

Peachpit Press

V I S U A L Q U I C K P R O G U I D E

Flash Professional
CS5 Advanced

FOR WINDOWS AND MACINTOSH

RUSSELL CHUN

Visual QuickPro Guide

Flash Professional CS5 Advanced for Windows and Macintosh
Russell Chun

Peachpit Press

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to: errata@peachpit.com

Peachpit Press is a division of Pearson Education.

Copyright © 2011 by Russell Chun

Editor: Rebecca Gulick

Copy Editor: Liz Welch

Proofreader: Patricia Pane

Production Coordinator: Myrna Vladic

Compositor: David Van Ness

Indexer: Valerie Haynes Perry

Technical Reviewer: Matthew Newton

Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the

publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has

been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the

instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Flash is a registered trademark of Adobe Systems, Inc., in the United States and in other countries. Macintosh

and Mac OS X are registered trademarks of Apple, Inc. Microsoft, Windows, Windows XP, and Windows Vista

are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services

identified throughout this book are used in editorial fashion only and for the benefit of such companies with no

intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey

endorsement or other affiliation with this book.

ISBN 13: 978-0-321-72034-4

ISBN 10: 0-321-72034-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

Thank you
Bringing this book to you, as always, took the efforts of a team, to which

I owe my gratitude. I want to thank my editor, Liz Welch; project editor,

Rebecca Gulick; production coordinator, Myrna Vladic; compositor, David

Van Ness; and proofreader, Patricia Pane. I would like to especially thank

Matthew Newton, whose keen insight and detailed technical review

were invaluable.

Finally, I want to thank readers like you. When I first discovered Flash,

it fired up my imagination and challenged me to see how I could use

the tool to deliver richer and more immersive content. Flash has come

a long way since then, and despite new technologies and an evolving

environment, it remains a vital part of the online experience. Readers

like you will continue to push Flash forward and make the Web even

more interesting by transforming your creativity into reality.

—Russell Chun

iv Contents at a Glance

Contents at a Glance

Introduction . ix

PART I: APPROACHING ADVANCED ANIMATION

Chapter 1 Building Complexity 1

Chapter 2 Working with Video 57

PART II: INTERACTIVITY

Chapter 3 Getting a Handle on ActionScript. 85

Chapter 4 Advanced Buttons and Event Handling 125

Chapter 5 Controlling Multiple Timelines 169

Chapter 6 Managing External Communication 187

PART III: TRANSFORMING GRAPHICS AND SOUND

Chapter 7 Controlling and Displaying Graphics 231

Chapter 8 Controlling Sound . 321

PART IV: WORKING WITH INFORMATION

Chapter 9 Controlling Information Flow 343

Chapter 10 Controlling Text . 383

Chapter 11 Manipulating Information 435

Chapter 12 Managing Content and Troubleshooting 471

Appendix Keyboard Key Codes 495

Index . 497

Table of Contents v

Table of Contents

Introduction. ix

PART I: APPROACHING ADVANCED ANIMATION

Chapter 1 Building Complexity . 1

Motion Tweening Strategies 2

Duplicating Motion . 16

Shape Tweening Strategies 28

Using Inverse Kinematics. 33

Creating Special Effects 48

Using Masks . 51

Chapter 2 Working with Video. 57

Preparing Video for Flash 58

Using Adobe Media Encoder. 59

Understanding Encoding Options 62

Embedding Video into Flash 70

Playback of External Video. 73

Adding Cue Points to External Video 79

Detecting and Responding to Cue Points 82

PART II: INTERACTIVITY

Chapter 3 Getting a Handle on ActionScript 85

What Is ActionScript 3? 86

About Objects and Classes 87

About Methods and Properties 88

Writing with Dot Syntax 89

More on Punctuation . 91

The Actions Panel . 92

Editing ActionScript . 101

Using Objects . 104

About Functions . 114

Using Code Snippets 119

Using Comments . 123

vi Table of Contents

Chapter 4 Advanced Buttons and Event Handling 125

Listening for Events . 126

Mouse Detection . 128

The SimpleButton Class 133

Invisible Buttons . 137

Animated Buttons and the Movie Clip Symbol 139

Complex Buttons . 142

Button-tracking Options 146

Changing Button Behavior 148

Creating Buttons Dynamically 151

Keyboard Detection . 153

The Contextual Menu 157

Creating Continuous Actions 163

A Summary of Events 168

Chapter 5 Controlling Multiple Timelines. 169

Navigating Timelines with Movie Clips 170

Target Paths . 171

Absolute and Relative Paths 175

Using the with Action to Target Objects 177

Movie Clips as Containers 179

Using Frame Labels . 183

Chapter 6 Managing External Communication 187

Communicating with the Web Browser 188

Loading External Flash Movies. 200

Controlling Loaded Flash Movies 206

Loading External Images 212

Communicating with External Video 215

Detecting Download Progress: Preloaders. 222

PART III: TRANSFORMING GRAPHICS AND SOUND

Chapter 7 Controlling and Displaying Graphics 231

Understanding the Display List 232

Changing Visual Properties 233

Modifying the Color . 240

Blending Colors . 246

Applying Special Effects with Filters 250

Creating Drag-and-Drop Interactivity 253

Table of Contents vii

Detecting Collisions. 258

Generating Graphics Dynamically 261

Controlling Stacking Order 264

Creating Vector Shapes Dynamically 267

Using Dynamic Masks. 282

Generating Motion Tweens Dynamically 288

Customizing Your Pointer. 292

Putting It Together: Animating Graphics

with ActionScript . 294

About Bitmap Images 296

Creating and Accessing Bitmap Data 297

Manipulating Bitmap Images 303

Using Filters on Bitmap Images 313

Putting It Together: Animating Bitmap Images 316

Chapter 8 Controlling Sound . 321

Using Sounds . 322

Playing Sounds from the Library 323

Loading and Playing External Sounds. 325

Controlling Sound Playback 326

Tracking Sound Progress 330

Modifying Volume and Balance 332

Detecting Sound Events 336

Working with MP3 Song Information 338

Visualizing Sound Data 341

PART IV: WORKING WITH INFORMATION

Chapter 9 Controlling Information Flow 343

Using Variables and Expressions 344

Loading External Variables 346

Storing and Sharing Information 354

Loading and Saving Files on the Hard Drive 360

Modifying Variables . 364

Concatenating Variables and Dynamic Referencing . 366

Testing Information with Conditional Statements . . . 368

Providing Alternatives to Conditions 372

Branching Conditional Statements 374

Combining Conditions with Logical Operators. 378

Looping Statements. 380

viii Table of Contents

Chapter 10 Controlling Text . 383

Understanding TLF and Classic Text 384

Creating Wrapping Text. 387

Creating Multicolumn Text 390

Controlling Text Field Contents 392

Displaying HTML. 395

Modifying Text Field Appearances 399

Generating Text Dynamically: Classic vs. TLF Text . . 401

Creating Classic Text 402

Creating TLF Text Fields 408

Getting Text into the TextFlow 410

TLF Text Containers and Controllers 414

Formatting the TextFlow 418

Making Text Selectable or Editable 420

Detecting Text Focus 422

Analyzing Text . 424

Chapter 11 Manipulating Information 435

Making Calculations with the Math Class 436

Calculating Angles . 438

Creating Directional Movement 446

Calculating Distances 450

Generating Random Numbers 453

Ordering Information with Arrays 454

Keeping Track of Objects with Arrays. 460

Using the Date and Time 464

Chapter 12 Managing Content and Troubleshooting 471

Sharing Library Symbols 472

Saving Files in an Uncompressed Format 479

Tracking, Finding, and Managing Flash Elements . . . 481

Optimizing Your Movie 488

Avoiding Common Mistakes 493

Appendix Keyboard Key Codes 495

Index . 497

Introduction ix

Introduction

Flash is one of the most pervasive tech-

nologies on the Web, delivering interactive

and immersive multimedia. Leading corpo-

rate Web sites use its streamlined graphics

to communicate their brands, major motion

picture studios promote theatrical releases

with Flash video, and online news and edu-

cational sites provide rich user experiences.

Adobe Flash Professional CS5 is the pro-

gram for industry professionals to create

Flash content. As a vector-based animation

and authoring application, Flash is ideal

for creating high-impact, low-bandwidth

sites incorporating animation, text, video,

sound, and database integration. With

robust support for complex interactivity

and server-side communication, Flash is

an ideal solution for developing Internet

applications as well as sophisticated Web

site designs. From designer to programmer,

Flash is an indispensable tool for delivering

dynamic content across various browsers,

platforms, and devices.

As the popularity of Flash remains high, so

does the demand for designers and devel-

opers who know how to tap its power. This

book is designed to help you meet that

challenge. Learn how to build complex ani-

mations; integrate sophisticated interfaces

and navigation schemes; and dynamically

control graphics, video, sound, and text.

Experiment with the techniques discussed

in this book to create the compelling media

that Flash makes possible. It’s not an exag-

geration to say that Flash has revolution-

ized the Web. This book will help you be

a part of that revolution—so boot up your

computer and let’s get started!

Who Should Use
This Book
This book is for designers, animators, and

developers who want to take their Flash

skills to the next level. You’ve already

mastered the basics of tweening and are

ready to move on to more complex tasks,

such as importing video, masking, control-

ling dynamic sound, or detecting collisions

between graphics on the Stage. You may

be familiar with Flash CS4, but you are

eager to explore the new features in CS5—

the completely revamped text engine, the

x Introduction

Code Snippets panel, or the ability to add

cue points to external video from the Stage.

You may not be a hard-core programmer,

but you’re ready to learn how ActionScript

can control vector and bitmap graphics,

sounds, and text. You want to integrate

interactivity with your animations to create

more responsive environments, to create

complex user interface elements like pull-

down menus, and to learn how Flash com-

municates with outside applications such as

Web browsers. If this description fits, then

this book is right for you.

This book explores the advanced aspects

of Flash Professional CS5 and some of the

key new features, so you should already

be comfortable with the basic tools and

commands for creating simple Flash mov-

ies. You should know how to create and

modify shapes and text with the drawing

tools and be able to create symbols. You

should also know how to create simple

motion tweens and know how to work with

shape tweens. You should know your way

around the Flash interface: how to move

from the Stage to symbol-editing mode

to the Timeline and how to manipulate

layers and frames. You should also be

familiar with importing and using bitmaps

and sounds, and assigning basic actions to

frames for navigation. To get up to speed,

review the tutorials that come with the soft-

ware, or pick up a copy of Flash Profes-
sional CS5 for Windows and Macintosh:
Visual QuickStart Guide by Katherine

Ulrich (Peachpit, 2010).

Goals of This Book
The aim of this book is to demonstrate the

advanced features of Flash Professional

CS5 through a logical approach, empha-

sizing how techniques are applied. You’ll

learn how techniques build on each other

and how groups of techniques can be com-

bined to solve a particular problem. Each

example you work through puts another

skill under your belt; by the end of this

book, you’ll be able to create sophisticated

interactive Flash projects.

For example, creating a pull-down menu

illustrates how simple elements—event

handlers, button-tracking options, and

movie clips—come together to make more

complex behaviors. Examples illustrate the

practical application of techniques, and

additional tips explain how to apply these

techniques in other contexts.

How to use this book
The concepts in this book build on each

other: The material at the end is more

complex than that at the beginning. If you’re

familiar with some of the material, you can

skip around to the subjects that interest you,

but you’ll find it most useful to learn the tech-

niques in the order in which they appear.

As with other books in the Visual QuickPro

Guide series, tasks are presented for you

to do as you read about them, so that you

can see how a technique is applied. Follow

the step-by-step instructions, look at the

figures, and try the tasks on your computer.

You’ll learn more by doing and by taking

an active role in experimenting with these

exercises. Many of the completed tasks

are provided as FLA and SWF files on the

companion Web site: Go to www.peachpit.

com/flashcs5vqp to download the sample

files and study how they were made.

When code is presented, it is set apart in a

different font. When a line of code is meant

to be typed on a single line but is forced

onto a second line in this book, you’ll see

a small arrow like this (➝) indicating the

continuation of the code.

www.peachpit.com/flashcs5vqp
www.peachpit.com/flashcs5vqp

Introduction xi

information to create complex Flash

environments that can respond to

changing conditions. They also explore

the new text engine, called Text Layout

Framework, and how you can use it to

create sophisticated layouts.

■ Appendix: Keyboard Key Codes

The appendix gives you quick access

to the key code values and matching

keyboard constants for the keys on

your keyboard.

What’s on the companion Web site
Accompanying this book is a Web site

at www.peachpit.com/flashcs5vqp that

contains many of the Flash source files for

the tasks. You can download the files and

see how each task was created, study the

ActionScript, and use the ActionScript to

do further experimentation. Sample media

such as audio and video files are provided

for your use. You’ll also find a list of Web

links to sites that are devoted to Flash and

that showcase the latest Flash techniques

and provide tutorials, articles, and advice.

Additional resources
Use the Web to your advantage. There is a

thriving, active, international community of

Flash developers; within it, you can share

your frustrations, seek help, and show off

your latest Flash masterpiece. Free forums

and a significant number of Flash-related

blogs exist for all levels of Flash users.

Begin your search for Flash resources with

the list of Web sites on the companion

Web site and by choosing Help in the Flash

application, which provides access to an

online searchable ActionScript 3 language

reference and Flash manual.

Tips follow the tasks to give you hints about

how to use a shortcut, warnings about com-

mon mistakes, and suggestions about how

techniques can be extended.

Occasionally, you’ll see sidebars in gray

boxes. Sidebars discuss related matters that

aren’t directly task oriented. They include

interesting and useful concepts that can help

you better understand how Flash works.

What’s in this book
This book is organized into four parts:

■ Part I: Approaching Advanced

Animation

Chapters 1 and 2 cover advanced

techniques for graphics and anima-

tion, including motion tweening and the

Motion Editor, inverse kinematics, and

the new Spring option to simulate phys-

ics, as well as strategies for shape tween-

ing, masking, and using digital video.

■ Part II: Interactivity

Chapters 3 though 6 introduce Action-

Script 3, the scripting language Flash

uses to add interactivity to a movie.

You’ll learn the ways in which Flash can

respond to input from the viewer and

how you can create complex navigation

schemes with multiple timelines. You’ll

also see how Flash communicates with

external files and applications such as

Web browsers.

■ Part III: Transforming Graphics and

Sound

Chapters 7 and 8 demonstrate how to

dynamically control the basic elements

of any Flash movie—its graphics and

sound—through ActionScript.

■ Part IV: Working with Information

Chapters 9 through 12 focus on how

to retrieve, store, modify, and test

www.peachpit.com/flashcs5vqp

xii Introduction

What’s New in Flash
Professional CS5
Whether you’re a beginner or an advanced

user, a designer or a programmer, a num-

ber of new features in Flash Professional

CS5 will appeal to you. The following are

just a few of the capabilities that make the

software even more powerful, flexible, and

easy to use.

New text capabilities
A completely new text engine called Text

Layout Framework, or TLF, provides you

with more sophisticated and nuanced con-

trol over text layouts and nearly all aspects

of typography. For example, you can create

text that wraps around photos or anima-

tions on the Stage for more visually appeal-

ing designs, or you can quickly make text

flow in multiple columns within the same

text field. TLF text comes with a host of

new ActionScript classes that enable you

to dynamically create, format, display, and

control text. If you’re into text, Flash Profes-

sional CS5 was made for you.

Video enhancements
Using Flash to download and play external

video has become even easier, with more

options for interactivity. New in CS5 is the

ability to preview your external video on

the Stage, making timing and placement

of your video more precise. There are

additional video skins that you can choose,

and you can now add cue points directly to

your video through the Properties inspec-

tor in authoring mode.

ActionScript support
ActionScript 3 continues to expand with

new language elements that give you more

power to build richer and more interactive

applications. To help you and your team

of developers create interactivity quickly

and consistently, Flash Professional CS5

has added a new panel called Code Snip-

pets. The Code Snippets panel makes

adding ActionScript easy—simply select

the desired interactivity from the panel

and assign it to your movie. You can add

your own code to the panel, and share

code snippets with your team. The Code

Snippets panel will save you time and

even help you learn ActionScript quicker

because you can study the code and its

application.

Animation and drawing
improvements
Inverse kinematics gets better with a new

feature called the Spring option. Designed

to simulate physics, the Spring option lets

you create armatures that wiggle, bounce,

and shimmer as they react to the effects of

gravity or their own motion. Waving flags,

swaying branches, or undulating under-

water creatures can move more realisti-

cally with ease. The Deco tool in your

Tools panel now comes with more options,

with numerous new brushes for complex,

expressive patterns. While not explored in

this book, the Deco tool is yet one more

reason to use Flash Professional CS5 to

transform your creative energies into rich,

interactive online content.

In This Chapter
Motion Tweening Strategies 2

Duplicating Motion 16

Shape Tweening Strategies 28

Using Inverse Kinematics 33

Creating Special Effects 48

Using Masks 51

The key to creating complex animations

in Flash Professional CS5 is to build them

from simpler parts. You should think of your

Flash project as a collection of simpler

motions, just as the movement of a runner

is essentially a collection of rotating limbs.

Isolating individual components of a much

larger, complicated motion allows you to

treat each component with the most appro-

priate technique, simplifies the tweening,

and gives you better control with more

refined results.

To animate a runner, for example, you

would first consider how to simplify the

animation into separate motions. Animat-

ing the entire sequence at the same time

would be impossible, because the many

elements making up the motion change in

different ways as they move. The rotation

of her legs and arms can be created with

different poses using inverse kinemat-

ics. Her hair could be a shape tween that

lets you show its flow, swing, and slight

bouncing effect as she runs. And her entire

body can move across the Stage as a

motion tween.

1
Building Complexity

Learning to combine different techniques

and break animation into simpler parts not

only solves difficult animation problems

but also forces you to use multiple layers

and think in smaller, independent compo-

nents. By doing so, you set up the anima-

tion so that it’s easy to manage now and

revise later.

This chapter describes some advanced

approaches to basic animation techniques

such as motion tweening, shape tweening,

inverse kinematics, and masking.

2 Chapter 1

Motion Tweening
Strategies
Motion tweening lets you interpolate any

of the instance properties of a symbol,

such as its location, size, rotation, color,

and transparency, as well as any filters that

have been applied to the symbol instance.

Because of its versatility, motion tweening

can be applied to a variety of animation

tasks, making it the foundation of most

Flash projects. Because motion tweening

deals with instance properties, it’s a good

idea to think of the technique in terms of

instance tweening. Regardless of whether

actual motion across the Stage is involved,

changing instance properties through time

requires motion tweening. Thinking of it as

instance tweening will help you distinguish

when and where to use motion tweening

as opposed to shape tweening, inverse

kinematics, or frame-by-frame animation.

The motion tween model
You should already know how to create a

basic motion tween in Flash Professional

CS5. This book will help you move forward

and understand tweening’s more advanced

features. However, a quick review of the

key points in the motion tween model is

helpful:

■ Motion tweens are object based, so

tweens are applied directly to objects

(rather than keyframes). The target

object of a motion tween can easily be

swapped with a different instance.

■ Motion tweens are separated on a

special layer called a tween layer in a

tween span. The tween span can be

selected as a single object and moved,

expanded, and contracted to change its

duration, or copied and pasted. Flash

does not allow any drawing or other

objects placed within a tween span.

■ You have independent control over

each property of the instance (posi-

tion, scale, color effect, filter) and can

change property values over time with

curves in the Motion Editor panel.

■ The path of the motion is part of the

motion tween. The path can be directly

manipulated with Bézier precision or

freely scaled, skewed, rotated, or even

replaced.

Building Complexity 3

To create a motion tween:
1. Right-click (Windows) or Ctrl-click (Mac)

on an object on the Stage, and choose

Create Motion Tween from the context

menu that appears A.

Flash may ask to convert the selected

object into a symbol for it to be

tweened. Click OK B.

Flash automatically converts your

selection to a movie clip symbol, which

is saved in your Library. Flash also

puts the symbol instance in a separate

Tween layer and adds one second of

frames so you can begin to animate

the instance. Tween layers are distin-

guished by a special icon in front of the

layer name, and the frames are tinted

blue C. Tween layers are reserved for

motion tweens, and hence, no drawing

is allowed on a Tween layer.

2. Move the playhead to a desired end

point on the Tween layer.

3. Move the instance to a different posi-

tion on the Stage.

Flash smoothly animates the change in

positions D.

If you are more comfortable working

with the older way of animating, you can do

so by relying on the Classic Tween option.

Create a beginning keyframe and an ending

keyframe containing a symbol instance. Select

the first keyframe, and then choose Insert >

Classic Tween. However, many features, such

as the Motion Editor, are not available for

classic tweens.

A Right-click (Windows) or Ctrl-click (Mac) directly

on the object you want to animate, and choose

Create Motion Tween.

B Motion tweens require that the object be either

a symbol or text.

C A Tween layer is reserved for motion tweening.

D This instance of a star moves from left to right

in a motion tween. The black triangle in the last

frame of the tween span represents a keyframe for

the new position.

4 Chapter 1

Editing the path of the motion
The path that an instance moves during

a motion tween is graphically shown as a

stroke on the Stage. Dots along the path

indicate the instance’s position at each

frame E. You can directly manipulate

the path with a variety of tools, includ-

ing the Selection tool, the Subselection

tool, the Delete Anchor Point tool, the

Convert Anchor Point tool, or the Free

Transform tool.

To change the location of the path:
1. Click on the motion path with the Selec-

tion tool.

The motion path becomes highlighted,

indicating that the whole path is

selected.

2. Click and drag the motion path to a new

location on the Stage F.

The motion path is moved. The motion

tween proceeds from its new location.

or

Select the motion path and change the

X and Y values in the Properties inspec-

tor under Path G.

E The curved line on the Stage represents the

path of motion of an object. The dots on the line

represent the location of the object at each frame

during the tween span.

F Move the path to move the location of the

motion tween.

G Change the X and Y values in the Properties

inspector to change the location of the motion

tween.

Horizontal position
of the path

Vertical position
of the path

Building Complexity 5

To change the shape of the path:
1. Select the Free Transform tool and click

on the motion path on the Stage.

The Free Transform control points

appear around the motion path.

2. Drag the Free Transform control

points to change the overall shape

of the motion path. The position of

your mouse pointer on various con-

trol points determines the type of

transformation H:

On corner points. Changes the over-

all width and height of the path. Hold

down the Shift key to constrain the

proportions.

Near corner points. Rotates the path.

Side points. Changes either the width

or the height of the path.

Sides. Skews (tilts) the path.

or

Select the motion path and change

the W and H values in the Properties

inspector under Path.

The W and H values change the width

and the height of the motion path.

When using the Free Transform tool, you

can move the white circle, which represents

the center point around which all transforma-

tions are made. Double-click the white circle to

reset its position.

H Use the Free Transform tool to change the

shape of the path.

Rotate

Scale

Change height

Skew (tilt)

Free distort
(hold down
Ctrl key for Win,
Cmd key for Mac)

6 Chapter 1

To change the curvature of the path:
Choose the Selection tool and drag a

portion of the motion path to change its

curvature I.

or

Choose the Subselection tool and move

the individual control points to new

positions, or drag the control handles to

change the curvature J.

or

Choose the Delete Anchor Point tool and

click on a control point on the motion path.

The control point and its associated curve

are deleted K.

or

Choose the Convert Anchor Point tool and

click on a control point on the motion path

and drag out the control handles.

The control handles change the curvature

of the path at that point L.

I Drag a segment of the

motion path to change its

curvature.

J Move individual

control points with the

Subselection tool, or

move the control handles

to change the curvature of

the motion path.

K Delete individual

control points with

the Delete Anchor

Point tool.

L Use the Convert

Anchor Point tool to

click on an individual

control point (top) and

drag out the handles

to create curves at that

point (bottom).

Multiple Motion Paths
If you are designing multiple motion tweens with

intersecting motion paths, it is often helpful to see all

the motion paths for all the tweens simultaneously.

Select a tween on the Timeline or its motion path on

the Stage, and from the Properties inspector options

menu, choose Always Show Motion Paths M.

Flash displays all the motion paths so you can edit

one while seeing its relationship to the others N.

If you only want to see a subset of all the motion

paths, simply click on the Hide Layer options in the

layers that you want to hide.

M Choose Always Show Motion Paths from

the Properties inspector options menu to

display motion paths for all your layers.

N These three motion tweens are

on separate layers, but their motion

paths are displayed simultaneously.

Building Complexity 7

To copy and paste a motion path:
1. Select a stroke on a different layer or a

motion path from another tween, and

copy the stroke (Edit > Copy).

2. Select the motion path and paste the

stroke (Edit > Paste in Center).

The pasted stroke replaces the motion

path.

Roving and Non-roving Keyframes
Flash automatically adjusts the positions of property

keyframes so that the speed of the motion is consistent

throughout a tween. As you edit the motion path, the

property keyframes adjust so the object moves the same

distance in each frame O. This way of automatically adjust-

ing keyframes is known as roving keyframes.

However, you may not want your motion to be consis-

tent throughout the path. You can change the tween to

non-roving keyframes by right-clicking (Windows) or Ctrl-

clicking (Mac) the motion path and choosing Motion Path >

Switch keyframes to non-roving P. Flash will fix the posi-

tions of the keyframes in the tween span so that any further

edits to the path will increase or decrease the speed of the

object in particular segments of the tween Q.

O Roving keyframes automatically

distribute the object’s position

along its path equally.

Q With non-roving keyframes,

this object moves along different

segments on its path at different

speeds.

P Roving keyframes is the default setting. Choose

non-roving keyframes to prevent Flash from

automatically distributing the object’s position.

To delete the path:
Select the path and press the Delete key

on the keyboard.

The path is deleted (but the tween still

exists), and the object of the motion tween

remains stationary.

To reverse the path:
Right-click (Windows) or Ctrl-click (Mac)

the motion path and choose Motion Path >

Reverse Path.

The path remains the same; however, the

target object begins at the end point and

travels in the reverse direction.

8 Chapter 1

Using the Motion Editor
Keyframes are specific to each property of

an instance. For example, a single motion

tween can have keyframes for position

and different keyframes for alpha. Manag-

ing these property keyframes may seem

daunting, but fortunately you can use the

Motion Editor (Window > Motion Editor) to

visualize and keep track of all your prop-

erty keyframes.

The Motion Editor provides a graphical

representation of the changing values for

all the properties of an instance in a motion

tween. For example, if an object moves

from left to right on the Stage, the Motion

Editor shows the change in the X position

values as a line on a graph R. Learning to

R The Motion Editor shows the X position of this object changing

from frame 1 to frame 16.

read and understand the Motion Editor is

essential for creating more sophisticated,

advanced animations.

You can add any number of keyframes

along the graph for any of the properties

and change their values.

To open the Motion Editor:
1. Select a tween span on the Timeline or

a tweened object on the Stage.

2. Click on the Motion Editor tab behind

the Timeline, or choose Window >

Motion Editor.

The Motion Editor displays the graphs

for the selected motion tween S.

S The Motion Editor displays the properties of the instance on the

left and their changing values on the right.

Add and delete propertiesMotion Editor viewing options

Properties Graphs

Property values PlayheadKeyframe controls

Timeline

Building Complexity 9

To add a property keyframe:
1. Move the playhead to the desired frame

on the Timeline in the Motion Editor T.

2. Click the diamond icon next to the

selected property.

A keyframe at that point in time, indi-

cated by a black square, is inserted for

the property U.

or

Right-click (Windows) or Ctrl-click (Mac)

on any point along the graph and

choose Add Keyframe V.

A keyframe at that point in time, indi-

cated by a black square, is inserted for

the property.

or

Ctrl-click (Windows) or Cmd-click (Mac)

on any point along the graph W.

A keyframe at that point in time, indi-

cated by a black square, is inserted for

the property.

T The graph

portion of the

Motion Editor

has a vertical

red playhead,

just as the

Timeline does.

V Add a

keyframe

directly from the

context menu

(right-click for

Windows, Ctrl-

click for Mac).

W Add a

keyframe by

holding down

the Ctrl key

(Windows) or

Cmd key (Mac)

and clicking on

the graph.

U Click on the diamond to add a keyframe to the

currently selected property. Here, a keyframe for

Alpha (transparency) has been inserted at frame 8.

Add keyframe Keyframe

10 Chapter 1

To change the value of a
property keyframe:
Drag the keyframe up or down to its new

value.

The value for the property keyframe

changes X.

or

Drag the playhead to the selected key-

frame and change the value under the

Value column.

The value for the property keyframe

changes Y.

Change the value of multiple keyframes

at once by holding down the Shift key and

selecting multiple keyframes and then drag-

ging the multiple keyframes to new values.

The line segment or segments between the

selected keyframes will move together.

Move quickly between keyframes by

clicking on the left-facing or the right-facing

arrowhead. The adjacent keyframes will be

selected.

To remove a property keyframe:
Right-click (Windows) or Ctrl-click (Mac)

on any keyframe and choose Remove

Keyframe.

The selected keyframe is removed Z.

or

Select a keyframe and click the yellow

diamond icon.

The selected keyframe is removed.

or

Ctrl-click (Windows) or Cmd-click (Mac) on

any keyframe.

The selected keyframe is removed.

X The keyframe at frame 6 for the Alpha property

has been dragged down to about 92.5%. The

resulting tween will show the object fade slightly

from frame 1 to frame 6.

Y Change the value for any keyframe directly

with numerical precision. The value column for the

Alpha property at this keyframe shows 92.5429%.

Z Choose Remove

Keyframe to delete

a keyframe along

the graph.

Building Complexity 11

To reset the value of a
property keyframe:
Click the Reset Values button in the upper-

right corner of the property category.

The property returns to its initial value.

To add a property:
Click the plus button next to the Property

category (Color Effect, Filters, or Eases)

and select the desired property .

The selected property is added to the

Motion Editor.

To remove a property:
Click the minus button next to the property

category (Color Effect, Filters, or Eases)

and select the property to remove .

The selected property is removed from the

Motion Editor.

In this example, the Brightness property is

being added to the Motion Editor.

In this example, the Brightness property is

being deleted from the Motion Editor.

Plus button for Color Effect

Minus button for Color Effect

Motion Editor Display Options
There are many options you can set in the Motion Editor to help you be more comfortable access-

ing its information.

You can move the horizontal splitter bar that separates the Motion Editor from the Stage to

increase the height of the panel. You can also expand or collapse any of the property categories

by clicking on the small triangles next to the property category names. When you select a specific

property, the graph expands to show more of that property.

At the bottom left of the Motion Editor, three buttons change the viewing area of the properties

and their graphs . The Graph Size button changes the height of the rows of unselected proper-

ties. The Expanded Graph Size button changes the height of the row of the selected property. The

Viewable Frames button changes the number of frames that are viewable along the Timeline.

Change the viewing options for the Motion

Editor to best suit your working environment.

Graph Size Viewable FramesExpanded Graph Size

12 Chapter 1

Easing in the Motion Editor
You can also change the curvature of the

graph at any keyframe of all the proper-

ties except for X, Y, and Z. Changing the

curvature affects how fast or slow the

values change. A straight line represents a

linear change—an equal amount of change

happens throughout the tween. A curved

line represents a nonlinear change known

as an ease.

Easing shows how fast or slow the change

in values happens. You could have your

tween start slowly and end quickly (ease-in),

or your tween could start quickly and gradu-

ally slow down (ease-out). Easing is a way

to add a sense of acceleration and decel-

eration, which can give weight and natural-

ness to an otherwise mechanical animation.

Flash also provides a number of preset

eases that you can apply to any property,

including X, Y, and Z .

Using the preset eases is an easy way of

making complex motions without explicitly

defining keyframes. For example, you can

quickly create bounces or shudders in a

motion tween by simply applying a custom

ease that moves back and forth between

the values of a property keyframe.

The Preset eases available in the Motion

Editor.

Building Complexity 13

To create a smooth curve:
Right-click (Windows) or Ctrl-click (Mac) a

property keyframe (except for X, Y, or Z),

and choose Smooth point, Smooth left, or

Smooth right .

Smooth point. Control handles appear

from both sides of the keyframe, which you

can move to change the curvature of the

graph.

Smooth left. A control handle appears from

the left side of the keyframe, which you

can move to change the curvature of the

graph to the left of the keyframe.

Smooth right. A control handle appears

from the right side of the keyframe, which

you can move to change the curvature of

the graph to the right of the keyframe.

or

Alt-click (Windows) or Option-click (Mac) a

property keyframe (except for X, Y, or Z),

and drag out the control handles to change

the curvature of the graph .

To remove a curve:
Right-click (Windows) or Ctrl-click (Mac) a

property keyframe (except for X, Y, or Z),

and choose Corner point.

The control handles disappear from the

keyframe, and the graph on both sides of

the keyframe becomes a straight line.

Choose one of the Smooth

options to change the curvature of the

graph at any keyframe (except for the

X, Y, or Z properties).

The handles affect the curvature

of the graph at the keyframe.

14 Chapter 1

To apply a preset ease:
1. Click the plus button on the Eases cat-

egory and choose a preset ease.

The selected preset ease appears in

the Motion Editor .

2. Select the preset ease and change its

value.

The value of the preset ease deter-

mines the strength and direction of the

ease. You can visually see the effect in

the graph .

3. Choose the ease in the Ease pull-down

menu next to the property you want it

to affect .

The preset ease is applied to the prop-

erty. The ease curve is superimposed

on the graph to show how it affects the

property values over time .

You can also apply ease-in and ease-out

effects from the Properties inspector. In the

Timeline (not the Motion Editor), select the

motion tween. In the Properties inspector,

enter a value for the ease between -100 (ease-

in) and 100 (ease-out). Eases applied via the

Properties inspector, however, will be applied

globally to all the properties throughout the

entire motion tween. With the Motion Editor,

you have precise control over individual prop-

erties and eases between keyframes.

For classic tweens, you can edit the

easing profile from the Properties inspector.

Select the Edit easing button to access the

Custom Ease-in/Ease-out editor.

Choose a preset ease from the plus button

next to the Ease category.

The Strength value of a preset ease changes

its curvature.

Apply the preset ease to a property. Here,

the preset ease is applied to the Basic Motion

category, so the X, Y, and Z changes of the object

will be affected by the ease.

The curved dotted line superimposed over

the X graph shows how the preset ease affects the

X property.

Building Complexity 15

Interpreting the Ease Curves
The ease curves indicate how a property value changes over

time. The x-axis of the graph represents time, and the y-axis

represents the property value. If the change is uniform—that is,

the value changes an equal amount at every frame—the graph

is a straight line. If there is an upward sloping curve at the

beginning and a flattening out at the end , that means that

there is a greater change in the y-axis (the property value) for

the frames at the beginning and a smaller change in the y-axis

for the frames at the end. The result is a rapid acceleration of

the property at the start and a gradual slowdown at the end.

The curve doesn’t always have to travel in one direction only,

and the curve doesn’t have to end at the last property value.

In fact, interesting effects can be achieved if the curve moves

back and forth between property values. For example, the

curve of the Spring ease moves rapidly from the beginning

property value to the ending property value in the first few

frames, and then moves back and forth until finally settling at

a point a little more than halfway between the beginning and

end values. If this ease is applied to a motion tween of position,

the result would be a springing action back and forth between

two points on the Stage until the object rests about halfway

between.

The value of the ease curves

determines their strength

and direction. The curvature

becomes more pronounced in

both directions, and the result on

the ease becomes more notice-

able. For other ease curves, the

value determines the frequency,

or the number of waves or

bumps in the curve .

For total control, you can

choose Custom from the Ease

menu . The Custom ease lets

you create your own curve and

apply it to any of the properties.

A graph showing an

ease-out.

Choose the bottom

option from the preset Ease

menu for a custom graph.

The Spring ease rapidly

moves from the beginning

value (0) to the end value (100)

and swings back and forth

until settling somewhere in the

middle.

This Sine Wave ease has 11 peaks and valleys.

16 Chapter 1

Duplicating Motion
If you’ve created a motion tween that you

want to duplicate with a different object, or

you want to create multiple objects going

through the same motion, you can easily

do so with a variety of copy-and-paste and

swapping options. For example, imagine

that you’ve created a transition for the first

slide of a photo slide show. Now you want

to duplicate that transition with the next ten

slides. You can select the motion tween of

the first slide and copy all the character-

istics of that tween—its rotation, scaling,

position, color, or filter changes. Then you

can apply the characteristics of that tween

to the subsequent slides.

Copying and pasting motion and swap-

ping out the tweened object make it easy

to create complex animations with repeti-

tive motion, such as a photo slide show or

perhaps a group of fluttering leaves.

To duplicate a motion tween:
Hold down the Alt key (Windows) or the

Option key (Mac) and drag a tween span

to a new layer on the Timeline.

Flash duplicates the motion tween A.

or

1. In the Timeline, right-click (Windows)

or Ctrl-click (Mac) on a tween span and

choose Copy Frames.

The selected tween span is copied.

2. Right-click (Windows) or Ctrl-click (Mac)

on a destination frame and choose

Paste Frames.

The copied tween is duplicated in the

new location.

A This tween span from Layer 1 is copied and

pasted into Layer 2.

Building Complexity 17

To swap the target
object of a tween:
1. Drag a new symbol from the Library and

drop it on an existing tweened object

on the Stage B.

A warning dialog box appears ask-

ing whether you want to replace the

tweened object C.

2. In the dialog box, click OK.

Flash replaces the existing object

with the one you dragged out of the

Library D.

or

1. Right-click (Windows) or Ctrl-click (Mac)

on the tweened object and choose

Swap Symbol.

The Swap Symbol dialog box

appears E.

2. In the dialog box, select your replace-

ment symbol and click OK.

Flash swaps the symbols, aligning their

registration points.

B The existing tween uses the square movie clip.

Drag another instance from the Library onto the

tween to swap instances.

E Choose a different symbol in the Swap Symbol

dialog box to swap for the original. The original

symbol is marked with a black dot.

C Click OK to accept the Flash dialog

warning box.

D The original tween with the square movie clip

is replaced with the circle movie clip.

18 Chapter 1

To copy motion and apply
it to another object:
1. In the Timeline, right-click (Windows)

or Ctrl-click (Mac) on a tween span and

choose Copy Motion.

The selected motion of the tween span

is copied.

2. On the Stage or on the Timeline, right-

click (Windows) or Ctrl-click (Mac) a

different symbol instance and choose

Paste Motion from the context menu F.

Flash duplicates the motion of the first

tween and applies it to the second sym-

bol instance G.

Paste Motion Special (not discussed

here) is for classic tweening.

Saving tweens as motion presets
If you want to save your motion tweens,

perhaps to apply them in future projects or

to share them with other developers, you

can do so in the Motion Presets panel. The

Motion Presets panel (Window > Motion

Presets) is much like a library of favorite or

useful tweens. The Motion Presets panel

comes loaded with many basic tweens that

you can use H.

You can also save your own tweens and

share them with others. Using the Motion

Presets panel will save you time and effort.

F Choose Paste Motion to apply the copied

motion to a different instance.

H The Motion

Presets panel

contains premade

tweens and lets

you save tweens

that you create.

G The copied motion from the tween with the

circle is pasted and applied to the square.

Building Complexity 19

To save a tween as a motion preset:
1. Right-click (Windows) or Ctrl-click (Mac)

on a tween span in the Timeline or on

a tweened object on the Stage and

choose Save as Motion Preset I.

The Save Preset As dialog box appears.

2. Enter a name to identify your tween and

click OK J.

Your tween is saved in the Custom Pre-

sets folder in the Motion Presets panel

and is available to be applied to other

objects K.

or

1. Select a tween span on the Timeline or

a tweened object on the Stage.

2. In the Motion Presets panel, click the

Save Selection as Preset button. Alter-

natively, choose Save from the Motion

Presets options menu L.

Your tween is saved in the Custom

Presets folder in the Motion Presets

panel and is available to be applied to

other objects.

I Choose Save as Motion Preset to keep

frequently used tweens.

J This tween will be saved in the Motion Presets

panel as curveball.

K The tween

called curveball

can be applied to

other instances.

L You can also save a tween from the Motion

Presets options menu (top) or from the Save

Selection as Preset button (bottom).

Save Selection as
Preset button

20 Chapter 1

To apply a motion preset:
1. Select a symbol instance on the Stage.

2. In the Motion Presets panel, select

a motion preset and click the Apply

button M. Alternatively, right-click

(Windows) or Ctrl-click (Mac) the motion

preset and choose “Apply at current

location.”

The motion preset is applied to

your instance. The current position of

the instance on the Stage is used as

the initial position of the tween N.

If you want the selected symbol instance

to be the ending position of the motion preset,

choose End at Current Location from the

Motion Presets panel options pull-down menu.

To delete a motion preset:
Select the motion preset and click the

Trash icon. Alternatively, right-click (Win-

dows) or Ctrl-click (Mac) on the motion

preset and choose Remove O.

A dialog box appears asking you to confirm

your choice. When you click Delete, Flash

deletes the motion preset from the Motion

Presets panel.

M Choose a

preset and a

preview of the

tween appears in

the top window.

N The preset tween is applied to your own

instance.

O Choose Remove to delete a tween

from the Motion Presets panel.

Building Complexity 21

To organize your motion presets:
■ Double-click the name of your motion

preset to rename it. Or right-click (Win-

dows) or Ctrl-click (Mac) and choose

Rename.

■ Click the New Folder icon to create

a new folder to organize your motion

presets.

■ Double-click the name of your folder. Or

right-click (Windows) or Ctrl-click (Mac)

on the folder and choose Rename.

■ Drag your motion presets and drop

them on the highlighted folders to move

them into different folders.

You cannot rename, move, or delete the

motion presets that are provided in the Default

Presets folder.

To export a motion preset:
1. Select a motion preset.

2. In the Motion Presets panel options

menu, choose Export. Or right-click

(Windows) or Ctrl-click (Mac) the motion

preset and choose Export P.

The Save As dialog box appears.

3. Provide a name for the motion preset

file. Click OK or Save Q.

The file will be saved as an XML file,

which you can share with fellow anima-

tors or developers.

To import a motion preset:
1. In the Motion Presets panel options

menu, choose Import.

The Open dialog box appears.

2. Choose the XML file of the motion pre-

set. Click Open.

The motion preset is imported into the

Motion Presets panel.

P Choose Export from the Motion Presets options

menu to save a tween to an external file.

Q This tween is saved as the XML document

curveball.xml.

22 Chapter 1

Animating in 3D
Animating in 3D presents the thrill (but

complication) of a third (z) axis for depth in

addition to the horizontal (x) and vertical (y)

axes. You can move or rotate any movie clip

instance or Text Layout Framework (TLF)

text (or dynamically created instances of the

DisplayObject class, discussed in Chapter

7, “Controlling and Displaying Graphics”) in

three dimensions with full control over the

amount of perspective distortion and the

location of the vanishing point.

Use the 3D Rotation tool to rotate an

object along any of its three axes and

the 3D Translation tool to move an object

along any of its three axes.

For example, create a Star Wars-style open-

ing scrolling text screen by rotating the text

along its x-axis to tilt it, and then translating

it along the y- and z-axes to have it disap-

pear in the horizon. Create confetti that

realistically tumble in 3D, or develop games

with cards that flip as they are dealt. Your

only limit is your imagination.

To rotate an object in 3D space:
1. Begin with a movie clip instance or TLF

text on the Stage.

2. Select the 3D Rotation tool and click on

your object on the Stage.

A 3D rotation display appears on your

object R. The colored lines indicate the

axes along which your object can move.

Red. Drag the red line to move the

object around the x-axis.

Green. Drag the green line to move the

object around the y-axis.

Blue. Drag the blue circle to move the

object around the z-axis.

Orange. Drag the orange circle to move

the object freely around all three axes.

R Use the 3D Rotation tool to rotate an object in

3D space. This rectangle can be rotated along the

x-, y-, or z-axis, or freely along any three of the axes.

Building Complexity 23

To change the center
point of 3D rotation:
Move the white circle of the 3D display.

Subsequent 3D rotations will move the

object relative to the new center point S.

To reset the center point
of 3D rotation:
Double-click the white circle of the 3D

display.

The 3D center point is restored.

To move an object in 3D space:
1. Begin with a movie clip instance or TLF

text on the Stage.

2. Select the 3D Translation tool and click

on your object on the Stage.

A 3D translation display appears on

your object T. The colored lines indi-

cate the axes along which your object

can move.

Red. Drag the red line to move the

object along the x-axis.

Green. Drag the green line to move the

object along the y-axis.

Blue. Drag the blue circle to move the

object along the z-axis.

You can also rotate an object in 3D or

change its center point in the Transform panel

(Window > Transform) U.

Continues on next page

S The 3D display is moved off the object,

changing its center of rotation.

T Use the 3D Translation tool to

move an object in 3D space. This

rectangle can be moved along

the x- (horizontal), y- (vertical), or

z- (in and out) axis.

U The Transform panel

shows the values for

the 3D rotation and 3D

center point, which you

can change.

Center of
rotation

Target
object

24 Chapter 1

You can also rotate or move multiple

objects in 3D. Use the Shift key to select addi-

tional instances. Double-clicking the center

point of the 3D display for multiple selections

will place the center point between all the

selected instances V.

You can turn on or off the 3D display that

appears over your objects in the General Pref-

erences dialog box (Flash > Preferences).

You cannot Edit in Place an instance that

has been rotated or moved in 3D space. You

must edit the instance in symbol editing mode.

3D objects are not supported in mask

layers.

V These two rectangles are rotated together in

3D space using the single 3D display, which has

been centered between both instances.

Global vs. Local Transformations
When you choose the 3D Rotation or 3D Translation tool, you need to be aware of the Global

Transform option at the bottom of the Tools panel W. The Global Transform option toggles

between a global option (button depressed) and a local option (button raised).

Moving an object with the global option on makes the transformations relative to the global (Stage)

coordinate system. The 3D display shows the three axes in constant position, no matter how the

object is rotated or moved X.

However, moving an object with the global option turned off makes the transformation relative to

itself. The 3D display shows the three axes oriented relative to the object Y.

X With the Global Transform option

on, the 3D rotation and 3D translation

displays are always perpendicular to

the Stage and remain constant.

Y With the Global Transform option

off, the 3D rotation and 3D translation

displays are oriented to the object,

not to the Stage. Notice that the 3D

Rotation tool (left) shows a globe

with the three axes relative to the

rectangle, and the 3D Translation

tool (right) shows the z-axis pointing

out from the rectangle, not from

the Stage.

W The Global Transform

option is at the bottom of

the Tools panel.

Global Transform
option

Building Complexity 25

To change the perspective:
1. Select a 3D object on the Stage.

2. In the Properties inspector, change the

value of the perspective angle Z.

The default perspective angle is 55

degrees, which is similar to a normal

camera. You can change the value from

1 to 180 degrees, which determines the

amount of distortion due to perspective

rendering . The greater the angle,

the more severe the objects appear to

recede in the distance.

To change the vanishing point:
1. Select a 3D object on the Stage.

2. In the Properties inspector, change the

value of the X and Y vanishing point

positions .

The default position of the vanishing

point is in the middle of the Stage.

The vanishing point represents the

point on the horizon at which parallel

lines disappear, just like the tracks of

a railroad .

Changing the perspective angle or the

vanishing point changes the settings for all the

3D objects on the Stage.

The vanishing point is represented by a

horizontal and a vertical line.

The perspective angle affects the degree

of distortion of objects in perspective and how

quickly parallel lines recede in the distance.

Z Change the Perspective angle in the

Properties inspector.

Change the vanishing point in the

Properties inspector.

Perspective
angle

1 degree

55 degrees

155 degrees

Vanishing point
X position

Vanishing point
Y position

Vanishing point

26 Chapter 1

Animating titles
Frequently, splash screens on Flash Web

sites feature animated titles and other

text-related materials that twirl, tumble,

and spin until they all come into place as

a complete design. Several techniques

can help you accomplish these kinds of

effects quickly and easily. The Break Apart

command, when applied to text, breaks

the text into its component parts (Clas-

sic text breaks apart into editable letters

while TLF text breaks apart into drawing

objects). This command lets you painlessly

create separate letters that make up a

word or title. You can then use the Distrib-

ute to Layers command to isolate each of

those characters on its own layer, ready for

motion tweening.

When you begin applying motion tweens

to your individual letters or words, it’s use-

ful to think and work backward from the

final design. Establish the end keyframes

containing the final positions of all your

characters, for example. Then, in the first

keyframes, you can change the characters’

positions and apply as many transforma-

tions as you like, knowing that the final

resting spots are secured.

To animate the letters of a title:
1. Select the Text tool, and choose TLF

Text and Read Only in the Properties

inspector.

2. On the Stage, type a title you want to

animate .

3. Choose Modify > Break Apart (Ctrl-B for

Windows, Cmd-B for Mac).

Flash replaces the text title with indi-

vidual drawing groups of the letters .

Create TLF text on the Stage with the Text tool.

Breaking apart a block of Read Only text

results in grouped drawing objects.

Distribute to Layers

separates the selected

items into their own layers.

Each letter has its own tween.

Building Complexity 27

4. Choose Modify > Timeline > Distribute

to Layers (Ctrl-Shift-D for Windows,

Cmd-Shift-D for Mac).

Each selected item on the Stage is

placed in its own layer below the exist-

ing layer .

5. Select each letter in turn and, choose

Insert > Motion Tween, or right-click

(Windows) or Ctrl-click (Mac) and

choose Create Motion Tween from the

context menu.

Flash may ask to convert the selected

object into a symbol for it to be

tweened. Click OK.

Flash creates a tween span for each let-

ter in each layer and adds one second’s

worth of frames on the Timeline .

6. Hold down the Ctrl key (Windows) or

the Cmd key (Mac) and select the last

frames of all the layers.

7. Right-click (Windows) or Ctrl-click (Mac)

on the selected frames and choose

Insert Keyframe > All .

A keyframe for all properties is inserted

in the last frame for all the selected

layers .

8. In the first keyframe of each layer,

rearrange and transform the letters

according to your creative urges.

Flash animates all these text elements

coming together as a complete title .

Insert a keyframe at the last frame in all the

tween spans.

The letters tumble and fall into place at the

last keyframe.

The last keyframe fixes the final

position for all the letters.

28 Chapter 1

Shape Tweening
Strategies
Shape tweening is a technique for inter-

polating amorphous changes that can’t be

accomplished with instance transforma-

tions such as rotation, scale, and skew. Fill,

stroke, gradient, and alpha are all shape

attributes that can be shape tweened.

While motion tweening is based on an

object model, shape tweening still relies on

a keyframe model where you establish a

beginning keyframe and an end keyframe

with a shape tween applied to the frames

in between.

Flash applies a shape tween by using

what it considers to be the most efficient,

direct route. This method sometimes has

unpredictable results, creating overlapping

shapes or seemingly random holes that

appear and merge A. These undesirable

effects usually are the result of keyframes

containing shapes that are too complex to

tween at the same time.

Simplifying a complicated shape tween

into more basic parts and separating those

parts in layers results in a more successful

interpolation. Shape hints give you a way

to tell Flash what point on the first shape

corresponds to what point on the second

shape. Sometimes, adding intermediate

keyframes helps a complicated tween by

providing a transition state and making the

tween go through many more manageable

stages.

Using shape hints
Shape hints force Flash to map points on

the first shape to corresponding points

on the second shape. By placing multiple

shape hints, you can control more pre-

cisely the way your shapes will tween.

A An attempt to shape tween the word “flash” to

the word “shape” all at once in a single layer has

poor results. Notice the breakups between the

s and the p and the hole that appears between

the h and the e.

B Select the first keyframe of the shape tween,

and choose Modify > Shape > Add Shape Hint. The

first shape hint appears in the center of the Stage.

Intersecting shapes

Hole

First shape hint

To add a shape hint:
1. Select the first keyframe of the shape

tween, and choose Modify > Shape >

Add Shape Hint (Ctrl-Shift-H for Win-

dows, Cmd-Shift-H for Mac).

A letter in a red circle appears in the

middle of your shape B.

2. Move the first shape hint to a point on

your shape.

Make sure that the Snap to Objects

modifier for the Selection tool is turned

on to snap your selections to vertices

and edges.

Building Complexity 29

3. Select the last keyframe of the shape

tween, and move the matching circled

letter to a corresponding point on the

end shape.

This shape hint turns green and the

first shape hint turns yellow, signifying

that both have been moved into place

correctly C.

4. Continue adding shape hints, up to a

maximum of 26, to refine the shape

tween D.

To delete a shape hint:
Drag the shape hint off the Stage.

The matching shape hint in the other key-

frame is deleted automatically.

To remove all shape hints:
While on the first keyframe of a shape

tween, choose Modify > Shape > Remove

All Hints.

Place shape hints in order either clock-

wise or counterclockwise. Flash more easily

understands a sequential placement than one

that jumps around.

Shape hints need to be placed on an

edge or a corner of the shape. If you place a

shape hint in the fill or outside the shape, the

original and corresponding shape hints will

remain red, and Flash will ignore them.

To view your animation without the

shape hints, choose View > Show Shape Hints

(Ctrl-Alt-H for Windows, Cmd-Option-H for

Mac). Flash deselects the Show Shape Hints

option, and the shape hints are hidden.

If you move your entire shape tween

by using Edit Multiple Frames, you’ll have to

reposition your shape hints. Unfortunately,

you can’t move all the shape hints at the

same time.

D Changing from a T to an I with shape hints (left)

and without shape hints (right).

C The first shape hint in the

first keyframe (top) and its match

in the last keyframe (bottom).

The cross of the
T is absorbed

into the I

This T goes through some
unnecessary changes to

result in the I

30 Chapter 1

Using intermediate keyframes
Adding intermediate keyframes can help a

complicated tween by providing a transi-

tion state that creates smaller changes

that are more manageable. Think about

this process in terms of motion tween-

ing. Imagine that you want to create the

motion of a ball starting from the top left

of the Stage, moving to the top right, then

to the bottom left, and finally to the bottom

right. You can’t create just two position

keyframes—one with the ball at the top-left

corner of the Stage and one with the ball in

the bottom-right corner—and expect Flash

to tween the zigzag motion. You need to

establish the intermediate position so that

Flash can create the motion in stages. The

same is true with shape tweening. You

can better handle one dramatic change

between two shapes by using simpler,

intermediate keyframes.

To create an intermediate keyframe:
1. Study how an existing shape tween fails

to produce satisfactory results when

tweening the letter Z to the letter S E.

2. Insert a keyframe (F6) at an intermedi-

ate point within the tween.

3. In the newly created keyframe, edit the

shape to provide a kind of stepping

stone for the final shape F.

The shape tween has smaller changes

to go through with smoother results G.

Using layers to simplify
shape changes
Shape tweening lets you create complex

shape tweens on a single layer, but doing

so can produce unpredictable results. Use

layers to separate complex shapes and

create multiple but simpler shape tweens.

E Changing a Z to an S all at once causes the

shape to flip and cross over itself.

G The Z makes an easy transition to the

intermediate shape (middle) from which the

S can tween smoothly.

F An intermediate shape.

Intersecting shapes

Building Complexity 31

When a shape tween is applied to change

the letter F to the letter D, for example, the

hole in the last shape appears at the edges

of the first shape H. Separating the hole in

the D and treating it as a white shape allows

you to control when and how it appears.

Insert a new layer, and create a second

tween for the hole. The compound tween

gives you better, more refined results I.

Using shape tweens for
gradient transitions
It helps to think about shape tweening

as a technique that does more than just

morphing, or interpolating one amorphous

contour to another. After all, shape tween-

ing can be used on any of the attributes of

a shape, such as line weight; stroke color,

including its alpha or gradient; and fill color,

including its alpha or gradient. You can cre-

ate interesting effects just by shape tween-

ing color gradients. For example, changing

the way a gradient is applied to a particular

fill using the Gradient Transform tool can

be an easy way to move a gradient across

the Stage; combined with changing con-

tours, it can produce atmospheric anima-

tions like clouds or puffs of smoke.

To create a gradient transition
with shape tweening:
1. Select the Rectangle tool, and draw a

large rectangle on the Stage.

2. Fill the shape with a radial or linear

gradient.

3. Select the Gradient Transform tool by

clicking and holding down the Free

Transform tool and selecting the second

option. Click the rectangle on the Stage.

The control handles for the Gradient

Transform tool appear for the gradient J.

Continues on next page

I The hole and the solid shapes are

separated on two layers.

J Use the Gradient Transform tool from the

Toolbox to change the way a gradient fill is

applied to a shape.

H A hole appears at the

outline of the first shape when

a shape tween is applied to

change an F to a D.

Gradient Transform
tool control points

Rectangular shape

32 Chapter 1

4. For this task, move the center point

handle of the gradient to the left side

of your rectangle.

5. Create a new keyframe later on the

Timeline.

6. Select the last keyframe, and click the

rectangle with the Gradient Transform

tool.

The control handles for the Gradient

Transform tool appear for the gradient

in the last keyframe.

7. Move the center point handle of the

gradient to the far right side of the rect-

angle, and change the rotation, scale,

or angle of the gradient as you desire.

Your two keyframes contain the same

rectangular shape, but the gradient fills

are applied differently K.

8. Select the first keyframe and choose

Insert > Shape Tween (or right-click

[Windows], Ctrl-click [Mac] on the first

keyframe and choose Create Shape

Tween).

Flash tweens the transformation of the

gradient fills from the first keyframe to

the last keyframe. The actual contour

of the rectangle remains constant.

9. Delete the outlines of the rectangle.

The gradient moves from left to right L.

You can’t shape tween between differ-

ent kinds of gradients; that is, you can’t shape

tween from a radial gradient to a linear gradi-

ent, or vice versa.

K In the last keyframe, use the Gradient Transform

tool to change the way the linear gradient fills the

rectangle. Here, the linear gradient is moved to the

far right side, tilted, and made narrower.

L The final shape tween makes the gradient

twist, widen, and move across the rectangle.

Rotation handle of Gradient Transform tool

Center point of linear gradient

Width handle of Gradient Transform tool

Building Complexity 33

Using Inverse
Kinematics
When you want to animate an object that

has multiple parts connected with joints,

such as a walking person, Flash makes

it easy to do so with inverse kinematics.

Inverse kinematics is a mathematical way

to calculate the different angles of a jointed

object to achieve a certain configuration.

You can pose your object in a beginning

keyframe, and then set a different pose

at a later keyframe. Flash will use inverse

kinematics to figure out the different

angles for all the joints to get from the first

pose to the next pose.

Inverse kinematics makes animating easy

because you don’t have to worry about ani-

mating each segment of an object or limb

of a character. You just focus on the overall

poses. Flash Professional CS5 introduces

a physics simulation feature for inverse

kinematics called Spring. The Spring option

helps make objects jiggle and move as if

they were affected by the force of gravity

or the force of their own motion.

There are two ways of using inverse kine-

matics: the first is to join together several

movie clip instances, and the second is to

define individual segments inside a single

shape.

Inverse kinematics with movie clips
The first step when using inverse kinemat-

ics is to define the bones of your object.

You use the Bone tool to do that. The Bone

tool tells Flash how a series of movie clip

instances are connected to each other. The

set of connected movie clips is known as

the armature, and each of the movie clips

is known as a node.

34 Chapter 1

To create an armature:
1. Position several movie clip instances on

the Stage in roughly the layout in which

you want them to be linked A.

2. Select the Bone tool in the Tools panel.

3. Click on the top of the first movie clip

and drag the Bone tool to the top of the

second movie clip B.

Your first bone is defined. Flash shows

the bone as a skinny triangle with a

round joint at its head and a round joint

at its tail. Each bone is defined from the

base of the first instance to the base of

the second. For example, to build an

arm, you would click on the shoulder

side of the upper arm and drag it to the

elbow side of the lower arm.

Flash creates a new layer for your

armature called a pose layer, a special

layer that supports inverse kinemat-

ics. Motion tweens, shape tweens, and

drawing are not allowed in pose layers.

4. Continue adding nodes to the armature

by clicking on the tip of the first bone

and dragging it to the base of the next

object C.

To add additional nodes to an armature,

you must place the movie clips you want to

add in a different layer. Then use the Bone tool

to link the existing armature in the pose layer

to the movie clips in the other layer. Flash will

add the movie clips as additional nodes.

If you want your bones to connect to the

registration points of your objects, you can

select the Snap to Objects option at the bot-

tom of the Tools panel.

A Three movie

clip instances are

placed on the

Stage, arranged

end to end.

B Use the Bone

tool to link the first

instance to the

second.

C The Bone tool links these three instances

together in an armature. The armature is separated

on its own layer in the Timeline.

Bone

Node
(individual movie

clip instance)

Armature

Pose layer

Building Complexity 35

To insert a pose:
1. Select a later frame on the Timeline and

right-click (Windows) or Ctrl-click (Mac)

and choose Insert Pose.

A new pose is created, which is very

much like a new keyframe for the

armature D.

2. In the second pose, move the armature

into another position.

Flash automatically animates the arma-

ture from the first pose to the second E.

To isolate the rotation of an individual

node, hold down the Shift key as you pose

the armature. You’ll find that making minor

adjustments to the armature is easier and

more exact.

To delete a pose:
Right-click (Windows) or Ctrl-click (Mac) on

a pose on the Timeline and choose Clear

Pose.

The selected pose on the Timeline is

removed.

To move a pose on the Timeline:
Ctrl-click (Windows) or Cmd-click (Mac) to

select a pose, and then drag it to a differ-

ent position along the Timeline.

The selected pose moves to a different

position on the Timeline.

To edit an armature:
■ Use the Free Transform tool to scale,

rotate, or move individual nodes.

■ Hold down the Alt key (Windows) or the

Option key (Mac) to drag a node to a

new position.

■ Select a bone and press the Delete key

to remove a bone and all the bones

connected to it down the chain.

D A new pose will be inserted in frame 20.

E In the second pose, move the armature to a

new position. The connections make it easy to

animate the entire object at once.

36 Chapter 1

Armature Hierarchy
The first bone of an armature is referred to as the parent, and the bone that is linked to it is called

the child. A bone can have more than one child attached to it as well. For example, an armature of

a person would have a pelvis connected to two thighs, which in turn are attached to two lower legs

of their own. The pelvis is the parent, each thigh is a child, and the thighs are siblings to each other.

As your armature becomes more complicated, you can use the Properties inspector to navigate up

and down the hierarchy using these relationships.

When you select a bone in an armature, the top of the Properties inspector displays a series of

arrows F.

You can click the arrows to move through the hierarchy and quickly select and view the properties

of each node. If the parent bone is selected, you can click the down arrow to select the child. If a

child bone is selected, you can click the up arrow to select its parent, or click the down arrow to

select its own child, if it has one. The sideways arrows navigate between sibling nodes.

F Navigate through the armature hierarchy with the arrows

in the Properties inspector.

Select previous sibling Select parent

Select next sibling Select child

Building Complexity 37

To create a branching armature:
1. Position several movie clip instances

on the Stage in roughly the layout in

which you want them to be linked. This

example shows a typical puppet with

arms and legs branching from its central

body G.

2. Select the Bone tool in the Tools panel.

3. Begin with the anchor movie clip, which

is the body. Click on the top of the body

and drag the Bone tool to the top of the

upper arm H.

Your first bone is defined.

4. Click on the end of the first bone and

drag it to the top of the lower arm I.

The armature of one arm is complete.

5. Now click on the top of the first bone

in the body and drag it to the top of the

other arm J.

Your first branching bone is defined,

which is a sibling to the bone of the

first arm.

Continues on next page

G Individual movie clips are arranged for

a branching armature.

H Begin building the armature from the

parent node (the body) to a child node (an

upper limb).

I One branch of the armature is complete. J The second branch of the armature

begins from the head of an existing bone

(here, from the parent node).

38 Chapter 1

6. Continue extending the branch to

the lower arm and create additional

branches to the legs K.

Your completed armature has multiple

nodes connected to a single central

(parent) node.

Notice, however, that the limbs rotate

around the head of the parent bone,

which is unrealistic for this puppet L.

To prevent the limbs from rotating

freely around the head of the parent

bone, you must restrict the rotation of

that bone.

7. Select any of the bones in the body (the

parent node), and in the Joint: Rota-

tion section of the Properties inspector,

deselect the Enable option M.

The selected bone and its siblings will

not rotate around its head, creating a

more realistic range of motion for the

puppet N. You’ll learn more about

restricting joint rotation in the upcoming

sections of this chapter.

K The final branching armature.

L Without any constraints, the arms of this

puppet rotate too freely and unrealistically.

M Deselect the Enable option for Joint: Rotation

in the Properties inspector for the parent bone.

N When rotation for the parent node is disabled,

only the head of the child bones can rotate,

enabling the shoulders and hips to rotate from

their fixed positions.

Rotation possible
around this joint

Rotation disabled
around this joint

Building Complexity 39

Inverse kinematics with shapes
Another way you can use inverse kine-

matics is to define several bones inside

a single shape. By providing an internal

armature to a shape, you can control

how the contours of the shape move and

bend, somewhat like shape tweening. Use

inverse kinematics with shapes to create

the undulating motion of a snake or the

flexing of someone’s biceps.

To create an armature
inside a shape:
1. Create a single shape on the Stage. The

shape can be drawn in either Drawing

mode or Object Drawing mode.

2. Select the Bone tool in the Tools panel.

3. Click inside the shape and drag the

Bone tool a little ways inside the

shape O.

Your first bone is defined.

Flash puts your armature in a pose
layer, a special layer that supports

inverse kinematics. Motion tweens,

shape tweens, and drawing are not

allowed in pose layers.

4. Click on the narrow end of the first

bone and drag out the next bone a little

farther inside the shape.

5. Continue adding bones until the arma-

ture extends throughout the shape P.

Using the Selection tool, you can click

and drag any of the bones to create

a pose and the shape will deform to

match the internal armature Q. Animat-

ing an armature inside a shape is the

same process as animating an armature

of separate movie clips (see the previ-

ous tasks in this chapter, “To insert a

pose,” “To delete a pose,” and “To move

a pose on the Timeline”).

Q In new poses, you can move any bone to

change the shape around it.

O Use the Bone tool to start an armature inside a

single shape.

P The Bone tool creates an armature of five

segments inside this rectangular shape. The

armature is separated on its own layer in the

Timeline.

First bone Shape

Pose layer

Bone Shape

Armature

40 Chapter 1

To edit the shape around
an armature:
■ Use the Paintbucket tool to change the

fill color of the shape.

■ Use the Inkbottle tool to change the

stroke color and stroke height of the

shape.

■ Use the Subselection tool to change

the contours of the shape.

■ Use the Add Anchor Point tool to add

new points on the contour of the shape.

■ Use the Delete Anchor Point tool to

delete points on the contour of the

shape.

■ Hold down the Alt key (Windows) or the

Option key (Mac) and drag the entire

shape with its armature to a new posi-

tion on the Stage.

To edit the bones of the armature:
■ Use the Subselection tool to move the

base or the tips of the bones into new

positions within the shape. You can only

do this with the initial armature in the

first pose.

■ Select a bone with the Selection tool

and press the Delete key to remove a

bone and all the bones connected to it

down the chain.

Building Complexity 41

Refining Shape Behavior with the Bind tool
The organic control of a shape by its armature is a result of a mapping between control points

along the shape and its bones. Hence, where the bones rotate, the shape follows.

You can edit the connections between the bones and their control points with the Bind tool, which

is hidden under the Bone tool. The Bind tool displays which control points are connected to which

bones and lets you break those connections and make new ones.

When you choose the Bind tool and select a bone, all the connected control points on the shape

are highlighted in yellow R.

If you want to redefine which control points are connected to the selected bone, you can do the

following:

. Shift-click to add additional associations to existing control points to the bone.

. Ctrl-click (Windows) or Cmd-click (Mac) to remove associations to control points from the bone.

. Drag a connection line between the bone and the control point.

You can also click on any control point on the shape. The selected control point is highlighted in

red, and all the connected bones are highlighted in yellow S.

If you want to redefine which bones are connected to the selected control point, you can do the

following:

. Shift-click to add additional bones to the control point.

. Ctrl-click (Windows) or Cmd-click (Mac) to remove bones from the control point.

. Drag a connection line between the control point and the bone.

R The Bind tool defines the connections

between a bone and its control points on

the shape. This last selected bone shows

that it is associated with four control

points around it.

S The Bind tool also shows the connections between a

particular control point on the shape and its associated

bone or bones. This selected point is associated with the

last two bones of this armature.

One of four control points
connected to the bone

Bone connected
to control point

Bone connected
to control point

Selected bone Selected control point

42 Chapter 1

Options for joint rotation
and translation
When you build your armature, the vari-

ous joints freely rotate, which may not be

particularly realistic. Many armatures in real

life are constrained to certain angles of

rotation. For example, you can rotate your

lower leg to be parallel with your thigh, but

you can’t rotate it past the knee (at least I

hope you can’t!). When working with arma-

tures, whether they are in a shape or part

of a series of linked movie clips, you can

choose to constrain the rotation around the

head of the joints, or even constrain the

translation (side-to-side or up-and-down

movement) of the joints.

To constrain the rotation of joints:
1. Click on a bone to select it.

2. In the Properties inspector, select

the Constrain check box under Joint:

Rotation T.

The joint for the selected bone is

constrained.

3. Change the values for Min and Max to

set the minimum and maximum degrees

of rotation for the selected joint.

The allowable range of rotation appears

on the joint on the Stage U. The Min

and Max values are relative to the cur-

rent position of the bone.

To enable joint translation:
1. Click on a bone to select it.

2. In the Properties inspector, select the

Enable check box under Joint: X Trans-

lation and/or Joint: Y Translation V.

The joint for the selected bone can now

freely move around on the Stage.

T Enable the Constrain option in the Properties

inspector to limit the rotation of any joint.

U The middle node is constrained from its current

position from 63 degrees counterclockwise to 26

degrees clockwise.

Constrain option
for joint rotation

V Choose the Enable option for Joint: X Translation

or Joint: Y Translation in the Properties inspector to

enable movement of the joint.

Enable option for
horizontal motion

of this joint

Maximum angle

Minimum angle

Current position

Building Complexity 43

3. Select the Constrain check box and

change the values for Min and Max to

set the minimum and maximum amount

of movement for the selected joint.

The allowable range of motion appears

on the joint on the Stage W. The Min

and Max values are relative to the cur-

rent position of the bone.

If you enable joint translation, it’s a good

idea to also disable joint rotation to prevent

wild joint movements. An armature with

both joint translation and rotation is difficult

to control.

Constraining the Last Node
Joint constraints are always on the head of

the selected bone. This means that the last

bone in an armature can never be constrained

because it is linked to the tail of the previ-

ous bone. However, you can get around this

restriction by creating an “invisible” node past

your last node. By setting the alpha value of

this node to 0, the user never sees it, but it

helps you constrain the joints of all the nodes

up the hierarchy X.
X Creating an extra, invisible node at the end of

an armature will let you constrain the rotation of

the last visible bone.

Constrained joint

Constrained joint

Node set to
0% Alpha

W The top node can move left and right, indicated

by the horizontal line. It is constrained from its

current position to 50 pixels to the left and 50

pixels to the right.

Maximum X position

Minimum X position

Current position

44 Chapter 1

Changing joint speed
Joint speed refers to the stickiness, or

stiffness, of a joint. A joint with a low value

for joint speed will be sluggish. A joint with

a high value for joint speed will be more

responsive. You can set the joint speed

value for any selected joint in the Proper-

ties inspector.

The joint speed is apparent when you drag

the very end of an armature. If there are

slow joints higher up on the armature chain,

those particular joints will be less respon-

sive and will rotate to a lesser degree than

the others. Changing joint speed will help

you pose your armatures more realistically,

but it does not affect the actual animation.

To change joint speed:
Select a bone and, in the Properties

inspector, change the value of Speed Y.

The Speed values can range from 0%

(frozen) to 100% (normal).

Controlling armature easing
Armatures do not have access to the

Motion Editor and its sophisticated controls

for eases. However, a few standard eases

are available from the Properties inspec-

tor. Easing can make your armatures move

with a sense of gravity due to acceleration

or deceleration of their motion.

To control easing:
Select a pose layer and, in the Proper-

ties inspector, choose the Type of ease

and change the Strength value Z. Type

indicates the kind of easing, and Strength

determines the direction and severity of

the ease.

Ease-in. To start gradually and quickly

come to a stop, set Type to any of the

Y A Speed value of 50 makes this joint a

little more sluggish than normal.

Z Change the Type and Strength values to

control the easing of your armature.

Building Complexity 45

Simple options and set the Strength to a

negative number.

Ease-out. To start quickly and gradually

come to a stop, set Type to any of the

Simple options and set Strength to a posi-
tive number.

Ease-in and Ease-out. To start gradually,

speed up in the middle, and then gradu-

ally come to a stop, set Type to any of the

Stop and Start options and set Strength to

a negative number.

Ease-out and Ease-in. To start quickly, slow

down in the middle, and then end quickly,

set Type to any of the Stop and Start

options and set Strength to a positive num-

ber. This setting creates an unusual motion,

which you probably won’t use very much.

Runtime and authortime armatures
Authortime armatures are those that

you pose along the Timeline and play as

straightforward animations. Runtime arma-

tures are interactive and allow the user to

move your armature. You can make any of

your armatures—whether they are made

with a series of movie clips or made with

a shape—into an authortime or a runtime

armature. Runtime armatures, however, are

restricted to armatures that only have a

single pose.

To make a runtime armature:
Select a pose layer and, in the Proper-

ties inspector, choose Runtime under the

Options section .

A tiny armature icon appears in the pose

layer to indicate the Runtime option. When

you test your movie (Control > Test Movie >

in Flash Professional), you can interact with

the armature .

Choose Runtime in the Properties

inspector to enable interactive control of

your armature. Choose Authortime to set

multiple poses along the Timeline for Flash

to animate.

The Runtime option is only allowed when

your armature has a single pose. In the Test Movie

environment, viewers can move your armature

interactively.

46 Chapter 1

Simulating physics with
the Spring option
Flash Professional CS5 adds a new feature

to inverse kinematics called Spring, which

simulates physics and the internal jig-

gling of an armature. For example, if you

were to animate a small tree reacting to a

strong gust of wind, you’d expect to see

the tree and its branches quiver and wave

in response to the wind, and continue to

quiver even after the wind has stopped.

The Spring option lets you set the amount

of jiggling and how long the jiggling lasts.

To add Spring to an armature:
1. Select any bone in an armature .

Your armature can be made of separate

movie clips or be enclosed within a

shape.

2. In the Properties inspector, under

the Spring section, set a value for

Strength .

Strength values can range from 0 (stiff)

to 100 (very loose). Each bone can have

a different Strength value for its Spring,

which affects the overall way an arma-

ture reacts to motion.

Select the bone to

which you want to add

some springiness.

In the Properties inspector, set

the value of Strength to determine

the amount of springiness of the

selected bone.

Building Complexity 47

3. Create a new pose where the armature

changes pose or moves its position .

Flash simulates the physics of a motion

on the loose, springy armature .

You’ll see the effects of the Spring option

on an armature more clearly if you have

additional frames after its final pose. The extra

frames give Flash time to continue jiggling the

armature after its motion stops.

To dampen the Spring option:
1. Select any bone in an armature that has

Spring.

2. In the Properties inspector, under the

Spring section, set a value for Damping.

Damping values can range from 0

(none) to 100 (high). The higher the

Damping, the quicker the armature

will cease its jiggling.

In a later pose, move

the armature. In this

example, the straight

armature is moved to the

right (by holding down

the Alt/Option key).

The Spring option causes the armature to

waver as it animates, simulating its reaction to the

physical forces acting on the different bones.

48 Chapter 1

Creating Special
Effects
Because Flash’s drawing tools are vec-

tor based, you normally wouldn’t think of

incorporating special effects, such as a

motion blur or color blending, which are

associated with bitmap applications like

Adobe Photoshop or After Effects. But

using filters and blends, those special

effects can be created directly in Flash.

This technique can give your Flash movies

more depth and richness by going beyond

the simple flat shapes and gradients of

vector drawings.

The following tasks demonstrate a blur

effect using filters and a color-blending

effect using blends.

A blur is an effect that occurs when the

camera is out of focus. Blurs are particularly

effective for transitions; you can animate a

blurry image coming into sharp focus.

To create a blur-to-focus effect:
1. In Flash, create the image you want

to blur using the drawing tools or by

importing an image to the Stage. In this

example, we use a photo.

2. Right-click (Windows) or Ctrl-click

(Mac) on the image and choose Create

Motion Tween.

Flash asks whether you want to convert

the selection to a movie clip symbol to

begin motion tweening. Click OK.

Flash converts the selection to a movie

clip symbol and adds one second’s

worth of frames to the newly created

tween span on the Timeline A.

In Flash, filters can only be applied to

a movie clip symbol, a button symbol,

or text.

A This imported photo is converted to a movie

clip symbol and motion tweened.

B In the Motion Editor, add the Blur filter to the

Filters category.

C Increase the value of the Blur filter to 50 pixels.

Building Complexity 49

3. Open the Motion Editor (Window >

Motion Editor).

4. Move the red playhead to the first frame

of the tween.

5. Click the plus button next to Filters and

choose Blur B.

The Blur filter is added to the list of

properties.

6. Make sure the Link icon is selected so

the Blur X and Blur Y change together.

Increase the values of Blur X and Blur Y

to the desired blurriness C.

Blur X indicates how much blurring

should be applied to the object in the

horizontal (x-axis). Blur Y does the same

for vertical (y-axis) blur. Because these

are independent values, you can create

a blur in just one direction if you choose

to unlink the properties.

7. Move the red playhead to the last frame

of the tween.

8. Change the value of Blur X and Blur Y

to 0 D.

Flash animates your image’s change

from blurred to focused E.

You can also access and apply the vari-

ous filters from the Filters section of the Prop-

erties inspector. Choose your tweened object

and, in the Properties inspector, click the Add

Filter button and choose Blur F.

The Quality property controls how

smooth the blur will be. A higher-quality blur

will be smoother and closer to what you might

get using a Blur filter in Photoshop, but it

also makes the Flash Player work harder, so

it could slow down the playback of your movie.

You can use any filter in this manner

to create a transition. Experiment with the

numerous filters to suit your movie.

A movie clip instance can have more

than one filter applied to it.

E The resulting tween of the Blur filter makes an

effective transition.

F The various filters are also

available from the Properties

inspector in the Filters section.

D In the last frame of the motion tween, decrease

the value of the Blur filter to 0 pixels. The downward

sloping graph shows the gradual transition.

50 Chapter 1

To blend colors from one
object on another:
1. Create or import an image in a new

layer.

2. Create a new layer above the first, and

then create or import an image in this

top layer.

In this example, Classic static text is

placed in the top layer, and a photo is

imported in the bottom layer G.

3. Select the text in the top layer and

choose Modify > Convert to Symbol

(F8). Choose movie clip as the type of

symbol.

Flash converts your selection into a

movie clip symbol. Blend effects from

the Properties inspector can only be

applied to movie clips, button instances,

or TLF text.

4. Select the movie clip instance on the

Stage. In the Properties inspector,

choose a blending mode from the pull-

down menu H.

Flash blends the colors of the movie

clip instance with all the images in the

layers below it. The different blend-

ing modes determine how the colors

interact. Some blending modes darken

the colors, whereas others lighten or

even reverse them. The best way to

understand the blending modes is to

experiment! (For more detailed informa-

tion about color-blending modes and

how you can control them purely with

ActionScript, see the section “Blending

Colors” in Chapter 7.)

A movie clip instance can only have one

blending effect.

Blending effects cannot be motion

tweened.

G The text is a movie clip instance in a layer

above the photo.

H Choosing a Blending mode in the Properties

inspector makes colors of the movie clip instance

blend in different ways with the image below it.

Movie clip instance in top layer

Photo in bottom layer

Building Complexity 51

Using Masks
Masking is a simple way to reveal portions

of a layer or the layers below it. This tech-

nique requires making one layer a mask

layer and the layers below it the masked
layers.

By adding tweening to the mask layer, the

masked layers, or both, you can go beyond

simple, static peepholes and create masks

that move, change shape, and reveal

moving images. Use animated masks to

achieve such complex effects as moving

spotlights, magnifying lenses that enlarge

underlying pictures, or “x-ray” types of

interactions that show more detail within

the mask area. Animated masks are also

useful for creating cinematic transitions

such as wipes, in which the first scene is

covered as a second scene is revealed,

and iris effects, in which the first scene

collapses in a shrinking circle, leaving a

second scene on the screen.

In the mask layer, Flash sees all fills as

opaque shapes, even if you use a transpar-

ent solid or gradient. As a result, all masks

have hard edges. You must use Action-

Script if you want to create a mask with

different alpha (transparency) levels.

Using movie clips in mask layers provides

more possibilities, including multiple masks

and even dynamically generated masks

that respond to the user. Because dynamic

masks rely on ActionScript, however, they’ll

be covered in detail later (in the section

“Using Blending Masks” in Chapter 7) after

you’ve learned more about Flash’s script-

ing language.

52 Chapter 1

To tween the mask layer:
1. In Layer 1, create a background image

or import a bitmap.

2. Insert a new layer above the first layer.

3. Select the top layer, and choose

Modify > Timeline > Layer Properties.

or

Double-click the layer icon in the top

layer.

The Layer Properties dialog box

appears.

4. Select Layer Type: Mask.

5. Select the bottom layer, and choose

Modify > Timeline > Layer Properties.

6. Select Layer Type: Masked.

The top layer becomes the mask layer,

and the bottom layer becomes the

masked layer (the layer that is affected

by the mask) A.

7. Create a tween in the mask layer (the

top layer) and insert sufficient frames in

the masked layer (the bottom layer) to

match B.

You can create a motion tween, a

classic tween, a shape tween, or even

inverse kinematics in the mask layer.

(However, 3D objects are not supported

in mask layers).

8. Lock both layers to see the effects of

your animated mask on the image in

the masked layer C.

A Layer 2 is the mask layer, and Layer 1 is the

masked layer.

Mask layer (will affect the masked layer)

Masked layer

B A shape tween of a growing shape created

with the Paintbrush tool is on the mask layer. The

diver image is on the masked layer.

C The shape tween

uncovers the image

of the diver. Only the

part of the photo that

is under the mask is

revealed.

Diver in Layer 1 Shape tween in Layer 2

Building Complexity 53

Use two images that vary slightly, one

in the masked layer and one in a normal layer

under the masked layer. This technique makes

the animated mask act as a kind of filter that

exposes the underlying image. For example,

add a bright image in the masked layer and

a dark version of the same image in a normal

layer under the masked layer. The mask cre-

ates a spotlight effect on the image D.

Place a tween of an expanding box in the

mask layer that covers the Stage to simulate

cinematic wipes between images E.

D The moving spotlight in the mask layer

(spotlight) uncovers the stained-glass image in the

masked layer (bitmap). A duplicate darker image

resides in the bottom, normal layer (dark bitmap).

E The mask layer contains a large motion tween

that covers the entire Stage. This technique creates

a cinematic wipe between an image in the masked

layer (image 1) and an image in the bottom, normal

layer (image 2).

Motion tween

Image 1
being

revealed

Image 2
being

covered

54 Chapter 1

To tween the masked layer:
1. Beginning with two layers, modify the

top to be the mask layer and the bot-

tom to be the masked layer.

2. Draw a filled shape or shapes in the

mask layer (the top layer) F.

This area becomes the area through

which you see your animation on the

masked layer.

3. Create a shape tween or a motion

tween in masked layers (the bottom

layers) that pass under the shapes in

the mask layer. You can have as many

masked layers as you want under a

single mask layer G.

4. Lock both layers to see the effects of

your animated masked layers as they

show up behind your mask layer H.

F The windshield shapes are in the

mask layer called windshields. The

drawing of the car interior is in a normal

layer above the windshields layer.

G Several motion tweens in masked layers (cow

and sky) move under the windshield shapes in the

mask layer.

H The images of the cow, ground, and

sky show under the mask, creating the

illusion of the car’s forward motion.

Building Complexity 55

This approach is a useful alternative to

using shape tweens to animate borders or

similar types of objects that grow, shrink, or fill

in. Imagine animating a fuse that shortens to

reach a bomb I. Create a mask of the fuse,

and animate the masked layer to become

smaller slowly, making it look like the fuse is

shortening J. Other examples that could ben-

efit from this technique include trees growing,

pipes or blood vessels flowing with liquid, text

that appears as it’s filled with color, or drawing

a pathway on a map. Just remember that Flash

doesn’t recognize strokes in the mask layer; if

you want to create thin lines in the mask layer,

use fills only.

Creating multiple masks
Although Flash allows multiple masked

layers under a single mask layer, you can’t

have more than one mask layer affecting

any number of masked layers K. To create

more than one mask, you must use movie

clips. Why would you need multiple masks?

Imagine creating an animation that has two

spotlights moving independently on top

of an image L. Because the two moving

spotlights are tweened, they have to be on

separate layers. The solution is to incor-

porate the two moving spotlights into a

movie clip and place the movie clip on the

mask layer.

You’ll learn much more about movie clips

in Chapter 5, “Controlling Multiple Time-

lines.” If you’d like, skip ahead to read

about movie clips and return when you feel

comfortable.

I The fuse of a bomb shortens.

L Two independent spotlights moving, each

uncovering portions of the image.

J The bomb’s fuse is a thin shape in the mask

layer. The rectangle is a motion tween in the

masked layer that shrinks, making the fuse appear

to be shortening.

Mask Shrinking rectangle in fuse fill layer

K Layer 1 and Layer 2 are both defined as mask

layers, but only Layer 2 affects Layer 3—the

masked layer.

This layer will
not work as a
mask layer

56 Chapter 1

To create multiple masks:
1. Create a mask layer and a masked

layer.

2. Place your image on the masked layer

(the bottom layer).

3. Choose Insert > New Symbol (Ctrl-F8

for Windows, Cmd-F8 for Mac).

The Create New Symbol dialog box

appears.

4. Enter a descriptive name, and choose

Movie Clip M; then click OK.

Flash creates a movie clip symbol, and

you enter symbol-editing mode for that

symbol.

5. Create two motion tweens of spotlights

moving in different directions on the

Timeline of your movie clip symbol N.

6. Return to the main Stage, and drag an

instance of your movie clip symbol into

the mask layer (the top layer) O.

7. Choose Control > Test Movie > in Flash

Professional to see the effects of the

movie clip mask.

The two motion tweens inside the

movie clip both mask the image on the

masked layer.

To see what your masks are uncovering,

use a transparent fill or choose the View Layer

as Outlines option in the Layer Properties

dialog box.

To prevent the animation inside the

movie clip from looping constantly, add a

keyframe to its last frame and add a stop ()
action.

M Choose Movie Clip to create a new movie clip

symbol.

N The two moving spotlights are motion tweens

inside a movie clip.

O An instance of the movie clip is in the top

(mask) layer, and the image of the bikers is in the

bottom (masked) layer.

In This Chapter
Preparing Video for Flash 58

Using Adobe Media Encoder 59

Understanding Encoding Options 62

Embedding Video into Flash 70

Playback of External Video 73

Adding Cue Points to External Video 79

Detecting and Responding to Cue Points 82

Flash is the most popular method of deliv-

ering video on the Web. Video-sharing

sites like YouTube, news sites like the New

York Times, and entertainment sites like

Hulu use Flash to play video for its image

quality, compression, and wide compatibil-

ity and penetration. This chapter explores

the exciting possibilities of integrating

video in your Flash project. Flash makes

working with video easy with the Import

Video wizard, which takes you step by step

through the process, and Adobe Media

Encoder, a stand-alone application that

converts your video to the proper format

and gives you options for editing, cropping,

resizing, and setting levels of compression.

There are two main ways to use video in

Flash. One way is to embed video directly

within your Flash movie, and the other is to

keep video separate and stream it to play

through Flash. When you embed video

into Flash, it’s easy to integrate other Flash

elements and interactivity. For playback of

external video, you can embed cue points,

which are special markers in the video that

you can use to trigger other events.

2
Working with Video

58 Chapter 2

Preparing Video
for Flash
Whether you embed video into Flash or

play back external video, you need to for-

mat your video correctly. The appropriate

video format for Flash is Flash Video, which

uses the extension .flv or the extension .f4v.

F4V is the latest Flash Video format that

supports the H.264 standard, a modern

video codec that delivers high quality with

remarkably efficient compression. A codec

stands for compression-decompression,

and it is a method for the computer to com-

press a video file to save space, and then

decompress it to play it back. FLV is the

standard format for previous versions of

Flash and uses an older codec, On2 VP6.

You have several ways to acquire digital

video. You can shoot your own footage

using a video camera and transfer it to

your computer. Alternatively, you can use

copyright-free video clips that are available

on a CD or DVD, or on the Web from com-

mercial image stock houses. Any way you

go, adding digital video is an exciting way

to enrich a Flash Web site.

Flash can actually play back any video

encoded in H.264, so your video file doesn’t

have to have the .f4v extension. For example,

a video with a .mov extension encoded by

QuickTime Pro with H.264 is compatible with

Flash.

What Makes a Good Video?
We all know a good video when we see

one. But how do you create and prepare

digitized videos so they play well and

look good within Flash? Knowing a little

about the video compression that is built

into Flash will help.

The various codecs compress video both

spatially and temporally. Spatial com-
pression happens within a single frame,

much like JPEG compression on an

image. Temporal compression happens

between frames, so the only information

that is stored is the differences between

two frames. Therefore, videos that com-

press well contain localized motion or

very little motion (such as a talking head),

because the differences between frames

are minimal. (In a talking-head video,

only the mouth is moving.) For the same

reasons, transitions, zooms, and fades

don’t compress or display well—stick

with quick cuts if possible.

Working with Video 59

Using Adobe
Media Encoder
You can convert your video files into the

proper FLV or F4V format using Adobe

Media Encoder CS5, a stand-alone appli-

cation that comes with Flash Professional

CS5. You can convert single files or mul-

tiple files (known as batch processing) to

make your workflow easier.

Several popular formats for digital video

are QuickTime (MOV), MPEG, AVI, and DV.

Fortunately, Adobe Media Encoder sup-

ports all of them.

To add a video file to Adobe Media:
1. Launch Adobe Media Encoder, which

comes installed with Adobe Flash Pro-

fessional CS5.

The opening screen has a window that

lists any current video files that have

been added for processing. The win-

dow should be empty A.

2. Choose File > Add or click the Add but-

ton on the right.

A dialog box opens for you to select a

video file.

3. Navigate to your video file and click

Open (Windows) or OK (Mac).

The selected video file is added to the

display list and is ready for conversion

to an FLV or F4V format B.

You can also add video files to Adobe

Media Encoder by simply dragging your video

file from your desktop and dropping it in the

display list.

A Adobe Media

Encoder prepares

videos in the

correct format for

Flash. The large

central window

is the display list,

which lists the

videos that you

want to encode.

The display list is

currently empty.

B This display list

in Adobe Media

Encoder contains

one video that has

been added.

60 Chapter 2

To remove a video file from
Adobe Media Encoder:
1. In the display list, select the video file.

2. Click the Remove button.

A dialog box appears asking you to

confirm whether you want to remove

the selected video and its settings.

Click Yes to remove the video file from

the display list.

You can select multiple files for removal

by holding down the Ctrl key (Windows) or

Shift key (Mac) and selecting multiple video

files in the display list.

To convert a video file
to Flash Video:
1. In the display list, select the FLV | F4V

option for Format C.

2. Under the Preset options, choose your

desired encoding profile D.

You can choose one of many of the

standard preset options from the menu.

The options determine the format

(either the newer F4V or the older FLV)

and the size of the video. In parenthe-

ses, Flash indicates the minimum Flash

Player version required to play the

selected video format.

Choose Match Source Attributes if your

source video is already sized to the cor-

rect dimensions that you desire.

C Choose FLV | F4V from the Format pull-down

menu to select the encoding format.

D Choose your desired setting from the Preset

pull-down menu. Choose F4V Match Source

Attributes or FLV Match Source Attributes if your

video is already at your desired dimensions.

Working with Video 61

3. Click on the Output File.

You can choose to save the converted

file in a different location on your com-

puter and choose a different filename.

Your original video will not be deleted

or altered in any way.

4. Click Start Queue.

Adobe Media Encoder begins the

encoding process E. The Media

Encoder displays the settings for the

encoded video, shows the progress,

and shows a preview of the video.

When the encoding process finishes, a

green check in the display window indi-

cates that the file has been converted

successfully.

If you have multiple video files to encode

to F4V or FLV format, you can do so with

Adobe Media Encoder all at once easily in a

process known as batch processing. Each file

can even have its own settings. Click the Add

button to add additional videos to the display

list. Choose a different format for each file, if

desired. Click Start Queue to begin the batch

processing.

You can change the status of individual

files in the queue by selecting the file in the

display list and choosing Edit > Reset Status or

Edit > Skip Selection. Reset Status will remove

the green check from a completed file so it can

be encoded again, whereas Skip Selection will

make Adobe Media Encoder skip that particu-

lar file in the batch processing.

E During the encoding process, Adobe Media Encoder shows the progress, the output specifications, and a

preview of the video. The process may take seconds or several minutes, depending on the length and size of

your video. This may be a good time to get yourself a cup of coffee.

62 Chapter 2

Understanding
Encoding Options
You can customize many settings in the

conversion of your original video to the

Flash Video format.

In some situations, you may want to crop

the edges of a video to remove unsightly

background or to display your video in an

unconventional format. Or, you may decide

to use just a portion of the video rather

than all of it. Using Adobe Media Encoder,

you can make the necessary adjustments

to crop the video frame, resize the video,

change the starting and ending points of

the video, adjust the type of compression

and the compression levels, or even apply

filters to the video.

To display encoding options:
Click on the Preset selection in the display

window.

or

Choose Edit > Export Settings.

or

Click the Settings button.

The Export Settings dialog box appears A.

A summary of the current output specifica-

tions is listed on the upper-right corner,

cropping and trimming options are on the

left, and advanced options for video and

audio compression are on the bottom right.

A The Export Settings dialog box contains options for customizing, cropping and

resizing, trimming video length, adding cue points, and changing the video and

audio compression levels.

Output tab Preset menu Save, Import, and Delete Presets

Cropping

Preview
window

Trimming
options

Cue Point
options

Summary
of export
settings

Advanced
export
settings

Working with Video 63

To crop your video:
1. Click the Crop button at the upper-left

corner of the Export Settings dialog

box.

The cropping box appears over the

video preview window B.

2. Drag the sides inward to crop from the

top, bottom, left, or right.

The grayed-out portions outside the

box will be discarded. Adobe Media

Encoder displays the new dimensions

next to your cursor. You can also use

the Left, Top, Right, and Bottom settings

above the preview window to enter

exact pixel values.

3. If you want to keep the crop in a

standard proportion, click the Crop

Proportions menu and choose a

desired ratio C.

The cropping box will be constrained to

the selected proportions.

4. To see the effects of the crop, click the

Output tab.

5. Change the Crop Setting pull-down

menu to your desired output.

Scale to Fit. Maintains the final output

size but enlarges the final crop to fit the

dimensions. Your video may lose quality

if you enlarge beyond the resolution of

the source.

Continues on next page

B Select the Crop button to select only a portion

of your video. Drag the sides or corners of the

selection to cut unwanted material from the edges

of the video. Enter numeric values in the Left, Top,

Right, and Bottom fields for pixel-level precision.

C Constrain the crop with the Crop Proportions

pull-down menu. A 4:3 proportion is the traditional

aspect ratio for standard-definition video. A 16:9

proportion is the aspect ratio for high-definition

video and cinematic presentations.

Crop button Selected area

Crop
Proportions

64 Chapter 2

Black Borders. Maintains the final

output size and adds black to the areas

that are cropped.

Change Output Size. Changes the final

output size to the dimensions of the

crop.

The preview window shows how your

final video will appear D.

6. Click OK to accept the crop settings.

or

Exit the Crop tool without accepting the

crop settings by clicking the Crop but-

ton again under the Source tab.

To adjust the video length:
1. Click and drag the playhead (top

marker) to scrub through your video to

preview the footage. Place the play-

head at the desired beginning point of

your video.

Time markers indicate the number of

seconds that have elapsed E. D The Output tab shows the final cropped

appearance. Choose the options under the

Crop Setting pull-down menu to determine the

relationship between the crop and the output size.

Crop Setting pull-down
menu

Crop selection over
original video

Change Output Size

Black Borders

Scale to Fit

E Move the playhead to the point at which you

want the video to begin.

Time indicator

Playhead

Working with Video 65

2. Click the Set In Point icon.

The In point moves to the current posi-

tion of the playhead F.

3. Drag the playhead to the desired end-

ing point of your video.

4. Click the Set Out Point icon.

The Out point moves to the current

position of the playhead G.

5. You can also simply drag the In and Out

markers to bracket the desired video

segment.

6. Click OK to accept the new settings to

trim the length of your video.

When the playhead is selected, you can

use the left or right arrow key on your key-

board to move back or ahead frame by frame

for finer control.

You can double-click the time marker to

enter an exact numerical value for the time.

To resize your video:
1. Click the Video tab on the right side of

the screen under the Export Settings H.

2. Select the Resize Video check box.

3. Change the values for Frame Width and

Frame Height to change the dimensions

of your video.

If you want to maintain the original

aspect ratio of your video, click the

Constrain box I.

4. Click OK to accept the new resize

settings.

F Click the Set In Point icon to mark the

beginning of the video.

In point marker

Set In Point

G Click the Set Out Point icon to mark the end of

the video.

Out point marker

Set Out Point

H Click the Video tab to resize your video.

Video tab
Resize video
option

I The Resize video option lets you set how your

video’s size will be scaled. Click the Constrain

button to keep the dimensions of your video

proportional.

Constrain width/height

66 Chapter 2

To select your own video
compression settings:
1. Click the Format tab on the right side of

the screen under the Export Settings.

2. Choose either the FLV format or the

newer F4V format J.

Embedding video into Flash requires

the FLV format. To download external

video, you can use either the FLV or the

F4V format.

3. Click the Video tab. Choose the video

settings that will give the best trade-off

between video file size and image qual-

ity for your movie. Depending on the

format that you’ve chosen in step 2, you

will be presented with different options:

Codec. If you’ve selected the FLV

format, Flash uses the On2 VP6

codec to compress your video, which

requires Flash Player 8 or later. The

codec is lossy, meaning some (usually

less important or less visible) video

information is discarded to make the

file smaller. The compressed movie

appears similar to the original but not

exactly the same K.

Encode Alpha Channel. If your video

has an alpha channel (transparent

background), select this option. Alpha

channels are only supported in the FLV

format with the On2 VP6 codec.

Resize Video. You can change the

width and height or constrain the pro-

portions for the new width and height.

Refer to the task “To resize your video,”

earlier.

Frame rate. Lets you choose whether

to match the frame rate of your video to

the frame rate of your Flash movie. For

embedded video, you’ll want to choose

the same frame rate of your Flash

J Choose FLV if you want to embed your video in

Flash. Choose either FLV or F4V if you want to play

back external video from Flash.

K On2 VP6 is the codec for the FLV format, which

requires Flash Player 8 or later.

Working with Video 67

movie. This choice ensures that an

embedded video plays at its intended

speed even if its frame rate is different

than that of the Flash document. With

the “Same as source” setting, a video

shot at 30 frames per second (fps) and

brought into a Flash movie running at

15 fps will last twice as long (and play

twice as slowly) as the original source

video. You should choose “Same as

source” only when encoding for play-

back of external video L.

Bitrate Settings. Determines the bitrate,

which is the quality of video based on

download speeds measured in kilobits

per second (kbps). Flash may alter the

quality of individual frames to keep

the download at a consistent speed.

Remember, the higher the kilobits

per second of your chosen setting,

the higher the quality of your video

but the larger the file size. The higher

the bitrate, the higher quality of the

video M.

Advanced Settings. Select the Set

Key Frame Distance option to change

the keyframe distance. The keyframe
distance is how frequently complete

frames of your video are stored. The

frames between keyframes (known as

delta frames) store only the data that

differs between the delta frame and

the preceding keyframe. A keyframe

interval of 24, for example, stores the

complete frame every twenty-fourth

frame of your video. If your video

contains the action of someone raising

his hand between frames 17 and 18,

only the portion of the image where

the hand is being raised is stored in

memory until frame 24 when the full

frame is stored. The lower you set the

L If you plan to embed video into Flash, you must

set the frame rate of your video to be identical to

the frame rate of your Flash movie. Choose “Same

as source” only if you want to play back external

video from Flash.

M The Bitrate Settings determine the bandwidth

required to download the video.

Continues on next page

68 Chapter 2

keyframe interval, the more keyframes

are stored and the larger the file. For

video where the image doesn’t change

much (such as a talking head in front of

a solid background), a higher keyframe

interval works well. For video with lots

of movement and changing images, a

lower keyframe interval is necessary to

keep the image clear N.

4. Click OK to accept your custom video

settings.

To select your own audio
compression settings:
1. Select the Export Audio option under

Export Settings if you want audio

exported with your video. Deselect the

option if you just want to export video

with no audio O.

2. Click the Audio tab on the right side of

the screen under Export Settings.

3. Choose the audio settings that will give

the best trade-off between file size and

audio quality for your movie. Depend-

ing on the format you’ve chosen (FLV or

F4V), you will be presented with differ-

ent audio options P.

Codec. AAC is a high-quality audio

compression scheme for the F4V

format. MP3 is the older audio compres-

sion scheme for the FLV format.

Output Channels. Choose Mono for a

single channel or Stereo for two chan-

nels (left and right).

Frequency. The higher the frequency,

the higher quality the sound. Select 44.1

kHz for CD-quality sound.

Bitrate Settings. The higher the bitrate,

the higher quality the sound.

4. Click OK to accept your custom audio

settings.

N Adjust the Key Frame Distance option based

on how often significant visual changes occur

in your video. A higher Key Frame Distance

setting means there are fewer keyframes, so less

information is recorded.

O Select the Export Audio check box if you want

to keep audio in your video. Deselect the check

box if you only want to export video.

Export Audio option

P There are different audio settings, depending on

if you’ve chosen the FLV format or the F4V format.

Bitrate and Frequency determine the audio quality

(the higher the number, the better the quality).

Audio settings for FLV format

Audio settings for F4V format

Working with Video 69

To save your custom
encoding options:
1. In the Export Settings dialog box, click

the Save Preset button Q.

2. In the dialog box that opens, provide

a descriptive name for the video and

audio options. Click OK R.

3. Return to the queue of videos. You can

apply your custom setting to additional

videos by simply choosing it from the

Preset pull-down menu S.

R Provide a name for your custom setting.

S Your custom setting is available under the

Preset pull-down menu.

Q You can save your custom Export Settings to

apply to other videos.

Save Preset

70 Chapter 2

Embedding Video
into Flash
Everybody loves movies. So when you can

add video to your Flash Web site, you’ll

likely create a richer and more compelling

experience for your viewers.

You can embed an FLV file into Flash (but

not F4V), and then add effects such as

graphics, animation, masking, and interac-

tivity; you can even apply motion tweens to

your embedded video. Embedding video

is the simplest way to add video and an

easy way to integrate video with other

Flash elements on your Timeline. However,

embedding video has several limitations.

Embedded video is only good for short

video because Flash cannot maintain audio

synchronization beyond about 2 minutes.

There is also a maximum length of 16,000

frames for embedded movies. Another

drawback is the increase in file size of your

A The Import Video wizard guides you through

the process of integrating video with your Flash

projects. The first step is to tell Flash where to find

your video.

B Choose “Embed FLV in SWF and play in

timeline” to embed your video.

Flash movie. Embedding video puts the

video file inside your Flash document, so

be aware of the longer download times for

your audience and the more tedious test-

ing and authoring sessions for you.

To embed a video in Flash:
1. From the File menu, choose Import >

Import Video.

The Import Video wizard appears A.

2. Click the Browse button; in the dialog

box that appears, select the FLV file you

want to embed and click Open.

3. Back in the Import Video wizard,

choose “Embed FLV in SWF and play

in timeline” B. Click Next (Windows) or

Continue (Mac).

If you have not yet converted your

video to the FLV format, you can launch

Adobe Media Encoder by clicking the

Launch Adobe Media Encoder button.

Working with Video 71

C The

Embedding step

lets you choose

different options

for embedding

your video.

D The embedded video is placed on the Stage and

Flash adds frames to the Timeline to accommodate

the video. The video is stored in the Library.

Embedded video
on the Stage

Embedded video
in the Library

E For videos with an alpha channel (transparency),

choose FLV for the format and select the Encode

Alpha Channel option (top). This allows you to

embed video with transparent backgrounds

(bottom), such as a weatherperson in front of a

weather map.

4. The next screen of the Import Video

wizard presents the Embedding

options. Set the Symbol type to Embed-

ded video; select the options “Place

instance on stage,” “Expand timeline if

needed,” and “Include audio” C. Click

Next/Continue.

5. The Import Video wizard proceeds

to the final screen, summarizing your

video embedding settings.

6. Click Finish.

Flash embeds the video in your docu-

ment, putting a video symbol in your

Library and an instance of the video on

the Stage in the active layer D.

When embedding an FLV into Flash,

remember to encode the FLV at the same

frame rate as your Flash file. This is an impor-

tant step to keep the frame rate of your video

consistent with the frame rate of your Flash

movie. This ensures your video plays at its

intended speed.

Flash can’t display the soundtrack of

embedded FLVs, so if your original video file

has sound, you won’t hear it within the Flash

authoring environment. When you pub-

lish your Flash movie or test it by choosing

Control > Test Movie > in Flash Professional,

the sound will be audible.

If you do not have sound, check your

source video clip. Sometimes a QuickTime file

uses an audio compression scheme that Flash

doesn’t recognize. You may have to export

your video with a different audio compression

from another application.

If you have video with a transparent

background (an alpha channel), you can

import it into Flash and still preserve the

transparency. In Adobe Media Encoder, click

the Video tab and select the Encode Alpha

Channel option E. Alpha channels are only

supported with the On2 VP6 video codec

(Flash Player 8 and later).

72 Chapter 2

To swap an embedded video:
1. Double-click the video icon or the pre-

view window in your Library.

or

Click the video symbol in the Library;

then, from the Library window’s Options

menu, choose Properties F.

The Video Properties dialog box

appears showing the symbol name and

the original video file’s location G.

2. Click Import.

3. Choose a new FLV file and click Open.

Flash swaps the existing FLV video with

the newly selected FLV.

4. Click OK.

The new FLV replaces the old FLV in the

Library and on any existing instances on

the Stage H.

F Select the video in your Library and choose

Properties from the Options menu.

G The Video Properties dialog box shows the

name of the symbol and the location of the

original video file, as well as the properties of the

compressed video (dimensions, time, and size).

H The newly selected video replaces

the previous one in the Library.

Working with Video 73

Playback of
External Video
So far, you’ve learned how to encode

your videos and embed them in Flash.

However, embedded video has a length

restriction (16,000 frames, or approximately

8.5 minutes of 30 fps video). Also, embed-

ded video begins to lose synchronization

with its audio after about 2 minutes. Most

important, embedded video significantly

increases the file size of your Flash movie.

You can bypass these problems by loading

an external video file with a Flash playback

component. This means that Flash dynami-

cally loads video that is kept separate from

the Flash file.

Playback of external video requires that

your video be in the FLV or F4V file format.

Flash provides a special component known

as a skin to give you control over the

playback of your external video. Chapter 6,

“Managing External Communication,” looks

at more advanced ways to load and control

external video just using ActionScript.

Refer to Table 2.1 for a summary comparison

of embedded video and external playback.

TABLE 2.1 Embed vs. External Playback

Embed External Playback

Video length Under 2 min with audio, or 16,000

frames total

No restriction

Flash Player Versions 6 and later Versions 7 and later

Usage Short, small (320 x 240) video clips

that need to be synchronized to other

Flash elements on the Timeline

Longer, larger (720 x 580) video clips that do

not need to be synchronized to other Flash

elements on the Timeline

Video frame rate Must be the same frame rate as Flash Can be at a different frame rate than Flash

File size Increases because video is contained

within SWF

No effect, but FLV/F4V must accompany your

SWF (or your SWF must be given the correct

path to find the FLV/F4V)

Interface None Ready-made interfaces, or “skins,” are

available to control the playback of the video.

Flash Player skins are small SWF files that are

also kept external to your main Flash movie

and must accompany your SWF.

Editability Edit video and reimport into Flash Edit video and convert to FLV/FV without

opening Flash

74 Chapter 2

A The Import Video wizard. The first step is to

tell Flash where your video is located. Flash keeps

track of the path to your external video relative to

the location of your Flash file.

B After you’ve selected your video file, choose

the first option, “Load external video with playback

component.”

C Select a video player skin from the pull-down

menu. Click the color chip to change the color

and transparency of the skin. The preview window

shows you how the controls will appear with your

video.

Preview of skinSkins Color menu

D Choose the top option, None, to present your

video without controls.

To play back external video:
1. Choose File > Import > Import Video to

open the Import Video wizard.

2. Use the Browse button to select the

video file that you want A and click

Next/Continue. Your video must be an

FLV or an F4V formatted video.

If you have not yet converted your

video to the FLV/F4V format, you can

launch Adobe Media Encoder by click-

ing the Launch Adobe Media Encoder

button.

3. Select “Load external video with

playback component” B. Click Next/

Continue.

4. On the Skinning screen, choose a

player skin and a color for your video

player from the menu C. Click Next/

Continue.

The player skin provides a viewing

window and playback controls for

your video. From the pull-down menu,

choose a skin that includes different

playback controls and from the adjacent

color chip choose a color (or a transpar-

ency level). In the preview window you

can see how your skin will appear. Note

that some skins add the controls over

the video, and some add the controls

under the video.

If you do not want any playback con-

trols for your video, choose None from

the top of the menu D.

Working with Video 75

5. On the final screen, review the sum-

mary of settings, and then click Finish.

A video playback component appears

on the Stage and in the Library E. This

component controls the playback of

your external FLV/F4V file. Position the

component anywhere on the Stage and

at the keyframe at which you want the

video to begin playing.

6. To see your video, click on the controls

on your skin. If you don’t have a skin

on your video, right-click (Windows) or

Ctrl-click (Mac) on the video and choose

Play, Pause, or Rewind F.

Flash plays the external FLV/F4V file

with the video playback component and

the skin that you chose.

7. Choose Control > Test Movie > in Flash

Professional.

Flash publishes a SWF for you to

preview your movie. In addition to your

project SWF, Flash generates a small

SWF for your skin and saves it in the

same folder as your Flash document.

Keep the skin SWF together with your

project so Flash can find it and display

it correctly G.

If you don’t see a preview of your video

on the Stage in the playback component, right-

click (Windows) or Ctrl-click (Mac) and make

sure the Preview option is checked.

E The video playback component is placed on

the Stage with a preview of your video. The video

playback component is also added to your Library.

F You can preview your video on the Stage by

using the controls of the skin or right-clicking

(Windows) or Ctrl-clicking (Mac) the video and

using the contextual menu.

G For playback of external video to work

properly, your Flash movie (SWF) must be able to

find and access the video file (FLV/F4V). If you are

using a skin, the SWF file for the skin must also

accompany your Flash movie. All three of these

files are required to play.

76 Chapter 2

Changing video playback options
You can change the way your video plays

within Flash by changing the options in

the video playback component. The video

playback component is simply the player

for the external video. By changing the

options in the Parameters panel, you can

change the “skin,” or the appearance,

of the player as well as other playback

features.

To change the skin of the
video playback component:
1. Click the video playback component on

the Stage to select it.

Parameters for the video playback com-

ponent appear in the Properties inspec-

tor under the Component Parameters

section H.

2. Find the skin parameter (in the first

column) and click the current value (in

the second column). Click the pencil

icon I.

The Select Skin dialog box appears.

3. Choose a different skin and/or color for

your player J. Click OK.

Your newly selected skin appears on

your video. Once you test (Control >

Test Movie > in Flash Professional) or

publish your Flash movie, a new skin

SWF will be generated in the same

folder as your Flash document.

I The “skin” parameter determines which

playback interface to use.

J Set a new skin.

H The Component

Parameters section

of the Properties

inspector lets you

set options for your

video player skin.

The first column is

the parameter, and

the second column

is the value for that

parameter.

Working with Video 77

4. In the Properties inspector, find the

parameters for skinBackgroundAlpha

and skinBackgroundColor. Click the

current value (in the second column) to

change the transparency of the skin or

the background color of the skin K.

5. In the Properties inspector, find the

parameter for skinAutoHide. Click

the empty check box (in the second

column) to change whether or not the

interface is always visible L.

> Select skinAutoHide to keep the

interface hidden until the mouse

pointer moves over the video.

> Deselect skinAutoHide to have the

interface be visible all the time.

To change the playback of
the external video:
1. Click the video playback component on

the Stage to select it.

Parameters for the video playback com-

ponent appear in the Properties inspec-

tor under the Component Parameters

section.

2. Find the autoPlay parameter (in the first

column) and click the empty check box

(in the second column) M.

> Select autoPlay to have the video

automatically begin playing.

> Deselect autoPlay to have the video

paused at the first frame.

K Set a new skin color and transparency directly

in the Property inspector.

L Select skinAutoHide to hide the interface. Be

careful when hiding the interface because users

won’t necessarily know how to access the controls.

M Select autoPlay to make the video play auto-

matically. Deselect it to pause the video at the first

frame.

Skin transparency (0 to 1.0) Skin color

78 Chapter 2

To change the path to
the external video:
1. Click the video playback component on

the Stage to select it.

2. In the Properties inspector, find the

source parameter (in the first column)

and click the current value (in the sec-

ond column). Click the pencil icon.

The Content Path dialog box appears N.

3. Click the folder icon to browse to the

new location of your FLV/F4V file.

Flash changes the path to your video

file in the Parameters panel so that the

video playback component can find the

file and play it.

N Change the source value to modify the name

or location of the file that the video player loads.

Working with Video 79

Adding Cue Points
to External Video
Although external video plays indepen-

dently of the Timeline, you can synchronize

external video with other Flash elements

by using cue points. Cue points are special

markers that you add to your video that

Flash can detect and respond to with

ActionScript.

There are three kinds of cue points:

Navigation cue points allow you to jump

to a particular point in the video. Event
cue points allow you to trigger other ele-

ments from a particular point in the video.

Both Navigation and Event cue points are

embedded in the video during the encod-

ing process with Adobe Media Encoder.

ActionScript cue points are added to an

already encoded video through Action-

Script, or through the Properties inspector.

To add embedded cue points
from Adobe Media Encoder:
1. In the Export Settings dialog box, move

the yellow video playhead to the point

when you want a cue point A.

2. Click the Add Cue Point button.

A cue point is added to the video B.

3. Click the name of the cue point to

rename it or click the time to change

its time.

4. Choose Event or Navigation for the

Type.

To delete cue points from
Adobe Media Encoder:
Select a cue point in the Properties

inspector and click the Delete Cue Point

button C.

A The video playhead in this example is placed

at 5 seconds into the video.

B The cue point called “Cue Point” is added at

the 5-second mark for this video.

Video playhead

Add Cue Point button

C Use the Delete Cue

Point button to remove

a cue point from the list.

Delete Cue Point button

80 Chapter 2

To add ActionScript cue points
from the Properties inspector:
1. Move the video playhead or pause the

video at the point when you want a cue

point D.

2. In the Properties inspector, in the Cue

Points section, click the Add Action-

Script Cue Point button.

A cue point is added to the video E.

3. Click the name of the cue point to

rename it or click and drag the time

to change its time.

Double-click the cue point in the Type

column to quickly jump to that point in time

in your video.

To delete cue points from
the Properties inspector:
Select a cue point in the Properties inspec-

tor and click the Delete ActionScript Cue

Point button.

or

Right-click (Windows) or Ctrl-click (Mac) on

a cue point in the Properties inspector and

choose Delete F.

D In this example, the video is paused at

5 seconds.

E In the Properties inspector, the cue point called

“Cue Point” is added at the 5-second mark for

this video.

F Use the Delete Cue Point button or right-click

(Windows) or Ctrl-click (Mac) to remove a cue point

from the list.

Add
Cue Point

button

Delete
Cue Point

button

Working with Video 81

To add ActionScript cue
points with ActionScript:
1. Select the video playback component

and give it an instance name in the

Properties inspector G.

In this example, the video playback

component is called myvideo.

2. Select the first frame of the Timeline

and open the Actions panel.

3. Enter the instance name of the video

playback component, a dot, and then

the method, addASCuePoint().

4. The method addASCuePoint() can take

either an object as a single parameter

or two parameters—time (in seconds)

and the cue point name. For example:

myvideo.addASCuePoint({time:5,
➝ name:"mycuepoint",
➝ type:"actionscript"})

creates a cue point with an object as its

single parameter. The object has three

G Name the video playback component on

the Stage. Do not use spaces or punctuation,

or begin your name with a number.

H This ActionScript code adds a cue point called mycuepoint at 5 seconds to the

video on the Stage.

I Similar ActionScript code to add a cue point

called mycuepoint at 5 seconds to the video on

the Stage.

properties: time, name, and type H.

(The curly braces are a shorthand way

of creating an object and defining its

properties all at once).

The method myvideo.addASCuePoint
(5, "mycuepoint"); creates a cue

point at 5 seconds with the name

mycuepoint I.

In general, cue points added via Action-

Script are less accurate than those embed-

ded in videos during the encoding process.

ActionScript cue points are accurate to a tenth

of a second.

You cannot change or delete embedded

cue points with ActionScript, but you can add

new ones to existing embedded cue points.

Cue point information is wiped out when

you set the source property of a video play-

back component. Be sure to set the source

property first, and then add cue points.

82 Chapter 2

A Name the video playback component on the

Stage. Do not use spaces or punctuation, or begin

your name with a number.

B The import statement provides the ActionScript

that isn’t normally included.

Detecting and
Responding to
Cue Points
Cue points can be used as chapter

points—for example, you can make buttons

that navigate to different sections of a

video. Or cue points can be used to trigger

Flash elements that are synchronized to

the video. For example, as a speaker in the

video mentions a product, an ad for that

product could pop up next to the video.

Detecting and responding to cue points

requires ActionScript and an understand-

ing of event listeners. You can jump ahead

to Chapter 3, “Getting a Handle on Action-

Script,” and Chapter 4, “Advanced Buttons

and Event Handling,” and return when

you’re more comfortable with coding.

To detect cue points:
1. Select the video playback component

and make sure it has an instance name

in the Properties inspector A.

In this example, the video playback

component is called myvideo.

2. Select the first frame of the Timeline

and open the Actions panel.

3. Enter an import statement that imports

the necessary ActionScript classes for

the video playback component B:

import fl.video.*

The asterisk is a wildcard symbol that

means all the classes in the fl.video
package are imported.

Working with Video 83

4. On the next line, create an event

listener for your video playback compo-

nent that listens for the MetadataEvent.
CUE_POINT event. This particular event

happens when Flash encounters a cue

point in a video. Your code should look

similar to this:

myvideo.addEventListener
➝ (MetadataEvent.CUE_POINT,
➝ cuepointfound);

5. Add the function that responds to

the event; in this example, it’s called

cuepointfound. Within the function,

you can add a conditional statement

that checks the name of the cue point

that was encountered, as shown here:

function cuepointfound
➝ (e:MetadataEvent):void {
 if (e.info.name=="mycuepoint") {
 //respond to cue point
 }
}

C This ActionScript code detects a cue point in the video called myvideo,

and includes a conditional statement that checks whether the cue point’s

name matches mycuepoint.

In this example C, when a cue point is

encountered during the video playback,

the function called cuepointfound is

triggered. The function checks whether

the cue point’s name matches mycue-

point, and if it does, it will execute

any of the commands within the curly

braces of the if statement. The event,

in this example, is referred to with the

variable e.

> e.target refers to the video playback

instance.

> e.info.name refers to the cue point’s

name.

> e.info.time refers to the cue point’s

time.

84 Chapter 2

To jump to a navigation cue point:
Use the method seekToNavCuePoint(),

which takes the name of the cue point as

its parameter, for example:

myvideo.seekToNavCuePoint
➝ ("mycuepoint");

In this statement, Flash will make the video

jump to the cue point named mycuepoint

in the video playback component named

myvideo D.

D This ActionScript code makes the video

component called myvideo jump to the navigation

cue point called mycuepoint.

Using the Code Snippets Panel
Flash Professional CS5 contains a new panel called

the Code Snippets panel that you’ll learn more

about in the next chapter. The Code Snippets panel

makes it easy for you to add ActionScript code

for common interactive tasks. For example, if you

want to detect a cue point in an external video, you

can use the Code Snippets panel rather than write

the code yourself, as you’ve done in this section.

You still have to add and edit some of the code to

tailor it for your own project, but it can make the job

easier and it can help you learn ActionScript.

To access the Code Snippets panel, choose Win-

dow > Code Snippets. The snippets are grouped

in different folders. Open the Audio and Video

folder to find the snippets for cue points. Select

your video playback component on the Stage and

double-click On Cue Point Event E. ActionScript

code that detects cue points in your video auto-

matically gets added to your Timeline. Follow the

directions in the Actions panel to add and modify

the code to fit your own needs.

If you want to add code that jumps to a navigation

cue point, select your video playback component

on the Stage and double-click Click to Seek to Cue

Point F. Follow the directions in the Actions panel

to add and modify the code to fit your own needs.

E The Code Snippets panel provides a

quick way to add ActionScript for different

tasks. Choose On Cue Point Event to detect

cue points in your video.

F In the Code Snippets panel, choose Click

to Seek to Cue Point to jump to a cue point

in your video.

In This Chapter
What Is ActionScript 3? 86

About Objects and Classes 87

About Methods and Properties 88

Writing with Dot Syntax 89

More on Punctuation 91

The Actions Panel 92

Editing ActionScript 101

Using Objects 104

About Functions 114

Using Code Snippets 119

Using Comments 123

ActionScript is Flash’s programming

language for adding interactivity to your

project. You can use ActionScript to create

anything from simple navigation within

your Flash movie to complex interfaces

that react to the location of the viewer’s

pointer, arcade-style games, and even

full-blown e-commerce sites with dynami-

cally updating data. In this chapter, you’ll

learn how to write ActionScript to create

effective Flash interaction. Think of the pro-

cess as learning the grammar of a foreign

language: First, you must learn how to put

nouns and verbs together and integrate

adjectives and prepositions; then you can

expand your communication skills and

have meaningful conversations by build-

ing your vocabulary. This chapter will give

you a sound ActionScript foundation upon

which you can build your Flash literacy.

If you’re familiar with object-oriented

programming languages such as Java,

C++, or JavaScript, you’ll recognize the

similarities in ActionScript. Although there

are slight differences, the basic syntax and

the handling of objects—reusable pieces of

code—remain the same.

3
Getting a Handle on

ActionScript

Even if you don’t have any programming

experience, you’ll see in this chapter that

Flash provides ways to help you write

script, such as code hinting as you com-

pose code, or tools to quickly add script,

such as the new Code Snippets panel.

86 Chapter 3

What Is ActionScript 3?
Like any language, ActionScript evolves

over time. Introduced in Flash CS3, Action-

Script 3 is the latest version of the Flash

programming language that lets you control

graphics, animation, sound, and interactiv-

ity. ActionScript 3 is significantly different

from the previous version of the language,

ActionScript 2, so be aware of which version

you’re dealing with, whether you’re search-

ing the Web for help or talking with a client

about a new project. Major differences

between the languages include:

■ A different model for detecting and

responding to events (like a mouse

click or a keyboard input).

■ A display list in ActionScript 3, which

manages the dynamic display of all

kinds of graphics on the Stage.

■ Less dependence on the movie clip sym-

bol as the main actor in advanced Flash

projects. ActionScript 3 provides differ-

ent objects that are more specific to the

task rather than relying on the movie clip

for a wide variety of purposes.

■ Changes in the actual language, so

users familiar with ActionScript 2 will

have to relearn commands (getURL is

instead navigateToURL, _root is root,

properties like _x are simply x).

You’ll begin your study of ActionScript 3

with its basic building blocks: objects and

classes.

Getting a Handle on ActionScript 87

About Objects and Classes
At the heart of ActionScript are objects

and classes. Objects are specific pieces of

data—such as sound, graphics, text, and

numeric values—that you create in Flash

and use to control the movie. A date object,

for example, retrieves information about

the time and the date, and an array object

manipulates data stored in a particular order.

All the objects you use and create are gen-

erated from blueprints known as classes.
Flash provides certain classes for you to

use in your movie. These built-in classes

handle a wide range of Flash elements

such as data (Array class, Math class) and

sound and video (Sound class, Video class).

Learning to code in ActionScript centers on

understanding the capabilities of objects

and their classes, and using them to inter-

act with one another and with the viewer.

In the real world, you’re familiar with

objects such as a cow, a tree, and a per-

son A. Flash objects range from visible

things, such as a movie clip of a spinning

ball, to more abstract concepts, such as

the date, pieces of data, or the handling

of keyboard inputs. Whether concrete or

abstract, however, Flash objects are versa-

tile because after you create them, you can

reuse them in different contexts.

Before you can use objects, you need to

be able to identify them, and you do so

by name just as you do in the real world.

Say you have three people in front of you:

Adam, Betty, and Zeke. All three are objects

that can be distinguished by name. All three

are made from a blueprint called humans.

You can also say that Adam, Betty, and Zeke

are all instances of the Human class B.

In ActionScript, instances and objects are

synonymous, and the terms are used inter-

changeably in this book.

A Objects in the real world include things like a

cow, a tree, and a person.

B Adam, Betty, and Zeke are three objects of the

Human class. Flash doesn’t have such a class, but

this analogy is useful for understanding objects.

Human class

Adam Betty Zeke

88 Chapter 3

About Methods
and Properties
Each object of a class (Zeke of the humans,

for example) differs from the others in its

class by more than just its name. Each per-

son is different because of several defin-

ing characteristics, such as height, weight,

gender, and hair color. In object-oriented

programming, you say that objects and

classes have properties. Height, weight,

sex, and hair color are all properties of the

Human class A.

In Flash, each class has a predefined

set of properties that lets you establish

the uniqueness of the object. The Sound
class has many properties, one of which

is length, which measures the duration of

a sound in milliseconds. The MovieClip
class, on the other hand, has different

properties, such as height, width, and

rotation, which are measures of the

dimensions and orientation of a particular

movie clip object. By defining and chang-

ing the properties of objects, you control

what each object is like and how each

object appears, sounds, and behaves.

Objects also do things. Zeke can run,

sleep, and talk. The things that objects can

do are known as methods. Each class has

its own set of methods. The MovieClip
class, for example, has a gotoAndStop()
method that sends the Flash playhead to

a particular frame on its Timeline, and the

Date class has a getDay() method that

retrieves the day of the week. When an

object does something by using a method,

you say that the method is called or that

the object calls the method.

Understanding the relationships between

objects, classes, properties, and methods

is important. Putting objects together so

that the methods and properties of one

A Adam, Betty, and Zeke are human objects

with different properties. Names and properties

differentiate objects of the same class.

Human class

Height

Weight

Sex

Hair color

Properties

Adam

Height: 69

Weight: 140

Sex: M

Hair color:
black

Betty

Height: 68

Weight: 135

Sex: F

Hair color:
black

Zeke

Height: 66

Weight: 188

Sex: M

Hair color:
brown

influence the methods and properties of

another is what drives Flash interactiv-

ity. The key to building your ActionScript

vocabulary is learning the properties and

methods of different classes.

It helps to think of objects as nouns,

properties as adjectives, and methods as

verbs. Properties describe their objects,

whereas methods are the actions that the

objects perform.

Getting a Handle on ActionScript 89

Writing with
Dot Syntax
As with other foreign languages, you

must learn the rules of grammar to put

words together. Dot syntax is the conven-

tion that ActionScript uses to put objects,

properties, and methods together into

statements. You connect objects, proper-

ties, and methods with dots (periods) to

describe a particular object or process.

Here are two examples:

Zeke.weight = 188

Betty.weight = 135

The first statement assigns the value 188 to

the weight of Zeke. The second statement

assigns the value 135 to the weight of Betty.

The dot separates the object name (Zeke,

Betty) from the property (weight) A.

In this statement, the object Betty is linked

to the object shirt:

Betty.shirt.color = "gray"

The object shirt, in turn, has the prop-

erty color, which is assigned the value

gray. Notice that with dot syntax you use

multiple dots to maintain object hierarchy.

When you have multiple objects linked in

this fashion, it’s often easier to read the

statement backward. So you could read it

as “Gray is the color of the shirt of Betty.”

Continues on next page

Symbols and Classes
Symbols aren’t classes. Symbols aren’t

even objects. It’s true that most types

of symbols (like movie clips, buttons,

bitmaps, and video) have an associ-

ated class, which is perhaps the source

of some confusion. For the most part,

symbols that appear in the Library aren’t

objects or classes because they don’t

have methods and properties that you

can control with ActionScript.

Symbols are simply reusable assets

created in or imported to the Library.

You create instances, or copies, of the

symbols to use in your movie. When you

place an instance of certain symbols,

such as a button or a movie clip, on the

Stage and give it a name, it becomes

an instance of the corresponding class

(SimpleButton or MovieClip) that you

can manipulate using ActionScript.

A The hypothetical weight property describes

Betty and Zeke. In Flash, many properties of

objects can be both read and modified with

ActionScript.

Betty.weight=135 Zeke.weight=188

90 Chapter 3

Now consider the following statement:

Zeke.run()

This statement causes Flash to call the

method run() on the object Zeke, which

causes him to do something. The paren-

theses after run signify that run is a

method, not a property. You can think of

this construction as noun-dot-verb B.

Methods often have parameters (also

called arguments) within the parentheses.

These parameters affect how the method

is executed.

For example, both of these statements will

make the Zeke and Adam objects perform

the run() method, but because each

method contains a different parameter, the

way the run is performed is different—Zeke

runs fast, and Adam runs slowly:

Zeke.run("fast")

Adam.run("slow")

Each method has its own set of parameters

that you must learn. Consider the basic

Flash action gotoAndPlay(20, "Scene1").

The method gotoAndPlay() belongs to

the MovieClip class. The parenthetical

parameters, (20, "Scene1"), refer to the

frame number and the scene, so calling

this method makes the playhead of the

object jump to Scene1, frame 20, and begin

playing. Some parameters may require

quotation marks, while others may require

none—you’ll learn the reason when you

learn about data types later in this chapter.

B Dot syntax lets you make objects call methods.

Just as the hypothetical method run() could make

the Adam object begin to jog, the real Flash method

hide(), when applied to the Mouse object, makes

the pointer disappear.

Adam.run()

Mouse.hide()

Getting a Handle on ActionScript 91

More on Punctuation
Dot syntax allows you to construct mean-

ingful processes and assignments with

objects, properties, and methods. Addi-

tional punctuation symbols let you do more

with these single statements.

The semicolon
To terminate individual ActionScript state-

ments and start new ones, you use the

semicolon (;). The semicolon functions as

a period does in a sentence—it concludes

one idea and lets another one begin. Here

are two examples:

myMovieClip.stop();
myMovieClip.rotation = 45;

The semicolons separate the statements

so that the object called myMovieClip
stops playing, and then it is rotated 45

degrees. Each statement is executed in

order from the top down, like a set of

instructions or a cookbook recipe.

Flash will still understand ActionScript

statements even if you don’t use semicolons

to terminate each one. It’s good practice, how-

ever, to include them in your scripts.

Curly braces
Curly braces ({}) are another kind of

punctuation that ActionScript uses fre-

quently. Curly braces group related blocks

of ActionScript statements. When you

assign actions to respond to an event, for

example, those actions appear within curly

braces in a statement called a function:

function doThisAfterButtonClick () {
 myMovieClip.stop();
 myMovieClip.rotation = 45;
}

In this case, both the stop action and the

change in rotation are executed when

this function is called. Notice how the curly

braces are separated on different lines to

make the related ActionScript statements

easier to read.

Commas
Commas (,) separate the parameters of a

method. A method can take many param-

eters. The gotoAndPlay() method, for

example, can take two: a frame number

and a scene name. With commas separat-

ing the parameters, the ActionScript code

looks like this:

gotoAndPlay(20, "Scene 1");

Some methods may have three, four, or

perhaps even ten parameters, but as long

as you separate the parameters with com-

mas, Flash knows how to handle the code.

Capitalization
ActionScript 3 is case sensitive. That is, it

knows the difference between lowercase

letters and uppercase letters, so you must

be very careful and conscientious about

capitalization in all your code.

Colons
Colons (:) identify the type of object. When

you first encounter Zeke, for example,

you can identify him with the statement,

Zeke:Human because Zeke is an instance

of the Human class. Colons are important

whenever new instances are introduced

so that Flash knows what kind of data to

associate with the object. You’ll learn more

about colons and the process of strict typ-
ing later in this chapter.

92 Chapter 3

The Actions Panel
The Actions panel is a Flash dialog box

that lets you access all the actions that

control your Flash movie. The Actions

panel provides Script Assist, a mode in

which you are guided through the process

of writing code by using a fill-in-the-blanks

style to write commands. However, writing

ActionScript code directly is far more effi-

cient and in the long run the better way to

learn because you won’t spend your time

hunting for a command buried deep within

menus. This book will not show you how to

write code with Script Assist.

However, don’t worry that you’ll be left

alone in your code writing. As you write

your own ActionScript, the Actions panel

provides hints as you enter code and also

automates some of the formatting. The

Actions panel can also check for errors and

give you access to the ActionScript Refer-

ence Guide.

To open the Actions panel:
From the Window menu, choose Actions

(F9 on Windows, Option-F9 on the Mac).

or

Alt-double-click (Windows) or Option-dou-

ble-click (Mac) a keyframe in the Timeline.

or

Right-click (Windows) or Ctrl-click (Mac)

a keyframe in the Timeline and choose

Actions at the bottom of the context menu.

or

Select a keyframe and click the Actions

icon on the top-right corner of the Proper-

ties inspector A.

A In the Properties inspector, click the icon with

the arrow to open the Actions panel.

Open
Actions
panel

Getting a Handle on ActionScript 93

To undock the Actions panel:
Grab the Actions panel by its tab and drag

it out of its current location.

The Actions panel undocks with its panel

set and becomes a free-floating window.

To redock the Actions panel:
1. Grab the Actions panel by its tab or top

horizontal bar and drag it over the dif-

ferent panels on your desktop.

The different panels will highlight,

indicating that you can dock the Actions

panel in that location.

2. Drop the Actions panel.

The Actions panel docks with the high-

lighted panels.

You can choose to view your Actions

panel, as well as all your other panels, as icons

and text, thus freeing up more of your screen.

Choose the double-headed arrow icon at the

top-right corner of the Actions panel to col-

lapse or expand it B.

The Actions panel can be minimized

just like other windows by clicking on the top

light-gray horizontal bar. Expand the panel by

clicking on the light-gray horizontal bar again.

Resize the Actions panel by clicking and

dragging the bottom-right corner.

B The Actions panel, as well as the other

panels, can be viewed as icons or icons and

text by clicking the double-headed arrow at

the top-right corner.

Collapse or
expand

94 Chapter 3

Actions panel layout
The Actions panel features several sec-

tions and multiple ways to enter Action-

Script statements C. The Actions toolbox

on the left side displays all the available

commands, organized by packages, which

are groups of related classes. At the bot-

tom of the categories colored in yellow, an

index lists all the ActionScript commands

in alphabetical order. You can use the

Script navigator in the lower-left portion of

the Actions panel to navigate to different

scripts within your Flash movie. In the right

section, your completed script appears in

the Script pane. This part of the Actions

panel also offers additional functions when

the panel is in the special Script Assist

mode. At the top, a row of buttons and an

options pop-up menu provide additional

features.

C The Actions panel.

Script pane

Pin or Unpin
Script buttonScript navigator

Actions toolbox
contains actions

organized in
categories

Help button

Options pop-up
menu

Plus button
adds statements

Buttons to help write
and check script

Getting a Handle on ActionScript 95

Adding ActionScript
Now that you know where the Actions

panel is located, how do you add Action-

Script code? You must first select a key-

frame on the Timeline in which you want

to add ActionScript. This tells Flash when

to carry out those instructions. Most often,

ActionScript is put on the very first key-

frame of your Flash movie.

Next, open the Actions panel and add

code by directly typing in the Script pane

or by choosing code from the categories

or menus provided.

To add an action in the Script pane:
1. Select the keyframe on the Timeline

where you want to assign an action.

2. In the Script pane of the Actions panel,

begin typing the desired action.

or

Open a category from the left toolbox of

the Actions panel and double-click the

desired action or drag it into the Script

pane.

The action appears in the Script pane.

The action may be incomplete, and

Flash tells you what additional elements

need to be provided to complete the

statement D.

or

Click the plus button above the Script

pane and choose the action from the

pull-down menus E.

The action appears in the Script pane.

While making your selection in the

Actions toolbox, you can use the arrow keys,

the Page Up and Page Down keys, or the

Home and End keys to navigate through the

list. Press Enter or the spacebar to open or

close categories or to choose an action to put

in the Script pane.

D Add an action by choosing a statement from the

Actions toolbox. Here, the action gotoAndPlay()
has been added to the Script pane, and Flash

indicates that there is still code missing before it.

E Add an action by choosing it from the plus

button’s pull-down menus.

96 Chapter 3

To edit actions in the Script pane:
Highlight the action, and then click and drag

it to a new position in the Script pane.

or

Highlight the action and use Copy, Cut,

or Paste from the keyboard (Ctrl-C, Ctrl-X,

or Ctrl-V on Windows; Cmd-C, Cmd-X, or

Cmd-V on the Mac) or from the context

menu (right-click on Windows, Ctrl-click

on the Mac). Don’t use Copy, Cut, or Paste

from the Edit menu because those com-

mands only affect the objects on the Stage.

To remove an action from
the Script pane:
Highlight the action and use the Delete key

to remove it from the Script pane.

To modify the Actions panel display:
Drag or double-click the vertical splitter

bar, or click the arrow button that divides

the Actions toolbox and Script pane, to col-

lapse or expand an area F.

or

Drag or double-click the horizontal splitter

bar, or click the arrow button that divides

the Actions toolbox and Script navigator, to

collapse or expand an area G.

To show earlier versions
of ActionScript:
If you are authoring for earlier versions of

the Flash Player and need to use com-

mands from ActionScript 1 or 2, click the

pull-down menu above the Actions toolbox

and select a different version H.

The categories in the Actions toolbox

change to only show actions that you can

use for that version.

F Resize the Script pane by dragging or clicking

the vertical splitter bar that separates it from the

Actions toolbox.

G Resize the Actions toolbox by dragging or

clicking the horizontal splitter bar that separates

it from the Script navigator.

H Choose an ActionScript version

from the top pull-down menu.

Moving the vertical splitter bar

Moving the horizontal splitter bar

Getting a Handle on ActionScript 97

Actions panel options
The Actions panel provides many fea-

tures that can help you write reliable code

quickly and easily. Chapter 12, “Managing

Content and Troubleshooting,” explains

many other debugging tools in detail.

When you’re writing ActionScript in the

Script pane, you can use code hints, which

appear as you type. Code hints recognize

what kind of action you’re typing and offer

choices and prompts on how to complete

it. Flash makes it easy to be an expert! You

can also customize the format options so

that your code looks just the way you want

it for ease of reading and understanding.

Coding help is always available in the

Actions panel. The Help button, for exam-

ple, calls up the Help site on the Adobe

Flash Web site and sends you directly to

the description and usage of any action

selected in the Actions toolbox in case you

have trouble remembering what a particu-

lar action does or how it’s used.

If you want to keep an ActionScript visible

as you select other elements in your Flash

movie, you can do so by pinning your

script. Pinning makes your script “stick” in

the Script pane until you unpin it. This tech-

nique is useful if you’ve forgotten the name

of a text box or a movie clip and need to

reference it in an ActionScript statement.

You can pin your current script, and then

go look for your text box or movie clip.

Your script remains in place so that you can

make the necessary edits.

Other Places for ActionScript
The Timeline isn’t the only place you can

put ActionScript. More advanced coders

often will create their own ActionScript

classes or extend the functionality of

Flash’s preexisting classes. In those

cases, ActionScript is written in a sepa-

rate text file (the filename is identical to

the custom class name with the exten-

sion .as to indicate that it is ActionScript).

The text file is saved in the same direc-

tory as the Flash file. When you create

your own classes this way, you must use

the import statement in the script to use

the preexisting classes to build upon.

98 Chapter 3

To use code hints:
1. Enter an object target path and then a

period or a colon.

Flash anticipates that you will enter a

method or property after a period or a

data type after a colon. A menu-style

code hint appears to guide you I.

2. Choose the appropriate term from

the menu.

Flash fills in your choice, completing

that part of your code.

I A code hint guides you

as you enter ActionScript.

The scrolling menu lists code

appropriate for the preceding

object.

J The play() method requires

a parameter in between its

parentheses. The first required

parameter is the frame.

K After you enter the first

parameter (the frame), the code

hint directs you to the next

parameter. The next parameter

for this action is the scene.

L When you enter the closing

parenthesis, the code hint

disappears.

or

1. Enter an action in the Script pane, and

then type the opening parenthesis.

Flash detects the action and anticipates

that you will enter its parameters. A

code hint appears to guide you J.

2. Enter the first parameter and then

a comma.

The bold in the code hint advances

to highlight the next required

parameter K.

3. Continue entering the required param-

eters and type a closing parenthesis to

finish the action.

The code hint disappears L.

Getting a Handle on ActionScript 99

Dismiss a code hint by pressing the Esc

key or clicking a different place in your script.

Navigate the menu-style code hints

by using the arrow keys, the Page Up and

Page Down keys, or the Home and End keys.

You can also start typing, and the entry that

begins with the letter you type will appear in

the code hint. Press Enter or the key that will

follow the method or property (for example, a

space, comma, or parenthesis) to choose the

selection.

You can call up code hints manually by

pressing Ctrl-spacebar or by clicking the Show

Code Hint button above the Script pane when

your pointer is in a spot where code hints are

appropriate M.

Change the delay time for code hints

to appear or turn off code hints by choos-

ing Preferences from the Actions panel’s

Options menu. When the Preferences dialog

box appears, change your preferences in the

ActionScript options category N.

Code hinting can also work with custom

classes. If you create your own ActionScript

classes and save them as external .as files in

your Flash’s source path (where it looks for

external ActionScript), Flash will automati-

cally detect and display code hints for those

classes.

To set formatting options:
1. From the Actions panel’s Options menu,

choose Preferences.

The Flash Preferences dialog box

appears.

2. Choose the Auto Format category.

Continues on next page

M The Show Code Hint button is above the Script

pane.

N In the Preferences dialog box, you can change

the time that it takes for code hints to appear or

turn off that feature completely.

Show Code Hint button

100 Chapter 3

3. Set the different formatting options and

specify the way a typical block of code

should appear O; then click OK.

4. Choose Auto Format from the Actions

panel’s Options menu (Ctrl-Shift-F for

Windows, Cmd-Shift-F for Mac), or click

the Auto Format button above the

Script pane P.

Flash formats your script in the Script

pane according to the preferences you

set in the Auto Format category of the

Flash Preferences dialog box (step 3).

To get information about an action:
Select an ActionScript term in the Actions

toolbox or in the Script pane, and then click

the Help button above and to the right of

the Script pane Q.

or

Right-click (Windows) or Ctrl-click (Mac)

an action in the Actions toolbox or in the

Script pane and select View Help from the

context menu that appears.

The Adobe Help application opens (which

mirrors the content in the Help section of

the Adobe Web site) with information on

the selected ActionScript term. The typical

entry in the Help site contains information

about usage and syntax, lists parameters

and their availability in various Flash ver-

sions, and shows sample code.

To pin or unpin a script
in the Script pane:
With ActionScript visible in the Script pane,

click the Pin Active Script button at the bot-

tom of the Actions panel R.

To unpin the script, click the button again.

O The Auto Format category in the Flash Prefer-

ences gives you a preview of how a typical block

of code will look with the selections you make.

P The Auto Format button is above the

Script pane.

Auto Format button

R The Pin Active Script button (top) toggles to

Close Pinned Script (bottom).

Pin Active Script button

Close Pinned Script button

Q Make liberal use of the Help button to access

ActionScript references.

Help button

Getting a Handle on ActionScript 101

Editing ActionScript
When the code in the Script pane of the

Actions panel becomes long and complex,

you can check, edit, and manage it using

the Options menu of the Actions panel.

There are menu options for searching and

replacing words, importing and exporting

scripts, and printing your scripts, as well

as for different ways to display your script,

such as using word wrap A.

You can use the Find and Replace func-

tions in the Actions panel to quickly

change variable names, properties, or

even actions. For example, if you create

a lengthy script involving the variable

redTeamStatus but change your mind and

want to change the variable name, you can

replace all instances of redTeamStatus
with blueTeamStatus. You can find all

the occurrences of the property height
and replace them with width, or you can

locate all the occurrences of the action

gotoAndStop and replace them with

gotoAndPlay.

The Import Script and Export Script func-

tions of the Actions panel let you work with

external text editors.

A The Options menu of the Actions panel

contains editing functions for the Script pane.

Selects a specific statement line
Replaces a word or phrase with another

Formats the Script pane according to your Auto Format
settings in Flash Preferences
Checks the Script pane for errors

Inserts ActionScript code from an external text file

Saves the Script pane as a text file

Prints the Script pane

Displays line numbers in the Script pane
Fits the contents of the Script pane into the available
view by word wrapping
Opens the Preferences dialog box

102 Chapter 3

To check the syntax in
the Script pane:
In the Actions panel, choose Options >

Check Syntax (Ctrl-T for Windows, Cmd-T

for Mac).

or

Click the Check Syntax button above the

Script pane B.

Flash checks the script in the Script pane

for errors in syntax. It reports any errors

in a Compiler Errors window, which tells

you the location and description of each

error C.

Check Syntax only reports the errors

in the current Script pane, not for the entire

movie.

To find and replace ActionScript
terms in the Script pane:
1. In the Actions panel, choose Options >

Find and Replace (Ctrl-F for Windows,

Cmd-F for Mac).

The Find and Replace dialog box

appears.

2. In the Find what field, enter a word or

words that you want Flash to find. In

the Replace with field, enter a word or

words that you want the found words

to be replaced with. Select the Match

Case check box to make Flash distin-

guish between uppercase and lower-

case letters D.

C The compiler error for a bad script. The Script

pane (top) contains an extra closing parenthesis.

Flash notifies you of the nature and location of the

error in the Compiler Errors window (bottom).

D Every occurrence of blue will be

replaced with red.

B The Check Syntax button is the

check-mark icon above the Script

pane.

Check Syntax button

Getting a Handle on ActionScript 103

3. Click Replace to replace the first

instance of the found word, or click

Replace All to replace all instances of

the found word.

The Find and Replace dialog box

replaces all the occurrences of a particular

word or phrase only in the current Script pane

of the Actions panel. To replace every occur-

rence of a certain word in the whole movie,

you need to go to each script and repeat this

process.

To import an ActionScript:
1. Select Options > Import Script (Ctrl-

Shift-I for Windows, Cmd-Shift-I for Mac).

2. In the dialog box that appears,

choose the text file that contains the

ActionScript you want to import and

click Open.

Flash inserts the ActionScript contained

in the text file into the current Script

pane at the insertion point.

To export an ActionScript:
1. Select Options > Export Script

(Ctrl-Shift-P for Windows, Cmd-Shift-P

for Mac).

2. Enter a destination filename and click

Save.

Flash saves a text file that contains the

entire contents of the current Script

pane. The recommended extension for

external ActionScript files is .as, as in

myCode.as.

104 Chapter 3

Using Objects
Now that you know what objects are and

how to operate the Actions panel, you

can begin to script with objects and call

their methods or evaluate and assign new

properties.

Flash provides existing classes (grouped in

packages) that reside in the Actions toolbox.

These Flash classes have methods and

properties that control different elements of

your Flash movie, such as graphics, sound,

data, time, and mathematical calculations.

You can also build your own classes or

extend the functions of an existing class, a

topic that we won’t delve into in this book.

Variables, data types,
and strict typing
In ActionScript, like most programming

languages, you access and manipulate

objects using variables. Variables are

containers that hold information. You can

create, change the contents of, and discard

variables at any time. In ActionScript 3,

it’s necessary to define the existence of

a variable, which is known as declaring the

variable, before you use it. To declare a vari-

able, you use the ActionScript keyword var
followed by the name of the variable, which

is followed in turn by a colon and the type of

information the variable will be used to store.

The different kinds of information that vari-

ables can contain are known as data types.

Examples of typical types of variables are a

user’s score (Number data type), an Internet

address (String data type), a date object

(Date data type), and the on/off state of

a toggle button (Boolean data type). In

ActionScript 3, you specify the data type

of your variable when you create it; Flash

will allow only values of that data type to

be stored in the variable. This is called

strict typing. Strict data typing prevents

you from accidentally assigning the wrong

type of data to a variable, which can cause

problems during the playback of your

movie. Strict data typing involves adding a

colon (:) and the data type after the name

of your variable. For example, if you want

to create a variable called myScore to hold

a number, you write var myScore:Number.

TABLE 3.1 Some Data Types

Data Type Description Example Example

Number A numeric value var myTemp:Number = 98.6

int An integer (whole number) var myGolfScore:int = -4

uint An unsigned integer (a non-negative whole number) var myZipCode:uint = 11215

String A sequence of characters, numbers, or symbols. A

string is always contained within quotation marks.

var yourEmail:String =
➝ "johndoe@domain.com"

Boolean A value of either true or false. The words aren’t

enclosed in quotation marks.

var buttonPressed:Boolean =
➝ true

Object A generic object to which you can add properties

or methods. Used in cases where a simple object is

needed.

var myObj:Object =
➝ new Object()

Any of the Flash

classes

An object type var myMusic:Sound =
➝ new Sound()

Getting a Handle on ActionScript 105

Table 3.1 lists the most basic data types that

variables can hold. However, a variable can

be declared with any ActionScript class as

its data type, including any of the built-in

classes and classes you create yourself.

Once you declare a variable, you initialize

it, or put information into the variable for the

first time. Initializing a variable in the Actions

panel involves using the equals sign (=),

which assigns a value to a variable. The

name of the variable goes on the left side of

the equals sign, and a value to be assigned

goes on the right side. This point is crucial:

the expression a = b is not the same as b = a.

So you can put a number in your myScore
variable like this: myScore = 20. It’s common

to merge the declaration and initializing in

a single line like so: var myScore:Number
= 20. When you initialize a variable at the

same time you declare the variable, it’s clear

which part of the statement is the variable

and which part is the new value.

To declare and initialize a variable:
1. Select the first frame of the Timeline

and open the Actions panel.

2. In the Script pane, enter the keyword

var.

3. Next, enter a descriptive name for your

variable.

Your variable name should follow cer-

tain rules. See the sidebar “The Rules of

Naming” for more information.

4. Type a colon and then the data type of

the variable.

5. Type the equals sign (=) and then the

initial value that you want the variable

to hold.

The value on the right side of the

equals sign is assigned to the variable

on the left side A.

It’s good practice to initialize your vari-

ables in the first frame of your Timeline. That

way, you keep them all in the same place and

can edit their initial values easily.

When you assign a value that is one

of the intrinsic data types (Number, String,

Boolean) to a variable, even if you’re assign-

ing to one variable the value in another, Flash

determines the value and puts it in your

variable at that moment. If the property or the

referenced variable subsequently changes,

the value of your variable won’t change unless

you reassign it. Consider this example: var
xPosition:Number = mouseX;. When you

initialize the variable called xPosition in the

first frame of your movie, it holds the x-coor-

dinate of the pointer. As you move the pointer

around the screen, the property mouseX
changes but the variable xPosition does not.

The variable xPosition still holds the original

x-coordinate from when it was initialized.

A Variables can be initialized to hold different

kinds of information. The word var indicates that

myScore is a variable, the colon and word Number
indicate that the variable can only hold numbers,

and the equals sign assigns the numerical value

20 to the variable.

106 Chapter 3

The Rules of Naming
Although you’re free to make up descriptive names for your objects, you must adhere to the fol-

lowing simple rules. If you don’t, Flash won’t recognize your object’s name and will likely give you

an error:

. Don’t use spaces or punctuation (such as slashes, dots, and parentheses), because these char-

acters often have a special meaning to Flash.

. You can use letters, numbers, and underscore characters, but you must not begin the name

with a number.

. You can’t use certain words for variable names because they are reserved for special functions

or for use as keywords in ActionScript. If you try to use them as variables, Flash will display an

error message when you test your movie. For example, you can’t name your variable “function”

because that word is part of the ActionScript language.

Those are the only three rules. Some additional general naming strategies, however, can make

your scripts easier to understand, debug, and share:

. Variable names should describe the information that the variables hold. The variable names

playerScore and spaceshipVelocity, for example, are appropriate and will cause fewer

headaches than something like xyz or myVariable.

. Use a consistent naming practice. A common method is to use multiple words to describe

an object and to capitalize the first letter of every word except the first. The names

spinningSquare1, spinningSquare2, and leftPaddle, for example, are intuitive, descriptive,

and easy to follow in a script. Remember that ActionScript 3 is case sensitive! Using a con-

sistent naming practice will help you avoid mismatches between your object name and your

ActionScript code due to capitalization.

. It sometimes helps to add suffixes to names to describe the object type. Using the standard

suffix _mc for movie clips and _btn for buttons readily identifies the objects. Although strict

typing makes Flash recognize all variable names and their associated data type for code hint-

ing in the Actions panel, adding suffixes, especially to generic variable names, often makes the

code more understandable.

Getting a Handle on ActionScript 107

Expressions and strings
Using expressions and using strings

are two important ways to describe and

manipulate data. An expression is a state-

ment that may include variables, proper-

ties, and objects, and must be resolved

(figured out) before Flash can determine its

value. Think of an expression as being an

algebraic formula, like a2 + b2. The value of

the expression has to be calculated before

it can be used B.

A string, on the other hand, is a statement

that Flash uses as is and considers to be a

collection of characters. The string “a2 + b2”

is literally a sequence of seven characters

(including the spaces around the plus sign

but not the quotation marks). When you ini-

tialize a variable with a literal string value,

you must enclose the characters in straight

quotation marks.

Expressions and strings aren’t mutually

exclusive—that is, sometimes you can have

an expression that includes strings! For

example, the statement "Current frame
is " + currentframe is an expression

that puts together a string and the frame

number of the main Timeline. You’ll learn

more about this kind of operation, called

concatenation, in Chapter 11, “Manipulat-

ing Information.”

If quotation marks always surround a

string, how do you include quotation marks

in the actual string? You use the backslash (\)

character before including a quotation mark.

This technique is called escaping a character.

The string “The line \"Call me Shane\" is from

a 1953 movie Western” produces the following

result: The line “Call me Shane” is from a 1953
movie Western. Table 3.2 lists a few common

escape sequences for special characters.

B Some examples of expressions. The variable

names are on the left side of the equals signs, and

the expressions are on the right.

TABLE 3.2 Common Escape Sequences

Sequence Character

\b Backspace

\r New line

\t Tab

\" Quotation mark

\' Single quotation mark

\\ Backslash

108 Chapter 3

Creating objects
The first step to add interactivity with Flash

objects is to create a new instance of a

class. You do this by using the keyword

new and then the name of the class and

a pair of parentheses: new Human(). This

creates a new Human object. However, the

new Human object needs a name. So you

give the object a name by declaring a vari-

able and assigning the new object to it.

var Zeke:Human = new Human();

You’ve just created Zeke! The variable

Zeke is strictly typed to hold a Human

type object, and with the variable name,

you can reference all the properties and

methods of the Human class. The process

is the same as creating an instance of, or

instantiating, a symbol on the Stage, but

here you do it purely with ActionScript.

Consider the following example:

var myData:Array = new Array();

This statement makes a new Array
instance called myData. The statement on

the right side of the equals sign is called a

constructor. Most classes have a construc-

tor method, a special method that creates

new instances of that class.

The following task demonstrates how to

create an instance of the Date class, but

the general technique works for instantia-

tion of all objects.

Getting a Handle on ActionScript 109

To instantiate an object:
1. Select the first frame on the main Time-

line and open the Actions panel.

2. In the Script pane, type var.

3. Enter a space and then a name for your

new object.

4. ActionScript 3 requires strict typing, so

enter a colon and then the object type.

In this example, use Date.

5. Type an equals sign (=) and then the

constructor, new Date().

The full statement creates a new Date
object with the name you entered. Your

Date object is instantiated and ready

to use C.

Creating instances on the Stage
A few types of ActionScript objects, such

as movie clips, buttons, and text fields, are

unique because you can create them visu-

ally by adding an instance from the Library

(for button and movie clip symbols) or

using the drawing tools (for text). Instantia-

tion of these objects involves two steps:

placing an instance on the Stage and nam-

ing that instance in the Properties inspec-

tor. These two steps accomplish the same

task that the constructor function performs

for other Flash classes D. The result is the

same: A named object, or an instance, of

a class is created. You can manipulate that

object by calling its methods or evaluating

its properties.

Later in the book, you’ll learn how to cre-

ate SimpleButton instances (Chapter 4,

“Advanced Buttons and Event Handling”),

MovieClip instances (Chapter 7, “Con-

trolling and Displaying Graphics”), and

TLFTextField instances (Chapter 10,

“Controlling Text”), and place them on

the Stage using only code.

C The finished statement creates an object called

myDate from the Date class.

D Instantiation of a movie clip symbol from the

Library to the Stage involves naming it in the

Properties inspector.

Movie clip
instance on
the Stage

Movie clip
symbol in
Library

Movie clip instance
name in Properties
inspector

110 Chapter 3

To name a movie clip instance
or a button instance:
1. Create a movie clip symbol or a button

symbol.

2. Drag an instance of the symbol from the

Library to the Stage.

3. Select the instance.

4. At the top of the Properties inspec-

tor, enter a unique name for your

instance E.

Now you can use this name to refer to

your movie clip instance or your button

instance with ActionScript.

The name of your symbol (the one that

appears in the Library) and the name you give

it in the Properties inspector are two differ-

ent identifiers F. The name that appears in

the Library is a symbol property and basically

is just an organizational reminder. The name

in the Properties inspector is more important

because it’s the actual name of the object and

will be used in targeting paths. End your movie

clip instance name with _mc and your button

instances with _btn so that the Actions panel

can identify the object type.

Calling methods
Often, the next step after creating a new

object involves calling the object’s methods.

You can call a method by using an object’s

name followed by a period and then the

method with its parameters within parenthe-

ses. All the methods of a particular class can

be found in the Methods category of that

class category in the Actions toolbox.

When you call an object’s method, the code

in the Script pane will look something like this:

myShape.startDrag();

This statement calls the method

startDrag() of the object called myShape,

and as a result, the graphic called myShape
will follow the mouse pointer.

F The name of the movie clip symbol appears in

the Library (Symbol 1), and the name of the movie

clip instance appears in the Properties inspector

(myCircle_mc).

Movie clip
symbol name

Movie clip
instance name

E The Properties inspector for a selected

movie clip. The name of this movie clip object

is myCircle_mc.

Getting a Handle on ActionScript 111

Sometimes when you call an object’s

method, a value is returned. Essentially,

the object does something and then

comes back to you with an answer. In that

case, it’s useful to put that answer or result

in another variable so you can store it and

analyze it. Your ActionScript would look

something like this:

var currentDate:Number =
➝ myDate.getDate();

This statement calls the method getDate()
from the myDate object and puts the infor-

mation it retrieves into the variable called

currentDate.

The following task continues the task “To

instantiate an object” and calls a method

of your newly created Date object. Later

chapters introduce specific classes,

provide more information about the Date
class, and show you how to use methods

to control your Flash movie.

To call a method of an object:
1. Continuing with the task “To instantiate

an object,” open the Actions panel and

start a new line of code.

2. Enter a trace() statement so you

can see the results of the method in

this example. Between the parenthe-

ses of the trace() statement, enter

myDate.getDate() G.

The trace() statement is a debugging

tool that outputs messages in the Out-

put panel. See the sidebar, “Using the

trace() Statement.”

3. Test your movie by choosing Control >

Test Movie > in Flash Professional.

Flash instantiates a Date object (from

the earlier task) and then calls the

getDate() method. The returned value

(the day of the month) is displayed in

the Output window H.

G The Date object called myDate retrieves the

current date from your computer’s internal clock,

and the trace() command displays it when you

test the movie.

H The Output panel displays the results of the

trace. When this movie was tested, it was the 28th

day of the month.

112 Chapter 3

Assigning properties
You can change the properties of objects

simply by assigning new values on the

right side of an equals (=) symbol. For

example, this statement changes the alpha
property of the object called myShape
so it becomes 50 percent transparent:

myShape.alpha = .5;.

Sometimes properties are read-only, which

means they can’t be changed, but you can

still use them in expressions to test certain

conditions.

To assign a value to a property:
1. In the Script pane, enter the object

name and then a dot.

The code hint pull-down menu appears,

displaying a list of choices available to

the particular object.

2. Select the desired property.

The statement consisting of the object

name, a dot, and the property appears.

3. Enter an equals (=) symbol and then a

value.

A new value is assigned to the

property I.

I Assigning a value to a

property. The value of 45 is

assigned to the rotation
property of the object called

mybox, which results in the

object rotating 45 degrees.

Getting a Handle on ActionScript 113

Using the trace() Statement
The first bit of ActionScript you should learn as you

forge ahead with objects, methods, and properties is

the trace() statement. The trace() statement gives

you feedback by displaying messages in the Output

panel, a panel that only shows up in the Flash authoring

environment.

Enter a string or an expression within the parentheses

of the trace() statement, and the results are displayed

when you test your movie. Traces are for debugging,

and they won’t show up in your final, published SWF

file. You’ll often use the trace() statement to track the

value of variables at different points of your movie to

see whether or not your code is working correctly.

For example, in the Actions panel, enter

trace(stage.stageWidth);

When you test your movie, the Output panel appears and displays the value that represents the

width of your current Stage, in pixels J.

You can have multiple parameters within the trace() statement, separated by a comma. The Out-

put panel will display the multiple results separated by a space.

You can also combine strings to make the output easier to understand. For example, the statement

trace("stage width is "+stage.stageWidth) appends the string before the stage width so you

know what the number in the Output panel refers to K.

J The trace() statement displays the

width of the Stage in the Output panel

when you test the movie (Control > Test

Movie > in Flash Professional).

K Add text to your trace() statement

to make it more understandable.

114 Chapter 3

About Functions
If objects and classes are at the heart of

ActionScript, functions must lie in the brain.

Functions are the organizers of Action-

Script. Functions group related Action-

Script statements to perform a specific

task. Often, you need to write code to do a

certain thing over and over. Functions elim-

inate the tedium of manually duplicating

the code by putting it in one place where

you can call on it to do its job from any-

where, at any time, as many times as nec-

essary. You’ll see in Chapter 4, “Advanced

Buttons and Event Handling,” that functions

are essential for building responses to

events—creating true interactivity.

As you learned earlier in this chapter, the

objects Adam, Betty, and Zeke can per-

form certain tasks called methods. If these

objects were to put on a dinner party, they

could organize themselves and do the

following:

Adam.answerDoor();
Betty.serveDinner();
Zeke.chitChat();

But every Friday night when they have a

dinner party, you’ll have to write the same

three lines of code—not very efficient

if these objects plan to entertain often.

Instead, you can write a function that

groups the code in one spot:

function dinnerParty() {
 Adam.answerDoor();
 Betty.serveDinner();
 Zeke.chitChat();

}

Now, every Friday night you can invoke

the function by name and write the code

dinnerParty(). The three statements

inside the function’s curly braces will be

executed.

Building functions
To create a function, start the line of code

with the word function, then insert a

space, and then give your function a name.

The rules of naming functions are the same

as those for variables. Add a pair of paren-

theses and curly braces. Your statement

may look something like this:

function doExplosion() { }

Add actions within the curly braces. Then,

when you need the function, call it by

name, like this: doExplosion().

The following task builds a function that

loads a new Web site. Doing so requires

that you do two things: create an object

that holds the Web-site address, called

a URLRequest object, and then call the

navigateToURL() method. Consolidating

these statements into a single function

helps organize your code. You’ll learn more

communicating with the Web in Chapter 6,

“Managing External Communication,” so for

now focus on how the function works.

Getting a Handle on ActionScript 115

To build and call a function:
1. Select the first keyframe of the main

Timeline and open the Actions panel.

2. Enter the following code:

function loadwebsite(){ }

The function called loadwebsite is cre-

ated. Statements within the curly braces

will be executed when the function is

called.

3. Create a blank line between the curly

braces and enter the following code:

var mywebsite:URLRequest =
➝ new URLRequest();
mywebsite.url =
➝"http://www.adobe.com";
navigateToURL(mywebsite);

The first line within the function cre-

ates a new object from the URLRequest
class. The second line assigns a Web

address to its url property, and the last

line loads the site.

4. On a new line outside the function, call

the function by entering the following:

loadwebsite();

Test your movie by choosing Control >

Test Movie > in Flash Professional A.

As soon as your movie plays, a browser

automatically opens and loads the

specified Web site.

A When the function loadwebsite() is called, all

the statements between the function’s curly braces

are executed, and the Adobe Web site opens in a

browser (bottom).

116 Chapter 3

Accepting parameters
When you define a function, you can

tell it to perform a certain task based on

parameters that you provide, or pass, to

the function at the time you call on it. This

approach makes functions much more flex-

ible because the work they do is tailored

to particular contexts. For example, in the

previous task, your function only loads the

Adobe Web site. But by enabling your func-

tion to accept a parameter, you can have

your function load any Web address.

To build a function that
accepts parameters:
1. Continuing with the file you used in the

preceding task, select the first keyframe

and open the Actions panel.

2. With your pointer between the paren-

theses of the function statement, enter:

whatsite:String

The variable whatsite is the parameter,

and it is strictly typed to hold a string

value.

3. Change the second line of the function

body so that it reads:

mywebsite.url = whatsite;

The parameter is used in one or more

of the function statements.

4. Change the call to the function with this:

loadwebsite(
➝"http://www.peachpit.com");

5. Test your movie by choosing Control >

Test Movie > in Flash Professional B.

The value that you provide in the initial

call ("http://www.peachpit.com") is

passed to the function. The function

uses that parameter to customize its

set of actions. You can call the function

many times with different parameters.

When you define a function’s param-

eters, they should also be strictly typed. So

after the parameter name, be sure to include

a colon and the parameter’s data type.

B This function requires a parameter, which is

used to customize the Web site that opens (below).

Parameter
Data type of
parameter

Parameter used to customize the URL

http://www.peachpit.com

Getting a Handle on ActionScript 117

Returning a value
When you pass parameters to a func-

tion, you often want to know the results

of a particular calculation. To make your

function report a resulting calculation, use

the return statement. The return state-

ment, which you use within your function’s

body (between the curly braces), indicates

that the value of an expression should be

passed back when the function is called.

In the following task, you’ll build a simple

function that adds two numbers together

and returns the result.

To build a function that
returns a value:
1. Select the first keyframe of the main

Timeline and open the Actions panel.

2. Enter the word function, then a space,

and then enter a name for your func-

tion followed by open and closed

parentheses.

3. Between the parentheses of the func-

tion, enter the following parameters:

a:Number, b:Number

4. After the parentheses, add a colon, and

then the data type Number.

5. Add an open and closed curly brace.

6. Between the curly braces for the func-

tion, enter the word return, followed

by an expression to add the two param-

eters. The full function code should look

like this:

function simpleAdd(a:Number,
➝ b:Number):Number {
return (a + b);
}

Continues on next page

Scope
Variables that are created inside a func-

tion only exist within that function. This is

the consequence of a variable’s scope.

Scope refers to the area of code where

your variable “belongs” (you can think of

it as its home) and where you can access

its contents. If you declare a variable

outside a function, it is a global variable,

which is accessible from all parts of the

code. If you declare a variable inside a

function, it is a local variable, which is

only accessible from within that function.

For example, in the example presented

in the tasks in this section, the variable

mywebsite only exists within the func-

tion called loadwebsite, and cannot be

referenced outside the function.

118 Chapter 3

7. On a new line outside the function, call

the function inside a trace() action like

so: trace(simpleAdd(3, 5));

8. Test your movie by choosing Control >

Test Movie > in Flash Professional C.

The two values (3 and 5) pass to the

function, where they’re processed. The

function returns a value back to where

it was called. The returned value is

displayed in the Output panel. Use the

return statement whenever you need

to receive a value from a function.

The returned value of a function should

also be strictly typed. After the closing paren-

thesis of the function, enter a colon and then

the data type of the returned value. If the func-

tion doesn’t return a value, you should use the

keyword void.

C This function requires two parameters and

returns a number. The trace() statement displays

the returned value in the Output panel when you

test the movie (below).

Getting a Handle on ActionScript 119

Using Code Snippets
Understanding the structure of ActionScript

and writing code yourself is essential for

your future success in Flash, especially for

more sophisticated projects. However, if

you don’t want to write code, or you just

need to quickly add some interactivity

without learning too much about what’s

behind the code, the new Code Snippets

panel can help. The Code Snippets panel

provides ActionScript code for common

interactive functions. For example, if you

want to make an object “drag-and-droppa-

ble,” you can add the interactivity from the

Code Snippets panel with just a few clicks.

The code snippets are saved in an external

XML document, which makes it easy to

edit, save your own version, or import one

from another developer.

To add interactivity from
the Code Snippets panel:
1. Open the Code Snippets panel (Win-

dow > Code Snippets, or click the Code

Snippets button in the Actions panel).

The Code Snippets panel organizes the

snippets in different folders, according

to their function A. Click the triangles

in front of the folders to expand or col-

lapse them.

Continues on next page

A The Code Snippets panel organizes common

interactivity in folders.

120 Chapter 3

2. Select a code snippet and double-click it.

or

Select a code snippet and then click on

the “Add to current frame” button.

or

Right-click (Windows) or Ctrl-click (Mac)

on a code snippet and choose “Add to

frame.”

Flash automatically adds ActionScript

to a layer named Actions in the cur-

rently selected keyframe, and then

opens the Actions panel. If the code

references an object or instance, Flash

will warn you and ask that you select

one on the Stage. Flash will automati-

cally convert selections to movie clip

symbols and give them instance names,

if necessary B.

3. View the ActionScript code in the

Actions panel.

The code is heavily commented (see

the next section to learn about com-

ments) to explain what the code does

and how you can customize it to fit your

situation. You may have to change a

few parameters to make it work in your

project C.

B Some actions like the one selected here, Drag

and Drop, requires a selected object, and Flash

provides a warning.

C The ActionScript code that is automatically

inserted in the Actions panel provides instructions

on how to customize it. In this example, the

number 5 is a placeholder that should be replaced.

Getting a Handle on ActionScript 121

To save code in the Code
Snippets panel:
1. In the Code Snippets panel, from the

Options menu choose Create New

Code Snippet D.

The Create New Code Snippet dialog

box opens E.

2. Enter a name in the Title field, a

description in the Tooltip field, and your

ActionScript code in the Code field.

Click Autofill if you’ve already selected

the desired code in the Actions panel.

3. Select the option “Automatically replace

instance_name_here when apply-

ing code snippet” if you want Flash to

replace instance_name_here in the

code with the actual selected instance

on the Stage. Click OK.

The title appears in the Code Snippet

panel under a Custom folder, and the

tooltip appears when you move your

mouse over the title F.

To delete a code snippet:
■ Select a code snippet and, from the

Options menu, choose Delete Code

Snippet G.

or

Right-click (Windows) or Ctrl-click (Mac)

a code snippet and choose Delete

Code Snippet.

The selected snippet is deleted from

the Code Snippets panel.

D Choose Create New Code Snippet to

save your own code snippet.

E A simple code snippet that simply traces the

words “hello friend.”

F Your custom code snippet appears in the Code

Snippets panel.

G Choose Delete Code Snippet to

delete a code snippet.

122 Chapter 3

To edit a code snippet:
1. In the Code Snippets panel, from the

Options menu choose Edit Code Snip-

pets XML.

An XML file opens that contains all the

code for each code snippet entry H.

2. Edit the ActionScript code or the

desired XML code and choose File >

Save when you’re done.

3. In the Code Snippets panel, from the

Options menu choose Refresh I.

Flash updates the Code Snippets panel

to reflect the edits you made to the

XML file.

To revert to the default
Code Snippets panel:
In the Code Snippets panel, from

the Options menu choose Reset to

Default XML.

To export the code snippets:
1. In the Code Snippets panel, from the

Options menu choose Export Code

Snippets XML.

2. In the dialog box that appears, choose

a filename with an .xml extension and

save it in a location of your choosing.

The XML file that is saved contains the

contents of your Code Snippets panel;

you can share these contents with other

Flash developers.

To import code snippets:
1. In the Code Snippets panel, from the

Options menu choose Import Code

Snippets XML.

2. In the dialog box that appears, choose

your XML file containing your desired

code snippets and click Open.

H Code snippets are saved as an external XML

file, which you can easily edit and share with

others. It may look complicated, but the XML

structure is logical and straightforward. Edit the

contents between the opening (<code>) and

closing (</code>) XML tags.

I Make sure you choose Refresh

from the Code Snippets Options menu

so your edits show up in the Code

Snippets panel.

Getting a Handle on ActionScript 123

Using Comments
After you’ve built a strong vocabulary of

Flash actions and are constructing com-

plex statements in the Actions panel, you

should include remarks in your scripts to

remind you and your collaborators of the

goals of the ActionScript. Comments help

you keep things straight as you develop

intricate interactivity and relationships

among objects A.

To create a line comment:
Click the Line comment button at the top of

the Script pane, and then enter your com-

ments B.

or

In the Script pane, manually type two

slashes (//) followed by your comments.

Comments appear in a different color than

the rest of the script, making them easy to

locate.

A Comments interspersed with ActionScript

statements help make sense of the code.

B The Line comment button lets you insert

comments on a single line.

Line comment button

124 Chapter 3

To create a block comment:
Click the Block comment button at the top

of the Script pane, and then enter your

comments between the /* and the */ C.

Block comments can span multiple lines as

long as they lie between the slash-asterisk

and the asterisk-slash.

or

In the Script pane, manually type a slash

and an asterisk (/*) followed by your

comments. Close your comment with an

asterisk and slash (*/).

Don’t worry about creating too many

comments. Comments aren’t included when

you publish your final project, so they won’t

bog down performance. Also, because they

aren’t included in the exported SWF file, they

don’t increase the final file size.

The slash convention for creating com-

ments in ActionScript is the same for creating

them in keyframes. When you choose Com-

ment in the Label type pull-down menu in the

Properties inspector, the name in the <Frame

Label> field automatically begins with two

slashes (//). You can also enter two slashes

manually to begin a frame comment D.

C The Block comment button lets you insert

multiline comments.

D In the Properties inspector, double slashes

indicate a comment in a frame label.

Block comment button

Creating graphics and animation in Flash is

only half the story. The other half is interac-

tivity, which involves giving the viewer con-

trol of those graphics and animation. What

makes a movie interactive? It’s the back-

and-forth communication between the user

and the movie. Mouse movements, button

clicks, or keypresses are examples of

things that happen, called events. Events

form the basis of interactivity. There are

many kinds of events—some are user

driven whereas others are not. You’ll learn

to make Flash listen for and respond to

these events (event handling).

This chapter first introduces events, listen-

ers, and functions used to respond to

events. Next, it explores the simplest class

for creating interactivity: the SimpleButton
class. You’ll learn about invisible buttons,

animated buttons, and more complex but-

tons. You’ll also learn about the classes

and events that are involved in keyboard

input and the context menu. Additionally,

you’ll learn an important event known as

the ENTER_FRAME event, which you’ll rely

on to create continuously running actions.

Understanding these classes and event

4
Advanced Buttons

and Event Handling

In This Chapter
Listening for Events 126

Mouse Detection 128

The SimpleButton Class 133

Invisible Buttons 137

Animated Buttons and the

Movie Clip Symbol 139

Complex Buttons 142

Button-tracking Options 146

Changing Button Behavior 148

Creating Buttons Dynamically 151

Keyboard Detection 153

The Contextual Menu 157

Creating Continuous Actions 163

A Summary of Events 168

handling is essential to creating Flash

interactivity because these elements are

the scaffold on which you’ll hang virtually

all your ActionScript.

126 Chapter 4

The addEventListener() method takes

two parameters. The first is the specific

kind of event that you want to detect. All

the event objects have properties (like

MouseEvent.CLICK), which give more speci-

ficity to the event. The second parameter

is the name of your function, which is trig-

gered when the event is detected.

Next, add a function as the response to the

event. Create the function with a parame-

ter strictly typed to the MouseEvent object,

like so:

function reportClick(
➝ myevent:MouseEvent):void {
 // do something in response
}

Between the curly braces of the function,

you add actions as the response. The word

myevent in this example is the parameter

name that you make up that refers to the

event.

The actual object that receives the event

(in this example, it is the button called

myButton_btn) can be referenced in the

function by using the property target. In

the preceding example, the expression

myevent.target references myButton_btn.

When you no longer need to listen for an

event, you can delete the listener with

the method removeEventListener().

The method takes two parameters,

which are identical to the ones in the

addEventListener() method.

Listening for Events
Events are things that happen that Flash

can recognize and respond to. A mouse

click is an event, as are mouse move-

ments and keypresses. Events can also

be things that the user doesn’t initiate.

The completion of a sound, for example,

is an event. Anytime an event happens, an

object of the Event class is created. When

the mouse button is clicked, a MouseEvent
object (a subclass of the Event class) is

created. When a key on the keyboard is

pressed, a KeyboardEvent object (another

subclass of the Event class) is created. It

may seem a little strange that an object

represents an event, but remember Flash

objects can be very abstract!

With all these events happening, you need

a way to detect and respond to them.

You detect an event by creating an event

handler. An event handler simply tells Flash

what to do when a specific kind of event

happens. Creating an event handler is a

two-part operation: first, you add, or “regis-

ter,” a listener to detect the event and trig-

ger a function, and second, you create the

function that tells Flash how to respond. (It

doesn’t matter if you register the listener

first or create the function first. As long as

they are both in the same block of code,

the event handler will work.)

For example, if you want to listen for a

mouse click on top of a particular button,

you add an event listener to that object as

follows:

myButton_btn.addEventListener(
➝ MouseEvent.CLICK, reportClick);

Advanced Buttons and Event Handling 127

Event Flow
Event handling is a little more involved than what is described here. When an event occurs and

an Event object is created, the Event object systematically moves through other objects on

the Flash Stage in a process known as the event flow. There are three parts to the event flow: a

capture phase, a target phase, and a bubbling phase. Imagine that a mouse click happens on a

button that is inside a movie clip on the Stage A. The MouseEvent object is created, is dispatched

from the Stage, and flows down to the movie clip and to the button inside the movie clip. That

downward flow through those objects is the capture phase. The target phase involves the time the

MouseEvent object is at the target (the button). Then the MouseEvent object proceeds to bubble,

or flow, up the hierarchy to the main Stage B. This round-trip flow is important because it lets

you put a listener at any point along its path and still detect the event. In other words, the listener

doesn’t have to be tied to the object where the event occurs.

However, many events don’t proceed through all three phases of the event flow. Some events,

such as the Event.ENTER_FRAME object, are dispatched directly to the target object and don’t par-

ticipate in a capture or bubbling phase. Consult the Adobe ActionScript 3.0 Language Reference

to learn more about each particular kind of event.

A Events traverse the display list, which are

the objects on the Stage. This example shows

the main Stage with a movie clip on it. Inside the

movie clip is a button, where a mouse click occurs.

B When a mouse click occurs on a target

(shown here as the button), a MouseEvent is

dispatched and travels from the Stage down to

the event target, and then bubbles upward back

to the Stage. Listeners are usually put on the

event target, but it is not required. For example,

a listener could be put on the movie clip, and it

would detect events happening on the movie clip

or on objects inside the movie clip.

MouseEvent
object dispatched

Target phase
(event target is

the button)

Capture
phase

Bubble
phase

Stage

Movie clip
(on Stage)

Button (inside
movie clip)

128 Chapter 4

Mouse Detection
Mouse events such as a button click, dou-

ble-click, or simply moving the mouse are

handled by the MouseEvent class. Since

the mouse is one of the primary means

through which a user interacts with a Flash

movie, it’s important to understand how to

listen and respond to mouse events.

The simplest event is the button click,

which happens when the user presses and

then releases the mouse button. You can

detect and respond to a button click by

first attaching a listener to the main Stage

(referred to as stage) and using the prop-

erty MouseEvent.CLICK as follows:

stage.addEventListener(
➝ MouseEvent.CLICK, reportClick);

Next, create a function with a MouseEvent
parameter:

function reportClick(
➝ myevent:MouseEvent):void {
 // do something in response
}

If you want to detect a click on a particu-

lar object, use the object’s name instead

of the word stage. Flash can listen for

a mouse event on any object of the

InteractiveObject class displayed on the

Stage (button, text field, Loader, Sprite,

movie clip, or the Stage).

Table 4.1 details the specific properties

that describe the events of the MouseEvent
object.

TABLE 4.1 MouseEvent Properties

Property Description

CLICK Happens when the mouse

button is clicked

DOUBLE_CLICK Happens when the mouse

button is clicked twice in

rapid succession

MOUSE_MOVE Happens when the mouse

pointer moves

MOUSE_DOWN Happens when the mouse

button is pressed

MOUSE_UP Happens when the mouse

button is released

MOUSE_OVER Happens when the mouse

moves from a nontarget area

over a target area

MOUSE_OUT Happens when the mouse

moves from a target area out

of the target area

MOUSE_WHEEL Happens when the mouse

wheel is rotated

Advanced Buttons and Event Handling 129

To detect a mouse click on the Stage:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Assign a listener to the main Stage with

the following code:

stage.addEventListener(
➝ MouseEvent.CLICK, reportClick);

When the MouseEvent.CLICK event is

detected on the main Stage, the func-

tion called reportClick is triggered.

3. On the next available line, enter the fol-

lowing function:

function reportClick(
➝ myevent:MouseEvent):void {
 // do something in response
}

Between the curly braces, enter actions

as a response.

4. Choose Control > Test Movie > in Flash

Professional.

Whenever you click the mouse button,

Flash performs the actions listed within

the reportClick function A. The func-

tion name reportClick and Event name

myevent are names that you make up

yourself, as long as they follow the stan-

dard naming rules laid out in Chapter 3,

“Managing External Communication.”

The MouseEvent.DOUBLE_CLICK
requires an additional bit of code to work

properly. The property doubleClickEnabled
for the button instance must be set to true for

double-click events to be captured.

The MouseEvents have shortcuts that

you can use instead of entering the full

MouseEvent class name and particular event.

For example, instead of MouseEvent.CLICK,

you can use "click", and instead of

MouseEvent.MOUSE_UP, you can use

"mouseUp". Check the Flash Help Action-

Script Language Reference for the full list of

shortcuts.

A The event handler in the Actions panel (above)

makes the Output panel display “click” in the

test movie mode whenever the mouse button is

clicked (below).

130 Chapter 4

To detect a mouse movement
on the Stage:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Assign a listener to the main Stage with

the following code:

stage.addEventListener(
➝ MouseEvent.MOUSE_MOVE,
➝ reportMove);

When the MouseEvent.MOUSE_MOVE
event is detected on the main Stage, the

function called reportMove is called.

3. On the next available line, enter the fol-

lowing function:

function reportMove(
➝ myevent:MouseEvent):void {
 // do something in response
}

Between the curly braces, enter actions

as a response.

4. Choose Control > Test Movie > in Flash

Professional.

Whenever you move the mouse, Flash

performs the actions listed within the

reportMove function B.

The mouse wheel
The mouse wheel is a third button that

is nestled between the left and right

mouse buttons and spins forward or

backward like a wheel. By listening for the

MouseEvent.MOUSE_WHEEL event, you can

respond to the mouse wheel motion and

direction. For example, you can connect

the forward or backward motion of the

mouse wheel to the up or down scrolling

of text or to the selection of items in a pull-

down menu.

The MOUSE_WHEEL event has the property

delta, which is a number that indicates

how quickly and in what direction the user

B The full code that detects whenever the mouse

cursor moves over the Stage.

Advanced Buttons and Event Handling 131

spins the mouse wheel. A positive (+) delta

refers to a forward motion (away from the

user) of the mouse wheel C. A negative (–)

delta refers to a backward motion (toward

the user). The values of delta typically

range from –3 to 3. You can use the delta
property within the function of your event

handler to respond according to the direc-

tion of the mouse wheel.

Although you can author the MOUSE_WHEEL
event handler on either a Macintosh or

Windows, the playback functionality is only

available on Windows.

To detect mouse wheel motion:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Add the listener to the stage:

stage.addEventListener(
➝ MouseEvent.MOUSE_WHEEL,
➝ moveRocket);

3. On the next available line, create

the function that will respond to the

MouseEvent. Between the curly braces

of the function, incorporate the delta
property of the MouseEvent object to

reflect the forward or backward roll of

the mouse wheel:

function moveRocket(
➝ myevent:MouseEvent):void {
 myRocket_mc.x += myevent.delta;
}

In this event handler, the movement

of the mouse wheel adds or subtracts

from the horizontal position of the

movie clip called myRocket_mc D.

4. Choose Control > Test Movie > in Flash

Professional on a Windows computer.

As you move the mouse wheel back-

ward or forward, the movie clip on the

Stage changes its position E.

E The full code for responding to the mouse

wheel on the Stage. When the mouse wheel rolls

forward, the movie clip moves to the right. When

the mouse wheels rolls backward, the movie clip

moves to the left.

D The movie clip on the Stage moves to the right

if the delta property is positive and moves to the

left if the delta property is negative.

C The mouse wheel returns a positive delta when

it rolls forward and a negative delta when it rolls

backward.

Positive
delta

Negative
delta

Movie clip called
myRocket_mc

Negative delta
subtracts from its
x-position

Positive delta
adds to its
x-position

132 Chapter 4

To target an object to respond
to mouse wheel motion:
1. Continue with the previous task.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Change the addEventListener()
method to target the movie clip

myRocket_mc instead of the stage F.

4. Choose Control > Test Movie > in Flash

Professional on a Windows computer.

Now the listener only detects the

MOUSE_WHEEL event over the movie clip

instance. When you move the mouse

wheel over the movie clip on the Stage,

the movie clip changes its position G.

Multiline Classic or TLF text fields

(discussed in Chapter 10, “Controlling

Text”) automatically scroll in response to

the mouse wheel. You can, however, dis-

able the mouse wheel with the text field

property mouseWheelEnabled. Set the

mouseWheelEnabled property of any text

field to false like this:

myTF_txt.mouseWheelEnabled = false;

The text field called myTF_txt will no longer

respond automatically to the mouse wheel.

F To detect the mouse wheel event just on the

target, add the listener to the target instead of

the Stage.

G The movie clip called myRocket_mc will change

its x-position only when the user rolls the mouse

wheel when it is over the movie clip.

Advanced Buttons and Event Handling 133

The SimpleButton
Class
In the previous section, you were able to

listen for a mouse click on the Stage. But

more often than not, you’ll want to detect a

mouse click when it happens on a specific

object on the Stage, like a button, movie

clip, or a text field. The SimpleButton class

handles the visual objects that interact with

the mouse pointer. Flash lets you define

four special keyframes of a button symbol

that describe how the button looks and

responds to the mouse: the Up, Over, Down,

and Hit states. The Up state shows what

the button looks like when the pointer isn’t

over the button. Over shows what the but-

ton looks like when the pointer is over the

button. Down shows what the button looks

like when the pointer is over the button

with the mouse button pressed. And Hit
defines the actual active, or hot, area of the

button A.

It’s important to realize that events can

target many kinds of objects, not just but-

tons. Buttons just give you a convenient

way to create graphics that provide visual

feedback when the mouse is interacting

with them.

To detect a mouse event
on a button:
1. Create a button symbol (Insert > New

Symbol), and drag an instance of the

newly created button symbol from the

Library onto the Stage.

2. Select the button instance, and enter

a descriptive name in the Properties

inspector. Add the suffix _btn to the

name. In this example, the button name

is mybutton_btn B.

Continues on next page

A The four keyframes of a button symbol.

B The button instance is named mybutton_btn in

the Properties inspector.

Button instance
on the Stage

Button instance name in
the Properties inspector

134 Chapter 4

This name is the name of your button

object; you’ll use it to reference the

button from ActionScript. This name is

not the same one that appears in your
Library.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. In the first line of the Script pane, assign

a listener to your button. The target

should be the name of your button,

like so:

mybutton_btn.addEventListener(
➝ MouseEvent.CLICK, reportClick);

When the MouseEvent.CLICK event

happens on the button, the function

reportClick is called.

5. On the next available line, enter the fol-

lowing function:

function reportClick(
➝ myevent:MouseEvent):void {
 // do something in response
}

The function name reportClick and

parameter name myevent can be any

name of your own choosing as long as

they conform to the standard naming

practice. In between the curly braces,

enter actions as a response C.

6. Choose Control > Test Movie > in Flash

Professional.

Whenever you click the mouse but-

ton on the button instance, Flash

performs the actions listed within the

reportClick function D.

C The event handler is a function that is tied to

an object via the addEventListener method. In

this example, the movie will stop when the button

is clicked.

D When the mouse click occurs over this

button, named mybutton_btn, the actions

in the function are executed.

As described in Chapter 3, “Getting a

Handle on ActionScript,” it’s recommended

that you end all instance names for buttons

with _btn so that Flash can provide the appro-

priate code hints in the Script pane. This tech-

nique also makes it easier to read your code.

When you create your event handler on

the main Timeline, your button must be pres-

ent on the Stage at the same time so Flash

knows what object it references. If you create

the event handler in keyframe 1, for example,

but your button doesn’t appear until keyframe

10, Flash will give you a compile error.

Advanced Buttons and Event Handling 135

To select different mouse events:
1. Highlight the existing first parameter of

the addEventListener() method, and

press the Delete key.

2. Type in the name of a different event

that should trigger the function

(such as MouseEvent.MOUSE_MOVE,

MouseEvent.MOUSE_OVER, and so on) E.

You can add more than one listener to

the same object. A MouseEvent.MOUSE_DOWN
may trigger one event handler, whereas a

MouseEvent.MOUSE_UP may trigger another,

like so:

myobject.addEventListener(
➝ MouseEvent.MOUSE_DOWN,
➝ downFunction);
myobject.addEventListener(
➝ MouseEvent.MOUSE_UP, upFunction);

Don’t confuse the

MouseEvent.MOUSE_OVER event with the Over

keyframe of your button symbol. Both involve

detecting when the pointer is over the hit area.

But the Over state describes how your button

appears when the mouse is over the hit area,

whereas the MouseEvent.MOUSE_OVER event

triggers the function for that event. The key-

frames of a button symbol define how it looks,

and the event handler defines what it does F.

E Change the MouseEvent properties (highlighted

here) to listen for different kinds of mouse events.

F The keyframes of a button symbol (top) provide

the visual feedback to mouse interaction, and the

ActionScript code on the Timeline (bottom) tells

Flash what to do when an event happens.

136 Chapter 4

Mouse Events in ActionScript 2
So far, you’ve seen only one way to manage event handling: by creating a function and using the

method addEventListener() to detect an event. However, if you’re authoring under a previous

ActionScript version, you should use the older way of handling mouse clicks. First, in the Proper-

ties inspector, name the button or movie clip on the Stage. Then, in the Actions panel, target the

button or movie clip and assign a function to the first keyframe on the Timeline, like so:

myButton_btn.onRelease=function(){
 // do a response
};

There is an even older technique for handling events that involves attaching the event-handler

code directly to a button instance by selecting the button before typing in the code. You use a spe-

cial event-handler syntax, as in the following:

on (release) { //do a response }

It’s best to avoid the third way of handling events because your code becomes scattered among

individual buttons on the Stage. As your movie becomes more complex and you have more but-

tons to deal with, you’ll find it difficult to isolate and revise button events. Putting the event handler

on the main Timeline is standard practice and the recommended route.

Advanced Buttons and Event Handling 137

Invisible Buttons
You can exploit the flexibility of Flash but-

ton symbols by defining only particular

states. If you leave empty keyframes in all

states except for the Hit state, you create

an invisible button A. An invisible button is

not visible to the audience, yet still main-

tains a clickable hot spot. Invisible buttons

are extremely useful for creating generic

hotspots to which you can assign actions.

By placing invisible button instances on

top of graphics, you essentially have the

power to make any area on the Stage react

to the mouse pointer. For example, you can

place several invisible buttons over a map

graphic to create hidden hotspots B.

When you drag an instance of an invisible

button onto the Stage, you see the hit area

as a transparent blue shape, which allows

you to place the button precisely. When

you choose Control > Enable Simple But-

tons (Ctrl-Alt-B for Windows, Cmd-Option-B

for Mac), the button disappears to show

you its playback appearance.

To create an invisible button:
1. Choose Insert > New Symbol (Ctrl-F8

for Windows, Cmd-F8 for Mac).

The Create New Symbol dialog box

appears.

2. Type the symbol name of your button,

choose Button as the Type, and click OK.

A new button symbol is created in the

Library, and you enter symbol-editing

mode.

3. Select the Hit keyframe.

4. Choose Insert > Timeline > Keyframe (F6).

A new keyframe is created in the

Hit state.

Continues on next page

A An invisible button symbol has only its Hit

keyframe defined.

B Two invisible button instances over a map.

Two instances of the same invisible button
symbol cover different spots on this map

to make those areas interactive.

138 Chapter 4

5. With the Hit keyframe selected, draw

a generic shape that serves as the

hotspot for your invisible button C.

6. Return to the main Timeline.

7. Drag an instance of the symbol from the

Library onto the Stage.

A transparent blue shape appears on

the Stage, indicating the Hit state of

your invisible button D.

8. Move, scale, and rotate the invisible

button instance to cover any graphic.

When you choose Control > Enable

Simple Buttons, the transparent blue

area disappears, but your pointer

changes to a hand to indicate the pres-

ence of a button.

9. Give the button instance a name in

the Properties inspector and assign an

event listener for it in the Actions panel

as described in the previous tasks.

C An invisible button symbol. The rectangle in the

Hit keyframe defines the active area of the button.

D An invisible button, when placed from the

Library onto the Stage, will display a transparent

blue area that is identical to its Hit keyframe.

Invisible button
instance on
the Stage

Advanced Buttons and Event Handling 139

Animated Buttons and
the Movie Clip Symbol
Animated buttons display an animation in

any of the first three keyframes (Up, Over,

and Down) of the button symbol. A button

can spin when the pointer rolls over it, for

example, because you have an animation

of a spinning graphic in the Over state.

How do you fit an animation into only one

keyframe of the button symbol? Use a

movie clip.

A movie clip is a special kind of symbol

that allows you to have animations that

run regardless of where they are or how

many actual frames the instance occupies.

This feature is possible because a movie

clip’s Timeline runs independently of any

other Timeline, including other movie clip

Timelines and the main movie Timeline in

which the movie clip resides. This indepen-

dence means that as long as you establish

an instance on the Stage, a movie clip

animation plays all its frames regardless of

where it is. Placing a movie clip instance

in a single keyframe of a button symbol

makes the movie clip play whenever that

particular keyframe is displayed. That is the

basis of an animated button.

An animation of a butterfly flapping its

wings, for example, may take ten frames in

a movie clip symbol. Placing an instance of

that movie clip on the Stage in a movie that

has only one frame still lets you see the

butterfly flapping its wings A. This func-

tionality is useful for cyclical animations

that play no matter what else may be going

on in the current timeline. Blinking eyes,

for example, can be a movie clip placed

on a character’s face. No matter what the

character does—whether it’s moving or

static in the current timeline—the eyes

blink continuously.

A Movie clips have independent timelines.

The butterfly movie clip instance resides
in one frame of the main Timeline.

All ten frames of the movie
clip symbol still play.

Comparing a Movie Clip Instance
with a Graphic Instance
How does a movie clip instance differ

from a graphic instance? If you create

the same animation in both a movie

clip symbol and a graphic symbol and

then place both instances on the Stage,

the differences become clear. The

graphic instance shows its animation in

the authoring environment, displaying

however many frames are available in the

main Timeline. If the graphic symbol con-

tains an animation lasting ten frames and

the instance occupies four frames of the

main Timeline, you see only four frames

of the animation. Movie clips, on the other

hand, don’t work in the Flash authoring

environment. You need to export the

movie as a SWF file to see any movie

clip animation or functionality. When

you export the movie (you can do so by

choosing Control > Test Movie > in Flash

Professional), Flash plays the movie clip

instance continuously regardless of the

number of frames the instance occupies

and even when the movie has stopped.

140 Chapter 4

To create a movie clip:
1. Choose Insert > New Symbol.

The Create New Symbol dialog box

appears.

2. Type a descriptive name for your movie

clip symbol, choose Movie Clip as the

Type, and click OK B.

You now enter symbol-editing mode.

3. Create the graphics and animation on

the movie clip timeline C.

Notice how the navigation bar above

the Timeline tells you that you’re cur-

rently editing a symbol.

4. Return to the main Stage.

Your movie clip is stored in the Library

as a symbol, available for you to bring

onto the Stage as an instance D.

New instances of movie clips begin play-

ing automatically from the first frame.

B Create a new movie clip symbol by naming it

and selecting the Movie Clip Type.

C The pondRipple movie clip symbol contains

two shape tweens of an oval getting bigger and

gradually fading.

D Bring an instance of a movie clip symbol onto

the Stage by dragging it from the Library.

Movie clip instance
(on Stage)

Movie clip symbol
(in Library)

Advanced Buttons and Event Handling 141

To create an animated button:
1. Create a movie clip symbol that con-

tains an animation, as described in the

preceding task.

2. Create a button symbol, and define the

four keyframes for the Up, Over, Down,

and Hit states E.

3. In symbol-editing mode, select either

the Up, Over, or Down state for your but-

ton, depending on when you would like

to see the animation.

4. Drag your movie clip symbol from the

Library to the Stage F.

The movie clip instance is inside the

button symbol.

5. Return to the main movie Timeline, and

drag an instance of your button symbol

to the Stage.

6. Choose Control > Test Movie > in Flash

Professional.

Your button instance plays the movie

clip animation continuously as your

pointer interacts with the button G.

Stop the continuous cycling of your

movie clip by placing a stop() action in the

last keyframe of your movie clip symbol.

Because movie clips have independent time-

lines, they respond to frame actions. Graphic

symbols don’t respond to any frame actions.

To better organize animated buttons, it’s

useful to create a new layer in the timeline of

your button symbol and reserve it specifically

for the animation H.

E A simple button symbol with ovals in all four

keyframes.

F The Over state of the button symbol. Place

an instance of the pondRipple movie clip in

this keyframe to play the pond-ripple animation

whenever the pointer moves over the button.

G The completed animated button.

When the pointer passes over the button,

the pondRipple movie clip plays.

H A new

layer in the

button symbol

timeline helps

organize the

animation.

142 Chapter 4

Complex Buttons
You can use a combination of invisible but-

tons, animated buttons, and movie clips to

create objects with complex behaviors such

as pull-down menus. The pull-down (or pop-

up) menu is a kind of button that is common

in operating systems and Web interfaces,

and is useful for presenting several choices

under a single heading. The functionality

consists of a single button that expands to

show more buttons and collapses when a

selection has been made A.

To build your own pull-down menu, one

effective strategy is to nest symbols inside

each other. A simple way is to place buttons

inside a movie clip. The buttons specify

which frames within the movie clip timeline

to play. Whether the menu is expanded or

collapsed is determined within the movie

clip. Placing an instance of this movie clip

on the Stage allows you to access either the

expanded or collapsed state independently

of what’s happening in your main movie.

To create a simple pull-down menu:
1. Create a button symbol that will be

used for the top menu button as well as

the choices in the expanded list.

2. Add a filled rectangle to the Up, Over,

Down, and Hit keyframes B.

3. Create a new movie clip symbol.

Enter symbol-editing mode for the

movie clip.

4. Insert a new keyframe at a later point in

the movie clip Timeline.

You now have two keyframes inside

your movie clip symbol. The first one

will contain the collapsed state of your

menu, and the second one will contain

its expanded state C.

A Typical pull-down menus: a Mac OS system

menu (left) and a Web menu (right). You can build

similar menus in Flash with movie clips.

B A generic button with the four keyframes

defined.

C The pull-down menu movie clip timeline

contains two keyframes: one at frame 1 and

another at frame 9.

Second
keyframe

First
keyframe

Advanced Buttons and Event Handling 143

5. Drag one instance of your button

symbol into the first keyframe, and add

text over the instance to describe the

button.

This is the collapsed state of your

menu.

6. Drag several instances of your button

symbol into the second keyframe, align

them with one another, and add text

over these instances to describe the

buttons.

This is the expanded state of your menu.

7. Add a new layer, and place frame labels

to mark the collapsed and expanded

keyframes D.

In the Frame Label field of the Proper-

ties inspector, enter collapsed for the

first keyframe and expanded for the sec-

ond keyframe.

The frame labels let you see clearly

the collapsed and expanded states of

your movie clip, and let you use the

gotoAndStop() action with frame labels

instead of frame numbers.

8. Select the button instance in the first

keyframe, and give it an instance name.

9. Add a new layer; select the first key-

frame in that layer, and open the

Actions panel.

10. In the first line of the Script pane, add

the action stop().

Without this stop() in the first frame of

your movie clip, the menu would open

and close repeatedly because of the

automatic cycling of movie clips. The

stop() action ensures that the movie

clip stays on frame 1 until you click the

menu button E.

Continues on next page

D The two states of your pull-down menu. The

collapsed state is in the first keyframe (top);

the expanded state is in the second keyframe

(bottom). The expanded state contains the initial

button plus four button instances that represent

the menu choices.

144 Chapter 4

11. On the next line of the Script pane, add

an event listener for the button that is

on the first keyframe of your movie clip:

pick_btn.addEventListener(
➝ MouseEvent.CLICK, expandmenu);

This listener listens for a mouse click on

the button called pick_btn F.

12. On the next available line of the Script

pane, add a function that goes to the

expanded keyframe of the movie clip,

like so:

function expandmenu(
➝ myevent:MouseEvent):void {
 this.gotoAndStop("expanded");
}

When this function is called, the current

timeline is targeted (with the keyword

this) and the playhead goes to the

frame labeled expanded. Make sure that

the frame label is within quotation marks.

13. Select the first button instance on the last

keyframe, and give it an instance name.

14. In the layer with your ActionScript,

select the frame above the expanded
keyframe, and add a new keyframe.

In this keyframe, you’ll add the code for

the buttons in the expanded menu.

You have to put more code here

because you can’t add event-handler

code to buttons until they’re present on

the Stage. Otherwise, Flash won’t find

the button instances and can’t refer-

ence them from the code G.

15. With your new keyframe selected,

open the Actions panel and add an

event listener for the first button in the

expanded keyframe:

pick2_btn.addEventListener(
➝ MouseEvent.CLICK, collapsemenu);

This listener listens for a mouse click on

the button called pick2_btn.

E The movie clip timeline for the pull-down menu.

A stop() action is assigned to the first frame in the

top layer.

stop() action

G When buttons appear on a later frame (frame

number 9), add a new keyframe at the same frame

number with event-handler code for those buttons.

New keyframe with actions for
buttons that show up here

Advanced Buttons and Event Handling 145

16. Next, add a function that goes back to

the collapsed keyframe, like so:

function collapsemenu(
➝ myevent:Mouse Event):void {
 this.gotoAndStop("collapsed");
}

17. Assign instance names to each of the

remaining button instances on this key-

frame, and repeat step 15 to add event-

handler code for each of them H.

18. Return to the main movie Timeline, and

place an instance of your movie clip on

the Stage.

19. Choose Control > Test Movie > in Flash

Professional to see how your pull-down

menu works.

When you click the first button, the but-

tons for your choices appear because

you direct the playhead to go to the

expanded keyframe on the movie clip

timeline. When you click one of the

buttons in the expanded state, the

buttons disappear, returning you to the

collapsed keyframe of the movie clip

timeline. All this happens independently

of the main movie Timeline, where the

movie clip instance resides I.

At this point, you’ve created a complex

button that behaves like a pull-down

menu but doesn’t actually do anything

(except modify itself). In Chapter 5, “Con-

trolling Multiple Timelines,” you’ll learn

how to make timelines communicate

with one another, which enables you to

create complex navigation systems.

H The ActionScript for the buttons in the

expanded keyframe sends the Flash playhead

to the frame labeled collapsed and stops there.

I The two states of the pull-down menu work

independently of the main Timeline.

Movie clip in
collapsed keyframe

Movie clip in
expanded keyframe

Use edit commands such as Copy and

Paste to create similar blocks of code such as

event handlers for several buttons. Once you

paste in a copy of the code, don’t forget to

change the name of the targets and functions

to which the event handler is assigned.

When you understand the concept

behind the simple pull-down menu, you can

create menus that are more sophisticated by

adding animation to the transition between

the collapsed state and the expanded state.

Instead of having the expanded state sud-

denly pop up, for example, you can create a

tween that makes the buttons scroll down

gently. Change the body of the function

on the first keyframe of your movie clip to

gotoAndPlay() instead of gotoAndStop()
to see the tweens.

146 Chapter 4

Button-tracking
Options
You can define a button instance in the

Properties inspector in one of two ways:

Track as Button or Track as Menu Item A.

These two tracking options determine

whether button instances can receive a

button event even after the event has

started on a different button instance.

The Track as Menu Item option allows

this to happen; the Track as Button option

doesn’t. The default option, Track as But-

ton, is the typical behavior for buttons; it

causes one button event to affect one but-

ton instance. More complex cases, such as

pull-down menus, require multiple button

instances working together.

Imagine that you click and hold down

the menu button to see the pop-up

choices, drag your pointer to your

selection, and then release the mouse

button. You need Flash to recognize

the MouseEvent.MOUSE_UP event in

the expanded menu even though the

MouseEvent.MOUSE_DOWN event occurred

in the collapsed menu for a different but-

ton instance (in fact, in a different frame

altogether). Choosing Track as Menu Item

allows these buttons to receive these

events and gives you more flexibility to

work with combinations of buttons and

events.

A The button-tracking options in

the Properties inspector.

Advanced Buttons and Event Handling 147

To set Track as Menu Item
for a pull-down menu:
1. Continue with the pull-down menu, as

described in the preceding task.

2. Go to symbol-editing mode for the

movie clip.

3. Select the keyframe on frame 1 contain-

ing the event handler for the button

instance, and change the mouse event

to MouseEvent.MOUSE_DOWN B.

4. Select the keyframe containing the

ActionScript for the expanded sec-

tion. Replace all the MouseEvent.CLICK
events with MouseEvent.MOUSE_UP C.

5. Select each button instance in the

expanded keyframe.

6. In the Properties inspector, choose

Track as Menu Item D.

The button instances in the

expanded menu will now trigger a

MouseEvent.MOUSE_UP event even

if the MouseEvent.MOUSE_DOWN event

occurs on a different instance.

7. Return to the main Timeline, and test

your movie.

You now click and hold down the

mouse button to keep the menu open,

and then release the mouse button

when you’ve made your selection.

When you set Track as Menu Item for

this pull-down menu, the expanded button

instances display their Down state as you

move your pointer over them. This display

occurs because your mouse button is, in fact,

pressed, but that event occurred earlier on a

different instance.

B The collapsed-menu button listens for the

MOUSE_DOWN event.

C The expanded-menu buttons listen for the

MOUSE_UP event.

D You need to change the setting to Track

as Menu Item for each button instance in the

expanded section of the Timeline.

148 Chapter 4

Changing Button
Behavior
Because the buttons you create are objects

of the SimpleButton class and objects of

the larger class InteractiveObject, you

can control their properties by using dot

syntax. Many button properties control

the way a button looks (such as its width,

height, and rotation) as well as the way the

button behaves (such as its button track-

ing). In Chapter 7, “Controlling and Display-

ing Graphics,” you will explore the ways

to manipulate graphics, including buttons.

Here, you will learn to change properties

that affect a button’s behavior.

To disable a button:
Set the mouseEnabled property to false.

If you name your button instance

mybutton_btn, enter the following

statement:

mybutton_btn.mouseEnabled = false;

Your button will no longer interact with the

mouse pointer and will no longer display

its Over or Down keyframes. In addition,

mouse events won’t be captured on this

button.

To remove an event listener:
Use the removeEventListener() method

with its two parameters set identical to

the ones used in the addEventListener()
method.

If you name your button instance

mybutton_btn, enter the following

statement:

mybutton_btn.removeEventListener(
➝ MouseEvent.CLICK, myfunction);

Although your button will still interact with

the mouse pointer, the listener will no

longer detect a mouse click and call on the

function called myfunction.

To disable the hand pointer:
Set the useHandCursor property to

false A.

If you name your button instance

mybutton_btn, enter the following

statement:

mybutton_btn.useHandCursor =
➝ false;

A When the normal hand pointer (above) is

disabled, only the arrow pointer will show up

(below).

Advanced Buttons and Event Handling 149

Changing button focus
with the Tab key
The button focus is a way of selecting a

button with the Tab key. When a Flash movie

plays within a browser, you can press the

Tab key and navigate between buttons, text

fields, and movie clips. The currently focused

button displays its Over state with a yellow

rectangular border B. Pressing the Enter

key (or Return key on the Mac) is equiva-

lent to clicking the focused button. Several

properties of the InteractiveObject class

(of which the SimpleButton is a subclass)—

focusRect, tabEnabled, and tabIndex—

deal with controlling the button focus. The

property focusRect determines whether

the yellow rectangular border is visible. If

focusRect is set to false, a focused button

displays its Over state but doesn’t display

the yellow rectangular highlight. The prop-

erty tabEnabled, if set to false, disables a

button’s capability to receive focus from the

Tab key.

The order in which a button, movie clip, or

text field receives its focus is determined

by its position on the Stage. Objects focus

from left to right and then from top to bot-

tom. So, if you have a row of buttons at the

top of your movie and a column of buttons

on the left side below it, the Tab key will

focus each of the buttons in the top row

first and then focus on each of the but-

tons in the column C. After the last button

receives the focus, the tab order begins

again from the top row.

You can set your own tab order with the

property tabIndex. Assign a number to the

tabIndex for each button instance, and

Flash will organize the tab order using the

tabIndex in ascending order. Take control

of the tab order to create more helpful

forms, allowing the user to use the Tab and

Enter keys to fill out multiple text fields and

click multiple buttons.

B When you use the Tab key, buttons show their

focus with a yellow rectangular border in their

Over state.

C The automatic order of button focusing with

the Tab key is by position. The numbers show the

order in which the buttons will receive focus.

Button
instance

Yellow
rectangular border

1 2

4

5

6

3

Some browsers intercept keypresses, so

you may have to click the Flash movie in your

browser window before you can use the Tab

key to focus on buttons.

150 Chapter 4

To hide the yellow rectangular
highlight over focused buttons:
Set the focusRect property to false.

If you name your button instance

mybutton_btn, for example, use the state-

ment mybutton_btn.focusRect = false;

To disable focusing with the Tab key:
Set the tabEnabled property to false.

If you name your button instance

mybutton_btn, for example, use the state-

ment mybutton_btn.tabEnabled = false;

To change the tab order
of button focus:
1. Give each button instance a name in

the Properties inspector.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. In the Script pane, enter your first but-

ton’s instance name followed by a dot.

4. Type tabIndex after the dot.

5. For the value, you must indicate where in

the tab order this object should be when

the user presses the Tab key. Enter an

equals symbol (=) and then a value D.

This button instance will be in the tab

order in the specified index.

6. Repeat steps 3–5 for each of your

button instances. Continue to assign

numbers in sequence to the tabIndex
property of each button instance E.

7. Choose File > Publish Preview > Default

to view your movie in a browser.

Click on the Flash movie in the browser

to give it focus. When you press the

Tab key, Flash follows the tabIndex in

ascending order for button focusing F.

D The button called male_btn will receive the first

focus with the Tab key.

F Control the order of button focusing to

provide easier tab navigation through forms and

questionnaires. This movie focuses buttons in

columns to follow the question numbers rather

than relying on Flash’s automatic ordering.

E This block of code assigns

the tabIndex properties for

13 different buttons.

Advanced Buttons and Event Handling 151

Creating Buttons
Dynamically
If you want to create a button dynami-

cally—that is, during runtime while your

Flash movie is playing—you can do so

with the constructor new SimpleButton().

Creating buttons on the fly allows you

to respond to your user and a changing

environment and not rely on buttons that

have been created in advance. After creat-

ing a new button from the SimpleButton
class, you define its four keyframes, the Up,

Over, Down, and Hit states, by assigning

other objects to the properties upState,

overState, downState, and hitTestState.

The upState, overState, downState, and

hitTestState properties can take any kind

of display object such as a loaded JPEG

image, a movie clip, text field, or a dynami-

cally drawn shape or sprite. In Chapter 7,

“Controlling and Displaying Graphics,”

you’ll learn to create and manage the

graphics on the Stage. In this example

task, you’ll create four shapes dynamically

with the new Shape() constructor, and then

assign those shapes to the keyframes of a

newly created button.

To create a button dynamically:
1. Select the first frame of the Timeline,

and open the Actions panel.

2. In the Script pane, enter the following

code that creates a new Shape object

and then draws a filled circle:

var myup:Shape = new Shape();
myup.graphics.beginFill(0xff4000);
myup.graphics.
drawCircle(100,100,10);

Continues on next page

152 Chapter 4

The new Shape object called myup is

created. The beginFill() method

defines the color of the fill, and the

drawCircle() method defines its loca-

tion and size.

3. Create three more new shapes with dif-

ferent colors in the same manner A.

These four shapes will be assigned to

the four keyframes of the new button.

4. In the next line, instantiate a new button

from the SimpleButton class, like so:

var mybutton:SimpleButton =
➝ new SimpleButton();

5. Next, assign the four shapes to the

properties of your new button as in the

following code:

mybutton.upState = myup;
mybutton.overState = myover;
mybutton.downState = mydown;
mybutton.hitTestState = myhit;

6. To see the new button on the Stage,

you must add it to the Stage to be dis-

played with the following code:

stage.addChild(mybutton);

To see any dynamically generated

graphic, you always need to use the

method addChild(). The full Action-

Script code can be seen in B.

7. Test your movie by choosing Control >

Test Movie > in Flash Professional C.

A Four circles are created dynamically. Each

circle is an object of the Shape class.

B A button is created dynamically, and the four

shapes are assigned to the button’s upState,

overState, downState, and hitTestState
(highlighted lines).

C The circle shape

appears on the Stage

and behaves as a

button.

Advanced Buttons and Event Handling 153

Keyboard Detection
The keyboard is just as important an inter-

face device as the mouse, and Flash lets

you detect events occurring from key-

strokes, both the downward keypress and

the upward key release. This ability opens

the possibility of having navigation based

on the keyboard (using the arrow keys or

the number keys, for example) or having

keyboard shortcuts that duplicate mouse-

based navigation schemes. Flash even

lets you control live text that the viewer

types in empty text fields in a movie; these

text fields merit a separate discussion in

Chapter 10, “Controlling Text.” This section

focuses on single or combination key-

strokes with modifiers (like the Ctrl or Shift

key) that trigger a response.

Just as a MouseEvent object is created

when the user does something with the

mouse, a KeyboardEvent object (another

subclass of the Event class) is created

when the keyboard is used.

You can detect and respond to the

KeyboardEvent object by first attach-

ing a listener to the main Stage (or

another object like a text field) using the

addEventListener method as follows:

stage.addEventListener(
➝ KeyboardEvent.KEY_DOWN, detectText);

Next, create a function with a KeyboardEvent
parameter:

function detectText(
➝ myevent:KeyboardEvent):void {
 // do something in response
}

Table 4.2 details the specific properties that

describe the events of the KeyboardEvent
object.

TABLE 4.2 KeyboardEvent Properties

Property Description

KEY_UP Happens when a key is released

KEY_DOWN Happens when a key is pressed

154 Chapter 4

Key code values
The KeyboardEvent object is dispatched

whenever any key on the keyboard is

pressed. But to determine which particular

key has been pressed, you have to use key

code values. Key code values are specific

numbers associated with each key (see

Appendix A, “Keyboard Key Codes”). You

use these codes to construct a conditional

statement to determine a match. The key

code for the spacebar, for example, is 32.

So to see if the KeyboardEvent object’s

key code matches 32, you write the

following:

if (myevent.keyCode==32){
 // spacebar was pressed
}

In this example, myevent is the name of

the KeyboardEvent object and keyCode is

a property whose value is the key code of

the key that was pressed. This conditional

statement checks if the key code of the

key that was pressed matches the code for

the spacebar.

Fortunately, you don’t have to use clumsy

numeric key codes all the time. The

most common keys are conveniently

assigned as properties of another class,

the Keyboard class. These properties are

constants that you can use in place of the

key codes. The statement Keyboard.SPACE,

for example, is the number 32. Appendix

A also lists all the matching Keyboard con-

stants for the key codes.

Two properties of the KeyboardEvent
object, shiftKey and ctrlKey, can be used

to test whether the Shift or the Ctrl key is

being held down. These properties are

either true or false.

To detect a keypress:
1. Select the first keyframe in the Timeline,

and open the Actions panel.

2. In the Script pane, add a listener to

the Stage with the addEventListener
method, as follows:

stage.addEventListener(
➝ KeyboardEvent.KEY_DOWN,
➝ detectText);

When this listener detects a keypress, it

triggers the function called detectText.

3. On the next available line, write a func-

tion with the KeyboardEvent object as a

parameter, like so:

function detectText(
➝ myevent:Keyboard Event):void {
 myarrow_mc.x += 5;
}

Between the curly braces of the

function, put actions you want as a

response. In this example, any keypress

makes a movie clip called myarrow_mc
move 5 pixels to the right.

4. Choose File > Publish Preview > Default

to test your movie A.

In the Flash testing mode (Control >

Test Movie > in Flash Professional), some

keypresses may be interpreted as shortcut

commands for the Flash tools, so use Choose

File > Publish Preview > Default to test in the

browser.

Advanced Buttons and Event Handling 155

To detect a specific keypress:
1. Continue with the file you created in the

previous task.

2. Select the first frame of the Timeline,

and open the Actions panel.

3. Select the code in between the curly

braces of the function and replace it

with a conditional statement like this:

if (myevent.keyCode ==
➝ Keyboard.RIGHT) {
 myarrow_mc.x += 5;
}

The double equals symbol (==) checks

the equivalence of the items on either

side. If they are equivalent, the actions

within the curly braces of the if state-

ment are executed.

4. Choose File > Publish Preview >

Default.

When you press a key, Flash dis-

patches a KeyboardEvent object and

calls the function. Within the function,

Flash checks to see if the key that

was pressed matches the right-arrow

key. If so, the actions are carried out.

In this example, a movie clip called

myarrow_mc is moved 5 pixels to the

right B.

A When the ActionScript code (below) detects

a keypress, it moves the movie clip called

myarrow_mc (above) to the right.

B If the right arrow key is pressed, Flash moves

the movie clip to the right.

156 Chapter 4

To detect keystroke combinations:
1. Continue with the file you created in the

previous task.

2. Select the first frame of the Timeline,

and open the Actions panel.

3. Change the code in between the paren-

theses of the if statement so that the

statement reads

if (myevent.keyCode ==
➝ Keyboard.RIGHT &&
➝ myevent.shiftKey == true) {
 myarrow_mc.x += 5;
}

Keyboard Events in ActionScript 2
If you are authoring for Flash Player 8 and must use ActionScript 2, you need to resort to the older

way of handling keyboard input. In the previous version of ActionScript, you also create listeners,

but they are constructed from the generic Object class. The syntax and methods for detecting a

particular keypress look like this:

var myListener:Object = new Object();
myListener.onKeyDown = function() {
 if (Key.isDown(Key.SPACE)) {
 //Spacebar pressed
 }
};

Key.addListener(myListener);

In this example, the isDown() method returns a true value if its parameter is the key code of the

key that was pressed. So you can enter a key code for its parameter or use a constant (Key.SPACE).

The last line is needed to register the listener to the Key class.

C If the right arrow key and the Shift key are both pressed,

Flash moves the movie clip to the right. The operator &&
connects two statements, requiring both to be true.

The logical and operator (&&) joins two

statements so that both must be true for

the entire statement to be true.

4. Choose File > Publish Preview >

Default.

The if statement will perform the action

within its curly braces only if both the

right-arrow key and the Shift key are

pressed at the same time C.

The property ctrlKey maps to the Ctrl

key on Windows and the Command (or Apple)

key on the Macintosh.

Advanced Buttons and Event Handling 157

The Contextual Menu
In the playback of any Flash movie, a contex-

tual menu appears when you right-click (Win-

dows) or Ctrl-click (Mac) on the movie. There

are different types of contextual menus,

including a standard menu that appears over

any part of the Stage and an edit menu that

appears over text fields A. You can custom-

ize, to a certain extent, the items that appear

in the standard and edit menus through the

ContextMenu class. You can disable certain

items or create your own custom items with

the related ContextMenuItem class. You

can even make different contextual menus

appear over different objects like buttons,

movie clips, or text fields.

Manipulating the contextual menu first

requires that you instantiate a new object

of the ContextMenu class, like so:

var myMenu:ContextMenu =
➝ new ContextMenu();

After you have a new ContextMenu object,

you can call its methods or set its proper-

ties to customize the items that appear. All

the default menu items are properties of the

object builtInItems. Setting each property

to true or false enables or disables that

particular item in the menu. For example, the

following statement disables the print item in

the ContextMenu object called myMenu:

myMenu.builtInItems.print = false;

See Table 4.3 for the builtInItems prop-

erties of the ContextMenu class.

Finally, you must associate your

ContextMenu object with the contextMenu
property of another object, such as the

main Stage, a text field, or a specific movie

clip, like so:

myObject_mc.contextMenu = myMenu;

Continues on next page

A The standard contextual menu (left), and the

edit contextual menu that appears over selectable

text fields (right).

TABLE 4.3 builtInItems Properties

Property Value Menu Items

forwardAndBack true or false Forward,

Back

save true or false Save

zoom true or false Zoom in,

Zoom out,

100%,

Show all

quality true or false Quality

play true or false Play

loop true or false Loop

rewind true or false Rewind

print true or false Print

158 Chapter 4

If you associate your ContextMenu object

with a specific button or movie clip, your

custom contextual menu will appear when

the user activates the contextual menu

only while the mouse pointer is over that

object. For example, a map can have the

Zoom item in its contextual menu enabled,

whereas other objects may have the Zoom

item in their contextual menu disabled.

To disable the contextual menu:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. On the first line of the Script pane,

instantiate a new ContextMenu object:

var myMenu:ContextMenu =
➝ new ContextMenu();

A new ContextMenu object is named

and created.

3. On the next line of the Script pane, call

the hideBuiltInItems() method of

your ContextMenu object, like so:

myMenu.hideBuiltInItems();

This method sets all the properties of

the builtInItems object of myMenu to

false, which hides the items of the con-

textual menu.

4. On the third line of the Script pane,

assign your ContextMenu object to the

contextMenu property of the Stage as

follows:

this.contextMenu = myMenu;

The ContextMenu object now becomes

associated with the main Timeline, so

the default items of the main Timeline’s

contextual menu are hidden. The only

items that remain are Settings, Show

Redraw Regions, and Global Settings B.

B By using the hideBuiltInItems() method, you

disable all built-in (default) items of the contextual

menu. The final code (top) hides all the default

items except for the Settings and Global Settings

(bottom). The Show Redraw Regions item appears

only in debugger versions of the Flash Player and

won’t appear for regular users.

Advanced Buttons and Event Handling 159

To associate custom contextual
menus with different objects:
1. Continue with the preceding task.

Starting on the next available line

in the Script pane, declare another

ContextMenu object and instantiate the

object using the constructor function,

new ContextMenu().

A second ContextMenu object is named

(in this example, called myZoomMenu)

and created C.

2. Add a call to the hideBuiltInItems()
method for your new ContextMenu
instance.

C A new ContextMenu object named myZoomMenu
has been created.

D The completed script (top). The

contextual menu that is attached

to the Stage has its default items

hidden. The contextual menu that

is attached to the movie clip called

map_mc contains the Zoom In item.

The items of your second ContextMenu
object, like the first, are disabled.

3. Assign a true value to the zoom prop-

erty of the builtInItems object of your

second ContextMenu object, like so:

myZoomMenu.builtInItems.zoom =
➝ true;

This enables the Zoom item in your

second ContextMenu instance.

4. On the next line of the Script pane,

assign your second contextual menu to

the contextMenu property of an object

on the Stage, like so:

map_mc.contextMenu = myZoomMenu;

In this example, the completed

statement associates the second

ContextMenu object with the movie clip

instance called map_mc D.

myZoomMenu over map_mc

myMenu over Stage

160 Chapter 4

Creating new contextual menu items
You can add your own items in the contex-

tual menu by creating new objects from

the ContextMenuItem class. Each new

item requires that you instantiate a sepa-

rate ContextMenuItem object with a string

parameter, as in the following code:

var myFirstItem:ContextMenuItem =
➝ new ContextMenuItem("First Item");

The parameter represents the text that will

be displayed for the item in the contextual

menu. Because it’s a string, use quotation

marks around the enclosed text. There are

certain size and content restrictions on

new menu items—see the sidebar “Custom

Item Restrictions” for details.

Next, you must add your new

ContextMenuItem object to the

customItems property of your

ContextMenu object. However, the

customItems property is different from

the builtInItems property you learned

about in the preceding section. The

customItems property is an array, which is

an ordered list of values or objects. (You

can learn more about arrays in Chapter

11, “Manipulating Information.”) To add

your new ContextMenuItem object to the

customItems array, use the array method

push(), as in the following code:

mymenu.customItems.push(myFirstItem);

Finally, you have to create an event

handler to respond when the user selects

your new contextual item. The Event
object that is dispatched when an item

on the contextual menu is selected is a

ContextMenuEvent object. You can use

ContextMenuEvent.MENU_ITEM_SELECT as

the specific event type.

Custom Item Restrictions
The contextual menu has a maximum of

15 custom items, and each item can’t be

more than 100 characters long and must

fit on a single line.

Items that are identical to any built-in

menu item or another custom item will

be ignored.

The following words can’t be used in

custom items at all: Adobe, Macromedia,

Flash Player, Settings.

The following words can’t be used

alone but can be used in conjunction

with other words: Save, Zoom In, Zoom

Out, 100%, Show All, Quality, Play,

Loop, Rewind, Forward, Back, Movie

Not Loaded, About, Print, Show Redraw

Regions, Debugger, Undo, Cut, Copy,

Paste, Delete, Select All, Open, Open in

New Window, Copy Link.

Advanced Buttons and Event Handling 161

To create a new item for
the contextual menu:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. In the Script pane, create a new

ContextMenu object as in previous tasks.

The completed code looks like this:

var mymenu:ContextMenu =
➝ new ContextMenu();

3. Starting on the next line, hide the

default items in the contextual menu:

mymenu.hideBuiltInItems();

4. Next, instantiate a new

ContextMenuItem object for

your first item:

var myFirstItem:ContextMenuItem =
➝ new ContextMenuItem("Flip");

A new ContextMenuItem is instanti-

ated. Be sure to enclose the parameter,

which represents the title of your item,

in quotation marks.

5. On the next line, add a call to the Array
class’s push() method with the name of

your ContextMenuItem as its parameter:

mymenu.customItems.push(
➝ myFirstItem);

The completed statement adds

your ContextMenuItem object to

the customItems array of your

ContextMenu object.

6. On the following line, assign

the ContextMenu object to the

contextMenu property of an object

on the Stage:

picture_mc.contextMenu = mymenu;

In this example, your contextual menu

now becomes associated with the

movie clip called picture_mc E.

Continues on next page

E A new ContextMenuItem object called

myFirstItem is created with one parameter: the

name of the item ("Flip"). The ContextMenuItem
called myFirstItem is put into the customItems
array.

162 Chapter 4

7. You’re not done yet! Finally, you must

create the event handler. Add the

listener:

myFirstItem.addEventListener
➝ (ContextMenuEvent.
➝ MENU_ITEM_SELECT, selectFlip);

Note that the listener goes on the

ContextMenuItem object, not on

the object on the Stage or on the

ContextMenu object.

8. Next, create a function with the

ContextMenuEvent object as its

parameter, like so:

function selectFlip(
➝ myevent:ContextMenuEvent):void {
 picture_mc.rotation += 180;
}

The actions that should happen when

the user selects your custom item in

the contextual menu go in between the

function’s curly braces.

The completed code F attaches a cus-

tom item to the contextual menu. When

the user right-clicks on the object called

picture_mc and selects Flip, the object

rotates 180 degrees.

Custom items always appear above the

built-in items and are separated from the built-

in items by a horizontal bar.

If you have many custom items, you

can group them by adding another horizontal

bar G. Use the property separatorBefore
and set it to true for any ContextMenuItem
to add a horizontal bar before the item in the

list, like so:

myFirstItem.separatorBefore = true;

You can also use the property caption
to define the title of a new item. For a new

ContextMenuItem called myFirstItem, you

can use the statement myFirstItem.caption
= "Flop".

F The final code (top) makes the custom item

show up at the top of the contextual menu when

right-clicked over picture_mc (middle). When the

custom item is selected, the MENU_ITEM_SELECT
event occurs and Flash responds by rotating the

picture 180 degrees (bottom).

G The custom item called Third Item has been

defined with a horizontal divider above it.

Horizontal divider

Advanced Buttons and Event Handling 163

Creating Continuous
Actions
So far, you’ve learned ways to execute an

action in response to events that happen

when the user does something—whether

it’s a mouse click or a keyboard press. But

on many occasions, you’ll want to perform

an action continuously. An if statement,

for example, often needs to be performed

continuously to check whether condi-

tions in the movie have changed. Another

example is if you want to continuously

change a property of an object to create

an animation.

The Event.ENTER_FRAME event happens

continuously. The event is triggered at the

frame rate of the movie, so if the frame

rate is set to 24 frames per second, the

ENTER_FRAME event is triggered 24 times

per second A. Even when the Timeline is

stopped, the event continues to happen.

This setup is an ideal way to make actions

run on automatic pilot; they will run as

soon as the event handler is established

and stop only when the event handler

is removed or the object on which it is

defined is removed.

A The ENTER_FRAME event happens at the frame

rate of the movie, which you can change in the

Properties inspector. Typical frame rates for online

playback are between 12 and 24 frames per

second.

Frame rate
(in frames
per second)

164 Chapter 4

To create continuous actions
with the ENTER_FRAME event:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. In the Script pane, assign the

addEventListener() method to the

Stage or to an object:

car_mc.addEventListener(
➝ Event.ENTER_FRAME, movecar);

In this example, the listener is added

to the movie clip object and will detect

the ENTER_FRAME event, which happens

continuously at the frame rate of the

Flash movie.

3. On the next line, create a function with

the Event object as its parameter:

function movecar(
➝ myevent:Event):void {
 car_mc.y -= 5;
};

In this example, when the function is

called, the movie clip called car_mc will

move 5 pixels upward B.

4. Create a movie clip symbol and place

an instance of it on the Stage. In the

Properties inspector, name it car_mc to

match the ActionScript code.

5. Choose Control > Test Movie > in Flash

Professional.

At the frame rate of the Flash movie

(24 times a second if the frame rate is

24 fps), the ENTER_FRAME event occurs

and your function is called, moving the

movie clip on the Stage upward con-

tinuously C.

Be careful of overusing the

ENTER_FRAME event handler, because it can

be processor intensive. After you no longer

need the event handler, it’s good practice to

use removeEventListener() to remove the

listener.

B Flash continuously moves the movie clip called

car_mc 5 pixels up the Stage. An if statement has

been added to check if the movie clip has moved

beyond a certain point and, if so, removes the

event listener.

C The movie clip named car_mc is put on the

Stage.

Advanced Buttons and Event Handling 165

Using timers
The ENTER_FRAME event, although easy to

use and effective for creating continuous

actions, is restricted to the frame rate of

your Flash movie. If you want to perform an

action on a continuous basis and do so at

an interval that you specify, you should use

the Timer class instead.

When you create an object from the

Timer class, the new object dispatches a

TimerEvent event at regular intervals. You

specify how long those intervals are (in

milliseconds) and how many intervals there

will be. You can then add an event handler

to listen and respond to each event.

The TimerEvent has two specific

events: a TimerEvent.TIMER event

that happens at each interval and a

TimerEvent.TIMER_COMPLETE, which hap-

pens at the end of the timer.

To create continuous
actions with a timer:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Instantiate a new Timer object. The

constructor takes two parameters—the

first is a number (in milliseconds) for

the timer interval, and the second is

the number of intervals. The second

parameter is optional, and if left out,

your timer will run forever until stopped.

var myTimer:Timer =
➝ new Timer(10,1000);

The function will be called every 10 mil-

liseconds (1/100th of second). There will

be 1,000 intervals, so this timer lasts

10 seconds.

Continues on next page

166 Chapter 4

3. On the next line, call the start()
method to begin the timer:

myTimer.start();

The two lines of code so far create a

Timer object and start it D.

4. Next, add an event handler to detect

the TimerEvent.TIMER events that are

being dispatched every 10 milliseconds:

myTimer.addEventListener(
➝TimerEvent.TIMER, movecar);
function movecar(
➝ myevent:TimerEvent):void{
 car_mc.y -= 5;
};

This listener detects the

TimerEvent.TIMER event and calls

the function called movecar, moving

the movie clip upward continuously

until the timer stops.

5. On the Stage, add a movie clip instance

called car_mc. Test your movie by

choosing Control > Test Movie > in

Flash Professional E.

Add the command updateAfterEvent
to your function if you’re modifying graphics

at a smaller interval than your movie frame

rate. This method forces Flash to refresh

the display, providing smoother results. The

updateAfterEvent command is called on the

Event object, so in this task, the code for the

function would be

function movecar(myevent:TimerEvent)
:void{
 car_mc.y -= 5;
 myevent.updateAfterEvent();
};

D A new Timer object called myTimer is created

and started.

E At each 10-millisecond interval for 1,000

intervals, a TIMER event happens. Each time it

happens, the movie clip called car_mc moves 5

pixels up the Stage, animating the graphic.

Advanced Buttons and Event Handling 167

To detect the end of a timer:
Add an event handler to detect the

TimerEvent.TIMER_COMPLETE event.

The following code is an example:

myTimer.addEventListener(
➝TimerEvent.TIMER_COMPLETE,
➝ stoptimer);
function stoptimer(
➝ myevent:TimerEvent):void {
 // do something
};

The function called stoptimer is called

only after the timer called myTimer has

completed all of its intervals.

168 Chapter 4

A Summary of Events
Table 4.4 lists the many basic events

discussed in this chapter. You’ll learn about

many more events in the chapters that

follow. For more on the Event class and

its subclasses, see Flash Help > Action-

Script 3.0 Reference for the Adobe Flash

Platform > flash.events.

TABLE 4.4 Events

Event Description

MouseEvent.CLICK Mouse click

MouseEvent.DOUBLE_CLICK Mouse double-click

MouseEvent.MOUSE_MOVE Mouse move

MouseEvent.MOUSE_DOWN Mouse button pressed

MouseEvent.MOUSE_UP Mouse button released

MouseEvent.MOUSE_OVER Mouse pointer moves over the target

MouseEvent.MOUSE_OUT Mouse pointer moves off of the target

MouseEvent.MOUSE_WHEEL Mouse wheel moves forward or backward

KeyboardEvent.KEY_DOWN Key pressed

KeyboardEvent.KEY_UP Key released

ContextMenuEvent.MENU_ITEM_SELECT Contextual menu item selected

Event.ENTER_FRAME Happens at the frame rate of the Flash movie (not user controlled)

TimerEvent.TIMER Happens at every interval defined by the Timer object

TimerEvent.TIMER_COMPLETE Happens when the Timer object finishes all of its intervals

By default, the Flash playhead moves

forward on the Timeline from beginning

to end. The playhead displays what is on

the Stage at any moment and triggers

any actions attached to keyframes that

it encounters. With ActionScript, you can

control the position of the playhead on the

main Timeline as well as the playheads

of any movie clips that are on the Stage.

Controlling multiple timelines enables you

to organize your content into objects that

behave independently for more sophisti-

cated interactivity. You should already be

familiar with the basic navigation methods

such as gotoAndPlay(), gotoAndStop(),

play(), and stop(). These methods that

navigate the main Timeline are the same

ones used to navigate the timelines of

other movie clips. Your main Timeline can

control a movie clip’s timeline; a movie

clip’s timeline can, in turn, control the main

Timeline. You can even have the timeline

of one movie clip control the timeline of

another. Handling this complex interaction

and navigation between timelines is the

subject of this chapter.

5
Controlling Multiple

Timelines

In This Chapter
Navigating Timelines with Movie Clips 170

Target Paths 171

Absolute and Relative Paths 175

Using the with Action to Target Objects 177

Movie Clips as Containers 179

Using Frame Labels 183

170 Chapter 5

Navigating Timelines
with Movie Clips
The independent timelines of movie clip

symbols make more complicated naviga-

tion and interactivity possible. While the

main Timeline is playing, other timelines of

movie clips can be playing as well, interact-

ing with one another and specifying which

frames to play or when to stop. In fact,

it’s quite common to have multiple movie

clips on the Stage, all being controlled in a

single frame on the main Timeline. Driving

all this navigation between timelines is,

of course, ActionScript. The basic actions

used to navigate within the main Timeline

(gotoAndStop(), gotoAndPlay(), stop(),

play(), nextFrame(), and prevFrame())

can also be used to navigate the timeline

of any movie clip. To control a particu-

lar timeline, you give the movie clip an

instance name in the Properties inspector.

When an instance is named, you can target

it with ActionScript and give instructions

specifying where you want to move its

playhead.

Controlling Multiple Timelines 171

Target Paths
A target path is essentially an object

name, or a series of object names sepa-

rated by dots, that tells Flash where to

find a particular object. To control movie

clip timelines, you specify the target

path for a particular movie clip followed

by a dot and then the method you want

to call. The target path tells Flash which

movie clip instance to look at, and the

method tells Flash what to do with that

movie clip instance. The methods of the

MovieClip class that control the play-

head are gotoAndStop(), gotoAndPlay(),

play(), stop(), nextFrame(), and

prevFrame(). If you name a movie clip

instance myClock_mc, for example, and

you write the ActionScript statement

myClock_mc.gotoAndStop(10), the play-

head within the movie clip instance called

myClock_mc will move to frame 10 and stop

there. myClock_mc is the target path, and

gotoAndStop() is the method.

A The Insert Target Path dialog box displays

objects on the Stage in a visual hierarchy. You

can click on objects and Flash will automatically

construct the target path, but it’s best if you enter

the target path in the Script pane yourself.

Insert Target
Path button in
Actions panel

Insert Target
Path dialog box

Available objects Target field

The Insert Target Path Option
The Insert Target Path button at the top

of the Script pane of the Actions panel

opens the Insert Target Path dialog box,

which provides a visual display of objects

on the Stage A. All movie clip instances,

button instances, and text fields are

shown in a hierarchical fashion in the

display window. You can click objects

to construct your target path, but in the

long run, it’s better to simply write your

target path directly in the Script pane. It’s

easier, and you’ll learn to code in Action-

Script quicker. You can use the Insert

Target Path dialog box as a visual refer-

ence for the hierarchical relationships

between your objects on the Stage, but

enter the target paths yourself.

172 Chapter 5

To target a movie clip instance
from the main Timeline:
1. Create a movie clip symbol and place

an instance of it on the Stage.

2. In the Properties inspector, give the

instance a name B.

3. Select the first keyframe of the main

Timeline, and open the Actions panel.

You’ll assign an action on the main

Timeline that will control the movie

clip instance.

4. Enter the instance name of your movie

clip in the Script pane (this is your

target path).

5. After the target path, enter a period

and then an action for the movie clip,

like assigning a new value to one of its

properties:

square_mc.rotation = 45;

This statement changes the angle of

the movie clip (called square_mc).

6. Test your movie (Control > Test Movie >

in Flash Professional).

The action you assign on the main

Timeline targets your movie clip and

changes its rotation to 45 degrees C.

B This movie clip instance on the Stage is named

square_mc in the Properties inspector.

C The target path is square_mc, and the command

is to assign the value 45 to the rotation property.

The original movie clip instance (left) is rotated

45 degrees (right).

Controlling Multiple Timelines 173

Target paths for nested movie clips
You can have a movie clip within another

movie clip, or as you saw in the previous

chapter with pull-down menus, you can

have buttons within a movie clip. The outer

movie clip is the parent, and the object

that’s nested inside it is the child. Because

the child is part of the parent, any graphical

transformations you do to the parent also

affect the child. To control the timeline or

properties of a child object from the main

Timeline, use the parent name followed

by the child name separated by a period

to form a hierarchical target path. In the

following task, the parent movie clip is the

clock (clock_mc), and the child movie clip

is its hand (bighand_mc).

To target a movie clip
within a movie clip:
1. Create the child movie clip symbol and

the parent movie clip symbol D.

2. Go to symbol-editing mode for the par-

ent movie clip, and drag an instance of

your child movie clip to the Stage.

3. In the Properties inspector, give the

child movie clip instance a name E.

You now have a named child movie clip

nested within the parent movie clip.

4. Exit symbol-editing mode, and return to

the main Stage.

5. Drag the parent movie clip from

the Library to the Stage and give it

an instance name in the Properties

inspector F.

Continues on next page
F The movie clip of the clock face is put on the

Stage and named clock_mc.

D There are

two movie clip

symbols in

the Library, a

clock face and

one arm of the

clock (which

is currently

selected).

E Place an instance of the child movie clip

inside the parent movie clip. In this example,

the clock arm is placed inside the symbol of

the clock face, and the name of the instance

is bighand_mc.

Movie clip instance called bighand_mc
inside the symbol of the clock face

174 Chapter 5

6. Select the first keyframe in the main

Timeline, and open the Actions panel.

7. Enter the target path to the nested

movie clip (parent.child), a period after

the target path, and then an action. This

example uses

clock_mc.bighand_mc.rotation = 30;

8. Test your movie (Control > Test Movie >

in Flash Professional).

The action you assign on the main

Timeline targets the nested movie clip

called bighand_mc and assigns a new

value to its rotation property G.

G The ActionScript statement on the main

Timeline tells the bighand_mc movie clip inside

the clock_mc movie clip to rotate 30 degrees.

clock_mc
movie clip

bighand_mc
movie clip inside
clock_mc movie
clip

Controlling Multiple Timelines 175

Absolute and
Relative Paths
There are two types of target paths:

relative and absolute. In the preceding

example, the method

clock_mc.bighand_mc.gotoAndStop(20)
originated from the main Timeline. When

Flash executes that method, it looks within

its own timeline for the object called

clock_mc that contains another object

called bighand_mc. This is an example of

a relative path. Everything is relative to

where the ActionScript statement resides—

in this case, the main Timeline. An alterna-

tive way of inserting a target path is to use

an absolute path, which has no particular

frame of reference. You can think of rela-

tive target paths as directions given from

your present location, as in “Go two blocks

straight; then turn left.” Absolute target

paths, on the other hand, are directions

that work no matter where you are, as in

“Go to 555 University Avenue.”

Using this, root, and parent
In relative mode, the current timeline is

called this. The keyword this means

myself. All other timelines are relative to

the this timeline.

In absolute mode, the path starts with the

main movie Timeline and you drill down to

the timeline you want to target. To target

the main movie Timeline, you can use the

keyword root, but you must explicitly tell

Flash that you are using root to reference

a timeline. Timelines are a feature of the

MovieClip class, so you can reference the

main movie Timeline by using the state-

ment MovieClip(root).

Continues on next page

176 Chapter 5

You may find that you want to target a

movie clip that is above the current time-

line. In that case, you can use the relative

term parent. However, just as in the case

of root, you must tell Flash that you want

to refer to a timeline, so use the full state-

ment MovieClip(parent). For example,

MovieClip(parent).stop() would stop the

playhead of the parent’s timeline.

Table 5.1 and A summarize the ways you

can use absolute and relative paths with

the keywords this, MovieClip(root), and

MovieClip(parent) to target different

movie clips.

Using this or an absolute path to

target a movie clip’s own timeline is unneces-

sary, just as it’s unnecessary to use this or

MovieClip(root) when navigating within

the main Timeline. It’s understood that actions

residing in one timeline pertain, or are scoped,

to that particular timeline.
A A representation of a movie with multiple

movie clips. The main Timeline (scene 1) contains

the square movie clip and the circle movie clip.

The circle movie clip contains the triangle movie

clip. These names represent instances rather than

symbol names. Table 5.1 summarizes the absolute

and relative target paths for calls made from the

circle movie clip (you are here).

You are
here

TABLE 5.1 Absolute vs. Relative Target Paths

To Target… (From Circle) Absolute Path Relative Path

Scene 1 MovieClip(root) MovieClip(parent)

square MovieClip(root).square MovieClip(parent).square

circle MovieClip(root).circle this

triangle MovieClip(root).circle.triangle triangle

Controlling Multiple Timelines 177

Using the with Action
to Target Objects
An alternative way to target movie clips

and other objects is to use the action with.

Instead of creating multiple target paths

to the same movie clip, you can use the

with action to target the movie clip only

once. Imagine creating these statements

to make the bighand_mc movie clip inside

the clock_mc movie clip stop and shrink

50 percent:

clock_mc.bighand_mc.stop();
clock_mc.bighand_mc.scaleX = .5;
clock_mc.bighand_mc.scaleY = .5;

You can rewrite those statements using the

with statement like this:

with (clock_mc.bighand_mc) {
 stop();
 scaleX = .5;
 scaleY = .5;
}

This with action temporarily sets the

scope to clock_mc.bighand_mc so that

the method and properties between the

curly braces affect that particular tar-

get path. When the with action ends,

any subsequent statements refer to the

current timeline.

Scope
You’ve learned that to direct an Action-

Script statement to affect a different

timeline, you need a target path that

defines the scope. Without a target

path, the ActionScript would affect its

own timeline. An ActionScript state-

ment belongs, or is scoped, to a par-

ticular timeline or a particular object

where it resides. Everything you do in

ActionScript has a scope, so you must

be aware of it. You could be giving the

correct ActionScript instructions, but if

they aren’t scoped correctly, nothing—

or, worse, unexpected things—could

happen.

When you assign ActionScript to a frame

on the main Timeline, the statement is

scoped to that timeline. When you assign

ActionScript to a frame of a movie clip

timeline, the statement is scoped to that

movie clip timeline.

178 Chapter 5

To target objects using
the with action:
1. Open the Actions panel.

2. Enter the code as follows with the tar-

get path within the parentheses of the

with action:

with (clock_mc.bighand_mc) {
}

In this example, the target path is

clock_mc.bighand_mc.

3. Between the curly braces of the with
action, create your statements for the

targeted object.

Note that you don’t need to specify

a target path or put a dot before the

method or property name A.

A A with statement is an alternative to writing

out a target path in front of objects. The scaleX

and scaleY properties change the vertical and

horizontal dimensions, and the rotation property

changes the angle of clock_mc.bighand_mc.

Controlling Multiple Timelines 179

Movie Clips as
Containers
So far in this chapter, you’ve learned how

to name your movie clip objects, target

each one, and navigate within their time-

lines from any other timeline in your movie.

But how does the ability to control movie

clip timelines translate into meaningful

interactivity for your Flash project? The key

is to think of movie clips as containers that

hold stuff: animation, graphics, sound, and

text. By moving the playhead back and

forth or playing certain parts of a particular

movie clip timeline, you can access those

items whenever you want, independently

of what else is going on A.

For example, movie clips are commonly

used to show objects with different states

that toggle from one to the other; the dif-

ferent states are contained in the movie

clip’s timeline. When you built pull-down

menus in Chapter 4, “Advanced Buttons

and Event Handling,” you used movie

clips to serve that purpose. The pull-down

menu is essentially a movie clip object

that toggles between a collapsed state

and an expanded state. The buttons inside

the movie clip control which of those two

states you see B.

Another example is a radio button. A radio

button is a kind of interactive element that

toggles between an “on” state and an

“off” state. Radio buttons are often used to

provide the reader a number of exclusive

choices, when only one choice is accept-

able. To answer the question of what your

favorite color is, you could display several

radio buttons next to color choices—only

one can be selected at any time.

The following task demonstrates how to

create a button with a toggle functionality

using a movie clip.

A The movie clip as a container. This figure

represents a main Timeline (scene 1) with a

movie clip on its Stage. The movie clip has a

stop() action in its first keyframe. The other

labeled keyframes can contain buttons, graphics,

animations, or any other kind of Flash information,

which you can access by targeting the movie

clip and moving its playhead to the appropriate

keyframe.

B The pull-down-menu movie clip contains both

collapsed and expanded states.

stop() action

stop() action

Movie clip timeline

Main Timeline

180 Chapter 5

To create a button with a
toggle functionality:
1. Create a movie clip symbol.

2. Go to symbol-editing mode for the

movie clip.

3. In the first keyframe, add a stop() action.

4. Insert another keyframe, and in this

second keyframe, add another stop()
action.

The stop() action in both keyframes

will prevent this movie clip from playing

automatically and will stop the playhead

on each keyframe C.

5. Insert a new layer.

6. Create graphics that correspond to the

off state in the first keyframe and graph-

ics that correspond to the on state in

the second keyframe D.

7. Exit symbol-editing mode, and return to

the main Stage.

8. Place an instance of your movie clip on

the Stage, and give it an instance name

in the Properties inspector.

9. Create a new layer, select the keyframe

on frame 1 of this layer, and open the

Actions panel. Make sure you are on

the main Timeline.

10. Create an event handler for your movie

clip instance as described in Chapter 4

to detect a mouse click. Inside the curly

braces of the event-handler function,

enter the target path for your movie

clip, then a period, and then the method

play() E.

11. Test your movie (Test > Control Movie >

in Flash Professional).

When you click the movie clip, Flash

targets the movie clip and moves the

playhead to the next keyframe and

stops. Each click toggles between two

different states F.

C The toggle-button movie clip contains a stop()
action in both keyframes.

E The full script on the main Timeline listens for a

mouse click and responds by playing the timeline

of the movie clip.

D The first keyframe contains graphics represent-

ing the button’s off state, and the second keyframe

contains graphics representing the button’s on, or

depressed, state.

F When the movie clip plays, the playhead

moves from the first keyframe (left) to the second

keyframe (right). From the second keyframe, the

playhead loops back to the first keyframe (the

default movie clip behavior when it reaches the

end of its timeline).

stop() actions

Controlling Multiple Timelines 181

Creating a movie clip
with hidden content
You can do the same thing to a movie

clip that you do to a button to make it

invisible—that is, leave the first keyframe

blank so that the instance is invisible on

the Stage initially. If the first keyframe of a

movie clip is blank and contains a stop()
action to keep it there, you can control

when to expose the other frames inside

that movie clip timeline. You could create

a movie clip with an embedded video but

keep the first keyframe blank. Then you

could place this movie clip on the Stage

and, at the appropriate time, advance

to the next frame to reveal the video to

the user.

Note that you have other ways of using

ActionScript to hide or reveal the con-

tents of a movie clip or to place content

on the Stage dynamically; you’ll learn

about these possibilities in upcoming

chapters. But being aware of both the

simple (frame-based, as described here)

and sophisticated (purely ActionScript-

based) approaches will help you tackle a

broader range of animation and interactiv-

ity challenges.

To create an “invisible” movie clip:
1. Create a movie clip symbol.

2. Go to symbol-editing mode for the

movie clip, and insert a new keyframe

on frame 2 of its timeline.

3. Leave the first keyframe of this layer

empty, and begin placing graphics and

animations in the second keyframe G.

4. Add a new layer to hold ActionScript.

Select the keyframe on frame 1 of this

layer, and open the Actions panel.

Continues on next page

G A movie clip with an empty first keyframe

is invisible on the Stage. The second keyframe

contains hidden content.

Second keyframe contains content

Empty keyframe

182 Chapter 5

5. Add a stop() action H.

6. Exit symbol-editing mode, and return to

the main Timeline.

7. Drag an instance of the movie clip from

the Library to the Stage.

The instance appears on the Stage as

an empty circle I. The empty circle

represents the registration point of

the instance, allowing you to place the

instance exactly where you want it.

H This movie clip has a stop() action in its first

frame.

I An instance of a movie clip with an empty first

frame appears as an empty circle.

stop() action

Movie clip symbol in the Library

Movie clip instance placed on the Stage

Controlling Multiple Timelines 183

Using Frame Labels
When you navigate different timelines,

it’s useful to use frame labels, which are

names that you give specific keyframes on

a timeline. Frame labels are created in the

Properties inspector in the Frame Label

field and appear as tiny flags on the time-

line A. By using frame labels, you mark

important spots in your animation without

worrying about the exact frame numbers.

In ActionScript, you can retrieve the name

of any frame label with currentLabel,

a property of the MovieClip class. The

currentLabel property holds the most

recently encountered frame label name (a

string). For example, you can construct a

conditional statement to check on the loca-

tion of the playhead, like so:

if (this.currentLabel == "SomeLabel") {
 // do something
}

Note that the frame label is in quotation

marks because it is a string value. If the

playhead isn’t on a frame with a frame

label, the property currentLabel returns

the last frame label encountered. The

useful counterpart to currentLabel is the

property currentFrame, which is the frame

number of the playhead.

You can also use ActionScript to retrieve

all the frame labels in a timeline and their

associated frame numbers. Each frame

label that you create on a timeline is auto-

matically represented in ActionScript as an

object of the FrameLabel class.

Continues on next page

A This timeline (left) has a frame label on its

first keyframe. Frame labels are added in the

Properties inspector (right).

Frame label

184 Chapter 5

These objects have two properties: a name
property, which is the name of the frame

label, and a frame property, which is the

number of the frame. You can access the

properties of each FrameLabel object

by using the currentLabels property of

the MovieClip class (note the similarity

of the currentLabel and currentLabels
property, except for the plural). The

currentLabels property returns an Array
of all the FrameLabel objects in the time-

line. (An Array is another type of object

that holds data in an orderly manner, which

you’ll learn more about in Chapter 11,

“Manipulating Information.”) You access the

data in an Array with the square brackets.

So, you can find out the name of the first

frame label in a timeline with the following

statement:

this.currentLabels[0].name;

And you can find out the frame number of

the first frame label with this statement:

this.currentLabels[0].frame;

The square brackets access the different

FrameLabel objects, beginning with the

number 0 B.

B Each frame label is an instance of the FrameLabel class. Each instance has a name
property and a frame property. Access each instance from the currentLabels array.

this.currentLabels[3].name is “bio”
this.currentLabels[3].frame is 20

this.currentLabels[2].name is “photos”
this.currentLabels[2].frame is 14

this.currentLabels[1].name is “resume”
this.currentLabels[1].frame is 7

this.currentLabels[0].name is “intro”
this.currentLabels[0].frame is 1

Controlling Multiple Timelines 185

To retrieve the current frame
label on a timeline:
1. On the timeline, select a keyframe and

in the Properties inspector, give it a

frame label C.

2. Open the Actions panel, and in the

Script pane, enter

trace(this.currentLabel);

The trace command lets you display

expressions in the Output panel in Flash

authoring mode for testing purposes.

This statement displays the name of the

current frame label D.

C The first keyframe of this timeline has the frame

label called intro.

D The trace statement in the

Actions panel (above) shows up

in the Output panel (below).

186 Chapter 5

To retrieve any of the frame labels
and numbers on a timeline:
1. On the timeline, create multiple

keyframes, each with its own frame

label E.

2. Select the first keyframe and open the

Actions panel. In the Script pane, first

enter a stop() command:

stop();

The stop() command will prevent the

playhead from moving.

3. On the next line, enter the following

code:

for (var i:uint = 0; i <
➝ this.currentLabels.length;
➝ i++) {
 trace("frame " +
➝ this. currentLabels[i].frame +
➝": "+ this.currentLabels[i].name);
}

The for statement is a looping state-

ment that repeats actions within its

curly braces. This statement displays

the frame label number and frame label

name of each FrameLabel object, repre-

sented by this.currentLabels[i] F.

E Create a timeline with multiple keyframes.

F The code in the Actions panel (above) contains a looping

statement that displays all the frame label names and numbers in the

Output panel (below).

Flash provides powerful tools to com-

municate with other applications, such as

Web browsers, and with other files, such

as images, videos, and other Flash mov-

ies. Flash can link to your favorite Web

sites, trigger a JavaScript function, or even

relay information to and from servers for

data-driven applications. Although many

of these functions that connect to data-

bases are beyond the scope of this book,

this chapter introduces you to some of the

most popular ways Flash can communicate

with HTML and JavaScript through the Web

browser.

You’ll learn to work with external images,

video, and Flash movies. You can use

one main Flash movie to load in external

content to create modular projects that are

easier to edit and have smaller file sizes.

Your main Flash movie might serve simply

as an interface that loads your portfolio of

work when the viewer selects individual

samples. You can manage the commu-

nication from the main Flash movie to its

loaded movie to control its appearance

and playback.

6
Managing External

Communication

In This Chapter
Communicating with the Web Browser 188

Loading External Flash Movies 200

Controlling Loaded Flash Movies 206

Loading External Images 212

Communicating with External Video 215

Detecting Download Progress:

Preloaders 222

Finally, you’ll learn to communicate with

your movie’s playback environment. You’ll

learn how to detect the amount of data that

has downloaded to users’ computers so

you can tell users how much longer they

have to wait before your movie begins.

Keeping track of these external factors will

help you provide a friendly and customized

user experience.

188 Chapter 6

Communicating with
the Web Browser
Flash connects to the Web browser

through the method navigateToURL().

This method takes one parameter, which

is a URLRequest object that contains all the

information needed to make the connec-

tion, such as the address to the Web site.

The URL is the address that points to a

specific file, whether on the Internet or on

your local hard drive. Use an absolute URL
(a complete address to a specific file) to

link to any Web site, or use a relative URL
(a path to a file that’s described in relation

to the current directory) to link to pages in

the same Web site or local files contained

on your hard drive or a CD or DVD. The

navigateToURL() method also provides

ways to target different browser windows,

if you want to control where the new link

appears.

Connecting to the Web
Connecting to the Web requires sev-

eral steps. You must first instantiate the

URLRequest object and define the URL

as a property of the object, like so:

var myURL:URLRequest = new
➝ URLRequest();
myURL.url="http://www.adobe.com";

Or, you can combine the two statements

and define the url property at the same

time you instantiate the object, like so:

var myURL:URLRequest = new
➝ URLRequest("http://www.adobe.com");

Note that the url property is a string,

so it must be enclosed within quotation

marks. Next, use navigateToURL() with the

URLRequest object as its parameter, as in

the following:

navigateToURL(myURL);

If you test your Flash movie by choosing

Control > Test Movie > in Flash Profes-

sional or play it in Flash Player, the method

navigateToURL() automatically launches

the default browser and loads the specified

Web address in a new window.

To link to a Web site:
1. Create a button symbol, drag an

instance from the Library to the Stage,

and give it a name in the Properties

inspector.

You’ll assign the navigateToURL()
method to a mouse click on this button.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Instantiate a new object from the

URLRequest class with the Web address

as its parameter:

var myURL:URLRequest = new
➝ URLRequest("http://www.adobe.com");

In this example, the new object called

myURL is created and the Adobe Web

site is assigned to its url property.

Managing External Communication 189

4. Create an event handler that detects

a mouse click on your button (see

Chapter 4, “Advanced Buttons and

Event Handling,” to learn more about

event handling), and in the func-

tion of your event handler, add the

navigateToURL() method, as in the

following statements:

mybutton_btn.addEventListener
➝ (MouseEvent.CLICK, clickButton);
function clickButton(
➝ myevent:MouseEvent):void {
 navigateToURL(myURL);
}

In this example, when the mouse is

clicked on mybutton_btn, Flash uses

the myURL object to link to the Web A.

5. Choose File > Publish Settings.

The Publish Settings dialog box opens.

6. On the Flash tab, under the “Local play-

back security” option, choose “Access

network only” B. Click OK.

This will prevent you from getting a

security error message when you test

your SWF file and the file, which will

play locally from your hard drive, tries to

access a Web site on the Internet.

Continues on next page

A The navigateToURL() method requires

a URLRequest object as a parameter. The

URLRequest object (called myURL here) points to

the Web site address (http://www.adobe.com).

B In the Publish Settings dialog box, set your

SWF file to allow remote (network only) access.

http://www.adobe.com

190 Chapter 6

7. Publish your Flash movie, and play it in

either the Flash Player or a browser.

When you click the button you created,

the Web site loads in a new window C.

Click the Close button in your browser

to close the window and return to your

Flash movie.

If you skip steps 5–6 (changing the

Publish Settings) and then test the movie in

a browser from your hard drive, you may see

a security warning when you click the button

that calls the navigateToURL() method. For

more about working around this issue, see the

sidebar “Flash Player Security: Mixing Local

and Remote Content,” later in this chapter.

However, testing the movie in Flash or over

the Internet in a Web browser won’t cause the

security warning to appear.
C The Flash movie (top) links to the Adobe site in

a new browser window (bottom).

Hyperlinks in Text
You can also link to the Web from text. With

the Text tool, select either Classic Text >

Static, or TLF Text > Read Only or Selectable.

Create your text and select the characters

you want to be hyperlinked. In the Properties

inspector, enter the address of the Web site in

the Link field and choose where you want the

Web site to load in the Target field D. Your

text will display with an underline to show

that it’s linked to a URL. When your viewers

click the text, the Web site will load in the

browser window indicated by the Target field.

You can also create hyperlinks with Classic

Text > Dynamic, but the entire field becomes

clickable.

D A Web address in the Link field of the

Properties inspector creates a hyperlink in the

selected text of a text field. The Target field in the

Properties inspector determines where the link will

open. In this figure, _blank is selected, so the link

will open in a new browser window.

Text field on the Stage

Managing External Communication 191

To preaddress an e-mail:
1. Instantiate a new object from the

URLRequest class with "mailto:" fol-

lowed by the e-mail address of the

person who should receive the e-mail

enclosed in quotation marks as its

parameter:

var myURL:URLRequest = new
➝ URLRequest("mailto:yourname@
➝ domain.com");

In this example, the new object is called

myURL and its url property is a different

scheme for sending e-mail.

2. Make a call to the navigateToURL()
method, like so:

navigateToURL(myURL, "_self");

The second parameter, _self, enclosed

in quotation marks, is intended to pre-

vent a new window from opening E.

When the code executes, the user’s

default e-mail application opens with a

new preaddressed e-mail message F.

The viewer then types a message and

clicks Send. Use this method to pread-

dress e-mail that viewers can use to

contact you about your Web site or to

request more information.

It’s a good idea to spell out the e-mail

address of the mailto: recipient in your Flash

movie G. If a person’s browser isn’t config-

ured to send e-mail, an error message appears

instead of an e-mail form. By spelling out the

address, you allow users to enter it in their

e-mail applications.

E Enter e-mail recipients after mailto: for the

URLRequest object. When the URLRequest object

is passed to the navigateToURL() method, the

browser will open the default mail application and

preaddress an e-mail message.

F A new e-mail message appears in your default

mail program.

G This e-mail address is also a button that

connects to the browser via mailto:.

192 Chapter 6

Linking with a relative path
You can use relative paths rather than

absolute URLs to specify local files instead

of files on the Web. This method lets you

distribute your Flash movie on portable

media such as a DVD without requiring an

Internet connection. Instead of using the

complete URL http://www.myServer.com/

images/photo.jpg, for example, you can

specify just images/photo.jpg, and Flash

will look inside the folder called images to

find the file called photo.jpg.

To link to a file using a relative path:
When specifying the URL in the

URLRequest object, use a slash (/) to

separate directories and two periods (..)

to move up one directory H.

Be sure to place your published SWF and

your linked file in the correct level in the

folder hierarchy I.

Flash looks for the file using the rela-

tive path and loads it into a new browser

window J.

Working with browser windows
When you play your Flash movie in a

browser window, the navigateToURL()
method loads the new Web address in

a new, blank window if you provide the

URLRequest object as its only parameter.

To make the Web address load into the

same window or a named window, enter

"_self" or another name as the second

parameter in the navigateToURL() method

for the window.

H This relative URL defined in the URLRequest
object goes up one directory level and looks for a

folder called images, which contains a file called

photo.jpg.

J The Flash movie (top) links to the local file in a

new browser window (bottom).

I Your Flash movie (SWF) and its accompanying

HTML file are in a directory that’s at the same level

as the directory that contains the file photo.jpg.

SWF HTML photo.jpg

http://www.myServer.com/images/photo.jpg
http://www.myServer.com/images/photo.jpg

Managing External Communication 193

Security restrictions prevent a Flash

movie from linking to a Web site with a win-

dow name of _self, _parent, or _top if the

SWF is located in a different domain (different

Web site address) than its HTML page. This

issue is discussed in the sidebar “Flash Player

Security: Loading Across Domains,” below.

Flash Player Security: Mixing Local and Remote Content
This chapter is all about how a Flash movie communicates with its external environment to access

other scripts, files, and data. However, there are security features that restrict Flash movies from

communicating with and loading other files and data from locations other than its own. This pro-

tects users from the possibility of a Flash movie secretly loading a file from the user’s hard drive

and sending it over the Internet, for example.

You’ll come across this security issue when you mix local content (when you test Flash files on your

computer) with remote content (when you link to a Web site). You will see a security warning mes-

sage when the locally running SWF file tries to access any network resource K. This includes the

navigateToURL() method and many of the other actions I’ll discuss in this chapter.

One way to prevent the warning is to change

the “Local playback security” setting in the

Publish Settings dialog box from “Access

local files only” to “Access network only,” as

explained in the task “To link to a Web site.”

However, you’ll have to remember to change

this setting for each Flash document you test

locally that accesses a remote resource.

You can make a single change to resolve

this issue for all your Flash documents. The

simplest way is to specify a trusted location

on your computer—a folder within which any

Flash movies are trusted by the Flash Player

and don’t cause this security warning. The

next task, “To designate a trusted location on

your computer,” shows you how.

K The Flash Player Security dialog indicates that

a SWF has tried to access the network and isn’t

allowed to. Click the Settings button to create a

trusted location on your computer, which prevents

this warning.

To open a Web site in
the same window:
Specify _self, enclosed in quotation

marks, as the second parameter in the

navigateToURL() method, like so:

navigateToURL(myURL, "_self");

When you test your movie in a browser,

the new Web address loads in the same

window as the Flash movie, replacing

it. Use the back button to return to your

Flash movie.

194 Chapter 6

To designate a trusted location
on your computer:
1. Go to the Adobe Flash Player Global

Security Settings panel on any browser

(http://www.macromedia.com/support/

documentation/en/flashplayer/help/

settings_manager04.html).

2. In the Settings Manager, click the

Edit locations menu and choose Add

location L.

3. In the dialog box that appears, click the

“Browse for folder” button M; another

dialog box will allow you to choose a

folder whose contents will always be

trusted by the Flash Player.

In general, you should choose a folder

that contains your Flash projects (sub-

folders of this folder are trusted as well).

You also need to be careful to never

place in that folder any SWF files that

you don’t completely trust.

4. Click the Confirm button. The dialog

box closes, and you return to the Set-

tings Manager.

Your newly added location appears in

the bottom field N. With this setting,

the Flash Player will no longer trig-

ger the error message when you test

local SWF files that are in the trusted

location.

5. Restart the browser.

L You can specify a location on your computer

whose contents are trusted by the Flash Player.

M Choose a single SWF file or a folder to

designate as trusted.

N The newly designated folder appears in the

bottom field and is set to be a trusted location.

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html

Managing External Communication 195

Using JavaScript to control
new window parameters
When Flash opens new browser windows

to load a URL, the appearance and loca-

tion of these new windows are set by the

browser’s preferences. If you play a Flash

movie in a browser that shows the location

bar and the toolbar, for example, and you

open a new window, the new window also

has a location bar and a toolbar. You can’t

control these window parameters directly

with Flash, but you can control them indi-

rectly with JavaScript.

JavaScript is the scripting language for

your Web browser. Most of the time, your

Flash movie will play in an HTML file in a

Web browser. You can use the ActionScript

class ExternalInterface to communicate

with the JavaScript that is written in the

HTML file. Use the call() method from the

Flash movie, like so:

ExternalInterface.call(
➝"somefunction");

This statement triggers the JavaScript

function called somefunction in the HTML

page that plays your Flash movie. JavaS-

cript is in the head of an HTML file and

would look something like this:

<script language="javascript">
function somefunction() {
 alert ("hello");}
</script>

The call() method can also pass param-

eters (Boolean, Number, or String data

types) to the JavaScript function. Simply

add additional parameters to the call()
method, like so:

ExternalInterface.call(
➝"somefunction", param1, param2);

The parameters called param1 and param2
will now be passed to the JavaScript

function.

Continues on next page

TABLE 6.1 JavaScript Window Properties

Property Description

height Vertical dimension, in pixels

width Horizontal dimension, in pixels

left X-coordinate of left edge

top Y-coordinate of top edge

resizable Resizable area in the bottom-right corner that allows the window to change dimensions

(yes/no or 1/0)

scrollbars Vertical and horizontal scroll bars (yes/no or 1/0)

directories Also called links, where certain bookmarks are accessible (yes/no or 1/0)

location Location bar, containing URL area (yes/no or 1/0)

menubar Menu bar, containing drop-down menus such as File and Edit; works only in the Windows

operating system (yes/no or 1/0)

status Status bar in the bottom-left corner, containing browser status and security (yes/no or 1/0)

toolbar Toolbar, containing the back and forward buttons and other navigation aides (yes/no or 1/0)

196 Chapter 6

You can use the JavaScript function

window.open() to open a new window and

control several window properties. The

JavaScript function takes three parameters:

the URL, the new window name, and the

window properties. These properties spec-

ify the way the window looks, how it works,

and where it’s located on the screen O.

When you define these window properties,

use yes (1), no (0), or a number specifying

pixel dimensions or coordinates. Table 6.1

lists the most common window properties

that are compatible with all major Web

browsers.

Left

Top

Menu bar

Scroll bars

Status bar

Toolbar

Location

Directories

Resizable

Width

Height

O You can set the properties of a browser window with JavaScript.

Managing External Communication 197

To open a custom window
with JavaScript:
1. Create a button symbol and place an

instance of it on the Stage. In the Prop-

erties inspector, give it a name.

You will assign an event handler for a

button click on this button that opens

a new custom browser window using

JavaScript.

2. Select the first frame of the Timeline,

and open the Actions panel.

3. Add an event listener to detect a mouse

click over your button.

4. Create the event-handler function.

Between the curly braces of the function,

declare and initialize three variables for

your URL, your new window name, and

your window properties, like so:

var myurl:String =
➝"http://www.adobe.com";
var mywindow:String = "newwindow";
var myfeatures:String =
➝"width=200, height=250, left=80,
➝ right=180, toolbar=0,
➝ location=0, directories=0

These variables will be used as param-

eters for your JavaScript function.

P The three variables myurl, mywindow, and myfeatures are strings that provide information

to pass to the JavaScript function in the HTML page. The call() method triggers the function

called openwindow and passes the three parameters to it.

Q You must add the JavaScript function

(highlighted in gray) in the head of the

HTML page that plays your Flash movie.

5. On the next line, still within the event-

handler function, write the call()
method of the ExternalInterface
class with the name of the JavaScript

function and then the three variables as

parameters separated by commas, as in

the following P:

ExternalInterface.call(
➝"openwindow", myurl, mywindow,
➝ myfeatures);

Flash makes the browser execute the

JavaScript function called openwindow
and passes three parameters.

6. Publish your Flash movie. Open the

HTML file that gets created in the

publishing process in an HTML editing

application like Dreamweaver. In the

head of the HTML file, add the following

JavaScript code Q:

<script language="javascript">
function openwindow (URL,
➝ windowname, windowfeatures){
window.open(URL, windowname,
➝ windowfeatures);
}
</script>

Continues on next page

198 Chapter 6

The openwindow function has three

parameters: URL, windowname, and

windowfeatures. When this function

is called, three parameters are passed

from Flash and used in this function.

7. Save the modified HTML page and

upload the HTML file and the SWF file

to your server to test it on the Web.

When you click the button that you

created, Flash passes the three param-

eters containing the Web address, the

window name, and the window features

to the JavaScript function in the HTML

page called openwindow. Then a new

window with those features opens R.

R The new window created by the JavaScript function

is a customized window without most features.

Width = 200

Height = 250

Top = 180

Toolbar = 0
Location = 0

Directories = 0

Left = 80

Managing External Communication 199

It’s important that you test the

ExternalInterface.call() method over

the Internet, not locally on your hard drive.

Security restrictions won’t allow you to open

a new window to a Web site from your local

hard drive.

Some browsers and browser configura-

tions may block pop-up windows at any time,

so testing the functionality for your particular

target environment is important. Also, make

sure that the ExternalInterface.call()
method happens as a result of a direct user

action (clicking a button), and something that

happens automatically.

The ExternalInterface class is

supported in these environments: Internet

Explorer 5.0 and later for Windows, Firefox 1.0

and later, Mozilla 1.7.5 and later, Netscape 8.0

and later, or Safari 1.3 and later for the Mac.

The ExternalInterface class is not sup-

ported in a stand-alone player.

You can use the

ExternalInterface.call() method to

call other JavaScript functions defined in

your HTML page, not just to open custom

browser windows.

Make sure you don’t overwrite your

HTML file that contains the added JavaScript

function when you republish your Flash movie.

If you make changes to your Flash movie,

change the Publish Settings so you just pub-

lish a SWF file.

More JavaScript window properties are

available, but many of them work in only one

or some of the most popular browsers. The

properties innerHeight and innerWidth,

for example, define the dimensions of the

window content area, but these properties

are unique to Mozilla-based browsers such as

Netscape Navigator and Firefox. You’re safe if

you stick to the properties listed in Table 6.1.

Security restrictions only allow a Flash

movie to communicate with JavaScript on an

HTML page that is in the same sandbox (see

the Flash Player Security sidebars “Mixing

Local and Remote Content” and “Loading

Across Domains”). You can allow access by

changing the AllowScriptAccess parameter

to always (for both the embed and object

tags) in the HTML page and adding the follow-

ing statement in Flash:

flash.system.Security.allowDomain(
➝"domainName").

200 Chapter 6

Loading External
Flash Movies
Another way to communicate with external

content is to load other Flash movies into

your first Flash movie. You use the Loader
class to do this. The Loader class provides

the load() method to combine many kinds

of external content into a Flash movie. The

original, container Flash movie establishes

the frame rate, the Stage size, and the

background color, but you can layer mul-

tiple external SWF files and even navigate

within their timelines.

Loading external Flash movies has many

benefits. It keeps your Flash project small

and lets you maintain quick download

times. It also lets you edit the external

Flash movies separately for a more modu-

lar way of working. For example, if you

build a Web site to showcase your Flash

animation work, you can keep all your

individual animations as separate SWF

files. Build the main interface so that your

potential clients can load each animation

as they request it. That way, your viewers

download only the content that’s needed,

as it’s needed. The main interface doesn’t

become bloated with the inclusion of every

one of your Flash animations A.

After you’ve loaded an external SWF file

into Flash with the Loader class, you must

add it to the display list, which makes it vis-

ible to the viewer. You’ll learn more about

the display list in the next chapter, “Con-

trolling and Displaying Graphics.” You add

objects to the display list with the method

addChild().

A You can keep data-heavy content separate

by maintaining external SWF files. Here, the

interface.swf movie loads the animation files

one by one as they’re requested.

Interface.swf

External
content

load()

Managing External Communication 201

To load an external Flash movie:
1. Create the external Flash movie you

want to load.

For this example, keep the animation

at a relatively small Stage size B.

2. Publish your external movie as a

SWF file.

3. Open a new Flash document to create

the main, container movie that will load

your external Flash movie.

4. Select the first frame of the main Time-

line, and select the Actions panel.

5. Create a new URLRequest object with

the name of the external SWF file as the

url property, as in the following:

var myrequest:URLRequest = new
➝ URLRequest("letterA.swf");

In this example, the external SWF that

you want to load is called letterA.swf,

and it lies in the same folder as the

main Flash movie. If your external movie

will be in a different directory, you can

specify the path by using the slash (/) to

drill down a directory or double periods

(..) to move up a directory. If your SWF

file resides on a Web site, you can enter

an absolute path to the file.

6. On the next line, create a new Loader
object with the following code:

var myloader:Loader =
➝ new Loader();

7. On the next line, call the load() method

for your new Loader object and use the

URLRequest object as the parameter:

myloader.load(myrequest);

B An animation of the letter A spins on a

vertical grid.

202 Chapter 6

8. On the last line, call the addChild()
method to add the Loader object to

the Stage to display it C:

stage.addChild(myloader);

The Stage is the top-level dis-

play object. You can also add

the Loader object to other

DisplayObjectContainer objects

on the Stage, if you desire.

9. Publish your movie.

10. Place the SWF file, its HTML file, and

the external SWF file in the same

directory.

11. Play the main movie in Flash Player or

a browser.

Flash loads the external movie, which

sits on top of your original movie and

begins playing D.

Be careful when mixing Flash mov-

ies authored in ActionScript 3 and others

authored in previous versions, especially

when loading movies. ActionScript 2 movies

can’t load ActionScript 3 movies. ActionScript

3 movies can load ActionScript 2 movies

and earlier, but there are limitations, such as

not being able to access the loaded movie’s

variables or functions. In general, it’s best to

migrate all movies written in ActionScript 2 or

earlier to ActionScript 3 to keep all externally

loaded Flash content consistent.

C The full code to load an external SWF file

called letterA.swf into your Flash movie. The

URLRequest object holds the information on what

file to get and where to get it, and the load()
method loads it into the Loader object. Do not

forget to display the Loader object on the Stage

with the addChild() method.

D The external movie of the spinning letter loads

into the bigger main Flash movie.

letterA.swf movie Main Flash movie

Managing External Communication 203

To unload a movie:
■ Use the unload() method on the

Loader object, like so:

myloader.unload();

This statement unloads the Flash movie

that was loaded into myloader from the

previous task.

or

■ Use the unloadAndStop() method,

like so:

myloader.unloadAndStop();

This statement unloads the Flash movie

that was loaded into myloader and

shuts down any video or sounds that

may continue to play.

Flash Player Security: Loading Across Domains
Loading external SWFs and other content and data introduces data security issues and some

restrictions you should be aware of. Because SWFs published on the Internet can be loaded into

any Flash movie, the potential exists for private information and sensitive data held in variables in

the SWF to be accessed. To prevent this abuse, Flash movies operate in their own secure space,

called a sandbox. Only movies playing in the same sandbox can access and/or control each

other’s variables and other Flash elements. The sandbox is defined by the domain in which the

Flash movie resides. So, a movie on www.adobe.com can access other movies on www.adobe.

com without restriction, because they’re in the same domain.

If you need to load content or data that reside in different domains, you can call the ActionScript

method Security.allowDomain("domainName") within those SWFs, and movies from the speci-

fied domain can access their variables. For more specific information and details about domain-

based authentication and granting access, see the Flash Help topic (www.adobe.com/products/

flashplayer/security/). Current information is also available as a white paper on the Adobe Web site.

www.adobe.com
www.adobe.com
www.adobe.com
www.adobe.com/products/flashplayer/security/
www.adobe.com/products/flashplayer/security/

204 Chapter 6

To replace a loaded movie:
Use the load() method with a different

URLRequest object. If you instantiate a

second URLRequest object with a second

SWF as its url property, you can load it

into the original Loader object. Continuing

with the previous task, add the following

code when you want to replace the loaded

movie:

var myrequest2:URLRequest =
➝ new URLRequest("letterB.swf");
myloader.load(myrequest2);

This statement creates a new URLRequest
object and loads the second external

movie in the same loader, replacing the

first movie E.

You can change the location of the

loaded movie by assigning different values to

the X and Y properties of the Loader object.

For example, myloader.x = 40 positions the

Loader object 40 pixels from the left edge

of the Stage. Learn more about the differ-

ent properties of the Loader object in the

next chapter, which deals with manipulating

graphics.

E In the ActionScript code (top), the first external

SWF movie (letterA.swf) loads in automatically.

Then, when the user clicks the button on the

Stage, a second URLRequest object is created for

another external SWF movie (letterB.swf). When

it is loaded into the same Loader object, the first

movie is replaced.

myrequest in myloader

myrequest2 in myloader

Managing External Communication 205

Characteristics of Loaded Flash Movies
The following is a list of things to keep in mind

when you’re loading external Flash movies:

. Loaded movies have transparent Stages.

To have an opaque Stage, create a filled

rectangle in the bottom layer of your

loaded movie F.

. Loaded movies are aligned with the reg-

istration point of the object that they are

loaded into. That means the loaded mov-

ies are aligned to the top-left corner of the

Stage (x = 0 and y = 0 for both the loaded

movie and the Stage). So, loaded movies

with smaller Stage sizes still show objects

that are off their Stage G. Create a mask

to block objects that may go beyond

the Stage and that you don’t want your

audience to see. Likewise, loaded movies

with larger Stage sizes are cropped at the

bottom and right boundaries H.

. Loader objects can have only one loaded

movie, so new calls to load() will bump

out the existing loaded movie and replace

it with the new loaded movie.

. You can have multiple loaded Flash mov-

ies as long as you have a unique Loader
object for each loaded movie. Each time

you use the addChild() method to dis-

play the loaded movie, it will be placed on

top of the previously loaded movies. See

the next section and Chapter 7, “Control-

ling and Displaying Graphics,” for more

information about managing depth levels

of objects on the display list.

F The Stage of an external SWF is transparent

when the SWF is loaded into the main Flash movie.

External SWF

Main SWF

Loaded SWF with
transparent Stage

load()

G Smaller external SWFs are aligned at the top-

left corner and display the work area off their

Stages. Consider using masks or external SWFs

with the same Stage dimensions.

External SWF

Main SWF

Loaded SWF with
objects off its
Stage visible

load()

H Larger external SWFs get cropped when

they’re loaded in a smaller main Flash movie.

External SWF

Main SWF

Loaded SWF with
contents cropped

load()

206 Chapter 6

Controlling Loaded
Flash Movies
When you load an external Flash movie,

you’ll likely want to control its timeline or

find out some information about the movie.

For example, to better fit your design, you

need to know the loaded movie’s width

and height so you can move it to an appro-

priate location on the Stage. Or, you can

stop or play the loaded movie, or navigate

to different spots on its timeline.

Before you can control the loaded Flash

movie or get information about its prop-

erties, however, you have to wait until

the entire external SWF has loaded. You

can detect when the loading process is

complete by accessing the LoaderInfo
object of your loaded object. The

LoaderInfo object provides events such

as Event.COMPLETE or Event.OPEN that

tells you the status of the load progress.

The LoaderInfo object also provides

information such as the amount of data

that has loaded, the total amount of data

of the loaded object, the loaded movie’s

SWF version, its frame rate, the URL from

where it is being loaded, and other useful

properties.

LoaderInfo and contentLoaderInfo
To access the LoaderInfo object, you use

the contentLoaderInfo property of your

Loader object. For example, consider

the following statements that create a

URLRequest and a Loader, and then load

an external SWF file:

var myrequest:URLRequest =
➝ new URLRequest("letterA.swf");
var myloader:Loader = new Loader();
myloader.load(myrequest);

After the load() call is made, you can

access the LoaderInfo and its properties

with the contentLoaderInfo property,

like so:

myloader.contentLoaderInfo.bytesLoaded

Managing External Communication 207

This statement returns the amount of data

that has loaded into the myloader object.

The next statement,

myloader.contentLoaderInfo.content

returns the object (in this case, the exter-

nal SWF) that is loaded into myloader.

Table 6.2 lists a few of the useful proper-

ties and events of the LoaderInfo object.

Detecting a successful load
Only after a load is successful is it safe

to control the loaded movie or access

its properties (like width or height). Cre-

ate an event handler that detects the

Event.COMPLETE event of the LoaderInfo
class as follows:

TABLE 6.2 LoaderInfo Properties and Events

Property Description

actionScriptVersion ActionScript version of the loaded SWF

bytesLoaded Amount of data that is loaded

bytesTotal Total amount of data in the file

content The loaded object associated with the LoaderInfo object

loader The Loader object associated with the LoaderInfo object

frameRate Frame rate of the loaded file

height Vertical dimension, in pixels

width Horizontal dimension, in pixels

loaderURL URL of the Flash movie that initiated the load

url URL of the file being loaded

swfVersion Player version of the loaded SWF

Event.COMPLETE Dispatches when the file is completely downloaded

Event.OPEN Dispatches when the file begins to load

ProgressEvent.PROGRESS Dispatches when the file is loading

Event.UNLOAD Dispatches when the loaded file is removed or replaced

IOErrorEvent.IO_ERROR Dispatches when an error in the loading happens

myloader.contentLoaderInfo.
➝ addEventListener(Event.COMPLETE,
➝ swfLoaded);
function swfLoaded(
➝ myevent:Event):void {
var mycontent:MovieClip =
➝ myevent.target.content;
 // do something with mycontent
}

In this example, when Flash detects the

completion of a load process into the

myloader object, it calls the swfLoaded
function. The content of the event target

(the loaded SWF) is assigned to a movie

clip variable called mycontent for ease of

manipulation and control.

208 Chapter 6

To target and control a
loaded Flash movie:
1. As in the preceding tasks, create an

animation to serve as an external Flash

movie, and export it as a SWF file.

2. Open a new Flash document, select the

first frame of the Timeline, and open the

Actions panel.

3. Instantiate a URLRequest object and a

Loader object and make a call to the

load() method to start loading the

external SWF, as in the following code:

var myrequest:URLRequest =
➝ new URLRequest("letterA.swf");
var myloader:Loader =
➝ new Loader();
myloader.load(myrequest);

B When the listener detects the completion of the loading, it triggers

the function called swfLoaded.

A The external SWF called letterA.swf loads into the Loader object

called myloader and is displayed on the Stage.

4. On the next available line, display the

Loader object with the addChild()
method, as follows:

stage.addChild(myloader);

The code so far should appear like the

code in A.

5. Add an event listener to the

myloader.contentLoaderInfo
object (which references the

LoaderInfo object) and listen for

the Event.COMPLETE event, as in the fol-

lowing B:

myloader.contentLoaderInfo.
➝ addEventListener(
➝ Event.COMPLETE, swfLoaded);

Managing External Communication 209

7. Within the body of the event-handler

function, add additional statements that

navigate the timeline of the exter-

nal SWF or reference its properties.

For example, consider the following

statement:

mycontent.gotoAndStop(5);

This statement moves the playhead of

the loaded SWF to frame 5 and stops

there C.

8. Publish your movie, and place the SWF

and its HTML in the same directory as

the external SWF file.

9. Play the movie in Flash Player or a

browser.

Flash loads the external SWF. When

it detects the completion of the load,

Flash goes to a different spot on its

timeline D.

C When the function called

swfLoaded is triggered, the external

SWF is assigned to the MovieClip
variable mycontent.The highlighted

portions of the code control the

playhead of the loaded external SWF.

D The playhead on the Timeline

of the loaded external SWF stops

at frame 5 (so this animated letter

“A” stops spinning).

6. On the next available line, create a

function with an Event type as the

parameter. In the body of the function,

assign the target.content property of

the event object to a new movie clip,

like so:

function swfLoaded(
➝ myevent:Event):void {

var mycontent:MovieClip =
➝ myevent.target.content;
}

This event handler, when executed,

puts the content of the event target in a

variable typed to a movie clip. The con-

tent of the event target is the loaded

object, or the external SWF, which you

know belongs to the MovieClip class.

This helps you reference the external

SWF, change its properties, and navi-

gate its timeline.

210 Chapter 6

Managing multiple Flash movies
When you load an external Flash movie

and use addChild() to display it on the

Stage, Flash adds the object to a display

list, which is a list that Flash uses to keep

track of the stacking order of objects. You’ll

learn much more about the display list in

Chapter 7, because it is used to display

all sorts of objects on the Stage—movie

clips, bitmaps, graphics, as well as loaded

movies.

Think of the display list as a stack of

items, and each time you add an object

to the Stage with addChild(), you add to

the top of the stack. So the most recent

addChild() statement will be the topmost

object that overlaps all the other objects. If

you want to bring an object that’s lower in

the stack to the top, simply call addChild()
for that object, and Flash will pull it out of

the list and put it on the top. If you want to

remove an object from the stack entirely,

use removeChild() E.

To put a loaded movie
on top of others:
Make a call to the addChild() method,

like so:

stage.addChild(myloader);

This statement adds the Flash movie

loaded into myloader to the top of the

Stage, overlapping other objects that may

already be present on the Stage F.

E The addChild() method puts the Loader
object on display on the Stage. The most recent

addChild() method will be on top.

F When you call an addChild() method for a

Loader object already displayed, it pulls it from

the display list and puts it on the top.

Third addChild() method

Second addChild() method

First addChild() method

Stage

Stage

Stage

addChild() method called
for this Loader object

Loader
object put
on top

Managing External Communication 211

To remove a loaded movie
from the Stage:
Make a call to the removeChild() method,

like so:

stage.removeChild(myloader);

This statement removes the myloader
object from the Stage so it is no longer

visible. The myloader object, however, still

exists. It can be added to the Stage at a

later point in time or deleted entirely if it is

no longer needed G.

G When you call a removeChild() method for a

Loader object already displayed, it pulls it from the

display list so it is no longer visible.

Stage

Stage

removeChild() method called
for this Loader object

Loaded Movies and root
If you’ve worked with previous versions

of ActionScript, you know that the _root
property always referred to the main

Timeline, even when an external SWF

was loaded into another Flash movie.

That made loaded Flash movies a little

tricky if ActionScript from their timeline

made reference to _root. In ActionScript

3, the new root property behaves a little

differently. The root property within

the loaded SWF represents the instance

of the main class of that SWF (the main

Timeline of that SWF, equivalent to the

Loader object’s content property).

Hence, there can be multiple root
instances in a Flash movie if external

content is loaded into the player with the

Loader class.

212 Chapter 6

Loading External
Images
Using the same method that loads external

Flash files into your movie dynamically,

you can load images dynamically, includ-

ing JPEG, progressive JPEG, GIF, and PNG

images. The process is similar: create a

URLRequest object to define the URL or

path to your image file, create a Loader
object, and then use the load() method to

pull images into your Loader object. Finally,

display the loaded images by adding

the Loader object to the display list with

addChild(). As is the case with external

SWFs, keeping images separate from your

Flash movie reduces the size of your Flash

movie, saves download time, and makes

revisions quicker and easier because you

can edit the images without needing to

open the actual Flash file.

Loaded images follow many of the same

rules that loaded movies do, and those

rules are worth repeating here:

■ Loaded images are aligned at the regis-

tration point of the object that they are

loaded into. That means images loaded

on the Stage are aligned at their top-left

corners (x = 0 and y = 0 for both the

loaded movie and the Stage).

■ Loader objects can have only one

loaded image, so new calls to load()
will bump out the existing loaded image

and replace it with the new loaded

image.

■ You can have multiple loaded images

as long as you have a unique Loader
object for each loaded image. Each

time you use the addChild() method

to display the loaded image, it will be

placed on top of the previously loaded

image.

Managing External Communication 213

To load an external image:
1. Select the first frame of the main

Timeline, and select the Actions panel.

2. Create a new URLRequest object with

the name of the external image file as

the url property, as in the following:

var myrequest:URLRequest =
➝ new URLRequest("someimage.jpg");

In this example, the external image that

you want to load is called someimage.

jpg, and it is in the same folder as the

main Flash movie. If your external image

will be in a different directory, you can

specify the path by changing directories

using the slash (/) or double periods (..).

If your image file resides on a Web site,

you can enter an absolute path to the file.

3. On the next line, create a new Loader
object with the following code:

var myloader:Loader =
➝ new Loader();

4. On the next line, call the load() method

for your new Loader object, and use the

URLRequest object as the parameter:

myloader.load(myrequest);

5. On the last line, call the addChild()
method to add the Loader object to

the Stage to display it A:

stage.addChild(myloader);

The Stage is the top-level display object.

You can also add the Loader object to

other DisplayObjectContainer objects

on the Stage, if you desire.

6. Publish your movie, and place your

image in the correct directory so your

Flash movie can find it.

Flash loads the external image, which

sits on top of your original movie. The

top-left corner of the JPEG aligns with

the top-left corner of the Stage B.

A This ActionScript code loads an image called

someimage.jpg and displays it on the Stage.

B The image file, someimage.jpg, is in the same

directory as the SWF and HTML (top). When the

Flash movie plays, the external image loads

(bottom).

Same directory

External image loaded into SWF

SWF JPG HTML

214 Chapter 6

To remove or replace
a loaded image:
■ To unload an image, make a call to the

unload() method of the Loader object.

To remove the image from the display,

make a call to the removeChild()
method of the Stage.

■ To replace an image, use the load()
method, and load another URLRequest
object into the same Loader object. The

new image will replace the old one.

To change the properties
of a loaded image:
Assign new values to the Loader object

properties to change the appearance

of the loaded image. For example,

myloader.x = 100 moves the horizontal

position of the myloader object and its

loaded image C.

To put a loaded image
on top of others:
Make a call to the addChild() method for

the Loader object, like so:

stage.addChild(myloader);

This statement puts the image loaded into

myloader to the top of the Stage, overlap-

ping other objects that may already be

present on the Stage.

C Assigning values for the X and Y properties

of the Loader object puts it in a different position

on the Stage.

100 pixels

Accessing the Loaded Content’s
Properties
Often, when you load external content

(a SWF or an image file), you’ll want

to find out its dimensions (height and

width) so you can place it in the cor-

rect location on the Stage or scale it

appropriately. However, it’s important

that you use an event listener to listen

for the Event.COMPLETE of the load (the

Loader’s contentLoaderInfo) before

you attempt to access the properties of

the external SWF or image. For example,

if you try to get the width or height of

the loaded image before it’s completely

loaded, the information you receive will

not be correct.

Managing External Communication 215

Communicating with
External Video
In Chapter 2, “Working with Video,” you

learned how to embed video in a SWF file

and also how to create an external Flash

Video (FLV/F4V) file that loads into a player

skin in a SWF file. However, you don’t have

to rely on the preset skins that are provided

to you. Using ActionScript, you can control

the loading and playback of external video

to build your own playback features and use

video in a less conventional way.

Once you have an FLV/F4V file, use a

NetConnection object and a NetStream
object to load the video stream into Flash.

The NetConnection object provides the

means to play back an FLV file from your

local drive or Web address, whereas the

NetStream object makes the actual con-

nection and tells Flash to play the video.

To receive the streaming video, you must

also have a video object on the Stage. You

can do this in one of two ways: create a

video symbol in your Library and place an

instance on the Stage where you want the

video to appear, or create a video sym-

bol and attach it to the Stage purely with

ActionScript using the Video class.

To dynamically load external
video with a video symbol
placed on the Stage:
1. Convert your video file to an FLV or F4V

file, as described in Chapter 2.

2. Open a new Flash document with its

Stage size large enough to accommo-

date the video file.

3. Open the Library. From the Library panel’s

Options menu, choose New Video A.

The Video Properties dialog box appears.

Continues on next page

A Choose New Video from the Library panel’s

Options menu.

216 Chapter 6

4. Give your symbol a name in the Symbol

field; in the Type field, choose Video

(ActionScript-controlled) B.

A new video symbol appears in the

Library.

5. Place an instance of the video symbol

on the Stage.

6. Modify its width and height to match the

external video file that will be loaded

in, and give it an instance name in the

Properties inspector. In this example,

the instance name is videoHolder C.

Your external video will play inside this

video instance.

7. Select the first frame of the main Time-

line, and in the Actions panel, create a

new instance from the NetConnection
class as follows:

var myVideo:NetConnection =
➝ new NetConnection();

A new NetConnection object is

instantiated.

8. On the next line, enter the name of the

NetConnection object you just created

followed by a period, and then enter

the connect() method with null as its

parameter:

myVideo.connect(null);

The null parameter tells Flash that it

isn’t connecting through the Flash Com-

munication Server but instead to expect

a download from the local hard drive or

a Web address.

9. On the next line, declare and instanti-

ate a new NetStream object with the

NetConnection object as its parameter:

var newStream:NetStream =
➝ new NetStream(myVideo);

A new NetStream object is instantiated.

B The Video Properties of your new video

symbol.

C A video symbol placeholder named

videoHolder is placed on the Stage. The

instance looks like a square with an x inside it.

Managing External Communication 217

10. Enter the instance name of the video

symbol instance you placed on the

Stage followed by a period. Enter the

attachNetStream() method with the

video source parameter:

videoHolder.attachNetStream(
➝ newStream);

In this example, the name of the new

NetStream object is the video source

parameter.

11. On the next line, enter the name of the

NetStream object followed by a period

and then the method, play(). As the

parameter for the play() method, enter

the name of the external FLV or F4V file

that you want to play on the Stage D.

newStream.play("kayak.flv");

As in this example, make sure the file-

name is enclosed by quotation marks.

12. On the next line, enter the following

event listener to detect asynchronous

error events and ignore them. See the

sidebar “Asynchronous Error Events” for

details regarding this error event.

newStream.addEventListener (
➝ AsyncErrorEvent.ASYNC_ERROR,
➝ asyncErrorHandler);
function asyncErrorHandler (
➝ myevent:AsyncErrorEvent):void
{
 // ignore error
}

13. Publish your movie, and place the SWF

file in the same directory as the video

file whose name you entered.

Flash attaches your external video file

to the instance of the video symbol on

the Stage and begins to stream the

video E.

D A NetConnection object and a NetStream
object are used to load and play an external FLV.

E The ActionScript code (top) loads the external

FLV file named kayak.flv into the videoHolder
instance on the Stage and plays.

218 Chapter 6

To dynamically load external
video with a video object:
1. Modify the file created in the previous

task by deleting the video instance on

the Stage.

2. Instead of creating a video symbol

in the Library beforehand (steps 3–6

of the previous task), create a Video
object with ActionScript, like so:

var videoHolder:Video =
➝ new Video(320, 240);

This statement creates a new object

called videoHolder from the Video
class, which is 320 pixels wide by

240 pixels high.

3. Add the new Video object to the Stage

with the addChild() method:

stage.addChild(videoHolder);

4. Publish your movie, and place the SWF

file in the same directory as the video

file whose name you entered.

The full ActionScript code F is simi-

lar to the one in the previous task,

but Flash creates the Video object

dynamically.

Move the Video object, whether dynami-

cally generated or placed on the Stage manu-

ally, by assigning new values to its X and Y

properties. You’ll learn more about changing

graphics displayed on the Stage in the next

chapter.

When working with FLV or F4V files for

playback, you may need to configure your

server to handle the file type (by telling the

server its MIME type and file extension). Check

with your hosting service to make sure the

server can handle FLV and F4V files.

F The ActionScript code (top) loads the external

FLV file named kayak.flv into the dynamically

created Video object and plays. The Video object

is aligned at the top-left corner of the Stage, but

you can change its X and Y properties to move it

anywhere you want.

Managing External Communication 219

Controlling playback of
externally loaded video
There are several methods that you can

call to control the playback of the video

stream. See Table 6.3 for a description of

the various commands. All of these meth-

ods are called from the NetStream object.

The following task creates buttons for the

four methods to control the playback of

the video.

Asynchronous Error Events
Cue points are information embedded in FLV and F4V files that you can create when you originally

encode your video, or in the Properties inspector. They provide a way for ActionScript to detect

the specific spots along the video stream with the MetaDataEvent event handler (see Chapter 2

for more information on creating and detecting cue points).

If your video has cue points, Flash requires that you write event handlers for them; otherwise,

errors may be generated. However, if you are not interested in cue points or metadata and simply

want to play the video, you must add the following bit of code to tell Flash to ignore any asynchro-

nous errors:

newStream.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);
function asyncErrorHandler(myevent:AsyncErrorEvent):void
{
 // ignore error
}

The sample code adds a listener on the NetStream object called newStream for the asynchronous

error event, which happens when no event handler exists to deal with cue points and metadata

from an FLV/F4V.

TABLE 6.3 Playback Methods of the
NetStream Object

Method Description

pause() Pauses the video

resume() Begins playing at the point

where the video is paused

seek() Seeks to any point in the

stream provided by the

parameter, in seconds

togglePause() Alternates between pausing

or resuming playback of the

video

220 Chapter 6

To control playback of
externally loaded video:
1. Continue with the file created in the

previous task in which you load and

play an external video.

2. Create a button symbol, and place four

instances of the button symbol on the

Stage.

3. In the Properties inspector, give unique

names to the four instances and add

text to describe their function. In this

example, name the four instances

pause_btn, resume_btn, toggle_btn,

and seek_btn G.

4. Select the first frame of the Timeline

and open the Actions panel.

5. On the next available line in the Script

pane, create an event handler for each

of the four buttons to detect a mouse

click.

6. In the function of each event han-

dler, make a call to a method of the

NetStream object H.

7. Publish your movie, and place the SWF

file in the same directory as the video

file that you want to load.

The full ActionScript code I creates

the necessary objects to load the video

file and provides event handlers to

control its playback.

G Four button instances

placed on the Stage.

H The mouse click event handlers for the four

buttons on the Stage. Each button calls a different

method of the NetStream object called newStream.

I The ActionScript code (top) loads

the external FLV. The buttons (bottom)

control its playback. Create your own

playback skin using these methods.

Managing External Communication 221

Detecting the status of
the video stream
The NetStream object dispatches events

(NetStatusEvent) at various points during the

data stream. The different NetStatusEvent
conditions are captured in its property

info.code as a string. For example, if the

play() method can’t find the correct video

file, the info.code property returns a value

of NetStream.Play.StreamNotFound.

Two important string values, "NetStream.
Play.Start" and "NetStream.Play.Stop",
can help you detect the start and end of a

loaded video to better manage the video

streams. For example, you could create

an event handler to listen for the end of a

loaded video. When the video finishes play-

ing, you automatically load the next video

in the queue.

To detect the end of
externally loaded video:
1. Continue with the file created in the

previous task in which you loaded and

played an external video.

2. Select the first frame on the Timeline

and open the Actions panel.

3. On the next available line, add an event

listener on your NetStream object to

detect the NetStatusEvent.NET_STATUS
event as follows:

newStream.addEventListener(
➝ NetStatusEvent.NET_STATUS,
➝ statusHandler);

J When Flash detects the end of the first video stream, it

automatically plays another video, called video2.flv.

4. On the next line, create the function

with the NetStatusEvent as a param-

eter, like so:

function statusHandler(
➝ myevent:NetStatusEvent):void {
 // do something
}

When there is a change in the condition

of the video stream, the function called

statusHandler will be triggered.

5. Between the curly braces of the func-

tion, add a conditional statement that

checks whether the info.code property

of the event matches a string that indi-

cates the video has finished:

if (myevent.info.code ==
➝"NetStream.Play.Stop") {
 // video has stopped
}

6. Add additional statements to be carried

out when the video finishes J. Publish

your movie, and place the SWF file in

the same directory as the video file that

you want to load.

When Flash detects the end of the

video, myevent.info.code matches

the string "NetStream.Play.Stop" and

additional instructions can be given.

222 Chapter 6

Detecting Download
Progress: Preloaders
All the hard work you put into creating

complex interactivity in your movie will be

wasted if your viewers have to wait too long

to download the movie over the Web and

leave. You can avoid losing viewers by cre-

ating short animations that entertain them

while the rest of your movie downloads.

These diversions, or preloaders, tell your

viewers how much of the movie has down-

loaded and how much longer they have to

wait. When enough data has been delivered

over the Web to the viewers’ computers,

you can trigger your movie to start. In effect,

you hold back the playhead until you know

that all the frames are available to play. Only

then do you send the playhead to the start-

ing frame of your movie.

Preloaders must be small because you

want them to load almost immediately, and

they should be informative, letting your

viewers know what they’re waiting for.

Flash provides many ways to monitor

the state of the download progress. You

can test for the number of frames that

have downloaded with the MovieClip
class properties framesLoaded and

totalFrames. But the frames of your movie

most likely contain data that aren’t evenly

spread, so testing the amount of data

(measured in bytes) is a more accurate

gauge of download progress.

As you learned earlier in the section

“Controlling Loaded Flash Movies,” you can

access information about the status of any

load with the LoaderInfo object. Earlier

you used it to determine when an external

SWF had completely loaded. But you can

also use it to determine when the main

SWF (or any loading file) has completely

loaded, or check on its download progress.

Use the ProgressEvent event with the

properties bytesLoaded and bytesTotal to

help you monitor the download progress.

The concept of a preloader is simple. You

tell Flash to compare the amount of data

loaded with the total data in the movie. As

this ratio changes, you can display the per-

centage numerically with a dynamic text

field or represent the changing ratio graph-

ically, such as with a growing, horizontal

progress bar. Because they often show the

progress of the download, these preload-

ers are sometimes known as progressive
preloaders.

Managing External Communication 223

To create a preloader
that graphically shows
download progress:
1. Create a long rectangular movie clip

symbol.

Make sure its registration point is at its

far-left edge A.

2. Place an instance of the symbol on the

Stage, and give it an instance name

(this example uses bar_mc).

Your preloader is a rectangle that grows

longer according to the percentage of

downloaded frames. Flash will dynami-

cally change the properties of the

rectangular movie clip to stretch it out.

Because the bar should grow from left

to right, the registration point is placed

on the left edge.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. Enter stop().

The stop() method prevents your

movie from playing until it has down-

loaded completely B.

5. On the next line, add an event

listener on the main Timeline’s

loaderInfo property. Listen for the

ProgressEvent.PROGRESS event, like so:

root.loaderInfo.addEventListener (
➝ ProgressEvent.PROGRESS,
➝ progressHandler);

The loading of your main Flash movie is

happening on the root Timeline, so you

can use loaderInfo to access its load

properties. Whenever download prog-

ress is detected, the function called

progressHandler is called.

Continues on next page

A A rectangular movie clip with its registration

point on the far-left edge can be used as a

graphical representation of download progress.

B The stop() method is put on the very first

frame on the Timeline to pause your movie until

all the data has downloaded.

Registration point

stop action

224 Chapter 6

6. On the next line, create the func-

tion called progressHandler with a

ProgressEvent event as its parameter:

function progressHandler(
➝ myevent:ProgressEvent):void {
 // show progress
}

7. Between the curly braces of the func-

tion, declare a variable and assign the

ratio of bytes downloaded to total bytes

with the following:

var myprogress:Number =
➝ myevent.bytesLoaded /
➝ myevent.bytesTotal;

The amount of data loaded is defined

in the ProgressEvent’s bytesLoaded
property. The total data is defined in the

ProgressEvent’s bytesTotal property.

Dividing the first over the second pro-

vides a ratio of the overall progress.

8. On the next line (but still within the func-

tion), add the following:

bar_mc.scaleX = myprogress;

C As the movie downloads, its progress is captured in the variable

myprogress, which measures the ratio of bytesLoaded to bytesTotal
of the loading movie. This ratio is used to scale the rectangle on

the Stage.

D When the loading process is complete, the function called

finished is triggered. Flash begins playing the main Timeline.

The bar on the Stage is scaled horizon-

tally according to the download ratio C.

9. On a new line outside the event han-

dler, create a new listener on the root

Timeline’s loaderInfo property to

detect the Event.COMPLETE event:

root.loaderInfo.addEventListener(
➝ Event.COMPLETE, finished);

This second listener listens for the

completion of the download and will

call the function called finished.

10. On the next line, create the function

called finished with an Event event

as its parameter:

function finished(
➝ myevent:Event):void {
 play();
}

In this example, when the function

is called, the Flash movie begins

playing D.

Managing External Communication 225

11. Begin the actual content of your

Flash document from the second

keyframe E.

12. Test your movie (Control > Test Movie >

in Flash Professional).

13. Choose View > Bandwidth Profiler

(Ctrl-B for Windows, Cmd-B for Mac)

and choose View > Simulate Download.

The Bandwidth Profiler is an informa-

tion window above your movie in Test

Movie mode; it displays the number of

frames and the amount of data in each

frame as vertical bars. If the vertical

bars extend over the bottom of the red

horizontal line, there is too much data

to be downloaded at the bandwidth

setting without causing a stutter dur-

ing playback. The Simulate Download

option simulates actual download

performance F. The green bar at the

top shows the download progress. The

triangle marks the current location of

the playhead. The playhead remains

in frame 1 until the green progress bar

reaches the end of the timeline. Only

then does the playhead begin moving.

You won’t see your preloader working

unless you build an animation with many

frames containing fairly large graphics that

require lengthy download times. If your anima-

tion is small, you’ll see your preloader whiz by

because all the data will download quickly and

begin playing almost immediately.

Explore other graphical treatments of

the download progress. Stretching the length

of a movie clip is just one way to animate the

download process. With subtle changes to

your ActionScript, you can apply a variety of

animated effects to your preloader.

E The real movie begins at keyframe 2 after the

rectangular movie clip is removed.

Rectangular movie clip
removed at keyframe 2

Movie begins from
this point forward

F The Bandwidth Profiler shows the individual

frames that cause pauses during playback

because the amount of data exceeds the data

transfer rate. The alternating light and dark

bars represent different frames. Notice how

the progress of the download (about 8 out of

10 frames have loaded completely) affects the

proportion of the movie clip (about 80 percent).

Data transfer rate

Current location of playhead

Progress of download

Causes delay during playback

226 Chapter 6

Showing numeric
download progress
Often, a preloader has an accompanying

display of the percentage of download

progress. This display is accomplished with

a text field placed on the Stage. You’ll learn

more about text in Chapter 10, “Control-

ling Text,” but you can use the steps in the

following task now to add a simple numeric

display.

The Bandwidth Profiler
The Bandwidth Profiler is a handy option to see how data is distributed throughout your Flash

movie and how quickly (or slowly) it will download over the Web. In Test Movie mode (after choos-

ing Control > Test Movie > in Flash Professional), choose View > Bandwidth Profiler (Ctrl-B for

Windows, Cmd-B for Mac) to see this information.

The left side of the Bandwidth Profiler shows movie information, such as Stage dimensions, frame

rate, file size, total duration, and preload time in frames and seconds. It also shows the Bandwidth

setting, which simulates actual download performance at a specified rate. You can change that

rate in the View > Download Settings menu and choose the Internet connection speed that your

viewers are likely to have. Flash gives you options for DSL and T1 lines, for example.

The bar graph on the right side of the Bandwidth Profiler shows the amount of data in each frame

of your movie. You can view the graph as a streaming graph (choose View > Streaming Graph) or

as a frame-by-frame graph (choose View > Frame by Frame Graph). The streaming graph indicates

how the movie downloads over the Web by showing you how data streams from each frame,

whereas the frame-by-frame graph indicates the amount of data in each frame. In Streaming Graph

mode, you can tell which frames will cause hang-ups during playback by noting which bar exceeds

the given Bandwidth setting.

To watch the actual download performance of your movie, choose View > Simulate Download.

Flash simulates playback over the Web at the given Bandwidth setting. A green horizontal bar at

the top of the window indicates which frames have been downloaded, and the triangular playhead

marks the current frame.

Managing External Communication 227

To add a numeric display
to the preloader:
1. Continuing with the file from the

preceding task, select the Text tool

and choose TLF Text > Read Only

(or Classic Text > Dynamic), and drag

out a text field on the Stage.

2. In the Properties inspector, give the text

field an instance name G.

As with buttons and movie clip symbols,

the instance name of the text field lets

you target the text field and control it

using ActionScript.

3. Select the first frame of the main

Timeline, and open the Actions panel.

4. Within the curly braces of the function

called progressHandler, enter the

following:

myTextField_txt.text = Math.round(
➝ myprogress * 100) + "%";

The percentage of download progress

is rounded to a whole number by the

Math.round() method. The percent

(%) character is appended to the end,

and the result is assigned to the text
property of your text field, displaying it

on the Stage H.

Detecting download progress of
external images and movies
Monitoring the download progress of

external images and movies is very similar

to monitoring the download progress of the

main Flash movie. You can use the identi-

cal code, but instead of adding your lis-

tener to root.loaderInfo, you’ll add your

listener to myloader.contentLoaderInfo
(provided that your Loader object is

named myloader). Recall that your

Loader’s contentLoaderInfo refers to the

LoaderInfo object of the loaded content.

You can visualize the relationship in I.

G This TLF text field is called myTextField_txt.

H The text field displays the percentage of the

download progress along with the graphical

representation.

I In this figure, you can see the relationship

between the Loader object, the external file that

it loads, and the associated LoaderInfo object

that provides information about the content

and the loading process (see Table 6.2). The

contentLoaderInfo property of the Loader
object references the LoaderInfo object.

The loaderInfo property of the content also

references the LoaderInfo object. So for loading

external content, use the contentLoaderInfo
property of the Loader object. For the main SWF,

use the loaderInfo property of root.

Text field

Main SWF

loaderInfo property

loaderInfo property

External file

contentLoaderInfo property

Stage

228 Chapter 6

To create a preloader for
external images or movies:
1. Create a small rectangular movie clip

symbol.

Make sure its registration point is at the

far-left edge.

2. Place an instance of the symbol on the

Stage, and give it a name in the Proper-

ties inspector J.

The properties of the rectangle will

change in proportion to the number of

bytes that are downloaded. This will

act as a visual indicator to the audience

that the movie is loading.

3. Select the Text tool and drag out a text

field on the Stage. In the Properties

inspector, select TLF Text and Read

Only from the drop-down lists (or Clas-

sic Text and Dynamic) and give the field

an instance name K.

The text field will display the percent-

age of download progress.

4. Select the first frame of the main Time-

line, and open the Actions panel.

5. Create a new URLRequest object with

the name of the external file as the url
property as in the following:

var myrequest:URLRequest =
➝ new URLRequest("someimage.jpg");

In this example, the external file is a

JPEG that you want to load, and it lies

in the same folder as the main Flash

movie. You can use an absolute URL to

an image or SWF on the Internet as well.

J A new rectangular movie clip is given an

instance name of bar_mc.

K A TLF text field is given an instance name of

myTextField_txt.

Managing External Communication 229

6. On the next line, create a new Loader
object with the following code:

var myloader:Loader =
➝ new Loader();

7. On the next line, call the load() method

for your new Loader object and use the

URLRequest object as the parameter.

Add the Loader object to the Stage L:

myloader.load(myrequest);
stage.addChild(myloader);

The code so far should be familiar if

you’ve read the previous section in this

chapter.

8. On the next line, add an event

listener to the Loader object’s

contentLoaderInfo property and listen

for the ProgressEvent.PROGRESS event

as in the following code:

myloader.contentLoaderInfo.
➝ addEventListener(ProgressEvent.
➝ PROGRESS, progresshandler);

L An external file called someimage.jpg loads into the

Loader object called myloader.

M When the external file begins to load, the Loader object’s contentLoaderInfo
property can be used to access the LoaderInfo object. The ProgressEvent.PROGRESS
event is dispatched as the load happens, and the ratio of downloaded data to total

data is displayed graphically with the movie clip and in a dynamic text field.

9. On the next line, enter the event-

handler function as you did for the

previous task. The full code so far is

shown in M.

10. Next, add a second event listener to the

Loader object’s contentLoaderInfo
property and listen for the

Event.COMPLETE event as in the follow-

ing code:

myloader.contentLoaderInfo.
➝ addEventListener(Event.COMPLETE,
➝ alldone);

As soon as the Event.COMPLETE event

has dispatched from the loading pro-

cess, the function called alldone will

be called.

Continues on next page

230 Chapter 6

12. Test your movie.

As your external movie or image loads

into your Loader object, the text field

displays the percentage of total bytes

downloaded, and the rectangular movie

clip grows longer. When the entire

movie or image has loaded, the text

field and elongated rectangular movie

clip disappear O.

11. On a new line, enter the function called

alldone as follows:

function
alldone(myevent:Event):void {
 removeChild(myTextField_txt);
 removeChild(bar_mc);
}

When the load is complete, the text

field and movie clip are removed N.

N The complete code for a preloader for external content. The last event handler

detects when the load is complete. When the load is complete, the preloader

(movie clip and dynamic text field) are removed from the Stage.

O During the loading progress, Flash updates the

contents of the text field called myTextField_txt and

stretches the rectangular movie clip called bar_mc in

proportion to the percentage of downloaded bytes (top).

When loading is finished, the image called someimage.

jpg appears in the Loader and the text field and

rectangular movie clip disappears (bottom).

ActionScript’s ability to create, control, and

display graphical elements on the fly and

in response to events is what makes Flash

truly powerful. You can create and manipu-

late many objects such as movie clips, but-

tons, images, and even shapes and masks.

Properties that control how these objects

appear, such as position, scale, rotation,

transparency, color, and blending effects,

can all be changed with ActionScript. You

can even have control over motion tweens

that you create purely with ActionScript,

or control the individual pixels in bitmap

images.

Flash also gives you many methods to

control an object’s behavior. You can make

objects draggable so that viewers can pick

up puzzle pieces and put them in their

correct places, or you can develop a more

immersive online shopping experience in

which viewers can grab merchandise and

drop it into their shopping carts. In this

chapter, you’ll learn how to control col-

lisions and overlaps with other objects,

and you’ll learn how to generate different

objects dynamically so that new instances

appear on the Stage during playback.

7
Controlling and

Displaying Graphics

In This Chapter
Understanding the Display List 232

Changing Visual Properties 233

Modifying the Color 240

Blending Colors 246

Applying Special Effects with Filters 250

Creating Drag-and-Drop Interactivity 253

Detecting Collisions 258

Generating Graphics Dynamically 261

Controlling Stacking Order 264

Creating Vector Shapes Dynamically 267

Using Dynamic Masks 282

Generating Motion Tweens Dynamically 288

Customizing Your Pointer 292

Putting It Together: Animating Graphics

with ActionScript 294

About Bitmap Images 296

Creating and Accessing Bitmap Data 297

Manipulating Bitmap Images 303

Using Filters on Bitmap Images 313

Putting It Together: Animating Bitmap

Images 316

232 Chapter 7

Understanding
the Display List
The key to successfully manipulating graph-

ics on the Stage is to understand what is

known as the display list. The display list is

the hierarchy of visible objects on the Stage.

The display list lets Flash (and you) keep

track of what the user sees, the visual rela-

tionships between objects, and the stacking

order (or overlapping) of the objects.

Conceptually, it’s much like the folder struc-

ture on your computer desktop and can be

represented as a tree structure A. The top-

level element is the Stage. Each time you

play a Flash movie in a Web browser, the

Flash Player opens your SWF and places it

on the Stage. So the Stage is the container

that holds your main SWF. Inside your

main SWF you can place other elements,

such as buttons, text, video, bitmaps, and

other objects—all of which are instances

of a big class known as DisplayObject.

You’ll be using many of the properties of

the DisplayObject class to control the

objects’ appearances. You can also have

elements on your main SWF that contain

DisplayObject objects. These are known

as DisplayObjectContainer objects and

include objects like a Sprite object, a

Loader object, a MovieClip object, and the

Stage itself. So you can think of the main

SWF on the Stage as your desktop, the

DisplayObjects as individual files, and the

DisplayObjectContainers as folders that

can contain additional folders or files.

One of the most important meth-

ods of the DisplayObjectContainer
class is one that you’ve already used

in previous chapters—addChild().

This method adds an element (either

another DisplayObjectContainer or a

DisplayObject) to the display list and makes

it visible. As you add more DisplayObjects

and DisplayObjectContainers to your dis-

play list, you need to keep track of how they

overlap. Flash keeps track of each object

with a number, known as an index, that

begins at 0 and increases in whole numbers.

Objects with higher display list index num-

bers overlap those with lower numbers.

A The display list can be represented hierarchically like a tree (top) where the Stage is the top-level

DisplayObjectContainer. You can also think of the display list like your computer desktop, where the

Stage is at the bottom and the objects you add to it are folders (DisplayObjectContainers) or files

(DisplayObjects). The folders can contain other folders or files.

DisplayObjectContainer

DisplayObjectContainer

DisplayObject

DisplayObject

DisplayObject

Stage

Stage

Main instance of
the SWF file

Main instance of the SWF file

Controlling and Displaying Graphics 233

Changing Visual
Properties
Many DisplayObject properties—alpha,

rotatation, scaleX, scaleY—define how

the object looks. By using dot syntax, you

can target any object of the class and

change any of those characteristics during

playback. Table 7.1 summarizes many prop-

erties that are available to all the objects

in the DisplayObject class, which include

movie clips, text fields, videos, bitmaps,

buttons, dynamically drawn shapes, load-

ers, sprites, and the Stage. You’ve already

learned about some of these objects in

previous chapters, and you’ll learn about

the others in this and upcoming chapters.

The following tasks demonstrate how to

change a few of the common properties of

an object.

TABLE 7.1 DisplayObject Properties

Property Value Description

alpha Number (0 to 1) Transparency, where 0 is totally transparent and 1 is opaque.

visible true or false Whether an object can be seen.

name String Instance name of the object.

rotation Number Degree of rotation in a clockwise direction from the registration

point.

rotationX Number Degree of rotation around the x-axis from its original orientation.

rotationY Number Degree of rotation around the y-axis from its original orientation.

rotationZ Number Degree of rotation around the z-axis from its original orientation.

width Number in pixels Horizontal dimension.

height Number in pixels Vertical dimension.

x Number in pixels Horizontal position of the object’s registration point.

y Number in pixels Vertical position of the object’s registration point.

z Number in pixels Depth position of the object’s registration point.

scaleX Number (0 to 1) Percentage of the original object’s horizontal dimension.

scaleY Number (0 to 1) Percentage of the original object’s vertical dimension.

scaleZ Number (0 to 1) Percentage of the original object’s depth dimension.

blendMode String Which blend mode to use to visually combine colors.

cacheAsBitmap true or false Whether to redraw the contents of the object every frame

(false) or use a static bitmap of the object’s contents (true).

opaqueBackground Numeric color value Nontransparent background color for the instance.

scrollRect Rectangle object Window of visible content of the object, which can be changed

to efficiently simulate scrolling.

loaderInfo LoaderInfo object Returns a LoaderInfo object containing information about the

loading process.

mask DisplayObject Sets the mask area (visible area) of the object.

filters Array of filter objects Set of graphical filters to apply to this object.

scale9Grid Rectangle object Nine regions that control how the movie clip distorts when

scaling.

transform Transform object Values representing color, size, and position changes applied to

the instance.

234 Chapter 7

To change the position of an object:
1. For this example, create a movie clip

and place an instance of it on the Stage.

In the Properties inspector, give it a

name B.

2. Select the first frame of the Timeline,

and open the Actions panel.

3. Enter the instance name, then a dot,

followed by the property x. Enter an

equals sign followed by a number in

pixels, like so:

myMovieClip_mc.x = 100;

This statement positions the movie clip

called myMovieClip_mc 100 pixels from

the left edge of the Stage.

4. On a new line, enter the instance name,

then a dot, followed by the property y.

Enter an equals sign followed by a num-

ber in pixels, like so:

myMovieClip_mc.y = 50;

This statement positions the movie clip

called myMovieClip_mc 50 pixels from

the top edge of the Stage.

5. Test your movie (Control > Test Movie >

in Flash Professional).

Both statements change the original

horizontal and vertical position of the

movie clip called myMovieClip_mc on

the Stage C.

B This movie clip instance on the Stage is called

myMovieClip_mc.

C The instance moves position.

100 pixels

50 pixels

Controlling and Displaying Graphics 235

The x- and y-coordinate space for the

main Timeline is different from movie clip time-

lines. In the main Timeline, the x-axis begins

at the left edge and increases to the right; the

y-axis begins at the top edge and increases

to the bottom. Thus, x = 0, y = 0 corresponds

to the top-left corner of the Stage. For movie

clips, the coordinates x = 0, y = 0 correspond to

the registration point (the crosshair). The value

of x increases to the right of the registration

point and decreases into negative values to

the left of the registration point. The value of

y increases to the bottom and decreases into

negative values to the top D.

To change the rotation of an object:
In the Actions panel, assign a number to

the property rotation of an instance,

like so:

myMovieClip_mc.rotation = 45;

This statement rotates the movie clip called

myMovieClip_mc 45 degrees clockwise

from its registration point E.

E The original instance (top) rotates

clockwise as a result of the new value

assigned to the rotation property.

D The coordinate space for the Stage (top). The

x position increases from the left and the y position

increases from the top. The coordinate space for a

movie clip (bottom) can go into negative values.

Positive valuesx
y

P
os

iti
ve

 v
a

lu
es

Negative
values

Negative
values

Positive
values

Positive
values

x

y

236 Chapter 7

To change the 3D rotation
of an object:
In the Actions panel, assign a number to

the property rotationX, rotationY, or

rotationZ of an instance, like so:

myMovieClip_mc.rotationY = 45;

This statement rotates the movie clip called

myMovieClip_mc in 3D space around the

y-axis F.

To change the size of an object:
■ In the Actions panel, assign a decimal

to the property scaleX or scaleY of an

instance, like so:

myMovieClip_mc.scaleX = .5;

This statement makes the movie clip

called myMovieClip_mc scale down in

the horizontal direction 50 percent of its

original size G.

Or

■ In the Actions panel, assign a number

to the property width and height of an

instance, like so:

myMovieClip_mc.width = 250;

This statement makes the movie clip

called myMovieClip_mc change its hori-

zontal dimension to 250 pixels H.

The scaleX and scaleY properties

control the percentage of the original object,

which is different from what may be on the

Stage. For example, if you place an instance of

a movie clip on the Stage and manually shrink

it 50 percent with the Free Transform tool, and

then you assign 1 to scaleX and assign 1 to

scaleY during playback, your movie clip will

double in appearance.

F The original

instance (top) rotates

along the y-axis

in 3D (like a door

swinging along its

vertical hinge) as

a result of the new

value assigned

to the rotationY
property.

G The original

instance (top)

squishes horizontally

as a result of the

new value assigned

to the scaleX
property.

H The instance can squish or stretch to the

specified pixel dimension as a result of the new

value assigned to the width property.

250 pixels

Controlling and Displaying Graphics 237

To change the transparency
of an object:
In the Actions panel, assign a decimal to

the property alpha of an instance, like so:

myMovieClip_mc.alpha = .2;

This statement changes the transparency

of the movie clip called myMovieClip_mc
so it is 20 percent opaque I.

There is a difference between an alpha
of 0 and a visible of false, although the

result may look the same. When the visible
property is false, the object literally can’t be

seen. Buttons and other interactive objects

don’t respond. When alpha is 0, on the other

hand, buttons and other interactive objects are

transparent, but can still respond.

I The original instance (top)

becomes more transparent as a

result of the new value assigned

to the alpha property.

238 Chapter 7

Assigning values that are relative
In the previous examples, you learned

to assign a fixed value to change vari-

ous properties of objects. However, often

you’ll want to change an object’s property

relative to its current value or relative to

another object’s property. You may want to

rotate a cannon 10 degrees each time your

viewer clicks a button, for example. Or you

may want to move an image to align its left

edge with another image. To change the

property of one object based on the prop-

erty of another object, simply reference

the second object on the right side of the

equals sign in an expression, like so:

myimage.x = myimage2.x +
➝ myimage2.width;

The statement on the right side of the

equals sign is resolved and the result is

assigned to the property on the left side

of the equals sign. In this example, the

object called myimage moves so that its

left edge is aligned with the right edge of

myimage2 J.

To change an object’s property based on

its own current value, you can write the

expression:

myimage.rotation = myimage.rotation
➝ + 10;

This expression adds 10 degrees to

the current angle of the object named

myimage. A shortcut way of writing this

statement is as follows:

myimage.rotation += 10;

J The top square (myimage) moves relative to

where the bottom square (myimage2) is located.

myimage

myimage2

myimage2.x myimage2.width

Controlling and Displaying Graphics 239

To assign a property that is
relative to its current value:
1. Create a movie clip, place an instance

on the Stage, and give it an instance

name in the Properties inspector.

In this task, you’ll assign a new value

to the rotation property based on

the object’s current value of rotation.

Each time you click the object, it will

add 30 degrees.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create an event handler by adding

a listener to the movie clip to detect

a mouse click, like so:

clockhand_mc.addEventListener(
➝ MouseEvent.CLICK, rotate);

In this example, Flash listens for a

mouse click over the movie clip called

clockhand_mc and triggers a function

called rotate in response.

4. On the next available line, add the

event-handler function as follows:

function
rotate(myevent:MouseEvent):void {

clockhand_mc.rotation += 30;
}

The addition assignment operator is

the plus and equals signs together.

It will read the value of the rotation
property, add to it the amount written to

the right of the operator, and store the

result back in the property’s value K.

5. Test your movie (Control > Test Movie >

in Flash Professional).

Each time the movie clip is clicked,

Flash will get the current value of

clockhand_mc and add 30 degrees

to its clockwise rotation L.

K At each mouse click, 30 degrees is added to

the current value of rotation.

L The instance called clockhand_mc rotates

30 degrees at each mouse click.

You can use shortcuts like the addition

assignment operator in this task to add and

subtract values by using combinations of the

arithmetic operators. You’ll learn about these

combinations in Chapter 9, “Controlling Infor-

mation Flow.”

240 Chapter 7

Modifying the Color
To modify the color of a DisplayObject
object, you can use the ColorTransform
class, which provides properties to which

you assign new colors or new values for

the red, blue, green, and alpha channels.

Every DisplayObject has a transform
property, which is an instance of the

Transform class. The Transform object

contains a snapshot of all the transforma-

tions that have been applied to the object,

including color changes, scaling, rotation,

and more. The color changes are specifi-

cally defined in another property called

colorTransform, which is an instance of

the ColorTransform class. This means

you can retrieve or assign color transfor-

mations by referencing the target path

myimage.transform.colorTransform,

where myimage would be the name of the

object you want to modify.

The first step in modifying an object’s color

is instantiating a new ColorTransform

A The Color Mixer panel has a display window to

show the selected RGB code in hexadecimal code.

Hex code

object. Then you define color changes as

a new value of the color property of your

new ColorTransform object. Your code

would look similar to this:

var mynewcolor:ColorTransform = new
➝ ColorTransform();
mynewcolor.color = 0x0D69F2;

In this example, mynewcolor is the name of

your new ColorTransform object. The new

value of the color property is in the form

0xRRGGBB (hexadecimal equivalents for

the red, green, and blue components of a

color). You can find the code for any color

in the Color Mixer panel. Choose a color in

the color spectrum, and the hexadecimal

value for that color appears in the display

underneath A.

Finally, once you’ve defined a new

color in the color property of your

ColorTransform instance, you assign it

to your object like this:

myimage.transform.colorTransform =
➝ mynewcolor;

Controlling and Displaying Graphics 241

To set the color of an object:
1. Create a movie clip symbol whose color

you want to modify, place an instance

of it on the Stage, and name it in the

Properties inspector. This example

uses a movie clip, but you can change

the color of any DisplayObject or

DisplayObjectContainer.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create a new instance from the

ColorTransform class B.

4. On the next line, enter the instance

name of your new ColorTransform
object, then a dot, the color property,

and equals sign, and then the six-

digit hexadecimal code for your new

color C.

5. Assign an event handler to detect a

mouse click. When you click on the

Stage, you will change the color of

your movie clip.

6. Within the body of the event-handler

function, enter a statement that

assigns your new ColorTransform
object to the movie clip’s

transform.colorTransform property.

The full code, including the event han-

dler, is shown in D.

7. Test your movie (Control > Test Movie >

in Flash Professional).

In the first frame, a ColorTransform
object is instantiated and a new

value is assigned to its color prop-

erty. When you click the Stage, your

ColorTransform object is assigned to

your movie clip, changing its color E.

B The new ColorTransform object is called

mycolorchange.

C A new color is assigned to the color property

of your ColorTransform object.

D A mouse click will assign the new color to

the transform.colorTransform property of the

instance called image_mc, changing its color.

E The original instance (top)

changes color (bottom) when it is

clicked. Notice that the entire object

changes color.

242 Chapter 7

Making advanced color
transformations
The property color lets you change only

an object’s color. To change its brightness

or its transparency, or change each red,

green, or blue component separately, you

must specify multiplier and offset proper-

ties. There is one property to define a mul-

tiplier and one to specify an offset value

for each of the RGB components as well

as the alpha (transparency). These proper-

ties are the same as those in the Advanced

Effect dialog box that appears when you

apply an advanced color effect to an

instance F. The only difference is that in

the dialog box you specify the multiplier as

a percentage (0–100), but in ActionScript,

the multiplier properties are set as deci-

mal numbers. A multiplier is usually in the

range 0–1, which corresponds to 0–100%

(for example, 25% is specified as .25).

However, the multiplier can be any decimal

number (such as 2 to double the value, for

instance).

You can specify multiplier and offset prop-

erties in two ways. The ColorTransform
class has individual multiplier and off-

set properties for each color channel,

described in Table 7.2. To change just one

of these properties, assign a new value to

the appropriate property.

You may want to set several of the

multiplier or offset properties for a

ColorTransform instance, which is cum-

bersome to do one property at a time. As

an alternative, you can specify the multi-

plier and offset values as parameters when

you call the constructor function to create

your ColorTransform instance. To set the

properties as parameters in the construc-

tor function, you must specify all eight in

the following order: red multiplier, green

multiplier, blue multiplier, alpha multiplier,

F The options for advanced effects in the

Properties inspector control the RGB and alpha

percentages and offset values for any instance.

TABLE 7.2 ColorTransform Properties

Property Value

redMultiplier Decimal number to multiply

by the red component.

redOffset Offset (–255 to 255) of the

red component.

greenMultipler Decimal number to multiply

by the green component.

greenOffset Offset (–255 to 255) of the

green component.

blueMultiplier Decimal number to multiply

by the blue component.

blueOffset Offset (–255 to 255) of the

blue component.

alphaModifier Decimal number to multiply

by the alpha (transparency).

alphaOffset Offset (–255 to 255) of the

alpha (transparency).

color Hex color (0xRRGGBB)

Setting this property sets

the offset and multiplier

properties accordingly.

Controlling and Displaying Graphics 243

red offset, green offset, blue offset, alpha

offset. Here’s an example:

var mynewcolor:ColorTransform = new
➝ ColorTransform (1, .3, .2, 1, 0, 0,
➝ 0, 0);

When you call the ColorTransform con-

structor without parameters as you did

previously, the ColorTransform object is

created with the default parameters that

maintain the movie clip’s color—1 for each

multiplier and 0 for each offset.

To transform the color and
alpha of an object:
1. Create a movie clip symbol whose color

you want to modify, place an instance

of it on the Stage, and name it in the

Properties inspector. This example

uses a movie clip, but you can change

the color of any DisplayObject or

DisplayObjectContainer.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create a new instance from the

ColorTransform class. Provide eight

parameters in the constructor function

for the RGB and alpha multipliers and

the RGB and alpha offset values G.

The properties for the color transforma-

tion are defined in the parameters of

your ColorTransform constructor call.

4. Assign an event handler to detect a

mouse click. When you click on the

Stage, you will change the color of your

movie clip.

5. Within the body of the event-handler

function, enter a statement that

assigns your new ColorTransform
object to the movie clip’s

transform.colorTransform property.

The full code, including the event han-

dler, is shown in H.

Continues on next page

G A new ColorTransform object is created with red, green, blue, and alpha

multiplier and offset values assigned as properties at the same time.

H A mouse click will assign the color changes to the transform.colorTransform
property of the instance called image_mc, changing its color and/or alpha.

244 Chapter 7

6. Test your movie (Control > Test Movie >

in Flash Professional).

In the first frame, a ColorTransform
object is instantiated and the new color

properties are defined. When you click

your movie clip, your ColorTransform
object is assigned to your movie clip,

changing its color and transparency I.

If you don’t want to define the color

transformation values when you instantiate

your new ColorTransform instance, you can

do so by specifying a value for each property,

like so:

var mynewcolor:ColorTransform=new
➝ ColorTransform();
mynewcolor.redMultiplier=.3;
mynewcolor.greenMultiplier=.2;
mynewcolor.blueMultiplier=1;
mynewcolor.alphaMultiplier=1;
mynewcolor.redOffset=0;
mynewcolor.greenOffset=0;
mynewcolor.blueOffset=0;
mynewcolor.alphaOffset=0;
image_mc.transform.colorTransform =
➝ mynewcolor;

In this example, the transparency doesn’t

change, but the colors shift to a bluer hue.

I The original image (top) is assigned new

color values for its RGB and alpha channels,

and as a result, shifts colors (bottom).

Controlling and Displaying Graphics 245

To change the brightness
of a movie clip:
Increase the offset parameters for the red,

green, and blue components equally, but

leave the other parameters unchanged.

If your ColorTransform object is called

mynewcolor, for example, set its proper-

ties individually as follows to increase the

brightness about 50 percent:

mynewcolor.redMultiplier = 1;
mynewcolor.greenMultiplier = 1;
mynewcolor.blueMultiplier = 1;
mynewcolor.alphaMultiplier = 1;
mynewcolor.redOffset = 125;
mynewcolor.greenOffset = 125;
mynewcolor.blueOffset = 125;
mynewcolor.alphaOffset = 0;

Or, instantiate your ColorTransform object

with these parameters:

var mynewcolor:ColorTransform= new
➝ ColorTransform(1, 1, 1, 1, 125, 125,
➝ 125, 0);

If you want to increase the brightness

completely so your object turns white,

you can set the offset parameters of red,

green, and blue to their maximum (255),

as follows:

mynewcolor.redMultiplier = 1;
mynewcolor.greenMultiplier = 1;
mynewcolor.blueMultiplier = 1;
mynewcolor.alphaMultiplier = 1;
mynewcolor.redOffset = 255;
mynewcolor.greenOffset = 255;
mynewcolor.blueOffset = 255;
mynewcolor.alphaOffset = 0;

To change the transparency
of a movie clip:
Decrease either the offset or the per-

centage parameter for the alpha com-

ponent and leave the other parameters

unchanged.

Decrease alphaMultiplier to 0 or

decrease alphaOffset to –255 for total

transparency.

246 Chapter 7

Blending Colors
If you’ve used a graphics manipulation

program such as Photoshop or Fireworks,

you’ve likely seen a blend mode option,

which is a way to control how the colors

of overlapping objects interact. Normally,

when one object overlaps another, the

object is opaque and completely blocks

the object below from view. By applying

a blend mode to the top object, you can

change this behavior and show a mix of

the colors of the two objects rather than

just the color of the top object.

You can manually apply a blend mode to

a movie clip or a button from within the

authoring tool by selecting an instance on

the Stage and choosing the desired mode

from the Blending menu in the Display sec-

tion of the Properties inspector A. You can

also apply a blend mode using ActionScript

by setting a value for a DisplayObject’s

blendMode property.

Each of the blend modes works by examin-

ing the overlapping portions of graphical

objects. The color value of each pixel from

the top (or blend) object is taken together

with the color of the pixel directly below it in

the bottom (or base) object. The two color

A The Blend mode menu in the

Properties inspector.

values are then plugged into a mathematical

formula to determine the resulting color dis-

played in that pixel location on the screen.

The blend mode you choose determines the

mathematical formula that’s used (and hence

the output color). Table 7.3 describes the

blend modes available in Flash.

To designate a blend mode for an instance,

set the blendMode property to the appro-

priate string, or use the properties from the

BlendMode class. The following two state-

ments are identical:

myMovieClip.blendMode = "darken";
myMovieClip.blendMode =
➝ BlendMode.DARKEN;

Note that the blendMode property of the

DisplayObject starts with a lowercase

letter, but the BlendMode class that you

reference to assign different blend modes

starts with an uppercase letter.

Controlling and Displaying Graphics 247

TABLE 7.3 Blend Mode Properties

Blend Mode ActionScript Value Description

Darken BlendMode.DARKEN or

"darken"
Color values are compared and the darker of the two is

displayed, resulting in a darker image overall. Often used

to create a background for (light) text.

Lighten BlendMode.LIGHTEN or

"lighten"
Lighter of the two color values is displayed, leading to a

lighter image overall. Often used to create a background

for (dark) text.

Multiply BlendMode.MULTIPLY or

"multiply"
Color values are multiplied to get the result, which is usually

darker than either value.

Screen BlendMode.SCREEN or

"screen"
Opposite of Multiply; the result is lighter than either original

color. Typically used for highlighting or flare effects.

Overlay BlendMode.OVERLAY or

"overlay"
Uses Multiply if the base color is darker than middle gray or

Screen if it’s lighter.

Hard Light BlendMode.HARDLIGHT or

"hardlight"
Opposite of Overlay; uses Screen if the base color is darker

than middle gray or Multiply if it’s lighter.

Add BlendMode.ADD or "add" Adds the two colors together, making a lighter result. Often

used for a transition between images.

Subtract BlendMode.SUBTRACT or

"subtract"
Subtracts the blend color from the base color, making the

resulting color darker. Often used as a transition effect.

Difference BlendMode.DIFFERENCE or

"difference"
Darker color is subtracted from the lighter one, resulting in a

brighter image, often with unnatural results.

Invert BlendMode.INVERT or

"invert"
Displays the inverse of the base color anywhere the blend clip

overlaps.

Alpha BlendMode.ALPHA or

"alpha"
Creates an alpha mask. The blend clip doesn’t show, but any

alpha values of the blend clip are applied to the base clip,

making those areas transparent. The clips must be inside

another clip with Layer mode applied.

Erase BlendMode.ERASE or

"erase"
Inverse of Alpha mode. The blend clip doesn’t show. Under

opaque areas on the blend clip, the base clip becomes

transparent; beneath transparent areas on the blend image,

the base clip is visible, creating a stencil or cookie-cutter

effect. The clips must be inside a Layer mode clip.

Layer BlendMode.LAYER or

"layer"
Special container blend mode in Flash. Any blends inside a

display object set to Layer don’t affect images outside the

layer clip.

Normal BlendMode.NORMAL or

"normal"
Blend image is opaque (no blending takes place).

Shader BlendMode.SHADER or

"shader"
Used to specify a custom blending effect created with Pixel

Bender (see the sidebar “What Is Pixel Bender?”).

248 Chapter 7

To change color blending
between two objects:
1. Create two movie clip symbols whose

colors will be blended.

2. Put one instance of each symbol on the

Stage, overlapping as desired. Give the

top (blend) movie clip an instance name

in the Properties inspector B.

3. Select the first keyframe, and open the

Actions panel.

4. Enter the target path of your blend

movie clip, a dot, the property

blendMode, and then an equals sign.

5. Continuing on the same line, enter a

string value for the desired blend mode,

or use the equivalent property from the

BlendMode class C.

The blend mode is applied to the blend

movie clip, altering the color interaction

between the two movie clips.

B The top image is a movie clip called cow_mc.

C Assign the value BlendMode.MULTIPLY to the

blendMode property of your instance. BlendMode.
MULTIPLY is a constant of the BlendMode class that

makes it easier for you to assign values.

What Is Pixel Bender?
You’ve seen how you can create special visual effects (such as blurs and drop shadows) with the

filter classes and apply them to images. If you want to create your own filters, you can use a tech-

nology from Adobe called Pixel Bender. Pixel Bender is a separate development platform and a

separate language that is more specialized than ActionScript.

Essentially, with Pixel Bender you can write code for your own custom filter and save it as a

.pbj file. In Flash, you load the .pbj filter and use two new classes, the Shader class and the

ShaderFilter class, to apply the new filter to an image.

Pixel Bender is an exciting tool that opens new visual possibilities that can unleash the creativity

of the Flash community.

Controlling and Displaying Graphics 249

6. Test your movie.

The colors of the movie clips on the

Stage blend together according to the

blend mode selected D.

Blend modes can only be applied

to movie clips, buttons, or TLF text in the

authoring environment of Flash, but can be

applied to all objects of the DisplayObject
or DisplayObjectContainer class with

ActionScript.

It’s helpful to use the Flash authoring

environment to experiment with different

blend modes using the images you want to

combine, even if you ultimately plan to apply

the effect using ActionScript.

The blendMode properties erase
and alpha (BlendMode.ERASE and

BlendMode.ALPHA) work a little differently in

that you need to assign BlendMode.LAYER
or the value layer to the blendMode
property of the parent. If you have your

two movie clips on the main Stage, you

can set MovieClip(root).blendMode =
BlendMode.LAYER.

D The top image interacts with the bottom image

in more complex ways with color blending.

250 Chapter 7

Convolution, Color Matrix, Displacement

Map, and Shader filters—can only be

applied using ActionScript.

Each filter is represented as a class in

ActionScript (Table 7.4). To apply a filter

effect to an object, you first create an

instance of the filter you want. Each filter

can be customized with several values,

which are usually set as parameters of the

constructor function that is called to create

the filter object, like this:

var myBlur:BlurFilter = new
➝ BlurFilter(3, 0, 1);

Once you have defined one or more

filter objects, you apply them to a

DisplayObject instance to take effect.

Objects of the DisplayObject class have

a filters property that takes an Array
(an object that is a set of objects or values)

containing one or more filter objects.

(You’ll learn more about the Array class

in Chapter 11, “Manipulating Information.”)

Applying Special
Effects with Filters
Flash graphics can look nice, but it’s the

little finishing touches that turn a good

graphic into a great one. These finish-

ing touches are usually subtle—the soft

glow of light emanating from a mysterious

orb or the drop shadow behind an object

that creates a sense of depth. As men-

tioned in Chapter 1, “Building Complexity,”

Flash includes a number of filter effects

that can be used to create these finish-

ing touches and to manipulate complex

graphics. These filter effects are built into

Flash Player, so using them adds nothing

to the download size of your SWF file. For

advanced users, you can add these effects

not only within the authoring environment

but also dynamically using ActionScript.

In fact, in addition to the filters available

with the drawing tools, four filters—the

TABLE 7.4 Filter Classes

Filter Class Name Description

BevelFilter Adds a beveled edge to an object, making it look three-dimensional.

BlurFilter Makes an object looked blurred.

ColorMatrixFilter Performs complex color transformations on an object.

ConvolutionFilter A highly customizable filter that can be used to create unique filter effects

beyond those included with Flash by combining pixels with neighboring pixels

in various ways.

DisplacementMapFilter Shifts pixel values according to values in a map image to create a textured or

distorted effect.

DropShadowFilter Adds a drop shadow to an object.

GlowFilter Adds a colored halo around an object.

GradientBevelFilter Like the Bevel filter, with the additional ability to specify a gradient color for

the bevel.

GradientGlowFilter Like the Glow filter, with the additional ability to specify a gradient color for

the glow.

ShaderFilter Applies a custom filter made with Pixel Bender (see the sidebar “What Is Pixel

Bender?”).

Controlling and Displaying Graphics 251

This allows a single DisplayObject to be

affected by multiple filters—for example,

an object can have a beveled edge and

also cast a drop shadow. Most often, you

can create the Array instance and assign it

to the filters property in a single state-

ment. Pass your filter object or objects as

parameters of the new Array constructor

function, like this:

myimage_mc.filters = new
➝ Array(myBlur);

When you pass objects as parameters to

the Array constructor, those objects are

automatically added into the Array object;

in this example, the new Array() construc-

tor function creates a new Array object,

and the object passed as a parameter

(the filter object) is added into the array.

The Array instance is then stored in the

object’s filters property, causing any

filter objects it contains (just one, in this

case) to be applied to the target object.

In the next task, you’ll see how to apply

a drop-shadow filter to a movie clip. The

procedure for applying any other filter to

a DisplayObject is the same; the only

difference is that with each one, you use

the specific parameters for that filter when

calling the constructor function to create

the filter object.

To dynamically add a drop-
shadow filter effect:
1. For this example, create a movie clip

symbol; place an instance on the Stage,

and give it an instance name in the

Properties inspector.

2. Select the first keyframe, and open the

Actions panel.

3. Instantiate a DropShadowFilter, like so:

var dropshadow:DropShadowFilter=
➝ new DropShadowFilter();

The filter’s constructor function is

added without parameters. (You’ll add

them next.)

4. Between the parentheses, enter values

separated by commas as parameters

for the constructor function A.

The DropShadowFilter constructor

takes up to 11 parameters, which match

different options. However, they’re all

optional, and you can specify just some

of them if you wish. To get you started,

the first six are the offset distance (a

number of pixels), the shadow angle (a

number of degrees), the shadow color

(a hexadecimal numeric color value),

alpha (a number from 0 to 1), and blurX
and blurY (both numbers).

Continues on next page

A Create a new filter. Each filter has its own set of properties that you define when

you create a new instance. This DropShadowFilter object makes a shadow at

25 pixels distance, 45 degrees, with a black color, at 70% alpha, and with a horizontal

and vertical blur of 20.

252 Chapter 7

5. On the next line, enter your target

object’s name, a dot, and then the

property filters.

6. On the same line, enter an equals sign

and the constructor new Array().

This creates a new Array object.

7. Between the parentheses of the Array
constructor, enter the name of your filter

object B.

Your filter object is added into the

new Array as it’s created. The Array
is assigned to the filters property

of your movie clip and the filter takes

effect.

8. Test your movie.

Your movie clip instance on the Stage

has a drop shadow applied with the

properties you specified C.

To dynamically remove
a filter effect:
1. Enter the target path for your object, a

dot, and then the property filters.

2. On the same line, enter an equals sign

and the constructor new Array().

You assign a new array with no filters,

effectively removing any existing filters

on your object.

Because the filters property accepts

an Array, you can apply multiple filters to

an object. To add multiple filters to an object,

instantiate all the filter objects first, and

then add them all as parameters to the new
Array() constructor that is assigned to the

filters property (step 7). For instance, if you

create two filter objects named filter1 and

filter2, this line of code applies both filters

to a movie clip named myimage_mc:

myimage_mc.filters = new
➝ Array(filter1, filter2);

B The new filter object is put in the filters array of your movie clip.

C This image of a ball has a drop shadow auto-

matically generated from the DropShadowFilter.

Controlling and Displaying Graphics 253

Creating Drag-and-
Drop Interactivity
Drag-and-drop behavior gives the viewer

one of the most direct interactions with

the Flash movie. Nothing is more satisfy-

ing than grabbing a graphic on the screen,

moving it around, and dropping it some-

where else. It’s a natural way of interacting

with objects, and you can easily give your

viewers this experience. Creating drag-

and-drop behavior in Flash involves two

basic steps: assigning an event handler

that triggers the drag action on an object,

and assigning an event handler that trig-

gers the drop action.

Usually during drag-and-drop interactiv-

ity, the dragging begins when the viewer

presses the mouse button with the pointer

over the graphic. When the mouse button

is released, the dragging stops. Hence,

the action to start dragging is tied to

a MouseEvent.MOUSE_DOWN event, and

the action to stop dragging is tied to a

MouseEvent.MOUSE_UP event.

In many cases, you may want the drag-

gable graphic to snap to the center of the

user’s pointer as it’s being dragged rather

than wherever the user happens to click,

described in the task “To center the drag-

gable object,” or you may want to limit the

area where viewers can drag graphics,

as described in the task “To constrain the

draggable object.”

The methods startDrag() and stopDrag()
are methods of the Sprite class, which is

a general DisplayObjectContainer class

for handling graphics. It is similar to the

MovieClip class, but it does not contain a

timeline. Movie clip objects are a subclass

of the Sprite class. In these examples,

you’ll use movie clips as the draggable

graphics.

254 Chapter 7

To start dragging an object:
1. Create a movie clip symbol, place an

instance of it on the Stage, and name it

in the Properties inspector A.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Enter the name of your movie

clip, a dot, and then the method

addEventListener(). Between the

parentheses of the method, enter

MouseEvent.MOUSE_DOWN and a name

for a function, as follows:

eyes_mc.addEventListener(
➝ MouseEvent.MOUSE_DOWN,
➝ startDragging);

The completed statement listens for

a MOUSE_DOWN event and triggers the

function called startDragging if it

detects that event.

A This movie clip instance on the Stage is called

eyes_mc.

B The MouseEvent.MOUSE_DOWN event handler that makes the

movie clip instance start dragging.

4. On the next line, create the func-

tion called startDragging with a

MouseEvent parameter. Between the

curly braces of the function, enter the

name of your movie clip followed by

the method startDrag(), like so:

function startDragging(
➝ myevent:MouseEvent):void {
 eyes_mc.startDrag();
}

The movie clip called eyes_mc will be

dragged when this function is called B.

5. Test your movie.

When your pointer is over the movie

clip and you press your mouse button,

you can drag the clip around.

Controlling and Displaying Graphics 255

The movie clip called eyes_mc will stop

being dragged when this function is

called C.

4. Test your movie.

When your pointer is over the movie

clip and you press your mouse button,

you can drag it. When you release your

mouse button, the dragging stops D.

Only one movie clip or sprite can be

dragged at a time using this method.

If you have multiple objects that you

want the user to drag and drop, you can make

your function more generic and refer to the

target of the mouse click. Use the target
property of the MouseEvent object to call

the startDrag() and stopDrag() methods,

like so:

function startDragging(
➝ myevent:MouseEvent):void {
 myevent.target.startDrag();
}
function stopDragging(
➝ myevent:MouseEvent):void {
 myevent.target.stopDrag();
}

D The movie clip

instances of the eyes

dragged and dropped

around the Stage.

C The MouseEvent.MOUSE_UP event handler that makes the movie

clip instance stop dragging.

To stop dragging an object:
1. Using the file you created in the pre-

ceding task, select the first frame of the

Timeline and open the Actions panel.

2. On a new line, enter the name of your

movie clip, a dot, and then the method

addEventListener(). Between the

parentheses of the method, enter

MouseEvent.MOUSE_UP and a name for

a function, as follows:

eyes_mc.addEventListener(
➝ MouseEvent.MOUSE_UP,
➝ stopDragging);

The completed statement listens for a

MOUSE_UP event and triggers the func-

tion called stopDragging if it detects

that event.

3. On the next line, create the function

called stopDragging with a MouseEvent
parameter. Between the curly braces

of the function, enter the name of your

movie clip followed by the method

stopDrag(), like so:

function stopDragging(
➝ myevent:MouseEvent):void {
 eyes_mc.stopDrag();
}

256 Chapter 7

To constrain the draggable object:
1. Insert a new line in the Actions

panel and create a new object of the

Rectangle class with four parameters—

x-position, y-position, width, and

height—like so F:

var myBoundaries:Rectangle = new
➝ Rectangle(20, 30, 100, 50);

The Rectangle object is used to define

the boundaries of the draggable

motion. The Rectangle object isn’t

an actual visible graphic, but just an

abstract object to help do geometric

manipulations.

To center the draggable object:
Place your pointer inside the parenthe-

ses for the startDrag() method, and

enter the Boolean value true, as in

startDrag(true).

The startDrag() method’s first parameter,

lockCenter, is set to true. After you press

the mouse button when your pointer is

over the movie clip to begin dragging, the

registration point of your movie clip snaps

to the mouse pointer.

If you set the lockCenter parameter

to true, make sure the area of your object

covers its registration point. If it doesn’t, then

after the object snaps to your mouse pointer,

your pointer will no longer be over any graphic

area and Flash won’t be able to detect when

to stop the drag action E.

E If this movie clip (which has an

empty space in the middle) were

to be dragged and the lockCenter
parameter set to true, the mouse

pointer would hover over the

middle and not be able to stop the

dragging motion.

F The boundaries of a dragging motion can be restricted by first

creating a Rectangle object to act as the boundaries.

Controlling and Displaying Graphics 257

2. Place your pointer inside the parenthe-

ses for the startDrag() method, and

enter true or false for its first param-

eter (the lockCenter parameter), then

a comma, and then the name of your

Rectangle object G.

The pixel coordinates of your

Rectangle object are relative to the

container object in which the movie clip

resides. If the draggable movie clip sits

on the Stage, the pixel coordinates cor-

respond to the Stage. If the draggable

movie clip is within another object, the

coordinates refer to the registration

point of the parent H.

You can use the dimensions of the

Rectangle object to force a dragging motion

along a horizontal or a vertical track, as in a

scroll bar. Set the width of your Rectangle
object to 1 pixel to restrict the motion to

up and down, or set the height of your

Rectangle object to 1 pixel to restrict the

motion to left and right.

To define the Rectangle object as the

second parameter to constrain the draggable

motion, you must also set the startDrag()
method’s first parameter (lockCenter) to

true or false.

A shortcut to coding the Rectangle
boundary is to create the new Rectangle
object within the startDrag() method. The

following statement is also valid:

eyes_mc.startDrag(false, new
➝ Rectangle(0, 0, 100, 20));

G Use the Rectangle object as the second parameter in the

startDrag() method to constrain the drag motion.

H The x- and y-coordinates of the eyes_mc object are constrained

by the bounds of the Rectangle object.

x = 20

y = 30
width = 100

height = 50

258 Chapter 7

Detecting Collisions
Now that you can make an object that can

be dragged around the Stage, you’ll likely

want to check whether that object inter-

sects another object. The game of Pong,

for example, detects collisions between

draggable paddles and a ball.

To detect collisions between objects, use

one of two methods of the DisplayObject
class: hitTestObject() or hitTestPoint().

The first method lets you check whether

the bounding boxes of any objects inter-

sect. The bounding box of an object is the

minimum rectangular area that contains the

graphics. This method is ideal for graphics

colliding with other graphics, such as a ball

with a paddle, a ship with an asteroid, or a

puzzle piece with its correct resting spot.

In the following example, if the object ball
intersects with the object called paddle,

the method returns a value of true:

ball.hitTestObject(paddle);

The second method checks whether a

certain x-y coordinate intersects with an

object. This method is point specific, which

makes it ideal for checking whether only

the registration point of a graphic or the

mouse pointer intersects with an object.

In this case, the hitTestPoint() method

is used, and you provide an x value, a

y value, and the shapeflag parameter

(which is true or false). The shapeflag
parameter indicates whether Flash should

use the bounding box of an object (false)

or the shape of the graphics it contains

(true) in deciding if the point is in contact

with the object A.

The hitTestObject() and hitTestPoint()
methods work for all objects in the

DisplayObject class, but in the follow-

ing examples, you’ll just use movie clip

objects.

A When the shapeFlag is true (top), then

according to Flash, the two objects aren’t

intersecting; only the shapes are considered.

When the shapeFlag parameter is false (bottom),

the two objects are intersecting because the

bounding box is considered.

Bounding box

Controlling and Displaying Graphics 259

To detect an intersection
between two objects:
1. Create a movie clip, place an instance

of it on the Stage, and name it in the

Properties inspector.

2. Create another movie clip, place an

instance of it on the Stage, and name

it in the Properties inspector.

3. Select the first frame of the main Time-

line and open the Actions panel; assign

actions to make the second movie clip

instance draggable.

4. Create a new line in the Script pane

at the end of the current script, and

add an event listener to detect the

Event.ENTER_FRAME event B.

The Event.ENTER_FRAME event occurs

at the frame rate of the movie, which

makes it ideal for checking the

hitTestObject() method continuously.

5. On the next line, create the function

that gets triggered for the ENTER_FRAME
event. Between the curly braces of the

function, enter the word if, then a set

of parentheses.

D Dragging the spaceship_mc
movie clip into the bounding box

of the asteroid_mc movie clip

advances the spaceship movie clip

to the next frame, which displays an

explosion.

6. For the condition (between the paren-

theses), enter the name of the drag-

gable movie clip followed by a period,

and then enter hitTestObject().

7. Within the parentheses of the

hitTestObject() method, enter the

name of the stationary movie clip.

8. Immediately after the hitTestObject()
method, enter two equals signs fol-

lowed by the Boolean value true.

9. Enter a set of curly braces to complete

the if statement. Between those curly

braces, choose an action to be per-

formed when this condition is met.

The final script should look like C.

10. Test your movie D.

Continues on next page

B The Event.ENTER_FRAME event happens continuously at

the frame rate of your Flash movie.

C Flash monitors the intersection between the two objects

spaceship_mc and asteroid_mc. If there is a collision, the

spaceship_mc movie clip advances to the next frame.

260 Chapter 7

If you’re only checking if something is

true (known as Boolean value) in an if state-

ment as you do in this task, you can leave out

the last part, == true. Flash returns true or

false when you call the hitTestObject()
method, and the if statement tests true and

false values. You’ll learn more about condi-

tional statements later in the book.

It doesn’t matter whether you test the

moving movie clip to the target or the target

to the moving movie clip. The following two

statements detect the same collision:

spaceship.hitTestObject(asteroid);
asteroid.hitTestObject(spaceship);

To detect an intersection
between a point and an object:
1. Continuing with the same file you cre-

ated in the preceding task, select the

first frame of the main Timeline and

open the Actions panel.

2. Place your pointer within the parenthe-

ses of the if statement.

3. Change the condition so it reads as

follows:

asteroid_mc.hitTestPoint(
➝ spaceship_mc.x, spaceship_mc.y,
➝ true)

The hitTestPoint() method now

checks whether the x and y positions of

the draggable movie clip spaceship_mc
intersect with the shape of the movie

clip asteroid_mc E.

4. Test your movie.

The properties mouseX and mouseY
are values of the current x and y positions

of the pointer on the screen. You can use

these properties in the parameters of the

hitTestPoint() method to check whether

the pointer intersects a movie clip. This

expression returns true if the pointer inter-

sects the movie clip asteroid_mc:

asteroid_mc.hitTestPoint(mouseX,
➝ mouseY, true)

E The ActionScript (above) tests whether the registration point of the spaceship_mc
movie clip intersects with any shape in the asteroid_mc movie clip. Notice that the

spaceship is safe from collision because its registration point is within the crevice

and clear of the asteroid.

Controlling and Displaying Graphics 261

Generating Graphics
Dynamically
Creating graphics on the fly—that is, during

playback—opens a new world of exciting

interactive possibilities. Imagine a game

of Asteroids in which enemy spaceships

appear as the game progresses. You can

store those enemy spaceships as movie

clip symbols in your Library and create

instances on the Stage with ActionScript as

you need them. Or, if you want an infinite

supply of a certain draggable item (such as

merchandise) to be pulled off the shelf of

an online store, you can make a duplicate

of the object each time the viewer drags

it away from its original spot. Or you can

create entirely new graphics by drawing

lines, shapes, and curves with solid color

or gradients. All the while, you maintain

the power to modify properties and control

color, blending, and filters for those objects.

Flash provides many ways to dynamically

generate graphics, and in the previous

chapter, you learned about one of them (by

loading external images). All the processes

begin with creating a new DisplayObject
or DisplayObjectContainer with the

constructor function, new. To create a new

Sprite object, for example, you can use

var myNewSprite:Sprite = new Sprite().

The next step would be to do something

with the new object (which depends on what

kind of object you decided to create), and

then display the object by putting it on the

display list with addChild(). The challenge is

knowing which object of the DisplayObject

or DisplayObjectContainer class to

choose from. Among the considerations:

■ Create a new Loader object to load in

an external image or SWF (discussed in

the previous chapter).

■ Create a new Sprite object or

MovieClip object for interactivity like

drag-and-drops, for dynamic drawing,

and for attaching other DisplayObject
or DisplayObjectContainer objects

with addChild(). The MovieClip object

differs from the Sprite object in that it

has a timeline.

■ Create a new Shape object if you just

want to use ActionScript to draw lines,

curves, and shapes.

■ Create a new BitMap object to display

bitmap images and manipulate the data

at a pixel level.

Creating new movie clips
You can dynamically create new instances

of existing movie clip symbols in your

Library.

You must first identify the movie clip sym-

bol in your Library so you can reference it

in ActionScript and make new instances.

You do so by setting the Linkage proper-

ties in the Symbol Properties dialog box.

In this panel, you indicate the class name

for your movie clip and the preexisting

class that you want Flash to extend to it. In

essence, you are creating your own cus-

tom class for your movie clip symbol and

extending a preexisting class to share its

methods and properties.

262 Chapter 7

To create a movie clip instance
from a Library symbol:
1. Create a movie clip symbol.

The movie clip symbol is stored in your

Library.

2. From the Library Options menu, choose

Properties A.

The Symbol Properties dialog box

appears.

3. Click the Advanced button to expand

the dialog box. In the Linkage section,

select the Export for ActionScript check

box. Leave “Export in frame 1” selected.

4. In the Class field, enter a name to

identify your movie clip. Leave the Base

class as flash.display.MovieClip and

click OK B.

A dialog box may appear that warns

you that your class could not be found

and one will automatically be generated

for you C. Click OK. In this example,

the class name for your Library symbol

is BaldMan. This new class inherits from

the MovieClip class, which means it

has all the same methods and prop-

erties of the MovieClip class. Your

class name will be used to create new

instances of your movie clip. Make sure

that your class name doesn’t contain

any periods.

5. Select the first frame of the main Time-

line, and open the Actions panel.

6. On the first line, create a new instance

of your movie clip symbol, referencing

its class name (created in step 4), like

so:

var Larry:BaldMan = new BaldMan();

A new instance of a movie clip, specifi-

cally the movie clip in your Library, is

created.

A Choose Properties from the Options menu in

the Library.

B The new class name for your Library symbol

here is BaldMan, and it has all the same methods

and properties of the MovieClip class.

C The warning dialog box, which you can ignore.

Controlling and Displaying Graphics 263

7. On the next line, enter stage, a period,

and then the method addChild().

Within the parentheses, put your new

movie clip instance D.

The addChild() method is required to

add your new instance to the display list

to see it. The new instance called Larry
is put on the Stage.

8. Test the movie E.

The default position of your new

instance is at the registration point of its

parent (the DisplayObjectContainer).

So, in this example, the registration

point of the new movie clip instance is

at the top-left corner of the Stage. Use

the properties x and y to move the new

instance to your desired position.

When you add objects to the display

list, they are affected by the properties of the

DisplayObjectContainer that you add

them to. For example, suppose you create a

new Sprite object, add it to the Stage, and

change its transparency to 50 percent, like so:

var mySprite:Sprite = new Sprite();
stage.addChild(mySprite);
mySprite.alpha = .5;

Now, if you created your new BaldMan
instance and attached it to the Sprite object,

the BaldMan instance would be 50 percent

transparent:

var Larry:BaldMan = new BaldMan();
mySprite.addChild(Larry);

Objects are also affected by

ActionScript that may be assigned to

the DisplayObjectContainer. If the

DisplayObjectContainer is draggable,

for example, the added object is also

draggable.

D Create a new instance of your Library symbol

and add it to the display list.

E When the new instance is put on the display

list, its registration point is aligned with the

registration point of the DisplayObjectContainer.

Since this instance was added to the Stage, its

center point is at the top-left corner of the Stage.

264 Chapter 7

Controlling
Stacking Order
When you generate multiple

DisplayObjects and put them on the

display list, you need a way to control how

each one overlaps the other. If you have

multiple draggable objects, you’ll notice

that the objects maintain their depth level

even while they’re being dragged, which

can seem a little odd. In a drag-and-drop

interaction, you expect that the item you

pick up will come to the top, which requires

that you control the stacking order.

Controlling the stacking order is a simple

matter of reordering the objects on the

display list. Recall that Flash maintains a

tree-like hierarchy of the objects on the

display list, giving each object an index

number that determines which object is

overlapping others A.

The methods of the DisplayObjectContainer
class provide several ways to access the

objects on the Stage and to move them

to different levels, add new objects, or

remove them completely. These meth-

ods work for both dynamically generated

objects as well as objects you create on

the Stage manually. See Table 7.5 for a

description of the various methods.

A Controlling the stacking order or overlapping of objects on the display list depends on each object’s

index number.

DisplayObjectContainer

DisplayObject

index = 1

index = 3

index = 0

index = 2

index = 1 of this DisplayObject
within a DisplayObjectContainer

index = 0 of this DisplayObject
within a DisplayObjectContainer

Main instance
of the SWF

Stage

Controlling and Displaying Graphics 265

To move an object to the front:
Call the addChild() method, as in:

addChild(circle);

The circle object is added to the top of

the display list. If the object is already pres-

ent on the display list, it is pulled from its

current position and added to the top, and

all the objects are shuffled downward and

reassigned the appropriate index numbers

automatically B.

To move an object to the back:
Call the setChildIndex() method and use

the object name and the index number 0

as its parameters, as in:

setChildindex(square, 0);

The square object is placed at the bottom

of the display list. The object must already

be present on the display list C.

Continues on next page

B The result of the statement addChild(circle).

C The result of the statement

setChildindex(square, 0).

circle

square

Before

Before

After

After

TABLE 7.5 DisplayObjectContainer Methods

Method Description

addChild(child) Adds a child object.

addChildAt(child, index) Adds a child object at the specified index.

getChildAt(index) Retrieves the child object at the specified index.

getChildByName(name) Retrieves the child object at the specified name (a string).

getChildIndex(child) Retrieves the index position of the child object.

getObjectsUnderPoint(point) Returns an array of objects that lie under the specified point (a Point
object).

removeChild(child) Removes a child object.

removeChildAt(index) Removes a child object at the specified index level.

setChildIndex(child, index) Changes the position of an existing child to the specified index.

swapChildren(child1, child2) Swaps the stacking order of the two specified child objects.

swapChildrenAt(index1, index2) Swaps the stacking order of two child objects at the specified index

numbers.

266 Chapter 7

Or

Call the addChildAt() method and use

the name of the object and the index

number 0 as its parameters, as in:

addChildAt(square, 0);

The square object is placed at the bottom

of the display list. If the object is already

present on the display list, it is pulled from

its current position and placed at the bot-

tom, and all the objects are shuffled and

reassigned the appropriate index numbers

automatically.

To swap two objects:
Call the swapChildren() method and use

the two objects as its parameters, as in:

swapChildren(circle, square);

The circle and the square objects switch

places in the stacking order D.

To remove an object:
Call the removeChild() method and use

the object as its parameter, as in:

removeChild(triangle);

The triangle object is removed from

the display list and disappears from the

Stage E.

Or

If you don’t know the name of the object

but know its index (for example, it is at the

very bottom with an index of 0), use the

removeChildAt() method and use the

index number 0 as its parameter, as in:

removeChildAt(0);

The object at the very bottom of the dis-

play list (index 0) is removed and disap-

pears F.

D The result of the statement

swapChildren(circle, square).

E The result of the statement

removeChild(triangle).

F The result of the statement removeChildAt(0).

square circle

triangle

Before

Before

Before

After

After

After

Controlling and Displaying Graphics 267

Creating Vector
Shapes Dynamically
Drawing vector lines, curves, and shapes,

and using colors or gradients to fill those

shapes, is a process that you can do with

Flash’s drawing tools or purely with Action-

Script using the graphics property of the

Shape, Sprite, or MovieClip objects. You

can use the drawing methods to create

your own simple paint and coloring appli-

cation, or you can draw bar graphs or pie

charts or connect data points to visualize

numerical data that your viewer inputs.

To use the drawing methods, you must

start with a new object, and the simplest is

the Shape object. You create a new Shape
object like any other object, with a state-

ment such as var myShape:Shape = new
Shape(). You can also use a Sprite object

or a MovieClip object if you plan to have

your object contain other objects within

it (the Shape class is a subclass of the

DisplayObject class, whereas the Sprite
and MovieClip classes are subclasses of

the DisplayObjectContainer class), or if

you want additional functionality that the

Shape class doesn’t provide (such as drag

and drop). Your new object acts as the

canvas that holds the drawing you create.

It also acts as the point of reference for all

your drawing coordinates. If you place your

object at the top-left corner of the Stage

(at x = 0, y = 0), all the drawing coordinates

are relative to that registration point.

The Shape, Sprite, and MovieClip classes

have a property called graphics. This

property is an instance of the Graphics
class, which provides many methods that

enable you to create vector graphics. The

process is straightforward: You define

the styles of your graphics (colors, line

weights, etc.), give Flash coordinates as to

where to begin the drawing, and then draw

your lines, curves, or shapes. See Table 7.6

(on the next page) for a description of the

Graphics class drawing methods.

Creating lines and curves
The lineStyle() method sets the char-

acteristics of your stroke, such as its point

size, color, and transparency. The moveTo()
method sets the beginning point of your

line or curve, like placing a pen on paper.

The lineTo() and curveTo() methods

draw lines and curves by setting the end

points and, in the case of curves, deter-

mine its curvature. The clear() method

erases all the drawing on an object.

Color, line width, and transparency are

just the beginning of the ways you can

style lines you draw in ActionScript. Flash

provides additional line-style properties to

control how lines scale and the style of the

corners (joints) and ends (caps) of the lines

you draw. You can also create lines that

use a gradient rather than a solid color. All

these techniques are demonstrated in the

next several tasks.

268 Chapter 7

To create straight lines:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Declare a variable with the data type

Shape, enter an equals sign, and then

enter new Shape() to create a new

Shape instance.

An empty Shape object is created.

3. On the next line, enter the name of your

Shape object, followed by a period, fol-

lowed by the property graphics; then

call the lineStyle() method.

TABLE 7.6 Graphics Methods

Method Description

beginBitmapFill(bitmap, matrix, repeat, smooth) Fills a drawing area with a bitmap image.

beginFill(color, alpha) Specifies the fill color as a hex code and

transparency.

beginGradientFill(type, colors, alphas, ratios,
matrix, spread, interpolation, focalpoint)

Specifies the gradient fill.

clear() Clears the drawing and resets the fill and line

style settings.

curveTo(controlx, controly, x, y) Draws a curve to the x, y point with the control

points controlx and controly that determine

curvature.

drawCircle(x, y, radius) Draws a circle at location x, y with a specified

radius.

drawEllipse(x, y, width, height) Draws an ellipse at location x, y with a specified

width and height.

drawRect(x, y, width, height) Draws a rectangle at location x, y with a specified

width and height.

drawRoundRect(x, y, width, height, ellipsewidth,
ellipseheight)

Draws a rectangle at location x, y with a specified

width and height and rounded corners.

endFill() Applies a fill.

lineGradientStyle(type, colors, alphas, ratios,
matrix, spread, interpolation, focalpoint)

Specifies a gradient for the line style.

lineStyle(thickness, color, alpha, pixelhinting,
scalemode, caps, joints, miter)

Specifies a line style.

lineTo(x, y) Draws a line to the specified x, y location.

moveTo(x, y) Moves the drawing position to the specified x, y

location.

Controlling and Displaying Graphics 269

4. For the parameters of the lineStyle()
method, enter a number for thickness,

a hex number for the color (in the form

0xRRGGBB), and a number for the

transparency A.

The thickness is a number from 0 to 255;

0 is hairline thickness (which maintains

its hairline thickness even when scaled),

and 255 is the maximum point thickness.

The RGB parameter is the hex code

referring to the color of the line. You

can find the hex code for any color in

the Color Mixer panel below the color

picker. Red, for example, is 0xFF0000.

The transparency is a number from 0 to 1

for the line’s alpha value; 0 is completely

transparent, and 1 is completely opaque.

The lineStyle() method can take up

to 8 parameters, but only the first (thick-

ness) is required.

5. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the moveTo() method.

6. With your pointer between the paren-

theses, enter the x- and y-coordinates

where you want your line to start, sepa-

rating the parameters with a comma B.

7. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the lineTo() method.

8. With your pointer between the paren-

theses, enter the x- and y-coordinates

of the end point of your line, separating

the parameters with a comma C.

The end point of your line segment

automatically becomes the beginning

point for the next, so you don’t need to

use the moveTo() method to move the

coordinates.

Continues on next page

B The beginning of this line is at x = 0, y = 100.

C This straight line is drawn with a 4-point black

stroke. The virtual pen tip is now positioned at x =

400, y = 100 and ready for a new lineTo() method.

A Define the line style (stroke thickness, color,

and transparency) before you begin drawing.

270 Chapter 7

9. If you wish, continue adding more

lineTo() methods to draw more line

segments.

10. On the last line, enter stage, a period,

and the method addChild() with the

name of your Shape object within the

parentheses D.

The lines that you drew won’t be visible

unless you add them to the display list.

11. Test your movie.

You can change the line style at any time,

so multiple line segments can have differ-

ent thicknesses, colors, transparencies, and

so forth. Add a lineStyle() method before

the lineTo() method whose line you want

to modify.

After you finish your drawing, you can

modify its properties by modifying the proper-

ties of the Shape object—for example, by

rotating or scaling the entire object. Or you

can affect the behavior of your drawing by

calling a method. For example, if you used

a Sprite or MovieClip object instead of a

Shape, you could make your drawing drag-

gable by calling its startDrag() method!

To create paths with square
corners and ends:
Add additional parameters to the

lineStyle() call for pixel hinting, scale

mode, cap style, joint style, and miter limit:

Pixel hinting takes a true/false value.

With pixel hinting on, Flash draws anchor

and curve points on exact pixels rather

than fractions of pixels, leading to

smoother curves.

Scale mode determines what happens to

the line when the object’s size is scaled

up or down. It can be one of four values:

LineScaleMode.NORMAL means lines

scale normally; LineScaleMode.NONE
means line thickness doesn’t scale;

LineScaleMode.VERTICAL means line thick-

ness doesn’t scale in the vertical direction;

and LineScaleMode.HORIZONTAL means

line thickness doesn’t scale horizontally.

The remaining three parameters, cap style,

joint style, and miter limit, are described in

the sidebar “Cap and Joint Styles.”

D The code (top) draws and displays the Shape
object on the Stage when you test the movie

(below).

Controlling and Displaying Graphics 271

Cap and Joint Styles
When line thickness becomes large, the corners and ends are rounded off unless you control the

cap and joint styles. Three parameters of the lineStyle() method allow greater control over this

aspect of line styling.

The cap style parameter controls what the start and end of the lines will look like. The three

options are E as follows:

. No cap (CapStyle.NONE): The end falls

exactly at the end coordinate, resulting

in a squared-off end.

. Round (CapStyle.ROUND): The end is

rounded and extends slightly beyond the

end x, y coordinate to add thickness to

the end.

. Square (CapStyle.SQUARE): The end is

squared off and extends slightly beyond

the end x, y coordinate to add thickness

to the end.

The joint style parameter determines the

appearance of corners where two line

segments are joined. These are the three

options F:

. Bevel (JointStyle.BEVEL): The corner is

flattened off perpendicular to the center

of the angle and extends only slightly

beyond the corner x, y coordinate.

. Round (JointStyle.ROUND): The corner

is rounded off and extends beyond the

corner x, y coordinate.

. Miter (JointStyle.MITER): The lines

continue to a point beyond the corner

coordinate. The point may be chopped short depending on the miter limit setting.

The miter limit, which is used only when the joint style is set to JointStyle.MITER, determines

how far an angle extends beyond the true corner point before it’s chopped short. For small angles

without some sort of limit, the miter joint could extend across the width of the Stage or farther; the

miter limit sets constraints on the joint.

The value you set is a number between 1 and 255. How this value translates into the actual dis-

tance that the angle extends before being cut short depends on the angle of the corner and the

line thickness. In general, with small angles (smaller than 45 degrees), the default limit of 3 causes

some trimming. It’s a good idea to experiment with the specific line thickness and angle before

using miter limits in a Flash movie. G shows some examples of different miter limits.

E The three cap styles are (left to right) no caps,

round, and square, drawn here with a thick line.

The overlaid thin line shows the actual end point.

F The three joint styles, bevel (left), round

(middle), and miter (right).

G This small angle is chopped off with miter limits

of 1, 2, and 3 but extends fully with a limit of 4 or

greater.

272 Chapter 7

To create curved lines:
1. As you did in the previous task, create a

new Shape object to serve as the draw-

ing space.

2. On the next line, call the lineStyle()
method of the graphics property of

your Shape object, and enter the line

thickness parameter and other optional

parameters between the parentheses.

3. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the moveTo() method.

4. With your pointer between the paren-

theses, enter the x- and y-coordinates

where you want your line to start, sepa-

rating the parameters with a comma.

5. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the curveTo() method.

6. With your pointer between the paren-

theses, enter x- and y-coordinates for

the control point and x- and y-coordi-

nates for the end of the curve H.

The control point is a point that deter-

mines the amount of curvature. If you

were to extend a straight line from the

control point to the end point of the

curve, you would see that it functions

much like the handle of a curve I.

7. On the last line, enter the addChild()
method to add the Shape object to the

display list.

8. Test your movie J.

H The curveTo() method requires x- and

y-coordinates for its control point and for its end

point. This curve starts at (200,200) and ends

at (400,200), with the control point at (300,100)

(see I).

I By drawing a straight line from the control point

to the end point, you can visualize the curve’s

Bézier handle. The dots have been added to show

the two anchor points and the control point.

(300,100)

(200,200) (400,200)

J The complete script draws and displays the

curved line on the Stage.

Controlling and Displaying Graphics 273

To reduce the repetition of writing the

graphics property of the Shape object, use a

with statement to change the scope tempo-

rarily. For example, note the savings in having

not to repeat the target path:

with (myShape.graphics) {
lineStyle(5, 0xff0000, 100);
moveTo(200, 100);
curveTo(300, 100, 300, 200);
curveTo(300, 300, 200, 300);
curveTo(100, 300, 100, 200);
curveTo(100, 100, 200, 100);
}

Updating a drawing
The clear() method erases the drawings

made with the Graphics drawing methods.

In conjunction with an Event.ENTER_FRAME
event or a Timer object, you can make

Flash continually erase a drawing and

redraw itself. This is how you can cre-

ate curves and lines that aren’t static but

change.

The following task shows the dynamic

updates you can make in a drawing by

continuously redrawing lines.

K The Event.ENTER_FRAME event will provide a

way to continuously update a drawing.

L Within the function, the drawing is cleared and

a new curve is drawn with an increasing control

point, which increases the curvature.

M The curve (top) is

dynamically erased and

redrawn to create an

animation as it bends

(bottom).

To update a drawing dynamically:
1. As you did in the previous task, create a

new Shape object to serve as the draw-

ing space.

2. On the next line, declare a variable

called counter to hold an integer data

type, and assign the number 0 to it.

3. On the next line, add an event listener to

detect the Event.ENTER_FRAME event K.

4. On the next line, create the event-

handler function. Between the curly

braces of the function, add the follow-

ing statements L:

myShape.graphics.clear();
myShape.graphics.lineStyle(4);
myShape.graphics.moveTo(100,100);
myShape.graphics.curveTo(150, 100
➝ + counter, 200, 100);
stage.addChild(myShape);
counter++;

Each time the ENTER_FRAME event hap-

pens, Flash clears the current draw-

ing in the myShape object and creates

a new curve. Each curve is always a

little different than the one before it,

because the variable called counter
adds a small amount to the curvature.

5. Test your movie M.

The line bends dynamically, creating

a smile!

274 Chapter 7

Creating fills and gradients
You can fill shapes with solid colors,

transparent colors, or radial or lin-

ear gradients by using the methods

beginFill(), beginGradientFill(), and

endFill(). Begin the shape to be filled

by calling either the beginFill() or the

beginGradientFill() method, and mark

the end of the shape with endFill(). If

your path isn’t closed (the end points don’t

match the beginning points), Flash auto-

matically closes it when the endFill()
method is applied.

Applying solid or transparent fills with

beginFill() is fairly straightforward; spec-

ify a hex code for the color and a value

from 0 to 1 for the transparency. Gradients

are more complex. You control the gradient

by adding up to eight parameters to the

beginGradientFill() method call. These

parameters are as follows:

Gradient type is either the value

GradientType.RADIAL or GradientType.
LINEAR. A radial gradient’s colors are

defined in rings from the inside to the out-

side. With a linear gradient, the colors are

defined from left to right.

Colors takes an Array object of numeric

color values. You must create an Array
object and put the hex codes for the gradi-

ent colors into the array in the order in

which you want them to appear. If you want

blue on the left side of a linear gradient

and red on the right side, for example, your

array is created like this:

var colors:Array = new
Array(0x0000FF, 0xFF0000);

Alphas is also an Array object and con-

tains the alpha values (0 through 1) cor-

responding to the colors in the order in

which you want them to appear. If you want

your blue on one side to be 50 percent

transparent, you create an array like this:

var alphas:Array = new Array(.5, 1);

Ratios is an Array object containing values

(0 through 255) that correspond to the

colors, determining how they mix. The ratio

value defines the point along the gradient

where the color is at 100 percent. An array

like ratios = new Array(0, 127) means

that the blue is 100 percent at the left side

and the red is 100 percent starting at the

middle N.

N Ratios determine the mixing of colors for your

gradient. The entire width of your gradient (or

radius, for a radial gradient) is represented on a

range from 0 through 255. Ratio values of (0,255)

represent the typical gradient where each color

is at one of the far sides (top). Ratio values of

(0,127) create a tighter mixing in the first half of the

gradient (middle). Ratio values of (63,190) create a

tighter mixing in the middle of the gradient (bottom).

2550

1270

19063

Controlling and Displaying Graphics 275

Matrix type is an object that represents

size, position, scale, and rotation infor-

mation. You can define properties that

determine the size, position, and orienta-

tion of your gradient. You create a matrix

and specify width and height properties (in

pixels), an angle property (in radians), and

x and y offset (position) coordinates O.

Spread method determines how the gradi-

ent behaves when the shape is larger

than the gradient matrix. The parameter

takes a string with one of three values:

SpreadMethod.PAD fills out the shape

with solid color, using the end color of

the gradient; SpreadMethod.REPEAT
causes the gradient pattern to repeat; and

SpreadMethod.REFLECT causes the pattern

to repeat in a mirror image of itself P.

Interpolation method instructs Flash how

to calculate the blend between colors. The

two values are InterpolationMethod.RGB,

which blends colors more directly, result-

ing in a less spread-out appearance, and

InterpolationMethod.LINEAR_RGB, which

includes intermediate colors as part of

blending colors, resulting in a more spread-

out gradient.

Focal point ratio controls the focal point
(center point) of a radial gradient and takes

a number between –1 and 1. Normally, the

focal point is the center of the gradient

(0); a value between 0 and 1 (or –1) shifts

the center toward one or the other edge

by that percentage. For instance, a value

of –0.5 shifts the focal point 50 percent

between the center and the outer edge Q.

O Parameters for the matrix type. A radial

gradient (left) and a linear gradient (right) are

shown superimposed on a shape they would fill.

Its width and height are indicated by w and h; r is

the clockwise angle that it makes from the vertical;

x and y are the position offset coordinates for the

top-left corner of the gradient.

(x, y)

h

w

(x, y)
r

w

h

Q The focal point of the gradient on the left is 0.

The focal point of the gradient on the right is –0.5.

P The different spread methods are the same

options in the Color panel Flow options.

Pad
Reflect

Repeat

276 Chapter 7

To fill a shape with a solid color:
1. As you did in the previous task, create a

new Shape object.

2. On the next line, call the lineStyle()
method of the graphics property of

your Shape object, and enter the line

thickness parameter and other optional

parameters between the parentheses.

3. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the beginFill() method.

4. With your pointer between the paren-

theses, enter the hex code for a color

and a value for the alpha, separating

your parameters with a comma R.

5. On a new line, enter your Shape object’s

name followed by a period and the

property graphics, and then call the

moveTo() method to identify the begin-

ning of your drawing.

6. Use the lineTo() or curveTo() meth-

ods to draw a closed shape.

7. When the end point matches the begin-

ning point of your shape, enter your

Shape object’s name followed by a

period and the property graphics, and

call the method endFill().

No parameters are required for the

endFill() method. Flash fills the closed

shape with the specified color.

8. On the last line, enter the addChild()
method to add the Shape object to the

display list.

9. Test your movie S.

R This fill is light blue at 100 percent opacity.

S The end point of the last lineTo() method

(100,100) matches the beginning point (100,100),

creating a closed shape that can be filled. A blue

box appears as a result of this code. The box was

drawn counterclockwise from its top-left corner,

but the order of line segments is irrelevant.

(100,100) (200,100)

(200,200)(100,200)

Controlling and Displaying Graphics 277

To fill a shape with a gradient:
1. As you did in the previous task, create a

new Shape object.

2. On the next line, declare and instantiate

a new Array object to hold your gradi-

ent’s colors. In the parentheses of the

constructor function, enter the numeric

color values T.

By adding parameters to the new
Array() statement, you instantiate a

new Array object and populate the

array at the same time. The first color

refers to the left side of a linear gradient

or the center of a radial gradient.

3. Create another Array object, adding

the alpha value corresponding to each

color as a parameter.

The constructor function call for this

Array object should have the same

number of parameters as the colors

Array U.

4. Create a third Array object, entering

ratio values defining the distribution of

the colors in the gradient.

5. Declare and instantiate a new Matrix
object. Don’t enter any parameters in

the constructor function call.

6. On the next line, enter the name

of your Matrix object and call the

createGradientBox() method.

The Matrix class’s

createGradientBox() method is

specially designed for creating Matrix
objects to use when drawing gradi-

ents. The parameters you enter in this

method call determine the size and

position of the gradient.

Continues on next page

T The colors array is created with blue on one

side and red on the other. If this gradient will be

a linear gradient, blue (0x0000FF) will be on the

left. If it will be a radial gradient, blue will be in

the center.

U The alphas array is created with 100 percent

opacity for both the blue and the red. The ratios
array is created with blue on the far left side (or

the center, in the case of a radial gradient) and

with red on the far right side (or the edge of a

radial gradient).

278 Chapter 7

7. Inside the parentheses of the

createGradientBox() method call,

enter parameters for width, height,

rotation, x offset position, and y offset

position V:

Width and height (numbers in pixels)

determine the size of the gradient. Out-

side those dimensions, the colors will

end or repeat according to the spread

method you choose.

Rotation (number in radians) indicates

how much to rotate the gradient—by

default, linear gradients go from left

to right, so if you want the gradient to

go from top to bottom or at an angle,

you must specify a rotation parameter.

Otherwise, use 0.

X and y offset (numbers in pixels) indi-

cate at what coordinate (relative to the

movie clip’s registration point) to begin

the gradient.

8. On the next line, call the lineStyle()
method of the graphics property of

your Shape object, and enter the line

thickness parameter between the

parentheses.

9. On the following line, enter your

Shape object’s name and the

property graphics, and call the

beginGradientFill() method.

In the parentheses, add the fol-

lowing parameters: the gradient

type (GradientType.LINEAR or

GradientType.RADIAL), your colors

Array, your alphas Array, your ratios

Array, and your Matrix object. Be

sure to separate the parameters with

commas.

All the information about your gradi-

ent that you defined in your arrays and

Matrix object is fed into the param-

eters of the beginGradientFill()
method W.

V The width, height, rotation, and x, y coordinates

of the gradient are defined as parameters of the

createGradientBox method call.

W The beginGradientFill() method takes several

parameters that define how the gradient will be applied

to the fill.

Controlling and Displaying Graphics 279

14. Test your movie.

Flash fills your shape with the

gradient X.

The rotation parameter of the

createGradientBox() method takes

radians, not degrees. Using radians is a way

to measure angles using the mathematical

constant pi. To convert degrees to radians,

multiply by the number pi and then divide by

180. Using the Math class for pi (Math.PI),

you can use this formula:

radians = degrees * (Math.PI / 180);

X The complete ActionScript code (top) creates a box with a

linear gradient from blue to red (bottom).

10. Still in the parentheses, if you wish to

do so, enter a gradient spread method,

interpolation method, and focal point

ratio.

11. Add moveTo() and lineTo() method

calls to draw a series of lines to create

a closed shape.

12. On a new line, enter the name of

your Shape object, a period, and the

graphics property, and then call the

endFill() method.

13. On the last line, enter the addChild()
method to add the Shape object to the

display list.

280 Chapter 7

Creating rectangles and circles
The Graphics class provides some meth-

ods to create common types of shapes—

circles, rectangles, ellipses, and rectangles

with rounded corners—saving you much

time and effort. The following tasks lead

you through creating a circle and rect-

angle, but the same process applies to

ellipses and rounded rectangles with

only different methods to consider. Refer

to Table 7.6 earlier in this chapter for a

description of all these methods.

When you use these methods, you still need

to define the line style and the fill colors.

To create a circle:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. As you did in the previous task, create a

new Shape object.

3. On the next line, enter the name of your

Shape object, a period, and the property

graphics; then call the lineStyle()
method. Enter parameters in between

the parentheses to define the thickness,

color, and/or transparency.

4. On the next line, enter your Shape
object’s name followed by a period and

the property graphics, and then call

the beginFill() method.

5. With your pointer between the paren-

theses, enter the hex code for a color

and a value for the alpha, separating

your parameters with a comma Y.

6. On a new line, enter your Shape object’s

name followed by a period and the

property graphics, and then call the

drawCircle() method.

7. With your pointer between the paren-

theses, enter a number for the x loca-

tion, a number for the y location, and a

number for the radius of the circle Z.

Y Create a new Shape and define the line style

and fill color.

Z The drawCircle() method is an easy way

to create circles at any x and y position with a

certain radius. This one is at x = 50, y = 60 with

a 30-pixel radius.

Controlling and Displaying Graphics 281

8. On the last line, enter the addChild()
method to add the Shape object to the

display list.

9. Test your movie.

Flash draws a circle positioned at the

x and y location with the specified

radius .

To create a rectangle:
Replace steps 6–7 in the previous task with

the method drawRect().

The four parameters of this method are the

x and y positions of the top-left corner, and

the width and height in pixels. The follow-

ing statement creates a rectangle 200

pixels wide, 50 pixels tall, and snuggled in

the top-left corner:

myShape.graphics.drawRect(0, 0, 200,
➝ 50);

The endFill() method is unnecessary

when you use the methods that automatically

draw circles and squares.

The full code (top) includes the addChild()
method to display the shape.

Advanced Drawing Methods
In addition to the drawing methods that you’ve learned here, Flash Player 10 supports some new

advanced drawing methods that greatly expand the dynamic drawing capabilities.

In particular, drawPath() is a new method that consolidates the moveTo(), lineTo(), and

curveTo() methods in a single call to make defining shapes less code heavy. The drawPath()
method relies on a special kind of an array called a vector and represents the drawing methods as

numeric identifiers. The method also keeps track of the direction of how a shape is drawn, which is

called winding. You can draw a shape in either a clockwise direction or a counterclockwise direc-

tion, which has implications for intersecting shapes.

Another new method, drawTriangles(), can render triangles and map images to those triangles

with the purpose of distorting images for 3D rendering.

These are two of several new important additions to the ActionScript drawing tools. Although they

are substantially more complicated than the methods covered here, they can be powerful and

greatly enhance what can be dynamically rendered. See the Adobe Help site for more information

on the advanced methods of the Graphics class.

282 Chapter 7

Using Dynamic Masks
You can turn any DisplayObject into a

mask and specify another DisplayObject
to be masked with mask, a property of the

DisplayObject class. To do so, you simply

assign one object as the mask property of

the other. For example, in the statement

mypicture.mask = mywindow, the object

mywindow acts as a mask over the object

mypicture. Recall that a mask is an area

that defines the “hole” through which you

can see content.

Because you can control all the properties

of DisplayObjects, you can make your

mask move or grow and shrink in response

to viewer interaction. You can even com-

bine a dynamic mask with the drawing

methods you learned earlier in the chapter

to create masks that change shape.

An effective combination assigns

startDrag() and stopDrag() meth-

ods to a mask and creates a draggable

mask. When you add startDrag() to a

MouseEvent.MOUSE_DOWN handler and

stopDrag() to a MouseEvent.MOUSE_UP
handler, your viewer can control the posi-

tion of the mask.

Traditional Masks
It seems counterintuitive that a mask is

the area in which the masked object is

visible. But if you think of a mask in terms

of how a photographer or a painter uses

one, it makes more sense. In traditional

darkroom photography or in painting,

a mask is something that protects the

image and keeps it visible. A photogra-

pher would shield areas of light-sensitive

paper from exposure to the light, and a

painter would shield certain areas of the

canvas from paint.

To set an object as a mask:
1. Create a DisplayObject for the object

that will be masked. For this example,

import a bitmap to the Stage and

convert it to a movie clip symbol. In the

Properties inspector, give it a name A.

This movie clip will be masked.

2. Create another DisplayObject for the

object that will act as the mask. For this

example, you will create a Shape object

and dynamically draw a shape with the

Graphics class methods.

This Shape object will act as a mask.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. Create a new Shape object.

5. On the next line, call the beginFill()
method of the Shape object’s graphics
property to define the color of the fill.

The actual color of the fill won’t mat-

ter for the mask object, since it simply

defines the area of the masked object

that is visible. However, you still need to

define a color.

6. On a new line, enter your Shape object’s

name followed by a period and the

property graphics, and then call the

drawCircle() method.

7. With your pointer between the paren-

theses, enter a number for the x loca-

tion, a number for the y location, and a

number for the radius of the circle B.

Controlling and Displaying Graphics 283

8. On the next line, enter the addChild()
method to add the Shape object to the

display list.

Flash draws a circle positioned at the x

and y locations at the specified radius.

9. On the next line, enter the name of the

object that will be masked (your movie

clip on the Stage), a dot, the property

mask, an equals sign, and then the object

that will be the mask (the Shape object).

Flash assigns the Shape object as the

mask of the movie clip on the Stage.

10. Test your movie.

The circle of the Shape reveals portions

of the masked movie clip C.

To remove a mask:
To remove a mask, assign the null keyword

to the masked object’s mask property, as

follows:

myImage.mask = null;

The object called myImage will no longer

be masked.

You can specify the main Timeline as the

object to be masked, and all the graphics on

the main Timeline will be masked. To do so,

enter MovieClip(root) as the target path for

the mask property.

The stacking order of the mask object

and the masked object doesn’t matter when

you use ActionScript to create a mask. Either

of them can be in front or in back of the other,

although it is more intuitive to always keep the

mask in front of the masked object.

If the mask object is dynamically created,

it doesn’t necessarily have to be added to the

display list. However, if you want to change the

Stage (and the objects contained in it) or if you

want the user to interact with the mask, you

must put it on the display list before assigning

the mask property.

A A movie clip containing a cityscape image will

be the masked movie clip.

B A dynamic circle is drawn with the Sprite
object.

C The mask property makes the circle act as a

mask over the cityscape_mc object.

284 Chapter 7

Transparent masks
Different levels of transparency in the mask

aren’t recognized and don’t normally affect

the mask. To make the mask function with

alpha levels, you must set both masked

and mask DisplayObjects to use runtime

bitmap caching, either by selecting the

“Use runtime bitmap caching” check box

in the Properties inspector (for objects on

the Stage) or by setting the cacheAsBitmap
property to true in ActionScript. Bitmap

caching is a mode in which Flash treats the

images as bitmaps, storing them in mem-

ory so it does not have to continuously

redraw them.

Transparent masks will reveal the masked

object in gradations, depending on the

alpha value of the mask. This allows you

to create masks with soft, feathered edges

and vignette images.

To make a mask with transparencies:
Set the cacheAsBitmap property of the

mask and the masked object to true before

you assign the mask property, like so:

myImage.cacheAsBitmap = true;
myShape.cacheAsBitmap = true;
myImage.mask = myShape;

The object called myShape will reveal por-

tions of the object called myImage, accord-

ing to its transparent gradient D.

Transparent masks only work in Action-

Script. Masks created on the Timeline by

defining the Layer properties (described in

Chapter 1) don’t support alpha transparencies

even when “Use runtime bitmap caching” is

turned on in the Properties inspector.

D An object with alpha transparency (above) can

create a softer, more graduated mask (below) if

cacheAsBitmap is set to true.

Controlling and Displaying Graphics 285

To create a draggable mask:
1. Create a DisplayObject for the object

that will be masked. For this example,

import a bitmap to the Stage and

convert it to a movie clip symbol. In the

Properties inspector, give it a name E.

This movie clip will be masked.

2. Create another DisplayObject for the

object that will act as the mask. For

this example, you will create a Sprite
object and dynamically draw a shape

with the Graphics class methods.

This Sprite object will act as a dragga-

ble mask. (You can’t use a Shape object

in this example because it is too simple

of an object, and it doesn’t support

drag-and-drop methods).

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. Create a new Sprite object.

5. On the next line, call the beginFill()
method of the Sprite object’s

graphics property to define the color

of the fill.

6. On a new line, enter your Sprite
object’s name followed by a period and

the property graphics, and then call

the drawCircle() method.

7. With your pointer between the paren-

theses, enter a number for the x loca-

tion, a number for the y location, and a

number for the radius of the circle.

8. On the next line, enter the addChild()
method to add the Sprite object to the

display list.

Flash draws a circle positioned at

the x and y locations at the specified

radius F.

Continues on next page

E You’ll create a draggable mask to uncover this

movie clip of New York City called map_mc.

F A simple circle created dynamically will act

as the mask. Use the Sprite object to create

the circle because the Sprite class includes the

startDrag() and stopDrag() methods, and the

Shape object does not.

286 Chapter 7

9. On the next line, set the buttonMode
property of the Sprite object to true.

This allows the Sprite object to

receive MouseEvent events, like the

MOUSE_DOWN event that will be needed

for a drag action.

10. On the next line, enter the name of the

object that will be masked (your movie

clip on the Stage), a dot, the property

mask, an equals sign, and then the

object that will be the mask (the Sprite
object) G.

Flash assigns the Sprite object as the

mask of the movie clip on the Stage.

G Make sure that the buttonMode property for your Sprite object is

set to true.

H The event handlers for the MouseEvent.MOUSE_DOWN and

MouseEvent.MOUSE_UP events trigger the dragging and dropping

actions on the Sprite object.

Controlling and Displaying Graphics 287

11. On the next lines, create the

event handler to detect the

MouseEvent.MOUSE_DOWN event that

triggers a startDrag() method on

the Sprite object as follows:

mySprite.
addEventListener(MouseEvent.
➝ MOUSE_DOWN, startdragging);
function startdragging (
➝ myevent:MouseEvent):void {

mySprite.startDrag();
}

When the mouse button is pressed on

the mask, it becomes draggable.

12. On the next lines, create the event han-

dler to detect the MouseEvent.MOUSE_UP
event that triggers a stopDrag()
method on the Sprite object as follows:

mySprite.
addEventListener(MouseEvent.
➝ MOUSE_UP, stopdragging);
function stopdragging (
➝ myevent:MouseEvent):void {

mySprite.stopDrag();
}

When the mouse is released on the

mask, it stops being dragged H.

13. Test your movie.

The Sprite acts as a mask, and

the MOUSE_DOWN and MOUSE_UP han-

dlers provide the drag-and-drop

interactivity I.

I The circle becomes a draggable mask.

288 Chapter 7

Generating Motion
Tweens Dynamically
Motion tweens that are created dynami-

cally are animations generated and con-

trolled purely with ActionScript and are not

created on the Timeline at authortime. You

can use dynamic tweens to create more

responsive interactivity because the anima-

tion can be based entirely on user behav-

ior at runtime. Dynamic tweens also make

editing easier since you can modify the

animation by simply changing ActionScript

parameters rather than items on the Stage.

Dynamic motion tweens are generated

with the Tween class. The Tween class

isn’t normally included in the ActionScript

code, so to use it, you have to explicitly

include the code with the import state-

ment. To generate a tween, you instantiate

a new Tween object and provide seven

parameters:

Object is the instance name of the target

of the motion tween.

Property is the name of the property that

you want to animate. The property needs

to be enclosed in quotation marks. For

example, "x" or "alpha" are valid property

parameters.

Function determines the easing of the

tween. Flash provides many preset easing

classes that you can use; for example,

Strong.easeIn makes your tween ease in.

See Table 7.7 for a list of common easing

functions.

Begin is the starting value of your property.

Finish is the ending value of your property.

Duration determines how long your tween

lasts.

UseSeconds is a Boolean value that deter-

mines whether the Duration parameter is in

seconds (true) or in frames (false).

In addition to basic tweening, the Tween
class has many events that you can use to

detect critical points in the tween (when

it has been completed, for example), and

many methods to control the tweening.

See Table 7.8 for some of the events and

methods of the Tween class.

TABLE 7.7 Common Tween Easing Functions

Function Description

None.easeNone No ease.

Regular.easeIn A slow start.

Regular.easeOut A slow end.

Regular.easeInOut A slow start and a slow end.

Strong.easeIn A dramatically slow start.

Strong.easeOut A dramatically slow end.

Strong.easeInOut A dramatically slow start and end.

Bounce.easeOut A bouncing effect at the end, where the ending value approaches after several

rebounds toward the beginning value.

Elastic.easeOut A yo-yo effect at the end, where the ending value approaches in a decaying sine-

wave manner.

Controlling and Displaying Graphics 289

To create a dynamic tween:
1. Any object of the DisplayObject or

DisplayObjectContainer class can be

dynamically animated. For this example,

create a movie clip, place an instance

of it on the Stage, and name it in the

Properties inspector.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Enter the following two import state-

ments to include the code for the

Tween class and associated classes as

follows A:

import fl.transitions.Tween;
import fl.transitions.easing.*;

The asterisk is a wildcard, meaning that

all the classes in the easing package

will be imported.

Continues on next page

A The import statements are required to include

the code to use the Tween classes and associated

classes.

TABLE 7.8 Some Tween Methods and Events

Method or Event Description

stop() Stops the tween.

start() Starts the tween from its beginning.

resume() Starts the tween at the point when it was stopped.

yoyo() Plays the tween in reverse.

TweenEvent.MOTION_FINISH Occurs when the tween finishes.

TweenEvent.MOTION_STOP Occurs when the tween is stopped with the stop() method.

TweenEvent.MOTION_START Occurs when the tween starts with the start() or yoyo() method, but will

not occur when the tween is instantiated.

TweenEvent.MOTION_RESUME Occurs when the tween starts with the resume() method.

290 Chapter 7

4. On the next line, declare a variable for a

Tween object.

5. On the next line, enter your Tween

object, then an equals sign, followed

by the constructor for a new Tween.

Provide the seven required parameters

(the target object, its property, an easing

function, the beginning value, the end-

ing value, duration, and whether or not

the duration is measured in seconds) B:

mytween = new Tween(myimage, "x",
➝ Strong.easeIn, 0, 100, 2, true);

As soon as the tween is instantiated,

the motion tween proceeds.

6. Test your movie C.

Flash dynamically animates the object

called myimage from x=0 to x=100 in 2

seconds.

B The tween starts immediately when the new Tween is instantiated.

To stop a dynamic tween:
Call the method stop() on your Tween
object, like so:

mytween.stop();

The animation stops.

To resume a dynamic tween:
Call the method resume() on your Tween
object, like so:

mytween.resume();

The animation plays from the point where it

was stopped.

To replay a dynamic tween:
Call the method start() on your Tween
object, like so:

mytween.start();

The animation plays from its beginning.

C As a result of the dynamic tween, this square

(called myimage) moves from x=0 to x=100 across

the Stage in 2 seconds.

x=0 x=100

myimage

Controlling and Displaying Graphics 291

To detect the end of a
dynamic tween:
1. Continue with the earlier task, “To cre-

ate a dynamic tween.”

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Enter an additional import statement

to include the code for the TweenEvent
class:

import fl.transitions.TweenEvent;

4. On the next available line, enter an event

listener for your Tween object that listens

for the TweenEvent.MOTION_FINISH
event. For example:

mytween.addEventListener(
➝TweenEvent.MOTION_FINISH,
➝ tweendone);

D The event handler listens for the end of the dynamic tween and

replays the animation.

E When the tween finishes (reaches x=100) at left, the square goes back to x=0 and repeats the

animation, right.

When the animation defined by

mytween finishes, the function called

tweendone will be triggered.

5. Enter a function that responds to the

TweenEvent D:

function tweendone(myevent:
➝TweenEvent):void {
 mytween.start();
}

In this example, when the tween called

mytween finishes, it repeats itself by

playing from its beginning E.

292 Chapter 7

Customizing
Your Pointer
When you understand how to control

graphics on the display list, you can build

your own custom mouse pointer. Think

about all the different pointers you use in

Flash. As you choose different tools in the

Tools panel—the Paint Bucket, the Eye-

dropper, the Pencil—your pointer changes

to help you understand and apply them.

Similarly, you can tailor the pointer’s form

to match its function in your Flash projects.

Customizing the pointer involves first hiding

the default mouse pointer. Then you must

match the location of your new graphic to

the location of the hidden (but still func-

tional) pointer. To do this, continuously

assign the mouseX and mouseY properties to

the x and y properties of a DisplayObject.

To hide the mouse pointer:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Enter Mouse.hide().

When you test your movie, the mouse

pointer becomes invisible.

To show the mouse pointer:
Use the statement Mouse.show().

To create your own mouse pointer:
1. Create any DisplayObject for your

pointer. For this example, create a movie

clip, place an instance of it on the Stage,

and name it in the Properties inspector.

This movie clip will become your

pointer.

2. Select the first frame of the root Time-

line, and open the Actions panel.

3. Enter Mouse.hide().

When this movie begins, the mouse

pointer disappears.

4. On the next line, add an event listener

(like the following) to the Stage to

detect the MouseEvent.MOUSE_MOVE
event:

stage.addEventListener(MouseEvent.
MOUSE_MOVE, moveCursor);

When the mouse pointer moves on the

Stage, the function called moveCursor is

triggered.

Controlling and Displaying Graphics 293

5. On the next line, create the function

called moveCursor, like so:

function moveCursor(myevent:
➝ MouseEvent):void {
 cursor_mc.x = mouseX;
 cursor_mc.y = mouseY;
 myevent.updateAfterEvent();
}

The first two lines of the function assign

the location of the mouse pointer to

the position of the movie clip called

cursor_mc. The third line adds the

updateAfterEvent() method of the

event object, which forces Flash to

redraw the screen whenever the event

happens, independently of the frame

rate. This will create a smoother motion

of your mouse pointer because your

user may be moving the pointer faster

than the screen refresh rate.

6. Test your movie.

When the mouse pointer moves on the

Stage, the movie clip follows to act as

the custom pointer A.

To reactivate the hand cursor when roll-

ing over buttons or other interactive objects,

you must create new event handlers that set

the visibility of your custom cursor to false
for each button. The statement Mouse.show()
can then reactivate the hand cursor. Use a

MouseEvent.MOUSE_OUT event handler to

restore your original settings.

A The X and Y properties for the movie clip

cursor_mc follow the mouse pointer’s position.

Add the updateAfterEvent() method to the event

object to force Flash to refresh the display and

create smoother motion.

294 Chapter 7

Putting It Together:
Animating Graphics
with ActionScript
One of the most important concepts in

interactivity is the idea of mapping, or

translating, the property of one object to

the property of another. Nearly all inter-

faces are based on this principle: In scroll-

bars, the vertical position (Y property) of a

slider maps directly to the vertical position

(Y property) of a block of text. In video con-

trols, the horizontal position (X property)

of the scrubber maps directly to the time

position of a video (the parameter in the

FLVPlayback.seek() method). In volume

controls, the rotation of a dial maps directly

to the volume property of a sound.

In the following task, you’ll see how the

Y position of the mouse cursor can map

to the horizontal and vertical scaling of

an image. You can break the interactivity

down to three parts:

Listen for the MouseEvent.MOUSE_MOVE

or Event.ENTER_FRAME event. You want

to provide an immediate visual transla-

tion based on your viewer’s input. As

your viewer moves their mouse over the

controls, they should receive visual/audi-

tory feedback. So, listen for the different

changes in mouse position.

Keep track of the mouseX and mouseY

properties. The mouseX and mouseY prop-

erties represents the horizontal and verti-

cal position of the mouse cursor. As the

user moves their mouse, you can track the

changing values of mouseX and mouseY.

Translate the changing values of mouseX
and mouseY to a range of values appropri-

ate for another set of properties. Do some

algebraic manipulation to map the mouseX
and/or mouseY values to a range that’s

acceptable to your target property. For

example, if you want the mouseX or mouseY
value to map to the transparency of an

object, you’ll want to generate a range of

values from 0 (transparent) to 1 (opaque).

To translate mouse movements
to visual changes:
1. Create a movie clip, put it on the Stage,

and name it in the Properties inspector.

This movie clip will visually change,

depending on the position of your

mouse cursor A.

2. Create a second movie clip, put in on

the Stage next to the first movie clip,

and name it in the Properties inspector.

The second movie clip will act as the

interface element for the user B.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. Add an event listener to the interface

element (like the following) to detect

the MouseEvent.MOUSE_MOVE event:

scale_mc.addEventListener(
➝ MouseEvent.MOUSE_MOVE,
➝ scaleface);

The function called scaleface is

triggered whenever the mouse cur-

sor moves over the movie clip called

scale_mc.

5. On the next line, create a function

called scaleface, which changes the

scaleX and scaleY properties of the

first movie clip based on the mouseY
property, like so:

function scaleface(myevent:
➝ MouseEvent):void {
 face_mc.scaleX = .5 + (mouseY -
➝ scale_mc.y) / scale_mc.height;
 face_mc.scaleY = face_mc.scaleX;
}

Controlling and Displaying Graphics 295

The final code can be seen in C. In this

example, we subtract the position of the

scale_mc movie clip from the position

of the mouse cursor, so the resulting

value ranges from 0 to the height of the

scale_mc movie clip. Dividing by the

height results in a range from 0 to 1. We

add .5 to this so the face doesn’t actu-

ally get so small that it disappears. So

the final range is from .5 to 1.5, which is

assigned to the scaleX and scaleY of

the Face movie clip.

6. Test your movie.

When you move your mouse cursor

over the interface element, the Face

movie clip scales up or down, from 50%

to 150% of its original size D.

A The movie clip called face_mc is placed on the

Stage.

D An example of interactivity that maps user

events to immediate visual changes. Moving the

mouse in the upper portion of the scale_mc movie

clip makes the image smaller (top), while moving

the mouse in the lower portion of the scale_mc
movie clip makes the image larger (bottom).

C The code listens for mouse movement over the movie clip called

scale_mc and translates the mouse position to scale changes of the

movie clip called scale_mc.

B Another movie

clip called scale_mc
is placed next to the

first movie clip.

296 Chapter 7

About Bitmap Images
One of the hallmark characteristics of Flash

is that the images you create are vector

images, whether you use the drawing

tools in the authoring environment or the

drawing methods of the Graphics class.

For computer-based drawing, vectors are

convenient because they allow you to deal

with lines, shapes, text, and other objects

as a single, resolution-independent unit

rather than as a collection of pixels that

must be controlled individually. However,

as part of the process of displaying the

Flash movie on a computer screen, the

Flash Player has always converted those

vectors to bitmap images behind the

scenes.

ActionScript allows you to directly manipu-

late bitmap images. You’ve already seen

some of the power of bitmap manipulation

when you learned to apply filters. Filters

are a bitmap manipulation technique, and

inside the Flash Player a vector-based

object is converted to a bitmap before

any filter effect is applied to it. Controlling

bitmap images requires that you use the

BitmapData class. Using the properties

and methods of the BitmapData class, you

can create your own filters and graphical

effects to enhance your Flash projects. You

can add subtle touches, like converting an

image to grayscale or fading two images

together. Or add textures and distortions

for more sophisticated visual displays.

Controlling and Displaying Graphics 297

Creating and
Accessing Bitmap Data
A bitmap image consists of a series of rows

and columns of colored dots known as

pixels. Each pixel is assigned a single color

value containing a mix of red, green, blue,

and possibly alpha (transparency) values.

When you use the BitmapData class to

manipulate image information, all the

changes are made to the individual pixel’s

color values.

The first step to manipulating a bitmap

image is to create an instance of the

BitmapData class. Sometimes you’ll want

to start with a new, blank image, and many

times you’ll want to manipulate an existing

image, such as a digital photo.

As with most objects in ActionScript,

to create a new BitmapData object

you use the constructor function as in

var myBitmapData: BitmapData = new
BitmapData(100, 200). This statement

creates an object with a width of 100

pixels and a height of 200 pixels. The

BitmapData constructor takes up to four

parameters. You must use the first two

parameters: a width and height for the

image. You can optionally add two more

parameters to specify whether the image

will use transparency (alpha channel)

information and what color to fill the image

with initially.

Previously, you used hexadecimal num-

bers to specify color values in the form

0xRRGGBB, where RR is a two-digit value

for the amount of red in the image, GG
for the amount of green, and BB for the

amount of blue. Several of the BitmapData
methods require you to provide a numeric

color parameter. For a BitmapData object

with no alpha channel, the six-digit

hexadecimal format is still used. If the

BitmapData object has an alpha channel,

however, use eight digits instead of six, like

this: 0xAARRGGBB. In this case, you add

two extra digits that represent the alpha

value after the 0x prefix but before the two

red digits. These two digits indicate the

amount of transparency the color will have.

As with the other color values, the possible

alpha values range from 0 (00) to 255 (FF).

Note that this is different from the alpha
property of a DisplayObject, which uses a

decimal from 0 to 1.

After you create a BitmapData object, you

can use methods from the BitmapData
class to manipulate its pixels and colors.

The next step is to assign the BitmapData
object as the bitmapData property of a

Bitmap object. The Bitmap object is the

DisplayObject that you must add to the

display list to make your image visible.

298 Chapter 7

To create new bitmap data:
1. Select the first frame of the Timeline

and open the Actions panel.

2. Create a new instance of the

BitmapData class, as in:

var myBitmapData:BitmapData =
➝ new BitmapData(200, 100, false,
➝ 0x33ee44);

The four parameters are width, height,

alpha transparency, and color. Only the

first two are required. This instance, called

myBitmapData, is a 200-by-100-pixel rect-

angle filled with a certain solid color.

If you set the alpha transparency param-

eter to false, you should use a six-digit

number; otherwise, use an eight-digit

number to include the transparency

information.

At this point, no image is visible. The

BitmapData object is simply information

about a collection of pixels that you can

manipulate and then, at a later point,

put into a Bitmap object to display on

the Stage (explained later).

If you leave off the fourth parameter for

color in the BitmapData constructor func-

tion, the BitmapData object is filled with solid

white pixels by default.

Accessing images dynamically
In addition to creating an image filled with

a single color, as in the previous task,

you can create a BitmapData object with

more interesting image information. You

can create a new BitmapData object from

a bitmap symbol in your Library. Or you

can use the load() method of the Loader
class to retrieve an image from an external

image file, and then copy a snapshot of the

Loader object into a BitmapData object.

This transfer of image information from the

Loader object to the BitmapData object

requires the method draw().

To create bitmap data from
a Library symbol:
1. In your Flash document, add an image

to the Library by choosing File > Import >

Import to Library, browsing to your image

file in the dialog box, and clicking OK.

Your image appears in the Library and is

identified as a bitmap item.

2. Select the bitmap in the Library panel.

In the Library panel’s Options menu,

choose Properties.

The Symbol Properties dialog box

appears.

3. Click the Advanced button to reveal the

Linkage section.

4. In the Linkage section, select the Export

for ActionScript check box. Leave

“Export in frame 1” selected.

5. In the Class field, enter a name to

identify your bitmap. Leave the Base

class as flash display.BitmapData and

click OK A.

A dialog box appears, warning you that

your class could not be found so one

will automatically be generated. Click

OK. In this example, the class name

for your Library symbol is Jumper. This

new class inherits from the BitmapData
class, which means it has all the

same methods and properties of the

BitmapData class. Your class name will

be used to create new instances of your

BitmapData. Make sure that your class

name doesn’t contain any periods.

6. Select the first frame of the main Time-

line, and open the Actions panel.

7. On the first line, create a new instance of

your BitmapData object, referencing its

class name (created in step 5), like so:

var myBitmapData:Jumper = new
➝Jumper(384, 256);

Controlling and Displaying Graphics 299

Include two parameters for its width and

height. These parameters are required

as they are for all BitmapData objects.

A new instance of your Jumper class,

which has all the characteristics of the

BitmapData class, is created. The name

of your new instance is myBitmapData B.

The bitmap image from the Library is

now stored in a BitmapData object.

To create bitmap data from an
externally loaded image:
1. As in the previous tasks covered in

Chapter 6, create a URLRequest object;

then create a Loader object and call

the load() method to load an external

image C.

2. Create the event handler to detect the

completion of the loading process D.

Continues on next page

A The Linkage section of the Symbol Properties

dialog box. This Library symbol can be referenced

with the class name Jumper. It will have all the same

properties and methods of the BitmapData class.

B Create a new BitmapData object with the class name that

you defined in the Linkage section of the Symbol Properties

dialog box. The first two parameters of the constructor specify

the width and height of the bitmap, and are required.

C Create a new Loader object and load an external file as

described in the URLRequest object.

D Create an event handler to detect when the loading is complete.

300 Chapter 7

3. Between the curly braces of the

event-handler function, create a new

BitmapData object and reference your

Loader object’s width and height prop-

erties to specify its exact dimensions,

like so:

var myBitmapData:BitmapData =
➝ new BitmapData(myloader.width,
➝ myloader.height);

4. On the next line, still within the curly

braces of the function, enter the name

of your BitmapData object, and then

call the draw() method. Provide the

Loader object as its parameter as in the

following:

myBitmapData.draw(myloader);

This draw() method copies the image

from the Loader object into the

BitmapData object.

Your BitmapData object now contains

the image information from the exter-

nally loaded file E.

You can use the draw() method to

copy image data from any DisplayObject
source into your BitmapData object, not just

a Loader object. For example, you can copy

an image from a text field and put it into your

BitmapData object and manipulate text at the

pixel level.

The draw() method has additional

optional parameters so you can alter the

image before putting it into your BitmapData
object. The full parameters for the draw()
method are as follows:

source: The BitmapData object from which

to copy pixel information. This is the first,

required parameter.

matrix: The Matrix object designating the

transformations to the image.

colorTransform: The ColorTransform
object designating the color changes to the

image.

blendMode: The way in which the resulting

bitmap will interact with colors below it. Use

constants from the BlendMode class such as

BlendMode.MULTIPLY.

clipRect: The Rectangle object designating

the portion of the source bitmap to copy.

smoothing: A true or false value indicating

whether the image will be smoothed when

scaled or rotated.

You can pass null values for the parameters

if you want to pass values for some but not all

the parameters.

E When the loading is complete, create a BitmapData object with dimensions

that match the Loader object. Then copy the image data from the Loader into the

BitmapData object.

Controlling and Displaying Graphics 301

To remove bitmap data from
a BitmapData object:
In the Script pane, enter the name of your

BitmapData object and a period; then call

the method dispose().

This frees up Flash’s memory by setting

the width and height of the BitmapData
object to 0.

Be careful not to try to manipulate or

access a BitmapData object once you have

called its dispose method; at that point, its

width and height are set to 0, and its methods

and properties won’t work.

Displaying the bitmap data
So far, you’ve only learned to create

bitmap data or load in bitmap data from

another source—either from a Library

symbol or an external file. To display your

bitmap data, you must assign the data to

F The highlighted code creates

a new Bitmap object, puts the

BitmapData object into it, and

displays the image on the Stage

(below). Although the image

appears the same as if you added

the Loader object to the Stage,

the image is bitmap data and

you can manipulate all the color

and transparency information for

each pixel.

the bitmapData property of a new object,

the Bitmap object. The Bitmap object is

a subclass of the DisplayObject class,

which you add to the display list.

To display bitmap data:
1. Create an instance of the Bitmap class,

like so:

var myBitmap:Bitmap = new Bitmap();

In this example, your new Bitmap object

is called myBitmap.

2. Assign your BitmapData object to the

Bitmap object’s bitmapData property,

like so:

myBitmap.bitmapData = myBitmapData;

3. Call the addChild() method to add the

Bitmap object to the display list:

addChild(myBitmap);

The bitmap data is now visible on the

Stage F.

Continues on next page

302 Chapter 7

As a shortcut, you can pass the

BitmapData object as a parameter when

you create your Bitmap object, and it will be

assigned as the bitmapData property, like so:

var myBitmap:Bitmap = new
➝ Bitmap(myBitmapData);

You can set the smoothing property of

a Bitmap object to true to smooth out the

image when it is scaled G.

myBitmap.smoothing = true;

G The smoothing property of the Bitmap object

helps smooth out rough edges due to scaling and

rotations. The top image has no smoothing, and

the image appears pixilated. The bottom image

has smoothing set to true.

Controlling and Displaying Graphics 303

Manipulating
Bitmap Images
There is little use in creating a BitmapData
object just to hold an image and display it

through a Bitmap object. The real fun is in

manipulating the image’s pixels. The most

basic way to do this is to draw color onto

the bitmap.

You can change the color of a single

pixel at a time using the setPixel() and

setPixel32() methods. To cover a larger

area, use the fillRect() method to set

all the pixels in a rectangular portion of

a BitmapData object to the same color;

the floodFill() method lets you fill in a

region of color with a different color, similar

to the Paint Bucket tool in many graphics

programs. Finally, using the getPixel()
and getPixel32() methods you can

identify the color of a pixel in a BitmapData
object, much like the Eyedropper tool that

is common in image-editing programs.

To draw single pixels:
1. Select the first keyframe on the Time-

line, and open the Actions panel.

2. As you have done in the previous

tasks, declare and instantiate a new

BitmapData object with width and

height parameters like the following:

var myBitmapData:BitmapData = new
➝ BitmapData(300, 300);

This new BitmapData object is called

myBitmapData and is 300 pixels by

300 pixels.

3. On a new line, enter the name of your

BitmapData object and a period; then call

the setPixel() method. For its param-

eters, specify an x-coordinate, a y-coordi-

nate, and a color in hex code, like so:

myBitmapData.setPixel(100, 100,
➝ 0x993300);

This method creates a single pixel

at x = 100, y = 100 at a certain color

specified by the hex code A.

4. On the next line, create a new Bitmap
object.

5. On the next line, assign the BitmapData
object to the bitmapData property of

your Bitmap object.

6. On the last line, add a call to the

addChild() method to display the

Bitmap object on the Stage B.

You may have to squint to find the lone

pixel, but you’ll see a single dot rendered

on your Bitmap object on the Stage.

A A new BitmapData object called myBitmapData is

created, which is 300 pixels square. The setPixel()
method is called. The three parameters of the setPixel()
method are the x- and y-coordinates and the color.

B The final code draws a red pixel at x = 100, y = 100. The

bitmap information is put in a Bitmap object and displayed.

304 Chapter 7

The setPixel() method only accepts

color values without an alpha channel; that is,

color values specified as six-digit hexadecimal

values. To change a pixel’s color to a color that

is partially transparent, use the setPixel32()
method instead and specify an eight-digit

hexadecimal code.

To fill a rectangle with a color:
1. Select the first keyframe on the Time-

line, and open the Actions panel.

2. As you have done in the previous

tasks, declare and instantiate a new

BitmapData object with width and

height parameters, and parameters

for alpha and the color.

3. On the next line, create a Rectangle
object with parameters for the x and y

location, and the width and height C.

4. On a new line, enter the name of your

BitmapData object and a period; then

C A new Rectangle object called myRectangle is created. This

object represents a rectangular region at the coordinate (0, 0) that

is 100 pixels wide and 200 pixels high.

D The fillRect() method fills the region defined by a Rectangle
object with the color 0xAA3300.

call the fillRect() method with two

parameters, like so:

myBitmapData.fillRect(myRectangle,
0x993300);

For the first parameter, enter the name

of your Rectangle object, indicating the

section of the BitmapData object that

should be colored.

For the second parameter, enter a

numeric color value indicating what

color to set the pixels in the rectangle.

The fillRect() method fills a rectan-

gular region with a solid color.

5. On the next line, create a new Bitmap
object.

6. On the next line, assign the BitmapData
object to the bitmapData property of

your Bitmap object.

7. On the last line, add a call to the

addChild() method to display the

Bitmap object on the Stage D.

Controlling and Displaying Graphics 305

8. Test your movie.

The Bitmap object is drawn on the

Stage, and the rectangular region is

filled in with the color you chose E.

To fill a region with a color:
1. As in the previous tasks, create a

BitmapData object. For this example,

import an image that has one or more

regions of solid color into the Library. In

the Linkage section of the Symbol Prop-

erties dialog box, identify the Library

symbol with its own class name that

extends the BitmapData class F.

2. In the Actions panel, create a new

instance of your Library symbol, giving

parameters for its width and height G.

The new instance is a BitmapData
object.

3. On a new line, enter the name of your

BitmapData object and a period; then

call the floodFill() method with three

parameters H:

x: The x-coordinate of the pixel to use

as the starting point for the fill operation

y: The y-coordinate of the starting pixel

color: The numeric color to set as the

color for the affected pixels

When the floodFill() call is made,

regions of similar color connected to

the x- and y-coordinates are filled with

the new color specified.

4. On the next line, create a new Bitmap
object.

5. On the following line, assign your

BitmapData object (the one from the

Library) to the bitmapData property of

your Bitmap object.

Continues on next page

E A rectangular portion of the BitmapData
object is filled with a color.

F This bitmap symbol is linked to the class

called MouseImage, which inherits the methods

and properties of the BitmapData class.

G A new BitmapData object is created from your

custom class (from the Library).

H The BitmapData class’s floodFill() method

takes three parameters: the x and y location of the

starting point of the fill and the fill color.

306 Chapter 7

6. On the last line, add a call to the

addChild() method to display the

Bitmap object on the Stage I.

7. Test your movie.

Flash first creates an instance of your

Library symbol, which is a BitmapData
object. Then, at the specified coor-

dinate, the region of similar color is

filled with a new color. Finally, the

BitmapData is assigned to a Bitmap
object and displayed on the Stage J.

Unlike many image-editing programs,

which allow you to specify a tolerance level for

filling a region, the floodFill() method only

fills pixels whose color is exactly the same as

the starting pixel.

To get a color from an image:
Call the getPixel() method, as in:

myBitmapData.getPixel(100, 200);

The color information for the particular

pixel at x = 100, y = 200 for the BitmapData
object called myBitmapData is returned.

The returned value, however, is not in

the familiar hexadecimal code. To con-

vert the returned value, use the method

toString(16).

The color value provided by the

getPixel() method only includes the red,

green, and blue color information for the

chosen pixel. If you want to know the alpha

channel value as well, you must use the

getPixel32() method instead.

I The final code, which displays the manipulated

bitmap data in a Bitmap object.

J In this example, the BitmapData object is

filled with continuous regions of color starting

at x = 10, y = 30.

Controlling and Displaying Graphics 307

Copying, layering, and
blending images
In addition to setting colors directly on an

image, a common image-manipulation task

is to incorporate part or all of one image

into another image. Perhaps you want to

duplicate an image in multiple places on

the screen, or you want to copy several

images onto one for a collage effect. The

BitmapData class offers several ways to

accomplish the task of copying image data.

You have already used the draw() method

to copy a source image to a BitmapData
object; that same method can be used to

copy all or part of a BitmapData object

onto another using the optional param-

eters of the draw() method to manipulate

the image.

K This bitmap symbol is linked to the class

called Daisies, which inherits the methods and

properties of the BitmapData class.

In addition, you can make an exact copy

of a BitmapData object with the clone()
method, copy all the colors with the

copyPixels() method (or just a single

color channel using copyChannel()),

and even combine the colors of two

BitmapData objects with the merge()
method. The following tasks demonstrate

the use of these methods.

To make an exact copy of a bitmap:
Call the clone() method and assign the

returned value to another BitmapData
object, like so:

var myCopy:BitmapData =
➝ myBitmapData.clone();

This statement creates an exact duplicate

of the myBitmapData object and assigns

it to the object called myCopy, another

BitmapData object.

To copy part of an image
onto another image:
1. As in the previous tasks, create a

BitmapData object. For this particular

example, import a bitmap image into

the Library. In the Linkage section of the

Symbol Properties dialog box, identify

the Library symbol with its own class

name that extends the BitmapData
class K.

2. In the Actions panel, create a new

instance of your Library symbol, giving

parameters for its width and height.

The new instance is a BitmapData
object. Don’t forget the width and

height parameters, because they are

required to create a new BitmapData
object.

Continues on next page

308 Chapter 7

3. On a new line, create another

BitmapData object, specifying param-

eters for its width, height, alpha, and

color. This BitmapData object will be

the one that first image will be copied

onto. This BitmapData object can con-

tain an image, a solid color, or any other

bitmap information.

In this example, the second BitmapData
object will simply have a solid back-

ground color L.

4. On the next line, create a Rectangle
object with four parameters: the x, y,

width, and height values corresponding

to the rectangular portion of the source

BitmapData object that you want to copy.

5. On the next line, create a Point object

with two parameters, which are the

x- and y-coordinates of the pixel in the

destination BitmapData object where

you want the top-left corner of the cop-

ied pixels to be placed M.

L The BitmapData object from the Library (the daisies picture) will be

the source bitmap, and another BitmapData object that is 290 wide by

212 high filled with a red color will be the destination bitmap.

M The source cropping Rectangle and destination Point objects are

created, with values entered in their constructor functions.

N Using the source bitmap, cropping rectangle, and destination point

parameters for the copyPixels() method gives you fine-tuned control

over the copying and pasting of image data.

6. On a new line, enter the name of the

second BitmapData object (the colored

rectangle) and then a period. Then call

the copyPixels() method with three

parameters N:

sourceBitmap: The BitmapData object

from which to copy pixel information (in

this example, the new instance of the

Library symbol)

sourceRect: The Rectangle object

designating the portion of the source

bitmap to copy

destPoint: The Point object designat-

ing the x- and y-coordinates on the

destination image where the top-left

corner of the copied rectangle should

be positioned

7. On the next line, create a new Bitmap
object.

Controlling and Displaying Graphics 309

8. On the following line, assign your

BitmapData object (the one that contains

the copied pixels) to the bitmapData
property of your Bitmap object.

9. On the last line, add a call to the

addChild() to display the Bitmap
object on the Stage.

10. Test your movie.

Flash copies the pixels from the first

BitmapData object onto the second

according to the boundaries indicated

by the Rectangle object and placed at

the point indicated by the Point object.

The BitmapData with the copied pixels

is assigned to a Bitmap object and

displayed on the Stage O.

O The final code (top) copies a cropped portion of the original

image and places it at a point 43 pixels over and 43 pixels down

from the top-left corner of the destination image.

If you want to copy the entire source

image, the easiest way to indicate this is to

use the source BitmapData object’s rect
property as the second parameter, like this:

sourceImage.rect. Any BitmapData
object’s rect property contains a Rectangle
object whose size and boundaries match those

of the BitmapData object.

To place the copied pixels at the

top-left corner of the destination image,

use the topLeft property of the destina-

tion BitmapData object’s rect prop-

erty for the third parameter, like this:

destImage.rect.topLeft.

Rectangle object

Point object

srcBitmapData destBitmapData

Test Movie mode

310 Chapter 7

To copy one color channel of an
image onto another image:
1. Continue working with the same docu-

ment from the previous task.

2. In the line with the copyPixels()
method call, change the method

copyPixels() to copyChannel().

The copyChannel() method works like

the copyPixels() method except that it

copies only one of the source image’s

color channels (red, green, blue, or

alpha) onto a single channel of the des-

tination image.

This is similar to the command in some

image-manipulation programs that

allows you to separate an image into its

component channels.

P The copyChannel() method works like the copyPixels() method, but it copies

only a single color channel from the source image onto a single channel of the

destination image. Here the blue channel (4) of the source image has been copied

into the green channel (2) of the destination image.

3. Inside the parentheses of the

copyChannel() method call, add two

additional parameters after the three

parameters that are currently there P.

These two parameters are as follows:

sourceChannel: A Number indicating

which color channel should be cop-

ied from the source image. The value

must be 1 (red), 2 (green), 4 (blue), or

8 (alpha).

destChannel: A Number indicating the

color channel in the destination image

into which the copied pixels should be

placed. The possible values are the

same as for the sourceChannel param-

eter (1, 2, 4, or 8).

4. Test your movie.

This time, instead of copying the entire

image, only one of the color channels is

copied onto the destination image.

Controlling and Displaying Graphics 311

To blend an image onto another image:
1. As in previous tasks, create two

BitmapData objects that will be blended

together into a single image.

The source image will be combined

onto the destination image. The dimen-

sions of the destination image will be

used for the final image.

2. Declare and instantiate a Rectangle
object with parameters indicating the

portion of the source image to copy

onto the destination image.

If you want the entire source image to

be used, remember that you can use the

rect property for the Rectangle object.

3. Declare and instantiate a Point object

with parameters indicating the x- and

y-coordinates where the source image

should be placed in the destination image.

If you want to position the image at the top-

left corner of the destination object, remem-

ber that you can use the rect.topLeft
property for the Point parameter.

4. On a new line, enter the name of the des-

tination BitmapData object followed by a

period; then enter the method merge().

5. Inside the parentheses of the merge()
method, enter seven parameters to

control how the BitmapData objects will

be blended together Q.

Continues on next page

The copied color channel is still only one

of four channels in the destination image. Any

color that was already present in the other

channels of the destination image will be used

together with the copied channel to determine

the actual color displayed. If you want the

destination image to show only the copied

channel, create the destination image as

solid black, which has a value of 0 in all color

channels.

For an interesting effect, try using the

same image as the source and destination,

and copy one channel (for example, red) into a

different channel (such as green). Depending

on the selected color channels and the bright-

ness of the colors in the original image, this

can create a muted effect or a wildly vivid one.

To create a grayscale representation

of a single color channel from the source

BitmapData object, call the copyChannel()
method three times. Use the same source

channel for all three method calls, and use

a different destination channel (1, 2, and 4)

in each. For example, to create a grayscale

image of the red channel, copy channel 1 to

destination channel 1, copy channel 1 to desti-

nation channel 2, and finally, copy channel 1 to

destination channel 4.

Q To use the merge() method, you must create two BitmapData objects

and define the source rectangle and destination points. In this example,

the source rectangle is the entire dimension of the source image (using

the rect property), and the destination point is the top-left corner (using

the rect.topLeft property). Entering 128 for the merge() method’s final

four (multiplier) parameters creates an even blend between the two

BitmapData objects.

312 Chapter 7

The first three parameters,

sourceBitmap, sourceRect, and

destPoint, are equivalent to those

parameters in the copyPixels() and

copyChannel() methods, as explained

in the previous tasks.

The last four parameters are multi-

plier numbers between 0 and 255,

which control the balance of the colors

between the two images. Each param-

eter represents the color balance of a

single channel (in the order red, green,

blue, and alpha). The larger the value,

the more the balance favors the source

image. For instance, entering 255 for

R Using the merge() method, the two surfer images are blended

together. The destination image determines the size constraints.

all the values shows only the source

image. For an even blend between

the two images, enter 128 for each

parameter.

6. Enter the remaining script to cre-

ate a Bitmap object, and assign the

destination BitmapData object to its

bitmapData property.

7. To see the resulting image, call

addChild() to put the Bitmap object

on the display list.

When you test your movie, you see a

new image composed of the two origi-

nal images blended together R.

Controlling and Displaying Graphics 313

Using Filters on
Bitmap Images
Previously, you learned how filters can

be applied to movie clips to add visual

interest. The same filters can be applied

to bitmap graphics as well, using the

BitmapData class’s applyFilter() method.

There are a few important differences

between applying filters to a BitmapData
object versus DisplayObjects like

movie clips.

First, with DisplayObjects, you use the

filters property, which you can use to

layer multiple filters at a time. Second, the

filters are just an enhancement; they can

be added or removed at any time without

altering the underlying object. However,

when a filter is applied to a BitmapData
object, the object (that is, the information

it contains about pixels and color values)

is directly modified; there is no way to

undo the change or remove a filter from a

BitmapData object.

However, you have a greater degree of

control over the end result when you

apply a filter to a BitmapData object.

Because the filter modifies the pixels of the

BitmapData object directly, any rotation,

scaling, or other transformations applied to

the BitmapData object are reflected in the

filtered result.

The applyFilter() method takes four

parameters. The first three parameters are

the source bitmap, the source rectangle,

and the destination point; these are the

same three parameters you used in the

copyPixels() method and the related

methods you learned about in the previ-

ous tasks. The fourth parameter is the

filter object that is to be applied to the

BitmapData object.

314 Chapter 7

To apply a filter to a bitmap image:
1. Using any of the techniques described

previously, create your source

BitmapData object (the one that con-

tains the bitmap to which the filter will

be applied).

2. On the next line, declare and instantiate

a destination BitmapData object, into

which the output of the filter operation

will be placed A.

If you don’t need to preserve the original

image, you can use the source BitmapData
object as the destination object as well.

Whether you’re using the source

BitmapData object or a new BitmapData
object as the destination object, there

are a few important details to keep in

mind—see the Tips following this task.

3. As you did in previous tasks, create a

Rectangle object to define the region

of the source bitmap to which the filter

will be applied and a Point object

defining the point where the result

will be placed within the destination

BitmapData object.

If you want the entire image to be filtered

and positioned to fill the entire source

BitmapData object, remember that

you can use the rect property for the

Rectangle object and the rect.topLeft
property for the Point property.

4. On the following line, declare and

instantiate the filter object that will be

used to alter the bitmap. Enter param-

eters in the constructor function to set

the filter’s properties, or set the proper-

ties directly B.

5. On a new line, enter the name of your

destination BitmapData object fol-

lowed by a period, and then enter

applyFilter().

6. Enter as parameters for the

applyFilter() method the name of your

source BitmapData object, the name of

your source Rectangle object, the name

of your destination Point object, and the

name of your filter object C.

A A source bitmap (which will be filtered) and a destination

bitmap (where the filter’s result will be placed) are created.

B A new BlurFilter object is created.

C In this example the filter will be applied to the entire source

bitmap, and it will be placed in the top-left corner of the

destination bitmap.

Controlling and Displaying Graphics 315

7. Enter the remaining script to cre-

ate a Bitmap object, and assign the

destination BitmapData object to its

bitmapData property.

8. To see the resulting image, call

addChild() to put the Bitmap object on

the display list.

The destination BitmapData object,

which contains a copy of the source

BitmapData object with the filter

applied to it, appears on the Stage D.

Several of the filters (bevel, gradient

bevel, glow, gradient glow, blur, and drop

shadow) use alpha channel values; conse-

quently, the destination BitmapData object

must be able to store alpha channel values

(its transparent property must be true). If

your source BitmapData object doesn’t have

alpha channel information (its transparent
property is false), you must create a new

BitmapData object rather than using the

source object as the destination object.

D The final code (top) and the resultant image (bottom).

Often, the output of a filter such as an

outer glow or drop shadow is larger than

the size of the BitmapData object (or the

designated Rectangle). If the destination

BitmapData object isn’t large enough (for

example, if its dimensions are identical to the

source bitmap’s dimensions), the filter will be

cropped and may not be displayed.

To know the output size of the filter before-

hand, use the generateFilterRect()
method on the source bitmap. It takes two

parameters—the cropping rectangle and the

filter object that will be used—and returns a

Rectangle object whose dimensions match

the size of the output from the filter. Use those

dimensions to define the size of your destina-

tion BitmapData object and the destination

point to prevent the filter’s result from being

cropped.

316 Chapter 7

Putting It Together:
Animating Bitmap
Images
Throughout the latter part of this chapter,

you’ve seen ways that bitmap images can

be created, drawn onto, copied, combined,

and changed. Putting these techniques

together allow for interesting and exciting

effects.

As you explore the bitmap-manipulation

capabilities of Flash, chances are you’ll

continue to be impressed by their power

and by how quickly they perform. Not only

can you blend images and apply a filter

effect to them, but you can also do it in real

time, over and over again.

To help give your creativity a head start,

the following task demonstrates how to

combine the various bitmap manipulation

capabilities of Flash to create an animated

flame that follows the mouse pointer.

Creating animated flame
This task integrates several of the

techniques you have learned about

BitmapData objects. First, the draw()
method copies a movie clip, the source of

the fire color and shape, into a BitmapData
object. By default, the draw() method cop-

ies the pixels into the top-left corner of a

destination BitmapData object. In this case,

the copied pixels will be placed at the

mouse pointer, so an additional parameter

is used with the draw() method to control

the positioning. Unlike many methods that

accept a Point object to indicate the desti-

nation point, the draw() method requires a

Matrix object for that purpose.

Once the initial fire colors are drawn into

the bitmap, the copyPixels() method

animates the flame moving upward. To do

this, the image is copied onto itself, but the

destination point is set to (0, -3), which cop-

ies the image three pixels above its current

location and creates the illusion of upward

movement.

Finally, a blur filter is applied to the entire

image. As the image is blurred, the orange

of the flame blends with the black back-

ground, making the flame gradually blend

into the black and disappear.

These three tasks—drawing the flame

color, shifting the pixels upward, and

blurring the image—are placed in an

Event.ENTER_FRAME event-handler func-

tion that is called repeatedly, creating the

animation.

To create an animated flame:
1. Choose Insert > New Symbol to create

a new movie clip symbol that will pro-

vide the initial color and shape for the

fire.

2. In symbol-editing mode, select the Oval

tool and draw a small oval shape. Give

the shape a radial gradient fill.

In this example, the three gradient

colors are FFCC00 (75 percent alpha)

on the left, FF6600 (90 percent alpha)

in the middle, and FFFFFF (0 percent

alpha) on the right. These values create

a radial gradient that is yellow in the

center and then dark orange fading to

transparent A.

3. Using the Align panel, center the oval

over the registration point.

4. Exit symbol-editing mode.

Controlling and Displaying Graphics 317

5. Select your new movie clip symbol

in the Library, and select Properties

from the Options menu. In the Linkage

section (you may have to expand the

dialog box by clicking the Advanced

button), identify the Library symbol with

its own class name that extends the

MovieClip class B.

6. Select the first keyframe, and open the

Actions panel.

7. Create a new instance of your movie

clip symbol in the Library.

8. On the next line, create a new instance

of a BitmapData object with parameters

for width, height, alpha, and color.

Use the dimensions of the Stage for

the width and height, false for alpha,

and 0x000000 for the color, making it

black C.

9. Next, add a listener and function to

handle the Event.ENTER_FRAME event.

10. Inside the curly braces of the event-

handler function, create a new Matrix
object.

A Matrix object contains information

about transformations (position and

size changes) that have been or will be

applied to an object. In this case, it will

define the destination position where

the fire movie clip is copied into the

BitmapData object.

Continues on next page

A A radial gradient with shades of yellow and

orange is used to create a movie clip oval to serve

as the basis of the flame.

B In the Linkage section of the Symbol Properties

dialog box for the movie clip symbol, give it a class

name and extend the MovieClip class.

C An instance of the gradient oval movie clip is created, and a new BitmapData
object is created that is 400 pixels by 500 pixels and filled with black.

318 Chapter 7

11. On the following line, still within the

function, enter the name of the Matrix
object and a period; then call its

translate() method.

12. Inside the parentheses of the

translate() method, enter two param-

eters separated by a comma: mouseX
and mouseY + 3 D.

The translate() method adds a posi-

tion change to the transformations in

the Matrix object.

The Matrix object is assigned the

instruction to change position to the x-

and y-coordinates of the mouse pointer.

Whatever object the Matrix object

is applied to will have that position

change applied to it.

The extra three pixels on the y-axis

compensate for the three-pixel upward

motion that will be applied later to keep

the flame centered on the mouse pointer.

13. On the next line, still within the event-

handler function, enter the name of

your BitmapData object and a period,

and then call its draw() method.

14. For the parameters of the draw()
method, enter the name of your movie

clip (the color source) followed by the

name of your Matrix object.

15. On the following line, still within the

event-handler function, create a

BlurFilter object with the parameters

2, 10, and 2, as in:

var myBlur:BlurFilter=new
➝ BlurFilter(2,10,2);

This constructor creates a new

BlurFilter object that blurs two pixels

horizontally and ten pixels vertically,

and has a quality setting of 2.

16. Enter the name of your BitmapData
object and then a period, and then call

the applyFilter() method.

D A new Matrix object is created, and its translate() method is called.

The chosen parameters cause a copy of the oval movie clip to be placed

at the mouse pointer’s coordinates.

Controlling and Displaying Graphics 319

19. On the following line, enter the name

of the BitmapData object and a period,

and then call the copyPixels() method.

20.Enter the following parameters for the

copyPixels() method F:

> The BitmapData object

> The BitmapData object’s rect
property

> The Point object

21. On a new line outside the event-handler

function, create a new Bitmap object

and assign the BitmapData object

to the Bitmap object’s bitmapData
property.

Continues on next page

17. Inside the parentheses of the

applyFilter() method, enter these

four parameters E:

> The BitmapData object

> The BitmapData object’s rect
property

> The BitmapData object’s

rect.topLeft property

> The BlurFilter object

18. On the next line, create a Point object

with parameters 0 and -3, as in var
myPoint:Point=new Point(0,-3).

This point will be used by the

copyPixels() method to copy the

image over itself three pixels higher

than before.

E The draw() method is used to copy the gradient oval into the BitmapData object. The transforma-

tions in the Matrix object (a position change in this example) determine the placement of the copied

pixels. A blur filter is created and applied to the BitmapData object. This causes the color to fade away

as it moves upward.

F The copyPixels() method, using a destination Point object of (0, -3), copies the image onto itself,

shifted three pixels upward.

320 Chapter 7

22.On the next line, call the addChild()
method to add the Bitmap object to the

display list.

23.Test your movie.

With each passing frame, the movie clip

is copied onto the bitmap at the point

beneath the mouse cursor, blurred, and

shifted upward three pixels, creating an

interactive flame effect G.

G The final code (above) and the result (below) is a flame that trails from the

mouse pointer.

Incorporating sound into your Flash movie

can enhance the animation and interactiv-

ity, and add excitement to even the simplest

project by engaging more of the user’s

senses. You can play background music to

establish the mood of your movie, use nar-

ration to accompany a story, or give audible

feedback to interactions such as button

clicks and drag-and-drop actions. Flash sup-

ports several audio formats for import, includ-

ing WAV, AIFF, and MP3, which enables you

to work with a broad spectrum of files. Flash

also gives you the option of dynamically

loading external MP3 files, providing an easy

way to manage large sound files.

This chapter explores sound and its

associated classes—Sound, SoundChannel,

SoundMixer, SoundTransform, and

SoundEvent. You’ll learn how to play

sounds from the Library dynamically with-

out having to assign them to keyframes.

You’ll learn how to load sounds that reside

outside your movie and how to start, stop,

and adjust the sound volume or its stereo

effect. You’ll learn to access your sound’s

properties and events to time your sounds

with animations or with other sounds.

8
Controlling Sound

In This Chapter
Using Sounds 322

Playing Sounds from the Library 323

Loading and Playing External Sounds 325

Controlling Sound Playback 326

Tracking Sound Progress 330

Modifying Volume and Balance 332

Detecting Sound Events 336

Working with MP3 Song Information 338

Visualizing Sound Data 341

All these features give you the flexibility and

power to integrate sounds into your movies

creatively. You can create a slider bar that

lets your viewers change the volume, for

example, or add sounds to an arcade game

that are customized to the gameplay.

322 Chapter 8

Using Sounds
There are several ways you can use

sounds in your Flash movie. The simplest

approach is to import a sound file into

Flash at authortime and manually put it

on a keyframe of your Timeline when you

want it to play. The sound waveform shows

up on your Timeline to give you an idea of

when and how long your sound plays A.

Another way is to import a sound file into

Flash at authortime and dynamically play it

at runtime. Your sound file remains in your

Library until you use ActionScript to play

it B. A third way to use sound is to dynam-

ically load and play an external sound C.

This chapter explores the second and

third ways to use sounds. They allow you

to control when a sound plays, change

its volume and playback through the left

and right speakers dynamically, or retrieve

information about the loading progress or

sound playback progress with ActionScript.

Each sound that you play requires an

instance of the Sound class. After you have

a sound instance, you can use the play()
method to play the sound. When you

play an individual sound, an instance of

the SoundChannel class is created, which

provides you with properties to control

the sound. One of the properties of the

SoundChannel object is a SoundTransform
object, which provides additional controls

for volume and balance between the left

and right speakers.

A A sound placed in a keyframe on the Timeline

is the simplest way to play sound and requires no

ActionScript.

C A separate MP3 sound file can load into a Flash

(SWF) file and play at runtime using ActionScript.

B Imported sounds in the Library that are not

placed on the Timeline can still be played at

runtime with ActionScript.

Sound in keyframe

Sound in Library

SWF file MP3 file

Controlling Sound 323

Playing Sounds
from the Library
You can import your sound files into your

Library during authortime, and use Action-

Script to play them when you want at

runtime. This requires that you make your

sound symbols in the Library available

to be called upon in ActionScript. You do

this just as you did in Chapter 7, “Control-

ling and Displaying Graphics,” when you

dynamically made an instance of a movie

clip or a bitmap symbol from the Library.

You extend the functionality of a preexist-

ing class to your Library symbol, so you can

dynamically create new instances of it with

the constructor function. In the case of a

sound symbol, the Sound class is extended.

Set the class name for your sound symbol

from the Linkage section of the Symbol

Properties dialog box, which is accessed

from your Library.

To prepare a sound symbol for
playback with ActionScript:
1. Import a sound file by choosing File >

Import > Import to Library and selecting

an audio file.

Your selected audio file appears in the

Library. You can import these sound

formats: AIFF (Mac), WAV (Windows),

and MP3 (Mac and Windows). More

formats may be available if QuickTime

is installed on your system.

2. Select the sound symbol in your Library.

3. From the Options menu, choose

Properties A.

The Symbol Properties dialog box

appears.

Continues on next page

A Choose Properties from the Library options

menu for each sound you want to control with

ActionScript.

Options menu

324 Chapter 8

4. Click the Advanced button. In the Link-

age section of the expanded dialog

box, select the Export for ActionScript

check box. Leave “Export in frame 1”

selected.

5. In the Class field, enter a name to

identify your sound class. Leave the

Base class as flash.media.Sound and

click OK B.

A dialog box might appear that warns

you that your class could not be

found and will automatically be gener-

ated C. Click OK. In this example, the

class name for your Library symbol is

GuitarsLoop. This new class inherits

from the Sound class, which means it

has all the same methods and proper-

ties of the Sound class. Your class name

will be used to create new instances of

your sound. Make sure that your class

name doesn’t contain any periods.

To play a sound from the Library:
1. Continue with the previous task, and

select the first frame of the main Time-

line. Then open the Actions panel.

2. On the first line, create a new instance

of your sound symbol, referencing its

class name, like so:

var mySound:GuitarsLoop=new
➝ GuitarsLoop()

A new instance of a Sound object,

specifically the sound in your Library,

is created.

3. Enter the name of your new sound

instance followed by a period and then

the method play() D.

Your sound instance begins to play.

The sound will play through once and

then stop.

B The new class GuitarsLoop will be created for

this SWF file. It inherits the properties and methods

of the Sound class.

C Click OK to dismiss the warning box. It tells you

that your custom class will be created for you.

D A new instance of the GuitarsLoop class is

created and given the name mySound. This is an

instance of the sound in your Library. Then the

play() method plays the sound.

The play() method plays the sound

instance whenever it’s called, even when the

sound is already playing. This situation can

produce multiple, overlapping sounds. To pre-

vent overlaps of this type, use the stopAll()
method of the SoundMixer class before

playing the sound again. This technique

ensures that a sound always stops before it

plays again.

Controlling Sound 325

To load and play an external sound:
1. Declare and instantiate a URLRequest

object with the constructor function new
URLRequest(). Provide the path to the

MP3 file as the parameter A.

The path is a string, so enclose it in

quotation marks. You can load an MP3

file locally or from the Internet with an

absolute URL. If the file resides in the

same directory as your Flash movie, you

can enter just the name of the file.

2. Declare and instantiate a Sound object

with the constructor function new
Sound() B.

3. On the next line, enter the name of your

Sound object followed by a period. Enter

the method load() and provide the

URLRequest object as the parameter.

4. On the next line, enter the name of

your Sound object followed by a period.

Enter the method play() and provide

optional parameters for the initial offset

or looping C.

As soon as your movie begins, it will

load the MP3 file and play.

5. Save your Flash file in the same folder

as the MP3 file. Test your movie.

As soon as your movie begins, Flash

uses the URLRequest object to find your

external MP3 file, and then uses the

Sound object to load and play it.

A A URLRequest object defines the path to the file

that you want to load. In this example, the file is

called music.mp3, and it resides in the same folder

as the Flash movie.

B The second line of code creates an object

called mySound, an instance of the Sound class.

C The load() method loads the sound file from

the location provided in the URLRequest object,

and the play() method plays the sound.

Loading and Playing
External Sounds
Each time you import a sound into your

Library, that sound is added to your SWF

file, increasing its size. Sounds take up an

enormous amount of space, even with MP3

compression, so you have to be judicious

with your inclusion of sounds. One way

to manage sounds so that your file stays

small is to keep sounds as separate files

outside your Flash movie. Use the load()
method to bring MP3 audio files into Flash

and play them only when you need them.

(MP3 is the only format allowed.)

The method load() requires one param-

eter, which is a URLRequest object that

provides the path to the MP3 file.

AAC Sound Files
You can also dynamically load and play AAC sound files by using the NetStream class just as you

do with external videos, as described in Chapter 6, “Managing External Communication.” The AAC

format is an alternative to the MP3 format and is the same sound codec used in the H.264 format

for F4V video files.

326 Chapter 8

Controlling Sound
Playback
The play() method of the Sound object can

take three optional parameters. The first

parameter is the offset, which is a number

that determines how many milliseconds into

the sound it should begin playing. You can

set the sound to start from the beginning

or at some later point. If you have a 20-sec-

ond sound, for example, calling the method

play(10000) makes the sound play from the

middle at 10 seconds. It doesn’t delay the

sound for 10 seconds but begins immedi-

ately at the 10-second mark.

The second parameter is a number that

determines how many times the sound

loops. A setting of 2 plays the entire sound

two times with no delay in between. This is

useful for sounds that are specifically cre-

ated where the end matches seamlessly

with the beginning, so you can loop it over

and over again.

The third parameter for the play() method

takes a SoundTransform object, which

provides control over the volume and left-

right balance. You’ll learn more about the

SoundTransform object later in this chapter.

If no parameters are defined for the play()
method, Flash plays the sound from the

beginning and plays one loop.

To set the initial starting
time for a sound:
Assign the first parameter of the play()
method of your Sound object in milliseconds.

Your sound plays from that point (in mil-

liseconds) forward A.

To set the number of loops:
Assign the second parameter of the play()
method of your Sound object to the num-

ber of times you want the sound to loop.

Your sound loops the specified number of

times B.

Unfortunately, you have no way of telling

the play() method to loop a sound indefi-

nitely. Instead, set the second parameter to a

ridiculously high number, such as 99999. An

alternate approach is to create an event han-

dler that plays the sound again when the end

is detected. Sound events are discussed later

in this chapter.

Stopping sounds
You stop a sound from playing by using a

method of the SoundChannel class. When

you call the play() method of a Sound
object, an instance of the SoundChannel
class is generated. There is one

SoundChannel instance for each sound

that plays.

A In this example, the play() method

has a parameter of 14000, which makes

the sound play beginning at 14 seconds.

B In this example, the play() method has

its first parameter set at 0 and its second

parameter set at 3, which makes the sound

play from the beginning and loop three times.

Controlling Sound 327

To stop a sound:
1. Continue with the file you used in the

earlier task, “To load and play an exter-

nal sound.”

2. Create a button symbol and place an

instance of it on the Stage. In the Prop-

erties inspector, give it a name C.

In this example, you’ll assign an event

handler for a mouse click on the button

to stop the sound from playing.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. Replace the statement with the play()
method with this one:

var myChannel:SoundChannel =
➝ mySound.play();

This statement plays the sound and

puts the returned SoundChannel object

of the play() method in a new vari-

able (of a SoundChannel type) called

myChannel D.

5. Create an event handler to detect a

mouse click on the button on the Stage.

6. Between the curly braces of the event

handler function, enter the name of

your SoundChannel object, a period,

and then the method stop(), like so E:

myChannel.stop();

7. Test your movie.

The external sound begins to play.

When you click your button, the sound

stops.

You can also use the stopAll() method

of the SoundMixer class. This stops all

sounds in your Flash movie. Use the statement

like so: SoundMixer.stopAll().

D When the play() method of a Sound object is

called, it returns a SoundChannel object. In this

example, the SoundChannel object is put in the

variable named myChannel.

E The event handler for the stopbutton_btn
button on the Stage. The stop() method to stop

a sound is called from the SoundChannel object

called myChannel.

C This button

instance on the

Stage is named

stopbutton_btn.

To assign the SoundChannel instance to a

variable that you can later reference, use

the following syntax:

var myChannel:SoundChannel =
➝ mySound.play();

This statement plays the sound associ-

ated with the object called mySound. The

returned SoundChannel object is put in

the variable called myChannel. You can

now stop the sound by calling the stop()
method of the SoundChannel object, like so:

myChannel.stop();

328 Chapter 8

Resuming sounds
You can keep track of the exact position of

your sound playback with a SoundChannel
property, position. The position prop-

erty indicates the current position in mil-

liseconds. This is a useful property if you

want to keep track of when a sound was

stopped so you can resume playback at

that same position.

When a user stops a sound, you can cap-

ture the SoundChannel position property

at that moment by putting it in a variable.

Then, when the user wants to resume the

sound, you can call the play() method of

the Sound object and provide the number

of offset seconds as the first parameter.

To resume playback of a sound:
1. Continuing with the file you used in the

preceding task, place another instance

of the button symbol on the Stage, and

give it an instance name in the Proper-

ties inspector F.

In this example, you’ll assign an event

handler for a mouse click on this sec-

ond button to resume the sound at the

point where it was stopped.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Insert a statement in your ActionScript

code to declare a variable of an integer

data type G.

This variable will hold the current posi-

tion of the sound playback. An integer

is any whole number (no decimals).

Since the current position is measured

in milliseconds (whole numbers), an

integer data type is appropriate.

F A second button instance on the

Stage is named resumebutton_btn.

G The highlighted statement declares a new

variable called pausedposition, which will hold an

integer data type.

Controlling Sound 329

6. Between the curly braces of the event

handler for the resume function, enter

the following statement I:

myChannel = mySound.play(
➝ pausedposition);

The current position of the paused

sound is used as the first parameter

of the play method, which determines

the offset point. The sound plays at the

point where it was paused.

7. Test your movie.

The external sound begins to play.

When you click the first button, the

sound stops. When you click the sec-

ond button, the sound resumes.

H Before the sound stops, capture the current position in the

sound and assign that value (in milliseconds) to the variable called

pausedposition.

I The event handler for the resumebutton_btn button on the

Stage. The play() method uses the variable pausedposition to

start playing at the point at which it stopped.

4. In the event handler for the button that

stops the sound, insert a statement

before the stop() method, like so H:

pausedposition = myChannel.
➝ position;

Before the sound is stopped, the cur-

rent position in the playback of the

sound is assigned to your variable.

5. Create another event handler to detect

a mouse click on your second button on

the Stage.

This event handler will resume playback

of the sound.

330 Chapter 8

Tracking Sound
Progress
You can also compare the position prop-

erty of a sound with the total length of a

sound to keep track of its current progress

while it’s playing.

position is a property of the SoundChannel
object, and length is a property of the

Sound object. However, keep in mind that

the length property reflects the total length

of the downloaded file. If the sound hasn’t

completely downloaded, the length prop-

erty will be shorter than the actual length.

To track the sound accurately, create an

event handler to wait for the sound to com-

pletely download.

In the following example, you check

whether the sound has been completely

downloaded using the Event.COMPLETE
event. Once the download is complete, you

begin playing the sound and display the

ratio of SoundChannel position to Sound
length as a proportion of a horizontal bar,

much like the progress bar of a preloader.

To track the sound progress:
1. Continue with the file you used in the

task “To load and play an external

sound.”

2. Delete the last line of code (the play()
method), and replace it with a statement

that declares a SoundChannel object A.

3. Add an event handler to the Sound
object that detects the Event.COMPLETE
event.

4. In the event-handler function,

respond by playing the sound and

adding another listener for the

Event.ENTER_FRAME event B.

The ENTER_FRAME event happens at the

frame rate of your movie. You can use

this event to continuously monitor the

progress of your sound.

A The file called soulLoop.mp3 is loaded by a Sound object called

mySound. On the last line, a new SoundChannel object called

myChannel is then declared.

B The listener on mySound listens for the completion of the loading

of the sound. When that happens, the sound plays and a new

listener is added.

Controlling Sound 331

5. In the ENTER_FRAME event-handler func-

tion, divide the SoundChannel position
property by the Sound length property

and assign the fraction to the horizontal

scale of a movie clip, like so C:

bar_mc.scaleX = myChannel.position
➝/ mySound.length;

The position property measures the

current location of the sound in millisec-

onds, and the length property is the

total length of the song in milliseconds.

The division creates a fraction that

changes the width of a movie clip called

bar_mc.

6. Create a rectangular movie clip and

place it on the Stage. In the Properties

inspector, name it bar_mc.

7. Test your movie D.

The bar_mc movie clip slowly grows to

its full width as the song progresses.

C The function called showprogress scales a movie clip on the

Stage in proportion to the progress of the sound.

D The dark bar on the left is a

movie clip called bar_mc.

bar_mc

332 Chapter 8

Modifying Volume
and Balance
Flash gives you full control of its volume

and its output through either the left or right

speaker, which is known as pan control. With

this level of sound control, you can let your

users set the volume to their own prefer-

ences, and you can create environments that

are more realistic. In a car game, for example,

you can vary the volume of the sound of

cars as they approach or pass you. Playing

with the pan controls, you can embellish the

classic Pong game by making the sounds of

the ball hitting the paddles and the walls play

from the appropriate sides.

To modify the volume and balance in a

sound, you must provide a third parameter

in the play() method (recall that the first

parameter determines the playback offset,

and the second parameter determines

the number of loops). The third parameter

requires an object of the SoundTransform
class, like so:

var newVolume:SoundTransform = new
➝ SoundTransform();

Assign a new value for the volume prop-

erty of the SoundTransform object, and

then pass the object as the third parameter

of the play() method, like so:

newVolume.volume = .5;
mySound.play(0, 0, newVolume);

To change the volume or pan of a

sound that’s already playing, you can

assign the SoundTransform object to

the soundTransform property of the

SoundChannel object. For example:

var newVolume:SoundTransform = new
➝ SoundTransform();
newVolume.volume = .5;
myChannel.soundTransform =
➝ newVolume;

The first statement creates a new

SoundTransform object called newVolume.

Next, the volume property of the new

SoundTransform object is changed. Finally,

the SoundTransform object is assigned

to the soundTransform property of the

SoundChannel object associated with the

sound that’s playing.

The SoundTransform class has properties

such as volume for modifying the volume

and pan for modifying the left-right speaker

balance. See Table 8.1 for a descrip-

tion of these and other properties of the

SoundTransform class.

TABLE 8.1 SoundTransform Properties

Property Description

volume Number (0=silent to 1= full volume)

pan Number (–1= left to 1= right)

leftToLeft Number(0 to 1) determining how much of the left input plays in the left speaker

leftToRight Number(0 to 1) determining how much of the left input plays in the right speaker

rightToLeft Number(0 to 1) determining how much of the right input plays in the left speaker

rightToRight Number(0 to 1) determining how much of the right input plays in the right speaker

Controlling Sound 333

The SoundTransform object will provide

the properties to change a sound’s

volume and balance.

5. On the next line, enter the name of your

SoundTransform object followed by a

period. Enter the property volume (to

control volume level) or pan (to control

balance) followed by an equals sign and

a value A.

6. On a new line, enter the name of your

Sound object followed by a period. Enter

the method play(). For the parameters,

enter 0, 5, and then the name of your

SoundTransform object B. Assign the

returned value of the play() method to

a SoundChannel object.

7. Test your movie.

The play method plays your sound, and

it uses the SoundTransform object to

modify the volume or pan.

A The volume property of this SoundTransform object is set

to 50 percent of the full volume.

B Pass the SoundTransform object called newSetting as the

third parameter in the play() method. This sound will play

from the beginning, loop five times, and play at 50 percent

of its full volume.

To change the volume or
balance before playback:
1. Declare and instantiate a URLRequest

object with the constructor function new
URLRequest() and provide the path to

an MP3 file as the parameter.

2. On the next line, declare and instanti-

ate a Sound object with the constructor

function new Sound().

3. On the next line, enter the name

of your Sound object followed by a

period. Enter the method load() and

provide the URLRequest object as the

parameter.

Flash loads the external MP3 file

requested in the URLRequest object.

4. On a new line, declare and instan-

tiate a SoundTransform object

with the constructor function new
SoundTransform().

334 Chapter 8

To change the volume or
balance during playback:
1. Create a button and place an instance

on the Stage. In the Properties inspec-

tor, give the button instance a name C.

You will assign an event handler to a

mouse click over this button that will

change the volume of a sound as it plays.

2. On the first frame of the Timeline in the

Actions panel, declare and instantiate a

URLRequest object with the constructor

function new URLRequest() and provide

the path to an external MP3 file as the

parameter.

3. On the next line, declare and instanti-

ate a Sound object with the constructor

function new Sound().

4. On the next line, enter the name of your

Sound object followed by a period. Enter

the method load() and provide the

URLRequest object as the parameter.

Flash loads the external MP3 file

requested in the URLRequest object.

5. On a new line, declare and instan-

tiate a SoundTransform object

with the constructor function new
SoundTransform().

The SoundTransform object will provide

the properties to change a sound’s

volume and balance. In this example,

the SoundTransform object is called

newSetting.

6. On the next line, enter the code:

var myChannel:SoundChannel =
➝ mySound.play();

This statement plays the sound and

puts the returned SoundChannel object

of the play() method in a new vari-

able (of a SoundChannel type) called

myChannel D.

C This button instance on the

Stage is named decrease_btn.

D The external MP3 sound called music.mp3

plays.

7. On the next line, create an event

handler that detects a mouse click on

the button on the Stage. Between the

curly braces of the function, add the

statement:

newSetting.volume –= 0.1;

This statement subtracts 0.1 from the

volume property of the SoundTransform
object each time the button is clicked.

8. On the next line, still within the function

of the event handler, add the statement:

myChannel.soundTransform =
➝ newSetting;

This statement assigns the

soundTransform property of the

sound to the settings in your

Controlling Sound 335

Changing these properties of the

SoundTransform object and passing it

to the soundTransform property of the

SoundChannel object or as the third param-

eter of the play() method redistributes the

sound inputs to switch the speakers F.

As a shortcut, you can also set the

properties of a new SoundTransform object

at the time you instantiate it. The first param-

eter in the constructor is the volume and

the second is the pan. For example, var
myNewSettings:SoundTransform = new
SoundTransform(.5, 1); is the same as the

following code:

var myNewSettings:SoundTransform =
new SoundTransform();
myNewSettings.volume = .5;
myNewSettings.pan = 1;

E The event handler for the decrease_btn button on the

Stage. Each time the button is clicked, the volume property of

the SoundTransform object called newSetting decreases by 0.1.

The SoundTransform object is assigned to the soundTransform
property of the SoundChannel object to take effect.

F The properties of the

SoundTransform object that

determine the distribution of

sounds between the left and

right speakers. The values are

measured between 0 and 1.

Right input

Right speaker

Left input

Left speaker

leftToLeft rightToLeft

rightToRight

leftToRight

newSetting SoundTransform object

to decrease the volume level E.

9. Test your movie.

The external MP3 file loads and plays.

Each time the user clicks the button, the

volume property of the SoundTransform
object called newSetting decreases by

0.1. The new volume is then set while

the sound still plays.

To switch the left and right speakers:
Assign the following values for a

SoundTransform object:

leftToLeft = 0;
leftToRight = 1;
rightToRight = 0;
rightToLeft = 1;

336 Chapter 8

Detecting Sound
Events
You can detect when a sound finishes play-

ing by using the Event.SOUND_COMPLETE
event of the SoundChannel class. For

example, consider the following script:

myChannel.addEventListener(
➝ Event.SOUND_COMPLETE, finished);
function finished(myevent:Event):void
{
 // sound finished
}

In this script, when the sound associ-

ated with the SoundChannel object called

myChannel is complete, Flash triggers the

function called finished and executes any

actions there.

The Event.SOUND_COMPLETE event lets

you control and integrate your sounds in

several powerful ways. Imagine creating

a jukebox that randomly plays selections

from a bank of songs. When one song fin-

ishes, Flash knows to load a new song. Or

you could build a business presentation in

which the slides are timed to the end of the

narration. In the following task, the comple-

tion of the sound triggers the loading and

playing of a second sound.

Warning! Event.SOUND_COMPLETE on Windows Vista
Be aware that the SOUND_COMPLETE event may not work reliably on Windows Vista. You should

keep your eyes (and ears) close to the Adobe Flash developer blogs for any new developments

on this issue.

If you do encounter problems, one workaround would be to use the SoundChannel object’s

position property and the Sound object’s length property to keep track of the progress of

the sound (see the task “To track the sound progress”).

To detect the completion of a sound:
1. Declare and instantiate a URLRequest

object with the constructor function new
URLRequest() and provide the path to

an MP3 file as the parameter.

2. On the next line, declare and instanti-

ate a Sound object with the constructor

function new Sound().

3. On the next line, enter the name of your

Sound object followed by a period. Enter

the method load() and provide the

URLRequest object as the parameter.

Flash loads the external MP3 file

requested in the URLRequest object.

Controlling Sound 337

object is created and loads and plays a

second sound.

If a sound is looping, the Event.SOUND_
COMPLETE event is triggered when all the

loops have finished.

Keep in mind that the Event.SOUND_
COMPLETE event is registered to the

SoundChannel object. If you stop the sound

and begin playing it again with the play()
method, a new SoundChannel instance is

generated, so your original listener will not

detect the completion of the sound. You’ll

need to register the listener again to the

new instance.

A The external MP3 sound called music1.mp3 plays.

B The event listener detects when the sound is completed and

will trigger the function (not yet written here) called finished.

C The function called finished begins playing a second

sound file.

4. On a new line enter the name of your

Sound object followed by a period.

Enter the method play() without any

parameters. Assign the returned value

to a new SoundChannel object A.

The play() method plays your sound.

5. On the next line, add an event listener

to the SoundChannel object. Listen for

the Event.SOUND_COMPLETE event B.

6. Add the function that gets triggered at

the Event.SOUND_COMPLETE event C.

When the sound finishes, the function

is called. In this example, a new Sound

338 Chapter 8

Working with MP3
Song Information
MP3 files are one of the most popular for-

mats for storing and playing digital music.

The MP3 compression gives a dramatic

decrease in file size, yet the quality is main-

tained at near-CD levels. Another virtue of

MP3 files is that they are capable of car-

rying simple information about the actual

audio file. This metadata (descriptive

information about data) tag was originally

appended to the end of an MP3 file and

called ID3 version 1. Information about the

music file (such as song title, artist, album,

year, comment, and genre) could be stored

at the end of the song file in the ID3 tags

and then detected and read by decoders.

Currently, MP3 files use ID3 version 2. One

of the more notable improvements was

moving the data to the beginning of the

song file to better support streaming. It

now also supports several new fields, such

as composer, conductor, media type, copy-

right message, and recording date.

Flash can read the ID3v2 data of an MP3

file. Each bit of information about the song,

or tag, corresponds to a property of the

id3 object of the Sound object. So, for

example, mySound.id3.TALB refers to the

album name of the MP3 file. Table 8.2 cov-

ers all the ID3 version 2 Sound properties.

How do you retrieve these ID3 properties?

You must first create an event handler that

is triggered when available ID3 tags are

present after a play() method is called.

Using the event Event.ID3 is the only way

you can access the ID3 data.

In the following task, you’ll load an external

MP3 file and display the track information

in the Output panel.

TABLE 8.2 ID3v2 Sound Properties

Property Description

id3.COMM Comment

id3.TALB Album/movie/show title

id3.TBPM Beats per minute

id3.TCOM Composer

id3.TCOP Copyright message

id3.TDAT Date

id3.TDLY Playlist delay

id3.TENC Encoded by

id3.TEXT Lyricist/text writer

id3.TFLT File type

id3.TIME Time

id3.TIT1 Content group description

id3.TIT2 Title/song name/description

id3.TIT3 Subtitle/description refinement

id3.TKEY Initial key

id3.TLAN Languages

id3.TLEN Length

id3.TMED Media type

id3.TOAL Original album/movie/show title

id3.TOFN Original filename

id3.TOLY Original lyricists/text writer

id3.TOPE Original artists/performers

id3.TORY Original release year

id3.TOWN File owner/licensee

id3.TPE1 Lead performers/soloists

id3.TPE2 Band/orchestra/accompaniment

id3.TPE3 Conductor/performer refinement

id3.TPE4 Interpreted, remixed, or

otherwise modified by

id3.TPOS Part of a set

id3.TPUB Publisher

id3.TRCK Track number/position in set

id3.TRDA Recording dates

id3.TRSN Internet radio station name

id3.TRSO Internet radio station owner

id3.TSIZ Size

id3.TSRC International Standard Recording

Code (ISRC)

id3.TSSE Software/hardware and settings

used for encoding

id3.TYER Year

id3.WXXX URL link frame

Controlling Sound 339

To retrieve song information
about an MP3 file:
1. Declare and instantiate a URLRequest

object with the constructor function new
URLRequest() and provide the path to

an MP3 file as the parameter.

2. On the next line, declare and instanti-

ate a Sound object with the constructor

function new Sound().

3. On the next line, enter the name of your

Sound object followed by a period. Enter

the method load() and provide the

URLRequest object as the parameter.

Flash loads the external MP3 file

requested in the URLRequest object.

4. On the next line, enter the name of

your Sound object followed by a period.

Enter the method play() without any

parameters A.

The play() method plays your sound.

5. Add an event listener to your Sound
object. Listen for the Event.ID3 event

as in the following:

mySound.addEventListener(Event.
ID3, gotmetadata);

When Flash receives the ID3 metadata

from the loading MP3 file, it triggers the

function called gotmetadata.

6. Add the function called gotmetadata
that gets triggered by the Event.ID3
event. Between the curly braces of the

function, add a trace statement that

displays the ID3 property, like this B:

function gotmetadata(
➝ myevent:Event):void {
 trace("title=" +
➝ mySound.id3.TIT2);
}

Continues on next page

A The external MP3 sound called music.mp3

plays.

B The Event.ID3 event happens when metadata

from the MP3 file is received. The property

id3.TIT2 refers to the artist’s name.

340 Chapter 8

In this example, the trace action displays

the title information of the MP3 song and

appends it to the string "title=".

7. Add more trace statements within the

curly braces of the function to retrieve

all the ID3 information you want C.

8. Save your FLA file in the location where

it can find your MP3 file based on

the target path you entered for your

URLRequest object.

When you test your movie in the Flash

authoring environment, the Output

panel displays the ID3 information D.

Using text fields, you can have Flash

dynamically display the ID3 information on the

Stage (rather than in the Output panel). You’ll

learn more about controlling text fields in

Chapter 10, “Controlling Text.”

When an MP3 file contains a mix of ID3v2

and ID3v1 tags, the event handler onID3 is trig-

gered twice.

To view the ID3 files of your MP3 files

outside of Flash:

In Windows: Right-click the MP3 file, and

select Properties > Details.

Using Mac OS X: In iTunes, select the song in

your playlist, and press Cmd-I.

C The two trace statements display the artist’s

name and song title in the Output panel in test

movie mode when the Event.ID3 event occurs.

D The Output panel in

Flash test movie mode.

Controlling Sound 341

To visualize left and
right volume levels:
1. Create a movie clip symbol of a verti-

cal bar and place two instances on the

Stage. In the Properties inspector, give

each instance a different name. Make

sure that the registration point for both

movie clips is at the bottom edge A.

These two bars will change in height

to reflect the volume levels of the right

and left speakers.

2. Declare and instantiate a Sound object

with the constructor function new
Sound().

3. Instantiate a URLRequest object with the

constructor function new URLRequest()
and provide the path to an MP3 file as

the parameter.

4. Enter the name of your Sound object

followed by a period. Enter the method

load() and provide the URLRequest
object as the parameter.

Flash loads the external MP3 file

requested in the URLRequest object.

5. Call the play() method for your Sound
object and assign the returned value to

a new variable typed to a SoundChannel
object, as follows:

var myChannel:SoundChannel =
➝ mySound.play();

Flash plays the sound and a new

SoundChannel object is created for it B.

Continues on next page

B The external MP3 sound called music.mp3

plays.

A Two rectangular

movie clips on

the Stage, the left

named barleft_mc
and the right (shown

selected) named

barright_mc. Their

registration points

are at the bottom

edge.

Visualizing Sound Data
You’ve probably seen sound represented

visually as waves or vertical spikes like

mountain peaks, or perhaps even vibrating,

shimmering lines and colors on a computer

screen saver or a laser light show. These

graphical effects are tied to different aspects

of a sound; as the sound changes, so do

the graphics, giving the users a direct visual

representation of what they’re hearing. This

kind of visualization is an effective way of

providing feedback that a sound is playing.

You can provide similar graphical repre-

sentations of your sound in Flash. The

SoundChannel class provides two proper-

ties, leftPeak and rightPeak, that indicate

the volume levels for the left speaker and

right speaker at any given moment during

the sound. By continuously retrieving both

properties with the Event.ENTER_FRAME
event, or with a Timer object, you can

display their values graphically, perhaps by

scaling a vertical bar proportionately, for

example.

In the following task, an external MP3

file is loaded and plays dynamically, and

two rectangular movie clips change their

scaleY properties to reflect the values of

leftPeak and rightPeak.

342 Chapter 8

6. Add an event listener to the stage that

detects the Event.ENTER_FRAME event,

like so:

stage.addEventListener(
➝ Event.ENTER_FRAME, everyframe);

Flash triggers the function called

everyframe at the frame rate of the

Flash movie.

7. Add the function to respond to the

Event.ENTER_FRAME event.

8. Between the curly braces of the func-

tion, enter the statements that change

the movie clips, like so C:

function
everyframe(event:Event):void{
 barleft_mc.scaleY =
➝ myChannel.leftPeak;
 barright_mc.scaleY =
➝ myChannel.rightPeak;
}

The leftPeak and rightPeak proper-

ties of the SoundChannel object vary

from 0 to 1. They are assigned to the

scaleY property of the movie clips to

vary their heights.

9. Make sure your external MP3 file is in

the location where your Flash file can

find it based on the information you

provided in the URLRequest object. Test

your movie D.

Flash provides an even more sophisti-

cated way of looking at raw sound data with

the computeSpectrum() method of the

SoundMixer class. This method returns data

for the frequency spectrum, which is the mea-

sure of the strength of the sound at each tone

(where low frequencies are low-pitched tones

and high frequencies are high-pitched tones).

For more information and examples, look in

Flash Help. Choose the category ActionScript

3.0 and Components > ActionScript 3.0 Devel-

oper’s Guide > Rich Media Content > Working

with sound > Accessing raw sound data.

C The Event.ENTER_FRAME event handler

continuously scales both rectangular movie clips

according to the sound’s leftPeak and rightPeak
properties.

D The two rectangular movie clips move up and

down synchronized to the sound.

As your Flash movie displays graphics and

animation and plays sounds, a lot can be

happening behind the scenes that is not

apparent to the viewer. Your Flash docu-

ment may be tracking many bits of informa-

tion, such as the number of lives a player

has left in a game, a user’s login name

and password, or the items a customer

has placed in a shopping cart. Getting and

storing this information requires variables,
which are containers for information. You’ve

worked with variables in previous chapters

when you created new instances and gave

them names. You’ll see how variables are

essential in any Flash movie that involves

complex interactivity because they let you

create scenarios based on information that

changes. You can modify variables and

use them in expressions—formulas that

can combine variables with other variables

and values—and then test the information

against certain conditions to determine how

the Flash movie will unfold.

This chapter is about managing informa-

tion by using variables, expressions, and

conditional statements. When you under-

stand how to get, modify, and evaluate

9
Controlling

Information Flow

In This Chapter
Using Variables and Expressions 344

Loading External Variables 346

Storing and Sharing Information 354

Loading and Saving Files on the

Hard Drive 360

Modifying Variables 364

Concatenating Variables and Dynamic

Referencing 366

Testing Information with Conditional

Statements 368

Providing Alternatives to Conditions 372

Branching Conditional Statements 374

Combining Conditions with Logical

Operators 378

Looping Statements 380

information, you can direct your Flash

movie and change the graphics, animation,

and sound in dynamic fashion.

344 Chapter 9

Using Variables
and Expressions
In Chapter 3, “Getting a Handle on Action-

Script,” you learned the basics of variables—

how to declare them, assign values to them,

and combine them in expressions. Now that

you have more experience with variables

in different contexts, this chapter takes

another, more refined look at using vari-

ables and expressions in ActionScript.

You can use variables and expressions as

placeholders within your ActionScript. In

virtually every method that requires you

to enter a parameter, you can substitute

a variable or an expression instead of a

fixed value. You can also use variables or

expressions when you assign new val-

ues to an object’s property. For example,

instead of a frame number as the param-

eter for the basic method gotoAndStop(),

use a variable. Changing the variable

before calling the method makes Flash go

to different frames according to the value

of the variable.

You can also use a variable as a simple

counter. Rather than taking the place of a

parameter, a counter variable keeps track

of how many times certain things occur for

later retrieval and testing. A player’s score

can be stored in a variable so that Flash

knows when the player reaches enough

points to win the game. Or a variable can

keep track of a certain state. You can set

the variable myShield = true if a charac-

ter’s force field is turned on, for example,

and change the variable to myShield =
false if the force field is turned off.

Controlling Information Flow 345

To initialize a variable:
In the first keyframe of the main Timeline,

declare a variable using the var statement,

entering the name of the variable and a

colon, and then specifying a data type. This

example uses the data type Number. Assign

a numerical value to your variable A.

It’s important that your variable’s data

type be the same as the parameter or prop-

erty that you want it to replace. For example,

the gotoAndStop() method takes an Integer

as its parameter, which represents the frame

number. If you try to call the gotoAndStop()
method with a variable holding a Number

data type, the code may fail—not because a

Number can’t be used as its parameter, but

because a Number allows decimals, which the

gotoAndStop() method doesn’t understand.

A The variable frameNumber is defined to hold

Number values and initialized to 5.

The Scope of Variables
When you initialize variables, they belong

to the timeline where you create them.

This is known as the scope of a variable.

If you initialize a variable on the main

Timeline, the variable is scoped to the

main Timeline. If you initialize a variable

inside a movie clip’s timeline, the variable

is scoped to that movie clip.

Think of a variable’s scope as its home.

Variables live on certain timelines, and

if you want to use the information inside

a variable, first you must find it with a

target path. This process is analogous

to targeting objects. To access either an

object or a variable, you identify it with a

target path.

346 Chapter 9

Loading External
Variables
You don’t have to store the initial value of

a variable inside your Flash movie. Flash

lets you keep variables outside your Flash

movie in a text document that you can load

whenever you need the variables. This

way, you can change the variables in the

text document easily and thereby change

the Flash movie without having to edit the

movie. You can build a quiz, for example,

with variables holding the questions and

answers. Keep the variables in a text docu-

ment, and when you want to change the

quiz, edit the text document.

There are many ways in which data can be

structured in an external document. One

common way is to write variables and their

values in the Multipurpose Internet Mail

Extensions (MIME) URL-encoded format

(or simply, URL variable format), which is a

standard format that HTML forms and CGI

scripts use. In the URL variable format, vari-

ables are written in the following form:

variable1=value1&variable2=
➝ value2&variable3=value3

Each variable/value pair is separated from

the next by a single ampersand (&) symbol.

The URLLoader and
URLVariables classes
To access the variables in your external

text document, use the URLLoader class. It

provides properties, methods, and events

to handle and manage incoming (and

outgoing) data. It is similar to the Loader
class that you learned about in Chapter 6,

“Managing External Communication,” to

load in external images and SWF files. You

use the method load() to begin loading

the data from the external text document.

The location of the file is provided in a

URLRequest object.

You can test how much of the external data

has loaded with the ProgressEvent.
PROGRESS event, or define actions to take

when external data finishes loading with

the Event.COMPLETE event handler.

When the download is complete, the

contents of the text file are put in the data
property of your URLLoader object, where

you can further process the data to get it in

the correct form that you want it in with the

URLVariables class.

To load external variables:
1. Launch a text editor, and create a new

document.

2. Write your variable names and their

values in the standard URL variable

format A.

3. Save your text document in the same

directory where your Flash movie will

be saved.

It doesn’t matter what you name your

file, but it helps to keep the name

simple and to stick to a standard three-

letter extension.

4. In Flash, open a new document.

5. Select the first keyframe of the root

Timeline, and open the Actions panel.

A Three variables and their values written in URL

variable format. In this example, the variables are

called caption1, caption2, and caption3, and are

saved in a text document called data.txt.

Controlling Information Flow 347

Receiving the loaded data
After you call the load() method for your

URLLoader object, the data isn’t always

immediately available to the Flash Player.

For instance, there is often a slight delay

as the data downloads, even if the text

document is local. You shouldn’t try to

do anything with the data until you know

all of it has downloaded. You can detect

when the data is completely loaded using

the Event.COMPLETE event handler of the

URLLoader object. Always wait for the

Event.COMPLETE event handler to be called

before attempting to use the loaded data.

Typically, this means that you place the

actions that use the loaded data within the

event-handler function.

To detect the completion
of loaded data:
1. Continuing with the file you used in the

preceding task, select the first frame

of the main Timeline, and open the

Actions panel.

2. On a new line at the end of the cur-

rent script, enter the name of your

URLLoader object followed by a period,

and then call the addEventListener()
method to detect the Event.COMPLETE
event.

3. On the next line, enter the function for

the event handler. Between the curly

braces of the function, add actions to

be performed using the loaded data D.

The loaded variables are added as the

data property of the URLLoader object.

To access a variable and its value pair,

you use a URLVariables object, as

described in the next task.

B The new URLLoader object and the URLRequest
object are created. The URLRequest object points

to the external file with the variables.

C The load() method loads the data.txt file into

Flash.

D The Event.COMPLETE event handler for the

URLLoader object will be triggered when the

loading operation completes. Nothing is written

inside the event handler yet.

6. In the Script pane, create a URLLoader
object. Don’t pass any parameters for

the constructor.

7. On a new line of the Script pane, create

a URLRequest object with the path to

the text file that contains your variables.

If your SWF file and the text file will

reside in the same directory, you can

enter just the text file’s name, as in this

example. Enclose the path or filename

in quotation marks B.

8. On the next line, enter the name of your

URLLoader object, and then call the

method load().

9. As a parameter of the load() method,

enter the URLRequest object C.

Flash calls the load() method, which

loads the variable and value pairs from

the external text file into the URLLoader
object. The data comes into the

URLLoader object’s data property.

348 Chapter 9

Decoding the loaded data
If your external text document contains

data in the form of variable/value pairs as

in the example discussed earlier, you can

use the URLVariables object to parse the

data so you can use the variables. There

are several ways you can go about this. You

can create a URLVariables object, and then

call the decode() method and pass the

URLLoader object’s data property as the

parameter. This will put the variables in the

URLVariables object, as shown here:

var myURLVariables:URLVariables =
➝ new URLVariables();
myURLVariables.decode(
➝ myURLLoader.data);

You can also pass the URLLoader object’s

data property directly to the URLVariables
object when you create it. The preceding

statements can also be written as:

var myURLVariables:URLVariables =
➝ new URLVariables(myURLLoader.data);

Now the loaded variables and values

can be used as long as you include your

URLVariables object in the target path,

such as:

myURLVariables.caption1

Another way to access the variable/value

pairs from your URLLoader object is to

define the dataFormat property of the

URLLoader object before you load the data

from the text document. You can set the

property like so:

myURLLoader.dataFormat =
➝ URLLoaderDataFormat.VARIABLES;

Your variables would be available to

you through the data property of the

URLLoader object, such as:

myURLLoader.data.caption1

To decode URL-encoded data:
1. Continuing with the file you used in the

preceding task, select the first frame of

the main Timeline and open the Actions

panel.

2. Inside the function of the Event.
COMPLETE event handler, create a new

URLVariables object and pass the

URLLoader.data property to the con-

structor E.

A new URLVariables object is created,

and the data from the URLLoader object

is decoded.

3. Add statements to reference and use

the variables in the URLVariables
object. In this example, the variables

caption1, caption2, and caption3 are

used to assign text to three text fields

on the Stage F.

Or

1. Continuing with the file you used in the

preceding task, select the first frame of

the main Timeline and open the Actions

panel.

E The URLLoader.data information is passed to the URLVariables
object for handling URL-encoded information.

Controlling Information Flow 349

2. Insert a new line before the load()
method of the URLLoader object. Assign

the URLLoaderDataFormat.VARIABLES
property to the dataFormat property of

the URLLoader object G.

The dataFormat property determines

how the data from the external text file

will load. Other options include BINARY
or TEXT. (TEXT is the default value.)

3. Inside the Event.COMPLETE event-

handler function, add statements to

reference and use the variables in the

URLLoader’s data object. In this exam-

ple, the variables caption1, caption2,

and caption3 are used to assign text to

three text fields on the Stage H.

The default value for the dataFormat
property of the URLLoader object is

URLLoaderDataFormat.TEXT.

If you are loading numeric data from

external text files, you need to convert the

values into numeric values by using methods

such as int(), uint(), or Number().

Write your variable and value pairs in

an external text file without any line breaks

or spaces between the ampersand and equals

sign. Although you may have a harder time

reading the file, Flash will have an easier time

understanding it.

F The full code (top) assigns the values of each

of the variables in the external text document to

three text fields on the Stage. These text fields

are captions to images (shown as generic gray

squares). Change the external text document to

change the captions without having to open and

edit your Flash document.

text field with
contents of
variables

textfield1

textfield2

textfield3

G An alternative way of loading URL-encoded data

is to set the dataFormat property of your URLLoader
object to the string “variables” or the equivalent

constant URLLoaderDataFormat.VARIABLES.

H If you set the dataFormat of your URLLoader,

you can access the variables directly from the

data property.

350 Chapter 9

Using XML data
The previous examples showed you how

to load and decode URL-encoded vari-

ables that are in the format of variable/

value pairs. However, when you have more

complex data, using XML is a better way to

structure, read, and use the data.

XML is similar to other markup languages

such as HTML, which contains information

surrounded by tags that are interpreted by

a computer. HTML tells the Web browser

how to display information—make this text

bold, put this image on the left, and so on.

XML is more generic than HTML in that it

lets you define information according to

its content rather than its appearance. For

example, you can identify one piece of

information as a name and another piece

of information as an address. XML also lets

you order the data in an outline, or tree-

like, structure. For example, the data that

was loaded in the previous tasks (the cap-

tion text for three pictures on the Stage)

were represented in URL-encoded format,

like so:

caption1=Here's the new baby!&
➝ caption2=Our trip to the Great
➝ Wall of China.&caption3=A beautiful
➝ shot of the beach at sunset.

In XML, you could write the same data as:

<slidecaptions>
<mycaption>Here's the new baby!
➝ </mycaption>
<mycaption>Our trip to the Great
➝ Wall of China.</mycaption>
<mycaption>A beautiful shot of the
➝ beach at sunset.</mycaption>
</slidecaptions>

The data within the XML document is

clearer and gives more opportunities to

order the data. XML consists of nodes,

which are the individual parts that can be

arranged in a hierarchy. In the previous

example, <slidecaptions> is the root

node, with <mycaption> and the text val-

ues as child nodes.

In Flash, the process of loading XML data

is similar to other methods of loading data:

You use the URLLoader class and its load()
method to start loading an XML document,

and you define an Event.COMPLETE event

handler so you know when all the data

is loaded. Once the data is loaded, you

can use the methods of the XML object to

parse, or decode, the data and retrieve

the values. Use the dot operator (.) and

the array access operator ([]) to traverse

parent and child nodes to access their

properties.

Although it’s beyond the scope of this

book to cover XML in depth, the follow-

ing example will help you understand

how Flash can load simple XML data and

extract the information.

Controlling Information Flow 351

7. Inside the function of the

Event.COMPLETE event handler,

create a new XML object and

pass the URLLoader.data property

to the constructor K.

Data from the external XML document

is put inside the XML object. You can

now use dot syntax to access the nodes

and information in the XML object (here,

it’s called myXML).

Continues on next page

I Data in an XML format. This is a text document that is

saved in the same directory as your Flash file.

J Loading an XML document is the same as loading one

in URL variables format—creating the URLLoader object,

creating the URLRequest object, loading the document, and

listening for the completion of the load.

K Pass the URLLoader’s data property to the new XML object.

To decode XML data:
1. Launch a text editor, and create a new

document.

2. Write your data in XML format, as

shown in I.

3. Save your text document in the same

directory where your Flash movie will

be saved.

4. In Flash, open a new document.

5. Select the first keyframe of the main

Timeline, and open the Actions panel.

6. As described in the earlier tasks, create

a URLLoader and load the external XML

document. Create an event handler to

detect the completion of the loading

process J.

352 Chapter 9

8. On the next line still within the function,

access the first piece of information in

the mycaption object of the XML object

with square brackets, and assign it to a

text field on the Stage, like so:

textfield1.text =
➝ myXML.mycaption[0];

The square brackets access the first

item—which is the text “Here’s the new

baby!”—and displays it in a text field

on the Stage. The square brackets are

a way of accessing the contents of an

Array or of an object that has multiple

elements inside it. You’ll learn more

about the square brackets later in this

chapter and about the Array object in

Chapter 11, “Manipulating Information.”

9. Continue accessing the rest of the infor-

mation and assign the results to the text

fields on the Stage L.

L The information in the XML document can be accessed with

dot operators and square brackets (array access operators).

XML document myXML.mycaption[0]
myXML.mycaption[1]

myXML.mycaption[2]

10. Create three TLF text fields on the

Stage and give them names in the Prop-

erties inspector that match the names

you used in your ActionScript.

11. Test your movie.

The data from the external XML docu-

ment is loaded into your URLLoader
object and then into the XML object.

Using dots and square brackets, you

can access the different information in

the XML, and in this example, populate

dynamic text fields for picture captions.

Simply change the information in the

XML document to have the changes be

reflected in your Flash movie.

If your XML element has an attri-

bute, as in <mycaption fontsize="14">,

you can access its value with the @
symbol. For example, the statement

myXML.mycaption[0].@fontsize would

retrieve the value 14.

Controlling Information Flow 353

Retrieving XML Data
The biggest challenge when using XML documents to store data is to correctly structure your XML

so you can efficiently extract the data. In the task “To decode XML data,” you extracted the caption

data by using the array access operators (the square brackets). Each caption could be referenced

by an index number in the mycaptions node. Let’s look at something a little more complex to see

how you use the array access operators to extract the data M.

In this example, each slide has a path, where the image resides, and a caption, which describes

the photo. To get the caption for the second photo, you drill down the hierarchy with dot syntax—

first referencing the whole XML structure (myXML), then its second slide node (slide[1]), and finally

the caption (caption[0] or just caption since there’s only one entry). The complete path would

be myXML.slide[1].caption.

Typically, you’ll use loops (described later in this chapter) to go through all the nodes automatically

to extract the data.

M In this XML document, there are three photo nodes, each with

their own path and caption nodes. If myXML is the name of the

XML object, then information in the document can be extracted.

myXML

myXML.photo[0]

myXML.photo[1]

myXML.photo[2]

myXML.photo[1].path
myXML.photo[1].caption

354 Chapter 9

Storing and Sharing
Information
Although variables enable you to keep

track of information, they do so only within

a single playing of a Flash movie. When

your viewer quits the movie, all the infor-

mation in variables is lost. When the viewer

returns to the movie, the variables are

again initialized to their starting values or

are loaded from external sources.

You can have Flash remember the cur-

rent values of your variables even after

a viewer quits the movie, however. The

solution is to use the SharedObject class.

SharedObject instances save information

on a viewer’s computer, much like brows-

ers save information in cookies. When a

viewer returns to a movie that has saved a

SharedObject, that object can be loaded

back in and the variables from the previous

visit can be used.

You can use the SharedObject class in

a variety of ways to make your Flash site

more convenient for repeat visitors. Store

visitors’ high scores in a game, or store

their login names so they don’t have

to type them again. If you’ve created a

complex puzzle game, you can store the

positions of the pieces for completion at a

later date; for a long animated story, you

can store the user’s current location; or for

a site with a collection of articles, you can

store information about which ones your

visitor has already read.

To store information in a SharedObject
instance, add a new property to the

SharedObject’s data property object. You

then store the information that you want

to keep in your new property. The state-

ment mySharedObject.data.highscore
= 200 stores the high-score informa-

tion in the SharedObject instance. The

method getLocal() creates or retrieves a

SharedObject, and the method flush()
causes the data properties to be written to

the computer’s hard drive.

In the following task, you’ll save a login

name from a text field (you’ll learn more

about text fields in the next chapter). When

you quit and then return to the movie, your

login name is retrieved and displayed.

To store information on
a user’s computer:
1. Select the Text tool, and in the Proper-

ties inspector, choose TLF Text and

Editable.

2. Drag a text field onto the Stage, and

give the text field the instance name

myLogin_txt A.

This text field allows users to enter

information via the keyboard.

A Create a TLF text field that is editable, and give it a name in the

Properties inspector.

Text field

Enter the instance name
of your text field here

Controlling Information Flow 355

The content of your text field on the

Stage is saved in a property named

loginData in the data property of

your SharedObject.

9. On the next line, enter

mySharedObject. flush() C.

Calling the flush() method saves all

the information in the data property

of your SharedObject on the viewer’s

computer.

If the flush() method isn’t called

explicitly, the information in the data object

of your SharedObject is saved automati-

cally when the viewer quits the movie. The

flush() method lets you choose when to

save information.

Many kinds of information can be stored

in the data object of a SharedObject, such

as numbers, strings, and even objects such as

an array.

Just remember to assign the information to

the data object of a SharedObject, as in:

mySharedObject.data.name = "Russell";

rather than

mySharedObject.data = "Russell";

3. Create a button, place an instance of

it on the Stage, and give it an instance

name in the Properties inspector.

You’ll assign actions to this button to

save the information in your text field

in a SharedObject.

4. Select the first frame of the main Time-

line, and open the Actions panel.

5. In the Script pane, declare a new

SharedObject by entering var
mySharedObject:SharedObject
followed by an equals sign.

6. On the right side of the equals sign, enter

SharedObject.getLocal("myCookie") B.

Flash looks for a SharedObject, and

if it does not find one, it creates a

SharedObject instance that will be

stored on the user’s local hard drive.

7. On the next line, create a

MouseEvent.CLICK event handler

for your button.

8. Between the curly braces of the event-

handler function, enter the following:

mySharedObject.data.loginData =
➝ myLogin_txt.text

B The getLocal() method creates a SharedObject that will

be stored on the user’s computer.

C Clicking the button called saveButton_btn puts the

contents of the text field in the myLoginData property of

the data property of your SharedObject and saves it on

the user’s computer.

356 Chapter 9

To retrieve information
from a user’s computer:
1. Continuing with the file you used in the

preceding task, create a second button,

place an instance of it on the Stage,

and give it a name in the Properties

inspector.

You’ll assign actions to this second but-

ton, which will retrieve mySharedObject.
data and the most recently saved con-

tents of your text field.

2. Select the main Timeline, and

in the Actions panel, assign a

MouseEvent.CLICK event handler

to this second button.

3. Between the curly braces of the event-

handler function, enter the following

statement:

myLogin_txt.text =
➝ mySharedObject.data.myLoginData;

This statement retrieves the information

in myLoginData that was saved on the

viewer’s computer in a SharedObject.

That information is used to change the

contents of your text field D.

4. Test your movie.

Enter your name in the text field on the

Stage, and then click the button to save

the information into a SharedObject.

Quit the movie. When you open the

movie again and click the second but-

ton, your name appears in the text field

because Flash retrieved the information

from your previous session E.

To clear information on
a user’s computer:
Call the method clear() to clear informa-

tion saved in a SharedObject.

The statement:

mySharedObject.clear();

removes all the data from the

SharedObject.

D Clicking the button called loadButton_btn puts the

saved data into the text field for display.

E Enter your login name in the text field and click the

button to save it (top). Close the Flash movie, and then

open it again to return to it. When you click the second

button, your login name appears again so you don’t have

to retype it (bottom).

Controlling Information Flow 357

Sharing information among
multiple movies
Flash keeps track of a SharedObject saved

on the viewer’s computer by remembering

the name of the object as well as the loca-

tion of the movie in which it was created.

The location of the movie is known as the

SharedObject’s local path. By default,

the local path is the relative path from the

domain name to the filename. If your movie

is at www.myDomain.com/flash/myMovie.

swf, the local path is /flash/myMovie.swf.

Flash lets you specify a different local path

when you use the getLocal() method so

that you can store a SharedObject in a dif-

ferent place. Why would you do this? If you

have multiple movies, you can define one

SharedObject and a common local path,

allowing all the movies to access the same

SharedObject and share its information.

Valid local paths for a SharedObject
include the directory in which your movie

sits or any of its parent directories sit.

Don’t include the domain name, and

don’t specify any other directories in the

domain. Remember, you aren’t telling Flash

to store information on the server; you’re

telling Flash to store information locally on

F The second parameter of the getLocal() method determines

the local path of the SharedObject and its location on the viewer’s

computer. The single slash indicates the top-level directory of the

domain where the Flash movie resides.

the viewer’s computer (the host), and the

local path helps Flash keep track of the

SharedObject. Because local paths are rel-

ative to a single domain, a SharedObject
can be shared only with multiple movies in

the same domain.

To store information that
multiple movies can share:
1. Continuing with the file that you created

in the preceding task, in the Actions

panel add a forward slash as the

second parameter to the getLocal()
method. Make sure the forward slash is

between quotation marks F.

Flash will save the SharedObject
mySharedObject_so with the local path

"/". This entry represents the top-level

directory.

2. In a new Flash document, create

another text field on the Stage, and

give it the name myLogin2_txt in the

Properties inspector.

This text field will display information

stored in the SharedObject you created

in your first movie.

Continues on next page

www.myDomain.com/flash/myMovie

358 Chapter 9

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. In the Script pane, enter the following

statement:

var mySharedObject2:SharedObject
➝ = SharedObject.getLocal(
➝"myCookie", "/");

Flash retrieves the SharedObject with

the local path "/" from the viewer’s

computer. Notice that the parameter

"myCookie" must be identical to the

one used in the first Flash movie, but

the SharedObject variable’s name

mySharedObject2 can be different.

5. On a new line of the Script pane, assign

the property myLoginData in the data
property of the SharedObject to the

contents of your input text field with the

following statement G:

myLogin2_txt.text =
mySharedObject2.data.myLoginData;

This statement retrieves the myLoginData
information from the SharedObject and

displays it in the text field.

6. Test your movies.

Play the first movie, enter your name

in the text field, click the first button to

save its position in a SharedObject, and

close the movie. Now open your sec-

ond movie. Flash reads the information

in the SharedObject created by the first

movie and displays your name H.

G In this second Flash movie, the getLocal() method retrieves the

same SharedObject that was saved in the first Flash movie, because

the same name and local path are given in its parameters for both

movies.

H When the login name in the first Flash movie is saved

(top), you can open the second Flash movie (bottom), and

its text field displays the same login name. Both movies

access the same SharedObject on the user’s hard drive.

Controlling Information Flow 359

SharedObjects, Permission, and Local Disk Space
The default amount of information that Flash Player allows a single domain to store on a viewer’s

computer is set at 100 KB, and users can configure the amount of space they allow to be used

by SharedObject data. When you call the flush() method, depending on the amount of data

you’re trying to store and the viewer’s settings, different things happen. If the new data doesn’t

exceed the amount the viewer allows, the SharedObject is saved and flush() returns true. If

the new data exceeds the allowable amount and the viewer’s Flash Player is set to block requests

for more space, the SharedObject isn’t saved and flush() returns a value of false. Finally, if

the SharedObject data exceeds the amount the user has allowed and the Flash Player isn’t set to

block requests for more space, a dialog box appears over the Stage asking the viewer for per-

mission to store information I. In that case, the flush() method returns the string “pending” or

SharedObjectFlushStatus.PENDING. The viewer can allow the request or deny it.

Viewers can change their local storage settings at any time by right-clicking (Windows) or Ctrl-

clicking (Mac) the movie and then choosing Settings from the context menu J. The viewer can

choose never to accept information from a particular domain or to accept varying amounts (10

KB, 100 KB, 1 MB, 10 MB, or unlimited). Local storage permission is specific to the domain (which

appears in the dialog box), so future movies from the same domain can save SharedObjects

according to the same settings.

If you know that the information you save to a viewer’s computer will grow, you can request more

space ahead of time by defining a minimum disk space for the flush() method. Calling the

method mySharedObject.flush(1000000) saves the SharedObject and reserves 1,000,000

bytes (1 MB) for the information. If Flash asks the viewer to allow disk space for the SharedObject,

it will ask for 1 MB. After the permission is given, Flash won’t ask for more space until the data in

that domain’s SharedObject exceeds 1 MB or the viewer changes his local storage settings.

I Flash asks to store more

information than the viewer

currently allows. This request

comes from local, which is the

viewer’s computer.

J From the Flash Player context

menu (with your mouse pointer

over a Flash movie, right-click

for Windows or Ctrl-click for

Mac), access the Settings dialog

box. You can decide how much

information a particular domain

can save on your computer. This

setting is for local, which is the

viewer’s computer.

360 Chapter 9

Loading and Saving
Files on the Hard Drive
You can get and save information on the

user’s local hard drive by making Flash

open a file browser and having the user

choose a particular file. This works well

for creating more complex applications

that depend on data that the user can

save, modify, and retrieve, just like a word

processing program or an image-editing

program like Adobe Photoshop.

You can directly have your users load and

save files with the FileReference class.

The method browse() opens a file browser

to choose a file, and the method load()
loads in the data from a selected file. The

method save() opens a file browser to

save a file.

Event handlers for the events

Event.SELECT and Event.COMPLETE are

necessary to detect when a file has been

selected and when the loading or saving

process has been completed.

The methods of the FileReference
class can only be used if the user initiates

the process (such as clicking with the mouse

or pressing a key on the keyboard). This is a

safeguard so that malicious Flash code can-

not automatically open files on a user’s hard

drive or save files to the user’s hard drive.

Any attempt to call the methods without user

interaction will result in an error.

To open the file browser
to select a text file:
1. Create a button, place an instance of

it on the Stage, and give it an instance

name in the Properties inspector.

You’ll assign actions to this button to

open the file browser to let users choose

a file to load from their hard drive.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. In the Script pane, declare a new

FileReference object by entering var
myfile:FileReference followed by an

equals sign and new FileReference().

4. On the next line, create a

MouseEvent.CLICK event handler for

your button.

5. Between the curly braces of the event

handler function, enter the following:

myfile.browse();

When the user clicks the button, the file

browser will open A.

A When you click the button called load_btn,

Flash opens the file browser (below) so the user

can choose a file from the hard drive.

Controlling Information Flow 361

2. On the next line, create an

Event.COMPLETE event handler

for your FileReference object.

3. Between the curly braces of the event-

handler function, enter the following:

mytextfield_txt.text =
➝ myfile.data.readUTFBytes(
➝ myfile.data.length);

When the loading process is com-

plete, Flash reads the data in the

file and puts it in a text field called

mytextfield_txt.

The data is in the data property of the

FileReference object, but because

the data property is a ByteArray
object, you must use the method

readUTFBytes() to extract the infor-

mation. The length property refers

to the total size of the file, so passing

myfile.data.length as the parameter

of readUTFBytes() makes Flash load

the entire contents of the file C.

Continues on next page

To load a selected text file:
1. Continue with the previous task, “To

open the file browser to select a text file.”

To load a file, you must create an event

handler to detect when the user selects

a file.

2. On the next line, create an Event.SELECT
event handler for your FileReference
object.

3. Between the curly braces of the event

handler function, enter the following:

myfile.load();

When the user selects a file from the file

browser, Flash begins loading that file B.

To retrieve the contents
of the text file:
1. Continue with the previous task, “To

load a selected text file.”

To retrieve the contents of a loaded file,

you must create an event handler to

detect the completion of the load.

B The second event

handler detects when

the user selects a file.

When that happens, the

file is loaded into Flash.

C The third event handler detects when

the file has completely loaded into Flash.

When that happens, the entire data in the

file is assigned to a text field on the Stage.

362 Chapter 9

4. Choose the Text tool and, in the Proper-

ties inspector, choose TLF Text and

Read Only.

5. Create a text field on the Stage, and in

the Properties inspector, name the text

field mytextfield_txt.

6. Test your movie D.

To save a text file:
1. In a new Flash file, create a button,

place an instance of it on the Stage, and

give it an instance name in the Proper-

ties inspector.

You’ll assign actions to this button to

open the file browser to let users save

a file on their hard drive.

2. Choose the Text tool and in the Prop-

erties inspector, choose TLF Text and

Editable.

3. Create a text field on the Stage and name

the text field mytextfield_txt. Select a

colored border for the text field E.

You’ll allow users to enter text in the

text field, and then save the results in

a file to their hard drive.

4. Select the first frame of the main Time-

line, and open the Actions panel.

D In this example, the text document called

sometext.txt is selected by the user (top). The

contents of the text document are displayed in

the text field next to the button.

Text field

E Name the TLF text field on the Stage

mytextfield_txt and choose the Editable option.

Text field instance name

Controlling Information Flow 363

5. In the Script pane, declare a new

FileReference object by entering var
myfile:FileReference followed by an

equals sign and new FileReference().

6. On the next line, create a MouseEvent.
CLICK event handler for your button.

7. Between the curly braces of the event

handler function, enter the following:

myfile.save(mytextfield_txt.text);

When the user clicks the button, the file

browser will open, allowing the user to

save the contents of the text field to a

file on the hard drive F.

If you want to prepopulate the file

browser with a filename, you can provide a

second parameter for the save() method.

The method save(mytextfield_txt.text,
"hello.txt") opens the file browser with the

filename hello.txt in the Save As field G.

The Event.COMPLETE and Event.SELECT
events are triggered for both the save() and

the load() methods. If the event handlers

reference the same FileReference object,

you will likely get an error. So, it’s a good idea

to have two separate FileReference objects

if you are going to perform both methods.

You can load and save many other kinds

of files—not just text files. See the Flash Help

and ActionScript 3 language reference for

ways to handle other file types.

G When you add a second parameter to the

save() method, a suggested filename appears

in the file browser.

F When the user clicks the save_btn button, the

contents of the input text field can be saved to a

file on the hard drive. The user can choose the

name of the file.

Text field

File browser

364 Chapter 9

Modifying Variables
Variables are useful because you can

always change their contents with updated

information about the status of the movie

or your viewer. Sometimes, this change

involves assigning a new value to the vari-

able. At other times, the change means

adding, subtracting, multiplying, or dividing

the variable’s numeric values or modifying

a string by adding characters. The variable

myScore, for example, may be initialized

at 0. Then, for every goal a player makes,

the myScore variable changes in incre-

ments of 1. The job of modifying informa-

tion contained in variables falls upon

operators—symbols that operate on data.

Assignment and
arithmetic operators
The assignment operator (=) is a single

equals sign that assigns a value to a vari-

able. You’ve already used this operator

in initializing variables and creating new

objects. Table 9.1 lists the other common

operators.

Operators are the workhorses of Flash

interactivity. You’ll use them often to

perform calculations behind the scenes—

adding the value of one variable to another

or changing the property of one object by

adding or subtracting the value of a vari-

able, for example.

TABLE 9.1 Common Operators

Symbol Description

+ Addition

– Subtraction

* Multiplication

/ Division

% Modulo division; calculates the

remainder of the first number

divided by the second number.

7 % 2 results in 1.

++ Increases the value by 1. x ++ is

equivalent to x = x + 1.

–– Decreases the value by 1. x –– is

equivalent to x = x – 1.

+= Adds a value to and assigns the

result to the variable. x += 5 is

equivalent to x = x + 5.

–= Subtracts a value from and assigns

the result to the variable. x –= 5 is

equivalent to x = x – 5.

*= Multiplies by a value and assigns

the result to the variable. x *= 5 is

equivalent to x = x * 5.

/= Divides by a value and assigns it to

the variable. x /= 5 is equivalent to

x = x / 5.

Controlling Information Flow 365

To perform more complicated mathemat-

ical calculations (such as square root, sine,

and cosine) or string manipulations on your

variables and values, you must use the Math
class or the String class. You’ll learn about

these objects in Chapters 10 and 11.

Remember that you can always change

the values of variables, but you can’t change

the type of data that the variables hold. So if

you’ve created a variable to hold a number,

you can’t assign a string to it.

The arithmetic rules of precedence

(remember them from math class?) apply when

Flash evaluates expressions, which means

that certain operators take priority over others.

The most important rule is that multiplication

and division are performed before addition

and subtraction. 3 + 4 * 2, for example, gives a

very different result than 3 * 4 + 2.

Use parentheses to group variables and

operators so those portions are calculated

before other parts of the expression are evalu-

ated. (3 + 2) * 4 returns a value of 20, but

without the parentheses, 3 + 2 * 4 returns a

value of 11.

Use the modulo division operator (%) to

check whether a variable is an even or an odd

number. The statement myNumber % 2 returns

0 if myNumber is even and 1 if myNumber is

odd. You can use this logic to create toggling

functionality. You can count the number of

times a viewer clicks a light switch, for exam-

ple. If the count is even, you can turn on the

light; if the count is odd, you turn off the light.

To incrementally increase
the value of a variable:
■ Enter the name of your variable fol-

lowed by two plus symbols, such as

myVariable++.

The value of myVariable increases by 1.

or

■ Enter the name of your variable fol-

lowed by a plus symbol and an equals

sign followed by the value of the incre-

ment, such as myVariable += 20.

The value of myVariable increases

by 20.

To incrementally decrease
the value of a variable:
■ Enter the name of your variable fol-

lowed by two minus signs, such as

myVariable––.

The value of myVariable decreases by 1.

or

■ Enter the name of your variable fol-

lowed by a minus symbol and an equals

sign followed by the value of the incre-

ment, such as myVariable –= 20.

The value of myVariable decreases

by 20.

366 Chapter 9

Concatenating
Variables and Dynamic
Referencing
The addition operator (+) adds the values

of numeric data types. But it can also put

together string values. The expression

"Hello " + "world", for example, results in

the string “Hello world”. This kind of opera-

tion is called concatenation.

You use of concatenation to mix strings,

numbers, and variables to create expres-

sions that allow you to dynamically cre-

ate and access objects or variables. For

example, you can concatenate a string with

a variable to make Flash go to a specified

frame, depending on the current value of

the variable, as in:

gotoAndStop("Chapter" +
➝ myChapterNumber);

The result of the concatenation is that

Flash goes to a frame labeled something

like Chapter1 or Chapter2, depend-

ing on the value of the variable called

myChapterNumber. The frame label is

assigned dynamically with a concatenated

expression.

This kind of concatenation works because

the concatenated string is used as a

parameter of a method. Flash knows to

resolve the expression before using it as

the parameter. What happens in other

cases? Consider this statement in the

Script pane of the Actions panel:

var "myVariable" + counter = 5;

This statement doesn’t make sense to

Flash and causes an error. To construct a

dynamic variable name and assign a value

to that variable, you must instruct Flash to

resolve (or “figure out”) the left side first

and then treat the result as a concatenated

variable name before assigning a value to

it. The way to do that is to use the array

access operator.

Array access operator
To reference a variable or an object dynam-

ically, use the array access operators. The

array access operator is the square brack-

ets ([], located on the same keys as the

curly braces). It is called the array access

operator because it is typically used to

access the contents of an Array object, but

it can also be used to dynamically access

the contents of other objects.

What does this capability mean? Think

of the main Timeline as being a root
object; variables and objects sitting on the

main Timeline are its contents. A variable

myVariable initialized on the main Time-

line can be targeted with the array access

operator as follows:

root["myVariable"]

Notice that there is no dot between the

object (root) and the square brackets.

The array access operator automati-

cally resolves concatenated expressions

within the square brackets. For example,

the following statement puts together a

single variable name based on the value

of counter and then assigns the numeric

value of 5 to the variable:

root["myVariable" + counter] = 5;

If the value of counter is 7, Flash accesses

the variable named root.myVariable7 and

assigns the value 5 to that variable.

Using the array access operators also

enables you to call methods and change the

properties of dynamically referenced objects

with dot syntax. For example, you can

modify an object’s transparency this way:

root["mushroom_mc" + counter].alpha
➝ = .5

Controlling Information Flow 367

If the value of counter is 3, the movie

clip in the root Timeline named

root.mushroom_mc3 becomes 50 percent

transparent. To make the movie clip play,

call the designated method, like this:

root["myClip_mc" + counter].play()

To reference a variable
dynamically and assign a value:
In the Script pane of the Actions panel,

enter the parent of the variable followed by

an opening square bracket, an expression,

a closing square bracket, an equals sign,

and a value.

Flash resolves the expression within the

square brackets and assigns the value to

the variable with that name A.

To reference an object
dynamically and call a method:
1. In the Script pane of the Actions panel,

enter the parent of the object fol-

lowed by an opening square bracket,

an expression, and a closing square

bracket.

2. On the same line, enter a period, and

then enter the method name B.

Flash resolves the expression between

the square brackets and calls the

method on that object.

To reference an object dynamically
and change a property:
In the Script pane of the Actions panel,

enter the parent of the object followed by

an opening square bracket, an expression,

a closing square bracket, a dot, a property,

an equals sign, and a value C.

Flash resolves the expression between the

square brackets and assigns the value on

the right of the equals sign to the object.

A Flash resolves the expression in the square

brackets first, so if the value of counter is 0, the

variable called myVariable0 will be assigned the

value of 5.

B Use the array access operators to dynamically

reference an object and then call one of its

methods. If the value of counter is 0, the movie

clip called myMovieClip0 will begin to play.

C Use the array access operators to dynamically

reference an object and then evaluate or modify

one of its properties. If the value of counter is

0, the movie clip called myMovieClip0 will rotate

45 degrees clockwise.

A useful method to consider when

dynamically accessing objects is the

method of the DisplayObject class called

getChildByName(). This method returns

the DisplayObject that exists with the

specified name, which you can construct

dynamically with an expression. For example,

getChildByName("car" + counter) would

return the object whose name is based on

the string “car” and the value of the variable

counter. Assign the returned object into a

DisplayObject to manipulate, as in the fol-

lowing example:

var myObject:DisplayObject =
➝ getChildByName("car" + counter);
myObject.alpha = .5;

368 Chapter 9

Testing Information
with Conditional
Statements
Variables and expressions go hand in hand

with conditional statements. The informa-

tion you retrieve, store in variables, and

modify in expressions is useful only when

you can compare it with other pieces of

information. Conditional statements let

you do this kind of comparison and carry

out instructions based on the results. The

logic of conditional statements is the same

as the logic in the sentence “If abc is true,

then do xyz,” and in Flash, you define abc

(the condition) and xyz (the consequence).

Conditional statements are in the form

if (){}. You put a condition between

the parentheses and the consequences

between the curly braces. The condition—

a statement that can be resolved to a true

or false value—usually compares one thing

with another. Is the variable myScore greater

than the variable alltimeHighScore?

Does the bytesLoaded property equal the

bytesTotal property? Does the variable

myPassword equal “Abracadabra”? These

are typical examples of the types of things

that are compared in conditions.

How do you compare values? You use

comparison operators.

Comparison operators
A comparison operator evaluates the

expressions on both sides of itself and

returns a value of true or false. Table 9.2

summarizes the comparison operators.

When the statement is evaluated and the

condition holds true, Flash performs the

consequences within the if statement’s

curly braces. If the condition turns out to be

false, all the actions within the curly braces

are ignored A.

In the following task, you’ll create a

graphic that moves to the right. You want

to constrain the position of the graphic

so it doesn’t run off the Stage, so you’ll

construct a conditional statement to have

Flash test whether the value of its x posi-

tion is greater than 200 pixels. If it is, you’ll

keep its current position.

TABLE 9.2 Comparison Operators

Symbol Description

== Equality

=== Strict equality (value and data type

must be equal)

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

!== Strict inequality

Controlling Information Flow 369

To create a conditional statement:
1. For this example, create a Shape object,

define a line style and fill style, and

call the drawRect() method to draw a

square.

2. Call the addChild() method to add the

Shape object to the display list.

3. Create an Event.ENTER_FRAME event

handler and, in the function of the event

handler, move the position of the Shape
to the right B.

The rectangle moves to the right

continuously.

4. Inside the event-handler function, after

the statement that adds to the position

of the rectangle, enter:

if (myShape.x > 200) {
}

Flash tests to see whether the rectan-

gle’s x position is greater than 200.

5. Between the curly braces of the if
statement, assign the value 200 to

the Shape’s x property C.

If the x property exceeds 200, Flash

resets it to 200. This setting prevents

the rectangle from moving past the

200-pixel point.

6. Test your movie D.

A common mistake is to mix up the

assignment operator (=) and the comparison

operator for equality (==). The single equals

sign assigns whatever is on the right side of it

to whatever is on the left side. Use the single

equals sign when you’re setting and modifying

properties and variables. The double equals

sign compares the equality of two things; use

it in conditional statements.

A If, and only if, the condition within

the parentheses is true, consequence1,

consequence2, and consequence3 are

all performed. If the condition is false,

all three consequences are ignored.

B The code draws a square and moves the

myShape object continuously to the right across

the Stage.

C Add a condition that tests the x property of

myShape to see if its value exceeds 200. If so,

Flash keeps it at 200, preventing the square from

moving off the Stage.

D The myShape object is limited at x = 200

because of a conditional statement.

x = 200

myShape

370 Chapter 9

Creating a continuous-
feedback button
A simple but powerful and widely applicable

use of the if statement is to monitor the

state of a MouseEvent.MOUSE_DOWN event

and provide continuous actions as long as

the mouse button is held down. An object or

button that provides this kind of functionality

is sometimes called a continuous-feedback
button. When you hold down a button,

for example, you can increase the sound

volume (like a television remote control)

until you let go. A simple event handler can’t

accomplish this functionality.

Creating this functionality requires that

you use a Boolean variable to keep track

of the state of the button. When the but-

ton is depressed, the variable is set to

true. When the button is released or the

pointer is moved away from the but-

ton, the variable is set to false. Within

an Event.ENTER_FRAME handler, you can

monitor the status of the variable continu-

ously with an if statement. If the variable is

true, the code performs an action. As long

as the variable remains true (the button

continues to be held down), those actions

continue to be executed.

To create a continuous-
feedback button:
1. Create a button symbol (or any other

object that can receive MouseEvents),

place an instance of it on the Stage, and

give it an instance name in the Proper-

ties inspector.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Declare a Boolean variable, and set its

initial value to false.

This will be the variable that tracks

whether the button is being held down.

4. Add an event listener to your button

to detect the MouseEvent.MOUSE_DOWN
event.

5. Add the function that responds to the

MouseEvent.MOUSE_DOWN event. Between

the curly braces of the function, assign

the value true to your variable E.

The variable is set to true whenever

the button is pressed. Note that there

are no quotation marks around the

word true, so true is treated correctly

as a Boolean data type, not a string

data type.

6. Add another event listener to your but-

ton to detect the MouseEvent.MOUSE_UP
event.

7. Add the function that responds to the

MouseEvent.MOUSE_UP event. Between

the curly braces of the function, assign

the value false to your variable F.

The variable is set to false whenever

the button is released.

8. Add another event listener to the Stage

to detect the Event.ENTER_FRAME event.

E The variable pressing keeps track of whether

the button is being pressed or released. When the

button is pressed, pressing is set to true.

F When the button is released, pressing is set

to false.

Controlling Information Flow 371

You can use a shorthand way of testing

whether a variable is true or false by elimi-

nating the comparison operator (==). The if
statement automatically tests whether its

condition is true, so you can test whether a

variable is true by entering the variable name

within the parentheses of the if statement,

like this:

if (myVariable) {
// myVariable is true
}

You can test whether a variable is false by pre-

ceding the variable name with an exclamation

point, which means “not,” like so:

if (!myVariable) {
// myVariable is not true
}

G The status of the pressing
variable can be monitored

continuously by an if statement

inside an Event.ENTER_FRAME
handler. This is a useful method

that has wide-ranging application.

For example, you can create

a rewind button to control the

Timeline (middle image) by

subtracting a few frames from

the current frame as long as the

button is held down (bottom

code). Another example shown

in the bottom code is moving an

object on the Stage as long as

the button is held down.

9. Add the function that responds to the

Event.ENTER_FRAME event. Between the

curly braces of the function, enter the

statement if (){}.

10. For the condition (between the paren-

theses of the if statement), enter the

variable name followed by two equals

signs and then true.

The condition tests whether the button

is being pressed.

11. Between the curly braces of the if
statement, choose an action as a

consequence that you want to be

performed as long as the button is

held down G.

372 Chapter 9

Providing Alternatives
to Conditions
In many cases, you need to provide an

alternative response to the conditional

statement. The else statement lets you

create consequences when the condition

in the if statement is false. The else state-

ment takes care of any condition that the

if statement doesn’t cover.

The else statement must be used in con-

junction with the if statement and follows

the syntax and logic of this hypothetical

example:

if (daytime) {
 goToWork();
} else {
 goToSleep();
}

Use else for either-or conditions—some-

thing that can be just one of two options.

In the preceding example, there are only

two possibilities: It’s either daytime or

nighttime. Situations in which the else
statement can be useful include collision

detection, true/false or right/wrong answer

checking, and password verification.

For this task, you’ll build an if-else state-

ment to detect the keyboard input given

to the question “Is the earth round?” The

answer can be only right or wrong—there

are no other alternatives.

To use else for the false condition:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Add an event listener to the Stage to

detect the KeyboardEvent.KEY_DOWN
event.

Controlling Information Flow 373

3. On the next line, create the func-

tion that gets triggered by the

KeyboardEvent.KEY_DOWN event.

4. Between the curly braces of the func-

tion, create an if statement as follows:

if (myevent.keyCode == 89) {
 answer_txt.text = "correct!"
}

The function checks to see if the key

pressed matches the keycode for the

Y key, and if so, a message is displayed

in a text field called answer_txt.

5. On the same line as the closing curly

brace of the if statement, enter else
followed by an opening curly brace.

6. On the next line, choose another action

as a response to the false condition,

and then close the else statement with

a closing curly brace, like so A:

if (myevent.keyCode == 89) {
 answer_txt.text = "correct!"
} else {
 answer_txt.text = "wrong!"
}

In this example, if the key pressed is

Y, the correct-answer message is sent.

Otherwise, the incorrect-answer mes-

sage is sent. The else statement covers

any key other than Y.

7. On the Stage, create a TLF text field

and give it the name answer_txt in the

Properties inspector.

8. Test your movie B.

By convention, the else statement

cuddles the closing brace of the if statement

to show that they belong together. In the Auto

Format options, however, you can change the

Script pane’s formatting to put the else state-

ment on its own line.

A The if statement within the detectText
event handler checks whether the Y key, which

corresponds to the key code value of 89, is

pressed. The else statement triggers the “wrong!”

message if a key other than Y is pressed. Note

how the else statement is commonly written in

a group with the if statement, beginning on the

same line as the ending curly brace of the if
statement.

B The message is displayed in a text field on

the Stage.

answer_txt text field

374 Chapter 9

Branching Conditional
Statements
If you have multiple possible conditions and

just as many consequences, you need to

use more complicated branching condi-

tional statements that provide functionality

a single else statement can’t. If you create

an interface to a Web site or a game that

requires keyboard input, for example, you

need to test which keys are pressed and

respond appropriately to each keypress.

Flash gives you the else if statement,

which lets you construct multiple responses,

as in the following hypothetical example:

if (sunny) {
 bringSunglasses();
} else if (raining) {
 bringUmbrella();
} else if (snowing) {
 bringSkis();
}

Each else if statement has its own condi-

tion that it evaluates and its own set of

consequences to perform if that condition

returns true. Only one condition in the

entire if-else if code block can be true.

If more than one condition is true, Flash

performs the consequences for the first

true condition it encounters and ignores

the rest. In the preceding example, even if

it’s both sunny and snowing, Flash can per-

form the consequence only for the sunny

condition (bringSunglasses()) because

it appears before the snowing condi-

tion. If you want the possibility of multiple

conditions to be true, you must construct

separate if statements that are indepen-

dent, like the following:

if (sunny) {
 bringSunglasses();
}
if (raining) {
 bringUmbrella();
}
if (snowing) {
 bringSkis();
}

The following example uses

KeyboardEvent.KEY_DOWN event handlers

and branching conditional statements to

move and rotate a movie clip according to

different keypresses.

To use else if for
branching alternatives:
1. Create a movie clip symbol, place an

instance of it on the Stage, and give

it an instance name in the Properties

inspector. In this example, the movie

clip is named beetle_mc.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Add an event listener to the Stage to

detect the KeyboardEvent.KEY_DOWN
event.

4. On the next line, create the func-

tion that gets triggered by the

KeyboardEvent.KEY_DOWN event.

5. Between the curly braces of the func-

tion, create an if statement as follows:

if (myevent.keyCode ==
➝ Keyboard.UP) {
 beetle_mc.rotation = 0;
 beetle_mc.y –= 30;
}

As in the previous task, the if state-

ment checks if the key pressed on the

Controlling Information Flow 375

keyboard matches a particular key and

executes the two statements within

the curly braces to rotate and move

the object.

The two statements within the if state-

ment rotate the movie clip so that the

head faces the top and subtract 30

pixels from its current y position, making

it move up the Stage. Recall that the

operator –= means “subtract this amount

and assign the result to myself” A.

6. On the same line as the closing curly

brace of the if statement, enter else
if and another condition in parenthe-

ses and consequences in curly braces

as in the following:

if (myevent.keyCode ==
➝ Keyboard.UP){
 beetle_mc.rotation = 0;
 beetle_mc.y –= 30;
} else if (myevent.keyCode ==
➝ Keyboard.LEFT) {
 beetle_mc.rotation = –90;
 beetle_mc.x –= 30;
}

7. Add two more else if statements in

the manner described earlier to test

whether Key.DOWN is being pressed and

whether Key.RIGHT is being pressed.

Change the rotation and position of the

movie clip accordingly.

8. Test your movie.

Your series of if and else if state-

ments tests whether the user presses

the arrow keys and moves the movie

clip accordingly B. You now have the

beginnings of a game!

A If the up arrow key is pressed, this movie clip is

rotated to 0 degrees and is repositioned 30 pixels

up the Stage.

B The else if statement provides alternatives

to the first condition. The complete script has four

conditions that use if and else if to test whether

the up, left, right, or down arrow key is pressed.

The rotation and position of the movie clip change

depending on which condition holds true.

376 Chapter 9

The switch, case, and
default actions
Another way to create alternatives to

conditions is to use the switch, case, and

default statements instead of the if state-

ment. These statements provide a different

way to test the equality of an expression.

The syntax and logic are shown in this

hypothetical example:

switch (weather) {
 case sun :
 bringSunglasses();
 break;
 case rain :
 bringUmbrella();
 break;
 case snow :
 bringSkis();
 break;
 default :
 stayHome();
 break;
}

Flash compares the expression in the

switch statement’s parentheses to each

of the expressions in the case statements.

If the two expressions are equivalent,

the actions after the colon are performed

(for example, if weather is equal to sun,

bringSunglasses happens). The break
action is necessary to break out of the

switch code block after a case has

matched. Without it, Flash runs through

all the actions. The default action, which

is optional, provides the actions to be

performed if no case matches the switch
expression.

In the following example, you’ll create the

same functionality as the previous task

(moving a movie clip instance around

the Stage with different keypresses), but

you’ll use the switch and case statements

instead of the if and else if statements.

Controlling Information Flow 377

6. Between the curly braces of the switch
statement, add the following:

case Keyboard.UP :
beetle_mc.y –= 30;
beetle_mc.rotation = 0;
break;

The switch statement will compare

the equality of the myevent.keyCode to

Keyboard.UP, and if they are equivalent,

the movie clip’s position and rotation

will be changed. The break action dis-

continues the current code block and

makes Flash go on to any ActionScript

after the switch statement.

7. Repeat step 6, but use different

Keyboard properties for the case state-

ments and different consequences C.

8. Test your movie.

C The full script to move a beetle movie clip with the arrow

keys, using switch and case instead of the if statement.

To use switch and case for
branching alternatives:
1. Create a movie clip symbol, place an

instance of it on the Stage, and give

it an instance name in the Properties

inspector. In this example, the movie

clip is named beetle_mc.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Add an event listener to the Stage to

detect the KeyboardEvent.KEY_DOWN
event.

4. On the next line, create the func-

tion that gets triggered by the

KeyboardEvent.KEY_DOWN event.

5. Between the curly braces of the func-

tion, enter switch followed by a pair

of parentheses with a condition inside

followed by curly braces, like so:

switch (myevent.keyCode) {
}

378 Chapter 9

Combining Conditions
with Logical Operators
You can create compound conditions with

the logical operators && (AND), || (OR), and

! (NOT). These operators combine two or

more conditions in one if statement to test

scenarios involving combinations of condi-

tions. You can test whether somebody has

entered the correct login and password,

for example. Or you can test whether a

draggable movie clip is dropped on one

valid target or another. You can use the NOT
operator to test whether a variable con-

tains a valid e-mail address whose domain

isn’t restricted.

To test if more than one
expression is true:
In the Script pane of the Actions panel,

enter the if statement, then an open

parenthesis, followed by the first expres-

sion. Enter two ampersands (&&) followed

by your second expression and a closing

parenthesis. Enter a pair of curly braces

and consequences between them A.

Flash checks whether both expressions

on either side of the && operator are true

before the consequences within the curly

braces are executed. Think of the &&
operator as the word and.

A The logical && operator joins these two

expressions so that both must be true for the

whole condition to be true.

Controlling Information Flow 379

To test if one of many
expressions is true:
In the Script pane of the Actions panel,

enter the if statement, then an open

parenthesis, followed by the first expres-

sion. Enter two vertical bars (||) followed

by your second expression and a closing

parenthesis. Enter a pair of curly braces

and consequences in between them B.

Flash checks whether one of the expres-

sions on either side of the || operator is

true before the consequences within the

curly braces are executed. Think of the ||
operator as the word or.

To test if an expression is not true:
In the Script pane of the Actions panel,

enter the if statement, then an open paren-

thesis, followed by the exclamation point

(!), followed by an expression and a closing

parenthesis. Enter a pair of curly braces and

consequences between them C.

Flash checks whether the expression fol-

lowing the ! operator is false before the

consequences within the curly braces are

executed. Think of the ! operator as the

word not.

You can nest if statements within other

if statements, which is equivalent to using the

logical && operator in a single if statement.

These two scripts test whether both conditions

are true before setting a new variable:

if (yourAge >= 12){
 if (yourAge <= 20) {
 status = "teenager";
 }
}

or

if (yourAge >= 12 && yourAge <= 20) {
 status = "teenager";
}

B The logical || operator joins these two

expressions so that either must be true for

the whole condition to be true.

C The logical ! operator can be used to check

if the expression is false. If there is not parental

approval, then something will happen.

380 Chapter 9

Looping Statements
With looping statements, you can create

an action or set of actions that repeats.

For example, you may have actions repeat

a certain number of times or as long as

a certain condition holds true. Repeating

actions are often used together with an

array, which is a special kind of object that

holds multiple values in a structured, easily

accessible way. Using a looping action

lets you add or retrieve the pieces of data

in a particular order. You’ll learn more

about arrays in Chapter 11, “Manipulating

Information.”

In general, use looping statements to

execute actions automatically a specific

number of times by using an incrementing

counter variable. The counter variable is

used in parameters of methods called in

the loop or to modify properties of objects

that are created. For example, you can

generate intricate patterns by duplicating

dynamically drawn shapes with looping

statements. Use looping statements to

change the properties of a whole series of

DisplayObjects, modify multiple sound

settings, or alter the values of a set of

variables.

There are three kinds of looping state-

ments—the while, do while, and for
statements—but they all accomplish the

same task. The first two loop types repeat

as long as a certain condition holds true.

The third statement repeats using a

counter variable and a condition that is

checked each time the loop repeats. In

this example, a new shape is drawn on the

Stage and rotated in each loop, creating an

overlapping, complex pattern.

A Initialize the variable i and create the condition

that must be true for the loop to continue. As long

as the variable i is less than 361, this loop will run.

B The myShape object is created and an ellipse is

drawn and rotated based on the counter variable.

To use the while statement to
repeat a set of statements:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Declare an int variable named i, and

initialize it to 0.

The names i, j, k, and so forth are

often used as loop counter variables.

3. On the next line, enter while, then a set

of parentheses and a set of curly braces.

4. In the parentheses, enter i < 361 A.

This expression acts as a condition, like

the condition of an if statement. As

long as the condition works out to true,

the actions in the curly braces of the

loop will repeat, but once it’s false, the

Flash Player will stop looping.

5. Assign any actions that you want to run

while the condition remains true (while

i is less than 361).

In this example, a Shape method is

created to draw an ellipse and put it on

the display list. The ellipse is rotated

according to the counter variable B.

Controlling Information Flow 381

6. On the next line, enter i += 10 or the

equivalent statement i = i + 10.

Each time the loop runs, the variable

i will increase by an increment of 10.

When it exceeds 361, the condition that

the while statement checks at each

pass will become false, and Flash will

end the loop C.

The do while statement
The do while statement is similar to the

while statement except that the condition

is checked at the end of the loop rather

than the beginning. This means the actions

in the loop are always executed at least

once. The script in the preceding task can

be written with the do while statement, as

shown in D.

The for statement
The for statement provides built-in places

to define a counter variable, condition, and

operation to increment or decrement the

counter, so you don’t have to write separate

statements. The three statements that go

in the parentheses of the for statement

are init, where you can initialize a counter

variable; condition, which is the expression

that is tested before each iteration of the

loop; and next, which defines a statement

to increment or decrement the counter

variable. The preceding task’s script can be

written with a for loop, as shown in E.

Don’t use looping statements to

build continuous routines to check a cer-

tain condition over time. Real-time testing

should be done using an if statement in an

Event.ENTER_FRAME event handler or from

a TIMER event. When Flash executes looping

statements, the display remains frozen, and no

mouse or keyboard events can be detected.

Continues on next page

C At the end of each loop, the variable i
increases by 10. This loop will run 37 times. The

pattern is formed by the combination of the

myShape objects drawn one at a time in the loop.

D The equivalent do while statement.

E The equivalent for loop. You can read the

statements in the parentheses this way: Start

my counter at 0; before each loop, check the

condition, and as long as it’s smaller than 361,

perform the loop actions; after each loop, add

10 to my counter and repeat. The for loop is

the most efficient way of making loops.

382 Chapter 9

With the while and do while state-

ments, make sure the statement that modifies

the variable checked in the condition is inside

the curly braces. If it isn’t, the condition will

never be met, and Flash will be stuck execut-

ing the loop infinitely. Fortunately, Flash warns

you about this problem when it detects a prob-

lem in your script that causes it to stall F.

Note that the statements within the

parentheses of the for statement are sepa-

rated by semicolons, not by commas.

The for..in loop and foreach..in loop
Two other kinds of loops, called the for..in
loop and the for each..in loop, are used

specifically to look through the properties

of an object or elements of an array and to

look through the values of those properties

or elements. You don’t need to use a coun-

ter variable as you do for the other kinds

of loops. Instead, you use a variable called

an iterator, which is assigned a new value

each time the loop repeats.

The built-in properties for objects (the ones

that come with the preexisting classes)

are hidden from the for..in and the

for each..in loop—only properties that

you define or elements of an Array are

available.

To use the for..in loop to
reference properties of an object:
In the Script pane of the Actions panel,

enter the code as follows:

for (var iterator:String in
myObject) {
 // do something with iterator
 trace (iterator);
}

F This warning dialog box appears when you inadvertently cause

an infinite loop.

You can name the iterator variable any-

thing you want and target any object you

want. Flash goes through each property

or element inside the object (here, called

myObject) and returns the name of that

property in your iterator variable. So, if

myObject contained the properties name
and age, the trace statement would return

name and age. You can also put the iterator

in square brackets for dynamic property

access.

To use the for each..in loop to
reference values of an object:
In the Script pane of the Actions panel,

enter the code as follows:

for each (var iterator:String in
➝ myObject) {
 // do something with iterator
 trace (iterator);
}

You can name the iterator variable any-

thing you want and target any object you

want. In the for each..in loop, the iterator

can be typed to any data type, not just a

String (for example, if you are looping

through an array and you know you’ve

only added int variables to the array, you

can type the iterator as int). Flash goes

through each property or element inside

the object (here, called myObject) and

returns the value of that property in your

iterator variable. This loop is useful to auto-

matically go through the elements of an

Array object or of an XML object to access

the data.

Like graphic elements, text can be

dynamic, meaning that you can update

the text during playback by changing what

characters are displayed as well as how

they appear entirely with ActionScript.

Flash Professional CS5 introduces a

new and powerful way of working with

text, called the Text Layout Framework,

or TLF text. You can create layouts with

sophisticated typographic control using

TLF text. For example, you can make text

flow around photos, you can easily create

multiple columns, or you can create vertical

and right-to-left running text for foreign

language support. The older way of work-

ing with text, known as Classic text, is still

available, and is still a great way to work

with text when you don’t need the fine con-

trol that TLF text allows.

This chapter explores some of the many

possibilities of how ActionScript can

control both Classic and TLF text. You’ll

learn to create, format, display, and even

analyze text and control the information

exchange between your Flash movie and

your audience.

10
Controlling Text

In This Chapter
Understanding TLF and Classic Text 384

Creating Wrapping Text 387

Creating Multicolumn Text 390

Controlling Text Field Contents 392

Displaying HTML 395

Modifying Text Field Appearances 399

Generating Text Dynamically:

Classic vs. TLF Text 401

Creating Classic Text 402

Creating TLF Text Fields 408

Getting Text into the TextFlow 410

TLF Text Containers and Controllers 414

Formatting the TextFlow 418

Making Text Selectable or Editable 420

Detecting Text Focus 422

Analyzing Text 424

384 Chapter 10

Understanding TLF
and Classic Text
TLF stands for Text Layout Framework, and

it is the new text engine for Flash Player 10.

TLF text supports fine typographic controls—

for example, for text that flows around

photos or for multicolumn text fields. The

sophisticated controls over text are avail-

able to you in both the Properties inspector

and through ActionScript.

When you choose the Text tool, the Proper-

ties inspector provides you with several

options for text. You can choose either

TLF Text or Classic Text A. Classic text is

the older way of creating text. Although

Classic text doesn’t support many of the

new layout features, you can still dynami-

cally create, modify, and display Classic

text. Creating TLF text with ActionScript

requires a little more coding. The trade-

off is yours to decide; the choice to use

TLF text or Classic text should be made

based on the level of control your project

requires, and the amount of ActionScript

you’re willing to tackle.

TLF text has three main options: Read

Only, Selectable, and Editable B. All three

options enable you to control the text with

ActionScript. The options determine what

kind of interaction you want your viewers

to have with the text:

■ Read Only. Choose the Read Only

option if you want your text to be for

display only. The viewer cannot select

or edit the text.

■ Selectable. Choose the Selectable

option if you want your viewer to be

able to select the text for copying and

pasting. However, the viewer cannot

delete or edit the text.

■ Editable. Choose the Editable option

if you want your viewer to be able

to select, delete, or edit the text. For

example, if you want to create a text

field for a login and a password, choose

the Editable option.

Classic Text also has additional options:

Static, Dynamic, and Input C. These

options determine whether the text can be

controlled by ActionScript, and whether

the text can be selected and edited by the

viewer:

■ Static. Choose the Static Text option

if you want your text to be for display

only. You cannot control the text with

ActionScript and the viewer cannot

select or edit the text.

■ Dynamic. Choose the Dynamic Text

option if you want to be able to control

the text with ActionScript and allow the

viewer to select the text for copying

and pasting.

■ Input. Choose the Input Text option if

you want to be able to control the text

with ActionScript and allow the viewer

be able to select or edit the text.

Controlling Text 385

The TLF Text ActionScript library
TLF text depends on a specific external

ActionScript library to function properly.

When you test or publish a movie that

contains TLF text, an additional Text Layout

SWZ file is created next to your SWF file.

The SWZ file is the external ActionScript

library that supports TLF text D.

How does your SWF file normally find this

ActionScript library? When a SWF file that

contains TLF text is playing from the Web,

the SWF looks for the library in a couple

of locations. First, the SWF looks for the

library on the local computer it is playing

on, where the library is usually cached from

normal Internet usage. The SWF also looks

on Adobe’s site for the library file, and if

that fails, it looks in the same directory as

the SWF.

You should always keep the SWZ file with

your SWF file so the TLF text features work

properly when you test your movies locally.

You should also have the SWZ file accom-

pany your SWF file when you upload it to

your Web server, just to be safe.

Although it’s not recommended, you can

merge the required ActionScript library (the

SWZ file) with your Flash project. When

they are merged, you won’t have to main-

tain the separate SWZ file, but the size of

your published SWF file will be significantly

larger.

A You have two options for text. TLF text uses the

latest text engine in Flash Player 10. Classic text is

the older, but still useful, method.

B The options for TLF text determine how the

user can interact with the text.

C The options for Classic Text determine how the

user can interact with the text as well as whether

you can control the text with ActionScript.

D TLF text depends on an

external ActionScript library,

which is published as a SWZ

file next to your SWF file.

386 Chapter 10

To merge the TLF text library:
1. Choose File > Publish Settings. Click

the Flash tab and choose Settings for

ActionScript 3.0 E.

or

Click the Edit button next to Action-

Script settings in the Properties

inspector.

The Advanced ActionScript 3.0 settings

dialog box appears.

2. Click on the Library path tab; then click

on the arrow next to the textLayout.swc

listing in the display window.

The arrow points downward, expand-

ing the information about the TLF text

feature. Notice that the Link Type shows

that the Flash file depends on a runtime

shared library, and that the URL for the

library is on Adobe’s site. That is where

your Flash file looks for the ActionScript

library when it plays on the Web F.

3. In the Runtime Shared Library Settings

section, choose “Merged into code” for

the Default linkage G.

The Link Type changes to Merged

into code H. The current Flash file will

merge the TLF Text ActionScript library

into the published SWF file.

E Choose ActionScript 3.0 Settings to see the

TLF Text ActionScript library sharing options.

F The Link Type for the textLayout.swc indicates

that the ActionScript library is shared (and external

to your final, published SWF).

G Choose “Merged into code” if you want to

merge the TLF Text ActionScript library with your

final, published SWF.

H The Link Type for the textLayout.swc indicates

that the ActionScript library is merged.

Controlling Text 387

Creating
Wrapping Text
New in Flash Professional CS5 is the ability

to create threaded text fields using TLF

text. What this means is that individual text

fields can be linked to each other on the

Stage so that text that doesn’t fit in one

text field can overflow to the next linked

text field. By linking together many differ-

ent-sized text fields, you can make text

wrap around objects (such as photos or

animations) on the Stage for more complex

and visually interesting layouts.

To create wrapping text:
1. Choose the Text tool in the Tools panel,

and in the Properties inspector, choose

TLF Text.

2. Click on the Stage and drag out a

text field.

A single text field is placed on

the Stage.

3. Click the white box on the lower-right

corner of your text field A.

Your cursor changes to an icon of the

corner of a text field indicating that you

can define the top-left corner of the

next linked text field B.

4. Click and drag a second text field on

the Stage or just click on the Stage to

define a second text field at the same

size as the first C.

The second text field is linked to the

first. Blue lines indicate the linkage D.

Continues on next page

A Click the

white square at

the bottom right

of the text field.

D The two text fields are linked, and they behave

as one container.

B The icon

of a text field

indicates that

you can define

the next linked

text field.

C Drag out a second text field.

First text field

Second text field

388 Chapter 10

5. Continue adding additional linked text

fields and enter text to wrap your text

around any objects on the Stage E.

The linked text fields behave as a single

container. As you add, delete, and edit

text, the contents reflow to fit. You can

select all (Edit > Select All), and the

contents of all the linked text boxes will

be selected.

To edit the text fields:
■ Resize any of the text fields by clicking

and dragging on the control squares

around the blue bounding box F.

If a particular text field is too small to fit

its contents, and is not linked to another

text field to allow the overflow, a red

cross appears in the white box at the

lower right of the text field to indicate

that text is being cut off.

■ Move any of the linked text fields to

new locations on the Stage G.

The linkages remain even after text

fields are rearranged.

E Three linked text fields wrap text around a

graphic element.

F Drag the square control points around the

bounding box to change the dimensions of any

text field. Here, the text field is becoming taller.

G The flow of text through the text fields maintains its order despite

rearranging the text fields.

Controlling Text 389

To delete a linked text field:
Select the text field and press Delete on

the keyboard.

The selected text field is deleted, but the

remaining linkages are maintained. For

example, if you had three linked text fields,

and you deleted the second one, then

the first text field would now be linked

to the third.

To insert a linked text field:
Click on the white box at the lower right of

a linked text field and drag out another text

field on an empty part of the Stage.

A new text field is inserted between the

existing linked text fields, and the text

reflows to fill the new container.

To break or create new
text field linkages:
Click on the white box at the lower right of

a linked text field and hover over another

text field.

If the second text field is linked to the first,

your mouse pointer changes to a broken

link icon, indicating that you can click on it

to break the existing link H.

If the second text field is not linked, your

mouse pointer changes to an intact link

icon, indicating that you can click on it to

create a new link to it I.

H The broken link icon

indicates that you can break

the link to the current text field

(the one below the cursor).

I The link icon indicates

that you can establish a link

to the current text field (the

one below the cursor).

390 Chapter 10

Creating
Multicolumn Text
With TLF text, you can easily control how

the text fills its individual text field. For

example, you can make the text flow in

multiple columns, control the spacing in

between columns (called the gutter), and

even change the padding between the

text and the bounding box.

The options for creating multicolumn text

and changing related properties are in the

Container and Flow section of the Proper-

ties inspector.

To create multicolumn text:
Select a TLF text field on the Stage and

change the value of the Columns field

in the Container and Flow section of the

Properties inspector A.

The selected text field automatically makes

the contents of the text field flow in mul-

tiple columns B.

The maximum number of columns you

can set in the Properties inspector is 10. How-

ever, you can have more columns by chang-

ing the columnCount property of the text

field with ActionScript, described later in this

chapter.

A Enter an integer for the number

of columns; there are two columns

for this text field.

B A two-column text field.

Controlling Text 391

To change the column spacing:
Select a TLF text field on the Stage and

change the value of the column gutters

field in the Container and Flow section of

the Properties inspector C.

The spacing between columns changes

based on the pixel value of the column

gutters field. All columns are spaced

uniformly D.

To add spacing around the columns:
Select a TLF text field on the Stage and

change the Padding values in the Con-

tainer and Flow section of the Properties

inspector. Change the L (left), R (right),

T (top), or B (bottom) values indepen-

dently, or click the Link icon to constrain

the spacing around all sides of the text

uniformly E.

The spacing between the text and its

bounding box (the blue outline) changes

based on the pixel values of the Padding

fields F.

C A The

column gutters

value is set at

40 pixels.

D The space between the two columns is 40

pixels.

40 pixels

E The Left, Right, Top, and Bottom values are at

10 pixels.

Constrain the padding values

F There is a 10-pixel space between the text and

the outer bounding box.

10 pixels 10 pixels

392 Chapter 10

Controlling Text
Field Contents
You can control the contents of any text

field with ActionScript, giving you the

power to dynamically respond to your

viewer based on changing conditions in

your movie. A scoreboard, for example,

can be continuously updated to display the

most recent score in a game. Or a calcu-

lator can display the results of a custom

monthly mortgage on a real estate site.

The property that determines a text field’s

contents is the text property. Text fields of

Classic text (Dynamic or Input) or TLF text

can be given instance names in the Proper-

ties inspector. Once named, use the text
property in ActionScript to reference the

contents of the text field.

Classic text and TLF text are two different

ActionScript classes. Text fields of Classic

text are instances of the TextField class.

Text fields of TLF text are instances of the

TLFTextField class. However, both classes

use the text property to control their

contents.

The following task demonstrates how you

can access the contents of one editable

text field and assign new contents to

another. When viewers enter the tempera-

ture in Celsius in an editable text field and

press the Tab key, Flash will convert the

value to Fahrenheit and display it in a read-

only text field.

A The instance name for this editable text field is

celsius.

B The instance name for this read-only text field

is fahrenheit.

Instance name

Instance name

To control the contents
of text fields:
1. Choose the Text tool in the Tools

panel, and in the Properties inspector,

choose TLF Text and Editable.

2. Drag out a text field on the Stage and

in the Properties inspector, enter an

instance name A.

This first text field will accept a tem-

perature in Celsius.

3. Create a second text field, but make

this one TLF Text and Read Only.

4. In the Properties inspector, enter an

instance name B.

This second text field will display the

temperature in Fahrenheit.

5. Select the first frame of the main Time-

line, and open the Actions panel.

6. On the first line of the Script

pane, add a listener to detect a

KeyboardEvent.KEY_DOWN event on

your editable text field.

Controlling Text 393

7. On the next line, add the func-

tion that responds to the

KeyboardEvent.KEY_DOWN event. Within

the curly braces of the function, add an

if statement to check if the key that is

pressed is the Tab key C.

8. As the consequence of the if state-

ment, perform calculations on the con-

tents of the editable text box (Celsius),

and assign the result to a variable that

holds Number data, as in the following:

var conversion:Number = (9 / 5) *
➝ Number(celsius.text) + 32;

Notice that you must explicitly convert

the text property of the text field to a

number when doing calculations.

C This event handler detects when the Tab key is pressed

within the text field called celsius.

D The contents of the read-only text field (fahrenheit.text)

are assigned the correct value from the editable text field

(celsius.text) when the Tab key is pressed. Use Number() and

String() to convert the data to numbers or text.

E The user can convert Celsius to Fahrenheit.

Editable text field

Read-only text field

9. Next, convert the result to a String and

assign it to the contents of the second

text field, as in the following D:

fahrenheit.text = String(
➝ conversion);

10. Test your movie.

When the user enters a number in the

editable text field and presses the Tab

key, Flash takes the contents and con-

verts them into a Fahrenheit number. It

then puts that number in the contents of

the second text field to be displayed E.

394 Chapter 10

Embedding Fonts and Device Fonts
Normally when you include static or read-only text in Flash, all the font outlines are included in the

final SWF. However, for any text that may be edited during runtime, you should embed the fonts.

Because the user can enter any kind of text in editable text fields, you need to include those char-

acters in the final SWF to ensure that text appears as you expect it, with the same font that you’ve

chosen in the Properties inspector.

To embed fonts, choose

Text > Font Embedding, or

click the Embed button in

the Character section of the

Properties inspector. The Font

Embedding dialog box that

appears F shows you what

fonts you are currently using,

and provides options for you

to select specific characters

of the font you want included.

Be aware that embedding

fonts dramatically increases

the size of your exported SWF

file, because the information

needed to render the fonts is

included. Keep the file size down by embedding only the

characters your viewers use in the text field.

Another way to maintain small file sizes and eliminate the

potential problem caused by viewers not having the match-

ing font is to use device fonts. Device fonts are grouped

at the top of your Family pull-down menu in the Character

section of the Properties inspector G. The three device

fonts are _sans, _serif, and _typewriter. These options find the fonts on a viewer’s computer

that most closely resemble the specified device font. The following are the corresponding fonts for

the device fonts:

On the Mac:

. _sans maps to Helvetica.

. _serif maps to Times.

. _typewriter maps to Courier.

In Windows:

. _sans maps to Arial.

. _serif maps to Times New Roman.

. _typewriter maps to Courier New.

F The Font Embedding dialog box. Fonts appear on the left, and

options for embedding select character ranges appear on the right.

G Device fonts appear at the top of

your Character Family pull-down menu.

Controlling Text 395

Displaying HTML
Flash can display HTML-formatted text in

Classic text (Input or Dynamic) or in TLF

text. This means you can integrate HTML

content inside your Flash movie, maintain-

ing the styles and hyperlinks.

Displaying HTML works a little differently,

depending on whether you are using Clas-

sic text (Input or Dynamic) or TLF text. For

Classic text (Input or Dynamic), you must

select the Render as HTML option in the

Properties inspector and use the htmlText
property of a text field. When you mark up

text with HTML tags and assign the text to

the htmlText property, Flash interprets the

tags and preserves the formatting, includ-

ing image and anchor tags.

The following common HTML tags are sup-

ported by Classic text (Input or Dynamic):

■ <a>: Anchor tag to create hot links with

href, target, and event attributes

■ : Bold style

■
: Line break

■ : Font style with color, face,

and size attributes

■ : Image tag with src, width,

height, align, hspace, vspace, id,

and checkPolicyFile attributes

■ <i>: Italics style

■ : List item style

■ <p>: Paragraph style with left, right,

center, and justify attributes

■ : For use with CSS text styles

■ <textformat>: For use with Flash’s

TextFormat class

■ <u>: Underline style

For TLF text, you can also assign HTML-

formatted text to the htmlText property of

a text field. However, only a subset of the

tags listed above are supported (refer to

Help > ActionScript 3.0 Reference for the

Flash Platform > TLFTextField > htmlText),

and embedding images are handled in

a much different, more sophisticated

approach that involves the interaction of

additional classes. Later in this chapter,

you’ll learn to import HTML-formatted text

and embed inline images for TLF Text.

In this task, you’ll load HTML-formatted text

from an external document into a Classic

Text dynamic text field.

To load and display HTML in a
Classic Text dynamic text field:
1. Open a text-editing application or a

WYSIWYG HTML editor, and create your

HTML document A.

2. Save the file in the same direc-

tory where you’ll create your Flash

document.

Continues on next page

A The HTML text is saved as a separate document.

396 Chapter 10

3. In Flash, select the Text tool, and in the

Properties inspector, choose Classic

Text and Dynamic Text.

4. Drag out a large text field that nearly

covers the Stage.

5. In the Properties inspector, give the text

field an instance name and click the

Render as HTML button B. Also, make

sure that Multiline is selected in the

Paragraph section.

The Render as HTML button lets Flash

know to treat the contents of the text

field as HTML-formatted text. Multiline

allows multiple text lines.

6. Select the first frame of the main Time-

line, and open the Actions panel.

7. Create a new URLLoader and a new

URLRequest object and provide the path

to the HTML page, like so:

var myURLLoader:URLLoader = new
➝ URLLoader();
var myURLRequest:URLRequest = new
➝ URLRequest("mypage.html");

If your HTML page is in the same folder

as your Flash movie, you can just enter

the filename, as in this example. You

can either load a local file or one that’s

on the Internet.

8. On the next available line, call the

load() method for your URLLoader
object with the URLRequest object

as its parameter.

9. On the next lines, create an Event.
COMPLETE event handler to detect the

completion of the loading process C.

C The external HTML document called “mypage.

html” is automatically loaded. When the load

is complete, the function called dataOK will get

triggered.

B Enter display as the instance name for your

dynamic text field, and click the Render as HTML

button.

Render as
HTML

Controlling Text 397

10. Between the curly braces of the event-

handler function, assign the data prop-

erty of your URLLoader object to the

htmlText property of the dynamic text

field D:

display.htmlText =
➝ myURLLoader.data;

When the load is complete, the con-

tents of the text file are assigned to

the dynamic text field. The htmlText
property displays HTML-tagged text

correctly, as would a browser.

11. Test your movie.

The text in the external text file is

loaded into the data property of the

URLLoader object. When the file has

completely loaded, Flash assigns the

information to the htmlText property of

the dynamic text. The dynamic text field

displays the information, preserving all

the style and format tags E.

Because only a limited number of HTML

tags are supported by text fields, you should

do a fair amount of testing to see how the

information displays. When Flash doesn’t

understand a tag, it ignores it.

The anchor tag (<a>) normally appears

underlined and in a different color in browser

environments. In Flash, however, the hot link

is indicated only by the pointer changing to

a finger. To create the underline and color

style for hot links manually, apply the under-

line tag (<u>) and the font-color tag ().

The HTML tags override any style set-

tings you assign in the Properties inspector for

your dynamic text. If you choose red for your

dynamic text, when you display HTML text in

the field the tag will modify the

text to a different color.

The tag supports PNG, JPEG,

GIF, and SWF files. So, you can even load in an

external Flash movie to play within a dynamic

text field!

D The data property of the myURLLoader object,

which contains the HTML text, is assigned to the

htmlText property of the display text field.

E The dynamic text field displays the HTML-

formatted text, including hyperlinks and

embedded images.

Dynamic text field

398 Chapter 10

To display HTML directly in
a dynamic text field:
1. In Flash, select the Text tool, and in the

Properties inspector, choose Classic

Text and Dynamic Text.

2. Drag out a large text field that nearly

covers the Stage.

3. In the Properties inspector, give the

text field an instance name and click

the Render as HTML button. Also make

sure the Multiline is selected in the

Paragraph section.

The Render as HTML button lets Flash

know to treat the contents of the text

field as HTML-formatted text.

4. Enter HTML text within the dynamic text

field F.

5. Select the first frame of the main Time-

line, and open the Actions panel.

6. Assign the current contents of the

dynamic text field (the text property)

to its htmlText property as in the

following:

display.htmlText = display.text;

When you test your movie, the current

contents of your text field will be ren-

dered as HTML-formatted text G.

If you simply need to add a hyperlink in

some fixed text, you can do so from the Prop-

erties inspector. In a Classic Text static text

field, select the words you want hyperlinked,

and enter the URL in the Link field in the

Options section of the Properties inspector.

In a TLF text field, enter the URL in the Link

field in the Advanced Character section of the

Properties inspector.

F Enter HTML code directly in a dynamic or input

text field.

G At runtime, Flash correctly displays all the

HTML code in the text field.

Dynamic or input text field

Controlling Text 399

Modifying Text
Field Appearances
When you drag a text field on the Stage

with the Text tool and name it in the

Properties inspector, you’re creating an

instance of the TextField or TLFTextField
class.

The instance name identifies the text

field for targeting purposes. When you

can target the text field, you can evalu-

ate or change its many properties. These

properties determine the kind and display

of the text field. You’ve already used the

text property to retrieve and assign the

contents of text fields and the htmlText
property to render HTML-formatted text.

There are many other properties, including

columnCount, which defines the number of

columns in a TLF text field, or borderColor,

which determines the color of the TLF

text field’s border. In addition, since the

TextField and TLFTextField classes are

subclasses of the DisplayObject class,

they share the same properties to control

general appearance on the Stage, such as

rotation, alpha, x, y, z, scaleX, scaleY,

scaleZ, and so on.

Refer to the ActionScript 3.0 Reference for

the Flash Platform in Help for the extensive

list of properties of the TextField and

TLFTextField classes. In this task, you’ll

explore some of these properties.

400 Chapter 10

To modify the properties
of a text field:
1. In Flash, select the Text tool, and in the

Properties inspector, choose TLF Text.

2. Drag out a text field on the Stage.

3. In the Properties inspector, give the text

field an instance name.

4. Select the first frame of the main Time-

line, and open the Actions panel.

5. In the Script pane, enter the instance

name of your text field followed by a

period, and then enter a property. For

this example, choose textColor, and

enter an equals sign.

6. After the equals sign, enter 0xff0000.

The completed statement changes the

color of the text to red A.

7. Repeat steps 5 and 6, choosing differ-

ent properties and values to modify

your text field B.

To modify the font, font size, and other

characteristics of the text, you must use the

TextFormat class for Classic text or the

TextLayoutFormat class for TLF text, which

is discussed later in this chapter.

If you modify the properties alpha and

rotation, you should embed the font out-

lines for your text field. If you don’t, the text

may not be rendered correctly.

The properties x and y refer to the top-

left corner of the text field.

The properties width and height
change the pixel dimensions of the text field

but don’t change the size of the text inside the

text field. The properties scaleX, scaleY, and

scaleZ, on the other hand, scale the text.

A Change the property textColor for the

text field named mytext. In this example, the

textColor property of the text field mytext is set

to red.

B The script modifies many properties of the

text field mytext, resulting in the text below.

Note that text can be affected by properties for

formatting as well as general appearances such as

transformations in 3D space. The text was already

in the text field on the Stage at authortime.

Controlling Text 401

Generating Text
Dynamically: Classic
vs. TLF Text
So far in this chapter, you’ve been control-

ling and modifying text fields that you’ve

created on the Stage with the Text tool

during authortime.

However, if you want to have text appear

in your movie based on a viewer’s inter-

action, you must be able to create a text

field during runtime. When you generate

text dynamically, you still have full control

over its formatting, style, and many other

characteristics.

The process of dynamically creating

text varies, depending on if you want to

work with Classic or TLF text. For Clas-

sic text, you generate text fields with the

TextField class and modify them with

the TextFormat class. For TLF text, you

can use the TLFTextField class and the

TextLayoutFormat class, but for complex

layouts, your text content as well as its

formatting, display, and control are sepa-

rated in different classes such as TextFlow,

ContainerController, TextConverter,

and SpanElement.

402 Chapter 10

Creating Classic Text
To create a Classic text field, use the

TextField class constructor function,

like so:

var myTextField:TextField = new
➝TextField();

This statement creates a new TextField
instance that you can now fill with text.

You can also change the appearance of

the text field and add it to the display list

to make it visible to the viewer. To assign

contents to your new TextField object,

assign a string to its text property, as

in mytextfield.text = "Hello". Make

the text visible by calling the addChild()
method, as in:

stage.addChild(mytextfield);

To create a Classic text field:
1. Select the first frame of the main Time-

line, and open the Actions panel.

2. Declare a variable using the var
statement, and assign it the data type

TextField. Enter an equals sign and

then new TextField(). Don’t pass any

parameters to the constructor.

Your statement looks something like:

var mytextfield:TextField = new
➝TextField();

3. On the next lines, add content to your

TextField object by assigning a string

to its text property.

4. Finally, add the TextField object to the

display list.

A text field is created and displayed,

with its default properties A.

The default size of a dynamically gener-

ated TextField object is 100 pixels wide by

100 pixels tall.

A This code creates a new instance from the

TextField class, adds text, and displays the

instance on the Stage. The dynamically generated

text field is positioned at the registration point of

its parent, here shown at the top-left corner of

the Stage. The default format for a dynamically

created text field is black 12-point Times New

Roman (Windows) or Times (Mac).

Controlling Text 403

To remove a text field:
Call the removeChild() method and use

the text field as its parameter, as in:

removeChild(myTextField);

The TextField object is removed from the

display list and disappears from the Stage

or from its DisplayObjectContainer.

You can use removeChild() to take

away a text field generated dynamically or

one that was created at authortime with the

Text tool.

Modifying Classic text fields
The TextFormat class controls character

and paragraph formatting, and can be used

to modify a text field.

To change the formatting of a text field, first

create a new instance of the TextFormat
class, like so:

var myTF:TextFormat = new
➝TextFormat();

Then assign values to the properties of

your TextFormat object:

myTF.size = 48;

Finally, call the setTextFormat() method

for your text field. This method is a

method of the TextField class, not of the

TextFormat class:

mytextfield.setTextFormat(myTF);

This statement applies the formatting that

you define in the TextFormat object to

the text in the text field. In this example, it

changes the size of the text in the text field

mytextfield to 48 points.

For the full list of TextFormat properties,

refer to the ActionScript 3.0 Reference for

the Flash Platform in Help.

The Default Classic Text Field
Appearance
When you create a Classic text field

dynamically, it has the following default

properties:

type = dynamic
selectable = true
embedFonts = false
multiline = false
restrict = null
displayAsPassword = false
maxChars = null
wordWrap = false
background = false
autoSize = none
border = false
alwaysShowSelection = false
autoSize = none
antiAliasType = "normal"

The text field also has the following

default format properties (which you can

change with a TextFormat object):

font = Times New Roman (Windows)

font = Times (Mac)
leftMargin = 0
rightMargin = 0
size = 12
indent = 0
textColor = 0x000000
leading = 0
bold = false
url = ""
target = ""
italic = false
underline = false
bullet = false
align = "left"

404 Chapter 10

To modify the formatting
of a Classic text field:
1. Create a Classic text field, either by

generating one with ActionScript with

the TextField class or by creating one

on the Stage with the Text tool.

In this example, you’ll create a text field

dynamically B.

2. Declare a TextFormat object using the

var statement followed by an equals

sign and then the constructor function

new TextFormat().

A new TextFormat object is created.

3. On the next lines, enter the name of

your TextFormat object, followed by a

period, then a property name, an equals

sign, and a value. For example:

myTF.size = 48;
myTF.color = 0xFF0000;
myTF.italic = true;

These three statements assign new

values for the size, color, and the italics

style C.

4. On a new line, enter the name of your

text field followed by a period. Then call

the setTextFormat() method and pass

your TextFormat object as the param-

eter D.

The TextFormat object provides the

information about all the formatting

of the text, and the setTextFormat()
method applies those changes.

B Create a new text field from the TextField
class, assign text, and add it on the Stage.

C Instantiate a TextFormat object called myTF,

and assign new values for its size, color, and

italics style.

D Call the setTextFormat() method and pass

the TextFormat object to make the formatting

changes.

Controlling Text 405

5. Be sure to change the width and

height properties of the text field to

accommodate the text.

6. Test your movie.

Flash creates a TextFormat object. The

properties of the object are passed

through the setTextFormat() method

and modify the existing contents of the

text field E.

The setTextFormat() method changes

the formatting of existing text only, so you

should already have text in your text field to

see the changes. If you add more text after

setTextFormat() is called, that text will have

its original formatting.

You can pass two additional, optional

parameters for the setTextFormat() method

if you want to modify only a span of characters

in your text field. The first parameter is the

required name of your TextField object, the

second is the beginning position of the span,

and the third is the ending position of the span.

The position of each character is numbered

with an index starting at 0. So the statement

mytextfield.setTextFormat(myTF, 12, 24)
formats just the characters beginning at index

12 and up to, but not including, index 24.

E The new formatting applies to the entire text

field. The width and height properties expand the

text field to accommodate the text, but do not

change the actual size of the text itself.

406 Chapter 10

Embedding and applying fonts
When you want to format a Classic text

field with a particular font, you use the

font property of the TextFormat object to

provide the name of the font. However, you

must do two additional things: First, you

must set the embedFonts property of the

text field to true. Second, you must make

the font available to the exported SWF by

putting it in the Library and marking it in the

Linkage options of the Symbol Properties

dialog box.

To modify the font of a
Classic text field:
1. In the Library, choose New Font from

the Options menu F.

The Font Embedding dialog box

appears.

2. In the Font Embedding dialog box,

choose a font from the pull-down

menu G.

3. Click the ActionScript tab.

4. In the Linkage section, select Export for

ActionScript. Leave the base class as

flash.text.Font. Click OK H.

Flash may warn you that it can’t find

a definition for the class. Click OK to

dismiss the dialog box. Flash will export

the font and include it in your SWF so

you can reference it from ActionScript.

Your embedded font appears in your

library I.

5. Select the first frame of the Timeline,

and open the Actions panel.

6. On the first line of the Script pane, cre-

ate a new TextField object and add it

to the Stage.

7. On the next line, assign some text to

the text property of your TextField
object.

F Choose New Font from the Library Options

menu.

G Choose the font you want from the pull-down

menu.

H The ActionScript tab of the Font Embedding

dialog box. Select the Export for ActionScript box

and leave the Base class as flash.text.Font.

I The font

appears in your

library.

Controlling Text 407

8. On the following line, assign the value

true to the embedFonts property of

your TextField object J.

9. On the next line, create a new

TextFormat object.

10. On the following line, enter the name of

your TextFormat object, a period, the

property font, an equals sign, and then

the name of your font as it appears in

your Properties inspector. Make sure

you put quotation marks around the

font name.

Note that the font property takes a

string value. This is not the name of

your font symbol in the Library, nor is it

the class name in the Linkage prop-

erties. It is the name of the font that

appears in the Font field of the Font

Symbol Properties dialog box, which is

identical to the one that appears in the

pull-down menu of fonts in the Proper-

ties inspector K.

11. On a new line, enter the name of your

text field and a dot, and then call the

setTextFormat() method and pass the

TextFormat object as the parameter L.

12. Test your movie.

The font symbol in your Library is

marked for export into your SWF and is

available to be referenced by Action-

Script. Flash creates a TextFormat
object and assigns the font out-

line to its font property. When the

setTextFormat() method is called, the

font is applied to the text field M.

Setting the antialiasing of your text field

to an advanced setting may help with the

rendering and appearance of embedded fonts.

Use the statement:

mytextfield.antiAliasType =
➝ AntiAliasType.ADVANCED;

J The property embedFonts must be true if you

want to embed fonts for a dynamically generated

text field.

K Assign the new font to the font property of

your TextFormat object. The font is the name that

appears in the pull-down menu in your Properties

inspector; here it’s called “Bauhaus 93.” Be sure to

use quotation marks around your font name.

L The last step is to use the setTextFormat()
method and pass your TextFormat object. Be sure

that you’ve already assigned text to your text field.

M The text is displayed in the

specified font (Bauhaus 93).

408 Chapter 10

Creating TLF Text Fields
Using TLF text gives you more sophistica-

tion over the typography and layout, but it

comes with an added price. The low-level

and nuanced control over all the details

of your text comes with a proportionately

larger set of ActionScript code to handle

those details.

The simplest way to use TLF text is to cre-

ate a new text field with the TLFTextField
class and add it to the Stage. Assign con-

tents to the text field with its text property,

just as you would do with Classic text:

var mytextfield:TLFTextField =
➝ new TLFTextField();
stage.addChild(mytextfield);
mytextfield.text = "hello world";

However, that’s where the similarities

between Classic and TLF text ends. TLF

text differs from Classic text in that all the

text is managed through another class

called TextFlow. To format a TLF text field,

you put the contents of your TLF text field

into a TextFlow object, and then assign a

TextLayoutFormat object to the format
property of your TextFlow object, much

like this:

var mytextflow:TextFlow =
➝ new TextFlow();
mytextflow = mytextfield.textFlow;
var myformat:TextLayoutFormat =
➝ new TextLayoutFormat();
myformat.fontSize = 14;
mytextflow.format = myformat;

Finally, you must call a method,

updateAllControllers(), to make the

formatting take effect:

mytextflow.flowComposer.
➝ updateAllControllers();

To create TLF text:
1. In the Actions panel, enter an import

statement to include the code for the

TLFTextField class:

import fl.text.TLFTextField;

2. Create a new instance of a

TLFTextField and add it to the Stage:

var mytextfield:TLFTextField =
➝ new TLFTextField();
stage.addChild(mytextfield);

3. Assign text to your text field’s text
property, and modify any other proper-

ties to change its appearance A.

A This code creates a new instance from the

TLFTextField class, assigns text, and adds the

instance to the Stage. The dynamically generated

text field is positioned at the registration point of

its parent, here shown at the top-left corner of the

Stage. The text field has some of its properties

modified: the text displays in two columns.

Controlling Text 409

To format TLF text:
1. Continue with the previous task.

2. In the Actions panel, enter an import
statement to include the code for the

TextLayoutFormat and TextFlow class:

import flashx.textLayout.formats.
➝TextLayoutFormat;
import flashx.textLayout.elements.
➝TextFlow;

3. Instantiate a TextLayoutFormat
object and assign new formatting

properties B.

The TextLayoutFormat object holds all

the formatting information.

4. Create a TextFlow object and assign

the textFlow property of your

TLFTextField to the new TextFlow
object.

5. Assign the TextLayoutFormat object to

the format property of your TextFlow
object.

6. Finally, call the updateAllControllers()
method on the flowComposer of your

TextFlow object. The full code can be

seen here C.

The text is modified according to

the formatting properties in the

TextLayoutFormat object D.

B The highlighted portion of the code shows the

TextLayoutFormat object and some formatting

properties. You can specify the font family in

quotation marks, with alternative font families

separated by commas.

C The full code to create a TLFTextField and

format it with a TextLayoutFormat object. You

must use the TextFlow object to format the text

and to call the updateAllControllers() method.

D The text displays according to the formatting in

the TextLayoutFormat object. Compare this text

with the example with default formatting in A.

410 Chapter 10

Getting Text into
the TextFlow
Creating text with a TLFTextField object

allows you to work with only a single block

of text and hides much of the complex-

ity and possibilities behind the TLF text

engine. If you’re going to use TLF text

extensively, you’ll want to start with the

TextFlow object to manage your text

rather than the TLFTextField.

The TextFlow object holds and organizes

all your text content. It allows for many dif-

ferent kinds of text content, which can be

highly structured, like an outline. The hier-

archy lets you organize your overall story
into paragraphs and individual elements

such as pieces of text, inline graphics, or

links. The TextFlow object is a complicated

beast! The TextFlow object is organized

like so: The TextFlow object can contain a

div element or a paragraph element. A div

element can contain another div element

or more paragraph elements. A paragraph

element can contain a span element (some

text), an inline graphic element (an image),

a link element (a hyperlink), and other less

common elements. A shows the hierarchy

of elements within the TextFlow object.

A The structure of the TextFlow
object. The TextFlow object can

contain a div element or a paragraph

element. The div element can contain

another div element or a paragraph

element. The paragraph element can

contain a span (text), inline graphic

(image), or link element (hyperlink).

There are several approaches to get text

into the TextFlow object. One approach is

to use the TextConverter class to import

text. Another is to define each element of

the TextFlow hierarchy.

Using the TextConverter
If you have a block of text, use the

TextConverter class to import the

text into your TextFlow object. Use

the importToFlow() method of the

TextConverter class to specify a specific

string and to indicate its format. There are

three formats. The string could be just

regular text, it could be HTML-formatted

text, or it could be structured in a TextFlow
hierarchy, marked up with div, paragraph,

and span elements. If text is marked up

in this manner, it is known to be in Text

Layout markup format. When you use the

TextConverter class, make sure you use

the import statement to include the code

in your final published SWF as follows:

import flashx.textLayout.conversion.
➝TextConverter;

Controlling Text 411

To import Text Layout markup
text into the TextFlow:
In the Actions panel, enter the following

script:

import flashx.textLayout.conversion.
➝TextConverter;
var mystring:String = "<TextFlow
➝ xmlns='http://ns.adobe.com/
➝ textLayout/2008'><p>Hello
➝ world</p></TextFlow>";
var mytextflow:TextFlow = new
➝TextFlow();
mytextflow = TextConverter.
➝ importToFlow(mystring,
➝TextConverter.TEXT_LAYOUT_FORMAT);

You define your Text Layout markup text

in a variable that holds String data. The

root node is TextFlow with a required

namespace attribute. This is a simple

example that contains a paragraph ele-

ment and a span element inside of it. The

last line converts the contents of mystring
from Text Layout markup text and puts it

into the TextFlow object.

Using the FlowElements
To get text into a TextFlow object, you

can also define each element separately

and add them to the TextFlow hierarchy.

The elements of a TextFlow hierarchy

are classes on their own, and part of a

larger collection called FlowElements.

Create new instances of a SpanElement,

DivElement, ParagraphElement,

InlineGraphicElement, and so on, and

use addChild() to assign them as children

of the TextFlow.

If you are defining different elements,

make sure you use the import statement

to include the code in your final published

SWF as follows:

import flashx.textLayout.elements.*

To import plain text
into the TextFlow:
In the Actions panel, enter the following

script:

import flashx.textLayout.conversion.
➝TextConverter;
var mystring:String = "Hello world";
var mytextflow:TextFlow = new
➝TextFlow();
mytextflow = TextConverter.
➝ importToFlow(mystring,
➝TextConverter.PLAIN_TEXT_FORMAT);

You define your text in a variable that holds

String data, and then instantiate a new

TextFlow object. The last line converts the

contents of mystring from plain text and

puts it into the TextFlow object.

To import HTML text
into the TextFlow:
In the Actions panel, enter the following

script:

import flashx.textLayout.conversion.
➝TextConverter;
var mystring:String = "Hello
➝
➝ Adobe";
var mytextflow:TextFlow = new
➝TextFlow();
mytextflow = TextConverter.
➝ importToFlow(mystring,
➝TextConverter.
➝TEXT_FIELD_HTML_FORMAT);

You define your HTML-formatted text in a

variable that holds String data, and then

instantiate a new TextFlow object. The

last line converts the contents of mystring
from HTML text and puts it into the

TextFlow object. The HTML format will be

preserved.

412 Chapter 10

To assign a Span element
to the TextFlow:
In the Actions panel, enter the following

script:

import flashx.textLayout.elements.*
var myparagraphelement:
➝ ParagraphElement =
➝ new ParagraphElement();
var myspanelement:SpanElement =
➝ new SpanElement();
myspanelement.text = "Hello world";
myparagraphelement.addChild(
➝ myspanelement);
var mytextflow:TextFlow = new
➝TextFlow();
mytextflow.addChild(
➝ myparagraphelement);

In this example, a paragraph element

and a span element are created. Some

text is assigned to the span element. The

span element is added to the paragraph

element, which is added to the TextFlow
object B.

To assign an InlineGraphic
element to the TextFlow:
In the Actions panel, enter the following

script:

import flashx.textLayout.elements.*
var mysquare:Sprite=new Sprite();
mysquare.graphics.beginFill(
➝ 0x000000);
mysquare.graphics.drawRect(0,0,20,20);
var myparagraphelement:
➝ ParagraphElement =
➝ new ParagraphElement();
var myinlinegraphicelement:
➝InlineGraphicElement =
➝ new InlineGraphicElement();
myinlinegraphicelement.source =
➝ mysquare;

B In this example, the text

“Hello world” is assigned

to a span element, which

is attached to a paragraph

element, which is attached

to the TextFlow object.

Controlling Text 413

myparagraphelement.addChild(
➝ myinlinegraphicelement);
var mytextflow:TextFlow =
➝ new TextFlow();
mytextflow.addChild(
➝ myparagraphelement);

In this example, first a small black square

is created. Then, a paragraph element and

an inline graphic element are created. The

square called mysquare is assigned as

the source for the inline graphic element.

Finally, the inline graphic element is added

to the paragraph element, which is added

to the TextFlow object C.

Remember that a SpanElement,

InlineGraphicElement, or LinkElement
can’t be added to a TextFlow directly. They

must be a child of a ParagraphElement, and

the ParagraphElement must be a child of the

TextFlow object.

Notice that the dynamically generated

square for the inlinegraphic element did not

have to be added to the Stage. In the TLF text

model, a controller will eventually add all the

contents of the TextFlow to a container and

make it visible.

C In this example, the

black square image

is assigned to the

inline graphic element,

which is attached to

a paragraph element,

which is attached to

the TextFlow object.

414 Chapter 10

TLF Text Containers
and Controllers
After you’ve assigned text to your

TextFlow object, how do you display it

on the Stage? If you wanted to wrap your

TextFlow contents around a photo, you’d

need to create multiple containers for the

text. Text from one container flows into

another, just like threaded text fields that

you create with the Text tool on the Stage.

You define a container by simply creat-

ing a rectangular Sprite on the Stage

(see Chapter 7, “Controlling and Display-

ing Graphics,” for more about creating a

Sprite). You can have just a single con-

tainer, or multiple containers. However,

each container must have its own control-
ler. A controller defines the size of the con-

tainer and manages its contents (text, links,

and inline graphics). The controller is cre-

ated from the ContainerController class.

A The model and processes that manage TLF text. The TextFlow object (at far left) holds all your

content. You put Sprite objects on the Stage as containers for your content (at far right). The

ContainerController and flowComposer control the flow of the content into the containers for

the final output to the viewer.

After you have your containers and

controllers, you must hook up each

controller to your TextFlow object with

addController(), which is done through

the flowComposer. Finally, use the com-

mand updateAllControllers() via the

flowComposer, which makes the text flow

into the containers, updating any format-

ting or content changes, and rendering

each line of text.

It helps to visualize the process and

relationships A between the objects at

work: the containers (Sprite), controllers

(ContainerController), and the text con-

tent (TextFlow).

Controlling Text 415

To display TextFlow content:
1. Open the Actions panel, and import the

necessary ActionScript code for TLF

text as follows:

import flashx.textLayout.
➝ container.*;
import flashx.textLayout.
➝ elements.*
import flashx.textLayout.
➝ conversion.TextConverter;

2. Open the Actions panel, and create

a TextFlow object. Assign content to

the TextFlow object in any of the ways

described in the previous section, “Get-

ting Text into the TextFlow” B.

3. On the next line, create a Sprite object

and add it to the Stage C.

The Sprite object will act as the con-

tainer for your text.

B In this example, the plain text “Hello world” is imported into the

TextFlow.

C Create a Sprite object for

your container.

4. Next, create a ContainerController
object. The three parameters for the

constructor are the Sprite object, the

width, and the height:

var mycontainercontroller:
➝ ContainerController =
➝ new ContainerController(
➝ mysprite,200,100);

In this example, the

ContainerController defines the

container as 200 pixels wide and 100

pixels high.

5. Now add the controller to your

TextFlow object via the flowComposer:

mytextflow.flowComposer.
➝ addController(
➝ mycontainercontroller);

Continues on next page

416 Chapter 10

6. Finally, call the

updateAllControllers() method

via the flowComposer:

mytextflow.flowComposer.
➝ updateAllControllers();

This example has only one controller

and one container, but if you did have

multiple containers and controllers, this

single statement would update them all.

The full code and results appear in D.

That’s a lot of code for just a simple

text display! But you can use the same

model for more complex layouts. In the

next task, you’ll have text that flows

through two containers.

D The full code makes the TextFlow content flow into its container and displays it

on the Stage. The container is 200 pixels wide by 100 pixels high, and, by default, is

positioned at the upper-left corner of the Stage.

E The second Sprite
object is created and added

to the Stage.

F A second ContainerController is added for the second Sprite object, and makes

it 50 pixels wide and 150 pixels high. The Sprite is positioned in a different location on

the Stage. The controller for the first sprite has also been changed to 100 pixels wide

and 50 pixels high.

To display TextFlow content
in multiple containers:
1. Continue with the previous task. You’ll

add an additional container and control-

ler to see how your text flows into both.

2. In the Actions panel, create a second

Sprite and add it to the Stage E.

Each new container requires another

Sprite object.

Controlling Text 417

4. Now add the second controller to your

TextFlow object via the flowComposer.

The full code should look similar to G.

5. Test your movie H.

The contents of your TextFlow object

flows through two containers.

The order in which you add the

ContainerControllers to the TextFlow
determines the order that the text flows

through the containers.

G The full script, with new text content flowing through two containers.

3. Create a second ContainerController
and specify the second Sprite, its

width, and height. Also, position the

Sprites on the Stage where you want

by assigning new x and y values F.

Each new container requires another

controller.

H The TextFlow content flows into separate containers—

the first is a 100x50 pixel area, and the second is 50x150

pixel area to its lower right.

100 pixels 50 pixels

50 pixels

150 pixels

mysprite

mysprite2

418 Chapter 10

Formatting the
TextFlow
There are two ways to format your text.

First, you can use the TextLayoutFormat
class and create a group of formatting

properties like so:

var myformat:TextLayoutFormat =
➝ new TextLayoutFormat();
myFormat.color = 0x336633;
myFormat.fontFamily = "Arial";
myFormat.fontSize = 14;

Refer to the Flash Help > ActionScript

3.0 Reference for the Flash Platform for a

full list and explanation of all the format-

ting properties you can control. Next, you

assign the TextLayoutFormat object to the

format property of the TextFlow object:

mytextflow.format = myformat;

In this example, the entire contents of the

TextFlow object called mytextflow is for-

matted to display in 14 point green Arial.

You can also just apply the TextLayoutFormat
object to certain elements of the TextFlow
object. Recall that the TextFlow is struc-

tured hierarchically with different elements.

For example, if you have several span

elements, you can just modify the format-

ting of one of them by assigning its format
property to the TextLayoutFormat object:

myspan:SpanElement =
➝ new SpanElement();
myspan.text = "some other text";
myspan.format = myformat;

The second way of formatting the

TextFlow content is to add the format-

ting properties to the Text Layout markup

itself. For example, when you define Text

Layout markup text to import with the

TextConverter class, you can add attri-

butes to any of the nodes:

var mystring:String = "<TextFlow
➝ xmlns='http://ns.adobe.com/
➝ textLayout/2008'><p><span color=
➝'0x336633' fontFamily='Arial'
➝ fontSize='14'>Hello world
➝ </p></TextFlow>";

This example modifies the text “Hello

world” to display in 14 point green Arial.

Formatting the FlowElements
You can also format the individual FlowElements (span, paragraph, and so on) by assigning new

formatting properties directly on the FlowElement itself, and not through its format property. For

example, this statement changes the font size of this span element:

myspan.fontSize = 14;

However, if you apply a TextLayoutFormat object to this span element’s format property, the

previous formatting will be wiped out, and if you don’t redefine its fontSize property, it will remain

undefined.

Controlling Text 419

To format TextFlow content
with the TextLayoutFormat:
1. Continue with the task, “To display

TextFlow content in multiple containers.”

2. In the Actions panel, make sure you

provide the import statement for the

code for the TextLayoutFormat class,

as follows:

import flashx.textLayout.
➝ formats.TextLayoutFormat;

3. Instantiate a TextLayoutFormat object

and assign new formatting properties A.

4. Assign the TextLayoutFormat object

to the format property of either

your TextFlow object or individual

FlowElement objects B.

Assigning the TextLayoutFormat object

to the format property of the TextFlow
object modifies its entire contents C.

Assigning the TextLayoutFormat
object to the format property of a

FlowElement object modifies just that

single element. Make sure that the

updateAllControllers() method is

the last statement in your ActionScript

code so the formatting works.

To format TextFlow content
in the Text Layout markup:
Assign formatting properties in the particu-

lar nodes of your Text Layout markup.

If you assign properties at the root node

(in the <TextFlow> tag, then the entire

contents of the TextFlow will be modified.

If you assign properties in the individual

nodes (, for example), then only

those nodes will be modified.

A A new TextLayoutFormat object holds

formatting properties for color, font, and font size.

B The TextLayoutFormat object is assigned to

the format property of the TextFlow object.

C The text is modified with

14 point red Marker felt font.

Compare this example to the

unformatted example in H in

the previous section.

420 Chapter 10

Making Text
Selectable or Editable
In addition to all the powerful text layout

and formatting tools, you can allow the

viewer to interact with the text. You can

make the text selectable so viewers can

copy it, or you can make it editable, so

viewers can also paste, delete, modify, or

add their own text.

Enabling text to be selectable or editable

differs, depending on whether you’re

working with TLF text (TextFlow objects)

or Classic text (TextField objects). If

you’re working with TLF text, you’ll enlist

the help of the SelectionManager or the

EditManager class. If you’re working with

Classic text, you’ll be modifying the proper-

ties of the TextField object.

To make TLF text selectable:
Assign a new SelectionManager object to

the interactionManager property of your

TextFlow, as in the following:

import flashx.textLayout.edit.
➝ SelectionManager;
mytextflow.interactionManager =
➝ new SelectionManager();

The import statement includes the neces-

sary code for the SelectionManager. The

SelectionManager makes your TextFlow
selectable, so your user can select and

copy the text but not modify it A. You also

have access to many of the methods of the

SelectionManager, which handles addi-

tional functions dealing with making and

detecting selections.

A Viewers can click in the containers and select

text. Notice how the selection spans multiple

containers.

Controlling Text 421

To make TLF text editable:
Assign a new EditManager object to the

interactionManager property of your

TextFlow, as in the following:

import flashx.textLayout.edit.
➝ EditManager;
mytextflow.interactionManager =
➝ new EditManager();

The import statement includes the

necessary code for the EditManager.

The EditManager makes your TextFlow
editable, so your user can select, copy,

paste, delete, or add text B. You also

have access to many of the methods of

the EditManager, which handles additional

editing functions.

To make Classic text selectable:
Assign the selectable property of a

TextField to true, as in the following:

var mytextfield:TextField =
➝ new TextField();
mytextfield.selectable = true;

To make Classic text editable:
Assign the type property of a TextField to

TextFieldType.INPUT, as in the following:

var mytextfield:TextField =
➝ new TextField();
mytextfield.type =
➝TextFieldType.INPUT;

B Viewers can delete the contents and enter

their own. In this example, the viewer is entering a

new nursery rhyme, which flows through the same

two containers.

422 Chapter 10

Detecting Text Focus
Sometimes it’s useful to be able to detect

when a user is interacting with text on

the Stage—you may want to know when

they’ve placed their mouse cursor in a text

field so you can provide additional relevant

feedback, or you may want to know when

they’ve moved off a particular text field.

You can detect when a text field is

focused, or active, by listening for the

FocusEvent.FOCUS_IN event. There can

only be one focused object, whether it is a

text field or a button or any other inter-

active object on the Stage. The focus is

changed when the user presses the Tab

key to move to the next interactive object,

or if the user uses the mouse to click on

Detecting Text Selections
In addition to text focus, you can be even more specific and gather information about the

actual position of your viewer’s selection in a text field. For TextField objects, you can ref-

erence the properties caretIndex, selectionBeginIndex, and selectionEndIndex. The

property caretIndex provides the position of the cursor’s insertion point (known as a caret),
selectionBeginIndex provides the position of the first character of a selection span, and

selectionEndIndex provides the position of the last character of a selection span. The position of

a character is represented by an integer called an index, starting with 0. So the first character is 0,

the second character is 1 (including spaces), and so on.

For TextFlow objects, it’s a little more complicated. You must first use the SelectionManager or the

EditManager to enable selections. Then you can use the event SelectionEvent.SELECTION_CHANGE
to detect when the user has made a selection. When the event is dispatched, use the event target’s

selectionState.absoluteStart to get the position of the first character of a selection span and

selectionState.absoluteEnd to get the last character. For example:

mytextflow.addEventListener(SelectionEvent.SELECTION_CHANGE, selectionChanged);
function selectionChanged(e:SelectionEvent):void {
 trace(e.selectionState.absoluteStart)//beginning position
 trace(e.selectionState.absoluteEnd)//ending position
}

another interactive object. You can detect

when the user moves away from a text

field with the event FocusEvent.FOCUS_OUT.

The FocusEvent events can be used for

either TextFlow objects or for TextField
objects.

To detect the focus of a text field:
1. Create text on the Stage, either with the

Text tool in authortime, or with Action-

Script during runtime. Make sure the

text is selectable.

In this example, a TLF text editable text

field is placed on the Stage. You will

detect the focus of this text field.

Controlling Text 423

2. In the Properties inspector, enter an

instance name for the text field A.

3. Select the first frame of the Timeline,

and open the Actions panel.

4. Enter the name of your text field,

then a dot, and then call the

addEventListener() method to detect

the FocusEvent.FOCUS_IN event.

5. On the next line, create the func-

tion that will be triggered by the

FocusEvent.FOCUS_IN event. Between

the curly braces of the function, enter a

trace() statement to provide feedback

about the focused text field B.

Flash detects when the text field

receives focus, and when it does, dis-

plays a message in the Output panel in

testing mode.

6. Create another similar event

handler for the text field for the

FocusEvent.FOCUS_OUT event and

respond by displaying another

message in a trace() statement.

7. Test your movie C.

When your user puts their cur-

sor in the editable text field, the

text field becomes focused, and the

FocusEvent.FOCUS_IN event is dispatched,

displaying a trace message. When your

user clicks on the Stage outside the text

field, it becomes unfocused, triggering the

FocusEvent.FOCUS_IN event, and Flash

traces a different message.

A This editable text field that is created on the

Stage is named display.

B Listen for the FocusEvent.FOCUS_IN event on

the display text field.

C The script detects when the text field is

focused and when it goes out of focus. A message

is sent to the Output panel as notice. Clicking on

the Stage outside of the text field makes the text

field unfocused.

424 Chapter 10

Analyzing Text
When you define a text field as Input (for

Classic text) or Editable (for TLF text), you

give your viewers the freedom to enter and

edit information. Often, however, you need

to analyze the text entered by the viewer

before using it. You may want to tease

out certain words or identify the location

of a particular character or sequence of

characters. If you require viewers to enter

an e-mail address in an input field, for

example, you can check to see whether

that address is in the correct format. Or you

can check a customer’s telephone number,

find out the area code based on the first

three digits, and personalize a directory or

news listing with local interests.

This kind of parsing, manipulation, and

control of the information within text fields

is done with the String class and the

RegExp class. The String class is a data

type that represents any sequence of

characters. You can create a string simply

by passing the piece of text in quota-

tion marks to the constructor function, or

more simply, by just assigning the text to

a variable. The following statements are

equivalent:

var myString:String =
➝ new String("hello");
var myString:String = "hello";

The String class provides tools to search,

analyze, and replace pieces of text, and

compare them to patterns that you might

be interested in, which are called regular
expressions. Regular expressions (from

the RegExp class) are patterns that you

create to identify certain combinations

of letters. For example, you may want to

search input text for a particular person’s

name, or a sequence of specific numbers,

or any number of character combinations.

Regular expressions can be quite simple,

as in /hello/, which matches the word

“hello.” But they can also be quite complex

and difficult to create, and even more dif-

ficult to interpret, as in /̂ \d{5}(–\d{4})?$/,
which matches a five-digit zip code with

an optional dash and four-digit extension.

Learning and mastering regular expres-

sions is not an easy task. Entire books

are devoted to regular expressions, but if

you’re willing to put in the time and effort,

you’ll have a powerful tool for analyzing

text. This section covers regular expres-

sions only at a basic level and looks at how

Flash can detect and respond to them.

Controlling Text 425

or simply:

var myMatch:RegExp = /"hello"/i

Regular expressions use special codes to

search for multiple characters and com-

binations. For example, \d is the code to

use to search for any digit. To incorporate

that code into your regular expression, you

would write:

var myMatch:RegExp =
➝ new RegExp("\\d", "g");

or simply:

var myMatch:RegExp = /\d/g;

The g flag in the previous statements is the

global modifier that looks for the regular

expression throughout the text, not just

the first occurrence. Notice that creating

regular expressions with strings and the

constructor function (the first approach) is

a little cumbersome because you have to

use two backslashes—the first to escape

the character and the second to indicate

the code to search for any digit. For more

complex regular expressions, it becomes

difficult to read. For this reason, creat-

ing regular expressions by entering them

between two forward slashes is the pre-

ferred method.

Table 10.1 shows you some common codes

that are used to construct patterns for

regular expressions. Table 10.2 lists the

various flags that you can use to modify

your regular expressions.

Matching text patterns with
regular expressions
The first step in checking a piece of text for

a matching pattern is to create the regular

expression. You can do this in one of two

ways. You can either use the construc-

tor function of the RegExp class to define

the regular expression, or you can simply

declare a RegExp variable and assign the

regular expression between two forward

slashes (/). In the first approach, you pro-

vide the regular expression (in quotation

marks) and a flag that modifies the regular

expression. For example:

var myMatch:RegExp =
➝ new RegExp("hello","i");

This statement creates a regular expres-

sion that matches the word “hello,” and the

second parameter (the flag) is the modifier

that indicates that case should be ignored,

so either uppercase or lowercase letters

would match.

The second way of creating a regular

expression is to simply assign it to a vari-

able, like so:

var myMatch:RegExp = /hello/i;

In this statement, the regular expression is

in between two forward slashes, and the

flag immediately follows.

You learned in Chapter 3, “Getting a

Handle on ActionScript,” that you include

special characters in a string by using the

backslash (\). The backslash marks an

escape sequence inside a string, so if you

want to include quotation marks around

the pattern “hello”, you would write:

var myMatch:RegExp =
➝ new RegExp("\"hello\"", "i");

426 Chapter 10

TABLE 10.1 Common Codes for Regular Expressions

Code Description Example

? Matches the previous character or group

zero or one time (character is optional).

/ab?c/ matches abc or ac.

* Matches the previous character or group

zero or more times.

/ab*c/ matches abc or ac or abbbc, with b any

number of times.

+ Matches the previous character or group

one or more times.

/ab+c/ matches abc or abbbc, with b any number

of times.

. Matches any one character (except

newline (\n) unless the dotall flag is set).

/a.c/ matches aac, abc, a4c, and other

combinations with any middle character.

| Or /hi|hello/ matches hi or hello.

() Groups the regular expression to confine

scope.

/h(i|ey)/ matches hi or hey.

[] Groups possible characters. A dash (–)

indicates a range of characters.

/[0–9]/ matches a number from 0 to 9, /[123]/
matches 1, 2, or 3.

{n} Matches the previous character or group

exactly n times.

/a{3}bc/ matches aaabc.

{n,} Matches the previous character or group

at least n times.

/a{3,}bc/ matches aaabc, aaaabc, and other

combinations where a is repeated.

{n, m} Matches the previous character or group

at least n times but no more than m times.

/a{3,4}bc/ matches aaabc and aaaabc.

\d Matches any number. /a\dc/ matches a1c or a2c, or other combinations

where the middle character is a number.

\D Matches any character other than a

number.

/a\Dc/ matches abc but not a2c. Middle character

must not be a number.

\s Matches a whitespace character (space,

tab, etc.).

/a\sc / matches a c where the middle character

is a whitespace character.

\S Matches any character other than a

whitespace character.

/a\Sc/ matches abc but not a c. Middle character

must not be a whitespace character.

\w Matches any word character. /a\wc/ matches abc but not a&c. Middle

character must be a word character.

\W Matches any character other than a word

character.

/a\Wc/ matches a&c but not abc. Middle

character must not be a word character.

TABLE 10.2 Flags for Regular Expressions

Flag Description

g Global flag, matches more than one match.

i Ignore case flag; ignores uppercase or lowercase.

m Multiline flag.

d The dotall flag. A dot (.) can match the new line character (\n).

x Extended flag; allows spaces to be ignored for user readability.

Controlling Text 427

To create a regular expression:

1. Select the first frame of the Timeline,

and open the Actions panel.

2. Enter var, the name of your regular

expression, a colon, the RegExp data

type, an equals sign, a forward slash,

your regular expression, and finally

another forward slash. Include any of

the flag modifiers after the last forward

slash A.

Your regular expression is defined.

Searching text to match
a regular expression
You search text to match a regular expres-

sion with several methods. The String
method search() uses a regular expres-

sion as its parameter to scan the piece of

text and returns the index of the first occur-

rence of the matching text. The index is

the position of each character in a string. If

the search() method doesn’t find a match,

Flash returns a value of –1.

The String method match() also uses a

regular expression as its parameter to scan

the piece of text, but it returns an Array
object containing all the occurrences of the

actual matching text. If the match() method

doesn’t find a match, Flash returns a value

of null.

A This regular expression matches a correctly formed e-mail

address, with the global and the ignore case flags set.

428 Chapter 10

To find the position of a pattern
match in a piece of text:
1. Select the first frame of the Timeline,

and open the Actions panel.

2. Create a regular expression as

described in the previous task B.

In this example, the regular expression

/Flash\s?\d+/ig matches the word

“Flash” followed by any series of num-

bers with an optional space in between.

The flags ignore case and will search

globally.

3. On the next line, obtain the text that

you want to search. This could be text

you assign to a String variable, text

that you load in from an external docu-

ment, or text from a text field.

In this example, just assign a simple

piece of text to a String variable C.

4. On the next line, enter your String vari-

able, then a dot. Then call the method

search() and pass the regular expres-

sion as its parameter. Assign the results

to the trace() method D.

The search() method looks through

the text to find a match. It returns the

position of the match in the display

window in testing mode.

5. Test your movie.

To find the pattern matches
in a piece of text:
1. Select the first frame of the Timeline,

and open the Actions panel.

2. Create a regular expression as

described in the previous task.

In this example, the regular expression

/Flash\s?\d+/ig matches the word

“Flash” followed by any series of num-

bers with an optional space in between.

B This regular expression matches the word

“Flash” and any number of digits, with an optional

space in between. The global and ignore case
flags are set.

C Create a sample string to test your regular

expression.

D The search() method matches the regular

expression with your string and returns the

index position of the match. The word “Flash 10”

matched and was located at index 3.

Controlling Text 429

The flags ignore case and will search

globally.

3. On the next line, obtain the text that

you want to search. This could be text

that you assign to a String variable,

text that you load in from an external

document, or text from a text field.

In this example, just assign a simple

piece of text to a String variable.

4. On the next line, enter your String vari-

able, then a dot. Then call the method

match() and pass the regular expres-

sion as its parameter. Assign the results

to an Array object E.

The match() method looks through the

text to find a match. It returns an Array
object that contains all the occurrences

of the match.

5. On the next line, enter the trace()
method to display the elements of the

Array object. Test your movie F.

The matches are displayed in the dis-

play window in testing mode.

E The match() method matches the regular

expression with your string and returns an Array
object containing the matched substrings.

F To see the matched terms, display the

elements in the Array to the Output panel. Here,

you see that two matches were found: “Flash 10”

and “Flash 9”.

Greedy and Lazy Matches
Sometimes when you search for particular patterns with character repetitions (using *, +, or {}
sequences), Flash will grab more than you actually want. For example, suppose you look for a

sequence of characters that begin with “www.” and end with “.com”, with any number of characters

in the middle using the code .+ (match any character multiple times). If you searched the following

string, “My favorite Web sites are www.adobe.com as well as www.peachpit.com”, the resulting

match would be “www.adobe.com as well as www.peachpit.com” because Flash first matches

“www.”, then marches all the way through the string because of the .+ instructions. When it

reaches the end, it backtracks and finds the “.com” match and stops. This is called a greedy match.

To fix this problem, you need to tell Flash to match the fewest number of characters as possible.

You can do so by specifying a lazy match, which is indicated by a question mark (?). If you use the

code .+? instead of just .+, Flash will match the minimum number of characters until it finds the

next match.

www.adobe.com
www.peachpit.com
www.adobe.com
www.peachpit.com

430 Chapter 10

Searching and replacing text
When you find matches for your regular

expression in a piece of text, you can

replace the matches with another string,

much like the search and replace function

in a word processing application. You use

the String class method replace(), which

takes two parameters: one for the regular

expression and another for the replace-

ment string.

The replacement string can also include

codes in it to allow parts of the pattern to

be used as the replacement. Table 10.3

lists the replacement codes. This is a

powerful way to replace text. For example,

you could search a text document with

Web site addresses that begin with “www.”

and end in “.com”. Once identified, you can

strip them out and put them back in with

HTML anchor tags around them, such as

<a href>.

To replace the pattern
matches in a piece of text:
1. Select the first frame of the Timeline,

and open the Actions panel.

2. Create a regular expression as

described in the previous task G.

In this example, the regular expres-

sion /www\..+?\.com/ig matches any

sequence of text that begins with

“www.” and ends with “.com”. The ques-

tion mark is a code to identify a lazy

pattern so multiple sequences of Web

sites can be identified (see the sidebar

“Greedy and Lazy Matches”).

TABLE 10.3 Replacement Codes

Code Description

$& The matched substring.

$` The text that precedes the match. Note

that the code uses the backtick key

found on the same key as the tilde (the

key to the left of the number 1 key).

$' The text that follows the match. Note

that the code uses the single-quote

character, which is found to the left of

the Enter key.

$n The nth group match.

x Extended flag; allows spaces to be

ignored for user readability.

G This regular expression is a simple check for a

Web address beginning with “www.” and ending

with “.com”.

Controlling Text 431

5. On the next line, create a new Classic

text field and display the results of the

replaced string J.

The Web site names are stripped out

and put back in with HTML anchor tags

around them to make them clickable in

the newly generated text field K.

The String class methods that you’ve

learned in the preceding section, search(),

match(), and replace(), don’t necessarily

have to always use regular expressions as

parameters. You can also use these methods

just with normal strings. Make sure you pass

string parameters with quotation marks.

H Create a sample string with a few Web site addresses.

I The replace() method can replace the matched terms with new text. Here, it will

replace the matches with anchor tags in front, then put in the matched substrings, and

anchor tags behind, to automatically format it as HTML.

K When the replace()
method has done its

work and the results are

displayed in a text field, the

Web links become active.

J The full script.

3. On the next line, obtain the text that

you want to search. This could be text

that you assign to a String variable,

text that you load in from an external

document, or text from a text field.

In this example, just assign a simple

piece of text to a String variable H.

4. On the next line, enter your String vari-

able, then a dot. Then call the method

replace() and pass the regular expres-

sion as its first parameter. For its second

parameter, enter I:

"$&"

The replacement string includes quota-

tion marks that are escaped as well as

replacement codes ($&) that insert the

matched text at those specified points.

432 Chapter 10

Searching for a simple string
When you don’t need to find patterns

with regular expressions, you can rely on

simpler methods to search for a piece of

text. The methods discussed previously,

the search(), match(), and replace()
methods, can take regular strings as

their parameters. Instead of searching

for a pattern match, Flash searches for

an exact match of the string. A few other

methods work using simple strings as

the search term. The String method

indexOf() searches text for a character or

a sequence of characters and returns the

index position of its first occurrence.

To identify the position of a
character or characters:
1. In the Actions panel, enter the String

you want to search, then a dot; then call

the indexOf() method.

2. For the parameters of the indexOf()
method, enter a character or sequence

of characters within quotation marks,

a comma, and then an optional index

number.

The indexOf() method takes two param-

eters: searchString and fromIndex.

The parameter searchString is the

specific character or characters you want

to identify in the String. The parameter

fromIndex, which is optional, is a Number
representing the starting position for the

search within the String.

Flash searches the contents of the

String for the specified character and

returns the index position of the char-

acter L.

The opposite of the method indexOf()
is charAt(). This method returns the char-

acter that occupies the index position you

specify for a string.

If the character you search for with

indexOf() occurs more than once in the

string, Flash returns the index of only the first

occurrence. Use the method lastIndexOf()
to retrieve the last occurrence of the character.

If Flash searches a String with the

indexOf() or lastIndexOf() method and

doesn’t find the specified character, it returns

a value of –1. You can use this fact to check for

missing characters within a string. For exam-

ple, if indexOf("%") == –1, you know that the

percent symbol is missing from the string.

L The indexOf() method returns the first

occurrence of the simple string search term.

The word “cat” appears at index 4.

Controlling Text 433

Determining a String’s size
The String class has one property,

length, that tells you the number of char-

acters in the String. This is a read-only

property that is useful for checking the

relative positions of characters. Since you

know the value of length, you can always

target the last character of a String, which

would have the index position of length–1.

One way you can use the length property

is to make sure that the length of a Classic

text input field isn’t 0 (meaning that the

viewer hasn’t entered anything). If it is 0,

you can send an error message or further

instructions for the viewer. The following

task demonstrates this application.

To check the length of a String:
1. Select the Text tool in the Tools panel,

and choose Classic Text and Input Text.

2. Drag out a text field on the Stage and

in the Properties inspector, enter an

instance name.

3. Select the first frame of the main Time-

line, and open the Actions panel.

4. On the first line, assign an event handler

to detect the KeyboardEvent.KEY_DOWN
event in the text field.

5. Inside the event-handler function, enter

a conditional statement with the if
statement as follows M:

if (myevent.keyCode ==
➝ Keyboard.ENTER){
 }

Flash checks to see if the key that is

pressed is Enter.

Continues on next page

M This event handler detects when the user

presses the Enter key while the text field called

input has focus.

434 Chapter 10

6. Inside the if statement’s curly braces,

create another conditional statement

that checks if the length property of

the text field is 0. As the consequence,

assign some text to the text property

of the input text field as follows N:

if (input.length == 0) {
input.text = "Please enter your
➝ name!";
}

Flash checks the length property of the

input text field. If there is no content,

the value of length is 0, and Flash can

respond with an appropriate message.

7. Test your movie O.

N The conditional statement (highlighted) inside

the event-handler function checks if the length

of the text field’s contents is 0, which means no

information has been entered.

O If the user presses Enter without

any text in the text field, this message

is displayed.

The information that you store in vari-

ables, modify with expressions, and test in

conditional statements often needs to be

processed and manipulated by mathemati-

cal functions such as square roots, sines,

cosines, and exponents. Flash can perform

these calculations with the Math class,

which lets you create formulas for compli-

cated interactions between the objects in

your movie and your viewer or for sophisti-

cated physics in your motion. You can also

turn to the Point class for help in geome-

try. Imagine modeling the correct trajectory

of colliding objects to create a game of

pool, simulating the effects of gravity for a

physics tutorial, calculating probabilities for

a card game, or generating random num-

bers to add unpredictable elements to your

movie. All of those scenarios are possible

with the Math and Point classes. Much of

the information you manipulate sometimes

needs to be stored in a structured man-

ner to give you better control of your data

and a more efficient way to retrieve it. You

can use the Array class to keep track of

ordered sets of data such as shopping lists,

color tables, and scorecards.

11
Manipulating
Information

In This Chapter
Making Calculations with the

Math Class 436

Calculating Angles 438

Creating Directional Movement 446

Calculating Distances 450

Generating Random Numbers 453

Ordering Information with Arrays 454

Keeping Track of Objects with Arrays 460

Using the Date and Time 464

When the information you need depends

on the time or the date, you can use the

Date class to retrieve the current year,

month, or even millisecond.

This chapter explores the variety of ways

you can manipulate information with

added complexity and shows you how to

integrate many of the predefined classes

you’ve learned about in previous chapters.

436 Chapter 11

Making Calculations
with the Math Class
The Math class lets you access trigono-

metric functions such as sine, cosine, and

tangent; logarithmic functions; rounding

functions; and mathematical constants

such as pi and e. Table 11.1 summarizes the

methods and properties of the Math class.

The Math class has static methods and

properties, which means you don’t need

to create an instance of the Math class to

access them. Instead, you precede the

method or property with the class name,

Math. To calculate the square root of 10, for

example, you write:

var myAnswer:Number = Math.sqrt(10);

The calculated value is put in the variable

myAnswer.

All the Math class’s properties are read-

only values that are written in all uppercase

letters. To use a constant, use syntax like

this:

var myCircum:Number = Math.PI * 2 *
➝ myRadius;

The mathematical constant pi is multiplied

by 2 and the variable myRadius, and the

result is put into the variable myCircum.

Manipulating Information 437

TABLE 11.1 Methods and Properties of the Math Class

abs(number) Calculates the absolute value. Math.abs(–4) returns 4.

acos(number) Calculates the arc cosine.

asin(number) Calculates the arc sine.

atan(number) Calculates the arc tangent.

atan2(y, x) Calculates the angle (in radians) from the x-axis to a point on the y-axis.

ceil(number) Rounds the number up to the nearest integer. Math.ceil(2.34) returns 3.

cos(number) Calculates the cosine of an angle, in radians.

exp(number) Calculates the exponent of the constant e.

floor(number) Rounds the number down to the nearest integer. Math.floor(2.34) returns 2.

log(number) Calculates the natural logarithm.

max(x, y) Returns the larger of two values. Math.max(2, 7) returns 7.

min(x, y) Returns the smaller of two values. Math.min(2, 7) returns 2.

pow(base, exponent) Calculates the exponent of a number.

random() Returns a random number between 0 and 1 (including 0 but not including 1).

round(number) Rounds the number to the nearest integer. Math.round(2.34) returns 2.

sin(number) Calculates the sine of an angle, in radians.

sqrt(number) Calculates the square root.

tan(number) Calculates the tangent of an angle, in radians.

E Euler’s constant e; the base of natural logarithms.

LN2 The natural logarithm of 2.

LOG2E The base-2 logarithm of e.

LN10 The natural logarithm of 10.

LOG10E The base-10 logarithm of e.

PI The circumference of a circle divided by its diameter.

SQRT1_2 The square root of 1/2.

SQRT2 The square root of 2.

438 Chapter 11

Calculating Angles
The angle that an object makes relative

to the Stage or to another object is use-

ful information for creating many game

interactions, as well as for creating dynamic

animations and interfaces based purely in

ActionScript. To create a dial that controls

the sound volume, for example, compute

the angle at which your viewer drags the

dial relative to the horizontal or vertical axis,

and then change the dial’s rotation and the

sound volume accordingly. Calculating the

angle also requires that you brush up on

some of your high school trigonometry, so

a review of some basic principles related to

sine, cosine, and tangent is in order.

The mnemonic device SOH CAH TOA can

help you keep the trigonometric functions

straight. This acronym stands for Sine

= Opposite over Hypotenuse, Cosine =

Adjacent over Hypotenuse, and Tangent =

Opposite over Adjacent A. Knowing the

length of any two sides of a right triangle is

enough information to calculate the other

two angles. You’ll most likely know the

lengths of the opposite and adjacent sides

of the triangle because they represent the

y- and x-coordinates of a point B. When

you have the x- and y-coordinates, you can

calculate the angle (theta) by using the fol-

lowing mathematical formulas:

tan theta = opposite / adjacent

or

tan theta = y / x

or

theta = arctan(y / x)

In Flash, you can write this expression by

using the Math class this way:

var myTheta:Number = Math.atan(
➝ this.y / this.x);

B A point on the Stage makes a right triangle with

x (adjacent side) and y (opposite side).

A The angle, theta, of a right triangle is defined

by sin, cos, and tan and by the length of the three

sides.

Adjacent

Theta

Opposite
Hypotenuse

Sin theta = opposite/hypotenuse
Cos theta = adjacent/hypotenuse
Tan theta = opposite/adjacent

x x-axis

y

y-axis

Manipulating Information 439

Alternatively, Flash provides an even easier

method that lets you define the Y and X

positions without having to do the division.

The Math.atan2() method accepts the Y

and X positions as two parameters, so you

can write the equivalent statement:

var myTheta:Number = Math.atan2(
➝ this.y, this.x);

Unfortunately, the trigonometric methods

of the Math class require and return angle

values in radians, which describe angles

in terms of the constant pi—easier mathe-

matically, but not so convenient if you want

to use the values to modify the rotation
property of an object. You can convert an

angle from radians to degrees, and vice

versa, by using the following formulas:

radians = Math.PI / 180 * degrees;
degrees = radians * 180 / Math.PI;

The following tasks calculate the angle of

the mouse pointer relative to the Stage and

display the angle (in degrees) in a text field.

C The ENTER_FRAME event happens continuously.

To calculate the angle
relative to the Stage:
1. Create a TLF Read Only text field

on the Stage, and give the text field

an instance name in the Properties

inspector.

In this example, the text field is called

myDegrees_txt.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create a new instance of the Shape
class.

You will dynamically draw a line seg-

ment from the top-left corner of the

Stage to the current position of your

mouse pointer to visualize the angle.

4. On the next line, add an event lis-

tener to the Stage to detect the

Event.ENTER_FRAME event.

5. On the next line, create the

function that responds to the

Event.ENTER_FRAME event C.

Continues on next page

440 Chapter 11

6. Within the curly braces of the function,

enter this statement:

var myRadians:Number =
➝ Math.atan2(mouseY, mouseX);

The current mouse position is used to

calculate the angle (in radians) it makes

with the top of the Stage.

7. On the next line, still within the function,

enter the statement:

var myDegrees:Number = myRadians
➝ * 180 / Math.PI;

The angle is converted from radians to

degrees and then assigned to the vari-

able called myDegrees.

8. On the next line, still within the func-

tion, convert myDegrees to a string and

assign the string to the text property

of your dynamic text field. Concatenate

the string " degrees" to the end of the

text field D.

The angle (now in degrees) is displayed

in the text field.

9. On the next line, still within the func-

tion, call the clear() method of the

graphics property of your Shape
object.

10. Next, assign a line style and a fill style

to the graphics property of your Shape
object.

D The Math.atan2() method calculates the angle that the

mouse pointer makes with the origin (top-left corner of the

Stage). The results are converted into degrees, converted into

a string, and displayed in the text field called myDegrees_txt.

Manipulating Information 441

11. Next, call the moveTo() method to

move the drawing location to 0, 0; call

the lineTo() method to the mouseX
and mouseY position; and call another

lineTo() method to the mouseX and

0 position.

The dynamic drawing methods draw

line segments from the corner of the

Stage to the mouse pointer and up to

the top edge of the Stage, creating the

triangle whose sides are used to calcu-

late the angle.

E The lines are drawn dynamically to show the triangle

whose angle is being measured.

F The line between the top-left corner of the

Stage and the mouse pointer makes an angle

of approximately 65 degrees below the x-axis.

myRadians

myShape
dynamically
drawn graphics

Mouse pointer

myDegrees_txt
text field

12. Add the Shape object to the display list

with the addChild() method E.

13. Test your movie.

As the viewer moves the pointer around

the Stage, Flash calculates the angle

that the mouse pointer makes with the

x-axis of the root Timeline and displays

the angle (in degrees) in the text field.

The triangle is also drawn between the

top-left corner of the Stage, the mouse

pointer, and the x-axis F.

442 Chapter 11

Rounding off decimals
So far, the returned values for your angles

have had many decimal places. Often, you

need to round those values to the nearest

whole number (or integer) so that you can

use the values as parameters in methods

and properties. Use Math.round() to round

values to the nearest integer, Math.ceil()
to round up to the closest integer

greater than or equal to the value, and

Math.floor() to round down to the closest

integer less than or equal to the value.

G The expression within the parentheses (in the highlighted

statement) is rounded to the nearest integer using Math.round()
and displayed in the text field myDegrees_txt.

To round a number to an integer:
1. Continuing with the file you used in the

preceding task, select the first frame of

the main Timeline and open the Actions

panel.

2. Select the statement that converts the

angle from radians to degrees.

3. Place your pointer in front of the

expression, and enter the method

Math.round() G.

Flash converts the angle from radians to

degrees and then applies the method

Math.round() to that value, returning

an integer H.

H The text field displays the angle rounded

to the nearest whole number.

Text field

Manipulating Information 443

Putting it together:
Creating a rotating dial
You can apply the methods that calcu-

late angles and round values to create a

draggable rotating dial. The approach is to

calculate the angle of the mouse’s position

relative to the center point of the dial and

then set the rotation property of the dial

to that angle.

To create a rotating dial:
1. Create a movie clip symbol of a dial,

place an instance of it on the Stage,

and give it a name in the Properties

inspector.

In this example, the name is

myDial_mc I.

2. Select the first frame of the main Time-

line, and open the Actions panel.

J Set pressing to true when the movie clip is pressed.

I Place a circular movie clip called

myDial_mc on the Stage.

3. Declare a Boolean variable named

pressing followed by an equals sign

and the value false.

This variable keeps track of whether

your viewer is pressing or not pressing

this movie clip.

4. On the next line, create the listener that

detects the MouseEvent.MOUSE_DOWN
event over your movie clip and create

the function that responds to the event.

5. Within the MouseEvent.MOUSE_DOWN
event-handler function, enter pressing
followed by an equals sign and then the

Boolean value of true J.

The variable named pressing is set

to true whenever you click on your

movie clip.

6. On the next line, create the listener

that detects the MouseEvent.MOUSE_UP
event over the Stage and create the

function that responds to the event.

Continues on next page

444 Chapter 11

7. Within the MouseEvent.MOUSE_UP
event-handler function, enter pressing
followed by an equals sign and then the

Boolean value of false K.

The variable named pressing is set

to false whenever you release your

mouse button.

8. On a new line, create an

event handler that detects the

MouseEvent.MOUSE_MOVE event.

9. Within the MouseEvent.MOUSE_MOVE
event-handler function, enter an if
statement.

10. For the condition of the if statement,

enter pressing == true.

11. Between the curly braces of the if
statement, declare a new Number vari-

able followed by an equals sign.

This variable will be assigned the angle

between the mouse pointer and the

center of the movie clip, in radians.

12. After the equals sign, enter the follow-

ing expression so the full statement

reads:

var myRadians:Number = Math.atan2(
➝ (mouseY – myDial_mc.y),
➝ (mouseX – myDial_mc.x));

Flash calculates the angle between the

mouse pointer and the center of the

movie clip L.

K Set pressing to false when the movie clip is released.

L The variable myRadians contains the calculated angle between the pointer and the

movie clip.

Manipulating Information 445

13. On the next line, declare a new Number
variable followed by an equals sign.

This variable will be assigned the angle

value converted to degrees.

14. After the equals sign, enter an expres-

sion to convert radians to degrees, so

the full statement reads as follows:

var myDegrees:Number = myRadians
➝ * 180 / Math.PI;

15. On the next line, enter

myDial_mc.rotation, an equals sign,

the variable that holds the angle in

degrees, a plus sign, and 90.

The rotation of the movie clip is

assigned to the calculated angle. The

90 degrees are added to compen-

sate for the difference between the

calculated angle and the movie clip

rotation property. A value of 0 for

rotation corresponds to the 12 o’clock

position of an object, but a calculated

arctangent angle value of 0 corre-

sponds to the 3 o’clock position; adding

90 equalizes them M.

16. Test your movie.

When users press the movie clip in

the dial, they can rotate it by dragging

it around its center point. When they

release the mouse button, the dial

stops rotating.

M The angle is converted from radians to degrees and assigned to the variable myDegrees.

The final statement within the if block modifies the rotation of the myDial_mc movie clip.

The rotation of myDial_mc is set at myDegrees + 90 to account for the difference between the

reference point of the trigonometric functions and Flash’s rotation property.

myDial_mc.rotation = 0

myDegrees = 0

446 Chapter 11

Creating Directional
Movement
To control how far an object on the Stage

travels based on its angle, you can use a

method of the Point class called Point.

polar(). The Point class is a class that

simply helps you with geometric manipu-

lations by representing a location with

an x- and a y-coordinate. The Point.

polar() method is a static method, which

means it is available from the class named

Point, not from a particular instance. The

Point.polar() method converts polar

coordinates, which track position in terms

of an angle and its distance from another

point, to regular (Cartesian) coordinates

that you’re familiar with, which track posi-

tion in terms of x and y.

Suppose that you want to create a rac-

ing game featuring a car that your viewer

moves around a track. The car travels at a

certain speed, and it moves according to

where the front of the car is pointed. If you

know the angle of the car and the distance

that it would travel at each time interval,

you can use the Point.polar() method

to calculate its X and Y position relative to

its previous position. The Point.polar()
method takes two parameters: the first is

the distance of the point from the refer-

ence point, and the second is the angle,

in radians. The triangle that the polar

coordinates form determines the x- and

y-coordinates that the method returns as

a new Point object A.

In the following task, you’ll create a movie

clip whose rotation can be controlled by

the viewer. The movie clip has a constant

velocity, so it will travel in the direction

in which it’s pointed, just as a car moves

according to where it’s steered.

A Polar coordinates describe position with angle

and distance, whereas Cartesian coordinates

describe position with an x- and a y-coordinate. The

method Point.polar() takes polar coordinates and

converts them into a Point object with the matching

X and Y properties.

Distance

Angle

x

y

Manipulating Information 447

To create a controllable object
with directional movement:
1. Create a movie clip symbol, place an

instance of it on the Stage, and name

it in the Properties inspector.

In this example, the name is car_mc.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create an event handler assigned

to the Stage that detects the

KeyboardEvent.KEY_DOWN event.

4. Within the KeyboardEvent.KEY_DOWN
event-handler function, enter an if
statement that determines whether the

right arrow key is pressed. If so, add 10

degrees to the current rotation prop-

erty of the movie clip B.

Whenever you press the right arrow key

on the keyboard, the movie clip rotates

clockwise.

5. Within the KeyboardEvent.KEY_DOWN
event-handler function, enter another

if statement that determines whether

the left arrow key is pressed. If so,

subtract 10 degrees to the current

rotation property of the movie clip C.

Whenever you press the left arrow key

on the keyboard, the movie clip rotates

counterclockwise.

6. On a new line, create a new event han-

dler assigned to the Stage that detects

the Event.ENTER_FRAME event.

Continues on next page

B The car_mc movie clip rotates 10 degrees clockwise when

the right arrow key is pressed.

C The car_mc movie clip rotates 10 degrees counterclockwise

when the left arrow key is pressed.

448 Chapter 11

7. Within the Event.ENTER_FRAME event-

handler function, enter the following

statement:

var radians:Number = Math.PI / 180
➝ * (car_mc.rotation – 90);

This expression converts the angle of

the movie clip to radians. Notice that

you have to subtract 90 degrees from

the value of rotation to get the equiv-

alent angle for polar coordinates D.

8. On the next line, still within the

Event.ENTER_FRAME event-handler func-

tion, enter the following expression:

var newSpot:Point = Point.polar(
➝ 5, radians);

The Point.polar() method takes the

distance that the car travels (in this

case, 5 pixels) and its angle (in the

variable called radians), and returns

a new Point object that contains the

equivalent x- and y-coordinates. The x-

and y-coordinates can be represented

with the properties newSpot.x and

newSpot.y.

D The angle of the car is converted into radians (top). The rotation property of

a movie clip begins from the vertical axis and increases in the clockwise direction

(left). Values for radian angles begin from the horizontal axis and increase in the

counterclockwise direction (right).

+270 +90 +180

+270

+90

+180

0

+0

Manipulating Information 449

9. On the next line, still within the

Event.ENTER_FRAME event-handler func-

tion, add the new x- and y-coordinates

to the current coordinates of the movie

clip, as follows E:

car_mc.x += newSpot.x;
car_mc.y += newSpot.y;

10. Test your movie.

When the user presses the left or right

arrow key, the rotation of the movie clip

changes. The X and Y positions change

continuously as well and are calculated

from the angle of the movie clip and the

constant distance it travels using the

Point.polar() method. The movie clip

moves according to where the nose of

the car is pointed F.

E The x- and y-coordinates of the resulting Point object called

newSpot are added to the existing position of the car_mc movie

clip to make it move in the right direction and by the appropriate

amount.

F The car moves

according to where

its nose is pointing.

450 Chapter 11

Calculating Distances
The Point class can also be used to calculate

the distance between two objects. This tech-

nique can be useful for creating novel interac-

tions among interface elements—graphics,

buttons, or sounds—whose reactions depend

on their distance from the viewer’s pointer,

for example. You can also create games that

involve interactions based on the distance

between objects and the player. A game in

which the player uses a net to catch goldfish

in an aquarium, for example, can use the

distance between the goldfish and the net to

model the behavior of the goldfish. Perhaps

the closer the net comes to a goldfish, the

quicker the goldfish swims away.

The distance between any two points is

calculated by the Point.distance() method,

which takes two parameters: the first Point
object and a second Point object. It returns

a number representing the distance between

the two points.

A Create a new Point object whose X and Y properties are the

same as the mouse pointer’s X and Y properties.

B Create a second Point object whose X and Y properties are

the same as the movie clip’s X and Y properties.

Because the Point.distance() method

requires Point objects as its parameters, you

can’t just plug in x- and y-coordinates. You

must create Point objects for the coordinates

between which you want to find the distance.

In this example, you’ll calculate the distance

between the mouse pointer and another

movie clip, and display the distance in a

dynamic text field.

To calculate the distance
between the mouse pointer
and another point:
1. Create a movie clip, place an instance

of it on the Stage, and give it a name in

the Properties inspector.

In this example, the name is center_mc.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Create an event handler to listen for the

MouseEvent.MOUSE_MOVE event on the

Stage.

Manipulating Information 451

6. On a new line, still within the function,

call the Point.distance() method and

pass the two Point objects as param-

eters. Assign the result to a Number
variable, like so:

var myDistance:Number = Point.
➝ distance(mousePt, centerPt);

The distance between the Point object

called mousePt and the Point object

called centerPt is assigned to the vari-

able myDistance C.

Continues on next page

C The distance between the two points is calculated from the

method Point.distance().

Calculating Distances and Angles in 3D
With the support for 3D in Flash, you may need to know distances and angles of objects in 3D

space. You can do so with another class in the Flash geometry package called the Vector3D class.

An object of the Vector3D class takes three parameters: the X position, the Y position, and the

Z position, and an optional fourth parameter, which can hold information about its orientation in

space. Define two Vector3D objects as in the following:

var myvector1:Vector3D = new Vector3D (myObject1_mc.x, myObject1_mc.y,
➝ myObject1_mc.z);

var myvector2:Vector3D = new Vector3D (myObject2_mc.x, myObject2_mc.y,
➝ myObject2_mc.z);

You can calculate the distance between the two objects with the static distance() method, like so:

var mydistance:Number = Vector3D.distance(myvector1, myvector2);

Similarly, you can use the angleBetween() method to calculate the angle between two Vector3D
positions. The result is the angle in radians.

4. Within the MouseEvent.MOUSE_MOVE
event-handler function, create a new

Point object with the mouseX and

mouseY properties as its X and Y prop-

erties, like so A:

var mousePt:Point = new Point(
➝ mouseX, mouseY);

5. On the next line, still within the func-

tion, create another Point object with

the X and Y properties of the movie clip

as the X and Y properties of the Point
object, as follows B:

var centerPt:Point = new Point(
➝ center_mc.x, center_mc.y);

452 Chapter 11

7. On the next line still within the func-

tion, round the value of myDistance
and then convert it to a string with

String(Math.round(myDistance)).

Assign the result to the text property

of a text field.

8. On the Stage, create a TLF Read Only

text field and give it an instance name,

the same name that is referenced in

your ActionScript in step 7.

9. Test your movie.

As the pointer moves around the movie

clip, Flash calculates the distance

between points in pixels D.

D The full script is shown at the top. The text field myDisplay_txt
displays an integer of myDistance.

Mouse pointer

center_mc
movie clip

myDisplay_txt
text field

Manipulating Information 453

Generating Random
Numbers
When you need to incorporate random

elements into your Flash movie, either for a

design effect or for gameplay, you can use

the Math class’s Math.random() method. The

Math.random() method generates random

numbers between 0 and 1 (including 0 but

not including 1). Typical return values are:

0.242343544598273
0.043628738493829
0.7567833408654

You can modify the random number by

multiplying it or adding to it to get the span

of numbers you need. If you need random

numbers between 1 and 10, for example,

multiply the return value of Math.random()
by 9 and then add 1, as in the following

statement:

Math.random() * 9 + 1;

You always multiply Math.random() by a

number to get your desired range and then

add or subtract a number to change the

minimum and maximum values of that range.

It’s important that you understand that

Math.random() generates random num-

bers between 0 and 1, but it will never

produce 1. So, if you need an integer, apply

the Math.round() method to round the

number down to the nearest integer, like

the following statement:

Math.round(Math.random() * 9 + 1);

To generate a random integer:
1. In the Actions panel, enter var, then a

variable name, and strictly type it to an

integer data type.

2. On the same line, enter an equals sign

and then the Math.round() method.

The Math.round() method rounds any

decimal number to the nearest whole

number.

3. Inside the parentheses of the

Math.round() method, enter the

Math.random() method, multiply it by

1 less than the range of numbers you

desire, and add 1, as follows:

var myResult:int = Math.
➝ round(Math.random() * 9 + 1);

The resulting number will be a random

number between 1 and 10 A.

Be aware of when you can use decimals

and when you must use integers. For example,

many properties, such as the X and Y of a

movie clip, can take decimal values. However,

the gotoAndStop() method, which moves the

playhead to a specific frame on the Timeline,

must use an integer. Use the Math.round()
method (or, alternatively, the Math.floor()
or Math.ceil() method) to convert a decimal

number to an integer before using it as a

parameter in the gotoAndStop() method.

A A random number between 1 and 10 is assigned to

the variable called myResult.

454 Chapter 11

Ordering Information
with Arrays
When you want to store many pieces of

related information as a group, you can

use the Array class to help arrange them.

Arrays are containers that hold data, just as

variables do, except that arrays hold mul-

tiple pieces of data in a specific sequence.

The position of each piece of data is called

its index. Indexes are numbered sequen-

tially, beginning at 0, so that each piece of

data corresponds to an index, as in a two-

column table A. Because each piece of

data is ordered numerically, you can retrieve

and modify the information easily—and,

most important, automatically—by referenc-

ing its index. Suppose you’re building an

address book of a list of your important con-

tacts. You can store names in an Array so

that index 0 holds your first contact, index

1 holds your second contact, and so on. By

using a looping statement, you can check

every entry in the Array automatically.

An element (individual item) can be

accessed using the Array object’s name

followed by the element’s index in square

brackets, like this:

myArray[4]

The square brackets are known as array

access operators. The previous statement

accesses the data in index 4 of the array

called myArray. The number of elements

is known as the length of the Array; for

example, the length of the Array in A is 6.

It’s useful to think of an Array as a set

of ordered variables. You can convert

the variables myScores0, myScores1,

myScores2, and myScores3 to a single

Array called myScores of length 4 with

indexes from 0 to 3. Because you have

to handle only one Array object instead

of four separate variables, using Arrays

makes information easier to manage.

In ActionScript, the type of data that

Arrays hold can be mixed. You can have

a Number in index 0, a String in index 1,

and a Boolean value in index 2. You can

change the data in any index in an Array
at any time. The length of Arrays isn’t

fixed, either, so they can grow or shrink to

accommodate new information as needed.

Creating an Array involves two steps. The

first is to declare an Array variable and use

the Array class’s constructor function to

instantiate a new Array instance, as in this

example:

var myArray:Array = new Array();

The second step is to fill, or populate, your

Array with data. One way to populate your

Array is to assign the data to each index in

separate statements, like this:

myArray[0] = "Adam";
myArray[1] = "Betty";
myArray[2] = "Zeke";

Another way to assign the data is to put

the information as parameters within the

constructor function:

var myArray:Array = new Array
➝ ("Adam", "Betty", "Zeke");

The latter is a more compact way of popu-

lating your Array, but you’re restricted to

entering the data in sequence.

Manipulating Information 455

To create an Array:
1. Select the first frame of the Timeline,

and open the Actions panel.

2. Declare your Array by entering var,

the object’s name, and then :Array. On

the same line, enter an equals sign and

then the constructor new Array().

Flash instantiates a new Array B.

3. On the next line, enter the name of your

new Array, an index number between

square brackets, and then an equals sign.

4. Enter the data you want to store in the

Array at that index position.

5. Continue to assign more data to the

Array C.

A An Array is like

a two-column table

with an Index column

and a corresponding

Value column.

B A new Array called myScores is instantiated.

C This Array contains four elements.

Two-dimensional Arrays
An Array has been compared to a two-column table in which the index is in one column and its

contents are in a second column. But what if you need to keep track of information stored in more

than one row in a table, as in a traditional spreadsheet? The solution is to nest an Array inside

another one to create what’s known as a two-dimensional Array. This type of Array creates two

indexes for every piece of information. To keep track of a checker piece on a checkerboard, for

example, you can use a two-dimensional Array to reference its rows and its columns D.

For the three rows, create three separate Arrays and populate them with numbers:

var row0:Array = new Array(1,2,3);
var row1:Array = new Array(4,5,6);
var row2:Array = new Array(7,8,9);

Now you can put those three Arrays inside another Array,

like so:

var gameBoard:Array = new Array();
gameBoard[0] = row0;
gameBoard[1] = row1;
gameBoard[2] = row2;

To access or modify the information of a checkerboard

square, first use one set of square brackets that references

the row. The statement gameBoard[2] references the Array
row2. Then, by using another set of square brackets, you

can reference the column within that row. The statement

gameBoard[2][0] accesses the number 7.

D You can use a two-dimensional

Array to map a checkerboard and

keep track of what’s inside individual

squares. Each row is an Array. The

rows are put inside another Array.

row0

row1

row2

1

4

7

2

5

8

3

6

9

456 Chapter 11

Automating Array
operations with loops
Because the elements of an Array are

indexed numerically, they lend themselves

nicely to looping actions. By using loop-

ing statements such as while, do while,

and for, you can have Flash go through

each index and retrieve or assign new data

quickly and automatically. To average the

scores of many players in an Array without

a looping statement, for example, you have

to total all their scores and divide by the

number of players, like this:

mySum = myScores[0] + myScores[1] +
➝ myScores[2] + ...
myAverage = mySum / myScores.length;

(The property length defines the number

of entries in the Array.)

Using a looping statement, however, you can

calculate the mySum value quickly this way:

for (var i:int = 0; i <
➝ myScores.length; i++) {
 mySum = mySum + myScores[i];
}

myAverage = mySum / myScores.length;

Flash starts at index 0 and adds each

indexed entry in the Array to the variable

mySum until it reaches the end of the Array.

Then it divides the sum by the number of

elements to calculate the average.

To loop through an Array:
1. Select the first keyframe of the Time-

line, and open the Actions panel.

2. Declare and instantiate a new Array
called myScores.

3. Populate the myScores Array with num-

bers representing scores E.

4. On the next line, declare an int vari-

able called mySum and initialize it to 0.

E This Array called myScores contains four

elements.

Manipulating Information 457

5. On the next line, enter a for statement.

6. In between the parentheses of the for
statement, enter the following:

var i:int = 0; i < myScores.
➝ length; i++

Flash begins with the counter variable i
set at the value 0. It increases the vari-

able by increments of 1 until the variable

reaches the length of myScores F.

7. Between the curly braces of the for loop,

enter mySum followed by an equals sign.

8. On the same line, enter mySum +
myScores[i] G.

Rather than using an explicit index, the

value of the variable i will define the

index (and, consequently, which ele-

ment’s value is retrieved and added to

mySum).

Flash loops through the myScores’s

elements in turn, adding the value in

each element of the Array to mySum.

When the value of i reaches the value

of myScores.length, Flash jumps out of

the for loop and stops retrieving values.

Therefore, the last element accessed is

myScores[myScores.length – 1], which

is the last element of the Array.

9. On a new line after the ending curly

brace of the for statement, enter

myAverage_txt.text = String(mySum /
myScores_array.length) H.

10. Create a TLF Read Only text field on

the Stage with the instance name

myAverage_txt.

11. Test your movie.

Flash loops through the myScores Array
to add the values in all the elements, and

then it divides the total by the number

of elements. The average is displayed in

the text field on the Stage I.

F This for statement loops the same number of

times as there are elements in the Array myScore.

G The value of each element in the Array is

added to the variable mySum.

H After the for loop, the average value of the

elements in the Array is calculated and displayed

in the text field myAverage_txt.

I The final result (3.75) is displayed in the

text field on the Stage.

458 Chapter 11

The Array class’s methods
The methods of the Array class let you

sort, delete, add, and manipulate the data

in an Array. Table 11.2 summarizes some

methods of the Array class. It’s convenient

to think of the methods in pairs: shift()
and unshift(), for example, both modify

the beginning of an Array; push() and

pop() both modify the end of an Array;

and slice() and splice() both modify the

middle of an Array.

TABLE 11.2 Methods of the Array Object

Method Description

concat(array1,...,arrayN) Concatenates the specified Array objects, and returns a new Array.

join(separator) Concatenates the elements of the Array, inserts the String separator
between the elements, and returns a String. The default separator is a

comma.

pop() Removes the last element in the Array, and returns the value of that element.

push(value) Adds a new element value to the end of the Array, and returns the new

length.

shift() Removes the first element in the Array, and returns the value of that element.

unshift(value) Adds a new element value to the beginning of the Array, and returns the

new length.

slice(indexA, indexB) Returns a new Array beginning with element indexA and ending with

element (indexB – 1).

splice(index, count,
elem1,..., elemN)

Inserts or deletes elements. Set count to 0 to insert specified values starting

at index. Set count > 0 to delete the number of elements starting at and

including index.

reverse() Reverses the order of elements in the Array.

sort() Sorts the elements of the Array. Numbers are sorted in ascending order, and

strings are sorted alphabetically.

sortOn(fieldName) Sorts an Array of objects based on the value in each element’s fieldName
(a String) property.

toString() Returns a String with every element concatenated and separated by a

comma.

indexOf(searchterm,
startindex)

Searches the Array for the searchterm starting at the startindex and

returns the first index position of the match. Returns –1 if the searchterm
is not found.

lastIndexof(searchterm,
startindex)

Searches the Array for the searchterm starting at the startindex and

returns the last index position of the match. Returns -1 if the searchterm
is not found.

Manipulating Information 459

Table 11.3 gives examples of how some of

the methods in Table 11.2 operate.

It’s important to note which meth-

ods of the Array class modify the original

Array and which ones return a new Array.

The methods concat(), join(), slice(),

and toString() return a new Array or

String and don’t alter the original Array.

The expression var newArray:Array =
originalArray.concat(8), for example,

puts 8 at the end of originalArray and

assigns the resulting Array to newArray.

originalArray isn’t affected. Also note that

some methods modify the Array as well as

return a specific value. These two things aren’t

the same. The statement myArray.pop(),

for example, modifies myArray by removing

the last element and also returns the value of

that last element. At the end of this example,

the value of myResult is 8, and the value of

myArray is 2, 4, 6:

var myArray:Array = new Array(2, 4,
➝ 6, 8);
myResult = myArray.pop();

An easy way to remember the duties

of some of these methods is to think of the

elements of your Array as being components

of a stack. (In fact, stack is a programming

term for a type of array where the last element

added is the first element retrieved.) You can

think of an Array object as being like a stack

of books or a stack of cafeteria trays on a

spring-loaded holder. The bottom of the stack

is the first element in an Array. When you call

the Array’s push() method, imagine that you

literally push a new tray on top of the stack to

add a new element. When you call the pop()
method, you pop, or remove, the top tray from

the stack (the last element). When you shift an

Array, you take out the bottom tray (the first

element) so that all the other trays shift down

into new positions.

TABLE 11.3 Examples of Array Methods

Statement Value of myArray

var myArray:Array = new
Array(2, 4, 6, 8)

2, 4, 6, 8

myArray.pop() 2, 4, 6

myArray.push(1, 3) 2, 4, 6, 1, 3

myArray.shift() 4, 6, 1, 3

myArray.unshift(5, 7) 5, 7, 4, 6, 1, 3

myArray.splice(2, 0, 8, 9) 5, 7, 8, 9, 4, 6, 1, 3

myArray.splice(3, 2) 5, 7, 8, 6, 1, 3

myArray.reverse() 3, 1, 6, 8, 7, 5

myArray.sort() 1, 3, 5, 6, 7, 8

460 Chapter 11

Keeping Track of
Objects with Arrays
Sometimes, you have to deal with multiple

objects on the Stage at the same time.

Keeping track of them all and performing

actions to modify, test, or evaluate each

one can be a nightmare unless you use

Arrays to help manage them. Imagine that

you’re creating a game in which the viewer

has to avoid rocks falling from the sky. You

can use the hitTestObject() method to

see whether each falling-rock object inter-

sects with the viewer. But if there are 10

rocks on the Stage, that potentially means

10 separate hitTestObject() statements.

How do you manage these multiple opera-

tions? The answer is to put them in an

Array. Doing so allows you to perform the

hitTestObject() in a loop on the elements

in the Array instead of in many separate

statements.

Put an object into an Array just as you put

any other data into the Array, using an

assignment statement:

rockArray[0] = fallingRock0_mc;
rockArray[1] = fallingRock1_mc;
rockArray[2] = fallingRock2_mc;

These statements put the movie clip

fallingRock0_mc in element 0 of

the Array rockArray, the movie clip

fallingRock1_mc in element 1, and the

movie clip fallingRock2_mc in element

2. Now you can reference the movie

clips through the Array. This statement

changes the rotation of the movie clip

called fallingRock2_mc:

rockArray[2].rotation = 45;

You can even call methods this way:

rockArray[2].hitTestPoint(mouseX,
➝ mouseY, true);

This statement checks to see whether the

fallingRock2_mc movie clip intersects

with the mouse pointer.

The following tasks use looping statements

to populate an Array with dynamically

drawn Sprites. When the Array is full of

objects, you can perform the same action,

such as modifying a property or calling

hitTestObject(), on all the Sprites by

referencing the Array.

Manipulating Information 461

To populate an Array with objects:
1. In the Actions panel, instantiate a new

Array object.

In this example, the instance name is

blockArray.

2. On the next line, create a for
statement.

3. With your pointer between the parenthe-

ses, enter var i:int = 0; i < 15; i++ A.

This loop will occur 15 times, starting

with i equal to 0 and ending after i
equals 14.

4. Inside the curly braces of the for state-

ment, create a new Sprite object.

In this example, the instance name for

your new Sprite object is block.

5. On the next line, still within the for
statement, call the lineStyle(),

beginFill(), and drawRect() meth-

ods on the graphics property of your

Sprite object B.

Flash draws a rectangle.

6. On the next line, still within the for
statement, change the X and Y posi-

tions of the Sprite object with a ran-

dom number.

7. On the next line, still within the for
statement, call the addChild() method

to add the Sprite to the display list to

make it visible C.

8. On the next line, still within the for
statement, enter the name of the Array
object, then the variable i in square

brackets, followed by an equals sign.

After the equals sign enter block. Each

newly named Sprite object is put inside

a different element of the Array D.

A A new Array called blockArray is instantiated

and a for loop created. This loop uses a counter

that begins at 0 and ends at 14, increasing by 1

with each loop.

B A The Sprite called block is created and a

rectangle is drawn with it.

C The Sprite is randomly positioned on the

Stage and then added to the display list to make

it visible.

D The newly created Sprite is put in the

blockArray.

462 Chapter 11

Accessing movie clips in an Array
Now that your Array is populated with

Sprites, you can reference them easily

with just the Array’s index value to change

their properties or call their methods.

In the next task, you’ll check to see whether

the viewer’s pointer touches any of the

Sprite objects displayed randomly on the

Stage. Instead of checking each Sprite with

a separate hitTestPoint() method, you’ll

loop through the Array and check all the

Sprites with only a few lines of ActionScript.

To reference objects inside an Array:
1. Continuing with the file you used in the

preceding task, select the main Time-

line and open the Actions panel.

2. On a new line after the for statement,

create an Event.ENTER_FRAME event

handler.

3. Inside the function for the

Event.ENTER_FRAME event handler,

create another for statement.

4. With your pointer between the paren-

theses of the for statement, enter

var i:Number = 0; i < 15; i++ E.

Your second for statement will have

the same number of loops as your first

for statement.

5. Inside the for statement, enter the

conditional statement, if.

6. For the condition, enter the name of

your array followed by [i] to reference

each Sprite inside the Array.

7. On the same line, call the hitTestPoint()
method with the parameters mouseX,

mouseY, and true F.

E Enter the same loop statements for the for loop that you

did for the first loop that generated the Sprites.

F Flash checks every Sprite inside blockArray to see

whether the objects intersect with the mouse pointer.

Manipulating Information 463

8. Choose actions to perform when the

mouse pointer intersects a Sprite
object, and enter them in the curly

braces of the if statement.

For example, enter this expression:

blockArray[i].alpha = .3 G.

9. Test your movie.

When the for loop is performed, all the

Sprites inside the Array are tested

to see whether they intersect with the

pointer. Because the for loop is within

an Event.ENTER_FRAME event handler,

this check is done continuously. If an

intersection occurs, that particular

movie clip turns 30 percent opaque H.

G If Flash detects an intersection between a Sprite and the

pointer, that particular Sprite’s transparency changes.

H The pointer has passed over

many of the Sprites, which have

turned semitransparent. Use this

technique to manage multiple

objects that must be tested and

controlled similarly.

464 Chapter 11

Using the Date
and Time
The Date class lets you retrieve the local

or universal (UTC) date and time informa-

tion from the clock in your viewer’s com-

puter system. Using a Date object, you can

retrieve the year, month, day of the month,

day of the week, hour, minute, second, and

even millisecond. Use a Date object and its

methods to create accurate clocks in your

movie or to find information about certain

days and dates in the past. You can create

a Date object for your birthday, for example,

by specifying the month, day, and year.

Using methods of the Date class, you can

retrieve the day of the week for your Date
object that tells you what day you were born.

You first need to instantiate a Date object

with the constructor function new Date().

Then you can call on its methods to

retrieve specific time information. Table

11.4 summarizes the common methods for

retrieving the date and time information.

To create a clock:
1. Create a TLF Read Only text field on the

Stage, and give it an instance name in

the Properties inspector.

The text field will display the time.

2. Select the first frame of the main Time-

line, and open the Actions panel.

3. Enter var, then a name, a colon, the

Timer data type, an equals sign,

and the constructor new Timer(). In

between the parentheses, enter 1000.

A new Timer object is created that

will trigger a TimerEvent every 1,000

milliseconds.

4. On the next line, call the start()
method of your Timer A.

Your Timer will start to count.

A The Timer object is instantiated and started to

fire every 1,000 milliseconds.

TABLE 11.4 Methods of the Date Class

Method Description

getFullYear() Returns the year as a four-

digit number

getMonth() Returns the month as a

number from 0 (January)

to 11 (December)

getDate() Returns the day of the

month as a number from

1 to 31

getDay() Returns the day of the

week as a number from

0 (Sunday) to 6 (Saturday)

getHours() Returns the hour of the

day as a number from

0 to 23

getMinutes() Returns the minutes as a

number from 0 to 59

getSeconds() Returns the seconds as

a number from 0 to 59

getMilliseconds() Returns the milliseconds

Manipulating Information 465

5. On the next line, create an event handler

to detect the TimerEvent.TIMER event.

6. Within the TimerEvent.TIMER event-

handler function, use the var statement

to declare a Date object, followed by an

equals sign, then the constructor new
Date().

The Date object is instantiated B. If you

don’t specify any parameters in the con-

structor, the Date object is populated

with the current date and time informa-

tion. You can also specify parameters in

the constructor to create an object that

references a specific date and time.

7. On a new line, call the getHours()
method of your Date object and assign

the result to a new Number variable C.

Flash retrieves the current hour and

puts it in the variable currentHour.

8. Repeat step 7 to retrieve the current

minute with the getMinutes() method

and the current second with the

getSeconds() method, and assign the

returned values to variables D.

9. On a new line, enter the conditional

statement, if.

10. For the condition, enter

currentHour > 12.

11. On the next line inside the if
statement, enter currentHour =
currentHour – 12 E.

12. Place your pointer after the closing

curly brace for the if statement, and

enter the statement else if.

13. For the condition of the else if state-

ment, enter currentHour == 0.

Continues on next page

B The Date object is instantiated.

C The current hour is assigned to the variable

currentHour.

D The current hour, minute, and second are

retrieved from the computer’s clock and assigned

to different variables.

E The returned value for the method getHours()
is a number from 0 to 23. To convert the hour to

the standard 12-hour cycle, subtract 12 for hours

greater than 12.

466 Chapter 11

14. Inside the else if block, enter

currentHour = 12 F.

15. On a new line after the closing curly brace

of your else if statement, enter the name

of your text field, followed by a period, the

text property, and an equals sign.

16. After the equals sign, create an expres-

sion that concatenates the variable

names for the hour, the minute, and

the second with appropriate spacers

between them G.

17. Test your movie.

The Timer object dispatches a

TimerEvent.TIMER event every second,

and the event handler detects each time

it happens. As a response, the current

hour, minute, and second in the 12-hour

format are displayed in a text field.

Note that minutes and seconds that are

less than 10 display as single digits, such as 1

and 2, rather than as 01 and 02. Refine your

clock by adding conditional statements to

check the value of the current minutes and

seconds and add the appropriate 0 digit.

F Because there is no 0 on a clock, have Flash

assign 12 to any hour that has the value 0.

G The text field displays the concatenated values for the hour, minute, and second.

myDisplay_txt text field

Manipulating Information 467

To create a calendar:
1. Create a TLF Read Only text field on the

Stage, and give it an instance name in

the Properties inspector.

The text field will be used to display

the date.

2. Select the first keyframe of the Time-

line, and open the Actions panel.

3. Declare an Array object that will hold

the days of the week followed by an

equals sign.

4. Enter the constructor function new
Array().

5. In a series of statements, assign Strings

representing the names of the days of

the week as elements of your Array H.

6. On a new line, declare a second new

Array followed by an equals sign.

7. Enter the constructor function new
Array().

This Array will hold the months of

the year.

8. In a series of statements, assign

Strings representing the names of the

months of the year to the elements of

this Array I.

Continues on next page

H The Array dayNames contains

Strings of all the days of the week.
I The Array monthNames contains

Strings of all the months.

Date numbers and names
The values returned by the getMonth()
and getDay() methods of a Date object

are numbers instead of string data types.

The getMonth() method returns values

from 0 to 11 (0 = January), and the getDay()
method returns values from 0 to 6 (0 =

Sunday). To correlate these numeric values

with the names of the months or days of

the week, you need to create Arrays that

contain this information. You can create an

Array that contains the days of the week

with the following statements:

var dayNames:Array = new Array();
dayNames[0] = "Sunday";
dayNames[1] = "Monday";
dayNames[2] = "Tuesday";
dayNames[3] = "Wednesday";
dayNames[4] = "Thursday";
dayNames[5] = "Friday";
dayNames[6] = "Saturday";

468 Chapter 11

9. On a new line, declare a new Date
object followed by an equals sign.

10. Enter the constructor function new
Date() without any parameters.

11. In a series of statements, call the

getFullYear(), getMonth(), getDate(),

and getDay() methods, and assign their

values to new Number variables J.

12. Enter the name of your text field, fol-

lowed by a period, the text property,

and an equals sign.

13. Enter the name of the Array that con-

tains the days of the week. As its index,

put in the variable containing the value

returned by the getDay() method.

The value of this variable is a number

from 0 to 6. This number is used to

retrieve the correct string in the Array
corresponding to the current day.

14. Concatenate the Array that contains

the days of the month, and as its

index put the variable containing the

value returned by the getMonth()
method call.

15. Concatenate the other variables that

hold the current date and year K.

16. Test your movie.

Flash gets the day, month, date, and year

from the system clock. The names of

the specific day and month are retrieved

from the Array objects, and the informa-

tion is displayed in the text field.

J The current year, month, date, and day are

retrieved from the computer’s clock and assigned

to new variables.

K The day, month, date, and year information is concatenated and displayed

in the myDisplay_txt text field.

myDisplay_txt text field

Manipulating Information 469

Tracking elapsed time
Another way to provide time information

to your viewer is to use the Flash function

getTimer(). This function returns the num-

ber of milliseconds that have elapsed since

the Flash movie started playing. You can

compare the returned value of getTimer()
at one instant with the returned value of it

at another instant, and the difference gives

you the elapsed time between those two

instants. Use the elapsed time to create

timers for games and activities in your Flash

movie. You can time how long it takes for

your viewer to answer questions correctly

in a test or give your viewer only a certain

amount of time to complete the test. Or,

award more points in a game if the player

successfully completes a mission within an

allotted time.

Because getTimer() is a built-in function

and not a method of an object, you call it

by using the function name.

To create a timer:
1. Create a TLF Read Only text field on the

Stage, and give it an instance name in

the Properties inspector.

2. Select the first frame of the main Time-

line, and open the Actions panel.

L When the viewer clicks the mouse button, the

getTimer() function retrieves the time elapsed

since the start of the Flash movie. That time is put

in the variable startTime.

3. Declare a Number variable named

startTime, and assign it an initial

value of 0.

4. Create an event handler to detect the

MouseEvent.CLICK event.

5. Within the MouseEvent.CLICK event-

handler function, enter startTime,

followed by an equals sign, then the

function getTimer() L.

Whenever the mouse button is pressed,

the time that has passed since the

movie started playing is assigned to the

variable startTime.

6. On a new line, enter another event han-

dler to detect the Event.ENTER_FRAME
event.

7. Within the Event.ENTER_FRAME event-

handler function, declare a Number
variable named currentTime, followed

by an equals sign, and then the function

getTimer() M.

Flash continuously retrieves the time

that has passed since the movie started

and puts that information in the variable

called currentTime.

Continues on next page

M On an ongoing basis, the getTimer() function

retrieves the time elapsed since the start of

the Flash movie. That time is put in the variable

currentTime.

470 Chapter 11

8. On the next line still within the func-

tion, declare a Number variable

named elapsedTime followed by an

equals sign.

9. Enter (currentTime – startTime) /
1000.

Flash calculates the difference between

the current timer and the timer at the

instant the mouse was clicked. The

result is divided by 1,000 to convert it to

seconds N.

10. On a new line, convert the value of

elapsedTime to a string and assign the

result to the text property of your text

field O.

11. Test your movie.

Flash displays the time elapsed since

the last instant the viewer pressed the

mouse button.

Experiment with different event handlers

to build a stopwatch with Start, Stop, and Lap

buttons.

N The variable elapsedTime is assigned the difference between

the two instances of time recorded in the variables startTime and

currentTime.

O The value of elapsedTime is converted into a string and then

displayed in the text field myDisplay_txt.

As the complexity of your Flash movie

increases with the addition of bitmaps, vid-

eos, sounds, and animations, as well as the

ActionScript that integrates them, you need

to keep close track of all the elements so

you can make necessary revisions and bug

fixes. As the project’s complexity grows,

you’ll also find yourself working more in

teams than by yourself. Fortunately, Flash

provides several tools for troubleshooting,

managing, and sharing assets with cowork-

ers to make your workflow easier.

This chapter shows you how to create

shared Library symbols that supply com-

mon elements to a team of Flash devel-

opers working on a project. This chapter

delves into the Movie Explorer (which

offers information about the organization

of your movie) and the Find and Replace

panel (which can help make global edits).

You’ll also learn to save your movie as an

uncompressed XFL document. The XFL

format allows the contents of your movie to

be exposed so other developers can make

changes quickly and efficiently.

Finally, you’ll learn some strategies for

making your Flash movie leaner and

12
Managing Content

and Troubleshooting

In This Chapter
Sharing Library Symbols 472

Saving Files in an Uncompressed

Format 479

Tracking, Finding, and Managing Flash

Elements 481

Optimizing Your Movie 488

Avoiding Common Mistakes 493

faster—optimizing graphics and code,

organizing your work environment, and

avoiding some common mistakes—guide-

lines to help you become a better Flash

animator and developer.

472 Chapter 12

Sharing Library
Symbols
Flash makes it possible for a team of ani-

mators and developers to share common

Library symbols for a complex project.

Each animator might be working on a sepa-

rate movie that uses the same symbol—

the main character in an animated comic

book, for example. An identical symbol

of this main character needs to reside in

the Library of each movie; if the art direc-

tor decides to change this character’s

face, a new symbol has to be copied to all

the Libraries—that is, unless you create a

shared Library symbol. There are two kinds

of shared symbols: runtime shared symbols

and authortime shared symbols.

Runtime sharing of symbols
In runtime sharing, one file provides a

symbol for multiple movies to use during

runtime. This simplifies the editing process

and ensures consistency throughout a

Flash project A.

Your viewers also benefit from the shared

symbols because they have to download

them only once. For example, a main char-

acter would be downloaded just once, for

the first movie, and all subsequent movies

would use that character.

A A runtime shared symbol in the Library in one SWF (top)

can be used by multiple SWF files (bottom).

Shared symbol
in a Library

Separate SWF movies

Managing Content and Troubleshooting 473

new Flash document and creating a sym-

bol. In the Advanced section of the Symbol

Properties dialog box, mark the symbol to

“Import for runtime sharing” and enter the

name and location of the source symbol

as it appears in the Class field of its own

Symbol Properties dialog box. At runtime,

your new movie finds, imports, and uses

the source symbol.

To create a runtime shared symbol:
1. In a new Flash document, create or

import a symbol you want to share.

The symbol can be a button, movie clip,

font symbol, sound, or bitmap.

2. In the Library panel, select your symbol.

From the Library panel’s Options menu,

choose Properties B.

The Symbol Properties dialog box

appears.

3. Click the Advanced button.

The Symbol Properties dialog box

expands, showing the Linkage and

Sharing sections.

4. In the Sharing section, select the “Export

for runtime sharing” option. In the URL

field, enter the relative or absolute path

to where the SWF file will be posted. In

the Class field, enter a unique name for

your symbol. Leave the Base Class field

as is. Keep the “Export in frame 1” check

box selected. Click OK C.

Your selected symbol is now marked for

export and available to be shared by

other movies.

5. Export your Flash movie as a SWF file

with the name and in the location you

specified in the URL field of the Symbol

Properties dialog box.

This is your source file that shares its

symbol.

To create a runtime shared Library symbol,

mark the symbol for “Export for runtime

sharing” in the Advanced section of the

Symbol Properties dialog box and give the

symbol a class name so you can call on it.

When you export the SWF file, the symbol

will be available to other SWF movies.

Once you create a movie that shares a

Library symbol, you can create other mov-

ies that use it. You do this by opening a

B Choose Properties from the Library panel’s

Options menu.

C To mark a symbol as a shared symbol, select it

for export in the Sharing section, and give a URL

where it can be found. In the Linkage section, give

it a name in the Class field. This shared symbol is

located in the same folder as the movies that will

share it. The shared symbol extends the properties

and methods of the MovieClip class.

474 Chapter 12

To use a runtime shared symbol:
1. Open a new Flash document, and cre-

ate a new symbol of the kind that the

source document is sharing.

For example, say your source docu-

ment is sharing a bitmap symbol. In the

destination document, import another

bitmap symbol. The contents of your

destination symbol will be replaced

by the shared symbol from the source

document at runtime. The symbol in

your destination movie is simply a

placeholder.

2. In the Library panel, select your sym-

bol. From the Options menu, choose

Properties.

The Symbol Properties dialog box

appears.

3. If the Symbol Properties dialog box

is not already expanded, click the

Advanced button.

The Symbol Properties dialog box

expands, showing the Linkage and

Sharing sections.

4. In the Sharing section, select the

“Import for runtime sharing” option.

In the URL field, enter the path to the

source movie. In the Class field, enter

the name for the shared symbol in the

source movie (as it appears in the Class

field of its own Symbol Properties dia-

log box). Click OK D.

Your selected symbol is now marked

to find the shared symbol in the source

movie and import it.

Or you can do the following:

1. Open a new Flash document, and

choose File > Import > Open External

Library E. Choose the Flash file that

contains the shared Library symbol.

The Library of the Flash file that contains

the shared Library symbol appears.

2. Drag the shared Library symbol into

your new document’s Library.

The shared symbol appears in your

destination document’s Library. The

symbol will automatically be marked to

be imported for runtime sharing with

the correct Class name and URL.

After completing either steps 1–4 or
1–2 above, proceed with step 3.

D In the Symbol Properties dialog box, select the

“Import for runtime sharing” check box, and enter

the same Class name and location of the shared

symbol you want to use.

E Choose File > Import > Open External Library to

open the Library of the source movie that shares

its symbol.

Managing Content and Troubleshooting 475

3. In your destination movie, drag an

instance of the symbol onto the Stage,

and use it in your movie.

4. Export your Flash movie as a SWF file,

and place it in a location where it can

find the source movie.

When you play the SWF file, it imports

the shared symbol from the source

movie. The shared symbol appears on

the Stage F.

Continues on next page

F The destination SWF imports the shared symbol from the source SWF. The URL fields in C
and D specify where the source SWF is located relative to the destination SWF. The empty

symbol in the destination movie (left) imports the kungFuMaster shared symbol from the source

SWF at runtime. As a result, the shared symbol appears in the destination SWF file (right).

Shared symbol

Destination SWF at authortime Destination SWF at runtime

476 Chapter 12

When you make changes and revisions

to the shared symbol in the source

movie, all the destination movies that

use the shared symbol are automati-

cally updated to reflect the change.

If you have many symbols in the source

movie that you want to share, choose Shared

Library Properties from the Library Options

menu G. Enter the URL of the source movie’s

location to set the URL for all the shared sym-

bols in the Library.

Authortime sharing of symbols
When you want to share symbols among

FLA files instead of SWF files, turn to

authortime sharing. Authortime sharing lets

you choose a source symbol in a particular

FLA file so that another FLA file can refer-

ence it and keep its symbol up to date. You

have to worry about modifying only one FLA

file containing the source symbol instead

of multiple FLA files that contain the same

symbol. Each movie stores its own copy of

the common symbol. You can update the

symbol to the source symbol whenever

you want, or even make automatic updates

before you publish a SWF file.

To update a symbol from
a different Flash file:
1. Select the symbol you want to update

in the Library panel. From the Options

menu, choose Properties.

The Symbol Properties dialog box

appears.

2. Click Advanced.

The Symbol Properties dialog box

expands to display more options.

G Choose Shared Library Properties from the

Library Options menu to set the URL path of the

shared symbols.

Managing Content and Troubleshooting 477

3. In the Source section of the dialog box,

click Browse H. Select the Flash file that

contains the symbol you want to use to

update your currently selected symbol.

Click OK (Windows) or Open (Mac).

The Select Symbol dialog box appears,

showing a list of all the symbols in the

selected Flash file’s Library.

4. Select a symbol, and click OK I.

The Select Symbol dialog box closes.

5. In the Symbol Properties dialog box that

is still open, note the new source for

your symbol J. Click OK.

The Symbol Properties dialog box

closes, and your symbol is updated with

the symbol you just chose for its new

source. Your symbol retains its name,

but its content is updated to the source

symbol.

To make automatic
updates to a symbol:
In the Symbol Properties dialog box,

select the “Always update before publish”

check box.

Whenever you export a SWF file from your

Flash file, whether by publishing it or by

using the Test Movie command (Control >

Test Movie > in Flash Professional), Flash

will locate the source symbol and update

your symbol.

I Select the source symbol for authortime sharing.

J The Source section of the Symbol Properties

dialog box displays the path to the authortime

source symbol and the name of the source symbol.

H The Source section in the Symbol Properties

dialog box contains options for authortime sharing.

The selected symbol is called kungfuMaster.

478 Chapter 12

Runtime Sharing or Authortime Sharing?
Although they may seem similar, runtime and authortime sharing are two very different ways to

work with symbols. Each approach is better suited to different types of projects and workflows.

Runtime sharing is useful when multiple SWF movies can share common assets, thus decreasing

symbol redundancy, file size, and download times. You publish a single SWF file holding all the

common symbols that multiple SWF files can access. Authortime sharing, on the other hand, is

useful for organizing your workflow before you publish your SWF movie. You can use authortime

sharing to keep different symbols in separate FLA files. A master FLA file can reference all the

symbols in the separate files and compile them into a single SWF. Working this way, you can have

different members of a Flash development team work on different symbols and rely on authortime

sharing to ensure that the final published movie will contain the updated symbols. Compare these

two ways of sharing Library symbols in K.

K During runtime sharing (left), multiple SWF files can share symbols from a single common SWF file after

publishing. During authortime sharing (right), multiple FLA files can provide updated symbols to a single FLA

file before publishing. The single FLA file publishes a SWF file to play during runtime.

Publish

Sharing

Sharing

Publish

Authortime sharingRuntime sharing

Authortime
FLAs

Runtime
SWFs

Managing Content and Troubleshooting 479

Saving Files in an
Uncompressed Format
Flash Professional CS5 introduces a new

Flash format, called the XFL format, which

is an uncompressed Flash document that

exposes the contents of the file so that

other developers can have access and

edit it. The XFL format is actually a folder

with other folders inside it, and not a single

document.

The contents of your file are represented

by several XML files, and any assets in your

Library panel are contained in the LIBRARY

folder. You can edit or swap out assets from

the LIBRARY folder, and all those changes

will be automatically made to the FLA file.

To save a Flash file as
an XFL document:
1. From the top menu, choose File > Save

or File > Save As, and choose Flash

CS5 Uncompressed Document A.

2. Choose a filename and click Save.

Your file is saved in the XFL format,

which is a folder containing all the

content B.

To open an XFL document:
■ Open the XFL folder and double-click

the XFL file inside C.

or

■ From Flash, choose File > Open, and

choose the XFL file inside the XFL

folder.

Your Flash project opens. The XFL file

inside the folder doesn’t contain any

content—it simply provides an icon

for the author to click on to open, and

it points to the XML documents and

assets within the other folders.

A This Flash file called myproject is being saved

as an uncompressed document (XFL format).

B An uncompressed document (XFL format) is a

folder that contains folders and files representing

the contents of your Flash movie.

C Double-click the XFL file inside the folder to

open your Flash file.

480 Chapter 12

To edit an XFL document:
1. In this example, you’ll swap out a

bitmap in the Library panel by editing

the XFL document. Save a Flash file

that contains a bitmap in its library as

a Flash CS5 Uncompressed Document

(XFL) D.

2. Open the XFL folder and the LIBRARY

folder inside it E.

The LIBRARY folder contains all the

library assets.

3. Swap out the bitmap with another,

maintaining its filename.

4. Return to your project in Flash to

see the results of the substitution in

the LIBRARY folder. You may have to

close the file and reopen it to see the

changes.

The original Library symbol has been

replaced with the new symbol F.

When you test an XFL document, the

SWF is published and saved in the same direc-

tory as the XFL folder, and not in the same

directory as the XFL file (inside the folder).

D In this Flash file, the Library contains a few

symbols and an imported JPEG image of the

Grand Central Terminal in New York.

E In the LIBRARY folder inside the XFL project

folder, all the symbols and the imported JPEG

image are represented.

F Swapping out the image (but maintaining its

filename) in the LIBRARY folder results in a clean

substitution in the Flash file, both in the Library

panel and on the Stage.

Managing Content and Troubleshooting 481

search your entire Flash movie for different

elements, edit individual search results, and

even replace multiple elements at once.

Both panels are powerful and useful

tools to help you make sense of complex

Flash movies. For example, to find all the

instances of a movie clip, you can search for

them in the Movie Explorer and have Flash

display the exact scene, layer, and frame

where each instance resides. You can then

quickly go to those spots on the Timeline to

edit the instances. If you wanted to replace

all the text in your movie with a different

font, you can use the Find and Replace

panel to find all text of a certain font and

replace that font with a new font.

The Movie Explorer panel
Use the Movie Explorer panel to provide a

visual display of all your Flash elements on

the Stage and on the Timeline A.

Tracking, Finding,
and Managing
Flash Elements
To manage the myriad Flash elements

in your movie—symbols, text, bitmaps,

ActionScript code, and so on—you can turn

to the Movie Explorer panel or the Find

and Replace panel. The Movie Explorer

panel (Alt-F3 for Windows, Option-F3 for

Mac) gives you a bird’s-eye view of your

Flash movie and presents its various ele-

ments in a hierarchical display. From the

hierarchical display, you can quickly go to

individual elements to edit them. The Movie

Explorer even updates itself in real time,

so as you’re authoring a Flash movie, the

panel displays the latest modifications. The

Find and Replace panel (Ctrl-F for Windows,

Cmd-F for Mac), on the other hand, lets you

A A typical display in the Movie Explorer shows various

elements of the movie in an expandable hierarchy.

Click to collapse
or expand

Filtering buttons

Find field

Display

482 Chapter 12

To display different
categories of elements:
From the Options menu at the right of the

Movie Explorer panel, select one or more

of the following B:

Show Movie Elements displays all the ele-

ments in your movie and organizes them by

scene. Only the current scene is displayed.

Show Symbol Definitions displays all the

elements associated with symbol instances

that are on the Stage.

Show All Scenes displays all the elements

in your movie in all scenes.

To filter the categories of
elements that are displayed:
From the row of filtering buttons at the top

of the panel, select one or more to add

categories of elements to display C:

Show Text displays the actual contents in a

text selection, the font name and font size,

and the instance name for text fields.

Show Movie Clips, Buttons, and Graph-

ics displays the symbol names of buttons,

movie clips, and graphics on the Stage, as

well as the instance names of movie clips

and buttons.

Show ActionScript displays the Action-

Script code assigned to frames (and to

buttons or movie clips, if authoring in

ActionScript 2.0 or earlier).

Show Video, Sounds, and Bitmaps dis-

plays the symbol names of imported video,

sounds, and bitmaps on the Stage.

Show Frames and Layers displays the

names of layers, keyframes, and frame

labels in the movie.

Customize Which Items to Show displays

a dialog box from which you can choose

individual elements to display.

B The Options menu of the Movie

Explorer panel.

C The filtering buttons let you selectively display

elements.

Customize
Which Items
to Show

Show Frames and Layers

Show Video, Sounds, and
Bitmaps

Show ActionScript

Show Movie Clips, Buttons,
and Graphics

Show Text

Managing Content and Troubleshooting 483

or

Double-click the desired element to

modify it. Flash makes the element edit-

able or opens an appropriate window,

depending on what type of element it is:

Double-clicking a symbol (except for

sound, video, and bitmaps) opens

symbol-editing mode.

Double-clicking ActionScript opens the

script in the Actions panel.

Double-clicking a scene or layer lets

you rename it.

Double-clicking a text selection lets

you edit its contents.

To find all instances of a symbol:
In the Find field of the Movie Explorer

panel, enter the name of the symbol whose

instances you want to find.

All instances of that symbol appear in the

display E.

D Entering a word or phrase in the Find

field displays all occurrences of that word

or phrase in the Display window. Here,

the instance named circle of the movie

clip symbol ball has been found.

E Entering the symbol name ball in the

Find field displays all the instances of the

ball symbol. There are two instances listed:

one called circle in the draggable ball

layer and another called myReferencePoint
in the stationary ball layer.

To find and edit elements
in the display:
1. In the Find field at the top of the Movie

Explorer panel, enter the name of the

element you want to find D.

All the elements of the movie that con-

tain that name appear in the display list

automatically as you type in the field.

2. Click the desired element to select it.

The element is also selected on the

Timeline and on the Stage. If a scene or

keyframe is selected, Flash takes you to

that scene or keyframe.

3. From the Options menu of the Movie

Explorer panel, choose Edit in Place or

Edit in New Window to go to symbol

editing mode for a selected symbol.

or

Choose Rename from the Options

menu.

The name of the element becomes

selectable so that you can edit it.

484 Chapter 12

To replace all occurrences
of a particular font:
1. In the Find field of the Movie Explorer

panel, enter the name of the font you

want to replace.

All occurrences of that font appear in

the display F.

2. Select all the text elements, using Shift-

click to make multiple selections.

3. In the Property inspector, choose a

different font and style for all text

elements.

All the selected text elements change

according to your choices in the Proper-

ties inspector G.

F All the occurrences of the Times font

appear in the Display window.

G With the Times text elements selected, choose

a different font, such as Courier New (top) from

the Properties inspector. Flash changes those text

elements from Times to Courier New (bottom).

Managing Content and Troubleshooting 485

The Find and Replace panel
Use the Find and Replace panel Edit > Find

and Replace, Cmd-F for Mac, Ctrl-F for Win-

dows) to search your whole Flash movie

for various elements (text string, a font, a

color, a symbol, a sound file, a video file, or

an imported bitmap) and replace them with

another. You can find and replace indi-

vidual search results or replace all of them

at once. The Find and Replace panel is

particularly powerful with its text searching

capabilities and options.

To find and replace text:
1. In the For pull-down menu, select Text.

2. In the Text box, enter the text that you

want to find.

3. In the Replace with Text box, enter the

replacement text.

4. Select the options for text searching H:

Whole Word searches for the entire

word only and won’t return results if the

text is part of a larger text string.

Match Case searches for the text that

exactly matches uppercase and lower-

case characters.

Regular Expressions searches for text

that matches a pattern specified by a

regular expression (see Chapter 10,

“Controlling Text”).

Text Field Contents searches for the

text in text fields.

Frames/Layers/Parameters searches

for the text in frame labels, layer

names, scene names, and component

parameters.

Strings in ActionScript searches for the

text in strings in ActionScript code.

ActionScript searches for the text

throughout the entire ActionScript code.

Continues on next page

H In this Find and Replace panel, the text

gotoAndPlay will replace gotoAndStop in all

the ActionScript code throughout the movie.

486 Chapter 12

5. Click Find All or Find Next.

All occurrences of that text appear in

the display at the bottom if you click

Find All, or just the first occurrence if

you click Find Next I.

Double-click the search result to imme-

diately go to particular text to edit.

or

Click Replace All or Replace.

All occurrences of that text are replaced

with the replacement text if you click

Replace All, or just the first occurrence

if you click Find Next.

To find and replace fonts:
1. In the For pull-down menu, select Font.

2. In the Search options, select Font, Style,

or Size to search for particular fonts or

particular styles, or to search a range

of font sizes. Leave all options dese-

lected to search for all fonts in your

Flash movie.

3. In the Replace options, select Font,

Style, or Size to replace all the found

text with a new font, a new style, or a

different font size.

4. Click Replace All.

All occurrences of the particular font,

size, or style are replaced by the

selected replacement font, size, or style.

The results are also listed in the display

at the bottom of the dialog box J.

I One instance of the searched text was found

and replaced with the new text. The results are

displayed in the bottom window.

J Find all text in your movie by keeping the

search restrictions unselected for font, style, and

size. Replace the text with a particular font by

specifying the Replace with options.

Managing Content and Troubleshooting 487

To find and replace a symbol,
sound, video, bitmap, or color:
1. In the For pull-down menu, select the

type of element that you want to find.

2. In the Name pull-down menu, select the

name of the symbol, sound, video, or

bitmap (the name should be the name

in the Library), or the Hex code of the

color.

3. In the Replace with pull-down menu,

select the name of a different symbol,

sound, video, or bitmap, or another

Hex code for a color. For color, you can

further refine your replacements by

choosing Text, Fills, or Strokes K.

4. Click Replace All.

All occurrences of the particular symbol,

sound, video, bitmap, or color are

replaced by the selected replacement.

The results are also listed in the display

at the bottom of the dialog box L.

You can only find and replace elements

of the same kind. For example, you can

replace one bitmap with another bitmap, but

you can’t replace one bitmap with a symbol.

K Finding and

replacing colors has

additional options for

replacing the colors in

Text, Fills, or Strokes.

L Find and replace colors, bitmaps, symbols,

sounds, or videos. In this example, all the

bitmaps in the movie named Bitmap 1 were

replaced by the bitmap named Bitmap 2.

488 Chapter 12

Optimizing Your Movie
Understanding the tools you use to create

graphics, animation, sound, and Action-

Script is important, but it’s equally impor-

tant to know how best to use them to

create streamlined Flash movies. After all,

the best-laid designs and animations won’t

be appreciated if poor construction and

clunky code make them too large to down-

load or too inefficient to play easily. To

streamline a Flash movie, use optimizations

that keep the file size small, the animations

smooth, and the revisions simple. Many

factors affect the file size and performance

of the final exported SWF file. Bitmaps,

sounds, complicated shapes, color gra-

dients, alpha transparencies, filters, and

embedded fonts all increase the Flash file

size and slow the movie’s performance.

Only you can weigh the trade-offs between

the quality and quantity of Flash content

and the size and performance of the

movie. Keep in mind the audience to whom

you’re delivering your Flash movies. Are

you delivering content to mobile devices

or to desktop computers with broadband

Internet access? What is the resolution of

your audience’s computer screen? Know-

ing the answers to these questions can

help you make more informed choices

about what to include in your movie and

how to build it.

The following strategies can help you

work more efficiently and create smaller,

more manageable, better-performing

Flash movies.

Managing Content and Troubleshooting 489

Optimizing your authoring
environment
■ Use layers to separate and organize

your content. For example, place all your

ActionScript on one layer, all your frame

labels on another layer, and all your

sounds in still another layer. By using

layers, you’ll be able to understand and

change different elements of your movie

quickly A. Having many layers doesn’t

increase the size of the final exported

SWF file. Lock or hide individual layers

to isolate just the elements you want to

work on. This will prevent you from acci-

dentally moving or deleting other objects

in the way. Use comments in keyframes

as well to explain the different parts of

the Timeline.

■ Organize the layers on your Timeline and

the symbols in your Library with folders.

Just as folders on your desktop can help

you group related items, folders for lay-

ers and folders for symbols will reduce

clutter and make your Flash author-

ing environment a more manageable

workspace.

■ Use the trace statement to observe the

changing values of your object’s proper-

ties in your movie. The trace statement

lets you display expressions and vari-

ables at any point during the execution of

your ActionScript code.

■ Avoid using scenes in your movie.

Although scenes are a good organiza-

tional feature for beginners, Timelines

that contain scenes are more difficult to

navigate. In addition, movie clip instances

aren’t continuous between scenes, so

they are reset from one scene to another.

Instead, use labels to mark different

areas of the Timeline, use movie clips to

hold different parts of your animation, or

load external assets as they are needed.

A Well-organized layers like these are easy to

understand and change.

490 Chapter 12

Optimizing bitmaps and sounds
for playback performance
■ Avoid animating large bitmaps. Keep

bitmaps as static background elements

if they’re large, or make them small for

tweening.

■ Place streaming sounds on the main

Timeline instead of within a movie clip.

A movie clip needs to be downloaded in

its entirety before playing. A streaming

sound on the root Timeline, however,

begins playing as the frames download.

Better yet, keep your sound as an exter-

nal asset and use ActionScript to dynami-

cally load it.

■ Use the maximum amount of compres-

sion tolerable for bitmaps and sounds.

You can adjust the JPEG quality level

for your exported SWF file in Publish

Settings. You can also adjust the com-

pression settings for the stream sync

and event sync sounds separately, so

you can keep a higher-quality stream-

ing sound for music and narration and

a lower-quality event sound for button

clicks B.

■ Avoid using the Trace Bitmap command

to create an overly complex vector image

of an imported bitmap. The complexity

of a traced bitmap can make the file size

larger and the performance significantly

slower than if you use the bitmap itself.

■ Import bitmaps and sounds at the exact

size or length that you want to use them

in Flash. Although editing within Flash

is possible, you want to import just the

information you need to keep the file

size small. For example, don’t import a

bitmap and then reduce it 50 percent to

use in your movie. Instead, reduce the

bitmap 50 percent first and then import it

into Flash.

B The JPEG quality and audio-compression

options in the Publish Settings dialog box.

Managing Content and Troubleshooting 491

Optimizing graphics, text, and
tweening for playback performance
■ Use tweening wherever you can

instead of frame-by-frame animation. In

an animation, Flash only has to remem-

ber the keyframes, making tweening a

far less memory-intensive task.

■ Avoid creating animations that have

multiple objects moving at the same

time or that have large areas of change.

These kinds of animations tax a

computer’s CPU and slow the movie’s

performance.

■ If you have a large vector graphic that

isn’t animated (such as a background),

select the “Use runtime bitmap cach-

ing” option in the Properties inspector

for the instance. This option instructs

the Flash Player to not redraw the

graphic’s content every frame, reducing

the playback computer’s workload.

■ Break apart groups within symbols to

simplify them. Once you’re satisfied

with an illustration in a symbol, break

the groups into shapes to flatten the

illustration. Flash will have fewer curves

to remember and thus will have an eas-

ier time tweening the symbol instance.

Alpha effects on the instance also affect

the symbol as a whole instead of the

individual groups within the symbol C.

■ Use color gradients and alpha transpar-

encies sparingly.

■ Avoid setting filters on High quality, and

avoid multiple filters.

■ Use the Properties inspector to change

the color, tint, and brightness of instances

of a single symbol instead of creating

separate symbols of different colors.

Continues on next page

C An object created with separate groups (top

left) contains more information (top middle) and

can produce undesirable transparency effects

(top right). A single shape (bottom left) contains

less information (bottom middle) and becomes

transparent as one unit (bottom right).

492 Chapter 12

■ Optimize curves by avoiding special line

styles (such as dotted lines), by using

the Pencil tool rather than the Brush

tool, and by reducing the complexity of

curves with Modify > Shape > Optimize

or by pressing Ctrl-Alt-Shift-C for Win-

dows or Cmd-Shift-Option-C for Mac D.

■ Use fewer font styles, and embed only

the essential font outlines.

Optimizing ActionScript code
■ Keep all your code in one place—

preferably on the main Timeline—

and keep code in just one layer.

■ Use a consistent naming convention for

variables, objects, and other elements

that need to be identified. A consistent,

simple name makes the job the variable

performs more apparent.

■ Use comments within your ActionScript

to explain the code to yourself and

to other developers who may look at

your Flash document for future revi-

sions. Use the double backslash (//)

to comment single lines and the block

comment (/* and */) to comment

multiple lines.

■ Think about modularity. Use smaller,

separate components to build your

interactivity. For example, use functions

to define frequently accessed tasks and

keep large or common assets out-

side your movie but available through

shared symbols and Loader objects.

You’ll reduce redundancy, save mem-

ory, and make revisions easier.

D Complex curves and shapes can be simplified

without losing their detail.

Managing Content and Troubleshooting 493

Avoiding Common
Mistakes
When you’re troubleshooting your Flash

movie, there are a few obvious places

you should look first to locate common

mistakes. These problems usually involve

simple but critical elements, such as over-

looking quotation marks or a relative path

term or forgetting to name an instance. Pay

close attention to the following warning

list to ensure that all your Flash movies are

free of bugs:

■ Be mindful of uppercase and lowercase

letters. ActionScript 3 is case-sensitive,

so make sure the names of your vari-

ables and objects exactly match. Flash

keywords must also match in case. For

example, keyCode isn’t the same as

keycode.

■ Remember to name your movie clip,

button, and text field instances in the

Properties inspector. Be sure your

names adhere to the naming rules

explained in Chapter 3, “Getting a

Handle on ActionScript.”

■ Double-check the target paths for your

variables and objects.

■ Make sure that you’ve completely

loaded external data before you

attempt to do anything with it. You must

listen for the Event.COMPLETE before

you can access the loaded object’s

properties, or do anything with it.

■ Double-check the data types of your

values. Review the Script pane to make

sure quotation marks appear only

around string data types. Target paths

and the keyword this should not be

within quotation marks.

Continues on next page

494 Chapter 12

■ Check to see whether ActionScript

statements are within the correct paren-

theses or curly braces in the Script

pane. For example, verify that state-

ments belonging to an if statement or

to a function statement are contained

within their curly braces. Every opening

parenthesis or curly brace needs a clos-

ing parenthesis or curly brace.

■ Don’t forget to add any dynamically

generated object to the display list to

make it visible. The addChild() method

is commonly left out, especially for

those users familiar with previous ver-

sions of ActionScript.

■ To test simple actions and simple but-

tons, choose Enable Simple Frame

Actions and Enable Simple Buttons from

the Control menu. For more complex

button events, you must choose Test

Movie > in Flash Professional from the

Control menu.

■ Always be sure of what timeline you are

working on, especially when you have

embedded movie clips. Sometimes

you’ll add animation or code inside a

movie clip symbol when you really want

to add it to the main Timeline. From

time to time, look at the navigation bar

above the Stage to verify your current

workspace (Scene 1 is the default name

for the main Timeline).

■ Remember that the default setting for

movie clips is to play and loop. Place

a stop() action in its first keyframe to

prevent it from playing automatically, or

place the action in its last keyframe to

prevent it from looping.

■ Do not place button symbols within

button symbols. They will not work

properly.

■ Remember that the default setting for

your Flash movie in the testing mode is

to loop.

For additional help and advice about

debugging your movie, check out the vast

Flash resources on the Web. Begin your

search at Adobe’s Web site, which pro-

vides a searchable archive of tech notes,

documentation, tutorials, case studies, and

more. You’ll also find links to other Web

sites with articles, FLA source files, forums,

blogs, and mailing lists. Check out the

companion Web site that accompanies this

book at www.peachpit.com/flashcs5vqp for

more Flash links and resources.

www.peachpit.com/flashcs5vqp

A
Keyboard Key Codes

FUNCTION KEYS

Function Key Key Code

Keyboard Class

Property

F1 112 F1
F2 113 F2
F3 114 F3
F4 115 F4
F5 116 F5
F6 117 F6
F7 118 F7
F8 119 F8
F9 120 F9
F10 121 F10
F11 122 F11
F12 123 F12
F13 124 F13
F14 125 F14
F15 126 F15

LETTERS

Letter Key Key Code

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

496 Appendix A

NUMBERS AND SYMBOLS

Key

Key

Code

Keyboard Class

Property

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

Numpad 0 96 NUMPAD_O

Numpad 1 97 NUMPAD_1

Numpad 2 98 NUMPAD_2

Numpad 3 99 NUMPAD_3

Numpad 4 100 NUMPAD_4

Numpad 5 101 NUMPAD_5

Numpad 6 102 NUMPAD_6

Numpad 7 103 NUMPAD_7

Numpad 8 104 NUMPAD_8

Numpad 9 105 NUMPAD_9

Numpad * 106 NUMPAD_MULTIPLY

Numpad + 107 NUMPAD_ADD

Numpad Enter 108 NUMPAD_ENTER

Numpad – 109 NUMPAD_SUBTRACT

Numpad . 110 NUMPAD_DECIMAL

Numpad / 111 NUMPAD_DIVIDE

Backspace 8 BACKSPACE

Tab 9 TAB

Clear 12

Enter 13 ENTER

Shift 16 SHIFT

Control 17 CONTROL

Alt 18

NUMBERS AND SYMBOLS (continued)

Key

Key

Code

Keyboard Class

Property

Caps Lock 20 CAPS_LOCK

Esc 27 ESCAPE

Spacebar 32 SPACE

Page Up 33 PAGE_UP

Page Down 34 PAGE_DOWN

End 35 END

Home 36 HOME

Left arrow 37 LEFT

Up arrow 38 UP

Right arrow 39 RIGHT

Down arrow 40 DOWN

Insert 45 INSERT

Delete 46 DELETE

Help 47

Num Lock 144

; : 186

=+ 187

- _ 189

/? 191

`~ 192

[{ 219

| 220

]} 221

' " 222

Index 497

Index

Numbers
3D rotation

changing center point of, 23

changing for objects, 236

3D space

animating in, 22–24

calculating angles in, 451

calculating distances in, 451

Symbols
, (comma), using in ActionScript, 91

! (NOT) logical operator, using, 378–379

&& (AND) logical operator, using, 156, 378

() (parentheses)

using with functions, 114

using with variables, 365

*/ (asterisk and slash), using with block

comments, 124

* (asterisk) wildcard, using with cue points, 82

.. (two periods), using to move up directories,

192

// (double slash), using with line comments, 123

/ (slash), using to separate directories, 192

/* (slash and asterisk), using with block

comments, 124

: (colon), using with strict data typing, 104

; (semicolon), using in ActionScript, 91

[] (array access operator), using, 366–367, 454

\ (backslash) character, escape sequence for, 107

{} (curly braces), using in, 91, 114

|| (OR) logical operator, using, 378–379

+ (addition) assignment operator, using, 239,

364, 366

= (assignment operator), using, 105, 112, 364, 369

== (double equals symbol)

vs. = (assignment operator), 369

described, 368

using with keypresses, 155

A
absolute path, example of, 175–176

actions, testing, 494

Actions panel

adding actions in Script pane, 95

displaying commands in, 94

Export Script function, 101

features of, 92

Find and Replace function, 101

Import Script function, 101

layout, 94

minimizing, 93

modifying display of, 96

opening, 92

options, 97

Options menu, 101

packages, 94

redocking, 93

resizing, 93

Script Assist mode, 92

toolbox, 94, 96

undocking, 93

viewing options, 93

working with external text editors, 101

ActionScript 2

keyboard events in, 156

mouse events in, 136

ActionScript 3

assigning properties, 112

assigning values for data types, 105

Boolean data type, 104–105

building and calling functions, 115

building functions, 114

498 Index

writing with dot syntax, 89–90

ActionScript code

adding, 95

adding via Code Snippets panel, 84

exporting, 103

importing, 103

inserting in Actions panel, 120

optimizing, 492

storing, 97

ActionScript cue points

adding from Properties inspector, 80

adding with ActionScript, 81

detecting, 83

ActionScript Script pane

adding actions in, 95

checking syntax in, 102

editing actions in, 96

Find and Replace dialog box, 102–103

finding terms in, 102–103

navigating, 95

pinning scripts in, 100

removing actions from, 96

replacing terms in, 102–103

resizing, 96

unpinning scripts in, 100

ActionScript statements, scoping, 177

addChild() method

including, 494

using with animated flame, 320

using with DisplayObjectContainer class,

232, 265–266

using with external SWF files, 200, 202

using with loaded movies, 205, 208, 210

addEventListener() method

using, 126

using to drag objects, 254

using to stop dragging objects, 255

addition (+) assignment operator, using, 239,

364, 366

Adobe Media Encoder

adding embedded cue points from, 79

adding video files to, 59

deleting cue points from, 79

removing video files from, 60

alpha, transforming for objects, 243–244

Alpha blend mode, described, 247

ActionScript 3 (continued)
building functions to accept parameters, 116

building functions to return values, 117–118

calling methods, 110–111

capitalization, 91

case sensitivity, 91, 493

classes, 87

code hints, 97–99

Code Snippets panel, 119–122

comma (,), 91

creating block comments, 124

creating instances on Stage, 109

creating line comments, 123

creating objects, 108

curly braces ({ }), 91

data types, 104–105

declaring and initializing variables, 105

editing, 101–103

escape sequences, 107

expressions, 107

ExternalInterface class, 195

getting information about actions, 100

initializing variables, 104–105

instances, 87

instantiating objects, 109

int data type, 104

methods, 88

naming instances, 110

naming variables, 106

Number data type, 104–105

Object data type, 104

objects, 87

overview of, 86

pinning scripts in, 97

properties, 88

properties of, 91

rules for naming objects, 106

semicolon (;), 91

setting formatting options, 99–100

showing earlier versions of, 96

strict typing, 104–105

String data type, 104–105

strings, 107

trace() statement, 113

uint data type, 104

using to animate graphics, 294–295

Index 499

array access operator ([]), using, 366–367, 454

Array class

features of, 435

using square brackets ([]) with, 454

using to order information, 454

Array instance, creating in ActionScript, 108

Array object

calling pop() method, 459

calling Push() method, 459

methods of, 458–459

using for each..in loop with, 382

using to create calendar, 467–468

using with Date class, 467

using with fills and gradients, 274

using with filters, 251–252

array operations, automating with loops, 456

arrays

accessing movie clips in, 462

creating, 455

looping through, 456–457

populating with objects, 461

referencing objects in, 462–463

two-dimensional, 455

using to track objects, 460–463

.as extension, explained, 97

assignment operator (=), using, 105, 112, 364,

369

asterisk (*) wildcard, using with cue points, 82

asterisk and slash (*/), using with block

comments, 124

audio-compression options, accessing, 68, 490

authoring environment, optimizing, 489

authortime sharing, versus runtime shared

symbols, 478

autoPlay parameter, selecting for external

video, 77

axes, navigating in 3D space, 22–23

B
Bandwidth Profiler, features of, 225–226. See

also download progress

bitmap data

creating, 298

creating from external images, 299–300

creating from Library symbols, 298–299

displaying, 301–302

alpha channels

using with filters, 315

using with videos, 71

alphas array, using with fills and gradients, 274,

277

AND (&&) logical operator, using, 156, 378

angles

calculating, 438–439

calculating in 3D, 451

calculating relative to Stage, 439–441

creating rotating dial, 443–445

rounding numbers to integers, 442

rounding off decimals, 442

animated buttons. See also buttons; invisible

buttons

creating, 141

features of, 139

organizing, 141

animated flame, creating, 316–320

animating in 3D. See also inverse kinematics

changing perspective, 25

changing vanishing point, 25

overview, 22

animating titles, 26–27

animations, preventing looping in, 56

antialiasing Classic text fields, 407

arithmetic, rules of precedence, 365. See also
Math class

arithmetic operators, using, 364

armatures

adding nodes to, 34

adding Spring to, 46–47

authortime vs. runtime, 45

branching, 37–38

controlling easing of, 44

creating, 34

creating inside shapes, 39

creating node at end of, 43

defined, 33

dragging with shapes, 40

editing, 35

editing bones of, 40

editing shapes around, 40

enabling interactive control of, 45

hierarchy of bones in, 36

putting in pose layers, 39

500 Index

browser windows

setting properties with JavaScript, 196

working with, 192

browsers

connecting to, 188

testing movies in, 193

button click, responding to, 128

button focus

changing tab order of, 150–151

changing with Tab key, 149

disabling with Tab key, 150

button instances

defining, 146

naming, 110

button symbols

defining appearance of, 135

Over state of, 141

placement of, 494

buttons. See also animated buttons; invisible

buttons

combining types of, 142–145

continuous feedback, 370–371

creating dynamically, 151–152

creating with toggle functionality, 180

defining keyframes for, 142

disabling, 148

displaying Over state for, 149

removing event listeners, 148

testing, 494

button-tracking options, 146–147

C
calculations, making with Math class, 436–437

calendar, creating, 467–468

cap style parameter, explained, 271

capitalization, using in ActionScript, 91

caption property, using with contextual

menus, 162

case statements, using, 376

character position, identifying, 431

charAt() method, using with String class, 432

circle object, adding to top of display list, 265

circles, creating, 280–281

classes

creating instances of, 108

properties of, 88

bitmap data (continued)
overview, 297

removing from BitmapData objects, 301

bitmap images

accessing dynamically, 298

animating, 316–320

blending, 311–312

copying, 307–311

copying color channels of, 310–311

getting colors from, 306

overview of, 296

pixels in, 297

using filters on, 313–315

bitmaps

finding and replacing in Movie Explorer

panel, 487

importing, 490

optimizing for playback, 490

Bitrate Settings, choosing for video

compression, 67

blend modes

alpha property, 249

applying manually, 246

erase property, 249

properties of, 247

Blending mode, choosing, 50

Blur filter, using, 48–49

BlurFilter class, described, 250

BlurFilter object, using with animated flame,

318–319

Bone tool, using, 33, 39

bones

displaying connections to control points, 41

editing for armatures, 40

hierarchy in armatures, 36

selecting via Bind tool, 41

Boolean data type data type, using in

ActionScript, 104–105

Boolean value

checking for, 260

using with rotating dial, 443

bounding boxes, checking intersection of, 258

branching alternatives, overview of, 374–377.

See also conditions

branching armature, creating, 37–38

brightness, changing for movie clips, 245

Index 501

filling regions with, 305

filling shapes with, 276

finding and replacing in Movie Explorer

panel, 487

getting from images, 306

modifying for DisplayObject objects,

240–245

setting for objects, 241

commas (,), using in ActionScript, 91

comments, creating in ActionScript, 123–124

comparison operators, described, 368

compression. See also video compression

settings

spatial vs. temporal, 58

using maximum amount of, 489

concatenating variables, 366–367

conditional statements

comparison operators, 368

creating, 369

form of, 368

conditions. See also branching alternatives

combining with logical operators, 378–379

providing alternatives to, 372–373

using alternatives to, 376–377

using else for false condition, 372–373

containers, movie clips as, 179–182

content, mixing remote vs. local, 193

contextual menus

disabling, 158

events, 168

using, 158–162

control points

bones connected to, 41

using with curved lines, 272

copying bitmap images, 307–311

cos theta, explained, 438

counter variable, creating for drawings, 273

cropping video, 63–64

ctrlKey property, explained, 156

cue points, using, 79–84, 219

curly braces ({}), using, 91, 114

curved lines, creating, 272–273. See also lines

curves

creating, 267–270

optimizing, 492

removing, 13

vs. symbols, 89

using in ActionScript, 87

Classic text. See also text; TLF text

Dynamic option, 384

HTML tags, 393

Input option, 384

making editable, 421

making selectable, 421

Static option, 384

TextFormat class, 400

vs. TLF text, 401

Classic text fields

antialiasing, 407

creating, 402

default appearance of, 403

default size of TextField object, 402

embedding and applying fonts, 406

loading and displaying HTML in, 395–397

modifying, 403

modifying fonts of, 406–407

modifying formatting of, 404–405

removing, 403

using TextFormat class with, 403

clear() method

described, 268

using to erase drawings, 273

using with user’s information, 356

clock, creating, 464–466

clone() method, using with bitmap images, 307

code hints, using, 97–99

Code Snippets panel, using, 84, 119–122

codec, defined, 58

Codec setting, choosing for video

compression, 66

collisions, detecting between objects, 258–260

colon (:), using with strict data typing, 104

color blending, changing between objects, 248

Color Mixer panel, options in, 240

color transformations

Advanced Effect options, 242–243

of objects, 243–244

specifying multiplier properties, 242

specifying offset properties, 242

colors

blending, 246–249

blending from objects, 50

502 Index

distances

calculating, 450–452

calculating in 3D, 451

division, symbol for, 364

do while statement, using, 381

dot syntax, writing with, 89–90

double equals symbol (==)

vs. = (assignment operator), 369

described, 368

using with keypresses, 155

double slash (//), using with line comments, 123

download progress. See also Bandwidth Profiler

adding numeric display of, 226–227

detecting, 222–225, 227

drag-and-drop interactivity, creating, 253

draggable masks, creating, 285–287

draggable objects

centering, 256

constraining, 256–257

dragging objects, 254

draw() methods

described, 268

using to copy image data, 300, 307

using with animated flame, 316, 318–319

drawCircle() method, using, 280

drawPath() method, using, 281

drawRect() method, using, 281, 369

drawTriangles() method, using, 281

drop-shadow filter effect, adding dynamically,

251–252

dynamic referencing, 366–367

dynamic tweens, creating, 289–290

E
ease curves, interpreting, 15

easing

controlling for armatures, 44–45

in Motion Editor, 12

EditManager object, using with TLF text, 421

elements. See Flash elements

else if statement, using, 374, 466

else statement, using for false condition, 372–373

e-mail, preaddressing, 191

embedded video, swapping, 72. See also video

embedFonts property, using with Classic text, 407

D
\d and D codes, using in regular

expressions, 426

data types, checking values of, 493

Date class

creating myDate object from, 109

features of, 436

getHours() method, 464–465

getMinutes() method, 464–465

methods of, 464

numbers and names, 467

properties of, 88

using, 464

using Array object with, 467

decimals

vs. numbers, 453

rounding off, 442

default statements, using, 376

degrees, converting to radians, 279

delta frames, defined, 67

device fonts, embedding, 394

digital video. See video

directional movement, creating, 446–449

directories

moving up, 192

separating with slash (/), 192

display list. See also graphics

adding objects to, 263

adding objects to top of, 265

features of, 232

placing instances of Library symbols in, 263

placing objects at bottom of, 265

removing objects from, 265

tree hierarchy, 232

using with Flash movies, 210

DisplayObject class

hitTestObject() method, 258

hitTestPoint() method, 258

DisplayObject objects. See also objects

applying filters to, 251

controlling overlapping of, 264–266

modifying colors for, 240–245

transform property, 240

DisplayObject properties, described, 233

Index 503

external Flash movies. See also Flash movies;

movies

loading, 200–202

unloading, 203

external images

creating bitmap data from, 299–300

creating preloaders for, 228–230

detecting download progress of, 227

loading, 212–214

external movies

creating preloaders for, 228–230

detecting download progress of, 227

external sounds, loading and playing, 325.

See also sounds

external SWF files

loading, 200–202

loading across domains, 203

external variables. See also variables

decoding loaded data, 348

decoding URL-encoded data, 348–349

decoding XML data, 351–352

detecting completion of loaded data, 347

loading, 346–347

receiving loaded data, 347

using XML data, 350

external video. See also video

adding cue points to, 79–81

changing path to, 78

changing playback of, 77

loading dynamically, 215–218

playing back, 74–75

externally loaded video

controlling playback of, 219–220

detecting end of, 221

F
.f4v extension, explained, 58

F4V option, choosing, 60–61

file browser

opening to select text file, 360

repopulating with file name, 363

files. See also Flash files

loading on hard drive, 360–363

saving in uncompressed format, 479–480

saving on hard drive, 360–363

encoding options

adjusting video length, 64–65

cropping video, 63–64

displaying, 62

resizing video, 65

saving customizations, 69

selecting audio compression settings, 68

selecting video compression settings, 66–68

equality operator, using, 368–369

equals (=) sign

using to assign properties, 112

using with variables, 105

Erase blend mode, described, 247

escape sequences, characters associated

with, 107

event handlers, creating, 126, 136

event listeners

adding, 126

adding for preloaders, 223

adding to detect keypresses, 154

adding to objects, 135

for detecting mouse clicks on Stage, 129

for detecting mouse movement on Stage, 130

for detecting mouse wheel motion, 131

for loaded movies, 208

for mySound, 330

for pull-down menus, 144

removing, 126

removing from buttons, 148

events

context menus, 168

defined, 126

flow, 127

keyboard, 168

listening for, 126

mouse, 168

timers, 168

exporting

ActionScript code, 103

motion presets, 21

expressions

testing not true status of, 379

testing true status of, 378–379

using, 344

using in ActionScript, 107

504 Index

Frame Rate setting, choosing for video

compression, 66–67

frames, navigating for video length, 65

frames downloaded, testing number of, 222

Free Transform tool, using with motion tweens, 5

functions, building in ActionScript, 114–118

G
Global Security Settings panel, accessing, 194

Gradient Transform tool, using, 31–32

gradient transitions, using shape tweens for,

31–32

gradients, filling shapes with, 277–279

gradients and fills, creating, 274–275

graph, showing ease-out in, 15

graphic methods, described, 268

graphic vs. movie clip instances, 139

graphics. See also display list

animating with ActionScript, 294–295

generating dynamically, 261–263

optimizing for playback, 491–492

grayscale representation, creating, 311

greater than or equal to, symbol for, 368

greater than, symbol for, 368

H
H.264 video standard, explained, 58

hand pointer. See also pointer

reactivating, 293

removing, 148

hard drive, loading and saving files on, 360–363

height DisplayObject property, described, 233

height property in JavaScript, described, 195

height property, using with LoaderInfo
object, 207

Help topics, accessing, 203

hexadecimal format, displaying RGB code

in, 240

Hit state, creating keyframes in, 137–138

HTML (HyperText Markup Language)

displaying in Classic Text text fields, 395–397

displaying in dynamic text field, 398

loading in Classic Text text fields, 395–397

HTML text, importing into TextFlow, 411

hyperlinks, including in text, 189, 398

fills and gradients, creating, 274–275

filter effects, removing dynamically, 252

filters

accessing and applying, 49

adding to objects, 252

creating with Pixel Blender, 248

using alpha channel values with, 315

using on bitmap images, 313–315

using to apply special effects, 250–252

Flash elements, using, 481–483, 487

Flash files, saving as XFL documents, 479. See
also files

Flash movies. See external Flash movies; loaded

Flash movies; movies

displaying data distribution in, 226

managing, 210

managing versions of, 202

optimizing, 488–492

troubleshooting, 493–494

using display lists with, 210

watching download performance of, 226

Flash Player security, 193

Flash Video format

converting video files to, 60–61

using, 58

FlowElements

formatting, 418

using with TextFlow object, 411

flush() method, using, 354–355, 359

FLV format

choosing, 60–61

embedding into Flash, 71

explained, 58

using On2 VP6 codec with, 66

focal point ratio, using with fills and

gradients, 275

focus of text, detecting, 422–423

Font Embedding dialog box, opening, 394

fonts

embedding, 394, 406

finding and replacing, 486

replacing in Movie Explorer panel, 484

for each..in loop, using, 382

for statement, using, 185, 381

for..in loop, using, 382

frame labels, using, features of, 143, 183–184

Index 505

invisible buttons, creating, 137–138. See also
animated buttons; buttons

 “invisible” movie clip, creating, 181–182

J
JavaScript

innerHeight window property, 199

innerWidth window property, 199

opening custom windows with, 197–199

openwindow function, 198

using to control window parameters, 195–196

window properties, 195

JavaScript functions, passing parameters to, 195

joint constraints, position of, 43

joint rotation

constraining, 42

enabling, 42–43

joint style parameter, explained, 271

joint translation, options for, 42

JPEG quality settings, accessing, 490

K
key code values, using, 154

keyboard events

in ActionScript 2, 156

described, 168

detecting, 153

key code values, 154

keyboard key codes

function keys, 495

letter keys, 495

numbers and symbols, 496

KeyboardEvent object

creation of, 126

dispatching, 154

properties, 153

keyframe distance, setting for video

compression, 67

keyframes. See also property keyframes

Clear Pose command, 35

creating in Hit state, 137–138

defining for buttons, 142

frames between, 67

inserting for titles, 27

intermediate, 30–31

roving and non-roving, 7

I
ID3v2 sound properties, described, 338–339

if statement

checking true status in, 260

using to create continuous feedback button,

370–371

using with cue points, 83

using with else if, 374–375

images. See bitmap images; external images

Import Script function, using in ActionScript, 101

import statement

using with ActionScript code, 97

using with cue points, 82

using with dynamic tweens, 289

using with TLF text, 408–409

Import Video wizard, using, 70–71, 74

In point, moving for video length, 65

indexOf() method, using with String class, 432

inequality, symbol for, 368

information

clearing on user’s computer, 356

default amount for storage, 359

ordering with arrays, 454–459

retrieving from user’s computer, 356

sharing among movies, 357

storing for movies, 357–358

storing on user’s computer, 354–355

testing with conditional statements, 368–371

Inkbottle tool, using with armatures, 40

instances

creating for classes, 108

creating for movie clips, 140

creating on Stage, 109

naming, 110

using in ActionScript, 87

instantiation, process of, 108

int data type data type, using in ActionScript,

104

integers, rounding numbers to, 442

interpolation method, using with fills and

gradients, 275

intersection, detecting between objects, 259

inverse kinematics. See also animating in 3D

with movie clips, 33

overview, 33

with shapes, 39

506 Index

using _root property with, 211

Loader class, using with external Flash movies,

200–201

Loader object

contentLoaderInfo property of, 227

limitation of, 205

loaderInfo DisplayObject property, described,

233

LoaderInfo object, accessing, 206–207

loadwebsite()function, creating and calling, 115

local storage settings, changing, 359

location property in JavaScript, described, 195

logical AND (&&), using with keystrokes, 156, 378

logical operators, combining conditions with,

378–379

looping, preventing in animations, 56

looping statements

do while, 381

for each..in, 382

for, 381

for..in, 382

overview, 380

while, 380–381

loops, using to automate array operations, 456

M
“mailto:”, using with URLRequest class, 191

mask DisplayObject property, described, 233

mask layers, tweening, 51–55

masks

creating, 55–56

draggable, 285–287

removing, 283

setting objects as, 282–283

transparency of, 284

masks, features of, 51

match() method, using, 429, 431

Math class, using, 435–437, 442, 453. See also
arithmetic

Matrix object, using with animated flame,

317–319

matrix type, using with fills and gradients, 275

Media Encoder. See Adobe Media Encoder

menubar property in JavaScript, described, 195

merge() method, using with bitmap images,

311–312

keypresses, detecting, 154–155

keystroke combinations, detecting, 156

L
Layer blend mode, described, 247

layers

using in authoring environment, 489

using to simplify shape changes, 30–31

less than or equal to, symbol for, 368

less than, symbol for, 368

letters of titles, animating, 26–27

Library symbols. See also symbols

authortime sharing of, 476

creating bitmap data from, 298–299

creating movie clip instances from, 262–263

making automatic updates to, 477

marking as shared symbols, 473

runtime sharing of, 472–473

runtime vs. authortime sharing, 478

updating from Flash files, 476–477

line comments, creating in ActionScript, 123

line style

cap and joint styles, 271

changing, 270

lines, creating, 267–270. See also curved lines

linked text fields, deleting and inserting, 389

listeners. See event listeners

load() method

using to replaced loaded movies, 204

using with external Flash movies, 200–201

using with external images, 213

using with MP3 audio files, 325

loaded content, accessing properties of, 214

loaded data for external variables, managing,

347–349

loaded Flash movies, controlling, 206. See also
Flash movies

loaded images, managing, 212, 214

loaded movies. See also movies

alignment of, 205

detecting success of, 207

placing on top of others, 210

removing from Stage, 211

replacing, 204

targeting and controlling, 208–209

transparent Stages, 205

Index 507

mouse pointer

calculating distance from points, 450–452

creating, 292–293

hiding, 292

showing, 292

mouse wheel motion

detecting, 131

responding to, 132

MouseEvent object

creation of, 126–127

using target property with, 255

moveTo()method, using, 267–269

movie clip instances

creating from Library symbols, 262–263

naming, 110

targeting from Timeline, 172

movie clip vs. graphic instances, 139

movie clips

accessing in arrays, 462

blending colors of, 50

changing brightness for, 245

changing transparency of, 245

as containers, 179–182

creating, 140

creating symbols with animations, 141

creating with hidden content, 181–182

default setting for, 494

independent Timelines in, 139

navigating timelines with, 170

repositioning instances of, 234–235

showing object states in, 179

stopping cycling of, 141

as symbols, 139

targeting, 177–178

targeting within movie clips, 173–174

Timelines of, 139

using in mask layers, 51

using inverse kinematics with, 33

Movie Explorer panel

displaying categories of elements, 482

editing elements in display, 483

features of, 481

filtering categories of elements, 482

Find and Replace panel, 485

finding and replacing bitmaps, 487

finding and replacing colors, 487

MetaDataEvent event handler, using, 219

methods, using in ActionScript, 88, 90, 110–111

modulo division operator, using, 364–365

motion, copying and applying, 18

Motion Editor

adding properties to, 11

changing curvature of graph, 12

display options, 11

easing in, 12

opening, 8

removing properties from, 11

using with blur-to-focus effect, 49

using with motion tweens, 8

motion presets, using, 20–21

motion tweens

adjusting keyframes automatically, 7

changing curvature of paths, 6

changing path locations, 4

changing shape of paths for, 5

characteristics of, 2

copying and pasting paths, 7

creating, 3

creating for titles, 27

deleting paths for, 7

displaying motion paths for, 6

duplicating, 16

editing paths on motion, 4

generating dynamically, 288–291

in masked layers, 54

methods and events, 289

moving locations of, 4

paths of motion for, 2

reversing paths for, 7

saving as motion presets, 18–19

swapping target objects of, 17

on tween layers, 2

using Free Transform tool with, 5

mouse click, detecting on Stage, 129

mouse events

in ActionScript 2, 136

described, 168

handling, 128

selecting, 135

mouse movement

detecting on Stage, 130

translating to visual changes, 294–295

508 Index

moving for armatures, 35

NOT (!) logical operator, using, 378–379

null keyword, using to remove masks, 283

Number data type, using in ActionScript, 104–105

numbers

vs. decimals, 453

rounding to integers, 442

O
objects. See also DisplayObject objects

adding event listeners to, 135

adding to display list, 263

assigning properties to, 112

changing 3D rotation of, 236

changing center points of, 23

changing positions of, 234–235

changing rotation of, 235

changing transparency of, 237

creating in ActionScript 3, 108

creating with directional movement, 447–449

creating with separate groups, 491

detecting collisions between, 258–260

detecting intersection between, 259

displaying in visual hierarchy, 171

dragging, 254

instantiating, 109

moving in 3D space, 22–23

moving to back, 265–266

moving to front, 265

naming in ActionScript, 106

as nouns, 88

populating arrays with, 461

properties of, 89

referencing dynamically, 367

referencing in arrays, 462–463

removing, 265

removing from display list, 265

resizing, 236

rotating in 3D, 23

setting as masks, 282–283

setting colors for, 241

stopping dragging, 255

swapping, 265

targeting via with action, 177–178

tracking via arrays, 460–463

using in ActionScript, 87

Movie Explorer panel (continued)
finding and replacing fonts, 486

finding and replacing sounds, 487

finding and replacing symbols, 487

finding and replacing text, 485–486

finding and replacing videos, 487

finding elements in display, 483

finding instances of symbols, 483

finding instances of symbols in, 483

Options menu of, 482

replacing occurrences of fonts, 484

movies. See external Flash movies; Flash

movies; loaded movies

sharing information among, 357

storing information for, 357–358

testing, 75

testing in Web browsers, 193

MP3 files

appending metadata tags, 338

ID3 versions, 338–339

loading, 325

retrieving song information about, 339–340

viewing ID3 files outside of Flash, 340

multicolumn text, creating, 390–391. See also text

multiplication, symbol for, 364

Multiply blend mode, described, 247

myArray methods, examples of, 459

N
navigateToURL() method, using, 188–189, 191

Navigation cue point, jumping to, 84

NetConnection object, using with external video,

215–217

NetStream class, using with AAC sound files, 325

NetStream object

adding listener on, 219

NetStatusEvent conditions, 221

playback methods of, 219

using with external video, 215–217

new line character, escape sequence for, 107

newStream listener, adding for NetStream
object, 219

nodes

constraining, 43

creating at end of armature, 43

isolating rotation of, 35

Index 509

pointer. See also hand pointer

customizing, 292–293

detecting over hit area, 135

removing, 148

pose layers, putting armatures in, 39

poses

deleting, 35

inserting, 35

moving on Timeline, 35

preloaders

adding numeric displays to, 227

creating, 223–225

creating for external images, 228–230

creating for external movies, 228–230

described, 222

using Bandwidth Profiler with, 225

properties

adding to Motion Editor, 11

as adjectives, 88

applying preset eases to, 12

assigning relative to current value, 239

assigning to objects, 112

assigning values to, 112

of objects, 89

removing from Motion Editor, 11

using in ActionScript, 88

Properties inspector

adding ActionScript cue points from, 80

applying ease-in effect from, 14

applying ease-out effect from, 14

button-tracking options in, 146

deleting cue points from, 80

opening Actions panel from, 92

property keyframes. See also keyframes

adding, 9

changing values of, 10

managing, 8

removing, 10

resetting values of, 11

Publish Settings dialog box, opening, 189

pull-down menu

collapsed and expanded states, 179

creating, 142–145

described, 142

states of, 143

Track as Menu Item option, 147

On2 VP6 codec, using, 66

openwindow function, parameters of, 198

operators, described, 364

OR (||) logical operator, using, 378–379

Out point, moving for video length, 65

Over state

of button symbol, 141

displaying for buttons, 149

using with pointer, 135

Overlay blend mode, described, 247

P
Paintbucket tool, using with armatures, 40

parentheses (())

using with functions, 114

using with variables, 365

Paste Motion Special option, availability of, 18

paths, creating with square corners and ends, 270

pause() playback method, using with NetStream

object, 219

pausedposition variable, creating for sound

playback, 328–329

.pbj extension, explained, 248

periods (..), using to move up directories, 192

perspective, changing in 3D animation, 25

physics, simulating with Spring option, 46

pinning scripts in ActionScript, 97

Pixel Blender, features of, 248

pixel hinting, using with paths, 270

pixels

changing colors of, 303

drawing, 303

function in bitmap images, 297

using setPixel() methods with, 303–304

play() method

using parameter with, 97

using with Sound object, 326–327

using with sounds, 324

playhead

controlling, 171

movement on Timeline, 169

selecting for video length, 65

Point class

features of, 435

Point.polar() method, 446, 448

using to calculate distances, 450–452

510 Index

using, 235–236

rotation property, using with directional

movement, 448

Round() option, using with joint style, 271

rounding

numbers to integers, 442

off decimals, 442

run() method, calling, 90

runtime armature, making, 45

runtime shared symbols. See also symbols

versus authortime sharing, 478

creating, 473

features of, 472–473

using, 474–476

S
\s and S codes, using in regular expressions, 426

sandbox, explained, 203

scale mode, using with paths, 270

scenes, avoiding in movies, 489

scope of variables, explained, 117, 345

scoping ActionScript statements, 177

Screen blend mode, described, 247

Script pane. See ActionScript Script pane

scripts, pinning and unpinning, 100. See also
ActionScript

scrollbars property in JavaScript, described,

195

searching and replacing text, 427–428, 430–431

security features

accessing, 194

encountering, 193, 203

Selection tool

using with armatures, 39–40

using with motion tweens, 6

selections, converting to symbols, 50

semicolon (;), using in ActionScript, 91

Shader blend mode, described, 247

shape behavior, refining with Bind tool, 41

shape changes, simplifying, 30–31

shape hints, using, 28–29

Shape instance, creating for straight line, 268

Shape object

creating, 267

drawing and displaying on Stage, 270

using with dynamic buttons, 151–152

Q
quotation mark (”) character, escape sequence

for, 107

R
\r sequence, character associated with, 107

radians, converting degrees to, 279

radio buttons, described, 179

random numbers, generating, 453

Rectangle object, using with draggable objects,

256–257

rectangles

creating, 281

filling with color, 304

regions, filling with color, 305–306

regular expressions

codes for, 426

creating, 427

flags for, 426

matching text patterns with, 425–427

searching text to match, 427

using match() method with, 429

relative path

example of, 175–176

linking with, 192

relative values, assigning, 238

replace() method, using with String class, 431

Replace options, using in Movie Explorer panel,

485–486

resizable property in JavaScript, described, 195

Resize Video setting, choosing for video

compression, 66

resume() method

using with motion tweens, 289

using with NetStream object, 219

RGB code, displaying in Color Mixer panel, 240

root keyword, using with current timeline, 175

_root property, using with loaded movies, 211

rotating dial, creating, 443–445

rotating objects, 22–23

rotation

changing for objects, 235

isolating for nodes, 35

rotation DisplayObject properties

assigning values to, 239

described, 233

Index 511

using, 326–327

SoundChannel object, position property of,

330–331

SoundMixer class

computeSpectrum() method, 342

using stopAll() method of, 324, 327

sounds. See also external sounds

finding and replacing in Movie Explorer panel,

487

importing, 490

modifying volume and balance, 333–335

optimizing for playback, 490

playing from Library, 323–324

resuming, 328

setting initial starting times for, 326

stopping, 326–327

using, 322

using pausedposition variable with, 328–329

SoundTransform object, using, 326, 333–335

speakers, switching left and right, 335

special effects

applying with filters, 250–252

blending colors from objects, 50

blur-to-focus, 48–49

spotlights, independent movement of, 55

spread method, using with fills and

gradients, 275

Spring ease, using, 15

Spring option

adding to armatures, 46–47

dampening, 47

using to simulate physics, 46

Sprite class, described, 253

Sprite object

using with Array object, 460, 463

using with draggable masks, 285–286

using with TLF text containers, 414–416

Sprite vs. MovieClip object, 261

square object, placing at bottom of display list,

265–266

stacking order, controlling, 264–266

startDrag() method, calling, 110

startDragging function, creating, 254

stop() action

using with motion tweens, 289

using with movie clips, 141

shape tweens

alternative to, 55

strategies, 28

using for gradient transitions, 31–32

using intermediate keyframes, 30

using with mask layers, 52

shapes. See also vector shapes

creating armatures in, 39

editing around armatures, 40

filling with gradients, 277–279

filling with solid colors, 276

shapes with armatures, dragging, 40

shared symbols

marking, 473

runtime vs. authortime, 478

SharedObject class, using, 354–355

SharedObject data, configuring space used by,

359

Shift key, testing status of, 154

SimpleButton class, using, 133–135

sin theta, explained, 438

Sine Wave ease, using, 15

single quotation mark (’) character, escape

sequence for, 107

skin, changing for video playback, 76–77

slash (/), using to separate directories, 192

slash and asterisk(/*), using with block

comments, 124

smooth curve, creating and removing, 13

SOH CAH TOA mnemonic device, using, 438

Sound class, properties of, 88

sound completion, detecting, 336–337

sound data, visualizing, 341–342

sound events, detecting, 336–337

sound formats, availability of, 323

Sound object, using, 325–326

sound playback

controlling, 326–329

resuming, 328–329

setting number of loops, 326

sound progress, tracking, 330–331

sound symbol, preparing for playback, 323–324

SoundChannel class

Event.SOUND_COMPLETE event, 336–337

leftPeak property, 341

rightPeak property, 341

512 Index

T
\t sequence, character associated with, 107

tab character, escape sequence for, 107

tab order, changing for button focus, 149–150

tan theta, explained, 438

target paths

absolute and relative, 175–176

inserting, 175

for nested movie clips, 173

overview of, 171

using, 493

text. See also Classic text; multicolumn text; TLF

text; wrapping text

analyzing, 424

finding and replacing, 485–486

finding pattern matches in, 428–429

finding position of pattern match in, 428

including hyperlinks in, 189

optimizing for playback, 491–492

replacement codes, 430

replacing pattern matches in, 430–431

searching and replacing, 430

text editors, using with ActionScript, 101

text elements, animating, 26–27

text field linkages

breaking, 389

creating, 389

text fields

controlling contents of, 392–393

detecting focus of, 422–423

displaying HTML in, 398

editing, 388

threaded, 387

text files

loading, 361

opening browser for selection of, 360

retrieving contents of, 361–362

saving, 362–363

text focus, detecting, 422–423

Text Layout Framework (TLF). See TLF (Text

Layout Framework)

text patterns, matching with regular expressions,

425

text property, using, 392

text searches, greedy and lazy matches, 429

text selections, detecting, 422

stop() action (continued)
using with preloader, 223

using with pull-down menu, 143–144

using with toggle functionality, 180

stopDragging function, creating, 255

storage settings

changing, 359

permissions, 359

straight lines, creating, 268–270

streaming sounds, placement of, 489

strict typing

defined, 104

of values returned from functions, 118

String class

methods of, 431–432

using to analyze text, 424

String data type data type, using in

ActionScript, 104–105

string values, combining, 366

strings

checking lengths of, 433–434

determining sizes of, 433

searching for, 431

using in ActionScript, 107

stroke, setting characteristics of, 267

Subselection tool

using with armatures, 40

using with motion tweens, 6

Subtract blend mode, described, 247

subtraction, symbol for, 364

Swap Symbol dialog box, opening, 17

SWF of movie, previewing, 75

switch statements, using, 376

SWZ files, using with TLF text, 385

Symbol Properties dialog box, using with sound

symbols, 323

symbols. See also Library symbols; runtime

shared symbols

vs. classes, 89

converting selections to, 50

distinguishing, 110

features of, 89

finding and replacing in Movie Explorer

panel, 487

finding instances in Movie Explorer panel, 483

swapping for motion tweens, 17

Index 513

TLF (Text Layout Framework)

described, 22

Editable option, 384

Read Only option, 384

Selectable option, 384

TLF text. See also Classic text; text

adding spacing around columns, 391

changing column spacing, 391

vs. Classic Text, 401

containers, 414–417

controllers, 414–417

creating, 408

creating multiple columns, 390–391

formatting, 409

making editable, 421

making selectable, 420

TLF text fields

modifying properties of, 400

properties for, 399

TLF text library

merging, 386

overview of, 385

SWZ files, 385

TLFTextField object, using, 410

toggle functionality, adding to buttons, 180

toolbar property in JavaScript, described, 195

top property in JavaScript, described, 195

Trace Bitmap command, avoiding, 490

trace statement

displaying returned values with, 118

using, 111, 113

using in authoring environment, 489

using with frame labels, 185

using with MP3 files, 340

Track as Menu Item option, using with pull-down

menus, 147

transform DisplayObject property, described,

233

transform property, using with DisplayObject
objects, 240

transformations, global vs. local, 24

transparency

changing for movie clips, 245

changing for objects, 237

triangle object, removing from display list, 265

triangles, calculating angles of, 438

text strings. See strings

Text tool

using to animate titles, 26–27

using with text fields, 392

TextConverter, using, 410

TextField object, default size of, 402

TextFlow content

displaying, displaying, 415–417

formatting in Text Layout markup, 419

TextFlow object

assigning InlineGraphicElement to, 412–413

assigning span element to, 412

formatting, 418–419

getting text into, 411

importing HTML text into, 411

importing plain text into, 411

importing Text Layout markup text into, 411

using, 410

TextFormat object, declaring, 404

TextLayoutFormat object, using, 418–419

theta of right triangle, defining, 438

this keyword, using, 175, 493

threaded text fields, explained, 387

time elapsed, tracking, 469

Timeline

of movie clips, 139

moving poses on, 35

navigation methods, 169

x- and y-coordinates of, 235

timelines

identifying, 494

navigating with movie clips, 170

in relative mode, 175

retrieving frame labels on, 185–186

using frame labels with, 183–186

using parent keyword with, 176

using root keyword with, 175

using this keyword with, 175–176

timer

creating, 469–470

detecting end of, 167

events, 168

using with continuous actions, 165–166

Timer object, using with clock, 464, 466

titles, animating, 26–27

514 Index

vanishing point, changing in 3D animation, 25

var keyword, using in ActionScript, 105

variables. See also external variables

changing values of, 365

concatenating, 366–367

declaring and initializing, 105

decreasing value incrementally, 365

increasing value incrementally, 365

initializing, 345

initializing in ActionScript, 105

modifying, 364–365

naming in ActionScript, 106

referencing dynamically, 367

scope of, 117, 345

testing true or false status of, 371

using, 344

using parentheses with, 365

vector shapes, creating dynamically, 267. See
also shapes

Vector3D class, using to calculate distances, 451

video. See also embedded video; external video

acquiring, 58

with alpha channels, 71

assessing quality of, 58

compressing, 58

cropping, 63–64

embed vs. external playback, 73

embedding in Flash, 66, 70–71

finding and replacing in Movie Explorer

panel, 487

playing back externally from Flash, 66

preparing for Flash, 58

previewing, 75

resizing, 65

video compression settings, selecting, 66–68.

See also compression

video encoding options. See encoding options

video files

adding to Adobe Media Encoder, 59

converting to Flash Video, 60–61

removing from Adobe Media Encoder, 60

video length, adjusting, 64–65

Video object, using with external video, 218

video playback component

changing skin of, 76–77

placing on Stage, 75

trigonometric functions, remembering, 438

troubleshooting Flash movies, 493–494

true status, checking in if statement, 260

trusted locations, specifying, 193–194

Tween class, using with dynamic tweens, 288

tween easing functions, described, 288

tween layers, motion tweens on, 2

TweenEvents, described, 289

tweening

mask layers, 51–55

optimizing for playback, 491–492

tweens. See motion tweens

U
uint data type data type, using in ActionScript,

104

unload() method, using with external Flash

movies, 203

url property, using with LoaderInfo object, 207

URL-encoded data, decoding, 348–349

URLLoader class

using with external variables, 346–347

using with HTML, 396–397

using with XML data, 351–352

URLRequest object

creating for external images, 213

using to detect sound completion, 336

using with external Flash movies, 201

using with external sounds, 325

using with external variables, 347

using with MP3 audio files, 339–340

using with volume and balance, 333

using with volume levels, 341

URLs

absolute vs. relative, 188

specifying in URLRequest object, 192

V
values

adding and subtracting, 239

changing properties relative to, 238

decreasing, 364–365

dividing, 364

increasing, 364–365

multiplying, 364

subtracting, 364

Index 515

creating, 387–389

creating text field linkages, 389

deleting linked text fields, 389

editing text fields, 388

inserted linked text fields, 389

X
x- and y-coordinates, timeline considerations,

235

x DisplayObject property, described, 233

x-axis, navigating in 3D space, 22–23

XFL documents

editing, 480

opening, 479

saving Flash files as, 479

XML data

decoding XML data, 351–352

receiving, 353

using with external variables, 350

Y
y DisplayObject property, described, 233

y-axis, navigating in 3D space, 22–23

yellow highlight, hiding for buttons, 150

Z
z DisplayObject property, described, 233

z-axis, navigating in 3D space, 22–23

Zoom item, enabling in ContextMenu instance,

159

Video Properties dialog box, opening, 215–216

video streams, detecting status of, 221

video symbol, using with external video,

215–216

visual properties, changing, 233

volume and balance, modifying, 333–335

volume levels, visualizing left and right, 341–342

W
\w and W codes, using in regular expressions,

426

Web addresses, loading in windows, 192

Web browsers

connecting to, 188

testing movies in, 193

Web sites

Help topics, 203

linking to, 188–190

opening in windows, 193

while statement, using, 380–381

width property

described, 195

using with LoaderInfo object, 207

window parameters, controlling via JavaScript,

195–196

windows, opening with JavaScript, 197–199

with action, using to target objects, 177–178

wrapping text. See also text; TLF (Text Layout

Framework)

breaking text field linkages, 389

peachpit.com/creativeedge

WATCH
READ

CREATE
Meet Creative Edge.
A new resource of unlimited

books, videos and tutorials for

creatives from the world’s

leading experts.

Creative Edge is your one

stop for inspiration, answers to

technical questions and ways to

stay at the top of your game so

you can focus on what you do

best—being creative.

All for only $24.99 per month

for access—any day any time

you need it.

	Table of Contents
	Introduction
	PART I: APPROACHING ADVANCED ANIMATION
	Chapter 1 Building Complexity
	Motion Tweening Strategies
	Duplicating Motion
	Shape Tweening Strategies
	Using Inverse Kinematics
	Creating Special Effects
	Using Masks

	Chapter 2 Working with Video
	Preparing Video for Flash
	Using Adobe Media Encoder
	Understanding Encoding Options
	Embedding Video into Flash
	Playback of External Video
	Adding Cue Points to External Video
	Detecting and Responding to Cue Points

	PART II: INTERACTIVITY
	Chapter 3 Getting a Handle on ActionScript
	What Is ActionScript 3?
	About Objects and Classes
	About Methods and Properties
	Writing with Dot Syntax
	More on Punctuation
	The Actions Panel
	Editing ActionScript
	Using Objects
	About Functions
	Using Code Snippets
	Using Comments

	Chapter 4 Advanced Buttons and Event Handling
	Listening for Events
	Mouse Detection
	The SimpleButton Class
	Invisible Buttons
	Animated Buttons and the Movie Clip Symbol
	Complex Buttons
	Button-tracking Options
	Changing Button Behavior
	Creating Buttons Dynamically
	Keyboard Detection
	The Contextual Menu
	Creating Continuous Actions
	A Summary of Events

	Chapter 5 Controlling Multiple Timelines
	Navigating Timelines with Movie Clips
	Target Paths
	Absolute and Relative Paths
	Using the with Action to Target Objects
	Movie Clips as Containers
	Using Frame Labels

	Chapter 6 Managing External Communication
	Communicating with the Web Browser
	Loading External Flash Movies
	Controlling Loaded Flash Movies
	Loading External Images
	Communicating with External Video
	Detecting Download Progress: Preloaders

	PART III: TRANSFORMING GRAPHICS AND SOUND
	Chapter 7 Controlling and Displaying Graphics
	Understanding the Display List
	Changing Visual Properties
	Modifying the Color
	Blending Colors
	Applying Special Effects with Filters
	Creating Drag-and-Drop Interactivity
	Detecting Collisions
	Generating Graphics Dynamically
	Controlling Stacking Order
	Creating Vector Shapes Dynamically
	Using Dynamic Masks
	Generating Motion Tweens Dynamically
	Customizing Your Pointer
	Putting It Together: Animating Graphics with ActionScript
	About Bitmap Images
	Creating and Accessing Bitmap Data
	Manipulating Bitmap Images
	Using Filters on Bitmap Images
	Putting It Together: Animating Bitmap Images

	Chapter 8 Controlling Sound
	Using Sounds
	Playing Sounds from the Library
	Loading and Playing External Sounds
	Controlling Sound Playback
	Tracking Sound Progress
	Modifying Volume and Balance
	Detecting Sound Events
	Working with MP3 Song Information
	Visualizing Sound Data

	PART IV: WORKING WITH INFORMATION
	Chapter 9 Controlling Information Flow
	Using Variables and Expressions
	Loading External Variables
	Storing and Sharing Information
	Loading and Saving Files on the Hard Drive
	Modifying Variables
	Concatenating Variables and Dynamic Referencing
	Testing Information with Conditional Statements
	Providing Alternatives to Conditions
	Branching Conditional Statements
	Combining Conditions with Logical Operators
	Looping Statements

	Chapter 10 Controlling Text
	Understanding TLF and Classic Text
	Creating Wrapping Text
	Creating Multicolumn Text
	Controlling Text Field Contents
	Displaying HTML
	Modifying Text Field Appearances
	Generating Text Dynamically: Classic vs. TLF Text
	Creating Classic Text
	Creating TLF Text Fields
	Getting Text into the TextFlow
	TLF Text Containers and Controllers
	Formatting the TextFlow
	Making Text Selectable or Editable
	Detecting Text Focus
	Analyzing Text

	Chapter 11 Manipulating Information
	Making Calculations with the Math Class
	Calculating Angles
	Creating Directional Movement
	Calculating Distances
	Generating Random Numbers
	Ordering Information with Arrays
	Keeping Track of Objects with Arrays
	Using the Date and Time

	Chapter 12 Managing Content and Troubleshooting
	Sharing Library Symbols
	Saving Files in an Uncompressed Format
	Tracking, Finding and Managing Flash Elements
	Optimizing Your Movie
	Avoiding Common Mistakes

	Appendix: Keyboard Key Codes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	text:

