array object. Test your movie @.

The matches are displayed in the dis-
play window in testing mode.

Greedy and Lazy Matches

Sometimes when you search for particular patterns with character repetitions (using *, +, or { }
sequences), Flash will grab more than you actually want. For example, suppose you look for a
sequence of characters that begin with “www.” and end with “.com”, with any number of characters
in the middle using the code .+ (match any character multiple times). If you searched the following
string, “My favorite Web sites are www.adobe.com as well as www.peachpit.com”, the resulting
match would be “www.adobe.com as well as www.peachpit.com” because Flash first matches
“www.”, then marches all the way through the string because of the .+ instructions. When it
reaches the end, it backtracks and finds the “.com” match and stops. This is called a greedy match.
To fix this problem, you need to tell Flash to match the fewest number of characters as possible.
You can do so by specifying a lazy match, which is indicated by a question mark (?). If you use the
code .+? instead of just .+, Flash will match the minimum number of characters until it finds the
next match.

Controlling Text 429

www.adobe.com
www.peachpit.com
www.adobe.com
www.peachpit.com

Searching and replacing text

When you find matches for your regular
expression in a piece of text, you can
replace the matches with another string,
much like the search and replace function
in a word processing application. You use
the String class method replace(), which
takes two parameters: one for the regular
expression and another for the replace-
ment string.

The replacement string can also include
codes in it to allow parts of the pattern to
be used as the replacement. Table 10.3
lists the replacement codes. This is a
powerful way to replace text. For example,
you could search a text document with
Web site addresses that begin with “www.”
and end in “.com”. Once identified, you can
strip them out and put them back in with
HTML anchor tags around them, such as
<a href>.

To replace the pattern
matches in a piece of text:

1. Select the first frame of the Timeline,
and open the Actions panel.

2. Create a regular expression as
described in the previous task @.

In this example, the regular expres-
sion /www\..+?\.com/ig matches any
sequence of text that begins with
“www.” and ends with “.com”. The ques-
tion mark is a code to identify a lazy
pattern so multiple sequences of Web
sites can be identified (see the sidebar
“Greedy and Lazy Matches”).

TABLE 10.3 Replacement Codes

Code Description

$& The matched substring.

$ The text that precedes the match. Note
that the code uses the backtick key
found on the same key as the tilde (the
key to the left of the number 1 key).

$' The text that follows the match. Note
that the code uses the single-quote
character, which is found to the left of
the Enter key.

$n The nth group match.

X Extended flag; allows spaces to be
ignored for user readability.

var myMaotch:RegExp = ASwww's, o+ ocomfig

@ This regular expression is a simple check for a
Web address beginning with “www.” and ending
with “.com”.

430 Chapter 10

3.

On the next line, obtain the text that
you want to search. This could be text
that you assign to a String variable,
text that you load in from an external
document, or text from a text field.

In this example, just assign a simple
piece of text to a String variable @.

On the next line, enter your String vari-
able, then a dot. Then call the method
replace() and pass the regular expres-
sion as its first parameter. For its second
parameter, enter @:

"$&"

The replacement string includes quota-
tion marks that are escaped as well as
replacement codes ($&) that insert the
matched text at those specified points.

5. On the next line, create a new Classic
text field and display the results of the
replaced string @.

The Web site names are stripped out
and put back in with HTML anchor tags
around them to make them clickable in
the newly generated text field .

The String class methods that you've
learned in the preceding section, search(),
match(), and replace(), don’t necessarily
have to always use regular expressions as
parameters. You can also use these methods
just with normal strings. Make sure you pass
string parameters with quotation marks.

var myMatch:RegExp = Awww's. .+ condig;

var myString:String = "Visit Adobe at www.odobe.com or my website ot www . Ruzsel [Chun,com" ;

0 Create a sample string with a few Web site addresses.

var myMatch:RegExp = Awww's. .+ condig;

var myString:String = "Visit Adobe at www.odobe.com or my website ot www . Ruzsel [Chun,com" ;
war nyResultiString = myString.replocedmyMatch, "-a href=\"htip: /388" =$i</0=");

o The replace() method can replace the matched terms with new text. Here, it will
replace the matches with anchor tags in front, then put in the matched substrings, and
anchor tags behind, to automatically format it as HTML.

var myMatchiRegExp = MAswwh. o+ condig;

war myTextField:TextField = new TextField();
myTextField.width = 58@;
myTextField.multiline = true;
myTextField.htmlText = myResult;

addChi ld{myTextFialdy;

war myString:String = "Wisit Adobe at www.odobe.com or my website at wew RBuzsel IChun.con" ;
war myResult:String = myString.reploceimyMatch, "o href=\"htip: /368" =$i</a=")3

@ The full script.

eoe

0 When the replace()
method has done its

Visit Adobe at www.adohe@m or my website at www.RussellChun.com work and the results are

displayed in a text field, the
Web links become active.

Controlling Text 431

Searching for a simple string

When you don’t need to find patterns
with regular expressions, you can rely on
simpler methods to search for a piece of
text. The methods discussed previously,
the search(), match(), and replace()
methods, can take regular strings as
their parameters. Instead of searching
for a pattern match, Flash searches for
an exact match of the string. A few other
methods work using simple strings as
the search term. The String method
index0f() searches text for a character or
a sequence of characters and returns the
index position of its first occurrence.

To identify the position of a
character or characters:

1. In the Actions panel, enter the String
you want to search, then a dot; then call
the index0f() method.

2. For the parameters of the index0f()
method, enter a character or sequence
of characters within quotation marks,

a comma, and then an optional index
number.

The index0f() method takes two param-
eters: searchString and fromIndex.
The parameter searchString is the
specific character or characters you want
to identify in the String. The parameter
fromIndex, which is optional, is a Number
representing the starting position for the
search within the String.

Flash searches the contents of the
String for the specified character and
returns the index position of the char-

acter @.

var myString:String = "The cat in the hat";
war myindex:humber = myString. index0f{"cat");
trace (myindex’;

OUTPUT

4

o The index0f() method returns the first
occurrence of the simple string search term.
The word “cat” appears at index 4.

@D The opposite of the method index0f()
is charAt(). This method returns the char-
acter that occupies the index position you
specify for a string.

@D if the character you search for with
index0f() occurs more than once in the
string, Flash returns the index of only the first
occurrence. Use the method 1lastIndexOf()
to retrieve the last occurrence of the character.

If Flash searches a String with the
index0f() or lastIndex0f() method and
doesn’t find the specified character, it returns
a value of —1. You can use this fact to check for
missing characters within a string. For exam-
ple, if index0f("%") == -1, you know that the
percent symbol is missing from the string.

432 Chapter 10

input.oddEventl istener (KeyboardEvent .KEY_DOWN, enterkey);
function enterkey(myevent iKeyboordEvent)ivoid {
if {myevent.keyCode == Kewyboard.ENTER) {

b
¥

@ This event handler detects when the user
presses the Enter key while the text field called
input has focus.

Determining a String's size

The String class has one property,
length, that tells you the number of char-
acters in the String. This is a read-only
property that is useful for checking the
relative positions of characters. Since you
know the value of 1ength, you can always
target the last character of a String, which
would have the index position of length-1.

One way you can use the length property
is to make sure that the 1length of a Classic
text input field isn’t O (meaning that the
viewer hasn’t entered anything). If it is O,
you can send an error message or further
instructions for the viewer. The following
task demonstrates this application.

To check the length of a String:

1. Select the Text tool in the Tools panel,
and choose Classic Text and Input Text.

2. Drag out a text field on the Stage and
in the Properties inspector, enter an
instance name.

3. Select the first frame of the main Time-
line, and open the Actions panel.

4. On the first line, assign an event handler
to detect the KeyboardEvent.KEY_DOWN
event in the text field.

5. Inside the event-handler function, enter
a conditional statement with the if
statement as follows @:
if (myevent.keyCode ==

Keyboard.ENTER){
}

Flash checks to see if the key that is
pressed is Enter.

Continues on next page

Controlling Text 433

6. Inside the if statement’s curly braces,
create another conditional statement
that checks if the 1ength property of
the text field is O. As the consequence,
assign some text to the text property
of the input text field as follows @):

if (input.length == 0) {
input.text = "Please enter your
name!";

}

Flash checks the length property of the
input text field. If there is no content,
the value of 1ength is O, and Flash can
respond with an appropriate message.

7. Test your movie @.

input.oddEventlistener (KeyboordEvent KEY_DOWN, enterkew);
function enterkey (myevent ikeyboardEvent yivoid {
if (nyevent.kevCode == Kevboord .ENTER) {
if (input.length == @) {
input.text = "Please enter your name!";

¥
¥

0 The conditional statement (highlighted) inside
the event-handler function checks if the length
of the text field’s contents is O, which means no
information has been entered.

Please enter your name!

0 If the user presses Enter without
any text in the text field, this message
is displayed.

434 Chapter 10

Manipulating
Information

The information that you store in vari-
ables, modify with expressions, and test in
conditional statements often needs to be
processed and manipulated by mathemati-
cal functions such as square roots, sines,
cosines, and exponents. Flash can perform
these calculations with the Math class,
which lets you create formulas for compli-
cated interactions between the objects in
your movie and your viewer or for sophisti-
cated physics in your motion. You can also
turn to the Point class for help in geome-
try. Imagine modeling the correct trajectory
of colliding objects to create a game of
pool, simulating the effects of gravity for a
physics tutorial, calculating probabilities for
a card game, or generating random num-
bers to add unpredictable elements to your
movie. All of those scenarios are possible
with the Math and Point classes. Much of
the information you manipulate sometimes
needs to be stored in a structured man-
ner to give you better control of your data
and a more efficient way to retrieve it. You
can use the Array class to keep track of
ordered sets of data such as shopping lists,
color tables, and scorecards.

In This Chapter

Making Calculations with the

Math Class 436
Calculating Angles 438
Creating Directional Movement 446
Calculating Distances 450
Generating Random Numbers 453
Ordering Information with Arrays 454

Keeping Track of Objects with Arrays 460
Using the Date and Time 464

When the information you need depends
on the time or the date, you can use the
Date class to retrieve the current year,
month, or even millisecond.

This chapter explores the variety of ways
you can manipulate information with
added complexity and shows you how to
integrate many of the predefined classes
you've learned about in previous chapters.

Making Calculations
with the Math Class

The Math class lets you access trigono-
metric functions such as sine, cosine, and
tangent; logarithmic functions; rounding
functions; and mathematical constants
such as pi and e. Table 111 summarizes the
methods and properties of the Math class.
The Math class has static methods and
properties, which means you don’t need

to create an instance of the Math class to
access them. Instead, you precede the
method or property with the class name,
Math. To calculate the square root of 10, for
example, you write:

var myAnswer:Number = Math.sqrt(10);

The calculated value is put in the variable
myAnswer.

All the Math class’s properties are read-

only values that are written in all uppercase

letters. To use a constant, use syntax like

this:

var myCircum:Number = Math.PI * 2 *
myRadius;

The mathematical constant pi is multiplied
by 2 and the variable myRadius, and the
result is put into the variable myCircum.

436 Chapter 11

TABLE 11.1 Methods and Properties of the Math Class

abs(number) Calculates the absolute value. Math.abs(-4) returns 4.
acos(number) Calculates the arc cosine.

asin(number) Calculates the arc sine.

atan(number) Calculates the arc tangent.

atan2(y, x)

Calculates the angle (in radians) from the x-axis to a point on the y-axis.

ceil(number) Rounds the number up to the nearest integer. Math.ceil(2.34) returns 3.
cos(number) Calculates the cosine of an angle, in radians.

exp(number) Calculates the exponent of the constant e.

floor(number) Rounds the number down to the nearest integer. Math.floor(2.34) returns 2.
log(number) Calculates the natural logarithm.

max(x, y) Returns the larger of two values. Math.max(2, 7) returns 7.

min(x, y) Returns the smaller of two values. Math.min(2, 7) returns 2.

pow(base, exponent)

Calculates the exponent of a number.

random() Returns a random number between 0 and 1 (including O but not including 1).
round(number) Rounds the number to the nearest integer. Math.round(2.34) returns 2.
sin(number) Calculates the sine of an angle, in radians.

sqrt(number) Calculates the square root.

tan(number) Calculates the tangent of an angle, in radians.

E Euler’s constant e; the base of natural logarithms.

LN2 The natural logarithm of 2.

LOG2E The base-2 logarithm of e.

LN10 The natural logarithm of 10.

LOG10E The base-10 logarithm of e.

PI The circumference of a circle divided by its diameter.

SORT1_2 The square root of 1/2.

SORT2 The square root of 2.

Manipulating Information

437

Calculating Angles

The angle that an object makes relative

to the Stage or to another object is use-

ful information for creating many game
interactions, as well as for creating dynamic
animations and interfaces based purely in
ActionScript. To create a dial that controls
the sound volume, for example, compute
the angle at which your viewer drags the
dial relative to the horizontal or vertical axis,
and then change the dial’s rotation and the
sound volume accordingly. Calculating the
angle also requires that you brush up on
some of your high school trigonometry, so
a review of some basic principles related to
sine, cosine, and tangent is in order.

The mnemonic device SOH CAH TOA can
help you keep the trigonometric functions
straight. This acronym stands for Sine

= Opposite over Hypotenuse, Cosine =
Adjacent over Hypotenuse, and Tangent =
Opposite over Adjacent). Knowing the
length of any two sides of a right triangle is
enough information to calculate the other
two angles. You’ll most likely know the
lengths of the opposite and adjacent sides
of the triangle because they represent the
y- and x-coordinates of a point @. When
you have the x- and y-coordinates, you can
calculate the angle (theta) by using the fol-
lowing mathematical formulas:

tan theta = opposite / adjacent

or

tan theta =y / x
or
theta = arctan(y / x)

In Flash, you can write this expression by
using the Math class this way:

var myTheta:Number = Math.atan(
this.y / this.x);

Adjacent

Opposite

Sin theta = opposite/hypotenuse

Cos theta = adjacent/hypotenuse

Tan theta = opposite/adjacent

o The angle, theta, of a right triangle is defined

by sin, cos, and tan and by the length of the three
sides.

y-axis

o A point on the Stage makes a right triangle with
x (adjacent side) and y (opposite side).

438 Chapter 11

Alternatively, Flash provides an even easier
method that lets you define the Y and X
positions without having to do the division.
The Math.atan2() method accepts the Y
and X positions as two parameters, so you
can write the equivalent statement:

var myTheta:Number = Math.atan2(
this.y, this.x);

Unfortunately, the trigonometric methods
of the Math class require and return angle
values in radians, which describe angles

in terms of the constant pi—easier mathe-
matically, but not so convenient if you want
to use the values to modify the rotation
property of an object. You can convert an
angle from radians to degrees, and vice
versa, by using the following formulas:

radians = Math.PI / 180 * degrees;
degrees = radians * 180 / Math.PI;

The following tasks calculate the angle of
the mouse pointer relative to the Stage and
display the angle (in degrees) in a text field.

To calculate the angle
relative to the Stage:

1. Create a TLF Read Only text field
on the Stage, and give the text field
an instance name in the Properties
inspector.

In this example, the text field is called
myDegrees_txt.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Create a new instance of the Shape
class.

You will dynamically draw a line seg-
ment from the top-left corner of the

Stage to the current position of your
mouse pointer to visualize the angle.

4. On the next line, add an event lis-
tener to the Stage to detect the
Event.ENTER_FRAME event.

5. On the next line, create the
function that responds to the
Event.ENTER_FRAME event 0.

Continues on next page

}

var myShape:Shape = new Shape();
stage.addEventlListener(Event .ENTER_FRAME, displayangle);
function displayangle(myevent:Event):void {

G The ENTER_FRAME event happens continuously.

Manipulating Information 439

6. Within the curly braces of the function,

enter this statement:

var myRadians:Number =
Math.atan2(mouseY, mouseX);

The current mouse position is used to
calculate the angle (in radians) it makes
with the top of the Stage.

On the next line, still within the function,
enter the statement:

var myDegrees:Number = myRadians
* 180 / Math.PI;

The angle is converted from radians to
degrees and then assigned to the vari-
able called myDegrees.

8. On the next line, still within the func-

tion, convert myDegrees to a string and
assign the string to the text property
of your dynamic text field. Concatenate
the string " degrees" to the end of the
text field @.

The angle (now in degrees) is displayed
in the text field.

. On the next line, still within the func-

tion, call the clear() method of the
graphics property of your Shape
object.

10. Next, assign a line style and a fill style

to the graphics property of your Shape
object.

var myShape:Shape = new Shape();
stage,addEventListener(Event ,ENTER_FRAME, displayangle);
function displayangle(myevent:Event):void {
var myRadians:Number = Math.atanZ(mouseY, mouseX);
var myDegrees:Number = myRadians * 180 / Math.PI;
myDegrees_txt.text = String(myDegrees) + " degrees"”;
3

0 The Math.atan2() method calculates the angle that the
mouse pointer makes with the origin (top-left corner of the
Stage). The results are converted into degrees, converted into
a string, and displayed in the text field called myDegrees_txt.

440 Chapter 1

11. Next, call the moveTo() method to

move the drawing location to 0, 0; call
the 1ineTo() method to the mouseX
and mouseY position; and call another
lineTo() method to the mouseX and
0 position.

The dynamic drawing methods draw
line segments from the corner of the
Stage to the mouse pointer and up to
the top edge of the Stage, creating the
triangle whose sides are used to calcu-
late the angle.

12. Add the Shape object to the display list

with the addChild() method @.

13. Test your movie.

As the viewer moves the pointer around
the Stage, Flash calculates the angle
that the mouse pointer makes with the
x-axis of the root Timeline and displays
the angle (in degrees) in the text field.
The triangle is also drawn between the
top-left corner of the Stage, the mouse
pointer, and the x-axis @.

//
//

addChild(myShape);
}

var myShape:Shape = new Shape();
stage .addEventListener(Event, ENTER_FRAME, displayangle);
functien displayangle(myevent:Event):vold {
var myRadians:Number = Math.atanZ(mouseT, moUsex);
var myDegrees Number = myRadians * 1¥¢ / Math,Fl;
myDegrees_txt.text = String(myDegrees) + " degrees”;
// draw lines to show triangle

myShape . graphics.clear();
myShape.graphics.lineStyle(l, 9x@e00e@, 1);
myShape . graphics.beginFill1(@xffeeee, .5);
myShape . graphics.moveTo(@, @);
myShape.graphics.lineTo(mouseX, mouseY);
myShape ,graphics,lineTo(mouseX, @);

G The lines are drawn dynamically to show the triangle

whose angle is being measured.

myRadians
|

mee

myShape
dynamically
drawn graphics

%'

64.70797884297| ———

Mouse pointer

— myDegrees_txt

text field

o The line between the top-left corner of the
Stage and the mouse pointer makes an angle
of approximately 65 degrees below the x-axis.

Manipulating Information 441

Rounding off decimals

So far, the returned values for your angles
have had many decimal places. Often, you
need to round those values to the nearest
whole number (or integer) so that you can
use the values as parameters in methods
and properties. Use Math.round() to round
values to the nearest integer, Math.ceil()
to round up to the closest integer

greater than or equal to the value, and
Math.floorx() to round down to the closest
integer less than or equal to the value.

To round a number to an integer:

1. Continuing with the file you used in the
preceding task, select the first frame of
the main Timeline and open the Actions
panel.

2. Select the statement that converts the
angle from radians to degrees.

3. Place your pointer in front of the
expression, and enter the method
Math.round() @.

Flash converts the angle from radians to
degrees and then applies the method
Math.round() to that value, returning

an integer @.

var myShape:Shape = new Shape();

stage.addEvenLLisLener(Evenl.ENTER_FRAME, displayangle);
function displayangle(myevenl;EvenLl);void {
var myRm:Imns Number = Math, atunE(mGuseY musex),

myDegrees_txt, text sifing(mynegrees) + " degrees ;-
/7
// draw lines to show triangle
.graphics.clear();
.graphics.lineStyle(l, @x@@0000, 1);
.graphics.beginFill(exffeeee, .5);
.graphics.moveTo(@, @);
.graphics,lineTo(mouseX, mouseY);
.graphics.lineTo(mousex, @);
addChildCmyShape);
¥

@ The expression within the parentheses (in the highlighted
statement) is rounded to the nearest integer using Math.round()
and displayed in the text field myDegrees_txt.

eo6e

k
68degrees ————— Text field

0 The text field displays the angle rounded
to the nearest whole number.

442 Chapter 11

Putting it together: 3.
Creating a rotating dial

You can apply the methods that calcu-

late angles and round values to create a

draggable rotating dial. The approach is to
calculate the angle of the mouse’s position

relative to the center point of the dial and 4.
then set the rotation property of the dial

to that angle.

To create a rotating dial: 5

1. Create a movie clip symbol of a dial,
place an instance of it on the Stage,
and give it a name in the Properties
inspector.

In this example, the name is
myDial_mc @.

2. Select the first frame of the main Time- 6.
line, and open the Actions panel.

Declare a Boolean variable named
pressing followed by an equals sign
and the value false.

This variable keeps track of whether
your viewer is pressing or not pressing
this movie clip.

On the next line, create the listener that
detects the MouseEvent.MOUSE_DOWN
event over your movie clip and create
the function that responds to the event.

. Within the MouseEvent.MOUSE_DOWN

event-handler function, enter pressing
followed by an equals sign and then the
Boolean value of true @.

The variable named pressing is set
to true whenever you click on your
movie clip.

On the next line, create the listener
that detects the MouseEvent.MOUSE_UP
event over the Stage and create the
function that responds to the event.

Continues on next page

osernes [wowre |
E | myDial_mc |
[Movie Clip I+]

Instance of: dial

o Place a circular movie clip called

myDial_mc on the Stage.

war pressing:Booleon = false;

pressing = true;

¥

myDicl_mc.addEventl istener (MouseEvent .
function pressdown{myevent :MouseEvent)ivoid {

MOUSE_DOWN, pressdown);

o Set pressing to true when the movie clip is pressed.

Manipulating Information 443

7.

10.

Within the MouseEvent.MOUSE_UP
event-handler function, enter pressing
followed by an equals sign and then the
Boolean value of false 3.

The variable named pressing is set
to false whenever you release your
mouse button.

On a new line, create an
event handler that detects the
MouseEvent.MOUSE_MOVE event.

Within the MouseEvent.MOUSE_MOVE
event-handler function, enter an if
statement.

For the condition of the if statement,
enter pressing == true.

11. Between the curly braces of the if

statement, declare a new Number vari-
able followed by an equals sign.

This variable will be assigned the angle
between the mouse pointer and the
center of the movie clip, in radians.

12. After the equals sign, enter the follow-

ing expression so the full statement
reads:

var myRadians:Number = Math.atan2(
(mouseY - myDial_mc.y),
(mouseX - myDial_mc.x));

Flash calculates the angle between the
mouse pointer and the center of the
movie clip @.

pressing = false;

¥

stage.addEventl i stener (MouseEvent JMOUSE_UR, released);
function released{myevent :MouseEvent hivoid £

o Set pressing to false when the movie clip is released.

if {preszing == true)

¥
¥

stage.addEventl i stener (MouseEvent JMOUSE_MOVE, movedial);
function movedial (myevent :MouseEvent hivoid £

var myRadions :Number = Math.atonZ{(mousey - myDial_mc.y), (moused - myDial_mc.x));

o The variable myRadians contains the calculated angle between the pointer and the

movie clip.

444 Chapter 11

13. On the next line, declare a new Number

variable followed by an equals sign.

This variable will be assigned the angle

value converted to degrees.

14. After the equals sign, enter an expres-
sion to convert radians to degrees, so
the full statement reads as follows:

var myDegrees:Number = myRadians
* 180 / Math.PI;

15.On the next line, enter
myDial_mc.rotation, an equals sign,
the variable that holds the angle in
degrees, a plus sign, and 90.

The rotation of the movie clip is
assigned to the calculated angle. The

90 degrees are added to compen-

sate for the difference between the
calculated angle and the movie clip
rotation property. A value of O for
rotation corresponds to the 12 o’clock
position of an object, but a calculated
arctangent angle value of O corre-
sponds to the 3 o’clock position; adding
90 equalizes them @.

16. Test your movie.

When users press the movie clip in
the dial, they can rotate it by dragging
it around its center point. When they
release the mouse button, the dial
stops rotating.

if (preszing == true) {

stoge .addEventl istener (MouseEvent MOUSE_MOYE, movediall;
function movedial{myevent :MouseEventdivoid {

war myRadions:Number = Moth.oton2({{mouse¥ - myDial_mc.y), (mouseX - myDial_mc.x)7;
wvar myDegrees :Number = myRadions * 188 / Maoth.PI;
myDial_mc.rototion = myDegrees + 98;

} |

:— myDial_mc.rotation = 0

866 .

myDegrees =0

m The angle is converted from radians to degrees and assigned to the variable myDegrees.
The final statement within the if block modifies the rotation of the myDial_mc movie clip.
The rotation of myDial_mc is set at myDegrees + 90 to account for the difference between the
reference point of the trigonometric functions and Flash’s rotation property.

Manipulating Information

445

Creating Directional
Movement

To control how far an object on the Stage
travels based on its angle, you can use a
method of the Point class called Point.
polar(). The Point class is a class that
simply helps you with geometric manipu-
lations by representing a location with

an x- and a y-coordinate. The Point.
polar() method is a static method, which
means it is available from the class named
Point, not from a particular instance. The
Point.polar() method converts polar
coordinates, which track position in terms
of an angle and its distance from another
point, to regular (Cartesian) coordinates
that you’re familiar with, which track posi-
tion in terms of x and y.

Suppose that you want to create a rac-

ing game featuring a car that your viewer
moves around a track. The car travels at a
certain speed, and it moves according to
where the front of the car is pointed. If you
know the angle of the car and the distance
that it would travel at each time interval,
you can use the Point.polar() method
to calculate its X and Y position relative to
its previous position. The Point.polax()
method takes two parameters: the first is
the distance of the point from the refer-
ence point, and the second is the angle,

in radians. The triangle that the polar
coordinates form determines the x- and
y-coordinates that the method returns as
a new Point object @.

In the following task, you’ll create a movie
clip whose rotation can be controlled by
the viewer. The movie clip has a constant
velocity, so it will travel in the direction

in which it’s pointed, just as a car moves
according to where it’s steered.

Distance

o Polar coordinates describe position with angle
and distance, whereas Cartesian coordinates
describe position with an x- and a y-coordinate. The
method Point.polar() takes polar coordinates and
converts them into a Point object with the matching
Xand Y properties.

446 Chapter 11

To create a controllable object
with directional movement:

1. Create a movie clip symbol, place an
instance of it on the Stage, and name
it in the Properties inspector.

In this example, the name is car_mc.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Create an event handler assigned
to the Stage that detects the
KeyboardEvent.KEY_DOWN event.

4. Within the KeyboardEvent.KEY_DOWN
event-handler function, enter an if
statement that determines whether the
right arrow key is pressed. If so, add 10
degrees to the current rotation prop-
erty of the movie clip @.

Whenever you press the right arrow key
on the keyboard, the movie clip rotates
clockwise.

. Within the KeyboardEvent.KEY_DOWN

event-handler function, enter another
if statement that determines whether
the left arrow key is pressed. If so,
subtract 10 degrees to the current
rotation property of the movie clip @.

Whenever you press the left arrow key
on the keyboard, the movie clip rotates
counterclockwise.

. On a new line, create a new event han-

dler assigned to the Stage that detects
the Event.ENTER_FRAME event.

Continues on next page

stoge..oddEventListener (KevboordEvent KEY_DOWN, rototecor);
function rototecar{myevent :KeyboordEvent) ivoid {
if (myewent.keyCode == Keyboord.RIGHT) {
car_mc.rotation += 16;
i

b

0 The car_mc movie clip rotates 10 degrees clockwise when
the right arrow key is pressed.

stoge .addEventl istener (KeyboordEvent JKEY_DOWN, rotaotecar);
function rototecar {myevent :KevboordEventdivoid {
if {myewvent.keyCode == Keyboord.RIGHT) {
car_mc.rotation += 18;

b

if {myewent .keyCode == Keyboord.LEFT) {
car_mc.rotation —= 16;

B

b

@ The car_mc movie clip rotates 10 degrees counterclockwise
when the left arrow key is pressed.

Manipulating Information 447

7. Within the Event.ENTER_FRAME event-
handler function, enter the following
statement:

var radians:Number = Math.PI / 180
* (car_mc.rotation - 90);

This expression converts the angle of
the movie clip to radians. Notice that
you have to subtract 90 degrees from
the value of rotation to get the equiv-
alent angle for polar coordinates @.

8. On the next line, still within the
Event.ENTER_FRAME event-handler func-
tion, enter the following expression:

var newSpot:Point = Point.polar(
5, radians);

The Point.polar() method takes the
distance that the car travels (in this
case, 5 pixels) and its angle (in the
variable called radians), and returns

a new Point object that contains the
equivalent x- and y-coordinates. The x-
and y-coordinates can be represented
with the properties newSpot.x and

newSpot.y.
stoge.addEventl istener (Event .ENTER_FRAME, movecar);
function movecar {myevent :Event)ivoid £
war radians:Mumber = Math.PI / 188 * (car_mc.rototion - 987;

B
0 +90
\ _"‘--n\

+270 +90 +180 \ +0
+180 +270

0 The angle of the car is converted into radians (top). The rotation property of
a movie clip begins from the vertical axis and increases in the clockwise direction
(left). Values for radian angles begin from the horizontal axis and increase in the
counterclockwise direction (right).

448 Chapter 11

9. On the next line, still within the
Event.ENTER_FRAME event-handler func-
tion, add the new x- and y-coordinates
to the current coordinates of the movie
clip, as follows @:

car_mc.x += newSpot.x;
car_mc.y += newSpot.y;

10. Test your movie.

When the user presses the left or right
arrow key, the rotation of the movie clip
changes. The X and Y positions change
continuously as well and are calculated
from the angle of the movie clip and the
constant distance it travels using the
Point.polar() method. The movie clip
moves according to where the nose of
the car is pointed @.

stoge .oddEventListener (Event .ENTER_FRAME, mowecor);
function movecar({myevent :Event)ivoid {
wor rodions:Number = Math.PI /188 * (cor_mc.rotation - 987%;
war newdpot:Point = Point.polor(s, rodians);
CAr_mc.x += newdpot.x;
Car_mc.y += newSpot.y;

G The x- and y-coordinates of the resulting Point object called
newSpot are added to the existing position of the car_mc movie

clip to make it move in the right direction and by the appropriate
amount.

o The car moves
according to where
its nose is pointing.

Manipulating Information 449

Calculating Distances

The Point class can also be used to calculate
the distance between two objects. This tech-
nique can be useful for creating novel interac-
tions among interface elements—graphics,
buttons, or sounds—whose reactions depend
on their distance from the viewer’s pointer,

for example. You can also create games that
involve interactions based on the distance
between objects and the player. A game in
which the player uses a net to catch goldfish
in an aquarium, for example, can use the
distance between the goldfish and the net to
model the behavior of the goldfish. Perhaps
the closer the net comes to a goldfish, the
quicker the goldfish swims away.

The distance between any two points is
calculated by the Point.distance() method,
which takes two parameters: the first Point
object and a second Point object. It returns
a humber representing the distance between
the two points.

Because the Point.distance() method
requires Point objects as its parameters, you
can’t just plug in x- and y-coordinates. You
must create Point objects for the coordinates
between which you want to find the distance.

In this example, you'll calculate the distance
between the mouse pointer and another
movie clip, and display the distance in a
dynamic text field.

To calculate the distance

between the mouse pointer

and another point:

1. Create a movie clip, place an instance

of it on the Stage, and give it a name in
the Properties inspector.

In this example, the name is center_mc.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Create an event handler to listen for the
MouseEvent.MOUSE_MOVE event on the
Stage.

stage.addEventListener(MouseEvent .MOUSE_MOVE, showdistance);
function showdistance(myevent:MouseEvent):void {

var mousePt:Point — new Point(mouseX, mousaY);
}

o Create a new Point object whose X and Y properties are the
same as the mouse pointer’s X and Y properties.

sLage,addEvenLLisLener(MouseEvenl MOUSE_MOVE, showdisLance);
function showdistance(myevent:MouseEvent):void {

var mousePt:Point = new Point(mousex, MOUSET);

var centerPt:Point = new Point{center_mc.x, center_mc.y);

}

0 Create a second Point object whose X and Y properties are
the same as the movie clip’s X and Y properties.

450 Chapter 11

4. Within the MouseEvent.MOUSE_MOVE
event-handler function, create a new
Point object with the mouseX and
mouseY properties as its X and Y prop-
erties, like so @:

var mousePt:Point = new Point(
mouseX, mouseY);

. On the next line, still within the func-
tion, create another Point object with
the X and Y properties of the movie clip
as the X and Y properties of the Point

. On a new line, still within the function,

call the Point.distance() method and
pass the two Point objects as param-
eters. Assign the result to a Number
variable, like so:

var myDistance:Number = Point.
distance(mousePt, centerPt);

The distance between the Point object
called mousePt and the Point object
called centerPt is assigned to the vari-
able myDistance @.

object, as follows O: Continues on next page

var centerPt:Point = new Point(
center_mc.x, center_mc.y);

stage.addEventListener(MouseEvenL .MOUSE_MOVE, showdislance);
function showdislance(myevenl:MouseEvenl) void {
var mousePt:Point = new Point(mousex, mouseY);
var centerPt;Point = new Point(center_mc.x, center_mc.y);
var myDistance:Number = Point.distance(mousePt, centerPt);

}

0 The distance between the two points is calculated from the
method Point.distance().

Calculating Distances and Angles in 3D

With the support for 3D in Flash, you may need to know distances and angles of objects in 3D
space. You can do so with another class in the Flash geometry package called the Vectox3D class.
An object of the Vector3D class takes three parameters: the X position, the Y position, and the

Z position, and an optional fourth parameter, which can hold information about its orientation in
space. Define two Vectox3D objects as in the following:

var myvectori:Vector3D = new Vector3D (myObjecti_mc.x, myObjecti_mc.y,
myObjecti_mc.z);

var myvector2:Vector3D = new Vector3D (myObject2_mc.x, myObject2_mc.y,
myObject2_mc.z);

You can calculate the distance between the two objects with the static distance() method, like so:

var mydistance:Number = Vector3D.distance(myvectori, myvector2);

Similarly, you can use the angleBetween() method to calculate the angle between two Vector3D
positions. The result is the angle in radians.

Manipulating Information 451

7.

On the next line still within the func-
tion, round the value of myDistance
and then convert it to a string with
String(Math.round(myDistance)).
Assign the result to the text property
of a text field.

On the Stage, create a TLF Read Only
text field and give it an instance name,
the same name that is referenced in
your ActionScript in step 7.

Test your movie.

As the pointer moves around the movie
clip, Flash calculates the distance
between points in pixels @.

stage.addEventListener(MouseEvent .MOUSE_MOVE, showdistance);
function showdlstance(myevent:MouseEvent):vold {
var mouseFt:Foint = new Folnt(mousex, mouseY},
var centerPt:Point = new Point(center_mc.x, center_mc.y);
var myDistance:Number = Point.distance(mousePt, centerPt);
myDisplay_txt.text = String(Math.round(myDistance));

866

0 The full script is shown at the top. The text field myDisplay_txt
displays an integer of myDistance.

Mouse pointer

center_mc
movie clip

myDisplay._txt
text field

452 Chapter 11

Generating Random
Numbers

When you need to incorporate random
elements into your Flash movie, either for a
design effect or for gameplay, you can use
the Math class’s Math.random() method. The
Math.random() method generates random
numbers between 0 and 1 (including O but
not including 1). Typical return values are:

0.242343544598273
0.043628738493829
0.7567833408654

You can modify the random number by
multiplying it or adding to it to get the span
of numbers you need. If you need random
numbers between 1and 10, for example,
multiply the return value of Math.random()
by 9 and then add 1, as in the following
statement:

Math.random() * 9 + 1;

You always multiply Math.random() by a
number to get your desired range and then
add or subtract a number to change the
minimum and maximum values of that range.

It's important that you understand that
Math.random() generates random num-
bers between 0 and 1, but it will never
produce 1. So, if you need an integer, apply
the Math.round() method to round the
number down to the nearest integer, like
the following statement:

Math.round(Math.random() * 9 + 1);

To generate a random integer:

1. In the Actions panel, enter var, then a
variable name, and strictly type it to an
integer data type.

2. On the same line, enter an equals sign
and then the Math.round() method.

The Math.round() method rounds any
decimal number to the nearest whole
number.

3. Inside the parentheses of the
Math.round() method, enter the
Math.random() method, multiply it by
1less than the range of numbers you
desire, and add 1, as follows:

var myResult:int = Math.
round(Math.random() * 9 + 1);

The resulting number will be a random
number between 1and 10 @.

Be aware of when you can use decimals
and when you must use integers. For example,
many properties, such as the Xand Y of a
movie clip, can take decimal values. However,
the gotoAndStop() method, which moves the
playhead to a specific frame on the Timeline,
must use an integer. Use the Math.round()
method (or, alternatively, the Math.floox()

or Math.ceil() method) to convert a decimal
number to an integer before using it as a
parameter in the gotoAndStop() method.

var myResult:int = Math.round{Math.random{)* 3 + 1);

Q A random number between 1and 10 is assigned to

the variable called myResult.

Manipulating Information 453

Ordering Information
with Arrays

When you want to store many pieces of
related information as a group, you can

use the Array class to help arrange them.
Arrays are containers that hold data, just as
variables do, except that arrays hold mul-
tiple pieces of data in a specific sequence.
The position of each piece of data is called
its index. Indexes are numbered sequen-
tially, beginning at O, so that each piece of
data corresponds to an index, as in a two-
column table @. Because each piece of
data is ordered numerically, you can retrieve
and modify the information easily—and,
most important, automatically—by referenc-
ing its index. Suppose you're building an
address book of a list of your important con-
tacts. You can store names in an Array so
that index O holds your first contact, index

1 holds your second contact, and so on. By
using a looping statement, you can check
every entry in the Array automatically.

An element (individual item) can be
accessed using the Array object’s name
followed by the element’s index in square
brackets, like this:

myArray[4]

The square brackets are known as array
access operators. The previous statement
accesses the data in index 4 of the array
called myArray. The number of elements
is known as the length of the Array; for
example, the length of the Array in @) is 6.

It's useful to think of an Array as a set
of ordered variables. You can convert
the variables myScoreso, myScores1,
myScores2, and myScores3 to a single
Array called myScores of length 4 with
indexes from O to 3. Because you have
to handle only one Array object instead
of four separate variables, using Arrays
makes information easier to manage.

In ActionScript, the type of data that
Arrays hold can be mixed. You can have

a Number in index O, a String in index 1,
and a Boolean value in index 2. You can
change the data in any index in an Array
at any time. The length of Arrays isn’t
fixed, either, so they can grow or shrink to
accommodate new information as needed.

Creating an Array involves two steps. The
first is to declare an Array variable and use
the Array class’s constructor function to
instantiate a new Array instance, as in this
example:

var myArray:Array = new Array();

The second step is to fill, or populate, your
Array with data. One way to populate your
Array is to assign the data to each index in
separate statements, like this:

myArray[o] = "Adam";
myArray[1] = "Betty";
myArray[2] = "Zeke";

Another way to assign the data is to put
the information as parameters within the
constructor function:

var myArray:Array = new Array
("Adam"’ "Betty“, llzekell);

The latter is a more compact way of popu-
lating your Array, but you're restricted to
entering the data in sequence.

454 Chapter 11

Index Value

"rmonitor”

"mouse”

O An Array s like

"keyboard”

a two-column table

"CPU”

with an Index column

"modem”

and a corresponding

M| | ka]— |3

"speakers”

Value column.

wO MySCOPestAYTay = new Array();

0 A new Array called myScores is instantiated.

myJcores (8]
my3cores [1]
myJcores [2]

23
33
B3
my3cores[3] = 43

wO MySCOPestAYTay = new Array();

G This Array contains four elements.

Two-dimensional Arrays

An Array has been compared to a two-column table in which the index is in one column and its
contents are in a second column. But what if you need to keep track of information stored in more
than one row in a table, as in a traditional spreadsheet? The solution is to nest an Array inside
another one to create what’s known as a two-dimensional Array. This type of Array creates two
indexes for every piece of information. To keep track of a checker piece on a checkerboard, for
example, you can use a two-dimensional Array to reference its rows and its columns @.

To create an Array:

1.

2.

Select the first frame of the Timeline,
and open the Actions panel.

Declare your Array by entering var,
the object’s name, and then :Array. On
the same line, enter an equals sign and
then the constructor new Array().

Flash instantiates a new Array @.

. On the next line, enter the name of your

new Array, an index number between
square brackets, and then an equals sign.

Enter the data you want to store in the
Array at that index position.

Continue to assign more data to the
Array @.

For the three rows, create three separate Arrays and populate them with numbers:

var rowO:Array =
var rowl:Array =
var row2:Array

Now you can put those three Arrays inside another Array, row0 1 2 S|

like so:

new Array(1,2,3);
new Array(4,5,6);
new Array(7,8,9);

var gameBoard:Array = new Array();

gameBoard[o]

TowO;

gameBoard[1] = rowi;
gameBoard[2] = row2;

To access or modify the information of a checkerboard

square, first use one set of square brackets that references
the row. The statement gameBoard[2] references the Array
row2. Then, by using another set of square brackets, you

rowl 4 5 6

row2 7 8 9

Q You can use a two-dimensional
Array to map a checkerboard and
keep track of what'’s inside individual

can reference the column within that row. The statement squares. Each row is an Array. The
gameBoard[2][0] accesses the number 7.

rows are put inside another Array.

Manipulating Information 455

Automating Array
operations with loops

Because the elements of an Array are
indexed numerically, they lend themselves
nicely to looping actions. By using loop-
ing statements such as while, do while,
and for, you can have Flash go through
each index and retrieve or assign new data
quickly and automatically. To average the
scores of many players in an Array without
a looping statement, for example, you have
to total all their scores and divide by the
number of players, like this:

mySum = myScores[0] + myScores[1] +
myScores[2] + ...
myAverage = mySum / myScores.length;

(The property length defines the number
of entries in the Array.)

Using a looping statement, however, you can
calculate the mySum value quickly this way:
for (var i:int = 0; i <
myScores.length; i++) {
mySum = mySum + myScores[i];
}

myAverage = mySum / myScores.length;

Flash starts at index O and adds each
indexed entry in the Array to the variable
mySum until it reaches the end of the Array.
Then it divides the sum by the number of
elements to calculate the average.

To loop through an Array:

1. Select the first keyframe of the Time-
line, and open the Actions panel.

2. Declare and instantiate a new Array
called myScores.

3. Populate the myScores Array with num-
bers representing scores @.

4. On the next line, declare an int vari-
able called mySum and initialize it to o.

WAL NYSCOrestATTay = new Arrav();
myScores[@] = 23
myicores[1] = 3;
myScores[2] =

= 6;
nyScores[3] = 43

G This Array called myScores contains four
elements.

456 Chapter 11

var myScores: Arruy = nem Array(;
my3cores[@]
my3cores[1]
y3cores[2]
myScores[S]
WAar mySum:in B;

for {var i:int = B; i « myScores. length; i+4) {

b

("‘II nnn

o This for statement loops the same number of

times as there are elements in the Array myScore.

YO MySCOrestArroy = new Array();
my3cores[8]
my3cores[1]
my3cores[2]
my3cores[3]
war mySum:int = B;

for (var i:int = @; i < myScores.length; i++) {

my3um = mySum + myJcores[i];

L

23
33
6!
4!

@ The value of each element in the Array is
added to the variable mySum.

var myScores:Array = new Array();

myScores[@] = 2;

myScares[1] = 3;

myScores[?] = 6;

myScores[3] = 4;

var mySum:int = @;

for (var i:int = @; 1 < myScores.length; i+ [
mySum = mySum + myScores[i];

}
myAverage_txt.text = String(mysum / myScores.length}

0 After the for loop, the average value of the
elements in the Array is calculated and displayed
in the text field myAverage_txt.

Show the average value of my array

175

o The final result (3.75) is displayed in the
text field on the Stage.

On the next line, enter a for statement.

In between the parentheses of the for
statement, enter the following:

var i:int = 0; i < myScores.
length; i++

Flash begins with the counter variable i
set at the value 0. It increases the vari-
able by increments of 1 until the variable
reaches the length of myScores @.

Between the curly braces of the for loop,
enter mySum followed by an equals sign.

On the same line, enter mySum +
myScores[i] @.

Rather than using an explicit index, the
value of the variable i will define the
index (and, consequently, which ele-
ment’s value is retrieved and added to
mySum).

Flash loops through the myScores’s
elements in turn, adding the value in
each element of the Array to mySum.
When the value of i reaches the value
of myScores.length, Flash jumps out of
the for loop and stops retrieving values.
Therefore, the last element accessed is
myScores[myScores.length - 1], which
is the last element of the Array.

On a new line after the ending curly
brace of the for statement, enter
myAverage_txt.text = String(mySum /
myScores_array.length) @.

10. Create a TLF Read Only text field on

1.

the Stage with the instance name
myAverage_txt.

Test your movie.

Flash loops through the myScores Array
to add the values in all the elements, and
then it divides the total by the number

of elements. The average is displayed in
the text field on the Stage @.

Manipulating Information 457

The Array class’s methods

The methods of the Array class let you
sort, delete, add, and manipulate the data
in an Array. Table 11.2 summarizes some
methods of the Array class. It's convenient
to think of the methods in pairs: shift()
and unshift(), for example, both modify
the beginning of an Array; push() and
pop() both modify the end of an Array;
and slice() and splice() both modify the

middle of an Array.

TABLE 11.2 Methods of the Array Object

Method

Description

concat(arrayi,...,arrayN)

Concatenates the specified Array objects, and returns a new Array.

join(separator) Concatenates the elements of the Array, inserts the String separator
between the elements, and returns a String. The default separator is a
comma.

pop() Removes the last element in the Array, and returns the value of that element.

push(value) Adds a new element value to the end of the Array, and returns the new
length.

shift() Removes the first element in the Array, and returns the value of that element.

unshift(value) Adds a new element value to the beginning of the Array, and returns the

new length.

slice(indexA, indexB)

Returns a new Array beginning with element indexA and ending with
element (indexB - 1).

splice(index, count,
elemi,..., elemN)

Inserts or deletes elements. Set count to O to insert specified values starting
at index. Set count > 0 to delete the number of elements starting at and
including index.

reverse() Reverses the order of elements in the Array.

sort() Sorts the elements of the Array. Numbers are sorted in ascending order, and
strings are sorted alphabetically.

sortOn(fieldName) Sorts an Array of objects based on the value in each element’s fieldName
(a String) property.

toString() Returns a String with every element concatenated and separated by a
comma.

indexOf(searchterm, Searches the Array for the searchterm starting at the startindex and

startindex) returns the first index position of the match. Returns -1 if the searchterm

is not found.

lastIndexof(searchterm,
startindex)

Searches the Array for the searchterm starting at the startindex and
returns the last index position of the match. Returns -1if the searchterm
is not found.

458 Chapter 11

TABLE 11.3 Examples of Array Methods

Statement Value of myArray

var myArray:Array = new 2,4,6,8
Array(2, 4, 6, 8)

myArray.pop() 2,4,6
myArray.push(1, 3) 2,4,6,1,3
myArray.shift() 4,6,1,3
myArray.unshift(s, 7) 574,613
myArray.splice(2, 0, 8,9) 5,7,8,9,4,6,1,3
myArray.splice(3, 2) 578,613
myArray.reverse() 3,1,6,8,75
myArray.sort() 1,3,5,6,7,8

Table 11.3 gives examples of how some of
the methods in Table 11.2 operate.

It’'s important to note which meth-

ods of the Array class modify the original
Array and which ones return a new Array.
The methods concat(), join(), slice(),
and toString() return a new Array or
String and don’t alter the original Array.
The expression var newArray:Array =
originalArray.concat(8), for example,
puts 8 at the end of originalArray and
assigns the resulting Array to newArray.
originalArray isn’t affected. Also note that
some methods modify the Array as well as
return a specific value. These two things aren’t
the same. The statement myArray.pop(),

for example, modifies myArray by removing
the last element and also returns the value of
that last element. At the end of this example,
the value of myResult is 8, and the value of
myArray is 2, 4, 6:

var myArray:Array = new Array(2, 4,
6, 8);
myResult = myArray.pop();

@D An easy way to remember the duties

of some of these methods is to think of the
elements of your Array as being components
of a stack. (In fact, stack is a programming
term for a type of array where the last element
added is the first element retrieved.) You can
think of an Array object as being like a stack
of books or a stack of cafeteria trays on a
spring-loaded holder. The bottom of the stack
is the first element in an Array. When you call
the Array’s push() method, imagine that you
literally push a new tray on top of the stack to
add a new element. When you call the pop()
method, you pop, or remove, the top tray from
the stack (the last element). When you shift an
Array, you take out the bottom tray (the first
element) so that all the other trays shift down
into new positions.

Manipulating Information 459

Keeping Track of
Objects with Arrays

Sometimes, you have to deal with multiple
objects on the Stage at the same time.
Keeping track of them all and performing
actions to modify, test, or evaluate each
one can be a nightmare unless you use
Arrays to help manage them. Imagine that
you’re creating a game in which the viewer
has to avoid rocks falling from the sky. You
can use the hitTestObject() method to
see whether each falling-rock object inter-
sects with the viewer. But if there are 10
rocks on the Stage, that potentially means
10 separate hitTestObject() statements.
How do you manage these multiple opera-
tions? The answer is to put them in an
Array. Doing so allows you to perform the
hitTestObject() in a loop on the elements
in the Array instead of in many separate
statements.

Put an object into an Array just as you put
any other data into the Array, using an
assignment statement:

rockArray[0o] = fallingRocko_mc;
rockArray[1] = fallingRock1_mc;
rockArray[2] = fallingRock2_mc;

These statements put the movie clip
fallingRocko_mc in element O of

the Array rockArray, the movie clip
fallingRock1_mc in element 1, and the
movie clip fallingRock2_mc in element
2. Now you can reference the movie
clips through the Array. This statement
changes the rotation of the movie clip
called fallingRock2_mc:

rockArray[2].rotation = 45;
You can even call methods this way:

rockArray[2].hitTestPoint(mouseX,
mouseY, true);

This statement checks to see whether the
fallingRock2_mc movie clip intersects
with the mouse pointer.

The following tasks use looping statements
to populate an Array with dynamically
drawn Sprites. When the Array is full of
objects, you can perform the same action,
such as modifying a property or calling
hitTestObject(), on all the Sprites by
referencing the Array.

460 Chapter 11

wal blockArray :ATTay = new Array();
for {var i:zint = B; i < 163 i++)

b

Q A new Array called blockArray is instantiated
and a for loop created. This loop uses a counter
that begins at O and ends at 14, increasing by 1
with each loop.

war blOCKAYT Gy tATTOY = hew Arroyd s

for {var i:int = @; 1 < 16; i++)
war block:Sprite = new Sprite);
block.grophics. lineSty le{1);
block.graphics.beginFil L{A=A88088 %
block.araphics . drawRect. (8, B, 38, 303;

i

0 A The Sprite called block is created and a
rectangle is drawn with it.

wal blockdrroy :Array = new Array();

for (var irint = @ 1 < 16; i++d f
var block:Sprite = new Sprited):
block.graphice. lineStyledl);
block.grophics.beqinFil L {BxBE008E) ;
block.grophics.drowRect. (8, 8, 38, 38);
block.:x = Math.randomd) * 4883
block.y = Math.randomd) * 468 ;
addChi ld{block s

I

G The Sprite is randomly positioned on the
Stage and then added to the display list to make
it visible.

war blOCKAYT Gy tATTOY = hew Arroyd s

for {var i:int = @; 1 < 16; i++)
war block:Sprite = new Sprite);
block.grophics. lineSty le{1);
block.graphics.beginFil L{A=A88088 %
block.araphics . drawRect. (8, B, 38, 303;
block.x = Hath.random) * 488 ;
block.y = Math.random) * 468;
addChi ld(block);

blockarray[i] = block;

0 The newly created Sprite is put in the
blockArray.

To populate an Array with objects:

1. In the Actions panel, instantiate a new
Array object.

In this example, the instance name is
blockArray.

2. On the next line, create a for
statement.

3. With your pointer between the parenthe-
ses, enter var i:int = 0; i < 15; i++ @.

This loop will occur 15 times, starting
with i equal to O and ending after i
equals 14.

4. Inside the curly braces of the for state-
ment, create a new Sprite object.

In this example, the instance name for
your new Sprite object is block.

5. On the next line, still within the for
statement, call the 1ineStyle(),
beginFill(), and drawRect() meth-
ods on the graphics property of your
Sprite object @.

Flash draws a rectangle.

6. On the next line, still within the for
statement, change the X and Y posi-
tions of the Sprite object with a ran-
dom number.

7. On the next line, still within the for
statement, call the addChild() method
to add the Sprite to the display list to
make it visible @.

8. On the next line, still within the for
statement, enter the name of the Array
object, then the variable i in square
brackets, followed by an equals sign.
After the equals sign enter block. Each
newly named Sprite object is put inside
a different element of the Array @.

Manipulating Information 461

Accessing movie clips in an Array

Now that your Array is populated with
Sprites, you can reference them easily
with just the Array’s index value to change
their properties or call their methods.

In the next task, you'll check to see whether
the viewer’s pointer touches any of the
Sprite objects displayed randomly on the
Stage. Instead of checking each Sprite with
a separate hitTestPoint() method, you'l
loop through the Array and check all the

Sprites with only a few lines of ActionScript.

To reference objects inside an Array:

1. Continuing with the file you used in the
preceding task, select the main Time-
line and open the Actions panel.

2. On a new line after the for statement,
create an Event.ENTER_FRAME event
handler.

. Inside the function for the

Event.ENTER_FRAME event handler,
create another for statement.

. With your pointer between the paren-

theses of the for statement, enter
var i:Number = 0; i < 15; i++ 0.

Your second for statement will have
the same number of loops as your first
for statement.

. Inside the for statement, enter the

conditional statement, if.

. For the condition, enter the name of

your array followed by [i] to reference
each Sprite inside the Array.

On the same line, call the hitTestPoint()
method with the parameters mouseX,
mouseY, and true @.

stoge .oddEventL istener {Event .ENTER_FRAME, checkhit);
function checkhitimpevent iEventivold {
for {vor i:int = 8; 1 =< 158; 1++) {

b
b

G Enter the same loop statements for the for loop that you
did for the first loop that generated the Sprites.

ztoge .oddEventL istener (Event .ENTER_FRAME, checkhit);
function checkhit{myevent :Event)ivoid {
for (wor izint = B; 1 <155 i++) {
if (blockArray[i].hitTestPoint{mouzey, mouseY, truedy £

h
}
b

o Flash checks every Sprite inside blockArray to see
whether the objects intersect with the mouse pointer.

462 Chapter 11

8. Choose actions to perform when the

mouse pointer intersects a Sprite
object, and enter them in the curly
braces of the if statement.

For example, enter this expression:
blockArray[i].alpha = .3 @.

. Test your movie.

When the for loop is performed, all the
Sprites inside the Array are tested

to see whether they intersect with the
pointer. Because the for loop is within
an Event.ENTER_FRAME event handler,
this check is done continuously. If an
intersection occurs, that particular
movie clip turns 30 percent opaque .

stoge.addEventL iztensr (Event .ENTER_FRAME, checkhit);
function checkhit{myevent iEventivold {
for {vor izint = B; 1 < 155 14+

if (blockdrray[i].hitTestPoint{moused, mouseY, true)) {

blockArrav[i].alpha = .3;

b
h
1

@ If Flash detects an intersection between a Sprite and the
pointer, that particular Sprite’s transparency changes.

0 The pointer has passed over
many of the Sprites, which have
turned semitransparent. Use this
technique to manage multiple
objects that must be tested and
controlled similarly.

Manipulating Information 463

Using the Date
and Time

The Date class lets you retrieve the local

or universal (UTC) date and time informa-
tion from the clock in your viewer’s com-
puter system. Using a Date object, you can
retrieve the year, month, day of the month,
day of the week, hour, minute, second, and
even millisecond. Use a Date object and its
methods to create accurate clocks in your
movie or to find information about certain
days and dates in the past. You can create
a Date object for your birthday, for example,
by specifying the month, day, and year.
Using methods of the Date class, you can
retrieve the day of the week for your Date
object that tells you what day you were born.

You first need to instantiate a Date object
with the constructor function new Date().
Then you can call on its methods to
retrieve specific time information. Table
11.4 summarizes the common methods for
retrieving the date and time information.

To create a clock:

1. Create a TLF Read Only text field on the
Stage, and give it an instance name in
the Properties inspector.

The text field will display the time.

2. Select the first frame of the main Time-
line, and open the Actions panel.

3. Enter var, then a name, a colon, the
Timer data type, an equals sign,
and the constructor new Timex(). In
between the parentheses, enter 1000.

A new Timer object is created that
will trigger a TimerEvent every 1,000
milliseconds.

4. On the next line, call the start()
method of your Timer @.

Your Timer will start to count.

TABLE 11.4 Methods of the Date Class

Method Description

getFullYear() Returns the year as a four-

digit number

getMonth() Returns the month as a
number from O (January)

to 11 (December)

getDate() Returns the day of the
month as a number from

1to 31

getDay() Returns the day of the
week as a number from

0 (Sunday) to 6 (Saturday)

getHours() Returns the hour of the
day as a number from

Oto 23

getMinutes() Returns the minutes as a

number from O to 59

getSeconds() Returns the seconds as

a number from O to 59

getMilliseconds() Returns the milliseconds

war myTimer iTimer = new Timer (LO8E);
myTimer .start();

o The Timer object is instantiated and started to
fire every 1,000 milliseconds.

464 Chapter 11

var myTimer:Timer = new Timer (18887 ;
meTimer .start ()

myTimer.uddEventListener(TimerEvent.TIHER, showtime);
function showtime{myevent :Event) {

var myDate:Dote = new Dote();
}

0 The Date object is instantiated.

war myTiner:Timer = new Timer (1806 % ;
myTimer . start

myTimer ,addEventL istener {TimerEvent .TIMER, showtime);
function showtime(myevent :Event) {

war myDate:Dote = new Dote();

war currentHour iMumber = myDate.getHours();

b

o The current hour is assigned to the variable
currentHour.

war myTimer:Timer = new Timer(1B0E%;
myTimer . start

myTimer ,addEventL istener {TimerEvent .TIMER, showtime);
function showtime(myevent :Event) {
war myDate:Dote = new Dote();
war currentHour iMumber = myDate.getHours();
war currentMinute :Mumber myDute.getHinutes();
war currentSecond :Mumber = myDate.getSeconds(s

0 The current hour, minute, and second are
retrieved from the computer’s clock and assigned
to different variables.

war myTimer:Timer = new Timer(1B0E%;
myTimer .start);

nyTimer .oddEventlistener (TimerEvent .TIMER, showtime);
function showtime{myevent :Event’ {

war myDate:Date = new Dote();

wor currentHour iMunber = myDate.getHours();

wvar currentMinute :Number = myDute.getHinutes();

war currentSecond :Mumber = myDote.getSeconds ()

if {currentHour = 12% {

currentHour = currentHour - 12,
¥

i

G The returned value for the method getHours()
is a number from O to 23. To convert the hour to
the standard 12-hour cycle, subtract 12 for hours
greater than 12.

On the next line, create an event handler
to detect the TimexrEvent.TIMER event.

Within the TimerEvent.TIMER event-
handler function, use the var statement
to declare a Date object, followed by an
equals sign, then the constructor new
Date().

The Date object is instantiated @. If you
don’t specify any parameters in the con-
structor, the Date object is populated
with the current date and time informa-
tion. You can also specify parameters in
the constructor to create an object that
references a specific date and time.

On a new line, call the getHours()
method of your Date object and assign
the result to a new Number variable @.

Flash retrieves the current hour and
puts it in the variable currentHour.

Repeat step 7 to retrieve the current
minute with the getMinutes() method
and the current second with the
getSeconds() method, and assign the
returned values to variables @.

On a new line, enter the conditional
statement, if.

10. For the condition, enter

1.

currentHour > 12.

On the next line inside the if
statement, enter currentHour =
currentHour - 12 @.

12. Place your pointer after the closing

curly brace for the if statement, and
enter the statement else if.

13. For the condition of the else if state-

ment, enter currentHour == 0.

Continues on next page

Manipulating Information 465

14. Inside the else if block, enter
currentHour = 12 ©Q.

15. On a new line after the closing curly brace
of your else if statement, enter the name
of your text field, followed by a period, the
text property, and an equals sign.

16. After the equals sign, create an expres-
sion that concatenates the variable
names for the hour, the minute, and
the second with appropriate spacers
between them @.

17. Test your movie.

The Timer object dispatches a
TimerEvent.TIMER event every second,
and the event handler detects each time
it happens. As a response, the current
hour, minute, and second in the 12-hour
format are displayed in a text field.

Note that minutes and seconds that are
less than 10 display as single digits, such as 1
and 2, rather than as 01 and 02. Refine your
clock by adding conditional statements to
check the value of the current minutes and
seconds and add the appropriate O digit.

war myTiner:Timer = new Timer (1806 %;
iy Timer start (s

iy Timer addEventL istensr {TimerEvent .TIMER, showtime);
function showtime{myevent :Event) £
var myDote:Date = new Dote();
war currentHour iMumber = myDate.getHours();
war currentMinute:Mumber = myDote.getMinutes();
war currentSecond:Mumber = myDote.getSeconds();
if {currentHour = 123 {
currentHour = currentHour - 12;
1 elge if (currentHour == 8% {
currentHour = 12;
1

¥

o Because there is no 0 on a clock, have Flash
assign 12 to any hour that has the value 0.

war myTimer :Timer = new Timer (10887 ;
myTimer .start);

function showtime{myevent :Event’ {
war myDate:Date = new Dote();
wor currentHour iMunber = myDate.getHours();

war currentSecond :Number

if {currentHour = 12% {
currentHour = currentHour - 12,

T else if (currentHour == @) {
currentHour = 12;

nyTimer .oddEventlistener (TimerEvent .TIMER, showtime);

wvar currentMinute :Number = myDute.getHinutes();
= myDate.getSeconds()

—

myDisplay._txt text field

@ The text field displays the concatenated values for the hour, minute, and second.

466 Chapter 11

Date numbers and names

The values returned by the getMonth()
and getDay() methods of a Date object
are numbers instead of string data types.
The getMonth() method returns values
from O to 11 (0 = January), and the getDay()
method returns values from 0 to 6 (0 =
Sunday). To correlate these numeric values
with the names of the months or days of
the week, you need to create Arrays that
contain this information. You can create an
Array that contains the days of the week
with the following statements:

var dayNames:Array = new Array();
dayNames[0] = "Sunday";

dayNames[1] = "Monday";
dayNames[2] = "Tuesday";
dayNames[3] = "Wednesday";
dayNames[4] = "Thursday";
dayNames[5] = "Friday";

dayNames[6] = "Saturday";

waOr doyMomes AYray = new Array();
doyNomes [B] = "Sunday";
dayHames[1] = "Honday";
doyNomes[2] = "Tuesday";
daylames [3] = "Wednesday";
dayNomes[4] = "Thursday”;
dayHames[5] = "Friday";
doyNomes[6] = "Soturday”;

0 The Array dayNames contains
Strings of all the days of the week.

To create a calendar:

1. Create a TLF Read Only text field on the
Stage, and give it an instance name in
the Properties inspector.

The text field will be used to display
the date.

2. Select the first keyframe of the Time-
line, and open the Actions panel.

3. Declare an Array object that will hold
the days of the week followed by an
equals sign.

4. Enter the constructor function new
Array().

5. In a series of statements, assign Strings
representing the names of the days of
the week as elements of your Array @.

6. On a new line, declare a second new
Array followed by an equals sign.

7. Enter the constructor function new
Array().

This Array will hold the months of
the year.

8. In a series of statements, assign
Strings representing the names of the
months of the year to the elements of
this Array @.

Continues on next page

var monthMomes :Array = new Arroy();
manthlames[A] = "January";
monthMomes[1] = "February";
manthlames[2] = "Harch";
monthMomes[3] = "April";
manthiames[4] = "Haw";
monthMomes[5] = "June";
manthiames[6] = "Julv";
monthMomes[7] = "August";
manthlames[§] = "September';
monthMomes[9] = "October”;
manthiames[10] = "Hovember" ;
monthMomes[11] = "December”;

0 The Array monthNames contains
Strings of all the months.

Manipulating Information 467

9.

10.

1.

12.

13.

On a new line, declare a new Date
object followed by an equals sign.

Enter the constructor function new
Date() without any parameters.

In a series of statements, call the
getFullYear(), getMonth(), getDate(),
and getDay() methods, and assign their
values to new Number variables .

Enter the name of your text field, fol-
lowed by a period, the text property,
and an equals sign.

Enter the name of the Array that con-
tains the days of the week. As its index,
put in the variable containing the value
returned by the getDay() method.

The value of this variable is a number
from O to 6. This number is used to
retrieve the correct string in the Array
corresponding to the current day.

14. Concatenate the Array that contains

the days of the month, and as its
index put the variable containing the
value returned by the getMonth()
method call.

15. Concatenate the other variables that

hold the current date and year @.

16. Test your movie.

Flash gets the day, month, date, and year
from the system clock. The names of

the specific day and month are retrieved
from the Array objects, and the informa-
tion is displayed in the text field.

var myDate:Dote = new Dotel);

wOr current¥eor :Number = myDote.getFullvear();
war currentMonthiumber = myDate.getMonthll;
wor currentDote :Number = myDote.getDote);

war currentDay :Mumber = myDote.getDov(;

o The current year, month, date, and day are
retrieved from the computer’s clock and assigned

to new variables.

Monday, July 5, 2010

myDisplay_txt.text = "Todoy iz “n" + doyNamesz [currentDoy] + ", " +
manthlanes [currentanth] + " " + currentDate + ", " + current¥ear;
Today is

—— myDisplay._txt text field

o The day, month, date, and year information is concatenated and displayed

in the myDisplay_txt text field.

468 Chapter 11

Tracking elapsed time

Another way to provide time information

to your viewer is to use the Flash function
getTimer(). This function returns the num-
ber of milliseconds that have elapsed since
the Flash movie started playing. You can
compare the returned value of getTimex()
at one instant with the returned value of it
at another instant, and the difference gives
you the elapsed time between those two
instants. Use the elapsed time to create
timers for games and activities in your Flash
movie. You can time how long it takes for
your viewer to answer questions correctly
in a test or give your viewer only a certain
amount of time to complete the test. Or,
award more points in a game if the player
successfully completes a mission within an
allotted time.

Because getTimer() is a built-in function
and not a method of an object, you call it
by using the function name.

To create a timer:

1. Create a TLF Read Only text field on the
Stage, and give it an instance name in
the Properties inspector.

2. Select the first frame of the main Time-
line, and open the Actions panel.

var startTime:Number = A;

stoge .oddEventlistener (MouseEvent .CLICK, reset’;

function reset{myevent :MouseEvent)ivoid {
stortTime = getTimer();

b

function showTime(myevent :Event yivoid {
var currentTime:Mumber = getTimer();
¥

stage.addEventlListener (Event .ENTER_FRAME, showTime);

3. Declare a Number variable named
startTime, and assign it an initial
value of O.

4. Create an event handler to detect the
MouseEvent.CLICK event.

5. Within the MouseEvent.CLICK event-
handler function, enter startTime,
followed by an equals sign, then the
function getTimer() @.

Whenever the mouse button is pressed,
the time that has passed since the
movie started playing is assigned to the
variable startTime.

6. On a new line, enter another event han-
dler to detect the Event.ENTER_FRAME
event.

7. Within the Event.ENTER_FRAME event-
handler function, declare a Number
variable named currentTime, followed
by an equals sign, and then the function
getTimer() @.

Flash continuously retrieves the time
that has passed since the movie started
and puts that information in the variable
called currentTime.

Continues on next page

o When the viewer clicks the mouse button, the
getTimer() function retrieves the time elapsed
since the start of the Flash movie. That time is put
in the variable startTime.

@ On an ongoing basis, the getTimex() function
retrieves the time elapsed since the start of

the Flash movie. That time is put in the variable
currentTime.

Manipulating Information 469

8. On the next line still within the func-
tion, declare a Number variable
named elapsedTime followed by an

equals sign. field @.
9. Enter (currentTime - startTime) / 11. Test your movie.
1000.

Flash calculates the difference between

Flash displays the time elapsed since
the last instant the viewer pressed the

the current timer and the timer at the mouse button.
instant the mouse was clicked. The

result is divided by 1,000 to convert it to

seconds).

buttons.

10.0n a new line, convert the value of
elapsedTime to a string and assign the
result to the text property of your text

@D Experiment with different event handlers
to build a stopwatch with Start, Stop, and Lap

stage.addEventl istener (Event .ENTER_FRAME, showTime);
function showTime(myevent :Event yivoid {
war currentTime:Mumber = getTimer();
var elopsedTime:Mumber = (currentTime - stortTime) / 1608;

i

o The variable elapsedTime is assigned the difference between
the two instances of time recorded in the variables startTime and
currentTime

var startTime:Number = @;

stage.addEventListener(MouseEvent .CLICK, reset);

function reset(myevent:MouseEvent):void {
startTime = gatTimer();

¥

stoge.addEventListener(Event. ENTER_FRAME, showTime);

function showlime{myevent:kvent}:void {
var currentTime:Number = getTimer(};
var elapsedTime:Number = (currentTime - startTime) / 100@;
myDisplay_txt.text = String(rlapsedTime);

Time elapsed:
3.61

O

0 The value of elapsedTime is converted into a string and then
displayed in the text field myDisplay_txt.

470 Chapter 1

Managing Content
and Troubleshooting

As the complexity of your Flash movie
increases with the addition of bitmaps, vid-
eos, sounds, and animations, as well as the
ActionScript that integrates them, you need
to keep close track of all the elements so
you can make necessary revisions and bug
fixes. As the project’s complexity grows,
you'll also find yourself working more in
teams than by yourself. Fortunately, Flash
provides several tools for troubleshooting,
managing, and sharing assets with cowork-
ers to make your workflow easier.

This chapter shows you how to create
shared Library symbols that supply com-
mon elements to a team of Flash devel-
opers working on a project. This chapter
delves into the Movie Explorer (which
offers information about the organization
of your movie) and the Find and Replace
panel (which can help make global edits).
You'll also learn to save your movie as an
uncompressed XFL document. The XFL
format allows the contents of your movie to
be exposed so other developers can make
changes quickly and efficiently.

Finally, you’ll learn some strategies for
making your Flash movie leaner and

In This Chapter

Sharing Library Symbols 472
Saving Files in an Uncompressed
Format 479
Tracking, Finding, and Managing Flash
Elements 481
Optimizing Your Movie 488
Avoiding Common Mistakes 493

faster—optimizing graphics and code,
organizing your work environment, and
avoiding some common mistakes—guide-
lines to help you become a better Flash
animator and developer.

Sharing Library
Symbols

Flash makes it possible for a team of ani-
mators and developers to share common
Library symbols for a complex project.
Each animator might be working on a sepa-
rate movie that uses the same symbol—
the main character in an animated comic
book, for example. An identical symbol

of this main character needs to reside in
the Library of each movie; if the art direc-
tor decides to change this character’s
face, a new symbol has to be copied to all
the Libraries—that is, unless you create a

shared Library symbol. There are two kinds
of shared symbols: runtime shared symbols
and authortime shared symbols.

Runtime sharing of symbols

In runtime sharing, one file provides a
symbol for multiple movies to use during
runtime. This simplifies the editing process
and ensures consistency throughout a
Flash project @.

Your viewers also benefit from the shared
symbols because they have to download
them only once. For example, a main char-
acter would be downloaded just once, for
the first movie, and all subsequent movies
would use that character.

Mame

—— Shared symbol
in a Library

Separate SWF movies

o A runtime shared symbol in the Library in one SWF (top)
can be used by multiple SWF files (bottom).

472 Chapter 12

To create a runtime shared Library symbol,
mark the symbol for “Export for runtime
sharing” in the Advanced section of the
Symbol Properties dialog box and give the
symbol a class name so you can call onit.
When you export the SWF file, the symbol
will be available to other SWF movies.

Once you create a movie that shares a
Library symbol, you can create other mov-
ies that use it. You do this by opening a

OlrunTimeShareSource.fla | » | [Ga New Folder
ﬁ | New Font...
W

o New Video...

Rename
Delete
Duplicate...
Move to...
Liben B
W ~|Linkage | Edit

@ kungfuMaster Edit with

Edit Class

Properties...
Component Definition...

5 Shared Library Properties...

al o HET

0 Choose Properties from the Library panel’s
Options menu.

Linkage
[Export for ActionScript
|¥ Export in frame 1

Identifier: |
Class: |kungfuMaster
I

Base Class: | Mash.display. MovieClip

Sharing
[Export for runtime sharing

[Z] Import for runtime sharing

URL: [01runTimeShareSource.swi |

G To mark a symbol as a shared symbol, select it
for export in the Sharing section, and give a URL
where it can be found. In the Linkage section, give
it a name in the Class field. This shared symbol is
located in the same folder as the movies that will
share it. The shared symbol extends the properties
and methods of the MovieClip class.

new Flash document and creating a sym-
bol. In the Advanced section of the Symbol
Properties dialog box, mark the symbol to
“Import for runtime sharing” and enter the
name and location of the source symbol
as it appears in the Class field of its own
Symbol Properties dialog box. At runtime,
your new movie finds, imports, and uses
the source symbol.

To create a runtime shared symbol:

1. In a new Flash document, create or
import a symbol you want to share.

The symbol can be a button, movie clip,
font symbol, sound, or bitmap.

2. In the Library panel, select your symbol.
From the Library panel’s Options menu,
choose Properties @.

The Symbol Properties dialog box
appears.

3. Click the Advanced button.

The Symbol Properties dialog box
expands, showing the Linkage and
Sharing sections.

4. Inthe Sharing section, select the “Export
for runtime sharing” option. In the URL
field, enter the relative or absolute path
to where the SWF file will be posted. In
the Class field, enter a unique name for
your symbol. Leave the Base Class field
as is. Keep the “Export in frame 1” check
box selected. Click OK @.

Your selected symbol is now marked for
export and available to be shared by
other movies.

5. Export your Flash movie as a SWF file
with the name and in the location you
specified in the URL field of the Symbol
Properties dialog box.

This is your source file that shares its
symbol.

Managing Content and Troubleshooting 473

To use a runtime shared symbol:

1. Open a new Flash document, and cre-
ate a new symbol of the kind that the
source document is sharing.

For example, say your source docu-
ment is sharing a bitmap symbol. In the
destination document, import another
bitmap symbol. The contents of your
destination symbol will be replaced

by the shared symbol from the source
document at runtime. The symbol in
your destination movie is simply a
placeholder.

2. In the Library panel, select your sym-
bol. From the Options menu, choose
Properties.

The Symbol Properties dialog box
appears.

3. If the Symbol Properties dialog box
is not already expanded, click the
Advanced button.

The Symbol Properties dialog box
expands, showing the Linkage and
Sharing sections.

4. In the Sharing section, select the
“Import for runtime sharing” option.
In the URL field, enter the path to the
source movie. In the Class field, enter
the name for the shared symbol in the
source movie (as it appears in the Class
field of its own Symbol Properties dia-
log box). Click OK @.

Your selected symbol is now marked
to find the shared symbol in the source
movie and import it.

Or you can do the following:

1. Open a new Flash document, and
choose File > Import > Open External
Library @. Choose the Flash file that
contains the shared Library symbol.

The Library of the Flash file that contains
the shared Library symbol appears.

2. Drag the shared Library symbol into
your new document’s Library.

The shared symbol appears in your
destination document’s Library. The
symbol will automatically be marked to
be imported for runtime sharing with
the correct Class name and URL.

After completing either steps 1-4 or
1-2 above, proceed with step 3.

linkage
[Export for ActionScript
[export in frame 1

Identifier. |

Class: [kungfuMaster]

Base Class: |

K K]

Sharing
LI Export for runtime sharing

[¥f import for runtime sharing

URL. |OlrunTimcShurcSourcc.swf |

0 In the Symbol Properties dialog box, select the
“Import for runtime sharing” check box, and enter
the same Class name and location of the shared
symbol you want to use.

save e
Lave As... it 85
Save as Template...

eck In...

import o Stage...

Export » Impart to Library...

" . _ Open External Library... .
Publ!sh Settl_ngs... N r2 Import Video... 3
Publish Preview »

Publish ¥Rz

G Choose File > Import > Open External Library to
open the Library of the source movie that shares
its symbol.

474 Chapter 12

bl

w Library - O1runTimeShare. .

OlrunTimeshareDestinatio v | <6 G

One ikam in library

3. In your destination movie, drag an
instance of the symbol onto the Stage,
and use it in your movie.

4. Export your Flash movie as a SWF file,
and place it in a location where it can
find the source movie.

When you play the SWF file, it imports
the shared symbol from the source
movie. The shared symbol appears on
the Stage @.

Continues on next page

i ¥ Library - runTimeShareSou... i,

runTimeShareSourcefla v | 48 A

e ibem in ibrary
2%

Wy ————— Shared symbol

Blame: = 3 0 < | 3|
@ sharingPlaceholdar Graphit;ﬂ
T
& L] 0 il 3
—_—
®
Destination SWF at authortime Destination SWF at runtime

o The destination SWF imports the shared symbol from the source SWF. The URL fields in G
and 0 specify where the source SWF is located relative to the destination SWF. The empty
symbol in the destination movie (left) imports the kungFuMaster shared symbol from the source
SWEF at runtime. As a result, the shared symbol appears in the destination SWF file (right).

Managing Content and Troubleshooting 475

When you make changes and revisions
to the shared symbol in the source
movie, all the destination movies that
use the shared symbol are automati-
cally updated to reflect the change.

If you have many symbols in the source
movie that you want to share, choose Shared
Library Properties from the Library Options
menu @ Enter the URL of the source movie’s
location to set the URL for all the shared sym-
bols in the Library.

Authortime sharing of symbols

When you want to share symbols among
FLA files instead of SWF files, turn to
authortime sharing. Authortime sharing lets
you choose a source symbol in a particular
FLA file so that another FLA file can refer-
ence it and keep its symbol up to date. You
have to worry about modifying only one FLA
file containing the source symbol instead
of multiple FLA files that contain the same
symbol. Each movie stores its own copy of
the common symbol. You can update the
symbol to the source symbol whenever
you want, or even make automatic updates
before you publish a SWF file.

To update a symbol from
a different Flash file:
1. Select the symbol you want to update

in the Library panel. From the Options
menu, choose Properties.

The Symbol Properties dialog box
appears.

2. Click Advanced.

The Symbol Properties dialog box
expands to display more options.

New Font...
New Video...

Rename
Delete
Duplicate...
Move to...

L

| Linkage I::d it

E Soundbooth

Edit Class

Properties...
Component Definition...
Shared Library Properties...

[I 0|

Select Unused ltems

@ Choose Shared Library Properties from the
Library Options menu to set the URL path of the
shared symbols.

476 Chapter 12

Source
e
[Symbol.. | Symbol name: kungfuMaster

] Always update before publish

0 The Source section in the Symbol Properties

dialog box contains options for authortime sharing.

The selected symbol is called kungfuMaster.

Select Symbol

Q| | D

o Select the source symbol for authortime sharing.

Source

Browse... File: fVolumes/L...02authorTimeShareSource.fla

Symbaol.... Symbol name: kungfuMaster

] Always update before publish

o The Source section of the Symbol Properties
dialog box displays the path to the authortime

source symbol and the name of the source symbol.

3. Inthe Source section of the dialog box,
click Browse @). Select the Flash file that
contains the symbol you want to use to
update your currently selected symbol.
Click OK (Windows) or Open (Mac).

The Select Symbol dialog box appears,
showing a list of all the symbols in the
selected Flash file’s Library.

4. Select a symbol, and click OK @.
The Select Symbol dialog box closes.

5. In the Symbol Properties dialog box that
is still open, note the new source for
your symbol @. Click OK.

The Symbol Properties dialog box
closes, and your symbol is updated with
the symbol you just chose for its new
source. Your symbol retains its name,
but its content is updated to the source
symbol.

To make automatic
updates to a symbol:

In the Symbol Properties dialog box,
select the “Always update before publish”
check box.

Whenever you export a SWF file from your
Flash file, whether by publishing it or by
using the Test Movie command (Control >
Test Movie > in Flash Professional), Flash
will locate the source symbol and update
your symbol.

Managing Content and Troubleshooting 477

Runtime Sharing or Authortime Sharing?

Although they may seem similar, runtime and authortime sharing are two very different ways to
work with symbols. Each approach is better suited to different types of projects and workflows.
Runtime sharing is useful when multiple SWF movies can share common assets, thus decreasing
symbol redundancy, file size, and download times. You publish a single SWF file holding all the
common symbols that multiple SWF files can access. Authortime sharing, on the other hand, is
useful for organizing your workflow before you publish your SWF movie. You can use authortime
sharing to keep different symbols in separate FLA files. A master FLA file can reference all the
symbols in the separate files and compile them into a single SWF. Working this way, you can have
different members of a Flash development team work on different symbols and rely on authortime
sharing to ensure that the final published movie will contain the updated symbols. Compare these
two ways of sharing Library symbols in 3.

Runtime sharing Authortime sharing

Sharing

Publish Publish

\ 4 \ 4]] l
E@- EF- EIN- EI- El-

“owrs | S s E rE £

Sharing

o During runtime sharing (left), multiple SWF files can share symbols from a single common SWF file after
publishing. During authortime sharing (right), multiple FLA files can provide updated symbols to a single FLA
file before publishing. The single FLA file publishes a SWF file to play during runtime.

478 Chapter 12

Save As: Illnrpmjw.uﬂ] B
<+ (5 =) [faculty ™ @
K iDisk ~ [Applications ’

) Macintash HD & peskiop ’
¥ PLACES g :("de's '
Destaom wrnioads L
= - FontExplorer X L
s Lib
-f.. Applications % r_‘lﬂ:: :
| Documents m Music L
B movies [Pictures L
J3 Music . [@ Public ;
[l Pietures Flash €55 Docurnent (*.fa)

— Flash €54 Dacument (*.fla) r

[T ¥ Flash C55 Uncompressed Document (*.xfl) ||

o This Flash file called myproject is being saved
as an uncompressed document (XFL format).

¥ L myproject

'ﬁ mypraoject.xfl
B DOMDocument.xml
B Mobilesettings.xml
B Publishsettings.xml

» J bin

» [LIBRARY

» [META-INF

0 An uncompressed document (XFL format) is a
folder that contains folders and files representing
the contents of your Flash movie.

¥ [myproject

E DOMDocument.xml
F MobileSettings.xml
B Publishsettings.xm|

» [bin

» [LIBRARY

» [META-INF

G Double-click the XFL file inside the folder to
open your Flash file.

Saving Files in an
Uncompressed Format

Flash Professional CS5 introduces a new
Flash format, called the XFL format, which
is an uncompressed Flash document that
exposes the contents of the file so that
other developers can have access and
edit it. The XFL format is actually a folder
with other folders inside it, and not a single
document.

The contents of your file are represented
by several XML files, and any assets in your
Library panel are contained in the LIBRARY
folder. You can edit or swap out assets from
the LIBRARY folder, and all those changes
will be automatically made to the FLA file.

To save a Flash file as
an XFL document:

1. From the top menu, choose File > Save
or File > Save As, and choose Flash
CS5 Uncompressed Document @.

2. Choose a filename and click Save.

Your file is saved in the XFL format,
which is a folder containing all the
content @.

To open an XFL document:

m Open the XFL folder and double-click
the XFL file inside @.

or

m From Flash, choose File > Open, and
choose the XFL file inside the XFL
folder.

Your Flash project opens. The XFL file
inside the folder doesn’t contain any
content—it simply provides an icon
for the author to click on to open, and
it points to the XML documents and
assets within the other folders.

Managing Content and Troubleshooting 479

To edit an XFL document:

1. In this example, you’ll swap out a
bitmap in the Library panel by editing
the XFL document. Save a Flash file
that contains a bitmap in its library as
a Flash CS5 Uncompressed Document

(XFL) @.

2. Open the XFL folder and the LIBRARY
folder inside it @.

The LIBRARY folder contains all the
library assets.

3. Swap out the bitmap with another,
maintaining its filename.

4. Return to your project in Flash to
see the results of the substitution in
the LIBRARY folder. You may have to
close the file and reopen it to see the
changes.

The original Library symbol has been
replaced with the new symbol @.

When you test an XFL document, the
SWEF is published and saved in the same direc-
tory as the XFL folder, and not in the same
directory as the XFL file (inside the folder).

0 In this Flash file, the Library contains a few
symbols and an imported JPEG image of the
Grand Central Terminal in New York.

¥ Ll myproject
" myproject.xfl
B DOMDocument.xml
B MobileSettings.xml
B Publishsettings.xml
» [bin
¥ [LIBRARY
By symbol 1.xml
B symbol 2.xml
B4 symbol 3.xml

E grandcentralterminal.jpg
> [] META-INF

G In the LIBRARY folder inside the XFL project
folder, all the symbols and the imported JPEG
image are represented.

o Swapping out the image (but maintaining its
filename) in the LIBRARY folder results in a clean
substitution in the Flash file, both in the Library
panel and on the Stage.

480 Chapter 12

Tracking, Finding,
and Managing
Flash Elements

To manage the myriad Flash elements

in your movie—symbols, text, bitmaps,
ActionScript code, and so on—you can turn
to the Movie Explorer panel or the Find

and Replace panel. The Movie Explorer
panel (Alt-F3 for Windows, Option-F3 for
Mac) gives you a bird’s-eye view of your
Flash movie and presents its various ele-
ments in a hierarchical display. From the
hierarchical display, you can quickly go to
individual elements to edit them. The Movie
Explorer even updates itself in real time,

so as you’re authoring a Flash movie, the
panel displays the latest modifications. The
Find and Replace panel (Ctrl-F for Windows,
Cmd-F for Mac), on the other hand, lets you

search your entire Flash movie for different
elements, edit individual search results, and
even replace multiple elements at once.

Both panels are powerful and useful

tools to help you make sense of complex
Flash movies. For example, to find all the
instances of a movie clip, you can search for
them in the Movie Explorer and have Flash
display the exact scene, layer, and frame
where each instance resides. You can then
quickly go to those spots on the Timeline to
edit the instances. If you wanted to replace
all the text in your movie with a different
font, you can use the Find and Replace
panel to find all text of a certain font and
replace that font with a new font.

The Movie Explorer panel

Use the Movie Explorer panel to provide a
visual display of all your Flash elements on
the Stage and on the Timeline @.

o MDEBE =

Filtering buttons

Find: | T Find field
v ﬁ Scene 1
¥ [Layer2
E Frame 1
Click to collapse ———w [P Layer 1
or expand ¥ [o] Frame1
» Actions for Frame 1
A Left-Right Balance, <balance>, (Verdana, 10 pts)
@ groove movieclip, <volumegroove_mc>
@ groove movieclip, <balancegroove_mc> _ Display

@ slider bar movie clip, <volume_mc>
@ slider bar movie clip, <balance_mc>
A Volume , <volume>, (Verdana, 10 pts}
v ‘ Symbel Definition(s)
v groove movieclip
¥ [P Layerl
[)] Frame1
v slider bar movie clip
¥ [button
E Frame 1

0 A typical display in the Movie Explorer shows various
elements of the movie in an expandable hierarchy.

Managing Content and Troubleshooting 481

To display different
categories of elements:

From the Options menu at the right of the
Movie Explorer panel, select one or more
of the following @:

Show Movie Elements displays all the ele-
ments in your movie and organizes them by
scene. Only the current scene is displayed.

Show Symbol Definitions displays all the
elements associated with symbol instances
that are on the Stage.

Show All Scenes displays all the elements
in your movie in all scenes.

To filter the categories of
elements that are displayed:

From the row of filtering buttons at the top
of the panel, select one or more to add
categories of elements to display @:

Show Text displays the actual contents in a
text selection, the font name and font size,
and the instance name for text fields.

Show Movie Clips, Buttons, and Graph-
ics displays the symbol names of buttons,
movie clips, and graphics on the Stage, as
well as the instance names of movie clips
and buttons.

Show ActionScript displays the Action-
Script code assigned to frames (and to
buttons or movie clips, if authoring in
ActionScript 2.0 or earlier).

Show Video, Sounds, and Bitmaps dis-
plays the symbol names of imported video,
sounds, and bitmaps on the Stage.

Show Frames and Layers displays the
names of layers, keyframes, and frame
labels in the movie.

Customize Which Items to Show displays
a dialog box from which you can choose
individual elements to display.

= Go to Location

Go to Symbol Definition
Select Symbol Instances
Show in Library
Rename

Edit in Place

Edit in New Window

v Show Movie Elements
v Show Symbaol Definitions
+ Show All Scenes

Copy All Text to Clipboard

0 The Options menu of the Movie
Explorer panel.

Show Text

Show Movie Clips, Buttons,
and Graphics

Show ActionScript

Show Video, Sounds, and
Bitmaps

| Show Frames and Layers
|

Shw: |K |T_i_|l_ @ r;Dj EII__ Customize

Which Items

Find: | | to Show

O The filtering buttons let you selectively display
elements.

482 Chapter 12

To find and edit elements
in the display:
1. In the Find field at the top of the Movie

Explorer panel, enter the name of the
element you want to find @.

All the elements of the movie that con-
tain that name appear in the display list
automatically as you type in the field.

2. Click the desired element to select it.

The element is also selected on the
Timeline and on the Stage. If a scene or
keyframe is selected, Flash takes you to
that scene or keyframe.

3. From the Options menu of the Movie
Explorer panel, choose Edit in Place or
Edit in New Window to go to symbol
editing mode for a selected symbol.

or

Choose Rename from the Options
menu.

The name of the element becomes
selectable so that you can edit it.

MEnnCT

Find: |c|rcle

= % Seene |
actions for frame 1

e @ ball, < circle:

Symbod Definition|=)

0 Entering a word or phrase in the Find
field displays all occurrences of that word
or phrase in the Display window. Here,
the instance named circle of the movie
clip symbol ball has been found.

or

Double-click the desired element to
modify it. Flash makes the element edit-
able or opens an appropriate window,
depending on what type of element it is:

Double-clicking a symbol (except for
sound, video, and bitmaps) opens
symbol-editing mode.

Double-clicking ActionScript opens the
script in the Actions panel.

Double-clicking a scene or layer lets
you rename it.

Double-clicking a text selection lets
you edit its contents.

To find all instances of a symbol:
In the Find field of the Movie Explorer

panel, enter the name of the symbol whose

instances you want to find.

All instances of that symbol appear in the
display @.

MEnnCT

Find: |ba|l

= % Seene 1
E| [P draggable bal
...... @ ball, < circle:
E| [P stationarybal
- @ ball, :myReferencePoint:

Symbod Definition|=)

G Entering the symbol name ball in the
Find field displays all the instances of the
ball symbol. There are two instances listed:
one called circle in the draggable ball
layer and another called myReferencePoint
in the stationary ball layer.

Managing Content and Troubleshooting 483

To replace all occurrences
of a particular font:
1. In the Find field of the Movie Explorer

panel, enter the name of the font you
want to replace.

All occurrences of that font appear in
the display @.

2. Select all the text elements, using Shift-
click to make multiple selections.

3. In the Property inspector, choose a
different font and style for all text
elements.

All the selected text elements change
according to your choices in the Proper-
ties inspector @.

o sorone: [
snow: [0 (][[67] l

Find: I'ﬁmes

b d ‘é Scene 1
A Home, (Times-Roman, 71 pts)
A Resume, (Times-Roman, 71 pts)

o All the occurrences of the Times font
appear in the Display window.

o MBS =

Find:
v g Scene 1
¥ [Layerl
v El Frame 1
A Home, (Times-Roman, 71 pts)
A Resume, (Times-Roman, 71 pts)

<> CHARACTER
Family: |Times E
Style: T Monotype Corsiva
T Courier
Size:
Courier New
Color:
I T Cracked
Anti-alias:
T curlz MT

T Desdemona

svor: DD =]

Find:
v g Scene 1
v [@ Layerl
4 El Frame 1
A Home, (CourierNewPSMT, 71 pts)
A Resume, (CourierNewPSMT, 71 pts)

@ With the Times text elements selected, choose
a different font, such as Courier New (top) from
the Properties inspector. Flash changes those text
elements from Times to Courier New (bottom).

484 Chapter 12

FIND AND REPLACE

Search in: { Current Document

For: { Text

Text: gotoAndStop

Replace with:
Text: gotoAndPlay

[JWhole word [Text fields contents
™ Match case () Frames/Layers/Parameters
[Regular expressions [Strings in ActionScript

¥ ActionScript

0 In this Find and Replace panel, the text
gotoAndPlay will replace gotoAndStop in all
the ActionScript code throughout the movie.

The Find and Replace panel

Use the Find and Replace panel Edit > Find
and Replace, Cmd-F for Mac, Ctrl-F for Win-
dows) to search your whole Flash movie
for various elements (text string, a font, a
color, a symbol, a sound file, a video file, or
an imported bitmap) and replace them with
another. You can find and replace indi-
vidual search results or replace all of them
at once. The Find and Replace panel is
particularly powerful with its text searching
capabilities and options.

To find and replace text:
1. In the For pull-down menu, select Text.

2. In the Text box, enter the text that you
want to find.

3. In the Replace with Text box, enter the
replacement text.

4. Select the options for text searching @:

Whole Word searches for the entire
word only and won't return results if the
text is part of a larger text string.

Match Case searches for the text that
exactly matches uppercase and lower-
case characters.

Regular Expressions searches for text
that matches a pattern specified by a
regular expression (see Chapter 10,
“Controlling Text”).

Text Field Contents searches for the
text in text fields.
Frames/Layers/Parameters searches
for the text in frame labels, layer
names, scene names, and component
parameters.

Strings in ActionScript searches for the
text in strings in ActionScript code.

ActionScript searches for the text
throughout the entire ActionScript code.

Continues on next page

Managing Content and Troubleshooting 485

5. Click Find All or Find Next.

All occurrences of that text appear in
the display at the bottom if you click
Find All, or just the first occurrence if
you click Find Next @.

Double-click the search result to imme-
diately go to particular text to edit.

or
Click Replace All or Replace.

All occurrences of that text are replaced
with the replacement text if you click
Replace All, or just the first occurrence
if you click Find Next.

To find and replace fonts:
1. In the For pull-down menu, select Font.

2. In the Search options, select Font, Style,
or Size to search for particular fonts or
particular styles, or to search a range
of font sizes. Leave all options dese-
lected to search for all fonts in your
Flash movie.

3. In the Replace options, select Font,
Style, or Size to replace all the found
text with a new font, a new style, or a
different font size.

4. Click Replace All.

All occurrences of the particular font,
size, or style are replaced by the
selected replacement font, size, or style.
The results are also listed in the display
at the bottom of the dialog box @.

Location Matched Items Type
Scene 'Scene 1' =2 Layer 'L... gotoAnd5top(10%: ActionScript

Faund and replaced 1 items.

0 One instance of the searched text was found
and replaced with the new text. The results are
displayed in the bottom window.

FIND AND REPLACE

Search in: [Current Document
For: [Font
["] Font: Any font
| Style: Any style
[Size: Any size
Replace with:
E Fonr: Big Caslon
Style: Medium

& size: 18 I[-]
M Live edit

Location Matched Items Type

scene ‘Scene 1' -> Layer 'L... The quick brown fox. Text

o Find all text in your movie by keeping the
search restrictions unselected for font, style, and
size. Replace the text with a particular font by
specifying the Replace with options.

486 Chapter 12

FIND AND REPLACE

Search in: [Current Document

For: [Bitmap

Name: [Bitmap 1

Replace with:
Name: [Bitmap 2

M Live edit

| Location | Matched ltems
Scene 'Scene 1' -> Layer 'L... Bitmap 1
Scene 'Scene 1' -> Layer'L... Bitmap 1

Found and replaced 2 items.

o Find and replace colors, bitmaps, symbols,
sounds, or videos. In this example, all the
bitmaps in the movie named Bitmap 1 were
replaced by the bitmap named Bitmap 2.

Color: |:|
Replace with:
Color: El
o Finding and
™ Text replacing colors has
™ Fills additional options for
Strokes replacing the colors in
Text, Fills, or Strokes.

To find and replace a symbol,
sound, video, bitmap, or color:

1. In the For pull-down menu, select the
type of element that you want to find.

2. In the Name pull-down menu, select the
name of the symbol, sound, video, or
bitmap (the name should be the name
in the Library), or the Hex code of the
color.

3. In the Replace with pull-down menu,
select the name of a different symbol,
sound, video, or bitmap, or another
Hex code for a color. For color, you can
further refine your replacements by
choosing Text, Fills, or Strokes @@.

4. Click Replace All.

All occurrences of the particular symbol,
sound, video, bitmap, or color are
replaced by the selected replacement.
The results are also listed in the display
at the bottom of the dialog box @.

You can only find and replace elements
of the same kind. For example, you can

replace one bitmap with another bitmap, but
you can’t replace one bitmap with a symbol.

Managing Content and Troubleshooting 487

Optimizing Your Movie

Understanding the tools you use to create
graphics, animation, sound, and Action-
Script is important, but it's equally impor-
tant to know how best to use them to
create streamlined Flash movies. After all,
the best-laid designs and animations won'’t
be appreciated if poor construction and
clunky code make them too large to down-
load or too inefficient to play easily. To
streamline a Flash movie, use optimizations
that keep the file size small, the animations
smooth, and the revisions simple. Many
factors affect the file size and performance
of the final exported SWF file. Bitmaps,
sounds, complicated shapes, color gra-
dients, alpha transparencies, filters, and
embedded fonts all increase the Flash file
size and slow the movie’s performance.

Only you can weigh the trade-offs between
the quality and quantity of Flash content
and the size and performance of the
movie. Keep in mind the audience to whom
you’re delivering your Flash movies. Are
you delivering content to mobile devices
or to desktop computers with broadband
Internet access? What is the resolution of
your audience’s computer screen? Know-
ing the answers to these questions can
help you make more informed choices
about what to include in your movie and
how to build it.

The following strategies can help you
work more efficiently and create smaller,
more manageable, better-performing
Flash movies.

488 Chapter 12

[P comments e - |, fbedin titlss

[P 1ol = = Olls d;mark one Ll;mark bwo
[P initialize variables « + @l

[P titles « « Wl EL . . |.

[et + » || &

I background . . e

o Well-organized layers like these are easy to
understand and change.

Optimizing your authoring
environment

Use layers to separate and organize
your content. For example, place all your
ActionScript on one layer, all your frame
labels on another layer, and all your
sounds in still another layer. By using
layers, you’ll be able to understand and
change different elements of your movie
quickly @. Having many layers doesn’t
increase the size of the final exported
SWEF file. Lock or hide individual layers
to isolate just the elements you want to
work on. This will prevent you from acci-
dentally moving or deleting other objects
in the way. Use comments in keyframes
as well to explain the different parts of
the Timeline.

Organize the layers on your Timeline and
the symbols in your Library with folders.
Just as folders on your desktop can help
you group related items, folders for lay-
ers and folders for symbols will reduce
clutter and make your Flash author-

ing environment a more manageable
workspace.

Use the trace statement to observe the
changing values of your object’s proper-
ties in your movie. The trace statement
lets you display expressions and vari-
ables at any point during the execution of
your ActionScript code.

Avoid using scenes in your movie.
Although scenes are a good organiza-
tional feature for beginners, Timelines
that contain scenes are more difficult to
navigate. In addition, movie clip instances
aren’t continuous between scenes, so
they are reset from one scene to another.
Instead, use labels to mark different
areas of the Timeline, use movie clips to
hold different parts of your animation, or
load external assets as they are needed.

Managing Content and Troubleshooting 489

Optimizing bitmaps and sounds
for playback performance

Avoid animating large bitmaps. Keep
bitmaps as static background elements
if they’re large, or make them small for
tweening.

Place streaming sounds on the main
Timeline instead of within a movie clip.

A movie clip needs to be downloaded in
its entirety before playing. A streaming
sound on the root Timeline, however,
begins playing as the frames download.
Better yet, keep your sound as an exter-
nal asset and use ActionScript to dynami-
cally load it.

Use the maximum amount of compres-
sion tolerable for bitmaps and sounds.
You can adjust the JPEG quality level
for your exported SWF file in Publish
Settings. You can also adjust the com-
pression settings for the stream sync
and event sync sounds separately, so
you can keep a higher-quality stream-
ing sound for music and narration and
a lower-quality event sound for button
clicks ©.

Avoid using the Trace Bitmap command
to create an overly complex vector image
of an imported bitmap. The complexity

of a traced bitmap can make the file size
larger and the performance significantly
slower than if you use the bitmap itself.

Import bitmaps and sounds at the exact
size or length that you want to use them
in Flash. Although editing within Flash

is possible, you want to import just the
information you need to keep the file
size small. For example, don’t import a
bitmap and then reduce it 50 percent to
use in your movie. Instead, reduce the
bitmap 50 percent first and then import it
into Flash.

JPEG quality: U

u] 100
Audio stream: MP3, 16 kbps, Mono

Audio event: MP3, 16 kbps, Mono

oo
[=]
n

et

Sek, .,

0 The JPEG quality and audio-compressi

options in the Publish Settings dialog box.

on

490 Chapter 12

G An object created with separate groups (top
left) contains more information (top middle) and
can produce undesirable transparency effects
(top right). A single shape (bottom left) contains
less information (bottom middle) and becomes
transparent as one unit (bottom right).

Optimizing graphics, text, and
tweening for playback performance

Use tweening wherever you can
instead of frame-by-frame animation. In
an animation, Flash only has to remem-
ber the keyframes, making tweening a
far less memory-intensive task.

Avoid creating animations that have
multiple objects moving at the same
time or that have large areas of change.
These kinds of animations tax a
computer’s CPU and slow the movie’s
performance.

If you have a large vector graphic that
isn’t animated (such as a background),
select the “Use runtime bitmap cach-
ing” option in the Properties inspector
for the instance. This option instructs
the Flash Player to not redraw the
graphic’s content every frame, reducing
the playback computer’s workload.

Break apart groups within symbols to
simplify them. Once you’re satisfied
with an illustration in a symbol, break
the groups into shapes to flatten the
illustration. Flash will have fewer curves
to remember and thus will have an eas-
ier time tweening the symbol instance.
Alpha effects on the instance also affect
the symbol as a whole instead of the
individual groups within the symbol @.

Use color gradients and alpha transpar-
encies sparingly.

Avoid setting filters on High quality, and
avoid multiple filters.

Use the Properties inspector to change
the color, tint, and brightness of instances
of a single symbol instead of creating
separate symbols of different colors.

Continues on next page

Managing Content and Troubleshooting 491

Optimize curves by avoiding special line
styles (such as dotted lines), by using
the Pencil tool rather than the Brush
tool, and by reducing the complexity of
curves with Modify > Shape > Optimize
or by pressing Ctrl-Alt-Shift-C for Win-
dows or Cmd-Shift-Option-C for Mac @.

Use fewer font styles, and embed only
the essential font outlines.

Optimizing ActionScript code

Keep all your code in one place—
preferably on the main Timeline—
and keep code in just one layer.

Use a consistent naming convention for
variables, objects, and other elements
that need to be identified. A consistent,
simple name makes the job the variable
performs more apparent.

Use comments within your ActionScript
to explain the code to yourself and

to other developers who may look at
your Flash document for future revi-
sions. Use the double backslash (//)

to comment single lines and the block
comment (/* and */) to comment
multiple lines.

Think about modularity. Use smaller,
separate components to build your
interactivity. For example, use functions
to define frequently accessed tasks and
keep large or common assets out-

side your movie but available through
shared symbols and Loader objects.
You’ll reduce redundancy, save mem-
ory, and make revisions easier.

2T

g ¥

@ AR T N
o

\"“-—".t‘

4 J =3 A

S/ -'?‘ \

The original shapes had 402 curves.

_m The optimized shape has 251 curves.
This is a 48% reduction.

0 Complex curves and shapes can be simplified

without losing their detail.

492 Chapter 12

Avoiding Common
Mistakes

When you’re troubleshooting your Flash
movie, there are a few obvious places

you should look first to locate common
mistakes. These problems usually involve
simple but critical elements, such as over-
looking quotation marks or a relative path
term or forgetting to name an instance. Pay
close attention to the following warning

list to ensure that all your Flash movies are
free of bugs:

m Be mindful of uppercase and lowercase
letters. ActionScript 3 is case-sensitive,
so make sure the names of your vari-
ables and objects exactly match. Flash
keywords must also match in case. For
example, keyCode isn’t the same as
keycode.

m Remember to name your movie clip,
button, and text field instances in the
Properties inspector. Be sure your
names adhere to the naming rules
explained in Chapter 3, “Getting a
Handle on ActionScript.”

m Double-check the target paths for your
variables and objects.

m Make sure that you’'ve completely
loaded external data before you
attempt to do anything with it. You must
listen for the Event.COMPLETE before
you can access the loaded object’s
properties, or do anything with it.

m Double-check the data types of your
values. Review the Script pane to make
sure quotation marks appear only
around string data types. Target paths
and the keyword this should not be
within quotation marks.

Continues on next page

Managing Content and Troubleshooting 493

m Check to see whether ActionScript
statements are within the correct paren-
theses or curly braces in the Script
pane. For example, verify that state-
ments belonging to an if statement or
to a function statement are contained
within their curly braces. Every opening
parenthesis or curly brace needs a clos-
ing parenthesis or curly brace.

m Don’t forget to add any dynamically
generated object to the display list to
make it visible. The addChild() method
is commonly left out, especially for
those users familiar with previous ver-
sions of ActionScript.

m To test simple actions and simple but-
tons, choose Enable Simple Frame
Actions and Enable Simple Buttons from
the Control menu. For more complex
button events, you must choose Test
Movie > in Flash Professional from the
Control menu.

m Always be sure of what timeline you are
working on, especially when you have
embedded movie clips. Sometimes
you’ll add animation or code inside a
movie clip symbol when you really want
to add it to the main Timeline. From
time to time, look at the navigation bar

above the Stage to verify your current
workspace (Scene 1is the default name
for the main Timeline).

m Remember that the default setting for
movie clips is to play and loop. Place
a stop() action in its first keyframe to
prevent it from playing automatically, or
place the action in its last keyframe to
prevent it from looping.

m Do not place button symbols within
button symbols. They will not work
properly.

m Remember that the default setting for
your Flash movie in the testing mode is
to loop.

For additional help and advice about
debugging your movie, check out the vast
Flash resources on the Web. Begin your
search at Adobe’s Web site, which pro-
vides a searchable archive of tech notes,
documentation, tutorials, case studies, and
more. You'll also find links to other Web
sites with articles, FLA source files, forums,
blogs, and mailing lists. Check out the
companion Web site that accompanies this
book at www.peachpit.com/flashcs5vqgp for
more Flash links and resources.

494 Chapter 12

www.peachpit.com/flashcs5vqp

Keyboard Key Codes

LETTERS FUNCTION KEYS

Letter Key Key Code Keyboard Class
A 65 Function Key Key Code Property
B 66 F1 12 F1
c 67 F2 13 F2
D 68 F3 14 F3
E 69 F4 15 F4
F 70 F5 16 F5
G 7 F6 17 F6
H 72 F7 18 F7

| 73 F8 119 F8
J 74 Fo 120 F9
K 75 F10 121 F10
L 76 F11 122 F11
M 77 F12 123 F12
N 78 F13 124 F13
O 79 F14 125 F14
P 80 F15 126 F15
Q 81

R 82

S 83

T 84

U 85

\% 86

w 87

X 88

Y 89

z 90

NUMBERS AND SYMBOLS (continued)

Key Keyboard Class
Key Code Property
Caps Lock 20 CAPS_LOCK
Esc 27 ESCAPE
Spacebar 32 SPACE
Page Up 33 PAGE_UP
Page Down 34 PAGE_DOWN
End 35 END
Home 36 HOME
Left arrow 37 LEFT
Up arrow 38 up
Right arrow 39 RIGHT
Down arrow 40 DOWN
Insert 45 INSERT
Delete 46 DELETE
Help 47
Num Lock 144
i 186
=+ 187
- 189
/? 191
v 192
It 219
I 220
) 221
" 222

NUMBERS AND SYMBOLS

Key Keyboard Class
Key Code Property
0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
Numpad O 96 NUMPAD_O
Numpad 1 97 NUMPAD_1
Numpad 2 98 NUMPAD_2
Numpad 3 99 NUMPAD_3
Numpad 4 100 NUMPAD_4
Numpad 5 101 NUMPAD_5
Numpad 6 102 NUMPAD_6
Numpad 7 103 NUMPAD_7
Numpad 8 104 NUMPAD_8
Numpad 9 105 NUMPAD_9
Numpad * 106 NUMPAD_MULTIPLY
Numpad + 107 NUMPAD_ADD
Numpad Enter 108 NUMPAD_ENTER
Numpad — 109 NUMPAD_SUBTRACT
Numpad . 10 NUMPAD_DECIMAL
Numpad / m NUMPAD_DIVIDE
Backspace 8 BACKSPACE
Tab 9 TAB
Clear 12
Enter 13 ENTER
Shift 16 SHIFT
Control 17 CONTROL
Alt 18

496 Appendix A

Index

Numbers

3D rotation
changing center point of, 23
changing for objects, 236
3D space
animating in, 22-24
calculating angles in, 451
calculating distances in, 451

Symbols

, (comma), using in ActionScript, 91
! (NOT) logical operator, using, 378-379
&& (AND) logical operator, using, 156, 378
() (parentheses)

using with functions, 114

using with variables, 365

*/ (asterisk and slash), using with block
comments, 124

* (asterisk) wildcard, using with cue points, 82

.. (two periods), using to move up directories,
192

/1 (double slash), using with line comments, 123

/ (slash), using to separate directories, 192

/* (slash and asterisk), using with block
comments, 124

: (colon), using with strict data typing, 104

; (semicolon), using in ActionScript, 91

[1 (array access operator), using, 366—367, 454

\ (backslash) character, escape sequence for, 107

{} (curly braces), using in, 91, 114

| | (OR) logical operator, using, 378—379

+ (addition) assignment operator, using, 239,
364, 366

= (assignment operator), using, 105, 112, 364, 369

== (double equals symbol)

vs. = (@ssignment operator), 369

described, 368
using with keypresses, 155

A

absolute path, example of, 175-176
actions, testing, 494
Actions panel
adding actions in Script pane, 95
displaying commands in, 94
Export Script function, 101
features of, 92
Find and Replace function, 101
Import Script function, 101
layout, 94
minimizing, 93
modifying display of, 96
opening, 92
options, 97
Options menu, 101
packages, 94
redocking, 93
resizing, 93
Script Assist mode, 92
toolbox, 94, 96
undocking, 93
viewing options, 93
working with external text editors, 101
ActionScript 2
keyboard events in, 156
mouse events in, 136
ActionScript 3
assigning properties, 112
assigning values for data types, 105
Boolean data type, 104—105
building and calling functions, 115
building functions, 114

Index 497

ActionScript 3 (continued)

building functions to accept parameters, 116

building functions to return values, 117-118
calling methods, 110-111
capitalization, 91

case sensitivity, 91, 493

classes, 87

code hints, 97-99

Code Snippets panel, 119-122
comma (,), 91

creating block comments, 124
creating instances on Stage, 109
creating line comments, 123
creating objects, 108

curly braces ({3}), 91

data types, 104-105

declaring and initializing variables, 105
editing, 101-103

escape sequences, 107
expressions, 107
ExternalInterface class, 195
getting information about actions, 100
initializing variables, 104-105
instances, 87

instantiating objects, 109

int data type, 104

methods, 88

naming instances, 110

naming variables, 106

Number data type, 104—-105

Object data type, 104

objects, 87

overview of, 86

pinning scripts in, 97

properties, 88

properties of, 91

rules for naming objects, 106
semicolon (;), 91

setting formatting options, 99-100
showing earlier versions of, 96
strict typing, 104—105

String data type, 104-105

strings, 107

trace() statement, 113

uint data type, 104

using to animate graphics, 294-295

writing with dot syntax, 89—-90
ActionScript code
adding, 95
adding via Code Snippets panel, 84
exporting, 103
importing, 103
inserting in Actions panel, 120
optimizing, 492
storing, 97
ActionScript cue points
adding from Properties inspector, 80
adding with ActionScript, 81
detecting, 83
ActionScript Script pane
adding actions in, 95
checking syntax in, 102
editing actions in, 96
Find and Replace dialog box, 102—-103
finding terms in, 102-103
navigating, 95
pinning scripts in, 100
removing actions from, 96
replacing terms in, 102—-103
resizing, 96
unpinning scripts in, 100
ActionScript statements, scoping, 177
addChild() method
including, 494
using with animated flame, 320

using with DisplayObjectContainer class,
232,265-266

using with external SWF files, 200, 202

using with loaded movies, 205, 208, 210
addEventListener() method

using, 126

using to drag objects, 254

using to stop dragging objects, 255
addition (+) assignment operator, using, 239,

364, 366

Adobe Media Encoder

adding embedded cue points from, 79

adding video files to, 59

deleting cue points from, 79

removing video files from, 60
alpha, transforming for objects, 243-244
Alpha blend mode, described, 247

498 Index

alpha channels
using with filters, 315
using with videos, 71

alphas array, using with fills and gradients, 274,
277

AND (&8&) logical operator, using, 156, 378
angles
calculating, 438-439
calculating in 3D, 451
calculating relative to Stage, 439-441
creating rotating dial, 443-445
rounding numbers to integers, 442
rounding off decimals, 442

animated buttons. See also buttons; invisible
buttons

creating, 141
features of, 139
organizing, 141
animated flame, creating, 316—-320
animating in 3D. See also inverse kinematics
changing perspective, 25
changing vanishing point, 25
overview, 22
animating titles, 26-27
animations, preventing looping in, 56
antialiasing Classic text fields, 407

arithmetic, rules of precedence, 365. See also
Math class

arithmetic operators, using, 364
armatures
adding nodes to, 34
adding Spring to, 46—-47
authortime vs. runtime, 45
branching, 37-38
controlling easing of, 44
creating, 34
creating inside shapes, 39
creating node at end of, 43
defined, 33
dragging with shapes, 40
editing, 35
editing bones of, 40
editing shapes around, 40
enabling interactive control of, 45
hierarchy of bones in, 36
putting in pose layers, 39

array access operator ([]), using, 366-367, 454
Array class
features of, 435
using square brackets ([]) with, 454
using to order information, 454
Array instance, creating in ActionScript, 108
Array object
calling pop() method, 459
calling Push() method, 459
methods of, 458-459
using for each. .in loop with, 382
using to create calendar, 467-468
using with Date class, 467
using with fills and gradients, 274
using with filters, 251-252
array operations, automating with loops, 456
arrays
accessing movie clips in, 462
creating, 455
looping through, 456-457
populating with objects, 461
referencing objects in, 462—-463
two-dimensional, 455
using to track objects, 460-463
.as extension, explained, 97
assignment operator (=), using, 105, 112, 364,
369
asterisk (*) wildcard, using with cue points, 82

asterisk and slash (*/), using with block
comments, 124

audio-compression options, accessing, 68, 490
authoring environment, optimizing, 489

authortime sharing, versus runtime shared
symbols, 478

autoPlay parameter, selecting for external
video, 77

axes, navigating in 3D space, 22-23

Bandwidth Profiler, features of, 225-226. See
also download progress

bitmap data
creating, 298
creating from external images, 299-300
creating from Library symbols, 298-299
displaying, 301-302

Index 499

bitmap data (continued)
overview, 297
removing from BitmapData objects, 301
bitmap images
accessing dynamically, 298
animating, 316—-320
blending, 311-312
copying, 307-311
copying color channels of, 310-311
getting colors from, 306
overview of, 296
pixels in, 297
using filters on, 313-315
bitmaps
finding and replacing in Movie Explorer
panel, 487
importing, 490
optimizing for playback, 490
Bitrate Settings, choosing for video
compression, 67
blend modes
alpha property, 249
applying manually, 246
erase property, 249
properties of, 247
Blending mode, choosing, 50
Blur filter, using, 48—49
BlurFilter class, described, 250

BlurFilter object, using with animated flame,
318-319

Bone tool, using, 33, 39
bones
displaying connections to control points, 41
editing for armatures, 40
hierarchy in armatures, 36
selecting via Bind tool, 41

Boolean data type data type, using in
ActionScript, 104-105

Boolean value
checking for, 260
using with rotating dial, 443
bounding boxes, checking intersection of, 258
branching alternatives, overview of, 374-377.
See also conditions

branching armature, creating, 37-38
brightness, changing for movie clips, 245

browser windows
setting properties with JavaScript, 196
working with, 192
browsers
connecting to, 188
testing movies in, 193
button click, responding to, 128
button focus
changing tab order of, 150151
changing with Tab key, 149
disabling with Tab key, 150
button instances
defining, 146
naming, 110
button symbols
defining appearance of, 135
Over state of, 141
placement of, 494

buttons. See also animated buttons; invisible
buttons

combining types of, 142-145
continuous feedback, 370-371
creating dynamically, 151-152
creating with toggle functionality, 180
defining keyframes for, 142
disabling, 148
displaying Over state for, 149
removing event listeners, 148
testing, 494

button-tracking options, 146-147

C

calculations, making with Math class, 436—-437
calendar, creating, 467-468
cap style parameter, explained, 271
capitalization, using in ActionScript, 91
caption property, using with contextual
menus, 162

case statements, using, 376
character position, identifying, 431
charAt() method, using with String class, 432
circle object, adding to top of display list, 265
circles, creating, 280-281
classes

creating instances of, 108

properties of, 88

500 Index

vs. symbols, 89
using in ActionScript, 87
Classic text. See also text; TLF text
Dynamic option, 384
HTML tags, 393
Input option, 384
making editable, 421
making selectable, 421
Static option, 384
TextFormat class, 400
vs. TLF text, 401
Classic text fields
antialiasing, 407
creating, 402
default appearance of, 403
default size of TextField object, 402
embedding and applying fonts, 406
loading and displaying HTML in, 395-397
modifying, 403
modifying fonts of, 406—-407
modifying formatting of, 404—405
removing, 403
using TextFormat class with, 403
clear() method
described, 268
using to erase drawings, 273
using with user’s information, 356
clock, creating, 464—466
clone() method, using with bitmap images, 307
code hints, using, 97—99
Code Snippets panel, using, 84, 119-122
codec, defined, 58

Codec setting, choosing for video
compression, 66

collisions, detecting between objects, 258-260
colon (:), using with strict data typing, 104
color blending, changing between objects, 248
Color Mixer panel, options in, 240
color transformations
Advanced Effect options, 242-243
of objects, 243-244
specifying multiplier properties, 242
specifying offset properties, 242
colors
blending, 246—249
blending from objects, 50

filling regions with, 305
filling shapes with, 276
finding and replacing in Movie Explorer
panel, 487
getting from images, 306
modifying for DisplayObject objects,
240-245
setting for objects, 241
commas (,), using in ActionScript, 91
comments, creating in ActionScript, 123-124
comparison operators, described, 368
compression. See also video compression
settings
spatial vs. temporal, 58
using maximum amount of, 489
concatenating variables, 366-367
conditional statements
comparison operators, 368
creating, 369
form of, 368
conditions. See also branching alternatives
combining with logical operators, 378—379
providing alternatives to, 372—-373
using alternatives to, 376-377
using else for false condition, 372-373
containers, movie clips as, 179-182
content, mixing remote vs. local, 193
contextual menus
disabling, 158
events, 168
using, 158-162
control points
bones connected to, 41
using with curved lines, 272
copying bitmap images, 307-311
cos theta, explained, 438
counter variable, creating for drawings, 273
cropping video, 63-64
ctrlKey property, explained, 156
cue points, using, 79-84, 219
curly braces ({}), using, 91, 114
curved lines, creating, 272—-273. See also lines
curves
creating, 267-270
optimizing, 492
removing, 13

Index 501

D

\d and D codes, using in regular
expressions, 426

data types, checking values of, 493
Date class
creating myDate object from, 109
features of, 436
getHours() method, 464—-465
getMinutes() method, 464—-465
methods of, 464
numbers and names, 467
properties of, 88
using, 464
using Array object with, 467
decimals
vs. numbers, 453
rounding off, 442
default statements, using, 376
degrees, converting to radians, 279
delta frames, defined, 67
device fonts, embedding, 394
digital video. See video
directional movement, creating, 446—449
directories
moving up, 192
separating with slash (/), 192
display list. See also graphics
adding objects to, 263
adding objects to top of, 265
features of, 232
placing instances of Library symbols in, 263
placing objects at bottom of, 265
removing objects from, 265
tree hierarchy, 232
using with Flash movies, 210
DisplayObject class
hitTestObject() method, 258
hitTestPoint() method, 258
DisplayObject objects. See also objects
applying filters to, 251
controlling overlapping of, 264—-266
modifying colors for, 240-245
transform property, 240
DisplayObject properties, described, 233

distances
calculating, 450-452
calculating in 3D, 451
division, symbol for, 364
do while statement, using, 381
dot syntax, writing with, 89—90
double equals symbol (==
vs. = (assignment operator), 369
described, 368
using with keypresses, 155
double slash (//), using with line comments, 123
download progress. See also Bandwidth Profiler
adding numeric display of, 226-227
detecting, 222-225, 227
drag-and-drop interactivity, creating, 253
draggable masks, creating, 285-287
draggable objects
centering, 256
constraining, 256-257
dragging objects, 254
draw() methods
described, 268
using to copy image data, 300, 307
using with animated flame, 316, 318—319
drawCircle() method, using, 280
drawPath() method, using, 281
drawRect () method, using, 281, 369
drawTriangles() method, using, 281

drop-shadow filter effect, adding dynamically,
251-252

dynamic referencing, 366—-367
dynamic tweens, creating, 289-290

E

ease curves, interpreting, 15
easing

controlling for armatures, 44—-45

in Motion Editor, 12
EditManager object, using with TLF text, 421
elements. See Flash elements
else if statement, using, 374, 466
else statement, using for false condition, 372-373
e-mail, preaddressing, 191
embedded video, swapping, 72. See also video
embedFonts property, using with Classic text, 407

502 Index

encoding options
adjusting video length, 64—65
cropping video, 63—-64
displaying, 62
resizing video, 65
saving customizations, 69
selecting audio compression settings, 68
selecting video compression settings, 66—68
equality operator, using, 368-369
equals (=) sign
using to assign properties, 112
using with variables, 105
Erase blend mode, described, 247

escape sequences, characters associated
with, 107

event handlers, creating, 126, 136
event listeners
adding, 126
adding for preloaders, 223
adding to detect keypresses, 154
adding to objects, 135
for detecting mouse clicks on Stage, 129
for detecting mouse movement on Stage, 130
for detecting mouse wheel motion, 131
for loaded movies, 208
for mySound, 330
for pull-down menus, 144
removing, 126
removing from buttons, 148
events
context menus, 168
defined, 126
flow, 127
keyboard, 168
listening for, 126
mouse, 168
timers, 168
exporting
ActionScript code, 103
motion presets, 21
expressions
testing not true status of, 379
testing true status of, 378-379
using, 344
using in ActionScript, 107

external Flash movies. See also Flash movies;
movies

loading, 200-202
unloading, 203
external images
creating bitmap data from, 299-300
creating preloaders for, 228-230
detecting download progress of, 227
loading, 212-214
external movies
creating preloaders for, 228-230
detecting download progress of, 227
external sounds, loading and playing, 325.
See also sounds
external SWF files
loading, 200-202
loading across domains, 203
external variables. See also variables
decoding loaded data, 348
decoding URL-encoded data, 348—349
decoding XML data, 351-352
detecting completion of loaded data, 347
loading, 346-347
receiving loaded data, 347
using XML data, 350
external video. See also video
adding cue points to, 79-81
changing path to, 78
changing playback of, 77
loading dynamically, 215-218
playing back, 74-75
externally loaded video
controlling playback of, 219-220
detecting end of, 221

F

f4v extension, explained, 58

F4V option, choosing, 60—61

file browser
opening to select text file, 360
repopulating with file name, 363

files. See also Flash files
loading on hard drive, 360-363
saving in uncompressed format, 479-480
saving on hard drive, 360-363

Index 503

fills and gradients, creating, 274-275 Frame Rate setting, choosing for video

filter effects, removing dynamically, 252 compression, 66-67

filters frames, navigating for video length, 65
accessing and applying, 49 frames downloaded, testing number of, 222
adding to objects, 252 Free Transform tool, using with motion tweens, 5
creating with Pixel Blender, 248 functions, building in ActionScript, 114-118
using alpha channel values with, 315
using on bitmap images, 313—-315 G
using to apply special effects, 250-252 Global Security Settings panel, accessing, 194

Flash elements, using, 481-483, 487 Gradient Transform tool, using, 31-32

Flash files, saving as XFL documents, 479. See gradient transitions, using shape tweens for,

also files 31-32
Flash movies. See external Flash movies; loaded gradients, filling shapes with, 277-279
Flash movies; movies gradients and fills, creating, 274—-275

displaying data distribution in, 226 graph, showing ease-out in, 15
managing, 210 graphic methods, described, 268
managing versions of, 202 graphic vs. movie clip instances, 139
optimizing, 488-492 graphics. See also display list
troubleshooting, 493-494 animating with ActionScript, 294-295
using display lists with, 210 generating dynamically, 261-263
watching download performance of, 226 optimizing for playback, 491-492

Flash Player security, 193 grayscale representation, creating, 311

Flash Video format greater than or equal to, symbol for, 368
converting video files to, 60—-61 greater than, symbol for, 368
using, 58

FlowElements H
formatting, 418 H.264 video standard, explained, 58

using with TextFlow object, 411
flush() method, using, 354-355, 359
FLV format

choosing, 60-61

embedding into Flash, 71

hand pointer. See also pointer

reactivating, 293

removing, 148
hard drive, loading and saving files on, 360-363
height DisplayObject property, described, 233

explained, 58 height property in JavaScript, described, 195
using On2 VP6 codec with, 66 height property, using with LoaderInfo
focal point ratio, using with fills and object, 207

gradients, 275
focus of text, detecting, 422—423

Help topics, accessing, 203
hexadecimal format, displaying RGB code

Font Embedding dialog box, opening, 394 in, 240

fonts Hit state, creating keyframes in, 137-138
embedding, 394, 406 HTML (HyperText Markup Language)
finding and replacing, 486 displaying in Classic Text text fields, 395-397
replacing in Movie Explorer panel, 484 displaying in dynamic text field, 398

for each..inloop, using, 382 loading in Classic Text text fields, 395-397

for statement, using, 185, 381 HTML text, importing into TextFlow, 411

for..in loop, using, 382 hyperlinks, including in text, 189, 398

frame labels, using, features of, 143, 183-184

504 Index

ID3v2 sound properties, described, 338—-339
if statement
checking true status in, 260

using to create continuous feedback button,
370-371

using with cue points, 83

using with else if, 374-375
images. See bitmap images; external images
Import Script function, using in ActionScript, 101
import statement

using with ActionScript code, 97

using with cue points, 82

using with dynamic tweens, 289

using with TLF text, 408—409
Import Video wizard, using, 70-71, 74
In point, moving for video length, 65
index0f () method, using with String class, 432
inequality, symbol for, 368
information

clearing on user’s computer, 356

default amount for storage, 359

ordering with arrays, 454—-459

retrieving from user’s computer, 356

sharing among movies, 357

storing for movies, 357-358

storing on user’s computer, 354-355

testing with conditional statements, 368—-371
Inkbottle tool, using with armatures, 40
instances

creating for classes, 108

creating for movie clips, 140

creating on Stage, 109

naming, 110

using in ActionScript, 87
instantiation, process of, 108

int data type data type, using in ActionScript,
104

integers, rounding numbers to, 442

interpolation method, using with fills and
gradients, 275

intersection, detecting between objects, 259
inverse kinematics. See also animating in 3D
with movie clips, 33
overview, 33
with shapes, 39

invisible buttons, creating, 137-138. See also
animated buttons; buttons

“invisible” movie clip, creating, 181-182

J

JavaScript
innerHeight window property, 199
innerWidth window property, 199
opening custom windows with, 197-199
openwindow function, 198
using to control window parameters, 195-196
window properties, 195
JavaScript functions, passing parameters to, 195
joint constraints, position of, 43
joint rotation
constraining, 42
enabling, 42—-43
joint style parameter, explained, 271
joint translation, options for, 42
JPEG quality settings, accessing, 490

K

key code values, using, 154
keyboard events
in ActionScript 2, 156
described, 168
detecting, 153
key code values, 154
keyboard key codes
function keys, 495
letter keys, 495
numbers and symbols, 496
KeyboardEvent object
creation of, 126
dispatching, 154
properties, 153

keyframe distance, setting for video
compression, 67

keyframes. See also property keyframes
Clear Pose command, 35
creating in Hit state, 137-138
defining for buttons, 142
frames between, 67
inserting for titles, 27
intermediate, 30-31
roving and non-roving, 7

Index 505

keypresses, detecting, 154-155
keystroke combinations, detecting, 156

L

Layer blend mode, described, 247
layers
using in authoring environment, 489
using to simplify shape changes, 30-31
less than or equal to, symbol for, 368
less than, symbol for, 368
letters of titles, animating, 26-27
Library symbols. See also symbols
authortime sharing of, 476
creating bitmap data from, 298-299
creating movie clip instances from, 262—-263
making automatic updates to, 477
marking as shared symbols, 473
runtime sharing of, 472—-473
runtime vs. authortime sharing, 478
updating from Flash files, 476—-477
line comments, creating in ActionScript, 123
line style
cap and joint styles, 271
changing, 270
lines, creating, 267—270. See also curved lines
linked text fields, deleting and inserting, 389
listeners. See event listeners
load() method
using to replaced loaded movies, 204
using with external Flash movies, 200—-201
using with external images, 213
using with MP3 audio files, 325
loaded content, accessing properties of, 214

loaded data for external variables, managing,
347-349

loaded Flash movies, controlling, 206. See also
Flash movies

loaded images, managing, 212, 214
loaded movies. See also movies
alignment of, 205
detecting success of, 207
placing on top of others, 210
removing from Stage, 211
replacing, 204
targeting and controlling, 208—-209
transparent Stages, 205

using _root property with, 211
Loader class, using with external Flash movies,
200-201
Loader object
contentLoaderInfo property of, 227
limitation of, 205

loaderInfo DisplayObject property, described,
233

LoaderInfo object, accessing, 206-207
loadwebsite()function, creating and calling, 115
local storage settings, changing, 359

location property in JavaScript, described, 195
logical AND (&8&), using with keystrokes, 156, 378

logical operators, combining conditions with,
378-379

looping, preventing in animations, 56
looping statements
do while, 381
for each..in, 382
for, 381
for..in, 382
overview, 380
while, 380-381
loops, using to automate array operations, 456

“mailto:”, using with URLRequest class, 191
mask DisplayObject property, described, 233
mask layers, tweening, 51-55
masks
creating, 55-56
draggable, 285-287
removing, 283
setting objects as, 282-283
transparency of, 284
masks, features of, 51
match() method, using, 429, 431
Math class, using, 435-437, 442, 453. See also
arithmetic
Matrix object, using with animated flame,
317-319
matrix type, using with fills and gradients, 275
Media Encoder. See Adobe Media Encoder
menubar property in JavaScript, described, 195
merge () method, using with bitmap images,
311-312

506 Index

MetaDataEvent event handler, using, 219 mouse pointer

methods, using in ActionScript, 88, 90, 10111 calculating distance from points, 450—452
modulo division operator, using, 364—-365 creating, 292-293
motion, copying and applying, 18 hiding, 292
Motion Editor showing, 292
adding properties to, 11 mouse wheel motion
changing curvature of graph, 12 detecting, 131
display options, 11 responding to, 132
easingin, 12 MouseEvent object
opening, 8 creation of, 126-127
removing properties from, 11 using target property with, 255
using with blur-to-focus effect, 49 moveTo()method, using, 267-269
using with motion tweens, 8 movie clip instances
motion presets, using, 20-21 creating from Library symbols, 262—-263
motion tweens naming, 110
adjusting keyframes automatically, 7 targeting from Timeline, 172
changing curvature of paths, 6 movie clip vs. graphic instances, 139
changing path locations, 4 movie clips
changing shape of paths for, 5 accessing in arrays, 462
characteristics of, 2 blending colors of, 50
copying and pasting paths, 7 changing brightness for, 245
creating, 3 changing transparency of, 245
creating for titles, 27 as containers, 179-182
deleting paths for, 7 creating, 140
displaying motion paths for, 6 creating symbols with animations, 141
duplicating, 16 creating with hidden content, 181-182
editing paths on motion, 4 default setting for, 494
generating dynamically, 288-291 independent Timelines in, 139
in masked layers, 54 navigating timelines with, 170
methods and events, 289 repositioning instances of, 234-235
moving locations of, 4 showing object states in, 179
paths of motion for, 2 stopping cycling of, 141
reversing paths for, 7 as symbols, 139
saving as motion presets, 18—19 targeting, 177178
swapping target objects of, 17 targeting within movie clips, 173-174
on tween layers, 2 Timelines of, 139
using Free Transform tool with, 5 using in mask layers, 51
mouse click, detecting on Stage, 129 using inverse kinematics with, 33
mouse events Movie Explorer panel
in ActionScript 2, 136 displaying categories of elements, 482
described, 168 editing elements in display, 483
handling, 128 features of, 481
selecting, 135 filtering categories of elements, 482
mouse movement Find and Replace panel, 485
detecting on Stage, 130 finding and replacing bitmaps, 487
translating to visual changes, 294-295 finding and replacing colors, 487

Index 507

Movie Explorer panel (continued)
finding and replacing fonts, 486
finding and replacing sounds, 487
finding and replacing symbols, 487
finding and replacing text, 485-486
finding and replacing videos, 487
finding elements in display, 483
finding instances of symbols, 483
finding instances of symbols in, 483
Options menu of, 482
replacing occurrences of fonts, 484

movies. See external Flash movies; Flash
movies; loaded movies

sharing information among, 357
storing information for, 357-358
testing, 75
testing in Web browsers, 193
MP3 files
appending metadata tags, 338
ID3 versions, 338—-339
loading, 325
retrieving song information about, 339-340
viewing ID3 files outside of Flash, 340
multicolumn text, creating, 390-391. See also text
multiplication, symbol for, 364
Multiply blend mode, described, 247
myArray methods, examples of, 459

navigateToURL() method, using, 188-189, 191
Navigation cue point, jumping to, 84
NetConnection object, using with external video,
215-217

NetStream class, using with AAC sound files, 325
NetStream object

adding listener on, 219

NetStatusEvent conditions, 221

playback methods of, 219

using with external video, 215-217
new line character, escape sequence for, 107

newStream listener, adding for NetStream
object, 219

nodes
constraining, 43
creating at end of armature, 43
isolating rotation of, 35

moving for armatures, 35
NOT (!) logical operator, using, 378-379
null keyword, using to remove masks, 283
Number data type, using in ActionScript, 104—105
numbers

vs. decimals, 453

rounding to integers, 442

0

objects. See also DisplayObject objects
adding event listeners to, 135
adding to display list, 263
assigning properties to, 112
changing 3D rotation of, 236
changing center points of, 23
changing positions of, 234-235
changing rotation of, 235
changing transparency of, 237
creating in ActionScript 3, 108
creating with directional movement, 447-449
creating with separate groups, 491
detecting collisions between, 258-260
detecting intersection between, 259
displaying in visual hierarchy, 171
dragging, 254
instantiating, 109
moving in 3D space, 22-23
moving to back, 265-266
moving to front, 265
naming in ActionScript, 106
as nouns, 88
populating arrays with, 461
properties of, 89
referencing dynamically, 367
referencing in arrays, 462—-463
removing, 265
removing from display list, 265
resizing, 236
rotating in 3D, 23
setting as masks, 282-283
setting colors for, 241
stopping dragging, 255
swapping, 265
targeting via with action, 177-178
tracking via arrays, 460-463
using in ActionScript, 87

508 Index

On2 VP6 codec, using, 66
openwindow function, parameters of, 198
operators, described, 364
OR (] |) logical operator, using, 378—379
Out point, moving for video length, 65
Over state

of button symbol, 141

displaying for buttons, 149

using with pointer, 135
Overlay blend mode, described, 247

P

Paintbucket tool, using with armatures, 40
parentheses (())

using with functions, 114

using with variables, 365
Paste Motion Special option, availability of, 18
paths, creating with square corners and ends, 270

pause() playback method, using with NetStream
object, 219
pausedposition variable, creating for sound
playback, 328-329

.pbj extension, explained, 248
periods (. .), using to move up directories, 192
perspective, changing in 3D animation, 25
physics, simulating with Spring option, 46
pinning scripts in ActionScript, 97
Pixel Blender, features of, 248
pixel hinting, using with paths, 270
pixels

changing colors of, 303

drawing, 303

function in bitmap images, 297

using setPixel() methods with, 303-304
play() method

using parameter with, 97

using with Sound object, 326-327

using with sounds, 324
playhead

controlling, 171

movement on Timeline, 169

selecting for video length, 65
Point class

features of, 435

Point.polar() method, 446, 448

using to calculate distances, 450—-452

pointer. See also hand pointer
customizing, 292-293
detecting over hit area, 135
removing, 148
pose layers, putting armatures in, 39
poses
deleting, 35
inserting, 35
moving on Timeline, 35
preloaders
adding numeric displays to, 227
creating, 223-225
creating for external images, 228-230
creating for external movies, 228-230
described, 222
using Bandwidth Profiler with, 225
properties
adding to Motion Editor, 11
as adjectives, 88
applying preset eases to, 12
assigning relative to current value, 239
assigning to objects, 112
assigning values to, 112
of objects, 89
removing from Motion Editor, 11
using in ActionScript, 88
Properties inspector
adding ActionScript cue points from, 80
applying ease-in effect from, 14
applying ease-out effect from, 14
button-tracking options in, 146
deleting cue points from, 80
opening Actions panel from, 92
property keyframes. See also keyframes
adding, 9
changing values of, 10
managing, 8
removing, 10
resetting values of, 11
Publish Settings dialog box, opening, 189
pull-down menu
collapsed and expanded states, 179
creating, 142-145
described, 142
states of, 143
Track as Menu Item option, 147

Index

509

Q

quotation mark (”) character, escape sequence
for, 107

\r sequence, character associated with, 107
radians, converting degrees to, 279

radio buttons, described, 179

random numbers, generating, 453

Rectangle object, using with draggable objects,
256-257

rectangles

creating, 281

filling with color, 304
regions, filling with color, 305-306
regular expressions

codes for, 426

creating, 427

flags for, 426

matching text patterns with, 425-427

searching text to match, 427

using match() method with, 429
relative path

example of, 175-176

linking with, 192
relative values, assigning, 238
replace() method, using with String class, 431

Replace options, using in Movie Explorer panel,
485-486

resizable property in JavaScript, described, 195

Resize Video setting, choosing for video
compression, 66

resume() method
using with motion tweens, 289
using with NetStream object, 219
RGB code, displaying in Color Mixer panel, 240
root keyword, using with current timeline, 175
_root property, using with loaded movies, 211
rotating dial, creating, 443—445
rotating objects, 22-23
rotation
changing for objects, 235
isolating for nodes, 35
rotation DisplayObject properties
assigning values to, 239
described, 233

using, 235-236
rotation property, using with directional
movement, 448
Round() option, using with joint style, 271
rounding
numbers to integers, 442
off decimals, 442
run() method, calling, 90
runtime armature, making, 45
runtime shared symbols. See also symbols
versus authortime sharing, 478
creating, 473
features of, 472-473
using, 474-476

S

\s and S codes, using in regular expressions, 426

sandbox, explained, 203

scale mode, using with paths, 270

scenes, avoiding in movies, 489

scope of variables, explained, 117, 345

scoping ActionScript statements, 177

Screen blend mode, described, 247

Script pane. See ActionScript Script pane

scripts, pinning and unpinning, 100. See also
ActionScript

scrollbars property in JavaScript, described,
195

searching and replacing text, 427-428, 430-431
security features

accessing, 194

encountering, 193, 203
Selection tool

using with armatures, 39-40

using with motion tweens, 6
selections, converting to symbols, 50
semicolon (;), using in ActionScript, 91
Shader blend mode, described, 247
shape behavior, refining with Bind tool, 41
shape changes, simplifying, 30-31
shape hints, using, 28—-29
Shape instance, creating for straight line, 268
Shape object

creating, 267

drawing and displaying on Stage, 270

using with dynamic buttons, 151-152

510 Index

shape tweens

alternative to, 55

strategies, 28

using for gradient transitions, 31-32

using intermediate keyframes, 30

using with mask layers, 52
shapes. See also vector shapes

creating armatures in, 39

editing around armatures, 40

filling with gradients, 277-279

filling with solid colors, 276
shapes with armatures, dragging, 40
shared symbols

marking, 473

runtime vs. authortime, 478
SharedObject class, using, 354-355

SharedObject data, configuring space used by,
359

Shift key, testing status of, 154
SimpleButton class, using, 133-135
sin theta, explained, 438
Sine Wave ease, using, 15
single quotation mark (’) character, escape
sequence for, 107
skin, changing for video playback, 76—77
slash (/), using to separate directories, 192
slash and asterisk(/*), using with block
comments, 124
smooth curve, creating and removing, 13
SOH CAH TOA mnemonic device, using, 438
Sound class, properties of, 88
sound completion, detecting, 336-337
sound data, visualizing, 341-342
sound events, detecting, 336—-337
sound formats, availability of, 323
Sound object, using, 325-326
sound playback
controlling, 326-329
resuming, 328-329
setting number of loops, 326
sound progress, tracking, 330-331
sound symbol, preparing for playback, 323-324
SoundChannel class
Event.SOUND_COMPLETE event, 336-337
leftPeak property, 341
rightPeak property, 341

using, 326-327

SoundChannel object, position property of,
330-331

SoundMixer class
computeSpectrum() method, 342
using stopAll() method of, 324, 327
sounds. See also external sounds

finding and replacing in Movie Explorer panel,
487

importing, 490

modifying volume and balance, 333-335

optimizing for playback, 490

playing from Library, 323-324

resuming, 328

setting initial starting times for, 326

stopping, 326-327

using, 322

using pausedposition variable with, 328-329
SoundTransform object, using, 326, 333-335
speakers, switching left and right, 335
special effects

applying with filters, 250-252

blending colors from objects, 50

blur-to-focus, 48—49
spotlights, independent movement of, 55

spread method, using with fills and
gradients, 275

Spring ease, using, 15
Spring option
adding to armatures, 46—47
dampening, 47
using to simulate physics, 46
Sprite class, described, 253
Sprite object
using with Array object, 460, 463
using with draggable masks, 285-286
using with TLF text containers, 414—416
Sprite vs. MovieClip object, 261

square object, placing at bottom of display list,
265-266

stacking order, controlling, 264—-266
startDrag() method, calling, 110
startDragging function, creating, 254
stop() action
using with motion tweens, 289
using with movie clips, 141

Index 5M1

stop() action (continued)

using with preloader, 223

using with pull-down menu, 143-144

using with toggle functionality, 180
stopDragging function, creating, 255
storage settings

changing, 359

permissions, 359
straight lines, creating, 268-270
streaming sounds, placement of, 489
strict typing

defined, 104

of values returned from functions, 118
String class

methods of, 431-432

using to analyze text, 424

String data type data type, using in
ActionScript, 104—105

string values, combining, 366
strings
checking lengths of, 433—-434
determining sizes of, 433
searching for, 431
using in ActionScript, 107
stroke, setting characteristics of, 267
Subselection tool
using with armatures, 40
using with motion tweens, 6
Subtract blend mode, described, 247
subtraction, symbol for, 364
Swap Symbol dialog box, opening, 17
SWF of movie, previewing, 75
switch statements, using, 376
SWZ files, using with TLF text, 385

Symbol Properties dialog box, using with sound
symbols, 323

symbols. See also Library symbols; runtime
shared symbols

vs. classes, 89

converting selections to, 50
distinguishing, 110

features of, 89

finding and replacing in Movie Explorer
panel, 487

finding instances in Movie Explorer panel, 483
swapping for motion tweens, 17

T

\t sequence, character associated with, 107
tab character, escape sequence for, 107
tab order, changing for button focus, 149-150
tan theta, explained, 438
target paths
absolute and relative, 175-176
inserting, 175
for nested movie clips, 173
overview of, 171
using, 493
text. See also Classic text; multicolumn text; TLF
text; wrapping text
analyzing, 424
finding and replacing, 485-486
finding pattern matches in, 428-429
finding position of pattern match in, 428
including hyperlinks in, 189
optimizing for playback, 491-492
replacement codes, 430
replacing pattern matches in, 430—431
searching and replacing, 430
text editors, using with ActionScript, 101
text elements, animating, 26-27
text field linkages
breaking, 389
creating, 389
text fields
controlling contents of, 392-393
detecting focus of, 422-423
displaying HTML in, 398
editing, 388
threaded, 387
text files
loading, 361
opening browser for selection of, 360
retrieving contents of, 361-362
saving, 362-363
text focus, detecting, 422-423
Text Layout Framework (TLF). See TLF (Text
Layout Framework)

text patterns, matching with regular expressions,
425

text property, using, 392
text searches, greedy and lazy matches, 429
text selections, detecting, 422

512 Index

text strings. See strings
Text tool

using to animate titles, 26-27

using with text fields, 392
TextConverter, using, 410
TextField object, default size of, 402
TextFlow content

displaying, displaying, 415—-417

formatting in Text Layout markup, 419
TextFlow object

assigning InlineGraphicElement to, 412-413

assigning span element to, 412

formatting, 418—419

getting text into, 411

importing HTML text into, 411

importing plain text into, 411

importing Text Layout markup text into, 411

using, 410
TextFormat object, declaring, 404
TextLayoutFormat object, using, 418-419
theta of right triangle, defining, 438
this keyword, using, 175, 493
threaded text fields, explained, 387
time elapsed, tracking, 469
Timeline

of movie clips, 139

moving poses on, 35

navigation methods, 169

x- and y-coordinates of, 235
timelines

identifying, 494

navigating with movie clips, 170

in relative mode, 175

retrieving frame labels on, 185-186

using frame labels with, 183—-186

using parent keyword with, 176

using root keyword with, 175

using this keyword with, 175-176
timer

creating, 469-470

detecting end of, 167

events, 168

using with continuous actions, 165-166
Timer object, using with clock, 464, 466
titles, animating, 26-27

TLF (Text Layout Framework)
described, 22
Editable option, 384
Read Only option, 384
Selectable option, 384
TLF text. See also Classic text; text
adding spacing around columns, 391
changing column spacing, 391
vs. Classic Text, 401
containers, 414-417
controllers, 414-417
creating, 408
creating multiple columns, 390-391
formatting, 409
making editable, 421
making selectable, 420
TLF text fields
modifying properties of, 400
properties for, 399
TLF text library
merging, 386
overview of, 385
SWZ files, 385
TLFTextField object, using, 410
toggle functionality, adding to buttons, 180
toolbar property in JavaScript, described, 195
top property in JavaScript, described, 195
Trace Bitmap command, avoiding, 490
trace statement
displaying returned values with, 118
using, 111, 113
using in authoring environment, 489
using with frame labels, 185
using with MP3 files, 340
Track as Menu Item option, using with pull-down
menus, 147

transform DisplayObject property, described,
233
transform property, using with DisplayObject
objects, 240
transformations, global vs. local, 24
transparency
changing for movie clips, 245
changing for objects, 237
triangle object, removing from display list, 265
triangles, calculating angles of, 438

Index 513

trigonometric functions, remembering, 438
troubleshooting Flash movies, 493-494
true status, checking in if statement, 260
trusted locations, specifying, 193—-194
Tween class, using with dynamic tweens, 288
tween easing functions, described, 288
tween layers, motion tweens on, 2
TweenEvents, described, 289
tweening

mask layers, 51-55

optimizing for playback, 491-492
tweens. See motion tweens

U
uint data type data type, using in ActionScript,
104

unload() method, using with external Flash
movies, 203

url property, using with LoaderInfo object, 207
URL-encoded data, decoding, 348-349
URLLoader class
using with external variables, 346—-347
using with HTML, 396-397
using with XML data, 351-352
URLRequest object
creating for external images, 213
using to detect sound completion, 336
using with external Flash movies, 201
using with external sounds, 325
using with external variables, 347
using with MP3 audio files, 339-340
using with volume and balance, 333
using with volume levels, 341
URLs
absolute vs. relative, 188
specifying in URLRequest object, 192

\')

values
adding and subtracting, 239
changing properties relative to, 238
decreasing, 364-365
dividing, 364
increasing, 364—-365
multiplying, 364
subtracting, 364

vanishing point, changing in 3D animation, 25
var keyword, using in ActionScript, 105
variables. See also external variables
changing values of, 365
concatenating, 366—-367
declaring and initializing, 105
decreasing value incrementally, 365
increasing value incrementally, 365
initializing, 345
initializing in ActionScript, 105
modifying, 364-365
naming in ActionScript, 106
referencing dynamically, 367
scope of, 117, 345
testing true or false status of, 371
using, 344
using parentheses with, 365

vector shapes, creating dynamically, 267. See
also shapes

Vector3D class, using to calculate distances, 451
video. See also embedded video; external video

acquiring, 58

with alpha channels, 71

assessing quality of, 58

compressing, 58

cropping, 63-64

embed vs. external playback, 73

embedding in Flash, 66, 70-71

finding and replacing in Movie Explorer
panel, 487

playing back externally from Flash, 66
preparing for Flash, 58
previewing, 75
resizing, 65
video compression settings, selecting, 66—68.
See also compression
video encoding options. See encoding options
video files
adding to Adobe Media Encoder, 59
converting to Flash Video, 60-61
removing from Adobe Media Encoder, 60
video length, adjusting, 64—65
Video object, using with external video, 218
video playback component
changing skin of, 76—77
placing on Stage, 75

514 Index

Video Properties dialog box, opening, 215-216
video streams, detecting status of, 221

video symbol, using with external video,
215-216

visual properties, changing, 233
volume and balance, modifying, 333-335

volume levels, visualizing left and right, 341-342

w
\w and W codes, using in regular expressions,
426
Web addresses, loading in windows, 192
Web browsers
connecting to, 188
testing movies in, 193
Web sites
Help topics, 203
linking to, 188—190
opening in windows, 193
while statement, using, 380-381
width property
described, 195
using with LoaderInfo object, 207

window parameters, controlling via JavaScript,
195-196

windows, opening with JavaScript, 197-199
with action, using to target objects, 177-178

wrapping text. See also text; TLF (Text Layout
Framework)

breaking text field linkages, 389

creating, 387-389

creating text field linkages, 389
deleting linked text fields, 389
editing text fields, 388

inserted linked text fields, 389

X
x- and y-coordinates, timeline considerations,
235
x DisplayObject property, described, 233
X-axis, navigating in 3D space, 22-23
XFL documents
editing, 480
opening, 479
saving Flash files as, 479
XML data
decoding XML data, 351-352
receiving, 353
using with external variables, 350

Y

y DisplayObject property, described, 233
y-axis, navigating in 3D space, 22-23
yellow highlight, hiding for buttons, 150

4

z DisplayObject property, described, 233

z-axis, navigating in 3D space, 22-23

Zoom item, enabling in ContextMenu instance,
159

Index 515

peachpit.com/creativeedge

Meet Creative Edge.

A new resource of unlimited

books, videos and tutorials for
creatives from the world’s
leading experts.

Creative Edge is your one

stop for inspiration, answers to
technical questions and ways to
stay at the top of your game so
you can focus on what you do
best—being creative.

All for only $24.99 per month
for access—any day any time
you need it.

creative
edge

	Table of Contents
	Introduction
	PART I: APPROACHING ADVANCED ANIMATION
	Chapter 1 Building Complexity
	Motion Tweening Strategies
	Duplicating Motion
	Shape Tweening Strategies
	Using Inverse Kinematics
	Creating Special Effects
	Using Masks

	Chapter 2 Working with Video
	Preparing Video for Flash
	Using Adobe Media Encoder
	Understanding Encoding Options
	Embedding Video into Flash
	Playback of External Video
	Adding Cue Points to External Video
	Detecting and Responding to Cue Points

	PART II: INTERACTIVITY
	Chapter 3 Getting a Handle on ActionScript
	What Is ActionScript 3?
	About Objects and Classes
	About Methods and Properties
	Writing with Dot Syntax
	More on Punctuation
	The Actions Panel
	Editing ActionScript
	Using Objects
	About Functions
	Using Code Snippets
	Using Comments

	Chapter 4 Advanced Buttons and Event Handling
	Listening for Events
	Mouse Detection
	The SimpleButton Class
	Invisible Buttons
	Animated Buttons and the Movie Clip Symbol
	Complex Buttons
	Button-tracking Options
	Changing Button Behavior
	Creating Buttons Dynamically
	Keyboard Detection
	The Contextual Menu
	Creating Continuous Actions
	A Summary of Events

	Chapter 5 Controlling Multiple Timelines
	Navigating Timelines with Movie Clips
	Target Paths
	Absolute and Relative Paths
	Using the with Action to Target Objects
	Movie Clips as Containers
	Using Frame Labels

	Chapter 6 Managing External Communication
	Communicating with the Web Browser
	Loading External Flash Movies
	Controlling Loaded Flash Movies
	Loading External Images
	Communicating with External Video
	Detecting Download Progress: Preloaders

	PART III: TRANSFORMING GRAPHICS AND SOUND
	Chapter 7 Controlling and Displaying Graphics
	Understanding the Display List
	Changing Visual Properties
	Modifying the Color
	Blending Colors
	Applying Special Effects with Filters
	Creating Drag-and-Drop Interactivity
	Detecting Collisions
	Generating Graphics Dynamically
	Controlling Stacking Order
	Creating Vector Shapes Dynamically
	Using Dynamic Masks
	Generating Motion Tweens Dynamically
	Customizing Your Pointer
	Putting It Together: Animating Graphics with ActionScript
	About Bitmap Images
	Creating and Accessing Bitmap Data
	Manipulating Bitmap Images
	Using Filters on Bitmap Images
	Putting It Together: Animating Bitmap Images

	Chapter 8 Controlling Sound
	Using Sounds
	Playing Sounds from the Library
	Loading and Playing External Sounds
	Controlling Sound Playback
	Tracking Sound Progress
	Modifying Volume and Balance
	Detecting Sound Events
	Working with MP3 Song Information
	Visualizing Sound Data

	PART IV: WORKING WITH INFORMATION
	Chapter 9 Controlling Information Flow
	Using Variables and Expressions
	Loading External Variables
	Storing and Sharing Information
	Loading and Saving Files on the Hard Drive
	Modifying Variables
	Concatenating Variables and Dynamic Referencing
	Testing Information with Conditional Statements
	Providing Alternatives to Conditions
	Branching Conditional Statements
	Combining Conditions with Logical Operators
	Looping Statements

	Chapter 10 Controlling Text
	Understanding TLF and Classic Text
	Creating Wrapping Text
	Creating Multicolumn Text
	Controlling Text Field Contents
	Displaying HTML
	Modifying Text Field Appearances
	Generating Text Dynamically: Classic vs. TLF Text
	Creating Classic Text
	Creating TLF Text Fields
	Getting Text into the TextFlow
	TLF Text Containers and Controllers
	Formatting the TextFlow
	Making Text Selectable or Editable
	Detecting Text Focus
	Analyzing Text

	Chapter 11 Manipulating Information
	Making Calculations with the Math Class
	Calculating Angles
	Creating Directional Movement
	Calculating Distances
	Generating Random Numbers
	Ordering Information with Arrays
	Keeping Track of Objects with Arrays
	Using the Date and Time

	Chapter 12 Managing Content and Troubleshooting
	Sharing Library Symbols
	Saving Files in an Uncompressed Format
	Tracking, Finding and Managing Flash Elements
	Optimizing Your Movie
	Avoiding Common Mistakes

	Appendix: Keyboard Key Codes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	text:

