

Programming .NET 3.5

Other Microsoft .NET resources from O’Reilly

Related titles .NET Windows Forms in a
Nutshell

ADO.NET 3.5 Cookbook™

ADO.NET 3.5 in a Nutshell

Building a Web 2.0 Portal
with ASP.NET 3.5

Learning ASP.NET 3.5

Programming ASP.NET AJAX

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Programming .NET 3.5

Jesse Liberty and Alex Horovitz

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Programming .NET 3.5
by Jesse Liberty and Alex Horovitz

Copyright © 2008 Jesse Liberty and Alex Horovitz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Rachel Monaghan
Copyeditor: Rachel Head
Proofreader: Rachel Monaghan

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

July 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming .NET 3.5, the image of a giant petrel, and related trade dress are
trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc. .NET is a registered trademark of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52756-3

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

This book is dedicated to the simple idea of

human respect, which entails the incredibly

difficult process of actually listening to one

another with an open mind.

—Jesse Liberty

To my spouse, Torri, and my three boys,

Daniel, Zachary, and Jason. Together our

adventure continues. Each day brings new

opportunities and the chance to build on the

accomplishments of the day before. Never stop

living to make today the best day of your life.

—Alex Horovitz

vii

Table of Contents

Preface . xi

Part I. Presentation Options

1. .NET 3.5: A Better Framework for Building MVC, N-Tier, and
SOA Applications . 3
Integration Versus Silos 4
What? All That in One Book? 5

2. Introducing XAML: A Declarative Way to Create Windows UIs 7
XAML 101 8
Simple XAML Done Simply 10
Over Here…No, Wait, I Meant Over There! 23
It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) 32

3. Introducing Windows Presentation Foundation:
A Richer Desktop UI Experience . 45
Starting Simple: Panels 46
Nesting 65
Resources 67
Transformations 68
Animation 69
Data Binding 76

viii | Table of Contents

4. Applying WPF: Building a Biz App . 89
Breaking the Application into Pieces 90
Adorners 90
Business Classes 95
Page 1—Adding Items to the Shopping Cart 99
Page 2—Validating the Credit Card 124

5. Introducing AJAX: Moving Desktop UIs to the Web . 137
Web Applications Just Got a Whole Lot Faster 137
Getting Started 139
Creating a “Word Wheel” with AJAX 141
ScriptManager 151
What’s Next? 160

6. Applying AJAX: ListMania . 161
Creating the To-Do List Manager 161
Personalizing the To-Do List 180

7. Introducing Silverlight: A Richer Web UI Platform . 195
Silverlight in One Chapter 195
The Breadth of Silverlight 196
Diving Deep: Building an Application 196
Controls 197
Events and Event Handlers 207
Creating Controls Dynamically 212
Data Binding 215
Styling Controls 221

Part II. Interlude on Design Patterns

8. Implementing Design Patterns with .NET 3.5 . 227
.NET 3.5 Fosters Good Design 228
The N-Tier Pattern 231
The MVC Pattern 232
The Observer Pattern/Publish and Subscribe 249
The Factory Method Pattern 258
The Chain-of-Command Pattern 266
The Singleton Pattern 274

Table of Contents | ix

Part III. The Business Layer

9. Understanding LINQ: Queries As First-Class Language Constructs 283
Defining and Executing a LINQ Query 284
Extension Methods 297
Adding the AdventureWorksLT Database 305
LINQ to SQL Fundamentals 308
Using the Visual Studio LINQ to SQL Designer 313
Retrieving Data 317
LINQ to XML 322

10. Introducing Windows Communication Foundation:
Accessible Service-Oriented Architecture . 327
Defining a Service More Precisely 328
Implementing Web Services 332
UDDI: Who Is Out There, and What Can They Do for Me? 337
How It All Works 338
WCF’s SOA Implementation 339
Putting It All Together 343

11. Applying WCF: YahooQuotes . 346
Creating and Launching a Web Service 346
Consuming the Web Service 355

12. Introducing Windows Workflow Foundation . 365
Conventional (Pre-WF) Flow Control 365
Using Windows Workflow 371
Understanding the WF Runtime 383
Workflow Services 383

13. Applying WF: Building a State Machine . 386
Windows Workflow and State Machines 387
Building an Incident Support State Machine 387

14. Using and Applying CardSpace: A New Scheme for Establishing Identity 408
About Windows CardSpace 409
Creating a CardSpace Identity 413
Adding CardSpace Support to Your Application 418
Summary 435

x | Table of Contents

Epilogue . 437

Index . 439

xi

Preface1

This book tells the story of .NET 3.5. We will not try to sell you on why .NET 3.5 is
great, why it will make you more productive, why you should learn it, why your
company should invest in incorporating this new technology, and so on. Microsoft
has lots of folks selling .NET 3.5, and they are quite good at their jobs, so we’ll leave
that to them. Nor will we regurgitate the Microsoft documentation; you can get that
for free on the Internet. Finally, while we hope you will return to this book often and
keep it on your desk as a useful reference, our goal is not to provide a compendium,
but simply to introduce you to .NET 3.5, speaking as one programmer to another.

In the early days of personal computing, the hard part was finding the information
you needed, because so little was published. Today, the hard part is separating the
nuggets of wheat from the mountains of chaff. There is a blizzard of information out
there (books, articles, web sites, blogs, videos, podcasts, sky writing...), but the signal-
to-noise ratio approaches zero (while the metaphors are beginning to pile up under
your feet!). Our aim is to provide you with the key information you need, together
with a context for that information: a scaffolding into which you can fit what you
learn to make you more productive and to make your programs better.

It is our belief that .NET 3.5 in general, and Silverlight in particular, will change pro-
gramming more significantly than anything that has come from Microsoft for at least
a decade.

The advent of .NET 3.5 marks a turning point in how we approach programming—
one we embrace with great enthusiasm. From one perspective, .NET 3.5 is nothing
more than a collection of disparate technologies:

• Windows Presentation Foundation (WPF) for writing Windows applications

• Silverlight for delivering Rich Internet Applications (RIAs) via the Web, across
browsers and platforms

• Windows Communication Foundation (WCF) for creating contract-based web
services and implementing Service-Oriented Architectures (SOAs)

• Windows Workflow Foundation (WF) for defining the workflow in an application

xii | Preface

• CardSpace for creating user-negotiated identities on the Web

• ASP.NET/AJAX for rich-client web applications

You can expect to see many books that treat each of these technologies individually,
but in this book we have instead chosen to take an integrated approach. This book
has two goals. The first, as we have intimated, is to tell the real story of .NET 3.5,
rather than simply repeating what you can find in the documentation. We will pro-
vide the essential information that you need to make solid, practical, reliable use of
all of the technologies we’ve just mentioned, while providing a clear picture of which
problems each of the technologies solves, either alone or working with others.

The second goal is to show that, rather than truly being a collection of isolated tech-
nologies, the various parts of .NET 3.5 can be stitched together into a coherent
whole with a pair of common themes:

• .NET 3.5 fosters the development of better-architected applications (leveraging
MVC, n-tier, SOA, and other industry-tested patterns).

• .NET 3.5 augments object-oriented programming with a big dose of declarative
programming.

Together, these changes—which lead to better-architected applications that leverage
a rich declarative extensible markup language—combine to foster the creation of
richer applications that break traditional platform boundaries and, perhaps more
importantly, applications that are brought to market more quickly and are easier to
scale, extend, modify, and maintain.

So, buckle your seat belts...this is going to be a blast!

Who This Book Is For
This book is intended for experienced .NET programmers who have written Win-
dows applications and/or web applications for the Windows platform and who are at
least comfortable with either the C# or the Visual Basic language.

In truth, highly motivated Java™ programmers should have little trouble either;
experience with .NET will make life easier, but the motivated Java-experienced
reader should find few areas of confusion.

How This Book Is Organized
This book will take a goal- and objective-oriented approach to the .NET 3.5 suite of
framework and related technologies, and will focus implicitly on an MVC/n-tier and
SOA approach to building applications. We will make best practices and pattern-
based programming techniques explicit from the very beginning, without letting
these architectural design patterns get in the way of straightforward explanations of
the new classes and how to put them to work.

Preface | xiii

We will urge you, as developers, to stop thinking about “desktop versus web” appli-
cations and to think instead about the problem to be solved, the model or engine
that represents the solution, and from there to proceed downward to persistence and
upward to presentation.

A range of presentation choices is available, including Windows Forms, WPF, Silver-
light, ASP.NET/AJAX, and ASP.NET. We will not demonstrate the use of Windows
Forms or ASP.NET, as familiarity with these technologies is assumed; we will focus
instead on WPF, AJAX, and Silverlight. This approach will enable you to extract
maximum value from learning the new technologies without getting bogged down in
the technologies of the past.

The book consists of 14 chapters organized into three parts.

Part I, Presentation Options
Chapter 1, .NET 3.5: A Better Framework for Building MVC, N-Tier, and SOA
Applications

This chapter provides a short observation on the real power of .NET 3.5.

Chapter 2, Introducing XAML: A Declarative Way to Create Windows UIs
The single biggest change in the presentation layer that .NET 3.5 provides is the
ability to create a desktop-based presentation using a declarative syntax.
XAML—which originally stood for eXtensible Application Markup Language—
is the declarative thread that runs through WPF, WF, and Silverlight. This chap-
ter discusses the advantages of declaring objects in XAML, while exploring the
XAML syntax and the tools you will use to create objects and move fluidly
between XAML and managed code (C#).

In addition, this chapter provides a solid introduction to elements; attributes;
attached and binding properties; events and event handlers; layout positioning;
stacks, grids, and other essential elements; switching between XAML, design,
and code view; and debugging XAML.

Chapter 3, Introducing Windows Presentation Foundation: A Richer Desktop UI
Experience

Windows Presentation Foundation is the rich-user-interface technology that pro-
vides developers with triggers, 2-D and 3-D objects, rich text, animation, and
much more—all built on top of XAML. In this chapter we’ll look at the use of
styles, triggers, resources, and storyboards in WPF, and at how XAML is put to
work to build rich desktop applications.

Chapter 4, Applying WPF: Building a Biz App
In this chapter we expand on the material in Chapter 3, building a rich desktop
application using WPF.

xiv | Preface

Chapter 5, Introducing AJAX: Moving Desktop UIs to the Web
This chapter provides an introduction to the Microsoft AJAX library and
includes a rant on our premise that using AJAX should be dead simple. We
explore the script manager and the extended AJAX controls and discuss why we
believe AJAX is a .NET 3.5 technology, even if no one else at Microsoft does
(hint: it fosters the kinds of programming that .NET 3.5 is so good at, and it
works and plays well with all of the rest of .NET 3.5).

Chapter 6, Applying AJAX: ListMania
In this chapter we build on the discussion in Chapter 5 by developing a real-
world, web-based AJAX-enhanced application.

Chapter 7, Introducing Silverlight: A Richer Web UI Platform
This chapter introduces you to Silverlight. Leveraging many of the advantages of
.NET 3.5, Silverlight delivers all the deployment and platform-agnostic benefits
that come with a browser-deployed application—and it does so without giving
up the rich interactivity of WPF.

Part II, Interlude on Design Patterns
Chapter 8, Implementing Design Patterns with .NET 3.5

This chapter discusses the ways in which .NET 3.5 promotes the implementa-
tion of architectural patterns in day-to-day programming. Our thesis is that
while we have been paying lip service to Model-View-Controller and n-tier pro-
gramming for the past decade, .NET 1.0 and 2.0 did not foster this approach,
and many .NET programs were, inevitably and as a direct result of the frame-
work itself, really two-tier at best.

Part III, The Business Layer
Chapter 9, Understanding LINQ: Queries As First-Class Language Constructs

This chapter shows you how to replace the cumbersome ADO.NET database
classes with embedded SQL using .NET 3.5’s built-in support for Language
INtegrated Query (LINQ).

Chapter 10, Introducing Windows Communication Foundation: Accessible Service-
Oriented Architecture

This chapter defines SOA and explains the problem it solves. It then shows how
WCF can be used to implement SOA, exploring such key topics as the service
model as a software resource, binding a service for accessing the resource, using
the service, and hosting the service in IIS. The chapter also describes the ABCs
(access, bindings, and contract) of creating a web service.

Chapter 11, Applying WCF: YahooQuotes
This chapter builds on the concepts explained in the previous chapter, present-
ing a complete example of a WCF application.

Preface | xv

Chapter 12, Introducing Windows Workflow Foundation
What is workflow, and how might you use it? How could it serve as a business
layer in your application? This chapter explores the use of workflow in human
interaction, business processes, software processes and development, and more.
We discuss various types of workflow, with an emphasis on sequential processing.

Chapter 13, Applying WF: Building a State Machine
In this chapter we build a complete workflow application, demonstrating all the
concepts explained in the previous chapter.

Chapter 14, Using and Applying CardSpace: A New Scheme for Establishing Identity
CardSpace is based on identity selectors that allow a user to present any of
numerous identities to a web site, based on the level of trust required and the
user’s willingness to trade some level of privacy for some return of value.

When a user logs into a CardSpace-aware web site, the CardSpace service is dis-
played, and the user picks an identity card to pass to the web site, much as you
might choose between a general ID, a government-issue ID, or a credit card from
your wallet, depending on with whom you are interacting.

What You Need to Use This Book
To work through the examples in this book you will need a computer running Win-
dows Vista, Windows XP (SP2), or Windows Server 2003 SP1.

You’ll also need to ensure that you’ve installed .NET Framework 3.5 and Visual Stu-
dio 2008, both of which are available from Microsoft.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, the contents of files, or
the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in code samples.

Constant width italic
Shows text that should be replaced with user-supplied values.

xvi | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming .NET 3.5 by Jesse
Liberty and Alex Horovitz. Copyright 2008 Jesse Liberty and Alex Horovitz, 978-0-
596-52756-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596527563/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596527563/
mailto:bookquestions@oreilly.com

Preface | xvii

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Many people helped us along with this book. Thanks to our family members and
editors, who helped us bring this book to life; our friends, who gave technical input
and practical advice; and our early Rough Cut readers, who gave great feedback and
made this a better book.

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

PART I

I.Presentation Options

Chapter 1, .NET 3.5: A Better Framework for Building MVC, N-Tier, and
SOA Applications

Chapter 2, Introducing XAML: A Declarative Way to Create Windows UIs

Chapter 3, Introducing Windows Presentation Foundation: A Richer Desktop
UI Experience

Chapter 4, Applying WPF: Building a Biz App

Chapter 5, Introducing AJAX: Moving Desktop UIs to the Web

Chapter 6, Applying AJAX: ListMania

Chapter 7, Introducing Silverlight: A Richer Web UI Platform

3

Chapter 1 CHAPTER 1

.NET 3.5: A Better Framework for Building
MVC, N-Tier, and SOA Applications1

The release of .NET 3.5 represents one of the most significant advances for Win-
dows and web development in the last decade (arguably since the release of .NET
itself). Yet in many ways, it has been lost in the excitement and confusion over the
release of constituent and related products. That is, many developers have focused
on the trees (e.g., WPF or WCF) rather than on the forest of .NET 3.5.

Granted, it can all be a bit overwhelming. Within less than a year, .NET developers
were faced with various previews, betas, and release versions of:

• The Vista operating system

• Windows Presentation Foundation (WPF)

• Windows Communication Foundation (WCF)

• Windows Workflow Foundation (WF)

• CardSpace

• C# 3.0

• VB 9

• Visual Studio 2008

• AJAX

• Silverlight

• ASP.NET/MVC

• XAML

Technically, the .NET 3.5 release is dominated by four new frameworks—WPF,
WCF, WF, and CardSpace—which made their first appearances in .NET 3.0. But
these libraries were released as part of a commitment to more expressive program-
ming and a greater reliance on industry standards that is clearly expressed, for exam-
ple, in the release of the AJAX libraries, Silverlight, and the MVC libraries.

It is a major premise of this book that there is one key and unique aspect of .NET 3.5
that sets it apart from previous versions: the level of maturity of its component

4 | Chapter 1: .NET 3.5: A Better Framework for Building MVC, N-Tier, and SOA Applications

frameworks and libraries, which is now sufficient to fully support—indeed, to foster—
the industry-accepted design patterns we’ve all been struggling to implement for the
past decade.

Specifically, we believe that while .NET programmers have, since version 1, been work-
ing to build .NET applications that are n-tier, scalable, and maintainable, the .NET
frameworks have not been of sufficient help. Consequently, many .NET programs
are two-tier applications that mix the code for data access and business logic with
the code that handles the presentation of the user interface. .NET 3.5, however,
offers programmers an extensive set of tools and libraries that not only foster n-tier
and/or MVC programming, but provide much of the infrastructure and plumbing
needed to make true separation of responsibility the natural outcome.

Integration Versus Silos
One perfectly valid approach to .NET 3.5 is to write about each of the .NET technol-
ogies individually. We call books that take this approach—including such worth-
while and in-depth titles as Chris Sells’s and Ian Griffiths’s Programming WPF, Juval
Lowy’s Programming WCF Services (both O’Reilly), and others—“silo books,”
because they isolate the technologies from one another, like separate types of grains
in their individual silos. What these books lose in their integrated perspectives, they
make up for in tremendous depth.

This book, however, takes a different approach. Our aim is to show you enough
about each of these technologies to enable you to make practical use of them. Rather
than considering them in isolation, we will endeavor to tie them together with the
common thread of showing how they each contribute to building robust, scalable,
maintainable, high-quality applications.

Big Ideas, Small Examples
The paradox in weaving together these ideas and teaching these disparate technolo-
gies is that exploring a single application in all its complexity actually gets in the way
of understanding each of the building blocks. Thus, we will keep our examples sim-
ple and focused. We will, however, take every opportunity as we move from frame-
work to framework to show how they work together, offering an integrated
approach.

In Chapter 8 we provide an explicit review of some of the most common and well-
established (some might say cherished) programming patterns and show how .NET
3.5 fosters their implementation.

What? All That in One Book? | 5

It Ain’t Just the Framework
Because this book is targeted at working .NET programmers, we’ve used the broadest
definition of .NET 3.5—that is, we’ve attempted to include the full breadth of .NET
technologies currently available.

It’s a Moving Target
Microsoft’s research and development budget is roughly equivalent to the GDP of a
small European country, so the pace of innovation can be staggering. Over the past
decade, “Windows” developers have been offered massive improvements ranging
from the move from C++ and the MFC to C# and Windows Forms, to the matura-
tion of C# and the introduction of WPF. On the web side, we’ve seen the introduc-
tion of ASP and then ASP.NET, the addition of AJAX, and now the introduction of
Rich Internet Application (RIA) programming with Silverlight. Access to data and
decoupling of business logic from underlying data structures have undergone similar
transitions, with the progression from ADO to ADO.NET to LINQ. The list of
improvements goes on and on, including better and more sophisticated mechanisms
to manage metadata, reflection, threading, networking, web services, business
objects, and more.

This book had to be completely revised even before it was released just to keep up
with the changes in the technologies that occurred during the process of developing it.
In a sense, you are actually already reading the second edition.

Fortunately, four forces are now working to make mastering these technologies more
manageable:

• The greater coherence and maturation of the .NET technologies, which will nat-
urally make new offerings easier to integrate into what you already know

• An increased commitment from Microsoft to providing information and sup-
port, as exemplified by sites such as Silverlight.net, ASP.net, and so forth

• Better-informed and higher-quality books throughout the technical publishing
industry, such as those offered by O’Reilly, A-Press, Addison-Wesley, and others

• A far higher signal-to-noise ratio in the blogosphere

What? All That in One Book?
A perfectly reasonable question to ask before plunking down your money is, “If 600-
page books have been written about each of these technologies, how can you hope to
teach anything useful about all of them in a single volume (though it is obviously an
incredibly well-written book, I must admit)?”

6 | Chapter 1: .NET 3.5: A Better Framework for Building MVC, N-Tier, and SOA Applications

The answer is, fortunately for us both as authors and as developers, that these seem-
ingly disparate frameworks have a great deal in common; our goal is to show you the
25% that you will use 85% of the time. We don’t pretend that this is the only book
you will ever need on all of these topics, though it may well be the only book you
need to consult about those parts of .NET that are not central to your business.

But let us be clear: this is not an overview, nor do we intend it to be read by pointy-
headed managers. This is a book by developers for developers that is meant to be a
useful reference and to provide you with sufficient core capability in each area to
enable you to write real-world commercial applications.

7

Chapter 2 CHAPTER 2

Introducing XAML: A Declarative Way to
Create Windows UIs2

Before the appearance of .NET 3.0, web applications were written with “markup lan-
guages” such as HTML and Windows applications were not. We may have dragged
controls onto forms, but the creation of the controls and their properties was man-
aged by the development environment, or you instantiated them programmatically at
runtime.

.NET 3.0 changed all that with the introduction of the eXtensible Application
Markup Language, or XAML (pronounced “zamel,” to rhyme with “camel”). There
are two key things to know about XAML:

1. It is a markup language for creating Windows applications, just as HTML is a
markup language for creating web applications.

2. Almost every XAML object has a corresponding Common Language Runtime
(CLR) object; most of what you can create declaratively in XAML you can also
create programmatically in C#, and vice versa.

The goal of this chapter is to provide an overview of XAML and how it is used in cre-
ating user experiences. By the end of this chapter you should have an appreciation of
XAML as a declarative language, an understanding of the basic elements and
attributes that you are likely to encounter when writing a .NET 3.5 application, and
a fundamental appreciation for hand-crafting meaningful XAML applications. We
will not cover every element in the XAML vocabulary, but we will cover the entire
landscape of XAML, demonstrating all of its significant capabilities.

For a detailed treatment of the XAML markup language, we highly
recommend XAML in a Nutshell, by Lori A. MacVittie (O’Reilly).

8 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

XAML 101
Historically, developers have often had a difficult time translating user interface
designers’ ideas into an implementation that worked on a specific development plat-
form. Designers, for their part, were often forced to compromise their designs to
accommodate the limitations of software tools. In short, the worlds of design and
development did not share a common border, and this created significant frustra-
tion. XAML, a new declarative programming language, was specifically designed to
provide that common border.

Interface Versus Implementation
A declarative programming language is a high-level language that describes a prob-
lem rather than defining a solution. In other words, declarative programming lan-
guages deal with the “what” (i.e., the goals of your program), and imperative
programming languages deal with the “how” (the details of achieving those goals).
Declarative code is typically used to design the interface, while programming code (e.g.,
C#) is typically used to provide the implementation.

Purely declarative languages, in general, do not “compute” anything; rather, they
specify relationships. For example, in a declarative language you might say “a text
box with a one-pixel border will be drawn here,” while in an imperative language
you would specify the algorithm for drawing the text box.

HTML is declarative, because you use it to specify how a web page will look (but not
how to implement that presentation). XAML is also a declarative language, but most
of its elements correspond exactly to objects in an imperative language (e.g., C#).
This makes it a tremendously powerful and flexible markup language, as you can
declare in your markup how Windows pages will appear as well as behave.

Consider a wristwatch, as shown in Figure 2-1. The user or designer is most inter-
ested in the interface. (Is it easy to tell the time? Are the numbers clear? Can I distin-
guish the hour hand from the minute hand? Are the numbers in the conventional
places? What font is used?)

Figure 2-1. Interface versus implementation

11
10

9

8
7

6

Interface Implementation

XAML 101 | 9

The developer, on the other hand, may be more interested in the implementation.
(How do I create a mechanism that will ensure that the watch tells the correct time, all
the time, while meeting all the design requirements for cost, size, reliability, and so on?)

XAML greatly improves collaboration between designers and developers because it is,
as Microsoft describes it, “toolable” (that is, it can be manipulated by software tools).
This helps foster the separation of the interface design from the implementation: it
encourages companies to build some tools targeted at designers and other tools tar-
geted at programmers, all of which can interact with the same underlying XAML.

For example, in some companies designers work with UI tools (such as Microsoft’s
Blend) to create the UI, and then generate XAML that developers can import into
code-oriented tools such as Visual Studio.

So, you might ask, why didn’t Microsoft leverage an existing markup
language such as HTML for creating the user interface? The short
answer is that HTML simply wasn’t rich enough to express everything
that is required for a Windows application. HTML was intended from
the outset to be a “cut-down” and simplified markup language.
XAML, on the other hand, builds on the industry-standard XML and
is inherently extensible.

With XAML, most interfaces have representations, and each interface property is
represented by an XML element and/or attribute. All of the information about a
XAML-based application window is contained in the XAML file itself, and a single
XAML file can contain all that the parser needs to know to render the view.

Each view will contain XAML elements, nodes, and other components, organized
hierarchically. A XAML-based view also describes an object model, which creates the
window at runtime. Each of the elements and nodes described in the XAML docu-
ment is instantiated and the object model is created in memory. This allows for pro-
grammatic manipulation of the object model: the programmer can add and remove
elements and nodes, changing the page and re-rendering it as it changes.

Looking at XAML in terms of its relationship to CLR objects and types, WPF defines
types to represent controls and other UI elements, and the XAML parser simply
maps tags to types. For example, the following code for a <Button> tag sets a few
properties of a Button control:

<Button Width="20" Height="10">OK Button</Button>

XAML element names are mostly one-to-one mappings of CLR type names. Simi-
larly, the attributes of each element are mappings of the members exposed by the
object referenced in the element name. The net effect is that there is a single unified
API; XAML objects are CLR objects, and vice versa.

10 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Getting Yourself Up and Running
To follow along with the examples in this chapter, you will need a machine running
Vista. Please make sure you also have:

• .NET Framework 3.5

• Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components (http://tinyurl.com/y7hudw)

It is very important that your .NET Framework, SDK, and Visual Stu-
dio extensions all be from the same release. Please check the Microsoft
documentation for more information to make sure you have the right
versions properly loaded. Even though this is a book about .NET 3.5
(and you will need that SDK and Framework as well), we’ll be using
XAMLPad for the examples in this chapter, and at the time of this
writing, XAMLPad is available only as part of the .NET 3.0 SDK.

Simple XAML Done Simply
Markup languages combine information about the UI elements (text, images, etc.)
with attribute information (boldness, opacity, etc.). In HTML you might write the
following:

<i>XAML is a markup language</i>

This would lead to a web browser displaying the text as follows:

XAML is a markup language

The text is augmented by markup that tells the browser to render it in bold italics.

The same combination of UI elements and markup applies to XAML, making it a
very convenient way to approach the presentation layer of your Windows applica-
tions. Consider this simple XAML example:

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Grid>
 <Label
 Content="Hello World"
 FontFamily="Verdana"
 FontSize="32pt" />
 </Grid>
</Page>

This displays “Hello World” in 32-point Verdana, as shown in Figure 2-2.

http://tinyurl.com/y7hudw

Simple XAML Done Simply | 11

The <Label /> tag represents a standard System.Windows.Controls label. Therefore,
you can expect that through the attributes of the tag, you will have access to all the
members exposed by the Label type. You can set them declaratively (as shown here
with the Content, FontFamily, and FontSize attributes), or you can manipulate them
programmatically at runtime.

In general, you will find that XAML obeys completely the XML syntax rules.

Naming each element that you create using the ID or Name attribute
will allow you to refer to the element in code. We recommend using
self-documenting naming conventions rather than cryptic names that
require explanatory comments.

Because XAML effectively is XML, your documents must be “well formed.” While
the total set of rules can be complex,* the principal things to keep in mind are:

• Element and attribute names need to be cased correctly.

• Attribute values must be in quotes.

• Elements may not overlap (though they may be nested).

XAML elements fall into a limited number of categories: root elements, control ele-
ments, panel elements, shape and geometric elements, and document elements.
Taken together, these five categories provide user interface designers with some spec-
tacular opportunities to create rich user experiences.

As we move further into this chapter, the examples will get much
longer. Please take the time to download the .xaml files from http://
tinyurl.com/35yrm5.

Figure 2-2. Simple XAML example

* See http://www.w3.org/TR/REC-xml/ for more information.

http://www.w3.org/TR/REC-xml/
http://tinyurl.com/35yrm5
http://tinyurl.com/35yrm5

12 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Panel Elements
A panel element is a container, designed to support the layout and placement of ele-
ments on a page. Panels come in several different shapes and sizes. Depending on
how you exercise them, they are useful for laying out different types of elements.

As an example, open up XAMLPad and type the following (broken) code into the
code window (replacing whatever code was already there):

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="My Window" Height="300" Width="300"
 >
 <Grid Name="AGrid" Background="AntiqueWhite">

</Window>

As you can see in Figure 2-3, the Auto Parse mode allows you to see syntax errors
immediately as you enter XAML.

If an error is encountered, the entire XAML content is displayed in red, and the sta-
tus information at the bottom of the XAMLPad window displays the specific syntax
error. A hyperlink to the right of the displayed error allows you to jump to the area of
XAML content that contains the error.

Figure 2-3. XAMLPad shows errors automagically

Simple XAML Done Simply | 13

In our broken code example, the status information indicates that the <Grid> start
tag on line 6 does not match the end tag of </Window >. This message is—as error
messages often are—a little misleading; what it means is that there is no close tag for
the Grid element. To fix this, you can add a close grid tag (</Grid>) after the opening
<Grid> tag and before the close window tag (</Window>). Once you’ve corrected this
error, your XAMLPad window should look like Figure 2-4.

Now, if you click the Refresh button, XAMLPad will instantiate a window labeled
“My Window” with an off-white background, as shown in Figure 2-5.

Root Elements
Root elements are special derivations of panel elements. They serve as the fundamen-
tal containers for pages. Every page requires exactly one root element. In the next
chapter, when we build an application with Visual Studio, you will notice that the
default root element is Grid. It is not uncommon for other panel elements (e.g.,
StackPanel, DockPanel, or Canvas, as well as Page and Window) to serve as root ele-
ments. The root element must contain a reference to the namespace needed by the
other elements in the container.

Figure 2-4. XAML with no errors displays without an error message

14 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

You should be able to type the following code into XAMLPad and get a result simi-
lar to the Hello World text we showed previously:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Hello" Height="300" Width="300"
 >
 <Grid Name="HelloWorldGrid">
 <Label
 Name="HelloWorldLabel"
 Content="Hello World"
 FontFamily="Verdana"
 FontSize="32pt"
 />
 </Grid>
</Page>

This time we did not use a Window container, but rather a Page container. Your
XAMLPad display should automatically have rendered “Hello World” in 32-point
Verdana, as shown in Figure 2-6.

All XAML documents expect that the elements contained inside the root element be
appropriately referenced via namespace declarations. We do this here by declaring
the namespace(s) for our controls as attributes of the Page:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

If the provided elements are too rudimentary for you, you can create custom elements
by deriving new classes from Page or Window and exposing them as XAML elements.
Indeed, for very sophisticated user interactions where the standard features may not
suffice, this is probably the desired course of action.

Figure 2-5. My Window

Simple XAML Done Simply | 15

Control Elements
Control elements are user-manipulated objects that help with data or user interac-
tions. Controls can be differentiated into five types based on their support of the
Content, Header, and Item attributes:

• Simple controls

• Content controls

• Item controls

• Headered item controls

• Headered content controls

Simple controls

A simple control does not have Content, Header, or Item attributes. Controls like
images, frames, and scroll bars all fall into this category. The next snippet shows an
example of an Image control in a window:

Figure 2-6. Hello World

16 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Image" Height="100" Width="200"
 >
 <Grid Name="StuffToBuy">

 <Image
 Source="http://www.oreilly.com/images/oreilly/add_to_cart.gif"
 Height="33"
 Width="142"
 />

 </Grid>
</Window>

If you run this in XAMLPad, you should get something like Figure 2-7.

While this code just displays an image, it is easy to see how you could make this
functional in your application by embedding the Image inside a Button control:

<Button Height="33" Width="142" Background="Transparent">
 <Image
 Source="http://www.oreilly.com/images/oreilly/add_to_cart.gif"/>
</Button>

Change your code in XAMLPad and hit Refresh. You should get a clickable button
similar to Figure 2-8. Note that it registers the mouse click by changing the button’s
color.

Figure 2-7. An image embedded in a window

Figure 2-8. Image control embedded in a Button control

Simple XAML Done Simply | 17

Content controls

Content controls display some sort of content. They fall into two categories: simple
and complex. Simple content controls display single elements. They include
TextBoxes, Buttons, and Labels. Complex content controls can display multiple ele-
ments. DockPanel and StackPanel are two of the most important complex content
controls.

We’ll begin with an example of a simple content control. There are two ways to set
the content of a Button control. The first is to place it between the open and close
element tags:

<Button Height="30" Width="100">
 Click on Me
</Button>

The second is to use the Content attribute:

<Button Height="30" Width="100" Content="Click on Me" />

Most content controls have a Content attribute; they may also have Header and/or
Item attributes. You can also embed controls inside the open and close element tags:

<Button Height="30" Width="150" Background="Transparent">
 <TextBox>Click to type in here</TextBox>
</Button>

(Although I must confess I don’t know why you would ever want a text box inside a
button, from a design point of view.)

Now let’s look at a complex content control. If we start with a DockPanel and add an
image and our crazy Button with the TextBox, we’ll wind up with code like this:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Dock Panel" Height="100" Width="400"
 >
 <Grid Name="StuffToBuy">
 <DockPanel>
 <Image
 Source="http://www.oreilly.com/images/oreilly/add_to_cart.gif"
 Height="33" Width="142" />
 <Button Height="30" Width="150" Background="Transparent">
 <TextBox>Click to type in here</TextBox>
 </Button>
 </DockPanel>
 </Grid>
</Window>

18 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

A job the DockPanel can do nicely is to render the elements in the order
in which they are declared, from left to right. (You may use attributes
of the DockPanel to alter the relative positions of the child elements.)

The result is shown in Figure 2-9.

Now change the DockPanel to a StackPanel and change the height and width of the
Window to 120 and 170, respectively. You will see a difference in how the user inter-
face is rendered: while the DockPanel by default orients its child objects horizontally,
the StackPanel by default orients its children vertically, as shown in Figure 2-10.

Item controls

Item controls have children, including controls with collections. Headered item con-
trols have no Content attributes, but they do have Header and (optionally) Item
attributes. As an example, a Menu is an item control, and it contains a collection of
MenuItem(s). MenuItem(s) are headered item controls, as shown in the following example:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 Title="Hello and Goodbye" Height="300" Width="300"
 >
 <StackPanel
 Name="HelloWorldGrid"
 Background="AntiqueWhite"
 >

Figure 2-9. Complex content control using a DockPanel

Figure 2-10. Complex content control using a StackPanel

Simple XAML Done Simply | 19

 <Menu
 Height="21" Margin="0,0,0,0">
 <MenuItem Header="Say Hello">
 <MenuItem Header="Hello Jesse" />
 <MenuItem Header="Hello Alex" />
 </MenuItem>
 <MenuItem Header="Say Goodbye">
 <MenuItem Header="Goodbye Jesse" />
 <MenuItem Header="Goodbye Alex" />
 </MenuItem>
 </Menu>
 <Label
 Content="Hello Goodbye"
 FontFamily="Verdana"
 FontSize="32"
 />
 </StackPanel>
</Window>

When you launch this code from XAMLPad, you get a window that looks like
Figure 2-11. You can see how the Menu control exposes its list of MenuItem(s). We
have used the implicit Item declaration of MenuItem to expose the child menu items:

Pseudocode to follow:
MenuItem Header="Parent">
 <MenuItem Header="Child">
 <MenuItem Header="Grandchild">
 <MenuItem Header="Great Grandchild" />
 </MenuItem>
 </MenuItem>
 </MenuItem>

Figure 2-11. Item controls and headered item controls in the form on a menu

20 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

To keep the example focused, the menus drop down but do not
change the text in the main window.

Headered content controls

Headered content controls can have a Header attribute and a Content attribute but no
Item attribute. Like a content control, a headered content control can have only one
child in its Content attribute, and you can set the content implicitly or explicitly. For
example, you could set the content of an Expander control like this:

<Expander Height="50"
 Name="MyExpander"
 VerticalAlignment="Bottom" >
 When you click on an expander it shows its content.
</Expander>

or like this:

<Expander Height="50"
 Name="MyExpander"
 VerticalAlignment="Bottom"
 Content="When you click on an expander it shows its content."
/>

Document Elements
Document elements are another interesting aspect of XAML. Most of us are familiar
with the first case of the document element, the FixedDocument. This is the tradi-
tional what you see is what you get (WYSIWYG) view of a document that we all know
and love. The example presented here uses a FlowDocument, which provides much
greater flexibility in how the document is rendered and improves user experience.

Coupled with a rich set of controls, a flow document can make for a very pleasant
reading experience. Things are going to get a bit recursive here, as we look at how
the first part of this chapter might look as a flow document.

The complete code for XAMLPad follows (you can find it in the source you down-
loaded for this chapter). You may want to enter each paragraph in turn and then
press F5 to watch the demonstration grow one step at a time. You don’t have to type
in all the text between the <Paragraph> and </Paragraph> tags to get the full effect of
this example. Here’s the code:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Chapter 3">
<FlowDocument>

Simple XAML Done Simply | 21

 <Paragraph FontSize="28" Foreground="Red">
 Introducing XAML: A Declarative Way to Create Windows UIs
 </Paragraph>
 <Paragraph>
 Before the appearance of .NET 3.0, web applications were written with "markup
 languages" such as HTML and Windows applications were not. We may have
 dragged controls onto forms, but the creation of the controls and their
 properties was managed by the development environment, or you instantiated
 them programmatically at runtime.
 </Paragraph>
 <Paragraph>
 .NET 3.0 changed all that with the introduction of the eXtensible Application
 Markup Language, or XAML (pronounced "zamel," to rhyme with "camel"). There
 are two key things to know about XAML:
 </Paragraph>
 <Paragraph>
 1. It is a markup language for creating Windows applications, just as HTML is
 a markup language for creating web applications.
 </Paragraph>
 <Paragraph>
 2. Almost every XAML object has a corresponding Common Language Runtime (CLR)
 object; most of what you can create declaratively in XAML you can also create
 programmatically in C#, and vice versa.
 </Paragraph>
 <Paragraph>
 The goal of this chapter is to provide an overview of XAML and how it is used
 in creating user experiences. By the end of this chapter you should have an
 appreciation of XAML as a declarative language, an understanding of the basic
 elements and attributes that you are likely to encounter when writing a .NET
 3.5 application, and a fundamental appreciation for hand-crafting meaningful
 XAML applications. We will not cover every element in the XAML vocabulary,
 but we will cover the entire landscape of XAML, demonstrating all of its
 significant capabilities.
 </Paragraph>
 <Paragraph>
 For a detailed treatment of the XAML markup language, we highly recommend XAML
 in a Nutshell, by Lori A. MacVittie (O'Reilly).
 </Paragraph>
 <Paragraph FontSize="24" Foreground="Red">
 XAML 101
 </Paragraph>
 <Paragraph>
 Historically, developers have often had a difficult time translating user
 interface designers' ideas into an implementation that worked on a specific
 development platform. Designers, for their part, were often forced to
 compromise their designs to accommodate the limitations of software tools. In
 short, the worlds of design and development did not share a common border,
 and this created significant frustration. XAML, a new declarative programming
 language, was specifically designed to provide that common border.
 </Paragraph>
 <Paragraph FontSize="18" Foreground="Red">
 Interface Versus Implementation
 </Paragraph>

22 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

 <Paragraph>
 A declarative programming language is a high-level language that describes a
 problem rather than defining a solution. In other words, declarative
 programming languages deal with the "what" (i.e., the goals of your program),
 and imperative programming languages deal with the "how" (the details of
 achieving those goals). Declarative code is typically used to design the
 interface, while programming code (e.g., C#) is typically used to provide the
 implementation.
 </Paragraph>
 <Paragraph>
 Purely declarative languages, in general, do not "compute" anything; rather,
 they specify relationships. For example, in a declarative language you might
 say "a text box with a one-pixel border will be drawn here," while in an
 imperative language you would specify the algorithm for drawing the text box.
 </Paragraph>
 <Paragraph>
 HTML is declarative, because you use it to specify how a web page will look
 (but not how to implement that presentation). XAML is also a declarative
 language, but most of its elements correspond exactly to objects in an
 imperative language (e.g., C#). This makes it a tremendously powerful and
 flexible markup language, as you can declare in your markup how Windows pages
 will appear as well as behave.
 </Paragraph>
 <Paragraph>
 Consider a wristwatch, as shown in Figure 2-1. The user or designer is most
 interested in the interface. (Is it easy to tell the time? Are the numbers
 clear? Can I distinguish the hour hand from the minute hand? Are the numbers
 in the conventional places? What font is used?)
 </Paragraph>
 <BlockUIContainer>
 <Image Height="184" Width="202"
 Source=" http://alexhorovitz.com/oop/ivi_watch.gif" />
 </BlockUIContainer>
 <Paragraph FontSize="15" Foreground="Blue">
 Figure 3-1. Interface vs. implementation
 </Paragraph>
 <Paragraph>
 The developer, on the other hand, may be more interested in the
 implementation. (How do I create a mechanism that will ensure that the watch
 tells the correct time, all the time, while meeting all the design
 requirements for cost, size, reliability, and so on?)
 </Paragraph>

</FlowDocument>
</Window>

Enter this code in XAMLPad and click the Refresh button. XAMLPad will launch a
window that can, through the use of the embedded flow document reader controls,
be made to look like Figure 2-12.

Over Here…No, Wait, I Meant Over There! | 23

Over Here…No, Wait, I Meant Over There!
One of the major tasks involved in software user experience design is determining what
goes where, and why. Once you know what you want to show to a user and why you
want to show it, you need a mechanism to address screen size and resolution. Fortu-
nately, XAML (as part of WPF) addresses both these issues automagically.

XAML is rich with options for grouping page resources conveniently and ensuring
that layout elements are positioned in a manner to enhance user experience. In addi-
tion, XAML elements by default dynamically size to fit their environment. As you
can see, with XAML you can easily accommodate the most demanding UI designer’s
requirements.

When laying out a simple application’s user interface, it’s convenient to call on two
subclasses of Panel to do your heavy lifting: DockPanel and StackPanel. For more
complex applications, Grid is likely a smarter choice. As you might have guessed
from their names, the primary function of these controls is the positioning of ele-
ments. They have the added feature of automatically placing elements in the order of
their declaration in the XAML.

Figure 2-12. FlowDocument version of the opening pages of this chapter

24 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Review: In our examples, DockPanel is used to lay out elements left to
right (although attributes can be used to dock the elements to any bor-
der—left, right, top or bottom), while StackPanel is used to stack ele-
ments one on top of the other.

We’re going to use a fictional employee directory to explore how these controls inter-
operate with other elements and how they assist in the layout of the user experience.

StackPanel and DockPanel
The first step is to divide the window into three content areas using StackPanel and
DockPanel.

Begin by creating a Window element in XAMLPad. Give it a title of “Employee
Directory”:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 Title="Employee Directory" Height="480" Width="640"
 >

Then insert a Grid element along with the DockPanel that will contain the three con-
tent areas:

<Grid>
 <DockPanel LastChildFill="False">

Grid is a souped-up form of StackPanel that allows you to orient your
layout both horizontally and vertically. Be careful not to confuse this
with DataGrid, which, surprisingly, is not present in WPF (yet).

Next, add three Border elements. Border inherits from Decorator and is used to draw
a border around an element. It can also be used to provide a background color for an
element.

Border, like almost all elements in a DockPanel, has a DockPanel.Dock attribute that
you can use to specify its position within the DockPanel. Set the three Border ele-
ments’ DockPanel.Dock attributes to Top, Left, and Right, respectively, to indicate
their desired docking locations. Then add a Label element inside each Border:

 <Border
 DockPanel.Dock="Top"
 BorderBrush="Black"
 BorderThickness="1"
 Height="70">
 <Label
 FontFamily="Verdana"
 FontSize="32"
 HorizontalAlignment="Center"
 >Top</Label>
 </Border>

Over Here…No, Wait, I Meant Over There! | 25

 <Border
 DockPanel.Dock="Left"
 BorderBrush="Black"
 BorderThickness="1"
 Width="400">
 <StackPanel>
 <Label
 FontFamily="Verdana"
 FontWeight="Bold" FontSize="18"
 HorizontalAlignment="Center"
 >Left</Label>
 </StackPanel>
 </Border>
 <Border
 DockPanel.Dock="Right"
 BorderBrush="Black"
 BorderThickness="1"
 Width="240">
 <StackPanel>
 <Label
 FontFamily="Verdana"
 FontWeight="Bold" FontSize="18"
 HorizontalAlignment="Center"
 >Right</Label>
 </StackPanel>
 </Border>

Close the opened tags from the start and test the program:

 </DockPanel>

</Grid>
</Window>

Assuming you’ve typed everything correctly, you should end up with a window that
looks like the one in Figure 2-13.

As you can see, layout in XAML is not very different from layout in HTML. If you
are going to code XAML without the aid of a layout tool, it’s helpful to envision the
layout in terms of columns and rows.

XAML also combines the x,y layout positioning you get with CSS, so you can be very
precise in the placement of your elements.

Moving beyond columns and rows

The first enhancement we’ll make to our Employee Directory is to add an image that
we’ll pull from a web site. In part, this is to demonstrate that .NET 3.5 applications
can mix and match resources: you can reference images locally, but you can also ref-
erence remote images using a number of protocols. In this case, we’re going to
retrieve an image via an HTTP request.

26 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

In the “right” DockPanel, inside the Border, add a StackPanel and an Image (delete the
Label that was there previously):

 <Border
 DockPanel.Dock="Right"
 BorderBrush="Black"
 BorderThickness="1"
 Width="240">
 <!-- New Content -->
 <StackPanel>
 <Image Name="EmployeePicture"
 Margin="0,10,0,0"
 Height="200"
 HorizontalAlignment="Center"
 VerticalAlignment="Top"
 Width="200"
 Source="http://alexhorovitz.com/DotNet3/Alex_w200.jpg"/>
 </StackPanel>
 <!-- End New Content -->
 </Border>

Note that we set the Margin attribute to ensure that the image appears at least 10 pix-
els from the top of the Border container. We also used the HorizontalAlignment and
VerticalAlignment attributes to ensure the image is positioned correctly relative to

Figure 2-13. Three content sections using Border and DockPanel

Over Here…No, Wait, I Meant Over There! | 27

the container. It is important to understand that all positioning happens relative to
the parent container.

When you run this code, you will get a window that looks like Figure 2-14.

Now we’ll fill in the other Border containers, using a smattering of XAML elements
and attribute formatting to create a nice user experience.

We’ll start with the Border that has been attached to the “top” of our dock panel.
Here, we’re going to change the existing Label and set the font. This will give us the
desired effect on the text of the label:

 <Border
 DockPanel.Dock="Top"
 BorderBrush="Black"
 BorderThickness="1"
 Height="70">
 <Label
 FontFamily="Verdana"
 FontSize="32pt"
 HorizontalAlignment="Center"
 >
 ACME Software Employee Directory
 </Label>
 </Border>

Figure 2-14. The Employee Directory with a picture from an HTTP request

28 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

When you run this again in XAMLPad, you will see a nice banner across the top dock
panel that says in a 32-point Verdana font “ACME Software Employee Directory,” as
shown in Figure 2-15.

Things are a little more complicated in the “left” Border, as this will display rows and
columns of information. We’ll use a series of StackPanel, DockPanel, and Separator
elements to get the desired look and feel.

We want the elements in this Border to flow vertically as opposed to horizontally, so
we’ll use a StackPanel at the top. We’ll also introduce some Separator elements to
further visually divide this column:

 <StackPanel>
 <Label
 FontFamily="Verdana"
 FontWeight="Bold" FontSize="18"
 HorizontalAlignment="Left"
 >Name: Alex Horovitz</Label>
 <Separator
 Height="5"
 Margin="2,0,40,0"
 Name="s1"
 VerticalAlignment="Bottom"
 />
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Department: Software Engineering</Label>
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Location: Acton, MA</Label>
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Email: alex@alexhorovitz.com</Label>

Figure 2-15. ACME Software Employee Directory banner in 32-point Verdana

Over Here…No, Wait, I Meant Over There! | 29

 <Separator
 Height="5"
 Margin="2,0,40,0"
 Name="s2"
 VerticalAlignment="Bottom"
 />

This section is pretty straightforward.

We want to place icons near some of the contents of this section, so we’re going to
want to control the layout at a finer granularity here. In this case, we’ll introduce a
series of DockPanel elements inside the current StackPanel (immediately following the
last Separator). These will contain Border elements, creating a hierarchy that pro-
vides us with very fine-grained control over the layout:

 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/Nortel_Phone.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1111</Label>
 </Border>
 </DockPanel>
 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/X-Phone_r2_c3.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1212</Label>
 </Border>
 </DockPanel>
 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/fax.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1313</Label>
 </Border>
 </DockPanel>
</StackPanel>

This code renders in XAMLPad as shown in Figure 2-16.

30 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Here is the complete code for this example:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 Title="Employee Directory" Height="480" Width="640"
 >
<Grid>
 <DockPanel>
 <Border
 DockPanel.Dock="Top"
 BorderBrush="Black"
 BorderThickness="1"
 Height="70">
 <Label
 FontFamily="Verdana"
 FontSize="32"
 HorizontalAlignment="Center"
 >ACME Software Employee Directory</Label>
 </Border>
 <Border
 DockPanel.Dock="Left"
 BorderBrush="Black"
 BorderThickness="1"
 Width="400">
 <StackPanel>

Figure 2-16. Full-blown Employee Directory in XAML

Over Here…No, Wait, I Meant Over There! | 31

 <Label
 FontFamily="Verdana"
 FontWeight="Bold" FontSize="18"
 HorizontalAlignment="Left"
 >Name: Alex Horovitz</Label>
 <Separator
 Height="5"
 Margin="2,0,40,0"
 Name="s1"
 VerticalAlignment="Bottom"
 />
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Department: Software Engineering</Label>
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Location: Acton, MA</Label>
 <Label
 FontFamily="Verdana"
 FontSize="14"
 HorizontalAlignment="Left"
 >Email: alex@alexhorovitz.com</Label>
 <Separator
 Height="5"
 Margin="2,0,40,0"
 Name="s2"
 VerticalAlignment="Bottom"
 />
 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/Nortel_Phone.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1111</Label>
 </Border>
 </DockPanel>
 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/X-Phone_r2_c3.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1212</Label>
 </Border>

32 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

 </DockPanel>
 <DockPanel>
 <Border DockPanel.Dock="Left" BorderThickness="0">
 <Image Width="80"
 Source="http://alexhorovitz.com/DotNet3/fax.gif"/>
 </Border>
 <Border DockPanel.Dock="Right" BorderThickness="0">
 <Label FontFamily="Verdana" FontSize="14"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 >978 555 1313</Label>
 </Border>
 </DockPanel>
 </StackPanel>
 </Border>
 <Border
 DockPanel.Dock="Right"
 BorderBrush="Black"
 BorderThickness="1"
 Width="240">
 <StackPanel>
 <Image Name="EmployeePicture"
 Margin="0,10,0,0"
 Height="200"
 HorizontalAlignment="Center"
 VerticalAlignment="Top"
 Width="200"
 Source=" http://alexhorovitz.com/DotNet3/Alex_w200.jpg"/>
 </StackPanel>
 </Border>
 </DockPanel>

</Grid>
</Window>

It’s Alive! (Or, How I Learned to Stop Worrying and Love
Animation)
XAML is a very powerful declarative language. As we have seen, it allows you to create
complex layouts and absorb resources both locally and remotely. But one of the truly
amazing things about XAML is that it enables you to animate your user experience.

Our next example will demonstrate how to animate a fairly simple window, with a
focus on the nuts and bolts of animation. The XAML code might seem a little daunt-
ing at first, but hang in there; you’ll come to see that most of it has to do with posi-
tioning and the timing of effects.

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 33

When you run this example, you should notice that the user interface elements fade
in rather than appearing abruptly, and that the artwork in the product name banner
is gently animated.

The human eye can process visual information at an astonishing rate, but there are
limits. Traditionally, most applications present all UI elements simultaneously. The
overloaded eye doesn’t know where to look first, and the user is temporarily over-
whelmed. By making the UI elements appear in a logical sequence, you can help the
user see the story of your presentation.

Animation Overview
We’ll go into animation in more detail in the next chapter, but we want to give you a
taste now of how much you can do with XAML. Some of the concepts illustrated
here aren’t discussed fully until the next chapter. Bear with us; they’ll be made clear
soon.

Two techniques are used for animation. In the first, known as From/To/By anima-
tion, you transition from a starting to an ending value (these are called the “target
values”). You can specify either an endpoint (from here to there) or a By property
(from here, offset by this much).

The second technique, called keyframe animation, lets you specify more than two
values (i.e., more than just a start and stop position). It also lets you specify the inter-
polation method:

Linear interpolation
Animation at a constant rate

Discrete interpolation
Animation jumping from one value to the next without interpolation

Splined interpolation
The most realistic animation, in which there are both acceleration and decelera-
tion effects

The example we’ll show here is a keyframe animation using splined interpolation.

The Animation Storyboard
The first part of creating an animated user experience is deciding what will be ani-
mated, how it will be animated, and in what order the animation will occur. The
more common name for this collection of information is a storyboard.

Just for fun, in this example you’re going to mock up a splash page for an O’Reilly
book. You’ll have some text, and some branding in the form of a red gradient opaque
banner. And what example would be complete without a hexatarsier (Figure 2-17)?

34 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

In your storyboard, you’re first going to add the bit of XAML that will help you
rotate our friend the hexatarsier. You’ll need a DoubleAnimationUsingKeyFrames
object, comprised of two SplineDoubleKeyFrame objects:

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear1"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(RotateTransform.Angle)"
 BeginTime="00:00:00"
 RepeatBehavior="Forever">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="360"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>

Note that the Storyboard.TargetName value of the DoubleAnimationUsingKeyFrames
object ("Gear1") refers to the target of the behavior, the image of the hexatarsier:

 <Image IsEnabled="True" HorizontalAlignment="Left" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="Gear1" Margin="0,-100,0,0"
 Width="192" Height="187" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://alexhorovitz.com/DotNet3/rotate_tarsier.png"/>
 </Image.Source>

Figure 2-17. The world-renowned hexatarsier

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 35

 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>
 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Image.RenderTransform>
 </Image>

The KeySpline values of the SplineDoubleKeyFrame objects define cubic Bézier curves.
The resulting curves specify how an animation is interpolated during a time seg-
ment; that is, the curve represents the rate of change in the animation’s target
attribute over the time segment. In this case, you are simply rotating the image 360
degrees over the course of one minute and 18 seconds.

You’re going to make five animated gears in your storyboard and label them Gear1
through Gear4.

You’re also going to animate the other aspects of the UI. The text logo and the con-
tent grid will fade in using opacity:

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextLogo_png1"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.5"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.5"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="ContentGrid"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02"/>
 </DoubleAnimationUsingKeyFrames>

You’ll do the same thing for the red gradient box using RedGradient and
WhiteKnockOut:

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="RedGradient"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:01"/>
 </DoubleAnimationUsingKeyFrames>

36 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="WhiteKnockout"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:00.5830000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextBlock2"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.3330000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextBlock3"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.9990000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="PDFImage"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.6660000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>

You create the red gradient box using XAML and color offsets:

 <Rectangle Stroke="{x:Null}" StrokeMiterLimit="2" x:Name="RedGradient"
 Margin="0,90,0,0" HorizontalAlignment="Stretch" VerticalAlignment="Top"
 Width="Auto" Height="90" Opacity="1">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color="#FF0000" Offset="0"/>
 <GradientStop Color="sc#1, 1, 1, 0.768538356"
 Offset="0.10256410256410256"/>
 <GradientStop Color="#FF0000" Offset="0.60897435897435892"/>
 <GradientStop Color="#FF0000" Offset="0.79487179487179482"/>
 <GradientStop Color="#FF0000" Offset="1"/>
 <GradientStop Color="#FF0000" Offset="0.25"/>
 <GradientStop Color="#FF0000" Offset="0.44230769230769229"/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 37

 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color="sc#1, 1, 0.987141, 0"
 Offset="0.39743589743589741"/>
 <GradientStop Color="sc#0.7, 1, 0.658374846, 0" Offset="1"/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>

Because you tie these effects to the keyframes, they are produced in sequence. So, not
only do the hexatarsiers rotate, but (equally impressive to the viewer, though more
subtle), the entire presentation seems to fade in, with each segment appearing in turn
as shown in Figure 2-18 (your book may not show color or the actual animation,
depending on how much you paid for it).

Example 2-1 shows the complete code for this animation example. You don’t need to
type it all into XAMLPad (it’s very long); if you’ve downloaded the source for this
chapter, you can just open the file AnimationExample.xaml.

Figure 2-18. Animated images

38 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Example 2-1. Keyframe animation using splines

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:System="clr-namespace:System;assembly=mscorlib"
 x:Name="RootWindow"
 Title="Welcome to O'Reilly"
 SizeToContent="WidthAndHeight" ResizeMode="NoResize" >
 <Window.Resources >

 <System:Double x:Key="LargeText">14</System:Double>

 <Storyboard x:Key="OnLoaded">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear1"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(RotateTransform.Angle)"
 BeginTime="00:00:00"
 RepeatBehavior="Forever">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="360"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear2"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(RotateTransform.Angle)"
 BeginTime="00:00:00"
 RepeatBehavior="Forever">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="-360"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear3"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(RotateTransform.Angle)"
 BeginTime="00:00:00"
 RepeatBehavior="Forever">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="360"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear4"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(RotateTransform.Angle)"
 BeginTime="00:00:00"
 RepeatBehavior="Forever">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="-360"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 39

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear1"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:01"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear2"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00.5000000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:01.5420000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear3"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.4580000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.5000000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Gear4"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:02"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:03"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:01:18"/>
 </DoubleAnimationUsingKeyFrames>
 <!--Text logo fade in-->
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextLogo_png1"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.5"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.5"/>
 </DoubleAnimationUsingKeyFrames>

Example 2-1. Keyframe animation using splines (continued)

40 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

 <!--Content area (UI) fade in-->
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="ContentGrid"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="RedGradient"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:01"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="WhiteKnockout"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:00.5830000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextBlock2"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.3330000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="TextBlock3"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.9990000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="PDFImage"
 Storyboard.TargetProperty="(UIElement.Opacity)" BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:00"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="0"
 KeyTime="00:00:01.6660000"/>
 <SplineDoubleKeyFrame KeySpline="0.5,0.5,0.5,0.5" Value="1"
 KeyTime="00:00:02.3330000"/>
 </DoubleAnimationUsingKeyFrames>

 </Storyboard>

Example 2-1. Keyframe animation using splines (continued)

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 41

 <Style x:Key="HeaderedContentControlStyle1"
 TargetType="{x:Type HeaderedContentControl}">
 <Setter Property="Template"
 Value="{DynamicResource HeaderedContentControlControlTemplate1}"/>
 </Style>
 <ControlTemplate x:Key="HeaderedContentControlControlTemplate1"
 TargetType="{x:Type HeaderedContentControl}">
 <BulletDecorator x:Name="BulletDecorator1"
 RenderTransformOrigin="0.5,0.5">
 <BulletDecorator.Bullet>
 <ContentControl Content="{TemplateBinding Header}" Width="Auto"
 Height="Auto" VerticalAlignment="Center" Margin="0,0,0,0"/>
 </BulletDecorator.Bullet>
 <ContentControl Content="{TemplateBinding Content}"
 VerticalAlignment="Stretch" Margin="4,4,4,4"
 HorizontalAlignment="Left"/>
 </BulletDecorator>
 </ControlTemplate>

 </Window.Resources>
 <Window.Triggers >
 <EventTrigger RoutedEvent="FrameworkElement.Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard x:Name="_OnLoaded"
 Storyboard="{DynamicResource OnLoaded}"/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Window.Triggers>
 <Grid x:Name="DocumentRoot" Width="640" Height="480">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Rectangle Fill="#FFFFFFFF" StrokeMiterLimit="2"
 x:Name="GearBackgroundRectangle" RenderTransformOrigin="0.5,0.5"
 HorizontalAlignment="Stretch" VerticalAlignment="Top" Width="Auto"
 Height="175" Margin="0,0,0,0" Opacity="1"/>
 <Image IsEnabled="True" HorizontalAlignment="Left" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="Gear1" Margin="0,-100,0,0"
 Width="192" Height="187" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://alexhorovitz.com/DotNet3/rotate_tarsier.png"/>
 </Image.Source>
 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>

Example 2-1. Keyframe animation using splines (continued)

42 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 <Image IsEnabled="True" HorizontalAlignment="Left" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="Gear2" Margin="169,-4,0,0"
 Width="192" Height="187" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://alexhorovitz.com/DotNet3/rotate_tarsier.png"/>
 </Image.Source>
 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>
 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 <Image IsEnabled="True" HorizontalAlignment="Left" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="Gear3" Margin="339,-101,0,0"
 Width="192" Height="187" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://alexhorovitz.com/DotNet3/rotate_tarsier.png"/>
 </Image.Source>
 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>
 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 <Image IsEnabled="True" HorizontalAlignment="Right" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="Gear4" Margin="0,-4,-60,0"
 Width="192" Height="187" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://alexhorovitz.com/DotNet3/rotate_tarsier.png"/>
 </Image.Source>

Example 2-1. Keyframe animation using splines (continued)

It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation) | 43

 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>
 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Image.RenderTransform>
 </Image>

 <Rectangle StrokeMiterLimit="2" x:Name="WhiteKnockout"
 RenderTransformOrigin="0.5,0.5" Margin="0,176,0,0"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch" Width="Auto"
 Height="Auto" Opacity="1" Fill="#FFFFFFFF"/>
 <Rectangle Stroke="{x:Null}" StrokeMiterLimit="2" x:Name="RedGradient"
 Margin="0,90,0,0" HorizontalAlignment="Stretch" VerticalAlignment="Top"
 Width="Auto" Height="90" Opacity="1">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color="#FF0000" Offset="0"/>
 <GradientStop Color="sc#1, 1, 1, 0.768538356"
 Offset="0.10256410256410256"/>
 <GradientStop Color="#FF0000" Offset="0.60897435897435892"/>
 <GradientStop Color="#FF0000" Offset="0.79487179487179482"/>
 <GradientStop Color="#FF0000" Offset="1"/>
 <GradientStop Color="#FF0000" Offset="0.25"/>
 <GradientStop Color="#FF0000" Offset="0.44230769230769229"/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color="sc#1, 1, 0.987141, 0"
 Offset="0.39743589743589741"/>
 <GradientStop Color="sc#0.7, 1, 0.658374846, 0" Offset="1"/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>

Example 2-1. Keyframe animation using splines (continued)

44 | Chapter 2: Introducing XAML: A Declarative Way to Create Windows UIs

Hooked Yet?
This chapter has provided only a taste of what can be done with XAML. In the next
chapter we’ll explore the library Microsoft built to help you utilize XAML to con-
struct your presentation layer: the Windows Presentation Foundation, which is pro-
vided as part of .NET 3.5.

Be prepared—all your existing Windows applications are about to look very old.
Don’t you hate it when that happens?

 <Grid x:Name="ContentGrid" Width="640" Height="480"
 RenderTransformOrigin="0.5,0.5" Opacity="1">
 <Grid.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="0" Y="0"/>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 <SkewTransform AngleX="0" AngleY="0"/>
 <RotateTransform Angle="0"/>
 <TranslateTransform X="0" Y="0"/>
 <TranslateTransform X="0" Y="0"/>
 </TransformGroup>
 </Grid.RenderTransform>
 </Grid>

 <Image IsEnabled="True" HorizontalAlignment="Left" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" x:Name="TextLogo_png1" Width="369"
 Height="69" Margin="50,300,0,0" Opacity="1">
 <Image.Source>
 <BitmapImage
 UriSource="http://www.oreilly.com/images/oreilly/oreilly_large.gif"/>
 </Image.Source>
 </Image>

 <TextBlock x:Name="TextBlock2" Margin="0,185,10,0"
 HorizontalAlignment="Right" VerticalAlignment="Top" Width="290"
 Height="21" Text="Short Cuts" TextAlignment="Right" FontSize="11"
 Opacity="1"/>
 <TextBlock x:Name="TextBlock3" Margin="0,250,10,0"
 HorizontalAlignment="Right" VerticalAlignment="Top" Width="400"
 Height="40" Text="Getting Started with .NET 3.0" TextAlignment="Left"
 FontSize="24" Opacity="1"/>
 <Image x:Name="PDFImage" IsEnabled="True" HorizontalAlignment="Left"
 VerticalAlignment="Top" RenderTransformOrigin="0.5,0.5"
 Source="http://www.oreilly.com/catalog/covers/059652921X_cat.gif"
 Margin="400,300,10,20" Opacity="1"/>
 </Grid>
</Window >

Example 2-1. Keyframe animation using splines (continued)

45

Chapter 3 CHAPTER 3

Introducing
Windows Presentation Foundation:

A Richer Desktop UI Experience3

Unlike Windows Forms applications, but much like ASP.NET applications, Windows
Presentation Foundation (WPF) applications contain both “markup” (XAML) and
the “code-behind” that together correspond to the .NET class libraries. As demon-
strated in the previous chapter, you can use XAML to create very powerful layouts
and displays. However, WPF goes beyond that, using XAML and code-behind to cre-
ate complete applications that provide enhanced text, 2-D and 3-D graphics, and
much more.

The best way to think about WPF is as a framework of classes that Microsoft pro-
vides for you. You implement these classes either programmatically, by instantiating
them in code, or declaratively, by using XAML.

In Chapter 4 you’ll build a significant business application that uses many features of
WPF. To prepare you for that, this chapter will build on the previous chapter and
introduce more of the features of WPF that you are likely to use in creating your
applications.

Note About the Examples
More experienced readers will note that the examples in this chapter utilize some
XAML elements in a less than highly optimized manner. This is intentional, to allow
you to better visualize how things fit together. Often, we choose to use elements that
best show off the intermediate states of the examples and, ultimately, create better
results from a visual perspective.

46 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Starting Simple: Panels
One challenge with every markup language is achieving precise layout of the ele-
ments for display. The approach taken with XAML is to use panel elements, as
touched on in the previous chapter.

Perhaps the most flexible panel is the Grid, which gives you control of both columns
and rows (not unlike a table in HTML). Enter the code shown in Example 3-1 into
XAMLPad and run it.

Example 3-1. Grid example

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Understanding Grids">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <TextBlock TextBlock.FontSize="36"
 TextBlock.Foreground="White"
 Background="Blue"
 Grid.Column="0"
 Grid.Row="0"
 Grid.RowSpan="2">1</TextBlock>

 <TextBlock TextBlock.FontSize="36"
 Background="Gold"
 Grid.Column="1"
 Grid.Row="0" >2</TextBlock>

 <TextBlock TextBlock.FontSize="36"
 TextBlock.Foreground="White"
 Background="Crimson"
 Grid.Column="2"
 Grid.Row="0" >3</TextBlock>

 <TextBlock TextBlock.FontSize="36"
 Background="White"
 Grid.Column="1"
 Grid.Row="1"
 Grid.ColumnSpan="2">4</TextBlock>

Starting Simple: Panels | 47

What you get should look like Figure 3-1 (only colorful).

This example starts by declaring a Grid element, then declares a set of three
RowDefinitions (each with no properties) and three ColumnDefinitions (also with no
properties).

 <TextBlock TextBlock.FontSize="36"
 TextBlock.Foreground="White"
 Background="Purple"
 Grid.Column="0"
 Grid.Row="2" >5</TextBlock>

 <TextBlock TextBlock.FontSize="36"
 TextBlock.Foreground="White"
 Background="Green"
 Grid.Column="1"
 Grid.Row="2" >6</TextBlock>

 <TextBlock TextBlock.FontSize="36"
 TextBlock.Foreground="White"
 Background="Black"
 Grid.Column="2"
 Grid.Row="2" >7</TextBlock>

 </Grid>
</Window>

Figure 3-1. A colorful grid

Example 3-1. Grid example (continued)

48 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Below these row and column definitions, you declare TextBlocks. Let’s examine the
first TextBlock. Its FontSize is specified as 36 (this is used for the numeral), and its
Background is set to Blue (which is much more effective when you can see the col-
ors!). Its row/column position in the grid is also stated, and it includes a RowSpan
attribute whose value is set to 2 (the fourth TextBlock demonstrates the correspond-
ing ColumnSpan attribute). Finally, you set its text. For those of you who come from
the world of HTML markup, all of this should seem quite familiar.

In summary, the code indicates that the first TextBlock will display the numeral “1”
with a font size of 36 on a blue background. The block will be placed in column 0,
row 0 of the grid and will span two rows. All of this is consistent with what you saw
in Figure 3-1.

Interestingly, the grid itself has no colors. The TextBlocks placed inside the grid pro-
vide the color; the grid just supplies the structure.

DockPanel
A key property of the DockPanel element is that you can “dock” its contents to spe-
cific edges of the panel, as illustrated in Example 3-2. Take special note of the
DockPanel declaration (in bold) and its attribute LastChildFill="True"—this ensures
that the last child of the panel will fill whatever space is left.

As promised, the Button placed as the final element in the DockPanel appears in the
center, as shown in Figure 3-2.

Example 3-2. A DockPanel

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Layout: DockPanel">

 <DockPanel LastChildFill="True">
 <TextBlock DockPanel.Dock="Top" Background="LightCoral">
 I am the top...</TextBlock>
 <TextBlock DockPanel.Dock="Bottom" Background="LightCoral">
 I am the bottom...</TextBlock>
 <TextBlock DockPanel.Dock="Left" VerticalAlignment="Center">
 I am the left...</TextBlock>
 <TextBlock DockPanel.Dock="Right" VerticalAlignment="Center">
 I am the Right...</TextBlock>
 <Button Height="40" Width="200">
 I am the Fill (or the center)</Button>
 </DockPanel>

</Window>

Starting Simple: Panels | 49

Order of declaration is important

If you change the DockPanel slightly and declare the left and right TextBlocks before
the top and bottom TextBlocks, you change the area devoted to each. Effectively, the
DockPanel devotes a full column each to the left and right TextBlocks and then allo-
cates the top and bottom blocks from the remaining space, as shown in Figure 3-3.

To create this effect, modify the code in Example 3-2 so that the first
two text blocks swap places with the third and fourth (that is, right
and left are declared before top and bottom).

If you modify the declarations of the right and left TextBlocks to set the background
color:

Background="lightblue"

it is easy to see that the area of the right and left columns is exactly the area taken
away from the top and bottom blocks. As illustrated in Figure 3-4, there are full col-
umns on the left and right extending up to the top and down to the bottom.

As you can see, the DockPanel can be instrumental in many applications; for exam-
ple, with the left (or right) column reserved for a menu or site map, the top reserved
for a header or tabs, the bottom reserved for a status bar, and the center used to
present the application’s contents.

Figure 3-2. A simple DockPanel with the top and bottom specified first

50 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Figure 3-3. The same DockPanel with the left and right specified first

Figure 3-4. Visualizing the columns in a DockPanel

Starting Simple: Panels | 51

StackPanel
A StackPanel (like all panels) can be used on its own or inside other containers. Later
you’ll use a StackPanel inside a Button, but for now, we’ll show one inside a
DockPanel.

In this example, we’ll create an advertising page for an O’Reilly book. First create the
DockPanel, then add two TextBlocks. Dock one to the top of the DockPanel; you’ll use
it to display the O’Reilly logo. Dock the other one to the bottom; it will show the
copyright and trademark notifications. Here’s the code:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Layout: StackPanel and the FlowDocumentReader">

 <DockPanel LastChildFill="True">
 <TextBlock
 DockPanel.Dock="Top"
 Background="White"
 TextBlock.FontFamily="Verdana"
 TextBlock.FontSize="48"
 VerticalAlignment="Center">
 <Image
 Source="http://www.oreilly.com/images/oreilly/oreilly.gif"
 Width="287"
 Height="67"/>
 </TextBlock>
 <TextBlock DockPanel.Dock="Bottom"
 Background="DarkRed"
 Foreground="White" >
 © 2008 O'Reilly Media, Inc.
 All trademarks and registered trademarks appearing on
 oreilly.com are the property of their respective owners.
 </TextBlock>
 </DockPanel>

</Window>

Now add a StackPanel immediately following the last TextBlock, and dock it to the left
of the DockPanel. Within that StackPanel, place an Image to hold the book cover image:

<StackPanel
 DockPanel.Dock="Left"
 VerticalAlignment="Center"
 Margin="5">
 <Image

Source="http://www.oreilly.com/catalog/covers/059652921X_cat.gif"
 Height="223"
 Width="180" />
</StackPanel>

At this point, you should have a screen that looks something like Figure 3-5.

52 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Now add a FlowDocumentReader as the final element in the DockPanel (right after the
StackPanel). Because you specified LastChildFill="True" as an attribute of the
DockPanel, the FlowDocumentReader will, as the last child, fill all the space that hasn’t
been occupied by the other children. (This is actually the default value, but we wanted
to call it to your attention.)

FlowDocumentReader is a powerful document-presentation tool. Here, it contains a single
FlowDocument, which in turn holds a handful of Paragraph elements (you don’t have to
type in all the paragraphs, or all the text within them, to see the effect of this example):

<FlowDocumentReader>
 <FlowDocument>
 <Paragraph>
 <Bold></Bold>
 </Paragraph>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>
 <Paragraph.FontSize>36</Paragraph.FontSize>
 <Bold>Getting Started with .NET 3.0</Bold>
 </Paragraph>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>
 <Paragraph.FontSize>18</Paragraph.FontSize>
 <Bold>Writing Your First .NET 3.0 Application</Bold>
 </Paragraph>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>
 <Paragraph.FontSize>18</Paragraph.FontSize>
 By Jesse Liberty and Alex Horovitz<LineBreak />
 September 2006<LineBreak />
 Pages: 56 <LineBreak />
 </Paragraph>
 <Paragraph>

Figure 3-5. A DockPanel with an embedded StackPanel

Starting Simple: Panels | 53

 Learn how to create more dynamic user experiences
 and build secure web services using Windows Communication
 Foundation (WCF) and Windows Presentation Foundation (WPF),
 two of the foundational pillars of .NET 3.0,
 with this succinct and well-written PDF document.
 </Paragraph>
 <Paragraph>
 Co-authored by best-selling author Jesse Liberty,
 this document gets right to the point helping you build a
 meaningful Windows application. It walks you through the
 terminology, concepts, and software you need to get started
 and then jumps to creating Me!Trade, a portfolio management
 tool.
 </Paragraph>
 <Paragraph>
 As a bonus, this Short Cut also introduces two additional
 pillars of .NET 3.0: Windows Workflow Foundation and
 Windows Card Services.
 </Paragraph>
 <Paragraph>
 Take the mystery out of .NET 3.0 and get started today.
 </Paragraph>
 </FlowDocument>
</FlowDocumentReader>

Now your output should look like Figure 3-6.

Figure 3-6. Incorporating a FlowDocumentReader into the simple app

54 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Example 3-3 shows the complete XAML code listing.

Example 3-3. A StackPanel inside a DockPanel

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Layout: StackPanel and the FlowDocumentReader">

 <DockPanel LastChildFill="True">
 <TextBlock
 DockPanel.Dock="Top"
 Background="White"
 TextBlock.FontFamily="Verdana"
 TextBlock.FontSize="48"
 VerticalAlignment="Center">
 <Image
 Source="http://www.oreilly.com/images/oreilly/oreilly.gif"
 Width="287"
 Height="67"/>
 </TextBlock>
 <TextBlock DockPanel.Dock="Bottom"
 Background="DarkRed"
 Foreground="White" >
 © 2008 O'Reilly Media, Inc.
 All trademarks and registered trademarks appearing on
 oreilly.com are the property of their respective owners.
 </TextBlock>
 <StackPanel
 DockPanel.Dock="Left"
 VerticalAlignment="Center"
 Margin="5">
 <Image

Source="http://www.oreilly.com/catalog/covers/059652921X_cat.gif"
 Height="223"
 Width="180" />
 </StackPanel>
 <FlowDocumentReader>
 <FlowDocument>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>
 <Paragraph.FontSize>36</Paragraph.FontSize>
 <Bold>Getting Started with .NET 3.0</Bold>
 </Paragraph>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>
 <Paragraph.FontSize>18</Paragraph.FontSize>
 <Bold>Writing Your First .NET 3.0 Application</Bold>
 </Paragraph>
 <Paragraph>
 <Paragraph.FontFamily>Verdana</Paragraph.FontFamily>

Starting Simple: Panels | 55

Canvas and ViewBox
When discussing simple 2-D graphics, we are particularly fond of using little green
men. To get started, you’ll use the Canvas layout control, which allows for absolute
positioning of child elements. You can greatly enhance this control by placing it
inside a Viewbox, which, when used in conjunction with an interactive control such
as a Window (as shown in Example 3-4), gives you great control over stretching and
scaling of the child elements.

 <Paragraph.FontSize>18</Paragraph.FontSize>
 By Jesse Liberty and Alex Horovitz<LineBreak />
 September 2006<LineBreak />
 Pages: 56 <LineBreak />
 </Paragraph>
 <Paragraph>
 Learn how to create more dynamic user experiences
 and build secure web services using Windows Communication
 Foundation (WCF) and Windows Presentation Foundation (WPF),
 two of the foundational pillars of .NET 3.0,
 with this succinct and well-written PDF document.
 </Paragraph>
 <Paragraph>
 Co-authored by best-selling author Jesse Liberty,
 this document gets right to the point helping you build a
 meaningful Windows application. It walks you through the
 terminology, concepts, and software you need to get started
 and then jumps to creating Me!Trade, a portfolio management
 tool.
 </Paragraph>
 <Paragraph>
 As a bonus, this Short Cut also introduces two additional
 pillars of .NET 3.0: Windows Workflow Foundation and
 Windows Card Services.
 </Paragraph>
 <Paragraph>
 Take the mystery out of .NET 3.0 and get started today.
 </Paragraph>
 </FlowDocument>
 </FlowDocumentReader>
 </DockPanel>

</Window>

Example 3-4. Canvas and ViewBox: Little green men

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Layout: I'm So Happy! ">
 <Viewbox>

Example 3-3. A StackPanel inside a DockPanel (continued)

56 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

An Ellipse object draws an ellipse (surprise!). You place it on the canvas using its
position relative to the upper-left corner of the canvas.

All shape objects (Ellipse, Line, Path, Polygon, Polyline, and
Rectangle) share common properties. Three of the most frequently
used are:

• Stroke, which dictates how the shape’s outline will be drawn

• StrokeThickness, which determines the thickness of the shape’s
outline

• Fill, which indicates how the shape’s interior will be painted

All of the properties for coordinates and vertices are measured in
device-independent pixels.

The Viewbox implements the facilities that enable users to stretch and resize its con-
tents. In this case, the contents are the canvas on which the little green man is drawn.

 <Canvas Width="180" Height="180" VerticalAlignment="Center">
 <Ellipse Canvas.Left="10"
 Canvas.Top="10"
 Width="160"
 Height="160"
 Fill="LimeGreen"
 Stroke="Black" />
 <Ellipse Canvas.Left="45"
 Canvas.Top="50"
 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Ellipse Canvas.Left="77.5"
 Canvas.Top="50"
 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Ellipse Canvas.Left="110"
 Canvas.Top="50"
 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Path Data="M 50,100 A 30,30 900 0 0 130,100"
 Stroke="Black"/>
 </Canvas>
 </Viewbox>
</Window>

Example 3-4. Canvas and ViewBox: Little green men (continued)

Starting Simple: Panels | 57

(I grew up being called “four-eyes”; think of this as my revenge!) Because you’ve
placed your canvas in a Viewbox, resizing is automagic. Figure 3-7 shows the initial
view; stretching the Viewbox results in the display shown in Figure 3-8.

Control Presentation
WPF and XAML give you tremendous and precise control (pardon the expression)*

over the appearance of controls. To demonstrate, we’ll start with a simple button, as
shown in Example 3-5.

Figure 3-7. Small LGM

Figure 3-8. Large LGM

* Despite the incredible breadth of the English language, even resorting to the astonishingly useful Visual-
Thesaurus (http://www.VisualThesaurus.com) didn’t yield a better word than “control” to use in this sentence!

http://www.VisualThesaurus.com

58 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

When you run this code in XAMLPad a button is rendered, as shown in Figure 3-9.
No surprises here!

You can now style this button using gradients, to improve (and professionalize) its
look. Example 3-6 shows how to do this. An in-depth discussion follows the code.

Example 3-5. A simple button

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Adding flavor to controls">
 <StackPanel Height="200">
 <Button Width="200" VerticalAlignment="Center">Press Me!</Button>
 </StackPanel>
</Window>

Figure 3-9. A standard button

Example 3-6. Adding gradients to the Button class

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Adding flavor to controls">

 <Window.Resources>

 <LinearGradientBrush
 x:Key="ButtonGradient"
 StartPoint="0,0"
 EndPoint="0,1">

Starting Simple: Panels | 59

 <GradientStop
 Color="#FDB6CADF"
 Offset="0" />
 <GradientStop
 Color="#FCC3C5FF"
 Offset="0.1" />
 <GradientStop
 Color="#FCC4D0EF"
 Offset="0.3" />
 <GradientStop
 Color="#FDB7C2DF"
 Offset="0.6" />
 <GradientStop
 Color="#FE95B3CF"
 Offset="0.8" />
 <GradientStop
 Color="#FE96AACF"
 Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush
 x:Key="ButtonUpGradient"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop
 Color="Transparent"
 Offset="0" />
 <GradientStop
 Color="#33000000"
 Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush
 x:Key="ButtonDownGradient"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop
 Color="#10000000"
 Offset="0" />
 <GradientStop
 Color="#20000000"
 Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush
 x:Key="ButtonDisabledGradient"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop
 Color="#10302A90"
 Offset="0" />

Example 3-6. Adding gradients to the Button class (continued)

60 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

 <GradientStop
 Color="#10201040"
 Offset="1" />
 </LinearGradientBrush>

 <!-- BUTTON TEMPLATE -->
 <Style TargetType="{x:Type Button}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border
 x:Name="OuterBorder"
 CornerRadius="3"
 Background="{DynamicResource ButtonGradient}">
 <Border
 x:Name="InnerBorder"
 CornerRadius="3"
 Background="{DynamicResource ButtonUpGradient}"
 Padding="{TemplateBinding Padding}">
 <ContentPresenter
 x:Name="ContentSite"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsPressed" Value="true">
 <Setter
 TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource ButtonDownGradient}"/>
 </Trigger>
 <Trigger Property="IsEnabled" Value="false">
 <Setter
 TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource ButtonDisabledGradient}"/>
 <Setter Property="BorderBrush" Value="Silver"/>
 <Setter Property="Foreground" Value="SlateGray"/>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Height" Value="18" />
 <Setter Property="Foreground" Value="MidnightBlue" />
 </Style>

 </Window.Resources>
 <StackPanel Height="200">

Example 3-6. Adding gradients to the Button class (continued)

Starting Simple: Panels | 61

This code will be a lot more familiar to those readers who are comfortable with Cas-
cading Style Sheets (CSS) than to those who come to WPF from Windows Forms.

We strongly recommend reading Eric Meyer’s CSS: The Definitive
Guide (O’Reilly) for a solid introduction to CSS, and Dave Shea and
Molly Holzschlag’s The Zen of CSS Design: Visual Enlightenment for
the Web (Peachpit Press) for insight into how CSS can help you create
magnificent web sites.

Let’s walk through this XAML section by section to see what it does.

Resources

The first set of steps is to declare the Window, put in the customary namespaces, and
then declare a Resources section. Resources provide the ability to share styles or ele-
ments throughout the UI. In this case, you are declaring resources for the Window:

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Adding flavor to controls">

 <Window.Resources>

The first resource you declare is a LinearGradientBrush, which, as you’ve probably
guessed, is a specialized brush for creating LinearGradients—that is, gradients that
fall off at a steady rate.

 <Button Width="200" Height="40"
 VerticalAlignment="Center">Press Me!
 </Button>
 </StackPanel>
</Window>

Linear Gradients
A linear gradient paints a color along a line, with that color changing gradually from
one value to another as it moves along the line. (The gradual change can be interrupted
by abrupt changes to a new color using GradientStop objects.)

A linear gradient is typically applied along a diagonal, though this is not required. The
line is determined by a start point and an endpoint, gradually indicated by a pair of x,y
coordinates designating the upper-left and lower-right corners of the area being filled,
as illustrated in Figure 3-10.

Example 3-6. Adding gradients to the Button class (continued)

62 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

When creating a LinearGradient, you declare the start and endpoints (as described in
the previous sidebar “Linear Gradients”); then, within the definition of the
LinearGradientBrush, you declare one or more GradientStop elements. These corre-
spond to the collection of GradientStop objects associated with a LinearGradientBrush
object. Each GradientStop specifies both a color and an offset along the gradient axis:

 <LinearGradientBrush x:Key="ButtonGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#FDB6CADF"
 Offset="0" />

In short, the LinearGradientBrush determines the rate of change of the gradient, and
the GradientStops determine the color transitions and where along the gradient the
colors change. In this example, you declare LinearGradientBrush objects for each
state of the button: the button in its initial (unclicked) state, and then the button
when pressed (ButtonDownGradient), when released (ButtonUpGradient), and, for com-
pleteness, when disabled (ButtonDisabledGradient).

Styles

The first line in the next section indicates that you are defining a global style and that
the target of the style is a Button. The target is set by the property TargetType and
identified by the Type attribute within the namespace http://schemas.microsoft.com/
winfx/2006/xaml (for which we created the alias “x” at the top of the file):

<Style TargetType="{x:Type Button}">

Below this line you add a Setter element. In general, a Setter sets a property; in this
case the Setter is used to specify the target of the style, identifying the specific
instance whose property is being set. Table 3-1 explains how the Setter is used in
this example, line by line.

Figure 3-10. Linear gradient illustration from Microsoft

Table 3-1. Setter element explanation, line by line

<Setter Property="Template"> The keyword Property is required and names the property being set.
In this case, you are indicating that Style is being used as a template.

<Setter.Value> TheTemplate value is being set as an explicit property with an opening tag
and a closing tag and any number of properties and elements within them.

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Starting Simple: Panels | 63

<ControlTemplate
 TargetType="{x:Type Button}">

A ControlTemplate is used to simplify the creation of the
ButtonTemplate. The ControlTemplate has a property,
TargetType, that requires that you specify the type for which this
ControlTemplate will be used (Button).

<Border x:Name="OuterBorder"
 CornerRadius="3"
 Background="{DynamicResource
 ButtonGradient}">

In this Template the button will have a border that we’ve (arbitrarily)
named OuterBorder and that we’ve defined as having a corner radius
of 3 (that is, it will be a rounded rectangle). We’ve defined the background
inline, so it will be utilized as a DynamicResource.

Note to reader: to see the effect of the rounding, try changing the
CornerRadius value to 10, making the button look more like a bullet.

<Border x:Name="InnerBorder"
 CornerRadius="3"
 Background="{DynamicResource
 ButtonUpGradient}"
 Padding="{TemplateBinding
 Padding}">

 <ContentPresenter
 x:Name="ContentSite"
 HorizontalAlignment=
 "Center"

VerticalAlignment="Center"
 />
</Border>

Next, you define a second Border object to sit atop the first. This sets the
background, this time using ButtonUpGradient.

Padding is used to put padding around the content, and
ContentPresenter is used to display the text of the button.

<ControlTemplate.Triggers> Triggers are the mechanism by which properties change and anima-
tions are started in response to events or changes in other properties.
We’ve included Triggers even though we don’t call them in this exam-
ple, because you will be using them in future examples to create interac-
tion effects.

<Trigger Property="IsPressed"
 Value="true">
 <Setter
 TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource
 ButtonDownGradient}"
 />
</Trigger>

When the button is pressed, this Trigger causes the
ButtonDownGradient to be drawn in the InnerBorder.

<Trigger Property="IsEnabled"
 Value="false">
 <Setter
 TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource
 ButtonDisabledGradient}"
 />
 <Setter Property="BorderBrush"
 Value="Silver"/>
 <Setter Property="Foreground"
 Value="SlateGray"/>
</Trigger>

This Trigger sets the Background property of the Border control
named InnerBorder to change in response to the IsEnabled prop-
erty becoming False. The actual change is that the InnerBorder’s
Background property is set to the DynamicResource value
ButtonDisabledGradient, the BorderBrush is set to Silver,
and the Foreground color is set to SlateGray.

Table 3-1. Setter element explanation, line by line (continued)

64 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

All of this may look a bit daunting at first, but notice that at no time did you have to
go into a drawing program and create an image button; you described an image but-
ton in XAML and it was drawn for you based on that description. That’s pretty neat.
The result is shown in Figure 3-11.

</ControlTemplate.Triggers>
</ControlTemplate>
</Setter.Value>
</Setter>

We’ve finished specifying the Setter; it’s now time to close all the open
tags.

<Setter Property="Height"
 Value="18"/>
<Setter Property="Foreground"
 Value="MidnightBlue"/>

Two more Setters are used to set general style properties of the button.

</Style>
</Window.Resources>
<StackPanel Height="200">
 <Button Width="200"
 VerticalAlignment=
 "Center">
 Press Me!
 </Button>
</StackPanel>
</Window>

The Style element is closed off, the Resources element is closed off,
and a StackPanel in which a button is nested is created. That finishes
off the Window.

Figure 3-11. Gradient button

Table 3-1. Setter element explanation, line by line (continued)

Nesting | 65

Making effects more pronounced

We strongly encourage you to play with these examples to make the effects more
pronounced and see what happens. For example, to make the gradient effect much
more obvious I modified the colors, substituting primary rainbow colors:

 <LinearGradientBrush x:Key="ButtonGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="Red"
 Offset="0" />
 <GradientStop Color="Orange"
 Offset="0.1" />
 <GradientStop Color="Yellow"
 Offset="0.3" />
 <GradientStop Color="Green"
 Offset="0.6" />
 <GradientStop Color="Blue"
 Offset="0.8" />
 <GradientStop Color="Violet"
 Offset="1" />
 </LinearGradientBrush>

and greatly increased the size of the button:

 <Setter Property="Height" Value="40" />
 <Setter Property="Foreground" Value="BLUE" />
 </Style>
 </Window.Resources>
 <StackPanel Height="400">

The result is shown in Figure 3-12.

Nesting
Switching gears for a moment, it is possible and legal to nest one control (or graphic
element) within another. This allows you to place, for example, a StackPanel inside a
Button, and then place other controls or graphics within that StackPanel.

Either on its own or used in conjunction with templates and styles, this is a very
powerful technique for making combined, nearly custom controls on the fly. In
the next example, we’ll put a horizontally oriented StackPanel inside a button.

Figure 3-12. Rainbow button

66 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

We’ll then place a Canvas within that StackPanel, and in the Canvas we’ll put a set of
converging Ellipses to create a bull’s eye. Using the StackPanel, we’ll put a
TextBlock next to the Canvas to print a message. This produces an interesting effect
with minimal effort, as shown in Figure 3-13.

The complete code is shown in Example 3-7.

Figure 3-13. Ready, Fire, Aim!

Example 3-7. Graphics within controls

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Programming Methodology Graphic">

 <StackPanel Height="200">
 <Button Width="200" VerticalAlignment="Center">
 <StackPanel Orientation="Horizontal">
 <Canvas Width="30"
 Height="30"
 VerticalAlignment="Center"
 Margin="3">
 <Ellipse Canvas.Left="1"
 Canvas.Top="1"
 Width="30"
 Height="30"
 Fill="White"
 Stroke="Black" />
 <Ellipse Canvas.Left="4"
 Canvas.Top="4"
 Width="24"
 Height="24"
 Fill="Black"
 Stroke="Black" />
 <Ellipse Canvas.Left="8"
 Canvas.Top="8"
 Width="16"
 Height="16"
 Fill="Blue"
 Stroke="Blue" />
 <Ellipse Canvas.Left="11"
 Canvas.Top="11"
 Width="10"
 Height="10"
 Fill="Red"
 Stroke="Red" />

Resources | 67

Resources
Resources provide your XAML with a way to define and share objects. You can share
resources at the page (window) level, or throughout an entire application (or even
across an entire system!).

The Resources section of your XAML is sometimes referred to as the “resource dictio-
nary.” To create a resource that is scoped to a single window, you use this element:

<Window.Resources>

as shown in Example 3-8.

The resource is applied to a TextBlock by setting the foreground value to the resource
itself. The keyword StaticResource indicates that the resource will be set at compile
time and cannot be updated by associating a different resource with the resource key
at runtime. In contrast, dynamic resources can usually be defined at runtime. If you
make all your skinnable properties DynamicResource references, you will be able to
change the skin just by dropping in a different resource dictionary. WPF will auto-
matically update all the properties when you do this.

 <Ellipse Canvas.Left="14"
 Canvas.Top="14"
 Width="4"
 Height="4"
 Fill="Yellow"
 Stroke="Yellow" />
 </Canvas>
 <TextBlock VerticalAlignment="Center"> Ready, Fire, Aim!</TextBlock>
 </StackPanel>
 </Button>
 </StackPanel>
</Window>

Example 3-8. A static resource scoped to a single window

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Resources">
 <Window.Resources>
 <SolidColorBrush x:Key="GreenBrush" Color="Green" />
 </Window.Resources>
 <Viewbox>
 <TextBlock Foreground="{StaticResource GreenBrush}">
 Little Green Men
 </TextBlock>
 </Viewbox>
</Window>

Example 3-7. Graphics within controls (continued)

68 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

The result of applying the GreenBrush resource to the TextBlock is shown in
Figure 3-14.

Transformations
While there is much that can be written about 2-D graphics, one of the more inter-
esting (and at times confusing) aspects of taking control of graphics is transforma-
tions. Here, we’ll look at an example of the art of transforming the up/down
orientation of the page.

WPF makes simple transformations very simple, as shown in Example 3-9.

This example creates three buttons. The third button has a RenderTransform applied
to it, and the RenderTransform has a child element, RotateTransform, whose attribute
is an angle (in this case, 45 degrees). The button is rendered with a 45-degree clock-
wise rotation, as shown in Figure 3-15.

Figure 3-14. A StaticResource used to color the text

Example 3-9. A simple transformation

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Transformations: Rotate">
 <Border Margin="30"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 BorderBrush="Black" BorderThickness="1" >
 <StackPanel Orientation="Vertical">
 <Button Content="Top Button" Opacity="1" />
 <Button Content="Middle Button" Opacity="1" />
 <Button Content="Rotated Button">
 <Button.RenderTransform>
 <RotateTransform Angle="45" />
 </Button.RenderTransform>
 </Button>

 </StackPanel>
 </Border>
</Window>

Animation | 69

Animation
The power of transformations is greatly enhanced when they are combined with ani-
mation. Rotate an object? Interesting. Rotate an object in front of my eyes? Much
more interesting.

To be animated in WPF, an object must meet just three requirements:

• It must have a dependency property (see the upcoming sidebar “Dependency
and Attached Properties”).

• It must belong to a class that inherits from DependencyObject and implements
IAnimatable (controls such as Button, Panel, and Shape all inherit from
DependencyObject and implement IAnimatable, so this is almost never a problem).

• There must be a compatible animation type available (or you can create your
own).

The typical first step for animation is to pick a property to animate. In the next
example, you’ll animate a Button’s rotation by changing its angle. The Angle value is
of type Double, so you’ll use a DoubleAnimation to create a transition between the
starting and ending values (referred to as the From and To properties). You must also
specify a Duration—that is, the time it takes to go from the starting value to the desti-
nation value. The longer the Duration is, the slower the animation is.

The second step is to create a Storyboard, inside which you will place the
DoubleAnimation. The DoubleAnimation designates where to apply the animation (the
Storyboard.TargetName)—in other words, it specifies the object to animate (in this
case, the button).

The final step is to associate the Storyboard with a Trigger (i.e., the event that will
kick off the animation). This is all illustrated in Example 3-10.

Figure 3-15. A 45-degree rotation

70 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

If you run this code in XAMLPad and then click the button, it will rotate 360 degrees
in five seconds.

Dependency and Attached Properties
Dependency properties provide support for value expressions, property invalidation,
and dependent-value coercion, as well as for default values, inheritance, data binding,
animation, property change notification, and styling. Dependency properties allow for
the creation of “attached properties”—that is, they indicate the ability of one class to
“attach” properties to another. This is what allows a Canvas, for example, to “attach”
properties to a control such as an Ellipse, so that you can write code like this:

<Canvas Width="180" Height="180"
 VerticalAlignment="Center">
 <Ellipse Canvas.Left="10" Canvas.Top="10" Width="160"
 Height="160" Fill="LimeGreen" Stroke="Black" />

Ellipse does not have a Left or Top property, but as this snippet shows, the Canvas can
attach its Left and Top properties to the Ellipse.

Example 3-10. Rotating a button on click

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title=" Programming .NET 3.5 | Graphics: Animated Rotation"
 Background="White" Margin="50">
 <StackPanel>

 <Button Content="Slow Spinning Button" Width="200"
 RenderTransformOrigin="0.5,0.5">
 <Button.RenderTransform>
 <RotateTransform x:Name="AnimatedRotateTransform" Angle="0" />
 </Button.RenderTransform>
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="AnimatedRotateTransform"
 Storyboard.TargetProperty="Angle"
 To="360" Duration="0:0:5" FillBehavior="Stop" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
 </Button>

 </StackPanel>
</Page>

Animation | 71

Simultaneous Animations
Your Storyboard need not be restricted to running a single DoubleAnimation, nor need
it stop after a single well-defined activity (e.g., one complete rotation). You can com-
bine movement vertically with movement horizontally to create diagonal movement,
for example, and you can repeat that movement indefinitely, as shown in
Example 3-11.

Example 3-11. Diagonal movement through paired DoubleAnimations

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | Simple LGM Animation"
 Background="White" Margin="50">

 <Window.Triggers>
 <EventTrigger RoutedEvent="Window.Loaded">
 <BeginStoryboard Name="LGMMoverStoryboard" >
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="LGMCanvas"
 Storyboard.TargetProperty="Height"
 From="10" To="600"
 Duration="0:0:5"
 RepeatBehavior="Forever" />

 <DoubleAnimation
 Storyboard.TargetName="LGMCanvas"
 Storyboard.TargetProperty="Width"
 From="10" To="600"
 Duration="0:0:5"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Window.Triggers>

 <Canvas
 Width="180"
 Height="180"
 VerticalAlignment="Center"
 x:Name="LGMCanvas">
 <Ellipse
 Canvas.Left="10"
 Canvas.Top="10"
 Width="160"
 Height="160"
 Fill="LimeGreen"
 Stroke="Black" />
 <Ellipse
 Canvas.Left="45"
 Canvas.Top="50"

72 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Notice that the trigger for this event is loading the Window itself:

 <EventTrigger RoutedEvent="Window.Loaded">

This animation begins as soon as the Window loads and continues until the Window is
closed. You will need to run the example to see what it does—a screenshot won’t
show the animation.

A Composite Control
Once you’re familiar with WPF controls, drawing capabilities, and resources, you
can mix, match, and combine them, adding subtle animations to create composite
user interfaces. These will provide you with very powerful presentation mechanisms
that you can reuse in many different formats. To illustrate this idea, let’s create a
slider-like interface that displays images of the presidents of the United States
retrieved from the White House web site; we’ll reuse this code in the example in the
next chapter.

Figure 3-16 shows what the finished product will look like.

The complete code is shown in Example 3-12.

 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Ellipse
 Canvas.Left="77.5"
 Canvas.Top="50"
 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Ellipse
 Canvas.Left="110"
 Canvas.Top="50"
 Width="25"
 Height="25"
 Fill="Black"
 Stroke="Black" />
 <Path
 Data="M 50,100 A 30,30 900 0 0 130,100"
 Stroke="Black"/>
 </Canvas>

</Window>

Example 3-11. Diagonal movement through paired DoubleAnimations (continued)

Animation | 73

Figure 3-16. U.S. Presidents—a preview

Example 3-12. Composite control: image slider

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Programming .NET 3.5 | US Presidents"
 Background="White"
 Margin="50">
 <Window.Resources>

 <LinearGradientBrush x:Key="ListBoxGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#90000000"
 Offset="0" />
 <GradientStop Color="#40000000"
 Offset="0.005" />
 <GradientStop Color="#10000000"
 Offset="0.04" />
 <GradientStop Color="#20000000"
 Offset="0.945" />
 <GradientStop Color="#60FFFFFF"
 Offset="1" />

 </LinearGradientBrush>

 <Style
 x:Key="SpecialListStyle"
 TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >

74 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

 <Border
 BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ListBoxGradient}" >
 <ScrollViewer VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Auto">
 <StackPanel
 IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

 <Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight"
 Value="75" />
 <Setter Property="MinHeight"
 Value="75" />
 <Setter Property="Opacity"
 Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight"
 To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity"
 To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:1"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>

Example 3-12. Composite control: image slider (continued)

Animation | 75

Nothing in this code is new; the components have just been put together in new
ways. You start with the resource dictionary, in which you declare a
LinearGradientBrush with GradientStops for the colors you want along the gradient.

 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
 </Style>

 </Window.Resources>

 <Grid Width="300"
 Height="150">
 <StackPanel>
 <TextBlock FontSize="14">United States Presidents</TextBlock>
 <ListBox
 Style="{StaticResource SpecialListStyle}"
 Grid.Row="1"
 Grid.ColumnSpan="3"
 Name ="PhotoListBox"
 Margin="0,0,0,20"
 ItemsSource="{Binding }"
 ItemContainerStyle="{StaticResource SpecialListItem}"
 SelectedIndex="0">

 <Image Source=
 "https://www.naymz.com/media/images/306/portrait-portrait.jpg"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/bc42.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/gb41.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/rr40.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/jc39.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/gf38.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/rn37.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/lj36.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/jk35_1.gif"/>
 <Image Source=
 "http://www.whitehouse.gov/history/presidents/images/gw1.gif"/>
 </ListBox>
 </StackPanel>
 </Grid>

</Window>

Example 3-12. Composite control: image slider (continued)

76 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

You then create a Style for the list of presidents and target it at the ListBox, setting
the border color to Gray and the border thickness to 1 and rounding the corners. You
also turn off the vertical scroll bar and set the horizontal scroll bar to automatic (so
that if the width of the control is insufficient to show all the images, the user can
scroll through them).

Next, you create a second Style for the items in the ListBox, setting their minimum
and maximum heights as well as their opacity and setting a trigger for when the
mouse passes over the items. When this event fires (i.e., when the user hovers the
mouse pointer over an image), an animation begins that inflates the image to its
maximum height and increases its opacity to 100%.

You also set a second trigger that fires when the user moves the mouse pointer away
from the image, causing the image to deflate to the minimum size and the opacity to
be reduced to 75% (making the image somewhat less vivid). You can see the effect
quite clearly when you refresh the window in XAMLPad.

Data Binding
Sooner or later (sooner, if you are writing typical commercial applications), you’ll
need to associate your presentation widgets with persistent data. That data may
come from the Internet, or it may come from XML files, email, your operating sys-
tem, or a database. OK, let’s be blunt: most often it will come from a relational data-
base, and if you’re programming in the Microsoft world, we’ll go so far as to say that
it will most often come from SQL Server (though both authors have written commer-
cial applications that used gigabytes of data from databases that were not written in
Redmond!).

The ability to bind a control to a data source (of whatever type) is critical in creating
efficient professional programs, and WPF would be nothing more than a very
impressive toy if it did not support the sophisticated data binding capabilities to
which ASP.NET and Windows Forms programmers have grown accustomed.

Data binding in WPF allows you to decouple your user interface from the underlying
data (whether it is from SQL Server, an XML file, or some other data source); it thus
scales better, performs better, and is more maintainable than more tightly coupled
approaches.

Creating a CheckOut Application in Visual Studio
For the next example, you’re going to combine XAML and a business class to dis-
play a simple shopping cart, as shown in Figure 3-17. You will populate the listbox
by binding to a data source you’ll declare in the XAML.

Fire up Visual Studio and create a new WPF application named CheckOut. Begin by
creating a new class, ShoppingCartItem.cs, as shown in Example 3-13.

Data Binding | 77

Figure 3-17. A simple shopping cart

Example 3-13. ShoppingCartItem.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CheckOut
{

 public class ShoppingCartItem
 {

 public ShoppingCartItem()
 {
 this.Item = string.Empty;
 this.Value = string.Empty;
 this.ShortDescription = string.Empty;
 this.SKU = -1;
 this.LongDescription = string.Empty;
 }

 public string Item
 {
 get;
 set;
 }
 public string Value
 {
 get;
 set;
 }
 public string ShortDescription
 {
 get;
 set;
 }
 public int SKU
 {
 get;
 set;
 }
 public string LongDescription

78 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

This class has nothing but four properties: three strings and an integer.

In the Window1.xaml file, add the XAML code to define the presentation layer. This
code is shown in Example 3-14.

 {
 get;
 set;
 }
 }

}

Example 3-14. XAML for the shopping cart

<Window x:Class="CheckOut.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CheckOut"
 Title="Programming .NET 3.5 | Data Binding 101" Height="100" Width="380" >
 <Window.Resources>
 <local:ShoppingCartItem x:Key="Cart"
 SKU="1568"
 Item="Photograph"
 Value="$19.99"
 ShortDescription="A beautiful picture of a dolphin"/>
 </Window.Resources>

 <Grid DataContext="{StaticResource Cart}"
 Margin="3"
 Width="360"
 HorizontalAlignment="Left">
 <Grid.RowDefinitions>
 <RowDefinition Height="20"/>
 <RowDefinition Height="20"/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition />
 <ColumnDefinition Width="40"/>
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"
 Grid.Row="0">SKU</TextBlock>
 <TextBlock Grid.Column="1"
 Grid.Row="0">Item</TextBlock>
 <TextBlock Grid.Column="2"
 Grid.Row="0">Description</TextBlock>
 <TextBlock Grid.Column="3"
 Grid.Row="0">Price</TextBlock>

Example 3-13. ShoppingCartItem.cs (continued)

Data Binding | 79

In the Resources section you declare an instance of a shopping cart, setting the vari-
ous properties declaratively. You then create a Grid, setting its DataContext to the
Cart you declared in the Resources section (and thus binding the data from the
Resources section to the presentation you are now declaring).

Next, you define a pair of rows and four columns. That done, you define your first
four TextBlocks and assign them to the four columns, all within the first row; these
serve as headers.

In the second set of TextBlocks, you set the Text using the binding syntax:

 <TextBlock Grid.Column="0"
 Grid.Row="1"
 Text="{Binding Path=SKU}" />

This places the TextBlock in column 0 of row 1 and states that the Text will come
from binding to a data source whose path is set in the resource named earlier as
“SKU.” We saw that definition of SKU in the Resources section:

 <Window.Resources>
 <local:ShoppingCartItem x:Key="Cart"

SKU="1568"
 Item="Photograph"
 Value="$19.99"
 ShortDescription="A beautiful picture of a dolphin"/>

In this case the value for SKU is defined in place, but it could also be dynamically
retrieved from a database or web service.

When you run this code, a window is opened and the Grid is filled with both the
header row and the second row bound to the ShoppingCartItem, as shown in
Figure 3-18.

 <TextBlock Grid.Column="0"
 Grid.Row="1"
 Text="{Binding Path=SKU}" />
 <TextBlock Grid.Column="1"
 Grid.Row="1"
 Text="{Binding Path=Item}" />
 <TextBlock Grid.Column="2"
 Grid.Row="1"
 Text="{Binding Path=ShortDescription}" />
 <TextBlock Grid.Column="3"
 Grid.Row="1"
 Text="{Binding Path=Value}" />

 </Grid>

</Window>

Example 3-14. XAML for the shopping cart (continued)

80 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Binding to a List
A much more powerful (and real-world) capability is to bind the listbox to a dynamic
collection. In this example, you’ll modify the listbox so it can include multiple items
from a collection without knowing the size of the collection in advance. Figure 3-19
shows what the listbox will look like.

To create a list of items in the shopping cart, you need to make only one change to the
C# code: add a class called ShoppingCart and derive it from List<ShoppingCartItem>.
Here’s the code:

namespace CheckOut
{
 public class ShoppingCart : List<ShoppingCartItem>
 {
 }

 public class ShoppingCartItem
 {
// ...

Figure 3-18. The results of our simple data binding

Figure 3-19. CheckOutList—a preview

Data Binding | 81

The next step is to modify the resources in your XAML file to create a collection of
ShoppingCartItems (we’re recommending this only to get a working example up and
running, not because it is a good idea to hardcode your lists in your presentation layer!):

 <Window.Resources>
 <local:ShoppingCart x:Key="Cart">
 <local:ShoppingCartItem SKU="1568"
 Item="Photograph"
 Value="$19.99"
 ShortDescription="A beautiful picture of a dolphin"/>
 <local:ShoppingCartItem SKU="1569"
 Item="Matting"
 Value="$29.99"
 ShortDescription="1 inch double matting"/>
 <local:ShoppingCartItem SKU="1570"
 Item="Frame"
 Value="$39.99"
 ShortDescription="Natural Wood Frame (8 x 11) "/>
 <local:ShoppingCartItem SKU="1571"
 Item="UV Glass"
 Value="$9.99"
 ShortDescription="UV Glass for 8 x 11 frame"/>
 </local:ShoppingCart>
 </Window.Resources>

You are now ready to display these items. You can’t just use TextBlocks in a grid,
though, since in theory (eventually) you won’t know how many items you’re going to
display.

What you want to do is is use an ItemsControl. In this case you are going to create a
ListBox and display the items in it. That doesn’t mean you have to give up control of
the display layout, however. While a DataTemplate in a ListBox can only have one
control within it (in our case, a StackPanel whose orientation will be Horizontal to
hold one “row”), that control can itself have many child controls.

Give the StackPanel four child StackPanels, each set to a Vertical orientation and
each with a width equal to that of the header column so that the values line up
nicely, as shown in Example 3-15.

Example 3-15. XAML for displaying a list of items

<Window x:Class="CheckOutList.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CheckOut"
 Title="CheckOutList" Height="300" Width="430"
 >
 <Window.Resources>
 <local:ShoppingCart x:Key="Cart">
 <local:ShoppingCartItem SKU="1568"
 Item="Photograph"
 Value="$19.99"
 ShortDescription="A beautiful picture of a dolphin"/>

82 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

 <local:ShoppingCartItem SKU="1569"
 Item="Matting"
 Value="$29.99"
 ShortDescription="1 inch double matting"/>
 <local:ShoppingCartItem SKU="1570"
 Item="Frame"
 Value="$39.99"
 ShortDescription="Natural Wood Frame (8 x 11) "/>
 <local:ShoppingCartItem SKU="1571"
 Item="UV Glass"
 Value="$9.99"
 ShortDescription="UV Glass for 8 x 11 frame"/>
 </local:ShoppingCart>
 </Window.Resources>

 <!-- the heading -->
 <Grid DataContext="{StaticResource Cart}"
 Margin="15"
 Width="430"
 HorizontalAlignment="Left">
 <Grid.RowDefinitions>
 <RowDefinition Height="20"/>
 <RowDefinition Height="200"/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40"/>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition Width="180" />
 <ColumnDefinition Width="40"/>
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"
 Grid.Row="0">SKU</TextBlock>
 <TextBlock Grid.Column="1"
 Grid.Row="0">Item</TextBlock>
 <TextBlock Grid.Column="2"
 Grid.Row="0">Description</TextBlock>
 <TextBlock Grid.Column="3"
 Grid.Row="0">Price</TextBlock>

 <!-- the listbox to display all the contents of the cart -->
 <ListBox Grid.Column="0"
 Grid.Row="1"
 Grid.ColumnSpan="4"
 ItemsSource="{Binding}"
 Width="360">
 <ListBox.ItemTemplate>
 <DataTemplate>

 <!-- the outer StackPanel (one per row) -->
 <StackPanel Orientation="Horizontal" Width="350">

Example 3-15. XAML for displaying a list of items (continued)

Data Binding | 83

The leap of imagination you must make is that you can bind to an unknown number
of items. This listbox will simply add each item, one by one, with the outer
StackPanel describing what each entry in the listbox looks like and the inner
StackPanels describing what each “column” of information (the SKU, item, short
description, and value) looks like and where they are placed. The result is shown in
Figure 3-20.

 <!-- the inner stack panels – one per column -->
 <StackPanel Orientation="Vertical" Width="40">
 <TextBlock Text="{Binding Path=SKU}" />
 </StackPanel>
 <StackPanel Orientation="Vertical" Width="100">
 <TextBlock Text="{Binding Path=Item}" />
 </StackPanel>
 <StackPanel Orientation="Vertical" Width="170">
 <TextBlock Text="{Binding Path=ShortDescription}" />
 </StackPanel>
 <StackPanel Orientation="Vertical" Width="40">
 <TextBlock Text="{Binding Path=Value}" />
 </StackPanel>

 </StackPanel>

 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 </Grid>
</Window>

Figure 3-20. CheckOutList—final result

Example 3-15. XAML for displaying a list of items (continued)

84 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

Master/Detail Records
One of the most common and powerful data representations is the master/detail or
order/detail record. A classic example is looking at recent orders on Amazon.com—
mine are shown in Figure 3-21.

As you can see, each order can have more than one item within it. These items them-
selves have valuable information associated with them, including the shipping date
(or estimated delivery date) and more. It is very common to have this kind of master/
detail relationship throughout virtually any serious business database.

In the next example, we’ll assume that some detail is too big to put into the listbox
and must be reserved for when the user clicks on an item, thereby requesting more
information. To handle this, you’re going to add a long description for each item; it
will display below the listbox, as you see in Figure 3-22.

Figure 3-21. Amazon order with details

Order

Order

Details

Details

Data Binding | 85

The first step is to modify the previous example, adding a LongDescription property
to the ShoppingCartItem class:

public string LongDescription
{
 get;
 set;
}

You will need to update both constructors to initialize this property correctly:

namespace CheckOut
{
 public class ShoppingCartItem
 {
 public ShoppingCartItem()
 {
 this.Item = string.Empty;
 this.Value = string.Empty;
 this.ShortDescription = string.Empty;
 this.SKU = -1;
 this.LongDescription = string.Empty;
 }

 public ShoppingCartItem(
 string item,
 string value,
 string shortDescription,
 int sku,
 string longDescription)

Figure 3-22. Master/detail list binding—a preview

86 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

 {
 this.Item = item;
 this.Value = value;
 this.ShortDescription = shortDescription;
 this.SKU = sku;
 this.LongDescription = longDescription;
 }
 // ...
 }
}

That done, you’ll need to make more substantial changes to the Window1.xaml page.
The first change is to add a LongDescription to each ShoppingCartItem in the
Resources section. For example:

 <local:ShoppingCartItem SKU="1570"
 Item="Frame"
 Value="$39.99"
 ShortDescription="Natural Wood Frame (8 x 11)"

LongDescription="Hewn from natural growth forest, hand cut. " />

You’ll also need to modify the Grid’s row definition to make room for the details
below the listbox. Let’s shorten the listbox row’s height from 200 to 100 and add a
row for the description:

 <Grid.RowDefinitions>
 <RowDefinition Height="20"/>
 <RowDefinition Height="100"/>
 <RowDefinition Height="20"/>
 <RowDefinition/>
 </Grid.RowDefinitions>

While you’re at it, you can make the headers bold by adding the FontWeight style to
each header’s TextBlock:

 <TextBlock Grid.Column="0" FontWeight ="Bold"
 Grid.Row="0">SKU</TextBlock>

Event handling

One way you can ensure that the FullDescription is displayed when the user clicks
on an item in the listbox is to take these steps:

1. Add an event handler to Window1.xaml.cs (the code-behind for the window).

2. Add a delegate to the ListBox telling it which event handler to call when its selec-
tion changes.

3. Add a TextBlock in the form where you can place the long description when a
choice is made in the listbox.

Data Binding | 87

Actually, you’ll need to add two TextBlocks. Below the ListBox, but before you close
the Grid, add one TextBlock as a header for the long description, and one to hold the
long description when the user clicks in the listbox:

 <TextBlock Grid.Column="0" Grid.ColumnSpan="2" FontWeight="Bold"
 Grid.Row="2">Full Description</TextBlock>
 <TextBlock Grid.Column="0"
 Grid.ColumnSpan="4"
 Grid.Row="3"
 Name="LongDescriptionLabel" />

Next, modify the ListBox declaration to call a method that you’ll add to the code-
behind file:

 <ListBox Grid.Column="0"
 Grid.Row="1"
 Grid.ColumnSpan="4"
 ItemsSource="{Binding}"
 SelectionChanged="ShoppingCartSelection"
 Width="360">

You must now implement the ShoppingCartSelection() method as a member of the
Window1 class in Window1.xaml.cs. It will examine the ListBox control, see what was
selected, extract the LongDescription from that object (which will be of type
ShoppingCartItem), and place that long description into the TextBlock you just added
to the form. This method is shown in Example 3-16.

The old C hacker in me is tempted to write the method as follows:

private void ShoppingCartSelection(
 object sender, RoutedEventArgs e)
{
 LongDescriptionLabel.Text =
 ((sender as ListBox).SelectedItem as
 ShoppingCartItem).LongDescription.ToString();
}

But that would be evil.

Example 3-16. ShoppingCartSelection in Window1.xaml.cs

private void ShoppingCartSelection(object sender, RoutedEventArgs e)
{
 ListBox lb = sender as ListBox;
 ShoppingCartItem scItem = lb.SelectedItem as ShoppingCartItem;
 LongDescriptionLabel.Text = scItem.LongDescription.ToString();
}

88 | Chapter 3: Introducing Windows Presentation Foundation: A Richer Desktop UI Experience

When the user clicks on an item in the listbox, the SelectionChanged event is fired,
and ShoppingCartSelection() is called in Window1.xaml.cs. The listbox is retrieved,
the selected ShoppingCartItem is identified, and its LongDescription is extracted. That
string is then placed into the TextBlock and displayed, as shown in Figure 3-23
(which is the same as Figure 3-22, now that this example is complete).

Figure 3-23. Master/detail list binding—final result

89

Chapter 4omu CHAPTER 4

Applying WPF: Building a Biz App4

The previous chapter introduced various aspects of working with WPF. In this chap-
ter you’re going to build a larger desktop application that has two significant
“pages”: on the first page (shown in Figure 4-1), users will be able to choose among
photographs, crop them, and then add prints and related items to the shopping cart;
on the second page (shown in Figure 4-2), users will pay for the items in their carts
using a credit card.

Figure 4-1. Page 1

90 | Chapter 4: Applying WPF: Building a Biz App

Breaking the Application into Pieces
This application clearly lends itself to being developed in a number of pieces. The
first division is between the first page, in which the user adds items to the shopping
cart, and the second page, in which the user pays for those items.

Page 1, in turn, can easily be divided into its component parts: the photo slider you
developed in the last chapter, the central photo display, the shopping cart area, and
the surrounding areas.

To begin, create a new WPF Application called PhotoCooperative. You will use this
project as a container for the code you create and evaluate along the way.

Adorners
The spec for this project states that the user can drag a cropping rectangle within any
photograph and then click the Crop button to crop the photo, as shown in
Figure 4-3.

To accomplish this, you’ll need to be able to create and display a “rubberband” on
mouse down and mouse drag, and leave it in place on mouse up (activating the Crop
button)—and you’ll need to be able to “crop” the photo to its new rectangle.

You’ll implement the rubberband as an adorner. Adorners are, essentially, elements
that are rendered “on top of” existing elements (or collections of elements). You can
think of WPF as having what amounts to an acetate layer of adorners that can be laid
on top of adorned elements, with the adorners positioned relative to the elements
that are being adorned.

Figure 4-2. Page 2

Adorners | 91

Adorners are often used to create element-manipulation handles (like rotation han-
dles or resizers) or visual feedback indications. A rubberband for cropping is an
excellent example. In fact, Microsoft offers sample code that you can “borrow” and
adapt for the purposes of this application, as shown in Example 4-1.

Figure 4-3. Cropping a photo

Example 4-1. The rubberband adorner

using System;
using System.IO;
using System.Windows;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Documents;

namespace PhotoCooperative
{
 public class RubberbandAdorner : Adorner
 {
 public Window1 Window { set; get; }
 private RectangleGeometry geometry;
 public System.Windows.Shapes.Path Rubberband { get; set; }
 private UIElement adornedElement;
 private Rect selectRect;
 public Rect SelectRect { get { return selectRect; } }
 protected override int VisualChildrenCount { get { return 1; } }
 private Point anchorPoint;

 public RubberbandAdorner(UIElement adornedElement) : base(adornedElement)
 {
 this.adornedElement = adornedElement;
 selectRect = new Rect();
 geometry = new RectangleGeometry();

92 | Chapter 4: Applying WPF: Building a Biz App

 Rubberband = new System.Windows.Shapes.Path();
 Rubberband.Data = geometry;
 Rubberband.StrokeThickness = 2;
 Rubberband.Stroke = Brushes.Yellow;
 Rubberband.Opacity = .6;
 Rubberband.Visibility = Visibility.Hidden;
 AddVisualChild(Rubberband);
 MouseMove += new MouseEventHandler(DrawSelection);
 MouseUp += new MouseButtonEventHandler(EndSelection);
 }

 protected override Size ArrangeOverride(Size size)
 {
 Size finalSize = base.ArrangeOverride(size);
 ((UIElement)GetVisualChild(0)).Arrange(new Rect(new Point(), finalSize));
 return finalSize;
 }

 public void StartSelection(Point anchorPoint)
 {
 this.anchorPoint = anchorPoint;
 selectRect.Size = new Size(10, 10);
 selectRect.Location = anchorPoint;
 geometry.Rect = selectRect;
 if (Visibility.Visible != Rubberband.Visibility)
 Rubberband.Visibility = Visibility.Visible;
 }

 private void DrawSelection(object sender, MouseEventArgs e)
 {
 if (e.LeftButton == MouseButtonState.Pressed)
 {
 Point mousePosition = e.GetPosition(adornedElement);
 if (mousePosition.X < anchorPoint.X)
 {
 selectRect.X = mousePosition.X;
 }
 else
 {
 selectRect.X = anchorPoint.X;
 }
 if (mousePosition.Y < anchorPoint.Y)
 {
 selectRect.Y = mousePosition.Y;
 }
 else
 {
 selectRect.Y = anchorPoint.Y;
 }
 selectRect.Width = Math.Abs(mousePosition.X - anchorPoint.X);
 selectRect.Height = Math.Abs(mousePosition.Y - anchorPoint.Y);
 geometry.Rect = selectRect;

Example 4-1. The rubberband adorner (continued)

Adorners | 93

Let’s unpack a bit of this code. You begin by creating a few private member variables:

 private RectangleGeometry geometry;
 private UIElement adornedElement;
 private Point anchorPoint;

The Geometry class is used to describe a 2-D shape. In this case, you’ll use the
RectangleGeometry class to constrain the rubberband to draw a rectangle as the user
drags the mouse across the photograph (as you saw in Figure 4-3).

The private member variable adornedElement is the element that will be adorned (i.e.,
the element on which the Rubberband will act). This value is passed into the construc-
tor, which sends it along to the abstract base class (Adorner):

 public RubberbandAdorner(UIElement adornedElement) : base(adornedElement)

anchorPoint is the starting point for the rectangle, established by an initial mouse-
down event similar to this:

 private void OnMouseDown(object sender, MouseButtonEventArgs e)
 {
 Point anchor = e.GetPosition(CurrentPhoto);

 }

 AdornerLayer layer = AdornerLayer.GetAdornerLayer(adornedElement);
 layer.InvalidateArrange();
 }
 }

 private void EndSelection(object sender, MouseButtonEventArgs e)
 {
 const int MinSize = 3;

 if (selectRect.Width <= MinSize || selectRect.Height <= MinSize)
 {
 Rubberband.Visibility = Visibility.Hidden;
 }
 else
 {
 Window.CropButton.IsEnabled = true;
 }
 ReleaseMouseCapture();
 }

 protected override Visual GetVisualChild(int index)
 {
 return Rubberband;
 }
 }
}

Example 4-1. The rubberband adorner (continued)

94 | Chapter 4: Applying WPF: Building a Biz App

The constructor attaches the RubberbandAdorner to the adornedElement (in this case,
the current photo) and creates a new rectangle:

 this.adornedElement = adornedElement;
 selectRect = new Rect();

It then sets the Rubberband property to a new Path object (a Path is used to describe a
complex geometric figure; the segments within a path are combined to create a sin-
gle shape):

 Rubberband = new System.Windows.Shapes.Path();

In this case, you set the Data for the Path to geometry, which you’ll remember is just a
RectangleGeometry (that is, the data to create a rectangle shape). The Path also takes a
StrokeThickness (the width of the rectangle’s border), a Stroke (the color), an
Opacity (the level of transparency), and a Visibility (it starts out hidden):

 geometry = new RectangleGeometry();

 Rubberband.Data = geometry;
 Rubberband.StrokeThickness = 2;
 Rubberband.Stroke = Brushes.Yellow;
 Rubberband.Opacity = .6;
 Rubberband.Visibility = Visibility.Hidden;

Next, you add the rubberband member variable to the adorner by calling its
AddVisualChild() method:

 AddVisualChild(Rubberband);

This adds the Path to the adorner’s collection of visual elements.

Finally, you add two event handlers, MouseMove (which calls DrawSelection()) and
MouseUp (which calls EndSelection()):

 MouseMove += new MouseEventHandler(DrawSelection);
 MouseUp += new MouseButtonEventHandler(EndSelection);

StartSelection() is called by the OnMouseDown handler in Window1, as you’ll see later
in this chapter.

Here is the complete listing of the constructor:

 public RubberbandAdorner(UIElement adornedElement) : base(adornedElement)
 {
 this.adornedElement = adornedElement;
 selectRect = new Rect();

 Rubberband = new System.Windows.Shapes.Path();

 geometry = new RectangleGeometry();

 Rubberband.Data = geometry;
 Rubberband.StrokeThickness = 2;
 Rubberband.Stroke = Brushes.Yellow;
 Rubberband.Opacity = .6;
 Rubberband.Visibility = Visibility.Hidden;

Business Classes | 95

 AddVisualChild(Rubberband);
 MouseMove += new MouseEventHandler(DrawSelection);
 MouseUp += new MouseButtonEventHandler(EndSelection);
 }

To place each visual child element, you call the base class’s ArrangeOverride()
method and pass in the Size object you are given, getting back a Size object repre-
senting the area you have to work with. You then obtain each visual child in turn and
call Arrange() on them, passing in a Rectangle. Finally, you return the Size object
obtained from the base class:

 protected override Size ArrangeOverride(Size size)
 {
 Size finalSize = base.ArrangeOverride(size);
 ((UIElement)GetVisualChild(0)).Arrange(new Rect(new Point(), finalSize));
 return finalSize;
 }

Business Classes
To support the user interface, you need a set of simple business classes representing
the photographs and the items the user can purchase based on each photo. These are
collected in the StoreItems.cs file, shown in Example 4-2.

Example 4-2. StoreItems.cs

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Windows.Media.Imaging;
using System.Collections.Specialized;
using System.Windows.Controls;

namespace PhotoCooperative
{
 public class ImageFile
 {
 public String Path { get; set; }
 public Uri TheUri { get; set; }
 public BitmapFrame Image { get; set; }

 public ImageFile(string path)
 {
 Path = path;
 TheUri = new Uri(Path);
 Image = BitmapFrame.Create(TheUri);
 }

 public override string ToString()

96 | Chapter 4: Applying WPF: Building a Biz App

 {
 return Path;
 }

 }

 public class PhotoList : ObservableCollection<ImageFile>
 {
 DirectoryInfo theDirectoryInfo;

 public PhotoList() { }

 public PhotoList(string path) : this(new DirectoryInfo(path)) { }

 public PhotoList(DirectoryInfo directory)
 {
 theDirectoryInfo = directory;
 Update();
 }

 public string Path
 {
 set
 {
 theDirectoryInfo = new DirectoryInfo(value);
 Update();
 }
 get { return theDirectoryInfo.FullName; }
 }

 public DirectoryInfo Directory
 {
 set
 {
 theDirectoryInfo = value;
 Update();
 }
 get { return theDirectoryInfo; }
 }

 private void Update()
 {
 foreach (FileInfo f in theDirectoryInfo.GetFiles("*.gif"))
 {
 Add(new ImageFile(f.FullName));
 }
 }

 }

Example 4-2. StoreItems.cs (continued)

Business Classes | 97

 public class PrintType
 {
 public String Description { get; set; }
 public double Price { get; set; }

 public PrintType(string description, double price)
 {
 Description = description;
 Price = price;
 }

 public override string ToString()
 {
 return Description;
 }

 }

 public class PrintTypeList : ObservableCollection<PrintType>
 {
 public PrintTypeList()
 {
 Add(new PrintType("5x7 Print", 0.49));
 Add(new PrintType("Holiday Card", 1.99));
 Add(new PrintType("Sweatshirt", 19.99));
 }
 }

 public class PrintBase : INotifyPropertyChanged
 {
 private BitmapSource aPhoto;
 private PrintType aPrintType;
 private int aQuantity;

 public PrintBase(BitmapSource photo, PrintType printtype, int quantity)
 {
 Photo = photo;
 PrintType = printtype;
 Quantity = quantity;
 }

 public PrintBase(BitmapSource photo, string description, double cost)
 {
 Photo = photo;
 PrintType = new PrintType(description, cost);
 Quantity = 0;
 }

 public BitmapSource Photo

Example 4-2. StoreItems.cs (continued)

98 | Chapter 4: Applying WPF: Building a Biz App

 {
 set { aPhoto = value; OnPropertyChanged("Photo"); }
 get { return aPhoto; }
 }

 public PrintType PrintType
 {
 set { aPrintType = value; OnPropertyChanged("PrintType"); }
 get { return aPrintType; }
 }

 public int Quantity
 {
 set { aQuantity = value; OnPropertyChanged("Quantity"); }
 get { return aQuantity; }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(String info)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(info));
 }

 public override string ToString()
 {
 return PrintType.ToString();
 }
 }

 public class Print : PrintBase
 {
 public Print(BitmapSource photo) : base(photo, "5x7 Print", 0.49) { }
 }

 public class GreetingCard : PrintBase
 {
 public GreetingCard(BitmapSource photo) : base(photo, "Greeting Card", 1.99)
 { }
 }

 public class SShirt : PrintBase
 {
 public SShirt(BitmapSource photo) : base(photo, "Sweatshirt", 19.99) { }
 }

 public class PrintList : ObservableCollection<PrintBase> { }
}

Example 4-2. StoreItems.cs (continued)

Page 1—Adding Items to the Shopping Cart | 99

There’s nothing terribly surprising in this code. In the ImageFile constructor, you
first define the ImageFile object (the picture) based on its disk location. You create a
URI from the path to the file on disk, and you create a BitmapFrame from that URI:

 public ImageFile(string path)
 {
 Path = path;
 TheUri = new Uri(Path);
 Image = BitmapFrame.Create(TheUri);
 }

The PhotoList class represents an ObservableCollection of ImageFiles:

 public class PhotoList : ObservableCollection<ImageFile>

ObservableCollection is a generic collection that implements the Observer pattern
(discussed in Chapter 8); that is, it notifies interested (registered) objects when items
are added or removed, or when the list is refreshed. This will come in handy later,
when you create the scrolling listbox of photos from which the user can choose.
Because the list is observable, when an item is selected an event will be raised. You
can set an event handler accordingly:

<ListBox Style="{DynamicResource PhotoListStyle}"
 Grid.Row="1"
 Grid.ColumnSpan="3"
 Name ="PhotoListBox"
 Margin="0,0,0,20"
 DataContext="{Binding Source={StaticResource Photos}}"
 SelectionChanged ="PhotoListSelection"
 ItemsSource="{Binding }"
 ItemContainerStyle="{DynamicResource PhotoListItem}"
 SelectedIndex="0" />

You’ll need one more business class, to validate credit cards, but we’ll delay discus-
sion of that until you’re ready to build the second page.

Page 1—Adding Items to the Shopping Cart
With the business classes in place in StoreItems.cs, you’re ready to build the first
page. Open up Window1.xaml, as shown in Figure 4-4.

Now, edit this file to create a slider for the photographs. You’ll do this by adapting
the image list created in the previous chapter to display the U.S. presidents.

In that example you had a Grid with a StackPanel, and inside that was a ListBox with
ListBox items. In this case, rather than explicitly naming the items in the listbox,
you’re going to bind the ListBox to a data source (a static resource called Photos).
You’ll put the ListBox inside a Grid, and you’ll put that inside a ViewBox so the user
can resize the entire thing. This will be done in two steps, with the first one allowing
you to visualize the Grid.

100 | Chapter 4: Applying WPF: Building a Biz App

<Viewbox VerticalAlignment="Top" Stretch="Uniform">

<Grid Margin="20" Width="620" ShowGridLines="True" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="120" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="250" />

Figure 4-4. The Photo Cooperative

Page 1—Adding Items to the Shopping Cart | 101

 <RowDefinition Height="15" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="400" />
 <ColumnDefinition Width="160" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.ColumnSpan="3"
 Style="{DynamicResource TitleText}">
 The Photo Co-op:
 your pictures your way
 </TextBlock>
</Grid>

</Viewbox>

If you run the application now, you should see something like Figure 4-5. You won’t
want the gridlines to be visible, though—to turn them off, set the ShowGridLines
property of the Grid to False.

Figure 4-5. Running the application with the gridlines on

102 | Chapter 4: Applying WPF: Building a Biz App

Next, you need to deal with some of the resources that the Window will use (specifi-
cally, DynamicResource and PhotoListStyle). It is helpful to understand that you sim-
ply need to add these resources to a Window.Resources section. You’ll put this section
just below your Window class declaration:

<Window x:Class="PhotoCooperative.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Photo Cooperative" Height="600" Width="800"
 xmlns:sbts="clr-namespace:PhotoCooperative"
>
 <Window.Resources>

 <!-- PHOTOLIST TEMPLATE -->

 <Style x:Key="PhotoListStyle" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >
 <Border
 BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ListBoxGradient}" >
 <ScrollViewer
 VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Auto">
 <StackPanel
 IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

 <!-- PHOTOLIST STORYBOARDS -->

 <Style x:Key="PhotoListItem" TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight"
 To="85" />

Page 1—Adding Items to the Shopping Cart | 103

 <DoubleAnimation
 Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity"
 To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>

 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Duration="0:0:1"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation
 Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>

At this point you will need to add the ListBox code mentioned earlier to your
Window1.xaml file, right below the TextBlock inside the Grid:

<ListBox Style="{DynamicResource PhotoListStyle}"
 Grid.Row="1"
 Grid.ColumnSpan="3"
 Name ="PhotoListBox"
 Margin="0,0,0,20"
 DataContext="{Binding Source={StaticResource Photos}}"
 SelectionChanged ="PhotoListSelection"
 ItemsSource="{Binding }"
 ItemContainerStyle="{DynamicResource PhotoListItem}"
 SelectedIndex="0" />

Note the SelectionChanged attribute. This indicates that you need an event handler
for when the selection changes in the photo display. Put that in Window1.xaml.cs:

private void PhotoListSelection(object sender, RoutedEventArgs e)
{
 String path = ((sender as ListBox).SelectedItem.ToString());
 BitmapSource img = BitmapFrame.Create(new Uri(path));
}

Recall that in StoreItems.cs you declared a class of type PhotoList:

public class PhotoList : ObservableCollection<ImageFile>

104 | Chapter 4: Applying WPF: Building a Biz App

In Window1.xaml.cs, create a member variable that is an instance of this class:

public partial class Window1 : System.Windows.Window
{
 public PhotoList Photos;

The business class also defines an ImageFile class (see the listing for StoreItems.cs),
but your Resources section needs to define a DataTemplate for binding to an
ImageFile:

<!-- DATA TEMPLATES -->

<DataTemplate DataType="{x:Type sbts:ImageFile}">
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Padding="4"
 Margin="2"
 Background="White">
 <Image Source="{Binding Image}" />
 </Border>
</DataTemplate>

The rest is just aesthetics. You’ll want to define styles both for the Window itself and
for the Title text:

<!-- STYLES -->

<Style TargetType="{x:Type sbts:Window1}">
 <Setter Property="Background"
 Value="{DynamicResource WindowGradient}" />
</Style>

<Style x:Key="TitleText"
 TargetType="{x:Type TextBlock}" >
 <Setter Property="FontFamily"
 Value="Segoe Black" />
 <Setter Property="FontSize"
 Value="20px" />
 <Setter Property="Foreground"
 Value="MidnightBlue" />
</Style>

Also, both the ListBox and the Window use gradients, so these must be defined as well.
Add these brushes to the top of the Window.Resources section:

<!— LINEAR GRADIENT BRUSHES -->
<LinearGradientBrush x:Key="WindowGradient"
 StartPoint="0,0.3"
 EndPoint="1,0">
 <GradientStop Color="#B2B6CAFF"
 Offset="0" />
 <GradientStop Color="#BFC3D5FF"
 Offset="0.1" />
 <GradientStop Color="#E0E4F0FF"
 Offset="0.3" />

Page 1—Adding Items to the Shopping Cart | 105

 <GradientStop Color="#E6EAF5FF"
 Offset="0.5" />
 <GradientStop Color="#CFD7E2FF"
 Offset="0.6" />
 <GradientStop Color="#BFC5D3FF"
 Offset="0.8" />
 <GradientStop Color="#C4CBD8FF"
 Offset="1" />
</LinearGradientBrush>

<LinearGradientBrush x:Key="ListBoxGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#90000000"
 Offset="0" />
 <GradientStop Color="#40000000"
 Offset="0.005" />
 <GradientStop Color="#10000000"
 Offset="0.04" />
 <GradientStop Color="#20000000"
 Offset="0.945" />
 <GradientStop Color="#60FFFFFF"
 Offset="1" />

</LinearGradientBrush>

You’re almost ready to run this puppy—you just have to tell the Application what
your data source is. In App.xaml, add this code:

<Application x:Class="PhotoCooperative.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sbts="clr-namespace:PhotoCooperative"
 Startup="AppStartup">
 <Application.Resources>
 <ObjectDataProvider x:Name="PhotosODP" x:Key="Photos"
 ObjectType="{x:Type sbts:PhotoList}" />
 </Application.Resources>
</Application>

Then, in App.xaml.cs, add the following:

public partial class App : System.Windows.Application
{
 void AppStartup(object sender, StartupEventArgs args)
 {
 Window1 theWindow = new Window1();
 theWindow.Show();

 ObjectDataProvider dataProvider =
 this.Resources["Photos"] as ObjectDataProvider;

 PhotoList photoList = dataProvider.Data as PhotoList;

106 | Chapter 4: Applying WPF: Building a Biz App

 theWindow.Photos = photoList;
 theWindow.Photos.Path = @"..\..\Photos";
 }
}

With all this wired together, you are ready to run your data-bound photo list (shown
in Figure 4-6). The only thing left to do is create a Photos folder and put some GIF
images in it. To add a new folder, right-click on the project and select Add ➝ New
Folder. Rename it Photos, then right-click on it and select Open in Windows
Explorer. From there, you should be able to fill the folder with GIFs. If you need
some GIFs in a hurry, you can download Alex’s from http://tinyurl.com/2jarve.

Displaying the Selected Image
You can add a display of the selected image with just a couple of small changes. To
begin, just below the ListBox, add an Image control:

<Image Name="CurrentPhoto"
 Grid.Row="3"
 Grid.Column="1"
 Margin="10"
 MouseDown="OnMouseDown"/>

This depends on two things. The first is an OnMouseDown event handler, which you can
stub out in Window1.xaml.cs:

private void OnMouseDown(object sender, MouseButtonEventArgs e)
{
}

The second is setting the CurrentPhoto when the user clicks in the image slider:

private void PhotoListSelection(object sender, RoutedEventArgs e)
{
 String path = ((sender as ListBox).SelectedItem.ToString());
 BitmapSource img = BitmapFrame.Create(new Uri(path));
 CurrentPhoto.Source = img;
}

Presto! When the user selects an image in the slider, a nice blow-up of the image is
shown below it, in the Image control you placed in grid row 3, column 1. Figure 4-7
demonstrates the effect.

Figure 4-6. Image slider

http://tinyurl.com/2jarve

Page 1—Adding Items to the Shopping Cart | 107

Adding Cropping with the Adorner
There are two steps remaining to finish the first page. The first is to add the rubber-
band adorner discussed earlier, using the code detailed in Example 4-1. (We’ll deal
with the second task—adding the shopping cart—in the next section.) Begin by add-
ing a RubberbandAdorner class, which you’ll place in a new file called CropUtilities.cs.

To tie this into the application, you need to make a few changes in Window1.xaml.
First, add the Crop and Undo buttons to the Grid:

<ListBox Style="{DynamicResource PhotoListStyle}"
 Grid.Row="1"
 Grid.ColumnSpan="3"
 Name ="PhotoListBox"
 Margin="0,0,0,20"
 DataContext="{Binding Source={StaticResource Photos}}"
 SelectionChanged ="PhotoListSelection"
 ItemsSource="{Binding }"
 ItemContainerStyle="{DynamicResource PhotoListItem}"
 SelectedIndex="0" />

Figure 4-7. The Image control

108 | Chapter 4: Applying WPF: Building a Biz App

<StackPanel
 Grid.Row="3"
 Grid.Column="0">

 <Button
 Name="CropButton"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center"
 Click="Crop"
 Width="55"
 Margin="2">
 Crop
 </Button>

</StackPanel>

<Button Grid.Row="3"
 Grid.Column="0"
 Name="UndoButton"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center"
 Click="Undo"
 IsEnabled="False"
 Width="55"
 Margin="2">
 Undo
</Button>

<Image Name="CurrentPhoto"
 Grid.Row="3"
 Grid.Column="1"
 Margin="10"
 MouseDown="OnMouseDown" />

These buttons need gradients, which you should now add to the Window.Resources
section:

<LinearGradientBrush x:Key="ButtonGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#FDB6CADF"
 Offset="0" />
 <GradientStop Color="#FCC3C5FF"
 Offset="0.1" />
 <GradientStop Color="#FCC4D0EF"
 Offset="0.3" />
 <GradientStop Color="#FDB7C2DF"
 Offset="0.6" />
 <GradientStop Color="#FE95B3CF"
 Offset="0.8" />
 <GradientStop Color="#FE96AACF"
 Offset="1" />

</LinearGradientBrush>

Page 1—Adding Items to the Shopping Cart | 109

<LinearGradientBrush x:Key="ButtonUpGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="Transparent"
 Offset="0" />
 <GradientStop Color="#33000000"
 Offset="1" />

</LinearGradientBrush>

<LinearGradientBrush x:Key="ButtonDownGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#10000000"
 Offset="0" />
 <GradientStop Color="#20000000"
 Offset="1" />

</LinearGradientBrush>

<LinearGradientBrush x:Key="ButtonDisabledGradient"
 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#10302A90"
 Offset="0" />
 <GradientStop Color="#10201040"
 Offset="1" />

</LinearGradientBrush>

You’ll also need to add some event handlers. One is obvious: you need to capture the
OnMouseDown event to begin the rubberband. But you must also initialize the adorner.
The best place to do this is in the Loaded event. To fire the Loaded event, add the fol-
lowing to the Window tag:

<Window x:Class="PhotoCooperative.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Photo Cooperative" Height="600" Width="800"
 xmlns:sbts="clr-namespace:PhotoCooperative"
 Loaded="WindowLoaded"
 >

This sets the event handler WindowLoaded() to handle the Loaded event. The event
handlers, of course, go in Window1.xaml.cs. Make sure you reference the following
namespaces:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;

110 | Chapter 4: Applying WPF: Building a Biz App

using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Media.Animation;
using System.Windows.Input;
using System.Collections;

Here’s the top of that file:

public partial class Window1 : System.Windows.Window
{
 public PhotoList Photos;
 private Stack UndoStack;
 private RubberbandAdorner CropSelector;

 public Window1()
 {
 InitializeComponent();
 UndoStack = new Stack();
 }

 private void WindowLoaded(object sender, EventArgs e)
 {
 AdornerLayer layer = AdornerLayer.GetAdornerLayer(CurrentPhoto);
 CropSelector = new RubberbandAdorner(CurrentPhoto);
 CropSelector.Window = this;
 layer.Add(CropSelector);
 CropSelector.Rubberband.Visibility = Visibility.Hidden;
 }

The constructor initializes the Undo stack, and then the WindowLoaded() event hand-
ler (which runs after the Window is, er, loaded) creates the rubberband. It does so by
getting the AdornerLayer (the acetate layer that is placed “on top of” the element it
adorns).

The static method GetAdornerLayer() walks up the “visual tree,” start-
ing at CurrentPhoto, and returns the first adorner layer it finds.

CropSelector is a private member variable of type RubberbandAdorner (which itself is
defined in CropUtilities.cs), and in WindowLoaded() you call its constructor, passing in
the target element to be adorned (the current photo). You then set its Window prop-
erty to the current window, add the RubberbandAdorner to the AdornerLayer, and set
the RubberbandAdorner to invisible (awaiting the user’s mouse-down).

MouseDown

When the user clicks in the current photo, the MouseDown event fires. Here, you
remember the point where the mouse was clicked. You then capture the mouse
through the CropSelector and call its StartSelection() method. You also enable the
CropButton:

Page 1—Adding Items to the Shopping Cart | 111

private void OnMouseDown(object sender, MouseButtonEventArgs e)
{
 Point anchor = e.GetPosition(CurrentPhoto);
 CropSelector.CaptureMouse();
 CropSelector.StartSelection(anchor);
 CropButton.IsEnabled = true;
}

Because the mouse has been captured, the MouseUp event is handled by the
RubberbandAdorner (as you saw in Example 4-1, excerpted here):

public RubberbandAdorner(UIElement adornedElement) : base(adornedElement)
{
 this.adornedElement = adornedElement;
 //...
 MouseMove += new MouseEventHandler(DrawSelection);
 MouseUp += new MouseButtonEventHandler(EndSelection);
}

With this in place, you can expand the PhotoListSelection() method to manage the
Undo stack and the CropSelector:

private void PhotoListSelection(object sender, RoutedEventArgs e)
{
 String path = ((sender as ListBox).SelectedItem.ToString());
 BitmapSource img = BitmapFrame.Create(new Uri(path));
 CurrentPhoto.Source = img;
 ClearUndoStack();
 if (CropSelector != null)
 {
 if (Visibility.Visible == CropSelector.Rubberband.Visibility)
 CropSelector.Rubberband.Visibility = Visibility.Hidden;
 }
 CropButton.IsEnabled = false;
}

Handling the Crop button

You now need to implement the method to call when the Crop button is clicked,
which will crop the current picture to the limits of the rubberband adorner:

private void Crop(object sender, RoutedEventArgs e)
{
 if (CurrentPhoto.Source != null)
 {
 BitmapSource img = (BitmapSource) (CurrentPhoto.Source);
 UndoStack.Push(img);
 Int32Rect rect = new Int32Rect();
 rect.X = (int) (CropSelector.SelectRect.X *
 img.PixelWidth / CurrentPhoto.ActualWidth);
 rect.Y = (int) (CropSelector.SelectRect.Y *
 img.PixelHeight / CurrentPhoto.ActualHeight);
 rect.Width = (int) (CropSelector.SelectRect.Width *
 img.PixelWidth / CurrentPhoto.ActualWidth);

112 | Chapter 4: Applying WPF: Building a Biz App

 rect.Height = (int) (CropSelector.SelectRect.Height *
 img.PixelHeight / CurrentPhoto.ActualHeight);
 CurrentPhoto.Source = new CroppedBitmap(img, rect);

 CropSelector.Rubberband.Visibility = Visibility.Hidden;

 CropButton.IsEnabled = false;
 UndoButton.IsEnabled = true;
 }
}

You start by obtaining the Source property of the CurrentPhoto. CurrentPhoto, you
will remember, is defined to be of type Image; its Source property returns the image
source. You cast it to a BitMapSource and store it in the local variable img, which you
push onto the UndoStack (to be restored if the user clicks the Undo button).

Next, you create a rectangle and obtain its size by asking the CropSelector for its pro-
portions. You set the CurrentPhoto’s image source to a new CroppedBitmap, which
you created by passing in the original BitmapSource and the rectangle you just sized.

That done, you hide the rubberband, disable the Crop button, and enable the Undo
button.

The picture is now cropped, but pressing the Undo button will undo the cropping:

private void Undo(object sender, RoutedEventArgs e)
{
 if (UndoStack.Count > 0)
 {
 CurrentPhoto.Source = (BitmapSource) UndoStack.Pop();
 }
 if (UndoStack.Count == 0)
 {
 UndoButton.IsEnabled = false;
 }
}

Adding the Shopping Cart
To finish the first page, you only need to add the shopping cart and the associated
buttons. You want to offer the user the ability, having chosen a picture, to purchase a
5 × 7 photo, a sweatshirt, or a “holiday card.”

Begin by adding the shopping cart template and triggers to Window.Resources:

<!-- SHOPPING CART TEMPLATE -->

<Style x:Key="ShoppingCartStyle"
 TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >

Page 1—Adding Items to the Shopping Cart | 113

 <Border BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ShoppingCartGradient}" >
 <ScrollViewer>
 <WrapPanel ItemHeight="70"
 ItemWidth="70"
 Margin="0,25,0,0"
 IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Center" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

<!-- SHOPPING CART TRIGGERS -->

<Style x:Key="ShoppingCartItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="BorderBrush"
 Value="Transparent" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBoxItem}">
 <Border x:Name="ContentBorder"
 Opacity="0.85">
 <ContentPresenter />
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsSelected"
 Value="True">
 <Setter TargetName="ContentBorder"
 Property="Opacity"
 Value="1.0" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The ShoppingCart uses a ShoppingCartGradient, so of course you’ll need to add that
to the Resources section with the other gradient brushes:

<LinearGradientBrush x:Key="ShoppingCartGradient" StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#90000000" Offset="0" />
 <GradientStop Color="#40000000" Offset="0.002" />
 <GradientStop Color="#10000000" Offset="0.02" />
 <GradientStop Color="#20000000" Offset="0.98" />
 <GradientStop Color="#60FFFFFF" Offset="1" />
</LinearGradientBrush>

114 | Chapter 4: Applying WPF: Building a Biz App

The trigger is set on the listbox, but the listbox it is set on is ShoppingCartItem, which
we have not yet added. This is the drop-down from which the user selects an item to
add to the cart. Add that combo box to your Window’s Resources section now:

<!-- COMBOBOX STYLE -->

<Style TargetType="{x:Type ComboBox}" >
 <Setter Property="Background"
 Value="{DynamicResource ComboBoxGradient}" />
 <Setter Property="BorderThickness"
 Value="0" />
 <Setter Property="Height"
 Value="18px" />
 <Setter Property="Foreground"
 Value="MidnightBlue" />
</Style>

<LinearGradientBrush x:Key="ComboBoxGradient" StartPoint="0,0" EndPoint="0,1">

 <GradientStop Color="#B2B6CAFF" Offset="0" />
 <GradientStop Color="#B0B3C5FF" Offset="0.1" />
 <GradientStop Color="#BEE4E0FF" Offset="0.3" />
 <GradientStop Color="#B0D7E2FF" Offset="0.6" />
 <GradientStop Color="#B0C5D3FF" Offset="0.8" />
 <GradientStop Color="#C4CBD8FF" Offset="1" />

</LinearGradientBrush>

With the styles in place, you only need to add the objects to the Grid. In this case,
you’ll use an inner Grid:

<Image Name="CurrentPhoto"
 Grid.Row="3"
 Grid.Column="1"
 Margin="10"
 MouseDown="OnMouseDown"/>

 <Grid
 Grid.Row="5"
 Grid.Column="1"
 HorizontalAlignment="Center"
 Margin="0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

Page 1—Adding Items to the Shopping Cart | 115

 <ComboBox
 Grid.Row="0"
 Grid.Column="0"
 Margin="0,0,4,0"
 VerticalAlignment="Center"
 Name="PrintTypeComboBox"
 DataContext="{Binding Source={StaticResource PrintTypes}}"
 ItemsSource="{Binding}"
 Width="110"
 SelectedIndex="0" />

 <Button
 Grid.Row="0"
 Grid.Column="1"
 Click="AddToShoppingCart"
 VerticalAlignment="Center"
 Width="100"
 IsDefault="True">
 Add To Cart
 </Button>

 <Button
 Grid.Row="1"
 Grid.Column="1"
 Name="RemoveButton"
 Click="RemoveShoppingCartItem"
 VerticalAlignment="Center"
 IsEnabled="False"
 Width="100"
 Margin="10" >
 Remove Item
 </Button>

 </Grid>

</Grid>

Because you’ve declared event handlers, you’ll have to stub them out in your
code-behind:

private void AddToShoppingCart(object sender, RoutedEventArgs e)
{
}

private void RemoveShoppingCartItem(object sender, RoutedEventArgs e)
{
}

You’ll also need a few additional data templates for your visual shopping cart. Add
them to the Resources section now:

116 | Chapter 4: Applying WPF: Building a Biz App

<DataTemplate DataType="{x:Type sbts:Print}">
 <Grid Margin="3">
 <Image Source="baseImg/photoframe.gif" />
 <Image Source="{Binding Photo}"
 MaxWidth="50"
 MaxHeight="70"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </Grid>
</DataTemplate>

<DataTemplate DataType="{x:Type sbts:GreetingCard}">
 <Grid Margin="3" >
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Background="{DynamicResource GreetingCardGradient}"
 Width="40"
 Height="50"
 BorderBrush="#44000000"
 BorderThickness="1" >
 <Border.RenderTransform>
 <SkewTransform AngleY="-10" />
 </Border.RenderTransform>
 </Border>
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Background="White"
 Width="50"
 Height="50"
 BorderBrush="#66000000"
 BorderThickness="1" >
 <Image Margin="3"
 Source="{Binding Photo}" />
 </Border>
 </Grid>
</DataTemplate>

<DataTemplate DataType="{x:Type sbts:SShirt}">
 <Grid Margin="3">
 <Image Source="baseImg/sweatshirt-front.gif"/>
 <Image Source="{Binding Photo}"
 MaxWidth="20"
 MaxHeight="22.5"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </Grid>
</DataTemplate>

These new types need to be identified. Do that in the App.xaml file:

<Application x:Class="PhotoCooperative.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sbts="clr-namespace:PhotoCooperative"
 Startup="AppStartup"
 >

Page 1—Adding Items to the Shopping Cart | 117

 <Application.Resources>
 <ObjectDataProvider x:Name="PhotosODP"
 x:Key="Photos"
 ObjectType="{x:Type sbts:PhotoList}" />
 <ObjectDataProvider x:Name="ShoppingCartODP"
 x:Key="ShoppingCart"
 ObjectType="{x:Type sbts:PrintList}" />
 <ObjectDataProvider x:Name="PrintTypesODP"
 x:Key="PrintTypes"
 ObjectType="{x:Type sbts:PrintTypeList}" />
 </Application.Resources>
</Application>

Then add the associated code to AppStartup() in App.xaml.cs:

dataProvider = this.Resources["ShoppingCart"] as ObjectDataProvider;
PrintList printList = dataProvider.Data as PrintList;
theWindow.ShoppingCart = printList;

And don’t forget to add the ShoppingCart private member variable to Window1.xaml.cs:

public partial class Window1 : System.Windows.Window
{
 public PhotoList Photos;
 public PrintList ShoppingCart;

With this additional code, your first page is 80% complete. Figure 4-8 shows the result.

Figure 4-8. Combo box and buttons added

118 | Chapter 4: Applying WPF: Building a Biz App

Adding scroll bars

To finalize the page, you need to add the shopping cart to it. You’ll give the cart
scroll bars so that users can scroll through the items they’ve added and, if desired,
select items to remove from the cart.

As demonstrated earlier, you can begin by adding the resources you anticipate need-
ing. Alternatively, you can add the widget and then add the resources it needs.

Let’s begin by adding the shopping cart inside a Grid and the associated upload but-
ton and progress bar within a StackPanel:

<Grid Grid.Row="3"
 Grid.Column="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0"
 Foreground="MidnightBlue"
 FontSize="13px"
 Margin="2"
 HorizontalAlignment="Center">
 Shopping Cart
 </TextBlock>
 <ListBox ScrollViewer.HorizontalScrollBarVisibility="Disabled"
 Style="{DynamicResource ShoppingCartStyle}"
 Name="ShoppingCartListBox"
 Grid.Row="1"
 Width="160"
 DataContext="{Binding Source={StaticResource ShoppingCart}}"
 ItemContainerStyle="{DynamicResource ShoppingCartItem}"
 ItemsSource="{Binding}" />
</Grid>

<StackPanel
 Grid.Row="5"
 Grid.Column="2" >
 <Button
 Name="UploadButton"
 Click="Checkout"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center"
 Width="100"
 Margin="2"
 IsEnabled="False">
 Checkout
 </Button>

 <ProgressBar
 Name="UploadProgressBar"
 Grid.Row="6"
 Grid.Column="2"

Page 1—Adding Items to the Shopping Cart | 119

 VerticalAlignment="Top"
 Margin="0,10,0,0" />
</StackPanel>

The shopping cart itself is the ListBox inside the Grid. You need a ShoppingCartStyle,
a DataContext, and the ShoppingCartItem resource, all of which you’ve already cre-
ated. What you need to create now are the scroll bar and progress bar resources:

<!-- PROGRESS BAR STYLE -->

<Style TargetType="{x:Type ProgressBar}" >
 <Setter Property="Background"
 Value="{DynamicResource ComboBoxGradient}" />
 <Setter Property="BorderThickness"
 Value="1" />
 <Setter Property="BorderBrush"
 Value="Gray" />
 <Setter Property="Foreground"
 Value="MidnightBlue" />
</Style>

<!—SCROLL BAR TEMPLATES -->

<Style x:Key="Scrollbar_LineButton"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type RepeatButton}">
 <Border BorderBrush="Transparent"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ButtonGradient}">
 <ContentPresenter x:Name="ContentSite" />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="MinHeight"
 Value="12" />
 <Setter Property="MinWidth"
 Value="12" />
 <Setter Property="Foreground"
 Value="Gray" />
 <Setter Property="FontSize"
 Value="6pt" />
 <Setter Property="FontWeight"
 Value="Bold" />
 <Setter Property="FontFamily"
 Value="Lucida Sans" />
 <Setter Property="VerticalAlignment"
 Value="Center" />
 <Setter Property="HorizontalAlignment"
 Value="Center" />
</Style>

120 | Chapter 4: Applying WPF: Building a Biz App

<Style x:Key="ScrollBar_TrackRepeater"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="IsTabStop"
 Value="false" />
 <Setter Property="Focusable"
 Value="false" />
 <Setter Property="Command"
 Value="ScrollBar.PageUpCommand" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type RepeatButton}">
 <Rectangle Fill="Transparent" />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

<Style x:Key="ScrollBar_UpTrack"
 BasedOn="{StaticResource ScrollBar_TrackRepeater}"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="Command"
 Value="ScrollBar.PageUpCommand" />
</Style>

<Style x:Key="ScrollBar_DownTrack"
 BasedOn="{StaticResource ScrollBar_TrackRepeater}"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="Command"
 Value="ScrollBar.PageDownCommand" />
</Style>

<Style x:Key="ScrollBar_LeftTrack"
 BasedOn="{StaticResource ScrollBar_TrackRepeater}"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="Command"
 Value="ScrollBar.PageLeftCommand" />
</Style>

<Style x:Key="ScrollBar_RightTrack"
 BasedOn="{StaticResource ScrollBar_TrackRepeater}"
 TargetType="{x:Type RepeatButton}">
 <Setter Property="Command"
 Value="ScrollBar.PageRightCommand" />
</Style>

<Style x:Key="ScrollBar_VerticalThumb"
 TargetType="{x:Type Thumb}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Thumb}">
 <Border CornerRadius="6"
 BorderBrush="Transparent"
 BorderThickness="1"
 Background="{DynamicResource VerticalScrollGradient}" />
 </ControlTemplate>

Page 1—Adding Items to the Shopping Cart | 121

 </Setter.Value>
 </Setter>
 <Setter Property="MinHeight"
 Value="10" />
 <Setter Property="MinWidth"
 Value="10" />
</Style>

<Style x:Key="ScrollBar_HorizontalThumb"
 TargetType="{x:Type Thumb}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Thumb}">
 <Border CornerRadius="6"
 BorderBrush="Transparent"
 BorderThickness="1"
 Background="{DynamicResource ButtonGradient}" />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="MinHeight"
 Value="10" />
 <Setter Property="MinWidth"
 Value="10" />
</Style>

<Style TargetType="{x:Type ScrollBar}">
 <Setter Property="Background"
 Value="Transparent" />
 <Setter Property="MinWidth"
 Value="10" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ScrollBar}">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="10"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="10"/>
 </Grid.RowDefinitions>
 <Border Grid.Row="1"
 BorderThickness="0"
 Background="Transparent"
 CornerRadius="4"/>
 <RepeatButton Grid.Row="0"
 Style="{DynamicResource Scrollbar_LineButton}"
 Command="ScrollBar.LineUpCommand"
 Content=" ^"/>
 <Track Grid.Row="1"
 Name="PART_Track"
 IsDirectionReversed="True">

122 | Chapter 4: Applying WPF: Building a Biz App

 <Track.IncreaseRepeatButton>
 <RepeatButton Style="{DynamicResource ScrollBar_DownTrack}"/>
 </Track.IncreaseRepeatButton>
 <Track.DecreaseRepeatButton>
 <RepeatButton Style="{DynamicResource ScrollBar_UpTrack}"/>
 </Track.DecreaseRepeatButton>
 <Track.Thumb>
 <Thumb Style="{DynamicResource ScrollBar_VerticalThumb}"/>
 </Track.Thumb>
 </Track>
 <RepeatButton Grid.Row="2"
 Style="{DynamicResource Scrollbar_LineButton}"
 Command="ScrollBar.LineDownCommand"
 Content=" v"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Style.Triggers>
 <Trigger Property="Orientation"
 Value="Horizontal" >
 <Setter Property="Background"
 Value="Transparent" />
 <Setter Property="MinHeight"
 Value="10" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ScrollBar}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="12"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="12" />
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="12" />
 </Grid.ColumnDefinitions>
 <Border Grid.Column="1"
 BorderThickness="0"
 Background="Transparent"
 CornerRadius="4"/>
 <RepeatButton Grid.Column="0"
 Style="{DynamicResource Scrollbar_LineButton}"
 Command="ScrollBar.LineLeftCommand"
 Content=" <"/>
 <Track Grid.Column="1"
 Name="PART_Track">
 <Track.IncreaseRepeatButton>
 <RepeatButton Style=
 "{DynamicResource ScrollBar_RightTrack}"/>
 </Track.IncreaseRepeatButton>
 <Track.DecreaseRepeatButton>
 <RepeatButton Style=
 "{DynamicResource ScrollBar_LeftTrack}"/>
 </Track.DecreaseRepeatButton>

Page 1—Adding Items to the Shopping Cart | 123

 <Track.Thumb>
 <Thumb Style=
 "{DynamicResource ScrollBar_HorizontalThumb}"/>
 </Track.Thumb>
 </Track>
 <RepeatButton Grid.Column="2"
 Style="{DynamicResource Scrollbar_LineButton}"
 Command="ScrollBar.LineRightCommand"
 Content=" >"/>

 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Trigger>
 </Style.Triggers>
</Style>

Now it’s time to fill in the stubbed-out methods and add the CheckOut() method,
shown in Example 4-3.

Example 4-3. Shopping cart methods for Window1.xaml.cs

private void AddToShoppingCart(object sender, RoutedEventArgs e)
{
 if (PrintTypeComboBox.SelectedItem != null)
 {
 PrintBase item;
 switch (PrintTypeComboBox.SelectedIndex)
 {
 case 0:
 item = new Print(CurrentPhoto.Source as BitmapSource);
 break;
 case 1:
 item = new GreetingCard(CurrentPhoto.Source as BitmapSource);
 break;
 case 2:
 item = new SShirt(CurrentPhoto.Source as BitmapSource);
 break;
 default:
 return;
 }
 ShoppingCart.Add(item);
 ShoppingCartListBox.ScrollIntoView(item);
 ShoppingCartListBox.SelectedItem = item;
 if (false == UploadButton.IsEnabled)
 UploadButton.IsEnabled = true;
 if (false == RemoveButton.IsEnabled)
 RemoveButton.IsEnabled = true;
 }
}

private void RemoveShoppingCartItem(object sender, RoutedEventArgs e)
{
 if (null != ShoppingCartListBox.SelectedItem)

124 | Chapter 4: Applying WPF: Building a Biz App

Finally, to finish off this page, you’ll need to add a baseImg folder to your project,
then download the sweatshirt-front.gif and photoframe.gif images from our web sites
so as to be able to populate the shopping cart (go to http://www.jliberty.com and
click on “Books,” or go to http://alexhorovitz.com/books/programming3.5/).

If you look carefully, you’ll see that the sweatshirts in the shopping cart have the
appropriate photo imposed on them, as shown in Figure 4-9. This is accomplished
in the AddToShoppingCart() event handler, where, for example, a new SShirt object
is instantiated, passing in the current photo as a BitMapSource to the constructor.
The SShirt constructor is in StoreItems.cs; it passes the bitmap to its base class,
where it is assigned to the private member variable of type BitMapSource and ren-
dered appropriately.

Page 2—Validating the Credit Card
The second page, shown in Figure 4-10, is pretty straightforward to lay out.

Start by creating the new page, Checkout.xaml. (Be sure to add a new Page, not a new
Windows Form—Pages are used for WPF, and Windows Forms are used for .NET 2.x.)

Once again, let’s start simple. You’ll add the TextBlock for the header and a Grid to
hold the radio buttons for the credit cards, all of which will be in a Viewbox so the
user can resize the display.

 {
 PrintBase item = ShoppingCartListBox.SelectedItem as PrintBase;
 ShoppingCart.Remove(item);
 ShoppingCartListBox.SelectedIndex = ShoppingCart.Count - 1;
 }
 if (ShoppingCart.Count == 0)
 {
 RemoveButton.IsEnabled = false;
 UploadButton.IsEnabled = false;
 }

private void Checkout(object sender, RoutedEventArgs e)
{
 if (ShoppingCart.Count > 0)
 {
 // go to checkout page
 // to be created later
 }
}

Example 4-3. Shopping cart methods for Window1.xaml.cs (continued)

http://www.jliberty.com
http://alexhorovitz.com/books/programming3.5/

Page 2—Validating the Credit Card | 125

Figure 4-9. Page 1 finished

Figure 4-10. Page 2

126 | Chapter 4: Applying WPF: Building a Biz App

<Window x:Class="PhotoCooperative.Checkout"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Photo Cooperative: Checkout" Height="600" Width="800"
 xmlns:sbts="clr-namespace:PhotoCooperative"
 >
<Window.Resources>
 <LinearGradientBrush x:Key="WindowGradient"
 StartPoint="0,0.3" EndPoint="1,0">
 <GradientStop Color="#B2B6CAFF" Offset="0" />
 <GradientStop Color="#BFC3D5FF" Offset="0.1" />
 <GradientStop Color="#E0E4F0FF" Offset="0.3" />
 <GradientStop Color="#E6EAF5FF" Offset="0.5" />
 <GradientStop Color="#CFD7E2FF" Offset="0.6" />
 <GradientStop Color="#BFC5D3FF" Offset="0.8" />
 <GradientStop Color="#C4CBD8FF" Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush x:Key="ButtonGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#FDB6CADF" Offset="0" />
 <GradientStop Color="#FCC3C5FF" Offset="0.1" />
 <GradientStop Color="#FCC4D0EF" Offset="0.3" />
 <GradientStop Color="#FDB7C2DF" Offset="0.6" />
 <GradientStop Color="#FE95B3CF" Offset="0.8" />
 <GradientStop Color="#FE96AACF" Offset="1" />

 </LinearGradientBrush>

 <LinearGradientBrush x:Key="ButtonUpGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Transparent" Offset="0" />
 <GradientStop Color="#33000000" Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush x:Key="ButtonDownGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#10000000" Offset="0" />
 <GradientStop Color="#20000000" Offset="1" />
 </LinearGradientBrush>

 <LinearGradientBrush x:Key="ButtonDisabledGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#10302A90" Offset="0" />
 <GradientStop Color="#10201040" Offset="1" />
 </LinearGradientBrush>

<!-- STYLES -->
 <Style TargetType="{x:Type sbts:Checkout}">
 <Setter Property="Background"
 Value="{DynamicResource WindowGradient}" />
 </Style>

Page 2—Validating the Credit Card | 127

 <Style x:Key="TitleText" TargetType="{x:Type TextBlock}" >
 <Setter Property="FontFamily" Value="Segoe Black" />
 <Setter Property="FontSize" Value="20px" />
 <Setter Property="Foreground" Value="MidnightBlue" />
 </Style>

 <Style x:Key="CheckoutText" TargetType="{x:Type TextBlock}" >
 <Setter Property="FontFamily" Value="Segoe Black" />
 <Setter Property="FontSize" Value="14px" />
 <Setter Property="Foreground" Value="MidnightBlue" />
 </Style>

 <Style x:Key="InputText" TargetType="{x:Type TextBox}">
 <Setter Property="Height" Value="25px" />
 <Setter Property="FontFamily" Value="Segoe Black" />
 <Setter Property="Foreground" Value="#0066CC" />
 <Setter Property="FontSize" Value="10pt" />
 <Setter Property="Margin" Value="10,10,20,10" />
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={RelativeSource Self},
 Path=(Validation.Errors)[0].ErrorContent}"/>
 </Trigger>
 <Trigger Property="Validation.HasError" Value="false">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={RelativeSource Self},
 Path=ToolTip.Content}"/>
 </Trigger>
 </Style.Triggers>
 </Style>
<!-- BUTTON TEMPLATE -->

 <Style TargetType="{x:Type Button}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border x:Name="OuterBorder"
 CornerRadius="3"
 Background="{DynamicResource ButtonGradient}">
 <Border x:Name="InnerBorder"
 CornerRadius="3"
 Background="{DynamicResource ButtonUpGradient}"
 Padding="{TemplateBinding Padding}">
 <ContentPresenter x:Name="ContentSite"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsPressed" Value="true">

128 | Chapter 4: Applying WPF: Building a Biz App

 <Setter TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource ButtonDownGradient}" />
 </Trigger>
 <Trigger Property="IsEnabled" Value="false">
 <Setter TargetName="InnerBorder"
 Property="Background"
 Value="{DynamicResource ButtonDisabledGradient}" />
 <Setter Property="BorderBrush" Value="Silver" />
 <Setter Property="Foreground" Value="SlateGray" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Height" Value="18" />
 <Setter Property="Foreground" Value="MidnightBlue" />
 </Style>
</Window.Resources>
<Viewbox VerticalAlignment="Top" Stretch="Uniform">

 <Grid Margin="20" Width="650" ShowGridLines="False" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="30" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="50" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row="0" Grid.ColumnSpan="6"
 Style="{DynamicResource TitleText}">
 The Photo Co-op: Checkout
 </TextBlock>

 <TextBlock Grid.Row="2" Grid.Column="0"
 Style="{DynamicResource CheckoutText}"
 HorizontalAlignment="Right"
 VerticalAlignment="Center">
 Choose Payment Method:
 </TextBlock>

 <RadioButton Name="AmericanExpress" Grid.Row="2"
 Grid.Column="1" Click="OnCardSelected"
 VerticalAlignment="Center">

Page 2—Validating the Credit Card | 129

 <Image Source="baseImg/creditcardamex.gif"
 MaxWidth="38"
 MaxHeight="24"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </RadioButton>
 <RadioButton Name="Visa" Grid.Row="2"
 Grid.Column="2" Click="OnCardSelected"
 VerticalAlignment="Center">
 <Image Source="baseImg/creditcardvisa.gif"
 MaxWidth="38"
 MaxHeight="24"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </RadioButton>
 <RadioButton Name="MasterCard" Grid.Row="2"
 Grid.Column="3" Click="OnCardSelected"
 VerticalAlignment="Center">
 <Image Source="baseImg/creditcardmastercard.gif"
 MaxWidth="38"
 MaxHeight="24"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </RadioButton>
 <RadioButton Name="Discover" Grid.Row="2"
 Grid.Column="4" Click="OnCardSelected"
 VerticalAlignment="Center">
 <Image Source="baseImg/creditcarddiscover.gif"
 MaxWidth="38"
 MaxHeight="24"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"/>
 </RadioButton>

 <TextBlock Grid.Row="3" Grid.Column="0"
 Style="{DynamicResource CheckoutText}"
 TextAlignment="Right" VerticalAlignment="Center">
 Name on Card:
 </TextBlock>

 <TextBox Style="{StaticResource InputText}"
 Grid.Column="1"
 Grid.Row="3"
 Grid.ColumnSpan="4"
 Name="nameOnCard"
 Width="150"
 VerticalAlignment="Center">
 <TextBox.ToolTip>Enter your name.</TextBox.ToolTip>
 </TextBox>

 <TextBlock Grid.Row="4" Grid.Column="0"
 Style="{DynamicResource CheckoutText}"
 TextAlignment="Right"
 VerticalAlignment="Center">

130 | Chapter 4: Applying WPF: Building a Biz App

 Card Number:
 </TextBlock>
 <TextBox Style="{StaticResource InputText}"
 Grid.Column="1"
 Grid.Row="4"
 Grid.ColumnSpan="4"
 Name="ccNumber" Width="150"
 VerticalAlignment="Center">
 <TextBox.ToolTip>
 Enter valid credit card number.
 </TextBox.ToolTip>
 </TextBox>
 <Button Name="ProcessOrder" Grid.ColumnSpan="3"
 Grid.Column="1"
 Grid.Row="5"
 Click="ProcessOrderForCart">
 Process my credit card!
 </Button>
 <Label Name="ProcessResults"
 Grid.Column="1"
 Grid.Row ="6"
 Grid.ColumnSpan="4"
 TextBlock.Foreground="Red" />
 </Grid>
</Viewbox>
</Window>

This code assumes that you downloaded the four .gif files for the four
credit cards (creditcardamex.gif, creditcardmastercard.gif, creditcardvisa.
gif and creditcarddiscover.gif) into the baseImg directory while you were
downloading the .gif files required for the previous section.

You are probably already scanning this code to see what code-behind support you
need, and what resources you’ll want to add, and no doubt you’ve discovered these
hints:

Click="OnCardSelected"
Style="{DynamicResource CheckoutText}"
Style="{DynamicResource TitleText}">

First add the two styles to the Resources section:

<Window.Resources>
 <!-- STYLES -->

 <Style x:Key="TitleText"
 TargetType="{x:Type TextBlock}" >
 <Setter Property="FontFamily"
 Value="Segoe Black" />
 <Setter Property="FontSize"
 Value="20px" />
 <Setter Property="Foreground"
 Value="MidnightBlue" />
 </Style>

Page 2—Validating the Credit Card | 131

 <Style x:Key="CheckoutText"
 TargetType="{x:Type TextBlock}" >
 <Setter Property="FontFamily"
 Value="Segoe Black" />
 <Setter Property="FontSize"
 Value="14px" />
 <Setter Property="Foreground"
 Value="MidnightBlue" />
 </Style>

</Window.Resources>

Then, in the code-behind, you can stub out the required event handler:

public void OnCardSelected(object sender, EventArgs e)
{

}

To see your shopping cart page, return to the first page and fill in the details in the
Checkout event handler that you stubbed out earlier:

private void Checkout(object sender, RoutedEventArgs e)
{
 if (ShoppingCart.Count > 0)
 {
 Checkout co = new Checkout();
 co.ShoppingCart = ShoppingCart;
 co.Show();
 this.Hide();
 }
}

This code now makes an instance of your new (second) page and sets its
ShoppingCart property to the ShoppingCart object created on the first page. It then
shows the second page and hides the first.

Modify your ShoppingCart class to have a ShoppingCart property to match what the
first page will set:

public partial class Checkout : System.Windows.Window
{
 private PrintList shoppingCart;
 public PrintList ShoppingCart { set { shoppingCart = value; } }

The class PrintList, you will remember, is defined in your StoreItems.cs
file, as an ObservableCollection of PrintBase. Print, GreetingCard, and
SShirt (SweatShirt) all derive from PrintBase.

Layout
The rest of the layout is pretty straightforward. You need a place for the user’s name
and credit card number, and a button to submit the order:

132 | Chapter 4: Applying WPF: Building a Biz App

<TextBlock Grid.Row="3"
 Grid.Column="0"
 Style="{DynamicResource CheckoutText}"
 TextAlignment="Right"
 VerticalAlignment="Center">
 Name on Card:
</TextBlock>

<TextBox Style="{StaticResource InputText}"
 Grid.Column="1"
 Grid.Row="3"
 Grid.ColumnSpan="4"
 Name="nameOnCard"
 Width="150"
 VerticalAlignment="Center">
 <TextBox.ToolTip>Enter your name.</TextBox.ToolTip>
</TextBox>

<TextBlock Grid.Row="4"
 Grid.Column="0"
 Style="{DynamicResource CheckoutText}"
 TextAlignment="Right"
 VerticalAlignment="Center">
 Card Number:
</TextBlock>
<TextBox Style="{StaticResource InputText}"
 Grid.Column="1"
 Grid.Row="4"
 Grid.ColumnSpan="4"
 Name="ccNumber"
 Width="150"
 VerticalAlignment="Center">
 <TextBox.ToolTip>Enter valid credit card number.</TextBox.ToolTip>
</TextBox>
<Button Name="ProcessOrder"
 Grid.ColumnSpan="3"
 Grid.Column="1"
 Grid.Row="5"
 Click="ProcessOrderForCart">Process my credit card!</Button>
<Label Name="ProcessResults"
 Grid.Column="1"
 Grid.Row ="6"
 Grid.ColumnSpan="4"
 TextBlock.Foreground="Red" />

Notice the use of tooltips attached to the TextBlocks. When the user hovers over the
text entry block, a tooltip will provide additional information, as shown in
Figure 4-11.

Page 2—Validating the Credit Card | 133

Validating the Credit Card
When the user clicks the “Process my credit card!” button, you’d like to validate the
credit card number before submitting the information to the credit card company.
You’ll do so using the Luhn algorithm (also known as the modulus 10 algorithm),
created by IBM scientist Hans Peter Luhn and described in U.S. Patent 2,950,048,
filed on January 6, 1954 and granted on August 23, 1960 (according to Wikipedia).

To accomplish this, take the following steps:

1. Create a new business class, CreditCardValidator, as a C# class, and create a
new enumerated constant, CardBrand.

2. When the user clicks on a credit card, you’ll set the chosen CardBrand.

3. When the user clicks the “Process my credit card!” button, you’ll call the static
method Validate() in your new class.

Here’s the listing for CreditCardValidator.cs:

using System;
using System.Collections.Generic;
using System.Text;

namespace PhotoCooperative
{
 public enum CardBrand
 {
 NotSelected,
 MasterCard,
 BankCard,
 Visa,
 AmericanExpress,
 Discover,
 DinersClub,
 JCB
 };

 public static class CreditCardValidator
 {

Figure 4-11. Tooltip

134 | Chapter 4: Applying WPF: Building a Biz App

 public static bool Validate(CardBrand cardBrand,
 string cardNumber)
 {

 byte[] number = new byte[16]; // card number to validate

 // Remove non-digits
 int length = 0;
 for (int i = 0; i < cardNumber.Length; i++)
 {
 if (char.IsDigit(cardNumber, i))
 {
 if (length == 16) return false; // card has too
 // many digits
 number[length++] = byte.Parse(cardNumber[i].ToString());
 }
 }

 // To validate a card, you need to
 // test length then prefix...
 switch (cardBrand)
 {
 case CardBrand.BankCard:
 if (length != 16)
 return false;
 if (number[0] != 5 || number[1] != 6
 || number[2] > 1)
 return false;
 break;

 case CardBrand.MasterCard:
 if (length != 16)
 return false;
 if (number[0] != 5 || number[1] == 0
 || number[1] > 5)
 return false;
 break;

 case CardBrand.Visa:
 if (length != 16 && length != 13)
 return false;
 if (number[0] != 4)
 return false;
 break;

 case CardBrand.AmericanExpress:
 if (length != 15)
 return false;
 if (number[0] != 3 || (number[1] != 4
 && number[1] != 7))
 return false;
 break;

Page 2—Validating the Credit Card | 135

 case CardBrand.Discover:
 if (length != 16)
 return false;
 if (number[0] != 6 || number[1] != 0
 || number[2] != 1 || number[3] != 1)
 return false;
 break;

 case CardBrand.DinersClub:
 if (length != 14)
 return false;
 if (number[0] != 3 || (number[1] != 0
 && number[1] != 6 && number[1] != 8)
 || number[1] == 0 && number[2] > 5)
 return false;
 break;

 }

 // Now we use the classic Luhn algorithm to validate
 int sum = 0;
 for (int i = length - 1; i >= 0; i--)
 {
 if (i % 2 == length % 2)
 {
 int n = number[i] * 2;
 sum += (n / 10) + (n % 10);
 }
 else
 sum += number[i];
 }
 return (sum % 10 == 0);

 }
 }
}

When the user clicks on a credit card, the OnCardSelected() event handler in
Checkout.xaml.cs is called:

public void OnCardSelected(object sender, EventArgs e)
{
 RadioButton rb = sender as RadioButton;
 string rbName = rb.Name;
 switch (rbName)
 {
 case "Visa":
 selectedCard = CardBrand.Visa;
 break;
 case "MasterCard":
 selectedCard = CardBrand.MasterCard;
 break;

136 | Chapter 4: Applying WPF: Building a Biz App

 case "AmericanExpress":
 selectedCard = CardBrand.AmericanExpress;
 break;
 default:
 selectedCard = CardBrand.Discover;
 break;
 }
}

Finally, when the user clicks the “Process my credit card!” button, the
ProcessOrderForCart() method in Checkout.xaml.cs is called:

public void ProcessOrderForCart(object sender, RoutedEventArgs e)
{
 String creditCardNumber = ccNumber.Text;

 if (selectedCard == CardBrand.NotSelected)
 {
 MessageBox.Show("Please select a credit card type", "Uh oh",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 else
 {
 if (CreditCardValidator.Validate(selectedCard, creditCardNumber))
 {
 ProcessResults.Content = "Validated";
 }
 else
 {
 ProcessResults.Content = "Excuse me sir, there's a call for you...";
 }
 }
}

That’s it! A meaningful WPF application, with all the fixins.

137

Chapter 5 CHAPTER 5

Introducing AJAX: Moving Desktop UIs
to the Web5

One of the key features of .NET 3.5 is that it fosters separation of the user interface
layer from the business and persistence layers. Since the UI layer is, by definition, the
most visible layer and is often subject to the greatest scrutiny by customers,
Microsoft has traditionally offered a spectrum of options to developers for this layer.

With .NET 3.5, developers have the ability to create multiple types of applications,
including server-side-only (ASP.NET), thin-client (ASP.NET with AJAX), rich interac-
tive (Silverlight), traditional desktop (WinForms), and rich desktop (WPF) applications.

While AJAX has not officially been put into the .NET 3.5 bucket, it is a key component
of Microsoft’s overall approach of offering a unified set of tools that foster well-designed
programs that meet customers’ needs. Thus, we have decided that any comprehensive
coverage of the .NET 3.5 technologies must include Microsoft’s AJAX libraries as well.

Web Applications Just Got a Whole Lot Faster
Get ready for ASP.NET applications that perform faster, from the user’s point of
view—much faster.

A key point that I have emphasized in every edition of my book Programming ASP.NET
(O’Reilly) is that ASP.NET is a server-based technology. Traditionally, whatever you
saw in your browser was (almost) exclusively produced on the server; (nearly) all the
code was run on the server, and (just about) all the HTML that came to the browser
came from the server via the Internet.

Feel free to tear out those pages and throw them through your office window. While
server-based web applications have wonderful advantages, they have the obvious dis-
advantage that any time you want to run any code (or retrieve any data) you must
endure the cost of a “round trip” from the browser to the server and back. Users tend
to notice the delay. AJAX, however, changes all that.

AJAX is an acronym for Asynchronous JavaScript And XML—that is, it is a tech-
nique for combining well-established (some might say old) Internet technologies in
new ways to greatly enhance the performance of web applications.

138 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

AJAX-enabled applications are very hot—they outperform server-based applications
in ways that will make your eyeballs roll back in your head.

Microsoft, realizing that this was technology it couldn’t ignore, and having learned well
the lesson about making open-standards technology proprietary, took this very good
idea and made it much, much better. Microsoft developers combined the power, speed,
and flexibility of AJAX with the drag-and-drop simplicity of ASP.NET to make a library
of AJAX controls that are as easy to use as the ASP controls you’ve been using all along.

With AJAX, you can eat your cake and have it, too: you can continue to create
ASP.NET applications with the same incredible development environment, but
add client-side scripts with asynchronous programming (especially asynchronous
data retrieval!). What’s more, you can do so with a library of tested, ready-to-use
controls that fully encapsulate all the JavaScript for you.

Don’t panic; if you like JavaScript and you want to write your own
controls, you’re free to do so. Just like with custom controls, you can
always extend or even reinvent the existing controls if you are so
moved. We’ll demonstrate how in this very chapter.

AJAX Doesn’t Exist
There really isn’t any such thing as AJAX. It isn’t a product; in fact, it isn’t even a tech-
nology. It’s just a way to refer to a set of existing technologies used together in new
ways to do cool things.

The first use of the term as an acronym for “Asynchronous JavaScript and XML” was by
Jesse James Garrett in February 2005.a He thought of it while in the shower (if you must
know), when he realized the need for a shorthand term to represent the suite of technolo-
gies he was proposing to a client (who, we are assured, was not in the shower with him).

According to Garrett, “AJAX...is really several technologies, each flourishing in its
own right, coming together in powerful new ways.” AJAX incorporates:

• Standards-based presentation using XHTML and CSS

• Dynamic display and interaction using the Document Object Model (DOM)

• Data interchange and manipulation using XML and XSLT

• Asynchronous data retrieval using XMLHttpRequest

• JavaScript binding everything together

The key fact about AJAX is that it uses asynchronous data transfer to request units of
information smaller than an entire page.

a The first recorded use of the term at all, on the other hand, may have been nearly 3,000 years earlier, by
Homer, who wrote about Ajax the Great (and Ajax the Lesser) in the Iliad (Book 7, pp. 181–312). Ajax the
Great was the tallest and strongest of the Achaeans, second only to Achilles in skill as a warrior. More
recently there was that whole “Stronger than Dirt” thing, but we’ll let that go.

Getting Started | 139

Getting Started
This section of the book depends on technology that is readily available from
Microsoft. AJAX functionality is integrated into ASP.NET 3.5 and does not require
any additional downloads. If, for some reason, you are not using ASP.NET 3.5, you
can download the relevant parts from http://asp.net/ajax/downloads/.

Microsoft’s announced intention is to split AJAX into three parts: a fully supported
part; a Community Technology Preview that will have newly evolving parts; and the
Control Toolkit, which will be an ever-expanding collection of samples and compo-
nents, along with the tools you need to build your own custom AJAX controls.

ASP.NET and JavaScript
Microsoft’s ASP.NET AJAX is a free framework for quickly creating the next genera-
tion of more efficient, more interactive, and highly personalized web experiences that
work across most browsers.

To start, we’ll look at an example that uses just client-side JavaScript to change the
contents of a page, without the need to go back to a server.

Begin by creating a new ASP.NET Web Site named JavaScriptExample, as shown in
Figure 5-1.

Figure 5-1. JavaScript example

http://asp.net/ajax/downloads/

140 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

Next, insert the following HTML and JavaScript at the top of the default.aspx page
created for you by Visual Studio (or Visual Web Developer):

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Simple Partial AJAX example</title>

 <script language="javascript" type="text/javascript">
 function showText(str)
 {
 if (str.length==0)
 {
 document.getElementById("TextBoxContents").innerHTML=""
 }
 else
 {
 document.getElementById("TextBoxContents").innerHTML=str
 }
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <div>
 What you type here:
 <asp:TextBox
 ID="TextBox1"
 runat="server"
 onkeyup="showText(this.value)" />
 <p><i>Is what you see here: </i>

 </p>
 </div>
 </form>
</body>
</html>

When you run this very simple example, everything you type is reflected in the text
below the text entry box. Let’s walk through how it works.

Just below the <title> element is a short script block (shown in bold). Within that
block is a single function, showText(), which takes a string as a parameter. Assum-
ing the string length is greater than zero, the element in the document whose ID is
TextBoxContents (in this case, a span) is retrieved, and its innerHTML property is set to
the value of the string that was passed to the function. The net effect is that the string
passed into the function is placed into the span.

Creating a “Word Wheel” with AJAX | 141

To understand this bit of JavaScript you need some background in two
technologies not familiar to every ASP.NET programmer: JavaScript
itself, and DHTML for manipulating the Document Object Model.

We won’t attempt a full tutorial on these topics. For those who like to
“pick it up as you go,” we’ll annotate what we’re doing in each exam-
ple. For those who like a more structured approach, we highly recom-
mend JavaScript: The Definitive Guide by David Flanagan and
Dynamic HTML: The Definitive Reference by Danny Goodman (both
from O’Reilly). If you’re only going to buy one, buy the latter—but
buy both!

Below the script is a fairly standard ASP.NET page that mixes an <asp:TextBox> with
a for the output. The <asp:TextBox> will be rendered in the browser as an
HTML <input>. You want that <input> to have an event handler named onkeyup. The
<asp:TextBox> does not have an attribute for such an event handler, but it’s perfectly
willing to pass along the event handler you designate to the HTML it will render.

Thus, you can write:

<asp:TextBox
 ID="TextBox1"
 runat="server"
 onkeyup="showText(this.value)" />

When the user types a character in the text box and then releases the key just
pressed, the onkeyup event will fire. That event is a browser event and must be han-
dled on the client; thus, it requires JavaScript.

Each time the user types a character, the JavaScript function is called; it evaluates the
string in the text box and places the entire string into the inner HTML, creating
immediate feedback to the user. All of this is handled on the client side, using the
browser’s built-in JavaScript interpreter and DHTML, without any involvement of
the server (once the original page has been delivered).

Creating a “Word Wheel” with AJAX
One of the most-requested features in ASP.NET applications is a “word wheel” in
which the user begins to type in a name (or other string) and the control shows all
the names from our data source that begin with the letters entered; as the user types
more, the provided list is narrowed.

This is painful to do with traditional ASP.NET, as you must make a round trip for
each letter that’s entered. Clearly, this is a place where AJAX can make all the differ-
ence. To provide some data to illustrate how blazingly fast this is, you’ll borrow the
first 65,535 names from the publicly available U.S. census list and put them in a SQL
database table.

142 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

To begin, create a new Web Site called LastNameLookup.

For now, you are not creating AJAX-enabled Web Sites, nor are you
using ScriptManagers. You will do both shortly.

This Web Site uses two forms: Default.aspx and an AJAX Web Form that you will
create called LastNameLookup.aspx. Default.aspx is presented in Example 5-1.

Example 5-1. Default.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head id="Head1" runat="server">
 <title>Word Wheel</title>
 <script language="javascript" type="text/javascript">
 var xmlHttp
 function showHint(str)
 {
 if (str.length==0)
 {
 document.getElementById("TextBoxHint").innerHTML=""
 return
 }
 xmlHttp=GetXmlHttpObject()
 if (!xmlHttp || xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
 var url="LastNameLookup.aspx"
 url=url+"?q="+str
 xmlHttp.onreadystatechange=stateChanged
 xmlHttp.open("GET",url,true)
 xmlHttp.send(null)
 }

 function stateChanged()
 {
 var OK = 200
 if ((xmlHttp.readyState == 4 ||
 xmlHttp.readyState == "complete")
 && xmlHttp.status == OK)
 {
 document.getElementById("TextBoxHint").innerHTML =
 xmlHttp.responseText
 }
 }

Creating a “Word Wheel” with AJAX | 143

There is no code in the code-behind for Default.aspx.

Create the LastNameLookup.aspx AJAX Web Form, then replace everything in the
file after the Page directive with this single line:

<asp:literal runat="server" id="LastNames"/>

 function GetXmlHttpObject(handler)
 {
 var objXMLHttp=null
 if (window.XMLHttpRequest)
 {
 try
 {
 objXMLHttp=new XMLHttpRequest()
 }
 catch (e)
 {
 // Catch handler here
 }
 }
 else if (window.ActiveXObject)
 {
 try
 {
 objXMLHttp=new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e)
 {
 // Catch handler here
 }
 }

 return objXMLHttp
 }
 </script>
</head>

<body>
 <form id="form1" runat="server">
 <div>
 <h1>US Census Last Name Lookup</h1>

 Last name: <asp:TextBox ID="TextBox1" runat="server"
 onkeyup="showHint(this.value)" />
 <p><i>Names in the US Census: </i>

 </p>
 </div>
 </form>
</body>

</html>

Example 5-1. Default.aspx (continued)

144 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

The entire page should look like this:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="LastNameLookup.aspx.cs" Inherits="LastNameLookup" %>

<asp:literal runat="server" id="LastNames"/>

The code-behind for LastNameLookup.aspx consists of two methods, Page_Load()
and LastNamesForPartialName(), as shown in Example 5-2.

Example 5-2. Code-behind for LastNameLookup.aspx

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class LastNameLookup : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Request.QueryString.Count > 0)
 {
 String queryLastName =
 Request.QueryString.Get(0).ToString();
 DataTable dt = LastNamesForPartialName(queryLastName);

 if (dt == null || dt.Rows.Count == 0)
 {
 LastNames.Text =
 "Sorry no one found with that letter combination";
 }
 else
 {
 String returnString = "<select size=10 >";
 foreach (DataRow row in dt.Rows)
 {
 returnString += "<option>" +
 row["lastName"].ToString() +
 "</option>";
 }
 returnString += "</select>";
 LastNames.Text = returnString;
 }
 }
 else

Creating a “Word Wheel” with AJAX | 145

The Data
This example will use a database of names (USLastNames) obtained from the U.S.
Census Bureau. A backup can be found at http://tinyurl.com/3dbtpm. Download the
backup and restore it to a database that you create with the same name locally.
You’ll need to add the appropriate connection string to web.config as well:

<appSettings>
 <add key="Database" value="Data Source=<<MACHINE_NAME_HERE>>;Initial
 Catalog=USLastNames;Integrated Security=True;" />
</appSettings>

 {
 LastNames.Text = string.Empty;
 }
 }

 public DataTable LastNamesForPartialName(String aPartialName)
 {
 String connectionString =
 ConfigurationManager.AppSettings["Database"];
 SqlConnection connection = new SqlConnection(connectionString);

 string queryString =
 "select * from LastNames where lastName like '" +
 aPartialName+ "%'";
 DataSet ds = new DataSet();

 try
 {
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(queryString, connection);
 dataAdapter.Fill(ds, "LastNames");
 }

 catch
 {
 // Handle exception
 }

 finally
 {
 connection.Close();
 }
 return ds.Tables["LastNames"];
 }
}

Example 5-2. Code-behind for LastNameLookup.aspx (continued)

http://tinyurl.com/3dbtpm

146 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

The Pages
The division of responsibility among the pages is as follows.

Default.aspx has all the JavaScript, plus the UI. This consists of:

• A text box into which the user will type a last name

• A span, which is replaced by a listbox that is created dynamically as data is
retrieved from the database

LastNameLookup.aspx has only an <asp:Literal> element, which will serve as a
holder. The contents of that holder will be placed into the inner HTML of the span
in Default.aspx at runtime, on the client side, using DHTML.

Where the Action Is
Before stepping through this example in detail, we need to focus on the XMLHttp
object, as it is the core of AJAX’s asynchronous client-side processing.

When Default.aspx loads, the user is presented with a text box and a prompt to enter
the last name to search for. The user enters a letter (e.g., “L”) and releases the key,
and a keyup event is fired. The keyup event was registered in the declaration of the
TextBox:

<asp:TextBox
 ID="TextBox1"
 runat="server"
 onkeyup="showHint(this.value)" />

The showHint() referred to is a JavaScript function:

function showHint(str)
 {
 if (str.length==0)
 {
 document.getElementById("TextBoxHint").innerHTML=""
 return
 }
 xmlHttp=GetXmlHttpObject()
 if (!xmlHttp || xmlHttp==null)
 {
 alert ("Browser does not support HTTP Request")
 return
 }
 var url="LastNameLookup.aspx"
 url=url+"?q="+str
 xmlHttp.onreadystatechange=stateChanged
 xmlHttp.open("GET",url,true)
 xmlHttp.send(null)
 }

Creating a “Word Wheel” with AJAX | 147

Examination of this function reveals that it receives the string passed in and, after
ensuring that the string is not of zero length, attempts to get an XMLHttpRequest
object through the helper function GetXmlHttpObject().

It does so by checking for the existence of window.XMLHttpRequest (an object made
available by modern browsers) or window.ActiveXObject (an equivalent object made
available by older versions of IE). Engineers on the Mozilla project implemented a
compatible native version of XMLHttpRequest for Mozilla 1.0 (and Netscape 7), and
Apple engineers added support for XMLHttpRequest to Safari 1.2. One of these objects
must be available to proceed; any browser that is too old to return them cannot
implement AJAX.

Similar functionality is covered in a proposed W3C standard, the Doc-
ument Object Model (DOM) Level 3 Load and Save Specification. In
the meantime, growing support for the XMLHttpRequest object has
made it a de facto standard that will likely be supported even after the
W3C specification becomes final.

If the XMLHttpRequest object has been created, it is stored in the variable xmlHttp. With
this in hand, you’re ready to do the AJAX magic of updating the data asynchronously:

var url="LastNameLookup.aspx"
url=url+"?q="+str
xmlHttp.onreadystatechange=stateChanged
xmlHttp.open("GET",url,true)
xmlHttp.send(null)

url is declared as a var and is set to the URL of the page you’ll use to get the values
you need. To this you append the string ?q and whatever was passed in as a parame-
ter (str). Thus, the LastNameLookup.aspx page would receive the query string
?q=Lib if the user entered “Lib” in the text box.

The onreadystatechange event handler, for asynchronous results, is set to the func-
tion stateChanged(). stateChanged() will be called each time the ready state
changes. This asynchronous mechanism allows you to proceed with calling open()
and send(), and then to respond to send() when it is complete:

 function stateChanged()
 {
 var OK = 200
 if ((xmlHttp.readyState == 4 ||
 xmlHttp.readyState == "complete")
 && xmlHttp.status == OK)
 {
 document.getElementById("TextBoxHint").innerHTML =
 xmlHttp.responseText
 }
 }

148 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

The event handler sets the innerHTML property of the TextBoxHint span in Default.aspx if
(and only if) the readyState is set to 4 (or "complete") and if xmlHttp.status is equal
to 200 (indicating OK).

You can find all the possible HTTP status codes in the MSDN Library
under “HTTP status code.”

There are five possible readyState values: uninitialized (0), loading (1), loaded (2),
interactive (3), and complete (4). By waiting for complete, and for xmlHttp.status to
be OK, you are assured that the data is fully ready to be displayed.

The call to open() initializes the request, specifies that you are doing a GET (that is,
requesting the page), and passes in the URL (e.g., LastNameLookup.aspx?q=Lib).
The value true indicates that you’d like the method to be handled asynchronously,
returning immediately. This is fine, as you’ve already passed in the delegate
(stateChanged) to be called when xmlHttp is ready. You then make it all go with a call
to send(). Common methods of the XMLHttpRequest object are explained in
Table 5-1.

open() and send() are the most commonly used methods. You’ll typically use open()
with either GET (for operations that are primarily intended to retrieve data) or POST
(for operations that are primarily intended to send data). If the length of the data
exceeds 512 bytes, you’ll want to use POST in both cases.

Some important properties of the XMLHttpRequest object are shown in Table 5-2.
Note that with the exception of onreadystatechange, all properties are read-only.

Table 5-1. Common XMLHttpRequest object methods

Method Description

abort() Stops the current request

getAllResponseHeaders() Returns the complete set of headers (labels and values) as a string

getResponseHeader("headerLabel") Returns the string value of a single header label

open("method", "URL"[,
asyncFlag[, "userName"[, "password"]]])

Assigns the destination URL, method, and other attributes of a
request

send(content) Sends the request, optionally with a string or DOM object data

setRequestHeader("label", "value") Assigns a key/value pair to the header that will be sent with the
request

Table 5-2. Common XMLHttpRequest object properties

Property Description

onreadystatechange Event handler for an event that fires at every state change

readyState Object status integer, such as 4 for “complete”

Creating a “Word Wheel” with AJAX | 149

All data is returned from the server via the responseText or responseXML properties.
responseText provides a string, but the responseXML property returns an XML docu-
ment object that can be parsed (and transformed) using the .NET XML manipulation
classes.

Security issues

Because the XMLHttpRequest object operates within a browser, it adopts the same-
domain security policies of typical JavaScript activity (sharing the same “sandbox”).
This has important implications for your application.

On most browsers, any pages with scripts that access document objects need to be
retrieved via the http: protocol, meaning that you won’t be able to test the pages
from a local hard disk (using the file: protocol) without security issues cropping up,
especially in Mozilla and Internet Explorer on Windows. In fact, Mozilla requires
that you wrap access to the object inside UniversalBrowserRead security privileges.
IE, on the other hand, simply displays an alert to the user that a potentially unsafe
activity may be going on and offers a chance to cancel.

Note that the domain of the URL request destination must be the same as the one that
serves up the page containing the script. This means, unfortunately, that client-side
scripts cannot fetch web service data from other sources and blend that data into a
page. All the data must come from the same domain.

Asynchronous updates

One of the most powerful features implied by this new model is that data can be
retrieved asynchronously and pages can be updated in part. That is, you can update
only those aspects of a page that have changed (rather than refetching the entire
page), avoiding needless flicker and greatly speeding up the updating process.

Step-by-Step Walkthrough
With an understanding of the XMLHttp object in hand, let’s walk through this exam-
ple step by step. A full understanding of it will serve as the foundation for all of the
material to come.

responseText String version of data returned from the server process

responseXML DOM-compatible document object of data returned from the server process

status Numeric code returned by server, such as 404 for “Not Found” or 200 for “OK”

statusText String message accompanying the status code

Table 5-2. Common XMLHttpRequest object properties (continued)

Property Description

150 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

The user begins, as noted previously, by typing a letter into the text box displayed
by Default.aspx. The onkeyup event handler is called, and it checks to make sure
the string has at least one letter, obtains the XMLHttp object, and sets the URL with
the query string. It then sets the event handler for asynchronous events with the
onreadystatechange property, calls open() for the GET request, and calls send() to
start the asynchronous call.

The call to open() causes the GET request to be sent to LastNameLookup.aspx, which
in turn causes Page_Load to fire on that page. If the QueryString count is greater than
zero—that is, if you’ve entered one or more letters—you extract those letters into a
string and call a helper method to find all the names that begin with those letters:

if (Request.QueryString.Count > 0)
{
 String queryLastName = Request.QueryString.Get(0).ToString();
 DataTable dt = LastNamesForPartialName(queryLastName);

Assuming you get back some names, you create a listbox and populate it with each
name retrieved. You do this by initializing the listbox with a <select> element and
then bracketing the contents of each row’s “last name” column with <option> tags:

String returnString = "<select size=10 >";
foreach (DataRow row in dt.Rows)
{
 returnString += "<option>" +
 row["lastName"].ToString() +
 "</option>";
}
returnString += "</select>";

All of this is bundled up into the Text property of the literal control on the page
(LastNames):

LastNames.Text = returnString;

The call to GET returns the LastNameLookup.aspx page (i.e., the contents of the lit-
eral the page consists of) as a string. In other words, what is returned to the XMLHttp
object in its responseText property is whatever you put into the literal.

You may need to stop and think about this for a moment. Because the page is so sim-
ple, containing nothing but a literal, no other text is returned. If you were to open
LastNameLookup.aspx and examine its HTML, you’d see that it contains nothing
but the select box with its options filled with names. To prove this to myself, I cre-
ated a virtual directory (LastNameLookup) in IIS and pointed it to my development
directory. I then opened a browser with the following URL: http://localhost/
LastNameLookup/LastNameLookup.aspx?q=Lib. Once the listbox was displayed, I
right-clicked and selected View Source; sure enough, the entire source for that page
was the select box and its contents, as shown in Figure 5-2.

ScriptManager | 151

Inserting this text, which is returned via the XMLHttp object, into the innerHTML prop-
erty of the span in Default.aspx causes it to be displayed as a listbox.

The key thing to note is that at no time does the web server handle the keyup event.
There is no round trip to the web server to fetch the data. If the database is local (or
the data is cached), there is no round trip at all!

Each time the user enters a character, the program must interact with
the database server and must loop through all the rows in the data table
to construct the HTML output. This can cause a human-noticeable
delay. Solving that problem—e.g., by waiting for the user to enter a
few characters before checking for matches—is left as an exercise for
the ambitious reader.

ScriptManager
The ScriptManager control is central to integrating AJAX with ASP.NET. The
ScriptManager manages the components on a page and is responsible for handling
partial page updates. It takes care of loading the ASP.NET AJAX client script librar-
ies into the browser, and it’s responsible for using proxy objects so that you can
access web service methods from JavaScript.

Figure 5-2. LastNameLookup source

152 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

<Rant>
AJAX came to ASP.NET by way of JavaScript programmers. These programmers’ pri-
mary concern is with how they can improve the performance of, or the users’ experi-
ence with, client-side scripting.

ASP.NET programmers, however, are (or, I would argue, should be) concerned with
how they can leverage existing tools Microsoft (or others) have already created and
tested, so they can focus on design and high-level implementation rather than on build-
ing the plumbing.

When we build ASP.NET programs, we drag and drop controls such as listboxes, text
boxes, and even calendars with little thought about how they work or how they emit
standard HTML to browsers. When we use validation controls, we may be aware that
they will emit client-side validation script, but few of us bother to examine that script.
We trust that Microsoft got it right.

The goal of using the Microsoft Atlas library, and especially the AJAX Control Toolkit,
should be (in my opinion) to enable developers to drag and drop controls wherever
possible, writing JavaScript and manipulating the DOM only when necessary. Writing
JavaScript is analogous to writing custom ASP controls: you should do so only when
needed, and even then only when the cost/benefit ratio is clear and you can’t buy a con-
trol that is already tested and ready for less than it would cost to build one yourself.

This may be considered a bold statement today, because AJAX is still young. The theory
is that if something goes wrong, it’s important to understand the underlying technol-
ogy. I remember this kind of talk from when I was learning Assembler (you have to
know the machine language), when I was learning C (you have to be able to examine
Assembly), and so forth. But the truth is that I haven’t dropped into a non-symbolic
debugger in longer than I care to think about, and if I’m totally honest, I haven’t really
used ILDASM for anything other than demonstration purposes in at least five years.

That said, AJAX is still young, and unlike with other aspects of ASP.NET development,
there is not yet a complete library of tools available for it. So, at times, you will have to
create custom AJAX controls (or, more accurately, put together some AJAX code) to
accomplish what you want. For example, there is no well-tested word wheel, so we
wrote our own, and along the way we were able to demonstrate how things fit together.
That’s all fine and dandy, but don’t let it scare you into thinking that in order to use
AJAX you’ll have to spend six months learning JavaScript and DHTML. There is a lot
you can do right out of the box, and I would argue that you’ll be able to achieve the
vast majority of what you want just by dragging and dropping the controls already pro-
vided, without ever writing a line of JavaScript yourself.

</Rant>

ScriptManager | 153

Partial Page Rendering
To implement partial page rendering on your page, you must set the ScriptManager’s
EnablePartialRendering property to true (the default), either declaratively or pro-
grammatically, in or before the page’s init event handler. You then place
UpdatePanel objects on your page, and each UpdatePanel can be updated individu-
ally, without updating other panels and without a postback of the entire page.

From a practical programming point of view, this is very simple; you drag a
ScriptManager onto the page (it is not visible), and then you drag one or more
UpdatePanels onto the page. You update each UpdatePanel only when needed, result-
ing in your data being updated asynchronously and without flicker. The perfor-
mance boost is immediate, unmistakable, and nearly effortless.

A Better Calendar Control
While the Calendar control provided with ASP.NET is very powerful, it is also pain-
ful to use, as each date change causes a postback. An AJAX-based solution using the
CalendarExtender is a great alternative; with this approach, you can refresh only the
TextBox control (not the entire page) when the date in the CalendarExtender changes.

To see this at work, create a new ASP.NET Web Site and name it AJAXCalendar.
Open the Toolbox and make sure you have access to all the Toolkit controls, as
shown in Figure 5-3. If not, you can download the ASP.NET AJAX Control Toolkit
that targets .NET 3.5 from http://tinyurl.com/2j9pjy. You can then drag and drop the
AJAXControlToolkit.dll assembly (found in the bin folder inside the Sample Website
folder) to the VS 2008 Toolbox to have its control extenders show up as controls that
you can add to any ASP.NET Web Site or Project.

At the time of this writing, there is a known issue involving the use of
Microsoft’s wireless mouse and keyboard with the AJAX Control
Toolkit and Visual Studio 2008. If you are using wireless input devices
and your controls are grayed out (meaning you cannot use them) or
you were unable to add the AJAX Control Toolkit to your Tools pane,
switch to a wired keyboard and mouse and follow the instructions at
http://tinyurl.com/2uxvrd.

Each AJAX application must have exactly one ScriptManager control. To get started,
change to the design view and drag a ScriptManager control from the ASP.NET 3.5
Extensions toolset onto your Default.aspx component. Next, drag a label onto the
form from the standard tools and set its text to “Date Selection.” Right below that,
drag on a TextBox. Immediately, you should have the ability to add an extender (as
you can see in Figure 5-4).

http://tinyurl.com/2j9pjy
http://tinyurl.com/2uxvrd

154 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

Click Add Extender and then select CalendarExtender from the choices provided in
the dialog window, as seen in Figure 5-5.

The CalendarExtender is an ASP.NET AJAX extender that can be attached to any
ASP.NET TextBox control. The user interacts with the calendar by clicking on a day
to set the date (or the “Today” link to set the current date).

Figure 5-3. AJAX Control Toolkit

Figure 5-4. The Add Extender option

ScriptManager | 155

The CalendarExtender has a number of properties that can be configured to create
custom behavior. These include:

CssClass
The name of the CSS class used to style the calendar.

Format
The format string used to display the selected date.

PopupButtonID
The ID of a control to show the calendar pop up when clicked. If this value is
not set, the calendar will pop up when the textbox receives focus.

PopupPosition
Indicates whether the calendar pop up should appear at the BottomLeft (the
default), BottomRight, TopLeft, or TopRight of the TextBox.

SelectedDate
Indicates the date with which the Calendar extender is initialized.

If you run your application at this point you will get the default behavior shown in
Figure 5-6.

Figure 5-5. Adding a CalendarExtender

156 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

If you pick a date—say, the 1st of the month—the TextBox will display the date in
the “d” format (m/d/yyyy) by default. Change the format for the control to MMMM
d, yyyy. When you run the application now, when you select a date (in this case, July
4, 2010) the TextBox will display it in the format shown in Figure 5-7.

Returning to the design view, you should see a result that closely resembles
Figure 5-8.

Figure 5-6. Running the default behavior

Figure 5-7. Formatted date selected

ScriptManager | 157

Adding a Watermark
You can improve the user experience by not wasting screen real estate with the Label.
Instead, you can add another nifty little widget called the TextBoxWatermarkExtender.

Return to the design view, take out the Label, and click on the arrow to the right of the
TextBox. Click Add Extender, as you did before, and choose TextBoxWatermarkExtender
in the Extender wizard. Then go to the properties window and select the TextBox1_
TextBoxWatermarkExtender control. Set the WatermarkText property to “Click here to
enter date” and run the page to see the results.

You’ve done a lot of work with the visual designer at this point (which is great, mind
you!), and you may be curious about what’s been happening under the hood. Look-
ing at Default.aspx now, you will find the following:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs"
 Inherits="_Default" %>

<%@ Register assembly="AjaxControlToolkit"
 namespace="AjaxControlToolkit" tagprefix="cc1" %>

Figure 5-8. The design view

158 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>178212 + 184112 = 192212</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

 <asp:TextBox ID="TextBox1" runat="server">
 </asp:TextBox>
 <cc1:TextBoxWatermarkExtender
 ID="TextBox1_TextBoxWatermarkExtender"
 runat="server"
 Enabled="True"
 TargetControlID="TextBox1"
 WatermarkText="Click here to enter date">
 </cc1:TextBoxWatermarkExtender>
 <cc1:CalendarExtender ID="TextBox1_
 CalendarExtender"
 runat="server"
 Enabled="True"
 TargetControlID="TextBox1"
 Format="MMMM d, yyyy">
 </cc1:CalendarExtender>

 </div>
 </form>
</body>
</html>

This is all fairly straightforward and easy to understand. Considerng all the function-
ality you’ve added, there is surprisingly little complexity to the underlying source
view. This speaks volumes to the level of effort that Microsoft has made in .NET 3.5
to hide the implementation details, making life much more pleasant for developers.

Adding Stylesheets to Extender Controls
To distinguish the instructional text from text entered by the user, you can add a
stylesheet to format the watermark text. You do so by adding the WatermarkCssClass
attribute.

ScriptManager | 159

Begin by adding to your project a stylesheet called TextBoxWatermarkStyle.css:

/*Watermark off/on*/

.unwatermarked {
 height:18px;
 width:148px;
 font-weight:bold;
 background-color:#FFFFFF;
 color:#000000;
}

.watermarked {
 height:20px;
 width:150px;
 padding:2px 0 0 2px;
 border:1px solid #BEBEBE;
 background-color:#FFFFCC;
 color:#666666;
}

To add this stylesheet to your page, simply open the Default.aspx page in the design
view and drag TextBoxWatermarkStyle.css onto the main div.

To get the experience you want, set the WatermarkCssClass of the
TextBoxWatermarkExtender to watermarked, but set the CssClass attribute of the
TextBox to unwatermarked. This ensures that when the user selects a date, the text in
the text box will look correct, in its unwatermarked format.

Looking at the web site now, you should see a text box with the watermark “Click
here to enter date,” as shown in Figure 5-9.

Figure 5-9. Text box with a watermark

160 | Chapter 5: Introducing AJAX: Moving Desktop UIs to the Web

When the user clicks in the text box, the watermark disappears and the calendar
appears, as shown in Figure 5-10.

When the user clicks on a date, the calendar instantly disappears, and the date is
placed in the text box. Zow! Is this really a web application?

What’s Next?
You’ve seen how AJAX can be used to enable asynchronous communication and
client-side processing in your ASP.NET applications. In large measure, this is accom-
plished with the same kind of drag-and-drop, set parameters, and let ’er rip ease
offered by other ASP.NET controls. In the next chapter, you’ll put these tools
together to build a meaningful application.

Figure 5-10. After clicking in the text box

161

Chapter 6 CHAPTER 6

Applying AJAX: ListMania6

This chapter will walk you through a significant AJAX-enhanced ASP.NET applica-
tion to demonstrate how the various AJAX tools can enrich a real-world application.

The application you’ll build is a To-Do List Manager, which will consist of two .aspx
pages. The first is the login page shown in Figure 6-1. This page allows users to
access their personal to-do lists by entering an email address and a password, then
clicking the sign-in button. New users can create to-do lists by clicking the Need To
Register? button, completing the form that appears, and clicking the Register button.

The login page uses an AJAX CollapsiblePanelExtender control that expands and
contracts when the user clicks on the Need To Register? button. It also includes an
AJAX WaterMark control (as described in the previous chapter) and an AJAX
PasswordStrength control to assist the user in choosing a strong password. We will
examine the PasswordStrength control in detail later in the chapter.

The second page you’ll create is the page for the To-Do List Manager itself, shown in
Figure 6-2.

On this page, users can maintain the enormous lists of things they need to do. They
will be able to add items to their lists and prioritize those items.

This page uses an AJAX ReorderList control to allow the user to change the order of
the to-do items using drag handles. Each to-do item has an item name, a full descrip-
tion, and a hidden priority value (an integer).

Creating the To-Do List Manager
Begin by creating a new C# web application, as you did in the previous chapter.
Choose New Web Site from the File menu, and select “ASP.NET Web Site” from the
Templates section. Name the application ListMania.

162 | Chapter 6: Applying AJAX: ListMania

We’ll build this application in stages: you’ll get parts of it working and then add on
more parts, successively approximating the final product shown in the preceding
figures.

To save you a bit of work upfront, you can download the images and
CSS files for this application from http://tinyurl.com/2s6oqh.

Create the Application Master Page
First, create the Application Master Page. This will be used to hold the
ScriptManager, as well as the CSS information for the application. Think of it as a
donut—the request/response loop will insert the content from the other pages into
the donut-hole in the middle of this master page. To do this, click on your web site’s

Figure 6-1. The login/registration page

http://tinyurl.com/2s6oqh

Creating the To-Do List Manager | 163

icon in the Solution Explorer and select Add ➝ New Item. Add a new Master Page
template called ListManager.master, as seen in Figure 6-3.

Bring up ListManager.master in the design view and set the Properties inspector to the
DOCUMENT view. Then set the Title property to “Oh the things I need to do...,” as
seen in Figure 6-4.

Take the time now to add an Images folder and fill it with the images in the down-
loadable listmania_media.zip file. Also, add a new CSS file to the project, using the
default name StyleSheet.css. Cut and paste the contents of the StyleSheet.css file that
was also in the .zip file into this new file.

There are three more general housekeeping items to do. First, add the CSS file to the
master. Second, make sure you have a ScriptManager embedded in the master. In the
next section you will take care of the third item, configuring the database.

Figure 6-2. ListMania’s to-do list page

164 | Chapter 6: Applying AJAX: ListMania

To add the CSS file to the master, simply drag it onto ListManager.master while it is in
the design view. Adding the ScriptManager is just as easy: from the AJAX Extensions

Figure 6-3. Adding a Master Page template

Figure 6-4. Setting the Title property of the DOCUMENT

Creating the To-Do List Manager | 165

toolbox, drag and drop a ScriptManager control onto the master. With that done, you
can switch to the source view. Your ListManager.master should look like this:

<%@ Master Language="C#" AutoEventWireup="true"
 CodeFile="ListManager.master.cs" Inherits="ListManager" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Oh the things I need to do...</title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
 <link href="StyleSheet.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 </form>
</body>
</html>

Create the Database
Next, you need to create a place to store the items in your users’ to-do lists. This
example assumes you are using SQL Server Express. First create a database called
ToDo, then create the table shown in Figure 6-5 in the ToDo database.

Figure 6-5. The ToDoItem table

166 | Chapter 6: Applying AJAX: ListMania

If you want to take a faster route, you can download a backup of this database from
http://tinyurl.com/2puxew and then create a new database called ToDo and restore it
from the file. Make sure you select the “overwrite” option, or you will get com-
plaints about tables not existing (they don’t yet, of course!).

Create the To-Do List Page
Now you’re ready to get cracking on the to-do list that will display the items in the
database and allow the user to add new items. Start by creating a new page named it
ToDo.aspx. To ensure that it uses the Master Page you created earlier (ListManager.
master), check the “Select master page” option, as seen in Figure 6-6.

Drag and drop a ReorderList control into the content placeholder section of the
design view for the page. When you do this, you will be presented with the now-
familiar dialog box that asks you to identify a data source (Figure 6-7). In this case,
you will choose a new data source.

At this point, you have several options. For the purposes of this example, you should
pick the Database type and specify “SqlDataSourceToDo” as the ID for the data
source. Next, you will configure this data source using the configuration wizard that
appears. Make sure you save the connection string as “ToDoConnectionString.”

The wizard will go on to ask you about retrieving data from the database. Specify
ToDoItem as the table and select * (all columns) as the columns you wish to select by.
You should also specify an ORDER BY so that your SELECT statement looks like this:

SELECT * FROM [ToDoItem] ORDER BY [item_priority]

Be sure to configure the advanced settings as well. Check the “Generate INSERT,
UPDATE, and DELETE” and “Use optimistic concurrency” options, as seen in

Figure 6-6. Be sure to check “Select master page”

Figure 6-7. Selecting a data source for ReorderList

http://tinyurl.com/2puxew

Creating the To-Do List Manager | 167

Figure 6-8. This will allow users to update the database when they change the order
of items in the list or insert new items.

Testing the query in the next step should produce a result like Figure 6-9.

Figure 6-8. Advanced configuration

Figure 6-9. Results of the query test

168 | Chapter 6: Applying AJAX: ListMania

Open up the source view of ToDo.aspx and insert a div with class = "reorderList"
around the ReorderList control. This will apply the reorderList CSS style to your list
when you preview it. Your ToDo.aspx file should contain the following source:

<%@ Page Language="C#" MasterPageFile="~/ListManager.master"
 AutoEventWireup="true"
 CodeFile="ToDo.aspx.cs"
 Inherits="ToDo"
 Title="Untitled Page" %>

<%@ Register assembly="AjaxControlToolkit"
 namespace="AjaxControlToolkit"
 tagprefix="cc1" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">

<div class="reorderList">
 <cc1:ReorderList ID="ReorderList1" runat="server"
 AllowReorder="True"
 DataSourceID="SqlDataSourceToDo"
 PostBackOnReorder="False">
 </cc1:ReorderList>
 </div>

 <asp:SqlDataSource ID="SqlDataSourceToDo"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:ToDoConnectionString %>"
 SelectCommand="SELECT * FROM [ToDoItem] ORDER BY [item_priority]"
 ConflictDetection="CompareAllValues"
 DeleteCommand="DELETE FROM [ToDoItem]
 WHERE [id_pk] = @original_id_pk
 AND [id_fk_user] = @original_id_fk_user
 AND [item_name] = @original_item_name
 AND [item_description] = @original_item_description
 AND [date_created] = @original_date_created
 AND [date_due] = @original_date_due
 AND [date_done] = @original_date_done
 AND [item_priority] = @original_item_priority"
 InsertCommand="INSERT INTO [ToDoItem] ([id_fk_user],
 [item_name], [item_description], [date_created],
 [date_due], [date_done], [item_priority])
 VALUES (@id_fk_user, @item_name, @item_description,
 @date_created, @date_due, @date_done, @item_priority)"
 OldValuesParameterFormatString="original_{0}"
 UpdateCommand="UPDATE [ToDoItem] SET [id_fk_user] = @id_fk_user,
 [item_name] = @item_name,
 [item_description] = @item_description,
 [date_created] = @date_created,
 [date_due] = @date_due,
 [date_done] = @date_done,
 [item_priority] = @item_priority
 WHERE [id_pk] = @original_id_pk

Creating the To-Do List Manager | 169

 AND [id_fk_user] = @original_id_fk_user
 AND [item_name] = @original_item_name
 AND [item_description] = @original_item_description
 AND [date_created] = @original_date_created
 AND [date_due] = @original_date_due
 AND [date_done] = @original_date_done
 AND [item_priority] = @original_item_priority">
 <DeleteParameters>
 <asp:Parameter Name="original_id_pk" Type="Int32" />
 <asp:Parameter Name="original_id_fk_user" Type="Int32" />
 <asp:Parameter Name="original_item_name" Type="String" />
 <asp:Parameter Name="original_item_description" Type="String" />
 <asp:Parameter Name="original_date_created" Type="DateTime" />
 <asp:Parameter Name="original_date_due" Type="DateTime" />
 <asp:Parameter Name="original_date_done" Type="DateTime" />
 <asp:Parameter Name="original_item_priority" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="id_fk_user" Type="Int32" />
 <asp:Parameter Name="item_name" Type="String" />
 <asp:Parameter Name="item_description" Type="String" />
 <asp:Parameter Name="date_created" Type="DateTime" />
 <asp:Parameter Name="date_due" Type="DateTime" />
 <asp:Parameter Name="date_done" Type="DateTime" />
 <asp:Parameter Name="item_priority" Type="Int32" />
 <asp:Parameter Name="original_id_pk" Type="Int32" />
 <asp:Parameter Name="original_id_fk_user" Type="Int32" />
 <asp:Parameter Name="original_item_name" Type="String" />
 <asp:Parameter Name="original_item_description" Type="String" />
 <asp:Parameter Name="original_date_created" Type="DateTime" />
 <asp:Parameter Name="original_date_due" Type="DateTime" />
 <asp:Parameter Name="original_date_done" Type="DateTime" />
 <asp:Parameter Name="original_item_priority" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="id_fk_user" Type="Int32" />
 <asp:Parameter Name="item_name" Type="String" />
 <asp:Parameter Name="item_description" Type="String" />
 <asp:Parameter Name="date_created" Type="DateTime" />
 <asp:Parameter Name="date_due" Type="DateTime" />
 <asp:Parameter Name="date_done" Type="DateTime" />
 <asp:Parameter Name="item_priority" Type="Int32" />
 </InsertParameters>
 </asp:SqlDataSource>

 </div>
</asp:Content>

You could run the application at this point, but with nothing in the ReorderList, you
would just get a blank page.

Returning to the design view, set your view of the ReorderList to ItemTemplate (see
Figure 6-10).

170 | Chapter 6: Applying AJAX: ListMania

Once this is done, drop a <DIV> inside the ReorderList and set its class to "itemArea"
using the Properties inspector. Now drag, drop, and configure a couple of Label con-
trols. After you drag in a Label control, you will have the opportunity to edit its
DataBindings. Set the first Label’s binding properties to be Text bound to item_name
with the format set to “none” (Figure 6-11).

Now run the application. Depending on what you have in the database, you should
wind up with a short list of items in on a plain white background.

Figure 6-10. Setting the view for the ReorderList

Figure 6-11. Binding your label

Creating the To-Do List Manager | 171

To improve the UI, add this to the source:

 <i>To-Do:</i>
 <hr />

Switch to the source view and drop it in just below the following line:

<asp:Content ID="Content1"
 ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">

Back in the design view, return to your ReorderList and switch the view to DragHan-
dleTemplate. Insert a <DIV> from the HTML toolbox and set the class to
"dragHandle". Now switch back to the Item Template view and select the first Label
you inserted earlier. Using the Properties inspector, set the font bold property to
True.

Now, when you run the application, it should look like Figure 6-12.

You should be able to drag list items around, but as of yet these changes will not per-
sist. To test this, move some items around using the drag handle and make a mental
note of where they are. Then quit and restart the application. You will note that the
items have returned to their original order. The next step takes care of this problem.

Persist the List
To ensure that changes to the list order persist, you need to create two methods and
bind an action to the OnItemReorder property of the ReorderList. First, open up the
ToDo.aspx.cs file and make sure you have referenced the following namespaces:

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Linq;

Figure 6-12. The start of a well-formed to-do list

172 | Chapter 6: Applying AJAX: ListMania

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

Now, add a method that will take care of writing updates to your database:

 public void TalkToDatabaseUsingSQLConnectionAndSQLStatement(
 SqlConnection connection,
 String updateStatement)
 {
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(updateStatement, connection);
 cmd.CommandType = CommandType.Text;
 int rowsAffected = cmd.ExecuteNonQuery();
 if (rowsAffected == 0)
 {
 // Do something here to call attention to the fact
 // that your update has failed...
 }
 connection.Close();
 }

 catch (Exception ex_set_aside)
 {

 // Do something here to call attention to the fact
 // that something went wrong...
 }

 finally
 {
 connection.Close();
 }

 }

The reason you are creating this method is that for each movement of a list item, you
need to make several updates to the database. In other words, the same bit of logic
will be used over and over in the method that you will call from OnItemReorder. You
could use the “Cut-and-Paste” design pattern, but (while it may be handy) this is not
considered good form. With this method in place, you are ready to code the next
step.

Moving an item from one spot to another in the list using the drag handle sets off a
chain of events. To handle this action correctly, bind a new event to OnItemReorder
on your ReorderList. You can do this by going to the Properties inspector in the
design view and viewing the available actions. From there, double-click on the

Creating the To-Do List Manager | 173

OnItemReorder action. You should be transported back to ToDo.apsx.cs, where a new
empty method like this should be staring you in the face:

 protected void ReorderList1_ItemReorder(object sender,
 AjaxControlToolkit.ReorderListItemReorderEventArgs e)
 {

 }

Change this method to make it look like the following:

 protected void ReorderList1_ItemReorder(object sender,
 AjaxControlToolkit.ReorderListItemReorderEventArgs e)
 {

 // We've been given the new and old index information
 // as part of the event args (e).
 int newIndex = e.NewIndex;
 int oldIndex = e.OldIndex;

 // So now we'll find the appropriate rows in the
 // database and update them.
 string connectionString =
 "Data Source=MERKWÜRDIGLIEBE\\SQLEXPRESS;
 Initial Catalog=ToDo;Integrated Security=True";
 SqlConnection connection = new SqlConnection(connectionString);

 try
 {
 connection.Open();

 // Get all the rows for this user and sort by item_priority.
 String fetchStatement = "SELECT * FROM ToDoItem WHERE
 id_fk_user = 3 ORDER BY item_priority";
 DataSet ds = new DataSet();
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(fetchStatement, connection);
 dataAdapter.Fill(ds, "CURRENT_TODOS");
 DataTable dataTable = ds.Tables["CURRENT_TODOS"];

 connection.Close();

 // Clone the stucture of the dataTable so we can
 // keep the current keys to access data with...
 DataTable reorderedDataTable = dataTable.Clone();
 DataTable dataTableWithSelectedItemRemoved =
 dataTable.Clone();

 // Smash through the data set and grab everything
 // that is not at the old index.
 int counter1 = dataTable.Rows.Count;
 for (int i = 0; i < counter1; i++)
 {
 if (i < oldIndex)
 dataTableWithSelectedItemRemoved.ImportRow(dataTable.Rows[i]);

174 | Chapter 6: Applying AJAX: ListMania

 if (i > oldIndex)
 dataTableWithSelectedItemRemoved.ImportRow(dataTable.Rows[i]);
 }

 // Smash through the data set and put it all
 // back together again in the right order.
 int counter2 = dataTableWithSelectedItemRemoved.Rows.Count;
 for (int j = 0; j < counter2 + 1; j++)
 {
 if (j < newIndex) reorderedDataTable.ImportRow(
 dataTableWithSelectedItemRemoved.Rows[j]);
 if (j == newIndex) reorderedDataTable.ImportRow(
 dataTable.Rows[oldIndex]);
 if (j > newIndex) reorderedDataTable.ImportRow(
 dataTableWithSelectedItemRemoved.Rows[j - 1]);
 }

 // Now change the item_priority for each row based
 // on the new order of the rows in the DataTable.
 int counter3 = reorderedDataTable.Rows.Count;
 for (int k = 0; k < counter3; k++)
 {
 DataRow dr = reorderedDataTable.Rows[k];
 int idPK = Convert.ToInt32(dr["id_pk"]);

 String updateStatement =
 "UPDATE ToDoItem SET item_priority = " +
 k + " WHERE id_pk = " + idPK;
 TalkToDatabaseUsingSQLConnectionAndSQLStatement(
 connection, updateStatement);
 }

 // Et voila! Persistent database storage for
 // the items as reordered.
 }
 catch (Exception ex)
 {
 // Do something here to call attention to the
 // fact that something went very wrong...
 }

 }

This listing is pretty straightforward. The first two lines are where you grab the old
and new indexes of the item that was moved from the ReorderList:

 // We've been given the new and old index information
 // as part of the event args (e).
 int newIndex = e.NewIndex;
 int oldIndex = e.OldIndex;

The next lines deal with the fact that you need to have a database connection to read
from and write to the database. This is handled for you:

Creating the To-Do List Manager | 175

 string connectionString =
 "Data Source=MERKWÜRDIGLIEBE\\SQLEXPRESS;Initial Catalog=ToDo;
 Integrated Security=True";
 SqlConnection connection = new SqlConnection(connectionString);

Change this connection string to one that makes sense for your environment.

With the SqlConnection in place, your goal is to grab the to-do items for the current
user. For now, we’ll assume this is the user with an id_fk_user of 3. Later, you will
change the code to enable the application to grab the user’s ID dynamically from the
session, but for the moment, if you are using a restored copy of the database, this
will work just fine. Otherwise, for each of the items you entered, make sure that
id_fk_user is set to 3.

Once you have gotten back a DataSet and processed that into a DataTable, you are
ready to walk through the rows and apply our update algorithm. Here’s the section
of code that gets you there:

 // Hardcoded for "3" right now, we'll change this later.
 string fetchStatement =
 "SELECT * FROM ToDoItem WHERE id_fk_user = 3";

 DataRow returnValue = null;

 DataSet ds = new DataSet();

 try
 {
 connection.Open();
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(fetchStatement, connection);
 dataAdapter.Fill(ds, "CURRENT_TODOS");
 DataTable dataTable = ds.Tables["CURRENT_TODOS"];
 connection.Close();
 int counter = dataTable.Rows.Count;
 int idOfRowThatMoved = -1;

The persistence algorithm sets aside the row that moved by giving it a new item_
priority value of -1. Then, for each other row, a decision must be made about
whether its item_priority value needs to be changed. Note that each time you
update the list by dragging something to a new location, you’re updating the row in
question; you ensure that with the AND id_pk = "+idPK; at the end of each SQL state-
ment. You work through all the rows, then circle back and update the row where the
item_priority is -1 to its new value based on where you dragged it in the list.

The complete listing for Default.aspx.cs is now:

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Linq;

176 | Chapter 6: Applying AJAX: ListMania

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public partial class ToDo : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void ReorderList1_ItemReorder(object sender,
 AjaxControlToolkit.ReorderListItemReorderEventArgs e)
 {
 // We've been given the new and old index information
 // as part of the event args (e)
 int newIndex = e.NewIndex + 1;
 int oldIndex = e.OldIndex + 1;

 // So now we'll find the appropriate rows in the
 // database and update them in three steps.
 string connectionString =
 "Data Source=MERKWÜRDIGLIEBE\\SQLEXPRESS;
 Initial Catalog=ToDo;Integrated Security=True";

 SqlConnection connection = new SqlConnection(connectionString);

 // Get all the rows for this user.
 // Hardcoded for "3" right now, we'll change this later.
 string fetchStatement =
 "SELECT * FROM ToDoItem WHERE id_fk_user = 3";

 DataRow returnValue = null;

 DataSet ds = new DataSet();

 try
 {
 connection.Open();
 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(fetchStatement, connection);
 dataAdapter.Fill(ds, "CURRENT_TODOS");
 DataTable dataTable = ds.Tables["CURRENT_TODOS"];
 connection.Close();
 int counter = dataTable.Rows.Count;
 int idOfRowThatMoved = -1;

 foreach (DataRow dr in dataTable.Rows)

Creating the To-Do List Manager | 177

 {
 string updateStatement = "";
 int currentIndexOfDataRow =
 Convert.ToInt32(dr["item_priority"]);
 int idPK = Convert.ToInt32(dr["id_pk"]);

 if (currentIndexOfDataRow == oldIndex)
 {
 // Set this aside for later treatment
 updateStatement = "UPDATE ToDoItem SET
 item_priority = -1
 WHERE id_pk = "+idPK;

 // We need to "remember" this row's ID
 idOfRowThatMoved = idPK;
 }
 else if (currentIndexOfDataRow != oldIndex)
 {
 if (oldIndex > newIndex)
 {
 if (currentIndexOfDataRow >= newIndex)
 {
 updateStatement =
 "UPDATE ToDoItem SET item_priority = "
 + (currentIndexOfDataRow + 1) +
 " WHERE id_pk = "+idPK;
 }
 }
 else
 {
 if (currentIndexOfDataRow <= newIndex
 && currentIndexOfDataRow >= oldIndex)
 {
 updateStatement = "UPDATE ToDoItem
 SET item_priority = "
 + (currentIndexOfDataRow - 1) +
 " WHERE id_pk = "+idPK;
 }
 }
 }
 else
 {
 // Do nothing here
 }

 UpdateDatabaseUsingSQLConnectionWithUpdateString(
 connection, updateStatement);

 }

 // Now come back and deal with the set-aside row
 UpdateDatabaseUsingSQLConnectionWithUpdateString(
 connection, "UPDATE ToDoItem SET item_priority = "
 + newIndex + " WHERE id_pk = "+idOfRowThatMoved);

178 | Chapter 6: Applying AJAX: ListMania

 }
 catch (Exception ex)
 {
 // Do something here to call attention to the fact
 // that something went very wrong...
 }
 }

 public void UpdateDatabaseUsingSQLConnectionWithUpdateString(
 SqlConnection connection,
 String updateStatement)
 {
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(updateStatement, connection);
 cmd.CommandType = CommandType.Text;
 int rowsAffected = cmd.ExecuteNonQuery();
 if (rowsAffected == 0)
 {
 // Do something here to call attention to the fact
 // that your update has failed...
 }
 connection.Close();
 }

 catch (Exception ex_set_aside)
 {

 // Do something here to call attention to the fact
 // that something went wrong...
 }

 finally
 {
 connection.Close();
 }

 }
}

At this point, when you run your application any changes you make should persist.
That is, you should be able to change the order of the list and see the results in the
database, and you should be able to stop your application and have the list present
itself in the same order it was last in when you restart it (Figure 6-13).

But what if you want to add items to your list? The ReorderList has an
InsertItemTemplate. You’ll add to this template a Panel, a couple of divs, and an
HTML table, and bind in some TextBoxes. You’ll top it all off with an asp:Button
that will be bound to the ReorderList’s built-in Insert statement.

Creating the To-Do List Manager | 179

In the source view, type the following snippet into the ReorderList element just
before the </cc1:ReorderList> tag (the closing of the ReorderList element):

<InsertItemTemplate>
<div style="padding-left: 25px;border-bottom: thin solid transparent;">
 <asp:Panel ID="panel1" runat="server" DefaultButton="Button1">
 <hr />
 <div style="font-family: Verdana; color:Black;">
 Add a to do item:

 <table>
 <tr>
 <th>Item</th>
 <th>Description</th>
 </tr>
 <tr>
 <td>
 <asp:TextBox ID="TextBox1" runat="server"
 Text='<%# Bind("item_name") %>'>
 </asp:TextBox>
 </td>
 <td>
 <asp:TextBox ID="TextBox2" runat="server"
 Text='<%# Bind("item_description") %>'>
 </asp:TextBox>
 </td>
 </tr>
 </table>
 </div>

Figure 6-13. Position of the moved item is persisted to the database

180 | Chapter 6: Applying AJAX: ListMania

 <asp:Button ID="Button1" runat="server"
 CommandName="Insert" Text="Add">
 </asp:Button>
 </asp:Panel>
</div>
</InsertItemTemplate>

In the design view of ToDo.aspx, toggle the ReorderList’s view to
InsertItemTemplate. It should now look like Figure 6-14.

Run the application now. You should be able to add to-do items, change the order of
the list items, and have your changes persist. The application should now look like
Figure 6-15.

Personalizing the To-Do List
It would be nice to allow various members of your family (or office) to keep to-do
lists, and to separate the lists based on the users’ IDs. So next, you’ll create a login
form to ask the user to provide an email address and a password. We (the authors)
hate being shunted off to a separate page to register, so we’ll put the registration
form right on the login page. Of course, you don’t want the user to see the registra-
tion form unless it’s needed, so you’ll hide it in a collapsible panel that will swing
open only if it’s needed.

Figure 6-14. ReorderList with view of InsertItemTemplate

Personalizing the To-Do List | 181

Confirm the Database Table
Make sure that your database contains the table shown in Figure 6-16. If this isn’t
the case, please create it now (normally we’d suggest that you use the forms-based
security tables for ASP.NET, but for the purposes of this example this is faster).

Create a DataHelper Class
In this section, you are going to talk the database more. The code that you used ear-
lier in TalkToDatabaseUsingSQLConnectionAndSQLStatement() will turn out to be very
handy here. Rather than cutting and pasting, you need to refactor!

Figure 6-15. Application with the ability to add items

Figure 6-16. The users table

182 | Chapter 6: Applying AJAX: ListMania

Right-click on your web site in the Solution Explorer and select Add ASP.NET
Folder ➝ App_Code, as seen in Figure 6-17.

Now, add a C# class to it called DataHelper.cs to the App_Code folder you just
added to your project. The preliminary listing for this class is as follows:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Text;

/// <summary>
/// Summary description for DataHelper
/// </summary>
public class DataHelper
{
 // Change your connection string as appropriate...
 private string connectionString = "Data
 Source=MERKWÜRDIGLIEBE\\SQLEXPRESS;
 Initial Catalog=ToDo;Integrated Security=True";
 private SqlConnection connection = new SqlConnection(connectionString);

 public DataHelper()
 {
 //
 // TODO: Add constructor logic here
 //
 }

Figure 6-17. Adding the ASP.NET App_Code folder

Personalizing the To-Do List | 183

 public static void TalkToDatabaseUsingSQLConnectionAndSQLStatement(
 SqlConnection connection, String sqlStatement)
 {
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(sqlStatement, connection);
 cmd.CommandType = CommandType.Text;
 int rowsAffected = cmd.ExecuteNonQuery();
 if (rowsAffected == 0)
 {
 // Do something here to call attention to the fact
 // that your SQL statement has failed...
 }
 connection.Close();
 }

 catch (Exception ex_set_aside)
 {

 // Do something here to call attention to
 // the fact that something went wrong...
 }

 finally
 {
 connection.Close();
 }
 }
}

If this looks very familiar, it should—it is almost the same method you wrote in your
ToDo.aspx.cs class. The only difference is that this method is static, which means
you can use it without instantiating the class. This is where you refactor.

Return to your ToDo.aspx.cs class and rip out the version of this method that is
there. Change the line of code inside ReorderList1_ItemReorder that currently says:

TalkToDatabaseUsingSQLConnectionAndSQLStatement(connection,
 updateStatement);

to this:

DataHelper.TalkToDatabaseUsingSQLConnectionAndSQLStatement(connection,
 updateStatement);

Build the application and watch it work as before. Now you will be able to use this
method for the other methods you are going to write in your DataHelper class.

Add the following three methods to DataHelper.cs. You will use this first method to
grab user data out of the database for the purposes of authorizing the user, as well as
setting the user information held in the session:

 public static SqlDataReader GetUserInfo(string userName, string pw)
 {

184 | Chapter 6: Applying AJAX: ListMania

 string cleanName = CleanText(userName);
 string cleanPW = CleanText(pw);

 string queryString = "Select * from UserTable where user_name = '" +
 cleanName + "' and password = '" + cleanPW + "'";
 SqlDataReader rdr = null;

 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(queryString, connection);
 cmd.CommandType = CommandType.Text;
 rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
 }
 catch (Exception ex)
 {
 // Exception! Probably a good idea to send yourself a copy of the insert
 // statement along with ex.message via email and figure out why.
 }
 // do not close connection until reader is done!
 return rdr;
 }

You will use this second method to create new users and insert them into the database:

 public static void InsertNewUser(
 string name,
 string email,
 string pw,
 DateTime accountCreated)
 {
 string cleanName = CleanText(name);
 string cleanEmail = CleanText(email);
 string cleanPW = CleanText(pw);

 string insertStatement = "Insert into UserTable (user_name,
 display_name, password, acct_created, last_login) " +
 " values ('" + cleanEmail + "', '" + cleanName + "', '" +
 cleanPW + "', '" + accountCreated + "', '" + accountCreated + "')";
 DataHelper.TalkToDatabaseUsingSQLConnectionAndSQLStatement(connection,
 insertStatement);
 }

The last method will allow you to update the user’s audit trail information with a
timestamp after a successful login:

 public static void UpdateLastLogin(int userID, DateTime last_login)
 {
 string updateStatement = "Update UserTable set last_login = '" +
 last_login.ToString() + "' where id_pk = " + userID;
 DataHelper.TalkToDatabaseUsingSQLConnectionAndSQLStatement(connection,
 updateStatement);
 }

Note that all three of these methods are static.

Personalizing the To-Do List | 185

Create the Login Page
Create a new page, remembering to hook it to the Master Page as described earlier in
this chapter. Name the new page Login.aspx. You’ll define the layout of the new page
with HTML tables rather than CSS.

It is usually preferable to use CSS in web interface development these
days, but in this case we feel it will be easier for you to visualize how
all the parts come together if you use tables.

Insert the following snippet of code into Login.aspx, placing it inside the content
placeholder tag with the ContentPlaceHolderID of "ContentPlaceHolder1":

<center>
<table border="0" cellpadding="0" cellspacing="0" width="520">
 <tr>
 <td>
 <table border="0" cellpadding="0"
 cellspacing="0" width="100%">
 <tr>
 <td>

 </td>
 <td align="center"
 style="background:
 url(images/table_top.gif);
 width:100%">
 Welcome! Please Sign In...
 </td>
 <td>

 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td align="left">
 <table border="0" cellpadding="0"
 cellspacing="0" width="100%">
 <tr>
 <td style="background:
 url(images/background.gif)" >

 </td>
 <td style="background-color:#F2FEE9;
 width:100%" class="text10_search" >
 <!-- We'll be inserting everything into the table below -->
 <table style="background-color:#F2FEE9;
 border:0"
 cellpadding="0"
 cellspacing="0">

186 | Chapter 6: Applying AJAX: ListMania

 <tr>
 <td>

 <td>
 </tr>
 </table>
 <!-- End of Content Table -->
 </td>
 <td style="background:url(images/right.gif)">

 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <table border="0" cellpadding="0"
 cellspacing="0" width="100%">
 <tr>
 <td>

 </td>
 <td style="background:url(images/bottom.gif);
 width:100%">

 </td>
 <td>

 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>
</center>

Notice the HTML comments. They are intended to guide your insertion of future
code snippets:

<!-- We'll be inserting everything into the table below -->
<table style="background-color:#F2FEE9;
 border:0" cellpadding="0" cellspacing="0">
 <tr>
 <td>

 <td>
 </tr>
</table>
<!-- End of Content Table -->

The rest of the page will remain largely unmodified. If you view this page in a web
browser now, you should see something that looks like Figure 6-18.

Personalizing the To-Do List | 187

As you can see, we have an attractive starting point. Switch to the design view in
Visual Studio. You will now be able to drag and drop the appropriate controls to
continue development. Start by placing your cursor in the first column of the con-
tent table, as seen in Figure 6-19.

Type in “Enter your email address:” and hit the Tab key. Another table row should
be created for you.

Next, drag and drop in a TextBox and set its ID property to UserNameTextBox. Hit Tab
twice to insert a spacer row between the username and the next block of text you are
going to enter. Type in the text “Password:” and hit Tab one more time.

Drag and drop in another TextBox, and add the PasswordStrength extender right
away. Set the ID property to PasswordBox and the TextMode property to Password.

The PasswordStrength extender is used to extend a text box to indicate to the users
the strength of the passwords they enter. That is, it gives users an indication of what
your system expects from a password by providing instant feedback. If a user enters
the string “abc” as the password, for example, the extender might indicate that the

Figure 6-18. The Login page before we really get going

Figure 6-19. Cursor in the column of the content table

188 | Chapter 6: Applying AJAX: ListMania

password chosen is “weak.” View the page in a web browser to see how it works
(Figure 6-20).

Hit the Tab key two more times, then drag and drop in an asp:ImageButton with the
properties set as follows:

ID="LoginButton"
runat="server"
ImageUrl="~/images/signIn.gif"
OnClick="LoginButton_Click"

Hit Tab twice more.

With the OnClick property set, you will need to make sure the code-behind has a cor-
responding method. Add the following to your Login.aspx.cs file:

protected void LoginButton_Click(object sender, ImageClickEventArgs e)
{
 SqlDataReader rdr = null;
 int userID = -1;
 DateTime lastLogin = DateTime.Now;
 try
 {
 rdr = DataHelper.GetUserInfo(
 UserNameTextBox.Text, PasswordBox.Text);
 while (rdr.Read())

Figure 6-20. PasswordStrength extender in action

Personalizing the To-Do List | 189

 {
 if (rdr["user_name"] != null)
 {
 Session["user_name"] = rdr["user_name"].ToString();
 Session["display_name"] = rdr["display_name"].ToString();
 Session["id_pk"] = rdr["id_pk"].ToString();

 if (rdr["last_login"] != null)
 {
 lastLogin = Convert.ToDateTime(rdr["last_login"]);
 Session["last_login"] = lastLogin.ToShortDateString()
 + " - " +
 lastLogin.ToShortTimeString();

 }
 else
 {
 lastLogin = DateTime.Now;
 Session["last_login"] = lastLogin.ToShortDateString()
 + " - " + lastLogin.ToShortTimeString();
 }
 userID = Convert.ToInt32(rdr["id_pk"]);
 } // end if we have a user
 } // end while
 }
 catch
 {
 // handle exception
 }
 finally
 {
 if (rdr != null)
 {
 rdr.Close();
 DataHelper.UpdateLastLogin(userID, DateTime.Now);
 }
 }

 if (Session["display_name"] != null &&
 Session["display_name"].ToString().Length > 0)
 {
 Response.Redirect("ToDo.aspx");
 }
}

You are now leveraging both the DataHelper class you wrote earlier and the Session
to set up a personalized To-Do list on the ToDo.aspx page. But at this point you are
in a bit of a bind (sorry, we put you here!), because you do not have any user
accounts.

190 | Chapter 6: Applying AJAX: ListMania

The CollapsiblePanelExtender Control
As noted earlier, if a user needs to create an account, you do not want to dispatch her
to a new page to do so. Instead, your login page will have a button the user can press
to display the registration form. You’ll accomplish this by dragging and dropping in
a Panel from the Standard toolbox. Set its ID property to Register_ContentPanel.
Next, add an extender called CollapsiblePanelExtender.

Switch to the source view and make sure the extender’s properties are configured like
this:

 <ajaxToolkit:
CollapsiblePanelExtender
 ID="cpeRegister"
 runat="Server"
 CollapseControlID="Register_HeaderPanel"
 Collapsed="True"
 CollapsedImage="images/expand.jpg"
 CollapsedText="Need To Register?"
 ExpandControlID="Register_HeaderPanel"
 ExpandDirection="Vertical"
 ExpandedImage="images/collapse.jpg"
 ExpandedText="All Done"
 ImageControlID="Register_ToggleImage"
 SuppressPostBack="true"
 TargetControlID="Register_ContentPanel"
> </ajaxToolkit:
CollapsiblePanelExtender>

Make sure you change the contents of Register_HeaderPanel to:

<asp:Panel
 ID="Register_HeaderPanel"
 runat="server"
 Style="cursor: pointer;">
 <div class="heading">
 <asp:Image
 ID="Register_ToggleImage"
 runat="server"
 ImageUrl="images/collapse.jpg" />
 Need To Register?
 </div>
</asp:Panel>

Then add an additional Panel just below the Register_HeaderPanel panel and set it
up like this:

<asp:Panel
 ID="Register_ContentPanel"
 runat="server"
 Style="overflow: hidden;">
 Registration content goes here...
</asp:Panel>

Personalizing the To-Do List | 191

These are the two Panels that will be hidden and revealed (alternately) when your
users interact with the toggle buttons. Return to the design view and run your appli-
cation to see this in action.

Unfortunately, at the time of this writing, the design view does not afford you a
quick and easy way of adding the registration content. You’ll have to insert the fol-
lowing HTML in place of the text “Registration content goes here...”:

<table id="Table1" runat="server" class="registerText">
 <tr>
 <td align="right">Name:</td>
 <td>
 <asp:TextBox ID="NameTextBox"
 runat="server"
 CssClass="unwatermarked" />
 <cc1:TextBoxWatermarkExtender
 ID="NameTBWME"
 runat="server"
 TargetControlID="NameTextBox"
 WatermarkCssClass="watermarked"
 WatermarkText="Your full name" />

 </td>
 </tr>
 <tr>
 <td align="right">Email Address:</td>
 <td>
 <asp:TextBox ID="EmailAddressTextBox"
 runat="server"
 CssClass="unwatermarked" />
 <cc1:TextBoxWatermarkExtender
 ID="TextBoxWatermarkExtender1"
 runat="server"
 TargetControlID="EmailAddressTextBox"
 WatermarkCssClass="watermarked"
 WatermarkText="Your email address" />

 </td>
 </tr>
 <tr>
 <td align="right">Password:</td>
 <td style="width: 360px">
 <asp:TextBox ID="PasswordTextBox"
 runat="server"
 TextMode="Password" />

 <asp:Label ID="PasswordTextBox_HelpLabel"
 runat="server"></asp:Label>
 <cc1:PasswordStrength
 ID="PasswordStrengthControl"
 runat="server"
 DisplayPosition="RightSide"
 HelpStatusLabelID="PasswordTextBox_HelpLabel"

192 | Chapter 6: Applying AJAX: ListMania

 MinimumNumericCharacters="1"
 MinimumSymbolCharacters="1"
 PreferredPasswordLength="10"
 PrefixText="Strength:"
 RequiresUpperAndLowerCaseCharacters="false"
 StrengthIndicatorType="Text"
 TargetControlID="PasswordTextBox"
 TextCssClass="StrengthIndicator"
 TextStrengthDescriptions=
 "Very Poor;Weak;Average;Strong;Excellent" />
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="Left">
 <asp:ImageButton
 ID="RegisterImageButton"
 runat="server"

ImageUrl="images/register.gif"
 OnClick="RegisterImageButton_Click" />
 </td>
 </tr>
</table>

Switching back to the design view should reveal something that looks like
Figure 6-21.

Figure 6-21. Login page with registration panel

Personalizing the To-Do List | 193

To support the registration behavior, you have attached a RegisterImageButton_
Click() method to the OnClick event of the registration image button. You now need
to add this to your Login.apsx.cs file to get your application to run.

Here is the implementation:

protected void RegisterImageButton_Click(object sender,
 ImageClickEventArgs e)
{

 DataHelper.InsertNewUser(
 NameTextBox.Text,
 EmailAddressTextBox.Text,
 PasswordTextBox.Text,
 DateTime.Now);

 cpeRegister.Collapsed.Equals(true); // close the accordion

 Response.Redirect("Login.aspx");

}

If you run your application now, it should handle registration for new users. You will
need to take care of a couple of housekeeping items before the application is fully
functional, though.

In ListManager.master, add the following lines just above ContentPlaceHolder1:

<center>
 <img src="http://alexhorovitz.com/images/list-mania.gif"
 alt="List Mania!" />
</center>

Then, in ToDo.aspx.cs, add the following to Page_Load():

WelcomeUserName.Text = Session["display_name"].ToString();
LastLogin.Text = Session["last_login"].ToString();
SqlDataSourceToDo.SelectCommand = "SELECT * FROM [ToDoItem]
 WHERE id_fk_user = "+ Session["id_pk"].ToString() +
 " ORDER BY [item_priority]"

Next, turn to the source view of ToDo.aspx and add some HTML to take advantage
of these personalizing variables retrieved from the Session. In the main content area
just above <i>To-Do:</i>, add this:

Welcome: <asp:Label ID="WelcomeUserName" runat="server" Text="" />
Last Login: <asp:Label ID="LastLogin" runat="server" Text="" />

Now find the SqlDataSourceToDo and remove the SelectCommand from the properties.

194 | Chapter 6: Applying AJAX: ListMania

Returning to ToDo.aspx.cs, find the line inside ReorderList1_ItemReorder() that
reads:

String fetchStatement =
 "SELECT * FROM ToDoItem WHERE id_fk_user = 3
 ORDER BY item_priority";

and change it to:

String fetchStatement =
 "SELECT * FROM ToDoItem WHERE id_fk_user = "
 + Session["id_pk"].ToString()+
 " ORDER BY item_priority";

What you have done here is make sure that the data that gets loaded into this page
will be for the logged-in user only. This means you can no longer run the ToDo.aspx
page on its own; you must start at the Login.aspx page. You should set this to be the
Start Page for this web site.

When you run the code now, you should have a fully functional multiuser list man-
ager web application. Enjoy!

195

Chapter 7 CHAPTER 7

Introducing Silverlight:
A Richer Web UI Platform7

Microsoft has recently added another option in the spectrum running from ASP.NET
(server-only) through AJAX (client code running JavaScript) to WPF (Windows-
only). This new option is Silverlight, which offers two important improvements:

• Rich client-side controls running in a browser

• Cross-platform and cross-browser operation

Silverlight also incorporates a subset of the CLR and thus is able to run managed
code and a carefully chosen subset of the .NET 3.5 Framework.

Silverlight leverages many of the advantages of .NET 3.5. However, it provides this
power through the browser, allowing for all the deployment and platform-agnostic
benefits that come with a browser-deployed application without giving up the rich
interactivity of WPF.

In fact, Silverlight 2 (in beta at the time of this writing) is built on a subset of the
WPF control model and uses the same markup language as WPF and WF (XAML).

Silverlight in One Chapter
Silverlight cannot be fully covered in one chapter; a comprehensive discussion would
take a whole book. (In fact, it does—see the forthcoming book Programming Silver-
light 2 by Jesse Liberty and Tim Heuer, also from O’Reilly.) There are two possible
approaches to providing an introduction in a single chapter: we can give you an over-
view of its myriad features, or we can show you how to code the most fundamental
features. Neither is entirely satisfactory, so we’ll do a bit of both.

The next section lists, extremely briefly, what is in Silverlight. The rest of this chap-
ter introduces what it is like to use the basic controls to write a simple Silverlight
data application.

196 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

The Breadth of Silverlight
Silverlight 2 offers a lot of features to support very rich interactive Internet applica-
tions. Some of the more important areas include:

Controls, events, and data
These three topics make up the heart of this chapter, so we’ll defer discussion of
them for now.

Media
Silverlight provides extensive support for both audio and video, including out-of-
the-box media players. It also gives you the ability to use media, both interactively
and combined with controls, to create new forms of compelling user interfaces.

Graphics
Silverlight 2’s graphics capabilities are quite advanced. The use of vector graph-
ics allows for significant scaling, the engines provided are high-performance, and
the ability to integrate transformations with animation allows for the creation of
unprecedented browser-hosted graphics.

Text and fonts
Silverlight enables the control and manipulation of fonts developed to allow
WPF to provide a rich and rewarding interactive user interface. All of the trans-
formation and animation effects available for graphic elements apply to text as
well; taken together, Silverlight’s manipulation and display of text are unprece-
dented for a cross-platform browser technology.

Streaming, syndication, and web services
Silverlight applications can be provided on the client, or they can be streamed to
the browser from a Microsoft or other server. Silverlight also supports syndica-
tion (e.g., via RSS) and exports data that web services can consume easily.

Advanced programming services
Among the advanced services baked into Silverlight and available out of the box
are Cryptography, Threading, Reflection, and Isolated Storage, the latter two of
which are most often used either for maintaining state on the user’s machine or
for caching to improve performance.

Diving Deep: Building an Application
As developers, we like to sink our teeth into a new technology like Silverlight 2 by
building a basic application. For us, that means a form that interacts with the user,
with some business objects that represent data. The rest of this chapter will be
devoted to exploring those aspects of Silverlight in a bit more depth.

To create this first example, open Visual Studio 2008 and click on Create Project. In the
New Project window, create a C# project using the Silverlight Application template.

Controls | 197

Pick a location for your application and give it a meaningful name. Be sure that you
are building against the 3.5 Framework, as shown in Figure 7-1.

When you click OK, you’ll be asked if you’d like to generate a Web Site/Web Appli-
cation (using the top radio button) or just a test page (using the bottom radio but-
ton), as shown in Figure 7-2.

If you create just a test page, the project remains very simple. If, however, you choose
to generate a Web Site or Web Application Project, Visual Studio creates two
projects in your new solution: the Silverlight Application and a test application. This
is excellent for test-based programming, but it’s more than we need right now, so
stick with the test page.

Regardless of which option you select, Visual Studio sets up your development envi-
ronment and guesses (incorrectly, this time) that you’d like to wrap your application
in a Grid.

Controls
Silverlight 2 had more than two dozen user interface controls in beta, as shown in
Figure 7-3.

Figure 7-1. Creating a new project

198 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

Layout of the UI controls is facilitated by three panel controls, which we’ll explore in
the sections that follow: the Canvas, the StackPanel, and the Grid. The final layout
control is the Border control, which can be used to draw a border around one or
more controls.

Canvases
The Canvas enables absolute positioning of controls. The default background color
for a Canvas is transparent, and the default width and height are 0.

Every visible UI control will describe its position on the Canvas by referring to the
Canvas’s Left and Top properties (as you’ll recall from Chapter 3, these are called
attached properties). For example, the Button object might use the attached property
Canvas.Left to position itself with respect to the left border of its surrounding
Canvas:

<Canvas>
 <Button Canvas.Left="150" Canvas.Top="50"
 Content="I'm Indented!" />
</Canvas>

This will place the button 150 pixels to the right of the left border and 50 pixels
down from the top border of the immediately surrounding Canvas, as shown in
Figure 7-4.

Figure 7-2. Choosing the application type

Controls | 199

You may have noticed the apparent paradox that the Canvas defaults
to a width and height of 0 × 0 pixels, yet you often position an object
“in” the canvas (e.g., at Canvas.Left="150" Canvas.Top="50"). This
works as if the canvas had a height and width large enough to encom-
pass all its controls. In other words, you will get the expected behav-
ior even if the canvas is technically too small.

Figure 7-3. The Control Toolbox

200 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

StackPanels
StackPanels are typically combined with other layout controls. They allow you to
stack objects one on top of the other, or next to each other (like books on a shelf).

One convenience of a StackPanel is that you do not have to provide the absolute
positions of the objects it holds; the first object is positioned relative to the con-
tainer, and all others are positioned relative to the previous object declared in the
StackPanel.

This code snippet stacks a TextBlock on top of a TextBox, which in turn sits on top of
a Button, which itself sits on top of a CheckBox (shades of Yertle the Turtle!):

<StackPanel Background="Bisque" Orientation="Vertical" >
 <TextBlock Text="First Name?" HorizontalAlignment="Left"
 Margin="10,2,0,1" />
 <TextBox Width="150" Height="30" HorizontalAlignment="Left"
 Margin="10,2,0,1" />
 <Button Content="Submit!" HorizontalAlignment="Left"
 Margin="10,2,0,1" Height="30" Width="150" />
 <CheckBox Content="With Zing!" HorizontalAlignment="Left"
 Margin="10,2,0,1" />
</StackPanel>

There’s quite a bit of information in this code snippet, so let’s unpack it piece by
piece.

The top and bottom lines are the open and close element tags for the StackPanel.
This StackPanel is declared with two attributes: a BackgroundColor and an
Orientation (which must be either Vertical or Horizontal).

As with most controls, there are numerous attributes you can set. All the properties
and methods are conveniently listed in the documentation, as shown in Figure 7-5.

By setting the Orientation to Vertical, you indicate that the contents should be
stacked one on top of another rather than side by side.

Figure 7-4. Using attached properties for absolute positioning

Controls | 201

The four objects are declared within the StackPanel, and the order of their declara-
tion determines the order in which they are stacked. The TextAlignment property of
each is set to Left so that they will align along the left side, and each has its Margin
property set.

The Margin property is actually an object of type Thickness. The documentation
states that when you declare a Thickness object in XAML, you may do so in one of
three ways.

The first option is to provide a double that will be the value for the margin on all four
sides (left, top, right, and bottom) uniformly around the object. Thus, you might
write:

<Button Content="Submit!" HorizontalAlignment="Left"
Margin="100" Height="30" Width="150" />

This isolates the button with a margin of 100 pixels on either side and above and
below, as shown in Figure 7-6.

Notice that to accommodate the oversized margin, the width of the button was
compromised!

The second way to declare a Thickness (and, in this case, a Margin) is to provide the
sum of the sides and the sum of the top and bottom:

<Button Content="Submit!" HorizontalAlignment="Left"
Margin="50,20" Height="30" Width="150" />

Figure 7-5. StackPanel in the Silverlight 2 beta documentation

202 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

The sides must be equal and the top and bottom must be equal, so the effect of this
declaration is that the left and right margins are each 25 pixels and the top and bot-
tom margins are each 10 pixels.

Finally, you may declare each margin independently, as long as you do so in the
required order (shown in Figure 7-7).

That is, you must declare first the left margin, then the top, right, and bottom mar-
gins in that order. In this case, the left margin is 10 pixels, the top margin is 2, the
right margin is 0, and the bottom margin is 1.

Once you’ve aligned the four controls in the StackPanel, the StackPanel is responsi-
ble for their placement, as shown in Figure 7-8.

Notice that the StackPanel is responsible for its own background color and for stack-
ing its contents (the four controls), but each control is responsible for its own align-
ment and margins.

Figure 7-6. Using a margin of 100

Figure 7-7. Margin values

100100

100

100

Controls | 203

Horizontal StackPanels

If you want the StackPanel to align all the controls into a single row rather than one
on top of another, you’ll need to make a few changes. Not all controls default to
aligning in the same way (top, center, or bottom), so in this example you’ll explicitly
set the vertical alignment of the controls to Center, just as you previously set their
horizontal alignment to Left. You’ll also set the margins to provide a bit of space
between each object, as the default is for them to abut one another:

<StackPanel Background="Bisque" Orientation="Horizontal" >
 <TextBlock Text="First Name?" VerticalAlignment="Center"
 Margin="10,2,0,1" />
 <TextBox Width="150" Height="30" VerticalAlignment="Center"
 Margin="5,2,0,1" />
 <Button Content="Submit!" VerticalAlignment="Center"
 Margin="10,2,0,1" Height="30" Width="150" />
 <CheckBox Content="With Zing!" VerticalAlignment="Center"
 Margin="10,2,0,1" />
</StackPanel>

Note that the left margin on the TextBox is set to 5 (rather than 10) pixels. This
brings it a bit closer to the TextBlock that serves as its label, as shown in Figure 7-9.

Grids
Grids enable easy placement of controls by providing a table-like structure. You
declare rows and columns, then place controls into specific row/column locations
using attached properties.

Figure 7-8. Stacked controls

204 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

While you can tweak your Grids to achieve very precise placement, the fundamental
use of Grids is extremely straightforward: you simply declare a Grid, declare its rows
and columns, and then start placing controls into cells.

To see this at work, start a new Silverlight project called SimpleGrid. Note that
Visual Studio automatically creates a Grid for you. The code that follows names the
Grid and defines the rows and columns. Notice that you can also designate the mini-
mum, maximum, and/or exact size for each row and column:

<Grid x:Name="LayoutRoot" Background="Beige" ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="15" /> <!--Margin-->
 <RowDefinition MinHeight="10" MaxHeight="50" />
 <RowDefinition MinHeight="10" MaxHeight="50" />
 <RowDefinition MinHeight="10" MaxHeight="50" />
 <RowDefinition MinHeight="10" MaxHeight="50" />
 <RowDefinition Height="*" />
 <RowDefinition Height="15" /> <!--Margin-->
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10" /> <!--0 Margin-->
 <ColumnDefinition Width="200" /> <!--1 Left -->
 <ColumnDefinition Width="15" /> <!--2 Padding-->
 <ColumnDefinition Width="*" /> <!--3 Right-->
 <ColumnDefinition Width="10" /> <!--4 Margin-->
 </Grid.ColumnDefinitions>

The declaration of this Grid sets ShowGridLines to True. This causes the gridlines to
be visible, which can be very handy when you’re laying out your Grid (see
Figure 7-10).

Figure 7-9. Horizontally stacked controls

Controls | 205

The first block within the Grid defines the rows. The first and last rows each have a
fixed height of 15 pixels and define the top and bottom margins. All the other rows
(except the penultimate) define their minimum and maximum heights and are set by
the Grid based on the available room within those parameters. The next-to-last row
has its height set to *, meaning it will take all the remaining room (this is why it’s
larger).

Figure 7-10. Row and column definitions

206 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

The second block within the Grid defines the sizes for the columns. In this case, all
the columns except the next-to-last have fixed widths. Numbering the columns, as is
done here in the comments, makes placing objects in their cells trivial.

Sizing rows and columns

To provide the most flexibility, Grid columns and rows are sized by GridLength
objects. Each GridLength object has an associated GridUnitType, which in turn allows
you to choose among:

Auto
The size is based on the size properties of the object being placed in the Grid.

Pixel
An exact size in pixels is specified.

Star
The size is based on a weighted proportion of the available space.

In proportional sizing, the size value of a column or row is expressed in XAML as *.
However, you can assign twice the available space to one column or row as another
by using 2* (similarly, you could give two columns or rows a 5:7 ratio by using the
values 5* and 7*). If you combine this with HorizontalAlignment and
VerticalAlignment, which default to a value of Stretch (indicating that the cell will
fill the available area), you can assign the available space in whatever proportions
you choose without assigning absolute values.

Placing controls into cells

The first four controls you’ll add will prompt for and accept the user’s first and last
names. You’ll also give the TextBoxes a background color:

<TextBlock Text="First Name" HorizontalAlignment="Right"
 Grid.Column="1" Grid.Row="1" VerticalAlignment="Bottom"/>
<TextBox x:Name="First" Width="150" Height="30"
 HorizontalAlignment="Left" Grid.Column="3" Grid.Row="1"
 VerticalAlignment="Bottom" Background="Bisque"/>

<TextBlock Text="Last Name" HorizontalAlignment="Right"
 Grid.Column="1" Grid.Row="2" VerticalAlignment="Bottom"/>
<TextBox x:Name="Last" Width="150" Height="30"
 HorizontalAlignment="Left" Grid.Column="3" Grid.Row="2"
 VerticalAlignment="Bottom" Background="Bisque"/>

The TextBlocks each serve as prompts to the TextBoxes. Since you’ll need to access
the TextBoxes programmatically, they are each named. To ensure correct alignment,
all the controls have their VerticalAlignment properties set to Bottom.

Events and Event Handlers | 207

In addition, all the controls in the left column are aligned to the right, and all the
controls in the right column are aligned to the left, so they abut the padding col-
umns. Running the partially complete program (leaving the gridlines on) gives you
the screen shown in Figure 7-11.

Now let’s add two checkboxes after a prompt. If you just put the two checkboxes
into the same cell in the Grid they’d be placed one on top of the other, so instead
you’ll put them into a StackPanel, which will be responsible for setting them next to
one another:

<TextBlock Text="Technical Skills " HorizontalAlignment="Right"
 Grid.Column="1" Grid.Row="3" VerticalAlignment="Bottom"/>

<StackPanel Orientation="Horizontal" VerticalAlignment="Bottom"
 HorizontalAlignment="Right" Grid.Column="3" Grid.Row="3" >
 <CheckBox x:Name="DotNet" Content=".NET" Width="50" Height="30" />
 <CheckBox x:Name="CSharp" Content="C#" Width="50"
 Height="30" Margin="5,0,0,0" />
 <CheckBox x:Name="Silverlight" Content="VB" Width="50"
 Height="30" Margin="5,0,0,0" />
</StackPanel>

Now set the ShowGridLines property of the Grid to False and run the program again.
The effect is shown in Figure 7-12.

Events and Event Handlers
There are two ways to declare event handlers in Silverlight 2. The first is directly in
the XAML:

<Button x:Name="myPushyButton" Content="Click Me Please" Height="30"
 Width="100" Grid.Column="1" Grid.Row="4" Click="myPushyButton_Click"
/>

Figure 7-11. Grid alignment

208 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

When you declare a button in the XAML, IntelliSense is available to help you create
the event handler name (as shown in Figure 7-13).

If you use IntelliSense to wire the event handler, a skeleton event handler method is
created in the code-behind (Page.xaml.cs):

private void myPushyButton_Click(object sender, RoutedEventArgs e
{
 myPushyButton.Width *= 1.25;
 myPushyButton.Content = "Thanks, I needed that!";
}

The first thing to notice is that the name of the method is identical to that declared in
the XAML.

The second is that this method follows the pattern of all .NET event handlers: it
returns void and takes two parameters. The first is of type object and contains a ref-
erence to the object that raised the event. The second is of type EventArgs, or a type
that derives from EventArgs (in this case, RoutedEventArgs). Also notice that nowhere
in the code-behind do you see anything like this:

Button myPushyButton = GetTheButtonIDeclaredinTheXAML

Any object declared in the XAML is available in the code-behind (and fully type-safe)
as soon as you save the XAML file. This is wonderfully convenient.

Figure 7-12. The completed Grid

Figure 7-13. Inline event handler

Events and Event Handlers | 209

In this case, the actual event handler grows the width of the button by 125% and
then changes its contents, as shown in Figure 7-14.

Declaring Event Handlers in Code
We admit it: we have a strong preference for declaring all event handlers in code. We
believe it provides better encapsulation, making for more scalable and more main-
tainable code. However, this is a personal opinion.

We’ve settled into a pattern of wiring up the Loaded event in the Page’s constructor
and all the other events in the OnLoaded event handler. Thus, we strip out the event
from the Button’s XAML and modify the code-behind as shown in Example 7-1.

Figure 7-14. After clicking MyPushyButton

Example 7-1. Code-behind for event handlers

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 myPushyButton.Click +=new RoutedEventHandler(myPushyButton_Click);

 }

210 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

In this example the constructor adds the handler for the Loaded event, which fires
when the page is loaded. That event handler in turn adds the handler for when the
button is clicked. Putting all the event handler code in the code-behind makes it easier
to locate and maintain, and it means only one file is affected if your event-handling
logic needs to change.

The Content Property
Have you noticed that where you might expect Button to have a Text property,
instead it has a Content property? This allows a Button to contain more than just text:
in fact, it can contain almost anything, including other controls. We’ll leave a discus-
sion of why you might want to do this—and of the fact that doing so can make for
ugly, unusable controls—for another time. The fact is you can, and there is no doubt
that at times this will be a good thing.

As a quick illustration, take a look at Example 7-2. This example is called Bubbling
(the reason for its name will be made clear in the next section).

 private void myPushyButton_Click(object sender, RoutedEventArgs e)
 {
 myPushyButton.Width *= 1.25;
 myPushyButton.Content = "Thanks, I needed that!";
 }
}

Example 7-2. Button with CheckBoxes in its contents

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="10" />
 <RowDefinition Height="50" />
 <RowDefinition Height="10" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10" />
 <ColumnDefinition Width="250" />
 <ColumnDefinition Width="15" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="10" />
 </Grid.ColumnDefinitions>

 <Button x:Name="SetFeatures" Height="40" Width="250"
 Background="Blue" Grid.Row="1" Grid.Column="1">
 <Button.Content>
 <StackPanel x:Name="Features" Orientation="Horizontal"
 VerticalAlignment="Bottom" >

Example 7-1. Code-behind for event handlers (continued)

Events and Event Handlers | 211

The result is a button that contains four checkboxes. The checkboxes can be checked
and the button can be pressed, as shown in Figure 7-15.

Property elements

Take a careful look at the declaration of the Button. Note that the Content property is
called out explicitly (Button.Content). This is called a property element. Content is
often marked as an inline property of Button, but you can use this alternative syntax
if you wish to explicitly fill the content with its own elements.

Thus, you can write code like this:

<Button Content="hello" />

Or like this:

<Button>
 <Button.Content>
 <TextBlock Text="Hello" />
 </Button.Content>
</Button>

In Example 7-2, within the Content property element a StackPanel is created, and
within the StackPanel are the four CheckBox declarations (the first has a margin set to
keep it from abutting the left edge of the StackPanel).

 <CheckBox x:Name="Soft2" Content="Soft" Width="50"
 Height="40" Margin="5,0,0,0" />
 <CheckBox x:Name="Cozy" Content="Cozy" Width="50"
 Height="40" />
 <CheckBox x:Name="Warm" Content="Warm" Width="60"
 Height="40" />
 <CheckBox x:Name="Happy" Content="Happy" Width="60"
 Height="40" />
 </StackPanel>
 </Button.Content>
 </Button>
 <TextBlock x:Name="FeaturesEffects" Grid.Row="1" Grid.Column="3"
 Text="Waiting...." VerticalAlignment="Center"
 HorizontalAlignment="Left" />

</Grid>

Figure 7-15. Button with checkboxes

Example 7-2. Button with CheckBoxes in its contents (continued)

212 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

Creating Controls Dynamically
In Silverlight 2, anything you can create in XAML you can create in code.

Thus, where you might write this in XAML:

<Button x:Name="myButton" Content="Hello" />

You can also write this in code:

Button myButton = new Button();
myButton.Content = "Hello";

You could create all of your objects in code, but even though it takes some getting
used to, writing them in XAML has tremendous advantages. The most significant is
that XAML is highly toolable. A toolable language lends itself to being manipulated
and maintained by tools such as Expression Blend and Visual Studio 2008, and that
makes for programs that are much easier to maintain.

That said, you will still need to create objects dynamically when you can’t know at
design time which objects, or how many, are required. This is especially true with
data-driven applications, where the design of the form or the user interface will be
dictated by user interactions and lookups in a database.

In the next example, you’ll ask the user which platform he is building for (“Web” or
“Desktop”) and then dynamically create checkboxes based on the user’s choice, as
shown in Figure 7-16.

If the user clicks on “Web,” you dynamically create two checkboxes in a StackPanel
and add them to the righthand column of the Grid. If the user clicks on “Desktop,”
you clear that column and fill the StackPanel with two new checkboxes.

The XAML lays out the controls that are not dynamic:

Figure 7-16. Dynamic creation of controls

Creating Controls Dynamically | 213

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="10" />
 <RowDefinition Height="50" />
 <RowDefinition Height="10" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10" />
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="15" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="10" />
 </Grid.ColumnDefinitions>
 <Border BorderBrush="Black" BorderThickness="1"
 Grid.Column="1" Grid.Row="1" >
 <StackPanel x:Name="Choice" Orientation="Horizontal" >
 <RadioButton x:Name="Web" Content="Web"
 Width="60" Height="30" Margin="10,0,0,0" />
 <RadioButton x:Name="Desk" Content="Desktop"
 Width="80" Height="30" />
 </StackPanel>
 </Border>
</Grid>

Notice that the only controls created are the two radio buttons in the lefthand column.

All the action is in the event handlers for these radio buttons. To keep things simple,
you’ll give each radio button its own event handler and declare an enumerated con-
stant as a flag to indicate which is pressed:

private enum Platform { Web, Desktop } ;
private StackPanel dynamicStackPanel = null;
public Page()
{
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
}

void Page_Loaded(object sender, RoutedEventArgs e)
{
 Web.Checked += new RoutedEventHandler(Web_Checked);
 Desk.Checked += new RoutedEventHandler(Desk_Checked);
}

void Desk_Checked(object sender, RoutedEventArgs e)
{
 SetChoices(Platform.Desktop);
}

void Web_Checked(object sender, RoutedEventArgs e)
{
 SetChoices(Platform.Web);
}

214 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

Here is the code for the SetChoices() method:

private void SetChoices(Platform platform)
{
 if (dynamicStackPanel != null)
 dynamicStackPanel.Children.Clear();

 dynamicStackPanel = new StackPanel();
 dynamicStackPanel.Orientation = Orientation.Horizontal;
 dynamicStackPanel.SetValue(Grid.RowProperty, 1);
 dynamicStackPanel.SetValue(Grid.ColumnProperty, 3);
 if (platform == Platform.Desktop)
 {
 CheckBox cb = new CheckBox();
 cb.Content = "Winforms";
 cb.Height = 30;
 cb.Width = 90;
 dynamicStackPanel.Children.Add(cb);
 cb = new CheckBox();
 cb.Content = "WPF";
 cb.Height = 30;
 cb.Width = 50;
 dynamicStackPanel.Children.Add(cb);
 }
 else
 {
 CheckBox cb = new CheckBox();
 cb.Content = "AJAX";
 cb.Height = 30;
 cb.Width = 60;
 dynamicStackPanel.Children.Add(cb);
 cb = new CheckBox();
 cb.Content = "Silverlight";
 cb.Height = 30;
 cb.Width = 90;
 dynamicStackPanel.Children.Add(cb);
 }
 LayoutRoot.Children.Add(dynamicStackPanel);
}

Making the StackPanel a member variable makes it trivial to clear out its children as
we switch between “Desktop” and “Web”:

 if (dynamicStackPanel != null)
 dynamicStackPanel.Children.Clear();

The StackPanel is then set up for either case, “Web” or “Desktop”:

 dynamicStackPanel = new StackPanel();
 dynamicStackPanel.Orientation = Orientation.Horizontal;
 dynamicStackPanel.SetValue(Grid.RowProperty, 1);
 dynamicStackPanel.SetValue(Grid.ColumnProperty, 3);

Data Binding | 215

Notice how the attached properties are handled in code, using the SetValue()
method of the StackPanel and passing in the attached property (Grid.RowProperty)
and the value to which it should be set.

Once that is done, you create the controls based on which button was chosen,
dynamically creating the checkboxes, setting their properties, and adding them to the
Children collection of the StackPanel:

 cb = new CheckBox();
 cb.Content = "WPF";
 cb.Height = 30;cb.Width = 50;
 dynamicStackPanel.Children.Add(cb);

Once all the children are added to the StackPanel, you must add the StackPanel to
the Grid:

LayoutRoot.Children.Add(dynamicStackPanel);

That’s all it takes; adding the CheckBox controls to the StackPanel and then the
StackPanel to the Grid makes the checkboxes instantly visible and usable.

Data Binding
A data binding is a connection between the user interface and a business object or
other data provider. The user interface object is called the target, and the provider of
the data is called the source.

Data binding assists with the separation of the user-interface layer of your applica-
tion from its other layers (business objects, data, and so forth).

Separation of the UI layer from the underlying layers is accomplished through a
Binding object, which has two modes: one-way and two-way. One-way binding dis-
plays data from the source in the target; two-way binding also updates the source in
response to changes made in the user interface.

Binding to a Business Object
To see one-way and two-way binding at work, create a new Silverlight Application
named BookDisplay. Add to the application a Book.cs file, which will represent the
business layer.

What separates a Silverlight business object from one created for a platform like
ASP.NET is that you want the business object to participate in one-way or two-way
binding with the UI layer. If you want the UI to be updated every time the business
object changes (for example, if the quantity on hand changes), the business object
must implement the INotifyPropertyChanged interface. This interface requires the
class to have an event of the type PropertyChangedEventHandler (named

216 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

PropertyChanged by convention). Implicit in supporting binding, however, is that
your business object must, by convention, fire the PropertyChanged event when any
property that is tied to a UI control is set or cleared.

Place the code in Example 7-3 in the Book.cs file.

Example 7-3. Book class

using System.ComponentModel;
using System.Collections;
using System.Collections.Generic;

namespace BookDisplay
{
 public class Book : INotifyPropertyChanged
 {
 private string bookTitle;
 private string bookAuthor;
 private int quantityOnHand;
 private bool multipleAuthor;
 private string authorURL;
 private string authorWebPage;
 private List<string> myChapters;

 // implement the required event for the interface
 public event PropertyChangedEventHandler PropertyChanged;

 public string Title
 {
 get { return bookTitle; }
 set
 {
 bookTitle = value;
 NotifyPropertyChanged("Title");
 }
 }
 public string Author
 {
 get { return bookAuthor; }
 set
 {
 bookAuthor = value;
 NotifyPropertyChanged("Author");
 }
 }

 public List<string> Chapters
 {
 get { return myChapters; }
 set
 {
 myChapters = value;

Data Binding | 217

Note that each of the properties must use its full form and have a backing variable
because you do work in the Setter; specifically, you call NotifyPropertyChanged,
which checks whether the PropertyChanged event is registered (presumably by the
UI). If it is, it fires the event with a new PropertyChangedEventArgs object that con-
tains the name of the property.

The user interface for this application doesn’t contain anything new: it consists of
two columns, with TextBlocks for prompts and a ListBox, a CheckBox, a TextBox, and
a Button for interacting with the user. We’ll take a closer look at the Button after the
listing, presented in Example 7-4 (I’ve left out the row and column definitions to save
space).

 NotifyPropertyChanged("Chapters");
 }
 }

 public bool MultipleAuthor
 {
 get { return multipleAuthor; }
 set
 {
 multipleAuthor = value;
 NotifyPropertyChanged("MultipleAuthor");
 }
 }

 public int QuantityOnHand
 {
 get { return quantityOnHand; }
 set
 {
 quantityOnHand = value;
 NotifyPropertyChanged("QuantityOnHand");
 }
 }

 // factoring out the call to the event
 public void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
 }
}

Example 7-3. Book class (continued)

218 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

Example 7-4. XAML for binding data

<Grid x:Name="LayoutRoot" Background="White">

 <TextBlock x:Name="TitlePrompt" Text="Title: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="0" Grid.Column="0" />
 <TextBlock x:Name="Title"
 Text="{Binding Title, Mode=OneWay }"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Grid.Row="0" Grid.Column="1" />

 <TextBlock x:Name="AuthorPrompt" Text="Author: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="1" Grid.Column="0" />
 <TextBlock x:Name="Author"
 Text="{Binding Author, Mode=OneWay }"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Grid.Row="1" Grid.Column="1" />

 <TextBlock x:Name="ChapterPrompt" Text="Chapters: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="2" Grid.Column="0" />

 <ListBox x:Name="Chapters"
 ItemsSource="{Binding Chapters, Mode=OneWay}"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Height="80" Width="200"
 Grid.Row="2" Grid.Column="1" />

 <TextBlock x:Name="MultipleAuthorPrompt"
 Text="Multiple authors?: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="3" Grid.Column="0" />

 <CheckBox x:Name="MultipleAuthor"
 IsChecked="{Binding MultipleAuthor, Mode=TwoWay}"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Grid.Row="3" Grid.Column="1" />

Data Binding | 219

Each of the bound fields uses the new Binding syntax: within curly braces, you use
the keyword Binding, followed by the name of the public property to which the con-
trol will be bound and the Mode setting (which defaults to OneWay). For example:

 <TextBlock x:Name="Title"
 Text="{Binding Title, Mode=OneWay }"

You do not, at this point in the design, know what object will supply the value; you
know only that in the case of this TextBlock it will have a Title property. That allows
you to work your way through a collection of objects that have the bound property
and display each.

For an object with two-way binding, the only difference is in the Mode setting:

 <TextBox x:Name="QuantityOnHand"
 Text="{Binding QuantityOnHand, Mode=TwoWay}"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Height="30" Width="90"
 Grid.Row="4" Grid.Column="1" />

Recall that when the user changes a control set to two-way binding, the source object
is updated.

Finally, some controls are populated from a collection:

 <ListBox x:Name="Chapters"
 ItemsSource="{Binding Chapters, Mode=OneWay}"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Height="80" Width="200"
 Grid.Row="2" Grid.Column="1" />

Here, you are going to bind the ListBox’s ItemSource to a specific property in the
DataSource (in this case, Chapters).

 <TextBlock x:Name="QOHPrompt"
 Text="Quantity On Hand: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="4" Grid.Column="0" />

 <TextBox x:Name="QuantityOnHand"
 Text="{Binding QuantityOnHand, Mode=TwoWay}"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Left"
 Height="30" Width="90"
 Grid.Row="4" Grid.Column="1" />

</Grid>

Example 7-4. XAML for binding data (continued)

220 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

DataContext
At this point, you’ve told the “Title” control that it will bind to the Title property,
but you haven’t told it which object to bind to. The DataContext object is the spe-
cific book, which is chosen at runtime and assigned to the DataContext property of
the framework element (in this case, the TextBlock) so that it knows “I get the Title
from this book.”

DataContext objects can be inherited down the UI tree. Thus, you can set the
DataContext for a Grid, and all the controls in that Grid will have access to it
(unless they set their own). You’re going to set the DataContext on the Grid and not
on each of the controls, though you could of course assign a specific DataContext to
any given control or set of controls.

The Event Handlers
The Page_Loaded event handler takes three actions: it creates an instance of a Book,
initializes that Book with data (as if it retrieved it from a database or a web service),
and then binds that Book to the Grid as its DataContext. Once that is done, the data
will be displayed by the Bindings, matching the properties in the Book to the proper-
ties named in the Bindings:

void Page_Loaded(object sender,
 RoutedEventArgs e)
{
 Book book = new Book();
 InitializeProgramming(book);
 LayoutRoot.DataContext = book;
}

private void InitializeProgramming(Book b)
{
 b.Title = "Programming Silverlight";
 b.Author = "Jesse Liberty, Tim Heuer";
 b.MultipleAuthor = true;
 b.QuantityOnHand = 20;
 b.Chapters = new List<string>()
 {
 "Introduction", "Controls",
 "Events", "Data", "Styles and Templates",
 "Media", "Graphics", "Text", "Animation", "Custom Controls",
 "Network", "Web Services", "App Model"
 };
}

InitializeProgramming() is a helper (hack!) method to mimic retrieving this infor-
mation from the database. The result is that the data in the Book object is bound to
the controls as shown in Figure 7-17.

Styling Controls | 221

Styling Controls
Programmers like to tinker with the look of controls. There are two ways to do so in
Silverlight: minor adjustments can be made with styles, and wholesale redesigns with
templates.

To illustrate how to use styles, we’ll start with the program you just wrote. You can
just make a copy, but the safest way is to create a new project and copy the XAML
and the classes into the new namespace. Here are the steps:

1. Create a new project (let’s call it BookStyles).

2. In the original Page.xaml, collapse the Grid as shown in Figure 7-18 and copy it.

3. In the new Page.xaml, collapse the Grid and paste the old Grid over it.

Figure 7-17. The bound Book displayed

Figure 7-18. Collapse and copy the Grid

222 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

4. Back in the original Page.xaml.cs, collapse and copy the Page class (as Figure 7-19
shows) and paste it into the new project. Then copy and paste the using statements.

5. In the new project, create a Book.cs file and then collapse and copy the Book class
from the old project to the new one. Then copy and paste the using statements.

6. Run the new project to ensure that everything is working properly.

Applying Styles Inline
Let’s start by adding some inline styling to the TextBlock for the “Title” prompt:

<TextBlock x:Name="TitlePrompt"
 Text="Title: "
 VerticalAlignment="Bottom"
 HorizontalAlignment="Right"
 Grid.Row="0" Grid.Column="0"
 FontFamily="Comic Sans MS"
 FontSize="16"
 FontWeight="Bold"
 Foreground="Red" />

Figure 7-19. Collapse and copy the Page class

Styling Controls | 223

The effect is shown in Figure 7-20. This is a very simple example, but rest assured
that the capabilities of the platform are extensive.

Assuming you like the look of the “Title” prompt, you may want to add the same styl-
ing to “Author” and the other prompts. That could lead to quite a bit of work, and if
you later decide to change the font, for example, you’ll have to change it everywhere.
Applying styles inline does not scale well, but fortunately, there’s an alternative.

Creating and Using Style Objects
Style objects are reusable resources. You can attach them to any container, or you can
apply them to a whole project by placing them in the Resources section of App.xaml.
Each Style object consists of a Style element with attributes for:

• The target type (the element type to which you’ll apply the style)

• A Key (the name that you’ll use to refer to the style)

• Zero or more Setters

A Setter object represents a style attribute. Each Setter consists of a Setter element
with Property/Value pairs, where the Property is the style property you are setting
and the Value is the value to be set for that property.

You can see how you can move from inline styles to Style objects quite clearly in
Figure 7-21, where there is a 1:1 correspondence between the inline styles and the
Setter properties contained in the global Style objects.

Once the global style is set, you can replace all the inline styles in the TextBlocks with
references to the Style object, making for code that is far easier to scale and maintain:

<TextBlock x:Name="TitlePrompt"
 Text="Title: "
 Grid.Row="0" Grid.Column="0"
 Style="{StaticResource TextBlockStyle}" />
<TextBlock x:Name="AuthorPrompt" Text="Author: "
 Grid.Row="1" Grid.Column="0"
 Style="{StaticResource TextBlockStyle}" />

Of course, you would rarely do this by hand, as Expression Blend makes this work
fast, easy, and reliable.

Figure 7-20. Adding inline style attributes

224 | Chapter 7: Introducing Silverlight: A Richer Web UI Platform

Figure 7-21. Moving from inline styles to Style objects

PART II

II.Interlude on Design Patterns

Chapter 8, Implementing Design Patterns with .NET 3.5

227

Chapter 8 CHAPTER 8

Implementing Design Patterns with
.NET 3.58

Though you may not realize it, you are actually holding two books in your hand.
(Don’t panic, you only have to pay for one!) They exist in the same space, at the
same time; not side by side but in the same words, the same pages, and the same illus-
trations; separated not by chapters, headings, or content, but only by perspective.

One book is a programmer’s guide to a set of new technologies. The second book
describes how .NET 3.5 can be viewed as an integrated set of technologies that facili-
tates the key architectural patterns we’ve all been trying to implement for the past
decade.

You don’t have to accept the latter premise to read this book, but it may give you
some new options. In the long run, incorporating these architectural patterns into
your programming may be as revolutionary as the move from procedural to object-
oriented programming.

Here is the primary theory behind this book, in a nutshell: you can
approach .NET 3.5 as a set of new, individual technologies for presen-
tation, communication, and workflow that includes dramatic client-
side performance enhancements for web development; additionally,
you can approach .NET 3.5 as an integrated framework designed to
help you move beyond object-oriented programming and step up to
object-oriented design based on high-level industry-standard architec-
tural patterns.

These perspectives are not mutually exclusive; you can (and we hope
you will) move between them. However, you may choose to ignore the
patterns, which is also perfectly reasonable. It’s up to you—it’s your
book!

228 | Chapter 8: Implementing Design Patterns with .NET 3.5

.NET 3.5 Fosters Good Design
We believe that .NET 3.5 fosters the creation of high-quality applications by
enabling easy implementation of industry-standard architectural design patterns. The
most important of these are:

• The n-tier pattern, which encourages separation of the user interface from the
business objects and the persistence (data) layer

• The Model-View-Controller (MVC) pattern, which has recently been integrated
into the ASP.NET Framework as an optional set of classes enabling you to
implement MVC design through Visual Studio

• The Observer pattern, also known as Publish and Subscribe

• The Factory Method pattern, based on abstracting out the creation of objects

• The Chain-of-Command pattern, which separates command objects from pro-
cessing objects

• The Singleton pattern, which ensures that at most one instance of a class can ever
exist

A key premise of this book is that the NET 3.5 class libraries represent Microsoft’s
first .NET release to truly foster usage of the design patterns and best practices that
Microsoft and the software development community have collectively agreed make
for the most robust applications.

Undermining Good Design?
A case can be made that previous versions of .NET, and the Microsoft Foundation
Class Library (MFC) before them, actually undermined the best practices and archi-
tectural patterns we all claimed to be implementing.

For example, an early architectural pattern that many programmers found valuable
was the MVC pattern, which separates the model (the software-based representation
of the problem you are trying to solve) from the view (the presentation to the user)
and the controller (which responds to events such as button presses and system
events).

.NET has generally made this pattern nearly impossible to implement, because it
spreads traditional controller responsibilities among the operating system, the frame-
work, the control classes, and the event handlers. Furthermore, many .NET pro-
grams didn’t really have much of a model; they just had a view and some data to
store.

A second popular approach was to build “n-tier” (most commonly three-tier) appli-
cations. The three tiers were supposed to be presentation, business logic, and persis-
tence (data). Once again, however, it was easy for the business logic layer to get lost
and to end up with just two tiers: presentation and data.

.NET 3.5 Fosters Good Design | 229

For many .NET programmers, it isn’t even clear what the business layer does. Busi-
ness objects seem to have more value in theory than in practice, and they may seem
redundant with the information held in the controls or in the data objects. (“We
don’t need no stinkin’ business objects!”)

To anticipate a fuller discussion later in this chapter, however, ask yourself this:
when a user logs in, if you have code to decide which page that user should be
directed to based on her “role” (e.g., Employee versus Supervisor), where should that
code reside? Three-tier design argues that it does not belong in the presentation layer
(though that is where it often ends up), and it can’t reside in the data layer (though
that is where it will be stored). Rather, it should reside in a class that encapsulates
that knowledge. Such a class is part of the model—i.e., the business layer.

.NET seemed to foster web (and even Windows) applications in which the presenta-
tion layer (the controls) was connected directly to the persistence layer (the data-
base) through ADO.NET objects (especially with the advent of data source controls).

However, the direct connection many programmers built between the presentation
layer and the data layer led to tight coupling between controls such as DataGrids and
data objects such as DataSets, and as one layer changed, the other layer would break.
This was exactly the problem the n-tier pattern was designed to solve, and it repre-
sented a major obstacle to creating enterprise-level applications.

Please do not misread this; many .NET (and MFC, and even C) programmers have
managed to create very well-designed n-tier or MVC applications in the past. How-
ever, the tools they were using were not facilitating this design; these programmers
were succeeding in spite of the framework.

Perhaps one of the most egregious examples of the framework fighting industry-
standard best design practices was seen in the implementation of web services. With
the very best of intentions, Microsoft decided to “ease” programmers into web ser-
vices, “hiding” the SOAP and XML aspects by creating a Remote Procedure Call
(RPC) metaphor in which programmers were encouraged to think of the web service
as a set of methods represented by a proxy on the client. The client called the methods
through the proxy, and presto, the results of the method were passed to the client.
At no time did the developer have XML under his fingernails.

Unfortunately, web services were designed for data exchange, and as every program-
mer knows, the first job in creating data exchange is to work out the contract—in
this case, to agree on the Web Services Description Language (WSDL) document.
Microsoft’s tools did not facilitate this; in fact, just the opposite was true. There was
no easy way for the provider and the consumer to start with WSDL design and then
implement the classes from that design. The illusion of RPCs made the transition to
web services easy, but like all illusions, it soon got in the way of developers truly
understanding the technology and accomplishing more complex business goals.

230 | Chapter 8: Implementing Design Patterns with .NET 3.5

Standing on the Shoulders of Giants
As World War II raged, the Blue Funnel Shipping Company transported goods
across the Atlantic from the United States to England. It soon became a prime target
for German U-boats. To the dismay of Blue Funnel’s management, many of the com-
pany’s younger sailors fared poorly under the duress and rigors of ship life, war, and
lifeboat rescues. They quickly came to understand that youth and technical training
were no match for experience.

Blue Funnel’s management recognized that they needed to do something to increase
the survival rates of their younger sailors. In the end, they hired a man named Kurt
Hahn and helped to fund the creation of an organization that still exists today. That
organization, Outward Bound, created a 28-day course designed to deliver experien-
tial education to supplement the technical training the young sailors were getting at
the academies.

What was true in the past for sailors facing German U-boats is true today for pro-
grammers facing new technologies: experience matters.

In software development, the experience of an industry veteran still counts for more
than youth and technical know-how. Consider the task of building an online bank-
ing system. The first time you tackle such a project, you have no real appreciation of
the number of things that can, and do, and will go wrong. In fact, you won’t even
know to ask the right questions about the project, because there is no textbook or
technical manual that covers the pitfalls and unexpected problems that can arise
when working with multiple legacy systems all at once.

Software Design Patterns
Software design patterns attempt to deliver the experience acquired through years of
work on software development projects in a compressed time frame (usually the
length of time required to read and digest a design patterns book). They enable
developers to leverage the experience of others while avoiding the pain of failed soft-
ware projects.

Software design patterns originated in the world of architecture. In the late 1970s, an
architect and civil engineer named Christopher Alexander (from Alex’s hometown of
Berkeley, California) came to the conclusion that people knew way more about the
buildings they needed than architects did. Alexander felt that certain design con-
structs, when used time and time again, led to the desired effects. He documented
and published the wisdom and experience he gained so that others could benefit.

Fortunately for us in the software world, Kent Beck and Ward Cunningham began
experimenting with the idea of applying patterns to programming and presented their

The N-Tier Pattern | 231

results at the OOPSLA conference in 1987. After this conference, Beck, Cunningham,
and others continued with this work.

Design patterns gained popularity among working programmers after the book
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma et al.
(Addison-Wesley), was published in 1994.

In many companies that were doing cutting-edge software development, this book
quickly rose to the top of employees’ reading lists. That same year, the first Pattern
Languages of Programs (PLOP) conference was held; the following year, the Port-
land Pattern Repository was set up for documentation of design patterns.

Since then, design patterns have languished somewhat, often observed more in spirit
than in practice. In part this was because few development environments were “pat-
tern friendly.” With the release of .NET 3.5, however, we now have a framework
that supports and, to a degree, encourages and integrates many of the core design
patterns documented by the Design Patterns community.

In this chapter we’re going to describe a few key patterns and provide you with C#
implementations that you can carry forward in your software development projects.

The N-Tier Pattern
Microsoft has been committed to n-tier development for a very long time. It was the
heart of the now-deprecated Distributed interNet Architecture (DNA) introduced in
1999, and it remains the heart of .NET today.

As noted earlier, n-tier really means “three or more” tiers. The “required” three are
the presentation (user interface), business logic, and persistence (data) layers (see
Figure 8-1).

It is possible, of course, to have many more than three tiers. For example, some
developers find it useful to break up the application layer into a workflow and a rules
layer, and to break up the persistence layer into a data layer that exists in the applica-
tion and a data layer that is implemented in stored procedures and thus exists on the
database server. Such an architecture is illustrated in Figure 8-2.

The key to solid n-tier development is clean separation between the layers. The
presentation-layer objects should know as little as possible about the internals of
the business objects, and they certainly should know nothing about how the data
they represent is persisted.

The arguments for this decoupling between the layers only grow stronger as we face
a rapidly changing and evolving development environment. The presentation options
are proliferating more quickly than we can learn how to code for them, and the kinds
of data (and the volume of data) that we must present are expanding exponentially.

232 | Chapter 8: Implementing Design Patterns with .NET 3.5

We are no longer in the position of just extracting data from a database and present-
ing it as a simple web form. Now, we are just as likely to be aggregating data from
mail messages, spreadsheets, XML documents, queries from various databases, and
values retrieved from web services, and presenting them both over the Web and on
mobile devices. Furthermore, all of this is mediated by business rules that determine
which users have access, editing, and manipulation rights and takes place in an envi-
ronment in which the tools and the specifications are in a near-constant state of flux.

The MVC Pattern
Wikipedia attributes the Model-View-Controller architectural pattern to Trygve
Mikkjel Heyerdahl Reenskaug, who developed it in 1979 while working on Small-
talk at Xerox PARC.

Figure 8-1. Typical three-tier architecture

The MVC Pattern | 233

The key concept in this pattern is that you start with a model—that is, a representa-
tion of the problem domain. The model includes the state of the application and its
data; it focuses on the structure of the data and how it will be manipulated.

The second key concept in the MVC pattern is the view, which is how the model is
presented to the user (i.e., the user interface). The view typically includes controls
with which the user interacts (drop-down lists, buttons, etc.).

The third and final key concept is (you guessed it!) the controller, which responds to
user actions (and other events) and mediates the interaction between the model and
the view, possibly modifying one and/or the other. For example, pressing a button
may cause the controller to send a message to the model, thereby changing the state
of the model. This may in turn cause the controller to send another message, this
time back to the view, updating the view to represent the new state of the model.

Figure 8-2. Possible n-tier architecture

234 | Chapter 8: Implementing Design Patterns with .NET 3.5

The ASP.NET MVC Framework
As stated earlier in this chapter, in most of .NET (including some of .NET 3.5), MVC
is not easily implemented, as the controller’s responsibilities are spread out among
the event handlers, the framework, the CLR, and the operating system. Instead,
Microsoft has emphasized the n-tier approach, which more clearly separates the
model into business objects and persistence objects (which it provides in the form of
the new ADO.NET class libraries, like the Entity Framework).

Be sure you have the ASP.NET 3.5 Extensions Preview (or better)
installed. You can get it from http://tinyurl.com/393boh. You will also
want the MVCToolkit, which can be found at http://tinyurl.com/
2mmzdq.

The MVCToolkit provides some nice widgets that will speed develop-
ment of the application. Remember where you put this project, as you
are going to import it.

However, Microsoft now provides an MVC Framework for ASP.NET as an optional
feature. The MVC Framework maps the Model-View-Controller design pattern onto
the .NET Framework, creating a very powerful synergy.

The ASP.NET MVC Framework adds templates for Visual Studio that make it easy
to create an MVC web application. When you create an MVC application, Visual
Studio creates two projects: the first is a web project, and the second is a testing
project specifically created to enable you to verify that the web project works as
expected. Our discussion will focus exclusively on the web project.

Wikipedia verifies our memory that test-driven programming first
came to prominence as an integral aspect of eXtreme Programming, an
“agile” technique invented by Kent Beck in the late 1990s. XP is
marked by pair programming and extremely short development cycles.

Within the web project, Visual Studio creates three folders, conveniently named
/Controllers, /Models, and /Views.

Controller classes and action methods

The MVC Framework maps URL requests directly to controller classes, by default.
Controllers are responsible for handling incoming page requests, managing user
input, and executing the underlying logic.

A controller class can respond to URL requests by overriding the Execute() method
of its base class and examining the incoming URL to see what is being requested. An
easier option, however, is to define action methods on the subclassed controller. The
base class will then automatically route the requests to the correct method, based on
the rules of your application.

http://tinyurl.com/393boh
http://tinyurl.com/2mmzdq
http://tinyurl.com/2mmzdq

The MVC Pattern | 235

Incoming URL parameters are typically accessed as parameter arguments to the
action methods.

Model classes

In traditional MVC, the model is the component responsible for maintaining state.
With ASP.NET, state is typically persisted in a database. The model classes of the
ASP.NET MVC Framework work well with ADO.NET, LINQ, or any other imple-
mentation you may choose.

View classes

The application logic is encapsulated in the controller classes and the persistence
logic in the model classes. This leaves the view classes free to focus on the presenta-
tion logic.

Typically, controller action methods will handle incoming web requests, use the
incoming parameter values to execute the application logic code, talk to the model to
retrieve data as needed, and then select view objects to render results to the
requester.

An MVC Example
To give you some experience with the MVC Framework in its simplest form, in this
section we’ll walk you through creating an excerpt from an ASP.NET MVC shop-
ping application that can be used to gather a user’s shipping preference. You will
prompt the user with a drop-down list to indicate her preferred carrier. For the pur-
poses of this demonstration, you can assume that you already know the user’s ID.

Creating the database

To support the application fragment, create a two-table (half-caf, low-fat, extra-dry,
SQL Server) database called MVCDatabase, as illustrated in Figure 8-3.

Figure 8-3. Sample database for the MVC application

236 | Chapter 8: Implementing Design Patterns with .NET 3.5

Be sure that the Identity Specification for the primary key on each table (Person.
IDPerson, ShippingMethod.IDShippingMethod) is set to Yes. If you are unsure about
exactly how to do this, please feel free to download a backup of this database from
http://tinyurl.com/2sbvs3. Restore the backup in that .zip file into MVCDatabase.

Creating the MVC application

Open Visual Studio and create a new ASP.NET MVC Web Application called (cre-
atively) ASPMVCApplication, as pictured in Figure 8-4.

As mentioned previously, the structure of this application will be a little different
from that of other ASP.NET applications you have created in the past. In addition to
the MVCApplication and MVCApplicationTest projects, you’re going to add the
MVCToolkit project you downloaded earlier. To do this, right-click on the Solution
icon in your Solution Explorer pane and select Add ➝ Existing Project. Navigate to the
directory where your MVCToolkit project is located and select MVCToolkit.csproj, as
shown in Figure 8-5.

Figure 8-4. New ASP.NET MVC Web Application project

http://tinyurl.com/2sbvs3

The MVC Pattern | 237

At this point, the Solution Explorer should report that your solution has three projects.
It’s not strictly necessary to add the MVCToolkit project at this point, but later it will
provide you with a convenient place to rummage through if you get curious about the
implementation of the UIHelpers you’re going to leverage in your application.

Next, add a reference to MVCToolkit.dll to the primary Web Application. Open up
MVCApplication and right-click on the References folder. Select Add Reference, then
select the Browse tab and navigate to the bin/debug folder inside the MVCToolkit
project. Select MVCToolkit.dll, as seen in Figure 8-6, and click OK to add the reference.

Next, click on the ASPMVCApplication solution and rebuild it. If you’ve done every-
thing correctly, you should be able to go to Views/Home, open up the Index.aspx file
in Visual Studio, and type <%=Html. %> just below the level-2 header (<h2>) that says
“Welcome to my ASP.NET MVC Application!” IntelliSense should display a list like
the one in Figure 8-7.

At the time of writing, there was an issue with the MVCToolkit and
wireless keyboards and mice. If you cannot see the IntelliSense dis-
play, you are strongly encouraged to unplug your wireless keyboard
and mouse, replace them with wired ones, and reboot. (Sad, but true.)

Figure 8-5. Adding the MVCToolkit project to your application

238 | Chapter 8: Implementing Design Patterns with .NET 3.5

Figure 8-6. Finding the MVCToolkit DLL

Figure 8-7. Correctly installed MVCToolkit.dll view of the <%=Html. %> IntelliSense completion
dialog

The MVC Pattern | 239

The final step is to add a data connection between your application and the data-
base you created. To do so, select “Connect to Database” from the Visual Studio
Tools menu and enter the name of the database you created at the start of the exer-
cise (MVCDatabase). Your dialog box should look something like the one in Figure 8-8.

The model

The ASP.NET MVC Framework lets you use any data-access pattern or framework you
prefer. In this case, you’ll use the LINQ to SQL classes that ship with .NET 3.5.

Figure 8-8. Adding a connection to the database

240 | Chapter 8: Implementing Design Patterns with .NET 3.5

For a full exploration of LINQ, see Chapter 9.

Right-click on the Models subdirectory of the MVC web project and choose Add ➝

New Item to add a LINQ to SQL class, as seen in Figure 8-9. The Models directory is
where you will keep your classes that deal with data access and data persistence. This
organization of classes is one of the virtues of the MVC approach, for those who like it.

LINQ to SQL enables you to model classes that map to and from a database, creat-
ing an Object Relational Model (ORM). Programmers who work with ORMs refer to
such classes as entity classes and to instances of entity classes as entities. The proper-
ties and attributes of entity classes are typically mapped to a table’s columns, and
that’s what you will do in this example. Each row in the table is represented by an
entity.

Unlike with the DataSet/TableAdapter feature provided in VS 2005, when using the
LINQ to SQL designer you do not have to specify the SQL queries to use when creat-
ing your data model and access layer. Because you already have a database schema
defined, you can use it to quickly create LINQ to SQL entity classes modeled from it.
The easiest way to accomplish this is to open up your database in the Visual Studio
Server Explorer, select the tables and views you want to model, then drag and drop
them onto the LINQ to SQL designer surface, as shown in Figure 8-10.

Figure 8-9. Adding MVCDatabase.dbml as a LINQ to SQL class

The MVC Pattern | 241

The design surface infers the relationship between ShippingMethod and Person from
the database schema.

MVC is a lot easier to implement with a couple of helper classes. For
more on when and where to use these helper classes, check out Scott
Guthrie’s in-depth four-part series on MVC that begins here: http://
tinyurl.com/2qcoh8.

In the Models folder, add a C# class and name it MVCDatabaseDataContext.cs.
Here’s the complete listing:

using System;
using System.Collections.Generic;
using System.Linq;

namespace MvcApplication.Models
{
 public partial class MVCDatabaseDataContext
 {

 // Retrieve all Person objects

 public List<Person> GetPeople()
 {
 return Persons.ToList();
 }

Figure 8-10. Dragging and dropping Person and ShippingMethod from the Server Explorer

http://tinyurl.com/2qcoh8
http://tinyurl.com/2qcoh8

242 | Chapter 8: Implementing Design Patterns with .NET 3.5

 // Add a new Person

 public void AddPerson(Person p)
 {
 Persons.InsertOnSubmit(p);
 }
 // Retrieve all Shippers

 public List<ShippingMethod> GetShippers()
 {
 return ShippingMethods.ToList();
 }
 }
}

Then add a second helper class, PersonViewData.cs, to the Models folder. This class
passes lists of people to a view. The complete listing follows:

using System;
using System.Collections.Generic;
using MvcApplication.Models;

namespace MvcApplication.Models
{
 public class PersonViewData
 {
 public List<Person> People { get; set; }
 }
 public class NewPersonViewData
 {
 public List<ShippingMethod> Shippers { get; set; }
 }
}

The controller

With your model classes complete, you are ready to build your controller. You’ll
need only one class, PersonController.cs, which you’ll add to the Controllers folder:

using System;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.BindingHelpers;
using MvcApplication.Models;

namespace MvcApplication.Controllers
{
 public class PersonController : Controller
 {
 MVCDatabaseDataContext db = new MVCDatabaseDataContext();

 [ControllerAction]
 public void PeopleList()

The MVC Pattern | 243

 {
 PersonViewData pvd = new PersonViewData();
 pvd.People = db.GetPeople();
 RenderView("PeopleList", pvd);
 }

 // Person/New

 [ControllerAction]
 public void New()
 {
 NewPersonViewData npvd = new NewPersonViewData();
 npvd.Shippers = db.GetShippers();
 RenderView("New",npvd);
 }

 // Person/NewInsert

 [ControllerAction]
 public void NewInsert()
 {
 Person p = new Person();
 p.UpdateFrom(Request.Form);

 db.AddPerson(p);
 db.SubmitChanges();

 RedirectToAction(new { Controller="Person",
 Action="PeopleList"});
 }
 }
}

This controller class is the mechanism by which data is passed between the model
and the view(s).

The view(s)

Create a Person folder inside the Views folder. Then, inside the Person folder, create
two MVC View Pages: one named PeopleList.aspx and one named New.aspx.

The contents of PeopleList.aspx are shown in Example 8-1.

Example 8-1. PeopleList.aspx

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true" CodeBehind="PeopleList.aspx"
 Inherits="MvcApplication.Views.Person.PeopleList"%>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContentPlaceHolder"
 runat="server">

244 | Chapter 8: Implementing Design Patterns with .NET 3.5

The Controller base class has a ViewData dictionary property that can be used to
populate data that you want to pass to a view. You add and read objects into the
ViewData dictionary using key/value pairs. This inline code iterates through the
PeopleList dictionary that is part of the ViewData dictionary and displays each per-
son’s name inline.

You must be specific when passing in ViewData. Modify PeopleList.aspx.cs as follows:

using System;
using System.Web;
using System.Web.Mvc;
using MvcApplication.Models;

namespace MvcApplication.Views.Person
{
 public partial class PeopleList : ViewPage<PersonViewData>
 {
 }
}

To test your applicaton, add some data to your database. Then add the following to
the Site.Master file (found in Views/Shared), in the “menu” div right below the
“About us” HTML action link:

 <%= Html.ActionLink("People", new { Controller = "Person",
 Action = "PeopleList"})%>

When you run the application and click on “People,” you should see the data
retrieved from the database, similar to what you see in Figure 8-11.

 <h2>People In Our Database</h2>

 <% foreach (var person in ViewData.People) { %>

 <%=person.PersonName%>

 <% } %>

 <%= Html.ActionLink("Add New Person", new { Action="New" }) %>
</asp:Content>

Example 8-1. PeopleList.aspx (continued)

The MVC Pattern | 245

Adding new people to the database

The next step is to implement the Add New Person functionality. The first task is to
modify New.aspx so it reads as follows:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true" CodeBehind="New.aspx.cs"
 Inherits="MvcApplication.Views.Person.New" %>

<asp:Content ID="PageContent"
 ContentPlaceHolderID="MainContentPlaceHolder" runat="server">

 <h2>Add a Person to our Database</h2>

 <form action="/Person/NewInsert" method="post">

 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input id="PersonName" type="text" name="PersonName" />
 </td>
 </tr>

Figure 8-11. Clicking on “People” takes you here

246 | Chapter 8: Implementing Design Patterns with .NET 3.5

 <tr>
 <td>Shipping Preference:</td>
 <td>
 <%=Html.Select("IDShippingMethod", ViewData.Shippers)%>
 </td>
 </tr>
 </table>

 <p></p>

 <input type="submit" value="Save" />

 </form>

</asp:Content>

One of the first things to notice here is that you’re using an HTML UIHelper. With-
out the MVCToolkit, the Select() call written here as:

 <%=Html.Select("IDShippingMethod", ViewData.Shippers)%>

would have been written as:

 <select name="ShippingPrefs" id="ShippingPrefsDropDown">
 <% foreach (var option in ViewData.Shippers)
 { %>
 <option value='<%= option.IDShippingMethod %>'>
 <%= option.shippingMethod%></option>
 <% } %>
 </select>

As, you can see, HTML UIHelpers allow you to wire together objects without having
to worry about the implementation details, so you can write much more concise
code. In the long run, this will make writing and maintaining ASP.NET applications
a great deal simpler.

Make sure you edit the New.aspx.cs file to reflect the fact that you are passing an
object in to the ViewData dictionary:

using System;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.BindingHelpers;
using MvcApplication.Models;

namespace MvcApplication.Views.Person
{
 public partial class New : ViewPage<NewPersonViewData>
 {
 }
}

Note that with the addition of MVC.BindingHelpers the data now flows two ways.
Ultimately, this allows you to do things like this:

The MVC Pattern | 247

Person p = new Person();
p.UpdateFrom(Request.Form);

db.AddPerson(p);
db.SubmitChanges();

Here, the Person object is automagically updated with the values from the Form. This
also applies in a situation where the user is editing a Person object and you have
pushed the values to the edit form; on submit, the values will return with the user’s
modifications.

Run the application now. Click on “Add New Person,” and you should get some-
thing that looks like Figure 8-12.

Enter the name Barack Obama, pick the second shipping method, and click Save.
The resulting screen should look like the one in Figure 8-13.

One of the more amazing things about wiring objects in the presentation and busi-
ness tiers to columns in a row of the database is that you don’t have to write SQL
statements, yet you still manage to get Barack and his preferred shipping method
(option 2) into the database correctly (Figure 8-14).

That wraps up this sample application. The MVC Web Application should only get
better with each release.

Figure 8-12. Adding a Person

248 | Chapter 8: Implementing Design Patterns with .NET 3.5

Figure 8-13. Added Barack Obama

Figure 8-14. Automagic! The database reflects the addition

The Observer Pattern/Publish and Subscribe | 249

The Observer Pattern/Publish and Subscribe
As you might guess from its name, the Observer pattern is used to observe the state
of an object. A variant on this pattern is Publish and Subscribe, where the observed
object “publishes” some event or events (e.g., a clock says “I announce every sec-
ond”) and other objects (the observers) “subscribe” to those events.

To keep things simple, we’ll refer to the two patterns together as the Observer pat-
tern; it really is just a matter of perspective (are you observing me, or am I publish-
ing my events for you to subscribe to?).

The Observer pattern defines a one-to-many dependency between objects, so that
when one object changes state, all its dependents are notified and have a chance to
respond to the change.

Fundamental to this pattern is the notion that objects (known as observers or listen-
ers) are registered (or self-register) to observe an event that may be raised by the
observed object (known as the subject), as seen in Figure 8-15.

To make this a bit more concrete, we’ll borrow an example from the real world.
Many of you probably read the blog Slashdot.org, pictured in Figure 8-16. (If you
don’t already, you’ll probably start now.) Some of you might even subscribe to Slash-
dot’s daily digest. This site illustrates almost everything there is to know about the
Observer pattern: Slashdot publishes and you subscribe, or, from the inverse per-
spective, you observe and Slashdot is observed.

Figure 8-15. UML class diagram for the Observer pattern

250 | Chapter 8: Implementing Design Patterns with .NET 3.5

An Observer Example
Let’s build a little observer application for dealing with flight departures and air traf-
fic control. There will be four pattern participants in this example:

Subject
The subject knows its observers and provides an interface for attaching and
detaching observers. Any number of observer objects may observe a subject.

Concrete subject
The concrete subject stores the state of interest to concrete observer objects and
sends appropriate notifications based on state changes.

Observer
The observer defines the updating interface for objects that should be notified of
changes in a subject.

Concrete observer
The concrete observer maintains the reference to a concrete subject object. Addi-
tionally, it stores the state that should stay consistent with the subject’s state and
provides the implementation of the observer updating interface.

Figure 8-16. The subject of your observations

The Observer Pattern/Publish and Subscribe | 251

You’ll start with the subject, which in this example will be the AirlineSchedule class.
The constructor is fairly straightforward. You have the name of an airline, a depar-
ture city, an arrival city, and a departure time:

abstract class AirlineSchedule
{
 public string Name { get; set; }
 public string DepartureAirport { get; set; }
 public string ArrivalAirport { get; set; }

 private DateTime departureDateTime;
 public DateTime DepartureDateTime
 {
 get { return departureDateTime; }
 set
 {
 departureDateTime = value;
 OnChange(new ChangeEventArgs(
 this.Name,
 this.DepartureAirport,
 this.ArrivalAirport,
 this.departureDateTime));
 Console.WriteLine("");
 }
 }

 public AirlineSchedule(
 string airline,
 string outAirport,
 string inAirport,
 DateTime leaves)
 {
 this.Name = airline;
 this.DepartureAirport = outAirport;
 this.ArrivalAirport = inAirport;
 this.DepartureDateTime = leaves;
 }
}

The class declares four properties, only one of which is unusual: the
DepartureDateTime set method not only sets a member variable but also fires an
event, OnChange().

You set up the event like this:

public event ChangeEventHandler<AirlineSchedule, ChangeEventArgs> Change;

// Invoke the Change event
public virtual void OnChange(ChangeEventArgs e)
{
 if (Change != null)
 {
 Change(this, e);
 }
}

252 | Chapter 8: Implementing Design Patterns with .NET 3.5

A key aspect of the subject is that it provides the interface for attaching and detach-
ing observers. The two methods that accomplish this are Attach() and Detach():

public void Attach(AirTrafficControl airTrafficControl)
{
 Change += new ChangeEventHandler<AirlineSchedule,
 ChangeEventArgs>(airTrafficControl.Update);
}

public void Detach(AirTrafficControl airTrafficControl)
{
 Change -= new ChangeEventHandler<AirlineSchedule, ChangeEventArgs>
 (airTrafficControl.Update);
}

Your concrete subject class provides the state of interest to observers. It also sends a
notification to all observers, by calling the Notify() method in its base class (i.e., the
subject class). We’ll keep things fairly simple here:

// A concrete subject
class CarrierSchedule : AirlineSchedule
{
 // Jesse and Alex only really ever need to fly to one place...
 public CarrierSchedule(
 string name,
 DateTime departing):
 base(name,"Boston", "Seattle", departing)
 {
 }
}

The observer class defines an updating interface for all observers. This allows them
to receive update notifications from the subject(s). Every interested observer will
implement the observer interface. The interface requires implementation of a single
method, Update():

interface IATC
{
 void Update(AirlineSchedule sender, ChangeEventArgs e);
}

Each concrete observer maintains a reference to a concrete subject so that it may
receive notifications of changes to the state of the subject.

As you can see, you override Update() in the concrete observer class. When the subject
calls the Update() method, the concrete observer asks the subject to update the informa-
tion it has about the subject’s state. Each concrete observer implements Update() and,
as a consequence, defines its own behavior when the notification occurs:

// The concrete observer
class AirTrafficControl : IATC
{
 public string Name { get; set; }
 public CarrierSchedule CarrierSchedule { get; set; }

The Observer Pattern/Publish and Subscribe | 253

 // Constructor
 public AirTrafficControl(string name)
 {
 this.Name = name;
 }

 public void Update(AirlineSchedule sender, ChangeEventArgs e)
 {

 Console.WriteLine(
 "{0} Air Traffic Control Notified:\n {1}'s flight 497 from {2} " +
 "to {3} new departure time: {4:hh:mmtt}",
 Name,
 e.Airline,
 e.DepartureAirport,
 e.ArrivalAirport,
 e.DepartureDateTime);
 Console.WriteLine("---------");
 }
}

Running the Code
To exercise this Observer pattern, you’ll need some code that uses all of your classes.
Here is the simple Console Application code:

 class Program
 {
 static void Main()
 {
 DateTime now = DateTime.Now;
 // Create new flights with a departure time and
 // add from and to destinations
 CarrierSchedule jetBlue =
 new CarrierSchedule("JetBlue", now);
 jetBlue.Attach(new AirTrafficControl("Boston"));
 jetBlue.Attach(new AirTrafficControl("Seattle"));

 // ATCs will be notified of delays in departure time
 jetBlue.DepartureDateTime =
 now.AddHours(1.25); // weather delay
 jetBlue.DepartureDateTime =
 now.AddHours(2.75); // weather got worse
 jetBlue.DepartureDateTime =
 now.AddHours(3.5); // security delay
 jetBlue.DepartureDateTime =
 now.AddHours(3.75); // Seattle ground stop

 // Wait for user
 Console.Read();
 }
 }

254 | Chapter 8: Implementing Design Patterns with .NET 3.5

Go ahead and create a new C# Console Application project called Observer, as
shown in Figure 8-17.

The complete code listing for the application is presented in Example 8-2.

Figure 8-17. Creating the Console Application

Example 8-2. Complete code listing for C# Console Application project Observer

using System;

namespace Observer
{
 class Program
 {
 static void Main()
 {
 DateTime now = DateTime.Now;

 // Create new flights with a departure time
 // and add from and to destinations

 CarrierSchedule jetBlue = new CarrierSchedule("JetBlue", now);
 jetBlue.Attach(new AirTrafficControl("Boston"));
 jetBlue.Attach(new AirTrafficControl("Seattle"));

The Observer Pattern/Publish and Subscribe | 255

 // ATCs will be notified of delays in departure time
 jetBlue.DepartureDateTime =
 now.AddHours(1.25); // weather delay

 jetBlue.DepartureDateTime =
 now.AddHours(1.75); // weather got worse

 jetBlue.DepartureDateTime =
 now.AddHours(0.5); // security delay

 jetBlue.DepartureDateTime =
 now.AddHours(0.75); // Seattle puts a ground stop in place

 // Wait for user
 Console.Read();
 }
 }

 // Generic delegate type for hooking up flight schedule requests
 public delegate void ChangeEventHandler<T,U>
 (T sender, U eventArgs);

 // Customize event arguments to fit the activity
 public class ChangeEventArgs : EventArgs
 {
 public ChangeEventArgs(
 string name,
 string outAirport,
 string inAirport,
 DateTime leaves)
 {
 this.Airline = name;
 this.DepartureAirport = outAirport;
 this.ArrivalAirport = inAirport;
 this.DepartureDateTime = leaves;
 }

 // Our properties
 public string Airline { get; set; }
 public string DepartureAirport { get; set; }
 public string ArrivalAirport { get; set; }
 public DateTime DepartureDateTime { get; set; }

 }

 // Subject: This is the thing being watched by Air Traffic Control centers
 abstract class AirlineSchedule
 {

 // Properties
 public string Name { get; set; }
 public string DepartureAirport { get; set; }

Example 8-2. Complete code listing for C# Console Application project Observer (continued)

256 | Chapter 8: Implementing Design Patterns with .NET 3.5

 public string ArrivalAirport { get; set; }
 private DateTime departureDateTime;

 public AirlineSchedule(
 string airline,
 string outAirport,
 string inAirport,
 DateTime leaves)
 {
 this.Name = airline;
 this.DepartureAirport = outAirport;
 this.ArrivalAirport = inAirport;
 this.DepartureDateTime = leaves;
 }
 // Event
 public event ChangeEventHandler<AirlineSchedule, ChangeEventArgs> Change;

 // Invoke the Change event
 public virtual void OnChange(ChangeEventArgs e)
 {
 if (Change != null)
 {
 Change(this, e);
 }
 }

 // Here is where we actually attach our observers (ATCs)
 public void Attach(AirTrafficControl airTrafficControl)
 {
 Change +=
 new ChangeEventHandler<AirlineSchedule, ChangeEventArgs>
 (airTrafficControl.Update);
 }

 public void Detach(AirTrafficControl airTrafficControl)
 {
 Change -= new ChangeEventHandler<AirlineSchedule, ChangeEventArgs>
 (airTrafficControl.Update);
 }

 public DateTime DepartureDateTime
 {
 get { return departureDateTime; }
 set
 {
 departureDateTime = value;
 OnChange(new ChangeEventArgs(
 this.Name,
 this.DepartureAirport,
 this.ArrivalAirport,
 this.departureDateTime));
 Console.WriteLine("");

Example 8-2. Complete code listing for C# Console Application project Observer (continued)

The Observer Pattern/Publish and Subscribe | 257

When you compile and run the application you should get a console window like the
one shown in Figure 8-18.

 }
 }

 }

 // A concrete subject
 class CarrierSchedule : AirlineSchedule
 {
 // Jesse and Alex only really ever need to fly to one place...
 public CarrierSchedule(string name, DateTime departing):
 base(name,"Boston", "Seattle", departing)
 {
 }
 }

 // An observer
 interface IATC
 {
 void Update(AirlineSchedule sender, ChangeEventArgs e);
 }

 // The concrete observer
 class AirTrafficControl : IATC
 {
 public string Name { get; set; }

 // Constructor
 public AirTrafficControl(string name)
 {
 this.Name = name;
 }

 public void Update(AirlineSchedule sender, ChangeEventArgs e)
 {

 Console.WriteLine(
 "{0} Air Traffic Control Notified:\n {1}'s flight 497 from {2} " +
 "to {3} new departure time: {4:hh:mmtt}",
 Name,
 e.Airline,
 e.DepartureAirport,
 e.ArrivalAirport,
 e.DepartureDateTime);
 Console.WriteLine("---------");
 }
 public CarrierSchedule CarrierSchedule { get; set; }
 }
}

Example 8-2. Complete code listing for C# Console Application project Observer (continued)

258 | Chapter 8: Implementing Design Patterns with .NET 3.5

The Factory Method Pattern
The Factory Method pattern allows you to abstract the creation of objects, specify-
ing the class of the object at runtime rather than at design time. It accomplishes this
by defining a separate method for creating objects (see Figure 8-19). Subclasses can
then override the creation method to specify the type of derived object to create, as
needed (you can think of it as a “just-in-time inventory” for software). The term “fac-
tory” is loosely used to refer to any method whose main purpose is the creation of
objects.

Factory methods are most commonly found in toolkits and frameworks, where
library code needs to create objects of types that applications using the framework
may subclass. It is common in parallel class hierarchies to require objects from one
hierarchy to be able to create appropriate objects from another.

Although the primary motivation behind the Factory Method pattern is to allow sub-
classes to choose which types of objects to create, there are other benefits to using
factory methods, some of which do not depend on subclassing. Therefore, it is com-
mon to define “factory methods” that are not polymorphic in order to gain these
other benefits.

Figure 8-18. Air traffic control observations

The Factory Method Pattern | 259

A Factory Method Example
The ultimate goal of this pattern is to encapsulate the creation of objects. For illustra-
tion purposes, you’ll build a very pedestrian 20th-century car factory. Each Car class
will use an overridden factory method to assign itself the features of its particular
subclass.

To start with, consider an abstract Car class:

 abstract class Car
 {
 private List<Feature> features = new List<Feature>();

 // Constructor invokes factory method
 public Car()
 {
 this.CreateFeatures();
 }

 // Property
 public List<Feature> Features
 {
 get { return features; }
 }

 // The Money Method: Factory Method
 public abstract void CreateFeatures();

 // Override
 public override string ToString()
 {
 return this.GetType().Name;
 }
 }

Figure 8-19. UML class diagram for the Factory Method pattern

260 | Chapter 8: Implementing Design Patterns with .NET 3.5

As you can see, the car has a property that is a list of features (the products). Because
the features are very simple, you can focus on the concepts here rather than on the
implementation of getters and setters. For display purposes, a feature will just print
its class name:

 abstract class Feature
 {
 // Override. Display class name.
 public override string ToString()
 {
 return this.GetType().Name;
 }
 }

As you can see, you have the basic car features that one would expect from a car fac-
tory in a programming book:

 // ConcreteProduct(s)

 class FourWheels : Feature
 {
 }

 class V6Engine : Feature
 {
 }

 class V8Engine : Feature
 {
 }

 class FourDoors : Feature
 {
 }

 class TwoDoors : Feature
 {
 }

 class SunRoof : Feature
 {
 }

 class AirBags : Feature
 {
 }

 class HybridEngine : Feature
 {
 }

The Factory Method Pattern | 261

Now you’re in a position to make concrete subclasses of Car. Each subclass will over-
ride the CreateFeatures() method. In this manner, the subclasses will be custom-
ized to their types in conformance with the Factory Method pattern:

 // ConcreteCreator(s)

 class CooperMini : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new FourWheels());
 Features.Add(new TwoDoors());
 Features.Add(new AirBags());
 Features.Add(new V6Engine());
 Features.Add(new SunRoof());
 }
 }

 class BMWSedan : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new FourDoors());
 Features.Add(new FourWheels());
 Features.Add(new AirBags());
 Features.Add(new V8Engine());
 Features.Add(new SunRoof());
 }
 }

 class Prius : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new TwoDoors());
 Features.Add(new FourWheels());
 Features.Add(new HybridEngine());
 Features.Add(new AirBags());
 Features.Add(new SunRoof());
 }
 }

 class FordExpedition : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()

262 | Chapter 8: Implementing Design Patterns with .NET 3.5

 {
 Features.Add(new FourDoors());
 Features.Add(new FourWheels());
 Features.Add(new V8Engine());
 Features.Add(new AirBags());
 }
 }

Once again, you’ll need some code that uses all of these creations and outputs the
results to the console:

 class Program
 {
 static void Main()
 {
 // Note: document constructors call factory method
 List<Car> cars = new List<Car>();
 cars.Add(new CooperMini());
 cars.Add(new BMWSedan());
 cars.Add(new Prius());
 cars.Add(new FordExpedition());

 // Display document pages
 foreach (Car car in cars)
 {
 Console.WriteLine(car +
 " fully loaded with these features:");
 foreach (Feature feature in car.Features)
 {
 Console.WriteLine(" " + feature);
 }
 Console.WriteLine();
 }

 // Wait for user
 Console.Read();
 }
 }

Go ahead and create a new C# Console Application project, and add the complete
listing for the Factory Method pattern example (shown in Example 8-3).

Example 8-3. Old-fashioned newfangled car factory

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FactoryMethod
{
 class Program
 {
 static void Main()

The Factory Method Pattern | 263

 {
 // Note: car constructors call factory method
 List<Car> cars = new List<Car>();
 cars.Add(new CooperMini());
 cars.Add(new BMWSedan());
 cars.Add(new Prius());
 cars.Add(new FordExpedition());

 // Display car pages
 foreach (Car car in cars)
 {
 Console.WriteLine(car + " fully loaded with these features:");
 foreach (Feature feature in car.Features)
 {
 Console.WriteLine(" " + feature);
 }
 Console.WriteLine();
 }

 // Wait for user
 Console.Read();
 }
 }

 // Product - in our case our products consist of car features

 abstract class Feature
 {
 // Override. Display class name.
 public override string ToString()
 {
 return this.GetType().Name;
 }
 }

 // ConcreteProduct(s)

 class FourWheels : Feature
 {
 }

 class V6Engine : Feature
 {
 }

 class V8Engine : Feature
 {
 }

 class FourDoors : Feature
 {
 }

Example 8-3. Old-fashioned newfangled car factory (continued)

264 | Chapter 8: Implementing Design Patterns with .NET 3.5

 class TwoDoors : Feature
 {
 }

 class SunRoof : Feature
 {
 }

 class AirBags : Feature
 {
 }

 class HybridEngine : Feature
 {
 }

 // The creator

 abstract class Car
 {
 private List<Feature> features = new List<Feature>();

 // Constructor invokes factory method
 public Car()
 {
 this.CreateFeatures();
 }

 // Property
 public List<Feature> Features
 {
 get { return features; }
 }

 // The Money Method: Factory Method
 public abstract void CreateFeatures();

 // Override
 public override string ToString()
 {
 return this.GetType().Name;
 }
 }

 // ConcreteCreator(s)

 class CooperMini : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()

Example 8-3. Old-fashioned newfangled car factory (continued)

The Factory Method Pattern | 265

Your fully functioning car factory should run and look something like Figure 8-20.

 {
 Features.Add(new FourWheels());
 Features.Add(new TwoDoors());
 Features.Add(new AirBags());
 Features.Add(new V6Engine());
 Features.Add(new SunRoof());
 }
 }

 class BMWSedan : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new FourDoors());
 Features.Add(new FourWheels());
 Features.Add(new AirBags());
 Features.Add(new V8Engine());
 Features.Add(new SunRoof());
 }
 }

 class Prius : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new TwoDoors());
 Features.Add(new FourWheels());
 Features.Add(new HybridEngine());
 Features.Add(new AirBags());
 Features.Add(new SunRoof());
 }
 }

 class FordExpedition : Car
 {
 // Factory Method implementation (a requirement of the pattern)
 public override void CreateFeatures()
 {
 Features.Add(new FourDoors());
 Features.Add(new FourWheels());
 Features.Add(new V8Engine());
 Features.Add(new AirBags());
 }
 }
}

Example 8-3. Old-fashioned newfangled car factory (continued)

266 | Chapter 8: Implementing Design Patterns with .NET 3.5

The Chain-of-Command Pattern
This very powerful design pattern allows you to separate command objects from helper
(processing) objects, and to create objects that have both responsibilities and a place in
a sequence of actions. This is very useful in workflow or other sequential situations.

The Chain-of-Command pattern must be used with caution, however, because pro-
grammers moving from procedural programming to object-oriented programming are
wont to create a single master commander object and zillions of little processing
objects, recreating the procedural pattern that object-oriented programming replaces!

Each processing object contains logic that describes the types of command objects
that it can handle, and how to pass off those that it cannot to the next processing
object in the chain. Thus, each object is neatly encapsulated and has a single, well-
defined set of responsibilities.

For this pattern to work, it must be extensible. That is, a mechanism must exist for
adding new processing objects to the end of the chain.

A well-implemented Chain-of-Command pattern (Figure 8-21) can promote loose
coupling, which is integral to the kind of n-tier programming that .NET 3.5 fosters
and that makes for sustainable software.

A Chain-of-Command Example
To illustrate this pattern, we’re going to (grossly) simplify the chain-of-command
requirements to allow liftoff of a space shuttle.

Figure 8-20. Car factory in action

The Chain-of-Command Pattern | 267

The requirements for allowing liftoff in this example are:

• There must be three crew members.

• There must be one million pounds of fuel on board.

• All three launch commanders must give a “Go” order in the correct sequence.

In this example, you will create a LaunchRequestEventArgs object to pass into each event.
It will contain all the information needed to handle the events (the number of crew
members, the amount of fuel on board, and the launchCommandRequest as a string):

public class LaunchRequestEventArgs : EventArgs
{

 // Properties
 public int Crew { get; set; }
 public string LaunchCommand { get; set; }
 public double FuelOnBoardInLbs { get; set; }

 // Constructor
 public LaunchRequestEventArgs(

Trees of Responsibility
There is an advanced variation of this pattern in which handlers are divided into two
subtypes: those that handle the required actions themselves and those that “dispatch”
the requirements to other handlers. This variation creates less of a chain than a “tree”
of responsibility, which can get quite complex in a large application.

If dispatcher classes can dispatch to themselves, or if object A can dispatch to other
objects that can eventually dispatch back to object A, the tree can become recursive.
This is not necessarily problematic, as long as the recursion is carefully controlled (i.e., it
has an endpoint and the recursion is limited sufficiently so as not to overload the
stack). An example of a very successful recursive tree is an XML parser.

Figure 8-21. UML class diagram for the Chain-of-Command pattern

268 | Chapter 8: Implementing Design Patterns with .NET 3.5

 int crewCount,
 double fuelOnBoard,
 string launchCommandRequest)
 {
 this.Crew = crewCount;
 this.FuelOnBoardInLbs = fuelOnBoard;
 this.LaunchCommand = launchCommandRequest;
 }
}

This allows you to create a generic delegate that takes an Approver (to be defined in a
moment) and an object of type LaunchRequestEventArgs:

 public delegate void LaunchRequestEventHandler<T, U>(
 T sender, U eventArgs);

You will use this delegate to create type-specific events (e.g., one
LaunchRequestEventHandler for Pilots and another for Commanders). To do so, you’ll take
advantage of polymorphism by creating a common (and abstract) base class, Approver:

abstract class Approver
{
 public Approver Successor { get; set; }

 // Event
 public event
 LaunchRequestEventHandler<Approver, LaunchRequestEventArgs> Request;

 // Invoke the launch Request event
 public virtual void OnRequest(LaunchRequestEventArgs e)
 {
 if (Request != null)
 {
 Request(this, e);
 }
 }

 public void ProcessRequest(Request request)
 {
 OnRequest(new LaunchRequestEventArgs(
 request.Crew, request.FuelOnBoardInLbs, request.LaunchCommand));
 }
}

You’re now ready to create the derived Approver types, each with its own specialized
event:

class Pilot : Approver
{

 public Pilot()
 {
 this.Request +=
 new LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs>(PilotRequest);
 }

The Chain-of-Command Pattern | 269

 public void PilotRequest(Approver approver,
 LaunchRequestEventArgs e)
 {
 if (e.Crew < 3)
 {
 Console.WriteLine(
 "{0}, you are only reporting {1} crew on board.",
 this.GetType().Name,
 e.Crew);
 Console.WriteLine("We need at least 3. {0} denied.\n\n",
 e.LaunchCommand);
 }
 else if (Successor != null)
 {
 Console.WriteLine("{0}: Commander says: {1} Go.\n\n",
 e.LaunchCommand,
 this.GetType().Name);
 Successor.OnRequest(e);
 }
 }
}

The logic of the PilotRequest is this: if there are fewer than three crew members, the
pilot will deny the request. Otherwise, if there is a successor (another approver in
line after this one), the pilot will give the “Go” order.

The Commander class is very much the same, except that the condition checked for is
sufficient fuel:

class Commander : Approver
{
 public Commander()
 {
 // Hook up delegate to event
 this.Request +=
 new LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs>(CommanderRequest);
 }

 public void CommanderRequest(Approver approver,
 LaunchRequestEventArgs e)
 {
 if (e.FuelOnBoardInLbs < 1000000.0)
 {
 // Report error
 }
 else if (Successor != null)
 {
 // Report Go and chain to Successor
 }
 }
}

The complete program is shown in Example 8-4.

270 | Chapter 8: Implementing Design Patterns with .NET 3.5

Example 8-4. Complete chain-of-command program

using System;

namespace ChainOfCommand
{
 class Program
 {

 static void Main()
 {
 Request request;

 // Set up chain of responsibility
 Approver Buzz = new Pilot();
 Approver Neil = new Commander();
 Approver Gene = new FlightDirector();

 Buzz.Successor = Neil;
 Neil.Successor = Gene;

 // Generate and process launch requests
 request = new Request(2, 35000.00, "Launch 1");
 Buzz.ProcessRequest(request);

 request = new Request(3, 35000.00, "Launch 2");
 Buzz.ProcessRequest(request);

 request = new Request(3, 1221000.50, "Launch 3");
 Buzz.ProcessRequest(request);

 // Wait for user
 Console.Read();
 }
 }

 public class LaunchRequestEventArgs : EventArgs
 {

 // Properties
 public int Crew { get; set; }
 public string LaunchCommand { get; set; }
 public double FuelOnBoardInLbs { get; set; }

 // Constructor
 public LaunchRequestEventArgs(
 int crewCount,
 double fuelOnBoard,
 string launchCommandRequest)
 {
 this.Crew = crewCount;
 this.FuelOnBoardInLbs = fuelOnBoard;
 this.LaunchCommand = launchCommandRequest;
 }

The Chain-of-Command Pattern | 271

 }

 // Generic delegate for hooking up launch requests
 public delegate void LaunchRequestEventHandler<T, U>(
 T sender, U eventArgs);

 // "Handler"
 abstract class Approver
 {
 public Approver Successor { get; set; }

 // Event
 public event LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs> Request;

 // Invoke the launch request event
 public virtual void OnRequest(LaunchRequestEventArgs e)
 {
 if (Request != null)
 {
 Request(this, e);
 }
 }

 public void ProcessRequest(Request request)
 {
 OnRequest(new LaunchRequestEventArgs(
 request.Crew,
 request.FuelOnBoardInLbs,
 request.LaunchCommand));
 }

 }

 // "ConcreteHandler"

 class Pilot : Approver
 {
 // Constructor
 public Pilot()
 {
 // Hook up delegate to event
 this.Request += new LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs>(PilotRequest);
 }

 public void PilotRequest(Approver approver,
 LaunchRequestEventArgs e)
 {
 if (e.Crew < 3)
 {
 Console.WriteLine(

Example 8-4. Complete chain-of-command program (continued)

272 | Chapter 8: Implementing Design Patterns with .NET 3.5

 "{0}, you are only reporting {1} crew on board.",
 this.GetType().Name, e.Crew);
 Console.WriteLine(
 "We need at least 3. {0} denied.\n\n",
 e.LaunchCommand);
 }
 else if (Successor != null)
 {
 Console.WriteLine(
 "{0}: Commander says: {1} Go.\n\n",
 e.LaunchCommand, this.GetType().Name);
 Successor.OnRequest(e);
 }
 }
 }

 // "ConcreteHandler"
 class Commander : Approver
 {
 // Constructor
 public Commander()
 {
 // Hook up delegate to event
 this.Request +=
 new LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs>(CommanderRequest);
 }

 public void CommanderRequest(Approver approver,
 LaunchRequestEventArgs e)
 {
 if (e.FuelOnBoardInLbs < 1000000.0)
 {
 Console.WriteLine(
 "{0}, you are only reporting {1}
 lbs of fuel on board.",
 this.GetType().Name, e.FuelOnBoardInLbs);
 Console.WriteLine(
 "You need at least 1 Million. {0} denied.\n\n",
 e.LaunchCommand);
 }
 else if (Successor != null)
 {
 Console.WriteLine(
 "{0}: Flight Director says: {1} Go.\n\n",
 e.LaunchCommand, this.GetType().Name);
 Successor.OnRequest(e);
 }

 }
 }

Example 8-4. Complete chain-of-command program (continued)

The Chain-of-Command Pattern | 273

 // "ConcreteHandler"
 class FlightDirector : Approver
 {
 // Constructor
 public FlightDirector()
 {
 // Hook up delegate to event
 this.Request +=
 new LaunchRequestEventHandler<
 Approver, LaunchRequestEventArgs>(FlightDirectorRequest);
 }

 public void FlightDirectorRequest(Approver approver,
 LaunchRequestEventArgs e)
 {
 if (e.FuelOnBoardInLbs < 1000000.0)
 {
 Console.WriteLine(
 "{0}, you are only reporting {1}
 lbs of fuel on board.",
 this.GetType().Name, e.FuelOnBoardInLbs);
 Console.WriteLine(
 "You need at least 1 Million. {0} Denied.\n\n",
 e.LaunchCommand);
 }
 else
 {
 Console.WriteLine(
 "{0}: All Systems Go! Launch Control,
 launch is a Go!",
 this.GetType().Name);
 }
 }
 }

 // Request details

 class Request
 {
 private int crew;
 private double fuelOnBoardInLbs;
 private string launchCommand;

 public Request(
 int crewCount,
 double fuelOnBoard,
 string launchCommandRequest)
 {
 this.crew = crewCount;
 this.fuelOnBoardInLbs = fuelOnBoard;
 this.launchCommand = launchCommandRequest;
 }

Example 8-4. Complete chain-of-command program (continued)

274 | Chapter 8: Implementing Design Patterns with .NET 3.5

Its output is as follows:

Pilot, you are only reporting 2 crew on board.
We need at least 3. Launch 1 denied.

Launch 2: Commander says: Pilot Go.

Commander, you are only reporting 35000 lbs of fuel on board.
You need at least 1 Million. Launch 2 denied.

Launch 3: Commander says: Pilot Go.
Launch 3: Flight Director says: Commander Go.

FlightDirector: All Systems Go! Launch Control, launch is a Go!

The flight can launch only once the required conditions are met (all three crew mem-
bers are on board and there’s enough fuel) and the three commanders (Launch 1, 2, and
3) give the “Go” command in order, followed by the “Go” from the FlightDirector.

The Singleton Pattern
One of the simplest (yet perhaps most useful) patterns is the Singleton pattern. The
entire purpose of this pattern is to ensure that only one instance of an object is ever
created during the lifetime of an application.

The typical implementation of the Singleton pattern is to create a private constructor
(not accessible to other classes), and then a public method that poses as a construc-
tor but has the job of, when called, serving up the existing instance if there is one, or
creating an instance if none exists.

 // Properties
 public int Crew
 {
 get { return crew; }
 set { crew = value; }
 }

 public string LaunchCommand
 {
 get { return launchCommand; }
 set { launchCommand = value; }
 }

 public double FuelOnBoardInLbs
 {
 get { return fuelOnBoardInLbs; }
 set { fuelOnBoardInLbs = value; }
 }
 }
}

Example 8-4. Complete chain-of-command program (continued)

The Singleton Pattern | 275

Singletons and Multithreading
The Singleton pattern’s implementation can get a bit tricky in multithreaded applica-
tions, so programmers often turn to well-tested code rather than reinventing Single-
ton implementations. If two threads are to execute the creation method at the same
time when a singleton does not yet exist, they both must check for an instance of the
singleton, and only one may create the new instance. Also note that if the program-
ming language has concurrent processing capabilities (as .NET languages do), the
method must be constructed to execute as a mutually exclusive operation.

The classic solution to these problems is to use mutual exclusion on the class that
indicates that the object is being instantiated, most often through a mutex or other
thread-locking device. The Singleton pattern (Figure 8-22) is often used in conjunc-
tion with the Factory Method pattern to create a system-wide resource whose spe-
cific type is not known to the code that uses it.

A Singleton Example
To see how the Singleton pattern works, create a new Console Application and add a
simple SMTPHost object:

class SMTPHost
{
 private string name;
 private string ip;

 public SMTPHost(string name, string ip)
 {
 this.name = name;
 this.ip = ip;
 }
 public string Name
 {
 get { return name; }
 }
 public string IP
 {
 get { return ip; }
 }
}

Figure 8-22. UML class diagram for the Singleton pattern

276 | Chapter 8: Implementing Design Patterns with .NET 3.5

You have to create the backing variable for the properties because you
are not creating a setter.

Now create a MailDelivery class containing a list of SMTPHost objects named (appro-
priately) smtpServers. The MailDelivery constructor will populate its list with 10
SMTPHost objects:

private MailDelivery()
{
 // List of available smtp servers
 smtpServers.Add(new SMTPHost("Mail 1","192.168.0.100"));
 smtpServers.Add(new SMTPHost("Mail 2","192.168.0.101"));
 smtpServers.Add(new SMTPHost("Mail 3","192.168.0.102"));
 smtpServers.Add(new SMTPHost("Mail 4","192.168.0.103"));
 smtpServers.Add(new SMTPHost("Mail 5","192.168.0.104"));
 smtpServers.Add(new SMTPHost("Mail 6","192.168.0.105"));
 smtpServers.Add(new SMTPHost("Mail 7","192.168.0.106"));
 smtpServers.Add(new SMTPHost("Mail 8","192.168.0.107"));
 smtpServers.Add(new SMTPHost("Mail 9","192.168.0.108"));
 smtpServers.Add(new SMTPHost("Mail 10","192.168.0.109"));
}

Note that the constructor is private. As stated previously, that’s because this applica-
tion will only ever have zero or one instances of a MailDelivery object: when clients
ask for a MailDelivery object, they will get the singleton. They ask for the
MailDelivery object by calling the public property SMTPServer, which will load bal-
ance by randomly delivering one of the SMTP servers in the MailDelivery’s list of
SMTPServer objects:

public SMTPHost SmtpServer
 {
 get
 {
 int r = random.Next(smtpServers.Count);
 return smtpServers[r];
 }
 }

Let C# take care of the threading issues for you by declaring the one instance of
MailDelivery to be static; .NET guarantees thread safety for static initialization
(thank you very much!). The complete application is shown in Example 8-5.

Example 8-5. Singleton pattern example

using System;
using System.Collections.Generic;

namespace Singleton
{
 class Program

The Singleton Pattern | 277

 {
 /// Entry point into console application
 /// </summary>
 static void Main()
 {
 // What happens when we ask for the load distributor 10 times?
 MailDelivery m1 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m2 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m3 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m4 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m5 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m6 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m7 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m8 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m9 = MailDelivery.GetSMTPLoadDistributor();
 MailDelivery m10 = MailDelivery.GetSMTPLoadDistributor();

 // Because we are creating a singleton, each
 // instance should be the same

 // Trust but verify!

 if (m1 == m2 && m2 == m3 && m3 == m4 && m4 == m5 &&
 m5 == m6 && m6 == m7 && m7 == m8 && m8 == m9 && m9 == m10)
 {
 Console.WriteLine("Verified. Just one instance ever created.\n");
 }

 // Distribute 100 outbound email requests for an SMTP server
 MailDelivery md = MailDelivery.GetSMTPLoadDistributor();
 for (int i = 0; i < 100; i++)
 {
 Console.WriteLine(md.SmtpServer.Name+" @ "+md.SmtpServer.IP);
 }

 // When the user hits Enter the console will quit...
 Console.Read();
 }
 }

 // Singleton
 sealed class MailDelivery
 {
 // Static members are initialized immediately when the class is
 // loaded for the first time. You should note that .NET guarantees
 // thread safety for static initialization. This is a great thing,
 // because thread safety can be a hard thing to do on your own.

 private static readonly MailDelivery instance =
 new MailDelivery();

Example 8-5. Singleton pattern example (continued)

278 | Chapter 8: Implementing Design Patterns with .NET 3.5

 private List<SMTPHost> smtpServers = new List<SMTPHost>();

 private Random random = new Random();

 public SMTPHost SmtpServer
 {
 get
 {
 int r = random.Next(smtpServers.Count);
 return smtpServers[r];
 }
 }

 // Private constructor -- no going around making your own, thank you
 private MailDelivery()
 {
 // List of available smtp servers
 smtpServers.Add(new SMTPHost("Mail 1","192.168.0.100"));
 smtpServers.Add(new SMTPHost("Mail 2","192.168.0.101"));
 smtpServers.Add(new SMTPHost("Mail 3","192.168.0.102"));
 smtpServers.Add(new SMTPHost("Mail 4","192.168.0.103"));
 smtpServers.Add(new SMTPHost("Mail 5","192.168.0.104"));
 smtpServers.Add(new SMTPHost("Mail 6","192.168.0.105"));
 smtpServers.Add(new SMTPHost("Mail 7","192.168.0.106"));
 smtpServers.Add(new SMTPHost("Mail 8","192.168.0.107"));
 smtpServers.Add(new SMTPHost("Mail 9","192.168.0.108"));
 smtpServers.Add(new SMTPHost("Mail 10","192.168.0.109"));
 }

 public static MailDelivery GetSMTPLoadDistributor()
 {
 return instance;
 }

 }

 // Simple server machine
 class SMTPHost
 {
 private string name;
 private string ip;

 public SMTPHost(string name, string ip)
 {
 this.name = name;
 this.ip = ip;
 }
 public string Name
 {
 get { return name; }
 }

Example 8-5. Singleton pattern example (continued)

The Singleton Pattern | 279

Figure 8-23 shows the output from running this program.

There you have it—a brief interlude into the wonderful world of design patterns.
Now back to your regularly scheduled book.

 public string IP
 {
 get { return ip; }
 }
 }
}

Figure 8-23. Singleton example output

Example 8-5. Singleton pattern example (continued)

PART III

III.The Business Layer

Chapter 9, Understanding LINQ: Queries As First-Class Language Constructs

Chapter 10, Introducing Windows Communication Foundation: Accessible
Service-Oriented Architecture

Chapter 11, Applying WCF: YahooQuotes

Chapter 12, Introducing Windows Workflow Foundation

Chapter 13, Applying WF: Building a State Machine

Chapter 14, Using and Applying CardSpace: A New Scheme for Establishing
Identity

283

Chapter 9 CHAPTER 9

Understanding LINQ:
Queries As First-Class Language

Constructs9

One of the tasks programmers typically perform every day is finding and retrieving
objects in memory, a database, or an XML file. For example, you may be developing
an application to allow your customers to keep track of all their music purchases
from various sources (e.g., online, brick and mortar shops, or one another) and
where their music is stored. To accomplish this, you’ll need to retrieve data from
multiple sources (e.g., iTunes, various online sites, and computers on your net-
work), and to filter that information by numerous and changing criteria (name,
month, cost, artist, last-listened-to date, etc.).

In the past, you might have implemented all of this by uploading all your data into a
relational database and then querying that database using Transact-SQL. Unfortu-
nately, the data is likely to change frequently (in some families, hourly!). Also, much
of it will already be available to you, though not natively in a database; it will be
available through web services and other data sources.

The traditional .NET Framework approach using ADO.NET does not lend itself to
easily aggregating and searching disparate data sources. In-memory searches lack the
powerful and flexible query capabilities of SQL, while ADO.NET is not integrated
into C#, and SQL itself is not object-oriented (in fact, the point of ADO.NET was to
bridge the gap between the object and relational models).

To solve these and other issues, the designers of .NET 3.x introduced Language
INtegrated Query (LINQ) syntax. LINQ is a first-class part of all .NET 3.x lan-
guages. It provides (at long last) an object-oriented language feature that fully bridges
the so-called impedance mismatch between object-oriented languages and relational
databases—namely, the differences between objects and the way data is actually
stored in a database—while allowing you to search, filter, and aggregate disparate
data sources.

284 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Defining and Executing a LINQ Query
In previous versions of the Common Language Syntax, you queried a database
through the Framework using ADO.NET outside your specific programming lan-
guage. With LINQ, you can stay within your language and within a fully class-based
perspective.

Let’s start with a simple use case: searching a collection for objects that match a
given criterion, as demonstrated in Example 9-1 using C# 3.0. The LINQ-specific
code is highlighted and is explained after the listing.

Example 9-1. A simple LINQ query

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SimpleLINQ
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 // Find customer by first name
 IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;
 Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

Defining and Executing a LINQ Query | 285

Example 9-1 defines a very simple Customer class with three properties: FirstName,
LastName, and EmailAddress. It overrides the Object.ToString() method to provide a
custom string representation of its instances, thereby simplifying the output of this
sample program (see Figure 9-1).

Creating the Query
The main program starts by creating a customer list with some sample data, taking
advantage of object initialization. Once the list of customers is created, Example 9-1
defines a LINQ query:

IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

 customers[3].FirstName = "Donna";
 Console.WriteLine("FirstName == \"Donna\" (take two)");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@adventure-works.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@adventure-works.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@adventure-works.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@adventure-works.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@adventure-works.com" }
 };
 return customers;
 }
 }
}

Example 9-1. A simple LINQ query (continued)

286 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

The result variable is initialized with a query expression. In this example, the query
will retrieve from the customers list all Customer objects with a FirstName property
value of Donna. The result of such a query is a collection that implements
IEnumerable<T>, where T is the type of the result object. In this example, since the
query result is a set of Customer objects, the type of the result variable is
IEnumerable<Customer>. Now let’s dissect the query and look at each part in a little
more detail.

The from clause

The first part of a LINQ query is the from clause:

 from customer in customers

The generator of a LINQ query specifies the data source and a range variable. A
LINQ data source can be any collection that implements the System.Collections.
Generic.IEnumerable<T> interface. In this example, the data source is customers, an
instance of List<Customer> that implements IEnumerable<T>.

A LINQ range variable acts like an iteration variable in a foreach loop, iterating over
the data source. Because the data source implements IEnumerable<T>, the C# com-
piler can infer the type of the range variable from the data source. In this example,
since the type of the data source is List<Customer>, the range variable customer is of
type Customer.

Filtering

The second part of this LINQ query is the where clause, which is also called a filter:

 where customer.FirstName == "Donna"

Figure 9-1. Output from the SimpleLINQ console

Defining and Executing a LINQ Query | 287

The filter is a Boolean expression that returns either true or false. It is common to
use the range variable in the where clause to filter the objects in the data source. In
this example, because customer is of type Customer, you use one of its properties
(FirstName) to apply the filter for the query.

You can, however, use any expression that evaluates to either true or false. For
instance, you can invoke the String.StartsWith() method to filter customers by the
first letter of their last names:

 where customer.LastName.StartsWith("G")

You can also use composite expressions to construct more complex queries, or even
nested queries, where the result of one query (the inner query) is used to filter
another query (the outer query).

Projection

The last part of a LINQ query is the select clause (known to database geeks as a
“projection”), which defines (or projects) the results. In this example, the query
returns the customer objects that satisfy the query condition:

 select customer;

However, the result can be anything. For instance, you can return the qualified cus-
tomers’ email addresses only:

 select customer.EmailAddress;

That’s all there is to a simple LINQ query.

You may notice a striking similarity between the syntax of LINQ and
SQL. The one outstanding difference is the select (projection) clause.
C# requires that variables be declared before they are used; since the
from clause defines the range variable, it must be stated first in a LINQ
query.

Deferred Query Evaluation
LINQ implements deferred query evaluation, meaning that the declaration and ini-
tialization of a query expression do not actually cause the query to be executed.
Instead, a LINQ query is executed, or evaluated, when you iterate through the query
result:

foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

Because this query returns a collection of Customer objects, the iteration variable is an
instance of the Customer class that you can use as you would any Customer object.
This example simply calls each Customer object’s ToString() method to output its
property values to the console.

288 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

You can iterate through the query many times. The query will be re-evaluated each time,
and if the data source has changed between executions, the result will be different.
This is demonstrated in the next section of Example 9-1:

customers[3].FirstName = "Donna";

This statement modifies the first name of the customer “Janet Gates” to “Donna,”
and the following lines iterate through the result again:

Console.WriteLine("FirstName == \"Donna\" (take two)");
foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

Console.Read(); // This forces the console to wait for your input

As you can see in the sample output (shown earlier in Figure 9-1), in “take two” the
result includes Donna Gates as well as Donna Carreras.

In most situations, deferred query evaluation is desired because you want to obtain
the most recent data from the data source each time you run the query. However, if
you want to cache the result so it can be processed later without having to re-execute
the query, you can call either the ToList() or the ToArray() method to save a copy of
the result. Example 9-2 demonstrates this technique. As in Example 9-1 and all sub-
sequent examples, the LINQ-specific code is highlighted.

Example 9-2. A simple LINQ query with cached results

using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqChapter
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 9-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 // Find customer by first name
 IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;
 List<Customer> cachedResult = result.ToList<Customer>();

Defining and Executing a LINQ Query | 289

Figure 9-2 shows the results.

In this example, you call the ToList<T>() method of the result collection to cache
the result. Note that calling this method causes the query to be evaluated immedi-
ately. If the data source is subsequently changed, the change will not be reflected in
the cached result: as you can see in the output, this time “take two” does not include
Donna Gates.

One interesting point here is that the ToList<T>() and ToArray<T>() methods are not
actually methods of IEnumerable; rather, they are extension methods provided by
LINQ. Extension methods are discussed later in this chapter.

Joining
Often, you’ll want to search for objects from more than one data source. LINQ pro-
vides a join clause that offers you the ability to join many data sources. Suppose, for

 Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in cachedResult)
 Console.WriteLine(customer.ToString());

 customers[3].FirstName = "Donna";
 Console.WriteLine("FirstName == \"Donna\" (take two)");
 foreach (Customer customer in cachedResult)
 Console.WriteLine(customer.ToString());
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 9-1
 }
 }
}

Figure 9-2. Cached query results

Example 9-2. A simple LINQ query with cached results (continued)

290 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

example, you have a list of customers containing customer names and email
addresses, and a list of customer home addresses. You can use LINQ to combine
both lists to produce a list of customers and both their email and home addresses:

from customer in customers
 join address in addresses on
 customer.Name equals address.Name
...

Like in SQL, the join condition is specified in the on subclause. The join class syn-
tax is:

[data source 1] join [data source 2] on [join condition]

In the preceding example we joined two data sources, customers and addresses,
based on the Name properties in each customer object. In fact, you can join more than
two data sources using a combination of join clauses. For example:

from customer in customers
 join address in addresses on
 customer.Name equals address.Name
 join invoice in invoices on
 customer.Id equals invoice.CustomerId
 join invoiceItem in invoiceItems on
 invoice.Id equals invoiceItem.invoiceId

A LINQ join clause returns a result only when objects satisfying the join condition
exist in all data sources. For instance, if a customer has no invoice, the query will not
return anything for that customer (not even her name and email address). This
behavior is the equivalent of the SQL inner join clause. LINQ does not perform
outer joins, which return results if either of the data sources contains objects that
meet the join condition.

Ordering
You can sort a LINQ query’s results by specifying the sort order with the orderby
clause:

from customer in customers
 orderby customer.LastName
 select customer;

This sorts the results by customer last name, in ascending order. You can sort in
descending order as well. Example 9-3 shows how you can sort the results of a join
query.

Example 9-3. A sorted join query

using System;
using System.Collections.Generic;
using System.Linq;

Defining and Executing a LINQ Query | 291

namespace LinqChapter
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 9-1
 }

 // Customer Address class
 public class Address
 {
 public string Name { get; set; }
 public string Street { get; set; }
 public string City { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0}, {1}", Street, City);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();
 List<Address> addresses = CreateAddressList();

 // Find all addresses of a customer
 var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address };
 foreach (var ca in result)
 {
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
 }

 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()

Example 9-3. A sorted join query (continued)

292 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

The output from this example is shown in Figure 9-3.

The Customer class in Example 9-3 is identical to the one used in Example 9-1. The
Address class is also very simple, with a customer name field containing names in the
<first name> <last name> form, and fields for the street and city.

The CreateCustomerList() and CreateAddressList() methods are just helper func-
tions to create sample data for this example. They also use the new C# object and
collection initializers.

The query definition, however, looks quite different from the one in the last example:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address.Street };

The first difference is the declaration of the result. Instead of declaring the result as
an explicitly typed IEnumerable<Customer> instance, this example declares the result

 {
 // Same as in Example 9-1
 }

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 List<Address> addresses = new List<Address>
 {
 new Address { Name = "Janet Gates",
 Street = "165 North Main",
 City = "Austin" },
 new Address { Name = "Keith Harris",
 Street = "3207 S Grady Way",
 City = "Renton" },
 new Address { Name = "Janet Gates",
 Street = "800 Interchange Blvd.",
 City = "Austin" },
 new Address { Name = "Keith Harris",
 Street = "7943 Walnut Ave",
 City = "Renton" },
 new Address { Name = "Orlando Gee",
 Street = "2251 Elliot Avenue",
 City = "Seattle" }
 };
 return addresses;
 }
 }
}

Example 9-3. A sorted join query (continued)

Defining and Executing a LINQ Query | 293

as an implicitly typed variable using the new var keyword. We’ll return to this topic
in the next section; for now, we’ll stick with the query definition itself.

The generator now contains a join clause to signify that the query is to be operated
on two data sources, customers and addresses. Because the customer name property
in the Address class is a concatenation of the customers’ first and last names, you
construct the names in Customer objects using the same format:

 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)

The dynamically constructed full name is then compared with the customer name
properties in the Address objects using the equals operator:

 equals address.Name

The orderby clause indicates the order in which the results should be sorted. In this
example, they will be sorted first by customer last name in ascending order, then by
street address in descending order:

 orderby customer.LastName, address.Street descending

The combined customer name, email address, and home address are returned. But
here you have a problem—LINQ can return a collection of objects of any type, but it
can’t return multiple objects of different types in the same query unless they are encap-
sulated in one type. For instance, you can select either an instance of the Customer
class, or an instance of the Address class, but you cannot select both like this:

 select customer, address

Figure 9-3. Sorted join query output

294 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

One solution is to define a new type containing both objects. An obvious choice is to
define a CustomerAddress class:

 public class CustomerAddress
 {
 public Customer Customer { get; set; }
 public Address Address { get; set; }
 }

You can then return customers and their addresses from the query in a collection of
CustomerAddress objects:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new CustomerAddress { Customer = customer, Address = address };

Implicitly Typed Local Variables
Now let’s go back to the declaration of query results, where you declare the result as
type var:

var result = ...

Because the select clause returns an instance of an anonymous type, you cannot
define an explicit type IEnumerable<T>. Fortunately, C# 3.0 provides another fea-
ture, implicitly typed local variables, that solves this problem.

You can declare an implicitly typed local variable by specifying its type as var:

var id = 1;
var name = "Keith";
var customers = new List<Customer>();
var person = new {FirstName = "Donna",
 LastName = "Gates",
 Phone="123-456-7890" };

The C# compiler infers the type of an implicitly typed local variable from its initial-
ized value. Therefore, you must initialize such a variable when you declare it. In the
preceding code snippet, the type of id will be set as an integer and the type of name
as a string, while customers will be set as a strongly typed List<T> of Customer
objects. The type of the last variable, person, is an anonymous type containing three
properties: FirstName, LastName, and Phone. Although this type has no name in your
code, the C# compiler secretly assigns it one and keeps track of its instances. In fact,
Visual Studio’s IntelliSense is also aware of anonymous types, as shown in
Figure 9-4.

Defining and Executing a LINQ Query | 295

Back in Example 9-3, result is an instance of the constructed IEnumerable<T> that
contains query results, where the type of the argument T is an anonymous type that
contains two properties: Customer and Address.

Now that the query is defined, the next statement executes it using the foreach loop:

foreach (var ca in result)
{
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
}

As the result is an implicitly typed IEnumerable<T> of the anonymous class {Customer,
Address}, the iteration variable is also implicitly typed to the same class. For each
object in the result list, this example simply prints its properties.

Anonymous Types
Often, you won’t want to create a new class just for storing the result of a query. The
.NET 3.x languages provide anonymous types, which allow you to declare both an
anonymous class and an instance of that class using object initializers. For instance,
you can initialize an anonymous customer Address object as follows:

new { Customer = customer, Address = address }

This declares an anonymous class with two properties, Customer and Address, and
initializes it with an instance of the Customer class and an instance of the Address
class. The C# compiler can infer the property types from the types of the assigned
values, so here the Customer property type is the Customer class, and the Address
property type is the Address class. Just like normal, named classes, anonymous
classes can have properties of any type.

Behind the scenes, the C# compiler generates a unique name for the new type.
Because this name cannot be referenced in application code, however, the type is
considered nameless.

Figure 9-4. Visual Studio IntelliSense on anonymous types

296 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Grouping
Another powerful feature of LINQ, commonly used by SQL programmers but now
integrated into the language itself, is grouping. Grouping allows you to organize the
results into logical “groups,” such as “all the clients grouped together by address,” as
demonstrated in Example 9-4.

The output of this example is shown in Figure 9-5. The result is a collection of
groups, and you’ll need to enumerate each group to get the objects belonging to it.

Example 9-4. A group query

using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqChapter
{
 // Customer Address class
 public class Address
 {
 // Same as in Example 9-3
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Address> addresses = CreateAddressList();

 // Find addresses of customers grouped by customer name
 var result =
 from address in addresses
 group address by address.Name;
 foreach (var group in result)
 {
 Console.WriteLine("{0}", group.Key);
 foreach (var a in group)
 Console.WriteLine("\t{0}", a);
 }
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 // Same as in Example 9-3
 }
 }
}

Extension Methods | 297

Extension Methods
LINQ is similar to SQL, so if you already know a little SQL the query expressions
introduced in the previous sections should seem quite intuitive and easy to under-
stand. However, as C# code is ultimately executed by the .NET CLR, the C# com-
piler has to translate the query expressions to a format that the .NET runtime
understands. In other words, the LINQ query expressions written in C# must be
translated into a series of method calls. The methods called are known as extension
methods, and they are defined in a slightly different way than normal methods.

Example 9-5 is identical to Example 9-1, except it uses query operator extension
methods instead of query expressions. The parts of the code that have not changed
are omitted for brevity.

Figure 9-5. Group query output

Example 9-5. Using query operator extension methods

using System;
using System.Collections.Generic;
using System.Linq;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 9-1
 }

 // Main program
 public class Tester

298 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Figure 9-6 shows the output from this example.

Example 9-5 searches for customers whose first name is Donna using a query expres-
sion with a where clause. Here’s the original from Example 9-1:

IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 // Find customer by first name
 IEnumerable<Customer> result =
 customers.Where(
 customer => customer.FirstName == "Donna");
 Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 9-1
 }
 }
}

Figure 9-6. Output from using query operator extension methods

Example 9-5. Using query operator extension methods (continued)

Extension Methods | 299

And here is the extension Where() method:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName == "Donna");

You may have noticed that the select clause seems to have vanished from this exam-
ple. For details on this, please see the upcoming sidebar “Whither the select Clause?”
(and try to remember, as Chico Marx reminded us, “there ain’t no such thing as a
Sanity clause”).

Recall that the data source customers is of the type List<Customer>. This might lead
you to think that List<T> must implement the Where() method to support LINQ.
However, it does not: the Where() method is called an “extension method” because it
extends an existing type. Before we go into more details of this example, let’s take a
closer look at extension methods.

Defining and Using Extension Methods
The extension methods introduced in the .NET 3.x languages enable programmers
to add methods to existing types. For instance, System.String does not provide a
Right() function that returns the rightmost n characters of a string. If you use this
functionality a lot in your application, you may have considered building such a
function and adding it to your library. However, System.String is defined as
sealed, so you can’t subclass it. It is not a partial class, so you can’t extend it using
that feature either, and of course you can’t modify the .NET core library directly.

Whither the select Clause?
The reason the select clause is omitted is that you simply use the resulting Customer
object, without projecting it into a different form. Therefore, this statement:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName ==
 "Donna");

is the same as this:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName ==
 "Donna").Select(customer => customer);

If a projection of results is required, you will need to use the Select() method. For
instance, if you want to retrieve the email address of anyone called Donna instead of
the whole Customer object, you can use the following statement:

IEnumerable<string> result =
 customers.Where(customer => customer.FirstName ==
 "Donna").Select(customer => customer.EmailAddress);

300 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Therefore, prior to .NET 3.x you would have had to define your own helper method
outside of System.String and call it with syntax like this:

MyHelperClass.GetRight(aString, n)

This is not exactly intuitive. With the .NET 3.x languages, however, there is a more
elegant solution: you can actually add a method to the System.String class. In other
words, you can extend the System.String class without having to modify the class
itself. Example 9-6 demonstrates how to define and use such an extension method.

Figure 9-7 shows the output from this example.

The first parameter of an extension method is always the target type, which is string
in this example. Thus, this example effectively defines a Right() function for the
String class. You want to be able to call this method on any string, just like calling a
normal System.String member method:

aString.Right(n)

Example 9-6. Defining and using extension methods

using System;

namespace LinqChapter
{
 // Container class for extension methods
 public static class ExtensionMethods
 {
 // Returns the a substring containing the rightmost
 // n characters in a specific string
 public static string Right(this string s, int n)
 {
 if (n < 0 || n > s.Length)
 return s;
 else
 return s.Substring(s.Length - n);
 }
 }

 public class Tester
 {
 public static void Main()
 {
 string hello = "Hello";
 Console.WriteLine("hello.Right(-1) = {0}", hello.Right(-1));
 Console.WriteLine("hello.Right(0) = {0}", hello.Right(0));
 Console.WriteLine("hello.Right(3) = {0}", hello.Right(3));
 Console.WriteLine("hello.Right(5) = {0}", hello.Right(5));
 Console.WriteLine("hello.Right(6) = {0}", hello.Right(6));
 Console.Read();
 }
 }
}

Extension Methods | 301

In C#, an extension method must be defined as a static method in a static class.
Therefore, this example defines a static class, ExtensionMethods, and a static method
in this class:

public static string Right(this string s, int n)
{
 if (n < 0 || n > s.Length)
 return s;
 else
 return s.Substring(s.Length - n);
}

Compared to a regular method, the only notable difference is that the first parame-
ter of an extension method always consists of the this keyword, followed by the tar-
get type and an instance of the target type:

this string s

The subsequent parameters are just normal parameters of the extension method, and
the method body is just like that of a regular method. This function simply returns
either the desired substring or, if the length argument n is invalid, the original string.

For an extension method to be used, it must be in the same scope as the client code.
If the extension method is defined in another namespace, you must add a using
directive to import the namespace where the extension method is defined. You can’t
use fully qualified extension method names, as you can with a normal method. The
use of extension methods is otherwise identical to any built-in methods of the target
type. In this example, you simply call Right() like a regular System.String method:

hello.Right(3)

It is worth mentioning, however, that extension methods are somewhat more restric-
tive than regular member methods: extension methods can only access public mem-
bers of target types, which prevents breaches of the encapsulation of the target types.

Figure 9-7. Output from designing and using extension methods

302 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Lambda Expressions in LINQ
Lambda expressions can be used to define inline delegates. In the following expression:

customer => customer.FirstName == "Donna"

the lefthand operand, customer, is the input parameter, and the righthand operand is
the lambda expression. In this case, it checks whether the customer’s FirstName
property is equal to Donna. This lambda expression is passed into the Where()
method to perform this comparison operation on each customer in the customer list.

Queries defined using extension methods are called method-based queries. While the
ordinary and method-based query syntaxes are different, they are semantically identi-
cal and are translated into the same IL code by the compiler. You can use either of
them, based on your preference.

Looking at how a complex query is expressed in method syntax will help you gain a
better understanding of LINQ, because the method syntax is close to how the C#
compiler processes queries. Example 9-7 shows what Example 9-3 looks like trans-
lated into a method-based query.

Example 9-7. Complex query in method syntax

using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqChapter
{
 // Simple Customer class
 public class Customer
 {
 // Same as in Example 9-2
 }

 // Customer Address class
 public class Address
 {
 // Same as in Example 9-3
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();
 List<Address> addresses = CreateAddressList();

 var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,

Extension Methods | 303

As you can see in Figure 9-8, the result is the same.

 (customer, address) => new { Customer = customer,
 Address = address })
 .OrderBy(ca => ca.Customer.LastName)
 .ThenByDescending(ca => ca.Address.Street);

 foreach (var ca in result)
 {
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
 }

 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 9-2
 }

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 // Same as in Example 9-2
 }
 }
}

Figure 9-8. Complex query in method syntax

Example 9-7. Complex query in method syntax (continued)

304 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

The query is written in query syntax as follows:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address.Street };

And here it is translated into method syntax:

var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,
 (customer, address) => new { Customer = customer,
 Address = address })
 .OrderBy(ca => ca.Customer.LastName)
 .ThenByDescending(ca => ca.Address.Street);

The main data source, the customers collection, is still the main target object. The
extension method, Join(), is applied to it to perform the join operation. Its first
argument is the second data source, addresses. The next two arguments are join con-
dition fields in each data source. The final argument is the result of the join condi-
tion, which is in fact the select clause in the query.

The orderby clauses in the query expression indicate that you want to order the
results by customer’s last name in ascending order, and then by street address in
descending order. In the method syntax, you must specify this preference by using
the OrderBy() and ThenBy() (or ThenByDescending()) methods.

You can just call OrderBy() methods in sequence, but the calls must be in reverse
order. That is, you must invoke the method to order the last field in the query
orderby list first and the method to order the first field in the query orderby list last.
Thus, in this example you would need to invoke the “order by street” method first,
followed by the “order by name” method:

var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,
 (customer, address) => new { Customer = customer,
 Address = address })
 .OrderByDescending(ca => ca.Address.Street)
 .OrderBy(ca => ca.Customer.LastName);

Adding the AdventureWorksLT Database | 305

As you can see from Figures 9-3 and 9-8, the results for these examples are identical.
Therefore, you can choose either style, based on your preference.

Ian Griffiths (one of the smarter programmers on Earth) makes the fol-
lowing point: “You can use exactly these same two syntaxes on a vari-
ety of different sources, but the behavior isn’t always the same.” The
meaning of a lambda expression varies according to the signature of
the function to which it is passed. In these examples, it’s a succinct
syntax for a delegate. But if you were to use exactly the same form of
query against a SQL data source, the lambda expression would be
turned into something else.

All these extension methods—Join(), Select(), Where(), and so on—
have multiple implementations with different target types. Here we’re
looking at the ones that operate over IEnumerable. The ones that oper-
ate over IQueryable are subtly different: rather than taking delegates
for the join, projection, where, and other clauses, they take expres-
sions. Those wonderful and magical things enable C# source code to
be transformed into equivalent SQL queries.

Adding the AdventureWorksLT Database
The rest of the examples in this chapter use the SQL Server 2005 AdventureWorksLT
sample database, which you can download from http://tinyurl.com/2xzkf7.

Please note that while this database is a simplified version of the more
comprehensive AdventureWorks, the two are quite different. The exam-
ples in this chapter will not work with the full AdventureWorks data-
base. Please select the AdventureWorksLT .msi package applicable for
your platform (32-bit, x64, or IA64). If SQL Server is installed in the
default directory, install the sample database to C:\Program Files\
Microsoft SQL Server\MSSQL.1\MSSQL\Data\. Otherwise, install the
database to the Data subdirectory under its installation directory.

If you are using SQL Server Express (included in Visual Studio 2008), you will need
to enable the Named Pipes protocol:

1. Open the SQL Server Configuration Manager (Start ➝ All Programs ➝ Microsoft
SQL Server 2005 ➝ Configuration Tools ➝ SQL Server Configuration Manager).

2. In the left pane, select SQL Server Configuration Manager (Local) ➝ SQL Server
2005 Network Configuration ➝ Protocols for SQLEXPRESS.

3. In the right pane, right-click the Named Pipes protocol and select Enable, as
shown in Figure 9-9.

http://tinyurl.com/2xzkf7

306 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

4. In the left pane, select SQL Server 2005 Services, then right-click SQL Server
(SQLEXPRESS) and select Restart to restart SQL Server, as shown in
Figure 9-10.

Figure 9-9. Enabling the Named Pipes protocol in SQL Server 2005 Express

Figure 9-10. Restarting SQL Server 2005 Express

Adding the AdventureWorksLT Database | 307

5. Attach the sample database to SQL Server Express using one of the following
methods:

a. If you already have the SQL Server client tools installed, open the SQL
Server Management Studio (Start ➝ All Programs ➝ Microsoft SQL Server
2005 ➝ SQL Server Management Studio) and connect to the local SQL
Server Express database.

b. Otherwise, download the SQL Server Express Management Studio from the
Microsoft SQL Server Express page (http://msdn2.microsoft.com/en-us/
express/bb410792.aspx) and install it on your machine. Then open it and
connect to the local SQL Server Express database.

6. In the left pane, right-click on Databases and select Attach, as shown in
Figure 9-11.

7. In the Attach Database dialog, click Add. Select the AdventureWorksLT database,
as shown in Figure 9-12.

8. Click OK to close this dialog and OK again to close the Attach Database dialog.

Figure 9-11. Attaching a database

http://msdn2.microsoft.com/en-us/express/bb410792.aspx
http://msdn2.microsoft.com/en-us/express/bb410792.aspx

308 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

LINQ to SQL Fundamentals
To get started with LINQ to SQL, open Visual Studio 2008 and create a new Con-
sole Application named Simple LINQ to SQL. Once the IDE is open, click View and
open the Server Explorer. Make a connection to the AdventureWorksLT database and
test that connection, as shown in Figure 9-13.

Figure 9-12. Adding AdventureWorksLT to SQL Server 2005 Express

LINQ to SQL Fundamentals | 309

The next example illustrates using LINQ. For it to compile, you will need to add a
reference to the LINQ components. To do so, click on References in your project
and add a reference. This opens the dialog shown in Figure 9-14.

Figure 9-13. Testing the connection to AdventureWorksLT

310 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Click on the .NET tab, then scroll down to and select System.Data.Linq. You are
now ready to test Example 9-8, which illustrates an extremely stripped-down LINQ
connection to a SQL database (in this case, AdventureWorksLT). The mapping
between a class property and a database column is accomplished, as you’ll see in the
listing, by using the column attribute. A full analysis follows.

Figure 9-14. Adding System.Data.Linq to the project’s references

Example 9-8. Simple LINQ to SQL

using System;
using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Linq;

namespace Simple_Linq_to_SQL
{
 // Customer class
 [Table(Name="SalesLT.Customer")]
 public class Customer
 {

[Column] public string FirstName { get; set; }
[Column] public string LastName { get; set; }
[Column] public string EmailAddress { get; set; }

LINQ to SQL Fundamentals | 311

The key to this program is in the first line of Main(), where you define db to be of
type DataContext. A DataContext object is the entry point for the LINQ to SQL
Framework, providing a bridge between the application code and database-specific
commands. Its job is to translate high-level C# LINQ to SQL code into correspond-
ing database commands and execute them behind the scenes. It maintains a connec-
tion to the underlying database, fetches data from the database when requested,
tracks changes made to every entity retrieved from the database, and updates the
database as needed. It maintains an “identity cache” to guarantee that if you retrieve
an entity more than once, all duplicate retrievals will be represented by the same
object instance (thereby preventing database corruption).

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 public class Tester
 {
 static void Main()
 {
 DataContext db = new DataContext(
 @"Data Source=.\SqlExpress;
 Initial Catalog=AdventureWorksLT;
 Integrated Security=True");

 Table<Customer> customers = db.GetTable<Customer>();
 var query =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

 foreach(var c in query)
 Console.WriteLine(c.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Donna Carreras
Email: donna0@adventure-works.com

Example 9-8. Simple LINQ to SQL (continued)

312 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Once the DataContext object has been instantiated, you can access the objects con-
tained in the underlying database. This example uses the Customer table in the
AdventureWorksLT database, which it accesses via the DataContext’s GetTable() function:

 Table<Customer> customers = db.GetTable<Customer>();

GetTable() is a generic function, so you can specify that the table should be mapped to
a collection of Customer objects. The DataContext has many methods and properties, one
of which is Log. This property lets you specify the destination where the DataContext
logs the executed SQL queries and commands. If you redirect the log to somewhere you
can access it, you can see how LINQ does its magic. For instance, you can redirect the
Log property to Console.Out so that you can see the output on the system console:

Output:
SELECT [t0].[FirstName], [t0].[LastName], [t0].[EmailAddress]
FROM [SalesLT].[Customer] AS [t0]
WHERE [t0].[FirstName] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [Donna]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel
Build: 3.5.20706.1

Database Corruption
There are many ways in which the data in a large database can be “corrupted”—that
is, inadvertently come to misrepresent the information you hoped to keep accurate.

A typical scenario would be this: you have data representing the books in your store
and how many are available. When you make a query about a book, the data is
retrieved from the database into a temporary record (or object) that is no longer con-
nected to the database until you “write it back.” Thus, any changes to the database are
not reflected in the record you are looking at unless you refresh the data (this is neces-
sary to keep a busy database responsive).

Suppose that Joe takes a call asking how many copies of Programming C# are on hand.
He calls up the record in his database and finds, to his horror, that the shop is down to
a single copy. While he is talking with his customer, a second seller (Jane) takes a call
from someone looking for the same book. She sees one copy available and sells it to her
customer, while Joe is discussing the merits of the book with his customer. Joe’s cus-
tomer decides to make the purchase, but by the time he does it’s too late; Jane has
already sold the last copy. Joe tries to put through the sale, but the book that is quite
clearly showing as available no longer is. You now have one very unhappy customer
and a salesman who has been made to look like an idiot. Oops.

We mentioned in the text that LINQ ensures that multiple retrievals of a database
record are all represented by the same object instance. This makes it much harder for
the scenario just described to occur, as both Joe and Jane are working on the same
record in memory. Thus, if Jane were to change the “number on hand,” that change
would immediately be reflected in Joe’s representation of the object because they’d
both be looking at the same data, not at independent snapshots.

Using the Visual Studio LINQ to SQL Designer | 313

Using the Visual Studio LINQ to SQL Designer
Rather than working out the data relationships in the underlying database and map-
ping them in the DataContext manually, you can use the designer built into Visual
Studio. This is a very powerful mechanism that makes working with LINQ incredi-
bly simple. To see how it works, first open the AdventureWorksLT database in SQL
Server Management Studio Express and examine the Customer, CustomerAddress, and
Address tables. Make sure you understand their relationship, which is illustrated in
the entity-relationship diagram in Figure 9-15.

Create a new Visual Studio Console Application called AdventureWorksDBML.
Make sure that the Server Explorer is visible and that you have a connection to
AdventureWorksLT, as shown in Figure 9-16. If the connection is not available, follow
the instructions outlined earlier to create it.

Figure 9-15. AdventureWorksLT DB diagram

314 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

To create your LINQ to SQL classes, right-click on the project and choose Add ➝

New Item, as shown in Figure 9-17.

When the New Item dialog opens, choose “LINQ to SQL Classes.” You can use the
default name for the class (probably DataClasses1), or replace it with a more meaning-
ful one—we’ll use AdventureWorksAddress. Now click Add. The name you chose
becomes the name of your DataContext object (with the word DataContext appended).
Thus, the DataContext object’s name here will be AdventureWorksAddressDataContext.

The center window will now display the Object Relational Designer. You can drag
tables from the Server Explorer or the Toolbox onto the designer. Drag the Address,
Customer, and CustomerAddress tables from the Server Explorer onto this space.

In Figure 9-18, two tables have been dragged on and the third is about to be
dropped. Once you’ve dropped your tables onto the work surface, Visual Studio
2008 automatically retrieves and displays the relationships among the tables. You
can arrange them to ensure that the table relationships are displayed clearly.

When you’ve finished, you’ll find that two new files have been created:
AdventureWorksAddress.dbml.layout and AdventureWorksAddress.designer.cs. The
former contains the XML representation of the tables you’ve put on the design surface, a
short segment of which is shown here:

<?xml version="1.0" encoding="utf-8"?>
<ordesignerObjectsDiagram dslVersion="1.0.0.0"

Figure 9-16. Checking the AdventureWorksLT connection in the Server Explorer

Using the Visual Studio LINQ to SQL Designer | 315

 absoluteBounds="0, 0, 11, 8.5"
 name="AdventureWorksAddress">
 <DataContextMoniker Name="/AdventureWorksAddressDataContext" />
 <nestedChildShapes>
 <classShape Id="4a893188-c5cd-44db-a114-0444cced4057"
 absoluteBounds="1.125,
 1.375, 2, 2.5401025390625">
 <DataClassMoniker
 Name="/AdventureWorksAddressDataContext/Address" />
 <nestedChildShapes>
 <elementListCompartment Id="d59f1bc4-752e-41db-a940-4a9938014ca7"
 absoluteBounds="1.1400000000000001, 1.835, 1.9700000000000002,
 1.9801025390625" name="DataPropertiesCompartment"
 titleTextColor="Black" itemTextColor="Black" />
 </nestedChildShapes>
 </classShape>
 <classShape Id="c432968b-f644-4ca3-b26b-61dfe4292884"
 absoluteBounds="5.875, 1, 2, 3.6939111328124996">
 <DataClassMoniker Name="/AdventureWorksAddressDataContext/Customer" />
 <nestedChildShapes>
 <elementListCompartment Id="c240ad98-f162-4921-927a-c87781db6ac4"
 absoluteBounds="5.8900000000000006, 1.46, 1.9700000000000002,
 3.1339111328125" name="DataPropertiesCompartment"
 titleTextColor="Black" itemTextColor="Black" />
 </nestedChildShapes>
 </classShape>

Figure 9-17. Adding a new item to the project

316 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

The .cs file contains the code to handle all the LINQ to SQL calls that you otherwise
would have to write by hand. Like all machine-generated code, it is terribly verbose.
Here is a very brief excerpt:

public Address()
{
 OnCreated();
 this._CustomerAddresses = new EntitySet<CustomerAddress>(new
 Action<CustomerAddress>(this.attach_CustomerAddresses),
 new Action<CustomerAddress>(this.detach_CustomerAddresses));
}

[Column(Storage="_AddressID", AutoSync=AutoSync.OnInsert,
DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true, IsDbGenerated=true)]
public int AddressID
{
 get
 {
 return this._AddressID;
 }
 set
 {
 if ((this._AddressID != value))

Figure 9-18. Dragging tables onto the work surface

Retrieving Data | 317

 {
 this.OnAddressIDChanging(value);
 this.SendPropertyChanging();
 this._AddressID = value;
 this.SendPropertyChanged("AddressID");
 this.OnAddressIDChanged();
 }
 }
}

The classes that are generated are strongly typed, and a class is generated for each
table you place in the designer.

The DataContext class exposes each table as a property, and the relationships among the
tables are represented by properties of the classes representing data records. For exam-
ple, the CustomerAddress table is mapped to the CustomerAddresses property, which is a
strongly typed collection (LINQ table) of CustomerAddress objects. You can access the
parent Customer and Address objects of a CustomerAddress object through its Customer
and Address properties, respectively. The next section discusses this in more detail.

Retrieving Data
Replace the contents of Program.cs with the code in Example 9-9, which uses the
generated LINQ to SQL code to retrieve data from the three tables you’ve mapped
using the designer.

Example 9-9. Using LINQ to SQL Designer-generated classes

using System;
using System.Linq;
using System.Text;

namespace AdventureWorksDBML
{
 // Main program
 public class Tester
 {
 static void Main()
 {
 AdventureWorksAddressDataContext dc = new
 AdventureWorksAddressDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 // Find one customer record.
 Customer donna = dc.Customers.Single(
 c => c.FirstName == "Donna");
 Console.WriteLine(donna);

318 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

 // Find a list of customer records.
 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

 foreach (Customer customer in customerDs)
 {
 Console.WriteLine(customer);
 }
 }
 }

 // Add a method to the generated Customer class to
 // show formatted customer properties.
 public partial class Customer
 {
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0} {1} {2}",
 FirstName, LastName, EmailAddress);
 foreach (CustomerAddress ca in CustomerAddresses)
 {
 sb.AppendFormat("\n\t{0}, {1}",
 ca.Address.AddressLine1,
 ca.Address.City);
 }
 sb.AppendLine();
 return sb.ToString();
 }
 }
}

Output:
Donna Carreras donna0@adventure-works.com
 12345 Sterling Avenue, Irving

(only showing the first 5 customers):
Daniel Blanco daniel0@adventure-works.com
 Suite 800 2530 Slater Street, Ottawa
Daniel Thompson daniel2@adventure-works.com
 755 Nw Grandstand, Issaquah
Danielle Johnson danielle1@adventure-works.com
 955 Green Valley Crescent, Ottawa
Darrell Banks darrell0@adventure-works.com
 Norwalk Square, Norwalk
Darren Gehring darren0@adventure-works.com
 509 Nafta Boulevard, Laredo

Example 9-9. Using LINQ to SQL Designer-generated classes (continued)

Retrieving Data | 319

Creating Properties for Each Table
As you can see, you begin by creating an instance of the DataContext object you
asked the tool to generate:

AdventureWorksAddressDataContext dc =
 new AdventureWorksAddressDataContext();

When you use the designer, one of the things it does (besides creating the
DataContext class) is define a property for each table you’ve placed in the designer—in
this case, Customer, Address, and CustomerAddress. It names those properties by making
the table names plural. Therefore, the properties of AdventureWorksAddressDataContext
include Customers, Addresses, and CustomerAddresses.

Because of this convention, it’s a good idea to name your database
tables in singular form (to avoid potential confusion in your code). By
default, the LINQ to SQL Designer names the generated data classes the
same as the table names. If you use plural table names, the class names
will be the same as the DataContext property names, and you will need
to manually modify the generated class names to avoid name conflicts.

You can access these properties through the DataContext instance:

dc.Customers

The properties are themselves table objects that implement the IQueryable interface,
which has a number of very useful methods that allow you to perform filtering, tra-
versal, and projection operations over the data in a LINQ table.

Most of these methods are extension methods of the LINQ types, which means they can
be called just as if they were instance methods of objects that implement IQueryable<T>
(in this case, the tables in the DataContext). Therefore, since Single() is a method of
IQueryable that returns the only element in a collection that meets a given set of criteria,
you can use it to find the customer whose first name is Donna (if there is more than one
customer with that first name, only the first customer record is returned):

Customer donna = dc.Customers.Single(c => c.FirstName == "Donna");

Let’s unpack this line of code. You begin by getting the Customers property of the
DataContext instance, dc:

dc.Customers

What you get back is a Customer table object, which implements IQueryable. You
can, therefore, call the method Single() on this object:

dc.Customers.Single(condition);

The result will be a Customer object, which you can assign to a local variable of type
Customer:

Customer donna = dc.Customers.Single(condition);

320 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Notice that everything we are doing here is strongly typed. This is
good.

Inside the parentheses, you must place the expression that will filter for the one
record you need. This is a great opportunity to use a lambda expression, as dis-
cussed in the previous chapter:

c => c.FirstName == "Donna"

You read this as “c goes to c.FirstName where c.FirstName equals Donna.” In this
notation, c is an implicitly typed variable (of type Customer). LINQ to SQL translates
this expression into a SQL statement similar to this:

Select * from Customer where FirstName = 'Donna';

You can see the exact SQL as generated by LINQ to SQL by redirecting the
DataContext log and examining the output as described earlier in this chapter.

The SQL statement is fired when the Single() method is executed:

Customer donna = dc.Customers.Single(c => c.FirstName == "Donna");

This Customer object (donna) is then printed to the console:

Console.WriteLine(donna);

The output is:

Donna Carreras donna0@adventure-works.com
 12345 Sterling Avenue, Irving,

Note that although you searched only by first name, what you retrieved was a com-
plete record, including the address information. Also note that the output is created
just by passing in the object, using the overridden method you created for the tool-
generated class (see the upcoming sidebar “Appending a Method to a Generated
Class”).

A LINQ Query
The next block of code in Example 9-9 uses the keyword var (new to C# 3.0) to
declare a variable called customerDs, which is implicitly typed by the compiler based
on the information returned by the LINQ query:

var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

Retrieving Data | 321

This query is similar to a SQL query, as noted earlier in this chapter. As you can see,
you select each Customer object whose FirstName property (i.e., the value in the
FirstName column) begins with “D” from the DataContext Customers property (i.e.,
the Customer table). You order the records by FirstName and LastName and return all
of the results into customerDs, whose implicit type is a TypedCollection of Customers.

With that in hand, you can iterate through the collection and print the data about
these customers to the console, treating them as Customer objects rather than as data
records:

foreach (Customer customer in customerDs)
{
 Console.WriteLine(customer);
}

This is reflected in this excerpt of the output:

Delia Toone delia0@adventure-works.com
 755 Columbia Ctr Blvd, Kennewick

Della Demott Jr della0@adventure-works.com
 25575 The Queensway, Etobicoke

Appending a Method to a Generated Class
One of the wonderful things about the partial class keyword added in C# 2.0 is that
you can add a method to the classes generated by the designer. In this case, we are over-
riding the ToString method of the Customer class to have it display all its members in a
relatively easy-to-read manner:

public partial class Customer
{
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0} {1} {2}",
 FirstName, LastName, EmailAddress);
 foreach (CustomerAddress ca in CustomerAddresses)
 {
 sb.AppendFormat("\n\t{0}, {1}",
 ca.Address.AddressLine1,
 ca.Address.City);
 }
 sb.AppendLine();
 return sb.ToString();
 }
}

322 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Denean Ison denean0@adventure-works.com
 586 Fulham Road, London

Denise Maccietto denise1@adventure-works.com
 Port Huron, Port Huron

Derek Graham derek0@adventure-works.com
 655-4th Ave S.W., Calgary

Derik Stenerson derik0@adventure-works.com
 Factory Merchants, Branson

Diane Glimp diane3@adventure-works.com
 4400 March Road, Kanata

LINQ to XML
If you would like the output of your work to go to an XML document rather than to
a SQL database, all you need to do is create a new XML element for each object in
the Customer table and a new XML attribute for each property representing a column
in the table. To do this, you use the LINQ to XML API.

Note that this code takes advantage of the new LINQ to XML classes, such as
XAttribute, XElement, and XDocument. Working with XAttributes is very similar to
working with standard XML elements. However, note that XAttributes are not nodes
in an XML tree; rather, they are name/value pairs, each of which is associated with
an actual XML element. This is also quite different from what programmers are used
to when working with the DOM.

The XElement object represents an actual XML element and can be used to create ele-
ments. It interoperates cleanly with System.XML and makes for a terrific transition
class between LINQ to XML and XML itself.

Finally, the XDocument class derives from XContainer and has exactly one child node
(you guessed it: an XElement). It can also have an XDeclaration, zero or more
XProcessingInstructions and XComments, and one XDocumentType (for the DTD), but
that’s more detail than you need.

In Example 9-10, you’re going to create some XElements and assign some
XAttributes. This should be very familiar to anyone comfortable with XML, and a
relatively easy first glimpse for those who are totally new to raw XML.

Example 9-10. Constructing an XML document using LINQ to XML

using System;
using System.Data.Linq;
using System.Linq;
using System.Xml.Linq;

LINQ to XML | 323

In this example, rather than simply writing out the values of the customerDs that
you’ve retrieved from the database, you convert the customerDs object to an XML file
by using the LINQ to XML API. It’s remarkably straightforward.

namespace LinqToXML
{
 // Main program
 public class Tester
 {
 static void Main()
 {
 XElement customerXml = CreateCustomerListXml();
 Console.WriteLine(customerXml);
 }

 /// <summary>
 /// Create an XML document containing a list of customers.
 /// </summary>
 /// <returns>XML document containing a list of customers.
 /// </returns>
 private static XElement CreateCustomerListXml()
 {
 AdventureWorksAddressDataContext dc =
 new AdventureAddressWorksDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 // Find a list of customer records.
 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

 XElement customerXml = new XElement("Customers");
 foreach (Customer customer in customerDs)
 {
 customerXml.Add(new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress",
 customer.EmailAddress)));
 }
 return customerXml;
 }
 }
}

Example 9-10. Constructing an XML document using LINQ to XML (continued)

324 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

Let’s unpack this example a bit. You start by calling CreateCustomerListXml() and
assigning the results to an XElement named customerXml. CreateCustomerListXml()
begins by creating a LINQ statement (it will take those of us who grew up with SQL
a long time to get used to having the select statement come at the end!):

 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

Let me remind you that even though you use the keyword var here, which in Java-
Script is not type-safe, in C# this is entirely type-safe; the compiler imputes the type
based on the query.

The next step is to create an XElement named customerXml:

XElement customerXml = new XElement("Customers");

This is also potentially confusing. You’ve given the C# XElement an identifier,
customerXml, so that you can refer to it in C# code, but when you instantiated the
XElement, you passed a name to the constructor (Customers). It is that name
(Customers) that will appear in the XML file. This distinction is shown in Figure 9-19.

Moving on, you iterate through the customerDs collection that you retrieved in the
first step, pulling out each Customer object in turn. You create a new XElement based
on each Customer object, adding an XAttribute for the FirstName, LastName, and
EmailAddress “columns”:

foreach (Customer customer in customerDs)
{
 XElement cust = new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress));

As you iterate through the Customers, you also iterate through each Customer’s associ-
ated CustomerAddress collection (customer.Addresses). Each of its elements is an
object of type Customer.Address. You add the attributes for the address to the XElement
cust, beginning with a new XElement Address. This gives the Customer element an
Address subelement, with attributes for AddressLine1, AddressLine2, City, etc.

Thus, a single Address object in the XML will look like this:

Figure 9-19. Element names

LINQ to XML | 325

<Customer FirstName="Dora" LastName="Verdad">
 <EmailAddress>dora0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Suite 2502 410 Albert Street" AddressLine2=""
 City="Waterloo" StateProvince="Ontario" PostalCode="N2V" />
</Customer>

You want each of these Customer elements (with their child Address elements) to be
child elements of the Customers (plural) element that you created earlier. You accom-
plish this by opening the C# object and adding the new Customer to the element after
each iteration of the loop:

customerXml.Add(cust);

Notice that because you’re doing this in C# you access the element through its C#
identifier, not its XML identifier (refer back to Figure 9-19). In the resulting XML
document, the name of the outer element will be Customers. Within Customers will be
a series of Customer elements, each of which will contain Address elements:

<Customers>
 <Customer ...
 <Address ... </Address>
 <EmailAddress ... </EmailAddress>
 </Customer>
 <Customer ...
 <Address ... </Address>
 <EmailAddress ... </EmailAddress>
 </Customer>
</Customers>

Once you’ve iterated through the lot, you return the customerXml XElement (the
Customers element) that contains all the Customer elements, which in turn contain all
the Address elements (that is, the entire tree):

 return customerXml;

Piece of pie. Easy as cake.

Here is an excerpt from the complete output (slightly reformatted to fit the page):

<Customers>
 <Customer FirstName="Daniel" LastName="Blanco">
 <EmailAddress>daniel0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Suite 800 2530 Slater Street" AddressLine2=""
 City="Ottawa" StateProvince="Ontario" PostalCode="K4B 1T7" />
 </Customer>
 <Customer FirstName="Daniel" LastName="Thompson">
 <EmailAddress>daniel2@adventure-works.com</EmailAddress>
 <Address AddressLine1="755 Nw Grandstand" AddressLine2=""
 City="Issaquah" StateProvince="Washington" PostalCode="98027" />
 </Customer>
 <Customer FirstName="Danielle" LastName="Johnson">
 <EmailAddress>danielle1@adventure-works.com</EmailAddress>
 <Address AddressLine1="955 Green Valley Crescent" AddressLine2=""
 City="Ottawa" StateProvince="Ontario" PostalCode="K4B 1S1" />
 </Customer>

326 | Chapter 9: Understanding LINQ: Queries As First-Class Language Constructs

 <Customer FirstName="Darrell" LastName="Banks">
 <EmailAddress>darrell0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Norwalk Square" AddressLine2=""
 City="Norwalk" StateProvince="California" PostalCode="90650" />
 </Customer>
 <Customer FirstName="Darren" LastName="Gehring">
 <EmailAddress>darren0@adventure-works.com</EmailAddress>
 <Address AddressLine1="509 Nafta Boulevard" AddressLine2=""
 City="Laredo" StateProvince="Texas" PostalCode="78040" />
 </Customer>
 <Customer FirstName="David" LastName="Givens">
 <EmailAddress>david15@adventure-works.com</EmailAddress>
 <Address AddressLine1="#500-75 O'Connor Street" AddressLine2=""
 City="Ottawa" StateProvince="Ontario" PostalCode="K4B 1S2" />
 </Customer>
</Customers>

So, there you have it! LINQ in all its newfangled glory.

327

Chapter 10 CHAPTER 10

Introducing
Windows Communication Foundation:

Accessible Service-Oriented Architecture10

There is a great deal of buzz around the concept of Service-Oriented Architecture
(SOA), and with good reason. People engaged in the world of enterprise computing
spend a great deal of time and energy getting systems to talk to one another and
interoperate. In an ideal world, we would like to be able to connect systems arbi-
trarily, and without the need for proprietary software, in order to create an open,
interoperable computing environment. SOA (often pronounced SO-ah) is a big step
in the right direction.

Enterprise architects look at SOA (Figure 10-1) as a means of helping businesses
respond more quickly and cost-effectively to changing market conditions.

SOA Defined
A Service-Oriented Architecture is based on four key abstractions:

• An application frontend

• A service

• A service repository

• A service bus

The application frontend is decoupled from the services. Each service has a “contract”
that defines what it will do, and one or more interfaces to implement that contract.

The service repository provides a home for the services, and the service bus provides
an industry-standard mechanism for connecting to and interacting with the services.

Because all the services are decoupled from one another and from the application
frontend, SOA provides the desired level of interoperability in a nonproprietary open-
systems environment.

328 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

Windows Communication Foundation (WCF) provides a SOA technology that
offers the ability to link resources with an eye on promoting reuse. Reuse is enabled
at the macro (service) level rather than the micro (object) level. The SOA approach
coupled with WCF also simplifies interconnection among (and usage of) existing IT
assets.

Defining a Service More Precisely
It is important to be clear about what we mean when we use the word “service” in
the SOA context. Typically we are thinking about a business service, such as making
a hotel reservation or buying a computer online, but keep in mind that these services
do not include a visible element. Services do not have a frontend—they expose either
functionality or data with which other programs can interact through web browsers,
desktop applications, or even other services.

These services might implement business functions like searchForAvailability or
setShippingMethod. In this respect they are distinctly different from technical ser-
vices, which might provide messaging or transactional functions such as updating data
or monitoring transactions. By design, SOA deliberately decouples business services

Figure 10-1. SOA overview

Defining a Service More Precisely | 329

from technical services so that your implementation does not require a specific
underlying infrastructure or system. In short, a SOA service is the encapsulation of a
high-level business concept.

A SOA service is composed of three parts:

• A service class that implements the service to be provided

• A host environment to host the service

• One or more endpoints to which clients will connect

All communication with a service happens through the endpoints. Each endpoint
specifies a contract (which we will discuss in greater detail later in this chapter) that
defines which methods of the service class will be accessible to the client through
that specific endpoint.

Because the endpoints have their own contracts, they may expose different (and per-
haps overlapping) sets of methods. Each endpoint also defines a binding that speci-
fies how a client will communicate with the service and the address where the
endpoint is hosted.

You can think of SOA services in terms of four basic tenets:

• Boundaries are explicit.

• Services are autonomous.

• Schemas and contracts are shared, but not classes.

• Compatibility is based on policy.

These fundamental tenets help drive the design of the services you’ll create, so it’s
worth exploring each in detail.

Boundaries Are Explicit
If you want to get somewhere in the physical world, it is crucial to know where you
are and where you need to go, as well as any considerations that need to be
accounted for on your way (which is why GPS systems are one of the fastest-selling
technologies in the consumer market).

This also applies to services. There will be boundaries between each interaction, and
crossing these boundaries involves a cost for which you must account.

As a concrete example, when driving from Boston to Manhattan, you can take a
faster toll route (that costs money) or a slower free route (that costs time). A similar
tradeoff applies with service operations that cross process or machine boundaries.
You face decisions about resource marshaling, physical location and network hops,
security constraints, and so forth. Among the “best practices” for minimizing the
cost of crossing these boundaries are the following considerations:

330 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

• Make sure your entry-point interface is well defined, comprehensive, and public.
This will encourage consumers to utilize your service as opposed to doing end
runs around it.

• Consumption is your primary reason for existence, so make that easy. Don’t
make the developers who consume your service think (with apologies to Steve
Krug).

• Be explicit! Use messages, not Remote Procedure Calls. The RPC model was an
interim (crutch) analogy used by Microsoft for web services in earlier versions of
.NET to smooth the transition; due to its synchronous implementation, the
modern WCF style eschews RPC in the interest of building strong SOA decou-
pling through asynchronous messaging.

• Hide implementation details to avoid tight coupling.

• Keep it simple—send well-defined messages in both directions with as small an
interface as possible to get the job done. To quote Albert Einstein (Figure 10-2),
“As simple as possible, but not simpler.”

Figure 10-2. Albert Einstein Sticking Out His Tongue ©Bettmann/CORBIS

Defining a Service More Precisely | 331

Services Are Autonomous
SOA services are expected to run in the wild world of decoupled systems. A well-
designed service should stand alone and be totally independent and relatively fail-
safe. As the service topology is almost guaranteed to evolve over time, and there is no
presiding authority, you should plan to meet this goal through autonomous design.

Here are some points to keep in mind:

• If Murphy (“Anything that can go wrong will go wrong”) designed a service, he
would do everything he could to isolate that service from all other services, to
prevent dependencies and reduce the risk of failure.

• Your service deployments and versions will be independent of the system on
which they are deployed.

• Keep your word—once you publish a contract, never change it!

• There is no presiding authority, so plan accordingly.

Schemas and Contracts Are Shared, But Not Classes
As the creator of a service, it is your responsibility to provide a well-formed contract.
Your service contract will contain the message formats, the message exchange pat-
terns, BPEL scripts that might be required, and any WS-Policy requirements. After
publication, stability becomes your biggest responsibility. Make no changes, and
ensure that any changes you do make (paradox intentional) have a minimal impact
on your consumers. Key considerations include:

• Stability is job one! Don’t publish a contract for others until you are sure the ser-
vice is stable and not likely to change.

• Say what you mean and mean what you say. Be explicit in your contracts to
ensure that people understand both the explicit and intended usages.

• Make sure the public data schema is abstract; don’t expose internal representations.

• If you break it, you version it. Even the best-designed service might need to
change; use versioning to help insulate your consumers from these changes.

WS-Policy
WS-Policy provides a syntax and a general-purpose model to describe and communi-
cate the policies of a web service. WS-Policy assertions express the capabilities and
constraints of your particular web service. WS-PolicyAttachments tell your consumers
which of the several methods for associating the WS-Policy expressions with web ser-
vices (e.g., WSDL) your web service implements.

332 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

Compatibility Is Based on Policy
There may come a time when you will not be able to capture all the requirements of
a service interaction via the Web Services Description Language (WSDL) alone. This
is where policies come in. Policies allow you to separate the what from the how and
the whom when it comes to a communicated message. If you have policy assertions,
you need to make sure you are very explicit with respect to expectations and compat-
ibility. Keep these points in mind:

• Say what your service can do, not how it does it—separate interactions from
constraints on these interactions.

• Express capabilities in terms of policies.

• Assertions should be identified by stable and unique names.

Implementing Web Services
It is important to recognize that a web service is just one of many service implemen-
tations. That said, the increasing ease with which one can create a web service has
been a catalyst for the explosion of SOA implementations in recent years. It is the
basic nature of the web service, “a programmable application component accessible
via standard web protocols,” that is helping deliver on the promise of SOA. In a nut-
shell, you can think of SOA as having three components:

• Standard protocols—HTTP, SMTP, FTP with HTTP

• Service description—WSDL and XSD

• Service discovery—UDDI and other “yellow pages”

The protocol stack for WCF’s implementation of web services is outlined in
Figure 10-3. Web services typically flow from top to bottom (discovery, then descrip-
tion, then messaging).

To consume a web service, you need to know that it exists, what it does, what kind
of interface it offers, and so on. You should also note that with WCF, you are
strongly encouraged to use UDDI for publishing your web service’s metadata
exchange endpoints, and to query the service directly for the WSDL document and
policies. After all of this has been accomplished, your client can invoke the web ser-
vice via SOAP.

We’ll start at the bottom of the stack and work our way back up.

SOAP: More Than Just a Cleanser
SOAP is the preferred protocol for exchanging XML-based messages over computer
networks using the standard transport mechanisms outlined in the preceding section.
SOAP is the top end of the foundation layer of the web services stack. As such, it pro-
vides a basic messaging framework that is used to construct more abstract layers.

Implementing Web Services | 333

Trivia question: What does SOAP stand for?

Old answer: Simple Object Access Protocol.

New answer (by dictate of the World Wide Web Consortium as of
June 2003): Nothing at all.

While there are several different types of messaging patterns in SOAP, up to this
point the most common for .NET programmers has been the RPC pattern, in which
one side of the messaging relationship is designated the server and one side the cli-
ent. The client pretends to make a method call on the server through a proxy, and
the server pretends to respond by running a method and returning a value
(Figure 10-4). What is actually happening, however, is that XML documents are
being exchanged “under the covers,” hidden by the framework so that the developer
need not be exposed to the details of XML syntax.

Figure 10-3. The web services protocol stack

Figure 10-4. Bare-bones, one-way SOAP communication

334 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

Here is an example of how a client might format a SOAP message requesting prod-
uct information from a computer seller’s warehouse web service. The client needs to
know which product corresponds with the ID MA450LL/A:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getProductDetails xmlns="http://computer.seller.com/ws">
 <productID>MA450LL/A</productID>
 </getProductDetails>
 </soap:Body>
</soap:Envelope>

And here is a possible response to the client request:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getProductDetailsResponse xmlns="http:// computer.seller.com/ws">
 <getProductDetailsResult>
 <productName>iPod </productName>
 <productID>MA450LL/A</productID>
 <description>iPod, 80GB - Black</description>
 <price currency="NIS">349.00</price>
 <inStock>true</inStock>
 </getProductDetailsResult>
 </getProductDetailsResponse>
 </soap:Body>
</soap:Envelope>

If you break down a SOAP message you’ll see that it contains distinct parts, which
are represented in Figure 10-5.

SOAP messages come in three flavors: requests, responses, and faults. The only
required element of a SOAP message is the envelope, which encapsulates the mes-
sage that is being communicated and specifies the protocol the message uses for
communication. As you can see, the SOAP envelope can have two subsections, a
header and a body. The header contains metadata about the message that is used for
specific processing (this is the place for authentication tokens or timestamps and the
like). Inside the body, you have the guts of the message, or a SOAP fault.

SOAP messages are rather simple in their syntax, but there are a few rules of the road
that the good service provider will follow when handcrafting a message:

• Use XML as the encoding mechanism.

• Use the SOAP envelope namespace:
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

• Use the SOAP encoding namespace, by adding it to your envelope:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

• You cannot use Document Type Definition (DTD) references.

• You cannot use XML processing directives.

Implementing Web Services | 335

WSDL Documents: Describing the Service Endpoints
Once you’ve created a service, what’s next? You need a way of describing this ser-
vice and its endpoints to potential consumers. Fortunately, there’s a convenient way
to do this.

Figure 10-5. The structure of a SOAP message

Faulty Service
If you want to provide a nice experience for consumers of your service, you will need
to take the time to make sure you understand the fault element. Fault messages need
to be in the body, and they can appear only once. A fault message will contain details
about the exception (as appropriate) and one of the fault codes defined by the SOAP
specification.

336 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

WSDL is an XML format for publishing network services. It describes a set of end-
points that operate on messages, which are abstract descriptions of the data being
exchanged. Operations are likewise described abstractly and bound to a concrete
network protocol and message format, which constitutes an endpoint.

The WSDL document itself has three parts:

Definitions
Definitions can be about data types as well as messages. They are expressed in XML
using a mutually agreed-upon vocabulary. This allows you to adopt industry-based
vocabularies for greater interoperability in a specific industry segment.

Operations
Web services support four basic operation types:

One-way request
Only the service endpoint receives a message.

Request/response
The endpoint receives a message and responds to the sender accordingly.

Solicit response
The endpoint initiates a message and expects a response.

Notification
The endpoint sends out a message without expecting a response.

Service bindings
The service bindings allow for the connection of a port type to an actual port. In
other words, they tie the protocol and message format to a specific port. These
bindings are typically created using SOAP.

A service binding might look something like this:
<service name="MyService" interface="tns:MyInterface">
 <endpoint name="MyServiceRestEndpoint"
 binding="tns:MyInterfaceHttpBinding"
 address="http://my.example.com/rest/"/>
 <endpoint name="MyServiceSoapEndpoint"
 binding="tns:MyInterfaceSoapBinding"
 address="http://my.example.com/soap/"/>
</service>

What Are Endpoints?
According to Wikipedia, “A communication endpoint is an interface exposed by a
communicating party or by a communication channel.” The W3C has a more com-
plete definition: an endpoint is “an association between a fully specified interface bind-
ing and a network address, specified by a URI that may be used to communicate with
an instance of a web service.” More simply, you can think of a friend’s telephone num-
ber as an endpoint. When you call your friend, you are asking your service provider to
connect your phone to her phone, thereby linking your endpoint with hers.

UDDI: Who Is Out There, and What Can They Do for Me? | 337

UDDI: Who Is Out There, and What Can They Do for Me?
The Universal Description, Discovery, and Integration (UDDI) registry has made the
process of finding web services infinitely easier. UDDI is a platform-independent,
XML-based registry that allows service vendors to list themselves on the Internet. As
an open industry initiative, UDDI is sponsored by the Organization for the Advance-
ment of Structured Information Standards (OASIS). UDDI enables businesses to
publish service listings, discover one another’s services, and define how the services
or software applications interact over the Internet.

A UDDI business registration consists of three components:

White pages
Contain addresses, contacts, and known identifiers

Yellow pages
Provide industrial categorizations based on standard taxonomies

Green pages
Hold technical information about services exposed by the business

UDDI is designed to be interrogated by SOAP messages. It provides access to WSDL
documents describing the protocol bindings and message formats required to inter-
act with the web services listed in its directory.

UDDI Data Types
UDDI defines four essential data types:

BusinessEntity
The top-level structure. It describes a business or other entity for which informa-
tion is being registered.

BusinessService
A structure that represents a logical service classification. The element name
includes the term “business” in an attempt to describe the purpose of this level in
the service-description hierarchy. It can contain one or more bindingTemplates.

bindingTemplate
A structure that contains the information necessary to invoke specific services,
which may require bindings to one or more protocols (such as HTTP or SMTP).

tModel
A technical “fingerprint” for a given service, which may also function as a
namespace to identify other entities, including other tModels.

338 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

How It All Works
How do all these pieces—UDDI, WSDL, and SOAP—actually work together to get
the work of web services done? Take a look at Figure 10-6.

The eight steps in the web service lifecycle are:

1. Somewhere in the world a client wants to use a web service, so it seeks out a
directory service.

2. The client connects to the directory to discover a relevant service.

3. By asking the directory service about the services available, the client is able to
determine the presence of a service that meets the client’s criteria.

4. The directory contacts the service vendor to check on availability and validity.

5. The service vendor sends the client a WSDL document.

6. A proxy class is used to create a new instance of the web service.

7. SOAP messages originating from the client are sent over the network.

8. Return values are sent as a result of executing the SOAP message.

Figure 10-6. The web service lifecycle

WCF’s SOA Implementation | 339

This isn’t that bad, is it? What’s more, Microsoft’s WCF and Visual Studio tools
make implementing a Service-Oriented Architecture very easy. Let’s roll up our
sleeves and see how WCF helps you get SOA implementations done fast.

WCF’s SOA Implementation
The WCF team at Microsoft has been trying to deliver three big items to the develop-
ment community. The design goals include:

• Interoperability across platforms

• Unification of existing technologies

• Enabling service-oriented development

With the release of .NET 3.5, Microsoft is delivering on all fronts.

To maximize interoperability across platforms, WCF’s architects chose SOAP as the
native messaging protocol. This makes it possible for WCF applications running on
Windows to reliably communicate with legacy applications, Mac OS X machines,
Linux machines, Windows clients, Solaris machines, and anyone else out there who
abides by the Web Services Interoperability Organization (WS-I) specification. (The
WS-I is an industry consortium chartered to promote interoperability among the
stack of web services specifications.)

To unify existing technologies, WCF takes all the capabilities of the distributed sys-
tems’ technology stacks and overlays a simplified clean API in System.ServiceModel.
Thus, you are able to accomplish the same things that previously required ASMX,
WSE, System.Messaging, .NET remoting, and other enterprise solutions, all from
within WCF. This helps cut down a developer’s time to implementation and reduces
the complexity of dealing with distributed technologies.

The WCF team has faced up to the future in a big way. Designed from the ground up
to facilitate the business orientation of modern software projects, WCF enables
rather than hinders the design and implementation of SOA. WCF allows you to
build on object orientation and take on the service orientation required of today’s
distributed systems.

.NET 3.5 allows a very flexible approach to programming, providing a great set of
mix-and-match ways to tackle most programming challenges you’ll face. You can use
configuration files, you can tap into the object model programmatically, and you can
use declarative programming. Odds are that in most cases you will utilize all of these
approaches, leveraging the strengths of each while minimizing your exposure to their
respective weaknesses.

340 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

The ABCs of WCF
Every client needs to know the ABCs of a contract in order to consume a service: the
address indicates where messages can be sent, the binding tells you how to send the
messages, and the contract specifies what the messages should contain.

Addresses

As you might imagine, addressing is an essential component of being able to utilize a
web service. An address is comprised of the following specifications:

Transport mechanism
The transport protocol to employ

Machine name
A fully qualified domain name for the service provider

Port
The port to use for the connection (as the default port is 80, specifying the port
is not necessary when using HTTP)

Path
The specific path to a service

The format of a correctly specified service address is as follows:

protocol://<machinename>[:port]/<pathToService>

WCF supports a number of protocols, so we’ll take the time to outline the address-
ing formats of each:

HTTP
HTTP is by far the most common way you will address your service.

http://silverlightconsulting.info/OrderStatus/GetShippingInfo

<endpoint
 address="http://silverlightconsulting.info/OrderStatus/GetShippingInfo"
 bindingSectionName="BasicHttpBinding"
 contract="IGetShippingInfo" />

For secure communication you only need to substitute https for http, and you’re
good to go.

Named pipes
When you need to do inter-process or in-process communication, named pipes
are probably your best choice. The WCF implementation supports only local
communication, as follows:

net.pipe://silverlightconsulting.info/OrderStatus/GetShippingInfo

<endpoint
 address="net.pipe://silverlightconsulting.info/OrderStatus/GetShippingInfo"
 bindingSectionName="NetNamedPipeBinding"
 contract="IGetShippingInfo" />

WCF’s SOA Implementation | 341

TCP
This protocol is very similar to HTTP:

net.tcp://silverlightconsulting.info/OrderStatus/GetShippingInfo

<endpoint
 Address="net.tcp://silverlightconsulting.info/OrderStatus/GetShippingInfo"
 bindingSectionName="NetTcpBinding"
 contract="IGetShippingInfo" />

MSMQ
Finally, if you need asynchronous messaging patterns, you will want to use a
message queue. Microsoft’s Message Queue (MSMQ) can typically be accessed
through Active Directory. In an MSMQ message, port numbers don’t have any
meaning:

net.msmq://my.info/OrderStatus/GetShippingInfo

<endpoint
 Address="net.msmq://my.info/OrderStatus/GetShippingInfo"
 bindingSectionName="NetMsmqBinding"
 contract="IGetShippingInfo" />Binding

Bindings

Bindings are the primary driver of the programming model of WCF. The binding you
choose will determine the following:

• The transport mechanism

• The nature of the channel (duplex versus request/response, etc.)

• The type of encoding (XML, binary, etc.)

• The supported WS-* protocols

Web service specifications are occasionally referred to collectively as
“WS-*,” though there is not a single managed set of specifications that
this consistently refers to, nor a recognized owning body across them
all.

WCF gives you a default set of bindings that should cover the bulk of what you will
need to do. If you come across something that falls outside the bounds of coverage,
you can extend CustomBinding to cover your custom needs. Just remember, a bind-
ing needs to be unique in its name and namespace for identification purposes.

If you are looking for complete interoperability, your first (and obvious) choice of
bindings will be anything in the WS-prefixed set. If you need to bind to pre-WCF
service stacks, you’ll likely want to use the BasicHttpBinding. If you are only really
servicing a Windows-centric environment without interoperability requirements, you
can utilize the Net-prefixed bindings. Just remember that your choice of binding
determines the transport mechanism you will be able to use.

342 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

Contracts

As we discussed earlier, one of the four tenets of service orientation is the notion of
explicit boundaries. Contracts allow you to decide up front what you will expose to
the outside world (the folks across the boundary). This frees you to work on the
implementation without worry—as long as you uphold the contract, you are free to
change the underlying implementation as needed. Therefore, contracts are one of the
keys to interoperability among the many platforms from which your service might be
called.

A WCF contract is essentially a collection of operations that specify how the end-
point in question communicates with the outside world. Every operation is a simple
message exchange like the one-way, request/response, and duplex message
exchanges.

Like a binding, each contract has a name and namespace that uniquely identify it.
You will find these attributes in the service’s metadata.

The class ContractDescription describes WCF contracts and their operations.
Within a ContractDescription, every contract operation will have a related
OperationDescription that will describe the aspects of the operation, such as whether
the operation is one-way, request/response, or duplex. The messages that make up
the operation are described in the OperationDescription using a collection of
MessageDescriptions.

A ContractDescription is usually created from a .NET interface or class that defines
the contract using the WCF programming model. This type is annotated with
ServiceContractAttribute, and its methods that correspond to endpoint operations
are annotated with OperationContractAttribute.

Talk Amongst Yourselves
The default pattern of message exchange is (surprise) the request/response pattern.
Again, for those of you who have been making a living writing web-based software,
this pattern should be very familiar. It is outlined in Figure 10-7.

A duplex contract is more complex. It defines two logical sets of operations: a set
that the service exposes for the client to call and a set that the client exposes for the
service to call. When creating a duplex contract programmatically, you split each

Figure 10-7. The default request/response message exchange

Putting It All Together | 343

set into separate types (each type must be a class or an interface). You also need
to annotate the contract that represents the service’s operations with
ServiceContractAttribute, referencing the contract that defines the client (or call-
back) operations. In addition, ContractDescription will contain a reference to each of
the types, thereby grouping them into one duplex contract. This is really a peer-to-peer
pattern, as illustrated by Figure 10-8.

The last type of message pattern is the set-it-and-forget-it one-way messaging style.
In this scenario, as seen in Figure 10-9, you send a message as a client, but you do
not expect any sort of return message. This is often the behavior you engage in when
dealing with message queues.

Putting It All Together
Now that you understand the basic nature of a WCF service, let’s roll up our sleeves
and create a service contract from scratch. This example will be based on our favor-
ite fictional stock-quoting service, YahooQuotes. YahooQuotes provides stock quotes
via the exposed behavior of the service. To make this a fully functional WCF service
contract, you’ll have to annotate the interface with both the ServiceContract and
OperationContract attributes. You will also need to make sure you include the
System.ServiceModel namespace, as shown here:

using System;
using System.ServiceModel;

A WCF service class implements a service as a set of methods. The class must imple-
ment at least one ServiceContract to define the operational contracts (i.e., methods)
that the service will provide to the end user. Optionally, you can also implement data
contracts that define what sort of data the exposed operations can utilize. You’ll do
that second.

Figure 10-8. Duplex messaging

Figure 10-9. One-way messaging

344 | Chapter 10: Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture

Start by defining the interface of the service contract that defines a single operation
contract for the YahooQuotes service:

namespace YahooQuotes.TradeEngine.ServiceContracts
{
 [ServiceContract(Namespace = "http://my.info/YahooQuotes")]
 public interface IYahooQuotes
 {
 [OperationContract]
 BadQuote GetLastTradePriceInUSD(string StockSymbol);
 }
}

That was simple enough. Now you need to implement the data contract for the
BadQuote class:

namespace YahooQuotes.TradeEngine.DataContracts
{
 [DataContract(Namespace = "http://my.info/YahooQuotes")]
 public class BadQuote
 {
 [DataMember(Name="StockSymbol"]
 public string StockSymbol;

 [DataMember(Name="Last"]
 public decimal Last;

 [DataMember(Name="Bid"]
 public decimal Bid;

 [DataMember(Name="Ask"]
 public decimal Ask;

 [DataMember(Name="TransactionTimestamp"]
 private DateTime TransactionTimestamp;

 [DataMember(Name="InformationSource"]
 public decimal InformationSource;
 }
}

There may come a time when you decide you want more control over the SOAP
envelope that WCF generates. When that time comes, you can annotate your class
with the MessageContract attribute and then direct the output to either the SOAP
body or the SOAP header by utilizing the MessageBody and MessageHeader attributes:

namespace YahooQuotes.TradeEngine.MessageContracts
{
 [MessageContract]
 Public class YahooQuotesMessage
 {
 [MessageBody]
 public string StockSymbol;

Putting It All Together | 345

 [MessageBody]
 public decimal Last;

 [MessageBody]
 public decimal Bid;

 [MessageBody]
 public decimal Ask;

 [MessageBody]
 private DateTime TransactionTimestamp;

 [MessageHeader]
 public string InformationSource;
 }
}

In this case, you’ve specified that the InformationSource should be in the SOAP
header by annotating it with the MessageHeader attribute. It is nice to be able to do
this sort of thing, so keep it around in your bag of tricks to use as appropriate.

In the next chapter we’ll build a complete YahooQuotes service and explore the WCF
SOA programming model in greater detail.

346

Chapter 11CHAPTER 11

Applying WCF: YahooQuotes 11

In this chapter you’ll learn how to leverage ASP.NET to get a web service up and
running fast. We’ll also introduce the benefits of Microsoft’s new web server, Inter-
net Information Services 7.0 (IIS7). Just as Microsoft claims, IIS7 provides a secure,
easy to manage platform for developing and reliably hosting web applications and
services. Its automatic sandboxing of new sites lets you enjoy greater reliability and
security, and its powerful new admin tools enable you to administer the server easily
and efficiently.

Microsoft has done a really good job of reducing management complexity with this
new feature-focused administration tool. IIS7 provides vastly simplified dialogs for
common administrative tasks. In addition, the new command-line administration
interface, Windows Management Instrumentation (WMI) provider, and .NET API
make administration of web sites and applications more efficient, whether they are
running on one server or many servers. IIS7 also makes hosting a web service using
ASP.NET exceptionally easy.

Before going any further in this chapter, take the time to confirm that your IIS7 con-
figuration is working. You should be able to open up the IIS Manager, as seen in
Figure 11-1. With IIS7 fired up, you’re ready to go.

Creating and Launching a Web Service
In this chapter you’re going to build a simple web service that will provide stock
quotes using Yahoo! Finance’s publicly available stock-quote engine. When you’re
done, you should have an application that looks something like the one in
Figure 11-2. In the following section, you’ll write a simple WPF client to consume
the web service you have created.

Creating and Launching a Web Service | 347

Figure 11-1. IIS7 as viewed from the new IIS Manager

Figure 11-2. Yahooy! Quotes

348 | Chapter 11: Applying WCF: YahooQuotes

Creating the Service
Start by creating a new project for your WCF service. Open up Microsoft Visual Stu-
dio 2008 and select New ➝ Web Site from the File menu. In the ensuing dialog,
choose the WCF Service option and name the file location YahooQuotes, as seen in
Figure 11-3.

Right off the bat, delete IService.cs. Then rename Service.cs and Service.svc to
YahooQuotes.cs and YahooQuotes.svc, respectively. Drop into the Web.config file and
replace all occurrences of “Service” with “YahooQuotes.” You’ll mix and match the
interface (IYahooQuotes) and the implementation (YahooQuotes) in YahooQuotes.cs,
which is why it was OK to get rid of the IService.cs file.

Start by declaring the namespaces you will need in YahooQuotes.cs:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Net;
using System.IO;
using System.ServiceModel;
using System.Runtime.Serialization;

You’ll need the bolded namespaces when you talk to Yahoo! Finance’s quote service
via an HTTP post.

Figure 11-3. Creating the WCF service

Creating and Launching a Web Service | 349

The next thing you’ll do is define the specifics of your service’s contract. It is good
practice to define the contract as an interface first and then create a concrete class to
handle the implementation. This is, after all, the whole point of abstraction. In addi-
tion, it makes the boundary between the service and the implementation explicit
(upholding one of the main tenets of SOA, as described in the previous chapter).

There will be two basic pieces to the IYahooQuotes interface: you’ll want a method to
test the service availability, and a mechanism to retrieve stock-quote data given a
ticker symbol. To fulfill these objectives, you’re going to create an interface that
looks like this:

[ServiceContract]
public interface IYahooQuotes
{
 [OperationContract]
 string TestService(int intParam);

 [OperationContract]
 StockQuote GetQuoteForStockSymbol(String aSymbol);
}

Although this interface definition is in code, as opposed to metadata, it
provides a well-defined perimeter. It exposes only the minimum neces-
sary to get back a StockQuote and a string that results from testing the ser-
vice. It also preserves design-time and configuration-time flexibility.

Now you need to create a concrete YahooQuotes class to provide the implementation.
You’ll also use a data contract to separate the StockQuote type from the schema and
XML-serialized types. Start with the YahooQuotes implementation:

public class YahooQuotes : IYahooQuotes
{
 public string TestService(int intParam)
 {
 return string.Format("You entered: {0}", intParam);
 }

 public StockQuote GetQuoteForStockSymbol(String tickerSymbol)
 {
 StockQuote sq = new StockQuote();
 string buffer;
 string[] bufferList;
 WebRequest webRequest;
 WebResponse webResponse;

 // Use the data dictionary at the end of the big listing to
 // decipher the end of this URL
 String url =
 "http://quote.yahoo.com/d/quotes.csv?s=" +
 tickerSymbol +
 "&f=l1d1t1pomvc1p2n";

350 | Chapter 11: Applying WCF: YahooQuotes

 // Now that you have a URL, go get some data. It will
 // be returned to you in a nicely packaged CSV format.
 webRequest = HttpWebRequest.Create(url);
 webResponse = webRequest.GetResponse();

 // Put it in a stream buffer to make text replacement
 // easier
 using (StreamReader sr =
 new StreamReader(webResponse.GetResponseStream()))
 {
 buffer = sr.ReadToEnd();
 }

 // Strip out the " marks
 buffer = buffer.Replace("\"", "");
 // Now put it in a char array
 bufferList = buffer.Split(new char[] { ',' });

 sq.LastTradePrice = bufferList[0]; // 1l
 sq.DateOfTrade = bufferList[1]; // d1
 sq.TimeOfTrade = bufferList[2]; // t1
 sq.PreviousClose = bufferList[3]; // p
 sq.Open = bufferList[4]; // o
 sq.DaysRange = bufferList[5]; // m
 sq.Volume = bufferList[6]; // v
 sq.Change = bufferList[7]; // c1
 sq.PercentageChange = bufferList[8]; // p2
 sq.CompanyName = bufferList[9]; // n

 return sq;
 }
}

The next step is to implement the StockQuote class. At first glance, this class appears
to be little more than a dictionary of key/value pairs. Do not be fooled!

Data contracts are the desired mechanism for controlling serialization to and from
XML. While data contracts can’t handle every type of schema generation, their sup-
port for most schemas and their ease of use makes them a key tool in the .NET pro-
grammer’s arsenal:

[DataContract]
public class StockQuote
{

 [DataMember]
 public String LastTradePrice
 {
 get;
 set;
 }

 [DataMember]
 public String DateOfTrade

Creating and Launching a Web Service | 351

 {
 get;
 set;
 }

 [DataMember]
 public String TimeOfTrade
 {
 get;
 set;
 }

 [DataMember]
 public String PreviousClose
 {
 get;
 set;
 }

 [DataMember]
 public String Open
 {
 get;
 set;
 }

 [DataMember]
 public String DaysRange
 {
 get;
 set;
 }

 [DataMember]
 public String Volume
 {
 get;
 set;
 }

 [DataMember]
 public String Change
 {
 get;
 set;
 }

 [DataMember]
 public String PercentageChange
 {
 get;
 set;
 }

352 | Chapter 11: Applying WCF: YahooQuotes

 [DataMember]
 public String CompanyName
 {
 get;
 set;
 }

}

Here is the complete listing for YahooQuotes.cs:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Net;
using System.IO;
using System.ServiceModel;
using System.Runtime.Serialization;

/* A WCF service consists of a contract (defined below as IYahooQuote),
 * a class that implements that interface (see YahooQuote),
 * and configuration entries that specify behaviors associated with
 * that implementation (see <system.serviceModel> in web.config) */
[ServiceContract]
public interface IYahooQuotes
{

 [OperationContract]
 string TestService(int intParam);

 [OperationContract]
 StockQuote GetQuoteForStockSymbol(String aSymbol);

}

/*
 * Use a data contract as illustrated in the sample below to
 * add StockQuote types to service operations
 */

public class YahooQuotes : IYahooQuotes
{

 public string TestService(int intParam)
 {
 return string.Format("You entered: {0}", intParam);
 }

 public StockQuote GetQuoteForStockSymbol(String tickerSymbol)
 {
 StockQuote sq = new StockQuote();
 string buffer;
 string[] bufferList;

Creating and Launching a Web Service | 353

 WebRequest webRequest;
 WebResponse webResponse;

 // Use the data dictionary at the end of the big listing to
 // decipher the end of this URL
 String url = "http://quote.yahoo.com/d/quotes.csv?s="
 + tickerSymbol + "&f=l1d1t1pomvc1p2n";

 // Now that you have a URL, go get some data. It will
 // be returned to you in a nicely packaged CSV format.
 webRequest = HttpWebRequest.Create(url);
 webResponse = webRequest.GetResponse();

 // Put it in a stream buffer to make text replacement
 // easier
 using (StreamReader sr =
 new StreamReader(webResponse.GetResponseStream()))
 {
 buffer = sr.ReadToEnd();
 sr.Close();
 }

 // Strip out the " marks
 buffer = buffer.Replace("\"", "");
 // Now put it in a char array
 bufferList = buffer.Split(new char[] { ',' });

 sq.LastTradePrice = bufferList[0]; // 1l
 sq.DateOfTrade = bufferList[1]; // d1
 sq.TimeOfTrade = bufferList[2]; // t1
 sq.PreviousClose = bufferList[3]; // p
 sq.Open = bufferList[4]; // o
 sq.DaysRange = bufferList[5]; // m
 sq.Volume = bufferList[6]; // v
 sq.Change = bufferList[7]; // c1
 sq.PercentageChange = bufferList[8]; // p2
 sq.CompanyName = bufferList[9]; // n

 return sq;
 }
}

[DataContract]
public class StockQuote
{

 [DataMember]
 public String LastTradePrice
 {
 get;
 set;
 }

354 | Chapter 11: Applying WCF: YahooQuotes

 [DataMember]
 public String DateOfTrade
 {
 get;
 set;
 }

 [DataMember]
 public String TimeOfTrade
 {
 get;
 set;
 }

 [DataMember]
 public String PreviousClose
 {
 get;
 set;
 }

 [DataMember]
 public String Open
 {
 get;
 set;
 }

 [DataMember]
 public String DaysRange
 {
 get;
 set;
 }

 [DataMember]
 public String Volume
 {
 get;
 set;
 }

 [DataMember]
 public String Change
 {
 get;
 set;
 }

 [DataMember]
 public String PercentageChange
 {
 get;
 set;
 }

Consuming the Web Service | 355

 [DataMember]
 public String CompanyName
 {
 get;
 set;
 }

}

Launching the Web Service
With the YahooQuotes service coded, the next step is to launch it. To prepare for
the launch, you’ll need to edit the services section of system.serviceModel inside
Web.config so that it matches the bolded sections here:

<services>
 <service name="YahooQuotes"
 behaviorConfiguration="ServiceBehavior">
 <!-- Service Endpoints -->
 <endpoint address=""
 binding="wsHttpBinding"

contract="IYahooQuotes">

 <!-- Upon deployment, the following identity element should be removed
 or replaced to reflect the identity under which the deployed service
 runs. If removed, WCF will infer an appropriate identity automatically.-->
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
</services>

Additionally, your YahooQuotes.svc file should read:

<%@ ServiceHost Language="C#" Debug="true" Service="YahooQuotes"
 CodeBehind="~/App_Code/YahooQuotes.cs" %>

With everything coded and configured correctly in your web service, you should be
able to click on the YahooQuotes.svc file and launch the web service. Once you have
done so, you should see a page like the one in Figure 11-4.

Consuming the Web Service
Now that you have successfully created and launched the YahooQuotes service, you
need to be able to consume it. The fastest way to get going on that front is to use the
SvcUtil.exe utility (usually found in C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin)
to create the proxies you will need. To accomplish this, enter the following command in
your Command Prompt after navigating to the directory containing SvcUtil.exe:

svcutil.exe http://localhost:<port>/YahooQuotes/YahooQuotes.svc?wsdl

356 | Chapter 11: Applying WCF: YahooQuotes

SvcUtil.exe reads the WSDL, which contains the metadata about the service. From this,
it creates the proxy classes you can use in applications that wish to use the YahooQuotes
service. SvcUtil.exe produces two files, YahooQuotes.cs and Output.config (see
Figure 11-5). Be sure to put the YahooQuotes.cs file where you can find it later.

Figure 11-4. The YahooQuotes service in action

Figure 11-5. SvcUtil.exe output

Consuming the Web Service | 357

Creating a WPF Client Application
Next, you’re going to create a WPF Application called StockQuotes. Leaving the current
Visual Studio application running (so you don’t lose the port YahooQuotes is currently
running on), start a new instance of Visual Studio 2008 and select New ➝ Project from
the File menu. In the ensuing dialog, choose WPF Application as the project type, and
name the project StockQuotes.

When you’ve done this, make sure the XAML listing for Window1.xaml reads like this:

<Window x:Class="StockQuotes.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Yahooy! Quotes" Height="350" Width="500">
 <Grid>

 </Grid>
</Window>

Note that the Title, Height, and Width values for the Window element are different
from the defaults. Please adjust your XAML accordingly.

Next, add a reference to the web service. To do this, right-click on the References
folder in the Solution Explorer and select “Add Service Reference” (Figure 11-6).

Figure 11-6. Adding a service reference

358 | Chapter 11: Applying WCF: YahooQuotes

Cut and paste the YahooQuotes service URL (http://localhost:<port>/YahooQuotes/
YahooQuotes.svc?wsdl) into the Address text box. Clicking on the Go button should
bring up the YahooQuotes service in the Services listbox, as shown in Figure 11-7.

Select IYahooQuotes, rename the namespace YahooQuotes, and press the OK button.
Your project will now be configured to talk to this service.

Next, you need to add the YahooQuotes.cs file you created earlier with the SvcUtil.exe
utility. Right-click on the StockQuotes folder and select Add ➝ Existing Item, then
add the YahooQuotes.cs file.

Once you have included this file, you are ready to start coding the application.

To begin, create a very simple form with a TextBox, a Button, and two Labels. You
can either hand-type the following XAML into the Window1.xaml file or use Visual
Studio’s drag-and-drop toolbox to lay out Window1:

<Window x:Class="StockQuotes.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Figure 11-7. Using the WSDL URL to find YahooQuotes

Consuming the Web Service | 359

 Title="Yahooy! Quotes" Height="350" Width="500">
 <Grid>
 <TextBox Height="26"
 HorizontalAlignment="Left"
 Margin="38,30,0,0"
 Name="StockTickerTextBox"
 VerticalAlignment="Top"
 Width="100" />

 <Button Height="23"
 Margin="159,30,0,0"
 Name="GetTickerData"
 VerticalAlignment="Top"
 HorizontalAlignment="Left"
 Width="75"
 Click="GetQuote">Quote</Button>

 <Label Height="25.96"
 HorizontalAlignment="Left"
 Margin="38,95,0,0"
 Name="CompanyNameLabel"
 VerticalAlignment="Top"
 Width="100">Company Name</Label>

 <Label Height="25.96"
 Margin="159,95,16,0"
 Name="CompanyName"
 VerticalAlignment="Top"
 FontSize="10"
 FontWeight="Bold"></Label>
 </Grid>
</Window>

Make sure you’ve named all the elements appropriately. Also note that you’ve
assigned a method called GetQuote() to the Click attribute of your Button. Switch
over to the Window1.xaml.cs view now and implement that method as follows:

public void GetQuote(object sender, RoutedEventArgs e)
{
 // This is just to quickly familiarize you with how
 // WPF applications work.

 String tickerSymbol = StockTickerTextBox.Text;
 CompanyName.Content = tickerSymbol;
}

Go ahead and run the application. Enter a ticker symbol, and observe how pressing
the Quote button puts the ticker symbol into the Content of the CompanyName label, as
shown in Figure 11-8.

360 | Chapter 11: Applying WCF: YahooQuotes

Now you’re going to actually call the service. To do this, you have to create a client of
the service. You do this by instantiating a YahooQuoteClient in the following manner:

YahooQuoteClient client = new YahooQuoteClient();

Modify the implementation of GetQuote() so it looks like this:

public void GetQuote(object sender, RoutedEventArgs e)
{
 String tickerSymbol = StockTickerTextBox.Text;
 StockQuote sq;

 YahooQuoteClient client = new YahooQuoteClient();
 // Use the 'client' variable to call operations on the service

 sq = client.GetQuoteForStockSymbol(tickerSymbol);

 // Always close the client
 client.Close();

 // Now we can set the variables on the page
 CompanyName.Content = sq.CompanyName;
}

Now when you run the WPF application, you should see that the company name
associated with the ticker symbol you enter is retrieved from the web service and dis-
played in CompanyName.Content, as seen in Figure 11-9.

Figure 11-8. Simple WPF screen

Consuming the Web Service | 361

The service works! You can now focus on making its treatment of stock quotes more
comprehensive. Try this listing for Window1.xaml.cs:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Shapes;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;

namespace StockQuotes
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : Window
 {

Figure 11-9. Using the WCF service

362 | Chapter 11: Applying WCF: YahooQuotes

 public Window1()
 {
 InitializeComponent();
 }

 public void GetQuote(object sender, RoutedEventArgs e)
 {
 String tickerSymbol = StockTickerTextBox.Text;
 StockQuote sq;

 YahooQuotesClient client = new YahooQuotesClient();
 // Use the 'client' variable to call operations on the service

 sq = client.GetQuoteForStockSymbol(tickerSymbol);

 // Always close the client
 client.Close();

 // Now you can set the variables on the page
 LastTradePrice.Content = sq.LastTradePrice;
 TradeDate.Content = sq.DateOfTrade;
 LastTradeTime.Content = sq.TimeOfTrade;
 DaysRange.Content = sq.DaysRange;
 DaysChange.Content = sq.Change;
 DaysPercentage.Content = sq.PercentageChange;
 CompanyName.Content = sq.CompanyName;
 }
 }
}

And this listing for Window1.xaml:

<Window x:Class="StockQuotes.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Yahooy! Quotes" Height="350" Width="510">
 <Grid>
 <TextBox Height="26"
 HorizontalAlignment="Left"
 Margin="38,30,0,0"
 Name="StockTickerTextBox"
 VerticalAlignment="Top"
 Width="100" />

 <Button Height="23"
 Margin="159,30,0,0"
 Name="GetTickerData"
 VerticalAlignment="Top"
 HorizontalAlignment="Left"
 Width="75"
 Click="GetQuote">Quote</Button>

 <Label Height="25.96"
 HorizontalAlignment="Left"
 Margin="38,95,0,0"

Consuming the Web Service | 363

 Name="CompanyNameLabel"
 VerticalAlignment="Top"
 Width="100">Company Name</Label>

 <Label Height="25.96"
 Margin="159,95,16,0"
 Name="CompanyName"
 VerticalAlignment="Top"
 FontSize="10"
 FontWeight="Bold" />

 <Label Height="25.96"
 HorizontalAlignment="Left"
 Margin="38,123,0,0"
 VerticalAlignment="Top"
 Width="100">Last Trade:</Label>

 <Label Height="25.96"
 Margin="159,123,239,0"
 Name="LastTradePrice"
 VerticalAlignment="Top" />

 <Label HorizontalAlignment="Left"
 Margin="38,149,0,138.04"
 Width="100">Date:</Label>

 <Label Margin="159,149,239,138.04"
 Name="TradeDate" />

 <Label HorizontalAlignment="Left"
 Margin="38,0,0,114.04"
 Name="TimeLabel"
 Width="100"
 Height="25.96"
 VerticalAlignment="Bottom">Time:</Label>

 <Label Margin="159,0,239,114.04"
 Name="LastTradeTime"
 Height="25.96"
 VerticalAlignment="Bottom" />

 <Label Height="25.96"
 HorizontalAlignment="Left"
 Margin="38,0,0,88.04"
 VerticalAlignment="Bottom"
 Width="100">Day's Range:</Label>

 <Label Height="25.96"
 Margin="159,0,140,88.04"
 VerticalAlignment="Bottom"
 Name="DaysRange"/>

 <Label Height="25.96"
 HorizontalAlignment="Left"

364 | Chapter 11: Applying WCF: YahooQuotes

 Margin="38,0,0,62.04"
 VerticalAlignment="Bottom"
 Width="100">Change:</Label>

 <Label Height="25.96"
 Margin="159,0,140,62.04"
 VerticalAlignment="Bottom"
 Name="DaysChange"/>

 <Label Height="25.96"
 HorizontalAlignment="Left"
 Margin="38,0,0,38.04"
 VerticalAlignment="Bottom"
 Width="100">Percent Change:</Label>

 <Label Height="25.96"
 Margin="159,0,239,38.04"
 VerticalAlignment="Bottom"
 Name="DaysPercentage" />

 </Grid>
</Window>

Compile and run the application now, and you should get something that looks like
Figure 11-10.

This brief example should have given you a very good understanding of how to cre-
ate, launch, and consume a WCF web service.

Figure 11-10. Yahooy! Quotes complete

365

Chapter 12 CHAPTER 12

Introducing
Windows Workflow Foundation12

Microsoft’s Windows Workflow Foundation (WF) is a programming framework that
facilitates the creation of reactive programs (described in the upcoming sidebar)
designed to respond to external stimuli. It is an implementation of an important new
idea that has recently found its way into programming: programmers, seeing the power
of runtimes (such as the JVM and the CLR), are now starting to ask for the incorpora-
tion of design constructs as data in the same way type definitions are available as data.

Runtimes have shown the value of machine-readable representations. By way of exam-
ple, most programmers almost immediately see the benefit of features such as reflection
and serialization. The question naturally arises, “Why can’t I model control flow, logic
constructs, concurrency, and other design-time constructs as data in the same way I
can model methods, fields, and classes?” The answer: there is no good reason.

Fortunately, the folks at Microsoft were thinking along the same lines, and they have
given us an extensible meta-runtime in the form of WF. The meta approach taken by
the architects of WF, under the leadership of Dharma Shukla, has resulted in a
highly user-driven implementation (and by user, we mean you!). The WF program-
ming model is organized around specific activities. WF is also inherently extensible,
which makes it easier for you to capture the intentions of domain experts in the
grammars/languages they know and understand.

In this chapter, you’re going to build some simple applications. Our aim is to illus-
trate the core concepts of WF without specifically using the Microsoft tools. Then,
after you’ve gained an appreciation of the heavy lifting involved, we’ll take you
though some of the simpler concepts involved in creating some small workflow
applications using WF.

Conventional (Pre-WF) Flow Control
First, let’s take a look at a couple of pre-WF examples that have one thing in com-
mon: either they deal with flow control in their own way, or they don’t deal with it at
all. Afterward, we’ll see how WF changes the picture.

366 | Chapter 12: Introducing Windows Workflow Foundation

A Console Application: TalkBack
To get started with this first example, open Visual Studio 2008 and select New Project
from the File menu. Create a new Console Application called TalkBack, as shown in
Figure 12-1.

Reactive Programs
In the past, we created reactive programs to accomplish workflow-like activities. Reactive
programs can be generally understood to be programs with the following characteristics:

• They pause during execution.

• The amount of time for which they pause is not predetermined.

• While paused, they await further input.

This is not really anything new to the world of computing. Collaboration between pro-
grams on the same and different machines has been an important goal since the very early
days of computing. Over the years, technologies have been developed to assist in the com-
munication between programs. From sockets to web services, computer scientists con-
tinue to evolve the mechanism through which inter-application communication occurs.

Figure 12-1. Creating the TalkBack console application

Conventional (Pre-WF) Flow Control | 367

You will need to add the following code to Program.cs:

using System;
using System.Collections.Generic;
using System.Text;

namespace TalkBack
{
 class Program
 {
 static void Main(string[] args)
 {
 // Print an instruction
 String key = DateTime.Now.GetHashCode().ToString();

 Console.WriteLine("Enter the following key to continue: "
 + key);

 String input = Console.ReadLine();

 if (key.Equals(input))
 {
 Console.WriteLine("We have a match: " + key + " = "
 + input);
 }
 else
 {
 Console.WriteLine("Oops! " + key + " is not the same as "
 + input);

 }

 // Leave something on the screen and wait for input to exit
 Console.WriteLine("");
 Console.WriteLine("Press Enter to exit...");
 Console.ReadLine();
 }
 }
}

TalkBack is an example of a simple reactive program: it’s a basic console application
designed to gather input from the user, make a decision about that input, and dis-
play a result. As you can clearly see in Figure 12-2, this program pauses during exe-
cution for an unknown length of time, waiting for further input.

In many ways, this is like most of the computer programs with which we are all
familiar. In the real world, we encounter reactive programs all the time. When you
shop on Amazon.com or make travel reservations on Orbitz.com, these reactive
programs are guided by your input. Likewise, when Amazon sends data to UPS
about your order, or Orbitz books your seat on a United Airlines flight, UPS and
United Airlines have reactive programs that are guided by input from other programs
and that transfer the relevant information to the requesting company’s programs.

368 | Chapter 12: Introducing Windows Workflow Foundation

To further your understanding of workflow, next you’ll write a simple order-status web
service in ASP.NET.

An ASP.NET Web Service: OrderStatus
Create a new C#-based ASP.NET Web Service called OrderStatus in Visual Studio.
Enter the following code in the Service.cs file:

using System;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
// To allow this web service to be called from script,
// using ASP.NET AJAX, uncomment the following line

// [System.Web.Script.Services.ScriptService]
public class Service : System.Web.Services.WebService
{
 public Service()
 {
 // Uncomment the following line if using designed components
 // InitializeComponent();
 }

 [WebMethod(EnableSession = true)]
 public string WelcomeInstructions()
 {
 String orderNumber = "W123456";
 Session["orderNumber"] = orderNumber;
 return "Please enter your order number: "
 + orderNumber + "\n\n";
 }

Figure 12-2. TalkBack: a simple reactive program

Conventional (Pre-WF) Flow Control | 369

 [WebMethod(EnableSession = true)]
 public string GetOrderStatusForOrderNumber(String s)
 {

 if (Session["orderNumber"].Equals(s))
 {
 return "Your order is being prepared for shipment";
 }
 else
 {
 return "Invalid order number...";
 }

 }
}

This is a very simple reactive program implemented as a web service. The two meth-
ods are easy enough to understand, but there’s no sense of the application flow; that
is, there is nothing in the methods to prevent them from being called out of order.
You’ll need to implement the application flow by hand.

The first thing you’ll need to do is add some flow control to the methods. As you’ll
see, it’s fairly easy to write flow control into your code. In the code just shown, you
saved the user’s order number in an ASP Session variable. Next, you’ll test the value
of this variable to monitor the order in which the methods are called. Consider these
additions (in bold) to the original code:

public string WelcomeInstructions()
{
 bool orderNumberNotNull = (Session["orderNumber"] != null);

 if (orderNumberNotNull)
 {
 throw new InvalidOperationException();
 }
 else
 {
 String orderNumber = "W123456";
 Session["orderNumber"] = orderNumber;
 return "Please enter your order number: " + orderNumber + "\n\n";
 }
}

public string GetOrderStatusForOrderNumber(String s)
{
 bool orderNumberIsNull = (Session["orderNumber"] == null);
 bool retrievedStatus = (Session["retrievedStatus"] != null);

 if (orderNumberIsNull)
 {
 throw new InvalidOperationException();
 }

370 | Chapter 12: Introducing Windows Workflow Foundation

 else
 {
 if (retrievedStatus)
 {
 throw new InvalidOperationException();
 }
 else
 {
 if (Session["orderNumber"].Equals(s))
 {
 Session["retrievedStatus"] = true;
 return "Your order is being prepared for shipment";
 }
 else
 {
 Session["retrievedStatus"] = true;
 return "Invalid order number...";
 }
 }
 }
}

These additions have returned flow control to your web service. If you compile it
now it will run, and you should see a screen that describes the service inside your
browser window (Figure 12-3).

You’ve taken advantage of ASP.NET’s scalability in order to create and maintain
state for a large number of sessions, but while doing so you have also introduced
some serious problems.

For starters, to manage flow control, you are depending on a set of runtime checks that
are hidden from the consumer of the service. Also, in this example the order number is
shared by both operations (WelcomeInstructions and GetOrderStatusForOrderNumber)

Figure 12-3. OrderStatus as a web service

Using Windows Workflow | 371

and is manipulated as a key/value pair with nonspecific (weak) typing. If that were not
enough, the order of operation is determined by testing to see whether the information
needed to continue with the request is in place. All in all, this is no way to be writing
reliable software.

To make matters worse, you haven’t yet dealt with considerations such as thread-
ing or process agility. You’ll need to be able to resume a workflow after it’s been halted
for an arbitrary period of time. That means you’ll need a listener and a general-purpose
runtime that can deal with resumption. Also, you haven’t done any work to allow
the program to be declared as data in a database or XAML.

Using Windows Workflow
And, you know what? Nowadays, that won’t be necessary—WF will do the heavy
lifting for you. In the rest of this chapter, we’ll take a high-level view of the WF tools
and toolkit, to provide you with an introduction to what WF can do for you.

Activities
Activities are the fundamental building blocks of WF workflows. As building blocks,
they represent the basic steps within a workflow. In essence, a workflow is devel-
oped as a tree of activities, where a specific activity makes up an individual unit of
execution. You will likely develop your WF solutions by assembling specific activi-
ties, which, as a result of their nature as reusable objects, can themselves be composi-
tions of more than one activity.

The two types of WF activities are known as basic activities and composite activities.
As its name suggests, a basic activity is custom-coded to provide its function set. It
follows, then, that a composite activity is built out of other existing activities (both
basic and composite).

A Simple Workflow Application: HelloWorkflow
Let’s begin by creating a simple workflow. Open Visual Studio 2008 and choose New
Project from the File menu. Select Sequential Workflow Console Application from the
list of installed templates, and name the project (of all things) HelloWorkflow (see
Figure 12-4).

Having successfully created your project, you should see an empty Sequential Work-
flow design pane like the one shown in Figure 12-5.

You should also see a toolbox pane containing several stock activities. You’re going
to use some of these activities to create a very simple workflow application. This
application will use two Code activities (activities where the workflow will execute
some user-provided code) and two Delay activities (activities where the workflow
will be suspended for a period of time).

372 | Chapter 12: Introducing Windows Workflow Foundation

Adding activities

Drag a Code activity onto the design surface, followed by a Delay activity. Repeat
this process one more time, and you will have a sequential workflow that looks like
the one in Figure 12-6. That was easy enough!

Figure 12-4. Creating the HelloWorkflow project

Figure 12-5. The Sequential Workflow design pane

Using Windows Workflow | 373

Implementing the first Code activity

Now you need to implement the first Code activity. See those little exclamation
points next to the Code activities? These indicate that there is nothing bound to their
ExecuteCode events. To fix this, you need to implement the Code activities. Let’s do
the first one now.

Double-clicking on codeActivity1 automatically creates a stub method in your
Workflow1.cs file and takes you to that method. Add a line to send output to the
console. When you are done, the method will look like this:

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Hello Workflow!");
}

Next, double-click on codeActivity2, but just leave the method that gets created
empty:

private void codeActivity2_ExecuteCode(object sender, EventArgs e)
{

}

At this point, you can run the application. But make sure you are watching very
carefully!

Figure 12-6. Simple workflow

374 | Chapter 12: Introducing Windows Workflow Foundation

What you may (or may not) have seen was a console application come into exist-
ence, quickly spit out the message “Hello Workflow,” and then quickly disappear
into inexistence. No worries—you can fix that by manipulating the Delay activities.

Adjusting the Delay activity’s properties

Using the Properties inspector, adjust the TimeoutDuration property for delayActivity1
(see Figure 12-7). You can set it to any amount of time you like, but we have found
five seconds to be sufficient. You might like something less, but you probably won’t
enjoy very much more.

Completing the workflow

Now, back in Workflow1.cs, add a Console.WriteLine() statement to the existing
codeActivity2_ExecuteCode() method:

private void codeActivity2_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Neat, it waited...");
}

Then, in the Properties inspector, set the TimeoutDuration of delayActivity2 to the
same value you used for delayActivity1.

To review, in this simple workflow you have two Code activities and two (probably
five-second) delays. Now when you compile and run the application, you should see
a console application that looks similar to the one in Figure 12-8. Et voilà! A simple
workflow.

Figure 12-7. Setting the Delay activity’s properties

Using Windows Workflow | 375

A More Sophisticated Workflow Application: WFOrderStatus
In the preceding example, you used some very simple activities from the base activ-
ity library that ships with WF. As you begin to explore the library in more detail, you
will discover that there are activities for transaction management, local communica-
tion, flow control, web services, external event handlers, and a great deal more. In
the next application, we will expand our tour of the base library.

Go ahead and create another Sequential Workflow Console Application, and call it
WFOrderStatus. In this project you’re going to utilize the IfElse activity, in addition
to the Code and Delay activities introduced previously, to accomplish what you did
programmatically at the beginning of this chapter when you created the OrderStatus
web service.

To get started, you need some way of capturing the user’s order number. To enable
this, drag and drop a Code activity from the toolbox as the first activity in the
sequential workflow. Double-click on the resulting codeActivity1 to take you to the
code-behind. Here you will implement the following:

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Please enter your order tracking number: ");
 OrderNumber = Console.ReadLine();
}

You will also need to add a String called orderNumber inside the Workflow1 class:

public String orderNumber;

Figure 12-8. Simple workflow in action

376 | Chapter 12: Introducing Windows Workflow Foundation

Adding the IfElse activity

Returning to the design view, add an IfElse activity to the second position in the
workflow. You should now have a sequential workflow that looks very much like the
one in Figure 12-9.

The IfElse activity itself is comprised of one or more IfElseBranch activities. These
branches will be evaluated from left to right through the branches’ Condition proper-
ties. You are required to set the Condition property for all but the last branch.

The first branch with a true condition will be the branch that executes. This means
that if none of the branches has a true condition, nothing will execute. The one
exception to this rule is when the last branch has no Condition property; in this case,
it will execute by default.

Figure 12-9. IfElse activity added

Using Windows Workflow | 377

Adding Code activities for the IfElseBranches

At this point, add two more Code activities, one to each branch of the IfElse activity.
In addition, add a five-second Delay below the IfElse activity. Now for some “pro-
gramming” by pointing and right-clicking.

Declarative rule conditions

Click on ifElseBranchActivity1 (the one on the left side), and go to the Properties
window. Here, you will set the Condition property to be a declarative rule condition.
After you do that, a little plus sign will appear just to the left of the Condition prop-
erty. Click on it to expand the property values.

Selecting the ConditionName subproperty and then clicking on the ellipsis (“...”)
opens up a Select Condition panel. Click on “New” to open the Rule Condition Edi-
tor, as seen in Figure 12-10.

Figure 12-10. The Rule Condition Editor

378 | Chapter 12: Introducing Windows Workflow Foundation

Inside the editor, create a constraint that will constitute a rule condition. In this case,
you want to see whether the order number provided is the same as the predetermined
order number. Therefore, the constraint is this.orderNumber == "W12345".

As you click through the OK sequence to close out these dialogs, you will notice that
the condition becomes known as Condition1, and it is previewed for you in the Con-
dition Preview section of the Select Condition pane. Clicking OK here drops you
back to the Properties inspector for ifElseBranchActivity1, where you can see that
ConditionName is now set to Condition1.

If this IfElseBranch activity is true, it will execute codeActivity2’s ExecuteCode()
method. Because this is the condition where the user has supplied the correct order
number, you want the console application to respond accordingly. Double-click on
codeActivity2 and enter the following:

private void codeActivity2_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine(
 "Your order: " +
 orderNumber +
 "is being packaged for shipping!"
);
}

ifElseBranchActivity2 is the default, so you don’t need to set its Condition property.
However, you still must go back and double-click on codeActivity3 to add an appro-
priate message for the hapless customer who enters an invalid order number. The
method should look like this:

private void codeActivity3_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine(
 "We're Sorry! Your order: " + OrderNumber +
 " was not found in the system!"
);
}

Add a Delay activity and set the TimeoutDuration to 00:00:05. Now, running the
application should result in a console application that takes input. Provide it with
the correct order number, and you will get the expected result. Provide it with an
invalid number, and you should get a console screen like the one in Figure 12-11.

Looping with the While activity

What if you wanted to make this a loop, so that customers can enter more than one
order number? An easy way to handle this workflow scenario is to add in a While
activity. The While activity works in a manner similar to the IfElse activity: it too has
a Condition property, which can be set through either a declarative rule or a code
condition. A While activity will evaluate this condition prior to each iteration and
will continue to run as long as the condition returns true.

Using Windows Workflow | 379

To see this in action, drag a While activity into the Sequential Workflow design pane
and place it between codeActivity1 and ifElseActivity1. Then drag ifElseActivity1
inside the newly created whileActivity1. You should now have a sequential work-
flow that looks like Figure 12-12.

Next, add the following bool variable to the top of your partial class in the
Workflow1.cs code-behind:

bool keepGoing = true;

This variable will allow you to continue the While activity until it is no longer neces-
sary. Also, since you know that codeActivity2’s ExecuteCode() method will be executed
when the user enters the right order number, you can use that method to set
keepGoing to false as follows:

private void codeActivity2_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Your order: " + orderNumber +
 " is being packaged for shipping!");
 keepGoing = false;
}

If the user enters an invalid order number, you’ll need to let her know that she must
re-enter the order number. Thus, you’ll also need to modify the code-behind for
codeActivity3’s ExecuteCode() method, as shown here:

private void codeActivity3_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("We're Sorry! Your order: " + orderNumber +
 " was not found in the system!");
 Console.WriteLine("Please re-enter your order tracking number: ");
 orderNumber = Console.ReadLine();
}

Figure 12-11. Good workflow, bad result!

380 | Chapter 12: Introducing Windows Workflow Foundation

The last thing you need to do is set whileActivity1’s Condition property. You’ll do
that the same way you set the IfElseBranchActivity’s Condition properties: simply
set the declarative rule condition to keepGoing.

The complete listing of Workflow1.cs should be as follows:

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Collections;
using System.Drawing;
using System.Linq;
using System.Workflow.ComponentModel.Compiler;

Figure 12-12. IfElse inside a While activity

Using Windows Workflow | 381

using System.Workflow.ComponentModel.Serialization;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using System.Workflow.Runtime;
using System.Workflow.Activities;
using System.Workflow.Activities.Rules;

namespace WFOrderStatus
{
 public sealed partial class Workflow1: SequentialWorkflowActivity
 {
 public String OrderNumber;
 bool keepGoing = true;

 public Workflow1()
 {
 InitializeComponent();
 }

 private void codeActivity1_ExecuteCode(object sender, EventArgs e)
 {
 Console.WriteLine("Please enter your order tracking number: ");
 OrderNumber = Console.ReadLine();
 }

 private void codeActivity2_ExecuteCode(object sender, EventArgs e)
 {
 Console.WriteLine("Your order: " +OrderNumber +
 "is being packaged for shipping!");
 keepGoing = false;
 }

 private void codeActivity3_ExecuteCode(object sender, EventArgs e)
 {
 Console.WriteLine("We're Sorry! Your order: " + OrderNumber +
 " was not found in the system!");
 Console.WriteLine("Please re-enter your order tracking number: ");
 OrderNumber = Console.ReadLine();
 }

 }
}

With these simple changes, you have created an application that will continue
prompting the user indefinitely until the correct order number is provided. When
run, it should look like the application in Figure 12-13.

As you have just seen, the primary building block of any workflow solution is the
activity. The workflow is defined by the activities in it, and by the steps and tasks
included in the activities. WF ships with many more stock activities than we have
included in our examples so far; we’ll introduce many of these activities in the next
chapter.

382 | Chapter 12: Introducing Windows Workflow Foundation

Figure 12-13. Application running with the While activity

Custom Activities
If you’ve been developing software for a long time, you probably already know that it’s
not usually possible to find a complete out-of-the-box solution that meets all the needs
of a particular domain. Fortunately, WF allows you to develop custom activities that
extend the functionality of the base activity classes. Even better, because the custom
activities you write all derive (ultimately) from the base Activity class, Microsoft’s
workflow engine will make no distinction between your custom activities and the base
class activities.

A powerful application of custom activities might be using them to create domain-specific
languages for constructing workflow solutions. This is consistent with Microsoft’s goal
of creating an environment where the domain expert can assemble a solution using
workflow activities without having to know a great deal about programming. The abil-
ity to create meaningful activities with domain-specific names should make communi-
cations between software engineers and business experts much more robust.

Imagine a scenario where a developer for a Human Resources department is assembling a
workflow solution with her manager. Having an HR Manager deal with building blocks
like BeginOnlineInterview and SendOnlineInterviewResultsToHiringManagers as opposed
to WebServiceInput and WebServiceOutput will make things a lot easier when design con-
versations are ongoing. Activity names that make sense to the nontechnical domain expert
and the software solutions expert allow for better collaboration and more productive
results.

Workflow Services | 383

Understanding the WF Runtime
All running workflow instances are created and maintained by an in-process runtime
engine commonly referred to as the workflow runtime engine. Accordingly, you might
have several workflow runtime engines within an application domain, and each
instance of the runtime engine can support multiple workflow instances, all running
concurrently.

After a workflow model is compiled, it can be executed inside any Windows process
(from console applications to web services). The workflow is hosted in-process, so it
can easily communicate with its host application. As you can see in Figure 12-14,
workflows, activities, and the runtime engine are all hosted inside a process on an
application host.

Workflow Services
WF includes classes to provide some important services, such as making workflows exe-
cutable, schedulable, transactional, and persistent. We’ll explore some of these services
in greater detail in Chapter 13; for now, this section will provide a quick overview.

Figure 12-14. The host process

384 | Chapter 12: Introducing Windows Workflow Foundation

As discussed earlier, in order for a workflow to be executable it needs a runtime.
Runtime services are provided by the WorkflowRuntime class. You can initialize a run-
time by calling new WorkflowRuntime(). Through WorkflowRuntime’s AddService()
method, you can make one or more services available to the runtime.

Once you have a new instance of the WorkflowRuntime and you have called
StartRuntime(), you begin the process that allows you to execute your workflow
activities. The call to CreateWorkflow() returns an instantiated WorkflowInstance.
You call that object’s Start() method to begin the execution of the activities in your
workflow, which continues until either the workflow is complete or an exception
occurs. In both cases termination of the workflow is the end result, as depicted in
Figure 12-15.

Figure 12-15. Windows Workflow in action

Workflow Services | 385

When it comes to scheduling services, you have two out-of-the-box options: the
DefaultWorkflowSchedulerService class asynchronously creates the new threads nec-
essary to execute workflows without blocking any application threads, and the
ManualWorkflowSchedulerService class is available when you can spare some threads
from the host application and you are not worried about synchronous execution on a
single thread (or the reduction in scalability this can cause). As always, you can cre-
ate and define your own scheduling service if these built-in mechanisms do not suit
your needs.

If you have a requirement to maintain the internal state of a workflow, you might
turn to the transaction services provided by the DefaultWorkflowTransactionService
class. The DefaultWorkflowTransactionService class allows you to maintain the inter-
nal state in a durable store like SQL Server or some other relational database. As you
might expect, the activities running inside a workflow instance, as well as the ser-
vices connected to the same instance, will be able to share the same context for the
transactions.

Persistence services are accomplished through the SQLWorkflowPersistenceService
class. These services allow you to save the state of the workflow in a SQL Server
database. If you have a long-running workflow, persistence will clearly be a require-
ment. Obviously, it isn’t the optimal strategy to have a workflow dependent on per-
sisting in memory for more than a few hours. Persistent storage allows you to pick up
where you left off at any point in the future.

Monitoring and recording information about a given workflow is accomplished
through the SQLTrackingService class. Tracking services utilize a tracking profile to
tell the runtime about relevant information with respect to the workflow. Once the
service has initiated a profile, it can open the tracking channel to receive data and
events. Although the runtime does not start a tracking service as default behavior,
you can configure a tracking service to help monitor service activity programmati-
cally or through application configuration.

386

Chapter 13CHAPTER 13

Applying WF: Building a State Machine 13

When you are working with a set of predictable events, you will more often than not
be engaged in sequential workflow. For instance, in the previous chapter you cre-
ated an uncomplicated workflow example, WFOrderStatus, with simple rules that
propelled you to completion. Even though the path of execution branched and
looped, the rules you had defined dictated how you got from one part of the work-
flow to the next.

But what do you do when you are dependent on external events to advance your
workflow? The answer is usually to build a state machine, which is a behavioral
model composed of various activities, states, and transitions between those states.
This is a task that traditionally has been easy to get almost right but terribly difficult
to get completely correct. WF, however, makes creating state machines natural.

Perhaps more important, WF allows you to map a state machine to your problem
domain neatly and directly, thereby dramatically reducing your cognitive load and
allowing you to solve more complex problems with easier-to-maintain code.

State machines are often implemented as threads (or processes) that communicate
with one another, triggered by consuming events, all as part of a larger application.
As an example, an individual car in a traffic simulation might be implemented as an
event-driven finite state machine (as, for that matter, might the entire traffic simula-
tion itself).

Another way of thinking about this Cartesian split is this: decision-making outside
the workflow will usually be made by a state machine, while decision making inside
the workflow will be encoded using the Sequential Workflow design pane. (That
said, the state machine itself will invariably have sequential workflow as part of its
implementation.)

Building an Incident Support State Machine | 387

Windows Workflow and State Machines
In Windows Workflow, as events arrive they facilitate transitions between State
activities. As the developer, you will specify the initial state. From there, the work-
flow will continue until it reaches a completed state.

EventDriven activities represent events in a state machine. By placing these activities
inside State activities, you define the legal events for those states.

One level deeper, inside the EventDriven activities, you can embed your sequential
workflow. These sequential activities will kick off after the arrival of the event. Under
normal circumstances, the last activity in the sequence will be the SetState activity.
As you might expect, this will define a transition to the next state.

Building an Incident Support State Machine
In the world of customer support, it’s generally impossible to know in advance all
the rules to apply to a request. Many companies have tried to make the workflow as
sequential as possible, with the use of phone-based routing and resolution of issues.
However, in many (most?) cases, customer support calls require some amount of ad-
hoc decision making by a human being.

In this next example, you’ll build a state machine that will track a support call from
an open to a closed state. Over the life of the support call, the incident will be in one
of the following states (and no other states; nor will it ever be in an undefined state):

• Call received

• Assigned to phone resolution

• Assigned to a service representative

• Awaiting further information

• Resolved

Your state machine will model these states and the transitions (edges) between them.

Let’s get started. In Visual Studio 2008, choose File ➝ New Project and create a State
Machine Workflow Console Application. Name it CustomerSupportStateMachine, as
shown in Figure 13-1.

You’re not going to use Workflow1.cs, so you can delete that file. Then right-click on
the project and choose Add ➝ New Item. In the Templates area, choose “State
Machine Workflow (with code separation),” as shown in Figure 13-2. Name the file
CustomerService.xoml.

388 | Chapter 13: Applying WF: Building a State Machine

Figure 13-1. Creating the customer support state machine

Figure 13-2. Adding CustomerService.xoml

Building an Incident Support State Machine | 389

Now, when you look at your project, you should see the workflow designer. Note
that it has created the initial state for you (Figure 13-3).

Also note that the toolbox is available to you and is fully populated with activities
from the Windows Workflow base library. This includes activities from both Win-
dows Workflow v3.0 and v3.5, as seen in Figure 13-4.

As mentioned earlier, state machines are usually driven by external events. Typi-
cally, there will be a workflow and a host, and a mechanism by which data can be
exchanged between the two. In this example, you’re going to leverage a local com-
munication service to facilitate that exchange. We won’t worry about the implemen-
tation details, but you can assume that the workflow will utilize the local
communication service to intercept communications, allowing it to do things like
queue events until the workflow achieves the proper state to process those events.

As you might suspect, this type of activity will require a messaging contract. Con-
tracts are defined in C# as interfaces; thus, you’ll define an ICustomerCallService
interface that will specify the five states that are legal in your state machine.

You’ll also need to make sure that all objects you pass back and forth between the
workflow and the host are serializable. Additionally, your events will need to derive
from the ExternalDataEventArgs class to allow the external events to be handled.

To implement all of this, add a class named CustomerCallService to your project.
The complete listing for this class is shown in Example 13-1.

Figure 13-3. New state machine with initial state

390 | Chapter 13: Applying WF: Building a State Machine

Figure 13-4. The WF toolbox

Example 13-1. CustomerCallService.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Workflow.Activities;

namespace CustomerSupportStateMachine

Building an Incident Support State Machine | 391

{

 [ExternalDataExchange]
 public interface ICustomerCallService
 {
 event EventHandler<CallStateChangedEventArgs> CallRecieved;
 event EventHandler<CallStateChangedEventArgs> CallSentToPhoneResolution;
 event EventHandler<CallStateChangedEventArgs> CallAssignedToSupportPerson;
 event EventHandler<CallStateChangedEventArgs>
 CallEndedMoreInformationRequired;
 event EventHandler<CallStateChangedEventArgs> CallResolved;
 }

 [Serializable]
 public class Call
 {
 public string CallersFirstName { get; set; }
 public string Product { get; set; }
 public string AssignedTo { get; set; }
 }

 [Serializable]
 public class CallStateChangedEventArgs : ExternalDataEventArgs
 {
 public CallStateChangedEventArgs(Guid guid, Call aCall)
 : base(guid)
 {
 Call = aCall;
 WaitForIdle = true;
 }

 public Call Call { get; set; }

 }
}

public class CustomerCallService : ICustomerCallService
{
 public event EventHandler<CallStateChangedEventArgs> CallRecieved;
 public event EventHandler<CallStateChangedEventArgs> CallSentToPhoneResolution;
 public event EventHandler<CallStateChangedEventArgs>
 CallAssignedToSupportPerson;
 public event EventHandler<CallStateChangedEventArgs>
 CallEndedMoreInformationRequired;
 public event EventHandler<CallStateChangedEventArgs> CallResolved;

 public void CallRecieved(Guid guid, Call aCall)
 {
 if (CallRecieved != null)
 CallRecieved(null, new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallSentToPhoneResolution(Guid guid, Call aCall)

Example 13-1. CustomerCallService.cs (continued)

392 | Chapter 13: Applying WF: Building a State Machine

As mentioned earlier, the local communication service will require an interface. The
ICustomerCallService interface lays out the events that can be raised to provide data
to your workflow. The events correspond to the legitimate states for the customer’s
service call:

 [ExternalDataExchange]
 public interface ICustomerCallService
 {
 event EventHandler<CallStateChangedEventArgs> CallRecieved;
 event EventHandler<CallStateChangedEventArgs> CallSentToPhoneResolution;
 event EventHandler<CallStateChangedEventArgs>
 CallAssignedToSupportPerson;
 event EventHandler<CallStateChangedEventArgs>
 CallEndedMoreInformationRequired;
 event EventHandler<CallStateChangedEventArgs> CallResolved;
 }

Note that in this example, communication is one-way only; you’re simply laying out
a series of events that the workflow can invoke. If communication were two-way,
you would also have to define methods that the workflow could invoke.

The service will need to provide the information required by the workflow, using the
serializable Call object specifically created for this purpose. This object provides prop-
erties for the caller’s name, the product, and who the call is assigned to. To have it play
nicely across different transport and storage mechanisms, it needs to be serializable:

 {
 if (CallSentToPhoneResolution != null)
 CallSentToPhoneResolution(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallAssignedToSupportPerson(Guid guid, Call aCall)
 {
 if (CallAssignedToSupportPerson != null)
 CallAssignedToSupportPerson(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallEndedMoreInformationRequired(Guid guid, Call aCall)
 {
 if (CallEndedMoreInformationRequired != null)
 CallEndedMoreInformationRequired(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallResolved(Guid guid, Call aCall)
 {
 if (CallResolved != null)
 CallResolved(null, new CallStateChangedEventArgs(guid, aCall));
 }
}

Example 13-1. CustomerCallService.cs (continued)

Building an Incident Support State Machine | 393

 [Serializable]
 public class Call
 {
 public string CallersFirstName { get; set; }
 public string Product { get; set; }
 public string AssignedTo { get; set; }
 }

The next section of code is the implementation of ExternalDataEventArgs:

 [Serializable]
 public class CallStateChangedEventArgs : ExternalDataEventArgs
 {
 public CallStateChangedEventArgs(Guid guid, Call aCall)
 : base(guid)
 {
 Call = aCall;
 WaitForIdle = true;
 }

 public Call Call { get; set; }

 }

CallStateChangedEventArgs is a serializable event argument class, and this class is
what allows you to pass the Call object between the host and the workflow. Because
this is a local communication, you’ll also leverage some additional properties of the
class: specifically, you’ll use the InstanceID (a globally unique identifier, or GUID),
which you’ll pass into the base constructor. This will guarantee that every workflow
instance created by the runtime will be uniquely identified, which in turn ensures
that events are routed to the appropriate instances.

In the implementation of CustomerCallService, you’ll create a simple set of methods
to raise events:

public class CustomerCallService : ICustomerCallService
{
 public event EventHandler<CallStateChangedEventArgs> CallRecieved;
 public event EventHandler<CallStateChangedEventArgs> CallSentToPhoneResolution;
 public event EventHandler<CallStateChangedEventArgs>
 CallAssignedToSupportPerson;
 public event EventHandler<CallStateChangedEventArgs>
 CallEndedMoreInformationRequired;
 public event EventHandler<CallStateChangedEventArgs> CallResolved;

 public void CallRecieved(Guid guid, Call aCall)
 {
 if (CallRecieved != null)
 CallRecieved(null, new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallSentToPhoneResolution(Guid guid, Call aCall)
 {
 if (CallSentToPhoneResolution != null)

394 | Chapter 13: Applying WF: Building a State Machine

 CallSentToPhoneResolution(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallAssignedToSupportPerson(Guid guid, Call aCall)
 {
 if (CallAssignedToSupportPerson != null)
 CallAssignedToSupportPerson(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallEndedMoreInformationRequired(Guid guid, Call aCall)
 {
 if (CallEndedMoreInformationRequired != null)
 CallEndedMoreInformationRequired(null,
 new CallStateChangedEventArgs(guid, aCall));
 }

 public void CallResolved(Guid guid, Call aCall)
 {
 if (CallResolved != null)
 CallResolved(null, new CallStateChangedEventArgs(guid, aCall));
 }
}

Using this service from your console, you’ll be able to raise events that will be routed
to the workflow.

You’re now ready to build the state machine.

State
As discussed earlier, the main component in a state machine workflow is the State
activity. With events being captured at different points in a state machine workflow,
states are entered to handle the tasks associated with those events.

During its lifetime, a workflow may leave and enter several different states. These
states can be connected using the SetState activity.

After you add a new State activity into a workflow, you can then add the following
types of child activities:

• EventDriven activities

• StateInitialization activities

• StateFinalization activities

• Additional State activity instances

An EventDriven activity is used when a State activity relies on an external event
occurring in order for its child activities to execute.

Building an Incident Support State Machine | 395

You should note that when a child activity is executed more than once, a separate
instance of the activity is created for each iteration. The instances execute indepen-
dently (or in parallel, in the case of a Replicator activity), while the definition of the
child activity in the template is not executed and is always in the intialized state.

You’ll continue your development by using the toolbox to drop in a series of State
activities, which you’ll rename using the Properties window. You should wind up
with the following additional State activities:

• CallRecievedState

• CallSentToPhoneResolutionState

• CallAssignedToSupportPersonState

• CallEndedMoreInformationRequiredState

• CallResolvedState

• CustomerSatisfiedState

When you create the CustomerSatisfiedState activity, you will need to right-click on
it and select “Set as Completed State.”

At this point, you should have a state machine layout that looks similar to
Figure 13-5.

Figure 13-5. The State activities for your workflow

396 | Chapter 13: Applying WF: Building a State Machine

An Event-Driven State Machine
As mentioned in the previous section, there are four types of activity that you can
drop into a State activity. The choice is clear for this workflow—you’re going to start
adding EventDriven activities.

Drag and drop an EventDriven activity from the toolbox into the
CustomerServiceInitialState activity. In the Properties window, set its name to
OnCallReceived. Then double-click on the newly named CustomerServiceInitialState
activity to reveal a detail view that should look similar to Figure 13-6.

OnCallReceived is now able to accept child activities. Remember that the first activity
you drop into this sequence must support the IEventActivity interface. In this case
you don’t have much to worry about, because you’re using a local communication
service to generate events.

The next step is to drag a HandleExternalEvent activity from the toolbox onto the
workflow. In the Properties window, change the name of this activity to
handleCallReceivedEvent and set its InterfaceType property to ICustomerCallService.
This will allow you to pick CallReceived from a list provided by Visual Studio, as you
set the EventName property.

To wrap up this State activity, drag and drop a SetState activity just below the
handleCallReceivedEvent activity. In the Properties window, rename this activity
setCallRecievedState. There is only one other property to set: TargetStateName.
This property will be the destination state. In this case, you’ll set it to
CallReceivedState. At this point, the CustomerServiceInitialState should look very
much like Figure 13-7.

Figure 13-6. Detail view of CustomerServiceInitialState

Building an Incident Support State Machine | 397

Run ‘Em If You Got ‘Em
We’re going to take the opportunity now to subject you to our core application
development philosophy one more time: get it running and keep it running.

Let’s see whether you can send your first event to the runtime. The complete listing
(for now) will look like Example 13-2.

Figure 13-7. Properly configured CustomerServiceInitialState

Example 13-2. Program.cs (initial listing)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Workflow.Runtime;
using System.Workflow.Runtime.Hosting;
using System.Workflow.Activities;
using System.Workflow.Runtime.Tracking;
using System.Workflow.Runtime.Configuration;

namespace CustomerSupportStateMachine
{
 class Program
 {
 static void Main(string[] args)
 {
 using (WorkflowRuntime workflowRuntime = new WorkflowRuntime())
 {
 AutoResetEvent waitHandle = new AutoResetEvent(false);
 workflowRuntime.WorkflowCompleted +=
 delegate(object sender, WorkflowCompletedEventArgs e)
 { waitHandle.Set(); };

398 | Chapter 13: Applying WF: Building a State Machine

 workflowRuntime.WorkflowTerminated +=
 delegate(object sender, WorkflowTerminatedEventArgs e)
 {
 Console.WriteLine(e.Exception.Message);
 waitHandle.Set();
 };

 ExternalDataExchangeService dataExchange;
 dataExchange = new ExternalDataExchangeService();
 workflowRuntime.AddService(dataExchange);

 CustomerCallService customerCallService = new CustomerCallService();
 dataExchange.AddService(customerCallService);

 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(typeof(CustomerService));
 instance.Start();

 Call newCall = new Call();

 newCall.CallersFirstName = "Alex";
 newCall.Product = "Widget Number Nine";

 customerCallService.ReceiveCall(instance.InstanceId, newCall);
 PrintStateMachineState(workflowRuntime, instance.InstanceId);

 waitHandle.WaitOne();
 }
 }

 private static void PrintStateMachineState(
 WorkflowRuntime runtime, Guid instanceID)
 {
 StateMachineWorkflowInstance instance =
 new StateMachineWorkflowInstance(runtime, instanceID);

 Console.WriteLine("Workflow GUID: {0}", instanceID);
 Console.WriteLine("Current State: {0}", instance.CurrentStateName);
 Console.WriteLine("Transition States Available: {0}",
 instance.PossibleStateTransitions.Count);
 foreach (string transition in instance.PossibleStateTransitions)
 {
 Console.WriteLine("Transition to -> {0}", transition);
 }
 }

 }
}

Example 13-2. Program.cs (initial listing) (continued)

Building an Incident Support State Machine | 399

Let’s break this down. The PrintStateMachineState() static method enables you to
actually print something meaningful to the console:

 private static void PrintStateMachineState(
 WorkflowRuntime runtime, Guid instanceID)
 {
 StateMachineWorkflowInstance instance =
 new StateMachineWorkflowInstance(runtime, instanceID);

 Console.WriteLine("Workflow GUID: {0}", instanceID);
 Console.WriteLine("Current State: {0}", instance.CurrentStateName);
 Console.WriteLine("Transition States Available: {0}",
 instance.PossibleStateTransitions.Count);
 foreach (string transition in instance.PossibleStateTransitions)
 {
 Console.WriteLine("Transition to -> {0}", name);
 }
 }

Otherwise, running the application would produce a blank screen—after all, your
state machine deals only in events. Additionally, you need a way to talk to the local
communication service. The following lines of code get that up and running:

 ExternalDataExchangeService dataExchange;
 dataExchange = new ExternalDataExchangeService();
 workflowRuntime.AddService(dataExchange);

 CustomerCallService customerCallService = new CustomerCallService();
 dataExchange.AddService(customerCallService);

These lines are followed by the section of code that creates the instance:

 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(typeof(CustomerService));
 instance.Start();

Then you set up a new call:

 Call newCall = new Call();

 newCall.CallersFirstName = "Alex";
 newCall.Product = "Widget Number Nine";

and inform the service that a call has been received:

 customerCallService.ReceiveCall(instance.InstanceId, newCall);

You can then print the state of the state machine to verify this:

 PrintStateMachineState(workflowRuntime, instance.InstanceId);

 waitHandle.WaitOne();

When everything is up and running, you should get a console view that looks like the
one in Figure 13-8.

400 | Chapter 13: Applying WF: Building a State Machine

Persisting Your State (Machine)
It’s time to send more events—but before you can do that, you need to make sure
that you can persist the state of the state machine beyond the simple event transaction.
For this, you need some sort of persistence layer to mash up with the workflow.

Fortunately, Windows Workflow provides out-of-the-box support for persistence
through the SQLWorkflowPersistenceService class. By this point in the book we’re
assuming that you have some version of Microsoft SQL Server installed. If not, go and
get the free development version (SQL Express) from the Microsoft web site now.

Create a new database called WorkflowDataBase, as seen in Figure 13-9 (or, if you so
choose, just use the default database).

Configure the database to handle workflow persistence and tracking. To do so, you
only need to run the following scripts (all of which can be found in C:\Windows\
Microsoft.NET\Framework\v3.0\Windows Workflow Foundation\SQL\EN), in the
order they’re listed here:

• SqlPersistenceService_Schema.sql

• SqlPersistenceService_Logic.sql

• Tracking_Schema.sql

• Tracking_Logic.sql

Figure 13-8. Running for the first time

Building an Incident Support State Machine | 401

These scripts will create the schemas and database logic required for the execution of
your workflow, without consideration of the normal time/space continuum. In other
words, one event can happen on a Monday and the next event can happen three
months from Tuesday, and the workflow will chug along as if no time whatsoever
has elapsed.

Next, add to the project an application configuration file with the following entry:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="PersistentDataStore"
 connectionString="Data Source=(local);Initial Catalog=WorkflowDataBase;
 Integrated Security=true"/>
 </connectionStrings>
</configuration>

Also, add a reference to System.Configuration in the References section, to ensure
that you can access your connection string programmatically.

Figure 13-9. WorkflowDataBase in SQL Server 2008

402 | Chapter 13: Applying WF: Building a State Machine

Then add the following using statement to Program.cs:

using System.Configuration;

along with programmatic instantiation of tracking and persistence:

SqlWorkflowPersistenceService persistenceService;
persistenceService = new SqlWorkflowPersistenceService(
 ConfigurationManager.ConnectionStrings["PersistentDataStore"].
 ConnectionString, true, TimeSpan.MaxValue, TimeSpan.MinValue);
workflowRuntime.AddService(persistenceService);

SqlTrackingService trackingService;
trackingService = new SqlTrackingService(
 ConfigurationManager.ConnectionStrings["PersistentDataStore"].
 ConnectionString);
trackingService.UseDefaultProfile = true;
workflowRuntime.AddService(trackingService);

You’ll need persistence in order to access the current state and tracking to access the
history.

Speaking of history, you’ll want to add another static method to the class to print the
history of the state machine’s instance. That method is as follows:

private static void PrintHistory(WorkflowRuntime runtime,Guid instanceID)
{
 StateMachineWorkflowInstance instance = new
 StateMachineWorkflowInstance(runtime, instanceID);
 Console.WriteLine(
 "History of State Machine instance's workflow: (From Last to First)");
 foreach (string history in instance.StateHistory)
 {
 Console.WriteLine("\t{0}", history);
 }
 Console.WriteLine("\n\n------------------\n");
}

Back to Our Regularly Scheduled Programming
Now let’s return to the State activities and make sure that they all have reasonable
external event handler(s) and state setter(s). You need to ensure you have covered all
the possible events and transitions for your call center.

Turning your attention to the CallReceivedState activity, add and configure four
EventDriven activities:

• OnAssignToSupportPerson

• OnAssignToPhoneResolution

• OnEndCallNeedMoreInformation

• OnCallResolved

Building an Incident Support State Machine | 403

As you did earlier, you’ll create these by dragging and dropping EventDriven activi-
ties from the toolbox into CallReceivedState. Change their names by editing their
Name properties in the Properties window.

Next, double-click on OnAssignToSupportPerson and drop in a HandleExternal-
Event activity and a SetState activity. Then set the HandleExternalEvent’s Name
property to handleAssignToSupportPerson, and configure its InterfaceType and
EventName properties as CustomerSupportStateMachine.ICustomerCallService and
CallEndedMoreInformationRequired, respectively. Set the SetState activity’s Name prop-
erty to setCallAssignedToSupportPersonState and its TargetStateName property to
CallAssignedToSupportPerson.

Repeat these steps for the other three EventDriven activities in CallReceivedState,
and you should wind up with a diagram that looks like Figure 13-10.

Follow this procedure for all the other State activities, and you should end up with a
workflow that looks like the one in Figure 13-11.

Example 13-3 shows the complete listing for Program.cs.

Figure 13-10. Correctly configured CallReceivedState

404 | Chapter 13: Applying WF: Building a State Machine

Figure 13-11. Workflow with all assignments

Example 13-3. Program.cs (complete listing)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Workflow.Runtime;
using System.Workflow.Runtime.Hosting;
using System.Workflow.Activities;
using System.Workflow.Runtime.Tracking;
using System.Workflow.Runtime.Configuration;
using System.Configuration;

namespace CustomerSupportStateMachine
{
 class Program
 {
 static void Main(string[] args)
 {

Building an Incident Support State Machine | 405

 using (WorkflowRuntime workflowRuntime = new WorkflowRuntime())
 {
 AutoResetEvent waitHandle = new AutoResetEvent(false);
 workflowRuntime.WorkflowCompleted +=
 delegate(object sender, WorkflowCompletedEventArgs e)
 { waitHandle.Set(); };
 workflowRuntime.WorkflowTerminated +=
 delegate(object sender, WorkflowTerminatedEventArgs e)
 {
 Console.WriteLine(e.Exception.Message);
 waitHandle.Set();
 };

 // Add persistence and tracking
 SqlWorkflowPersistenceService persistenceService;
 persistenceService = new SqlWorkflowPersistenceService(
 ConfigurationManager.ConnectionStrings["PersistentDataStore"].
 ConnectionString, true, TimeSpan.MaxValue, TimeSpan.MinValue);
 workflowRuntime.AddService(persistenceService);

 SqlTrackingService trackingService;
 trackingService = new SqlTrackingService(
 ConfigurationManager.ConnectionStrings["PersistentDataStore"].
 ConnectionString);
 trackingService.UseDefaultProfile = true;
 workflowRuntime.AddService(trackingService);

 // Set up the data exchange
 ExternalDataExchangeService dataExchange;
 dataExchange = new ExternalDataExchangeService();
 workflowRuntime.AddService(dataExchange);

 // Instantiate the local communication service
 CustomerCallService customerCallService = new CustomerCallService();
 dataExchange.AddService(customerCallService);

 // Create a new workflow instance
 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(typeof(CustomerService));
 instance.Start();

 // Create a new Call
 Call newCall = new Call();
 newCall.CallersFirstName = "Alex";
 newCall.Product = "Widget Number Nine";

 // Change the state using the service and events
 customerCallService.ReceiveCall(instance.InstanceId, newCall);
 customerCallService.SendCallToPhoneResolution(
 instance.InstanceId, newCall);
 customerCallService.AssignCallToSupportPerson(
 instance.InstanceId, newCall);

Example 13-3. Program.cs (complete listing) (continued)

406 | Chapter 13: Applying WF: Building a State Machine

When you run this program, you should see something that looks very similar to
Figure 13-12.

 // Get a look at where you've wound up
 PrintStateMachineState(workflowRuntime, instance.InstanceId);

 // Change the state one last time
 customerCallService.ResolveCall(instance.InstanceId, newCall);

 // Print the history of your instance
 PrintHistory(workflowRuntime, instance.InstanceId);

 waitHandle.WaitOne();

 // Keep the console open until key strokes are entered
 // so that you can see what you've done...
 Console.ReadLine();
 }
 }

 private static void PrintStateMachineState(
 WorkflowRuntime runtime, Guid instanceID)
 {
 StateMachineWorkflowInstance myInstance =
 new StateMachineWorkflowInstance(runtime, instanceID);

 Console.WriteLine("Workflow GUID: {0}", instanceID);
 Console.WriteLine("Current State: {0}", myInstance.CurrentStateName);
 Console.WriteLine("Transition States Available: {0}",
 myInstance.PossibleStateTransitions.Count);
 foreach (string transition in myInstance.PossibleStateTransitions)
 {
 Console.WriteLine("Transition to -> {0}", transition);
 }
 Console.WriteLine("\n\n------------------\n");
 }

 private static void PrintHistory(WorkflowRuntime runtime,Guid instanceID)
 {
 StateMachineWorkflowInstance instance =
 new StateMachineWorkflowInstance(runtime, instanceID);
 Console.WriteLine(
 "History of State Machine instance's workflow: (From Last to First)");
 foreach (string history in instance.StateHistory)
 {
 Console.WriteLine("\t{0}", history);
 }
 Console.WriteLine("\n\n------------------\n");
 }

 }
}

Example 13-3. Program.cs (complete listing) (continued)

Building an Incident Support State Machine | 407

Figure 13-12. Running the workflow

408

Chapter 14CHAPTER 14

Using and Applying CardSpace:
A New Scheme for Establishing Identity 14

Until now, identifying oneself on the Web has been a source of irritation, annoy-
ance, security concerns, and risk. Web sites often require users to provide unique
login IDs and passwords, and you may also have to supply some arbitrary level of
personal identification. Because some sites contain information that may be of great
value, or engage in transactions that may involve exchanging significant amounts of
money, it is often in your interest to ensure that the passwords you use are secure.
But unfortunately, at the present time there is no good, easy way to create secure
passwords for all the sites that require them. By definition, a good password should
be difficult for either a human or a computer algorithm to guess, and thus a good
password will be difficult to remember. The usual solution to this is to write down
all your passwords, which immediately makes them vulnerable to discovery.

Microsoft’s first attempt at solving this problem was Passport. The idea behind Passport
was that you would have a single identity with only a single password to remember. The
problem with this approach, of course, is that you may not wish to have the same
identity on every web site you visit. Also, many web users prefer to limit the infor-
mation they give out to the absolute minimum required to perform the transactions
they want on a given web site—and with good reason. All of us have experienced
the tsunami of junk mail that can result from simply visiting the wrong web site.

A better solution, Microsoft determined, would be to allow users to create a number
of “identity cards,” each of which could provide its own level of validity, verifiabil-
ity, reliability, and personal data. For example, you might choose to create a highly
secure identity that reveals your most valuable information and provides the most
verifiable and valid data, a day-to-day identity that provides a more limited amount
of true information about you, an even more basic identity that reveals only a few
personal details, and a false identity to use on casual web sites where you do not
wish your true identity to be revealed.

Finally, you can imagine having certain special cards that represent trusted relation-
ships between you and institutions with which you do ongoing business, such as
your bank, brokerage firm, or employer.

Microsoft’s solution to this problem is CardSpace.

About Windows CardSpace | 409

About Windows CardSpace
The Windows CardSpace software ships with Microsoft’s .NET 3.5 Framework.
CardSpace functions as both an identity selector (a platform service for user-centric
identity management) and an identity provider (a producer of assertions about the
authenticity of an identity). It creates and stores references to a user’s digital identi-
ties and allows the user to present his identity of choice in the form of an informa-
tion card. Information cards appear on the screen very much like credit cards or
other ID cards.

Microsoft has worked hard to ensure that CardSpace provides a consistent user expe-
rience through which users can easily select and use an identity on sites where Card-
Space is accepted. CardSpace conforms to the Laws of Identity (see the upcoming
sidebar “Kim Cameron’s Laws of Identity in Brief”) and provides the foundation for
a unified, secure, privacy-protecting, interoperable identity layer for the Internet,
which you as a developer can leverage today with relative ease.

Kim Cameron’s Laws of Identity in Brief
Kim Cameron’s Identityblog (http://www.identityblog.com) defines seven laws of identity:

1. User Control and Consent: Digital identity systems must only reveal informa-
tion identifying a user with the user’s consent.

2. Limited Disclosure for Limited Use: The solution which discloses the least iden-
tifying information and best limits its use is the most stable, long-term solution.

3. The Law of Fewest Parties: Digital identity systems must limit disclosure of iden-
tifying information to parties having a necessary and justifiable place in a given
identity relationship.

4. Directed Identity: A universal identity metasystem must support both “omni-
directional” identifiers for use by public entities and “unidirectional” identifiers
for private entities, thus facilitating discovery while preventing unnecessary
release of correlation handles.

5. Pluralism of Operators and Technologies: A universal identity metasystem must
channel and enable the interworking of multiple identity technologies run by
multiple identity providers.

6. Human Integration: A unifying identity metasystem must define the human user
as a component integrated through protected and unambiguous human-
machine communications.

7. Consistent Experience Across Contexts: A unifying identity metasystem must
provide a simple consistent experience while enabling separation of contexts
through multiple operators and technologies.

http://www.identityblog.com

410 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

CardSpace allows you, as a user, to create personal (self-issued) information cards
for yourself. An information card can contain one or more of 14 fields of identity
information. For more secure transactions, users will use managed identity cards,
typically issued by a third-party identity provider. These cards are different in that
the providers—such as employers, financial institutions, or government agencies—
make the claims on the user’s behalf.

When CardSpace-enabled applications or information card-aware web sites wish to
obtain information about a user, they ask the user for an identity card. At that point,
CardSpace switches the display to the CardSpace service, which displays the user’s
stored identities on the screen (as illustrated in Figure 14-1). The user selects the card
to use, at which point the CardSpace software contacts the issuer of the identity to
obtain a digitally signed XML token that contains the requested information. It is
important to note that the user chooses which identity to provide before the identity
is validated.

Built on top of the web services protocol stack, CardSpace leverages an open set of
XML-based protocols. These include WS-Security, WS-Trust, WS-MetadataExchange,
and WS-SecurityPolicy. As a direct result, any technology or platform that supports
WS-* protocols can integrate with CardSpace.

Figure 14-1. Selecting an identity

About Windows CardSpace | 411

To accept information cards, a web site developer only needs to declare an HTML
OBJECT tag specifying the claims the web site requires from the user. Additionally, the
site developer will need to implement code to process the returned token and to
extract the claim values.

Identity providers who want to issue tokens must provide a means by which a user
can obtain a managed card. They must also provide a Security Token Service (STS)
that handles WS-Trust requests, including the return of an appropriate encrypted
and signed token. Identity providers not wishing to build their own STS can obtain
one from a variety of vendors, including BMC, Siemens, Sun, and Microsoft.

The basic interaction for a client is captured in Figure 14-2.

CardSpace and the Identity Metasystem on which it is based are token format-agnostic.
Therefore, CardSpace does not compete directly with other Internet identity archi-
tectures. In some ways, these approaches to identity can be seen as complementary.
As of this writing, CardSpace information cards can be used to sign into OpenID
providers, Windows Live ID accounts, Security Assertion Markup Language (SAML)
identity providers, and other kinds of services.

Understanding the Identity Metasystem
The main goal of the Identity Metasystem is to allow people to have a set of differ-
ent identities, each of which may reveal more or less information than the others.

Figure 14-2. Client using a token from a managed provider

412 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

It was designed as an interoperable identity-delivery vehicle based on multiple
underlying technologies. It allows for multiple implementations as well as multi-
ple providers.

With this approach, customers can continue to use their existing identity-infrastructure
investments. Then, when the time comes, they can choose the identity technology
that works best for them and can easily migrate from their old technology to a better
and newer technology without sacrificing interoperability.

By the nature of its design, the Identity Metasystem has three roles:

Identity provider
The identity provider is an entity that issues an identity (in this case, in the form of
an information card). With CardSpace, anyone can become an identity provider—
you’ve just become one yourself!

Just as in real life, however, your word might not be good enough to seal a
transaction. Each identity provider comes with an established level of trust,
and interactions are governed accordingly.

Relying party
Similarly, anyone can be a relying party. The name comes from the dependency
on a third party (the identity provider) to validate the claims made by identity
tokens. The tokens contain the claims requested by the relying party and vali-
dated by the identity provider.

Subject
The subject is most likely a person but might also be a device of some sort, such
as a phone or a server. It is the entity about which claims are being made and
validated.

The Identity Metasystem is built on a foundation of claims-based identities. The vali-
dation of an identity provider enables a relying party to assume that these assertions
(claims) about the subject are true.

In the case of .NET 3.5, you rely on CardSpace to deliver claims to requesting par-
ties and establish your own self-issued claims in the form of information cards. These
cards currently support the following fields:

• First Name

• Last Name

• Email Address

• Street

• City

• State

• Postal Code

• Country/Region

Creating a CardSpace Identity | 413

• Home Phone

• Other Phone

• Mobile Phone

• Date of Birth

• Gender

• Web Page

Creating a CardSpace Identity
One of the best ways to understand Windows CardSpace is to walk through a use-
case scenario as a CardSpace user. In this scenario, you will create a self-issued card
and see what it means to use this card on a web site. Along the way, you’ll take a
look at some of the key issues surrounding the very meaning of identity.

What You Need for Our CardSpace Examples
If you already have version 3.5 of the .NET Framework installed, or if you are run-
ning Windows Vista, you are good to go.

Otherwise, you’ll need to download and install the Microsoft .NET Framework 3.5
from http://www.microsoft.com/downloads/. This will also install Windows CardSpace.

Once that’s done, open the Windows Control Panel and confirm that there is an icon
for Windows CardSpace. You should see something like Figure 14-3. (If you are in
Classic View, the icon will be the same but the view will be a little different.)

Figure 14-3. CardSpace successfully installed

http://www.microsoft.com/downloads/

414 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

CardSpace on Board, Ready to Create My Identity
If you don’t already have one, to begin you’ll need to create a CardSpace informa-
tion card. Double-click on “Windows CardSpace” in the Windows Control Panel to
launch CardSpace.

You will notice a task list running down the righthand side of the CardSpace control
panel. Click on the “Add a card” link, and you should be presented with a window
similar to the one shown in Figure 14-4.

In Windows CardSpace, there are two kinds of “identity providers”: cards can be
“self-issued,” with individuals making claims about themselves, or they can be sup-
plied by a “managed” card provider, which supports claims made by one party about
another. This distinction reflects the fact that different transactions require different
levels of security. For example, if John Smith wants to get his dry cleaning back, he
can identify himself by saying, “Hi, I’m John Smith.” But if he wants to buy a plane
ticket, he must provide a form of identification that has been issued by a trusted
third party, such as a state or national government agency.

The driver’s license or passport required by the Transport Security Administration
are examples of managed cards provided by government agencies. Other examples of

Figure 14-4. Adding a card

Creating a CardSpace Identity | 415

managed-card providers might include financial institutions, employers, and even
businesses devoted to making assertions and claims about their customers that they
are prepared to back financially.

For this example, you’ll create a self-issued card. When you click on the “Create a
Personal card” link, you should be presented with a screen similar to the one in
Figure 14-5. On this screen you will provide information about yourself, to whatever
level of detail you like.

You are free to send this information via this card to one or more requesters. A
requester can be any web site seeking identification from you.

It’s important to remember that once you send your card to a requester, you have no
control over how that information is used. Therefore, it is probably a good idea to set
up various cards, each providing differing amounts of information, so that you can
choose exactly how much to reveal to a given web site. In this manner, you can dis-
close details in proportion to your level of trust of the requester.

Once you have filled out and saved your cards, you will be able to preview each one
(as shown in Figure 14-6).

Figure 14-5. Creating a personal card

416 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Using Your Card
Microsoft’s Kim Cameron (the author of the Seven Laws of Identity) has a web site
where you can test your newly created card. Open up your browser and go to http://
www.identityblog.com. Click on the login button in the upper-right corner. You
should see a page that looks like Figure 14-7.

Click on the “With an Information Card” link. This will bring you to the standard
information page typically shown to users who have not previously identified them-
selves using CardSpace. This screen, shown in Figure 14-8, contains information
about www.identityblog.com and asks you whether you want to send in a card to the
site. This is one of the two decisions you will make as a user when interacting with a
web site via CardSpace.

The information about the site, including the trusted authority that is verifying the
site, is designed to offer you information to help you decide whether you want to
continue, and what your level of trust is in terms of what card to supply. If you
decide that the site is trustworthy and that you wish to present a card, click on the
“Yes, choose a card to send” link. A screen like the one in Figure 14-9 will appear.

Figure 14-6. Card preview

http://www.identityblog.com
http://www.identityblog.com
http://www.identityblog.com

Creating a CardSpace Identity | 417

Figure 14-7. CardSpace login page at www.identityblog.com

Figure 14-8. Do you want to send a card to this site?

418 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Note that the selection of cards for you to send is provided locally and not by the
requester. The requester is given only the card that you select and therefore has only
as much information about you as you choose to provide.

After you submit your card, you should get an email (if you have provided an address
on the card) asking you to verify the submission. Assuming all goes as expected, you
are now a registered user of Kim Cameron’s Identityblog. This blog is a very good
resource for understanding the issues that Windows CardSpace is meant to address.

Adding CardSpace Support to Your Application
The next thing you are going to do is build a sample ASP.NET application to pro-
cess an information card.

Setting Up Your Machine for the CardSpace Examples
To ensure that you can successfully run your application, you will need to spend a
little time setting up your computer.

Figure 14-9. Sending a card

Adding CardSpace Support to Your Application | 419

IIS7

First, make sure IIS7 is installed (see the previous chapter for details).

If you’re running Windows Vista, you’ll also need to ensure that IIS 6.0 compatibil-
ity support is installed with IIS7. Otherwise, there is a chance that the certificates will
not work correctly.

To ensure IIS6 compatibility, open the Control Panel and double-click “Programs and
Features.” Within the menu on the left, click on “Turn Window features on or off”
(Figure 14-10). This will bring up a dialog box with that title. Navigate to and expand
“Internet Information Services,” then expand “Web Management Tools” and check and
optionally expand “IIS 6 Management Compatibility,” also shown in Figure 14-10.

With IIS7 installed and IIS6 compatibility ensured, point your browser to http://
tinyurl.com/2kp4x4.

You’ll want to download this sample, called “Introduction to CardSpace with Inter-
net Explorer 7.0, August, Update,” to a folder where you can find it later. Unzip the
contents in that folder and then run the install script as the Administrator. This will
install the sample certificates for the examples you are going to build.

Figure 14-10. Ensuring IIS6 compatibility

http://tinyurl.com/2kp4x4
http://tinyurl.com/2kp4x4

420 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

About the certificates

The certificates installed by the script are for demonstration purposes only. The root
certificate authority (CA) certificate is stored as an .sst (Microsoft Serialized Certifi-
cate Store) file. The web site certificates are all stored as .pfx files. The certificates are
used for two categories of scenarios: browser scenarios and Windows Communica-
tion Foundation (WCF) scenarios.

The sample certificates are High-Assurance (HA) certificates that have embedded
logo images in them. HA certificates come from a CA that has performed additional
steps to verify the identity of the subject for whom the certificate is issued. In Inter-
net Explorer 7.0, these HA certificates cause the address bar to change to green when
the details are verified.

\etc\hosts

To ensure that you can see the address bar confirmation of the installed sample cer-
tificates, you need to make sure that your localhost (IP address 127.0.0.1) is cor-
rectly mapped to the certificate domains. To do this, run the Notepad application as
the Administrator and open the hosts file (typically located at C:\windows\system32\
drivers\etc\hosts).

Add the following entries:

127.0.0.1 www.adatum.com adatum.com
127.0.0.1 www.contoso.com contoso.com
127.0.0.1 www.fabrikam.com fabrikam.com

If you have everything installed correctly, navigating to https://www.fabrikam.com
should produce a page like Figure 14-11 in Internet Explorer 7.0—the address bar is
green, but you’ll have to take our word for it!

Configuring IIS for Your Application
If you want to add Windows CardSpace support to a web site, there are certain
things you need to do. One of these involves making sure your site is able to use the
Secure Sockets Layer (SSL); you can do this from the IIS Administration application
with the easy-to-use GUI.

Using IIS7, you’ll need to check that everything is properly configured prior to creat-
ing your test application:

1. Make sure you have created a dedicated directory, such as C:\3.5\CardSpaces.

2. Launch the IIS Manager from the Administrative Tools section of the Control
Panel.

3. Expand the Connections tree until you can see “Default Web Site.”

4. Right-click on “Default Web Site” and select “Add Virtual Directory.”

https://www.fabrikam.com

Adding CardSpace Support to Your Application | 421

5. Name the alias directory CardSpaces and specify the path to your dedicated
directory (C:\3.5\CardSpaces).

6. Right-click on “Default Web Site” again and select “Add Application.”

7. Name the application CardSpaceExample and specify the same path you used for
the virtual directory.

Creating a Sample ASP.NET Application
Launch Visual Studio 2008 as the Administrator, select File ➝ New Web Site, and
create a new ASP.NET Web Site (as shown in Figure 14-12). You will want to locate
the site in your dedicated directory (C:\3.5\CardSpaces) and select Visual C# as the
language. Also make sure you have selected .NET Framework 3.5 in the drop-down
list in the top-right corner.

The first thing to do with your new application is add a new ASP.NET folder called
App_Code. Inside this folder, you’ll add two classes from Microsoft (available at http://
tinyurl.com/2ql3le). To complete the upcoming exercise, you’ll use specific sections
of code from each. Take the time to download them now.

Figure 14-11. A green address bar means success

http://tinyurl.com/2ql3le
http://tinyurl.com/2ql3le

422 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

To follow along as we explore the Microsoft classes and what they are
helping with in this chapter’s example, you may want to open the
TokenProcessor.cs file in your Visual Studio 2008 environment now.
The relevant sections of code will be pointed out in the text.

When you run your application, and you are sure a CardSpace card has been submit-
ted, you’re going to make a call to initialize a new Token from the identityToken
you’ve gathered from the HTTP request:

Token aToken = new Token(identityToken);

The Token class constructor uses the decryptToken() method to decrypt the XML
data that you passed into the constructor. This is, as you will see, the gateway to the
other activities you might want to perform. Before anything else can happen, you
must be able to successfully decrypt the Token:

private static byte[] decryptToken(string xmlToken)

You’ll use an XmlReader to iterate through the XML data:

XmlReader reader = new XmlTextReader(new StringReader(xmlToken));

Figure 14-12. Creating the CardSpaces web application

Adding CardSpace Support to Your Application | 423

Because of the strict nature of XML elements, very little flexibility exists. Thus, you’d
like to be able to fail quickly (using an ArgumentException) if you come across an
invalid token.

To start, you need to find the EncryptionMethod element. Its Algorithm attribute tells
you the encryption method of the token:

if (!reader.ReadToDescendant(XmlEncryptionStrings.EncryptionMethod,
 XmlEncryptionStrings.Namespace))
 throw new ArgumentException("Cannot find token EncryptedMethod.");
encryptionAlgorithm =
 reader.GetAttribute(XmlEncryptionStrings.Algorithm).GetHashCode();

Next, look for the EncryptionMethod attribute for the transient key, again getting the
value of its Algorithm attribute. This is stored as its hash code:

if (!reader.ReadToFollowing(XmlEncryptionStrings.EncryptionMethod,
 XmlEncryptionStrings.Namespace))
 throw new ArgumentException("Cannot find key EncryptedMethod."); m_
keyEncryptionAlgorithm =
 reader.GetAttribute(XmlEncryptionStrings.Algorithm).GetHashCode()

You’ll find the thumbprint of the certificate (which you need for decryption) in the
next element, KeyIdentifier:

if (!reader.ReadToFollowing(WSSecurityStrings.KeyIdentifier,
 WSSecurityStrings.Namespace))
 throw new ArgumentException("Cannot find Key Identifier.");
reader.Read();
thumbprint = Convert.FromBase64String(reader.ReadContentAsString());

The CipherValue element contains the symmetric key in its encrypted form:

if (!reader.ReadToFollowing(XmlEncryptionStrings.CipherValue,
 XmlEncryptionStrings.Namespace))
 throw new ArgumentException("Cannot find symmetric key.");
reader.Read();
symmetricKeyData =
 Convert.FromBase64String(reader.ReadContentAsString());

The CipherValue also contains the actual encrypted token:

if (!reader.ReadToFollowing(XmlEncryptionStrings.CipherValue,
 XmlEncryptionStrings.Namespace))
 throw new ArgumentException("Cannot find encrypted security token."); reader.Read(
);
securityTokenData =
 Convert.FromBase64String(reader.ReadContentAsString());

Finally, close the reader to free up resources:

reader.Close();

424 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Windows CardSpace ensures the encryption of the security token. With .NET 3.5,
encryption is currently supported by one of two symmetric algorithms: AES and Tri-
ple DES. Use the encryption algorithm URI as a lookup:

SymmetricAlgorithm alg = null;
X509Certificate2 certificate = FindCertificate(thumbprint);

foreach(int i in Aes)
 if (encryptionAlgorithm == i)
 {
 alg= new RijndaelManaged();
 break;
 }
if (null == alg)
 foreach (int i in TripleDes)
 if (encryptionAlgorithm == i)
 {
 alg = new TripleDESCryptoServiceProvider(); break;
 }
if (null == alg)
 throw new ArgumentException(
 "Could not determine Symmetric Algorithm"
);

To get the symmetric key, decrypt it with the private key:

alg.Key=(certificate.PrivateKey as
 RSACryptoServiceProvider).Decrypt(symmetricKeyData,true);

Once you are finished with the discovery process, you know what algorithm has
been used, so you can decrypt the token using the correct algorithm:

int ivSize = alg.BlockSize / 8;
byte[] iv = new byte[ivSize];

Buffer.BlockCopy(securityTokenData, 0, iv, 0, iv.Length);

alg.Padding = PaddingMode.ISO10126;
alg.Mode = CipherMode.CBC;
ICryptoTransform decrTransform = alg.CreateDecryptor(alg.Key, iv);

byte[] plainText =
 decrTransform.TransformFinalBlock(securityTokenData, iv.Length,
 securityTokenData.Length iv.Length);

decrTransform.Dispose(); return plainText;

Thankfully, .NET 3.5 simplifies the deserialization of the decrypted Token through
the WSSecurityTokenSerializer and facilitates its authentication through the use of
the SamlSecurityTokenAuthenticator. The Token class supports SAML tokens out of
the box. If you require a different token type, you simply need to provide an
Authenticator to support the type in question.

Once the authenticator has validated the token, the Token class extracts the claims
into a usable form:

Adding CardSpace Support to Your Application | 425

public Token(String xmlToken)
{
 byte[] decryptedData = decryptToken(xmlToken);
 XmlReader reader = new XmlTextReader(new StreamReader(new
 MemoryStream(decryptedData), Encoding.UTF8));
 m_token =
 (SamlSecurityToken)
 WSSecurityTokenSerializer.DefaultInstance.ReadToken(
 reader, null);

 SamlSecurityTokenAuthenticator authenticator =
 new SamlSecurityTokenAuthenticator(
 new List<SecurityTokenAuthenticator>
 (
 new SecurityTokenAuthenticator[]{
 new RsaSecurityTokenAuthenticator(),
 new X509SecurityTokenAuthenticator() }),
 MaximumTokenSkew
);

 if (authenticator.CanValidateToken(m_token))
 {
 ReadOnlyCollection<IAuthorizationPolicy> policies =
 authenticator.ValidateToken(m_token);
 m_authorizationContext =
 AuthorizationContext.CreateDefaultAuthorizationContext(
 policies);
 FindIdentityClaims();
 }
 else
 {
 throw new Exception("Unable to validate the token.");
 }
}

As you can see, the Token class exposes several properties that simplify the extraction
of claims from the security token:

IdentityClaims
A System.IdentityModel.Claims.ClaimsSet of the identity claims in the token.

AuthorizationContext
A System.IdentityModel.Policy.AuthorizationContext generated from the token.

UniqueID
The UniqueID (IdentityClaim) of the token. By default, the PPID and the issuer’s
public key are hashed together to generate a UniqueID. To use a different field,
add a line like this:

<add name="IdentityClaimType" value=
 value="http://schemas.xmlsoap.org/ws/2005/05/identity/
 claims/privatepersonalidentifier" />

replacing the value with the URI for your unique claim.

426 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Claims
A read-only String collection of the claims in the token. Provides support for the
indexed claims accessor:

securityToken.Claims[ClaimsTypes.PPID]

IssuerIdentityClaim
The issuer’s identity claim (most likely, the public key of the issuing authority).

In this example, you’re going to get some of the claims, grab some of the decrypted
data, and display it back in your return page. Go ahead and create that page now.
Right-click on your web site in the Solution Explorer, select “Add New Item,” and
add a Web Form called Results.aspx (see Figure 14-13). This is the page you’ll use to
display the decrypted information you were able to gather from the CardSpace inter-
action with the user.

Next, you need to add two references to your web site. Right-click on your Card-
Spaces web site icon and select “Add Reference” from the drop-down menu. You
will need to add System.Identity.Model and System.Identity.Model.Selectors from
the .NET tab, as seen in Figure 14-14.

Figure 14-13. Adding the Results.aspx web form to your project

Adding CardSpace Support to Your Application | 427

To continue with your project housekeeping, you’re going to add a little information
to your Web.config file. You need to identify the certificate subject, the store name,
and the store location to use when attempting to process the Windows CardSpace
authentication. In this case, you’ll use the Fabrikam certificate that you installed ear-
lier in this chapter.

Add the following appSettings element to your Web.config file:

<appSettings>
 <add key="CertificateSubject" value="www.fabrikam.com"/>
 <add key="StoreName" value="My"/>
 <add key="StoreLocation" value="LocalMachine"/>
 <add key="IdentityClaimType"
 value="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/

 <add key="MaximumClockSkew" value="60"/>
</appSettings>

This will allow you to utilize the Fabrikam cert you loaded into IIS to decrypt the
card’s claims.

Figure 14-14. Adding the Systems.IdentityModel components

428 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Next, remove the Default.aspx component from your web project. To do this, right-
click on Default.aspx and select “Delete.” Replace this page with a regular HTML
page called Default.htm (see Figure 14-15).

Here’s the complete listing for Default.htm:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Programming .NET 3.5 :: CardSpaces Demo</title>
</head>
<body>
 <form method="post" action="Results.aspx">
 <div>
 <object type="application/x-informationcard" name="identityToken">
 <param name="tokenType"
 value="urn:oasis:names:tc:SAML:1.0:assertion" />
 <param name="issuer"
 value="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self" />
 <param name="requiredClaims" value ="
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth

Figure 14-15. Adding Default.htm

Adding CardSpace Support to Your Application | 429

 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
 privatepersonalidentifier"/>
 </object>

 <input type="submit" name="SignInButton"
 value="Authenticate using CardSpace!" />
 </div>
 </form>
</body>
</html>

Embedded in this HTML document is the line <object type="application/x-
informationcard" name="identityToken">. This is the object that does the work of
calling Windows CardSpace. In this example you’re binding its activation to a Sub-
mit button because the object is attached to the form. It will direct the results to your
Results.aspx page. A quick look at the parameters of the object shows how you will
interact with CardSpace.

The first parameter sets up the token type:

 <param name="tokenType"
 value="urn:oasis:names:tc:SAML:1.0:assertion" />

The next parameter is where you identify the issuer:

 <param name="issuer"
 value="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self" />

In this case, you’re willing to accept a self-signed certificate as opposed to one that
you created and distributed.

Last, you list all the claims that you require your users to provide:

 <param name="requiredClaims" value ="
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
 http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
 privatepersonalidentifier"/>

You’ll be able to access these values after decryption. Once you have a Token, you
can simply extract the claims like this:

aToken.Claims[ClaimTypes.GivenName]

In this example, you’ll get back a string for the user’s first name.

The complete specification for these parameters is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<!--
Copyright © 2006-2007 Microsoft Corporation, Inc. All rights reserved.
-->

430 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

<xs:schema
 targetNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims"
 xmlns:tns="http://schemas.xmlsoap.org/ws/2005/05/identity/claims"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 blockDefault="#all" version="0.1">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd" />
 <xs:simpleType name="StringMaxLength255MinLength1">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255" />
 <xs:minLength value="1" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Base64BinaryMaxSize1K">
 <xs:restriction base="xs:base64Binary">
 <xs:maxLength value="1024" />
 </xs:restriction>
 </xs:simpleType>
 <!--
 Gender claims are serialized as follows: 0-Unspecified, 1-Male, 2-Female
 -->
 <xs:simpleType name="GenderType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="0" />
 <xs:enumeration value="1" />
 <xs:enumeration value="2" />
 </xs:restriction>
 </xs:simpleType>
 <!--
 Standard claim types defined by the information card model
 -->
 <xs:element name="givenname" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="surname" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="emailaddress" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="streetaddress" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="locality" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="stateorprovince" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="postalcode" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="country" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="primaryphone" type="tns:StringMaxLength255MinLength1" />
 <xs:element name="dateofbirth" type="xs:date" />
 <xs:element name="privatepersonalidentifier" type="tns:Base64BinaryMaxSize1K" />
 <xs:element name="gender" type="tns:GenderType" />
 <xs:element name="webpage" type="tns:StringMaxLength255MinLength1" />
</xs:schema>

Run your application now. To properly connect to the site, change the URL Visual
Studio automatically created to https://www.fabrikam.com/CardSpaces/Default.aspx.

You should get a Windows CardSpace request to supply a card, similar to the one in
Figure 14-16. Notice that the claims listed as being required by the site are the same
ones that you listed in the requiredClaims parameter.

https://www.fabrikam.com/CardSpaces/Default.aspx

Adding CardSpace Support to Your Application | 431

More likely than not, you got a blank page when you submitted the card. This is OK,
because you have not written the results component yet. You’ll do that next.

Processing the Information Card
As discussed previously, you’re going to grab the following information from the
CardSpace information card:

• First Name

• Last Name

• Email Address

• City

• Country/Region

• Site-specific card ID

Figure 14-16. The data to be sent is marked with an asterisk (*)

432 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

In this example, you’ll display the information in two ways. To begin with, you’re
going to fill in a number of asp:Labels on your page with the decrypted values that
you retrieve from the card.

Your .aspx file will contain these lines:

 The Identity Card provided contains the following information:

 Name: <asp:Label ID="FirstName" runat="server" Text=""/>
 <asp:Label ID="LastName" runat="server" Text="" />

 City: <asp:Label ID="City" runat="server" Text=""/>

 Country: <asp:Label ID="Country" runat="server" Text=""/>

 Email: <asp:Label ID="Email" runat="server" Text=""/>

 Unique ID: <asp:Label ID="UID" runat="server" Text=""/>

As you can see, this is very straightforward. In your .aspx.cs code, you’ll set these val-
ues in the following manner:

 Token aToken = new Token(identityToken);

 FirstName.Text = aToken.Claims[ClaimTypes.GivenName];
 LastName.Text = aToken.Claims[ClaimTypes.Surname];
 City.Text = aToken.Claims[ClaimTypes.Locality];
 Country.Text = aToken.Claims[ClaimTypes.Country];
 Email.Text = aToken.Claims[ClaimTypes.Email];
 UID.Text = aToken.UniqueID;

The next thing you’ll want to do is leverage TokenHelper.cs to iterate through the set of
claims and write them out longhand (so to speak). While it may seem a bit redundant,
this emphasizes that there is more than one approach to accessing the decrypted claims.

To accomplish this, you’re going to add an asp:Literal element to your .aspx file:

 <asp:Literal ID="ResultsLiteral" runat="server" />

At runtime, you’ll use code to build up an HTML table that will get inserted into this
element’s Text property. To start with, you’ll define the top of the table and the
headers as follows:

 ResultsLiteral.Text += "<table border=\"1\" width=\"640\"><tr>
 <th width=\"200\">Type</th><th width=\"240\">Resource</th></tr>";

Next, you’ll instantiate a new TokenHelper using the identityToken passed in by
CardSpace. As when you instantiated a Token object using Microsoft’s
TokenProcessor class, this instantiation will handle the decryption for you:

 TokenHelper tokenHelper = new TokenHelper(identityToken);

Now it is simply a matter of iterating over each Claim in the TokenHelper’s
IdentityClaims collection and building the rows of the table:

 foreach (Claim aClaim in tokenHelper.IdentityClaims)
 {
 ResultsLiteral.Text += "<tr>";
 ResultsLiteral.Text += "<td width=\"200\">" +
 aClaim.ClaimType + "</td>";

Adding CardSpace Support to Your Application | 433

 ResultsLiteral.Text += "<td width=\"240\">" +
 aClaim.Resource.ToString() + "</td>";
 ResultsLiteral.Text += "</tr>";
 }

Finally, when you’ve run out of claims, you need to close out the HTML table:

 ResultsLiteral.Text += "</table>";
 }

Now add the complete listings to your project.

Please note that you need to make sure you are not validating the incoming request
(i.e., set ValidateRequest="false"), as the request comes across with the card as
embedded XML and will cause the validation engine to kick it back. Here is the com-
plete listing for Results.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Results.aspx.cs"
 Inherits="Results" ValidateRequest="false" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Programming .NET 3.5 :: CardSpaces Results</title>
 <style type="text/css">
 .cardspaceTable
 {
 font-family: Verdana;
 font-size: x-small;
 font-weight: normal;
 }
 </style>
</head>
<body>

 <form id="identityForm" runat="server">
 <div class="cardspaceTable">
 The Identity Card provided contains the following information:

 Name: <asp:Label ID="FirstName" runat="server" Text=""/>
 <asp:Label ID="LastName" runat="server" Text="" />

 City: <asp:Label ID="City" runat="server" Text=""/>

 Country: <asp:Label ID="Country" runat="server" Text=""/>

 Email: <asp:Label ID="Email" runat="server" Text=""/>

 Unique ID: <asp:Label ID="UID" runat="server" Text=""/>

In the form of these decrypted claims:</br>
 <asp:Literal ID="ResultsLiteral" runat="server" />
 </div>
 </form>

</body>
</html>

434 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

And here’s the complete listing for Results.aspx.cs:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using Microsoft.IdentityModel.TokenProcessor;
using Microsoft.IdentityModel.Samples;
using System.IdentityModel.Claims;
using System.IdentityModel.Tokens;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Results : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 String identityToken;
 identityToken = Request.Params["identityToken"];

 if (identityToken == null || identityToken == "")
 {
 identityToken = "Oops! Someone forgot to tell us who they were...";
 }
 else
 {
 Token aToken = new Token(identityToken);

 FirstName.Text = aToken.Claims[ClaimTypes.GivenName];
 LastName.Text = aToken.Claims[ClaimTypes.Surname];
 City.Text = aToken.Claims[ClaimTypes.Locality];
 Country.Text = aToken.Claims[ClaimTypes.Country];
 Email.Text = aToken.Claims[ClaimTypes.Email];
 UID.Text = aToken.UniqueID;

 ResultsLiteral.Text += "<table border=\"1\" width=\"640\"><tr>
 <th width=\"200\">Type</th><th width=\"240\">Resource</th></tr>";

 TokenHelper tokenHelper = new TokenHelper(identityToken);

 foreach (Claim aClaim in tokenHelper.IdentityClaims)
 {
 ResultsLiteral.Text += "<tr>";
 ResultsLiteral.Text += "<td width=\"200\">" +
 aClaim.ClaimType + "</td>";
 ResultsLiteral.Text += "<td width=\"240\">" +
 aClaim.Resource.ToString() + "</td>";
 ResultsLiteral.Text += "</tr>";
 }

 ResultsLiteral.Text += "</table>";

Summary | 435

 }
 }
}

Assuming all went well, you should be able to run the application now. Don’t forget
to use SSL by specifying https:// instead of http://, as in https://www.fabrikam.com/
CardSpaceExample/Default.htm. If you don’t use SSL, you’ll get the following excep-
tion: “The page you are trying to access is secured with Secure Sockets Layer (SSL).”

Also, if you interact directly with the browser page that opens up when you run
the application in Visual Studio, instead of changing the URL from localhost to
www.fabrikam.com, you will get the following stack trace:

at Microsoft.IdentityModel.TokenProcessor.Token.decryptToken(
String xmlToken)
in c:\\3.5\\CardSpaces\\App_Code\\TokenProcessor.cs:line 364\r\n
at Microsoft.IdentityModel.TokenProcessor.Token..ctor(String xmlToken)
in c:\\3.5\\CardSpaces\\App_Code\\TokenProcessor.cs:line 145\r\n
at Results.Page_Load(Object sender, EventArgs e)
in c:\\3.5\\CardSpaces\\Results.aspx.cs:line 31\r\n
at System.Web.Util.CalliHelper.EventArgFunctionCaller(
IntPtr fp, Object o, Object t, EventArgs e)\r\n
at System.Web.Util.CalliEventHandlerDelegateProxy.Callback(
Object sender, EventArgs e)\r\n
at System.Web.UI.Control.OnLoad(EventArgs e)\r\n at System.Web.UI.Control.
LoadRecursive()\r\n at System.Web.UI.Page.ProcessRequestMain(
Boolean includeStagesBeforeAsyncPoint,
Boolean includeStagesAfterAsyncPoint)

This is a fancy way of saying that the web site could not identify the encryption you
were using (in no small part because you weren’t actually using encryption).

On the other hand, if you hit the correct URL through SSL, you should get a page
that looks like the one in Figure 14-17.

Summary
CardSpace provides the identification and authentication required for web-based
transactions, while allowing the end user to select exactly how much information to
provide to a given web site. It is expected that a typical web user will create a small
number of specific identities: perhaps one fake identity to avoid junk email, one with
minimal identification for casual membership, one with typical identification for
shopping, and finally one with strong identification for commercial transactions,
banking, and so forth. As CardSpace gains wider acceptance, we can anticipate that
institutions such as banks and brokerage houses will begin to issue individualized
cards. Over time, there may be an ebb and flow between individualized and more
generalized cards.

One of the key aspects that will govern the success of CardSpace and the Identity
Metasystem will be user acceptance. That is, users will have to find the technology
compelling, valuable, trustworthy, and easy to use and understand.

http://www.fabrikam.com

436 | Chapter 14: Using and Applying CardSpace: A New Scheme for Establishing Identity

Traditionally, this has been a hard problem when it comes to security tokens and
transactions. You only have to go to your local grocery store to see how difficult it is
for a new technology to gain acceptance. Wait a while, and you’re sure to see some-
one write out a check rather than using a debit or credit card. More often than not,
the check-writers are older people who, when asked, will tell you they have never
used a debit card because checks are “so convenient.” They simply don’t find the
debit card compelling. Many who do find credit/debit cards compelling don’t find
them trustworthy, especially when they’re used over the Internet. Identity systems
that are both compelling and trustworthy are usually not easy to use and easy to
understand. Whether CardSpace will meet all these needs and gain sufficient accep-
tance remains an open question at the time of this writing.

Figure 14-17. A successful run

437

Epilogue15

Jesse happens to hate epilogues. He thinks, and sometimes I agree, that they are a
waste of time. Mostly, no one ever reads them. However, our editors at O’Reilly dis-
agree, and without them our children might go hungry. So, on the off chance that
you’ll take a look, I’ve written one for you.

In this book, we have given you a complete tour of .NET 3.5. You have seen how it
increases your productivity on a wide range of systems, from your desktop to the
data center. By now, you should have a deep appreciation that .NET 3.5 provides a
solid foundation for building connected and appealing applications.

In our opinion, the features you will find most compelling in .NET 3.5 are as follows:

• Deep integration of Language INtegrated Query (LINQ) and data awareness

• Support for Web 2.0 AJAX-style applications and services in ASP.NET and WCF

• Full tooling support for WF, WCF, and WPF, including the new workflow-
enabled services technology

Hopefully, you have come away with the sense that this book is a great introduction
to each of the “silos” that make up the .NET 3.5 platform. If you’re ready to dive
deeper into the areas that interest you most, we suggest the following titles (also
from O’Reilly):

Programming WPF, by Chris Sells and Ian Griffiths
Learning WCF: A Hands-on Guide, by Michele Bustamante
Programming WCF Services, by Juval Lowy
Programming C# 3.0, by Jesse Liberty and Donald Xie
Programming Silverlight 2, by Jesse Liberty and Tim Heuer
Programming ASP.NET MVC, by Alex Horovitz

As a developer, you will also want to keep a close eye on emerging .NET 3.5 technol-
ogies. ADO.NET has the Entity Framework. ASP.NET has the MVC Framework.

438 | Epilogue

Increasingly, Microsoft is depending on external developer communities to drive fea-
tures and new ideas. You can, through active participation, impact the future of your
development tools.

So, get out there and write some code!

—Alex Horovitz

439

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
action methods, 234
activities (WF), 371

adding to simple sequential
workflow, 372

Code, 371
custom, 382
EventDriven, 387, 394
executing in workflow, 384
IfElse, 376
IfElseBranch, 376
implementing first Code activity, 373
looping with While activity, 378–382
setting Delay activity properties, 374
State, 387, 394

addresses (web service), 340
AddToShoppingCart event handler, 124
AddVisualChild method, 94
ADO.NET, 283
ADO.NET to LINQ, 5
AdornerLayer, 110
adorners, 90–95

adding cropping with rubberband
adorner, 107–112

AdventureWorksLT example
database, 305–307

connecting to, 308
testing connection, 309

AES and Triple DES encryption
algorithms, 424

air traffic control application
(example), 250–253

console application, 253–257

AirlineSchedule class (example), 251
AJAX, 137–160

creating a word wheel, 141–151
creating to-do list manager (ListMania

example), 161–194
Application Master Page, 162–165
CollapsiblePanelExtender

control, 190–194
DataHelper class, 181–184
login page, 161, 180, 185–189
persisting the list, 171–181
ToDo database, 165
ToDo List page, 161, 166
users database table, 181

integrating with ASP.NET, using
ScriptManager, 151–160

AJAX Control Toolkit, 153
Alexander, Christopher, 230
Amazon.com, details of recent orders, 84
animation, 32–44, 69–72

keyframe animation using splines
(example), 38–44

overview, 33
running simultaneous animations, 71–72
steps in, 69
storyboard, 33–37

anonymous types, 295
Visual Studio IntelliSense and, 294

Application Master Page, 162–165
Approver class (example), 268

derived Approver types, 268
Arrange method, 95
ArrangeOverride method, 95

440 | Index

ASP.NET, 137
AJAX Control Toolkit targeting .NET

3.5, 153
AJAX functionality (version 3.5), 139
CardSpaces web application (example),

creating, 421–431
Extensions toolset, 153
integration of AJAX, using

ScriptManager, 151–160
MVC Framework, 234

controller classes and action
methods, 234

excerpt from shopping
application, 235–247

model classes, 235
rich-client web applications, with

AJAX, xii
server-side only applications, 137
thin-client applications, with AJAX, 137
using JavaScript, 139–141
web service (OrderStatus

example), 368–371
<asp:Literal> element, 146
<asp:TextBox> element, 141
assertions, policy, 332
asynchronous data transfer, 138
Asynchronous JavaScript and XML (see

AJAX)
asynchronous page updates, 149
Atlas library, 152
attached properties, 70, 198
attribute information, 10
Authenticator object, 424

B
basic activities, 371
BasicHttpBinding, 341
Beck, Kent, 230
Bezier curves, 35
binding data (see data binding)
Binding object, 215
bindings, service, 336, 341
bindingTemplate, 337
body (SOAP envelope), 334
Book class (example), 216–217
Boolean expressions (LINQ filter), 287
Border elements, 24

using StackPanel and Separators for
vertical flow, 28

boundaries (SOA services), 329

browsers
improvements offered by Silverlight, 195
onkeyup event, 141
security issues with XMLHttpRequest

object, 149
XMLHttpRequest object, 147

brushes (see LinearGradientBrush objects)
business application (WPF), 89–136

adorners, 90–95
business classes, 95–99
credit card validation, 124–136
shopping cart, 99–124

adding cropping with
adorner, 107–112

adding the shopping cart, 112–124
displaying selected image, 106

business logic layer, xiv, 231
difficulties implementing with previous

.NET versions, 228
business objects, 5, 215

binding data to, 215–219
business registration, UDDI, 337
business services, 328
BusinessEntity class, 337
BusinessService class, 337
Button objects

with CheckBoxes in content, 210–211
declaring a button in XAML, 207
declaring event handlers in code, 209
embedding an image, 16
setting content, 17

ButtonDisabledGradient, 62
ButtonDownGradient, 62
buttons

animation, rotating on click, 69
simple button (example), 58
styling using gradients, 58–65

ButtonUpGradient, 62

C
C#, 5

LINQ query expressions, translation into
extension methods, 297

required declaration of variables, 287
XAML and, 7

caching query results, 288
CalendarExtender, 153–157

configurable properties, 155
Cameron, Kim, 409, 416

Index | 441

Canvas controls, 198–199
inside ViewBox, used with an interactive

control, 55
Car class (example), 259

creating concrete subclasses, 261
car factory application (example), 262–265
CardSpace, xii, 408–436

adding support to application, 418–435
configuring IIS, 420
processing information

cards, 431–435
setting up your computer, 418

creating an identity, 413–418
creating information cards, 414–416

Identity Metasystem, 411
overview, 409–411
using information cards, 416–418

CardSpaces web application
(example), 421–431

CarrierSchedule class (example), 252
Cascading Style Sheets (see CSS)
certificates, 420
Chain-of-Command pattern, 228, 266–274

example application, 266–274
UML class diagram, 267

checkboxes
creating dynamically for desktop or web

UI, 212–215
in StackPanel, 207, 211

CheckOut application (example), 76–79
ShoppingCartItem class, 76
XAML for shopping cart, 78–79

CheckOut method, 123, 131
Checkout.xaml page (example), 124–136

layout, user’s name, credit card number,
and submit button, 131

OnCardSelected event handler, 135
ProcessOrderForCart method, 136

CheckOutList (example), 80–83
CipherValue element, 423
classes

adding method to LINQ to SQL
designer-generated class, 321

generated, adding methods to, 321
LINQ to SQL, generating with Visual

Studio designer, 313–317
LINQ to XML, 322
using LINQ to SQL designer-generated

classes, 317
WPF (Windows Presentation

Foundation), 45

client-side scripts with asynchronous
programming, 138

CLR (Common Language Runtime)
objects and types, relation to XAML, 9
objects corresponding to XAML

objects, 7
CLS (Common Language Syntax), 284
Code activities, 371

adding for IfElseBranches, 377
implementing the first, 373
WFOrderStatus application

(example), 375
code examples from this book, xvi
CollapsiblePanelExtender control, 161,

190–194
collections, LINQ data sources, 286
color, linear gradient, 61
column attribute, 310
ColumnDefinitions, 47
columns and rows (in layout), 25
ColumnSpan attribute, 48
command objects, 266
Commander class (example), 269
Common Language Runtime (see CLR)
composite activities, 371
concrete observer (Observer pattern), 250

reference to a concrete subject, 252
concrete subject (Observer pattern), 250

CarrierSchedule class (example), 252
Condition property

setting for IfElseBranch activities, 376
setting for While activities, 380

connection strings
ToDo database (example), 166, 174
USLastNames database (example), 145

Console.Out, redirecting DataContext Log
property to, 312

Console.WriteLine method, 374
Content attribute, 15

headered content controls, 20
simple controls and, 15
using to set Button control content, 17

content controls, 17
complex, 17
headered, 20
simple content control (example), 17

content grid, animating in UI, 35
Content property (Button), 210–211

alternative syntax to explicitly fill
content, 211

ContractDescription class, 342

442 | Index

contracts, 329
creating WCF service contract, 343–345
defining for YahooQuotes service

(example), 349
messaging, 389
providing well-formed service

contracts, 331
WCF, 342

control elements, 15–20
content controls, 17
item controls, 18
simple controls, 15

controller (MVC), 233
controller classes, ASP.NET MVC

framework, 234
PersonController class (example), 242

Controller class, ViewData dictionary
property, 244

controls, 9
ASP.NET AJAX extenders, 154
binding to a data source, 76
composite, 72–76
creating dynamically in

Silverlight, 212–215
Extender, adding stylesheets to, 158
graphics within, 66
inheritance from IAnimatable and

DependencyObject, 69
presentation, controlling with WPF and

XAML, 57–65
rich client-side controls offered by

Silverlight, 195
Silverlight, 197–208

Canvas, 198–199
Grid, 203–208
StackPanel, 200–203

styling in Silverlight, 221–223
creating and using Style objects, 223
inline styling, 222

CreateFeatures() method (example), 261
credit cards, validating, 124–136

CreditCardValidator class
(example), 133–135

cropping, adding with RubberbandAdorner
(example), 107–112

CSS (Cascading Style Sheets), 61
adding stylesheets to Extender

controls, 158
StyleSheet.css file, ListMania

application, 163
Cunningham, Ward, 230

CurrentPhoto (example), Source
property, 106, 112

custom activities, 382
CustomBinding, 341
CustomerSupportStateMachine application

(example), 387–406
Call class, 392
CallStateChangedEventArgs class, 393
complete program code, 404–407
CustomerCallService class, 389–392
EventDriven state machine, 396–397
ICustomerCallService interface, 389, 392
persisting the state machine, 400
sending first event to runtime, 397–400
State activities, 394

external event handlers and state
setters, 402

D
data binding, 76–88, 215–221

binding to a list, 80–83
to business objects, 215–219
CheckOut application (example), 76–79
DataContext objects, 220
editing for Label control, 170
event handlers, 220
master/detail records, 84–88

data contracts, 343
YahooQuotes service (example), 350–352

data sources
defining for photo list (example), 105
joining in LINQ queries, 289
LINQ, 286

data types
anonymous, 295
implicitly typed local variables, 294
range variable (LINQ), inferred from data

source, 286
UDDI, 337

database corruption, 312
databases

connecting to MVCDatabase
(example), 239

creating ToDo database (example), 165
SQL Server 2005 AdventureWorksLT

(example), 305
SQL Server MVCDatabase

(example), 235
ToDo database (example)

method for updates, 172

Index | 443

USLastNames database, 145
workflow persistence and tracking, 400

DataContext objects, 220
entry point for LINQ to SQL, 311
GetTable() function, 312
tables and relationships between, 317

DataHelper class (example), 182–184
UpdateLastLogin method, 189

DataSet object, 175
DataTable object, 175
DataTemplate

defining for binding to an ImageFile, 104
in a ListBox, 81

date formats, 156
declarative programming languages, 8
declarative rule conditions

IfElseBrach activities, 377
While activities, 380

Default.aspx file
LastNameLookup web site

(example), 142–143
ListMania application

(example), 175–178
Default.htm page (CardSpace

application), 428
DefaultWorkflowSchedulerService class, 385
DefaultWorkflowTransactionService

class, 385
deferred query evaluation, 287–289
definitions in WSDL documents, 336
Delay activities, 371

adjusting properties, 374
delegates

inline, defining with lambda
expressions, 302–305

LaunchRequestEventHandler<T, U>
(example), 268

dependency properties, 69
DependencyObject class, 69
design patterns, xiv, 227–279

Chain-of-Command, 266–274
example application, 266–274

Factory Method, 258–265
building example

application, 259–265
importance of experience, 230
important design patterns, listed, 228
MVC (Model-View-Controller), 232–247

ASP.NET MVC application
(example), 235–247

n-tier, 231

Observer, 249–257
building example

application, 250–253
creating console application, 253–257

Singleton, 274–279
example application, 275–279
implementation in multithreaded

applications, 275
software design patterns, 230
undermining good design, previous .NET

versions and MFC library, 228
Design Patterns: Elements of Reusable

Object-Oriented Software, 231
DHTML, 141
diagonal movement animation, 71–72
discrete interpolation, 33
DockPanel controls (example), 17
DockPanel elements, 48–49

creating for advertising page
(example), 51

with embedded StackPanel, 54–55
FlowDocumentReader element, 52–53
inserting Border elements, 24
inserting in a Grid element, 24
order of declaration of TextBlocks, 49
three content sections using Border, 26
visualizing columns in, 49

DockPanel.Dock attribute, 24
Document elements, 20–23
DoubleAnimation objects, 69

running two simultaneously, 71–72
DoubleAnimationUsingKeyFrames

objects, 34
DragHandleTemplate view, 171
DrawSelection method, 94
duplex messaging, 342
Duration property, DoubleAnimation

object, 69
DynamicResource, 67

E
element names (LINQ to XML), 324
element-manipulation handles, 91
Ellipse object, 56
Employee Directory (example), 24–32

complete code, 30–32
EnablePartialRendering property

(ScriptManager), 153
encryption of security tokens, 424
EncryptionMethod element, 423

444 | Index

endpoints
communication with a web service, 329
defined, 336
describing for web service in WSDL

document, 335
EndSelection method, 94
entities, 240
entity classes, 240
envelope, SOAP, 334

customizing WCF-generated
envelope, 344

equals operator, 293
errors, XAML syntax, 12
\etc\hosts file, 420
EventArgs object, 208
EventDriven activities, 387, 394

adding to State activities in
CustomerSupportStateMachine,
402

CustomerSupportStateMachine
application (example), 396–397

events and event handlers
OnMouseDown event handler,

PhotoCooperative (example), 106
RubberbandAdorner event handlers, 109

MouseMove and MouseUp, 94
SelectionChanged event handler, 99
ShoppingCartSelection method

(example), 86
Silverlight, 207–211

Content property, Button with
CheckBoxes, 210–211

data binding event handlers, 220
declaring event handlers in code, 209
declaring event handlers in

XAML, 207
Expander controls, setting content, 20
experience, importance of, 230
eXtensible Application Markup Language

(see XAML)
extension methods, 297–301

defining and using, 299–301
restrictions on, 301

ExtensionMethods class, 301
ExternalDataEventArgs class, 389

CallStateChangedEventArgs class
(example), 393

F
factory method, 258
Factory Method pattern, 228, 258–265

building example application, 259–265
creating console application, 262–265

use with Singleton pattern, 275
fault messages, 335
filters, 286
FixedDocument element, 20
flow control

conventional, pre-WF, 365–371
ASP.NET web service OrderStatus

(example), 368–371
TalkBack console application

(example), 366–368
using WF, 371–382

simple workflow application
(HelloWorkflow), 371–374

WFOrderStatus application, 375–382
FlowDocument element (example), 20–23
FlowDocumentReader element, 52–53
fonts, Silverlight support for, 196
From and To properties, 69
from clause (LINQ query), 286
From/To/By animation, 33

G
Gamma, Erich, 231
Garrett, Jesse James, 138
Geometry class, 93
GET requests, 148
GetXmlHttpObject() function

(JavaScript), 147
gradients, 58–65

adding to Button class, 58–61
creating a LinearGradient, 62
Crop and Undo buttons,

PhotoCooperative (example), 108
defining for ListBox and Window, 104
linear, 61
LinearGradientBrush, 61
making more pronounced effects, 65
ShoppingCartGradient, 113

GradientStop objects, 61
image slider (example), 75

graphics
within controls, 66
Silverlight support for, 196
transformations, 68

Index | 445

green pages, UDDI business registration, 337
Grid controls, 203–208

alignment of controls within, 207
DataContext, 220
placing controls into cells, 206
sizing rows and columns, 206

Grid element, 24
Grid panels, 46–48

displaying data bound to
ShoppingCartItem, 79

PhotoCooperative (example), 99
ShowGridlines property, 101
TextBlocks, 48

grouping, 296
Guthrie, Scott, 241

H
HA (High-Assurance) certificates, 420
Hahn, Kurt, 230
header (SOAP envelope), 334
Header attribute, 15

simple controls and, 15
headered content controls, 20
headered item controls, 18
“Hello World” program (XAML

example), 10
HelloWorkflow application

(example), 371–374
helper classes for MVC, 241
hexatarsier, 33
High-Assurance (HA) certificates, 420
history of state machine instance, 402
HorizontalAlignment attribute, 26
host process, workflow, 383
hosts file, 420
HTML

UIHelper, 246
Windows applications and, 9

HTTP
addressing format, 340
status codes, 148

http: protocol, 149

I
IAnimatable interface, 69
ID attribute, 11
identity (CardSpace), creating, 413–418

creating information cards, 414–416
identity cards, 408

Identity Metasystem, 411
identity providers, 412, 414
identity, laws of, 409
identityblog.com

laws of identity, 409
testing information cards, 416

IdentityClaims collection, 432
identityToken object, 422
IEnumerable<T> interface, 286
IfElse activities, 376

inside While activity, 379
IfElseBranch activities, 376

adding Code activities, 377
declarative rule conditions, 377

IIS7 (Internet Information Services 7.0), 346,
419

configuring for CardSpace
application, 420

Image controls
code example, 15
embedded in Button control, 16

image sliders
composite control, 72–76
PhotoCooperative application

(example), 99–106
displaying selected image, 106

ImageFile object, 99
binding a DataTemplate to, 104

images from web site, adding to Employee
Directory, 25

imperative programming languages, 8
implicitly typed local variables, 294
information cards, 409

creating, 414–416
fields, 412
processing, 431–435
using, 416–418

InformationSource, 345
inner joins, 290
innerHTML property of TextBoxHint span

(Default.aspx), 148
INotifyPropertyChanged interface, 215
<input> element (HTML), 141
InsertItemTemplate view, ReorderList

control, 178–180
IntelliSense

awareness of anonymous types, 294
event handler creation, 208

interfaces, implementation versus, 8
interpolation methods (keyframe

animation), 33

446 | Index

IQueryable interface, 319
IQueryable<T> interface, 319
Item attribute, 15

simple controls and, 15
item controls, 18
item_priority value, 175
ItemsControl, 81
ItemTemplate view, ReorderList control, 169

J
JavaScript

client-side script to change page
contents, 139–141

domain security policies, 149
showHint() function, 146

join clause (LINQ), 289
on subclause, 290

Join extension method, 304
join query, sorting results, 290–294

K
keyframe animation, 33

using splines (code example), 38–44
KeyIdentifier element, 423
KeySpline values, 35
keyup event, 146

L
Label controls

editing data bindings, 170
<Label /> tag (XAML), 11
lambda expressions in LINQ, 302–305, 320
Language INtegrated Query (see LINQ)
LastChildFill attribute (DockPanel), 48, 52
LastNameLookup web site

(example), 142–151
code-behind,

LastNameLookup.aspx, 144
data source, USLastNames database, 145
Default.aspx form, 142–143
pages and division of responsibility, 146
step-by-step walkthrough, 149–151
XMLHttp object, 146–149

LaunchRequestEventArgs object
(example), 267

LaunchRequestEventHandler<T, U> generic
delegate (example), 268

laws of identity, 409
layout in XAML, 23–32
Left and Top properties, Canvas

controls, 198

linear interpolation, 33
LinearGradientBrush objects, 61

Crop and Undo buttons (example), 108
image slider (example), 75

LINQ (Language INtegrated
Query), 283–326

anonymous types for storage of query
results, 295

creating a simple query
(example), 284–287

filtering, 286
from clause, 286
select clause (projection), 287

deferred query evaluation, 287–289
extension methods, 297–301
grouping, 296
implicitly typed local variables, 294
joining data sources, 289
lambda expressions in, 302–305
ordering query results, 290–294

LINQ to SQL, 239, 308–322
creating properties for tables in

designer, 319
entity classes modeled from database

schema, 240
LINQ query (example), 320
MVCDatabase as a class, 240
using Visual Studio LINQ to SQL

designer-generated classes, 317
viewing generated SQL, 320
Visual Studio LINQ to SQL

designer, 313–317
LINQ to XML, 322–326

constructing XML document, 322–324
ListBox controls

binding ItemSource to specific property in
DataSource, 219

CheckOutList (example), 81–83
listeners, 249
ListManager.master page

(example), 163–165
adding CSS stylesheet and ScriptManager

control, 163
ListMania application (example), 161–194

CallapsiblePanelExtender
control, 190–194

CollapsiblePanelExtender
control, 190–194

creating login page, 185–189
creating ToDo database, 165
creating To-Do List page, 166
DataHelper class, 181–184

Index | 447

ListManager.master page, 162–165
login page, 161
login page and registration form, 180
persisting changes to list order, 171–181
to-do list page, 161
users database table, 181

Loaded event, 109
event handler for, 210

local variables, implicitly typed, 294
Log property, DataContext object, 312
login page

creating for ListMania
application, 185–189

with registration panel, 190–194
login page and registration form, 180
LoginButton_Click method, 188
Luhn algorithm, 133

M
MailDelivery class (example), 276
managed-card providers, 414
ManualWorkflowSchedulerService class, 385
Margin attribute, 26
Margin property, setting for controls within

StackPanel, 201–202
horizontal StackPanel, 203

markup languages, 10
master page (ListMania

application), 162–165
adding StyleSheet.css file, 163

master/detail records, 84–88
media, Silverlight support for, 196
MenuItem(s), 18
MessageBody attribute, 344
MessageContract attribute, 344
MessageDescriptions collection, 342
MessageHeader attribute, 344
messaging

duplex, 342
one-way, 343
request/response pattern, 342
SOAP protocol for exchange of

XML-based messages, 332
using instead of RPC in SOA, 330

messaging contracts, 389
metadata, 5
method-based queries, 302–305
methods

adding to generated classes, 321
differences between normal and extension

methods, 301

Microsoft Atlas library, 152
Microsoft Foundation Class Library

(MFC), 228
Microsoft Windows Software Development

Kit for Windows Vista, 10
Microsoft, increasing dependence on external

developer communities, 438
Mode setting, Binding object, 219
model (MVC), 233

model classes, ASP.NET MVC
Framework, 235

model for ASP.NET MVC Framework
application, 239–242

Model-View-Controller pattern (see MVC
pattern)

modulus 10 algorithm, 133
MouseDown event, handling for cropping

with rubberband adorner, 110
MouseMove method, 94
MouseUp event, handling for cropping by

rubberband adorner, 111
MouseUp method, 94
MSMQ (Microsoft Message Queue), 341
multithreading, singletons and, 275
mutexes, 275
MVC (Model-View-Controller) pattern, 228,

232–247
ASP.NET MVC Framework, 234

example from shopping
application, 235–247

difficulties implementing in previous
.NET versions, 228

MVC.BindingHelpers, 246
MVCDatabase (example), 235
MVCDatabaseDataContext class

(example), 241
MVCToolkit project, 236
MVCToolkit.dll, 237

N
Name attribute, 11
named pipes, 340
Named Pipes protocol, 305
namespace declarations, XAML elements

within root element, 14
namespaces

extension methods, 301
SOAP encoding namespace, 334
SOAP envelope namespace, 334

nesting controls or graphics, 65

448 | Index

.NET 3.5
downloading, 413
integration of technologies versus silos, 4
purpose of this book, 6
resources for further information, 437
stitching together disparate

components, xii
.NET Framework 3.0 Runtime

Components, 10
Net-prefixed bindings, 341
networking, 5
New.aspx (MVC view page), 243

modifying for passing an object to
ViewData dictionary, 246

modifying to add new people to
database, 245

n-tier pattern, 228, 231

O
Object class, ToString method, 285
object initializers, 295
object model (XAML views), 9
Object Relational Designer, 314
Object Relational Model (ORM), 240
OBJECT tag (HTML), 411
object-oriented languages, gap between

relational databases and, 283
object-oriented programming, augmentation

with declarative programming, xii
objects

factory methods for creating, 258
XAML, 8

relationship to CLR objects and
types, 9

ObservableCollection collection, 99
observer (Observer pattern), 250
Observer pattern, 99, 228, 249–257

building example application, 250–253
creating console application, 253–257
UML class diagram, 249

OnCardSelected event handler, 131, 135
one-to-many dependency between

objects, 249
one-way binding, 215
one-way messaging, 343
OnItemReorder property, ReorderList

control, 171
binding new event, 172

onkeyup event handler, 141

OnLoaded event handler, 209
OnMouseDown event handler, 94, 106
onreadystatechange event handler, 147
Opacity property, 94
open() method, XMLHttpRequest

object, 148
operational contracts, 343
OperationContractAttribute, 342
OperationDescription class, 342
operations (web service), 336
optimistic concurrency options, 166
ORDER BY clause, SELECT statement, 166
orderby clause (LINQ), 290

example clause, 293
OrderBy extension method, 304
OrderStatus ASP.NET web service

(example), 368–371
Orientation property, StackPanel, 200
ORM (Object Relational Model), 240
outer joins, 290
Outward Bound, 230

P
Page container, 14
Page_Loaded event handler, 220
Panel class, DockPanel and StackPanel

subclasses, 23
panel elements, 12
panels, 46–65

Canvas control in a ViewBox, 55
control presentation, 57–65
DockPanel, 48–49
Grid panel, 46–48
StackPanel, 51–55

Paragraph elements in FlowDocument, 52
partial class keyword, 321
partial keyword, 321
partial page rendering, 153
Passport, 408
PasswordStrength control, 161
PasswordStrength extender, 187
Path object, setting properties for

adorner, 94
PeopleList.aspx (MVC view page), 243
persistence (data) layer, 231
persistence services (workflow), 385

SqlWorkflowPersistenceService, 402
PersonController class (example), 242
PersonViewData class (example), 242

Index | 449

.pfx files, 420
PhotoCooperative application

(example), 90–136
adorners, 90–95
business classes, 95–99
Page 1, adding items to shopping

cart, 99–124
Page 2, validating credit cards, 124–136

PhotoList class (example), 96, 103
ObservableCollection of ImageFiles, 99

PhotoListSelection method (example), 111
policies, 332
POST requests, 148
presentation (user interface) layer, 231
presentation options, xiii
PrintBase class, 131
PrintList class, 131
processes

state machines implemented as, 386
workflow host process, 383

processing objects, 266
ProcessOrderForCart method, 136
programming languages, declarative and

imperative, 8
programming services offered by

Silverlight, 196
progress bar resource (shopping cart), 119
projection, 287

using Select extension method, 299
properties

creating for tables in LINQ to SQL
designer, 319

dependency and attached, 69
setting with Setter element, 62–64
skinnable, DynamicResource

references, 67
property element, 211
PropertyChanged event, 216
PropertyChangedEventArgs object, 217
protocol stack, WCF implementation of web

services, 332
protocols

supported by WCF, 340
XML-based, leveraged by CardSpace, 410

Publish and Subscribe pattern, 249
(see also Observer pattern)

R
range variables (LINQ), 286
reactive programs, 366

TalkBack console application
(example), 367

readyState (xmlHttp variable), 148
RectangleGeometry class, 93
recursion, 449
recursive trees, 267
red gradient box

animating, 35
creating using XAML and color

offsets, 36
Reenskaug, Trygve Mikkjel Heyerdahl, 232
reflection, 5
Register_ContentPanel panel, 190
Register_HeaderPanel panel, 190
RegisterImageButton_Click() method, 193
registration form on login page, 180
relational databases, gap between

object-oriented languages and, 283
relationships, specification by declarative

languages, 8
relying party, 412
Remote Procedure Call (RPC), 229

using messaging instead of, 330
RenderTransform element, 68
ReorderList control, 161

adding items to list, 178–180
changing to InsertItemTemplate

view, 180
OnItemReorder property, 171

binding a new event, 172
selecting data source, 166
setting view to ItemTemplate, 169
switching view to

DragHandleTemplate, 171
request/response pattern, 342
resolution (screen), 23
resources, 67

DynamicResource and PhotoListStyle,
adding to Window, 102

image slider composite control, 75
shopping cart (example), 79
for a Window element, 61

results
defining or projecting, LINQ queries, 287
sorting for LINQ queries, 290–294

450 | Index

RIAs (Rich Internet Applications), xi
rich client-side controls, 195
root elements, 13

namespace declarations of elements
in, 14

RotateTransform element, 68
rotation animation, 69
RoutedEventArgs object, 208
RowDefinitions, 47
rows and columns, sizing in Grid

controls, 206
RowSpan attribute, 48
RPC (Remote Procedure Call), 229

using messaging instead of, 330
rubberband adorner (example), 91–95
rule conditions, declarative

IfElseBranch activities, 377
While activities, 380

Runtime Components (.NET 3.0), 10
runtime services (workflow), 384

S
SamlSecurityTokenAuthenticator object, 424
scheduling services (workflow), 385
schemas (service), 331
screen size and resolution, 23
ScriptManager control, 151

adding a watermark, 157
adding stylesheets to extender

controls, 158–160
adding to ListManager.master file, 164
creating better Calendar control, 153–157
partial page rendering, 153

scroll bar and progress bar resources
(shopping cart), 119

Secure Sockets Layer (SSL), 420
Security Token Service (STS), 411
select clause (LINQ), 287, 299
Select extension method, 299
SELECT statement, ORDER BY clause, 166
SelectionChanged attribute, 103
SelectionChanged event handler, 99
self-issued information cards, 414

creating, 415
send() method, XMLHttpRequest

object, 148
Separator elements, 28
sequential workflow, 386

embedded within EventDriven
activities, 387

(see also WF)

Sequential Workflow design pane, 371
server-based web applications, 137
service bindings, 336, 341
ServiceContractAttribute, 342
Service-Oriented Architecture (see SOA)
services, defined in SOA context, 328
Session object, 189
Setter element, 62–64
Setter objects, 223
shapes

common properties of shape objects, 56
two-dimensional, 93

shopping application, ASP.NET
MVC, 235–247

creating database, 235
creating MVC application, 236–239
model, 239–242
views, 243–247

shopping cart, PhotoCooperative
(example), 99–124

ShoppingCart class, 80
ShoppingCart property, 131

ShoppingCartItem class (example), 76
LongDescription property, 85

ShoppingCartItems collection (example), 81
ShoppingCartSelection() method

(example), 87
ShowGridLines property (Grid), 101
showHint() function (JavaScript), 146
Silverlight, xi, 195–223

building an application, 196
controls, 197–208

Canvases, 198–199
Grid, 203–208
StackPanel, 200–203

data binding, 215–221
dynamically creating controls, 212–215
events and event handlers, 207–211
features for rich interactive Internet

applications, 196
improvements offered by, 195
styling controls, 221–223

creating and using Style objects, 223
inline styling, 222

simple controls, 15
Singleton pattern, 228, 274–279

example application, 275–279
implementation in multithreaded

applications, 275
Size object, 95
skinnable properties, DynamicResource

references, 67

Index | 451

Slashdot.org, 249
SMTPHost object, 275
SMTPServer property, 276
SOA (Service-Oriented Architecture), xi,

327–345
implementing web services, 332–336
services, defining precisely, 328–332

autonomous design, 331
explicit boundaries, 329
policies, 332
sharing schemas and contracts, not

classes, 331
WCF implementation, 339–343

SOAP, 332–334
example client request and response to

request, 334
request, response, and fault

messages, 334
rules for messages, 334
service bindings, 336

software design patterns, 230
Software Development Kit for Windows

Vista, 10
sorting LINQ query results, 290–294

orderby clauses and extension
methods, 304

source (data binding), 215
Source property (CurrentPhoto), 106, 112
space shuttle launch (chain-of-command

example, 266–274
splined interpolation, 33

keyframe animation using
(example), 38–44

SplineDoubleKeyFrame objects, 34
KeySpline values, 35

SQL (Structured Query Language), 283
inner join clause, 290
LINQ to SQL, 308–322

SQL Server 2005 AdventureWorksLT
example database, 305–307

SQL Server Express Management
Studio, 307

SQL Server Express, Named Pipes
protocol, 305

SqlConnection, creating, 174
SqlDataReader class, GetUserInfo

method, 183
SqlTrackingService class, 385, 402
SQLWorkflowPersistenceService class, 385,

400
SSL (Secure Sockets Layer), 420

.sst (Microsoft Serialized Certificate Store)
file, 420

StackPanel, 51–55
CheckOutList (example), 81
within a DockPanel (code

example), 54–55
inserting an Image, 51
setting up for desktop or web

controls, 214
StackPanel controls, 18, 200–203

attributes, 200
background color and stacking of its

contents, 202
checkboxes in, 207
horizontal orientation, 203
order of declaration of objects in, 201
properties and methods, 200
vertical orientation, 200

StackPanel element, adding to DockPanel
inside a Border, 26

StartSelection method, 94, 110
State activities, 387, 394

CustomerSupportStateMachine
(example), 395

external event handlers and state
setters, 402

EventDriven activities within, 387,
396–397

state machines, 386–407
building incident support state

machine, 387–407
stateChanged() function, 147
StaticResource keyword, 67
StockQuotes application

(example), 357–364
StoreItems.cs file (example), 95–99
Storyboard

associating with a Trigger, 69
TargetName property, 34, 69

storyboard, 33–37
streaming, Silverlight support for, 196
String class, StartsWith method, 287
Stroke property, 94
StrokeThickness property, 94
STS (Security Token Service), 411
styles, 62–64

applying inline, 222
creating and using Style objects, 223
creating for image slider (example), 76
defining for Window and Title text, 104

stylesheets, adding to Extender controls, 158
subject (Identity Metasystem), 412

452 | Index

subject (Observer pattern), 250
AirlineSchedule class (example), 251
interface for attaching and detaching

observers, 252
SvcUtil.exe utility, 355
syndication, Silverlight support for, 196
System.Collections.Generic.IEnumerable<T>

interface, 286
System.Configuration namespace, 401
System.Data.Linq namespace, 310
System.Identity.Model namespace, 426
System.Identity.Model.Selectors

namespace, 426
System.ServiceModel namespace, 339, 343
System.String class, adding extension

method, 299–301
System.Windows.Controls labels, 11
System.XML class, 322

T
TalkBack console application

(example), 366–368
target (data binding), 215
target types, access by extension

methods, 301
TargetName property (Storyboard), 69
TargetType property, 62
TCP, 341
technical services, 328
text and fonts, Silverlight support for, 196
text logo, animating in UI, 35
TextAlignment property, controls within

StackPanel, 201
TextBlocks, 206

defining for shopping cart (example), 79
in Grid panel (example), 48
order of declaration in DockPanel

example, 49
TextBox controls, 17

background color, assigning, 206
two-way data binding, 219

TextBoxWatermarkExtender, 157
TextBoxWatermarkStyle.css styleheet, 159
ThenBy extension method, 304
ThenByDescending extension method, 304
Thickness object, 201–202
this keyword, 301
thread safety, static initialization, 276
threading, 5

thread-locking devices, 275
threads, state machines implemented as, 386
Title property, setting for

ListManager.master, 163
tModel, 337
ToDo database (example)

connection string to read from/write to
database, 174

users table, 181
ToDo.aspx file (example), 168–169
ToDo.aspx page

namespaces referenced, 171
Token class

extracting security token claims, 424
initializing a new Token object, 422
properties for claims extraction from

security token, 425
support of SAML tokens, 424

TokenProcessor class, 432
tooltips, 132
tracking services (workflow), 385

SqlTrackingService, 402
transaction services (workflow), 385
Transact-SQL, 283
transformations, 68
tree of responsibility (design pattern), 267
triggers

associating StoryBoard with Trigger
event, 69

image slider (example), 76
Triple DES encryption algorithm, 424
two-way binding, 215, 219
Type attribute, 62

U
UDDI (Universal Description, Discovery, and

Integration), 337
data types, 337

UI elements, markup languages, 10
UI tools, 9
Universal Description, Discovery, and

Integration (see UDDI)
UpdatePanel objects, 153
updates, asynchronous, 149
users table, ToDo database (example), 181
using directive, importing namespace for

extension method, 301

Index | 453

V
var keyword, 294, 320

type safety and, 324
versioning, services, 331
Vertical Orientation (StackPanel), 200
VerticalAlignment attribute, 26
VerticalAlignment property, controls within

Grid, 206
view (MVC), 233

view classes, presentation logic, 235
views for ASP.NET MVC Framework

application, 243–247
ViewBox, Canvas control within, 55
ViewData dictionary property

(Controller), 244
views (XAML), 9
Visibility property, 94
Vista, 10

Microsoft Windows SDK for, 10
Visual Studio, LINQ to SQL

designer, 313–317

W
watermark

adding, 157
adding stylesheet to format text, 158–160

WatermarkCssClass attribute, 158
WCF (Windows Communication

Foundation), xi
creating a service contract, 343–345
SOA implementation, 339–343
YahooQuotes service (example), 346–364

web page for this book, xvi
web services, 5, 332–336

ASP.NET, OrderStatus
(example), 368–371

consuming (YahooQuotes
example), 355–364

creating WPF client, 357–364
creating and launching (YahooQuotes

example), 346–355
creating the service, 348–355
launching the service, 355

implementation of, difficulties with
previous .NET versions, 229

lifecycle, 338
protocol stack, 333
Silverlight support for, 196

SOAP messaging framework, 332–334
UDDI registry, 337
WSDL documents describing service

endpoints, 335
Web Services Description Language

(WSDL), 229
documents describing service

endpoints, 335
web site certificates (.pfx files), 420
web.config file

appSettings element for CardSpace
authentication, 427

connection string for USLastNames
database, 145

well-formed XAML documents, 11
WF (Windows Workflow Foundation), xi,

365–385
building a state machine, 386–407
flow control using, 371–382

simple workflow application
(HelloWorkflow), 371–374

WFOrderStatus application, 375–382
pre-WF flow control, 365–371

ASP.NET web service OrderStatus
(example), 368–371

TalkBack console application
(example), 366–368

runtime, understanding, 383
workflow services, 383

WFOrderStatus application
(example), 375–382

where clause (LINQ query), 286
Where extension method, 299
While activities, 378–382

IfElse activity within, 379
white pages, UDDI business registration, 337
Window controls, ViewBox and Canvas

control within, 55
Window element

creating in XAMLPad, 24
resources, 61

window.ActiveXObject, 147
Window.Resources

adding DynamicResource and
PhotoListStyle, 102

adding linear gradient brushes, 104
adding styles for checkout page, 130

window.XMLHttpRequest object, 147

454 | Index

Window1.xaml file
PhotoCooperative (example), 99

adding Crop and Undo buttons to the
Grid, 107

adding ListBox, 103
baseImg folder, 124
Checkout method, 131
OnMouseDown event handler, 106
PhotoListSelection event handler, 103
shopping cart methods, 123
ShoppingCart private member, 117
WindowLoaded event handler, 109

WindowLoaded event handler, 109
Windows Communication Foundation (see

WCF)
Windows Management Instrumentation

(WMI), 346
Windows Presentation Foundation (see

WPF)
Windows UIs, 7–44

animation, 32–44
categories of XAML elements, 11
control elements, 15–20
document elements, 20–23
“Hello World” program (example), 10
layout, 23–32
panel elements, 12
root elements, 13

Windows Vista, 10
Microsoft Windows SDK for, 10

Windows Vista, Software Development
Kit, 10

Windows Workflow Foundation (see WF)
word wheel, creating with AJAX, 141–151
workflow runtime engine, 383
WorkflowInstance object, 384
WorkflowRuntime class, 384
WPF (Windows Presentation

Foundation), xi, 45–88
animation, 69–72
business application, 89–136
Canvas control within a ViewBox, 55
composite controls, 72–76
creating client application (StockQuotes

example), 357–364
data binding, 76–88
Grid panel, 46–48
nesting controls or graphics, 65
panels for layout of display elements, 46
presentation of controls, 57–65

resources in XAML, 67
StackPanel within a DockPanel, 51–55
transformations, 68

WS-* (web service specifications), 341
WSDL (Web Services Description

Language), 229
documents describing service

endpoints, 335
WS-Policy, 331
WSSecurityTokenSerializer object, 424

X
XAML (eXtensible Application Markup

Language), 7–44
animation, 32–44
binding data to business objects, 217–219
categories of elements, 11
control elements, 15–20
creating controls dynamically, 212–215
declaring event handlers, 207
displaying a list of items, 81–83
document elements, 20–23
interfaces versus implementation, 8
layout, 23–32
manipulation by software tools, 9
panel elements, 12
requirements for, 10
resources, 67
root elements, 13
shopping cart (example), 78–79
simple example, 10
size value of column or row in Grid

control, 206
Thickness object, declaring, 201–202
use with WPF applications, 45
well formed, 11

.xaml files (examples from this book), 11
XAMLPad, 10, 12

automatically displaying errors, 12
XAttribute class, 322
XDocument class, 322
XElement class, 322
XML

controlling serialization with data
contracts, 350–352

LINQ to XML, 322–326
messages based on, exchange via SOAP

protocol, 332
SOAP messages, 334

XMLHttp object, 146–149

Index | 455

xmlHttp variable, 147
XMLHttpRequest object, 147

common methods, 148
common properties, 148
security issues, 149

XmlReader object, 422

Y
YahooQuotes service (example), 343–355

consuming, 355–364
creating WPF client, 357–364

creating, 348–355
launching, 355

yellow pages, UDDI business
registration, 337

About the Authors

Jesse Liberty is a senior program manager at Microsoft in the Silverlight Develop-
ment division. His business card reads “Silverlight Geek,” and he is responsible for
fostering a Silverlight Developer community, primarily through Silverlight.net.

Jesse is the author of numerous books, including O’Reilly’s Programming Silverlight 2
and the perennial bestseller Programming C# 3.0. Jesse has two decades of experi-
ence as a developer, author, and consultant, and has been a distinguished software
engineer at AT&T, a software architect for PBS/Learning Link, and a vice president
at Citibank. He provides full support for his writing, and access to his blogs, at
http://www.JesseLiberty.com.

Alex Horovitz is a creative and analytical technologist. He brings a strong aesthetic
sense coupled with rich conceptual thinking abilities to his work. He is currently the
chief technology officer at The Brookeside Group, Inc., where he designs and
implemenets enterprise applications leveraging the Model-View-Controller design
pattern and reusable frameworks.

Prior to The Brookeside Group, Alex was most recently the senior director of Enter-
prise Architecture and Standards at K12, Inc., after his company Emergency Vault
Data Solutions was acquired by them in 2007. During the 1990s and early 2000s,
Alex worked at NeXT Computer and later at Apple.

You can contact him through his web site, http://alexhorovitz.com.

Colophon
The animal on the cover of Programming .NET 3.5 is a giant petrel, a large seabird
from the genus Macronectes, which encompasses both the southern, or Antarctic,
giant petrel (Macronectes giganteus) and the northern giant petrel (Macronectes halli).
While much of the two species’ habitat range overlaps and both are restricted to the
southern hemisphere, only the southern petrel nests as far south as Antarctica. They
are also physically similar; most individuals have gray plumage, though they can
range from black and brown, to white in some southern petrels. They have long,
pale-orange bills, but northern petrels can be distinguished by their reddish-pink
billtips, versus the light-green tip of the southern petrels. Giant petrels are so named
due to their impressive size; they can grow up to 34 inches long with wingspans of
around 77 inches, and they weigh as much as 11 pounds.

Although they are sometimes mistaken for albatrosses, giant petrels—unlike the
albatross—forage on both sea and land. At sea, they feed on fish, squid, crustaceans,
and refuse from ships. On land, they feed primarily on penguin, whale, seal, or
seabird carrion, earning them a reputation as the “vultures of the Antarctic.” They
are capable of killing birds as large as the king penguin and can be quite vicious in
their attacks.

http://www.JesseLiberty.com
http://alexhorovitz.com

Whalers have nicknamed the giant petrel “stinker” due in part to its carrion-feeding
tendencies, but also to one particularly nasty talent: it is able to spit, with great preci-
sion, a foul-smelling glob of oil and regurgitated food at attackers. Giant petrels are
very susceptible to disturbance during breeding season and will abandon their nests
if threatened, so one theory is that the birds may have developed this spitting ability
as a way to ward off intruders.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Programming .NET 3.5
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	Part I, Presentation Options
	Part II, Interlude on Design Patterns
	Part III, The Business Layer

	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments

	Part I
	.NET 3.5: A Better Framework for Building MVC, N-Tier, and SOA Applications
	Integration Versus Silos
	Big Ideas, Small Examples
	It Ain’t Just the Framework
	It’s a Moving Target

	What? All That in One Book?

	Introducing XAML: A Declarative Way to Create Windows UIs
	XAML 101
	Interface Versus Implementation
	Getting Yourself Up and Running

	Simple XAML Done Simply
	Panel Elements
	Root Elements
	Control Elements
	Simple controls
	Content controls
	Item controls
	Headered content controls

	Document Elements

	Over Here…No, Wait, I Meant Over There!
	StackPanel and DockPanel
	Moving beyond columns and rows

	It’s Alive! (Or, How I Learned to Stop Worrying and Love Animation)
	Animation Overview
	The Animation Storyboard
	Hooked Yet?

	Introducing Windows Presentation Foundation: A Richer Desktop UI Experience
	Starting Simple: Panels
	DockPanel
	Order of declaration is important

	StackPanel
	Canvas and ViewBox
	Control Presentation
	Resources
	Styles
	Making effects more pronounced

	Nesting
	Resources
	Transformations
	Animation
	Simultaneous Animations
	A Composite Control

	Data Binding
	Creating a CheckOut Application in Visual Studio
	Binding to a List
	Master/Detail Records
	Event handling

	Applying WPF: Building a Biz App
	Breaking the Application into Pieces
	Adorners
	Business Classes
	Page 1—Adding Items to the Shopping Cart
	Displaying the Selected Image
	Adding Cropping with the Adorner
	MouseDown
	Handling the Crop button

	Adding the Shopping Cart
	Adding scroll bars

	Page 2—Validating the Credit Card
	Layout
	Validating the Credit Card

	Introducing AJAX: Moving Desktop UIs to the Web
	Web Applications Just Got a Whole Lot Faster
	Getting Started
	ASP.NET and JavaScript

	Creating a “Word Wheel” with AJAX
	The Data
	The Pages
	Where the Action Is
	Security issues
	Asynchronous updates

	Step-by-Step Walkthrough

	ScriptManager
	Partial Page Rendering
	A Better Calendar Control
	Adding a Watermark
	Adding Stylesheets to Extender Controls

	What’s Next?

	Applying AJAX: ListMania
	Creating the To-Do List Manager
	Create the Application Master Page
	Create the Database
	Create the To-Do List Page
	Persist the List

	Personalizing the To-Do List
	Confirm the Database Table
	Create a DataHelper Class
	Create the Login Page
	The CollapsiblePanelExtender Control

	Introducing Silverlight: A Richer Web UI Platform
	Silverlight in One Chapter
	The Breadth of Silverlight
	Diving Deep: Building an Application
	Controls
	Canvases
	StackPanels
	Horizontal StackPanels

	Grids
	Sizing rows and columns
	Placing controls into cells

	Events and Event Handlers
	Declaring Event Handlers in Code
	The Content Property
	Property elements

	Creating Controls Dynamically
	Data Binding
	Binding to a Business Object
	DataContext
	The Event Handlers

	Styling Controls
	Applying Styles Inline
	Creating and Using Style Objects

	Part II
	Implementing Design Patterns with .NET 3.5
	.NET 3.5 Fosters Good Design
	Undermining Good Design?
	Standing on the Shoulders of Giants
	Software Design Patterns

	The N-Tier Pattern
	The MVC Pattern
	The ASP.NET MVC Framework
	Controller classes and action methods
	Model classes
	View classes

	An MVC Example
	Creating the database
	Creating the MVC application
	The model
	The controller
	The view(s)
	Adding new people to the database

	The Observer Pattern/Publish and Subscribe
	An Observer Example
	Running the Code

	The Factory Method Pattern
	A Factory Method Example

	The Chain-of-Command Pattern
	A Chain-of-Command Example

	The Singleton Pattern
	Singletons and Multithreading
	A Singleton Example

	Part III
	Understanding LINQ: Queries As First-Class Language Constructs
	Defining and Executing a LINQ Query
	Creating the Query
	The from clause
	Filtering
	Projection

	Deferred Query Evaluation
	Joining
	Ordering
	Implicitly Typed Local Variables
	Anonymous Types
	Grouping

	Extension Methods
	Defining and Using Extension Methods
	Lambda Expressions in LINQ

	Adding the AdventureWorksLT Database
	LINQ to SQL Fundamentals
	Using the Visual Studio LINQ to SQL Designer
	Retrieving Data
	Creating Properties for Each Table
	A LINQ Query

	LINQ to XML

	Introducing Windows Communication Foundation: Accessible Service-Oriented Architecture
	Defining a Service More Precisely
	Boundaries Are Explicit
	Services Are Autonomous
	Schemas and Contracts Are Shared, But Not Classes
	Compatibility Is Based on Policy

	Implementing Web Services
	SOAP: More Than Just a Cleanser
	WSDL Documents: Describing the Service Endpoints

	UDDI: Who Is Out There, and What Can They Do for Me?
	UDDI Data Types

	How It All Works
	WCF’s SOA Implementation
	The ABCs of WCF
	Addresses
	Bindings
	Contracts

	Talk Amongst Yourselves

	Putting It All Together

	Applying WCF: YahooQuotes
	Creating and Launching a Web Service
	Creating the Service
	Launching the Web Service

	Consuming the Web Service
	Creating a WPF Client Application

	Introducing Windows Workflow Foundation
	Conventional (Pre-WF) Flow Control
	A Console Application: TalkBack
	An ASP.NET Web Service: OrderStatus

	Using Windows Workflow
	Activities
	A Simple Workflow Application: HelloWorkflow
	Adding activities
	Implementing the first Code activity
	Adjusting the Delay activity’s properties
	Completing the workflow

	A More Sophisticated Workflow Application: WFOrderStatus
	Adding the IfElse activity
	Adding Code activities for the IfElseBranches
	Declarative rule conditions
	Looping with the While activity

	Understanding the WF Runtime
	Workflow Services

	Applying WF: Building a State Machine
	Windows Workflow and State Machines
	Building an Incident Support State Machine
	State
	An Event-Driven State Machine
	Run ‘Em If You Got ‘Em
	Persisting Your State (Machine)
	Back to Our Regularly Scheduled Programming

	Using and Applying CardSpace: A New Scheme for Establishing Identity
	About Windows CardSpace
	Understanding the Identity Metasystem

	Creating a CardSpace Identity
	What You Need for Our CardSpace Examples
	CardSpace on Board, Ready to Create My Identity
	Using Your Card

	Adding CardSpace Support to Your Application
	Setting Up Your Machine for the CardSpace Examples
	IIS7
	About the certificates
	\etc\hosts

	Configuring IIS for Your Application
	Creating a Sample ASP.NET Application
	Processing the Information Card

	Summary

	Epilogue
	Index

