
s

m

Designing Enterprise Application
with the JavaTM 2 Platform, Enterprise Edition

Nicholas Kassem and the Enterprise Tea

Version 1.0.1
Final Release

October 3, 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, CA 94303, U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Third party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK, JDBC,
J2EE, J2SE, EJB, JavaBeans, JavaMail, Write Once, Run Anywhere, and Java Naming and Directory Interface are
trademarks or registered trademarks of Sun Microsystems, Inc in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, Etats-Unis. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut
être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun Logo, Java, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK,
JDBC, J2EE, J2SE, EJB, JavaBeans, JavaMail, Write Once, Run Anywhere, et Java Naming and Directory Interface
sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open
Company Ltd.
LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE
PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA
QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CON-
TREFACON.

Contents

.

. . 3
 . 3
 . . 4
 . 5
 . . 5
 . 5
. . 6
 . 6
10

 . 14
6
18
19
 . 20
1

 . 22

 . 25
26
. 26
 . 28
 . 29
 . 30
. 31
31
31
Foreword .xiii

Preface. .xvii

1 Introduction .1
1.1 Challenges of Enterprise Application Development.

1.1.1 Programming Productivity .
1.1.2 Response to Demand .
1.1.3 Integration with Existing Systems.
1.1.4 Freedom to Choose .
1.1.5 Maintaining Security .

1.2 The Platform for Enterprise Solutions .
1.2.1 J2EE Platform Overview. .
1.2.2 J2EE Platform Benefits .

1.3 J2EE Application Scenarios .
1.3.1 Multitier Application Scenario . 1
1.3.2 Stand-Alone Client Scenario .
1.3.3 Web-Centric Application Scenario
1.3.4 Business-to-Business Scenario .
1.3.5 A Note on the MVC Architecture . 2

1.4 Summary .

2 J2EE Platform Technologies .25
2.1 Component Technologies .

2.1.1 Applets and Application Clients .
2.1.2 Web Components .
2.1.3 Enterprise JavaBeans Components
2.1.4 Components, Containers, and Services

2.2 Platform Roles. .
2.2.1 J2EE Product Provider .
2.2.2 Application Component Provider .
2.2.3 Application Assembler .
v

CONTENTSvi

. 32
32
32

 . 33
. 33
. 33
. 35
. 37
 . 39
40
. 40
40
41
. 41
. 42
42

. 43
. 44
. 45
 . 46

 . 50
50
52
52
53

 . 54
. 55
. 55
57

 . 61
61

. . 63
64

. 67
68
68
69
2.2.4 Deployer .
2.2.5 System Administrator .
2.2.6 Tool Provider. .

2.3 Platform Services .
2.3.1 Naming Services .
2.3.2 Deployment Services.
2.3.3 Transaction Services .
2.3.4 Security Services .

2.4 Service Technologies .
2.4.1 JDBC API .
2.4.2 Java Transaction API and Service.
2.4.3 Java Naming and Directory Interface
2.4.4 Connector Architecture .

2.5 Communication Technologies .
2.5.1 Internet Protocols .
2.5.2 Remote Method Invocation Protocols.
2.5.3 Object Management Group Protocols
2.5.4 Messaging Technologies .
2.5.5 Data Formats .

2.6 Summary. .

3 The Client Tier .49
3.1 Requirements and Constraints .

3.1.1 Operating Environment .
3.1.2 Deployment .
3.1.3 Implementation .

3.2 Overview of Client Options .
3.3 Web Clients. .

3.3.1 Protocols .
3.3.2 Content Format .
3.3.3 Types of Web Clients .

3.4 EJB Clients .
3.4.1 Protocols and Facilities .
3.4.2 Strengths and Weaknesses .
3.4.3 Types of EJB Clients. .

3.5 Enterprise Information System Clients.
3.6 Designing for Multiple Types of Client .

3.6.1 Model .
3.6.2 View .

CONTENTS vii

69
 . 72

.

. 75

. 76
. 76
. 77
 . 78
 . . 80
. 80
. 84
. . 85
. . 85
 . 86
. 86
. 88
88
89
91
. 96
. 97
98
03
07

108
110

113
115
 . 117
118
121
22
124
. 125
126
3.6.3 Controller. .
3.7 Summary .

4 The Web Tier. .75
4.1 Web Applications and Web Containers .
4.2 Dynamic Content Creation .

4.2.1 Common Gateway Interface .
4.2.2 Servlets .
4.2.3 JavaServer Pages Technology .

4.3 Servlets and JSP Pages .
4.3.1 Web Component Roles .
4.3.2 Servlets .
4.3.3 JSP Pages Versus Servlets.

4.4 JSP Page Design .
4.4.1 JavaBeans Components .
4.4.2 Custom Tags .
4.4.3 Using Scriptlets and Expressions

4.5 Internationalization and Localization .
4.5.1 Internationalization .
4.5.2 Localization .

4.6 Application Designs .
4.6.1 Applications with Basic JSP Pages and Servlets.
4.6.2 Applications with Modular Components.
4.6.3 EJB-Centric Applications . 1

4.7 Application Migration. 1
4.7.1 Migrating a Web-Centric Application to Use

Enterprise Beans .
4.8 Summary .

5 The Enterprise JavaBeans Tier. .113
5.1 Business Logic .

5.1.1 Common Requirements of Business Objects
5.2 Enterprise Beans as J2EE Business Objects

5.2.1 Enterprise Beans and EJB Containers
5.3 Entity Beans .

5.3.1 Guidelines for Using Entity Beans 1
5.3.2 Persistence in Entity Beans .

5.4 Session Beans .
5.4.1 Stateful Session Beans. .

CONTENTSviii

. 128
130
130
134
. 135
36
137

42
143
43
44
45
. 146
146
147
48
149

49
50
151
153

154
55
157
57

58
158
161
162

. 165
168
69
70
72
73
5.4.2 Stateless Session Beans.
5.5 Design Guidelines. .

5.5.1 Data Access Objects .
5.5.2 Value Objects .
5.5.3 Session Beans as a Facade to Entity Beans.
5.5.4 Master-Detail Modeling Using Enterprise Beans 1

5.6 Summary. .

6 The Enterprise Information System Tier.141
6.1 Enterprise Information System Capabilities and Limitations. 1
6.2 Enterprise Information System Integration Scenarios

6.2.1 An Internet E-Store Application . 1
6.2.2 An Intranet Human Resources Application 1
6.2.3 A Distributed Purchasing Application 1

6.3 Relational Database Management System Access
6.4 Other Enterprise Information System Access.
6.5 Application Component Provider Tasks. .
6.6 Application Programming Model . 1
6.7 Programming Access to Data and Functions

6.7.1 Client API for Enterprise Information System Access . . . 1
6.7.2 Tools for Application Development 1
6.7.3 Access Objects .

6.8 Connections. .
6.8.1 Establishing a Connection. .
6.8.2 Guidelines for Connection Management. 1

6.9 Security .
6.9.1 Security Architecture. 1
6.9.2 Application Programming Model 1
6.9.3 Resource Signon .

6.10 J2EE Connector Architecture .
6.11 Summary. .

7 Packaging and Deployment .165
7.1 Roles and Tasks .
7.2 Packaging J2EE Applications .

7.2.1 EJB Modules . 1
7.2.2 Packaging Components Into EJB Modules. 1
7.2.3 Web Modules . 1
7.2.4 Packaging Components Into Web Modules 1

CONTENTS ix

74
174
76
187
87
89
193

197
198

. 199
199

00
200
201
02
202

. 203
204
04

207
208
208
209
09

210
12
213

215
216
17
20
23
25
25
7.2.5 Application Client Modules . 1
7.3 Deployment Descriptors .

7.3.1 Specifying Deployment Descriptor Elements 1
7.4 Deployment Tools. .

7.4.1 Deployment Tool Actions . 1
7.4.2 Deployment Tool Requirements . 1

7.5 Summary .

8 Transaction Management. .197
8.1 Properties of Transactions. .
8.2 J2EE Platform Transactions .
8.3 Scenarios .

8.3.1 Accessing Multiple Databases. .
8.3.2 Accessing Multiple Enterprise Information Systems

From Multiple EJB Servers . 2
8.4 JTA Transactions .

8.4.1 JTA and JTS .
8.5 Transactions in Applets and Application Clients 2
8.6 Transactions in Web Components .
8.7 Transactions in Enterprise Beans .

8.7.1 Bean-Managed Transaction Demarcation
8.7.2 Container-Managed Transaction Demarcation 2
8.7.3 Transaction Guidelines .

8.8 Transactions in Enterprise Information Systems
8.8.1 JTA Transactions. .
8.8.2 Resource Manager Local Transactions
8.8.3 Choosing Between JTA and Local Transactions. 2
8.8.4 Compensating Transactions. .
8.8.5 Isolation Level . 2

8.9 Summary .

9 Security .215
9.1 Security Threats and Mechanisms .
9.2 Authentication. .

9.2.1 Protection Domains . 2
9.2.2 Authentication Mechanisms . 2
9.2.3 Authentication Call Patterns . 2
9.2.4 Auto-Registration . 2
9.2.5 Exposing Authentication Boundaries with References . . . 2

CONTENTSx

225
26
27
28
28
29
29

230
232
. 234
34
35
36
36
237
238

41
242
47
48
48
51
255
56

. 259
266
273
273
277
278
280
82
284

285
87
88
289
9.3 Authorization .
9.3.1 Declarative Authorization . 2
9.3.2 Programmatic Authorization . 2
9.3.3 Declarative Versus Programmatic Authorization 2
9.3.4 Isolation. 2
9.3.5 Identity Selection. 2
9.3.6 Encapsulation for Access Control 2
9.3.7 Controlling Access to J2EE Resources
9.3.8 Example. .

9.4 Protecting Messages .
9.4.1 Integrity Mechanisms . 2
9.4.2 Confidentiality Mechanisms . 2
9.4.3 Identifying Sensitive Components 2
9.4.4 Ensuring Confidentiality of Web Resources. 2

9.5 Auditing .
9.6 Summary. .

10 The Sample Application .241
10.1 Application Functionality . 2

10.1.1 Scenarios .
10.1.2 Functional Specification . 2

10.2 Application Architecture. 2
10.2.1 Application Modules . 2
10.2.2 Application Design . 2

10.3 The View. .
10.3.1 Shopping Interaction Interface . 2
10.3.2 JSP Pages.
10.3.3 Examples .

10.4 The Model. .
10.4.1 State in the J2EE Platform .
10.4.2 Persistent Data. .

10.5 Implementation .
10.6 The Controller. .

10.6.1 Main . 2
10.6.2 RequestProcessor .
10.6.3 RequestToEventTranslator .
10.6.4 ShoppingClientControllerWebImpl 2
10.6.5 ShoppingClientController . 2
10.6.6 StateMachine. .

CONTENTS xi

293
94
296
 . 298
98
300
. 300
301
301
303
312
10.6.7 ScreenFlowManager .
10.6.8 Model-View Synchronization . 2

10.7 MVC Summary .
10.8 Stateless Services .

10.8.1 Example: A Mailer Bean. 2
10.9 Deployment. .
10.10 Transactions .
10.11 Security .

10.11.1 Requirements. .
10.11.2 Implementation .

10.12 Summary .

Afterword .313

Glossary .315

Index .333

Foreword
—
hes
ica-
reat
cre-
ee a
reat.
ight

ns-
plat-
ons
d
o the
wo
rent
work
evel-
hort

by
ters.
Java
the
ped,
am
and

ave
ver
rm.

ons
over
ases,
THE JavaTM platform was conceived to connect door knobs to light switches
smart door knobs to smart light switches, certainly, but door knobs to light switc
nonetheless. And yet it is now widely used for building large server-side appl
tions which run on some of the largest computers in the world. It is the fate of g
inventions to be used in ways unimagined by their creators even when the
ators—like James Gosling, creator of the Java programming language—s
horizon the rest of us do not glimpse. This is part of what makes an invention g

In retrospect, the phenomenal success of the Java platform on servers m
seem inevitable. After all, the platform provides exactly what is needed to tra
form the Internet from a publishing medium to a transactional one. The Java
form is available on all of the many different servers where Internet applicati
run. “Write Once, Run AnywhereTM” works so the programs can be quickly teste
and deployed. Engineers are several times more productive when they write t
Java platform. But being the right thing at the right time isn’t the whole story. T
more elements were needed: Technical leaders who were looking in a diffe
direction than most of us were, and business leaders who were eager to
together in new ways so the ideas could become reality. The result was the d
opment of consistent products across the computer industry in a surprisingly s
period of time.

I joined the JavaSoft Division of Sun Microsystems in late 1995, recruited
Eric Schmidt and Bill Joy, to lead the then tiny band of engineers and marke
We grew as fast as we could, barely keeping up with the early success of the
platform and the industry alliances we’d made around it. Even then, when
focus was on applets running in browsers, when version 1.0 had not yet ship
there were two brilliant engineers with a different idea—Rick Cattell and Grah
Hamilton. They were thinking about the Java runtime environment on servers,
even mainframes. Because of them, the now ubiquitous JDBCTM technology was
the first significant addition to the Java platform. Many excellent engineers h
followed Rick and Graham. But they started it. I’m pleased that I was cle
enough to listen to them as we expanded the group and the vision for the platfo

Until recently, “rocket scientists” have been needed to build the applicati
the industry clamored for—applications that create new ways to do business
the Internet while drawing on the resources already in place, such as datab
xiii

FOREWORDxiv

tems.
must
they
cket
ss a
bil-

n by
ier by
deas

s for
BC
other
Inter-
age
n API

a-
r
ers
s the

of
live
en

ssful

ifica-
2EE
orm
here
EE

est
lat-

de-
lete
transaction systems, inventory systems, invoicing systems, and credit sys
These applications need to scale to thousands, even millions, of users. They
interact with a wide array of legacy technologies that can’t be replaced, and
have to be built in a hurry. The engineers who can build them are few—the ro
scientists of our industry. But Rick and Graham saw a way to make the proce
lot easier by building the rocket science into the Java platform, bringing porta
ity and consistency through industry standardization, enabling quick adoptio
adapting to the systems already in place, and making development much eas
automating most of the complicated details of server programming. These i
became the underpinnings of the Java 2 Platform, Enterprise Edition.

JDBC was a huge hit. As soon as the Java community released it, driver
all the important databases materialized in the market. Applications using JD
rapidly appeared in large numbers. The success of JDBC lead to a parade of
middleware and database adapter projects—the Java Naming and Directory
faceTM API for uniform access to naming and directory services, the Java Mess
Service for asynchronous exchange of data and events, the Java Transactio
and Java Transaction Service for transactions, JavaServer PagesTM technology for
building dynamic Web pages, Java XML for developing XML-oriented applic
tions, and the Enterprise JavaBeansTM architecture, a component model for serve
applications. All of these were developed in collaboration with industry partn
in a process created by Rick and Graham and later refined and formalized a
Java Community Process.

The seminal offering of JDBC in 1996 soon grew into an amazing array
facilities, each with its own acronym and release plan. For those who didn’t
with the various “J*’s” (and for some of us who did) it could be confusing. Wh
vendors announced support for Enterprise JavaBeansTM 1.0 before the specifica-
tion had been completed, we realized it was time to make this now very succe
portfolio a little easier to understand and manage.

The Java 2 Platform, Enterprise Edition (J2EETM platform) brings all of these
pieces together. The J2EE platform is defined by four key pieces: the spec
tion, the reference implementation, the compatibility test suite, and the J
Blueprints design guidelines. The specification defines how the J2EE platf
works, whether it is included in an application server, a database, or anyw
else. The reference implementation is useful for experimenting with the J2
platform and it offers a working standard for comparison. The compatibility t
suite ensures that J2EE vendors implement fully compliant versions of the p
form to ensure “Write Once, Run Anywhere” portability, and these design gui
lines show developers how the pieces fit together to make up comp

FOREWORD xv

ok is

ala
chief
r, or
Tom
ship
hel
th,
ed to

a
,
early
enior
uild a
, and
cts,
elop-
e all

rts.
on
the
lica-
applications. The key J2EE specifications are published inJava 2 Platform, Enter-
prise Edition : Platform and Components Specifications(also from Addison-Wes-
ley), while supplemental specifications are available athttp://java.sun.com/

j2ee. The reference implementation used to create the examples in this bo
available on the Sun Microsystems Java Software Web site athttp://

java.sun.com/j2ee/download.html.
Many people contributed to the Java 2 Platform, Enterprise Edition. M

Chandra joined the group to lead the server efforts and quickly became the
crusader. Her passion and determination carried the project around, ove
through many obstacles. Jeff Jackson, Connie Weiss, Karen Tegan, and
Kincaid provided exceptional engineering management. Technical leader
came from many, including Mark Hapner, Vlada Matena, Bill Shannon, S
Finkelstein, Eduardo Pelegri-Llopart, Larry Cable, and Nick Kassem. Bill Ro
Gina Centoni, George Paolini, and Kathy Knutsen kept the Sun crew connect
the industry.

A staggering list of companies helped build this new server platform—
“Who’s Who” of the industry; big, small, old and new. BEA Systems, IBM
Oracle and Sun Microsystems stand out as the companies who worked on n
every piece, but they were never alone. Many companies sent their most s
architects and engineers and their most experienced managers to quickly b
common platform that set a new standard for ease of development, scalability
applicability. They put these new Java platform technologies in their produ
both old and new. The most widely deployed databases and the newest dev
ment tools from Silicon Valley startups now share the same interfaces. We ar
the beneficiaries of their foresight and commitment.

In many ways, this book represents the culmination of these collective effo
Designing Enterprise Applications with the Java 2 Platform, Enterprise Editi
effectively demonstrates how this new platform simplifies and streamlines
design, development, and deployment of a new generation of enterprise app
tions.

Jon Kannegaard
Vice President and Deputy Director
Sun Microsystems Laboratories
Mountain View, California
March 20, 2000

Preface
ppli-
in

-
lity

2EE
ing a
iples
con-

.
prise
plat-

li-
. The
rts.

2EE

i-

g
g
s.
THIS book describes a standard approach to designing multitier enterprise a
cations with the Java™ 2 Platform, Enterprise Edition. The book does not conta
information on how to use individual J2EE™ technologies to develop applica
tions, but rather focuses on guidelines for distributing application functiona
across tiers and choosing among design options within each tier.

The book describes the principles and technologies employed in building J
applications and the specific approach adopted by a sample application. Strik
balance between specificity on the one hand, and articulating broader princ
on the other, is never easy. The hope is that the principles presented are both
sistent with and complement the sample application documented in the book

This book is most relevant to IT managers, system architects, and enter
application developers considering a transition to or intending to use the J2EE
form or vendors providing J2EE products.

How This Book Is Organized

This book contains the following chapters:

• Chapter 1, “Introduction,” discusses challenges in building enterprise app
cations and describes how the J2EE platform addresses those challenges
chapter also discusses application scenarios that the J2EE platform suppo

• Chapter 2, “J2EE Platform Technologies,”provides an overview of the
component, service, and communication technologies supported by the J
platform.

• Chapter 3, “The Client Tier,” presents implementation options for J2EE cl
ents and provides guidelines for choosing among these options.

• Chapter 4, “The Web Tier,” describes technologies available for supportin
development in the Web tier. It includes guidelines and techniques for usin
J2EE Web components and describes several Web application architecture

• Chapter 5, “The Enterprise JavaBeans Tier,”describes the capabilities of
xvii

PREFACExviii

ent-

J2EE

-
 pro-

est

to

on.

ini-

h to
un’s
the EJB tier of the J2EE platform and discusses design choices for implem
ing business logic.

• Chapter 6, “The Enterprise Information System Tier,” describes recom-
mended approaches for accessing enterprise information systems and how
components must be configured to access them.

• Chapter 7, “Packaging and Deployment,”describes the capabilities provid
ed by the J2EE platform for packaging and deploying J2EE applications,
vides heuristics and practical tips on how to use these capabilities, and
provides recommendations to the vendors who provide deployment tools.

• Chapter 8, “Transaction Management,” describes the transaction services
provided by the J2EE platform and provides recommendations on how to b
use those services.

• Chapter 9, “Security,” describes the mapping of the J2EE security model
enterprise computing environments and infrastructures.

• Chapter 10, “The Sample Application,” illustrates the J2EE programming
model in the context of an in-depth description of a multitier J2EE applicati

• “Glossary,” is a list of words and phrases found in this book and their def
tions.

Obtaining the Sample Application

You can download the sample application described in this book from:

http://java.sun.com/j2ee/download.html

The sample application requires a J2EE v1.2 compliant platform on whic
run. From the sample application download page you can also download S
J2EE SDK, a freely available implementation of the J2EE v1.2 platform.

Related Information

Pointers to J2EE documentation can be found at:

http://java.sun.com/j2ee/docs.html

PREFACE xix

pli-

s-
For information on how to use the J2EE SDK to construct multitier enterprise ap
cations refer to theJ2EE Developer’s Guide, available at:

http://java.sun.com/j2ee/j2sdkee/techdocs/index.html

The J2EE technologies cited in this book are described in their specifications:

• Java™ 2 Platform, Enterprise Edition Specification, Version 1.2(J2EE spec-
ification). Copyright 1999, Sun Microsystems, Inc. Available athttp://ja-

va.sun.com/j2ee/download.html.

• Java™ 2 Platform, Standard Edition, Version 1.2.2(J2SE specification).
Copyright 1993-99, Sun Microsystems, Inc. Available athttp://ja-

va.sun.com/products/jdk/1.2/docs/api/index.html.

• Java™ Servlet Specification, Version 2.2 (Servlet specification). Copyright
1998, 1999, Sun Microsystems, Inc. Available athttp://java.sun.com/prod-

ucts/servlet.

• JavaServer Pages™ Specification, Version 1.1(JSP specification). Copyright
1998, 1999, Sun Microsystems, Inc. Available athttp://java.sun.com/prod-

ucts/jsp.

• Enterprise JavaBeans™ Specification, Version 1.1(EJB specification). Copy-
right 1998, 1999, Sun Microsystems, Inc. Available athttp://java.sun.com/

products/ejb.

• JDBC™ 2.0 API(JDBC specification). Copyright 1998, 1999, Sun Microsy
tems, Inc. Available athttp://java.sun.com/products/jdbc.

• JDBC™ 2.0 Standard Extension API (JDBC extension specification). Copy-
right 1998, 1999, Sun Microsystems, Inc. Available athttp://java.sun.com/

products/jdbc.

• Java™ Transaction API, Version 1.0.1 (JTA specification). Copyright 1998,
1999, Sun Microsystems, Inc. Available athttp://java.sun.com/products/

jta.

• Java™ Transaction Service, Version 0.95 (JTS specification). Copyright
1997-1999, Sun Microsystems, Inc. Available athttp://java.sun.com/prod-

ucts/jts.

• Java Naming and Directory Interface™, Version 1.2(JNDI specification).

PREFACExx
Copyright 1998, 1999, Sun Microsystems, Inc. Available athttp://ja-

va.sun.com/products/jndi.

• Java IDL.Copyright 1993-99, Sun Microsystems, Inc. Available athttp://

java.sun.com/products/jdk/1.2/docs/guide/idl/index.html.

• RMI over IIOP 1.0.1. Available athttp://java.sun.com/products/rmi-iiop.

• Java™ Message Service, Version 1.0.2 (JMS specification). Copyright 1998,
Sun Microsystems, Inc. Available athttp://java.sun.com/products/jms.

• JavaMail™ API Design Specification, Version 1.1 (JavaMail specification).
Copyright 1998, Sun Microsystems, Inc. Available athttp://java.sun.com/

products/javamail.

• JavaBeans™ Activation Framework Specification, Version 1.0.1 (JAF speci-
fication). Copyright 1998, Sun Microsystems, Inc. Available athttp://ja-

va.sun.com/beans/glasgow/jaf.html.

Typographic Conventions

Table 1 describes the typographic conventions used in this book.

Table 1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; interface, class,
method, and deployment
descriptor element names;
programming language
keywords

Edit the file Main.jsp.
How to retrieve a UserTransaction
object.
Specify the resource-ref element.

AaBbCc123 Variable name The files are named XYZfile.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide. These
are called class options. You must be
root to do this.

PREFACE xxi

and
rote

ence
t of

pi,
ions

ect.
Acknowledgments

This book is the result of many people’s efforts.
Each Enterprise Team member had primary responsibility for one chapter

made significant contributions to other chapters. In addition, Danny Coward w
the initial draft of the deployment chapter.

The authors of the J2EE specifications and the developers of the refer
implementation provided useful input at various points during the developmen
the J2EE programming model.

We are indebted to Rick Cattell, Bill Shannon, Mark Hapner, John Cru
Sean Brydon, and many other reviewers who provided feedback on early vers
of the manuscript.

Jim Inscore and Stephanie Bodoff provided editorial oversight of this proj

as
thin
t API,
is cur-

ineer-
pera-
cts
SS),

on
About the Author

NICHOLAS KASSEM is a Senior Staff Engineer with Sun Microsystems and h
influenced and had responsibility for a number of technologies and initiatives wi
Java Software including the Java Web Server, Java Embedded Server, the Servle
JavaServer Pages, Java Message Queuing, and the J2EE programming model. He
rently leading the XML Messaging initiative.

Nicholas has over twenty years industry experience and has held senior eng
ing and management positions at Philips (Data Systems) and the Santa Cruz O
tion. He has had direct responsibility for a wide variety of engineering proje
including the development of Data Communications Gateway Hardware (DISO
Novell and Lan Manager protocol stacks, and an implementation of OSF DCE
SCO UNIX. He is an Engineering Graduate of Birmingham University in the UK.

C H A P T E R 1
ises
on

t. The
way

s of
lim-
and
ter-
eans

ival
nt

ges.
ors

egic
ess.
ing

t and
ch-
tion
iness
, the
, and
Introduction
by Nicholas Kassem

THE Internet and World Wide Web represent a foundation on which enterpr
are working to build an information economy. In this economy, information takes
as much value as goods and services, and becomes a vital part of the marke
information economy challenges today’s enterprises to radically re-think the
they do business.

Predictions about the future of this economy range from glowing scenario
dynamic new business, industrial, and financial environments capable of un
ited expansion, to gloom and doom prophecies of overinflated expectations
unsustainable hypergrowth. Whatever the predictions, the reality is that en
prises have always tried to gain a competitive advantage by any reasonable m
at their disposal, including the latest technologies. This is a natural surv
instinct: all viable enterprises, including for-profit, non-profit, and governme
institutions, continuously look for ways to keep pace by adopting such chan
Complacent organizations routinely fall by the wayside, while the innovat
work to transform new challenges into business success.

In the information economy, information assets take on far-reaching strat
value to an organization. The ability to capitalize on this value is key to succ
Organizations that succeed will do so by increasing their productivity in mov
information into the marketplace.

While these may appear to be new challenges, in many ways the Interne
World Wide Web only intensify a challenge that has long faced information te
nology professionals: the demand for responsive management of informa
assets. The initial response to this demand was to ensure that all critical bus
functions were effectively managed by computerized systems. More recently
response has been to strive for greater integration among these systems
1

CHAPTER 1 INTRODUCTION2

that
rships
ion.
tion
and
ga-
for-
the
ssets
cus-

e is
d to

ance
ate
them
ion’s

thus
The
ide

h a
tions
tra-

to
chal-
the
ge of
2EE
for

rical

g a
tion
fec-
ier
increased ability to correlate data from disparate sources into information
serves specific strategic needs. Corporate mergers, acquisitions, and partne
have provided additional incentive for organizations to integrate such informat

Distributed custom applications are the packages in which an organiza
delivers information as a commodity. Custom applications add value to
extract value from the information assets of an organization. They allow IT or
nizations to target specific functionality to specific user needs. By making in
mation available within an organization, they add strategic value to
management and planning processes. By selectively projecting information a
outside the organization, they enable exchanges that are mutually valuable to
tomers, suppliers, and the organization itself.

In the competitive environment of the information economy, response tim
key to the value of custom applications to the enterprise. Organizations nee
quickly develop and deploy custom applications, and to easily refine and enh
them to improve their value. They need ways to simply and efficiently integr
these applications with existing enterprise information systems, and to scale
effortlessly to meet changing demands. All these factors affect an organizat
ability to respond quickly to changes in the competitive environment.

The goal of the JavaTM 2 Platform, Enterprise Edition (J2EETM platform) is to
define a standard of functionality that helps meet these challenges and
increases the competitiveness of enterprises in the information economy.
J2EE platform supports distributed applications that take advantage of a w
range of new and evolving technologies, while simplifying development throug
component-based application model. The J2EE model supports applica
ranging from traditional client-server applications delivered over corporate in
nets to e-commerce Web sites on the Internet.

In presenting the J2EETM Blueprints programming model, this book hopes
provide enterprise application developers with a strategic perspective on the
lenges of the information economy, and a methodical exploration of ways
J2EE platform supports custom applications to meet a reasonably broad ran
application requirements. The underlying theme of this discussion is that the J
platform provides a single, unified standard that enhances the opportunity
enterprises to project their business information systems beyond their histo
borders, while avoiding risks inherent in the task.

This book approaches the J2EE Blueprints programming model by takin
logical view of enterprise platforms and suggesting ways to partition applica
functionality to use the technologies provided by the J2EE platform most ef
tively. The intent is to divide the problem of architecting and developing multit

CHALLENGES OF ENTERPRISE APPLICATION DEVELOPMENT3

nol-
the

tors,
n this
, sug-

the
s put
s, it’s
ut to
tion

nter-
ting
ning
e an

axi-

tion
on-

ing
vices
cli-

ca-
tori-
d a

as
d con-
logies
tan-
applications with J2EE into manageable portions, then apply appropriate tech
ogies to the portions, leading to more maintainable and scalable solutions. In
process, certain simplifying assumptions are made, not to trivialize certain fac
but to focus on the essential J2EE theme. Note that none of the statements i
book should be interpreted as mandates or requirements, but rather as advice
gestions, and simple recommendations.

1.1 Challenges of Enterprise Application Development

While timing has always been a critical factor to adopting new technologies,
accelerated pace inherent in a virtual, information-driven business model ha
even greater emphasis on response times. To leverage Internet economic
imperative not only to project enterprise systems into various client channels, b
do so repeatedly and in a timely manner, with frequent updates to both informa
and services. The principal challenge is therefore one of keeping up with the I
net’s hyper-competitive pace while maintaining and leveraging the value of exis
business systems. In this environment, timeliness is absolutely critical in gai
and maintaining a competitive edge. A number of factors can enhance or imped
organization’s ability to deliver custom enterprise applications quickly, and to m
mize their value over their lifetime.

1.1.1 Programming Productivity

The ability to develop and deploy applications is key to success in the informa
economy. Applications need to go quickly from prototype to production, and to c
tinue evolving even after they are deployed.

Productivity is thus vital to responsive application development. Provid
application development teams with standard means to access the ser
required by multitier applications, and standard ways to support a variety of
ents, can contribute to both responsiveness and flexibility.

One destabilizing factor in Internet and other distributed computing appli
tions is the current divergence of technologies and programming models. His
cally (in Web terms), technologies such as HTML and CGI have provide
mechanism for distributing dynamic content, while backend systems such
transaction processors and database management systems have provide
trolled access to the data to be presented and manipulated. These techno
present a diversity of programming models, some based on well-defined s

CHAPTER 1 INTRODUCTION4

itec-

te
s of
sets
sion
tent

of
nts
spe-
ro-
ith

f the

scale
ts,
work
ct.
for
—or
any
m-

tiple
nt of
ctions.

ut any
run
rver
dards, others on more ad-hoc standards, and others still on proprietary arch
tures.

With no single application model, it can be difficult for teams to communica
application requirements effectively and productively. As a result, the proces
architecting applications becomes more complex. What’s more, the skill
required to integrate these technologies aren’t well organized for effective divi
of labor. For example, CGI development requires coders to define both con
and layout to appear on a dynamic Web page.

Another complicating factor in application development time is the choice
clients. While many applications can be distributed to Web browser clie
through static or dynamically generated HTML, others may need to support a
cific type of client, or to support several types of clients simultaneously. The p
gramming model needs to support a variety of client configurations, w
minimum effect on basic application architecture or the core business logic o
application.

1.1.2 Response to Demand

Imagine a brick-and-mortar business trying to increase its customer base by a
of 10. How much time and effort would they expend on remodelling storefron
building new warehouses, and so on, to keep up? The fact is, the constant re
would drastically impact their ability to serve the customers they’re trying to attra

This holds for businesses in the information economy as well. The ability
applications to scale easily and automatically to accommodate anticipated
unexpected—growth is key to achieving the goals. Systems that require
restructuring or redeployment to scale will impede growth and diminish the co
pany’s expected performance.

In order to scale effectively, systems need to be designed to handle mul
client interactions with ease. They need mechanisms for efficient manageme
system resources and services such as database connections and transa
They need to have access to features such as automatic load balancing witho
effort on the part of the application developer. Applications should be able to
on any server appropriate to anticipated client volumes, and to easily switch se
configurations when the need arises.

CHALLENGES OF ENTERPRISE APPLICATION DEVELOPMENT5

rs by
s in
rprise

ccess
s and

onsis-
tion

olu-
of

ls to

con-
y to
rnal

vel-
uding
ach

ate to

the-
d to

par-
rela-
en

omes
ets,
1.1.3 Integration with Existing Systems

Much of the data of value to organizations has been collected over the yea
existing information systems. Much of the programming investment reside
applications on those same systems. The challenge for developers of ente
applications is how to reuse and commoditize this value.

To achieve this goal, application developers needs standard ways to a
middle-tier and backend services such as database management system
transaction monitors. They also need systems that provide these services c
tently, so that new programming models or styles aren’t required as integra
expands to encompass various systems within an enterprise.

1.1.4 Freedom to Choose

Application development responsiveness requires the ability to mix and match s
tions to come up with the optimum configuration for the task at hand. Freedom
choice in enterprise application development should extend from servers to too
components.

Choices among server products gives an organization the ability to select
figurations tailored to their application requirements. It also provides the abilit
move quickly and easily from one configuration to another as internal and exte
demand requires.

Access to the appropriate tools for the job is another important choice. De
opment teams should be able to adopt new tools as new needs arise, incl
tools from server vendors and third-party tool developers. What’s more, e
member of a development team should have access to tools most appropri
their skill set and contribution.

Finally, developers should be able to choose from a ready market of off-
shelf application components to take advantage of external expertise an
enhance development productivity.

1.1.5 Maintaining Security

Somewhat ironically, projecting information assets to extract their value can jeo
dize that very value. Traditionally, IT departments have been able to maintain a
tively high level of control over the environment of both servers and clients. Wh
information assets are projected into less-protected environments, it bec
increasingly important to maintain tight security over the most sensitive ass
while allowing seemingly unencumbered access to others.

CHAPTER 1 INTRODUCTION6

ed
ies is
urity
need
(and
.

ying
n pro-
ts the

J2EE
tain a

t for
fig-
ules
nter-
the

el.
. The

The
fire-

ans
One of the difficulties in integrating disparate systems is providing a unifi
security model. Single signon across internal application and asset boundar
important to creating a positive user experience with the applications. Sec
needs to be compatible with existing mechanisms. In cases where customers
to access secure information, the mechanisms need to maintain high security
user confidence) while remaining as unobtrusive and transparent as possible

1.2 The Platform for Enterprise Solutions

The J2EE platform represents a single standard for implementing and deplo
enterprise applications. The J2EE platform has been designed through an ope
cess, engaging a range of enterprise computing vendors, to ensure that it mee
widest possible range of enterprise application requirements. As a result, the
platform addresses the core issues that impede organizations’ efforts to main
competitive pace in the information economy.

1.2.1 J2EE Platform Overview

The J2EE platform is designed to provide server-side and client-side suppor
developing enterprise, multitier applications. Such applications are typically con
ured as a client tier to provide the user interface, one or more middle-tier mod
that provide client services and business logic for an application, and backend e
prise information systems providing data management. Figure 1.1 illustrates
various components and services that make up a typical J2EE environment.

1.2.1.1 Multitier Model

As illustrated, the J2EE platform provides a multitier distributed application mod
This means that the various parts of an application can run on different devices
J2EE architecture defines aclient tier, amiddle tier(consisting of one or more sub-
tiers), and a backend tier providing services of existing information systems.
client tier supports a variety of client types, both outside and inside of corporate
walls. The middle tier supports client services through Web containers in theWeb
tier and supports business logic component services through Enterprise JavaBeTM

(EJBTM) containers in theEJB tier. Theenterprise information system (EIS) tiersup-
ports access to existing information systems by means of standard APIs.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 7

tain-
mpo-
J2EE

ime
(such
on-

f EJB
ovide
iding

av-
tors
s),
Figure 1.1 J2EE Environment

1.2.1.2 Container-Based Component Management

Central to the J2EE component-based development model is the notion of con
ers. Containers are standardized runtime environments that provide specific co
nent services. Components can expect these services to be available on any
platform from any vendor. For example, all J2EE Web containers provide runt
support for responding to client requests, performing request time processing
as invoking JSP or servlet behavior), and returning results to the client. All EJB c
tainers provide automated support for transaction and life cycle management o
components, as well as bean lookup and other services. Containers also pr
standardized access to enterprise information systems; for example, prov
RDBMS access through the JDBC API.

In addition, containers provide a mechanism for selecting application beh
iors at assembly or deployment time. Through the use of deployment descrip
(text files that specify component behavior in terms of well-defined XML tag

CHAPTER 1 INTRODUCTION8

hen
ed at
age-

t be
hus,
one
p of

the
s by
es
Java
arily

vide
d
ia
the

r. To
rtual
pport

lient
typi-
ble

d are
rtable
f the
he
com-
pro-

J2EE
ier to
components can be configured to a specific container’s environment w
deployed, rather than in component code. Features that can be configur
deployment time include security checks, transaction control, and other man
ment responsibilities.

While the J2EE specification defines the component containers that mus
supported, it doesn’t specify or restrict the configuration of these containers. T
both container types can run on a single platform, Web containers can live on
platform and EJB containers on another, or a J2EE platform can be made u
multiple containers on multiple platforms.

1.2.1.3 Support for Client Components

The J2EE client tier provides support for a variety of client types, both within
enterprise firewall and outside. Clients can be offered through Web browser
using plain HTML pages, dynamic HTML generated with JavaServer PagTM

(JSPTM) technology, or Java applets. Clients can also be offered as stand-alone
language applications. J2EE clients are assumed to access the middle tier prim
using Web standards, namely HTTP, HTML, and XML.

To support more complex user interactions, it may be necessary to pro
functionality directly in the client tier. This functionality is typically implemente
as JavaBeansTM components that interact with the service in the middle tier v
servlets. Client-tier JavaBeans components would typically be provided by
service as an applet that is downloaded automatically into a user’s browse
eliminate problems caused by old or non-standard versions of the Java vi
machine in a user’s browser, the J2EE application model provides special su
for automatically downloading and installing the Java Plug-in.

Client-tier beans can also be contained in a stand-alone application c
written in the Java programming language. In this case, the enterprise would
cally make operating system specific installation programs for the client availa
for users to download via their browsers. Users execute the installation file an
then ready to access the service. Since Java technology programs are po
across all environments, the service need only maintain a single version o
client program. Although the client program itself is portable, installation of t
Java technology client typically requires OS-specific code. There are several
mercial tools that automate the generation of these OS-specific installation
grams.

If desired, non-Java clients such as Visual Basic programs can present
services to users. Since the service is presented by servlets in the middle t

THE PLATFORM FOR ENTERPRISE SOLUTIONS 9

om

r as
erprise
iness

d by

EJB
plat-

ple-

ise

ong
d the
ed in

lable
the

of
uct.
The
y the
nd

era-
” to
um-
And
e.
first-tier clients using the standard HTTP protocol, it is easy to access it fr
practically any program running on any operating system.

1.2.1.4 Support for Business Logic Components

In the J2EE platform, middle-tier business logic is implemented in the middle tie
Enterprise JavaBeans components (also referred to as enterprise beans). Ent
beans allow the component or application developer to concentrate on the bus
logic while the complexities of delivering a reliable, scalable service are handle
the EJB server.

The J2EE platform and EJB architecture have complementary goals. The
component model is the backbone of the J2EE programming model. The J2EE
form complements the EJB specification by:

• Fully specifying the APIs that an enterprise bean developer can use to im
ment enterprise beans.

• Defining the larger, distributed programming environment in which enterpr
beans are used as business logic components.

1.2.1.5 Support for the J2EE Standard

The J2EE standard is defined through a set of related specifications, key am
these the J2EE specification, the EJB specification, the Servlet specification, an
JSP specification. Together, these specifications define the architecture describ
this discussion. In addition to the specifications, several other offerings are avai
to support the J2EE standard, including the J2EE Compatibility Test Suite and
J2EE SDK.

The J2EE Compatibility Test Suite (CTS) helps maximize the portability
applications by validating the specification compliance of a J2EE platform prod
This test suite begins where the basic Java Conformance Kit (JCK) leaves off.
CTS tests conformance to the Java standard extension API’s not covered b
JCK. In addition, it tests a J2EE platform’s ability to run standard end-to-e
applications.

The J2EE SDK is intended to achieve several goals. First, it provides an op
tional definition of the J2EE platform, used by vendors as the “gold standard
determine what their product must do under a particular set of application circ
stances. It can be used by developers to verify the portability of an application.
it is used as the standard platform for running the J2EE Compatibility Test Suit

CHAPTER 1 INTRODUCTION10

u-
ite
its
in

2EE

ions
y to
een
nity
ple-

ndors
ifica-

a-
iner.
uire-
do

ence,
le to
ecific
wide

uted
Another important role for the J2EE SDK is to provide the developer comm
nity with a freely available implementation of the J2EE platform to help exped
adoption of the J2EE standard. Although it is not a commercial product and
licensing terms prohibit its commercial use, the J2EE SDK is freely available
binary form to use in developing application demos and prototypes. The J
SDK is also available in source form.

One more word on J2EE standards and portability. The J2EE specificat
have, by design, set the platform-compatibility-bar at a level that’s relatively eas
clear. Owing to the collaborative way in which the platform specifications have b
developed, it was deemed important to give platform vendors plenty of opportu
to supply implementations of the J2EE platform. Obvious and unreasonable im
mentation hurdles were avoided. For example, there are no restrictions on ve
adding value to J2EE products by supporting services not defined in the spec
tions.

It should therefore not be surprising that J2EE component portability is prim
rily a function of the dependency a component has on the underlying conta
Components using a vendor-specific feature, that falls outside of the J2EE req
ments, may have limitations in the area of portability. The J2EE specifications
however spell out a base set of capabilities that a component can count on. H
there is a minimum cross-container portability that an application should be ab
achieve. Needless to say, an application developer expecting to deploy on a sp
vendor implementation of the J2EE platform, should be able to do so across a
range of operating systems and hardware architectures.

1.2.2 J2EE Platform Benefits

With a set of features designed specifically to expedite the process of distrib
application development, the J2EE platform offers several benefits:

• Simplified architecture and development

• Scalability to meet demand variations

• Integration with existing information systems

• Choices of servers, tools, components

• Flexible security model

THE PLATFORM FOR ENTERPRISE SOLUTIONS 11

odel.
, Stan-
t-

ation

on.
pro-
ding
rces,
ation
—new
ng

mi-
s a
tion
pers
set-

n
ment
aphic
gic by
riate
nte-
lica-

can
need

ding
on
hese
1.2.2.1 Simplified Architecture and Development

The J2EE platform supports a simplified, component-based development m
Because it’s based on the Java programming language and the Java 2 Platform
dard Edition (J2SETM platform), this model offers Write Once, Run Anywhere por
ability, supported by any server product that conforms to the J2EE standard.

The component-based J2EE development model can enhance applic
development productivity in a number of ways.

Maps easily to application functionality: Component-based application
models map easily and flexibly to the functionality desired from an applicati
As the examples presented throughout this book illustrate, the J2EE platform
vides a variety of ways to configure the architecture of an application, depen
on such things as client types required, level of access required to data sou
and other considerations. Component-based design also simplifies applic
maintenance, since components can be updated and replaced independently
functionality can be shimmed into existing applications simply by updati
selected components.

Enables assembly- and deploy-time behaviors:Components can expect the
availability of standard services in the runtime environment, and can be dyna
cally connected to other components providing well-defined interfaces. A
result, many application behaviors can be configured at the time of applica
assembly or deployment, without any recoding required. Component develo
can communicate their requirements to application deployers through specific
tings. Tools can automate this process to further expedite development.

Supports division of labor: Components help divide the labor of applicatio
development among specific skill sets, enabling each member of a develop
team to focus on his or her ability. Thus, JSP templates can be created by gr
designers, their behavior by Java programming language coders, business lo
domain experts, and application assembly and deployment by the approp
team members. This division of labor also helps expedite application mai
nance. For example, the user interface is the most dynamic part of many app
tions, particularly on the Web. With the J2EE platform, graphic designers
tweak the look and feel of JSP-based user interface components without the
for programmer intervention.

A number of generic roles are discussed in the J2EE specifications, inclu
Application Component Provider, Application Assembler, and Applicati
Deployer. On some development teams, one or two people may perform all t

CHAPTER 1 INTRODUCTION12

cific

uted
ent

data-
erfor-
le, by
will

gure
d to

fluc-

stry
ess to

g

sag-
dez-
roles, while on others, these tasks may be further subdivided into more spe
skill sets (such as user interface designers, programmers, and so on).

1.2.2.2 Scales Easily

J2EE containers provide a mechanism that supports simplified scaling of distrib
applications, without requiring any effort on the part of the application developm
team.

Because J2EE containers provide components with transaction support,
base connections, life cycle management, and other features that influence p
mance, they can be designed to provide scalability in these areas. For examp
providing database connection pooling, containers can ensure that clients
have access to data quickly.

Because the J2EE specifications allow server providers freedom to confi
containers to run on multiple systems, Web containers can be implemente
perform automatic load balancing as the demand for a particular application
tuates.

1.2.2.3 Integrating Existing Enterprise Information Systems

The J2EE platform, together with the J2SE platform, includes a number of indu
standard APIs for access to existing enterprise information systems. Basic acc
these systems is provided by the following APIs:

• JDBCTM is the API for accessing relational data from Java.

• The Java Transaction API (JTA) is the API for managing and coordinatin
transactions across heterogeneous enterprise information systems.

• The Java Naming and Directory InterfaceTM (JNDI) is the API for accessing in-
formation in enterprise name and directory services.

• The Java Message Service (JMS) is the API for sending and receiving mes
es via enterprise messaging systems like IBM MQ Series and TIBCO Ren
vous.

• JavaMailTM is the API for sending and receiving email.

• Java IDL is the API for calling CORBA services.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 13

rame
EE
plex

t sim-
le to
-tier

rvers,
ind of
EE

n
e of
This

urpose

be
f the
nd
can
tion

ls to
hoose

at
J2EE

ent
rtical
t a

solu-
es it
ro-
In addition, specialized access to enterprise resource planning and mainf
systems such as IBM’s CICS and IMS will be provided in future versions of J2
through the Connector architecture. Since each of these systems is highly com
and specialized, they each require unique tools and support to ensure utmos
plicity to application developers. As J2EE evolves, enterprise beans will be ab
combine the use of connector access objects and service APIs with middle
business logic to accomplish their business functions.

1.2.2.4 Choice of Servers, Tools, and Components

The J2EE standard and J2EE brand are central to creating a marketplace for se
tools, and components. The J2EE brand on a server product ensures the k
ubiquity that’s fundamental to the goals of the J2EE platform. In addition, J2
standards ensure a lively marketplace for tools and components.

A range of server choices:Application development organizations ca
expect J2EE branded platforms from a variety of vendors, providing a rang
choices in hardware platforms, operating systems, and server configurations.
ensures that businesses get a choice of servers appropriate to the strategic p
of the applications they need.

Designed for tool support:Both EJB and JSP components are designed to
manipulated by graphical development tools, and to allow automating many o
application development tasks traditionally requiring the ability to write a
debug code. Both J2EE server providers and third-party tool developers
develop tools that conform to J2EE standards and support various applica
development tasks and styles. Application developers get a choice of too
manipulate and assemble components, and individual team members may c
tools that suit their specific requirements best.

A marketplace for components: Component-based design ensures th
many types of behavior can be standardized, packaged, and reused by any
application. Component vendors will provide a variety of off-the-shelf compon
solutions, including accounting beans, user interface templates, and even ve
market functionality of interest in specific industries. Application architects ge
choice of standardized components to handle common or specialized tasks.

The J2EE standard and associated branding programming ensure that
tions are compatible. By setting the stage for freedom of choice, J2EE mak
possible to develop with confidence that the value of your investment will be p
tected.

CHAPTER 1 INTRODUCTION14

ation
mpo-
s can
ovide
atch-
med
nd

stage
ifica-
spec-
and
the

on-
ness

that
gure
er or
1.2.2.5 Simplified, Unified Security Model

The J2EE security model is designed to support single signon access to applic
services. Component developers can specify the security requirements of a co
nent at the method level, to ensure that only users with appropriate permission
access specific data operations. While the EJB and Java Servlet APIs both pr
mechanisms for building security checks into code, the basic mechanism for m
ing users with roles (groups of users having specific permissions) is perfor
entirely at application deployment time. This provides both greater flexibility a
better security control.

1.3 J2EE Application Scenarios

The following sections present a number of application scenarios, setting the
for a detailed discussion of the sample application. In reviewing the J2EE spec
tions, a large number of application scenarios could be considered. Indeed, the
ifications tend to embrace and encourage diversity. The J2EE specifications
technologies, can by definition, make few assumptions about how precisely
APIs are going to be used to deliver application-level functionality. The applicati
level decisions and choices are ultimately a trade-off, between functional rich
and complexity.

The J2EE programming model needs to embrace application scenarios
treat the Web container, and the EJB container as optional logical entities. Fi
1.2 reflects some key scenarios, including those where either the Web contain
the EJB container, and potentially both, are bypassed.

J2EE APPLICATION SCENARIOS 15

ion
llow-

ion.

usi-

rces
tive-

-
lly

logic
tion.

va-
Figure 1.2 J2EE Application Scenarios

The sample application reflects a multitier application model. This decis
assumes the presence of both a Web container and an EJB container. The fo
ing enterprise requirements heavily influenced the choices made:

• The need to make rapid and frequent changes to the “look” of the applicat

• The need to partition the application along the lines of presentation and b
ness logic so as to increase modularity.

• The need to simplify the process of assigning suitably trained human resou
to accomplish the development task such that work can proceed along rela
ly independent but cooperating tracks.

• The need to have developers familiar with back-office applications unbur
dened from GUI and graphic design work, for which they may not be idea
qualified.

• The need to have the necessary vocabulary to communicate the business
to teams concerned with human factors and the aesthetics of the applica

• The ability to assemble back-office applications using components from a
riety of sources, including off-the-shelf business logic components.

CHAPTER 1 INTRODUCTION16

 and

mp-
cou-

the
2EE
 a
im-

of
at
his

fair to
the

ops

ates
the

eart

duct
licit

duct
ider-
cols

Web
ion’s
on-

ation
on the
f data
sce-
he
• The ability to deploy transactional components across multiple hardware
software platforms independently of the underlying database technology.

• The ability to externalize internal data without having to make many assu
tions about the consumer of the data and to accomplish this in a loosely
pled manner.

Clearly relaxing any or all of these requirements would influence some of
application-level decisions and choices that a designer would make. The J
programming model takes the approach that it is highly desirable to engineer
3-tier application such that the migration to a future multitier architecture is s
plified through component reusability. Although it is reasonable to speak
“throw-away” presentation logic (that is, applications with a look and feel th
ages rapidly), there is still significant inertia associated with business logic. T
is even more true in the case of database schemas and data in general. It is
say that as one moves further away from the EIS resources the volatility of
application code increases dramatically; that is, the application “shelf-life” dr
significantly.

In summary, the J2EE programming model promotes a model that anticip
growth, encourages component-oriented code reusability, and leverages
strengths of inter-tier communication. It is the tier integration that lies at the h
of the J2EE programming model.

Figure 1.2 illustrates a number of application scenarios that a J2EE pro
should be capable of supporting. From a J2EE perspective, there is no imp
bias favoring one application scenario over another. However, a J2EE pro
should not preclude supporting any and all of these scenarios. It is worth cons
ing the scenarios individually and elaborating on the technologies and proto
relevant to an application developer.

1.3.1 Multitier Application Scenario

Figure 1.3 illustrates an application scenario in which the Web container hosts
components that are almost exclusively dedicated to handling a given applicat
presentation logic. The delivery of dynamic Web content to the client is the resp
sibility of JSP pages (supported by servlets). The EJB container hosts applic
components that, on the one hand, respond to requests from the Web tier, and
other hand, access the EIS resources. The ability to decouple the accessing o
from issues surrounding end-user interactions is a strength of this particular
nario. For one, the application is implicitly scalable. But more importantly, t

J2EE APPLICATION SCENARIOS 17

ok

io.
, but
ainer
lat-
sers
e of
ilize
ing
nge
ava
m-

es up
pre-

the
JSP
efore
that

will
application back-office functionality is relatively isolated from the end-user lo
and feel.

Figure 1.3 Multitier Application

It is worth noting that XML is included as an integral part of this scenar
The role of XML data messaging will be expanded on in subsequent chapters
the ability to both produce and consume XML data messages in the Web cont
is viewed as an extremely flexible way of embracing a diverse set of client p
forms. These platforms may range from general purpose XML-enabled brow
to specialized XML rendering engines targeting vertical solutions. Irrespectiv
the specific application area, it is assumed that XML data messages will ut
HTTP as their communication transport. The term XML data messaging is be
used to denote a programming model where XML is being used to excha
information as opposed to promoting an object model orthogonal to the J
object model. The relationship of XML to Java is therefore viewed as highly co
plementary.

At the Web tier, the question of whether to use JSP pages or servlets com
repeatedly. The J2EE programming model promotes JSP technology as the
ferred programming facility within the Web container. JSP pages rely on
servlet functionality but the J2EE programming model takes the position that
pages are a more natural fit for Web engineers. The Web container is ther
optimized for the creation of dynamic content destined for Web clients and
use of JSP technology should be viewed as the norm while the use of servlets
most likely be the exception.

CHAPTER 1 INTRODUCTION18

hree

s
It is
ver
1.3.2 Stand-Alone Client Scenario

Figure 1.4 illustrates a stand-alone client scenario.

Figure 1.4 Stand-Alone Clients

From a J2EE programming model perspective, we need to consider t
types of stand-alone clients:

• EJB clients interacting directly with an EJB server, that is enterprise bean
hosted on an EJB container. Such a scenario is illustrated in Figure 1.5.
assumed that RMI-IIOP will be used in this scenario and that the EJB ser
will access the EIS resources using JDBC (connectors in the future).

Figure 1.5 EJB-Centric Java Client

J2EE APPLICATION SCENARIOS 19

tem
. In
 on

ca-
es-
on

m
han-
n-

 be
rma-
EJB

er (at
led.
ifica-
uld
en
• Stand-alone Java application clients accessing enterprise information sys
resources directly using JDBC and potentially even connectors in the future
this scenario, presentation and business logic are by definition co-located
the client platform and may in fact be tightly integrated into a single appli
tion. This scenario collapses the middle tier into the client platform, and is
sentially a client-server application scenario with the associated applicati
distribution, maintenance, and scalability issues.

• Visual Basic clients consuming dynamic Web content, most likely in the for
of XML data messages. In this scenario, the Web container is essentially
dling XML transformations and providing Web connectivity to clients. Prese
tation logic is assumed to be handled on the client tier. The Web tier can
designated to handle business logic and directly access the enterprise info
tion system resources. Ideally, the business logic is pushed back onto the
server, where the rich component model can be fully leveraged.

1.3.3 Web-Centric Application Scenario

Figure 1.6 illustrates a 3-tier Web-centric application scenario.

Figure 1.6 Web-Centric Application Scenario

There are numerous examples that one could concoct where an EJB serv
least initially) could be deemed to be an overkill given the problem being tack
This is the sledge-hammer-to-crack-a-nut problem. In essence, the J2EE spec
tion does not mandate a 2, 3, or multitier application model, nor realistically co
it do so. The point is that it is important to use appropriate tools for a giv
problem space.

CHAPTER 1 INTRODUCTION20

se.
, and
s the

tion

ere
ent,
cated
hion
ing

titier

EJB
sag-
ica-
The 3-tier Web-centric application scenario is currently in widespread u
The Web container is essentially hosting both presentation and business logic
it is assumed that JDBC (and connectors in the future) will be used to acces
EIS resources.

Figure 1.7 provides a closer look at the Web container in a Web applica
scenario.

Figure 1.7 Web Container in a 3-Tier Scenario

It is important to keep in mind that the term Web container is being used h
in a very precise way. For example, if a given J2EE product chooses to implem
a J2EE server, such that the Web container and the EJB container are co-lo
(this assumes that the inter-container communication is optimized in some fas
and that the implementation details are private), then the J2EE programm
model treats the application deployed on such a platform as essentially a mul
scenario.

1.3.4 Business-to-Business Scenario

Figure 1.8 illustrates a business-to-business scenario.
This scenario focuses on peer-level interactions between both Web and

containers. The J2EE programming model promotes the use of XML data mes
ing over HTTP as the primary means of establishing loosely coupled commun

J2EE APPLICATION SCENARIOS 21

and

ore
i-
ly-

arios.
a-
trac-
that
VC.
ts
cou-

ap
ction
n of

usi-
erves
tions between Web containers. This is a natural fit for the development
deployment of Web-based commerce solutions.

Figure 1.8 Business-to-Business Scenario

The peer-level communications between EJB containers is currently a m
tightly coupled solution most suitable for intranet environments. With the imm
nent integration of JMS into the J2EE platform, the development of loose
coupled intranet solutions will become increasingly practical.

1.3.5 A Note on the MVC Architecture

A brief aside here regarding the subsequent discussions of application scen
Throughout the remainder of this book, the Model-View-Controller (MVC) applic
tion architecture is used to analyze features of distributed applications. This abs
tion helps in the process of breaking an application up into logical components
can be architected more easily. This section explores the general features of M

The MVC architecture is a way to divide functionality among objec
involved in maintaining and presenting data so as to minimize the degree of
pling between the objects. The MVC architecture was originally developed to m
the traditional input, processing, and output tasks to the graphical user intera
model. However, it is straightforward to map these concepts into the domai
multitier Web-based enterprise applications.

In the MVC architecture, the Model represents application data and the b
ness rules that govern access and modification of this data. Often the model s

CHAPTER 1 INTRODUCTION22

del-

the
rol-

l and
is the
or-

aps
ese
they
by
f the
s, the
uest.
m-
ing

oller

rib-
mpa-
ion

gies
prise
it is
2EE
E-
iza-

del,
as a software approximation to a real world process and simple real world mo
ing techniques apply when defining the model.

The model notifies views when it changes and provides the ability for
view to query the model about its state. It also provides the ability for the cont
ler to access application functionality encapsulated by the model.

A View renders the contents of a model. It accesses data from the mode
specifies how that data should be presented. When the model changes, it
view’s responsibility to maintain consistency in its presentation. The view f
wards user gestures to the controller.

A Controller defines application behavior; it interprets user gestures and m
them into actions to be performed by the model. In a stand-alone GUI client, th
user gestures could be button clicks or menu selections. In a Web application,
appear asGET andPOST HTTP requests to the Web tier. The actions performed
the model include activating business processes or changing the state o
model. Based on the user gesture and the outcome of the model command
controller selects a view to be rendered as part of the response to this user req

There is usually one controller for each set of related functionality. For exa
ple, human resources applications typically have a controller for manag
employee interactions and a controller for human resources personnel.

Figure 1.9 depicts the relationships between the model, view, and contr
portions of an MVC application.

1.4 Summary

The challenge to IT professionals today is to efficiently develop and deploy dist
uted applications for use on both corporate intranets and over the Internet. Co
nies that can do this effectively will gain strategic advantage in the informat
economy.

The Java 2 Platform, Enterprise Edition is a standard set of Java technolo
that streamline the development, deployment, and management of enter
applications. The J2EE platform is functionally complete in the sense that
possible to develop a large class of enterprise applications using only the J
technologies. Applications written for the J2EE platform will run on any J2E
compatible server. The J2EE platform provides a number of benefits for organ
tions developing such applications, including a simplified development mo

SUMMARY 23

s in

ns
fast-
industrial-strength scalability, support for existing information systems, choice
servers, tools, and components, and a simple, flexible security model.

Figure 1.9 Relationships Between MVC Participants

By providing the ability to deploy component-oriented enterprise applicatio
across multiple computing tiers in a platform-neutral manner, J2EE can give
moving enterprises a significant and measurable competitive edge.

ed
sity
engi-
ented

s
data-
About the Author

STEPHANIE BODOFFis a staff writer at Sun Microsystems. She has been involv
with object-oriented enterprise software since graduating from Columbia Univer
with an M.S. in electrical engineering. For several years she worked as a software
neer on distributed computing and telecommunications systems and object-ori
software development methods. During that period she co-authoredObject-Oriented
Software Development: The Fusion Method, Prentice Hall. For the past 4 year
Stephanie has concentrated on technical writing, documenting object-oriented
bases, application servers, and enterprise application development methods.

C H A P T E R 2

s

f

ica-
com-

essen-
iness
n be
sup-
m-
the

rma-
base,
plat-
and

po-
low-
ns
lient
J2EE Platform Technologie
by Stephanie Bodof

THE J2EE platform specifies technologies to support multitier enterprise appl
tions. These technologies fall into three categories: component, service, and
munication.

The component technologies are those used by developers to create the
tial parts of the enterprise application, namely the user interface and the bus
logic. The component technologies allow the development of modules that ca
reused by multiple enterprise applications. The component technologies are
ported by J2EE platform system-level services which simplify application progra
ming and allow components to be customized to use resources available in
environment in which they are deployed.

Since most enterprise applications require access to existing enterprise info
tion systems, the J2EE platform supports APIs that provide access to data
transaction, naming and directory, and messaging services. Finally, the J2EE
form provides technologies that enable communication between clients
servers and between collaborating objects hosted by different servers.

This chapter will provide an overview of the J2EE platform technologies.

2.1 Component Technologies

A componentis an application-level software unit. In addition to JavaBeans com
nents, which are part of the J2SE platform, the J2EE platform supports the fol
ing types of components: applets, application clients, Enterprise JavaBeaTM

components, and Web components. Applets and application clients run on a c
platform and EJB and Web components run on a server platform.
25

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES26

ntity
cle
anage
when
po-
Java-
the

base in

m-

va
ing

ired
s to

on 2.5

eb
. The
erver
nts.

lets
que-
g an
All J2EE components depend on the runtime support of a system-level e
called acontainer. Containers provide components with services such as life cy
management, security, deployment, and threading. Because containers m
these services, many component behaviors can be declaratively customized
the component is deployed in the container. For example, an Application Com
nent Provider can specify an abstract name for a database that an Enterprise
Beans component needs to access and a Deployer will link that name with
information (such as a user name and password) needed to access the data
a given environment.

The following sections provide overviews of the different types of J2EE co
ponents and containers.

2.1.1 Applets and Application Clients

Appletsandapplication clientsare client components that execute in their own Ja
virtual machine. An applet container includes support for the applet programm
model. A J2EE client may make use of the Java Plug-in to provide the requ
applet execution environment. An application client container provides acces
the J2EE service (see Section 2.3 on page 33) and communication (see Secti
on page 41) APIs. Applets and application clients are covered in Chapter 3.

2.1.2 Web Components

A Web componentis a software entity that provides a response to a request. A W
component typically generates the user interface for a Web-based application
J2EE platform specifies two types of Web components: servlets and JavaS
PagesTM (JSP) pages. The following sections give an overview of Web compone
Web components are discussed in detail in Chapter 4.

2.1.2.1 Servlets

A servlet is a program that extends the functionality of a Web server. Serv
receive a request from a client, dynamically generate the response (possibly
rying databases to fulfill the request), and then send the response containin
HTML or XML document to the client.

COMPONENT TECHNOLOGIES 27

nerate
that

s:

ses
se
-
amic

 docu-
onents
ard
s, and
ac-

con-

ts, and
l for
otocols
ner
A servlet developer uses the servlet API to:

• Initialize and finalize a servlet

• Access a servlet’s environment

• Receive requests and send responses

• Maintain session information on behalf of a client

• Interact with other servlets and other components

2.1.2.2 JavaServer Pages Technology

The JavaServer Pages (JSP) technology provides an extensible way to ge
dynamic content for a Web client. A JSP page is a text-based document
describes how to process a request to create a response. A JSP page contain

• Template data to format the Web document. Typically the template data u
HTML or XML elements. Document designers can edit and work with the
elements on the JSP page without affecting the dynamic content. This ap
proach simplifies development because it separates presentation from dyn
content generation.

• JSP elements and scriptlets to generate the dynamic content in the Web
ment. Most JSP pages use JavaBeans and/or Enterprise JavaBeans comp
to perform the more complex processing required of the application. Stand
JSP actions can access and instantiate beans, set or retrieve bean attribute
download applets. JSP is extensible through the development of custom
tions, which are encapsulated in tag libraries.

2.1.2.3 Web Component Containers

Web components are hosted by servlet containers, JSP containers, and Web
tainers. In addition to standard container services, aservlet containerprovides
network services (by which requests and responses are sent), decodes reques
formats responses. All servlet containers must support HTTP as a protoco
requests and responses, but may also support additional request-response pr
such as HTTPS. AJSP containerprovides the same services as a servlet contai
and an engine that interprets and processes a JSP page into a servlet. AWeb con-

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES28

service

evel-
prise

eans:
nter-

ally
per-
hile a
ash.
across
ages

bean

tore;
del-

rep-

n
e ref-

r
rvices
tainer provides the same services as a JSP container and access to the J2EE
and communication APIs.

2.1.3 Enterprise JavaBeans Components

The Enterprise JavaBeans (EJB) architecture is a server-side technology for d
oping and deploying components containing the business logic of an enter
application. Enterprise JavaBeans components, termedenterprise beans, are scal-
able, transactional, and multi-user secure. There are two types of enterprise b
session beans and entity beans. The following sections give an overview of e
prise beans. Enterprise beans are discussed in detail in Chapter 5.

2.1.3.1 Session Beans

A session beanis created to provide some service on behalf of a client and usu
exists only for the duration of a single client-server session. A session bean
forms operations such as calculations or accessing a database for the client. W
session bean may be transactional, it is not recoverable should its container cr

Session beans can be stateless or can maintain conversational state
methods and transactions. If they do maintain state, the EJB container man
this state if the object must be removed from memory. However, the session
object itself must manage its own persistent data.

2.1.3.2 Entity Beans

An entity beanis a persistent object that represents data maintained in a data s
its focus is data-centric. An entity bean can manage its own persistence or it can
egate this function to its container. An entity bean can live as long as the data it
resents.

An entity bean is identified by a primary key. If the container in which a
entity bean is hosted crashes, the entity bean, its primary key, and any remot
erences survive the crash.

2.1.3.3 EJB Component Containers

Enterprise beans are hosted by anEJB container. In addition to standard containe
services, an EJB container provides a range of transaction and persistence se
and access to the J2EE service and communication APIs.

COMPONENT TECHNOLOGIES 29

Is,
the
2EE
e 41.
2.1.4 Components, Containers, and Services

The J2EE component types and their containers are illustrated in Figure 2.1.

Figure 2.1 J2EE Components and Containers

Containers provide all application components with the J2SE platform AP
which include the Java IDL and JDBC 2.0 core enterprise APIs. Table 2.1 lists
Standard Extension APIs that are available in each type of container. The J
platform APIs are described in Section 2.4 on page 39 and Section 2.5 on pag

Table 2.1 J2EE Required Standard Extension APIs

API Applet
Application

Client Web EJB

JDBC 2.0 Extension N Y Y Y

JTA 1.0 N N Y Y

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES30

and
er,

ral,
rties
ver,

form
ific to
tech-
rs,
plat-

n’s
role
les.
ent
2.2 Platform Roles

The J2EE platform defines several distinct roles in the application development
deployment life cycle: J2EE Product Provider, Application Component Provid
Application Assembler, Deployer, System Administrator, Tool Provider. In gene
the roles are defined to aid in identifying the tasks performed by various pa
during the development, deployment, and running of a J2EE application. Howe
while some of these roles, such as System Administrator and Tool Provider, per
tasks that are common to non-J2EE platforms, other roles have a meaning spec
the J2EE platform, because the tasks those roles perform are specific to J2EE
nology. In particular, Application Component Providers, Application Assemble
and Deployers must configure J2EE components and applications to use J2EE
form services (described in Section 2.3 on page 33).

The roles can be fulfilled by whatever personnel match an organizatio
actual application development and deployment workflow. Thus, each J2EE
may be performed by a different party or a single party may perform several ro
For example, a programmer may perform the roles of Application Compon
Provider and Application Assembler.

JNDI 1.2 N Y Y Y

Servlet 2.2 N N Y N

JSP 1.1 N N Y N

EJB 1.1 N Ya Yb Y

RMI-IIOP 1.0 N Y Y Y

JMS 1.0 N Y Y Y

JavaMail 1.1 N N Y Y

JAF 1.0 N N Y Y

a Application clients can only make use of the enterprise bean client APIs.
b Servlets and JSP pages can only make use of the enterprise bean client

APIs.

Table 2.1 J2EE Required Standard Extension APIs (continued)

API Applet
Application

Client Web EJB

PLATFORM ROLES 31

e of
Pro-

lica-
rver

stem
2EE
fea-
the

-spe-

ent
e 32)
stem
2EE
ese

ica-
ll as
eed
nts

ud-
elop-
ed in

tion
Their
le,

he
iptors
The following sections define the J2EE platform roles. Subsets of som
these roles are defined in the EJB (Enterprise Bean Provider, EJB Container
vider, EJB Server Provider), JSP (JSP Container Provider), and Servlet (App
tion Developer, Servlet Container Provider, Web Container Provider, Web Se
Provider) specifications.

2.2.1 J2EE Product Provider

A J2EE Product Provider, typically an operating system vendor, database sy
vendor, application server vendor, or a Web server vendor, implements a J
product providing the component containers, J2EE platform APIs, and other
tures defined in the J2EE specification. A J2EE product is free to implement
interfaces that are not specified by the J2EE specification in an implementation
cific way.

A J2EE Product Provider provides application deployment and managem
tools. Deployment tools enable a Deployer (described in Section 2.2.4 on pag
to deploy components on the J2EE product. Management tools allow a Sy
Administrator (described in Section 2.2.5 on page 32) to manage the J
product and the applications deployed on the J2EE product. The form of th
tools is not prescribed by the J2EE specification.

2.2.2 Application Component Provider

Application Component Providers produce the building blocks of a J2EE appl
tion. They typically have expertise in developing reusable components as we
sufficient business domain knowledge. Application Component Providers n
not know anything about the operational environment in which their compone
will be used. There are multiple roles for Application Component Providers, incl
ing HTML document designers, document programmers, enterprise bean dev
ers, and so on. These roles use tools provided by a Tool Provider (describ
Section 2.2.6 on page 32) to produce J2EE components and applications.

2.2.3 Application Assembler

An Application Assembler takes a set of components developed by Applica
Component Providers and assembles them into a complete J2EE application.
expertise lies in providing solutions for a specific problem domain, for examp
the financial industry. Application Assemblers may not be familiar with t
source code of the components that they use, but they use declarative descr

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES32

ike
era-
n

r or
bly
loyer

for
oyer
s. A
ures
ncies

of
r is

ppli-
ge-

lica-
om-
n be
form
plica-
that
for the components in order to know how to build applications from them. L
Application Component Providers, they need not know anything about the op
tional environment in which their applications will be used. An Applicatio
Assembler will generally use GUI tools provided by either a Product Provide
Tool Provider. An Application Assembler is responsible for providing assem
instructions describing external dependencies of the application that the Dep
must resolve in the deployment process.

2.2.4 Deployer

A Deployer, an expert in a specific operational environment, is responsible
deploying J2EE components and applications into that environment. A Depl
uses tools supplied by the J2EE Product Provider to perform deployment task
Deployer installs components and applications into a J2EE server and config
components and applications so as to resolve all the external depende
declared by the Application Component Provider and Application Assembler.

2.2.5 System Administrator

A System Administrator is responsible for the configuration and administration
an enterprise’s computing and networking infrastructure. A System Administrato
also responsible for overseeing the runtime well-being of the deployed J2EE a
cations. The System Administrator typically uses runtime monitoring and mana
ment tools provided by the J2EE Product Provider to accomplish these tasks.

2.2.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of app
tion components. A variety of tools are anticipated, corresponding to the many c
ponent types supported by the J2EE platform. Platform independent tools ca
used for all phases of development up to the deployment of an application. Plat
dependent tools are used for deployment, management, and monitoring of ap
tions. Future versions of the J2EE specification may define more interfaces
allow such tools to be platform independent.

PLATFORM SERVICES 33

nts
ble in
lat-

com-
envi-
e
ts the

ter-

vi-

fined

prise
s.
ent
med

ed at

ins a
ly
loy-

form
2.3 Platform Services

J2EE platform services simplify application programming and allow compone
and applications to be customized at deployment time to use resources availa
the deployment environment. This section gives a brief overview of the J2EE p
form naming, deployment, transaction, and security services.

2.3.1 Naming Services

J2EE naming services provide application clients, enterprise beans, and Web
ponents with access to a JNDI (described in Section 2.4.3 on page 40) naming
ronment. Anaming environmentallows a component to be customized without th
need to access or change the component’s source code. A container implemen
component’s environment, and provides it to the component as a JNDInaming con-
text.

A J2EE component locates its environment naming context using JNDI in
faces. A component creates ajavax.naming.InitialContext object and looks up
the environment naming context inInitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the en
ronment naming context, or in any of its direct or indirectsubcontexts.

A J2EE component can access named system-provided and user-de
objects. The names of system-provided objects, such as JTAUserTransaction

objects, are stored in the environment naming context,java:comp/env. The J2EE
platform allows a component to name user-defined objects, such as enter
beans, environment entries, JDBCDataSource objects, and message connection
An object should be named within a subcontext of the naming environm
according to the type of the object. For example, enterprise beans are na
within the subcontextjava:comp/env/ejb and JDBCDataSource references in the
subcontextjava:comp/env/jdbc.

2.3.2 Deployment Services

J2EE deployment services allow components and applications to be customiz
the time they are packaged and deployed.

J2EE applications are deployed as a set of nested units. Each unit conta
deployment descriptor,an XML-based text file whose elements declarative
describe how to assemble and deploy the unit into a specific environment. Dep
ment descriptors contain many elements related to customizing J2EE plat
services such as transactions and security.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES34

er-

ica-
t of

n. A
rise

on-
nent
ts in

n be

nd an
.jar

es,
iles

oy-
h a

An
ele-
bler
eploy-
tion
The following sections give an overview of J2EE platform deployment s
vices. Deployment services are discussed in detail in Chapter 7.

2.3.2.1 Deployment Units

A J2EE applicationconsists of one or more J2EE modules and one J2EE appl
tion deployment descriptor. An application deployment descriptor contains a lis
the applications’s modules and information on how to customize the applicatio
J2EE application is packaged as a Java Archive (JAR) file with an .ear (Enterp
ARchive) extension.

A J2EE moduleconsists of one or more J2EE components for the same c
tainer type and one component deployment descriptor of that type. A compo
deployment descriptor contains declarative data to customize the componen
the module. A J2EE module without an application deployment descriptor ca
deployed as a stand-alone J2EE module.

The three types of J2EE modules are:

• Enterprise JavaBeans modules contain class files for enterprise beans a
EJB deployment descriptor. EJB modules are packaged as JAR files with a
extension.

• Web modules contain JSP files, class files for servlets, GIF and HTML fil
and a Web deployment descriptor. Web modules are packaged as JAR f
with a .war (Web ARchive) extension.

• Application client modules contain class files and an application client depl
ment descriptor. Application client modules are packaged as JAR files wit
.jar extension.

2.3.2.2 Platform Roles in the Deployment Process

Each J2EE platform role performs specific activities related to deployment.
Application Component Provider specifies component deployment descriptor
ments and packages components into modules. An Application Assem
resolves references between modules and assembles modules into a single d
ment unit. A Deployer creates links between entities referred to by the applica
and entities in the deployment environment.

PLATFORM SERVICES 35

of
letes

its
ck)

lop-
plex

ter-

d)

pa-
inat-

es.

nd

auto-
nsac-

 a
-

2.3.3 Transaction Services

Transactions divide an application into a series of indivisible or “atomic” units
work. A system that supports transactions ensures that each unit fully comp
without interference from other processes. If the unit can be completed in
entirety, it is committed. Otherwise, the system completely undoes (rolls ba
whatever work the unit had performed. Transactions simplify application deve
ment because they free the Application Component Provider from the com
issues of failure recovery and multi-user programming.

Transactions, as provided by the J2EE platform, have the following charac
istics:

• J2EE transactions are flat. A flat transaction cannot have any child (neste
transactions.

• The J2EE platform implicitly handles many transaction details, such as pro
gating information specific to a particular transaction instance, and coord
ing among multiple transaction managers.

The following sections give an overview of J2EE platform transaction servic
Transaction services are discussed in detail in Chapter 8.

2.3.3.1 Accessing Transactions

A JTA transactionis a transaction that can span multiple components a
resource managers. Aresource manager local transactionis a transaction that is
specific to a particular enterprise information system connection.

JTA transactions are created and managed using thejavax.transac-

tion.UserTransaction interface. Different types of components accessUser-

Transaction objects in different ways:

• Enterprise beans provide a mechanism for JTA transactions to be started
matically by their containers. Enterprise beans that use bean-managed tra
tions (described in Section 2.3.3.3 on page 36) use the method
EJBContext.getUserTransaction to look up theUserTransaction object.

• Applets and application clients may or may not be able to directly access
UserTransaction object depending on the capabilities provided by the con
tainer. However, they can always invoke enterprise beans that use aUser-

Transaction object.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES36

r spe-
on a

tional.
sac-
an
pro-
tional

nsac-

ectly

pa-

only

other
by a
en

ent.
r state
ee the

rise
• Web components use JNDI to look up theUserTransaction object.

A resource manager local transaction is created and managed in a manne
cific to a particular connection. For example, each SQL statement executed
JDBC connection has its own transaction.

2.3.3.2 Web Component Transactions

Web components (JSP pages and servlets) are not designed to be transac
Because of this, Application Component Providers should only perform tran
tional work directly in Web components on a very limited basis. Preferably,
Application Component Provider should delegate transactional work to the ap
priate enterprise beans. When an enterprise bean is used to perform transac
work, the enterprise bean or container takes care of properly setting up the tra
tion.

Nevertheless, there are times when a Web component may need to dir
demarcate transactions. It can do so using thejavax.transaction.UserTransac-

tion interface. You should however, be aware of limitations in transaction pro
gation and state isolation, as described in the following discussions.

Transaction Propagation

Transactions are propagated from a Web component to an enterprise bean
when the Web component starts the transaction using theUserTransaction inter-
face. Since Web components are server-side components, Web browsers and
clients don’t have direct access to transactions and so a transaction initiated
Web componentcannotbe propagated from the client of the component or betwe
Web components and transactional resources such as JDBC connections.

State Isolation

A Web component can keep state for the lifetime of a client session or compon
However, because Web components are not transactional components, thei
cannot be isolated based on transactions. For example, separate servlets will s
same state of a client session even if they each start their own transaction.

2.3.3.3 Enterprise Bean Transactions

The J2EE platform provides two styles of transaction demarcation for enterp
beans: bean-managed and container-managed.

PLATFORM SERVICES 37

d

sac-

ation
rting
hout
o-

uted

ner- or
action
ans-
ction
utes
nd, if
only

s are
eps:

-

g in.

, the
With bean-managed transaction demarcation, the enterprise bean is require
to manage all aspects of a transaction. This entails operations such as:

• Creating the transaction object

• Explicitly starting the transaction

• Completing the transaction. There are two basic ways of completing a tran
tion:

■ Committing the transaction when all updates are completed.

■ Rolling back the transaction if an error occurred.

With container-managed transaction demarcation, the EJB container handles
transaction management. The container performs the transaction demarc
based on the Application Assembler’s deployment instructions; it handles sta
and ending the transaction, plus it maintains the transaction context throug
the life of the transaction object. This greatly simplifies an Application Comp
nent Provider’s responsibilities and tasks, especially for transactions in distrib
environments.

Session beans, both stateful and stateless varieties, can use either contai
bean-managed transactions. However, a bean cannot use both types of trans
at the same time. The Application Component Provider decides the type of tr
action demarcation that a session bean will use and must declare the transa
style via attributes in the enterprise bean’s deployment descriptor. The attrib
indicate whether the bean or container will manage the bean’s transactions a
the latter, how the container will manage the transactions. Entity beans can
use container-managed transaction demarcation.

2.3.4 Security Services

The J2EE platform security services are designed to ensure that resource
accessed only by users authorized to use them. Access control involves two st

1. Authentication—An entity must establish its identity throughauthentication.
It typically does so by providingauthentication data(such as a name and pass
word). An entity that can be authenticated is called aprincipal. A principal can
be a user or another program. Users are typically authenticated by loggin

2. Authorization—When an authenticated principal tries to access a resource

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES38

e se-

es.

atic.
ity
der

pli-
Web

w a
eb

sed

he
tion,
ord.
an

used

ins

tion
ource.

t can
ent
, the
ence
system determines whether the principal is authorized to do so based on th
curity policies in force in the application’ssecurity policy domain.

The following sections give an overview of J2EE platform security servic
Security services are discussed in detail in Chapter 9.

2.3.4.1 Security Methodologies

Containers provide two security methodologies: declarative and programm
Declarative securityrefers to the means of specifying an application’s secur
structure in a form external to the application. An Application Component Provi
specifies declarative security in a component’s deployment descriptor.Program-
matic securityrefers to security mechanisms accessed within a program. An Ap
cation Component Provider accesses programmatic security for EJB and
components with J2EE platform security APIs.

2.3.4.2 Authentication

The J2EE platform allows an Application Component Provider to choose ho
principal is authenticated. A Web client can provide authentication data to a W
container using HTTP basic authentication, digest authentication, form-ba
authentication, or certificate authentication.

With basic authentication,the Web server authenticates a principal using t
user name and password obtained from the Web client. Like basic authentica
digest authenticationauthenticates a user based on a user name and a passw
However, the authentication is performed by transmitting the password in
encrypted form, which is much more secure than the simple base64 encoding
by basic authentication. Withform-based authentication, the Web container can
provide an application-specific form for logging in. Withcertificate authentica-
tion, the client uses a public key certificate to establish its identity and mainta
its own security context.

There is no way to authenticate to an EJB container. However, authentica
data is also often required when an enterprise bean accesses an external res
An enterprise bean can provide authentication data to a resource directly, or i
request the container to perform this service for it. If the Application Compon
Provider specifies that the container should propagate authentication data
Deployer specifies the authentication data for each resource factory refer

SERVICE TECHNOLOGIES 39

data

ro-
rin-
tive

rol

le. If
ay

nent
nt

les:
a

-
pro-

(or
d, the
ated
the

ge of
vide
erprise
declared by the enterprise bean, and the container uses the authentication
when obtaining a connection to the resource.

2.3.4.3 Authorization

J2EE platform authorization is based on the concept of security roles. Asecurity
role is a logical grouping of users that is defined by an Application Component P
vider or Application Assembler. Each security role is mapped by a Deployer to p
cipals in the deployment environment. A security role can be used with declara
security and/or programmatic security.

An Application Component Provider or Application Assembler can cont
access to an enterprise bean’s methods by specifying themethod-permission

element in the enterprise bean’s deployment descriptor. Themethod-permission

element contains a list of methods that can be accessed by a given security ro
a principal is in a security role allowed access to a method, the principal m
execute the method. Similarly, a principal is allowed access to a Web compo
only if the principal is in the appropriate security role. An Application Compone
Provider controls access programmatically by using theEJBContext.isCallerIn-

Role or HttpServletRequest.isRemoteUserInRole methods.
For example, suppose a payroll application specifies two security ro

employee andadministrator. Salary update operations are executable only by
principal acting in the role ofadministrator, but salary read operations are exe
cutable by both roles. When the payroll application is deployed, the Deployer
vides a mapping between the set of administrator and employee principals
groups) and their respective roles. When the salary update method is execute
enterprise bean’s container can check whether the principal or group propag
from the Web server is in a role that can execute that method. Alternatively,
method itself could use one of the security APIs to perform the check.

2.4 Service Technologies

The J2EE platform service technologies allow applications to access a wide ran
services in a uniform manner. This section describes technologies that pro
access to databases, transactions, naming and directory services, and ent
information systems.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES40

2EE
s an

tion

the
on-
ort.

r use
enter-

in a
Java

buted
nager

sac-
bject
sac-
pport
ation,
ce.

rd
2.4.1 JDBC API

The JDBC™ API provides database-independent connectivity between the J
platform and a wide range of tabular data sources. JDBC technology allow
Application Component Provider to:

• Perform connection and authentication to a database server

• Manage transactions

• Move SQL statements to a database engine for preprocessing and execu

• Execute stored procedures

• Inspect and modify the results fromSelect statements

The J2EE platform requires both the JDBC 2.0 Core API (included in
J2SE platform), and the JDBC 2.0 Extension API, which provides row sets, c
nection naming via JNDI, connection pooling, and distributed transaction supp
The connection pooling and distributed transaction features are intended fo
by JDBC drivers to coordinate with a J2EE server. Access to databases and
prise information systems is covered in detail in Chapter 6.

2.4.2 Java Transaction API and Service

The Java Transaction API (JTA) allows applications to access transactions
manner that is independent of specific implementations. JTA specifies standard
interfaces between a transaction manager and the parties involved in a distri
transaction system: the transactional application, the J2EE server, and the ma
that controls access to the shared resources affected by the transactions.

The Java Transaction Service (JTS) specifies the implementation of a tran
tion manager that supports JTA and implements the Java mapping of the O
Management Group Object Transaction Service 1.1 specification. A JTS tran
tion manager provides the services and management functions required to su
transaction demarcation, transactional resource management, synchroniz
and propagation of information that is specific to a particular transaction instan

2.4.3 Java Naming and Directory Interface

The Java Naming and Directory Interface™ (JNDI) API provides naming and direc-
tory functionality. It provides applications with methods for performing standa

COMMUNICATION TECHNOLOGIES 41

g for
any

ions
ting
ws

, a
ms,
data-

ctional
th an

ndor
nec-
ctor
port
mul-

een
rvers.
tion
directory operations, such as associating attributes with objects and searchin
objects using their attributes. Using JNDI, an application can store and retrieve
type of named Java object.

Because JNDI is independent of any specific implementations, applicat
can use JNDI to access multiple naming and directory services, including exis
naming and directory services such as LDAP, NDS, DNS, and NIS. This allo
applications to coexist with legacy applications and systems.

2.4.4 Connector Architecture

A future version of the J2EE platform will support the Connector architecture
standard API for connecting the J2EE platform to enterprise information syste
such as enterprise resource planning, mainframe transaction processing, and
base systems. The architecture defines a set of scalable, secure, and transa
mechanisms that describe the integration of enterprise information systems wi
EJB server and enterprise applications.

To use the Connector architecture, an enterprise information system ve
provides a standard connector for its enterprise information system. The con
tor has the capability to plug in to any EJB server that supports the Conne
architecture. Similarly, an EJB server vendor extends its system once to sup
this Connector architecture and is then assured of a seamless connectivity to
tiple enterprise information systems.

2.5 Communication Technologies

Communication technologies provide mechanisms for communication betw
clients and servers and between collaborating objects hosted by different se
The J2EE specification requires support for the following types of communica
technologies:

• Internet protocols

• Remote method invocation protocols

• Object Management Group protocols

• Messaging technologies

• Data formats

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES42

ch-
ssed

2EE
orm

to-
th-

no
ill

ns-
.

tch
from

ver
in

s au-

is-
uage
hnol-
tions
col,
ge in
The following sections give an overview of J2EE platform communication te
nologies. How these communication technologies are used by clients is discu
in Chapter 3.

2.5.1 Internet Protocols

Internet protocols define the standards by which the different pieces of the J
platform communicate with each other and with remote entities. The J2EE platf
supports the following Internet protocols:

• TCP/IP—Transport Control Protocol over Internet Protocol. These two pro
cols provide for the reliable delivery of streams of data from one host to ano
er. Internet Protocol (IP), the basic protocol of the Internet, enables the
unreliable delivery of individual packets from one host to another. IP makes
guarantees about whether or not the packet will be delivered, how long it w
take, or if multiple packets will arrive in the order they were sent. The Tra
port Control Protocol (TCP) adds the notions of connection and reliability

• HTTP 1.0—Hypertext Transfer Protocol. The Internet protocol used to fe
hypertext objects from remote hosts. HTTP messages consist of requests
client to server and responses from server to client.

• SSL 3.0—Secure Socket Layer. A security protocol that provides privacy o
the Internet. The protocol allows client-server applications to communicate
a way that cannot be eavesdropped or tampered with. Servers are alway
thenticated and clients are optionally authenticated.

2.5.2 Remote Method Invocation Protocols

Remote Method Invocation (RMI) is a set of APIs that allow developers to build d
tributed applications in the Java programming language. RMI uses Java lang
interfaces to define remote objects and a combination of Java serialization tec
ogy and the Java Remote Method Protocol (JRMP) to turn local method invoca
into remote method invocations. The J2EE platform supports the JRMP proto
the transport mechanism for communication between objects in the Java langua
different address spaces.

COMMUNICATION TECHNOLOGIES 43

plat-
quest
are
nt

om-
to an
and
nter-
lat-

een
ava
li-
t
nd

am-
d in

t lan-
from
ces,

ny

b-
ro-
2.5.3 Object Management Group Protocols

Object Management Group (OMG) protocols allow objects hosted by the J2EE
form to access remote objects developed using the OMG’s Common Object Re
Broker Architecture (CORBA) technologies and vice versa. CORBA objects
defined using the Interface Definition Language (IDL). An Application Compone
Provider defines the interface of a remote object in IDL and then uses an IDL c
piler to generate client and server stubs that connect object implementations
Object Request Broker (ORB), a library that enables CORBA objects to locate
communicate with one another. ORBs communicate with each other using the I
net Inter-ORB Protocol (IIOP). The OMG technologies required by the J2EE p
form are: Java IDL and RMI-IIOP.

2.5.3.1 Java IDL

Java IDL allows Java clients to invoke operations on CORBA objects that have b
defined using IDL and implemented in any language with a CORBA mapping. J
IDL is part of the J2SE platform. It consists of a CORBA API and ORB. An App
cation Component Provider uses theidlj IDL compiler to generate a Java clien
stub for a CORBA object defined in IDL. The Java client is linked with the stub a
uses the CORBA API to access the CORBA object.

2.5.3.2 RMI-IIOP

RMI-IIOP is an implementation of the RMI API over IIOP. RMI-IIOP allows
Application Component Providers to write remote interfaces in the Java progr
ming language. The remote interface can be converted to IDL and implemente
any other language that is supported by an OMG mapping and an ORB for tha
guage. Clients and servers can be written in any language using IDL derived
the RMI interfaces. When remote interfaces are defined as Java RMI interfa
RMI over IIOP provides interoperability with CORBA objects implemented in a
language. RMI-IIOP contains:

• Thermic compiler, which generates:

■ Client and server stubs that work with any ORB.

■ An IDL file compatible with the RMI interface. To create a C++ server o
ject, an Application Component Provider would use an IDL compiler to p
duce the server stub and skeleton for the server object.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES44

se

mes-
onous
mes-

inter-
I can
bility

stems
well-
ge of
pports

e of
eue.
es by

to
s. A

ssages
rs are

both

they

t is

JMS
• A CORBA API and ORB

Application clients must use RMI-IIOP to communicate with enterpri
beans.

2.5.4 Messaging Technologies

Messaging technologies provide a way to asynchronously send and receive
sages. The Java Message Service provides an interface for handling asynchr
requests, reports, or events that are consumed by enterprise applications. JMS
sages are used to coordinate these applications. The JavaMail API provides an
face for sending and receiving messages intended for users. Although either AP
be used for asynchronous notification, JMS is preferred when speed and relia
are a primary requirement.

2.5.4.1 Java Message Service

The Java Message Service (JMS) is an API for using enterprise messaging sy
such as IBM MQ Series and TIBCO Rendezvous. JMS messages contain
defined information that describe specific business actions. Through the exchan
these messages, applications track the progress of the enterprise. The JMS su
both point-to-point and publish-subscribe styles of messaging.

In point-to-point messaging, a client sends a message to the message queu
another client. Often a client will have all its messages delivered to a single qu
Most queues are created administratively and are treated as static resourc
their clients.

In publish-subscribe messaging, clients publish messages to, and subscribe
messages from, well-known nodes in a content-based hierarchy called topic
topic can be thought of as a message broker that gathers and distributes me
addressed to it. By relying on the topic as an intermediary, message publishe
independent of subscribers and vice versa. The topic automatically adapts as
publishers and subscribers come and go. Publishers and subscribers areactive
when the objects that represent them exist. JMS also supports the optionaldura-
bility of subscribers that “remember” the existence of the subscribers while
are inactive.

The JMS API definitions must be included in a J2EE product, but a produc
not required to include an implementation of the JMSConnectionFactory and
Destination objects. These are the objects used by an application to access a

COMMUNICATION TECHNOLOGIES 45

EE
es-

rise
ferent
plica-
ase

ls and
sub-
eci-
tion
men-

ata
rating
cha-

ges;
ns

nents.

ces-
ideo
t for-
ne
service provider. A future version of the J2EE platform will require that a J2
product provide support for both JMS point-to-point and publish-subscribe m
saging, and thus must make those facilities available using theConnectionFac-

tory andDestination APIs.

2.5.4.2 JavaMail

The JavaMailTM API provides a set of abstract classes and interfaces that comp
an electronic mail system. The abstract classes and interfaces support many dif
implementations of message stores, formats, and transports. Many simple ap
tions will only need to interact with the messaging system through these b
classes and interfaces.

The abstract classes in JavaMail can be subclassed to provide new protoco
add functionality when necessary. In addition, JavaMail includes concrete
classes that implement widely used Internet mail protocols and conform to sp
fications RFC822 and RFC2045. They are ready to be used in applica
development. Developers can subclass JavaMail classes to provide the imple
tations of particular messaging systems, such as IMAP4, POP3, and SMTP.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) integrates support for MIME d
types into the Java platform. JavaBeans components can be specified for ope
on MIME data, such as viewing or editing the data. The JAF also provides a me
nism to map filename extensions to MIME types.

The JAF is used by JavaMail to handle the data included in email messa
typical applications will not need to use the JAF directly, although applicatio
making sophisticated use of email may need it.

2.5.5 Data Formats

Data formats define the types of data that can be exchanged between compo
The J2EE platform requires support for the following data formats:

• HTML 3.2: The markup language used to define hypertext documents ac
sible over the Internet. HTML enables the embedding of images, sounds, v
streams, form fields, references to other HTML documents and basic tex
matting. HTML documents have a globally unique location and can link to o

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES46

d in-

g-

ual
ither

rt-
fy
the
r a
iven

to

nent

ides
llow

hich
plat-
ices,
n col-
another.

• Image files: The J2EE platform supports two formats for image files: GIF
(Graphics Interchange Format), a protocol for the online transmission an
terchange of raster graphic data, and JPEG (Joint Photographic Experts
Group), a standard for compressing gray-scale or color still images.

• JAR file: A platform-independent file format that permits many files to be a
gregated into one file.

• Class file: The format of a compiled Java file as specified in the Java Virt
Machine specification. Each class file contains one Java language type—e
a class or an interface—and consists of a stream of 8-bit bytes.

• XML: A text-based markup language that allows you to define the markup
needed to identify the data and text in XML documents. XML will be suppo
ed in a future version of the J2EE specification. As with HTML, you identi
data using tags. But unlike HTML, XML tags describe the data, rather than
format for displaying it. In the same way that you define the field names fo
data structure, you are free to use any XML tags that make sense for a g
application. When multiple applications use the same XML data, they have
agree on the tag names they intend to use.

2.6 Summary

The primary focus of the Java 2 Platform, Enterprise Edition is a set of compo
technologies (Enterprise JavaBeansTM, JavaServer PagesTM, and servlets) that sim-
plify the process of developing enterprise applications. The J2EE platform prov
a number of system-level services that simplify application programming and a
components to be customized to use resources available in the environment in w
they are deployed. In conjunction with the component technologies, the J2EE
form provides APIs that enable components to access a variety of remote serv
and mechanisms for communication between clients and servers and betwee
laborating objects hosted by different servers.

ces
tion
cess
n the

e he
ft in
ic
d a
About the Author

ABHISHEK CHAUHAN has been working on the design of scalable network servi
and distributed programs. At Sun Microsystems, Abhishek was involved in the evolu
of the J2EE programming model from its inception. He pioneered work on Web ac
optimization techniques and implementation of the Java Web Server. He worked o
JavaServer Pages specification and Sun’s JavaServer Pages implementations.

Abhishek was one of the founders and a lead architect at Vxtreme, wher
worked on the design of its streaming server. Vxtreme was acquired by Microso
1997. In a former life, Abhishek worked at Microsoft on the Office Visual Bas
scripting engine. He has an M.S. from the University of Wisconsin, Madison an
Bachelor’s degree from the Indian Institute of Technology at Delhi.

C H A P T E R 3
hav-
lf of
re, it’s
nts of

nect
n on
ants.
mu-

prise
riety

ntrol
form,
ade

ore

r it is

ides
the

clas-
and
le-
The Client Tier
by Abhishek Chauhan

A user’s perception of an enterprise application is often closely tied to the be
ior of the application’s client tier. A client makes requests to the server on beha
the user, and presents the outcomes of those requests to the user. Therefo
important to choose a client configuration that best addresses the requireme
the application and empowers the user with a rich interface.

The J2EE platform supports many types of clients. A J2EE client can con
across the World Wide Web, or inside an enterprise’s intranet. Clients can ru
hardware ranging from powerful desktop machines to tiny wearable assist
They can provide a browser-based or stand-alone interface. A client can com
nicate with, and use the services provided by, one or more tiers of the enter
application. Clients can also be written in a number of languages and use a va
of development environments.

Since client software executes on user systems, it can be hard to co
aspects of the client environment such as hardware, operating system plat
and browser version. In any distributed application, there are trade-offs to be m
in partitioning application responsibility between server and client. The m
functionality you keep on the client (closer to the user), the betterperceived
quality of service the user gets. The more you provide on the server, the easie
to distribute, deploy, and manage the application.

This chapter presents considerations for J2EE client design and prov
guidelines for choosing among the available options. First, it discusses
requirements to consider before deciding on a client type. Then it presents a
sification of clients based on the differences in the implementation model,
provide rules for translating client requirements into a choice of a client imp
mentation.
49

CHAPTER 3 THE CLIENT TIER50

must
e of

used
ace
t the

ng a
rtant
eloper
envi-

net

ork
and
teris-
all
.
n-
ept-
ies.
ntly
tan-
igher

l of

oy a
are
ther
is a

me
3.1 Requirements and Constraints

For every application, there are requirements and expectations that the client
meet, constrained by the environment in which the client needs to operate. Som
the considerations guiding our choice of client are: Is the client intended to be
over the Internet, or within a company intranet? Will it present its user interf
through a Web browser or a stand-alone application? What host platforms mus
client work on? This section identifies the constraints to consider when choosi
client. For each specific enterprise application, some constraints are more impo
than others. There are also a number of choices rather than constraints the dev
needs to keep in mind. This section considers the effect of various operating
ronment, deployment, and implementation constraints.

3.1.1 Operating Environment

Whether the client will be deployed inside a company intranet or in the Inter
determines many aspects of the client.

Intranets are usually managed environments, with higher quality netw
service and less variance than the Internet. Virtual private networks (VPNs)
extranets have characteristics that are a hybrid of Internet and intranet charac
tics. A VPN is comparable to an intranet in terms of confidentiality and firew
concerns, but it is like the Internet when it comes to quality of network service

Applications designed for the Internet typically take a lowest-commo
denominator approach to the client. In other words, the client must work acc
ably over the slowest link and assume only a minimal set of platform capabilit
Clients intended to be deployed on a company intranet may differ significa
from those destined for the Internet. Within an intranet, it is possible to force s
dardization to some extent. This means less variance and possibly a h
common denominator.

This section considers the effect of operating environment on the leve
network service, and security requirements and constraints.

3.1.1.1 Network Service

Clients working across local area networks in a company’s intranet typically enj
high level of network service. Bandwidths of the order of multiple megabits/sec.
available, and latency is negligible, often less than 25 milliseconds. On the o
hand, clients on the Internet can expect lower levels of service. Moreover, there
wide variance in network quality of service across Internet clients. While so

REQUIREMENTS AND CONSTRAINTS 51

d over

pli-
y—

idth
ter-
ilities
eld
at can
and-

as a
is
user

cally
ork is
.

e-
over
hind

that
are
fig-
rpo-
his

ain,
e, it

nter-
her
r a
clients are connected across dialup telephone lines, others could be connecte
cable modems, DSL, or better services.

Network service plays an important role in the design of any distributed ap
cation. Let’s look at two key network characteristics—bandwidth and latenc
and see how they affect the choice of what type of client to use.

Highly interactive applications place greater demands on network bandw
and well as latency. Low bandwidth requires settling for a less interactive in
face. Or, it may be necessary to move portions of the presentation responsib
to the client; this, coupled with some form of caching of the data, could yi
acceptable response times. Clients such as applets and application clients th
take over presentation responsibilities, may be better adapted to work in low b
width situations.

Consider a browser-based client that displays a hierarchy of information
tree, for example, a navigational menu or a list of mail folders. If the network
fast, it may be acceptable to make a request to the server every time the
selects a node to see a list of the node’s children. The server then dynami
generates a new screen reflecting the expanded node. However, if the netw
slow, a better approach might be to have the client cache the node hierarchy

3.1.1.2 Security and Firewalls

The Internet and intranets have different security constraints.
Clients that work within the intranet usually do not have to worry about fir

walls between the client and the server. However, clients that need to connect
the Internet must be designed to be able to talk to servers that are often be
firewalls. The presence of a firewall limits the possible choices for protocols
the client can use. With the prevalence of the World Wide Web, most firewalls
configured to allow HTTP and HTTPS protocols to pass across. Firewalls con
ured to allow IIOP communications are not widespread. And even when a co
ration allows IIOP to pass through, the details of configuring firewalls for t
purpose may not be widely understood.1

Within an intranet, the client and server may be in the same security dom
and can integrate with the environment better in terms of security. For instanc
may be possible to have single signon clients within an enterprise. Over the I
net, clients and the server are typically in different security domains. Anot
aspect of security is confidentiality. While confidentiality is not a concern fo

1 It is possible to configure most firewalls to pass IIOP. However, because this is an excep-
tion rather than the rule, most firewall administrators may be wary of doing so.

CHAPTER 3 THE CLIENT TIER52

nti-
ase,
S.

oper

nt
own-
e, the
s are
por-

nt.
By
lder

ram-

spe-
need
nter-
wser-
large category of enterprise information within the corporate intranet, confide
ality must be ensured if the communication occurs over the Internet. In this c
its necessary to use a protocol that can ensure confidentiality, such as HTTP2

3.1.2 Deployment

The deployment mechanisms available affect the choice of client type. A devel
needs to consider:

• The delivery vehicle for the client software

• The roll-out and upgrade strategy

• How often the client needs to be upgraded

The bandwidth available to the client plays a role in deciding the clie
deployment model. For example, some clients such as applets must be d
loaded every time the user establishes a session with the server. In this cas
download must complete in an acceptable amount of time. Thus, when applet
used as part of the client framework, keeping the size of the client small is im
tant unless the network can be expected to support a large bandwidth.

Web-based clients usually have very little that requires explicit deployme
They therefore work well when the client is changed or upgraded often.
keeping most of the functionality on the server, an application can also use o
versions of supporting software on the client.

3.1.3 Implementation

This section considers constraints on the client based on the platform and prog
ming language.

3.1.3.1 Platform

The first constraint to consider is whether the client presents its interface in a
cific platform, a browser or as a stand-alone Java application, or does the client
to run on multiple hardware and/or software platforms. In the latter case, an e
prise application developer could take one of two approaches: choose a bro
based client, where the browser software handles platform differences,3 or a Java

2 IIOP can be made to work over SSL connections, although such configurations are not in
widespread use.

OVERVIEW OF CLIENT OPTIONS 53

client

ns.
ould
client
be
ysis
oad

ical
ther

from
you

es not

the
d for
ls of

. It
rface

s set in
The
g the
o the

ita-
is

TP
technology-based solution, where the Java runtime environment insulates the
software from the platform.

The computation that can be done on the clients limits some client optio
For example, if the client executes in a cell-phone or pager, the server sh
perform as much computation and data processing as possible and the
should only display the results. Conversely, powerful client platforms may
leveraged for distributed problem-solving. For example, when a financial anal
system runs on a powerful desktop platform, it might make sense to off-l
complex financial-projection computation to the client.

3.1.3.2 Programming Language

The choice of implementation language is usually governed by non-techn
factors such as the availability of expertise and the desire to integrate with o
legacy application clients. If you already have a client that integrates services
several enterprise applications that you are extending to add this new service
might use a language, such as Visual Basic, C++, or another language, that do
integrate with the J2EE platform as seamlessly as Java.

3.2 Overview of Client Options

Choices such as which tier or tiers of the application that clients interact with,
protocols used for this communication, and the implementation language use
the client are dependent on several factors. Different tiers expose different leve
detail and complexity.

The Web tier presents a simplified functional facade to the application
takes care of presentation issues for the client. The EJB tier presents an inte
to access and manipulate the business objects according to the business rule
the application, leaving presentation issues to the client connecting to it.
enterprise information system tier presents a raw view of the data, delegatin
responsibility of enforcing the business rules, as well as presenting the data t
client.

The protocols used for communication have different strengths and lim
tions. The Web tier typically uses HTTP-based protocols. HTML over HTTP
suitable for handling the presentation needs of the client, while XML over HT

3 Recently, browsers act much like platforms. In such cases, the application will still have
to deal with differences in browser “platforms.”

CHAPTER 3 THE CLIENT TIER54

tier
, it
busi-

ple-
ations
ch as

lica-
cate-

ows-
ion
r or

ex-
s of
JB

for-
nd
usi-

er to
ener-
and

ide, a
erac-
is better suited for interchange of data to be presented by the client. The EJB
uses the RMI-IIOP protocol. As a full-scale distributed computing protocol
gives the client direct access to the services of the EJB tier. A client can use
ness objects hosted by the EJB server and can participate in transactions.

For clients of the J2EE platform, the Java programming language is the im
mentation language of choice because Java technology-based implement
can take advantage of services provided by the platform. Other languages, su
C++ and Visual Basic, can be used, albeit with some limitations.

Many aspects of the client are determined by the tier of the enterprise app
tion the client connects to. This discussion classifies clients into three broad
gories based on the tiers that they interact with:

• Web clients connect to the Web tier. They execute on a desktop or other br
er host usually inside a Web browser or a browser plug-in. The presentat
logic as well as the business logic of the application can run on the serve
the client.

• EJB clients connect to the EJB tier. These are typically GUI programs that
ecute on a desktop computer. EJB clients have access to all of the facilitie
the J2EE EJB tier. The presentation logic of the application runs on the E
client, while the business logic runs on the server.

• Enterprise information system clients interface directly to an enterprise in
mation system resource. Typically these programs serve administrative a
management functions for the back-end system. Both presentation and b
ness logic are contained in the client.

3.3 Web Clients

Web clients usually run inside a browser and use the services of the brows
render content provided by the Web tier. In these clients, the user interface is g
ated on the server side by the Web tier and communicated via HTML. Applets
JavaScript can be used to enhance the browsing interface. On the client s
browser or equivalent program renders this user interface and carries out int
tions with the user. Data interchange is facilitated through XML.

WEB CLIENTS 55

have

can
li-

ood

yp-
the

nor

-in
ntly.

ctice

 for
rans-
use

per-
atted

ith
user
3.3.1 Protocols

Web clients use HTTP or HTTPS as the transport protocol. These protocols
several advantages:

• They are widely deployed. Almost every computer now has a browser that
communicate over HTTP. Thus the deployment of the application is simp
fied.

• They are robust and simple. The protocol is simple and well understood. G
implementations of HTTP servers and clients are widely available.

• They go through firewalls. Due to the extensive use of HTTP, firewalls are t
ically set up to pass HTTP through. This makes it the protocol of choice on
Internet where the server and the client are separated by a firewall.

At the same time, the simplicity of the protocols presents a couple of mi
disadvantages that can largely be overcome:

• They are sessionless. HTTP is a request-response protocol, with no built
concept of a session. Therefore, individual requests are treated independe
Moreover, there are simple ways to provide session semantics, so in pra
this is not an issue.

• They are non-transactional. HTTP is a networking protocol, not designed
general purpose distributed computing. As a result, it has no concept of t
action or security contexts. However, this is not a problem in practice beca
transactions and security are commonly handled on the server.

3.3.2 Content Format

The content served over the HTTP protocol is typically the result of an action
formed on the server in response to a client request. This result can be form
using HTML or XML.

3.3.2.1 HTML

HTML content is widely supported by browsers and operating systems. Along w
HTML, a server may also provide JavaScript code in the response to enrich the
interface.

CHAPTER 3 THE CLIENT TIER56

rated
used

ting
nd
d.

and
age

s.
r in

and

ruc-
and

in a
te
they
ility
cel
tion

ible
.
a
ca-
one
ally,
-

gs, a
ata-

n be
XSL
XML
This content type is best suited when presentation of the response is gene
on the server side and communicated to the browser for display. It should be
as a markup language that instructs the browser how to present the results.

HTML is a good means of encoding static documents. However, presen
complex documents consistently is difficult using HTML. Style sheets a
dynamic HTML (DHTML) allow more complex documents to be displaye
However, the various commonly used browsers do not handle style sheets
DHTML consistently, so it is necessary to design different versions of each p
or to include browser-specific markup in the pages.

HTML’s strength is its wide support in many applications on many platform
HTML documents that do not rely on browser-specific tags should be simila
appearance on the most commonly used browsers. The combination of HTTP
HTML ensures that a document can be widely viewed on many platforms.

3.3.2.2 XML

The XML (eXtensible Markup Language) standard provides a mechanism for st
turing content and data. XML allows applications to transfer both page content
information on how the content is structured.

The structure of the data contained within an XML document is described
Data Type Definition (DTD). Applications that support XML can communica
and exchange data without any prior knowledge of each other, as long as
share or are capable of interpreting the DTD. For example, the interoperab
portion of the sample application sends a list of orders to a Microsoft Ex
spreadsheet using XML over HTTP. J2EE servers may also transfer informa
to other J2EE servers or applications using XML over HTTP. This is not poss
with HTML, because of the limited number of tags it provides to identify data

While DTDs are useful to validate XML documents, they suffer from
number of shortcomings, many of which stem from the fact that a DTD specifi
tion is not hierarchical. This affects the ability to name elements relative to
another and the ability to scope comments to sections of a document. Fin
DTDs do not allow you to formally specify field-validation criteria, such as a lim
itation on the size and content of a zip code field. To remedy these shortcomin
number of proposals have been made for future versions of XML to provide d
base-like hierarchical schemas that specify data validation criteria.

XML also allows dynamic data presentation. That is, the same data ca
presented differently depending on the style sheet used. Fortunately, the
(eXtensible Style Sheet) standard, which provides a standard approach to

WEB CLIENTS 57

om-
er,
is
ML

n auto-

ng it

t
ide
uces

see
lient
data
ing a

un-
s

ser
ica-
. In
ost

Java
rface
lone
presentation, will be completed and accepted in the near future. Most of the c
monly used Web browsers support now, or will soon support, XML. Howev
since XML is evolving, support by browsers is not as uniform as HTML. Th
means that an applet, plug-in, or other application component, that handles X
responses might be necessary. In the case of Java applets, this can happe
matically at request time.

Use XML for your responses when:

• The client needs to get data from the server and process it before displayi
to the user.

• The client needs to show multiple views of the same data. When the clien
downloads XML data from the server, it can generate views on the client s
depending on local settings. This saves a round-trip to the server and red
load on the server by reducing the number of client requests.

For example, consider a stock quote system, where the client wants to
a chart of the last hour’s trades, as well as a table of the same data. The c
could download the quote data from the server just once, then render that
as either a chart or a table (or both), at the user’s requests without resend
request to the server.

• The client can pass XML in requests. The HTTP protocol allows forPOST data,
in any content type, in a request. An XML-aware application component r
ning on the client could usePOST requests with XML data to exchange object
with the server.

3.3.3 Types of Web Clients

Most Web clients run inside of or in conjunction with a Web browser. The brow
can handle details of HTTP communication and HTML rendering, while an appl
tion component can focus on interactions that cannot be expressed in HTML
fact, a Web browser without any other application component is the simplest, m
widespread J2EE Web client. Additional application components such as
applets, browser plug-ins, or ActiveX components can make the client user inte
richer and more featureful. Finally, Web clients can be implemented as stand-a
programs.

CHAPTER 3 THE CLIENT TIER58

tent
t and

t is
ith
rnet

they
t pro-
2EE

atures
viron-
the

tric-
both

om-
tary

hat
ased
ers

s may
such

ser
irtual
3.3.3.1 Web Browsers

The Web browser is the simplest J2EE client. It serves to render HTML con
delivered by the Web tier. With more and more browsers supporting JavaScrip
DHTML, powerful user interfaces can be created using just a Web browser.

A stand-alone Web browser is the Web client of choice on the Internet. I
widely available, users are familiar with using it, and there are no issues w
deployment. Additionally, since Web browsers can be used wherever an Inte
connection is available, support for roaming users is possible.

3.3.3.2 Java Applets

Applets are GUI components that typically execute in a Web browser, although
can execute in a variety of other applications or devices that support the apple
gramming model. Applets can be used to provide a powerful user interface for J
applications.

Since applets are Java-based components, they have access to all the fe
and advantages of the Java platform technology. In a heterogeneous Web en
ment, it is especially important that client-side components be portable. For
protection of the client machine, it is important to be able to place security res
tion on these components and detect security violations. Java applets serve
these needs.

Browser-based applet clients communicate over HTTP. Applets can also c
municate over a network using serialized objects or some other type of proprie
protocol.

One advantage of applets is that they provide application with rich GUIs t
can be managed at a single location. The main disadvantage with browser-b
applets is that they can be difficult to deploy, particularly when the client brows
run a diverse set of embedded Java virtual machines. For this reason, applet
be more successfully deployed where the browser environment is controlled (
as an intranet).

Deployment

Applets are delivered through applet tags embedded in HTML. The Web brow
downloads the code for the applet at request time and executes it in a Java v
machine on the client machine.

WEB CLIENTS 59

Pro-
n

. All

. For
rom
ide a
ddi-
ion-

ed to
s over
egin-
ime it
make

ents,
oft’s
rience.
types

em.
for
nt,

en-
When JSP pages are used to generate HTML, an Application Component
vider can use thejsp:plugin tag to ensure the availability of a specific JVM o
the client.

Security

The Java applet programming model protects the user from security violations
downloaded code is considered untrusted and strict limitations are placed on it
users to be more comfortable with executing application code downloaded f
another computer, vendors should use signed applets. Signed applets prov
secure way to identify the applet’s distributor. A signed applet can also request a
tional permissions from the client machine if it needs access to additional funct
ality.

Session Management

When applets communicate with servlets or JSP pages over HTTP they ne
manage some details of the HTTP protocol to participate in a session. Session
HTTP are managed using HTTP cookies. The server sets the cookie at the b
ning of the session; the client then sends the cookie back to the server each t
makes another request. When the applet makes a request, it needs to explicitly
sure that it sends the cookie as part of the request.

3.3.3.3 Browser Plug-ins

In addition to applets, Web browsers often support other embedded compon
such as plug-ins in the Netscape browser and ActiveX components in Micros
Internet Explorer. These can be used just like applets to enhance the user expe
There are some things to keep in mind when planning to use these component
in a J2EE client:

• Plug-ins are usually written for a particular architecture and operating syst
On the Internet, multiple versions of these plug-ins need to be implemented
each kind of client. If the clients run on a homogeneous intranet environme
this is less of an issue.

• Since plug-ins run natively on the browser’s platform, security is harder to
force, which could expose your clients to an unacceptable risk.

CHAPTER 3 THE CLIENT TIER60

nent
this

t is

nd
nses

and
use

data

and-

des

ate

er,

ing
UI

active
xt
an be
3.3.3.4 Stand-Alone Web Clients

The discussion so far has considered Web clients with the application compo
embedded in a browser. Sometimes, though, it might be desirable to invert
model by embedding the browser in an application client. This type of clien
referred to as a stand-alone Web client.

In this configuration, the application client creates a top level window a
user interface, then uses a browser-like component to render HTML respo
from the server.

This is desirable where the client needs to look like a native application,
provide a more interactive and customized GUI to the user. These clients often
XML over HTTP to communicate with JSP pages or servlets and render the
interchanged in their customized GUI.

A stand-alone Web client suffers from the same drawbacks as other st
alone applications:

• The client must be explicitly deployed on each user desktop. Client upgra
are also harder for the same reason.

• Implementing the client is more work since the client must be coded to cre
the bulk of the user interface.

With the availability of tools, some of this work can be automated. Howev
deploying a stand-alone client remains a complex process.

Java Clients and the Swing API

The user interface of a stand-alone Web client is typically written using the Sw
API from the J2SE platform. The Swing API provides a comprehensive set of G
components (tables, trees, and so on) that can be used to provide a more inter
experience than the typical HTML page. Additionally, Swing supports HTML te
components that can be used to display responses from a server. Swing APIs c
used for both applets and stand-alone Java applications.

EJB CLIENTS 61

such
rty

avail-
tion
le

it for
m-
lient

ents
their
we

ty

ices.
ers

is
e
rity,
Non-Java Clients

Stand-alone Web clients can also be written in C++ or in automation languages
as Visual Basic.4 These clients can use their own HTML renderers or third-pa
browser components to present responses from the server.

Non-Java clients may be desirable where specialized services are made
able by the development environment. For example, a chart plotting applica
might find it useful to take advantage of this fact. If Microsoft Excel is availab
on the client desktops throughout an enterprise, it might be desirable to use
rendering charts. A Visual Basic client embedded in Microsoft Excel could co
municate with a JSP page and download the chart data using XML. The c
could then use specialized services in Excel to render this chart.

3.4 EJB Clients

EJB clients are application clients that interact with the J2EE EJB tier. EJB cli
are GUI programs that typically execute on a desktop computer; they manage
own GUI and offer a user experience similar to that of native applications. Here
discuss how to develop and deploy EJB clients.

3.4.1 Protocols and Facilities

EJB clients interact with the J2EE EJB tier using the RMI-IIOP protocol. A varie
of middle-tier services are available to an application client:5 JNDI for directory
lookups, JMS for messaging, and JDBC for relational database access.

An EJB client depends on a client container to provide some system serv
Such a container is typically very lightweight compared to other J2EE contain
and usually provides security and deployment services.

3.4.1.1 The Client Container

A client container is usually a library that is distributed along with the client. It
specific to the J2EE EJB container,6 and is often provided by the same vendor. Th
container manages details of RMI-IIOP communication. It also handles secu

4 Using the scripting engine on a Windows platform, a developer could use other scripting
languages such as JavaScript or Perl. The component model remains COM.

5 These services are only available if the application client is implemented using Java.
6 The IIOP protocol does not completely specify details of the security and transaction con-

texts, thus different implementations of the protocol may not be compatible.

CHAPTER 3 THE CLIENT TIER62

client
lica-
ld be

crip-
ptor
ication.
ed at
d so on.
, or
pli-
le to
2EE
and
ent

en to

acili-
so use
lat-
EJB

ech-
r the
’s

some
ring
transaction, and deployment issues. The following discussion assumes a Java
container. The J2EE specification doesn’t define service requirements for app
tions implemented in other languages. However, a similar set of services shou
provided by containers for such clients.

3.4.1.2 Deployment

EJB application clients are packaged in JAR files that include a deployment des
tor similar to other J2EE application components. The deployment descri
describes the enterprise beans and external resources referenced by the appl
As with other J2EE application components, access to resources is configur
deployment time, names are assigned for enterprise beans and resources, an

The J2EE platform does not specify tools to deploy an application client
mechanisms to install it. Very sophisticated J2EE products might allow the ap
cation client to be deployed on a J2EE server and automatically made availab
some set of (usually intranet) clients. Other J2EE products might require the J
application bundle containing the application client to be manually deployed
installed on each client machine. Another approach would be for the deploym
tool on the J2EE server to produce an installation package that could be tak
each host to install the application client.

3.4.1.3 Transactions

Since client containers aren’t required to provide direct access to transaction f
ties, EJB clients should use enterprise beans to start transactions. They can al
transaction facilities of JDBC. However, doing so may be risky since the J2EE p
form doesn’t define a mechanism for propagating the transaction context to the
server.

3.4.1.4 Security

The client application must be authenticated to access the J2EE middle tier. T
niques for authentication are provided by the client container, and are not unde
control of the application client. The container can integrate with the platform
authentication system, authenticate when the application is started, or use
other lazy authentication policy. The container takes responsibility for gathe
authentication data from the user, by presenting a login window to the user.

EJB CLIENTS 63

with
ents

ca-
ser
tion

by
rver.
ach
ili-

plex
e to
ss to

off-
nt.

h as
to

sily
ould
lot of

ar-
EJB clients in the Java programming language execute in an environment
a security manager installed. They have similar security permission requirem
as servlets.

3.4.2 Strengths and Weaknesses

EJB clients have a number of strengths, including:

• Provide a more flexible user interface

Application clients can be made to look and feel more like native appli
tions on the client machine. Since these clients implement their own u
interface, they can provide a richer, more natural interface to the applica
tasks.

• Distribute the workload

An application client can share some of the computational expense
doing the task on the client desktop, and thereby reducing load on the se
In particular, the work of generating the user interface is performed by e
client. This is useful for applications with specific graphical display capab
ties.

• Handle complex data models

Sometimes the data associated with an application is sufficiently com
and the manipulation interface rich enough, that a Web-based interfac
manage the interaction is not enough. In such cases, you want direct acce
the underlying object model on the client and to manipulate it directly.

For example, in a financial analysis system, it might make sense to
load some of the complex financial-projection number crunching to the clie
Or consider an application that allows manipulation of CAD schemas suc
a design of a circuit board (PCB). An application client, with direct access
the objects of the CAD system, can redraw views of the layout more ea
than a Web-based interface, and with better performance. The server sh
be delegated to background tasks such as converting a PCB layout to a p
the PCB traces.

• Are transaction-capable

Since EJB clients communicate using RMI-IIOP, they are capable of p

CHAPTER 3 THE CLIENT TIER64

er-
ore

rver
ight
sk-
the

. In
How-
ther-

the

t
the

, its
the
eeds

e, or
used,
s of
ticipating in client-demarcated transactions through JTA APIs.

• Provide integrated security

Application client containers can integrate with the security of the und
lying operating system where the client is executed, thereby providing a m
transparent and manageable security infrastructure.

For example, in an enterprise intranet, where the client and the se
belong to the same security domain, an application client container m
simply forward the credentials of the user already logged into the client de
top operating system, thereby effecting single signon. A Web client, on
other hand, would require explicit sign on and security management.

The disadvantages of EJB clients are that they:

• Require explicit deployment

EJB clients need to be distributed and installed on the client desktops
an intranet, where desktops can be standardized, this is less of an issue.
ever, on the Internet, distribution becomes a serious consideration. Fur
more, upgrades and fixes to the client need to be distributed as well, and
server has to deal with multiple versions of the client programs.

• Require firewall reconfiguration

The RMI-IIOP protocol does not usually go through firewalls withou
additional setup on the firewall host. This makes use of EJB clients on
Internet very limited.

• Tend to be more complex

Since the application client needs to manage its own user interface
implementation is more complex. Furthermore, it communicates with
J2EE server at a much lower level than browser-based Web clients and n
to handle the complexity introduced as a result.

3.4.3 Types of EJB Clients

EJB clients can be implemented using either the Java programming languag
languages such as Visual Basic or C++. When a language other than Java is
depending on the implementation on the client container, some of the facilitie
the J2EE platform may not be available.

EJB CLIENTS 65

ava
hine

of a

EJB
s to
the

sult,

when
lients.
ilable
ll as

Since
ail-

nta-
ear as

ages
nents
his

t on
the
3.4.3.1 Java Technology Clients

Java clients execute in their own Java virtual machine. Following the model for J
applications, they are invoked at their main method and run until the virtual mac
is terminated. Security and deployment services are provided through the use
client container.

The Java programming language should be used for implementation of
clients. Since the EJB server communicates using RMI-IIOP, the client need
support RMI-IIOP. This is most naturally done using services provided by
standard Java platform.

Some facilities cannot be easily implemented in other languages as a re
client containers for these languages may not provide the full set of features.

Multitier Clients

Java technology clients are usually stand-alone Java applications. However,
appropriately signed and trusted, Java applets can also be used as EJB c
Applets and applications have essentially the same set of platform service ava
to them. Additionally, a Java applet can communicate with the Web tier as we
the application tier to get its job done. In this sense it is a multitier client.

3.4.3.2 Non-Java Clients

EJB clients can be implemented in programming languages other than Java.
the EJB server uses RMI-IIOP, this requires some form of RMI-IIOP support av
able to the client.

Accessing Enterprise Beans as COM Objects

Scripting COM objects together into an application is a common client impleme
tion approach. It is possible for a client container to make enterprise beans app
COM objects on the client machine.

When enterprise beans are exposed as COM objects, any scripting langu
supported by the Active Scripting Engine can be used to automate the compo
to develop the application client. While Visual Basic is most often used for t
purpose, languages such as JavaScript or Perl can also be used.

The specific approach to developing such clients will be largely dependen
the J2EE product used and the platform. Client containers will be provided by
J2EE server.

CHAPTER 3 THE CLIENT TIER66

a-

ation
ter-
esk-

d
ng

P
nd

not
that

orm
be

user
m

va cli-
is
in-

rise
ach

the
hen
Here’s an example of how such clients might work:

• Create an RMI-IIOP proxy in the client. This proxy runs in a Java virtual m
chine. The client uses RMI-IIOP to communicate with the EJB tier.

• The client container exposes each enterprise bean that is part of the applic
as a COM object by generating and a registering type library for each en
prise bean. Note that the type libraries must be installed on every client d
top. The COM objects that are registered act as enterprise bean proxies.

• When the COMIDispatch interface of the enterprise bean proxy object is use
to make a method invocation, it communicates with the RMI-IIOP proxy usi
Java Native Interface, or some other proprietary mechanism. The RMI-IIO
proxy communicates with the EJB tier just like a Java application client a
forwards the invocation.

Limitations

Translating between one distributed computing architecture and another is
straightforward. There are some limitations when using Visual Basic clients
access the EJB tier:

• Security: It is hard to propagate security contexts between the J2EE platf
and Visual Basic clients. The RMI-IIOP proxy to the EJB server appears to
the application client. The proxy thus needs to somehow authenticate the
on behalf of the Visual Basic client. Integration with the native security syste
is harder.

• Transactions: Transaction contexts cannot be propagated from a non-Ja
ent to the EJB tier. Although availability of JTA or propagation of contexts
not required by the J2EE platform, it is often available in Java client conta
ers. However, this is not possible when using the COM.

• Deployment: The type libraries that need to be generated for each enterp
bean are application-specific and need to be distributed and installed for e
Visual Basic application client.

When to Use COM Clients

The decision to use Visual Basic clients is largely non-technical. It depends on
expertise available, as well as the desire to integrate with existing EJB clients. W

ENTERPRISE INFORMATION SYSTEM CLIENTS 67

chnol-

ract
ver
script
plat-

tem
f the

rela-
dard
on-

tems.
s the
rob-

face
nd to
ment

and

uld
gh an

ple-
legacy issues are not a concern, EJB clients should be developed using Java te
ogy.

Active Server Pages

There is one interesting case where a COM-based scripting client might inte
with an EJB server. This is the scripting present in Microsoft IIS Active Ser
Pages (ASP). ASPs are server-side scripting components that use Visual Basic
to produce dynamic content. An ASP developer that wishes to use the J2EE
form for its middle tier needs, can do so using the techniques outlined above.

3.5 Enterprise Information System Clients

Enterprise information system clients access enterprise information sys
resources directly and assume responsibility for enforcing the business rules o
application.

Enterprise information system clients can use the JDBC API to access
tional databases. A future release of the J2EE specification will describe stan
ways to implement enterprise information system clients with connectors to n
relational resources, such as mainframe or enterprise resource planning sys

These programs should be implemented with caution, since they acces
database directly. Widely distributing such programs can also cause security p
lems.

Enterprise information system clients must both manage their user inter
and enforce business rules. Fully functional applications designed this way te
be complex. These programs should be limited to administration or manage
tasks, where the user interface is small or nonexistent and the task is simple
well understood.

For example, a stand-alone enterprise information system client co
perform maintenance on database tables, and be invoked every night throu
external mechanism.

The J2EE programming models doesn’t recommend techniques for im
menting these programs.

CHAPTER 3 THE CLIENT TIER68

ations
nter-

nt-
gh a
this
ha-
lso

an-
uld
so
iple

that

cess
ss all
the
that

s that
ed in
rise

cli-

rules
f the
the

ged,
odel
3.6 Designing for Multiple Types of Client

We have discussed several approaches to building clients for enterprise applic
and how the choice of a client influences service implementation. Often, an e
prise application will have more than one type of client accessing its services.

A banking application might expose a simple Web interface for accou
holders to view account balances, as well as provide a richer interface throu
stand-alone client that customers can install on their desktop computers. In
example both clients have similar functionality although they use different mec
nisms to present their interface to the user. A banking application might a
provide a stand-alone client administration interface.

When designing an enterprise application, you should pay attention to h
dling multiple types of client interactions. The overall application design sho
support each new type of client with minimal additional effort. It should al
avoid duplicating code either by sharing the application objects among mult
clients, or by reusing them through encapsulation, delegation, or inheritance.

This section discusses approaches to designing enterprise applications
can support multiple types of clients.

Application data and business rules are independent of the clients that ac
the application, making it desirable to design these objects to be shared acro
the different clients of the application. When different types of clients present
same functionality through different interfaces, it is useful to share objects
encapsulate this functionality or client behavior.

The distinction between objects that can be shared or reused, and object
need to be implemented separately for each type of client can be discuss
terms of the MVC architecture. The follow sections consider the issues that a
when designing the model, view, and controller to support multiple types of
ents.

3.6.1 Model

The model is a software abstraction of the application data and the business
that apply for changing this data. The model can be shared across all clients o
application. It should be consistent regardless of the type of client accessing
data. If the model faithfully captures all possible ways that data can be chan
there is no need to implement different model classes, or develop specific m
objects for each client type.

DESIGNING FOR MULTIPLE TYPES OF CLIENT 69

the
l into
nts,

iator

ith
com-
be

spec-
cross
ome
hen

y.
ping
t in

by

aps
rent
tion
re is
oller
lica-

ld
nts
he
on

mple,
l as a
When each type of client represents a different level of authorization to
system, it is sometimes desirable to wrap the access to the underlying mode
security mediator objects. This allows the model to be shared across all clie
while access control restrictions can be enforced more flexibly. Security med
objects are described in Section 9.3.6 on page 229.

In situations where the models that two clients of the application work w
are independent of one another, the application can be thought of as being
prised of multiple subapplications. In this case the programming model would
applied to each of these subapplications independently.

3.6.2 View

A view renders the contents of a model. It accesses data from the model and
ifies how that data should be presented. The view changes most significantly a
clients. This makes it hard to share entire view implementations. However, s
code sharing can still be effected at a finer grained level. This is especially true w
clients use the same medium for presentation, but provide different functionalit

For example, the sample application could provide a Web-based shop
interface and a Web-based administration interface. Although very differen
functionality, they both are Web based. If ashowOrder custom JSP tag were used
to render details of a particular order to HTML, the same tag could be used
both the shopping and the administration clients.

3.6.3 Controller

A controller defines application behavior; it interprets user gestures and m
them into actions to be performed by the model. Each client that exposes diffe
functionality requires a separate controller. For example, the sample applica
would need separate controllers for shopping and administration clients. The
always some opportunity to reuse code that is part of the application contr
framework; however, this is independent of the type of clients accessing the app
tion.

However, multiple clients that expose similar or identical functionality shou
be able to share the controller responsible for the functionality. If the clie
provide only slightly different functionality, it should still be possible to reuse t
controller implementation by using a single class to implement the comm
behavior and using subclasses to implement the custom behavior. For exa
the banking application described earlier has a Web-based interface as wel

CHAPTER 3 THE CLIENT TIER70

sent

ly
ped
r to
red,

find
ac-

dium
ation,
nd so

m of

ller
t
for
JFC

i-
nt
stand-alone desktop client. The difference between the clients is how they pre
the interface—the view. Therefore they can share the same controller.

Because the controller interacts directly with the view it is not complete
insulated from changes in the view implementation. For example, strongly ty
references to view objects in the controller make it difficult to redeploy. In orde
design the controller to allow a large portion of its implementation to be sha
we need to examine the interactions between the view and the controller and
ways to minimize the effect of those interactions on the controller. The inter
tions are:

• Interpreting user gestures generated through the view

• Selecting the view

3.6.3.1 Interpreting User Gestures

The controller accepts user gestures from the view. These depend on the me
that the view uses to present the user interface. For example, in a JFC applic
the user gestures could be “button pressed” events or “mouse moved” events, a
on. In a Web interface, the user gestures appear asGET or POST requests for URLs of
the application. In a messaging environment, the user gestures take the for
asynchronous messages.

To keep the controller as reusable as possible, the controller musttranslate
these user gestures as soon as possible and turn them intobusiness events—uni-
form, view-neutral representations of the actions requested by the user.

The sample application usesRequestToEventTranslator for this purpose.
This object takes anHttpServletRequest from the view—a browser in this
case—and translates it into anEStoreEvent business event.RequestToEvent-
Translator is discussed in Section 10.6.3 on page 285. The rest of the contro
implementation deals only withEStoreEvent and can be reused for differen
implementations of the view. If we wanted to implement a JFC-based client
the sample application, we could just add another translator that translates
events into business events.

Code Example 3.1 shows howRequestToEventTranslator takes a request
and translates it into a business event. An object that implementsShoppingCli-

entControllerInterface, which provides the core of the controller responsibil
ties, invoked using anEStoreEvent, does not need to change when the clie
changes.

DESIGNING FOR MULTIPLE TYPES OF CLIENT 71

t the
user
on. In

press
ren-
nent
evious
le, a
cts.
in a
ner-
public class RequestProcessor {

ShoppingClientControllerInterface scc;

RequestToEventTranslator eventTranslator;

public void processRequest(HttpServletRequest req) {

...

// translate view specific event into EStoreEvent

EStoreEvent event = eventTranslator.processRequest(req);

if (event != null) {

// invoke the controller with EStoreEvent, instead of

// using the view specific HttpServletRequest

Collection updatedModelList = scc.handleEvent(event);

mm.notifyListeners(updatedModelList);

}

...

}

}

Code Example 3.1 Translating View-Dependent Gestures into View-Neutral
Business Events

3.6.3.2 Selecting the View

The controller selects which view to display. These depend on the medium tha
view uses to present the user interface. For example, in a JFC application, the
views are composed of Swing components such as panels, lists, tables, and so
a Web interface, the views are HTML pages that are rendered by a browser.

To keep the controller as reusable as possible the controller needs to ex
views in a technology-neutral fashion and translate them to technology-specific
ditions as late as possible. This would require a layered view selection compo
that uses objects to represent views (analogous to the business events in the pr
section) which are forwarded to specific types of view generators. For examp
product list view would contain all the data needed to represent a list of produ
This object could be passed to a view generator, which would render the data
specific user interface medium. Note that depending on the medium, the view ge
ator may reside on the server (HTML) or on the client (JFC).

CHAPTER 3 THE CLIENT TIER72

ter-
the

ller
ol-
nol-
ister

ropa-

e 3.1.

the
port
pro-
wser
an

eb
3.6.3.3 Example: The Sample Application Controller

The sample applications controller is in two parts: the EJB controller, which in
acts with enterprise beans and a controller proxy, which interacts with views. In
current release, the proxy is monolithic and specific to Web clients.

If another type of shopping client interface were required, the EJB contro
could be shared without modification. However, the proxy portion of the contr
ler would have to be rearchitected to support more than one type of view tech
ogy. For example, a JFC-based view selection component would need to reg
event listeners when the view is created. These listeners would then post or p
gate the events to the client portion of the controller.

3.7 Summary

This chapter has discussed various types of J2EE clients, as illustrated in Figur

Figure 3.1 Client Options

In general, J2EE applications should use Web clients when possible. With
help of technologies such as DHTML and JavaScript, Web browsers can sup
reasonably powerful and fast user interfaces. Additional capabilities can be
vided by using applets. Java applets can be used in conjunction with the bro
using HTML or XML over HTTP for additional enhancements. A Java applet c
also communicate with the middle tier for further control and flexibility. The W

SUMMARY 73

ter-

and
are

ser
ver
m in
Web
nd-

ard
s are
nter-
lone

an-
r, and
oked
n.
le,

ough
browser is a truly universal Web client, so for simple user interfaces, and for In
net applications, it is the client of choice.

Application clients should be used when the data model is complex
cannot be expressed through the Web interaction model. Application clients
well-suited for intranet enterprise distribution. They can provide a richer u
experience and blend well with the desktop windowing environment. Howe
due to the increased complexity of such clients, there are reasons to avoid the
favor of Web-based applications. What’s more, ongoing enhancements to the
client speed and functionality will continue to erode the need to deploy sta
alone clients for all but a handful of cases.

The use of application clients on the open Internet is not straightforw
because of distribution, deployment, security, and firewall issues. These client
best suited for the intranets, where they can provide a more featureful user i
face to the user and provide integrated security. Implementation of stand-a
clients requires more effort.

Special purpose application clients can be used for administrative and m
agement tasks. These clients are not intended to be distributed to every use
often have a minimal user interface. They perform specific tasks, perhaps inv
automatically by the system, through means external to the J2EE specificatio

Use of enterprise information system clients should be limited to simp
well-understood management or administrative tasks.

The Java programming language is preferred for stand-alone clients, alth
similar capabilities may be possible with languages other than Java.

ro-
rtions
odel
with a
ng
About the Author

GREG MURRAY is an engineer in the J2EE programming model team at Sun Mic
systems. He assisted in the design and implemented much of the Web tier of the po
of Java Pet Store sample application. Prior to joining the J2EE programming m
team Greg was a member of Global Products Engineering at Sun. Greg graduated
B.A. in International Relations with a minor in Japanese from Brigham You
University.

C H A P T E R 4
ed
erver
gener-
t use
J2EE
r com-
odular

ain-
tech-

ons
n the
in

ly
ns.

ts,
ectory
a-
The Web Tier
by Greg Murray

USERShave benefited significantly from the increasing ability of Web-bas
applications to generate dynamic content customized to their needs. JavaS
Pages (JSP) and servlets are J2EE technologies that support dynamic content
ation in a portable, cross-platform manner. Web-based J2EE applications tha
these technologies can be architected in a number of ways. Simple Web-based
applications can use basic JSP pages and servlets or JSP pages with modula
ponents. More complex transactional J2EE applications use JSP pages and m
components in conjunction with enterprise beans.

This chapter begins with a description of Web applications and Web cont
ers. It discusses the use of the Common Gateway Interface, servlets, and JSP
nology for providing dynamic and interactive content. It describes what situati
require the use of servlets and when to use JSP technology and how to desig
interface of a Web-based application with internationalization and localization
mind. Review of various design patterns for Web application will follow. Final
we will discuss migration strategies from Web-centric to EJB-centric applicatio

4.1 Web Applications and Web Containers

In the J2EE lexicon, a Web application is a collection of HTML/XML documen
Web components (servlets and JSP pages), and other resources in either a dir
structure or archived format known as a Web ARchive (WAR) file. A Web applic
tion is located on a central server and provides service to a variety of clients.
75

CHAPTER 4 THE WEB TIER76

sed
tion:
sites.
eb
ro-
ome
trans-
EJB
same
nicate

ain-
o an
appli-
ake

ers
e the
ple

ew
The

any
to

lized
the
rate
the
rver

d to
drive
Web applications provide dynamic and interactive content to browser-ba
clients. Browser-based Web applications can be used for any type of applica
from secure business-to-business applications to electronic commerce Web

A Web container is a runtime environment for a Web application; a W
application runs within a Web container of a Web server. A Web container p
vides Web components with a naming context and life cycle management. S
Web servers may also provide more services, such as security, concurrency,
actions, and swapping to secondary storage. A Web server may work with an
server to provide such services. A Web server need not be located on the
machine as the EJB server. In some cases, a Web container may commu
with other Web containers.

4.2 Dynamic Content Creation

In the Internet world, the need to deliver dynamically generated content in a m
tainable fashion is extremely important. This content may be personalized t
individual. Great care must be taken when designing the user experience of an
cation because it will distinguish one application from another and potentially m
or break a company.

The sample application is an example of a Web application that deliv
dynamically generated content. The underlying data that is used to generat
content for the sample application can be changed without modifying the sam
application code. This would allow the administrator of the application to add n
products or services which would immediately be available in the application.
sample application was designed to be general enough to not be tied to
product or service. With little effort, the sample application could be tailored
offer different products or services.

In this section we will discuss the technologies used to design a persona
Web application in which the logic that drives the application is separate from
content. We will begin by examining the conventional technology used to gene
dynamic content, namely Common Gateway Interface (CGI) scripts. Following
discussion of CGI we will review the features of Java servlets and JavaSe
Pages technology.

4.2.1 Common Gateway Interface

While the Internet was originally designed to provide static content, the nee
present dynamic content, customized to a user’s needs, has quickly come to

DYNAMIC CONTENT CREATION 77

s the
ripts
s, and
er of

ces,
here-
di-
b

ript is
ot to
to

ted

ine
xper-

and
en-

Web
ica-

ages,

ts can
- and
ased
uage

ts to
erver
com-

ith
the development of Web technology. The earliest response to this need wa
Common Gateway Interface (CGI). This interface allows Web servers to call sc
to obtain data from (or send data to) databases, documents, and other program
present that data to viewers via the Web. However, CGI technology has a numb
limitations.

One limitation is that the code within a CGI script that accesses resour
such as a file system or database, must be specific to the server’s platform. T
fore most CGI applications will not run on another server platform without mo
fication. This limits their utility in a distributed environments where We
applications may need to run on multiple platforms.

Second, because a new process must be created each time a CGI sc
invoked, CGI scripts are often resource intensive and slow and thus tend n
scale well. Increasing the amount of hardware will allow a CGI application
scale to a point. However, the extent to which the application will scale is limi
to the hardware and the operating system.

Finally, CGI applications are difficult to maintain because they comb
content and display logic in one code base. As a consequence, two types of e
tise are needed to maintain and update CGI scripts.

Many Web server vendors have enhanced CGI for their specific products
have developed better ways of handling CGI-like functions by providing ext
sions to their products. These have enabled the development of sophisticated
applications based on CGI. However, the root problems still exist: CGI appl
tions are platform-specific, do not scale well, and are difficult to maintain.

The J2EE platform supports two technologies, servlets and JavaServer P
that provide alternate solutions that overcome these problems.

4.2.2 Servlets

Java servlets are a means of extending the functionality of a Web server. Servle
be viewed as applets that run on the server. Servlets are a portable platform
Web server-independent means of delivering dynamic content. A browser-b
application that calls servlets need not support the Java programming lang
because a servlet’s output can be HTML, XML, or any other content type.

Servlets are written in the Java programming language. This allows servle
be supported on any platform that has a Java virtual machine and a Web s
that supports servlets. Servlets can be used on different platforms without re
piling. They can use generic APIs such as JDBC to communicate directly w

CHAPTER 4 THE WEB TIER78

ing

g lan-
tion
trol-

of

ory
iring

ngle
for
can
bjects

an
re pre-
form
.
in-

user
plica-

senta-
ffer,
and
chitec-

HTTP
ming

ion of
lets
ccom-
ccept
ases,
rvlet
existing enterprise resources. This simplifies application development, allow
Web applications to be developed more rapidly.

Servlets are extensible because they are based on the Java programmin
guage. This allows developers to extend the functionalities of a Web applica
just as they would a Java application. A good example of this would be a con
ler servlet that is extended to be a secure controller. All of the functionalities
the original controller would be provided along with new security features.

Servlets perform better than CGI scripts. A servlet can be loaded into mem
once and then called as many times as needed and scale well without requ
additional hardware. Once a servlet is loaded into memory it can run on a si
lightweight thread while CGI scripts must be loaded in a different process
every request. Another benefit of servlets is that, unlike a CGI script, a servlet
maintain and/or pool connections to databases or other necessary Java o
which saves time in processing requests.

Servlets eliminate much of the complexity of getting parameters from
HTTP request; components have direct access to parameters because they a
sented as objects. With CGI-based applications, parameters posted from a
are converted to environment properties which must then read into a program

One of their greatest benefits is that servlets provide uniform APIs for ma
taining session data throughout a Web application and for interacting with the
requests. Session data can be used to overcome the limitations of Web ap
tions due to the stateless nature of HTTP.

4.2.3 JavaServer Pages Technology

JavaServer Pages (JSP) technology was designed to provide a declarative, pre
tion-centric method of developing servlets. Along with all the benefits servlets o
JSP technology offers the ability to rapidly develop servlets where content
display logic are separated, and to reuse code through a component-based ar
ture.

Both servlets and JSP pages describe how to process a request (from an
client) to create a response. While servlets are expressed in the Java program
language, JSP pages are text-based documents that include a combinat
HTML and JSP tags, Java code, and other information. Although both serv
and JSP pages can be used to solve identical problems, each is intended to a
plish specific tasks. Servlet technology was developed as a mechanism to a
requests from browsers, retrieve enterprise data from application tier or datab
perform application logic on the data (especially in the case where the se

DYNAMIC CONTENT CREATION 79

n the
ta,
rieved

en
nnot

or
rvlet
ed,
o the

eans
ext-
their
nter-
ming
lly-

vide
plex

their
andle

d to
ate a

com-
Web
ffi-

sign-
vid-
tead
s pro-
t be
e, a
ingle

mic
logy
accessed the database directly), and format that data for presentation i
browser (usually in HTML). A servlet uses print statements to post HTML da
both hard-coded tags and dynamic content based on the enterprise data ret
from the back-end tiers, back to the user’s browser.

Embedding HTML in print statements causes two problems. First, wh
HTML is embedded in the print statements of a servlet, Web designers ca
preview the look and feel of an HTML page until runtime. Second, when data
its display format changes, locating the appropriate sections of code in the se
is very difficult. In addition, when presentation logic and content are intermix
changes in the content require that a servlet be recompiled and reloaded int
Web server.

JSP pages provide a mechanism to specify the mapping from a JavaB
component to the HTML (or XML) presentation format. Since JSP pages are t
based, a Web designer uses graphical development tools to create and view
content. The same tools can be used to specify where data from the EJB or e
prise information system tiers is displayed. JSP pages use the Java program
language for scripting complex formatting, such as the creation of dynamica
sized tables for master-detail forms. Some JSP editing tools may pro
advanced features so that a Web designer can specify the formatting of com
data without using Java code. Alternatively, Java programmers can provide
Web designers with a set of JavaBeans components and/or custom tags that h
complex dynamic formatting of HTML, so that the Web designers do not nee
understand how to code in the Java programming language in order to cre
complex JSP page.

When a Web designer changes a JSP page, the page is automatically re
piled and reloaded into the Web server. In addition, all the JSP pages in a
application can be compiled prior to deploying the application for greater e
ciency.

Thus JSP technology allows content developers and Web application de
ers to clearly define what is application logic and what is content. Content pro
ers don’t need to know Java technology to update or maintain content. Ins
they can design interfaces using the JavaBeans components and custom tag
vided by the Web application developer. Web application developers need no
experts in user interface design to build Web applications. At the same tim
Web application development and content can easily be performed by a s
person.

Like servlets, JSP technology is an efficient means of providing dyna
content in a portable platform- or application-independent means. JSP techno

CHAPTER 4 THE WEB TIER80

eans
s used

Java-
ustom

that
 86).
ased
play
inde-

lo-
write

d to

ndle
rprise
both
almost

ere-
Java-
JSP

ary.
n to
d.

an
om-
nents.

ed
nt may
could
also supports a reusable component model through the inclusion of JavaB
technology and custom tag extensions. Note that the JavaBeans component
by JSP pages are not the same AWT or JFC JavaBeans components. These
Beans components simply expose properties using get and set methods. c
tags can be viewed as intelligent JavaBeans components with the exception
the actions can better interact with the JSP page (see Section 4.4.2 on page

In summary, JSP technology provides an easy way to develop servlet-b
dynamic content, with the additional benefit of separating content and dis
logic. In a properly designed JSP page, content and application logic can be
pendently updated by developers with specific expertise in each area.

Currently CGI scripts are widely used to provide dynamic content. Techno
gies such as servlets and the JSP technology that are scalable and easy to
and maintain should be used instead of CGI scripts. This is driven by the nee
provide dynamic content in a platform-independent, scalable way.

4.3 Servlets and JSP Pages

In an environment where only servlet technology is available, servlets can ha
complex logic processing, navigation paths between screens, access to ente
data, and formatting the data into an HTML response. In an environment where
servlet and JSP technology is available, JSP pages should be used to handle
all of these tasks.

The Java code used within JSP pages should remain relatively simple. Th
fore, a developer should encapsulate complex tasks within custom tags and
Beans components. A sophisticated Web application can consist solely of
pages, custom tags, and JavaBeans components; servlets are rarely necess

In this section we will review the roles that Web components can play, whe
use servlets, when to use JSP pages, and when either technology may be use

4.3.1 Web Component Roles

Although a common view is that Web components are mainly used to provide
application’s presentation, in the J2EE application programming model Web c
ponents can serve two roles: as presentation components and as front compo
Presentation componentsgenerate the HTML/XML response that when render
determines the user interface. A JSP page acting as a presentation compone
contain reusable custom tags or presentation logic. A presentation component
also be a servlet that produces binary data, such as an image.Front components

SERVLETS AND JSP PAGES 81

TTP
Front

ation,
ain-

ts a
it to.

sponse
ser.

d also
eans
rform
don’t do any presentation, but rather manage other components and handle H
requests or convert the requests into a form that an application can understand.
components are useful because they provide a single entry point to an applic
thus making security, application state, and presentation uniform and easier to m
tain.

Figure 4.1 illustrates the basic mechanism. The front component accep
request, then determines the appropriate presentation component to forward
The presentation component then processes the request and returns the re
to the front component, which forwards it to the server for presentation to the u

Figure 4.1 Web Component Roles

4.3.1.1 Front Components

While the sample application uses a JSP page as its front component, you coul
use a servlet. The JSP page simplifies the initialization of the Web-tier JavaB
components used by the sample application. However, a servlet could also pe
this initialization.

CHAPTER 4 THE WEB TIER82

the
gener-
nent.

VC

user
cart

gh the
mpo-

le by
e that
more
te the
ble.
e in
at is

on the
data

ting a
on-

alized
see,
a JSP

ut an

ner,
as a

amic
can
The sample application front component parses all form data posted to
page and generates the events that result from the posted data. The events
ated by the front component are forwarded to a template presentation compo

Front components perform the function of a controller when used in an M
architecture (see Section 4.6.3 on page 103).

4.3.1.2 Presentation Components

Many Web applications have a shopping cart that contains the products that a
has selected for purchase. In most applications the content of the shopping
needs to be displayed repeatedly. JSP technology can be used to iterate throu
list of items maintained in a shopping cart (implemented as a JavaBeans co
nent) and display the contents to the user.

The code that generates the shopping cart display should be maintainab
content providers. Since the shopping cart JavaBeans object and JSP pag
generates the HTML representation of the shopping cart can also be used in
than one part of an application, the presentation components used to genera
HTML representation of the shopping cart should also be modular and reusa

Modular design allows separation of roles. Content providers can specializ
how content is displayed, and component developers can focus on the logic th
used in the JavaBeans component to manipulate the shopping cart data, and
JSP page that generates the HTML representation of the data. Note that the
that is presented to the user may be taken from multiple sources.

Other requirements that presentation components must address are crea
consistent look and feel for an application while providing mechanisms for pers
alizing the user interface. For example, consider a Web site that has a person
banner, a navigation menu that displays only information that a user wants to
and the content a user wants to see. The next section describes how to design
page or set of JSP pages that allow for a consistent look and feel througho
application.

Presentation Component Templates

Figure 4.2 illustrates an application in which all pages share a common ban
navigation menu, body, and footer. Each item in the example can be seen
component that is used to generate the final look and feel, can contain dyn
information, and should be customizable. This is the kind of page design that
benefit from the use of JSP templates.

SERVLETS AND JSP PAGES 83

ding
ild

ak up
m tags
t, then
time

mpo-
page

d it.
tion’s
Figure 4.2 Presentation Components

There are two ways of constructing the page shown in Figure 4.2. Depen
on the granularity that you want your application to have, you could either bu
the page using custom tags and JavaBeans components or you could bre
each portion into separate JSP pages each containing the necessary custo
and JavaBeans components needed to generate their portions of the conten
build the whole page from a JSP page that incorporates the others using run
includes.

Code Example 4.1 contains the template used to provide the screen co
nents depicted in Figure 4.2. The template is constructed of an included JSP
(ScreenDefinitions.jsp), and the custom tagj2ee:insert. The content and
pages are described in theScreenDefinitions.jsp file. The template uses the
insert custom tag to do runtime includes of the components needed to buil
See Section 10.3.2.1 on page 259 for more discussion of the sample applica
template mechanism.

<%@ taglib uri="Web-INF/tlds/taglib.tld" prefix="j2ee" %>

<%@ include file="ScreenDefinitions.jsp" %>

CHAPTER 4 THE WEB TIER84

data,
by a

a ren-
ming
eneral
ther

tances
uses

or a
s that
is

d be

izing
This
<html>

 <head>

 <title>

 <j2ee:insert template="template" parameter="HtmlTitle" />

 </title>

 </head>

 <body bgcolor="white">

 <j2ee:insert template="template" parameter="HtmlBanner" />

 <j2ee:insert template="template" parameter="HtmlBody" />

 </body>

</html>

Code Example 4.1 JSP Page Templating Mechanism

This example illustrates a clean separation between presentation logic,
and content. There is no Java code in this page, so it could be managed
content provider not familiar with the Java programming language.

We recommend using JavaBeans components or custom tags to do dat
dering. These can be created by a developer familiar with the Java program
language. If JavaBeans components and custom tags are designed in a g
manner, they should be reusable in other portions of the application or in o
applications.

4.3.2 Servlets

Although JSP pages can be used for most purposes, there are some circums
where servlets are more appropriate. The following sections describe common
of servlets.

4.3.2.1 Generating Binary Data

Servlets are well suited for dynamically generating binary data such as images
new content type. Requests for content of that type would be mapped to servlet
know how to generate the content, but from the Web client’s point of view, it
merely requesting delivery of an ordinary image. The only assumption that nee
made about the client is that it supports the image format being generated.

One example of this would be a servlet that generates a graph summar
stock performance from data retrieved from a database or other source.

JSP PAGE DESIGN 85

ing a
play,
cess

rver.
to the

at is

cuted

and
nol-
single

tion

amic
n that
and
ore

ough
an also
gether

ntent.
ain-
va-
image can be kept in memory and updated every minute or so as needed. Us
servlet to generate the data, then keeping the data in memory for ready dis
can save time and improve performance in both execution cycles and file ac
time.

4.3.2.2 Extending a Web Server’s Functionality

Servlets are a portable mechanism for extending the functionality of a Web se
For example, if a new data format must be supported, a servlet can be mapped
file type for the format.

A good example of a servlet that extends a Web server is the servlet th
mapped to JSP files. This servlet parses all files that end with ajsp file extension
and compiles the JSP pages into servlets. The resulting servlets are then exe
by the Web container and the resulting response is sent back to the client.

4.3.3 JSP Pages Versus Servlets

Depending on the composition of your development team, time constraints,
application architecture, your use of JSP pages and servlets will differ. Both tech
ogies have merits and should be used accordingly. In some cases there is not a
correct choice of whether to use a servlet or JSP page.

Servlets are a programmatic tool and are best suited for low-level applica
functions that don’t require frequent modification.

JSP pages are a presentation-centric, declarative means of binding dyn
content and logic. JSP pages should be used to handle the HTML representatio
is generated by a page. They are coded in HTML-like pages with structure
content familiar to Web content providers. However, JSP pages provide far m
power than ordinary HTML pages. JSP pages can handle application logic thr
the use of JavaBeans components and custom tags. JSP pages themselves c
be used as modular, reusable presentation components that can be bound to
using a templating mechanism.

4.4 JSP Page Design

JSP pages are unique in that they can contain both presentation logic and co
They provide a variety of options for designing applications that are easy to m
tain and extend. The options available for binding content to logic include Ja

CHAPTER 4 THE WEB TIER86

cribe

s that
Java-

ts. If
an be
me.
used
ess all
ropri-

a and
es of

m-
s are

ed by

How-
then
ining

ted.
o JSP
lso be
.
ram-
tain-
that
Beans components, custom tags, and scriptlets. The following sections des
some of these options and recommend when to use each.

4.4.1 JavaBeans Components

JavaBeans technology is useful for building portable and reusable component
can used in conjunction with JSP technology. There are many ways to use
Beans components within an application.

One way to use JavaBeans components is as data-centric model objec
these beans are created specifically to manipulate and return data, they c
used by multiple views of an application and by many different clients at one ti

In conjunction with a front component, a JavaBeans component can be
as a controller. The sample application uses a JavaBeans component to proc
requests received from the front component and pass them along to the app
ate page.

Page-specific JavaBeans components provide the logic to process dat
generate a result for a particular page. The disadvantage of using these typ
beans is that they are more difficult to reuse.

4.4.2 Custom Tags

Custom tagsare the mechanism provided by JSP technology for defining custo
ized, declarative, and modular functionality for use by JSP pages. Custom tag
delivered astag librariesand are imported into a JSP page using thetaglib direc-
tive. Once imported, a custom tag can be used in the page using the prefix defin
the directive.

Custom tags provide the same functionality as JavaBeans components.
ever, unlike JavaBeans components which must first be declared and
accessed using get and set methods, custom tags work with a page by obta
initialization information through parameters defined when the tag is crea
Custom tags have access to the Web container and all the objects available t
pages. Custom tags can modify the generated response. Custom tags can a
nested within one another, allowing for complex interactions with a JSP page

Custom tags are portable and reusable. They are written in the Java prog
ming language which allows them to be used across platforms and Web con
ers. If you plan on reusing custom tags, you should take care to design tags
are not application-specific.

JSP PAGE DESIGN 87

ML
a con-
L to
ates,
ontent.
also

o a
ML
er not

This
n and

r the

ID

ode
inter-
Custom tags are ideal for iterating through data and generating the HT
code needed to render a page. For example, a custom tag could take the dat
tained within a shopping cart JavaBeans component and generate the HTM
render the shopping cart. Proper use of custom tags can reduce, if not elimin
the amount of Java language code used in a JSP page to generate dynamic c
Portions of a page that require logic, such as looping or state display, are
good places to use custom tags.

The template page in Code Example 4.1 provides a familiar interface t
designer or HTML authoring tools. The custom tags in the page appear as HT
tags. In contrast, Java language code can get corrupted by a tool or page design
familiar with the Java programming language.

In addition to rendering HTML, custom tags can be used to process data.
can reduce the amount of Java language code needed within an applicatio
make portions of an application configurable by a page designer.

Code Example 4.2 shows one such use for custom tags: as aswitch statement
for processing user input. TheCreateTemplate custom tag creates aTemplate
object and places it in the request containing the data necessary to rende
current page. TheCreateTemplate tag has nested tags that correspond tocase

statements in aswitch statement. These nested tags includeScreen tags which in
turn haveParameter tags nested within them. Depending on the current screen
obtained from theScreenManager, the properTemplate object will be created and
the parameters will be set to reflect the appropriate page components. TheTem-

plate object is processed by the JSP templating mechanism illustrated in C
Example 4.1. Notice that expressions within the tag parameters are used to
act with sample application data.

<j2ee:CreateTemplate template="template"

screen="<%=screenManager.getCurrentScreen(request)%>">

<j2ee:Screen screen="<%=ScreenNames.MAIN_SCREEN%>">

<j2ee:Parameter parameter=

"HtmlTitle" value="Welcome to Java(TM) Pet Store Demo"

direct="true"/>

<j2ee:Parameter parameter="HtmlBody"

value="/index.jsp" direct="false"/>

</j2ee:Screen>

<j2ee:Screen screen="<%=ScreenNames.SIGN_IN_SUCCESS_SCREEN%>">

<j2ee:Parameter parameter="HtmlTitle"

value="Welcome" direct="true"/>

CHAPTER 4 THE WEB TIER88

ces-
ents
JSP

ly in

es be
be
akes

mpo-
ing

ustom

lica-
ing

d in
the
Web

rt
l-

rma-
li-
uired
<j2ee:Parameter parameter="HtmlBody"

value="/signinsuccess.jsp" direct="false"/>

</j2ee:Screen>

</j2ee:CreateTemplate>

Code Example 4.2 Data-Centric Custom Tags

4.4.3 Using Scriptlets and Expressions

When designing a Web site with interactive and dynamic content, it may be ne
sary to use small portions of code to generate content. Scriptlets are small fragm
of scripting code whose language is defined by the language parameter in the
page directive. Expressions are like scriptlets, except that they are played direct
the response.

To make code easier to read and maintain, we recommend that JSP pag
used mainly for presentation. While a major portion of an application could
developed in JSP technology, placing large amounts of code in JSP pages m
them more difficult to update and can be confusing to page designers.

We recommend including Java code only when necessary. JavaBeans co
nents and custom tags provide a means of adding functionality while avoid
scriptlets. A developer can use expressions with JavaBeans components or c
tags to generate dynamic content.

4.5 Internationalization and Localization

Internationalization may sometimes be overlooked when developing a Web app
tion targeted at a particular enterprise or localized market. However, it is becom
increasingly important when developing a Web application that may be use
more than one country or region that you consider internationalization from
outset. This section presents approaches to developing an internationalized
application.

Internationalization is the process of preparing an application to suppo
various languages, whilelocalization is the process of adapting an internationa
ized application to support a specific language or locale. Alocale is a language or
subset of a language that includes both regional and language-specific info
tion. Internationalization involves identifying and isolating portions of the app
cation that present strings of data to the user so that the strings can be acq

INTERNATIONALIZATION AND LOCALIZATION 89

ings
can
new
rna-
JB

eb
tion-
on-
for

ally
can

rm’s
lica-

iza-
lper

tion,
a pre-

ge.
.
ing
ation
ode
f you
look
from a single source such as a file. Localization involves translating these str
into a specific language and assembling them in a file that the application
access. Thus internationalizing an application allows it to be easily adapted to
languages and markets while localization provides the adaptation of an inte
tionalized application to a particular country or region. Neither the Web nor E
container need be running in the same locale as the client’s Web browser.

Internationalization should not be an afterthought when developing a W
application. It is easier to design an application that is capable of being interna
alized than to retrofit an existing application, which can be both costly and time c
suming. A great deal of time and money can be saved by planning
internationalization and localization at the outset of a project.

An application written in the Java programming language is not automatic
internationalized and localizable. Though a developer of a Web application
deal with many different character sets by using the J2SE platform, the platfo
support for Unicode 2.0 is only as good as the data that is input into the app
tion.

With a Web application, the presentation layer is the focus of international
tion and localization efforts. This includes the JSP pages and supporting he
JavaBeans components.

4.5.1 Internationalization

Data handling is one part of a Web application most affected by internationaliza
with impact in three areas: data input, data storage, and locale-independent dat
sentation.

4.5.1.1 Data Input

Data is typically input to a Web application by posts from a form on an HTML pa
We assume that the client’s platform will provide a means for inputting the data

The browser running in the client’s native locale is responsible for encod
the form parameter data in the HTTP request so that it reaches a Web applic
in a readable format. By the time the application receives the data it is in Unic
format and a developer should not have to worry about character set issues. I
need to do any type of word breaking or parsing it is recommended that you
at theBreakIterator class in thejava.text package.

CHAPTER 4 THE WEB TIER90

UTF-
t you
must
e best

or a
dates,
esign
ghout
cific

ific

ith

ent
4.5.1.2 Data Storage

Setting your database to a Unicode 2.0 character encoding (such as UTF-8 or
16), allows data to be saved correctly in many different languages. The conten
are saving must be entered properly from the Web tier and the JDBC drivers
also support the encoding you choose. Refer to your data storage vendor for th
means of providing data persistence.

4.5.1.3 Enabling Locale-Independent Data Formatting

An application must be designed to present localized data appropriately f
target locale. For example, you must ensure that locale-sensitive text such as
times, currency, and numbers are presented in a locale-dependent way. If you d
your text-related classes in a locale-independent way, they can be reused throu
an application. The following methods are used to format currency in locale-spe
and locale-independent ways.

Code Example 4.3 illustrates how to format currency in a locale-spec
manner. TheNumberFormat class obtained will be the defaultNumberFormat for the
system. Note that the stringpattern contains a “$” character. This method will
only display correctly for countries that use dollars. There is not much value w
this approach because it is tied to a specific locale.

public static String formatCurrency(double amount){

NumberFormat nf = NumberFormat.getCurrencyInstance();

DecimalFormat df = (DecimalFormat)nf;

df.setMinimumFractionDigits(2);

df.setMaximumFractionDigits(2);

df.setDecimalSeparatorAlwaysShown(true);

String pattern = "$###,###.00";

df.applyPattern(pattern);

return df.format(amount);

}

Code Example 4.3 Locale-Specific Currency Formatting

Code Example 4.4 shows how to format currency in a locale-independ
manner. The user can specify any supported locale and the resultingString will

INTERNATIONALIZATION AND LOCALIZATION 91

ode
de:

e

ction
ews

and

ata in
ines
be formatted for that locale. For best results, the stringpattern should be obtained
from a resource bundle.

public static String formatCurrency(double amount, Locale locale){

NumberFormat nf = NumberFormat.getCurrencyInstance(locale);

DecimalFormat df = (DecimalFormat)nf;

df.setMinimumFractionDigits(2);

df.setMaximumFractionDigits(2);

df.setDecimalSeparatorAlwaysShown(true);

String pattern = "###,###.00";

return df.format(amount);

}

Code Example 4.4 Locale-Independent Currency Formatting

In a JSP page, the functions described in Code Example 4.3 and C
Example 4.4 for formatting currency can be used by including the following co

<%=JSPUtil.formatCurrency(cart.getTotal(), Locale.JAPAN)%>

This expression uses the methodformatCurrency which is located in a class
namedJSPUtil. The total that is returned from thecart.getTotal method is a
double. Note that when using this code you will need to import th
java.util.Locale andcom.sun.estore.util.JSPUtil classes.

4.5.2 Localization

Once an application has been internationalized it can be localized. This se
focuses on techniques for delivering localized content to clients. It also revi
techniques for delivering localized content through the use of resource bundles
language-specific JSP files.

4.5.2.1 Delivering Localized Content

Care must be taken to ensure that the application being developed handles d
code sets other than the default ISO 8859-1 (Latin-1). Many Java virtual mach

CHAPTER 4 THE WEB TIER92

sup-

one
zed
ntent

uage
n or a
refer-
ient’s
rs the
xpect.
ng
d

atic
let

Auto-
les.
operly.

tion

n the
Code
g a
will support code sets other than English. A detailed listing of character sets
ported by Sun’s Java virtual machine can be found at:

http://java.sun.com/products/jdk1.2/docs/guide/

intl/encoding.doc.html

Depending on what content is delivered to the users, localization can be d
in a few different ways. Web applications can be designed to deliver locali
content based on a user preference or to automatically deliver localized co
based on information in the HTTP request.

When an application allows users to select a language, the preferred lang
can be stored in the session. The selection can occur through a URL selectio
form post that sets an application-level language preference. The posted p
ence data can be maintained as part of a user profile as a cookie on the cl
system using a cookie or in a persistent data store on the server. Giving use
ability to select a language ensures that the user gets the content that they e

Applications can also automatically deliver localized content by usi
Accept-Language attribute in header information of the HTTP request an
mapping it to a supported locale. TheAccept-Language attribute is set in the
user’s Web browser and differs slightly between browsers. When using autom
application-level locale selection, it is prudent to also provide a mechanism to
the user override the automatic selection and select a preferred language.
matic locale selection also depends on application support for different loca
Care needs to be taken to ensure that unsupported languages are handled pr

4.5.2.2 Localized Messages

The Java programming language provides facilities for localization. This sec
discusses methods of providing localized data in a Web application.

In some cases an application may need to support multiple languages o
same JSP page. List resource bundles are also useful when using servlets.
Example 4.5 shows how to deliver content from a user-specified locale usin
ListResourceBundle.

public class WebMessages extends java.util.ListResourceBundle{

public Object [][] getContents(){

return contents;

}

static final Object[][] contents = {

INTERNATIONALIZATION AND LOCALIZATION 93

ge is
ource

le can
//Messages

{"com.sunw.messages.welcome",

"Welcome to Java(TM) Pet Store Demo"},

{"com.sunw.messages.any_message",

"Untranslated message},

{"com.sunw.messages.come_back_soon", "Come Back Soon"}

}

}

Code Example 4.5 English Resource Bundle

In this example, localized content for messages in each supported langua
contained in separate files. Code Example 4.6 demonstrates a similar res
bundle file that contains Japanese messages.

public class WebMessages_ja extends java.util.ListResourceBundle{

public Object [][] getContents(){

return contents;

}

static final Object[][] contents = {

//Messages

{"com.sunw.messages.welcome",

"Japanese welcome Java(TM) Pet Store Demo"},

{"com.sunw.messages.come_back_soon",

"Japanese Come Back Soon"}

}

}

Code Example 4.6 Japanese Resource Bundle

Inside a servlet or JSP page, the messages contained in a resource bund
be obtained with the code shown in Code Example 4.7.

// set the user's desired locale

session.setValue("preferredLocale", Locale.JAPAN);

// load preferred locale

CHAPTER 4 THE WEB TIER94

ill be
is
ages
l be

lan-
aded a

nd
that
ges

F-8

and
ow to

the
by
files

le, or
om-

tion’s
It is
ResourceBundle messages = ResourceBundle.getResource("WebMessages",

(Locale)session.getValue("preferredLocale");

Code Example 4.7 Getting Messages From a Resource Bundle

Note that the Japanese resource bundle’s class file name ends with “_ja”.
When loading resources, the Japanese version of the resource bundle file w
loaded if Locale.JAPAN is specified in the request or the default application
running in a Japanese locale. Also note that this file contains only the mess
that you want to appear in translation. All messages not defined in this file wil
used from the default file, which has no extension following its name.

This example shows how to specify and store a user’s preferred target
guage and load messages for that language. Once the resource bundle is lo
message can be obtained by using the command:

messages.getString("com.sunw.messages.welcome");

In this example,messages refers to the name of the resource bundle a
welcome refers to the message that you would like to load. You need to ensure
thecontentType of the page is set to an encoding that supports multiple langua
(the next section provides details on setting thecontentType). UTF-8 encoding
allows you to display multiple languages on a single Web page. Moreover, UT
encoding is supported by the most commonly used Web browsers.

It may be useful to create a JavaBeans component to assist in loading
managing the messages for an application to save resources. The details of h
create this type of component aren’t covered in this document.

Resource bundles are useful for providing localized content as long as
logic for displaying internationalized text is not going to be greatly changed
the target locale. If the logic changes, it is recommended to use separate JSP
for the content, as described in the following section.

Localized Content in JSP Pages

Where you need to provide messages that vary depending on the target loca
where the content and display logic are drastically different, it is better to use a c
pletely different JSP file.

Since JSP pages are responsible for the presentation of a Web applica
user interface, they provide an ideal place to put locale-specific information.

INTERNATIONALIZATION AND LOCALIZATION 95

nd tag
to

.
iner

page
-

the

with

The

s that

) of
nte-
d

pe-
his
important that the JSP pages and the supporting JavaBeans components a
libraries be able to deal with localized content. This section discusses how
design a localized page and how to integrate this page into a Web application

The encoding of a JSP page must be specified in order for the Web conta
to process it. An Application Component Provider sets the encoding of a JSP
using thecontentType attribute of thepage directive. This attribute sets the encod
ing for both the JSP page and the subsequent output stream. The value ofcon-

tentType should be “TYPE” or “ TYPE;charset=CHARSET” followed by a “;” and a
valid IANA registry value. The default value forTYPE is text/html; the default
value for the character encoding isISO-8859-1. The IANA registry values can be
found at:

 ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

If you are using thecontentType attribute of thepage directive, the resulting
output stream should not be a problem; otherwise, you will need to ensure
output stream is set properly. Keep in mind that when using thepage directive you
can only set the content type once, because apage directive is set at page compile
time. If it is necessary to change the content type dynamically, you can do so
a servlet.

When using servlets it is important to set the response encoding correctly.
ServletResponse interface contains asetLocale method which should be used to
ensure that data is set to the proper locale. The Servlet specification indicate
the locale should be set before calling thegetWriter method. For more details,
refer to the Servlet specification.

To prepare an application for localization, you should follow these steps:

1. Separate the display logic from the content in the presentation layer (JSP
the Web application. This makes localizing content easier and prevents i
gration errors which could occur if portions of the display logic were localize
by accident.

The J2EE programming model recommends that you deliver locale-s
cific files that follow the naming convention used by resource bundles. T
naming convention is the base file name followed by an underscore (_) and the
language variant. A country and a variant can also be used:
a. Language

jsp + _ + language

CHAPTER 4 THE WEB TIER96

the
ure

ny
lica-
vel-

tion
devel-
and
not
ch a
ope

2EE
ans
s and

s

b. Language and country

jsp + _ + language + _ + country

c. Language with country and a variant

jsp + _ + language + _ + country + _ + variant

2. Ensure that the character encoding of the localized files is supported by
Java virtural machine of the system running the Web application. Also, be s
that the correct encoding is listed in thecontentType tag included in thepage
directive of the JSP page.

A properly internationalized application can be quickly localized for a
number of languages without any modifications to the code of the Web app
tion. It is much easier to internationalize an application the beginning of a de
opment cycle when application design is first specified.

4.6 Application Designs

There are many ways to design a Web application. The complexity of an applica
depends on various needs and requirements such as limitations on application
opment, capabilities of the development team, longevity of an application,
dynamism of the content in an application. Even if the original application is
intended for widespread use, it is always benefical to design an application in su
way that it can be migrated to a scalable, multitier design as a project’s sc
changes.

Four general types of Web applications can be implemented with the J
platform: basic HTML, HTML with basic JSP pages, JSP pages with JavaBe
components, and highly-structured applications that use modular component
enterprise beans. The first three types of applications are considered to beWeb-
centric, whereas the last type isEJB-centric. The spectrum of application design
is presented in Figure 4.3.

APPLICATION DESIGNS 97

con-
ept

SP or

ons
evel-

ere
data
data-

he
ion.
Figure 4.3 Application Designs

4.6.1 Applications with Basic JSP Pages and Servlets

Web applications with basic JSP pages and servlets are similar in complexity to
ventional HTML and CGI-based applications widely deployed on the Web, exc
that the dynamic portions of the pages and user interaction are handled by J
servlets in place of CGI scripts.

HTML applications with basic JSP pages are entry-level Web applicati
with much of their logic in servlets or JSP pages. These applications can be d
oped quickly, but are more difficult to extend and maintain.

In these simple applications, some pages display static HTML content. Wh
necessary to display dynamic content, (for example, content generated using
from a database), a JSP page or servlet should contain code to connect to the
base and retrieve the data.

In these simplest applications, the layout will not change frequently. T
content used for the page layout of the application will be tied to the applicat

CHAPTER 4 THE WEB TIER98

eer or

ing
the

ore
w to

user
gs, and
te con-

rac-
each
This means that changes to dynamic pages can only be made by an engin
page designer familiar with the Java programming language.

Figure 4.4 Applications with Basic JSP Pages and Servlets

Including much of the logic in JSP pages or servlets is good for prototyp
an application or for controlled environments, such as intranet sites, where
application is not expected to be used by a large number of users.

As the complexity of the application increases, a model that allows for m
modularization of components would be useful. The next section describes ho
handle more complex user interaction or dynamic data processing.

4.6.2 Applications with Modular Components

When developing Web applications with dynamic content and a large degree of
interaction, you should use JSP pages with JavaBeans components, custom ta
included JSP pages. These three types of components can be used to genera
tent, process requests, and handle the display of personalized content.

Figure 4.5 shows a path that a user might take through a hypothetical, inte
tive Web application and shows how reusable components can be used at
step in the process.

APPLICATION DESIGNS 99

ed to
llow

, these
ech-
e 4.6
talog

g
anner
ing the

). A
from

ppli-
Figure 4.5 Process Flow of JSP Pages with Modular Components

Although this example appears simple, a number of components are need
take the user through the process. Creating more modular components will a
for more code reuse and make the application more maintainable.

Let’s look at each of the steps in more detail.

4.6.2.1 Modular Components in a JSP Page

JSP pages can be created using a variety of components. Used consistently
components provide a common look and feel throughout an application. This t
nique is similar to templates, yet each page can be unique if needed. Figur
shows how to design a JSP page that contains products obtained from a ca
implemented as a JavaBeans component.

In this example the filebanner.jsp contains a reusable component. Puttin
the logic to display the banner for the site in one JSP page means that the b
code does not need to appear on each page. Instead, the JSP page contain
banner code is added to each page using a runtime include.

In the center of the page, the body is generated using data from theCatalog

component (and possibly some custom tags for HTML rendering of the data
Catalog connects with an external data source using a connection obtained
the JDBC connection pool JavaBeans component. ACatalog is also responsible
for updating the data or holding data that has been previously entered in the a
cation.

CHAPTER 4 THE WEB TIER100

avior
that
and

Web

o the
t data
ata is
ction
y, the
Figure 4.6 Reusable Components in a JSP Page

4.6.2.2 Processing Requests with Modular Components

Processing user requests is another important aspect of Web application beh
that can be effectively implemented using modular components. Applications
use modular components for request processing will be easier to develop
maintain. Figure 4.7 depicts how data from a form can be processed in a
application.

In this example, a user submits data from a browser. The data is posted t
process request bean, which extracts the user data and converts it into accoun
maintained by a the account bean JavaBeans component. The account d
stored in a database using a JDBC connection obtained from the JDBC conne
pool bean, also a JavaBeans component. If the data was entered correctl

APPLICATION DESIGNS 101

e cre-

xter-
parate
nent).
nd the
cope

hown
n.
by the
eeds.
page
can
plica-
process request bean forwards the user to the appropriate page confirming th
ation of the account.

Figure 4.7 Processing a Request with Reusable Components

To avoid confusion, JavaBeans components that interact with users and e
nal data (in this example, the bean that processes requests) should be se
from the components that represent that data (the account JavaBeans compo
This separation of content and data enables the components to be reused a
application as a whole to be migrated to a more complex design as its s
changes.

4.6.2.3 Displaying Personalized Content

A JSP page that displays the personalized content is similar to the example s
in Figure 4.6 except that the displayed data is obtained from the account bea

The data used to generate the content of this page includes data entered
user. The page can also include other information personalized to the user’s n
After setting up an account, the users can be taken directly to a personalized
each time they log into the application. Data reflecting a user’s previous visits
be saved as part of the user account and used to drive the content of the ap
tion seen by that user.

CHAPTER 4 THE WEB TIER102

r, as
ses.
h as
ment.
the

s and
The
be
ovide
tion
Figure 4.8 Displaying Personalized Content in a JSP Page

This type of application can be used in many types of situations. Howeve
an application using this design becomes larger, the level of complexity increa
More of the developer’s time may be for work on the system-level issues suc
managing the connection pool and application state and transaction manage
Migrating to an EJB-centric design will allow the developer to stay focused on
application design.

A well-designed application using JSP pages with JavaBeans component
custom tags will have a clean separation of business from display logic.
content will be easier to modify and the components, if designed well, will
reusable. The major weakness of this design is the need for developers to pr
connections to legacy applications and transaction support. As an applica

APPLICATION DESIGNS 103

ternal
ed.

tion
ses a
mpo-

age-

a
ess

s and
uses

JSP

m
lar to
s all

w a
becomes more complex and the need for more transactional support and ex
resource integration becomes an issue, a more structured approach is requir

4.6.3 EJB-Centric Applications

An EJB-centric application extends the modular, component-based applica
described in the previous section, with two main differences. First, this design u
front component for a controller. Second, data represented by the JavaBeans co
nents is maintained by enterprise beans. This design provides flexibility, man
ability, and separation of developer responsibilities.

Flexibility is provided by using a MVC architecture in conjunction with
front component. The MVC architecture allows for a clean separation of busin
logic, data, and presentation logic. This design also enables content provider
application developers to focus on what they do best. The sample application
an MVC architecture to separate business from presentation logic.

Figure 4.9 shows how an MVC architecture can be implemented using
pages, servlets, and JavaBeans components.

Figure 4.9 Model-View-Controller Architecture

As illustrated in the figure, the logic driving the application is separate fro
the presentation logic and from data presented to the user. This design is simi
the design in the previous section, except that a central controller receive
requests and updates the JavaBeans components that contain view data.

Now let us explore each part of the MVC architecture and consider ho
Web application can benefit from it.

CHAPTER 4 THE WEB TIER104

entric
ifica-

spe-
nt

or a
ole

eans
ed in

ata.
be

cella-
d by

tion
r an

ns is
nts in
dis-
ating

irror.
odel
ived,

sh the
e data

ller
front

odel
4.6.3.1 Model

The model represents the data on which an application is based. In an EJB-c
application, enterprise beans hold the data needed by the application. All mod
tions to the data occur thorough events sent to the EJB controller.

4.6.3.2 View

A view presents the data represented by the model in a way that’s targeted at a
cific type of client. Most enterprise applications will support a number of differe
views. The same model could have a Visual Basic client view, a Swing view,
Web view. The view for a Web application consists of JSP files, which have s
responsibility for displaying the model data. The JSP files can contain JavaB
components, custom tags, or included JSP page components (as describ
Section 4.6.2.1 on page 99).

JSP pages should only contain code related to the display of model d
Repetitive HTML rendering, such as banners and navigation bars, should
handled by custom tags or JavaBeans components whenever possible. Mis
neous tasks such as locale-specific currency formatting should be handle
custom tags or by helper classes.

The view can employ a templating mechanism, as described in “Presenta
Component Templates” on page 82, to provide a consistent look and feel fo
application.

In the sample application, the model data maintained by enterprise bea
mirrored by JavaBeans components that reside in the Web tier. The compone
the Web tier allow the data maintained by the enterprise beans to be easily
played by a JSP page. The JavaBeans view objects are responsible for upd
themselves with the data maintained by the enterprise beans that they m
These JavaBeans components register with the Web controller to listen for m
update events received from the EJB controller. When an update event is rece
JavaBeans components contact the enterprise beans they mirror and refre
data they contain. These JavaBeans components contain read-only data, sinc
modification is the responsibility of the controller.

4.6.3.3 Controller

To ensure that a Web application runs smoothly with the Model-View-Contro
architecture, a central point of control is necessary. This is provided by using a
component and some helper classes. This controller maintains the data in the m

APPLICATION DESIGNS 105

nding

ti-
of a
is
a
to

can
ome
ontrol-
mpo-
ed in

ed in
com-
ssor,

an
f an

ned
are

sends
s the
l data

The
Web
iews

the
y only
e the
and ensures that the data presented by the view is consistent with the correspo
model.

The controller provides a level of control that isn’t possible by using sta
cally-linked Web pages. With static pages, there is no guarantee that all users
Web site will use the preferred point of entry. Without a single entry point, it
difficult to ensure that a Web application will be properly initialized to handle
user’s request. A controller can also provide a way to prevent deep linking
information within a site.

In designing a controller-centric application, a Web application developer
use a front component to receive all requests. A front component works with s
JavaBeans components and enterprise beans that act as the controller. The c
ler components span both the Web tier and the EJB tier. The design of the co
nents to create a controller that spans both the Web and EJB tiers is describ
the following section.

Controller Components

The controller is made up of many components responsible for taking data post
an HTTP request and converting it into an event to update the model data. The
ponents that make up the controller include: front component, request proce
Web controller, and EJB controller.

Figure 4.10 is a diagram of a controller that converts an HTTP request into
event that updates the application model data. This figure shows the flow o
HTTP request from an HTTP client to the controller mechanism. As mentio
before, all requests from HTTP clients go to a front component. The requests
then sent to the request processor, which converts them to events and then
the events to the Web controller. The Web controller acts as a proxy and send
event to the EJB controller, which processes the event and updates the mode
maintained by the enterprise beans accordingly.

All business logic is handled by the EJB controller and enterprise beans.
EJB controller returns a set of changed models to the Web controller. The
controller then sends the model update events to the respective views. The v
then contact the enterprise beans that they mirror and update their data from
enterprise beans. The JavaBeans components do not change any data; the
read the model data contained by the enterprise beans when they receiv
model update notification.

CHAPTER 4 THE WEB TIER106

y the

tion
ents
Figure 4.10 Controller Conversion of HTTP Request to Model Change Event

Now that we have described the process of how model data is updated b
controller mechanism we review each component of the controller.

• Front component

The front component is a component to which all requests for applica
URLs are delivered. The front component ensures that the Web compon

APPLICATION MIGRATION 107

TP

an
TTP
po-
ss-

he

ted
oller
r are

the
also
tion.
ng a

o a
ion
pli-
s of
if-

mple

f you
can
tion
needed by the application are initialized at the correct time and that all HT
requests are sent to the request processor.

• Request processor

The request processor is the link between the Web application and
HTTP-based client. The request processor is responsible for converting H
requests to events which will be used throughout the application. This com
nent allows the application developer to centralize all HTTP-specific proce
ing in one location. This component also allows the EJB portion of t
application to be independent of any single client type.

• Web controller

The Web controller is responsible for forwarding the event(s) genera
by the request processor component to the EJB controller. The Web contr
ensures that the resulting updated models returned from the EJB controlle
propagated to the appropriate Web-tier view JavaBeans components.

• EJB controller

The EJB controller accepts events from the Web controller and makes
calls on the enterprise beans affected by the event. The EJB controller is
responsible for maintaining the state of the user session with the applica
After each event is processed, the EJB controller is responsible for returni
set of updated models to the Web controller.

In general it is best to design the EJB controller so that it is not tied t
single type of client. This makes the application usable by both applicat
and Web-centric clients. The EJB controller is the only part of the Web ap
cation allowed to manipulate the model data. Any less restrictive mean
data modification would be contrary to the MVC architecture and make it d
ficult to debug the application.

For more details about controller design, see the discussion of the sa
application’s controller in Section 10.6 on page 280.

4.7 Application Migration

It’s always a good practice to design an application so that it can be extended. I
follow the Web application design path described in this chapter, this migration
be a gradual process. However, if you are working with a preexisting applica

CHAPTER 4 THE WEB TIER108

tion

ca-
that
e
nd-
ents

more
sable
ld be

li-
ions

llow-

VC

nter-

d to
ith
that does not resemble any of the application types listed in Figure 4.3, migra
will be more difficult.

When migrating an application it is best to first determine the type of appli
tion you want to implement. Figure 4.3 shows a generalized migration path
may be followed for migrating applications of different levels of complexity. Th
simpler an application is, the easier it will be to migrate. The sections correspo
ing to the columns in Figure 4.3 review what can be done to make the compon
of a Web application more modular.

When migrating applications that use basic JSP pages and servlets to a
complex design, the general theme should be to migrate components into reu
modules. As much as possible, the application and presentation logic shou
separated using custom tags and JavaBeans components.

The most difficult migration will be from a modular, component-based app
cation to an EJB-centric application with enterprise beans. The following sect
review some strategies for this migration.

4.7.1 Migrating a Web-Centric Application to Use Enterprise Beans

When migrating a Web-centric application to use enterprise beans apply the fo
ing steps:

1. Change Web portions of the application to use a front component and M
architecture.

2. Create enterprise beans representing model objects.

3. Move application logic to enterprise beans.

4. Move external resource communication from JavaBeans components to e
prise beans.

5. Minimize display logic code in JSP pages.

4.7.1.1 Centralize Application Control Using an MVC Architecture

If your Web components do not already use an MVC architecture, you will nee
modify the design. For more details on implementing an MVC architecture w
Web components and enterprise beans, refer to Section 4.6.3 on page 103.

APPLICATION MIGRATION 109

mpo-
lso
oller
may

ending

tion
icate

ents
ed

to be
date
po-

the
other
ling

pages
s into
, refer
4.7.1.2 Create Enterprise Beans

You will need to create enterprise beans corresponding to the JavaBeans co
nents used within your application. For an EJB-centric application, you will a
need to design a controller enterprise bean. The responsibilities of the contr
enterprise bean are described in “Controller Components” on page 105. You
also want to introduce other enterprise beans to handle other tasks, such as s
and receiving messages.

4.7.1.3 Move Application Logic to Enterprise Beans

All application logic provided by JavaBeans components in the Web applica
will need to be migrated to enterprise beans. This includes code to commun
with external resources.

Application logic for processing events generated by the Web compon
will need to be moved into the EJB controller. The EJB controller will also ne
logic for returning model update events to the Web controller.

4.7.1.4 Modify JavaBeans Components

JavaBeans components originally designed to hold the model data will need
modified to obtain data from the enterprise beans when they receive model up
events from the EJB controller. In addition, application logic in JavaBeans com
nents will need to be moved to the enterprise beans representing the model.

After this modification, the JavaBeans components will become part of
view to represent the contract between JSP pages and the model. The only
logic that should remain in the Web container components is that tied to hand
HTTP requests and managing the flow of the application.

4.7.1.5 Minimize Display Logic in JSP Pages

JSP pages should be used to render HTML instructions. To make the JSP
more manageable, display logic code should be moved out of the JSP page
custom tags and JavaBeans components whenever possible. For more details
back to Section 4.4 on page 85 of this chapter.

CHAPTER 4 THE WEB TIER110

s that
and

ts and
calable

ents.
nd tag
lop-
s and
gly.

n. A
r of
lize
ycle.

lets,
EJB-
ntric
JB-
tion
es to
4.8 Summary

As a medium, the Web requires application developers to create user interface
are flexible and easy to maintain. Web applications can be made more flexible
maintainable through the use of J2EE component technologies such as servle
JavaServer Pages which used to generate dynamic content in a portable and s
manner.

Enterprise Web applications should be developed using modular compon
These components include servlets, JSP pages, JavaBeans components, a
libraries containing custom tags. Depending on the composition of your deve
ment team, time constraints, and application architecture, the use of JSP page
servlets will differ. Both technologies have merits and should be used accordin

Internationalization expands the potential user base of a Web applicatio
properly internationalized application can be quickly localized for any numbe
languages without modifications to the code. It is much easier to internationa
an application during the design phase at the beginning of a development c
Retrofitting an existing application can be difficult and expensive.

Architectures for Web applications include basic JSP pages and serv
Web-centric applications that use JSP pages with modular components, and
centric applications that use JSP pages with enterprise beans. A Web-ce
application can be migrated to a highly manageable, scalable, modular, E
centric application by using the steps described in this chapter. Gradual migra
to a more complex design is less risky than making large-scale design chang
an application.

he
major
utions
prise
nt of
tron-
uter
About the Author

V INITA KHANNA is a Member of Technical Staff at Sun Microsystems, where s
works as an enterprise bean developer in the J2EE programming model team. Her
contributions include best practices and guidelines when developing business sol
using enterprise beans. Prior to the APM project Vinita was a member of the Enter
Software Solutions Group where she was involved in the design and developme
mission critical business applications for Sun. Vinita holds a B.Tech. degree in Elec
ics from Kamla Nehru Institute of Technology, India and a M.S. degree in Comp
Science from California State University, Hayward.

C H A P T E R 5

ns

lica-
nage-
vides
iness
vel

ssible,
ents
r and
stem

lems
ribes
ress
to best

ecific
er to

stics
The Enterprise JavaBea
Tier

by Vinita Khanna

I N a multitier J2EE application, the Enterprise JavaBeans (EJB) tier hosts app
tion-specific business logic and system-level services such as transaction ma
ment, concurrency control, and security. Enterprise JavaBeans technology pro
a distributed component model that enables developers to focus on solving bus
problems while relying on the J2EE platform to handle complex system-le
issues. This separation of concerns allows rapid development of scalable, acce
and highly secure applications. In the J2EE programming model, EJB compon
are a fundamental link between presentation components hosted by the Web tie
business-critical data and systems maintained in the enterprise information sy
tier.

This chapter examines the nature of business logic and describes the prob
a developer needs to resolve when implementing business logic. It then desc
the component model that the EJB tier of the J2EE platform provides to add
these problems. The chapter then presents recommendations and practices
utilize the services provided by the J2EE platform.

5.1 Business Logic

Business logic, in a very broad sense, is the set of guidelines to manage a sp
business function. Taking the object-oriented approach enables the develop
decompose a business function into a set of components or elements calledbusiness
objects. Like other objects, these business objects will have both characteri
113

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER114

ch as
sign-
nage
on or
lp us
and

other

hav-
em it
ness
mpo-
out
the

treet

ame

unt
old

other

four,
ount,
(state or data) and behavior. For example, an employee object will have data su
a name, address, social security number, and so on. It will have methods for as
ing it to a new department or changing its salary by a certain percentage. To ma
this business problem we must be able to represent how these objects functi
interact to provide the desired functionality. The business-specific rules that he
identify the structure and behavior of the business objects, along with the pre-
post-conditions that must be met when an object exposes its behavior to
objects in the system, is known asbusiness logic.

The following discussion demonstrates how to define the structure and be
ior of a business object from the requirements imposed by the business probl
belongs to. For example, the sample application contains a group of busi
objects: a catalog object to show available pets, a shopping cart object to te
rarily hold client’s selection of pets, an account object to keep information ab
clients, and an order object to keep track of placed orders. We consider
requirements on an account object:

1. Each client must have a unique account.

2. Each account should have contact information for a client such as name, s
address, and email address.

3. Clients must be able to create new accounts.

4. Clients must be able to update contact information for their account.

5. Clients must be able to retrieve information for their account.

6. Clients can retrieve and update only their own account information.

7. The account information must be maintained in persistent storage.

8. Multiple clients must be able to access their account information at the s
time.

9. Multiple clients cannot update the same account concurrently.

The first two requirements specify the structural attributes of the acco
object. Following these rules, the account object should have a field to h
account identification and several other fields to hold address, phone, and
contact information.

The behavior of the account object is described in requirements three,
and five. For example, accounts should have methods to create a new acc
update contact information, and to get the account information.

BUSINESS LOGIC 115

hen
ates
ount,
ncur-
.

her
n its
ject.
of an

ven
usi-
jects

vari-
r per-

pre-
s ini-
cart.
in it.
the

to be
ult of
ersa-

user
o that
ount
bject

ly, the
The last four requirements specify general conditions that must be met w
realizing the behavior of the account object. For example, when a client upd
an account, the client should be authorized to access that particular acc
updated account information should be written to persistent storage, and co
rent access to the account information to multiple clients should be prohibited

Similar analysis and requirement definitions could be performed for ot
objects. For example, an order object will have a set of general conditions o
behavior that have a significant correlation to the behavior of an account ob
That is, a client needs to be authorized before updating or reading the status
order, order details need to be written to a persistent storage, and so on.

If you examine business objects in similar applications you will see that e
though the actual structure and behavior of the object is tied closely to the b
ness problem it is going to solve, many services that these business ob
provide follow specific patterns that are quite generic in nature.

5.1.1 Common Requirements of Business Objects

This section describes common requirements of business objects.

5.1.1.1 Maintain State

A business object often needs to maintain the state represented in its instance
ables between the method invocations. The state can be either conversational o
sistent.

Consider a shopping cart object. The state of the shopping cart object re
sents the items and quantities of the items purchased by the client. The cart i
tially empty and gains meaningful state when a user adds an item to the
When a user adds another item to the cart, the cart should have both the items
Similarly, when a user deletes an item from the cart, the cart should reflect
change in its state. When a user exits the application, the cart object needs
reinitialized. When the object gains, maintains, and loses its state as a res
repeated interactions with the same client we say the object maintains conv
tional state.

To understand persistent state, consider an account object. When a
creates an account, the account information needs to be stored permanently s
when the user exits the application and re-enters the application, the acc
information can be presented to the user again. The state of an account o
needs to be maintained in persistent storage such as a database. Typical

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER116

main-

e on
rol and
nario
y to
vide a

unit. If
c-

rder
com-

item
user.
ne of

mote
ecial

t is a
de in

ients
algo-

avail-
ually
business objects that operate on session-neutral data exhibit persistent state
tenance.

5.1.1.2 Operate on Shared Data

Another common characteristic of business objects is that they often operat
shared data. In this case, measures must be taken to provide concurrency cont
appropriate levels of isolation of the shared data. An example of such a sce
would be multiple users updating the same account information. If two users tr
update the same account at the same time, the business object should pro
mechanism to keep the data in a consistent state.

5.1.1.3 Participate in Transactions

A transaction can be described as a set of tasks that need to be completed as a
one of the tasks fail, all the tasks in the unit will be rolled back. If all of them su
ceed, the transaction is said to be committed.

Business objects often need to participate in transactions. For example, o
placement needs to be transactional because of the set of tasks required to
plete an order—decrementing the quantity of the purchased item in the
inventory, storing the order details, and sending an order confirmation to the
For the transaction to be completed, all of these tasks must succeed. If any o
these tasks fail, work done by other tasks needs to be undone.

In many business operations, transactions may span more than one re
data source. Such transactions—called distributed transactions—require sp
protocols to ensure data integrity. In the sample application, order placemen
distributed transaction because the inventory table and the order table resi
different data sources.

5.1.1.4 Service a Large Number of Clients

A business object should be able to provide its services to a large number of cl
at the same time. This translates into a requirement for instance management
rithms that give each client an impression that a dedicated business object is
able to service its request. Without such a mechanism, the system will event
run out of resources and will not be able to service any more clients.

ENTERPRISE BEANS AS J2EE BUSINESS OBJECTS117

bject.
re to
ject
en-

enti-
cess
te the
In

exam-
roll

rent
ple,
lary
t may
of an
nt to

loyee
ppli-
envi-
by the
ents

this

some
mote
5.1.1.5 Provide Remote Access to Data

A client should be able to remotely access the services offered by a business o
This means that the business object should have some type of infrastructu
support servicing clients over the network. This in turn implies that a business ob
should be part of a distributed computing environment that takes care of fundam
tal issues in distributed systems such as location and failure transparency.

5.1.1.6 Control Access

The services offered by business objects often require some type of client auth
cation and authorization mechanism to allow only a certain set of clients to ac
protected services. For example, an account business object needs to valida
authenticity of the client before allowing it to update its account information.
many enterprise scenarios, different levels of access control are needed. For
ple, employees are allowed to view only their own salary objects, while a pay
administrator can view as well as modify all salary objects.

5.1.1.7 Reusable

A common requirement of business objects is that they be reusable by diffe
components of the same application and/or by different applications. For exam
an application used by the payroll department to keep track of employees’ sa
may have two business objects: employee and salary. A salary business objec
use the services of an employee business object to get the grade level
employee. An application that tracks the employee vacation allowances may wa
use this employee object to get the name of the employee through the emp
number. In order for business objects to be able to be used by inter- and intra-a
cation components, they need to be developed in a standard way and run in an
ronment that abides by these standards. If these standards are widely adopted
vendor community, an application can be assembled from off-the-shelf compon
from different vendors. In addition to enabling rapid application development,
approach helps developers avoid vendor lock-in.

5.2 Enterprise Beans as J2EE Business Objects

As we discussed in the previous section, business objects need to provide
generic services to clients, such as support for transactions, security, and re

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER118

e the
lify

re that

uted
the
em-
hold
elop-
gling

are

ns are
r this
con-

key.

ities:
hich

iner
ser-
e call
ts at

s calls
d dif-
and

ber of

tainer.
tion,
ecial-
the
access, These common services are very complex in nature and are outsid
domain of the business logic required to implement an application. To simp
development, enterprise applications need a standard server-side infrastructu
can provide such services.

The EJB tier of the J2EE platform provides a standard server-side distrib
component model that greatly simplifies the task of writing business logic. In
EJB architecture, system experts provide the framework for delivering syst
level services and application domain experts provide the components that
only business-specific knowledge. The J2EE platform enables enterprise dev
ers to concentrate on solving the problems of the enterprise instead of strug
with system-level issues.

To use the services provided by the J2EE platform, business objects
implemented by EJB components, orenterprise beans. There are two primary
kinds of enterprise beans: entity beans and session beans. Session bea
intended to be private resources used only by the client that created them. Fo
reason, session beans, from the client’s perspective, appear anonymous. In
trast, every entity bean has a unique identity which is exposed as a primary
Later sections in this chapter discuss each type of enterprise bean in detail.

In addition to components, the EJB architecture defines three other ent
servers, containers, and clients. Enterprise beans live inside EJB containers, w
provide life cycle management and a variety of other services. An EJB conta
is part of an EJB server, which provides naming and directory services, email
vices, and so on. When a client invokes an operation on an enterprise bean th
is intercepted by its container. By interceding between clients and componen
the method call level, containers can manage services that propagate acros
and components, and even across containers running on different servers an
ferent machines. This mechanism simplifies development of both components
clients.

5.2.1 Enterprise Beans and EJB Containers

The EJB architecture endows enterprise beans and EJB containers with a num
unique features that enable portability and reusability:

• Enterprise bean instances are created and managed at runtime by a con
If an enterprise bean uses only the services defined by the EJB specifica
the enterprise bean can be deployed in any compliant EJB container. Sp
ized containers can provide additional services beyond those defined by

ENTERPRISE BEANS AS J2EE BUSINESS OBJECTS119

be de-

ion.
ecu-
ean
ing
n is

es
ean
com-

iew
This
 exe-
an
ple-

based
es
e cli-
se
ean

eans.
-

-
rise

per-
EJB specification. An enterprise bean that depends on such a service can
ployed only in a container that supports that service.

• The behavior of enterprise beans is not wholly contained in its implementat
Service information, including transaction (described in Chapter 8) and s
rity (described in Chapter 9) information, is separate from the enterprise b
implementation. This allows the service information to be customized dur
application assembly and deployment. The behavior of an enterprise bea
customized at deployment time by editing its deployment descriptor entri
(described in Chapter 7). This makes it possible to include an enterprise b
in an assembled application without requiring source code changes or re
pilation.

• The Bean Provider defines a client view of an enterprise bean. The client v
is unaffected by the container and server in which the bean is deployed.
ensures that both the beans and their clients can be deployed in multiple
cution environments without changes or recompilation. The client view of
enterprise bean is provided through two interfaces. These interfaces are im
mented by classes constructed by the container when a bean is deployed,
on information provided by the bean. It is by implementing these interfac
that the container can intercede in client operations on a bean and offer th
ent a simplified view of the component. The following sections describe the
interfaces and classes: the home and remote interfaces, and enterprise b
class.

5.2.1.1 Home Interface

The home interface provides methods for creating and removing enterprise b
This interface must extendjavax.EJB.EJBHome. The enterprise bean’s home inter
face allows a client to do the following:

• Create new enterprise bean instance

• Remove an enterprise bean instance

• Get the meta-data for the enterprise bean through thejavax.ejb.EJBMetaData

interface. Thejavax.ejb.EJBMetaData interface is provided to allow applica
tion assembly tools to discover the meta-data information about the enterp
bean at deployment time.

• Obtain a handle to the home interface, which provides the mechanism for

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER120

o sta-
can
ome

ing
ary
the

busi-

to
ce:

r con-
enta-
lient

must

class
eate
e the
sistent enterprise beans. The home handle can be serialized and written t
ble storage. Later, possibly in a different Java virtual machine, the handle
be deserialized from stable storage and used to obtain a reference to the h
interface.

In addition, the home interface of an entity bean provides methods for find
existing entity bean instances within the home. A client that knows the prim
key of an entity object can obtain a reference to the entity object by invoking
findByPrimaryKey method on the entity bean’s home interface.

5.2.1.2 Remote Interface

The remote interface defines the client view of an enterprise bean—the set of
ness methods available to the clients. This interface must extendjavax.ejb.EJBOb-

ject. An EJBObject supports:

• The business methods of the object. TheEJBObject delegates invocation of a
business method to the enterprise bean instance.

Thejavax.ejb.EJBObject interface defines the methods that allow clients
perform the following operations on a reference to an enterprise bean instan

• Obtain the home interface

• Remove the enterprise bean instance

• Obtain a handle to the enterprise bean instance

• Obtain an entity bean instance’s primary key

5.2.1.3 Enterprise Bean Class

The enterprise bean class is the second part of the mechanism that allows fo
tainer-managed services in the EJB architecture. It provides the actual implem
tion of the business methods of the bean. It is called by the container when the c
calls the corresponding methods listed in the remote interface. This class
implement thejavax.ejb.EntityBean or javax.ejb.SessionBean interface.

In addition to business methods, the remote interface and enterprise bean
also share responsibility for two specialized categories of methods: cr
methods and finder methods. The create methods provide ways to customiz

ENTITY BEANS 121

te a

le-
n

listed
nta-
ses

ise

and

torage
ta to
self
bean at the time it is created, and the finder methods provide ways to loca
bean.

For eachcreate method listed in the home interface, the bean class imp
ments the correspondingejbCreate method. For each finder method listed i
home interface, the bean class provides the correspondingejbFindBy... method.
The enterprise bean class must also provide implementations of the methods
in the interface it extends. A developer can choose to provide empty impleme
tions of any methods in the interface that aren’t required for the specific purpo
of a bean.

Figure 5.1 illustrates the implementation of the client view of an enterpr
bean.

Figure 5.1 Implementation of Client View of Enterprise Beans

The following two sections contain in-depth discussions of the properties
uses of entity and session beans.

5.3 Entity Beans

An entity bean represents an object view of business data stored in persistent s
or an existing application. The bean provides an object wrapper around the da
simplify the task of accessing and manipulating it. This object interface lends it

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER122

rma-
in a

t the
ing
auto-

lines

rage
n its

via
ling
e, the
ters
secu-
alls.
s an
ent a
than

ared
d of
, this
state
usi-
er to
to software reuse. For example, an entity bean representing user account info
tion can be used by order management, user personalization, and marketing
uniform way.

An entity bean allows shared access from multiple clients and can live pas
duration of client’s session with the server. If the state of an entity bean is be
updated by a transaction at the time of server crash, the entity bean’s state is
matically reset to the state of the last committed transaction.

5.3.1 Guidelines for Using Entity Beans

A Bean Provider can use the following entity bean characteristics as guide
when deciding whether to model a business object as an entity bean:

• Representing persistent data

If the state of a business object needs to be stored in a persistent sto
and its behavior primarily represents manipulation of data represented i
state, then it should be modeled as entity bean.

However, it should be noted that every method call to an entity object
the remote and home interface is potentially a remote call. Even if the cal
and called enterprise beans are located in the same Java virtual machin
call must go through the container, which must create copies of all parame
that are passed through the interface by value. The container also checks
rity and applies declarative transaction attributes on the inter-component c
Therefore modeling every object representing a row in the database a
entity bean is not recommended. An entity bean is better suited to repres
coarse-grained business object that provides more complex behavior
only get and set methods for its fields.

• Providing concurrent access by multiple clients

When the state and behavior of a business object needs to be sh
among multiple clients, they should be modeled as entity beans. This kin
business object needs to maintain state between method calls. However
state is not specific to a particular client but is representative of persistent
of the business object, typically stored in a database. By modeling such b
ness objects as entity beans, a Bean Provider can rely on an EJB serv

ENTITY BEANS 123

con-

the
ntity

base.
at a

rver
rash,
nt’s
state

rash,
itted

lica-
fying
of an
t lives
ppli-

elds,
page
the

t can
d
d to
the

of
ensure appropriate synchronization for entity beans as they are accessed
currently from multiple transactions.

• Representing a single logical record (row) of data

The business objects that typically operate on one logical record in
database are excellent candidates to model as entity beans. In fact, e
beans are designed to represent an individual (logical) record in the data
Entity beans provide methods to locate, create, and manipulate one row
time.

• Providing robust, long-lived persistent data management

A business object that needs to live after a client’s session with the se
is over or that needs to be present when the server comes back after a c
should be modeled as an entity bean. Entity beans live even after a clie
session with the server is over and can even survive server crashes. If the
of an entity bean is being updated by a transaction at the time of server c
the entity bean’s state is automatically reset to the state of the last comm
transaction.

5.3.1.1 Example: A User Account Bean

The concept of a user account is central to all clients in many e-commerce app
tions. Multiple clients need to share behavior such as creating an account, veri
an existing account, and updating account information. Updates to the state
account object need to be written to persistent storage and an account objec
even when the client’s session with the server is over. Therefore, in the sample a
cation, an account object is modeled as entity bean.

To avoid expensive remote methods to get the value of account objects fi
the sample application uses a value object (discussed in Section 5.5.2 on
134) to represent account details. Only one remote call is required to retrieve
value object and then a client’s request to query the state of an account objec
then be satisfied via localget methods on this details object. Similarly, to avoi
fine-grainedset methods, the sample application uses a coarse-grained metho
update all account information via one remote call. Code Example 5.1 shows
remote interface of theAccount enterprise bean and the implementation
AccountDetails.

public interface Account extends EJBObject {

public void changeContactInformation(ContactInformation info)

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER124

ata
ssing,
enting

ean
e. An

r
ged

ged

ccess
ss, or
an. If
throws RemoteException;

public AccountDetails getAccountDetails()

throws RemoteException;

}

public class AccountDetails implements java.io.Serializable {

private String userId;

private String status;

private ContactInformation info;

public String getUserId() {

return userId;

}

...

}

Code Example 5.1 Account Remote Interface andAccountDetails Class

Like most entity beans, the account bean provides an object view of d
stored in a database and most of its code revolves around connecting to, acce
and updating database tables. The next section discusses options for implem
data access logic for entity beans.

5.3.2 Persistence in Entity Beans

The protocol for transferring the state of an entity between the enterprise b
instance and the underlying persistent store is referred to as object persistenc
entity bean can implement persistence in the following ways:

• Directly implementing persistence in the enterprise bean class or in one o
more helper objects provided with the enterprise bean class (bean-mana
persistence)

• Delegating the handling of its persistence to its container (container-mana
persistence)

With bean-managed persistence, the Bean Provider writes database a
calls. The data access calls can be coded directly into the enterprise bean cla
can be encapsulated in a data access component that is part of the entity be

SESSION BEANS 125

more
rent
s in a
to dif-

parate
e dis-

ds to
tabase
trans-
t use

s that
func-
pen-
oss
ploy-

s and

s the
gen-
antage
con-

dling
uch

busi-
icular
y exe-
ts. A
r and
eans
ss and
not be
data access calls are coded directly in the enterprise bean class, it may be
difficult to adapt the entity component to work with a database that has a diffe
schema, or with a different type of database. Encapsulating data access call
data access object makes it easier to adapt the enterprise bean’s data access
ferent schemas or different database types. The sample application uses se
data access objects for implementing persistence. Data access objects ar
cussed in detail in Section 5.5.1 on page 130.

With container-managed persistence, the Bean Provider identifies the fiel
be stored to the database and the Container Provider’s tools generate da
access calls at deployment time. The type and structure of the data source is
parent to the Bean Provider. The container tools can generate classes tha
JDBC or SQL/J to access the entity state in a relational database, classe
implement access to a non-relational data source, or classes that implement
tion calls to existing enterprise applications. The bean state is defined inde
dently of how and where it will be stored and hence is more flexible acr
applications. The disadvantage is that sophisticated tools must be used at de
ment time to map the enterprise bean’s fields to a data source. These tool
containers are typically specific to each data source.

When a container supports container-managed persistence, it simplifie
task of writing entity beans because the container takes the responsibility of
erating the code to access the data source. Bean developers should take adv
of this feature and delegate the task of saving the state of an entity bean to the
tainer whenever possible. Some containers may not be capable of han
complex state objects (for example, objects representing multiple joins). In s
cases, the Bean Provider may have to use bean-managed persistence.

5.4 Session Beans

Session beans are used to implement business objects that hold client-specific
ness logic. The state of such a business object reflects its interaction with a part
client and is not intended for general access. Therefore, a session bean typicall
cutes on behalf of a single client and cannot be shared among multiple clien
session bean is a logical extension of the client program that runs on the serve
contains information specific to the client. In contrast to entity beans, session b
do not directly represent shared data in the database, although they can acce
update such data. The state of a session object is non-persistent and need
written to the database.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER126

eans
ehav-

oper-

con-
each-
esent
f of the
at of

lines

te on
usi-

ession
ssion

can-
fore,
d be
t does
sent
ssion

ness
ssion
A session bean is intended to be stateful. However, the Enterprise JavaB
specification allows stateless session beans as a way to provide server-side b
ior that doesn’t maintain any specific state. The next section discusses the pr
ties and uses of both stateful and stateless session beans.

5.4.1 Stateful Session Beans

A stateful session bean contains conversational state on behalf of the client. A
versational state is defined as the session bean’s field values plus all objects r
able from the session bean’s fields. Stateful session beans do not directly repr
data in a persistent data store, but they can access and update data on behal
client. As its name suggests, the lifetime of a stateful session bean is typically th
its client.

5.4.1.1 Uses of Stateful Session Beans

A Bean Provider can use the following session bean characteristics as guide
when deciding whether to model a business object as a stateful session bean:

• Maintaining client-specific state

Stateful session beans are designed to maintain a conversational sta
behalf of a client, therefore business objects representing client-centric b
ness logic should be modeled as stateful session beans. Since stateful s
bean instances are tied to a client, system resources held by stateful se
beans cannot be shared among multiple clients.

• Representing non-persistent objects

Stateful session bean state is not stored in the persistent storage and
not be recreated after the client’s session with the server is over. There
business objects that are relatively short-lived and non-persistent shoul
modeled as stateful session beans. In other words, a business object tha
not need to live after a client’s session with the server is over, or be pre
when the server comes back after a crash, should be modeled as a se
bean.

• Representing work flow between business objects

The business objects that manage the interaction of various busi
objects in a system are excellent candidates to be modeled as stateful se

SESSION BEANS 127

ince
r.

cular
ific to

lace an
nce it
the

shop-

el an
half
li-
ata.
iator.
the

sion

ts
usiness
beans. Such objects usually exhibit both of the above characteristics, s
they are client specific and represent data-neutral non-persistent behavio

5.4.1.2 Example: A Shopping Cart Bean

A shopping cart object represents the collection of products selected by a parti
user for purchase during a session. The state of the shopping cart object is spec
a particular user session and need not be saved unless the user is ready to p
order. The shopping cart object is short-lived. The data should not be shared, si
represents a particular interaction with a particular user and is alive only for
user’s session with the server. The sample application models the concept of
ping cart as a stateful session bean.

As mentioned earlier, stateful session beans can also be used to mod
object that manages the interaction of various objects in the work flow on be
of a client. The sample application follows the MVC architecture. If the view (c
ent) needs to read the data (model) it does it by directly interacting with the d
However, if the view needs to update the data, it uses the controller as a med
The controller interacts with multiple objects representing data on behalf of
view or user.

In the sample application, the controller is implemented as a stateful ses
bean namedShoppingClientController. As shown in Code Example 5.2,Shop-
pingClientController is responsible for managing the life cycle of model objec
such as the shopping cart and account enterprise beans and processes b
events. For example, when a user places an order,ShoppingClientController

handles the order event.

public interface ShoppingClientController extends EJBObject {

public Catalog getCatalog() throws RemoteException;

public ShoppingCart getShoppingCart() throws RemoteException;

public Account getAccount() throws RemoteException;

public Collection getOrders() throws

RemoteException, FinderException;

public Order getOrder(int requestId) throws

RemoteException, FinderException;

// Returns a list of updated models

public Collection handleEvent(EStoreEvent se) throws

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER128

. They
itec-
ny cli-
n they

hat it
ssion
ection.

lines
:

can
main-

n be
odel
state-

stem
ssion
ents,
this
ever,

tion
RemoteException, DuplicateAccountException;

}

Code Example 5.2 ShoppingClientController Remote Interface

5.4.2 Stateless Session Beans

Stateless session beans are designed strictly to provide server-side behavior
are anonymous in that they contain no user-specific data. In fact, the EJB arch
ture provides ways for a single stateless session bean to serve the needs of ma
ents. This means that all stateless session bean instances are equivalent whe
are not involved in serving a client-invoked method. The term stateless means t
does not have any state information for a specific client. However, stateless se
beans can have non-client specific state, for example, an open database conn

5.4.2.1 Uses of Stateless Session Beans

A Bean Provider can use the following session bean characteristics as guide
when deciding whether to model a business object as a stateless session bean

• Modeling reusable service objects

A business object that provides some generic service to all its clients
be modeled as stateless session beans. Such an object does not need to
tain any client specific state information, so the same bean instance ca
reused to service other clients. For example, it would be appropriate to m
a business object that validates an employee ID against a database as a
less service.

• Providing high performance

A stateless session bean can be very efficient as it requires fewer sy
resources by the virtue of being not tied to one client. Since stateless se
beans minimize the resources needed to support a large number of cli
depending on the implementation of the EJB server, applications that use
approach may scale better than those using stateful session beans. How
this benefit may be offset by the increased complexity of the client applica

SESSION BEANS 129

e state

pre-
ample
vari-
infor-
ed.

per-
lan-

s all
n it

ject. A
wsing
log,
lient.
time

vided
that uses the stateless session beans because the client has to perform th
management functions.

• Operating on multiple rows at a time

A business object that manipulates multiple rows in a database and re
sents a shared view of the data is an ideal stateless session bean. An ex
of a such business object would be a catalog object that presents a list of
ous products and categories. Since all users would be interested in such
mation, the stateless session bean that represents it could easily be shar

• Providing procedural view of data

In a procedural view of data, methods of the business object do not o
ate on instance variables. Instead they behave like calls in a procedural
guage. The method caller provides all the input and the method return
output to the caller. If a business object exhibits such functionality the
should be modeled as a stateless session bean.

5.4.2.2 Example: A Catalog Bean

The sample application uses a stateless session beans to model a catalog ob
catalog object represents different categories and products and provides bro
and searching services to its clients. Both of the primary functions of the cata
browsing and searching, are generic services that are not tied to any particular c
Also, the catalog object operates on multiple rows in the database at the same
and provides a shared view of the data. Code Example 5.3 lists the services pro
by a catalog object:

public interface Catalog extends EJBObject {

public Collection getCategories()throws RemoteException;

public Collection getProducts(String categoryId,

int startIndex, int count)throws RemoteException;

public Product getProduct(String productId)

throws RemoteException;

public Collection getItems(String productId,int startIndex,

int count)throws RemoteException;

public Item getItem(String itemId)

throws RemoteException;

public Collection searchProducts(Collection keyWords,

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER130

send
iler

with
ared

pes,
ake

s of
y in a

ount
l all
to be

an be
d value
eans.
ans
edia-

can
t to a

ents:
int startIndex,int count)throws RemoteException;

}

Code Example 5.3 Catalog Remote Interface

Another example of a stateless session bean is the mailer object used to
confirmation mail to clients after their order has been placed successfully. Ma
provides a generic service that can be completed within a single method call
its state is not tied to any particular client. Also, since the instances can be sh
among multiple clients, they are modeled as stateless session beans.

5.5 Design Guidelines

In addition to the guidelines discussed previously for choosing specific bean ty
there are other design choices that Application Component Providers must m
when developing objects for the EJB tier. These choices include what type
objects should be enterprise beans, and what role an enterprise bean may pla
group of collaborating components.

Since enterprise beans are remote objects that consume a significant am
of system resources and network bandwidth, it is not appropriate to mode
business objects as enterprise beans. Only the business objects that need
accessed directly by a client need to be enterprise beans; other objects c
modeled as data access objects, which encapsulate database access, an
objects, which model fine-grained objects that are dependent on enterprise b

It may not be appropriate to give clients direct access to all enterprise be
within an application. As a consequence, some enterprise beans may act as m
tors of communication between clients and the EJB tier. A bean of this type
encapsulate work flow specific to an application or can serve as an entry poin
hierarchy of information keyed to an attribute of the entry-point bean.

5.5.1 Data Access Objects

To encapsulate access to data, the sample application usesdata access objects. The
use of separate objects to access databases was driven by following requirem

• Keep session bean code clear and simple

DESIGN GUIDELINES 131

ns

onding
g or
much
clut-

data
ult set,
prise

nd-
• Ensure easier migration to container-managed persistence for entity bea

• Allow for cross-database and cross-schema portability

• Provide a mechanism that supports tools from different vendors

5.5.1.1 Clarifying Session Bean Implementations

Any session bean method that needs to access a database has a corresp
method in the data access object that implements the actual logic of fetchin
updating data in the database. This makes the enterprise bean implementation
cleaner and readable by conveying the business logic at a glance without being
tered up with JDBC calls.

For example, consider theCatalog session bean. The business method
getProducts need to return all the products for a category. WhenevergetProducts

needs to operate on data residing in the database, it hands over control to a
access object. The data access object formulates the query, fetches the res
and returns the data in the desired format to the calling method of the enter
bean.

In the sample application, the implementation of theCatalog session bean is
provided byCatalogEJB, which inherits fromCatalogImpl. The code forCata-
logImpl.getProducts appears in Code Example 5.4; the code for the correspo
ing data access object appears in Code Example 5.5.

public Collection getProducts(String categoryId,

int startIndex, int count) {

Connection con = getDBConnection();

try {

CatalogDAO dao = new CatalogDAO(con);

return dao.getProducts(categoryId, startIndex, count);

} catch (SQLException se) {

throw new GeneralFailureException(se);

} finally {

try {

con.close();

} catch (Exception ex) {

...

}

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER132
}

}

Code Example 5.4 CatalogImpl.getProducts

public Collection getProducts(String categoryId, int startIndex,

int count) throws SQLException {

String qstr =

"select itemid, listprice, unitcost, " +

"attr1, a.productid, name, descn " +

"from item a, product b where " +

"a.productid = b.productid and category = "

 + "'" + categoryId + "' " + " order by name";

ArrayList al = new ArrayList();

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(qstr);

HashMap table = new HashMap();

// skip initial rows as specified by the startIndex parameter

while (startIndex-- > 0 && rs.next());

// Now get data as requested

while (count-- > 0 && rs.next()) {

int i = 1;

String itemid = rs.getString(i++).trim();

double listprice = rs.getDouble(i++);

double unitcost = rs.getDouble(i++);

...

Product product = null;

if (table.get(productid) == null) {

product = new Product(productid, name, descn);

table.put(productid, product);

al.add(product);

}

}

rs.close();

stmt.close();

DESIGN GUIDELINES 133

vides
entity
simply
o it in

cess to
or dif-
pplica-
mbly

ess
loud-

ovided
ases.

en a
s data-

onsi-
nt an
are a
ture,
likely
return al;

}

Code Example 5.5 CatalogDAO.getProducts

5.5.1.2 Migrating to Container-Managed Persistence

Apart from neater, more maintainable code, the use of data access objects pro
an easier migration path to container-managed persistence. To convert an
bean from bean-managed persistence to container-managed persistence you
need to discard corresponding the data access object along with references t
the entity bean’s code.

5.5.1.3 Database and Schema Portability

By encapsulating data access calls, data access objects allow adapting data ac
different schemas or even to a different database types. Data access objects f
ferent schemas and databases can share a common interface enabling the A
tion Assembler to choose the appropriate object from among several at asse
time.

In the sample application we have used the flexibility provided by data acc
objects to access different types of databases, namely Oracle, Sybase, and C
scape. In the order management module, a separate data access object is pr
for each vendor. This allows the same enterprise bean code to run on all datab
The decision of which data access object to invoke is taken dynamically wh
connection to the database is made. A similar approach can be used to acces
bases with different schemas.

5.5.1.4 Tool Compatibility

Data access objects fill a gap in the J2EE application architecture between resp
bilities of application developers and those of Server Providers. They represe
excellent opportunity for the tool vendors to add value. Data access objects
type of class that can be easily generated by sophisticated tools. In the fu
custom data access objects, such as those in the sample application, will most
be replaced by sophisticated object-relational tools.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER134

nsume
here-
rmine
epre-
d set
nt it

iness

lds.

ob-

ply
rk to
local
bject.
e all

alue
iding
mote
he
is

l by
ct

d as
5.5.2 Value Objects

As mentioned earlier, because enterprise beans are remote objects, they co
significant amount of system resources and network bandwidth to execute. T
fore, before modeling a business object as an enterprise bean, you should dete
that there is a good case for doing so. For example, if a business object merely r
sents a structure to hold data fields, and the only behavior it provides are get an
methods for the fields, then it would be wasteful of system resources to impleme
as an enterprise bean.

A better alternative would be to model it as a value object. Avalue objectis a
serializable Java object that can be passed by value to the client. A bus
concept should be implemented as a value object when it is:

• Fine-grained, which means it only contains methods to get the values of fie

• Dependent, which means its life cycle is completely controlled by another
ject.

• Immutable, which means that its fields are not independently modifiable.

A client’s request for a value object can be fulfilled by the server more sim
than for an enterprise bean; the object is serialized and sent over the netwo
the client where the object is deserialized. The object can then be used as a
object. This conserves system resources by reducing the load on a remote o
It also reduces network traffic as the method calls to get fields of the object ar
local.

In the sample application the details of an account are modeled as a v
object representing the state of a particular account in the database and prov
getter methods to query the state of this account. The client makes just one re
call to executegetAccountDetails on the remote object account and gets back t
serializedAccountDetails object. The client can then query the state of th
account locally via the methods provided with theAccountDetails object. Simi-
larly, the state of an account object can be modified in just one remote cal
passing aContactInformation object to the remote method for updating conta
information.

5.5.2.1 Example: An Address Value Object

In the sample application, an address and credit card information are modele
value objects. The definition of theAddress class is shown in Code Example 5.6.

DESIGN GUIDELINES 135

ure
d set
with

to
es to
not

value
ired

ribes

ness
ften
ows.
e the
public class Address implements java.io.Serializable {

public Address (String streetName1, String streetName2,

String city, String state, String zipCode, String country){

this.streetName1 = streetName1;

this.streetName2 = streetName2;

...

}

public String getStreetName1() {

return streetName1;

}

...

private String streetName1;

private String streetName2;

...

}

Code Example 5.6 Address

An Address does not exhibit complex behavior, but is merely a data struct
that contains only data fields. An address is fine-grained, having only get an
methods. Also, it is a dependent object; it only has meaning if it is associated
an account.

When making the object pass-by-value it is important to make it immutable
reinforce the idea that the dependent object is not a remote object and chang
its state will not be reflected on the server; in other words, it is just a copy and
the remote reference. To make anAddress object immutable, all its instance data
is declared private and it only has methods to get fields. To change a pass-by-
object the client must first remove it and then create a new object with the des
field values.

5.5.3 Session Beans as a Facade to Entity Beans

A facade provides a unified interface to a set of interfaces. This section desc
when and how to use an session bean as a facade to entity beans.

Entity beans represent an object-oriented view of data and provide busi
logic to manipulate this data. In an enterprise environment, entity beans o
need to be shared among different applications representing different work fl
In such cases, use of application-specific stateful session beans to manag

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER136

, by
is
tem.

ether
appli-
the
tate-

der
m
apsu-

for
com-

ple
plica-
usi-

ically
elect.
bject.
he

ata
each

r as a
tion-
detail

uide-
the

ning
ld be
interaction of various entity beans provides a simpler interface to the client
giving the client a central point of entry. The client always interacts with th
session bean and is unaware of the existence of other entity beans in the sys

Stateful session beans are logical extensions of the client programs. Wh
to use one or many session bean facades depends on the types of clients the
cation supports. Since the sample application has only one kind of client for
application, namely the shopping client, the sample application uses a single s
ful session bean calledShoppingSessionController. It’s easy to imagine another
client that would provide administration functionality such as inventory and or
status monitoring. The work flow of such a client would be entirely different fro
a shopping client. Therefore, defining another stateful session bean that enc
lates this work flow would be advisable. However, creating a session bean
every entity bean in the system would waste server resources and is not re
mended.

Where the client interacts with only a few entity beans in a relatively sim
way, the entity beans can be exposed directly. For example, in the sample ap
tion the client that converts pending orders to XML (for use by business-to-b
ness transactions) interacts with the order entity bean directly.

5.5.4 Master-Detail Modeling Using Enterprise Beans

In a master-detail relationship, one object serves as a pointer to another. Typ
such a relationship is represented to the user as a list of items from which to s
This list is called a master record and its contents are provided by the master o
Selecting an item from this list leads to an expanded view of that item. T
expanded view is provided by a detail object.

A master-detail relationship is a one-to-many type relationship among d
sets. For example, if we have a set of customers and a set of orders placed by
customer, a master-detail relationship is created by having customer numbe
common field between the two. An application can use this master-detail rela
ship to enable users to navigate through the customer data set and see the
data for orders placed by the selected customer.

When modeling a master-detail relationship as enterprise beans, the g
lines for using entity or session beans still hold. The choice is not affected by
master-detail relationship. However, the relationship is relevant when desig
the behavior of the master. For example, suppose the master object shou

SUMMARY 137

In this
:

e de-

s, or
levant
sce-

 to

an
o con-
the
nting

tions
ng in
data,
lved
nter-
enter-

lopers
busi-

prise
ateless
busi-
ed to
modeled as a session bean and the details object should be an entity bean.
case, the issue to be decided is how to implement the behavior of the master

• Expose the underlying entity beans to its clients when the client wants th
tail object.

• Implement the logic of collecting the details in the master.

In analyzing various possible combinations of session beans, entity bean
value objects, to represent master and detail objects, these questions are re
only when the details are entity beans. For this case there are two possible
narios:

• If the client modifies the detail entity object, then the master object needs
expose the underlying entity object to the clients.

• If the client does not modify the detail entity object, then the master object c
have the necessary business logic to know which detail bean to access t
struct the logical master/detail object. The client should not be exposed to
logic associated with accessing and aggregating the entity beans represe
the details.

5.6 Summary

There are a number of common services that distributed enterprise applica
require. These include maintaining state, operating on shared data, participati
transactions, servicing a large number of clients, providing remote access to
and controlling access to data. The middle tier of enterprise computing has evo
as the ideal place to provide these services. The J2EE platform promotes the E
prise JavaBeans architecture as a way to provide the system services that most
prise applications need. The EJB architecture frees enterprise application deve
from concerns about these services enabling them to concentrate on providing
ness logic.

The Enterprise JavaBeans architecture provides various types of enter
beans to model business objects: entity beans, stateful session beans, and st
session beans. When choosing a particular enterprise bean type to model a
ness concept, the choice depends on a number of factors such as the ne

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER138

need

in a
plica-
h as

iple
beans

e cli-

. An
well

use a
entity

mount
del-
cess
hat are

rise
rs for
ulate
y of
provide robust data handling, the need to provide efficient behavior, and the
to maintain client state during a user session.

An entity bean provides an object-oriented view of relational data stored
database; a stateless session bean gives a procedural view of the data. An Ap
tion Component Provider should use entity beans to model logical entities suc
individual records in a database. When implementing behavior to visit mult
rows in a database and present a read-only view of data, stateless session
are the best choice. They are designed to provide generic services to multipl
ents.

Some business concepts actually require more than one view of data
example would be a catalog that provides browsing and searching services as
as mechanisms to update the product information. In such cases, you can
stateless session bean to operate on a product information as a whole and an
bean to provide access to a particular product.

Because enterprise beans are remote objects that consume significant a
of system resources and network bandwidth, they are not appropriate for mo
ing all business objects. An Application Component Provider can use data ac
objects to encapsulate database access and value objects to model objects t
dependent on enterprise beans.

Also, it may not be appropriate to give clients direct access to all enterp
beans used by an application. Some enterprise beans may act as mediato
communication between clients and the EJB tier. Such beans can encaps
work flow specific to an application or can serve as an entry point to a hierarch
information.

ad
n the
ases,
from
of
About the Author

RAHUL SHARMA is a Staff Engineer with Sun Microsystems, where he is the le
architect for the J2EE Connector architecture 1.0. Before this, Rahul has worked i
areas of Java computing, Web technologies, distributed computing, CORBA, datab
and object-oriented programming. Rahul received a degree in Computer Science
Delhi University in India. He is presently pursuing his M.B.A. from Haas School
Business, University of California at Berkeley.

C H A P T E R 6

n

rise
r an
ource
abase

their
enter-
an

d in
enter-

infor-
er the
rises

red in
xtend
r the
plica-

to its
mise
rise
t that
The Enterprise Informatio
System Tier

by Rahul Sharma

ENTERPRISEapplications require access to applications running on enterp
information systems. These systems provide the information infrastructure fo
enterprise. Examples of enterprise information systems include enterprise res
planning systems, mainframe transaction processing systems, relational dat
management systems, and other legacy information systems. Enterprises run
businesses using the information stored in these systems; the success of an
prise critically depends on this information. An enterprise cannot afford to have
application cause inconsistent data or compromise the integrity of data store
these systems. This leads to a requirement for ensuring transactional access to
prise information systems from various applications.

The emergence of the e-business model has added another dimension to
mation system access: enterprises want their information to be accessible ov
Web to their partners, suppliers, customers, and employees. Typically enterp
develop Web-enabled applications that access and manage information sto
their information systems. These enterprises can use J2EE applications to e
the reach of their existing information systems and make them accessible ove
Web. Enterprises also develop new e-business applications. The sample ap
tion described in this book is one example of this class of application.

This added dimension requires an enterprise to ensure secure access
enterprise information systems because any break in security can compro
critical information. An increase in the number of relationships that an enterp
has to establish with its suppliers, buyers, and partners leads to a requiremen
141

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER142

and

sing
cure,

n and
urces
rs by
sup-

ans-
t are

time
e, it
this
tion

such

ms,
tem

lities
t be

ltiple
rans-
tem
ases,
con-
J2EE applications accessing enterprise information systems be scalable
support a large number of clients.

This chapter describes the application programming model for acces
enterprise information system resources from enterprise applications in a se
transactional, and scalable manner.

6.1 Enterprise Information System Capabilities and
Limitations

Some enterprise information systems provide advanced support for transactio
security. For example, some systems support controlled access to their reso
through transactions. These systems can participate in transactions with othe
supporting two-phase commit protocol, managed by a transaction manager
ported by a J2EE server. Other systems offer limited or almost no support for tr
actional access. For example, a system may only support transactions tha
coordinated internally.

Legacy systems or applications that have been in existence for a long
may impose specific technology and administrative restrictions. For exampl
may be difficult to create new user accounts in a legacy system or to extend
system to support development of new applications. In this case, an Applica
Component Provider has to live with what exists and enable access to
systems under restrictions. This may be a very typical situation.

When developing an application to integrate enterprise information syste
an Application Component Provider has to be aware of its functional and sys
capabilities, and design application components taking into account possibi
and limitations of the system. For example, application components should no
developed and deployed so that they require transactions spanning mu
resource managers if the J2EE server cannot really provide support for such t
actions due to the fact that the participating enterprise information sys
resource managers do not support the two-phase commit protocol. In other c
application components may need to limit their security requirements due to
straints of the underlying system.

ENTERPRISE INFORMATION SYSTEM INTEGRATION SCENARIOS143

ruc-
ate a

ation
rate to
lated
ction

the
rod-
pass-
lly

abase
6.2 Enterprise Information System Integration Scenarios

There are any number of configurations in which a J2EE application might be st
tured to access an enterprise information system. The following sections illustr
few typical enterprise information system integration scenarios.

6.2.1 An Internet E-Store Application

Company A has an e-store application based on the J2EE platform. This applic
is composed of a set of enterprise beans, JSP pages, and servlets that collabo
provide the overall functionality of the application. The database stores data re
to product catalogs, shopping carts, customer registration and profiles, transa
status and records, and order status.

The architecture of this application is illustrated in Figure 6.1.

Figure 6.1 An Internet E-Store Application

A customer uses a Web browser to initiate an e-commerce transaction with
e-store application. A customer browses the catalog, makes a selection of p
ucts, puts the product selection into a shopping cart, enters a user name and
word to initiate a secure transaction, fills in order related information, and fina
places an order. In this scenario, the e-store application uses an existing dat

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER144

tent

based
man

from
to the

r is
busi-
plica-

ma-
nefits

rise
tion.

ased
tion-
that already contains product and inventory information to store all persis
information about customers and their transactions.

6.2.2 An Intranet Human Resources Application

Company B has developed and deployed an employee self-service application
on the J2EE platform. This application supports a Web interface to existing hu
resources applications supported by the enterprise resource planning system
vendor X and provides additional business processes that are customized
needs of company B.

Figure 6.2 illustrates an architecture for this application. The middle tie
composed of enterprise beans and JSP pages that provide customization of
ness processes and support a company standardized Web interface. This ap
tion enables an employee (under the different roles ofManager, HR manager, and
Employee) to perform various personnel management functions: personal infor
tion management, payroll management, compensation management, be
administration, travel management, and cost planning.

The IT department of company B deploys this application and enterp
resource planning system in a secure environment at a single physical loca
Access to the application is permitted only to employees of the organization b
on their roles and access privileges, and within the confines of the organiza
wide intranet.

Figure 6.2 An Intranet Human Resources Application

ENTERPRISE INFORMATION SYSTEM INTEGRATION SCENARIOS145

s an
tions.
chase
the
the

as
enter-
rate a
age-
ting

ted
are

data
on is

ent
cha-
6.2.3 A Distributed Purchasing Application

Company C has a distributed purchasing application. This application enable
employee to use a Web-based interface to perform multiple purchasing transac
An employee can manage the whole procurement process, from creating a pur
requisition to getting invoice approval. This application also integrates with
existing financial applications in the enterprise for tracking financial aspects of
procurement business processes.

Figure 6.3 illustrates an architecture for this application. The application
developed and deployed on the J2EE platform, is composed of JSP pages,
prise beans, and existing information systems. The enterprise beans integ
logistics application that provides integrated purchasing and inventory man
ment functions from vendor X and another that provides financial accoun
functions from vendor Y.

Figure 6.3 A Distributed Purchasing Application

Company C is a large decentralized enterprise with geographically distribu
business units and departments. In this scenario, system X and system Y
managed by different IT departments and have been deployed at secured
centers in different geographic locations. The integrated purchasing applicati
deployed at a location different from either system X or system Y.

System X and System Y are in different security domains; they use differ
security technologies and have their own specific security policies and me

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER146

ain

onal
s two
and a
nnec-
lop-
and

t a
stored
API

ing
and

ther

rver
dors
rprise
cial-
ing
nisms. The distributed purchasing application is deployed in a security dom
that is different from either that of system X or system Y.

6.3 Relational Database Management System Access

Application Component Providers use the JDBC 2.0 API for accessing relati
databases to manage persistent data for their applications. The JDBC API ha
parts: a client API for direct use by developers to access relational databases
standard contract between J2EE servers and JDBC drivers for supporting co
tion pooling and transactions. The latter contract is not directly used by the deve
ers, it is used by J2EE server vendors to automatically provide pooling
transaction services to J2EE components.

An Application Component Provider uses the JDBC client-level API to ge
database connection, to retrieve database records, to execute queries and
procedures and to perform other database functions. Even though the JDBC
is quite simple, an Application Component Provider still experiences a learn
curve and intensive programming effort due to differences between relational
object-oriented methodologies.

6.4 Other Enterprise Information System Access

An enterprise environment invariably includes enterprise information systems o
than relational database systems:

• Enterprise resource planning systems

• Mainframe transaction processing systems

• Legacy applications

• Non-relational database systems

Currently, there is no standard architecture for integration of a J2EE se
with enterprise information systems; most enterprise information system ven
and J2EE Server Providers use vendor-specific architectures to support ente
information system integration. For example, a J2EE Server Provider can spe
ize its container to support integration with an enterprise resource plann
system.

APPLICATION COMPONENT PROVIDER TASKS 147

tion
po-
spe-

erent

) is a
with
nder
oc-
hitec-

ific
hile
the

der to

om-
d on
tion
lica-

sig-
tem
. This
ro-
po-
API

ation

rity

ent
rs to
tion
A major disadvantage of developing enterprise information system integra
applications for deployment on specialized containers is that application com
nents become tied to mechanisms and programming models defined by the
cialized container. As a result, such components are not portable across diff
types of containers.

The J2EE Connector architecture (described in Section 6.10 on page 161
standard architecture for the integration of J2EE products and applications
heterogeneous enterprise information systems. This architecture is currently u
development and will be part of the next version of the J2EE platform. In this d
ument, we make no specific recommendations based on the Connector arc
ture.

In the interim, an Application Component Provider can use vendor-spec
architectures to integrate with enterprise information systems. However, w
developing various types of application components we suggest following
guidelines that are discussed in the subsequent sections in this chapter in or
ensure that the migration path to the Connector architecture will be smooth.

6.5 Application Component Provider Tasks

The task of an Application Component Provider assumes different levels of c
plexity and effort depending on whether the programming model used is base
the J2EE application programming model or not. In either case, an Applica
Component Provider has to write the business and application logic for the app
tion.

In the absence of J2EE platform support, the Component Provider faces
nificant complexity when programming access to enterprise information sys
resources (data and functions managed by an enterprise information system)
complexity comes from dealing with security, transaction, and application p
gramming models that are specific to an enterprise information system. A Com
nent Provider has to manage transactions using a transaction demarcation
specific to an enterprise information system, such as the transaction demarc
API defined in thejava.sql.Connection interface in the JDBC 2.0 API. In the
application, the Application Component Provider has to explicitly code secu
checks to restrict enterprise information system access to valid users.

Using the J2EE application programming model, an Application Compon
Provider faces reduced complexity by relying on the Web and EJB containe
handle transactions, security, and scalability related to enterprise informa

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER148

k of
for

rprise
asier

ility,
si-
ore
plat-
EE

vid-
xtend
red

cess
ation
vider
ents.

in

on-

ve of
tions,
ing
system access. The Application Component Provider can focus on the tas
writing business and application logic and use a simple client-oriented API
accessing the enterprise information system. The task of accessing ente
information system resources from the application code is made even e
through the use of enterprise application development tools.

By letting J2EE containers manage transactions, security, and scalab
Application Component Providers focus on what they do the best: writing bu
ness and application logic. The J2EE platform vendors focus on their c
strengths: multiuser, secure, transactional, scalable implementations of J2EE
form that enable different enterprise information systems to plug into the J2
platform. Together Application Component Providers and J2EE Platform Pro
ers succeed in ensuring that enterprises can rely on J2EE applications to e
their enterprise information systems without compromising the information sto
in these systems.

6.6 Application Programming Model

The J2EE application programming model for enterprise information system ac
lays down a set of design choices, guidelines, and recommendations for Applic
Component Providers. These guidelines enable an Application Component Pro
to develop an application based on its overall functional and system requirem
The application programming model focuses on the following aspects:

• Accessing enterprise information system resources from components

• Using tools to simplify and reduce application development effort involved
accessing enterprise information systems

• Getting connections to an enterprise information system and managing c
nections

• Supporting the security requirements of an application

• Supporting the transactional requirements of an application

The following sections describe each of these aspects from the perspecti
relational database access using JDBC 2.0 API, with the exception of transac
which are discussed in Chapter 8. An important point to note is that the follow
sections are not meant to be a programmer’s guide to using the JDBC API.

PROGRAMMING ACCESS TO DATA AND FUNCTIONS 149

ppli-
urces
ures,
vider
ty of

ate-
ple,

am-

ility
vice
s by
ion
tions

use

-

, it
sys-

ols
t to

ay
ion
6.7 Programming Access to Data and Functions

In an application that requires access to an enterprise information system, an A
cation Component Provider is responsible for programming access to reso
managed by the enterprise information system, including tables, stored proced
business objects, and transaction programs. The Application Component Pro
also has to write the business and application logic when developing functionali
applications that target enterprise information system.

The API for accessing an enterprise information system belongs to two c
gories: a client-level API to access data and execute functions (for exam
java.sql.PreparedStatement and java.sql.ResultSet in JDBC 2.0) and a
system-level API for getting connections and demarcating transactions (for ex
ple,javax.sql.DataSource in JDBC 2.0).

In the J2EE programming model, a container assumes primary responsib
for managing connection pooling, transactions, and security. The level of ser
provided is based on the declarative specification of application requirement
an Application Component Provider or Deployer. This leaves an Applicat
Component Provider to concentrate on programming access to data and func
being managed by an enterprise information system.

6.7.1 Client API for Enterprise Information System Access

A client API for accessing data and functions can be difficult to understand and
for one or more of the following reasons:

• The client API may be tied to a specific enterprise information system pro
graming model.

• The client API may not present object-oriented abstractions. For example
may require remote function calls to access business functions on an ERP
tem.

• An Application Component Provider who is proficient with the JavaBeans
component model and visual application composition and development to
may see any API that does not support such functionality as being difficul
use.

• The lack of application development tool support for a specific client API m
force Application Component Providers to hand-code all data and/or funct
access.

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER150

elop-
ing

ders
er-
ors,
lop-
d-to-

id-
for-

po-
sys-

for
am-
te-

id-
ch as
com-

nd
-

s is a
tion
d in
These factors increase the need for tools to support end-to-end application dev
ment. Application Component Providers also have to use additional programm
techniques to simplify enterprise information system integration.

6.7.2 Tools for Application Development

The J2EE programming model recognizes that Application Component Provi
will rely on enterprise development tools for simplifying development during ent
prise information system integration. These tools will come from different vend
provide varied functionalities, and serve various steps in the application deve
ment process. A number of these tools will be integrated together to form an en
end development environment. The tools include:

• Data and function mining tools, which enable Application Component Prov
ers to look at the scope and structure of data and functions in an existing in
mation system.

• Object-oriented analysis and design tools, which enable Application Com
nent Providers to design an application in terms of enterprise information
tem functionality.

• Application code generation tools, which generate higher level abstractions
accessing data and functions. A mapping tool that bridges different progr
ming models, such as an object to relational mapping, will fall into this ca
gory.

• Application composition tools, which enable Application Component Prov
ers to compose application components from generated abstractions (su
those described in previous bullets). These tools will use the JavaBeans
ponent model to enhance ease of programming and composition.

• Deployment tools, which are used by Application Component Providers a
Deployers to set transaction, security, and other deployment time require
ments.

Since programming access to enterprise information system data and function
complex application development task in itself, we recommend that applica
development tools should be used to reduce the effort and complexity involve
enterprise information system integration.

PROGRAMMING ACCESS TO DATA AND FUNCTIONS 151

in a
tly
tem

sing
that
ation

aps
. The
ri-
e in-

the

ill en-
 re-

s
rent

ava-
n be
This

pli-
mend
ed to
tools
to be
6.7.3 Access Objects

A component can access data and functions in an enterprise information system
couple of ways, either directly by using the corresponding client API or indirec
by abstracting the complexity and low-level details of enterprise information sys
access API into higher levelaccess objects. An Application Component Provider
comes across these access objects in different forms, scopes, and structure.

The use of access objects provides several advantages:

• An access object can adapt the low-level programming API used for acces
enterprise information system data and/or functions to an easy-to-use API
can be designed to be consistent across various types of enterprise inform
systems. For example, an access object may follow a design pattern that m
function parameters to setter methods and return values to getter methods
Application Component Provider uses a function by first calling the approp
ate setter methods, then calling the method corresponding to the enterpris
formation system function, and finally calling the getter methods to retrieve
results.

• A clear separation of concern between access objects and components w
able a component to be adapted to different enterprise information system
sources. For example, a component can use an access object to adapt it
persistent state management to a different database schema or to a diffe
type of database.

• Since access objects can be made composable through support for the J
Beans model, components can be composed out of access objects or ca
linked with generated access objects using application development tools.
simplifies the application development effort.

Since access objects primarily provide a programming technique to simplify ap
cation development through one or more of the above advantages, we recom
that Application Component Providers consider using them anywhere they ne
access data or functions in an enterprise information system. In some cases
may be available to generate such access objects. In other cases they will need
hand-coded by Application Component Providers.

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER152

hich

po-
pat-

ent

ire-
nt

ac-
wed
yn-

ame

wing

sys-
wing
iness

asing
6.7.3.1 Guidelines for Access Objects

Here are some guidelines to follow in developing access objects:

• An access object shouldn’t make assumptions about the environment in w
it will be deployed and used.

• An access object should be designed to be usable by different types of com
nents. For example, if an access object follows the set-execute-get design
tern described previously, then its programming model should be consist
across both enterprise beans and JSP pages.

• An access object shouldn’t define declarative transaction or security requ
ments of its own. It should follow the transaction and security manageme
model of the component that uses it.

• All programming restrictions that apply to a component apply to the set of
cess objects associated with it. For example, an enterprise bean isn’t allo
to start new threads, to terminate a running thread, or to use any thread s
chronization primitives. Therefore, access objects should conform to the s
restrictions.

6.7.3.2 Examples of Access Objects

Access objects can be used in a number of ways, as represented in the follo
examples:

• Encapsulating functions

An access object can encapsulate one or more enterprise information
tem functions, such as business functions or stored procedures. The follo
code implements an access object that drives a purchase requisition bus
process on an enterprise resource planning system by mapping purch
functions to method calls on a purchase function object.

PurchaseFunction pf = // instantiate access object for PurchaseFunc-

tion

// set fields for this purchase order

pf.setCustomer("Wombat Inc");

pf.setMaterial(...);

pf.setSalesOrganization(...);

CONNECTIONS 153

as that
vide a
jects
ed to

ding a

ness
ss
.

ional-

. That
ction-
be
eing

This
tion
ned

nec-
ting
po.execute();

// now get the result of purchase requisition using getter methods

• Encapsulating persistent data

A data access object can encapsulate access to persistent data such
stored in a database management system. Data access objects can pro
consistent API across different types of such systems. Data access ob
used by the sample application (see Section 5.5.1 on page 130) are us
access order objects stored in different types of databases.

• Aggregating behaviors

An access object can aggregate access to other access objects, provi
higher level abstraction of application functionality. For example, aPurchase-

Order aggregated access object can drive its purchase requisition busi
process through thePurchaseFunction access object and use a data acce
objectPurchaseData to maintain persistent attributes of the purchase order

6.7.3.3 Usage Scenarios for Access Objects

A component can use access objects in different ways depending on the funct
ity they offer. A couple of common ways to use access objects would be:

• Define a one-to-one association between components and access objects
is, each access object encapsulates the enterprise information system fun
ality required by a particular component. This usage scenario will typically
used to enable Web access to enterprise information system resources b
encapsulated by an access object.

• Define components to aggregate the behavior of multiple access objects.
will happen often where a component accesses multiple enterprise informa
system resources or adds additional business logic to the functionality defi
by multiple enterprise information system resources.

6.8 Connections

Virtually all enterprise information systems are accessed via objects called con
tions. The following discussions provide pointers on efficient techniques for get
and managing connections.

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER154

tion
d, the
urces.

tion

e-
po-

fter
reate

s the

com-

tion

ional
6.8.1 Establishing a Connection

A component is responsible for getting a connection to an enterprise informa
system. Once a connection to the enterprise information system is establishe
component uses the connection to access enterprise information system reso
After the component is finished, it closes the connection.

The specific steps in establishing a connection to an enterprise informa
system are:

1. The Deployer configures a connection factory instance in the JNDI name
space. This connection factory instance is tied to the connection factory r
quirements specified in the deployment descriptor by the Application Com
nent Provider.

2. A component looks up a connection factory from the JNDI name space. A
a successful lookup, the component calls a connection factory method to c
a connection to the enterprise information system.

3. The connection factory returns a connection instance. The component use
connection instance to access enterprise information system resources.

4. Having established a connection to the enterprise information system, the
ponent manages this connection and its life cycle.

5. Once the component is finished using the connection, it closes the connec
instance.

Code Example 6.1 illustrates how a component gets a connection to a relat
database using the JDBC 2.0 API.

public void getConnection(...) {

// obtain the initial JNDI context

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain factory

javax.sql.DataSource ds =

(javax.sql.DataSource)initctx.lookup(

"java:comp/env/jdbc/MyDatabase");

// Invoke factory to get a connection

java.sql.Connection cx = ds.getConnection();

CONNECTIONS 155

n and
to
stem
nents
ost

tion
ices.
m-
ecially
nec-
ion-
iple

ing
data-

oked
thin a
n the
mpo-

ional
nage
etains
session
elf is
ince
// Use the Connection to access the resource manager

...

}

Code Example 6.1 Establishing a Database Connection

6.8.2 Guidelines for Connection Management

If each component were to acquire an enterprise information system connectio
hold it until it gets removed, it would be difficult to scale up an application
support thousands of users. Since holding on to an enterprise information sy
connection across long-lived instances or transactions is expensive, compo
should manage connections more efficiently. To avoid scaling problems, alm
every J2EE server should support connection pooling. However, an Applica
Component Provider still needs to follow sound connection management pract

When an application is migrated from a two-tier structure to a multitier co
ponent-based structure, the issue of connection management becomes esp
important. For example, a two-tier JDBC application may share a single con
tion across an entire application. After migration to a component-based partit
ing, the application will need to deal with shared connections across mult
component instances.

This section provides guidelines for addressing application programm
model issues related to connections using a JDBC connection to a relational
base as an example.

6.8.2.1 Connection Life Cycle and Connection Pooling

A component can get a connection to a database in any client- or container-inv
method. We recommend that components open and close their connections wi
single method, rather than holding connection state across methods. Only whe
design of an application requires components to share connections across co
nent instances or method invocations should connections be retained.

A component can retain a connection across methods at the cost of addit
system resources and added programming model complexity required to ma
the connection. One example might be a stateful session bean instance that r
the results of queries and database access operations across methods. The
bean gets a connection and starts a transaction through it. The transaction its
handled internally by database with no external transaction management. S

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER156

must

the
ring

dized
ndor-
his

SP
ms of
tance
ure,
dif-

ement
ces.
tion

ross

ecific
s are
hare a
state

d to
hese

nnot

gful

ngle
rrent
the session bean wants to have this transaction span multiple methods, it
keep the connection open across method invocations.

Ideally, containers should take care of connection sharing. But currently
J2EE platform defines no standardized way of implementing connection sha
across different containers. Until a connection sharing mechanism is standar
for containers, a component can choose to do connection sharing through ve
specific mechanisms offered by different containers and JDBC drivers. T
comes at the cost of portability across containers.

6.8.2.2 Connection Management by Component Type

A J2EE application is typically composed of components of different types: J
pages, servlets, and enterprise beans. These component types vary in ter
support for container-managed activation and passivation, execution of an ins
for multiple clients, sharing of an instance across multiple clients, long-lived nat
and other factors. The Application Component Provider has to account for such
ferences across component types when deciding on a connection manag
model for an application. Here are a few examples that illustrate these differen

A JSP page or servlet acquires and holds on to a JDBC connection in rela
to the life cycle of its HTTP session. It can handle multiple HTTP requests ac
a single HTTP session from Web clients using the same JDBC connection.

A stateful session bean can share an open connection and its client-sp
query results across multiple methods. However stateless session bean
designed to have no state specific to a client. So if stateless session beans s
connection across methods, they are required to maintain no client-specific
associated with the connection.

For entity beans, the EJB specification identifies methods that are allowe
perform enterprise information system access through a connection. T
include ejbCreate, ejbPostCreate, ejbRemove, ejbFind, ejbActivate, ejbLoad,
ejbStore, and business methods from the remote interface. An entity bean ca
access enterprise information systems from within thesetEntityContext and
unsetEntityContext methods because a container does not have a meanin
transaction or security context when they are called.

6.8.2.3 Multiple Connections

Some JDBC drivers don’t support multiple concurrent connections under a si
transaction. To be portable, components should avoid opening multiple concu

SECURITY 157

access

ness
prise
curity
tions
urity

itec-
am-
the
ere
ring,
eds of
cult
ake

ll a
:

d en-
rm.

 an

prise
connections to a single database. However, multiple component instances can
the same database using different connections.

6.9 Security

An enterprise has a critical dependency on its information systems for its busi
activities. Loss or inaccuracy of information or unauthorized access to an enter
information system can be extremely costly. So, enterprises require that the se
of their enterprise information systems should never be compromised. Applica
need to provide access to enterprise information systems without creating sec
threats to these valuable resources.

Enterprise applications should clearly establish the requirements and arch
ture for secure enterprise information system integration environment. For ex
ple, an application should require only the level of protection needed by
enterprise: reducing the level of protection for less sensitive information or wh
the system is less vulnerable to threats. The cost of implementing, administe
and running a secure system should also be weighed against the security ne
an application. This trade-off, based on the security benefits and cost, is diffi
to make for an enterprise application. However, this trade-off is important to m
for the security architecture for enterprise information system integration.

6.9.1 Security Architecture

A security architecture for enterprise information system integration should fulfi
variety of requirements to ensure seamless support for distributed applications

• Support a consistent end-to-end security architecture across Web, EJB, an
terprise information system tiers for applications based on the J2EE platfo

• Fit with the existing security environment and infrastructure supported by
enterprise information system.

• Support authentication and authorization of users who are accessing enter
information systems.

• Be transparent to application components.This includes support for enabling
end-users to log on only once to the enterprise environment and access multi-
ple enterprise information systems.

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER158

rce

nefit
re of
elop-

po-
om-
ion

for
-
n ap-

am-
atic
trol

he
tion

inis-
 in

rce is
der
role,
ca-

curity
• Enable applications to be portable across security environments that enfo
different security policies and support different mechanisms.

The relative importance of achieving these goals depends on the cost/be
trade-off for the security requirements. The more an architecture takes ca
these security requirements for the application, the easier the application dev
ment effort.

6.9.2 Application Programming Model

While developing and deploying application components, an Application Com
nent Provider follows the security model defined for the corresponding J2EE c
ponent—EJB, JSP, or servlet. We recommend the following applicat
programming model for all types of components:

• An Application Component Provider should specify security requirements
an application declaratively in the deployment descriptor. The security re
quirements include security roles, method permissions, and authenticatio
proach for enterprise information system signon.

• A security-aware Application Component Provider can use a simple progr
matic interface to manage security at an application level. This programm
interface allows the Application Component Provider to make access con
decisions based on the security context (principal, role) associated with t
caller of a method and to do programmatic signon to an enterprise informa
system (described in Section 6.9.3.2 on page 160).

• Other development roles—J2EE Server Provider, Deployer, System Adm
trator—should satisfy an application’s security requirements (as specified
the deployment descriptor) in the operational environment.

6.9.3 Resource Signon

From a security perspective, the mechanism for getting a connection to a resou
referred to asresource signon. A user requests a connection to be established un
its security context. This security context includes various attributes, such as
access privileges, and authorization level for the user. All application-level invo
tions to the database using this connection are then provided through the se
context associated with the connection.

SECURITY 159

n an

the
 con-
ase

ex-

gnon.
the
ddi-
prise

Pro-
ent
on
ec-

ility
ts up
lways

tion

tion

using
ains
ntry,
r.
If the resource signon mechanism involves authentication of the user, the
Application Component Provider has the following two choices:

• Allow the Deployer to set up the resource signon information. For example,
Deployer sets the user name and password for establishing the database
nection. The container then takes the responsibility of managing the datab
signon.

• Implement sign on to the database from the component code by providing
plicit security information for the user requesting the connection.

We recommend that a component let the container manage resource si
This takes the burden of managing security information for the signon off of
Application Component Provider. It also enables J2EE servers to provide a
tional useful security services, such as single signon across multiple enter
information systems and principal mapping across security domains.

Container-managed resource signon enables the Application Component
vider to avoid hard-coding security details in the component code. A compon
with hard-coded security logic is less portable because it is difficult to deploy
containers with different security policies and mechanisms. The following s
tions illustrate how to sign on using both approaches.

6.9.3.1 Container-Managed Signon

In this example, the Application Component Provider delegates the responsib
of setting up and managing resource signon to the container. The Deployer se
the resource signon so that the user account for connecting to the database is a
eStoreUser. The Deployer also configures the user identification and authentica
information—user name and password—that is needed to authenticateeStoreUser

to the database.
As shown in Code Example 6.2, the component code invokes the connec

request method on thejavax.sql.DataSource with no security parameters. The
component instance relies on the container to do the signon to the database
the security information configured by the Deployer. Code Example 6.3 cont
the corresponding connection factory reference deployment descriptor e
where theres-auth element specifies that signon is performed by the containe

// Obtain the initial JNDI context

Context initctx = new InitialContext();

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER160

atic
(user
// Perform JNDI lookup to obtain connection factory

javax.sql.DataSource ds = (javax.sql.DataSource)initctx.lookup(

"java:comp/env/jdbc/MyDatabase");

// Invoke factory to obtain a connection. The security

// information is not given, and therefore it will be

// configured by the Deployer.

java.sql.Connection cx = ds.getConnection();

Code Example 6.2 Container-Managed Signon

<resource-ref>

<description>description</description>

<res-ref-name>jdbc/MyDatabase</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

Code Example 6.3 Connection Factory Reference Element

6.9.3.2 Application-Managed Signon

In this example, the Application Component Provider performs a programm
signon to the database. The component passes explicit security information
name, password) to the connection request method of thejavax.sql.DataSource.

// Obtain the initial JNDI context

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain factory

javax.sql.DataSource ds = (javax.sql.DataSource)initctx.lookup(

"java:comp/env/jdbc/MyDatabase");

// Get connection passing in the security information

java.sql.Connection cx = ds.getConnection("eStoreUser",

"password");

Code Example 6.4 Application-Managed Signon

J2EE CONNECTOR ARCHITECTURE 161

ma-
func-
for

urity
a com-
ifies
all

hase

iza-

rol
cipal
the

nt
ot be

cess
prise
lica-
et
se
or

dard
tems
data-
echa-

rvers
6.9.3.3 Authorization Model

An Application Component Provider relies on the container and enterprise infor
tion system for authorizing access to enterprise information system data and
tions. The Application Component Provider specifies security requirements
application components declaratively in a deployment descriptor. A set of sec
roles and method permissions can be used to authorize access to methods on
ponent. For example, an Application Component Provider declaratively spec
thePurchaseManager role as the only security role that is granted permission to c
thepurchase method on aPurchaseOrder enterprise bean. Thepurchase method in
turn drives its execution through an ERP Logistics application by issuing a purc
requisition. So in effect, this application has authorized only end-users with thePur-

chaseManager role to do a purchase requisition. This is the recommended author
tion model.

An Application Component Provider can also programmatically cont
access to enterprise information system data and functions based on the prin
or role associated with the client who initiated the operation. For example,
EJB specification allows component code to invokegetCallerPrincipal and
isCallerInRole to get the caller’s security context. An Application Compone
Provider can use these two methods to perform security checks that cann
expressed declaratively in the deployment descriptor.

An application can also rely on an enterprise information system to do ac
control based on the security context under which a connection to the enter
information system has been established. For example, if all users of an app
tion connect to the database asdbUser, then a database administrator can s
explicit permissions fordbUser in the database security domain. The databa
administrator can denydbUser permission to execute certain stored procedures
to access certain tables.

6.10 J2EE Connector Architecture

The J2EE Connector architecture is an API under development to define a stan
for connecting the J2EE platform to heterogeneous enterprise information sys
such as enterprise resource planning, mainframe transaction processing, and
base systems. This API defines a set of scalable, secure, and transactional m
nisms to support the integration of enterprise information systems with J2EE se
and enterprise applications.

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER162

ndor
con-

for
t is
ity to
ion
2EE

the
nec-
s an
logic
ues
and

rprise
ms.
.3.

ations
hese
rise

prise
rma-
ppli-
ms,
port-

ase
ec-

her
The Connector architecture enables an enterprise information system ve
to provide a standard connector for its enterprise information system. This
nector is plugged into a J2EE server to provide the underlying infrastructure
integration with an enterprise information system. The J2EE server tha
extended to support the Connector architecture is then assured of connectiv
multiple enterprise information systems. Likewise, an enterprise informat
system vendor provides one standard connector that will plug into any J
server supporting the Connector architecture.

The J2EE server and enterprise information system collaborate through
connector to keep all system-level mechanisms—transactions, security, con
tion management—transparent to the application components. This enable
application component developer to focus on the business and presentation
for the application components without getting involved in the system-level iss
related to enterprise information system integration. This leads to an easier
faster cycle for the development of scalable, secure, and transactional ente
applications that require integration with multiple enterprise information syste
The Connector architecture will be supported in the J2EE platform, version 1

6.11 Summary

This chapter has described a set of design choices, guidelines, and recommend
for integrating enterprise information systems into enterprise applications. T
guidelines enable an Application Component Provider to develop an enterp
application based on its overall functional and system requirements for enter
information system integration. The focus has been on accessing enterprise info
tion system resources from the component, using tools to simplify and reduce a
cation development effort involved in accessing enterprise information syste
getting and managing connections to enterprise information systems, and sup
ing the security requirements of an application.

The current version of the J2EE platform provides full support for datab
systems through the JDBC API. In the next version of J2EE platform, the Conn
tor architecture will support integration with enterprise information systems ot
than database systems.

the
ented
arna-
tions
Uni-
dian
About the Author

I NDERJEET SINGHis a Staff Engineer with Sun Microsystems where he leads
technical aspects of the J2EE Blueprints program. He also designed and implem
the Web-caching and proxy-service module of the Java Web Server. In another inc
tion, he designed fault-tolerance software for large-scale distributed telecommunica
switching systems. Inderjeet holds an M.S. in Computer Science from Washington
versity at Saint Louis, and a B.Tech. in Computer Science and Engineering from In
Institute of Technology at Delhi.

C H A P T E R 7

nt

ica-
odules

are
t. The
ent

ation
rein-
echa-
he

ent
plica-
and
ing
s and
s for

ment
ers.
ed in
Packaging and Deployme
by Inderjeet Singh

THE J2EEplatform enables developers to create different parts of their appl
tions as reusable components. The process of assembling components into m
and modules into enterprise applications is called packaging. In good softw
design, reusable components can be customized to the operational environmen
process of installing and customizing an application in an operational environm
is called deployment. To enable customization, the components of an applic
need to be configurable. However, application developers should not have to
vent a configuration mechanism over and over again. They need a standard m
nism that provides flexibility for configuration and supports tools to help t
process.

The J2EE platform provides facilities to make the packaging and deploym
process simple. It uses JAR files as the standard package for modules and ap
tions, and XML-based deployment descriptors for customizing components
applications. This chapter begins by providing an overview of the J2EE pack
and deployment process. It describes how to perform each stage in the proces
provides guidelines for each stage. It concludes by discussing requirement
tools that support the deployment process.

7.1 Roles and Tasks

The J2EE packaging and deployment process involves three different develop
roles: Application Component Providers, Application Assemblers, and Deploy
The packaging and deployment tasks that each role performs are summariz
Figure 7.1.
165

CHAPTER 7 PACKAGING AND DEPLOYMENT166

JSP
ation
the
s, the
s use,
at
lica-
Figure 7.1 J2EE Packaging and Deployment Tasks

Application Component Providers develop enterprise beans, HTML and
pages, and their associated helper classes. They supply the structural inform
of the deployment descriptor for each component. This information includes
home and remote interfaces and implementation classes of enterprise bean
persistence mechanisms used, and the type of resources the component
information typically hard coded in the application and not configurable
deployment time. Code Example 7.1 contains an excerpt from the sample app
tion’s enterprise bean deployment descriptor:

<entity>

<display-name>TheAccount</display-name>

<ejb-name>TheAccount</ejb-name>

<home>com.sun.estore.account.ejb.AccountHome</home>

<remote>com.sun.estore.account.ejb.Account</remote>

<ejb-class>

com.sun.estore.account.ejb.AccountEJB

</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<resource-ref>

<description>description</description>

<res-ref-name>jdbc/EstoreDataSource</res-ref-name>

ROLES AND TASKS 167

s a
file

Code
ent
<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</entity>

Code Example 7.1 Descriptor Elements for an Entity Bean

Application Assemblers provide information related to the application a
whole. In the sample application, the Application Assembler configures the
Main.jsp to handle requests coming to the URL namespace, (/control/*), the
error pages the application uses, its security constraints and roles, and so on.
Example 7.2 contains excerpts from the sample application’s Web deploym
descriptor:

<web-app>

<display-name>JavaPetStoreDemoWebTier</display-name>

<servlet>

<servlet-name>webTierEntryPoint</servlet-name>

<display-name>centralJsp</display-name>

<description>central point of entry for the Web app

</description>

<jsp-file>Main.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>webTierEntryPoint</servlet-name>

<url-pattern>/control/*</url-pattern>

</servlet-mapping>

...

<error-page>

<exception-type>java.lang.Exception</exception-type>

<location>/errorpage.jsp</location>

</error-page>

...

</web-app>

Code Example 7.2 Descriptor Elements for Web Application

CHAPTER 7 PACKAGING AND DEPLOYMENT168

into

addi-
to
ional

ared
bly
yer
s-
iron-
ses,

s
uct.
rise

for ex-

dard
an

ppli-
two-
2EE
tion
In this

ble
out

ent
ents

uch
mple
A Deployer is responsible for deploying J2EE components and applications
an operational environment. Deployment typically involves two tasks:

1. Installation - The Deployer moves the media to the server, generates the
tional container-specific classes and interfaces that enable the container
manage the components at runtime, and installs the components and addit
classes and interfaces into the J2EE server.

2. Configuration - The Deployer resolves all the external dependencies decl
by the Application Component Provider and follows the application assem
instructions defined by the Application Assembler. For example, the Deplo
is responsible for mapping the security roles defined by the Application A
sembler to the user groups and accounts that exist in the operational env
ment into which the components and applications are deployed. In some ca
a qualified Deployer may customize the business logic of the application’
components at deployment time by using tools provided with a J2EE prod
For example, a Deployer may write application code that wraps an enterp
bean’s business methods or customizes the appearance of a JSP page,
ample, by adding a company’s logo or other graphics to a login page.

7.2 Packaging J2EE Applications

A J2EE application is packaged as an Enterprise ARchive (EAR) file, a stan
Java JAR file with an .ear extension. The goal of this file format is to provide
application deployment unit that is assured of being portable.

A J2EE application file contains one or more J2EE modules and a J2EE a
cation deployment descriptor. Therefore, creation of a J2EE application is a
step process. First, the Application Component Providers create the J
modules: EJB, Web, and application client modules. Second, the Applica
Assembler packages these modules together to create the J2EE application.
section, we will discuss the issues involved in both of these steps.

It is important to note that all J2EE modules are independently deploya
units. This enables component providers to create units of functionality with
having to implement full scale applications.

To assemble an application, an Application Assembler edits deploym
descriptors for the J2EE modules to link dependencies between compon
within each archive and between components in different archives. All s
dependencies must be linked before deployment. For example, in the sa

PACKAGING J2EE APPLICATIONS 169

ure
heir

lica-
on

m a
chive
hile

tch-

give
mpo-

s. An
.jar

ces.
 the

de de-
su-
ethod

ion
lica-
-

g-
e or
application, the Web components in the WAR file need to refer toShoppingCli-

entController, Catalog, Account, Order, and ShoppingCart enterprise beans
present in the EJB JAR file. The role of the Application Assembler is to make s
that the description of the enterprise beans in the WAR file matches with t
description in the EJB JAR file.

Once the application assembly is complete, we recommend that the App
tion Assemblers run J2EE verifier tools (one is provided with the J2EE SDK)
the EAR file to ensure that its contents are well-formed. The verifiers perfor
number of static checks to ensure that the deployment descriptor and the ar
file contents are consistent with the EJB, Servlet, and J2EE specifications. W
verification is not a guarantee of correct behavior at runtime, it is useful for ca
ing some errors early on.

The following sections discuss the different types of J2EE modules and
some heuristic rules and practical tips on how best to package the different co
nent types into modules.

7.2.1 EJB Modules

An EJB module is the smallest deployable and usable unit of enterprise bean
EJB module is packaged and deployed as an EJB JAR file, a JAR file with a
extension. It contains:

• Java class files for the enterprise beans and their remote and home interfa
If the bean is an entity bean, its primary key class must also be present in
EJB module.

• Java class files for any classes and interfaces that the enterprise bean co
pends on that are not included with the J2EE platform. This may include
perclasses and superinterfaces and the classes and interfaces used as m
parameters, results, and exceptions.

• A EJB deployment descriptor that provides both the structural and applicat
assembly information for the enterprise beans in the EJB module. The app
tion assembly information is optional and is typically included only with as
sembled applications.

An EJB JAR file differs from a standard JAR file in one key aspect: it is au
mented with a deployment descriptor that contains meta-information about on
more enterprise beans.

CHAPTER 7 PACKAGING AND DEPLOYMENT170

the
file

enter-

ese
party
ing

this
pack-
e of

ving
ules
our
n As-
 wish

s ap-
gether
ica-
eans
tion
eans.
ans

ed
ter-

one
that
sed
ter-
le.
The EJB JAR file producer can create a client JAR file to be used by
clients of the enterprise beans contained in the EJB JAR file. The client JAR
consists of all the class files that a client program needs to use to access the
prise beans that are contained in the EJB JAR file.

7.2.2 Packaging Components Into EJB Modules

A typical enterprise application will contain many enterprise beans. Some of th
enterprise beans could be off-the-shelf components while others may use third-
libraries. The Application Assembler, therefore, has to choose from the follow
packaging options:

1. Package each enterprise bean for an application in its own EJB module. In
approach, each enterprise bean has its own deployment descriptor and is
aged in one EJB module along with its dependent classes. One advantag
this approach is the maximum reusability of each enterprise bean, by lea
the Application Assembler free to pick and choose among these EJB mod
to compose additional J2EE applications. This option is recommended if y
enterprise beans are each highly reusable. In such a case, the Applicatio
semblers will be able to reuse precisely those enterprise beans that they
to, and no more.

2. Package all enterprise beans for an application in one EJB module. In thi
proach all enterprise beans and their dependent classes are packaged to
in one EJB module. This approach is the simplest to implement. The Appl
tion Assembler does not have to specify references to the enterprise b
present in this EJB module as unresolved. This makes the job of Applica
Assemblers easier in the case when they wish to use all the enterprise b
Application Assemblers who only wish to use a subset of the enterprise be
in the EJB module will still be able to do so, but may end up with a bloat
application. The Deployer in this case may have to deploy superfluous en
prise beans.

3. Package all related (closely-coupled) enterprise beans for an application in
EJB module. In this approach, all off-the-shelf components are used as is (
is, in their own EJB modules). All in-house enterprise beans are grouped ba
on their functional nature and put in one EJB module. For example, all en
prise beans related to account management can be put in one EJB modu

PACKAGING J2EE APPLICATIONS 171

bly-
bility
of

om-
n a

r load
ely-

ed to
the
ng a
ble
ical
bly

dis-

y may
ach
have
nter-

le of
age
hich
ould

ents
ter-
akes
spe-

n dele-
port
Because its more modular, the third option is recommended for reasona
sized J2EE applications. It strikes the right balance between maximum reusa
(option 1) and maximum simplicity (option 2). It promotes the black-box use
third-party components, which is especially important when such third-party c
ponents that are digitally signed. Another value of the third option arises whe
J2EE server deploys each EJB module on a separate Java virtual machine fo
balancing. In such cases, the third option is most efficient since it groups clos
coupled enterprise beans together, allowing many remote calls to be optimiz
local calls. Another advantage of option 3 is that it promotes reusability at
functional level rather than at the enterprise bean level. For example, maki
singleAccount enterprise bean reusable is more difficult than providing a reusa
set of classes that provide account management functionality collectively. Log
grouping also makes sense from a tool point of view. A deployment or assem
tool may show the EJB module as a group under a single icon. The following
cussions provide guidelines on grouping enterprise beans.

7.2.2.1 Grouping by Related Functionality

Once a group of enterprise beans is packaged into the same EJB module, the
not be easily separated without knowing significant implementation details of e
enterprise bean. To reuse one bean from an EJB module, you would generally
to deploy all of them. So, it makes good sense to package together a group of e
prise beans only if they will be commonly deployed and used together.

The utility classes used by a bean must be packaged into the EJB modu
that bean in order for the bean to function correctly at runtime. If you pack
related beans together, you reduce the number of copies of utility classes w
would otherwise increase the virtual machine size of most J2EE servers and c
cause potential conflicts during upgrades.

EJB modules will commonly be displayed in a palette of reusable compon
in a J2EE application assembly tool. Tools will commonly group together en
prise beans from the same EJB module in a user interface. For example, it m
sense to group server-side components related to accounting functionality or
cialized database functionality in a single code library or EJB module.

7.2.2.2 Grouping Interrelated Beans

Enterprise beans can call one another at runtime, and one enterprise bean ca
gate some of its functionality to another. Though some J2EE servers will sup

CHAPTER 7 PACKAGING AND DEPLOYMENT172

n one
l and
deliv-
in the
uch

oss a
wiz-

es to
cess
, there
s.

ency.
t the
lar ref-
e same

ified,
prise
nego-

Web
h a

nally
highly efficient cross-application dependencies, enterprise beans that depend o
another should be grouped together in the same JAR file for both organizationa
performance reasons. Where beans call one another, the EJB module may be
ered preassembled, with all the enterprise bean cross-references resolved with
same unit. This makes the tasks of both the Assembler and the Deployer m
easier. Locating an appropriate accounting bean for use by a teller bean acr
number of servers may prove tedious despite the best efforts and user interface
ardry of the authors of a J2EE deployment tool. Where one bean delegat
another, many servers will partition deployed EJB modules across different pro
and even machine boundaries. If a bean makes frequent calls on another bean
may be performance issues when they are run within separate address space

7.2.2.3 Grouping for Circular References

When two enterprise beans refer to each other, the result is a circular depend
Neither bean can function without the other and so neither is reusable withou
other. In some cases redesign may eliminate these dependencies. When circu
erences are necessary, you should also package the components together in th
EJB module to ensure reusability.

7.2.2.4 Groupings with Common Security Profiles

While each EJB module allows a number of abstract security roles to be spec
enterprise beans are often written with a discrete set of users in mind. Enter
beans that have the same security profile should be grouped together to reduce
tiation of security role names across EJB modules.

7.2.3 Web Modules

A Web module is the smallest deployable and usable unit of Web resources. A
module is packaged and deployed as a Web ARchive (WAR) file, a JAR file wit
.war extension. It contains:

• Java class files for the servlets and the classes that they depend on, optio
packaged as a library JAR file

• JSP pages and their helper Java classes

• Static documents (for example, HTML, images, sound files, and so on)

PACKAGING J2EE APPLICATIONS 173

R
ader

that
re-
b tier

t is
was
ld be
Web

eb
over,
ense

sce-
ell-
used

Such
age-
• Applets and their class files

• A Web deployment descriptor

The WAR file format does not conform to all the requirements of the JA
format because the classes in a WAR file are not usually loadable by a classlo
if the JAR is added to a classpath.

7.2.4 Packaging Components Into Web Modules

The Web module is the smallest indivisible unit of Web resources functionality
Application Component Providers will supply to the Application Assembler. The
fore, an Application Component Provider needs to choose how to package We
components into Web modules. This section contains guidelines for doing so.

7.2.4.1 Cross-Dependent Servlets

Servlets may directly call each other via HTTP. The URL by which a servle
known on the J2EE platform depends on the J2EE application in which it
deployed. For reasons of robustness, servlets that call one another shou
deployed together. It is therefore recommended that you put them in the same
module.

7.2.4.2 Cross-Linked Static Content

Since a WAR file is typically deployed under its own context root, cross-linked W
pages must be packaged in a single Web module to avoid broken links. More
cross-linked HTML Web pages are typically reusable as a bundle, so it makes s
to package them together.

7.2.4.3 Logical Grouping of Functionality

A Web module that has a clearly defined purpose is easier to reuse in different
narios than one with less well-defined overall behavior. For example, a w
designed Web module concerned purely with inventory management can be re
in many e-commerce applications that need inventory management capability.
a module would be ideal for adding a Web-based interface for inventory man
ment to the sample application.

CHAPTER 7 PACKAGING AND DEPLOYMENT174

ca-

le
ram
dule.
n be
JB

w
con-

ools,
nts
de.

the

crip-
scrip-
lient

eir
ion
if
nts

sed
7.2.5 Application Client Modules

Application client modules are packaged in JAR files with a .jar extension. Appli
tion client modules contain:

• Java classes that implement the client

• An application client deployment descriptor

An application client will use a client JAR file created by the EJB JAR fi
producer. The client JAR file consists of all the class files that a client prog
needs to use to access the enterprise beans that are contained in an EJB mo

Figure 7.2 illustrates the various types of J2EE packages and how they ca
deployed. Although the figure only shows an independently deployed E
module, all three types of J2EE modules can be deployed independently.

7.3 Deployment Descriptors

A deployment descriptoris an XML-based text file whose elements describe ho
to assemble and deploy the unit into a specific environment. Each element
sists of a tag and a value expressed in the following syntax:<tag>value</tag>.
Usually deployment descriptors are automatically generated by deployment t
so you will not have to manage them directly. Deployment descriptor eleme
contain behavioral information about components not included directly in co
Their purpose is to tell the Deployer how to deploy an application, not tell
server how to manage components at runtime.

There are different types of deployment descriptors: EJB deployment des
tor described in the Enterprise JavaBeans specification, Web deployment de
tor described in the Servlet specification, and application and application c
deployment descriptors described in the J2EE specification.

Deployment descriptors specify two kinds of information:

• Structural information describes the different components of the JAR file, th
relationship with each other, and their external dependencies. An Applicat
Assembler or Deployer risks breaking the functionality of the component
this information is changed. Environment entries and resource requireme
are part of structural information.

• Assembly information describes how contents of a JAR file can be compo

DEPLOYMENT DESCRIPTORS 175

a-
-

nly
into a deployable unit. Assembly information is optional. Assembly inform
tion can be changed without breaking the functionality of the contents, al
though doing so may alter the behavior of the assembled application.

The remainder of this section describes how to specify the most commo
used deployment descriptor elements.

Figure 7.2 J2EE Packages

CHAPTER 7 PACKAGING AND DEPLOYMENT176

ious
com-
icular,
mpo-

the

e dif-
es to
ents.

loy-
ource
the

ries
odify
tion
the
The

pli-

mail
value
7.3.1 Specifying Deployment Descriptor Elements

This section describes how to specify commonly used elements in the var
deployment descriptors. First we describe elements common to various J2EE
ponent types. Then we describe elements specific to enterprise beans, in part
the elements related to transactions and persistence. Finally we cover Web co
nent elements. For the definitions of each type of deployment descriptor, see
J2EE, EJB, and servlet specifications.

7.3.1.1 Common Elements

This section describes the deployment descriptor elements common across th
ferent J2EE component types. These include environment entries, referenc
enterprise beans, references to connection factories, and security-related elem

Naming Environment Entries

Naming environment entries allow customization of a component during dep
ment or assembly without the need to access or change the component’s s
code. The container implements the naming environment, and provides it to
component instance through a JNDI naming context.

The Deployer must ensure that the values of all the environment ent
declared by a component are set to meaningful values. The Deployer can m
values of environment entries that have been previously set by the Applica
Component Provider and/or Application Assembler. The Deployer must set
values of those environment entries for which no value has been specified.
description elements provided by the Application Component Provider or Ap
cation Assembler help the Deployer with this task.

Naming environment entries are specified with theenv-entry element. Code
Example 7.3 uses an environment entry to determine whether confirmation e
is sent when an order is processed. Code Example 7.4 shows how to set the
of the environment entry.

public static boolean sendConfirmationMail() {

boolean boolVal = false;

try {

InitialContext ic = new InitialContext();

Boolean bool = (Boolean)

ic.lookup("java:comp/env/sendConfirmationMail");

if (bool != null) {

DEPLOYMENT DESCRIPTORS 177

prise
nd the

lica-
rring

eploy-
bean
yment
ence
e EJB

s an
must

the
om-

t

boolVal = bool.booleanValue();

}

} catch (NamingException ne) {

...

}

return boolVal;

}

Code Example 7.3 Looking up a Naming Environment Entry

<env-entry>

<env-entry-name>sendConfirmationMail</env-entry-name>

<env-entry-type>java.lang.Boolean</env-entry-type>

<env-entry-value>false</env-entry-value>

</env-entry>

Code Example 7.4 Environment Entry Element

References to Enterprise Beans

There are two parts to the mechanism for establishing connections to enter
beans in a J2EE application: the Java language interface for accessing a bean a
deployment descriptor declarations for identifying those references. The App
tion Component Provider looks up the references in the source code of the refe
component using the Java interfaces, then identifies these references in the d
ment descriptor when packaging the component. A Deployer binds enterprise
references to the enterprise beans’ homes in the target environment. The deplo
descriptor also allows an Application Assembler to link an enterprise bean refer
declared in one enterprise bean to other enterprise beans contained in the sam
module, or in other EJB modules in the same J2EE application unit. The link i
instruction to the tools used by the Deployer that the enterprise bean reference
be bound to the home of the specified enterprise bean.

Code Example 7.5 illustrates how a component obtains a reference to
home interface of another enterprise bean. In the example, the Application C
ponent Provider of theShoppingClientControllerEJB assigned the environmen
entrycart as the name to refer to the home of another enterprise bean,Shopping-

CartHome. ShoppingClientControllerEJB calls a utility method getShopping-

CartHome, which performs a JNDI lookup ofcart in the ejb subcontext of the

CHAPTER 7 PACKAGING AND DEPLOYMENT178

, the

umer
ans
environment naming contextjava:comp/env. ShoppingClientControllerEJB

caches the reference to the home interface in thecart variable so that the lookup
need only be performed once.

public class ShoppingClientControllerEJB implements SessionBean {

public ShoppingCart getShoppingCart() {

if (cart == null) {

try {

ShoppingCartHome cartHome =

EJBUtil.getShoppingCartHome();

cart = cartHome.create();

} catch (CreateException ce) {

...

}

}

return cart;

}

}

public static ShoppingCartHome getShoppingCartHome() {

try {

InitialContext initial = new InitialContext();

Object objref = initial.lookup("java:comp/env/ejb/cart");

return (ShoppingCartHome) PortableRemoteObject.

narrow(objref, ShoppingCartHome.class);

} catch (NamingException ne) {

throw new GeneralFailureException(ne);

}

}

Code Example 7.5 Locating a Home Interface

An Application Component Provider must use theejb-ref element of the
deployment descriptor to declare all enterprise bean references. Similarly
deployment descriptor for a Web component must containejb-ref elements for the
enterprise beans that it uses. Such declarations allow the EJB module cons
(that is, Application Assembler or Deployer) to discover all the enterprise be
used by the components.

DEPLOYMENT DESCRIPTORS 179

ce to

. The

ed in
can
lica-
s to
nter-

of the
Code Example 7.6 illustrates the declaration of an enterprise bean referen
ShoppingCart in the deployment descriptor forShoppingClientController. Note
the ejb-ref-name element, which contains stringejb/cart used in the JNDI
lookup performed in Code Example 7.5.

<session>

<display-name>TheShoppingClientController</display-name>

<ejb-name>TheShoppingClientController</ejb-name>

<home>com.sun.estore.control.ejb.

ShoppingClientControllerHome</home>

<remote>com.sun.estore.control.ejb.

ShoppingClientController</remote>

<ejb-class>com.sun.estore.control.ejb.

ShoppingClientControllerEJB</ejb-class>

...

<ejb-ref>

<ejb-ref-name>ejb/cart</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>

<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>

<ejb-link>TheCart</ejb-link>

</ejb-ref>

...

</session>

Code Example 7.6 Enterprise Bean Reference Element

An Application Assembler uses theejb-link element in the deployment
descriptor to link an enterprise bean reference to a target enterprise bean
ejb-link element is a subelement of theejb-ref element. The value of theejb-
link element is the name of the target enterprise bean, that is, the name defin
theejb-name element of the target enterprise bean. The target enterprise bean
be in the same EJB module or in another EJB module in the same J2EE app
tion as the referencing enterprise bean. The Application Assembler need
ensure that the target enterprise bean is type compatible with the declared e
prise bean reference. This means that the target enterprise bean must be
type indicated in theejb-ref-type element, and that thehome and remote ele-

CHAPTER 7 PACKAGING AND DEPLOYMENT180

ean

ager.

s as

n-

tion
loy-

he
fac-

envi-
. For
e
all
ments of the target enterprise bean must be type compatible with thehome and
remote elements declared in the enterprise bean reference.

Theejb-link element in Code Example 7.6 indicates that the enterprise b
referencecart declared inShoppingClientController is linked to the enterprise
beanTheCart shown in Code Example 7.7.

<session>

<display-name>TheCart</display-name>

<ejb-name>TheCart</ejb-name>

<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>

<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>

<ejb-class>com.sun.estore.cart.ejb.ShoppingCartEJB</ejb-class>

<session-type>Stateful</session-type>

transaction-type>Container</transaction-type>

</session>

Code Example 7.7 Enterprise Bean Element

References to Connection Factories

A connection factory is an object used to create connections to a resource man
For example, an object that implements thejavax.sql.DataSource interface is a
connection factory forjava.sql.Connection objects which provide connections to
database management systems.

An Application Component Provider must obtain connections to resource
follows:

• Declare a connection factory reference in the component’s naming enviro
ment.

For each connection factory that is used by a component, an Applica
Component Provider declares a connection factory reference in the dep
ment descriptor using theresource-ref element. This allows the EJB module
consumer (that is, Application Assembler or Deployer) to discover all t
connection factory references used by an enterprise bean. All connection
tory references should be organized in the subcontexts of a component’s
ronment, using a different subcontext for each resource manager type
example, all JDBCDataSource references might be declared in th
java:comp/env/jdbc subcontext (see Section 6.9.3.1 on page 159), and
email sessions in thejava:comp/env/mail subcontext. Connection factory

DEPLOYMENT DESCRIPTORS 181

.

-

in a
ype.
ul-

ries

the

pe

mpo-
on

l

references are also used to refer to URL resources and JMS connections

• Look up the connection factory object in the component’s naming environ
ment using the JNDI interface.

• Invoke the appropriate method on the connection factory method to obta
connection to the resource. The factory method is specific to the resource t
It is possible to obtain multiple connections by calling the factory object m
tiple times.

A Deployer binds connection factory references to actual connection facto
that are configured in the Container.

Code Example 7.8 illustrates the mail connection factory reference in
entry for theMailer enterprise bean.

<session>

<display-name>TheMailer</display-name>

<ejb-name>TheMailer</ejb-name>

<home>com.sun.estore.mail.ejb.MailerHome</home>

<remote>com.sun.estore.mail.ejb.Mailer</remote>

...

<resource-ref>

<res-ref-name>mail/MailSession</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</session>

Code Example 7.8 Connection Factory Reference Element

Note that the connection factory type must be compatible with the ty
declared in theres-type element. Theres-auth subelement of theresource-ref
element specifies whether resource signon is managed by an application co
nent or its container. See Section 6.9.3 on page 158 for more information
resource signon.

The Mailer enterprise bean callsMailHelper to open a mail session. Code
Example 7.9 contains the code from theMailHelper class that requests a mai

CHAPTER 7 PACKAGING AND DEPLOYMENT182

tual
the

of
nfig-
ging

ode

e
is
session object declared asjava:comp/env/mail/MailSession in the JNDI con-
text.

public void createAndSendMail(String to, String subject,

String htmlContents) {

try {

InitialContext ic = new InitialContext();

Session session = (Session) ic.

lookup("java:comp/env/mail/MailSession");

...

}

}

Code Example 7.9 Looking Up a Connection Factory

The Deployer must bind the connection factory references to the ac
resource factories configured in the target environment. A Deployer can use
JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name
the connection factory. The Deployer also needs to provide any additional co
uration information that the resource manager needs for opening and mana
the resource.

Security Elements

An Application Component Provider uses thesecurity-role element to define
logical security roles that can be assumed by an authenticated principal. C
Example 7.10 illustrates how the sample application defines thegold_customer

security role.

<security-role>

<role-name>gold_customer</role-name>

</security-role>

Code Example 7.10 Security Role Element

The security-role-ref element is used to link a role name used by th
isCallerInRole method with a security role. In the sample application, th

DEPLOYMENT DESCRIPTORS 183

on

ter-

ment
oriza-

n are
method is used by theOrder entity bean to enforce business rules based
whether the user is a preferred customer.

Code Example 7.11 and Code Example 7.12 illustrate how thesecurity-

role-ref element establishes a link between the stringGOLD_CUSTOMER used by the
isCallerInRole method and the security role namedgold_customer.

private int getBonusMiles() {

int miles = (totalPrice >= 100) ? 1000 : 500;

if (context.isCallerInRole("GOLD_CUSTOMER"))

miles += 1000;

return miles;

}

Code Example 7.11 Referencing a Security Role Name

<security-role-ref>

<role-name>GOLD_CUSTOMER</role-name>

<role-link>gold_customer</role-link>

</security-role-ref>

Code Example 7.12 Linking a Security Role Name and Security Role

An Application Component Provider declaratively controls access to an en
prise bean’s methods by specifying themethod-permission element in the enter-
prise bean’s deployment descriptor. The component provider defines this ele
to list the set of methods that can be accessed by each security role. The auth
tion scenario described in Section 9.3.8 on page 232 illustrates howmethod-per-

mission elements affect the execution of enterprise bean methods.

7.3.1.2 Enterprise Bean Elements

The component-specific elements that must be specified for an enterprise bea
those related to transactions and those related to persistence.

CHAPTER 7 PACKAGING AND DEPLOYMENT184

er- or
cation,

yed
been

been
y the
utes
n-

ailed

own
ntainer-
fields
Transaction Elements

Two transaction elements must be specified: whether the bean uses contain
bean-managed transaction demarcation, and for container-managed demar
the transaction attributes of the bean’s methods.

An Application Assembler must ensure that the methods of the deplo
enterprise beans with container-managed transaction demarcation have
assigned a transaction attribute. If the transaction attributes have not
assigned by the Application Component Provider, they must be assigned b
Application Assembler. Code Example 7.13 illustrates how transaction attrib
are declared for anAccount entity bean. Recall that entity beans can only use co
tainer-managed transactions. Thecontainer-transaction element forAccount
specifies that when thechangeContactInformation method is invoked, it must be
within the scope of a transaction. See Section 8.7.2.1 on page 205 for det
information about the values that a transaction attribute can take.

<container-transaction>

<method>

<ejb-name>TheAccount</ejb-name>

<method-intf>Remote</method-intf>

<method-name>changeContactInformation</method-name>

<method-params>

<method-param>com.sun.estore.util.

ContactInformation</method-param>

</method-params>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

Code Example 7.13 Transaction Elements

Persistence Elements

The Application Component Provider must specify whether a bean manages its
persistence or uses container-managed persistence. When a bean uses co
managed persistence, the Application Component Provider must specify the
of the bean. Code Example 7.14 illustrates how theAccount entity bean uses the
persistence-type element to declare that it will manage its own persistence.

DEPLOYMENT DESCRIPTORS 185

ents

t
es a
le

is
<entity>

<description>Account of a shopper</description>

<display-name>TheAccount</display-name>

...

<persistence-type>Bean</persistence-type>

</entity>

Code Example 7.14 Persistence Element

7.3.1.3 Web Component Elements

Some of the more commonly used Web component deployment descriptor elem
are discussed in this section.

Servlet

The one deployment descriptor element thatmustbe specified for a Web componen
is theservlet element, shown in Code Example 7.15. This element associat
logical identifier (servlet-name) with the name of the servlet class or the JSP fi
associated with the component.

<servlet>

<servlet-name>webTierEntryPoint</servlet-name>

<display-name>centralJsp</display-name>

<jsp-file>Main.jsp</jsp-file>

</servlet>

Code Example 7.15 Servlet Element

Servlet Mapping

The servlet-mapping element specifies the URLs that the Web component
aliased to handle. While the element is calledservlet-mapping, it is used to map
URLs to both servlets and JSP pages. Code Example 7.16 aliasesMain.jsp to
handle all requests coming to the set of URLs/control/*.

<servlet-mapping>

<servlet-name>webTierEntryPoint</servlet-name>

CHAPTER 7 PACKAGING AND DEPLOYMENT186

hen
hows

plica-
re a
eives
<url-pattern>/control/*</url-pattern>

</servlet-mapping>

Code Example 7.16 Servlet Mapping Element

Error Pages

The error-page element can be used to invoke an error page automatically w
the Web application throws a Java language exception. Code Example 7.17 s
how to enable the J2EE server to senderrorpage.jsp to the browser client if the
Web application ever throws any exception of the typejava.lang.Exception or its
subclass.

<error-page>

<exception-type>java.lang.Exception</exception-type>

<location>/errorpage.jsp</location>

</error-page>

Code Example 7.17 Error Page Element

Form-Based Authentication Configuration

Form-based authentication is the preferred mechanism for authenticating ap
tion users in the J2EE platform. Code Example 7.18 illustrates how to configu
Web application to activate form-based authentication when the Web server rec
a request for the URL/control/placeorder. The security-constraint element
specifies that the URL/control/placeorder is a protected resource. Thelogin-
config element specifies that the URLformbasedloginscreen will be displayed
when an unauthenticated user tries to access/control/placeorder. This page
contains an HTML form that prompts for a user name and password.

<security-constraint>

<web-resource-collection>

<web-resource-name>MySecureBit0</web-resource-name>

<description>no description</description>

<url-pattern>/control/placeorder</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

DEPLOYMENT TOOLS 187

e
that a
ment
g and

tion is
ed on
der a

ent
nts.
ks:
<auth-constraint>

<description>no description</description>

<role-name>gold_customer</role-name>

<role-name>customer</role-name>

</auth-constraint>

<user-data-constraint>

<description>no description</description>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

<realm-name>default</realm-name>

<form-login-config>

<form-login-page>formbasedloginscreen</form-login-page>

<form-error-page>formbasedloginerrorscreen

</form-error-page>

</form-login-config>

</login-config>

Code Example 7.18 Form-Based Authentication Configuration

7.4 Deployment Tools

Although deployment can be performed directly by editing XML text files, th
process best handled by specialized tools. This section describes the actions
deployment tool performs and outlines requirements on packaging and develop
tools. The requirements serve as recommendations to vendors of packagin
deployment tools and determine what developers can expect from such tools.

7.4.1 Deployment Tool Actions

This section discusses what happens behind the scenes when a J2EE applica
deployed on a J2EE server. Since there can be many J2EE applications deploy
the same J2EE server, the J2EE servers typically register each application un
different identifier. The deployment of a J2EE application involves three differ
types of components: enterprise beans, Web components, and application clie

For each enterprise bean, the J2EE server must perform the following tas

CHAPTER 7 PACKAGING AND DEPLOYMENT188

s de-
e en-
the

s de-
en-

nces,

persis-

sks:

ot of
 the
DK
me.

r-
on.

ces in

the

stall
ted

r and
2EE
lient
ther
stal-
.

1. Generate and compile the stubs and skeletons for the enterprise bean.

2. Set up the security environment to host the enterprise bean according to it
ployment descriptor. This is needed so that the access to the methods of th
terprise bean can be regulated according to the security policy of
application.

3. Set up the transaction environment for the enterprise bean according to it
ployment descriptor. This is needed so that the calls to the methods of the
terprise bean happen in the correct transaction context.

4. Register the enterprise bean, its environment properties, resources refere
and so on, in the JNDI name space.

5. Create database tables for enterprise beans that use container-managed
tence.

For each Web component, the J2EE server must perform the following ta

1. Transfer the contents of the Web component underneath the document ro
the server. Since there can be more than one J2EE application installed,
server may install each under a specific directory. For example, the J2EE S
installs each application under a context root specified at the deployment ti
The sample application is installed under theestore directory.

2. Initialize the security environment of the application. This involves configu
ing the form-based login mechanism, role-to-principal mappings, and so

3. Register environment properties, resource references, and EJB referen
the JNDI name space.

4. Set up the environment for the Web application. For example, it performs
alias mappings and configures the servlet context parameters.

5. Precompile JSP pages as specified in the deployment descriptor.

The tool used to deploy an application client, and the mechanism used to in
the application client, is not specified by the J2EE specification. Very sophistica
J2EE products may allow the application client to be deployed on a J2EE serve
automatically made available to some set of (usually intranet) clients. Other J
products may require the J2EE application bundle containing the application c
to be manually deployed and installed on each client machine. And yet ano
approach would be for the deployment tool on the J2EE server to produce an in
lation package that could be taken to each client to install the application client

DEPLOYMENT TOOLS 189

ider
and

than
ical
t can
rede-
ke
gthy
facili-
d for

pri-
and
The

tems
g of

ools
nt

EE
how
ol. A
the

ppli-
or-
he
an

mes
7.4.2 Deployment Tool Requirements

When considering the requirements on deployment tools, it is important to cons
the deployment process at two different times: during application development
during production deployment. A developer’s deployment needs are different
the needs of a Deployer installing a production application on a mission-crit
system. When an application is being developed, it must be deployed before i
be tested. Developers want fast response times, and the ability to undeploy,
ploy, and partially deploy applications easily and quickly. They will often ma
minor changes to Java classes, and hence will not want to go through a len
deployment process over and over again. They also need extensive debugging
ties. Many Java development environments will contain a J2EE server optimize
these purposes.

When deploying a production application on a mission-critical server, the
orities are robustness, performance, and stability. Often, to avoid downtime
unforeseen problems, the application is first brought up on parallel systems.
foremost consideration of the Deployer is to be able to connect all legacy sys
to the newly developed application. A Deployer may also want detailed loggin
the deployment process.

The following sections explore packaging and deployment issues from a t
perspective and point out differences, if any, in the light of the two differe
deployment times.

7.4.2.1 Vendor-Specific Information

The J2EE platform specification specifies file formats for each of the three J2
component types and for a J2EE application itself. This specification defines
such files must be structured to be correctly handled by a J2EE deployment to
certain amount of information must be available to each container along with
application code and deployment descriptor for proper runtime support of an a
cation. This information is usually related to bindings of the application in a vend
specific or environment specific setting. Here is a partial list of information t
deployment tool of the J2EE SDK solicits from the Deployer after consuming
application EAR file:

• A JNDI name for each enterprise bean’s home interface

• A mapping of abstract security roles of the application to user and group na

• JNDI lookup names and account information for all databases

CHAPTER 7 PACKAGING AND DEPLOYMENT190

way
uct

ents
ica-
pre-
ngs
• JavaMail session configuration information

Note that these issues only come up at deployment time—they in no
affect the ability to deploy an application on servers from different J2EE Prod
Providers.

There are many ways to represent this information. The J2EE SDK repres
this information in an XML document held as a separate entry within the appl
tion archive. Code Example 7.19 is an example of the XML document that re
sents runtime information for the sample application after the runtime bindi
have been made with the J2EE SDK:

<j2ee-ri-specific-information>

<server-name>localhost</server-name>

<rolemapping>

<role name="gold_customer">

<groups>

<group name="gold" />

</groups>

</role>

<role name="customer">

<principals>

<principal>

<name>j2ee</name>

</principal>

</principals>

<groups>

<group name="cust" />

</groups>

</role>

</rolemapping>

<enterprise-beans>

<ejb>

<ejb-name>TheAccount</ejb-name>

<jndi-name>estore/account</jndi-name>

<resource-ref>

<res-ref-name>jdbc/EstoreDataSource</res-ref-name>

<jndi-name>jdbc/EstoreDB</jndi-name>

<default-resource-principal>

<name>estoreuser</name>

DEPLOYMENT TOOLS 191

in
take
s to
pli-

ec-
ven
ment

t this.
ed to
with

any
hive
that

and
par-

pe-
ack

ften
such
ach
try—
erver.
nt of
<password>estore</password>

</default-resource-principal>

</resource-ref>

</ejb>

</enterprise-beans>

</j2ee-ri-specific-information>

Code Example 7.19 Runtime Deployment Descriptor

Different J2EE product vendors will also need to add similar information
the deployment process of a J2EE application. Vendors may find it useful to
advantage of the attribute ID mechanism afforded by document type definition
link vendor-specific information to components and entities within a J2EE ap
cation.

The output of a deployment tool should remain compliant with the J2EE sp
ifications in order that it may be easily opened in other deployment tools e
when such extra information has been added. We recommend that the deploy
descriptors within an application remain as unchanged as possible to suppor
We also recommend that the tools preserve vendor-specific information add
an application across sessions. This can be done by storing such information
or inside the J2EE application file or using an IDE-like project structure.

EJB and Web modules are independently deployable units and hence
deployment tools should be able to accept and deploy them. Although the arc
files may be augmented with vendor-specific information, we recommend
other deployment tools be able to accept and deploy these augmented EJB
Web modules and J2EE applications even though they may not understand a
ticular vendor’s runtime binding information. We recommend that the vendor-s
cific information that the deployment tool expects have reasonable fall-b
default options for this purpose.

7.4.2.2 Single Point of Entry for Deployment

A high-end mission-critical server often consists of multiple physical servers. O
the number of Web containers is greater than the number of EJB containers. In
cases, the Deployer to shouldn’t have to install applications individually on e
machine. We recommend that the deployment process has a single point of en
either a stand-alone deployment tool or the deployment component of a J2EE s
For example, the J2EE SDK has a deployment tool that provides a single poi

CHAPTER 7 PACKAGING AND DEPLOYMENT192

uting

ith
f
om-

con-
res
rver

 ad-
.

. To
cessi-
dled

cate
ty to

for
n, it
are

and
apa-

pro-
po-
y be
e a
entry to the J2EE server. This central component then takes care of distrib
appropriate components on both the Web and the EJB containers.

This approach has following benefits:

• It simplifies the deployment process since the Deployer has to interact w
only one deployment tool. The Deployer also has a clear understanding o
when deployment is complete. The tool also handles determining which c
ponents are required to be deployed on each machine.

• It provides a way to perform centralized logging and auditing.

• It provides better fault tolerance. Since the deployment tool has complete
trol over all application components on all servers, it can detect server failu
and handle them by dynamic load balancing. It can also detect when a se
comes back up and redeploy the application to bring it in sync. An added
vantage is that the Deployer does not have to worry about load-balancing

• It simplifies undeployment and upgrading.

7.4.2.3 Remotely Accessible Deployment

Deployers often need to deploy multiple applications on multiple J2EE servers
handle such scenarios more easily, the deployment tool should be remotely ac
ble as either a Web-based or client-server application. The deployment tool bun
with the J2EE SDK takes a client-server approach, using RMI-IIOP to communi
with the administration back-end of the J2EE server. The tool has the capabili
access multiple J2EE servers and deploy applications on them.

7.4.2.4 Undeployment Capability

In development-time deployment, it is critical to have undeployment capability
quicker updating of new application components. In a high-end implementatio
isn’t acceptable to have to bring down the server to add or remove new softw
applications, so that high-end servers will likely support dynamic deployment
dynamic undeployment. Low-end J2EE servers may not need to support this c
bility.

For many J2EE servers, deploying a J2EE application may be an atomic
cess, with no support for incremental deployment of J2EE application com
nents. However, at stages of the application development process, it ma
desirable to test portions of an application. This requires the ability to divid

SUMMARY 193

d re-

s in
rprise
Con-
pace.
to the

over
und to
sions
t

even
ven
eploy-
neral
er-

e. It
XML-
t, the
nt

hese
and
component application into smaller units so that each can be deployed an
deployed without the wait associated with deploying a full scale application.

7.4.2.5 JNDI Name Space Management

Deployers will need to bind external references in a J2EE application to entitie
their environment. Examples of such references include databases and ente
beans in the system. Since binding happens through the JNDI name space,
tainer Providers need to provide tools to create and manage the JNDI name s
These tools also need to control the access to the JNDI name space according
security policy of their environment.

7.4.2.6 Name Collision Management

Application Assemblers may use third-party enterprise beans, without control
the names used for such enterprise beans. As a result, name collisions are bo
occur. Packaging tools should automatically detect and handle such name colli
by adjusting names through theejb-link element of the bean’s deploymen
descriptors.

7.4.2.7 Deployment Descriptor Versioning

The lifetime of many enterprise applications may be measured in years and
decades. An important goal of the J2EE platform is to provide compatibility e
when systems and application components are upgraded. Packaging and d
ment tools need to ensure that they do not add anything that is against the ge
direction of evolution of deployment descriptors. They also need to follow the v
sioning conventions described in the J2EE, EJB, and servlet specifications.

7.5 Summary

The J2EE platform provides facilities to make the deployment process simpl
uses JAR files as the standard package for components and applications, and
based deployment descriptors for customizing parameters. For the most par
facilities provided by the platform support simplified application developme
through the use of tools that can read and write deployment descriptor files. T
tools present users with a more intuitive view of the structure of an application
the capabilities of its components.

CHAPTER 7 PACKAGING AND DEPLOYMENT194

2EE
.
tors
ould

rprise
code.
ders

riptor
nits.

hich
ust
bean

tools.
ever,
onse
ns
and

ell as
The J2EE packaging and deployment process involves three different J
roles: Application Component Provider, Application Assembler, and Deployer

Application Component Providers specify component deployment descrip
and package components into modules. Application Component Providers sh
ensure that the Application Assembler and the Deployer can customize an ente
bean’s business logic via deployment descriptors rather than modifying source
When packaging components into modules, Application Component Provi
need to balance between the competing goals of reusability and simplicity.

Application Assemblers resolve dependencies between deployment desc
elements in different modules and assemble modules into larger deployment u
Deployers customize deployment descriptor elements for environment in w
the application is deployed and install deployment units. The Deployer m
ensure that the values of all the environment entries declared by an enterprise
are set to meaningful values.

The packaging and deployment process is best handled by specialized
Both Component Providers and Deployers need to deploy applications; how
their deployment needs are different. Component Providers want fast resp
times, and the ability to undeploy, redeploy, and partially deploy applicatio
easily and quickly. In production, the priorities are robustness, performance,
stability. Deployment tools need to address both sets of requirements, as w
J2EE goals such as portability and backwards compatibility.

nce
hitec-
rence
ing

bject-
the

nd
About the Author

TONY NG is a Staff Engineer at Sun Microsystems. He is part of the J2EE Refere
Implementation team, where he leads the development of the J2EE Connector arc
ture, distributed transaction, and database connection management in the refe
implementation. Tony also participated in the development of the J2EE programm
model and the Java Transaction Service. Formerly, he worked on Java Blend, an o
relational database mapping product. Tony has a B.S. in Computer Science from
University of Illinois at Urbana-Champaign and an M.S. in Electrical Engineering a
Computer Science from the Massachusetts Institute of Technology.

C H A P T E R 8

t

ed
n’s
tional
led
plex

and
ction
tions.
iffer-

abil-

ed
ion’s

ata
ata’s

cur-
er, a
Transaction Managemen
by Tony Ng

TRANSACTIONSare a mechanism for simplifying the development of distribut
multiuser enterprise applications. By enforcing strict rules on an applicatio
ability to access and update data, transactions ensure data integrity. A transac
system ensures that a unit of work either fully completes or the work is fully rol
back. Transactions free an application programmer from dealing with the com
issues of failure recovery and multiuser programming.

The chapter begins with a general overview of transaction properties
J2EE platform support for transactions. Then it describes the Java Transa
API, the interface used by the J2EE platform to manage and coordinate transac
Finally, the chapter describes the J2EE transactional model available to the d
ent types of J2EE components and to enterprise information systems.

8.1 Properties of Transactions

All transactions share the properties of atomicity, consistency, isolation, and dur
ity. These properties are denoted by the acronym ACID.

Atomicity requires that all of the operations of a transaction are perform
successfully for the transaction to be considered complete. If all of a transact
operations cannot be performed, then none of them may be performed.

Consistencyrefers to data consistency. A transaction must transition the d
from one consistent state to another. The transaction must preserve the d
semantic and physical integrity.

Isolation requires that each transaction appear to be the only transaction
rently manipulating the data. Other transactions may run concurrently. Howev
197

CHAPTER 8 TRANSACTION MANAGEMENT198

nsac-
use

t view
Isola-

the
also

J2EE
. The
mar-
emar-
pleted
ple-
ple-

tween
gation,
nly
nsac-

of a
eans
tions
orm is
ction
d to
also
tems
might
J2EE
g the

tion
ruly
transaction should not see the intermediate data manipulations of other tra
tions until and unless they successfully complete and commit their work. Beca
of interdependencies among updates, a transaction might get an inconsisten
of the database were it to see just a subset of another transaction’s updates.
tion protects a transaction from this sort of data inconsistency.

Durability means that updates made by committed transactions persist in
database regardless of failures that occur after the commit operation and it
ensures that databases can be recovered after a system or media failure.

8.2 J2EE Platform Transactions

Support for transactions is an essential element of the J2EE architecture. The
platform supports both programmatic and declarative transaction demarcation
component provider can use the Java Transaction API to programmatically de
cate transaction boundaries in the component code. Declarative transaction d
cation is supported in enterprise beans, where transactions are started and com
automatically by the enterprise bean’s container. In both cases, the burden of im
menting transaction management is on the J2EE platform. The J2EE server im
ments the necessary low-level transaction protocols, such as interactions be
transaction manager and JDBC database systems, transaction context propa
and optionally distributed two-phase commit. Currently, the J2EE platform o
supports flat transactions. A flat transaction cannot have any child (nested) tra
tions.

The J2EE platform supports a transactional application that is comprised
combination of servlets and/or JSP pages accessing multiple enterprise b
within a single transaction. Each component may acquire one or more connec
to access one or more shared resource managers. Currently, the J2EE platf
only required to support access to a single JDBC database within a transa
(multiple connections to the same database are allowed). It is not require
support access to multiple JDBC databases within a single transaction. It is
not required to support access to other types of enterprise information sys
such as enterprise resource planning systems. However, some products
choose to provide these extra transactional capabilities. For example, the
SDK supports access to multiple JDBC databases in one transaction usin
two-phase commit protocol.

It is important for developers to understand and distinguish which transac
capabilities are required and which are optional in a J2EE product. To write a t

SCENARIOS 199

2EE
ata-
that

t.

ensure

to

erver
trans-
two-
portable application, developers should only use features required by the J
specification. For example, if a J2EE application needs to access multiple d
bases under a single transaction, it will not run properly on a J2EE product
does not support two-phase commit.

8.3 Scenarios

The following scenarios illustrate the use of transactions in a J2EE environmen

8.3.1 Accessing Multiple Databases

In Figure 8.1, a client invokes enterprise beanX. BeanX accesses databaseA using a
JDBC connection. Then enterprise beanX calls another enterprise beanY. Y accesses
databaseB. The J2EE server and resource adapters for both database systems
that updates to both databases are either all committed, or all rolled back.

Figure 8.1 Accessing Multiple Databases in the Same Transaction

An Application Component Provider does not have to write extra code
ensure transactional semantics. Enterprise beansX and Y access the database
systems using the JDBC client access API. Behind the scenes, the J2EE s
enlists the connections to both systems as part of the transaction. When the
action is committed, the J2EE server and the resource managers perform a
phase commit protocol to ensure atomic update of the two systems.

CHAPTER 8 TRANSACTION MANAGEMENT200

e

e

tion
the
trib-
tion

rm.
ction
ltiple
tically
mpo-
of a
8.3.2 Accessing Multiple Enterprise Information Systems From
Multiple EJB Servers

In Figure 8.2, a client invokes the enterprise beanX, which updates data in enterpris
information systemA, and then calls another enterprise beanY that is installed in
another J2EE server. Enterprise beanY performs read-write access to enterpris
information systemB.

Figure 8.2 Accessing Multiple Enterprise Information Systems in the Same
Transaction

WhenX invokesY, the two J2EE servers cooperate to propagate the transac
context fromX to Y. This transaction context propagation is transparent to
application code. At transaction commit time, the two J2EE servers use a dis
uted two-phase commit protocol to ensure that the two enterprise informa
systems are updated under a single transaction.

8.4 JTA Transactions

A JTA transactionis a transaction managed and coordinated by the J2EE platfo
A J2EE product is required to support JTA transactions according to the transa
requirements defined in the J2EE specification. A JTA transaction can span mu
components and enterprise information systems. They are propagated automa
between components and to enterprise information systems accessed by co
nents within that transaction. For example, a JTA transaction may be comprised

JTA TRANSACTIONS 201

ss one

JTA

EJB

ple
nsac-

y be
d to
ation
ction
as

e, be
rma-
y and
ed
ec-

e or
c unit

inde-
aces
ction
ntrols

JTA
TS)
sing
tions
servlet or JSP page accessing multiple enterprise beans, some of which acce
or more relational databases.

There are two ways to begin a JTA transaction. A component can begin a
transaction using the JTAjavax.transaction.UserTransaction interface. For an
enterprise bean, a JTA transaction might also be started automatically by the
container if the bean uses container-managed transaction demarcation.

The main benefit of using JTA transactions is the ability to combine multi
components and enterprise information system accesses into one single tra
tion with little programming effort. For example, if a componentA begins a JTA
transaction and invokes a method of componentB, the transaction will be propa-
gated transparently from componentA to B by the platform. Similarly, if compo-
nentA updates a table in a relational database, the update will automaticall
under the scope of the same transaction. No extra programming is require
propagate transactions between multiple components and enterprise inform
systems. In addition, enterprise beans using container-managed transa
demarcation will not need to begin or commit transactions programmatically
the demarcation is handled automatically by the EJB container.

It is recommend that an enterprise information system, such as a databas
accessed within the scope of a JTA transaction. Accessing an enterprise info
tion system within a transaction provides some guarantee on the consistenc
integrity of the data. In addition, using a JTA transaction allows work perform
by multiple components through multiple enterprise information system conn
tions to be grouped as an atomic unit. It also allows work performed on on
more independent enterprise information systems to be grouped as an atomi
if the J2EE product supports two-phase commit.

8.4.1 JTA and JTS

JTA allows applications to access transaction management in a manner that is
pendent of a specific implementation. JTA specifies standard Java interf
between a transaction manager and the parties involved in a distributed transa
system: the transactional application, the J2EE server, and the manager that co
access to the shared resources affected by the transactions.

JTS specifies the implementation of a transaction manager that supports
and implements the Java mapping of the OMG Object Transaction Service (O
1.1 specification at the level below the API. JTS propagates transactions u
IIOP. A JTS transaction manager provides the services and management func

CHAPTER 8 TRANSACTION MANAGEMENT202

ment,

a
re not

the
2EE
ents

ation
vide
can
y
gate

o-
ation

ans-
required to support transaction demarcation, transactional resource manage
synchronization, and transaction context propagation.

An Application Component Provider uses the JTAUserTransaction interface
to demarcate JTA transaction boundaries in components. The JTS
TransactionManager and XAResource interfaces are low-level APIs between
J2EE server and enterprise information system resource managers and a
intended to be used by applications.

A J2EE platform might choose to use a JTS implementation to support
transaction semantics defined in J2EE specification. An example is the J
SDK. The JTS implementation is transparent to J2EE components. Compon
should never interact directly with JTS. Instead, they should use the JTA
UserTransaction interface for transaction demarcation.

8.5 Transactions in Applets and Application Clients

The J2EE platform does not require transaction support in applets and applic
clients, though like distributed transactions, a J2EE product might choose to pro
this capability for added value. So, whether applets and application clients
directly access aUserTransaction object depends on the capabilities provided b
the container. To ensure portability, applets and application clients should dele
transactional work to enterprise beans.

8.6 Transactions in Web Components

A servlet or JSP page can use JNDI to lookup aUserTransaction object, then use
theUserTransaction interface to demarcation transactions. This is useful in a tw
tier application where a Web component needs to access enterprise inform
systems under the scope of a JTA transaction.

Code Example 8.1 illustrates the use of the JTA interface to demarcate tr
actions within a Web component:

Context ic = new InitialContext();

UserTransaction ut =

(UserTransaction) ic.lookup("java:comp/UserTransaction");

ut.begin();

TRANSACTIONS IN ENTERPRISE BEANS 203

re the
ests.
rans-

the
ation:

n
al
nsac-

 the

ac-

e for
this
tead,
e beans

naged
differ-
// perform transactional work here

ut.commit();

Code Example 8.1 Web Component Using JTA Transactions

A Web component may only start a transaction in itsservice method. A
transaction that is started by a servlet or JSP page must be completed befo
service method returns. In other words, transactions may not span Web requ

There are many subtle and complex interactions between the use of JTA t
actions, threads, and JDBC connections. Web components should follow
guidelines stated in the transaction management chapter of the J2EE specific

• JTA transactions should be started and completed only from the thread i
which theservice method is called. If the Web component creates addition
threads for any purpose, these threads should not attempt to start JTA tra
tions.

• JDBC connections may be acquired and released by a thread other than
service method thread, but should not be shared between threads.

• JDBCConnection objects should not be stored in static fields.

• For Web components implementingSingleThreadModel, JDBCConnection

objects may be stored in class instance fields.

• For Web components not implementingSingleThreadModel, JDBCConnec-

tion objects should not be stored in class instance fields, and should be
quired and released within the same invocation of theservice method.

In a multitier environment, servlets and JSP pages are mainly responsibl
the presentation of the application and dealing with browser interaction. In
case, the use of JTA transactions in the Web tier is not recommended. Ins
transactional work such as database access should be delegated to enterpris
in the EJB tier.

8.7 Transactions in Enterprise Beans

There are two types of transaction demarcation in enterprise beans: bean-ma
and container-managed. In container-managed transaction demarcation, six

CHAPTER 8 TRANSACTION MANAGEMENT204

An
tion
in the
ele-

iner-
avail-

s the
n
ion. An

ac-

EJB
ction
s of

ribute
is

urns.
rprise
er to
ent transaction attributes—Required, RequiresNew, NotSupported, Supports, Man-
datory, and Never—can be associated with an enterprise bean’s method.
Application Component Provider or Assembler specifies the type of transac
demarcation and transaction attributes for the methods of the enterprise beans
deployment descriptor. The use of deployment descriptors to specify transaction
ments is discussed and illustrated in “Transaction Elements” on page 184.

This section discusses the types of transactions and the attributes of conta
managed transactions and then presents guidelines for choosing among the
able options.

8.7.1 Bean-Managed Transaction Demarcation

With bean-managed transaction demarcation, an enterprise bean use
javax.transaction.UserTransaction interface to explicitly demarcate transactio
boundaries. Only session beans can choose to use bean-managed demarcat
entity bean must always use container-managed transaction demarcation.

The following code illustrates the use of JTA interface to demarcate trans
tions in an enterprise bean with bean-managed transaction demarcation.

UserTransaction ut = ejbContext.getUserTransaction();

ut.begin();

// perform transactional work here

ut.commit();

Code Example 8.2 Enterprise Bean Using a JTA Transaction

8.7.2 Container-Managed Transaction Demarcation

For an enterprise bean with container-managed transaction demarcation, the
container is responsible for managing transaction boundaries. The transa
attribute for a method determines what the EJB container needs to do in term
transaction management. For example, if a method has a transaction att
RequiresNew, the EJB container will begin a new JTA transaction every time th
method is called and attempt to commit the transaction before the method ret
The same transaction attribute can be specified for all the methods of an ente
bean or different attributes can be specified for each method of a bean. Ref
Section 8.7.2.1 on page 205 for more information on transaction attributes.

TRANSACTIONS IN ENTERPRISE BEANS 205

ontrol
ack a

arca-

in-
r

n au-

with
the
crip-

that
of an

oses,
an

ter-
of an

se
t is
n the
tion,
ns-
Even in container-managed demarcation, an enterprise bean has some c
over the transaction. For example, an enterprise bean can choose to roll b
transaction started by the container using the methodsetRollbackOnly on the
SessionContext or EntityContext object.

There are several benefits of using container-managed transaction dem
tion:

• The transaction behavior of an enterprise bean is specified declaratively
stead of programmatically. This frees the Application Component Provide
from writing transaction demarcation code in the component.

• It is less error-prone because the container handles transaction demarcatio
tomatically.

• It is easier to compose multiple enterprise beans to perform a certain task
specific transaction behavior. An Application Assembler that understands
application can customize the transaction attributes in the deployment des
tor without code modification.

8.7.2.1 Transaction Attributes

A transaction attributeis a value associated with a method of an enterprise bean
uses container-managed transaction demarcation. In most cases, all methods
enterprise bean will have the same transaction attribute. For optimization purp
it is possible to have different attributes for different methods. For example,
enterprise bean may have methods that don’t need to be transactional.

A transaction attribute must be specified for the methods in the remote in
face of a session bean and for the methods in the remote and home interfaces
entity bean.

Required

If the transaction attribute isRequired, the container ensures that the enterpri
bean’s method will always be invoked with a JTA transaction. If the calling clien
associated with a JTA transaction, the enterprise bean method will be invoked i
same transaction context. However, if a client is not associated with a transac
the container will automatically begin a new transaction and try to commit the tra
action when the method completes.

CHAPTER 8 TRANSACTION MANAGEMENT206

s-
tions
con-

the
trans-

tion
oking
es the

n
way

y

’s
sac-

be
the

ans-
RequiresNew

If the transaction attribute isRequiresNew, the container always creates a new tran
action before invoking the enterprise bean method and commits the transac
when the method returns. If the calling client is associated with a transaction
text, the container suspends the association of the transaction context with
current thread before starting the new transaction. When the method and the
action complete, the container resumes the suspended transaction.

NotSupported

If the transaction attribute isNotSupported, the transactional context of the calling
client is not propagated to the enterprise bean. If a client calls with a transac
context, the container suspends the client’s transaction association before inv
the enterprise bean’s method. After the method completes, the container resum
suspended transaction association.

Supports

It the transaction attribute isSupports, and the client is associated with a transactio
context, the context is propagated to the enterprise bean method, similar to the
the container treats theRequired case. If the client call is not associated with an
transaction context, the container behaves similarly to theNotSupported case. The
transaction context is not propagated to the enterprise bean method.

Mandatory

The transaction attributeMandatory requires the container to invoke a bean
method in a client’s transaction context. If the client is not associated with a tran
tion context when calling this method, the container throwsjavax.transac-

tion.TransactionRequiredException. If the calling client has a transaction
context, the case is treated asRequired by the container.

Never

The transaction attributeNever requires that the enterprise bean method not
called within a transaction context. If the client calls with a transaction context,
container throws thejava.rmi.RemoteException. If the client is not associated with
any transaction context, the container invokes the method without initiating a tr
action.

TRANSACTIONS IN ENTERPRISE BEANS 207

ough
s one
ent
ction

by
ected
aged
r the

DBC

a JTA

on.
eds

in
ging.

lled

rce
t. For
plan-
ntrol
ction

ding
ibly a

-
the
8.7.3 Transaction Guidelines

As mentioned previously, the recommended way to manage transactions is thr
container-managed demarcation. Declarative transaction management provide
of the major benefits of the J2EE platform, by freeing the Application Compon
Provider from the burden of managing transactions. Furthermore, the transa
characteristics of an application can be changed without code modification
switching the transaction attributes. Transaction demarcation should be sel
with great care, by someone who understands the application well. Bean-man
transaction demarcation is only for advanced users who want more control ove
work flow.

8.7.3.1 Transaction Attributes Guidelines

Most enterprise beans perform transactional work (for example, accessing a J
database). The default choice for a transaction attribute should beRequired. Using
this attribute ensures that the methods of an enterprise bean are invoked under
transaction. In addition, enterprise beans with theRequired transaction attribute can
be easily composed to perform work under the scope of a single JTA transacti

TheRequiresNew transaction attribute is useful when the bean method ne
to commit its results unconditionally, whether or not a transaction is already
progress. An example of this requirement is a bean method that performs log
This bean method should be invoked withRequiresNew transaction attribute so
that the logging records are created even if the calling client’s transaction is ro
back.

The NotSupported transaction attribute can be used when the resou
manager responsible for the transaction is not supported by the J2EE produc
example, if a bean method is invoking an operation on an enterprise resource
ning system that is not integrated with the J2EE server, the server has no co
over that system’s transactions. In this case, it is best to set the transa
attribute of the bean to beNotSupported to clearly indicate that the enterprise
resource planning system is not accessed within a JTA transaction.

We do not recommend using the transaction attributeSupports. An enterprise
bean with this attribute would have transactional behavior that differed depen
on whether the caller is associated with a transaction context, leading to poss
violation of the ACID rules for transactions.

The transaction attributesMandatory andNever can be used when it is neces
sary to verify the transaction association of the calling client. They reduce

CHAPTER 8 TRANSACTION MANAGEMENT208

ns-

xam-
an

er the
con-

trans-

trans-
g on
ms
are

le for
rprise

one
enter-
by
this
composability of a component by putting constraints on the calling client’s tra
action context.

8.8 Transactions in Enterprise Information Systems

Most enterprise information systems support some form of transactions. For e
ple, a typical JDBC database allows multiple SQL updates to be grouped in
atomic transaction.

Components should always access an enterprise information system und
scope of a transaction since this provides some guarantee on the integrity and
sistency of the underlying data. Such systems can be accessed under a JTA
action or a resource manager (RM) local transaction.

8.8.1 JTA Transactions

When an enterprise information system is accessed under the scope of a JTA
action, any updates performed on the system will commit or roll back dependin
the outcome of the JTA transaction. Multiple connections to information syste
can be opened and all updates through the connections will be atomic if they
performed under the scope of a JTA transaction. The J2EE server is responsib
coordinating and propagating transactions between the server and the ente
information system.

If the J2EE product supports multiple enterprise information systems in
transaction, a J2EE application can access and perform updates on multiple
prise information systems atomically, without extra programming effort,
grouping all updates within a JTA transaction. Code Example 8.3 illustrates
use:

InitialContext ic = new InitialContext("java:comp/env");

DataSource db1 = (DataSource) ic.lookup("OrdersDB");

DataSource db2 = (DataSource) ic.lookup("InventoryDB");

Connection con1 = db1.getConnection();

Connection con2 = db2.getConnection();

UserTransaction ut = ejbContext.getUserTransaction();

ut.begin();

// perform updates to OrdersDB using connection con1

TRANSACTIONS IN ENTERPRISE INFORMATION SYSTEMS209

n is
. The
sac-
rma-
ted.
nsac-
to the

r the
sup-
not
not

nd any

s, be
ation
integ-

le to
ltiple
ingle

n as
at-
will

xtra
s.
// perform updates to InventoryDB using connection con2

ut.commit();

Code Example 8.3 Accessing Multiple Databases

8.8.2 Resource Manager Local Transactions

A resource manager local transaction(or local transaction) is a transaction specific
to a particular enterprise information system connection. A local transactio
managed by the underlying enterprise information system resource manager
J2EE platform usually does not have control or knowledge about any local tran
tions begun by components. Typically access to a transactional enterprise info
tion system will be under a local transaction if no JTA transaction has been initia
For example, if a servlet accesses a JDBC database without starting a JTA tra
tion, the database access will be under the scope of a local transaction, specific
database.

Another scenario where enterprise information system access is unde
scope of a local transaction is when the enterprise information system is not
ported by the J2EE platform. For example, a standard J2EE platform is
required to support object-oriented databases. As a result, the platform would
be able to propagate any JTA transactions to the object-oriented databases a
access will be under local transactions.

8.8.3 Choosing Between JTA and Local Transactions

It is recommended that enterprise information systems, such as database
accessed under the scope of a transaction. Accessing an enterprise inform
system under a transaction provides some guarantee on the consistency and
rity of the data.

We recommend that a component use JTA transactions whenever possib
access enterprise information systems. Using a JTA transaction allows mu
components accessing enterprise information systems to be grouped in a s
transaction without adding extra logic. If a component marks the transactio
rollback only, all enterprise information system work will be rolled back autom
ically. With local transactions, each enterprise information system accessed
have to be committed or rolled back explicitly. In addition, components need e
logic to deal with individual enterprise information system rollbacks or failure

CHAPTER 8 TRANSACTION MANAGEMENT210

ed
ulti-
single
ces-
stem

enter-
s an

orm.
scope
ed,
rise

ation
ases

that
r the
ed in

tion
8.8.4 Compensating Transactions

A compensating transactionis a transaction or a group of operations that is us
to undo the effect of a previously committed transaction. In the case where m
ple access to enterprise information systems need to be grouped under a
transaction, but not all of the systems support JTA transactions, it will be ne
sary to define a compensating transaction for each enterprise information sy
access that is under the scope of a local transaction.

Compensating transactions are useful if a component needs to access an
prise information system that does not support JTA transactions or acces
enterprise information system that is not supported by a particular J2EE platf
In both cases, the enterprise information system will be accessed under the
of a RM local transaction. If multiple enterprise information systems are involv
this creates the challenge of having to group all the work to multiple enterp
information systems into an atomic unit.

For example, suppose an application needs to perform an atomic oper
that involves updating three enterprise information systems: two JDBC datab
that supports JTA transactions and an enterprise resource planning system
does not. The application would need to define a compensating transaction fo
update to the enterprise resource planning system. The approach is illustrat
Code Example 8.4.

updateERPSystem();

try {

UserTransaction.begin();

updateJDBCDatabaseOne();

updateJDBCDatabaseTwo();

UserTransaction.commit();

}

catch (RollbackException ex) {

undoUpdateERPSystem();

}

Code Example 8.4 Compensating Transaction

The methodsupdateERPSystem, updateJDBCDatabaseOne, andupdateJDBCDa-
tabaseTwo contain code to access and perform work on enterprise informa

TRANSACTIONS IN ENTERPRISE INFORMATION SYSTEMS211

f

bean
cess
rise
ation
nfor-
ibute
e

sid-
rea-

g

tem
may
e in-
 plan-

extra
pit-
m if

e and
nter-
systems. TheundoUpdateERPSystem method contains code to undo the effect o
updateERPSystem if the JTA transaction does not commit successfully.

This compensation logic should be encapsulated in a session enterprise
with a bean-managed transaction. If the enterprise information system ac
logic is relatively simple, they can all reside in this bean. Otherwise, the enterp
bean can invoke other enterprise beans to access the enterprise inform
system. If an enterprise bean’s only responsibility is to access an enterprise i
mation system that does not support JTA transactions, its transaction attr
should be set toNotSupported. This denotes that a JTA transaction will not b
used in the enterprise bean.

There are a few pitfalls regarding the use of compensating transactions:

• It is not always possible to undo the effect of a committed transaction. Con
er Code Example 8.4. If the JTA transaction does not commit and for some
son the methodundoUpdateERPSystem does not succeed, the data will be left in
an inconsistent state.

• Atomicity could also be broken if the server crashes when a compensatin
transaction is used. For example, if the system crashes after the method
updateERPSystem, the updates to the two databases will not happen.

• Inconsistent data might be seen by concurrent enterprise information sys
access. In this approach, non-JTA transactions are actually committed but
be undone subsequently. In the previous example, a concurrent enterpris
formation system access might see the update to the enterprise resource
ning system which might be rolled back later. In other words, it sees
uncommitted data.

An application that depends on compensating transactions must have
logic to deal with potential failures and inconsistencies. The extra work and
falls of compensating transactions mean applications should avoid using the
possible. Instead, JTA transactions should be used as they provide a simpl
safe way to achieve the ACID properties across multiple components and e
prise information systems.

CHAPTER 8 TRANSACTION MANAGEMENT212

tion
ually

d

d
ame

n

 multi-
the
pred-
ate

vel
ic to
hest
able

ppli-
does
tion
ide a
iso-
evel

ion,
tion
8.8.5 Isolation Level

An isolation leveldefines how concurrent transactions to an enterprise informa
system are isolated from one another. Enterprise information systems us
support the following the isolation levels:

• ReadCommitted: This level prevents a transaction from reading uncommitte
changes from other transactions.

• RepeatableRead: This level prevents a transaction from reading uncommitte
changes from other transactions. In addition, it ensures that reading the s
data multiple times will receive the same value even if another transactio
modifies the data.

• Serializable: This level prevents a transaction from reading uncommitted
changes from other transactions and ensures that reading the same data
ple times will receive the same value even if another transaction modifies
data. In addition, it ensures that if a query retrieves a result set based on a
icate condition and another transaction inserts data that satisfy the predic
condition, re-execution of the query will return the same result set.

Isolation level and concurrency are closely related. A lower isolation le
typically allows greater concurrency, at the expense of more complicated log
deal with potential data inconsistencies. A useful guideline is to use the hig
isolation level provided by enterprise information systems that gives accept
performance.

For consistency, all enterprise information systems accessed by a J2EE a
cation should use the same isolation level. Currently, the J2EE specification
not define a standard way to set isolation levels when an enterprise informa
system is accessed under JTA transactions. If a J2EE product does not prov
way to configure the isolation level, the enterprise information system default
lation level will be used. For most relational databases, the default isolation l
is ReadCommitted.

We recommend that you not change the isolation level within a transact
especially if some work has already been done. Some enterprise informa
systems will force a commit if you attempt to change the isolation level.

SUMMARY 213

orm.
pe—

erprise

li-
cess
nd a
hese
tion
vid-
on a
8.9 Summary

This chapter provides the guidelines for using transactions on the J2EE platf
It describes the J2EE transactional model available to each J2EE component ty
application clients, JSP pages and servlets, and enterprise beans—and ent
information systems.

The J2EE platform provides powerful support for writing transactional app
cations. It contains the Java Transaction API, which allows applications to ac
transactions in a manner that is independent of specific implementations a
means for declaratively specifying the transactional needs of an application. T
capabilities shift the burden of transaction management from J2EE Applica
Component Providers to J2EE product vendors. Application Component Pro
ers can thus focus on specifying the desired transaction behavior, and rely
J2EE product to implement the behavior.

the
oup
on

d as a
rant

.S. in
tes
About the Author

RON MONZILLO is a Senior Staff Engineer at Sun Microsystems where he is
J2EE security specification lead. Prior to joining Sun, Ron worked for the Open Gr
where he contributed to the evolution of the Distributed Computing Environment. R
has also worked for BBN, where he developed Network Management systems, an
Principal Investigator for the MITRE Corporation where he researched fault-tole
distributed database systems and multi-processor architectures. Ron received an M
Computer Science from the University of Connecticut and a B.S. in Biology from Ba
College.

C H A P T E R 9
bil-
ani-
teps

tions,
tion
than

cha-
plica-
sign,
Security
by Ron Monzillo

I N an enterprise computing environment, failure, compromise, or lack of availa
ity of computing resources can jeopardize the viability of the enterprise. An org
zation must take steps to identify threats to security. Once they are identified, s
should be taken to reduce these threats.

It is unreasonable to assume that J2EE products, and hence J2EE applica
can displace existing enterprise security infrastructures. The J2EE applica
programming model attempts to leverage existing security services rather
require new services or mechanisms.

This discussion begins with a review of some security concepts and me
nisms. We describe the security concerns and characteristics of enterprise ap
tions and explore the application of J2EE security mechanisms to the de
implementation, and deployment of secure enterprise applications.

9.1 Security Threats and Mechanisms

Threats to enterprise-critical assets fall into a few general categories:

• Disclosure of confidential information

• Modification or destruction of information

• Misappropriation of protected resources

• Compromise of accountability

• Misappropriation that compromises availability
215

CHAPTER 9 SECURITY216

tes,
radi-
lf in
th
po-

um-
use of
ng,
rity
poli-

alf of

par-
in a

en-
ould
all

ent
h an
te

to
the
iden-
Depending on the environment in which an enterprise application opera
these threats may manifest themselves in different forms. For example, in a t
tional single system environment, a threat of disclosure might manifest itse
the vulnerability of information kept in files. In a distributed environment wi
multiple servers and clients, a threat of disclosure might also result from ex
sures occurring as the result of networking.

Although not all threats can or need be eliminated, there are many circ
stances where exposure can be reduced to an acceptable level through the
the following security mechanisms: authentication, authorization, signi
encryption, and auditing. The following sections describe J2EE platform secu
mechanisms and indicate how the mechanisms are used to support security
cies in an operational environment.

9.2 Authentication

In distributed component computing,authenticationis the mechanism by which
callers and service providers prove to one another that they are acting on beh
specific users or systems. When the proof is bidirectional, we refer to it asmutual
authentication.Authentication establishes the call identities and proves that the
ticipants are authentic instances of these identities. An entity that participates
call without establishing and/or proving an identity (that is,anonymously), is
calledunauthenticated.

When calls are made from a clientprogram being run by a user, the caller
identity is likely to be that of theuser. When the caller is anapplication compo-
nentacting as an intermediary in a call chain originating with some user, the id
tity may be associated with that of the user, in which case the component w
be impersonatingthe user. Alternatively, one application component may c
another with an identity of its own and unrelated to that of its caller.

Authentication is often achieved in two phases. First, service-independ
authentication requiring knowledge of some secret is performed to establis
authentication contextthat encapsulates the identity and is able to fabrica
authenticators(proofs of identity). Then, the authentication context is used
authenticate with other (called or calling) entities. Controlling access to
authentication context, and thus the ability to authenticate as the associated

AUTHENTICATION 217

cha-

tarts

may
part

hat
with
ntity

by

to
ound-
ross
ould

dary
otec-
the
that
from
so.
tity, becomes the basis of authentication. Among the possible policies and me
nisms for controlling access to an authentication context are:

• Once the user performs an initial authentication, the processes the user s
inherit access to the authentication context.

• When a component is authenticated, access to the authentication context
be available to other related or trusted components, such as those that are
of the same application.

• When a component is expected toimpersonateits caller, the caller maydele-
gate its authentication context to the called component.

9.2.1 Protection Domains

Some entities may communicate without requiring authentication. Aprotection
domainis a set of entities that are assumed or known to trust each other. Entities in
such a domain need not be authenticated to one another.

Figure 9.1 illustrates that authentication is only required for interactions t
cross the boundary of a protection domain. When a component interacts
components in the same protection domain, no constraint is placed on the ide
that it can associate with its call. The caller maypropagatethe caller’s identity, or
choosean identity based on knowledge of authorization constraints imposed
the called component, since the caller’s ability toclaim an identity is based on
trust, not authentication. If the concept of protection domains is employed
avoid the need for authentication, there must be a means to establish the b
aries of protection domains, so that trust in unproven identities does not c
these boundaries. Entities that are universally trusting of all other entities sh
not be trusted as a member of any protection domain.

In the J2EE architecture, a container provides an authentication boun
between external callers and the components it hosts. The boundaries of pr
tion domains don’t always align with those of containers. Containers enforce
boundaries, and implementations are likely to support protection domains
span containers. However, a container is not required to host components
different protection domains, although an implementation may choose to do

CHAPTER 9 SECURITY218

p-

of
rson-

of
ec-
s of

ter-
ded
ly be
iner
of

nce
or

: an
Figure 9.1 Protection Domain

For inboundcalls, it is the container’s responsibility to make an authentic re
resentation of the caller identity available to the component in the form of acre-
dential. An X.509 certificate and a Kerberos service ticket are examples
credentials. A passport or a driver’s licence are analogous artifacts used in pe
to-person interactions.

Foroutboundcalls, the container is responsible for establishing the identity
the calling component. In general, it is the job of the container to provide bidir
tional authentication functionality to enforce the protection domain boundarie
the deployed applications.

Without proof of component identity, the interacting containers must de
mine if there is sufficient inter-container trust to accept the container-provi
representations of component identity. In some environments, trust may simp
presumed, in others it may be more explicitly evaluated based on inter-conta
authentication and possibly the comparison of container identities to lists
trusted identities. If a required proof of identity is not provided, and in the abse
of a sufficient inter-container trust relationship, a container should reject
abandon a call.

Figure 9.2 illustrates these authentication concepts in two scenarios
authenticated user scenario and an unauthenticated user scenario.

AUTHENTICATION 219

ser’s
hen
rop-
the

fer-
n. In
they
vides
alled
Figure 9.2 Authentication Scenarios

The authenticated user invokes a calling component that employs the u
authentication context to prove its identity to an intermediate component. W
the called component makes a call it propagates the identity of its caller. The p
agated identity is unproven, and so will be accepted only if the targets trust
caller, that is, if they reside in the same protection domain. The figure also dif
entiates identity propagation from delegation and subsequent impersonatio
propagation, the service providers bear the burden of determining whether
should accept propagated identities as authentic. In delegation, the user pro
the called component with access to its authentication context, enabling the c

CHAPTER 9 SECURITY220

uires
the
f an
ven

ract
user
pres-
me

r must
gainst
n the
henti-
tion

eb
hives,
d in
es to
pass-
y the
and

Caller

tainer
ent

isms:
then-

ser
component to impersonate the user in subsequent calls. Impersonation req
the user to trust the impersonator to act in its behalf. The lower portion of
figure depicts the propagation of an unauthenticated user identity in the form o
anonymous credential. An anonymous credential is the one form of unpro
identity that may be propagated independent of trust.

9.2.2 Authentication Mechanisms

In a typical J2EE application, a user would go through a client container to inte
with enterprise resources in the Web or EJB tiers. Resources available to the
may be protected or unprotected. Protected resources are distinguished by the
ence ofauthorization rules(see Section 9.3 on page 225) that restrict access to so
subset of non-anonymous identities. To access a protected resource, a use
present a non-anonymous credential such that its identity can be evaluated a
the resource authorization policy. In the absence of a trust relationship betwee
client and resource containers, the credential must be accompanied by an aut
cator that confirms its validity. This section describes the various authentica
mechanisms supported by the J2EE platform and how to configure them.

9.2.2.1 Web Tier Authentication

An Application Component Provider can designate that a collection of W
resources (Web components, HTML documents, image files, compressed arc
and so on) is protected by specifying an authorization constraint (describe
Section 9.3.7.1 on page 230) for the collection. When an anonymous user tri
access a protected Web resource, the Web container will prompt the user for a
word to authenticate with the Web container. The request will not be accepted b
Web container until the user identity has been proven to the Web container
shown to be one of the identities granted permission to access the resource.
authentication performed on the first access to a protected resource is calledlazy
authentication.

When a user tries to access a protected Web-tier resource, the Web con
activates the authentication mechanism defined in the application’s deploym
descriptor. J2EE Web containers must support three authentication mechan
HTTP basic authentication, form-based authentication, and HTTPS mutual au
tication, and are encouraged to support HTTP digest authentication.

In basic authentication,the Web server authenticates a principal using the u
name and password obtained from the Web client. Indigest authenticationa Web

AUTHENTICATION 221

ong its
algo-

word.
the

er
rm-
nt as

zing
ngle
ing a

to
d by
sed

, and
cha-
client authenticates to a Web server by sending the server a message digest al
HTTP request message. The digest is computed by employing a one-way hash
rithm to a concatenation of the HTTP request message and the client’s pass
The digest is typically much smaller than the HTTP request, and doesn’t contain
password.

Form-based authenticationlets developers customize the authentication us
interface presented by an HTTP browser. Like HTTP basic authentication, fo
based authentication is not secure, since the content of the user dialog is se
plain text, and the target server is not authenticated.

In single-signon environments, discretion must be exercised in customi
an application’s authentication interface. It may be preferable to provide a si
enterprise-wide custom user authentication interface, rather than implement
set of application-specific interfaces.

With mutual authentication, the client and server use X.509 certificates
establish their identity. Mutual authentication occurs over a channel protecte
SSL. Hybrid mechanisms featuring either HTTP basic authentication, form-ba
authentication, or HTTP digest authentication over SSL are also supported.

Authentication Configuration

An authentication mechanism is configured using thelogin-config element of the
Web component deployment descriptor. Code Example 9.1, Code Example 9.2
Code Example 9.3 illustrate the declaration of each type of authentication me
nism.

<web-app>

<login-config>

<auth-method>BASIC|DIGEST</auth-method>

<realm-name>jpets</realm-name>

</login-config>

</web-app>

Code Example 9.1 HTTP Basic and Digest Authentication Configuration

<web-app>

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

CHAPTER 9 SECURITY222

d for
tion
ntent,
ple
the

red
<form-login-page>login.jsp</form-login-page>

<form-error-page>error.jsp</form-error-page>

</form-login-config>

</login-config>

</web-app>

Code Example 9.2 Form-Based Authentication Configuration

<web-app>

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

</web-app>

Code Example 9.3 Client Certificate Authentication Configuration

Hybrid Authentication

In both HTTP basic and form-based authentication, passwords are not protecte
confidentiality. This vulnerability can be overcome by running these authentica
protocols over an SSL-protected session, which ensures that all message co
including the client authenticators, are protected for confidentiality. Code Exam
9.4 demonstrates how to configure HTTP basic authentication over SSL using
transport-guarantee element. Form-based authentication over SSL is configu
in the same way.

<web-app>

<security-constraint>

...

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

</web-app>

Code Example 9.4 SSL Hybrid Authentication Mechanism

AUTHENTICATION 223

tica-
ect
One
st the
cted
con-
nter-

ded
urces
lazy
user

an be
ble of
pro-
nsure

urce.
aring
. This
Web
cially
page.
9.2.2.2 EJB Tier Authentication

The J2EE 1.2 platform specification doesn’t require interoperable caller authen
tion at the EJB container. Also, network firewall technology may prevent dir
Internet interaction (via RMI) between client containers and enterprise beans.
way that an EJB container can protect access to enterprise beans is to entru
Web container to vouch for the identity of users accessing the beans via prote
Web components. As illustrated in Figure 9.3, such configurations use the Web
tainer to enforce protection domain boundaries for Web components and the e
prise beans that they call.

Figure 9.3 Typical J2EE Application Configuration

9.2.3 Authentication Call Patterns

In a multitier, multicomponent application, certain call patterns should be avoi
for security reasons. For example, an application that calls protected EJB reso
from unprotected Web resources can run into problems, because the Web tier’s
authentication paradigm doesn’t require user authentication except when the
attempts to access a protected resource. While the protection requirement c
moved to the EJB tier, care must be taken to ensure that users who are capa
authenticating can do so. With lazy authentication, a user who wants to visit a
tected EJB resource must have visited a protected Web resource. One way to e
this would be to front every protected EJB resource with a protected Web reso
Another approach would be to link to a protected Web resource (perhaps appe
as an authenticate button) on every Web resource that calls EJB resources
approach gives the user the option of authenticating (by visiting the protected
resource linked behind the button) prior to accessing an EJB resource, espe
after having been denied access by the EJB resource through an unprotected

CHAPTER 9 SECURITY224

the

e

dif-
the

red to
m of

e the
tor
ppli-

hen
ent’s

or
s used
-

e
tion

ould
r-
ca-
the
of

deled
(see

rs a
ector
er-
When an application is deployed with a hybrid authentication mechanism,
Deployer must ensure that thetransport-guarantee element of each protected
Web resource is set toCONFIDENTIAL. Otherwise, the client authenticator won’t b
fully protected.

9.2.3.1 Enterprise Information System Tier Authentication

In integrating with enterprise information systems, J2EE components may use
ferent security mechanisms and operate in different protection domains than
resources they access. In these cases, the calling container can be configu
manage the authentication to the resource for the calling component. This for
authentication is calledcontainer-managed resource manager signon. The J2EE
architecture also recognizes that some components require an ability to manag
specification of caller identity, and the production of a suitable authentica
directly. For these applications, the J2EE architecture provides a means for an a
cation component to engage in what is calledapplication-managed resource
manager signon. Application-managed resource manager signon is used w
manipulating the authentication details is a fundamental aspect of the compon
functionality.

The resource-ref elements of a component’s deployment descript
(described in greater detail in Section 9.3 on page 225) declares the resource
by the component. The subelementres-auth specifies the type of signon authenti
cation. Components can use theEJBContext.getCallerPrincipal andHttpServ-
letRequest.getUserPrincipal methods to obtain the identity of their caller. Th
component may map the caller identity to a new identity and/or authentica
secret as required by the target enterprise information system.

With container-managed resource manager signon, the container w
perform theprincipal mappingon behalf of the calling component. Containe
managed principal mapping isn’t explicitly defined in any of the J2EE specifi
tions. Whether it is performed by the container or embedded in the caller,
mapping of caller identity to an identity and authentication secret capable
accessing resources in the enterprise information system tier should be mo
as a protected resource, and secured by appropriate authorization rules
Section 9.3.6 on page 229).

The Connector architecture discussed in Section 6.10 on page 161 offe
standard API for application-managed resource manager signon. The Conn
provided API will ensure portability of components that authenticate with ent
prise information systems.

AUTHORIZATION 225

a user
iron-
ount,
ithout
her

card

ected
and
enti-
they
non.

and

t be

ade
e dec-
ting
the

es are
are
e in
erves

ers
ity
com-
ccess
9.2.4 Auto-Registration

Many e-commerce applications are designed to make it as easy as possible for
to become a customer. In contrast to typical computer user authentication env
ments, where a user must wait for an administrator to set up the user’s acc
many e-commerce applications enable users to set up their own accounts w
administrative intervention. Frequently the user is required to provide his or
identity and location, agree to some contractual obligations, provide credit
information for payment, and establish a password to protect the account.

Once the registration dialog is complete, the user can access the prot
resources of the site. In the future, client certificates will replace the identity
password elements of the registration to improve the accountability of the auth
cation. This transition will also relieve users from the risks they assume when
reuse a single password with multiple vendors as their own form of single sig
Mechanisms to support auto-registration are not specified by the J2EE platform
are thus specific to the container implementation.

Web resources that provide the user interface for auto-registration mus
protected. This is accomplished by setting thetransport-guarantee of these
resources toCONFIDENTIAL.

9.2.5 Exposing Authentication Boundaries with References

The Application Component Provider is responsible for declaring references m
by each component to other J2EE components and to external resources. Thes
larations are made in the deployment descriptor. In addition to their role in loca
services, such declarations serve to inform the Deployer of all the places in
application where authentication may be necessary. Enterprise bean referenc
declared usingejb-ref elements. Enterprise information system references
declared withresource-ref elements. In both cases, the declarations are mad
the scope of the calling component, and the collection of declared references s
to expose the application’s inter-component/resource call tree.

9.3 Authorization

Authorizationmechanisms limit interactions with resources to collections of us
or systems for the purpose of enforcing integrity, confidentiality, or availabil
constraints. Such mechanisms allow only authentic caller identities to access
ponents. Mechanisms provided by the J2SE platform can be used to control a

CHAPTER 9 SECURITY226

alling
riza-
ho is
tity
le to

ller,

cre-
. In
butes
en-
tes

hips)
and
ether
f
utes.
urity

dary
xists
ered
om-
ules
ise,

do.
cation
f the

s of

n are
ppli-
to
to code based on identity properties, such as the location and signer of the c
code. In the J2EE distributed component programming model, additional autho
tion mechanisms are required to limit access to called components based on w
usingthe calling code. As mentioned in the section on authentication, caller iden
can be established by selecting from the set of authentication contexts availab
the calling code. Alternatively, the caller may propagate the identity of its ca
select an arbitrary identity, or make the call anonymously.

In all cases, a credential is made available to the called component. The
dential contains information describing the caller through its identity attributes
the case of anonymous callers, a special credential is used. These attri
uniquely identify the caller in the context of the authority that issued the cred
tial. Depending on the type of credential, it may also contain other attribu
which define shared authorization properties (for example, group members
that distinguish collections of related credentials. The identity attributes
shared authorization attributes appearing in the credential are referred to tog
as the caller’ssecurity attributes.In the J2SE platform, the identity attributes o
the code used by the caller may also be included in the caller’s security attrib
Access to the called component is determined by comparing the caller’s sec
attributes with those required to access the called component.

In the J2EE architecture, a container serves as an authorization boun
between callers and the components it hosts. The authorization boundary e
inside the container’s authentication boundary, so that authorization is consid
in the context of successful authentication. For inbound calls, the container c
pares security attributes from the caller’s credential with the access control r
for the target component. If the rules are satisfied, the call is allowed. Otherw
the call is rejected.

There are two fundamental approaches to defining access control rules:capabil-
ities andpermissions. The capabilities approach focuses on what a caller can
The permissions approach focuses on who can do something. The J2EE appli
programming model focuses on permissions. In the J2EE architecture, the job o
Deployer is to map the permission model of the application to the capabilitie
users in the operational environment.

9.3.1 Declarative Authorization

The container-enforced access control rules associated with a J2EE applicatio
established by the Deployer. The Deployer uses a deployment tool to map an a
cation permission model (typically) supplied by the Application Assembler

AUTHORIZATION 227

ppli-

nted
es to
ent.
urity
oup
indi-
nted
list

uch
privi-

that
also
TTP

nts
curity

han
the

the
s pre-
from
ping
of

alls to
ccess

nent
ivilege
policy and mechanisms that are specific to the operational environment. The a
cation permission model is contained in a deployment descriptor.

The deployment descriptor defines logical privileges calledsecurity rolesand
associates them with components to define the privileges required to be gra
permission to access components. The Deployer assigns these logical privileg
specific callers to establish the capabilities of users in the runtime environm
Callers are assigned logical privileges based on the values of their sec
attributes. For example, a Deployer might map a security role to a security gr
in the operational environment such that any caller whose security attributes
cate that it is a member of the group would be assigned the privilege represe
by the role. As another example, a Deployer might map a security role to a
containing one or more principal identities in the operational environment s
that a caller authenticated as one of these identities would be assigned the
lege represented by the role.

The EJB container grants permission to access a method only to callers
have at least one of the privileges associated with the method. Security roles
protect Web resource collections, that is, a URL pattern and an associated H
method, such asGET. The Web container enforces authorization requireme
similar to those for an EJB container. When a resource has no associated se
role, permission to access the resource will be granted to all.

In both tiers, access control policy is defined at deployment time, rather t
application development. The Deployer can modify the policy provided by
Application Assembler. The Deployer refines the privileges required to access
components, and defines the correspondence between the security attribute
sented by callers and the container privileges. In any container, the mapping
security attributes to privileges is scoped to the application, so that the map
applied to the components of one application may be different from that
another application.

9.3.2 Programmatic Authorization

A J2EE container makes access control decisions before dispatching method c
a component. As a result, the logic or state of a component doesn’t affect the a
decisions. However, a component can use two methods,EJBContext.isCallerIn-

Role (for use by enterprise bean code) andHttpServletRequest.isUserInRole (for
use by Web components), to perform finer-grained access control. A compo
uses these methods to determine whether a caller has been granted a pr

CHAPTER 9 SECURITY228

tate of

ese

n the
link
ame

the
nent
The
is
atter
the

ed in

nsure
hich
pplied
rve to

nsid-
pro-

ntrol
ssary
ation
selected by the component based on the parameters of the call, the internal s
the component, or other factors such as the time of the call.

The Application Component Provider of a component that calls one of th
functions must declare the complete set of distinctroleName values used in all of
its calls. These declarations appear in the deployment descriptor assecurity-

role-ref elements. Eachsecurity-role-ref element links a privilege name
embedded in the application as aroleName to a security role. It is ultimately the
Deployer who establishes the link between the privilege names embedded i
application and the security roles defined in the deployment descriptor. The
between privilege names and security roles may differ for components in the s
application.

9.3.3 Declarative Versus Programmatic Authorization

There is a trade-off between the external access control policy configured by
Deployer and the internal policy embedded in the application by the Compo
Provider. The former is more flexible after the application has been written.
latter provides more flexibility, in the form of functionality, while the application
being written. The former is transparent and completely comprehensible. The l
is buried in the application such that it may only be completely understood by
those who developed the application. These trade-offs should be consider
choosing the authorization model for particular components and methods.

9.3.4 Isolation

When designing the access control rules for protected resources, take care to e
that the authorization policy is consistently enforced across all the paths by w
the resource may be accessed. When method-level access control rules are a
to a component, care must be taken that a less protected method does not se
undermine the policy enforced by a more rigorously protected method. Such co
erations are most significant when component state is shared by disparately
tected methods. The simplifying rule of thumb is to apply the same access co
rules to all the methods of a component, and to partition an application as nece
to enforce this guideline unless there’s some specific need to architect an applic
otherwise.

AUTHORIZATION 229

ent
ed by
, the
tion
e that
ity of
lled
ploy
m-

e the
less
uld

tion
n be

cces-
ol can
oth.
ation
the

cess
l can
form
am-
tent

ple-
. If the
fig-
are

does
9.3.5 Identity Selection

When setting an application’s access control policy, the Application Compon
Provider bases policy decisions on assumptions about the call identities select
the application callers. When a call passes through intermediary components
caller identity at the destination component may depend on the identity selec
decisions made by the intermediaries. The destination component may assum
caller identities have been propagated along the call chain such that the ident
its caller will be that of the caller who initiated the chain. In other cases, the ca
component must assume that one or more of the callers in its call path will em
an identity selection policy other than identity propagation. The Application Asse
bler is responsible for communicating these assumptions to the Deployer, whil
Deployer configures the caller identity selection for inter-component calls. Un
the Deployer has other instructions from the Application Assembler, they sho
assume that each caller will propagate the identity of the caller’s identity.

9.3.6 Encapsulation for Access Control

The component model of an application may be used to impose authoriza
boundaries around what might otherwise be unprotected resources. This ca
done by using accessor components to implement the authorization barrier. If a
sor components are used to create an authorization boundary, access contr
either be done externally by the container, or internally by the component, or b

An accessor component may encapsulate the mapping to an authentic
context suitable for interacting with an external resource. Considered in
context of principal mapping for the purpose of authenticating and gaining ac
to enterprise information system resources, encapsulation for access contro
be used to control who is authorized to access a mapping. Depending on the
of the mapping, the authorization rules may be more or less complex. For ex
ple, if all access to a resource is performed via a single conceptually omnipo
enterprise information system tier identity, then the J2EE application can im
ment secure access to the resource by limiting who can access the accessor
mapping of authentication context is many-to-many, then the authorization con
uration of the accessor may need to define which of a collection of mappings
accessible to the caller, and which should be assumed by default (if the caller
not assert which mapping it requires).

CHAPTER 9 SECURITY230

ith
ay be

nce of
ome

r must
gainst
ired

ppli-

9.5
ent

ed
e and
orm
9.3.7 Controlling Access to J2EE Resources

In a typical J2EE application, a client would go through its container to interact w
enterprise resources in the Web or EJB tiers. Resources available to the user m
protected or unprotected. Protected resources are distinguished by the prese
authorization rules defined in deployment descriptors that restrict access to s
subset of non-anonymous identities. To access a protected resource, a use
present a non-anonymous credential such that its identity can be evaluated a
the resource authorization policy. In other words, caller authentication is requ
any time a caller tries to access a protected component.

9.3.7.1 Controlling Access to Web Resources

To control access to a Web resource, an Application Component Provider or A
cation Assembler specifies asecurity-constraint element with anauth-con-
straint subelement in the Web deployment descriptor. Code Example
illustrates the definition of a protected resource in a Web component deploym
descriptor. The descriptor specifies that the URL/control/placeorder can only be
accessed by users acting in the role ofcustomer.

<security-constraint>

<web-resource-collection>

<web-resource-name>placeorder</web-resource-name>

<url-pattern>/control/placeorder</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>customer</role-name>

</auth-constraint>

</security-constraint>

Code Example 9.5 Web Resource Authorization Configuration

9.3.7.2 Controlling Access to Enterprise Beans

An Application Component Provider or Application Assembler that has defin
security roles for an enterprise bean can also specify the methods of the remot
home interface that each security role is allowed to invoke. This is done in the f

AUTHORIZATION 231

les
s the
d.
first
. The
face
ded
can
me.

aller
eans.
nony-
unpro-
caller
ving
of method-permission elements. Ultimately, it is the assignment of users to ro
that determines if a resource is protected. When the roles required to acces
enterprise bean are assigned only to authenticated users, the bean is protecte

Code Example 9.6 contains two styles of method specifications. The
refers to all of the remote and home interface methods of an enterprise bean
second is used for referring to a specific method of the remote or home inter
of an enterprise bean. If there are multiple methods with the same overloa
name, this style refers to all of the overloaded methods. Method specifications
be further qualified with parameter names for methods with an overloaded na

<method-permission>

<role-name>admin</role-name>

<method>

<ejb-name>TheOrder</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<method-permission>

<role-name>customer</role-name>

<method>

<ejb-name>TheOrder</ejb-name>

<method-name>getDetails</method-name>

</method>

<method>

...

</method-permission>

Code Example 9.6 Enterprise Bean Authorization Configuration

9.3.7.3 Unprotected Resources

Many applications feature unprotected Web-tier content, available to any c
without authentication. Some applications also feature unprotected enterprise b
For example, the sample application (see Section 10.11 on page 301) allows a
mous, unauthenticated users to access certain EJB resources. In either tier,
tected resources are characterized by the absence of a requirement that their
be authenticated. In the Web tier, unrestricted access is provided simply by lea

CHAPTER 9 SECURITY232

d by
ersal

n can

B 2,

e role
JB 2.

the

e
ptor

ion-
urity
lica-

ini-
tes a

e the

ver,
out an authentication rule. In the EJB tier, unrestricted access is accomplishe
mapping at least one role which is permitted access to the resource to the univ
set of users independent of authentication.

9.3.8 Example

To understand how each application, and each component within an applicatio
apply its own authorization requirements, consider the following examples.

One application is assembled from two enterprise beans, EJB 1 and EJ
each with one method. Each method callsisCallerInRole with the role name
MANAGER. The deployment descriptor includes asecurity-role-ref element for
the call toisCallerInRole in each enterprise bean. Thesecurity-role-ref for
EJB 1 links MANAGER to the role good-managers and the security-role-ref

element for EJB 2 linksMANAGER to the role bad-managers. The deployment
descriptor defines two method-permission elements, one establishes that th
employees can access all methods of EJB 1 and the other does the same for E
The deployment descriptor has 3security-role elements:employees, good-man-
agers, andbad-managers. The Deployer assigns User 1 to rolesemployees and
good-managers and assigns User 2 to rolesemployees andbad-managers.

A second application, with one enterprise bean EJB 3, is also deployed in
container. EJB 3 also makes a call toisCallerInRole with the role nameMANAGER.
The deployment descriptor for this second application contains asecurity-role-

ref element that linksMANAGER to the rolegood-managers. Similarly, the deploy-
ment descriptor defines onemethod-permission element that establishes that th
role employees can access all the methods of EJB 3. The deployment descri
has 2 role elements,employees andgood-managers. The Deployer assigns User 2
to rolesemployees andgood-managers.

Figure 9.4 illustrates the configuration of method permissions as a relat
ship between roles and methods. It also illustrates the mapping of caller sec
attributes to roles, and the link between privilege names embedded in the app
tion and roles.

Table 9.1 lists the authorization decisions that occur when different users
tiate method calls on these enterprise beans. For example, when User 1 initia
method call on EJB 2’s method, the container dispatches the call becaus
method-permission element specifies the security rolesemployees andgood-man-
agers, and the Deployer has assigned User 1 to the former security role.Howe
theisCallerInRole(MANAGER) method returns false, because thesecurity-role-

ref element for EJB 2 linksMANAGER to the security rolebad-managers, which is

AUTHORIZATION 233

isn’t
not satisfied for User 1. When User 1 invokes a method on EJB 3, the call
even dispatched, because User 1 isn’t assigned to any security roles.

Figure 9.4 Authorization Scenario

Table 9.1 Authorization Decisions

Call Call Dispatched? isCallerInRole?

User 1 - EJB 1 yes true

User 1 - EJB 2 yes false

User 1 - EJB 3 no never called

User 2 - EJB 1 yes false

CHAPTER 9 SECURITY234

it-
three

rpose
tured
ht be
oth-
den-

m-
om-

es can

nvert

ey
e by

are
tion
es-
grity
er and
r is to

recip-
om
9.4 Protecting Messages

In a distributed computing system, a significant amount of information is transm
ted through networks in the form of messages. Message content is subject to
main types of attacks. Messages might be intercepted and modified for the pu
of changing the affects they have on their recipients. Messages might be cap
and reused one or more times for the benefit of another party. Messages mig
monitored by an eavesdropper in an effort to capture information that would not
erwise be available. Such attacks can be minimized by using integrity and confi
tiality mechanisms.

9.4.1 Integrity Mechanisms

Integrity mechanismsensure that communication between entities is not being ta
pered with by another party, especially one that can intercept and modify their c
munications. Integrity mechanisms can also be used to ensure that messag
only be used once.

Message integrity is ensured by attaching amessage signatureto a message.
The message signature is calculated by using a one-way hash algorithm to co
the message contents into a typically smaller, fixed lengthmessage digestthat is
then signed(that is, cryptographically enciphered, typically using a public k
mechanism). A message signature ensures that modification of the messag
anyone other than the caller will be detectable by the receiver. Although there
always things a sender can do (including publishing its private authentica
keys), to compromise a receiver’s ability to hold it accountable for a received m
sage, both parties to the communication would be wise to select an inte
mechanism that appends a message confounder (typically a sequence numb
a timestamp) to the message before the digest. The purpose of the confounde
make the message authenticator useful only once. This prevents a malicious
ient from claiming that it received a message more times than it did or fr

User 2 - EJB 2 yes true

User 2 - EJB 3 yes true

Table 9.1 Authorization Decisions (continued)

Call Call Dispatched? isCallerInRole?

PROTECTING MESSAGES 235

hese
der.
dary

rec-
me-
ard
ners
will
ween
t mes-
de by
have
, the
quest,
signa-
pon-
mpute
tions
cep-

all
nt as

nteg-
era-
ing
ation

ri-
metric
ive (in
isms,
ange

tents.
ial-
par-
reusing an intercepted message for its own purpose. In exchange for t
receiver-side limitations, a measure of accountability is transferred to the sen

In the J2EE architecture, a container serves as an authentication boun
between callers and the components it hosts. Information may flow in both di
tions on a call (that is, a call may have input, output, or input and output para
ters). The Deployer is responsible for configuring containers to safegu
interactions between components. A Deployer must configure the contai
involved in a call to implement integrity mechanisms either because the call
traverse open or unprotected networks, or because the call will be made bet
components that do not trust each other. The latter is necessary to ensure tha
sages can only be used once, and to reduce the plausibility of arguments ma
either of the communicants that they did not send the messages claimed to
been received. When integrity mechanisms are configured by the Deployer
calling container must compute and attach a message signature to the call re
and verify the correspondence between the call response and the message
ture attached to the call response. The called container must verify the corres
dence between the call request and the attached message signature, and co
and attach a message signature to the call response. If either of the verifica
fails, the call should be abandoned, and the caller notified (for example, by ex
tion) of the failure.

The performance cost associated with applying integrity protection to
message communication is as much a property of the operational environme
it is a consequence of the cost of the protection. One way to safeguard the i
rity of application messages without unnecessarily limiting the space of op
tional environments, is to capture application-specific knowledge identify
which messages must be integrity protected. The place to capture this inform
is in the application’s deployment descriptor.

9.4.2 Confidentiality Mechanisms

Confidentiality mechanismsensure that communication between entities is kept p
vate. Privacy is achieved by encrypting the message contents. Because sym
(that is, shared secret) encryption mechanisms are generally much less expens
terms of compute resources) than are asymmetric (that is, public key) mechan
it is quite common for an asymmetric mechanism to be used to secure the exch
of a symmetric encryption key, which is then used to encrypt the message con

The Deployer is responsible for configuring containers to apply confident
ity mechanisms to ensure that sensitive information is not disclosed to third

CHAPTER 9 SECURITY236

costs
verse
they
ith

s or
ust

ism
ill

lity
reject
t isn’t
lity.

ose
integ-
for-

is

s
tion,

por-
erties
urce
otec-
o the

nd
L of
e

ties. Despite the improved performance of the shared secret mechanisms, the
of message encryption are significant, and should be expected to have an ad
effect on performance when confidentiality mechanisms are applied where
are not needed. The Application Assembler should supply the Deployer w
information on which method calls of which components feature parameter
return values that should be protected for confidentiality. The Deployer then m
configure the containers involved in a call to employ a confidentiality mechan
whenever one of the method calls identified by the Application Assembler w
traverse open or unprotected networks. In addition to applying confidentia
mechanisms where appropriate, the Deployer should configure containers to
call requests or responses with message content that should be protected bu
protected. Message integrity is typically verified as a side effect of confidentia

9.4.3 Identifying Sensitive Components

We recommend that the Application Assembler identify the components wh
method calls feature parameters or return values that should be protected for
rity and/or confidentiality. The deployment descriptor is used to convey this in
mation. For enterprise beans, this would be done in adescription subelement
(most likely of amethod-permission element). For servlets and JSP pages, th
would be done in thetransport-guarantee subelement of theuser-data-con-
straint subelement of asecurity-constraint. In cases where a component’
interactions with an external resource are known to carry sensitive informa
these sensitivities should be described in thedescription subelement of the corre-
spondingresource-ref.

9.4.4 Ensuring Confidentiality of Web Resources

In addition to understanding how to configure Web transport guarantees, it is im
tant to understand the properties of HTTP methods, and the effects these prop
have when a link is followed from one Web resource to another. When a reso
contains links to other resources, the nature of the links determines how the pr
tion context of the current resource affects the protection of requests made t
linked resources.

When a link isabsolute(that is, the URL begins withhttps:// or http://),
the HTTP client container will ignore the context of the current resource a
access the linked resource based on the nature of the absolute URL. If the UR
the link begins withhttps://, a protected transport will be established with th

AUDITING 237

on

are-
here
appli-
sport

urity
ing

rel-
ere
ith a
lient
.

the
s. A
sed
to a

who
acted
ount-

the
dited

will
may
rac-
tem

and
server before the request is sent. If the URL of the link begins withhttp://, the
request will be attempted over an insecure transport. When the link isrelative, the
HTTP client container will protect an access to a linked resource based
whether the resource in which the link occurs was protected.

The application developer should consider these link properties most c
fully when a linked request must carry confidential data back to the server. T
are a few choices available to ensure security in such cases. For example, an
cation developer might choose to use secure absolute links to ensure the tran
protection of requests that carry confidential data. This would solve the sec
problem, at the expense of constraining the application to a very specific nam
environment.

Another option, assuming that an application opts for portability and uses
ative links, is for the Deployer to configure the application so that wherever th
is a confidential interaction from one resource to another, both are deployed w
confidential transport guarantee. This approach will ensure that an HTTP c
container will not send a request to a protected resource without protecting it

As a related point, thePOST method is favored over theGET method for deliver-
ing confidential request data, since data sent viaGET appears in both client- and
server-side logs.

9.5 Auditing

Auditing is the practice of capturing a record of security-related events for
purpose of being able to hold users or systems accountable for their action
common misunderstanding of the value of auditing is evident when auditing is u
solely to determine whether security mechanisms are serving to limit access
system. When security is breached, it is usually much more important to know
has been allowed access than who has not. Only by knowing who has inter
with the system do we have a chance of determining who should be held acc
able for a breach of security. Moreover, auditing can only be used to evaluate
effective security of a system when there is a clear understanding of what is au
and what is not.

The Deployer is responsible for configuring the security mechanisms that
be applied by the enterprise containers. Each of the configured mechanisms
be thought of as a constraint that the containers will attempt to enforce on inte
tions between components. It should be possible for the Deployer or Sys
Administrator to review the security constraints established for the platform,

CHAPTER 9 SECURITY238

udit

t or
eing
nnot
or

om
ploy-
J2EE
ality

the
lica-

ng a
po-

figure
ider
rity,
pro-
code
nable
con-
to associate an audit behavior with each constraint so that the container will a
one of the following:

• All evaluations where the constraint was satisfied

• All evaluations where it was not satisfied

• All evaluations independent of outcome

• No evaluations

It would also be prudent to audit all changes (resulting from deploymen
subsequent administration) to the audit configuration or the constraints b
enforced by the platform. Audit records must be protected so that attackers ca
escape accountability for their actions by expunging incriminating records
changing their content.

The J2EE programming model aims to shift the burden of auditing away fr
developers and integrators to those who are responsible for application de
ment and management. Therefore, although not currently mandated by the
specification, we recommend that J2EE containers provide auditing function
that facilitates the evaluation of container-enforced security policy.

9.6 Summary

A primary goal of the J2EE platform is to relieve the application developer from
details of security mechanisms and facilitate the secure deployment of an app
tion in diverse environments. The J2EE platform addresses this goal by defini
clear separation of responsibility between those who develop application com
nents, those who assemble components into applications, and those who con
applications for use in a specific environment. By allowing the Component Prov
and Application Assembler to specify which parts of an application require secu
then letting the Deployer select the specific security mechanisms used for that
tection at deployment time, deployment descriptors provide a means outside of
for the developer to communicate these needs to the Deployer. They also e
container-specific tools to give the Deployer easier ways to engage the security
straints recommended by the developer.

SUMMARY 239

n-

ion
to

pli-
the

n as
ion

ro-
pe-
ent

isms
nfig-
ents

plus
ail-

l for
An Application Component Provider identifies all of the security depende
cies embedded in a component including:

• The names of all the role names used by the component in calls toIsCaller-

InRole or isUserInRole

• References to all of the external resources accessed by the component

• References to all the inter-component calls made by the component

An Application Component Provider may also provide a method permiss
model, along with information that identifies the sensitivity with respect
privacy of the information exchanged in particular calls.

An Application Assembler combines one or more components into an ap
cation package and then rationalizes the external view of security provided by
individual components to produce a consistent security view for the applicatio
a whole. The objective of the Application Assembler is to provide this informat
so that it can inform the actions of a Deployer.

A Deployer is responsible for taking the security view of the application p
vided by the Application Assembler and using it to secure the application in a s
cific operational environment. The Deployer uses a platform-specific deploym
tool to map the view provided by the assembler to the policies and mechan
that are specific to the operational environment. The security mechanisms co
ured by the Deployer are implemented by containers on behalf of the compon
hosted in the containers.

J2EE security mechanisms combine the concepts of container hosting,
the declarative specification of application security requirements, with the av
ability of application-embedded mechanisms. This provides a powerful mode
secure, interoperable, distributed component computing.

ed
sity
engi-
ented

s
data-

ces
tion
cess
n the

e he
ft in
ic
d a
About the Author

STEPHANIE BODOFFis a staff writer at Sun Microsystems. She has been involv
with object-oriented enterprise software since graduating from Columbia Univer
with an M.S. in electrical engineering. For several years she worked as a software
neer on distributed computing and telecommunications systems and object-ori
software development methods. During that period she co-authoredObject-Oriented
Software Development: The Fusion Method, Prentice Hall. For the past 4 year
Stephanie has concentrated on technical writing, documenting object-oriented
bases, application servers, and enterprise application development methods.

ABHISHEK CHAUHAN has been working on the design of scalable network servi
and distributed programs. At Sun Microsystems, Abhishek was involved in the evolu
of the J2EE programming model from its inception. He pioneered work on Web ac
optimization techniques and implementation of the Java Web Server. He worked o
JavaServer Pages specification and Sun’s JavaServer Pages implementations.

Abhishek was one of the founders and a lead architect at Vxtreme, wher
worked on the design of its streaming server. Vxtreme was acquired by Microso
1997. In a former life, Abhishek worked at Microsoft on the Office Visual Bas
scripting engine. He has an M.S. from the University of Wisconsin at Madison an
Bachelor’s degree from the Indian Institute of Technology at Delhi.

C H A P T E R 10
f

pro-
eb

tion
the

on is
s-to-
ainly

: the
rs,
tion
ion
ple-

loy-
m-

pet
ions.
The Sample Application
by Stephanie Bodof

and Abhishek Chauhan

TO conclude this discussion of the J2EE programming model, this chapter
vides an in-depth description of a multitier Web application, an e-commerce W
site. We review the entire process of developing this application from specifica
to design to implementation, illustrating many of the principles discussed in
earlier chapters.

The first section describes some scenarios in which the sample applicati
used. Although the sample application supports administration and busines
business interactions as well as shopping interactions, this chapter focuses m
on shopping interactions.

The discussion then turns to the architecture of the sample application
partitioning of functionality into modules, the assignment of functionality to tie
and object decomposition within tiers. The architecture of the sample applica
conforms to the Model-View-Controller architecture. We describe the motivat
for using this architecture and how each of these concepts is realized in the im
mentation of the sample application.

Finally, this chapter describes how the sample application uses the dep
ment, transaction, and security capabilities of the J2EE platform to simplify co
ponent development and provide richer functionality.

10.1 Application Functionality

The sample application models a typical e-commerce application, an online
store. E-commerce sites like this are among the most common Web applicat
241

CHAPTER 10 THE SAMPLE APPLICATION242

cus-
rs of
and
pliers.

, and

ith a
in a

icates
a bill
em,
tomer
over

ould
ing
ts as

ios.
buy

tore
ugh
on-
ses

cus-
ically
The application interface is presented to its customers through a Web site and a
tomer interacts with the application using a Web browser. Other potential use
the application include administrators responsible for maintaining inventory
performing other managerial tasks, and associated businesses such as sup
Each class of users would have access to specific categories of functionality
each would interact with it through a specific user interface mechanism.

Like a typical e-commerce site, the pet store presents the customer w
catalog of products. The customer selects items of interest and places them
shopping cart. When the customer has selected the desired items and ind
readiness to buy what is in the shopping cart, the sample application displays
of sale: a list of all selected items, a quantity for each item, the price of each it
and the total cost. The customer can revise or cancel the order. When the cus
is ready to accept the order, the customer provides a credit card number to c
the costs and supplies a shipping address.

10.1.1 Scenarios

The following scenarios demonstrate a few key ways the pet store application c
be used by describing a user’s view of interactions with the system. By walk
through these scenarios, you’ll gain a better understanding of the requiremen
well as the interactions that happenwithin the system.

The sample application could support three very different kind of scenar
First, there is the shopping interface described earlier, that allows shoppers to
items online. Second, there is an administration interface for carrying out s
administration activities. Finally, there is a business-to-business interface thro
which the store can interact with suppliers. The scenarios in this section dem
strate all three types of interaction, while the remainder of this chapter focu
mainly on the shopping interactions.

10.1.1.1 Shopping Scenario

The primary function of the sample application is to provide an interface where
tomers can browse through and purchase items. This shopping interaction typ

APPLICATION FUNCTIONALITY 243

cus-

for
 the

pli-
mer
as a
d so
pro-

rson-

egory
can
,

ibing

dis-
im-

are
item.

ould
.

add
ding
alog,
can
ise

time.
the
sig-
nt, if
tin-

ry of
starts with the customer’s visit to the application home page and ends when the
tomer orders from the site:

1. A customer connects to the application, by pointing the browser to the URL
the application’s home page. This allows the customer to browse through
catalog or search for products through some search interface.

2. At any point during the whole interaction, the customer can sign into the ap
cation by providing an account identifier and a password. When the custo
signs in, the application can recall information about the customer such
preferred shipping address and billing information, buying preferences, an
on. Customers who don’t have an account can create one at any time by
viding an account identifier, customer name, password and some other pe
al details.

3. The customer browses through the catalog. The customer can select a cat
to see a list of all the products in that category. For example, the customer
select the categoryCats to view all cats that the pet store sells. Alternatively
the customer can search for products using one or more keywords descr
the product. For example searching with keywordsPersian andmammal might
bring a list of Persian dogs and cats.

4. The customer selects a particular product in the list. Now, the application
plays detailed information about the selected product. The description and
age of the product is shown along with pricing information. When there
several variants of the same product, each variant is shown as a separate
For example, when showing details about an African parakeet, the items c
be large male African parakeet, small female African parakeet, and so on

5. The customer decides to purchase a particular item and clicks a button to
the item to the shopping cart. The customer may continue shopping, ad
more items to the shopping cart. As the customer browses through the cat
the application remembers all the items placed in the cart. The customer
recall the shopping cart at any time during the interaction to review or rev
the contents of the cart.

6. The customer can choose to order the items in the shopping cart at any
This is called checking out. A checkout button is presented along with
shopping cart. If the customer is not signed in, the application brings up a
nin/signup screen. Here the customer can sign in, or set up a new accou
they don’t have one. After the customer is signed in, order processing con
ues as before.

7. When the customer asks to check out, the application presents a summa

CHAPTER 10 THE SAMPLE APPLICATION244

m-

hip-
he
ap-
ed

enter
e

re re-

rder
ils

er in-
tion

spe-
ppli-
ts on
ucing
lica-
well

oint
ber

ers,
ver,

se are
otten

pro-

ual
el.
all items that would be ordered along with their costs. At this point the custo
er must confirm the order.

8. When the customer confirms the order, the application begins to gather s
ping and billing information for the order. First it presents a form, where t
customer can enter shipping information. If the customer is signed into the
plication at this time, the form comes up filled in with the customer’s preferr
shipping address.

9. When the customer enters the shipping address, the customer is asked to
billing information, including credit card details and a billing address. If th
customer is signed in, the application recalls these details and the forms a
turned filled in.

10. Finally the customer confirms the order and the application accepts the o
for delivery. A receipt including a unique order number and other order deta
is presented to the customer. The application validates credit card and oth
formation, updates its inventory database, and optionally sends a confirma
message via email.

This is a fairly typical shopping scenario. Some variations are possible, e
cially in the way the catalog is presented to the customer. For instance, the a
cation could provide specialized lists of items such as best-sellers, or discoun
certain items. There may also be variations in order processing, such as red
the steps for making an order when the customer is already signed in. The app
tion developer needs to design the application to support these variations, as
as others that might arise as the application evolves.

Although this scenario presents the application from a single customer’s p
of view, the pet store application needs to simultaneously support a large num
of shoppers.

10.1.1.2 Administration Scenario

The pet store application does most of the administrative work of managing ord
creating new accounts, and other details without manual intervention. Howe
there are some tasks where manual intervention is desirable or required. The
often administration tasks, such as managing the inventory, reestablishing forg
customer passwords, rolling back orders, handling returned merchandise, and
cessing and shipping of orders.

The administration interface of the pet store application could use a Vis
Basic client running in a Microsoft desktop application such as Microsoft Exc

APPLICATION FUNCTIONALITY 245

ulta-

min-

nt
and

t has

ps in
also

tory
sta-

ory

ustom
ven-
for
en-

hen
minis-

e it is
y
h also
ding
The application must be designed to support more than one administrator sim
neously using the administration interface.

The administration scenario models inventory management, where an ad
istrator updates inventory when new shipments come in:

1. The administrator starts up the shopping client application. When the clie
starts, it asks the administrator to sign on to the system using a user name
password. The administrator enters information for one of the accounts tha
administration privileges.

2. The client application then presents a list of products in the catalog, perha
order by category, with the product details such as description and name
shown.

3. The administrator clicks a product to see the items as well as their inven
status. For any item displayed, the administrator can modify the inventory
tus.

4. The administrator clicks an update button, causing the changes to invent
status to be committed to the inventory database.

10.1.1.3 Business-to-Business Scenario

Businesses often have a need to interact with other businesses through their c
applications. For example, a retailer needs to work with suppliers to procure in
tory, with shipping agencies for managing shipments, and with billing agencies
handling its billing needs. In fact, significant pieces of the application such as inv
tory control could themselves be off-loaded to a separate business.

It would be desirable to have some of these interactions be automated. W
businesses are tightly coordinated, perhaps under the same ownership or ad
tration, these interactions could beclosely-coupled.In such interactions, busi-
nesses expose their entities and data to each other. However, most of the tim
desirable to keep the businessesloosely-coupled. Here businesses interact b
passing asynchronous messages to each other. This messaging approac
models the real world more closely, where businesses work together by sen
faxes and packages, and so on, to each other.

CHAPTER 10 THE SAMPLE APPLICATION246

te a

-es-
ob-
 and

pical
.”

est. If
might

t for a
ets.”

k to
ets

ram
An interaction between the pet store and one of its suppliers would illustra
loosely-coupled business interaction. A typical scenario might be:

1. A customer places an order. This causes the inventory to fall below a pre
tablished low water mark, triggering the application to initiate an order to
tain more items from the supplier. This process happens asynchronously
does not interfere with the transaction being performed by the customer.

2. The application sends a purchase request message to the supplier. A ty
purchase request message could say, “Send 100 male African parakeets

3. At some later time, the supplier sends a message in response to the requ
the supplier does not have enough parakeets to fill the order, the message
say, “Can’t fulfill request. Have 20 parakeets available.”

4. The application, upon receipt of the message, might send another reques
smaller quantity. The message might say, “Send 20 male African parake

5. The supplier initiates delivery of the shipment, and sends a message bac
the application. This message might say, “Request completed. 20 parake
shipped. Shipment number is 1234.”

The interaction between the store and supplier is depicted in a timing diag
in Figure 10.1.

Figure 10.1 A Store-Supplier Business-to-Business Interaction

APPLICATION FUNCTIONALITY 247

on is
king
r is
ss,
as

uld
tion.
sup-
user
not
uses

uld

om-

 de-
 or

ult
key-

on
ic-

ing
in-

s
nt
One thing to observe about this scenario that it is asynchronous. The acti
initiated when a customer places an order. However, it proceeds without bloc
the customer’s interaction. Also note that neither the store nor the supplie
blocked waiting for the other to respond. While the procurement is in progre
the store’s application and the supplier’s system carry on with their activities
usual.

10.1.2 Functional Specification

With a clear understanding of the kind of scenarios in which the application wo
be used, let’s create an initial specification of the user interface of the applica
This section presents a sketch of the main user interface of an application that
ports the shopping interactions. It is possible to create a similar sketch for a
interface for administration interactions. Business interactions typically do
require a user interface. As mentioned earlier, the remainder of this chapter foc
on the shopping functionality of the application.

Upon arriving at the main page of the online pet store, a customer wo
expect some of the following features:

• A set of links or navigation bars on each page that provide quick access to c
mon navigational tasks.

• An organized view of the site’s contents through a categorized catalog.

• A search mechanism to provide a way to locate items based on keyword
scriptions. Other types of quick access could be in terms of popular items
new additions.

• A master viewof the catalog that lists items of interest. This could be the res
of the customer navigating through a catalog category or the outcome of a
word search.

• A detail viewthat describes the details of a particular item. Shoppers click
an item in the master view to zoom in on details, including a description, a p
ture, the price, a link to the supplier’s URL, and so on.

• A shopping cart view that lets customers review the contents of their shopp
cart. The cart allows the customer to modify quantities of items in the cart,
cluding removing items from the cart altogether.

• A checkout or bill-of-sales view that displays the total order cost and allow
the customer to enter billing and shipping information. The customer will wa

CHAPTER 10 THE SAMPLE APPLICATION248

are
ed to
pt-
ro-

er
de-

also
1 on

par-
nd

iden-
d to
unc-
een
the

third-
a of

od-

ages
ord,

g

assurance that order details including shipping and credit card information
transferred securely and accountably. The interaction must be authenticat
positively identify the customer for the purposes of accountability and encry
ed through HTTPS to protect the privacy of the information the customer p
vides.

• A receipt view to provide confirmation of the purchase through a unique ord
identifier or other mechanism to track the newly placed order and review
tails of the order.

In addition to these user interface requirements, the application must
support some security requirements. We address these in Section 10.1
page 301.

10.2 Application Architecture

This section describes the architecture of the pet store application; exploring the
titioning of functionality into modules, the assignment of functionality to tiers, a
object decomposition within the tiers.

10.2.1 Application Modules

This discussion reviews the shopping interaction scenario once again, this time
tifying actions within the application as it runs on the server. This replay is use
explore ways to divide the application into modules based on similar or related f
tionality. Dividing the problem in this manner reduces the dependency betw
modules, allowing them to be developed somewhat independently. Identifying
interface between modules enables some of the modules to be provided by
party component providers, or subcontracted to specialists in a particular are
functionality.

Here’s the scenario once again, with the various behaviors organized by m
ules:

1. A user connects to the application. If the user logs in, theuser account module
maintains user account information. It creates new user accounts and man
these accounts. Accounts include such information as user name, passw
and account ID.

2. Theproduct catalog modulereturns a list of products. The product catalo

APPLICATION ARCHITECTURE 249

o the

s de-
. It

e

the
s the
and

and

s the

 email.

ng

his
l ad-
n

ucts
uct

der
s the

f

module searches the product database for a list of possible matches t
search criteria and renders the products for the user.

3. The user views a specific product. The product catalog module also return
tailed information about the selected product, including pricing information
optionally can check theinventory modulefor availability information, such as
quantity in stock.

4. The user selects an item for purchase. Theshopping client modulecreates a
shopping cart for the user for the duration of the user’s session.

5. The user chooses the checkout option and commits to buying the item. Thor-
der processing module manages this interaction.

6. The application determines whether the user is logged in and if not, calls
user account module to set up a new user account. Otherwise it instruct
user account module to extract account information such as credit card
shipping information.

7. The application then authenticates the user and validates the credit card
shipping information.

8. The application lets the user revise or cancel the order. If the user accept
order, the order processing logic logs the order, notifies theinventory module
to update the inventory database, and sends a confirmation message by

This time, the run-through of the scenario has identified the followi
modules and their responsibilities:

• User account module: The application tracks user account information. T
includes a user identifier and password and various types (billing and emai
dresses, phone number, and so on) of contact information. The applicatio
saves user account information to a database so that it spans sessions.

• Product catalog module: The application allows the user to search for prod
or services and be able to display details of individual products. The prod
catalog includes descriptions of individual items.

• Order processing module: The application performs order processing. Or
processing occurs when the user performs the check-out process and buy
items in the shopping cart.

• Messaging module: The application sends confirmation messages.

• Inventory module: The application maintains information on the number o

CHAPTER 10 THE SAMPLE APPLICATION250

log
ify
d in

lica-

ack-
each type of product in stock.

• Control module: The application allows users to browse the product cata
and add selected items to a shopping cart. At any time, the user can mod
items in the shopping cart, add new items, or remove items already place
the cart.

Figure 10.2 shows the interrelationship of the modules in the sample app
tion.

Figure 10.2 Functional Modules for the Sample Application

This modular decomposition of the pet store application is reflected in the subp
ages of the sample application’s top-level packagecom.sun.estore:

• account: user account

• cart: shopping cart

• catalog: product catalog

• control: controls

APPLICATION ARCHITECTURE 251

the
n of
and

t the
ciples
erall

ses.
xi-
a

lways
the
rsis-
s the

. The
s of
olves,
tric

ow
ely
re-

tions.
ssed
• inventory: product inventory

• mail: email messaging

• order: order processing

• util: utility classes

10.2.2 Application Design

Partitioning the application into logical modules is the first step in subdividing
overall problem. The next step is to begin the process of object-oriented desig
the application, identifying units of business logic, data, and presentation logic
modeling each of them as a software object.

The process starts by identifying the options and approaches available a
highest level. Once these choices are clear and the decisions and design prin
are established, the rest of the design will be simplified by leveraging these ov
principles.

One of the first decisions to make concerns the tiers that the application u
The J2EE platform is designed for multitier applications, and offers a lot of fle
bility in choosing how to distribute application functionality across the tiers. In
Web-enabled application, such as the sample application, some tiers are a
present: the client tier provided by the browser, the Web tier provided by
server and the enterprise information system or database tier which holds pe
tent application data. The first choice to make is whether the Web tier accesse
enterprise information system resources directly, or goes through an EJB tier
decision depends on the functionality, complexity, and scalability requirement
the application. Since such requirements can change as the application ev
one goal for the design is to make it amenable to migration to an EJB-cen
approach.

After deciding what tiers constitute the application, the next decision is h
to distribute application functionality across these tiers. This division is clos
linked to how the application is divided into objects at the highest level and rep
sents one of the most important decisions when designing enterprise applica
Some clear and simple guidelines to help with making this decision are addre
in the following discussions.

CHAPTER 10 THE SAMPLE APPLICATION252

rise
Web
of
must

busi-
Web
cause
ency
scale

sulate
The
ter-
ppli-
for
nt.
ccess
aging
ainer
vel-
iner
rvices
pro-
lting

ick
large
hile

ple-
ca-

oth
d out
rted
f its
s the
10.2.2.1 Application Tiers

In a Web-centric design, the Web tier communicates directly with the enterp
information system resources that hold application data. In this approach, the
tier is responsible for almost all of the application functionality. It must take care
dynamic content generation and presentation and handling of user requests. It
implement core application functionality such as order processing and enforce
ness rules defined by the application. Finally, the components running in the
tier must also manage transactions and connection pooling for data access. Be
it must handle so many functions, Web-centric application software has a tend
to become monolithic. As a result, unless special efforts are taken, it does not
well with increasing software complexity.

In an EJB-centric design, enterprise beans running on EJB servers encap
the enterprise information system resources and the core application logic.
Web tier communicates with the EJB tier instead of directly accessing the en
prise information system resources. This approach moves most of the core a
cation functionality to the EJB tier, using the Web tier only as a front end
receiving client Web requests and for presenting HTML responses to the clie

The principal advantage of this approach is that enterprise beans have a
to a broad set of enterprise-level services. Because of these services, man
transaction and security aspects of the application is easier. The EJB cont
provides a highly structured environment for the components that allows a de
oper to focus entirely on the application domain issues, while the EJB conta
takes care of system-level details. These standardized container-provided se
also translate into better software reliability. The EJB architecture supports a
gramming discipline that promotes encapsulation and componentization, resu
in software that stays manageable as applications grow more complex.

The Web-centric approach is better for getting the application off to a qu
start, while EJB-centric approach becomes more desirable when building a
scale application where code and performance scalability are prime factors. W
the Web-centric approach may be more prevalent, with many applications im
mented using it, it has limitations when building large scale, complex appli
tions.

The ideal solution is an approach that benefits from the strengths of b
approaches. The sample application demonstrates an approach that starte
simple and small, but kept the option of growth open. Its extensible design sta
as Web-centric and migrated to an EJB-centric architecture. While most o
modules are implemented with an EJB-centric design, the catalog module use

APPLICATION ARCHITECTURE 253

to

sign
ple
tate
ra-

w to
tiers.
s are
rs and

ns.
but

arge
por-
ts to

the

om-
eter-

Each
me-

ents
Web-centric model. Strategies for migrating components from Web-centric
EJB-centric designs are described in detail in Section 4.7.1 on page 108.

Note that the discussion that follows describes a sample application de
that evolves from Web-centric to EJB-centric. The actual code of the sam
application reflects the final result of that migration. We have preserved the s
of the catalog module before migration to provide an indication of how the mig
tion was performed.

10.2.2.2 Application Objects

The next issue to address in developing the overall application architecture is ho
subdivide the application into objects and how to the assign these objects to
This process is referred to as object decomposition. While most of the object
consigned to one tier or another, there are some that serve to connect the tie
will need to span tiers, and their design needs to take this into account.

This discussion focuses primarily on large scale, complex applicatio
Smaller applications can probably get away with less rigorous treatment,
object design really becomes important as applications grow more complex. L
scale development of object-oriented software requires frameworks. It is im
tant to have a framework, so that every time the design requires two objec
interact, a developer does not have to come up with a whole new notion of how
interaction works out.

This section looks at the issues to keep in mind when doing the object dec
position, and present techniques that we used in the sample application to d
mine an effective decomposition.

Design Goals

Consider the kind of goals that need to be addressed in object decomposition.
of these considerations identifies criteria to use to divide the application. The fra
work must enable:

• Reuse of software designs and code

• Identification of the responsibility of each object. The division into objects
must ensure that the responsibilities of each object—what the object repres
and what it must accomplish—are easily and unambiguously identified.

CHAPTER 10 THE SAMPLE APPLICATION254

they
nal

ppli-
er in-
ployed
rchi-
are

ter-
ere

ain
mong
gned
 al-

ier,
s to

evel
en-

ons

, the
ion

vior
Thus
jects
While these requirements apply to object-oriented design in general,
become even more important for multitier enterprise applications. Our additio
objectives were:

• Separate stable code from more volatile code. All parts of an enterprise a
cation are not equally stable. The parts that deal with presentation and us
terface change more often. The business rules and database schemas em
in the application have a much lower propensity to change. The overall a
tecture should separate stable portions of the application from parts that
more volatile.

• Divide development effort along skill lines. The people that comprise an en
prise development team typically represent a very diverse set of skills. Th
are HTML layout and graphics designers, programmers, application dom
experts, and enterprise information system resource access specialists, a
others. The decomposition should result in a set of objects that can be assi
to various subteams based on their particular skills. This division of labor
lows work on each object to proceed in parallel.

• Ease migration from Web-centric to EJB-centric design. As mentioned earl
the sample application starts out as a Web-centric application and migrate
being EJB-centric.

We have described these considerations from the point of view of a high-l
division. However they are equally applicable even when we are working on id
tifying objects at a finer level. We will keep coming back to these considerati
as we need to make choices about object decomposition.

MVC Architecture

When applying the considerations discussed above to the sample application
first lines of division start becoming clear. At the highest level, the applicat
divides into three logical categories of objects. These are objects that deal withpre-
sentationaspects of the application, objects that deal with thebusinessrules and
data, and objects that accept and interpret user requests andcontrol the business
objects to fulfill these request.

The look and feel of the application interface changes often, its beha
changes less frequently, and business data and rules are relatively stable.
objects responsible for control are often more stable than presentation ob
while business rules and data are generally the most stable of all.

THE VIEW 255

ics
tors
nted
d by

r or
L for
n the
sen-
n of
B tier
tric

be
ntrol

ed in
ign,
itute

n the
the
r to

ts.
tags
rlying

c and

nd the
TML,
the

view.
tied to
ava-
The implementation of presentation objects is typically handled by graph
designers, HTML and JSP technology experts, and application administra
after the application has been deployed. Control-related objects are impleme
by application developers. Business rules and data objects are implemente
developers, domain experts, and database experts.

The presentation logic of a user interface can be handled by the Web tie
the client. In the Web tier, JSP pages are used to dynamically generate HTM
consumption by a browser. A stand-alone client, such as the one described i
administration scenario in Section 10.1.1.2 on page 244, provides its own pre
tation. Control-related objects are present in each tier to enable coordinatio
actions across tiers. Objects that model business data and rules live in the EJ
in an EJB-centric approach, and in the Web tier when using a Web-cen
approach.

As discussed in several chapters in this book, the MVC architecture can
easily applied to enterprise applications. The presentation, business, and co
categories map respectively, to the view, model, and controller concepts defin
the MVC architecture. The following sections take a detailed look at the des
implementation, and interactions of the sample application objects that const
the view, model, and controller.

10.3 The View

The view determines the presentation of the user interface of an application. I
sample application, the implementation of the view is contained completely in
Web tier. In the sample application, three kinds of components work togethe
implement the view: JSP pages, JSP custom tags, and JavaBeans componen

JSP pages are used for dynamic generation of HTML responses. Custom
make it easier for JSP pages to use JavaBeans components when the unde
model is complex. Custom tags can also help encapsulate presentation logi
make it modular and more reusable.

JavaBeans components represent the contract between JSP pages a
model. JSP pages rely on these beans to read model data to be rendered to H
while elsewhere in the system, the model and controller coordinate to keep
JavaBeans components up to date.

This section describes the JSP pages and custom tags that implement the
Because the classes that implement JavaBeans components are intimately
their corresponding model classes, the discussion of the implementation of J

CHAPTER 10 THE SAMPLE APPLICATION256

of the

r-side
r the
e set
.

ation
ne of
con-

tion
this
with
dis-

wing

ct
-
ory.

rtic-
cus-
ls of

inte-
Beans components and model classes is deferred until after the discussion
model.

10.3.1 Shopping Interaction Interface

The shopping scenario described in Section 10.1.1.1 on page 242 and the serve
scenario in Section 10.2.1 on page 248 provide a behavioral specification fo
shopping interaction interface. This section translates this specification into th
of views that the customer sees when interacting with the pet store application

10.3.1.1 Screens

The user interface for the shopping interaction consists of a set of screens. Ascreen
is the total content delivered to the browser when the user requests an applic
URL. In other words, a screen is what customers see when they navigate to o
our application’s URLs. A screen can be composed of several components each
tributing a different part of its content.

The specification includes some notion of the kind of screens the applica
displays to the customer and the dialogs it carries on with them. Taking
process further, results in the specification of a complete set of screens, each
a unique name.The significance of the names will become clear later when the
cussion turns to how the controller selects a view for each response. The follo
list identifies what model information itpresentsand whatuser gesturesit can
generate.

• Name:MAIN_SCREEN, DEFAULT_SCREEN

This is the home page of the application. It displays a list of all produ
categories in the catalog, such asDogs. The customer can click on any cate
gory to browse through a master view of products that belong in that categ

• Name:CATEGORY_SCREEN

This screen displays a master view of all products that belong to a pa
ular category. For each product it shows the product ID and its name. The
tomer can click on the name of any product on display to see further detai
the product.

• Name:SEARCH_SCREEN

This screen displays the results of a search. Searching the catalog is

THE VIEW 257

very
ng the

uct

can

em,
s in
the
lting

For
and
lete
cart

utton.

r’s
fore

der

es-
mit
gral part of the application, and a search interface is displayed as part of e
page. When the customer requests a search, the results are shown usi
search screen. This screen is similar to theCATEGORY_SCREEN in that it dis-
plays a master view of the list of products that result from a search.

• Name:PRODUCT_SCREEN

This screen displays information about a particular product. Each prod
can be offered for sale in several configurations. We call each of these anitem.
This screen lists inventory status for each item offered. The customer
click on any item in inventory to see further details about it.

• Name:PRODUCT_DETAILS_SCREEN

This screen displays detailed information about a particular product it
including a description of the item and its image and the number of item
the inventory. It also provides an Add button. Clicking this button adds
product currently being shown to the shopping cart and displays the resu
shopping cart.

• Name:CART_SCREEN

This screen displays the contents of the customer’s shopping cart.
each item in the shopping cart, it includes a brief description of the item
its quantity. The customer can change the quantity of each item and de
items from the cart. This screen includes an update button to update the
according to the changes made by the customer. It also has a checkout b
Clicking the checkout button initiates the process of placing an order.

• Name:CHECKOUT_SCREEN

This screen displays the final unmodifiable contents of the custome
shopping cart once again and asks the customer to confirm everything be
placing the order. A customer confirms the order by clicking the place or
button.

• Name:PLACEORDER_SCREEN

This screen displays a form where the customer can fill in details nec
sary to place the order. A customer places the order by clicking the sub

CHAPTER 10 THE SAMPLE APPLICATION258

and
ack
rice

cus-
ro-

gis-
nve-

omer
ica-

that
n and

reen
the

o into

t that
ith the
t an
one
f the
button.

• Name:COMMIT_ORDER_SCREEN

This screen displays the receipt after an order has been confirmed
committed. It shows a unique order identifier so that the customer can tr
the order later on. It also shows a complete list of items ordered, the total p
and shipping charges if any, as well as shipping and billing information.

• Name:SIGNIN_SCREEN

This screen displays a customer name and password, allowing the
tomer to sign into the application. The submit button initiates the signin p
cess.

• Name:SIGNUP_SCREEN

This screen displays a form allowing a new customer to sign up and re
ter themselves with the application. Once registered the customer can co
niently recall personal information each time they place an order.

This completes the initial set of screens that are presented to the cust
during the course of a shopping interaction with the application. As the appl
tion evolves, more screens may be added and existing screens modified.

10.3.1.2 Graphical Design

Since we already identified the major screens in the application and the data
needs to be shown as part of each screen, we can now involve graphic desig
HTML specialists to create the layout, look, and feel of each of the screens.

There are two parts to this design: design of the custom content of each sc
and design of a common template which remains consistent with each of
screens. The preceding scenarios have identified the data that needs to g
each of the screens as well as the dynamic portions of the template.

The artist needs an idea of the size and shape of each of the data elemen
needs to be shown in each of the screens. They can make good progress w
graphical design at this point using storyboarding techniques, even withou
actual implementation of the rest of the application available to them. This is
major advantage of decoupling the design of the user interface from the rest o
application.

THE VIEW 259

es
see
into

echa-
s the
ns com-
ow to

lear
 are:

ping

stom-
ton.

ach

title.
each

reate
opriate
Thecontractwith the graphic design artists is just how the application mak
the modeldata required for each screen available to the screen. As we shall
later in this section, this is where the JavaServer Pages technology comes
play.

10.3.2 JSP Pages

The JSP pages provided by the pet store application use a generic template m
nism and application-specific JavaBeans components. This section describe
template mechanism and discusses several example JSP pages. The JavaBea
ponents are discussed in Section 10.5 on page 278. General guidelines on h
use JSP technology can be found in Chapter 4.

10.3.2.1 A Template Mechanism

While sketching out the shopping interaction interface of the application, it is c
that there are elements that we want to be part of each screen. Some of these

• The application logo and tag line.

• The search interface with a search text field and a search button.

• A help button to get information about the application.

• A show shopping cart button that provides immediate access to the shop
cart from any screen.

• A signin/signout status button that changes state based on whether the cu
er is signed in. If they are signed in, they are presented with a sign out but
If they are not signed in, they see a sign in button.

• Copyright notices and miscellaneous status information at the bottom of e
page.

Among the elements that change on each page are the body and the
Other elements, such as keywords and meta-headers, may also change with
screen as well.

To add headers and footers to every JSP page, the designer could c
header and footer JSP files and have each JSP page include these at appr
places. Such a technique is illustrated in Code Example 10.1.

CHAPTER 10 THE SAMPLE APPLICATION260

m-
r and

the
ning
dy
cial-

lem
ML

s own
ible

that
ing all
and
nt of
n that

lica-
an be
pli-

other

ed to

me-
page

reens
<%@ include file="header.jsp" %>

...

content of this screen

...

<%@ include file="footer.jsp" %>

Code Example 10.1 Templating Using JSP Include Statements

However, this approach runs into several limitations if we try to make the te
plate more elaborate, using HTML tables, side bar, and so on. The heade
footer files would have to be constructed and formatted properly to make sure
body appears where intended. For instance, correct HTML requires ope
HTML tags in the header and a closing HTML tag in the footer so that the bo
can be enclosed between them. This requires either hand-coded HTML or spe
ized authoring tools to ensure correct design and correct HTML. The prob
becomes compounded if we want more than just one contiguous chunk of HT
to change on each screen. For instance, each screen might want to provide it
HTML title as well as custom content. These features require a more flex
screen layout mechanism.

A template mechanism provides a way to separate the common elements
are part of each screen from the elements that change with each screen. Putt
the common elements together into one file makes it easier to maintain
enforce a consistent look and feel in all the screens. It also makes developme
individual screens easier since the designer can focus on portions of a scree
are specific to that screen while the template takes care of the rest.

This section reviews the design and implementation of the sample app
tion’s screen template mechanism. The concept of a presentation template c
applied to almost any Web application in one form or another. The sample ap
cation’s template mechanism is designed so that you can easily adapt it to
applications.

The template itself is a JSP page, with place holders for the parts that ne
change with each screen. Each of these place holders is referred to as aparameter
of the template. For example, a simple template could include a title text para
ter for the top of the generated screen and a body parameter to refer to a JSP
for the custom content of the screen.

Once you have a template, you can generate different presentation sc
from it simply by passing it different parameters. This process is calledinstantia-

THE VIEW 261

ing
rame-

ingle
pport

ion-
creen.
tion of the template. A specific screen is completely characterized by identify
the template page, and the parameters to pass to the template. The set of pa
ters that completely defines a screen is called ascreen definition.While a large
application could use multiple templates; the pet store application uses a s
template for all its screens. However, the mechanism it uses is designed to su
multiple templates.

From the templating mechanism’s point of view ascreenis the instantiation of
a template according to its screen definition. Figure 10.3 illustrates the relat
ship between a template, a screen definition, and the resulting presentation s

Figure 10.3 Defining a Screen in Terms of a Template and Its Parameters

Code Example 10.2 shows the contents oftemplate.jsp, the template file
used in the sample application.

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="com.sun.estore.control.Web.ScreenNames" %>

<%@ taglib uri="WEB-INF/tlds/taglib.tld" prefix="j2ee" %>

<%@ include file="ScreenDefinitions.jsp" %>

<HTML >

<head>

<title>

<j2ee:insert template="template"

parameter="HTML Title" />

</title>

</head>

<body bgcolor="white">

<j2ee:insert template="template" parameter="HTML Banner" />

<j2ee:insert template="template"

parameter="HTML TopIndex" />

<j2ee:insert template="template" parameter="HTML Body" />

CHAPTER 10 THE SAMPLE APPLICATION262

he

fore
and
URL
n the
opes,
neral

is
sert-
the
</body>

</HTML >

Code Example 10.2 template.jsp

The template is instantiated by forwarding to or dynamically including t
template.jsp page. Forwarding is performed using thejsp:forward standard
action or by calling theforward method of aRequestDispatcher; inclusion is per-
formed using aninclude directive or standard action or by calling theinclude
method of aRequestDispatcher.

An appropriate screen definition must be set up in the request scope be
invoking template.jsp. JSP pages can access objects in request, session,
application scopes. Since a screen is presented in the context of a specific
request from the user, the appropriate screen definition needs to be set i
request scope before the template file is invoked. The other possible JSP sc
session and application, are broader—they’re more appropriate for setting ge
site and user-specific portions of the template.

The following examples show howtemplate.jsp works. It uses the
j2ee:insert custom tag to identify place holders in the template. This tag
responsible for extracting the screen definition from the request scope and in
ing it into the page. Code Example 10.3 contains the implementation of
insert tag.

public class InsertTag extends TagSupport {

private boolean directInclude = false;

private String parameter = null;

private String templateName = null;

private Template template = null;

private TemplateParameter templateParam = null;

public void setTemplate(String templateName){

this.templateName = templateName;

}

public void setParameter(String parameter){

this.parameter = parameter;

}

THE VIEW 263
public int doStartTag() {

try {

if (templateName != null){

template = (Template)pageContext.getRequest().

getAttribute("template");

}

} catch (NullPointerException e){

...

}

if (parameter != null && template != null)

templateParam = (TemplateParameter)template.

getParam(parameter);

if (templateParam != null)

directInclude = templateParam.isDirect();

return SKIP_BODY;

}

public int doEndTag() throws JspTagException {

try {

pageContext.getOut().flush();

} catch (Exception e){

...

}

try {

if (directInclude && templateParam != null) {

pageContext.getOut().

println(templateParam.getValue());

} else if (templateParam != null) {

if (templateParam.getValue() != null)

pageContext.getRequest().

getRequestDispatcher(templateParam.

getValue()).include(pageContext.

getRequest(),

pageContext.getResponse());

}

} catch (Throwable ex) {

...

}

CHAPTER 10 THE SAMPLE APPLICATION264

s are
rting
direct.
eters
the

sing a
indi-

differ-
the
oose

ation,
n to
n the

a-

le at
. The
hen

ate
d by
direct
keep
gh
return EVAL_PAGE;

}

}

Code Example 10.3 Insert Tag Implementation

Theinsert tag gets values of the parameters passed to it. The parameter
automatically set by the JSP runtime environment and the tag focuses on inse
the appropriate parameters into the response. Parameters can be direct or in
Direct parameters are inserted as-is into the response stream. Indirect param
are treated as the name of a JSP file, and that file is dynamically included into
response stream. This makes it possible to pass the title of a page as text u
direct parameter, and the body as the name of a JSP file to include using an
rect parameter.

10.3.2.2 View Selection

In a Web application, each screen presented to the user can be considered as a
ent view. However, unlike the classic MVC architecture, all these views share
same controller. There needs to be a mechanism that allows the controller to ch
a particular view to render in response to a user request. In the sample applic
the controller makes this selection by specifying the screen ID of the scree
present as the response. This screen ID is mapped to a screen definition, the
template is instantiated.

Recall that the filetemplate.jsp defines the template for the sample applic
tion. This file includes another file,ScreenDefinitions.jsp, which defines all the
screens of the sample application. When the controller invokes the template fi
request time, it sets the appropriate screen definition in the request scope
template file passes this information to the screen definitions file which t
returns the appropriate screen definition for the request.

One goal in structuring template and screen definition files is to facilit
internationalization (discussed in Section 4.5 on page 88). This is achieve
separating text content from Java code. Since screen definitions that contain
and indirect parameters are candidates for internationalization, we want to
ScreenDefinitions.jsp devoid of Java technology code. We achieve this throu
the use of JSP custom tags. Code Example 10.4 contains an excerpt fromScreen-

Definitions.jsp, which usesScreen andParameter custom tags to pass text and
the contents of files to the response.

THE VIEW 265

r that

ss of
<%@ page import="com.sun.estore.control.Web.ScreenNames" %>

<jsp:useBean

 id="screenManager"

 class="com.sun.estore.control.Web.ScreenFlowManager"

 scope="session"/>

<j2ee:CreateTemplate template="template"

screen="<%=screenManager.getCurrentScreen(request)%>">

<j2ee:Screen screen="<%=ScreenNames.MAIN_SCREEN%>">

<j2ee:Parameter parameter="HTML Title"

value="Welcome to Java Pet Store Demo" direct="true"/>

<j2ee:Parameter parameter="HTML Banner"

value="/banner.jsp" direct="false"/>

<j2ee:Parameter parameter="HTML Body"

value="/index.jsp" direct="false"/>

</j2ee:Screen>

<j2ee:Screen screen="<%=ScreenNames.SIGN_IN_SUCCESS_SCREEN%>">

...

</j2ee:Screen>

...

</j2ee:CreateTemplate>

Code Example 10.4 ScreenDefinitions.jsp

When it is included at request time by the template file,ScreenDefini-

tions.jsp usesScreenFlowManager, a component of the controller, to identify the
view that the controller wishes to select. The nested custom tags arrange fo
screen’s definition to be set into the request scope when this file invoked.

In summary, the JSP pagestemplate.jsp andScreenDefinitions.jsp work
together to create the page viewed by the user. Figure 10.4 depicts the proce
view selection and instantiation in the sample application.

CHAPTER 10 THE SAMPLE APPLICATION266

fairly
tation

0.5.

pears

y the
Figure 10.4 View Selection and Instantiation

10.3.3 Examples

For the most part, the sample application’s presentation JSP pages use
straightforward JSP elements. This section examines three example presen
JSP pages: the home screen page (index.jsp), the products-by-category page (pro-

ductcategory.jsp), and the shopping cart page (cart.jsp).

10.3.3.1 Home Screen

The home screen of the Java Pet Store Demo application is shown in Figure 1
The JSP source used to generate the screen, contained in the fileindex.jsp,

appears in Code Example 10.5. The screen is composed of the banner that ap
in all the Java Pet Store Demo screens, a list of the product categories (sidein-

dex.jsp) supported by the application, and an imagemap (splash.jsp) of the cat-
egories. The banner does not appear explicitly, because it is constructed b
template described in Section 10.3.2.1 on page 259.

THE VIEW 267

ent

icu-
Figure 10.5 Home Screen

<table border="0" cellspacing="0" width="600" >

 <tr>

 <td>

 <%@ include file="sideindex.jsp"%>

 </td>

 <td bgcolor="white" height="300">

 <%@ include file="splash.jsp" %>

 </td>

 </tr>

</table>

</HTML >

Code Example 10.5 index.jsp

10.3.3.2 Product Category Screen

The screen that lists all the products in a category is shown in Figure 10.6.
The JSP source used to generate the screen, contained in the fileproductcat-

egory.jsp, appears in Code Example 10.6. In this code sample, the first statem
sets thecatalog variable to point to an instance of the JavaBeans componentCat-

alogWebImpl. This component is used to retrieve the catalog entries for a part

CHAPTER 10 THE SAMPLE APPLICATION268

-

lar product category. The category is retrieved from the implicitrequest object
with thegetParameter("category_id") method. Once the category and its prod
ucts are retrieved, JSP scriptlets are used to generate the table of products.

Figure 10.6 Product Category Screen

<jsp:useBean

 id="catalog"

 type="com.sun.estore.catalog.model.CatalogModel"

 class="com.sun.estore.catalog.web.CatalogWebImpl"

 scope="application"/>

<%

String key = request.getParameter("category_id");

Category category = null;

if (key != null) category = catalog.getCategory(key);

if (category != null) {

Collection products = null;

products = catalog.getProducts(key, 0, 20);

%>

<p>

<%= category.getDescription()%>

<p>

<table border="0" bgcolor="#336666">

<tr background="../images/bkg-topbar.gif">

<th>Category ID</th>

THE VIEW 269

igure

e, the
m-
le.
<th>Category Name</th>

</tr>

<%

Iterator it = null;

if (products != null) it =products.iterator();

while (it.hasNext()) {

Product product = (Product)it.next();

%>

<tr bgcolor="#eeebcc">

<td><%= product.getId() %></td>

<td>

<a href="product?product_id=<%= product.getId() %>">

 <%= product.getName()%>

</td>

</tr>

<% } %>

</table>

<%

} else {

 // Category was not found:

%>

<p>

Unable to Locate Category ID <%= key

%>

<% } %>

Code Example 10.6 productcategory.jsp

10.3.3.3 Shopping Cart Screen

The screen that displays the contents of a user’s shopping cart is shown in F
10.7.

The JSP source used to generate the screen, contained in the filecart.jsp,
appears in Code Example 10.7 and Code Example 10.8. In this code sampl
first statement sets thecart variable to point to an instance of the JavaBeans co
ponentShoppingCartWebImpl. This component is used by the shopping cart tab

CHAPTER 10 THE SAMPLE APPLICATION270

“
ode
o the
The include statement towards the middle of the code sample (begins with<%@

include”) causes the page to include the shopping cart table (illustrated in C
Example 10.8). The page also contains a button that accepts a modification t
shopping cart, and a link to a checkout page.

Figure 10.7 Shopping Cart Screen

<jsp:useBean

id="cart"

class="com.sun.estore.cart.Web.ShoppingCartWebImpl"

scope="session"

<%

cart.init(session);

%>

</jsp:useBean>

<p>

<%

 if (cart.getSize() > 0) {

%>

Shopping Cart:

<p>

 <form action="cart">

 <input type="hidden" name="action" value="updateCart">

 <table bgcolor="white">

 <tr>

 <td>

 <%@ include file="changeable_carttable.jsp" %>

THE VIEW 271

s in

t

 </td>

 <td>

 <input type="image" border="0" src="../images/cart-up-

date.gif" name="update">

 </td>

 </tr>

 </table>

 </form>

 <img src="../images/button_checkout.gif"

alt="Proceed To Checkout" border="0">

<%

 } else {

 // The cart is empty

%>

 Shopping Cart is empty.

<% } %>

Code Example 10.7 cart.jsp

Code Example 10.8 uses JSP scripting capabilities to display all the row
the shopping cart. The page retrieves shopping cart items from thecart compo-
nent set by the enclosing pagecart.jsp. The page also includes a button tha
allows a user to delete an item from the shopping cart.

<table bgcolor="#336666">

<tr background="../images/bkg-topbar.gif" border="0">

 <th><!-- for the remove column --></th>

<th>Item ID</th>

<th>Product Name</th>

<th>In Stock</th>

<th>Unit Price</th>

<th>Quantity</th>

<th>Total Cost</th>

</tr>

CHAPTER 10 THE SAMPLE APPLICATION272
<%--

% Loop through each item in the shopping cart. The current item is

% available to the jsp block within the loop as "item"

--%>

<%

 Iterator it = cart.getItems();

 while ((it != null) && it.hasNext()) {

 CartItem item = (CartItem)it.next();

%>

<tr bgcolor="#eeebcc">

<td>

<a href="cart?action=removeItem&itemId=<%=item.get-

ItemId()%>"><img src="../images/button_remove.gif" border="0"

alt="Remove Item From Shopping Cart">

</td>

<td><%= item.getItemId() %></td>

<td>

<a href="productdetails?item_id=<%=item.getItemId()%>">

<%=item.getAttribute()%> <%=item.getName()%>

</td>

<td><%=(inventory.getInventory(item.getItemId())

>= item.getQuantity()) ? "yes" : "Back Ordered"%></td>

<td><%=JSPUtil.formatCurrency(item.getUnitCost())%></td>

<td><input name="itemQuantity_<%=item.getItemId()%>"

type="text"

size="4"

value="<%=item.getQuantity()%>">

</td>

<td><%=JSPUtil.formatCurrency(item.getTotalCost())%></td>

</tr>

<% } // end for loop %>

THE MODEL 273

y the
tate

. This
form

ngle
art),
does
how
tion.
ic. In

en-

cur-
<tr background="../images/bkg-topbar.gif">

 <td></td>

 <td>Total:</td>

 <td></td>

 <td></td>

 <td></td>

 <td></td>

 <td>

<%=JSPUtil.formatCurrency(cart.getTotalCost())%

</td>

</tr>

</table>

Code Example 10.8 changeable_carttable.jsp

10.4 The Model

In this section we focus our attention on the state that needs to be maintained b
application. One can think of the back-end of an application as a collection of s
with some rules on how the state changes in response to user interactions
section explains how the sample application maintains state in the J2EE plat
and persistent data in database tables.

10.4.1 State in the J2EE Platform

Typically, the customer will use a number of features of the pet store during a si
visit (such as requesting product information and placing items in a shopping c
resulting in numerous requests during the client session. While the application
not need to store this information in a database, this information must be some
tracked to maintain a meaningful dialog between the customer and the applica

There is state associated with both the user interface and the business log
general, the sample application must maintain the following state:

• The user identity: Typically, the user account module maintains the user id
tify, which includes the user’s login ID and certain security credentials.

• The search cursor and catalog position: The catalog module maintains the
sor’s position within the current search and within the catalog hierarchy.

CHAPTER 10 THE SAMPLE APPLICATION274

t of

art
d-
entu-

tate.
abil-

using
ween
te is
ions
y it

nents.

-
n
ssion
of the

orre-
ning
ions:

ject
nter-
call
e,
 non-

 ses-
ct, a
d of

bean
• The items in the shopping cart: The shopping cart module maintains the lis
items placed in the customer’s shopping cart.

• Order information: When the customer confirms the order, the shopping c
passes this information the order information—billing address, shipping a
dress, and payment method—to the order management module, which ev
ally stores it to a database.

The J2EE platform provides several choices for storing the application s
An application can store state in the Web tier using the state maintenance cap
ities of servlets, which include theHTTPSession andServletContext objects as
well as JavaBeans components. In the EJB tier, state can be maintained
enterprise beans. Also, session state for an application can be divided bet
these tiers. The decision of where each object representing application sta
stored depends on the lifetime and scope of the object. The following sect
identify each state component, its lifetime requirements, and discuss wh
should be stored using a particular mechanism.

The Web tier maintains state required by JSP pages in JavaBeans compo
These JavaBeans components are managed by a class calledModelManager that
uses both anHttpSession and aServletContext to maintain handles to the Java
Beans components.ModelManager is discussed further in Section 10.6.8.1 o
page 294. Beans that are specific to a client are maintained by an HTTP se
object. Beans that can be shared by all clients are maintained as an attribute
servlet generated fromMain.jsp.

The JavaBeans components contain copies of the state maintained by c
sponding model objects which are maintained in the EJB tier. When desig
objects in the EJB tier to maintain state, the developer must answer two quest

• What is the appropriate granularity for the objects? Not every business ob
should be modelled as an enterprise bean. Since every method call to an e
prise bean is potentially a remote call, the overhead of an inter-component
is likely to be prohibitive for interactions with fine-grained objects. Therefor
the sample application makes extensive use of helper objects, which are
remote, serializable objects that mirror their respective enterprise beans.

• What type of enterprise bean should I use? An application can use either
sion beans or entity beans to maintain state. For a non-transactional obje
session bean is the simplest way to maintain session state for a short perio
time because it leverages the EJB container’s ability to manage session

THE MODEL 275

 for
e ob-
even
an be
ter.
ns to

resent
prise

r, the
d calls.
f data

o sec-
mance

ining
provide
a fast
tion,

ime.

infor-
tion

ual
state. Using entity beans to maintain state provides transactional support
storing the state data in the database. While there is overhead in making th
ject transactional, the object reference could persist for as long as needed,
beyond the scope of a single session. For example, an object reference c
stored in a cookie on the browser to be retrieved and used even weeks la
The sample application has examples of using both session and entity bea
store session state.

10.4.1.1 Using Enterprise Beans to Maintain Session State

This section describes how different types of enterprise beans are used to rep
objects in the sample application. General guidelines for how to use enter
beans can be found in Chapter 5.

Stateless Session Beans

A stateless session bean does not contain state for a specific client. Howeve
instance variables of a stateless session bean can contain state across metho
Examples of such state include an open database connection and a cache o
retrieved from that connection. Stateless session beans are never written out t
ondary storage. As a consequence, stateless beans usually offer better perfor
than stateful beans.

The sample application uses stateless session beans for objects conta
more than one database row. In particular, because stateless session beans
high performance, stateless session beans are a good choice to provide
access to data derived from multiple database rows. In the pet store applica
theCatalog stateless session bean functions as a cache that is built up over t

Stateful Session Beans

A stateful session bean exists during a single client session and can maintain
mation specific to a client between invocations of methods. The sample applica
represents the contents of a client’s shopping cart with theShoppingCart stateful
session bean.

Entity Beans

The sample application uses entity beans to provide an object view of individ
rows in a database. The sample application includes three such beans,Account,
Inventory, andOrder, to represent individual rows in the corresponding tables.

CHAPTER 10 THE SAMPLE APPLICATION276

ere-
spec-
jects
sed in

s objects
in one
access

r

nd

e Java
fine-
value

ely
that

Such
call.
Code
tails

l

10.4.1.2 Helper Objects

It is not appropriate to model all objects in the EJB tier as enterprise beans. Th
fore, the sample application uses helper objects that are subordinate to their re
tive enterprise beans for a number of purposes. The different types of helper ob
are: data access objects and value objects. The use of helper objects is discus
detail in Section 5.5 on page 130.

Data Access Objects

A data access object is used to encapsulate access to databases. Data acces
can encapsulate access to more than one database, more than one table with
database, and different types of databases. The sample application uses data
objects for all these purposes.

The sample application uses the abstract data access classOrderDAO to access
three tables,order, orderstatus, andlineitem, when an order is created, read, o
updated. The sample application contains three subclasses,OrderDAOOracle,
OrderDAOSybase, and OrderDAOCS, that are used to access Oracle, Sybase, a
Cloudscape databases.

Value Objects

A value object is a business object that can be passed by value as a serializabl
object. A business concept should be implemented as a value object when it is
grained, dependent, and immutable. The sample application uses two types of
objects: dependent objects and details objects.

An object is a dependent object of another object if its life cycle is complet
managed by that object and if it can only be accessed indirectly through
object. Examples of dependent objects in the sample application areAddress and
CreditCard.

A value object can also be used to encapsulate an entire remote object.
objects allow a client to retrieve the value of a remote object in one remote
The sample application contains details objects for each enterprise bean.
Example 10.9 illustrates an account entity bean and its corresponding de
object. In keeping with its purpose,AccountModel’s methods only enable retrieva
of the values in the fields of its bean, whileAccount itself provides a method for
setting a value and a coarse-grained method (getDetails) that returns an
AccountModel.

THE MODEL 277

nized
ata-

track
ined:

in the

ma-
is an
ss,
tion
public interface Account extends EJBObject {

public AccountModel getDetails() throws RemoteException;

public void changeContactInformation(ContactInformation info)

throws RemoteException;

}

public class AccountModel implements java.io.Serializable {

private String userId;

private String status;

private ContactInformation info;

...

public String getUserId() {

return userId;

}

public ContactInformation getContactInformation() {

return info;

}

...

}

Code Example 10.9 Account andAccountModel

10.4.2 Persistent Data

The sample application maintains persistent data in database tables, orga
according to the functional areas of the application. Figure 10.8 illustrates the d
base schema.

The application uses this database schema to maintain accounts and
orders for products. Thus, there are three areas for which data must be mainta
product, account, and order information. Theproduct, category, anditem tables
represent the business’s product catalog. Each item has an associated entry
inventory table that represents the inventory for that product. Theaccount table
maintains customer account information, one record per customer, with infor
tion such as customer name, password, and customer address. Finally, there
orders table with one record per order, for information such as ship-to addre
bill-to address, total price of the order, and payment (credit card name, expira
date, type) information. Theorders table is linked tolineitem andorderstatus
tables. Each item in an order is stored in a separatelineitem record, which con-

CHAPTER 10 THE SAMPLE APPLICATION278

ts to

orre-

ount

ction
tains the quantity ordered and price and a separateorderstatus record, which
contains a reference to the item and the status of the order.

Figure 10.8 Database Tables and Relationships

10.5 Implementation

In the implementation of the view, JSP pages rely on JavaBeans componen
mirror model data. These components are namedESObjectWebImpl (whereESOb-
ject are the e-store objectsInventory, Account, Cart, and Order). As Code
Example 10.10 illustrates,ESObjectWebImpl extendsESObjectModel and imple-
ments a listener interface so that views can be notified of changes to their c
sponding models. For example, when anAccountWebImpl is created, it adds itself to
the list of listeners interested in updates to the account model. When an acc
model changes, the manager of the view objects invokes theperformUpdate method
on all views that have registered as listeners of the account model. See Se
10.6.8 on page 294 for further discussion of model-view synchronization.

IMPLEMENTATION 279

n
ns a

enta-

cts in

bed
eb-

d the
eans
public class AccountWebImpl extends AccountModel

implements ModelUpdateListener {

private ModelManager mm;

private Account acctEjb;

public AccountWebImpl(ModelManager mm) {

super(null, null, null);

this.mm = mm;

mm.addListener(JNDINames.ACCOUNT_EJBHOME, this);

}

public void performUpdate() {

if (acctEjb == null) {

acctEjb = mm.getAccountEJB();

}

try {

if (acctEjb != null) copy(acctEjb.getDetails());

} catch (RemoteException re) {

throw new GeneralFailureException(re);

}

}

}

Code Example 10.10AccountWebImpl

The model is implemented by enterprise beans namedESObject. These beans
are supported by data access classes namedESObjectDAO and details classes
namedESObjectModel. As described in “Value Objects” on page 276, a client ca
retrieve the contents of an enterprise bean with one remote call that retur
details object.

JavaBeans components and details classes share aspects of their implem
tion (that is, theESObjectModel classes), because theESObjectModel classes
capture the essential information required to represent e-store business obje
any tier.

The implementation of the catalog does not follow the pattern just descri
because it implemented in both a Web-centric and EJB-centric fashion. The W
centric design is used for high performance since the catalog is read-only an
most frequently accessed object in the system. Thus the Web-centric JavaB

CHAPTER 10 THE SAMPLE APPLICATION280

cannot
h per-
ess to

oth

view
in the
hown

lica-
the
e
r. In
ing

As
r for
componentCatalogWebImpl accesses the data access classCatalogDAO directly
instead of calling an enterprise bean.

Since the shopping cart enterprise bean needs access to the catalog and
access the Web-tier catalog it uses a catalog enterprise bean. Note that hig
formance is not as crucial in this case as compared to the earlier case but acc
the catalog is still read-only.

The implementation of the catalog functionality is essentially the same in b
cases, so bothCatalogWebImpl andCatalogEJB extendCatalogImpl which imple-
ments theCatalogModel interface.

The relationships between the sample application business objects—
classes in the Web tier, model classes (and their respective helper classes)
EJB tier, and database tables in the enterprise information system tier—are s
in Figure 10.9.

Figure 10.9 Sample Application Business Objects

10.6 The Controller

The sample application must reflect the state of a user’s interaction with the app
tion and the current values of persistent data in the user interface. Following
MVC architecture, this functionality is implemented within the controller. In th
sample application, the controller is split between the Web tier and the EJB tie
this section we will discuss the implementation of the controller for the shopp
interaction in the sample application.

The controller is responsible for coordinating the model and view.
described in Section 10.2 on page 248, the view depends on the controlle

THE CONTROLLER 281

es to
them
these
l to

own in

dles
Web
the

the

n
uest.

s
y the

r-

ents.

odify

ting
from
screen selection. The model depends on the controller for making state chang
the model. The controller must accept user gestures from the view, translate
into business events based on the behavior of the application, and process
events. The processing of an event involves invoking methods of the mode
cause the desired state changes. Finally, the controller selects the screen sh
response to the request that was processed.

Since the controller must coordinate both the view and the data, it strad
the Web and EJB tiers. Some components of the controller are hosted by the
tier and facilitate communication with the view, while others are hosted by
EJB tier and control the model.

In the Web tier, the controller consists of several components:

• Main.jsp receives and processes HTTP requests.Main.jsp callsScreenFlow-
Manager, which is responsible for selecting the next screen to be shown to
client after the completion of the current request.

• RequestProcessor provides the glue in the Web tier for holding the applicatio
components together. It contains logic that needs to be executed for each req
RequestProcessor collaborates with two classes:

■ RequestToEventProcessor translates HTTP requests into business event
that the rest of the application can operate on. Events are represented b
classeStoreEvent and its subclassesCatalogEvent, LoginEvent, Ac-
countEvent, CartEvent, andOrderEvent.

■ ShoppingClientControllerWebImpl (SCCWI) provides a Web-tier proxy for
ShoppingClientController. It delegates all methods to its EJB tier counte
part.

In the EJB tier, the controller isShoppingClientController (SCC), which pro-
vides the view with read-only access to the model and handles business ev
ShoppingClientController collaborates withStateMachine, an object that con-
trols the creation and removal of enterprise beans and handles events to m
those objects passed to it by the controller in the Web tier.

Figure 10.10 illustrates the interactions that occur between the collabora
controller objects when an HTTP request is handled. The servlet generated
Main.jsp receives all HTTP requests. It passes the request toRequestProcessor,
which coordinates all handling of the request.RequestProcessor usesRequest-
ToEventTranslator to translate the HTTP request into a business event.Request-

Processor then passes the event toShoppingClientControllerWebImpl, which

CHAPTER 10 THE SAMPLE APPLICATION282

to
usi-
anged

se

Ls
le-
forwards the event toShoppingClientController, the controller in the EJB tier.
ShoppingClientController delegates the handling of the business event
StateMachine. StateMachine changes the state of the model in response to the b
ness event or command and then retrieves a list of model objects that have ch
as a result of handling the business event fromModelUpdateManager (MUM). Finally,
RequestProcessor notifies all registered views of model changes.

Figure 10.10Controller Object Interaction Diagram (Part 1)

Figure 10.11 shows what happens afterRequestProcessor.processRequest

returns.Main.jsp forwards the initial request totemplate.jsp. The template
includes ScreenDefinitions.jsp, which usesScreenFlowManager to map the
screen to a JSP page.

In the following sections, we will discuss the implementation of each of the
components in more detail.

10.6.1 Main

A front component is a component to which all requests for application UR
are delivered. The front componentMain.jsp, processes these requests and de
gates the generation of the response to the template page.

THE CONTROLLER 283

to

o-
Figure 10.11Controller Object Interaction Diagram (Part 2)

Code Example 10.11 showsMain.jsp. The highlighted lines in the example
indicate these two steps.Main.jsp delegates all of the request processing tasks
RequestProcessor. The response is generated by forwarding totemplate.jsp. An
interesting detail to note here is thatMain.jsp stores references to the request pr
cessor and other session-specific beans in the HTTP session object.

<jsp:useBean id="modelManager"

class="com.sun.estore.control.Web.ModelManager"

scope="session">

<% modelManager.init(config.getServletContext(), session); %>

</jsp:useBean>

<jsp:useBean id="rp"

class="com.sun.estore.control.Web.RequestProcessor"

scope="session">

<% rp.init(config.getServletContext(), session); %>

</jsp:useBean>

<%

try {

rp.processRequest(request);

request.setAttribute("selectedURL" , request.getPathInfo());

} catch (MissingFormDataException mi){

request.setAttribute("missingformdata", mi);

request.setAttribute("selectedURL", "/missingformdata");

CHAPTER 10 THE SAMPLE APPLICATION284

ple,
} catch (DuplicateAccountException du){

request.setAttribute("selectedURL", "/duplicateaccount");

}

getServletConfig().getServletContext()

.getRequestDispatcher("/template.jsp")

.forward(request, response);

%>

Code Example 10.11Main.jsp

10.6.2 RequestProcessor

RequestProcessor contains logic that gets executed for each request. For exam
when a customer tries to access a feature that requires signin,RequestProcessor

checks to detect whether the customer is logged in.
Code Example 10.12 presents an excerpt fromRequestProcessor, simplified

to illustrate the key aspects of its behavior.

public class RequestProcessor {

private ShoppingClientControllerWebImpl scc;

private ModelManager mm;

private ModelUpdateNotifier mun;

private RequestToEventTranslator eventTranslator;

private SecurityAdapter securityAdapter;

public void init(...) {

mm = (ModelManager)session.getAttribute("modelManager");

mun = mm;

scc = new ShoppingClientControllerWebImpl(session);

eventTranslator =

new RequestToEventTranslator(this, mm);

...

 }

 public void processRequest(HttpServletRequest req) {

checkForWebServerLogin(req);

EStoreEvent event = eventTranslator.processRequest(req);

if (event != null) {

THE CONTROLLER 285

tion

ction

nd
TP

to
y as
at all
with
Collection updatedModelList = scc.handleEvent(event);

mun.notifyListeners(updatedModelList);

}

...

}

}

Code Example 10.12RequestProcessor

This excerpt demonstrates the core responsibilities ofRequestProcessor

including:

• Initializing the client session.RequestProcessor instantiates an object that im-
plementsShoppingClientController and related application objects when a
new session is initiated.

• Detecting when the user logs into the server using form-based authentica
and generating a login business event when this happens.

• Computing the business event to generate based on theHttpRequest that came
in, with the help of theRequestToEventTranslator.

• Raising a business event by invokinghandleEvent on theShoppingClientCon-
troller’s Web implementation.

• Gathering the outcome of the event processing. In particular,RequestProces-

sor passes the business event and its outcome to theModelManager so the mod-
el change notifications can be processed by the view components (see Se
10.6.8 on page 294).

10.6.3 RequestToEventTranslator

RequestToEventTranslator is responsible for taking an HTTP-specific request a
converting it into a business event that is not tied to the specifics of the HT
protocol.

Application objects that include HTTP-specific functionality are not easy
reuse. By removing HTTP protocol-specific details from the request as earl
possible, by turning it into a business event, the sample application ensures th
components that deal with business events would be completely reusable
non-HTTP clients. For example, theStateMachine that implements command

CHAPTER 10 THE SAMPLE APPLICATION286

tand-

r are

ple
gen-
ntered
urred
ust

eters
processing logic for the sample application could be easily used as-is by a s
alone Java client.

The two standard HTTP requests that can be processed by the translato
GET and POST. It is relatively straightforward to mapGET requests to business
events. However,POST requests, which represent form submission in the sam
application, require the request processor to validate the form data as part of
erating the business event. The processor needs to keep track of the values e
in the form so that the presentation screen can show where the error occ
when the form data is invalid. When the form data is valid, the processor m
encapsulate the form parameters in an application-specific business event.

Code Example 10.13 presents excerpts fromRequestToEventTranslator. The
highlighted lines indicate where the translator parses HTTP request param
and converts them to objects to be used in business events.

public class RequestToEventTranslator {

private ModelManager mm;

public EStoreEvent processRequest(HttpServletRequest req)

throws EStoreEventException, MissingFormDataException {

String selectedUrl = req.getPathInfo();

EStoreEvent event = null;

if (selectedUrl.equals(ScreenNames.CATALOG_URL)) {

event = createCatalogEvent(req);

else if (selectedUrl.equals(ScreenNames.CART_URL)) {

mm.getCartModel();

event = createCartEvent(req);

} else if ...

return event;

}

private EStoreEvent createCatalogEvent(HttpServletRequest req) {

CatalogEvent event = null;

String[] category = req.getParameterValues(CATEGORY_ID);

if (category != null) {

event = new CatalogEvent(

CatalogEvent.BROWSING_EVENT, category[0]);

}

return event;

}

THE CONTROLLER 287

B

odel
n the

iew

ade
private CartEvent createCartEvent(HttpServletRequest request) {

String action = request.getParameter("action");

if (action.equals("purchaseItem")) {

return createPurchaseItemEvent(request);

} else if (action.equals("removeItem")) {

return createRemoveItemEvent(request);

} else if (action.equals("updateCart")) {

return createUpdateCartEvent(request);

}

}

}

Code Example 10.13RequestToEventTranslator

10.6.4 ShoppingClientControllerWebImpl

ShoppingClientControllerWebImpl is a proxy object that calls methods on the EJ
tier controller ShoppingClientController. ShoppingClientControllerWebImpl

exposes a read-only interface to the model, so that the view can render the m
as needed. Keeping this interface read-only minimizes dependencies betwee
view and the model, to prevent inadvertent modification of the model by the v
outside the scope of the business rules encapsulated in the application.

Code Example 10.14 contains an excerpt fromShoppingClientController-
WebImpl. Notice that all the methods ofShoppingClientController are synchro-
nized so that concurrent requests toShoppingClientController are serialized.
This is done because an EJB container will throw an exception if a request is m
to a session bean while it is servicing another request.

public class ShoppingClientControllerWebImpl

{

private com....ejb.ShoppingClientController sccEjb;

private HttpSession session;

public ShoppingClientControllerWebImpl(HttpSession session) {

this.session = session;

ModelManager mm =

(ModelManager)session.getAttribute("modelManager");

sccEjb = mm.getSCCEJB();

}

public synchronized AccountModel getAccount() {

CHAPTER 10 THE SAMPLE APPLICATION288

he
It dele-
return sccEjb.getAccount().getDetails();

}

...

public synchronized Collection handleEvent(EStoreEvent ese) {

return sccEjb.handleEvent(ese);

}

public synchronized void remove() {

sccEjb.remove();

}

}

Code Example 10.14ShoppingClientControllerWebImpl

10.6.5 ShoppingClientController

ShoppingClientController manages the life cycle of model objects such as t
shopping cart and account enterprise beans and processes business events.
gates the processing of business events in thehandleEvent method toStateMa-
chine. ShoppingClientController is also responsible for the life cycle of
StateMachine. ShoppingClientController is implemented byShoppingClient-
ControllerEJB, illustrated in Code Example 10.15.

public class ShoppingClientControllerEJB implements SessionBean {

private StateMachine sm;

private ShoppingCart cart;

String userId;

Account acct;

public Account getAccount() {

if (acct == null) {

createAccountEJB();

}

return acct;

}

public ShoppingCart getShoppingCart() {

if (cart == null) {

try {

ShoppingCartHome cartHome =

THE CONTROLLER 289

the
to a

of
such
EJBUtil.getShoppingCartHome();

cart = cartHome.create();

} catch (CreateException ce) {

throw new EJBException(ce);

}

}

return cart;

}

public void ejbCreate() {

sm = new StateMachine(this);

}

public Collection getOrders() throws FinderException {

Collection orders = null;

if (userId != null) {

OrderHome home = EJBUtil.getOrderHome();

orders = home.findUserOrders(userId);

}

return orders;

}

public Collection handleEvent(EStoreEvent ese)

throws EStoreEventException {

try {

return (sm.handleEvent(ese));

} catch (RemoteException re) {

throw new EJBException (re);

}

}

}

Code Example 10.15ShoppingClientControllerEJB

10.6.6 StateMachine

StateMachine implements the core command processing business logic of
application. It is responsible for changing the state of the models in response
business event or command.StateMachine consists of methods that handle each
the different business events that the sample application can respond to. One
method is highlighted in Code Example 10.16.

CHAPTER 10 THE SAMPLE APPLICATION290
public class StateMachine {

private ShoppingClientControllerEJB sccejb;

private ModelUpdateManager mum;

private HashMap orderTable;

public StateMachine(ShoppingClientControllerEJB sccejb) {

this.sccejb = sccejb;

this.mum = new ModelUpdateManager();

}

public Collection handleEvent(EStoreEvent ese)

throws RemoteException, EStoreEventException {

if (ese instanceof CartEvent) {

handleCartEvent((CartEvent)ese);

} else if (ese instanceof AccountEvent) {

handleAccountEvent((AccountEvent)ese);

} else if (ese instanceof OrderEvent) {

handleOrderEvent((OrderEvent)ese);

} else if (ese instanceof LoginEvent) {

login((LoginEvent)ese);

} else if (ese instanceof LogoutEvent) {

logout();

}

return (mum.getUpdatedModels(ese));

}

private void handleCartEvent(CartEvent ce)

throws RemoteException {

ShoppingCart cart = sccejb.getShoppingCart();

switch (ce.getActionType()) {

...

case CartEvent.UPDATE_ITEM :{

Collection itemIds = ce.getItemIds();

Iterator it = itemIds.iterator();

while (it.hasNext()){

String itemId = (String)it.next();

int quantity = ce.getItemQty(itemId);

if (quantity > 0){

cart.updateItemQty(itemId, quantity);

} else {

cart.deleteItem(itemId);

}

THE CONTROLLER 291

so
xam-
ry
order
func-
igh-
}

}

break;

}

}

...

}

Code Example 10.16StateMachine

StateMachine has both read and write access to all of the model objects
that it can coordinate event processing across multiple model objects. For e
ple, whenStateMachine handles an order event, it interacts with the invento
bean to debit the quantity of the purchased item, the order bean to insert the
details, and the mailer bean to send confirmation email to the user. These
tions are performed by the method illustrated in Code Example 10.17. H
lighted lines indicate where enterprise beans are retrieved or created.

private Order createOrder(OrderEvent oe) throws RemoteException {

ShoppingCart cart = sccejb.getShoppingCart();

Order order = null;

String userId = sccejb.getAccount().getDetails().getUserId();

try {

InventoryHome inventHome = EJBUtil.getInventoryHome();

Iterator ci = ((ShoppingCartModel)cart.getDetails()).

getItems();

ArrayList lineItems = new ArrayList();

int lineNo = 0;

double total = 0;

while (ci.hasNext()) {

lineNo++;

CartItem cartItem = (CartItem) ci.next();

LineItem li = new LineItem(cartItem.getItemId(),

cartItem.getQuantity(),cartItem.getUnitCost(),

lineNo);

lineItems.add(li);

total += cartItem.getUnitCost() * cartItem.getQuantity();

}

CHAPTER 10 THE SAMPLE APPLICATION292
for (Iterator it = lineItems.iterator(); it.hasNext();){

LineItem LI = (LineItem)it.next();

Inventory inventRef =

inventHome.findByPrimaryKey(LI.getItemNo());

inventRef.updateQuantity(LI.getQty());

}

OrderHome home = EJBUtil.getOrderHome();

order = home.create(lineItems,

oe.getShippingAddress(),

oe.getBillingAddress(),

...

total);

// put the requestId and the orderId in a table to match up later

if (orderTable == null) orderTable = new HashMap();

orderTable.put(oe.getRequestId() + "",

order.getDetails().getOrderId() +"");

// empty shopping cart

cart.empty();

if (JNDIUtil.sendConfirmationMail()) {

// send order confirmation mail.

Mailer mailer = EJBUtil.createMailerEJB();

mailer.sendOrderConfirmationMail(order.getDetails().

getOrderId());

}

} catch (DuplicateKeyException dke) {

...

} catch (CreateException ce) {

throw new EJBException(ce);

} catch (FinderException fe) {

throw new EJBException(fe);

}

THE CONTROLLER 293

s the
creen
lf, but
cess-
hine

.

as the
o

return order;

}

Code Example 10.17StateMachine.createOrder

10.6.7 ScreenFlowManager

ScreenFlowManager is responsible for selecting a screen to present to the user a
outcome of their request. The mapping from a requested URL to a response s
is not one to one. In fact, the response that depends not only on the request itse
also on the state of the application data model and the outcome of request pro
ing within the application. In other words, the flow manager keeps a state mac
that captures the flow of screens in the application.ScreenFlowManager looks at
the request and the state of the model and computes the screen to be returned

Code Example 10.18 shows howScreenFlowManager maps many of the
request URLs directly into response screens. For some of the requests, such
VALIDATE_BILLING_INFO_URL, the code inspects the model to decide which of tw
possible screens to present.

public class ScreenFlowManager {

public int getCurrentScreen(HttpServletRequest req) {

String selectedUrl =

(String)req.getAttribute("selectedURL");

int nextScreen = ScreenNames.DEFAULT_SCREEN;

if (selectedUrl == null) {

// do nothing. show the default screen.

} else if (selectedUrl.equals(ScreenNames.CATALOG_URL)) {

nextScreen = ScreenNames.CATALOG_SCREEN;

...

} else if (selectedUrl.equals(

ScreenNames.VALIDATE_BILLING_INFORMATION_URL)) {

if (req.getSession()

.getAttribute("shippingAddressRequired") != null) {

boolean addrReqd = req.getSession()

.getAttribute("addrReqd").equals("true");

if (addrReqd)

CHAPTER 10 THE SAMPLE APPLICATION294

eans
enter-
serves
never
esen-

e

m an
d

am-
nextScreen = ScreenNames.ENTER_SHIPPING_INFO;

else

nextScreen = ScreenNames.CONFIRM_SHIPPING_INFO;

}

}

return nextScreen;

}

}

Code Example 10.18ScreenFlowManager

10.6.8 Model-View Synchronization

Following the MVC architecture, views implemented by JSP pages and JavaB
components present data owned by their associated models implemented as
prise beans. In the sample application, each Web-tier JavaBeans component
as the view, with corresponding EJB-tier classes representing the model. Whe
a model changes, it notifies interested views so that the views can update its pr
tation of the model.

In the sample application, the notification process is managed byModelUp-

dateManager andModelManager. ModelUpdateManager is responsible for convert-
ing a business event, such asAccountEvent, to a list of names of models that hav
changed due to this event.ModelManager uses this list to notify all views that have
registered interest in the changed models to fetch the models’ data.

The functions ofModelManager and ModelUpdateManager and their interac-
tions with controller objects are described in the following sections.

10.6.8.1 Model Manager

ModelManager extendsModelUpdateNotifier, which provides methods for adding
listeners of model change events and causing listeners (that is, views) to perfor
update when a change event is received.ModelManager adds methods that create an
return instances of view classes.

Code Example 10.19 presents excerpts fromModelManager. Note thatModel-
Manager maintains references to both aServletContext and anHttpSession.
These objects in turn contain references to view objects (highlighted in the ex
ple). View objects specific to a client (for example,AccountModel) are maintained

THE CONTROLLER 295

(for
ted
by an HTTP session object. View objects that can be shared by all clients
example,CatalogModel) are maintained as an attribute of the servlet genera
from Main.jsp.

public class ModelManager extends ModelUpdateNotifier {

private ServletContext context;

private HttpSession session;

private ShoppingClientController sccEjb = null;

private ShoppingCart cartEjb = null;

private Account acctEjb = null;

public void init(ServletContext context,

HttpSession session) {

this.session = session;

this.context = context;

getAccountModel();

}

public CatalogModel getCatalogModel() {

CatalogModel catalog = (CatalogModel)

context.getAttribute(WebKeys.CatalogModelKey);

if (catalog == null) {

catalog = new CatalogWebImpl();

context.setAttribute(WebKeys.CatalogModelKey, catalog);

}

return catalog;

}

public AccountModel getAccountModel() {

AccountModel acct = (AccountModel)

session.getAttribute(WebKeys.AccountModelKey);

if (acct == null) {

acct = new AccountWebImpl(this);

session.setAttribute(WebKeys.AccountModelKey, acct);

}

return acct;

}

CHAPTER 10 THE SAMPLE APPLICATION296

esents

roller
...

}

Code Example 10.19ModelManager

10.6.8.2 ModelUpdateManager

ModelUpdateManager is responsible for converting anEStore event to a list of
names of models that have changed due to this event. Code Example 10.20 pr
excerpts fromModelUpdateManager.

public class ModelUpdateManager {

...

public Collection getUpdatedModels(EStoreEvent ese)

throws RemoteException {

ArrayList modelList = new ArrayList();

if (ese instanceof CartEvent) {

modelList.add(JNDINames.CART_EJBHOME);

} else if (ese instanceof AccountEvent) {

modelList.add(JNDINames.ACCOUNT_EJBHOME);

} else if (ese instanceof OrderEvent) {

modelList.add(JNDINames.ORDER_EJBHOME);

modelList.add(JNDINames.INVENTORY_EJBHOME);

modelList.add(JNDINames.CART_EJBHOME);

} else if (ese instanceof LoginEvent) {

modelList.add(JNDINames.ACCOUNT_EJBHOME);

}

return modelList;

}

}

Code Example 10.20ModelUpdateManager

10.7 MVC Summary

Figure 10.12 summarizes the references between the view, model, and cont
classes.

MVC SUMMARY 297
Figure 10.12Object Reference Diagram

CHAPTER 10 THE SAMPLE APPLICATION298

ts. For
tion
n be

ed

, and
10.8 Stateless Services

The sample application uses stateless session beans for shared service objec
example, in an e-commerce application, you might want to send order confirma
mail to customers on successful completion of an order. Such a service ca
shared by all clients of the application. The sample applicationMailer service
objects are stateless session beans.

10.8.1 Example: A Mailer Bean

When a client places an order, an order event is passed toShoppingClientControl-

ler. Although thehandleEvent method is defined byShoppingClientController,
ShoppingClientController delegates its implementation to a helper class nam
StateMachine. StateMachine interacts withInventory, Order, andMailer enter-
prise beans to debit the quantity of the purchased item, insert the order details
finally send the confirmation email to the client.

The last thing thatStateMachine does in thecreateOrder method is to send
an order confirmation message. It does this by first creatingMailer stateless
session bean and then invoking theMailer.sendOrderConfirmationMail method
(shown in Code Example 10.21). Thismethod uses the order ID to obtain the
information needed for the confirmation message from theOrder and Account

entity beans. TheMailer then invokes thecreateAndSendMail method of its
helper classMailHelper.

public void sendOrderConfirmationMail(int orderId)

throws RemoteException {

OrderDetails orderDetails = null;

try {

OrderHome orderHome = EJBUtil.getOrderHome();

Order order = orderHome.findByPrimaryKey(orderId);

orderDetails = order.getOrderDetails();

} catch (FinderException fe) {

...

return;

}

String userId = orderDetails.getUserId();

AccountDetails acctDetails = null;

try {

AccountHome acctHome = EJBUtil.getAccountHome();

STATELESS SERVICES 299

es a
into a
Account acct = acctHome.findByPrimaryKey(userId);

acctDetails = acct.getAccountDetails();

} catch (FinderException fe) {

...

}

String subject = "Your order# "+orderId;

String HTML Contents =

"This message is a confirmation of your order# "

+ orderId + ". Please save it for your records.";

getMailHelper().createAndSendMail(acctDetails.

getEmail(), subject, HTML Contents);

}

Code Example 10.21Mailer.sendOrderConfirmationMail

Code Example 10.22 illustrates thecreateAndSendMail method of Mail-
Helper. This method looks up a mail session in the JNDI namespace, creat
MIME message, sets the mail headers, collects the contents of the message
string, and then sends the message.

public void createAndSendMail(String to,

String subject, String HTML Contents) {

try {

InitialContext ic = new InitialContext();

Session session = (Session) ic.

lookup(JNDI Names.MAIL_SESSION);

// construct the message

Message msg = new MimeMessage(session);

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,

 InternetAddress.parse(to, false));

msg.setSubject(subject);

collect(subject, htmlContents, msg);

msg.setHeader("X-Mailer", "JavaMailer");

msg.setSentDate(new Date());

// send the message

Transport.send(msg);

CHAPTER 10 THE SAMPLE APPLICATION300

eci-

-
n 7.3

duct.
s.
s to
in an
ss to
rod-

r

rprise
e

of the
ri-
} catch (Exception e) {

...

}

}

Code Example 10.22MailHelper.createAndSendMail

10.9 Deployment

Much of the behavior of the sample application is determined by information sp
fied in its deployment descriptors:estore_ejb.xml, estore_ejbruntime.xml,
estore_war.xml, andestore_warruntime.xml. Elements specified in these deploy
ment descriptors are discussed in detail in Section 7.1 on page 165 and Sectio
on page 174.

10.10 Transactions

The sample application’s persistent data is stored in two databases:eStoreData-

Source andInventoryDataSource. TheeStoreDataSource database holds informa-
tion about accounts and orders. TheInventoryDataSource database holds
information about products, product categories, and the inventory of each pro
When an order is placed,ShoppingClientController must access both database
The sample application uses J2EE SDK support for distributed transaction
reduce the inventory of ordered products and add a new entry to the order table
atomic operation. Note that a J2EE product is not required to support acce
multiple JDBC databases within a single transaction. However, some J2EE p
ucts might choose to provide these extra transactional capabilities.

Recall thatShoppingClientController delegates the implementation of orde
processing to a helper class namedStateMachine. StateMachine is responsible for
maintaining consistency among the database tables represented by the ente
beans that it calls. WhenStateMachine handles an order event it invokes th
methodcreateOrder illustrated in Code Example 10.17. For each bean,StateMa-

chine gets a reference to the home interface and then creates an instance
bean.StateMachine loops through the list of items in the order, finds the approp
ate inventory item, and updates theinventory table for that item. Simply creating

SECURITY 301

ed by
e

prise

usses
k.

any
e the
point
log,

e

d to
tails,

. For

ht be
am-
an instance of theOrder bean causes an entry to be added to theorder, lineitem,
andorderstatus tables.

Note that neither theStateMachine.createOrder nor individual bean opera-
tions explicitly invoke transactions, becauseShoppingClientController uses
container-managed transactions. As a result, all database operations invok
ShoppingClientController are automatically wrapped in a transaction by th
container. The transaction context is automatically propagated to any enter
beans thatShoppingClientController invokes (in this caseInventory and
Order).

10.11 Security

This section describes the sample application’s security requirements and disc
the ways these requirements are addressed using the J2EE security framewor

10.11.1 Requirements

The pet store application is designed to be deployed on the Internet. Like m
Web-based e-commerce applications, it allows anyone to interact with and us
application. Any user, regardless of whether they’re a registered customer, can
a browser at the start URL of the application and browse through the cata
viewing items, prices, inventory status, and so on. We call thistire kicking, and this
class of userstirekickers.

A new customer cansign upusing a form presented by the application. Onc
a customer has signed up, the customer cansign in, by providing a user name and
password to the application. Only customers who have signed in are allowe
place orders and view order status. When an order is placed, the payment de
including the credit card number, must be transmitted in a secure manner.

Some users of the pet store application may receive special treatment
example, a frequent shopper may apreferred customer, able to receive discounts
or awards not available to normal customer. Another class of special user mig
system administrators, with unlimited access to information on the site. For ex
ple, they might be able to fetch a list of all orders placed after a certain date.

CHAPTER 10 THE SAMPLE APPLICATION302

rity

hen-
. The
ke

ne or
r,

ages
aints

itted

ows
other
prise
. The
et its
These high-level functional requirements translate into the following secu
requirements:

• User Authentication

Users of the pet store application can be either authenticated or unaut
ticated. The user must be authenticated to access a protected resource
application should be able to identify, differentiate, and be able to ma
access control decisions based on this distinction.

There should be a way to associate each authenticated user with o
more categories. For example, userA could be recognized as a custome
while userB could be recognized as a preferred customer.

• Authorization

The application associates permissions with resources such as Web p
or enterprise bean methods. Examples of the kind of authorization constr
the application should allow:

■ Anyone (authenticated or not), to see the URL/control/product, or invoke
thegetProducts method ofCatalog

■ All authenticated users to see the URL/control/placeorder

■ Only preferred users to see the URL/control/discounts

• Confidentiality

Some user information, such as a credit card number, must be transm
confidentially to the application.

• User Administration

The sample application has its own set of users. This set of users gr
when new users add themselves using a Web-based interface. Note that
applications, such as those developed for in-house use within an enter
assume and use the set of users defined in the operational environment
sample application does not depend on the operational environment to g
set of users.

SECURITY 303

ss its
in the
urity
thori-

plica-
tion
icate
ated

sed
echa-

-spe-
es
ts
ess a
n also

e

the
the

tion
10.11.2 Implementation

The pet store application uses many features of the J2EE platform to addre
security requirements in a simple and transparent manner. By design, security
J2EE platform is mostly declarative. In some places however, we make sec
decisions in our components programmatically, because we needed to make au
zation decisions based on the content or state of the object.

10.11.2.1 User Authentication

A J2EE application must be capable of authenticating users that access the ap
tion from a variety of clients. This section describes how the pet store applica
authenticates users of the shopping interaction Web client, how it could authent
users of an administration application client, and how it handles unauthentic
users.

Web Client Authentication

Most of the interactions with the sample application occur through the Web-ba
interface. Form-based authentication, one of the standard authentication m
nisms in the J2EE architecture, is used to authenticate these interactions.

In form-based authentication, a Web container designates an application
cific page containing an HTML form for logging in. The sample application us
the pagelogin.jsp as this page. This page contains an HTML form that promp
for a user name and password and is displayed when the user tries to acc
resource that has been designated as being protected. The sample applicatio
uses form-based authentication to enable:

• Explicit signin

The sample application allows users to explicitly sign in by clicking th
sign-in link in the user interface. The sign-in link points to/signin which is a
dummy URL that is inaccessible to unauthenticated users.

When the user clicks sign-in, the application attempts to take them to
signin.jsp page, which is denied since the page is protected. As a result,
login.jsp form is shown instead.

Note that we cannot simply make the sign-in link point tologin.jsp

because an authorization failure must occur for the form-based authentica

CHAPTER 10 THE SAMPLE APPLICATION304

tion
tica-

the
try,
iled

the

the
stored

mes-

rror.
is

an

ess
create
gnup

d

in
mechanism to be activated.

• Informing the user about failed authentication

The sample application retries the protected resource after authentica
through form-based authentication irrespective of the outcome of authen
tion. If authentication failed, thelogin.jsp form will be shown to the user
again. At this point, it is desirable to do two things: first, make sure that
form comes back already filled with the values that were posted in the last
and second, inform the user somewhere in the form that authentication fa
the first time.

Form-based authentication does not provide a portable way to return
form to the user with the values posted in the failed try. ThePOST to the form
is handled by the Web container, and never returned to the form.

Informing the user that signon failed is easier to accomplish. To do so,
login.jsp page uses a session-scoped bean (see Code Example 10.23)
each time the form is accessed. If this time iscloseto the current time, and the
current request is unauthenticated, then the sample application prints a
sage indicating that the login failed earlier. A request tologin.jsp would
always be unauthenticated, unless there is an application programming e
The only situation wherelogin.jsp is shown should be when the request
unauthenticated. Using a similar mechanism, it is also possible to go to
error page after a fixed number of retries.

<jsp:useBean id="last_login" class="...">

<% if (last_login.getTime() - currentTime < ... { %>

Login failed, try again<p>

<% } %>

Code Example 10.23login.jsp

• Abandoning signin

Sometimes thelogin.jsp page comes up because the user tried to acc
a protected resource. If the user does not have an account and needs to
one, the application should abandon the login process and start user si
instead.

The pet store application’slogin.jsp page has an additional button calle
New User, to let new users sign up before they attempt to sign in.

The J2EE platform maintains information about the state of the signin

SECURITY 305

an-
t the
tion.
still

the

rent.

lica-
the

o
24.

is
in.

yet.
ce
theHttpSession and times it out when the login attempt is abandoned.

• Treating newly created users as signed in

When a new usersigns upthey should be treated assigned infor the dura-
tion of that session. This is the case for the sample application, which m
ages its own set of users. However, in the J2EE architecture, this is no
case. The only way users can sign in is through form-based authentica
Since form-based authentication is not invoked when a user signs up, they
need to explicitly sign in in order to be treated as an authenticated user.

The sample application uses a non-portable, private API provided by
J2EE SDK to achieve the desired results.

• Detecting user login

The form-based authentication mechanism is designed to be transpa
However there are cases where we want to be aware of thefirst request that
the user makes after they have signed in. For example, in the sample app
tion, the fetching and caching of user profile information is triggered when
user logs in.

Since thePOST to the login form is processed by the platform, there is n
direct way of doing this. We use the code shown in Code Example 10.
RequestProcessor detects when the user logs in and fires aLoginEvent which
can then be handled to get the desired effect.

private void checkForWebServerLogin(HttpServletRequest req) {

if ((req.getUserPrincipal() != null) &&

!req.getUserPrincipal().getName().equals("guest") &&

!mm.getAccountModel().isLoggedIn()) {

EStoreEvent loginEvent = null;

loginEvent = eventTranslator.createLoginEvent(req);

...

Code Example 10.24Triggering the Login Event

Let’s look at the condition being tested. We first check if the principal
set on the current call. If it is, it means that some user is currently logged
Next we check if our account bean knows about it. IfaccountBean.isLogge-

dIn returns false, it means that the account bean is not aware of the login
This is exactly the condition when we want to trigger the login event. On

CHAPTER 10 THE SAMPLE APPLICATION306

lient
The
ation
ica-
iner
con-

ds to
hnique

s well
EJB

ss the
alls to
out
tier

enti-
ibility
gated
ms
the login event is processed,account.isLoggedIn would return true.

Application Client Authentication

In the J2EE platform, stand-alone clients are authenticated by an application c
container. The application client may authenticate its user in a number of ways.
techniques used are platform-dependent and not under control of the applic
client. The application client container may integrate with the platform’s authent
tion system, providing a single signon capability. The application client conta
may authenticate the user when the application is started. The application client
tainer may use lazy authentication, only authenticating the user when it nee
access a protected resource. The J2EE specification does not describe the tec
used to authenticate the user.

The J2EE SDK generates a client JAR file1 when enterprise beans are
deployed. This library contains stub classes for accessing enterprise beans a
as a mechanism provided by the J2EE SDK for handling authentication to an
server.

Handling Unauthenticated Users

The sample application allows for anonymous, unauthenticated users to acce
application and browse selected features of the pet store. Even in such cases, c
the EJB tier must specify a valid principal; the EJB container rejects all calls with
a security principal. That is, if the user invokes a feature that tries to call the EJB
without authentication, the EJB container will not let the call go through.

However, since the Web interface needs to support anonymous, unauth
cated users, the J2EE platform defines a mechanism to do so. The respons
for ensuring that unauthenticated calls are made using some principal is dele
to the EJBclientcontainer. In the sample application, the Web container perfor
this role by:

• Associating the credentials of aspecialuser calledguest2 to an unauthenticat-

1 This is specific to the J2EE SDK. Other J2EE products may provide other mechanisms to
create client JAR files.

2 We call itguest here. It may be called different things in different implementations. The
important thing to note however is that it is different from any valid user of the system
and is treated specially at deployment.

SECURITY 307

n a

mple

re
that

d to
ed user when an EJB method is invoked.

• Treating unauthenticated users as follows:

■ ThegetUserPrincipal method of the servlet API returnsnull for such
users.

■ The form-based or other authentication mechanism will be activated whe
protected Web resource is accessed.

10.11.2.2 Authorization

Sample application security is specified in terms of the security rolescustomer and
gold_customer.

• A customer is a registered user of the application. Users in thecustomer role
can place orders and complete purchases. In the current release of the sa
application, the default userj2ee is in thecustomer role.

• A gold_customer is a customer with special privileges. Additional awards a
available to them. In the current release of the sample application, all users
sign up are assigned to thegold_customer role.

By default, the J2EE SDK assigns theANYONE role to an enterprise bean
method. Theguest user, which is anonymous and unauthenticated, is assigne
theANYONE role.

In the sample application, access to the URLs/control/signin (described in
Section 10.11.2.1 on page 303) and/control/placeorder is restricted to the roles
customer and gold_customer. The security-constraint declaration for/con-
trol/signin is shown in Code Example 10.25.

<security-constraint>

<web-resource-collection>

...

<url-pattern>/control/signin</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<description>no description</description>

<role-name>gold_customer</role-name>

CHAPTER 10 THE SAMPLE APPLICATION308

ean

trate

EE
and

nfor-
rame-
s well
ication

ion.

it as a

a key
<role-name>customer</role-name>

</auth-constraint>

...

</security-constraint>

Code Example 10.25Security Constraint Declaration

In the current release, the sample application does not limit enterprise b
method invocation to specific security roles.

10.11.2.3 Confidentiality

Confidentiality constraints are specified at deployment time by setting thetrans-

port-guarantee element in the Web component’s deployment descriptor toCONFI-

DENTIAL. In the current release, the sample application doesn’t demons
confidentiality mechanisms.

10.11.2.4 User Administration

Many applications will need to perform two tasks that aren’t handled by the J2
platform: managing user profile information (other than security credentials
attributes) and adding new users to the system dynamically.

Maintaining User Profiles

In addition to keeping security credentials, the sample application needs other i
mation about the user’s preferences and personalization. The J2EE security f
work will keep the security credentials, such as the user name and password, a
as attributes such as the set of roles that the user belongs to. The sample appl
needs another mechanism to maintain additional information for a user.

To do so, it maintains a separate relational table for user profile informat
This table is called theaccounts table, and is accessed through theAccount enter-
prise bean. The user name is unique for each sample customer, and we use
key to the accounts database. Code Example 10.26 shows how thegetCaller-

Principal method is used to retrieve theuserId of the user making the current
enterprise bean method call. The value returned from this method is used as
to retrieve profile information for the user.

SECURITY 309

lly to
orta-

one
ppli-

sed
enti-

EE
ods

ded,
ieved
public Account getAccount() {

if (acct == null) {

try {

String userId = sc.getCallerPrincipal().getName();

AccountHome home = EJBUtil.getAccountHome();

acct = home.findByPrimaryKey(userId);

} catch (FinderException fe) {

...

} catch (RemoteException re) {

throw new EJBException (re);

}

}

return acct;

}

Code Example 10.26ShoppingClientControllerEJB.getAccount

Adding New Users

The J2EE platform does not standardize a mechanism to add users dynamica
applications. Any application that requires this feature needs to do so in a non-p
ble, container-specific manner.

In such a situation, it makes sense to isolate all the non-portable code in
place. This small piece of platform-specific code can later be replaced if the a
cation needs to be ported to a different container implementation.

The J2EE SDK provides a container-specific API for managing users ba
on the concept of realms. A realm is a collection of users under the same auth
cation policy. An application can provide its own realm and plug it into the J2
SDK for the container to use for authentication, or it can use realm API meth
suchaddUser, on the existing default J2EE realm.

The sample application uses the default J2EE realm. It uses theaddUser

method of the realm to add new users while processing thesignup.jsp form.
In addition to specifying the user name and password of the user being ad

we also need to specify the roles that this new user can assume. This is ach
through theaddUser method, which takes an array of roles as an argument.

CHAPTER 10 THE SAMPLE APPLICATION310

e are
nt state
their

he
The

ts
ser
mple
de

his
rent
ition-
rs.
 this

c-
call.

n-
Code
10.11.2.5 Programmatic Security

The J2EE platform encourages the use of declarative security. However ther
places where one needs to make access control decisions based on the curre
of the system. Such decisions must be made by programmatically encoding
rules in the application.

The J2EE platform allows the application to identify the principal making t
call as well as the role that the caller is in, in both the Web and EJB tiers.
sample application uses these facilities as follows.

Web Tier

In the Web tier, the sample application uses thegetUserPrincipal and theisUse-
rInRole methods as follows:

• getUserPrincipal: This method is used to get the ID of the user that connec
to the application. This user ID could be used in the template to print the u
ID in the banner as part of a welcome message. Another way that the sa
application uses this information is to determine if a user is logged in. Co
Example 10.24 illustrates this use.

• isUserInRole: In the current release, the sample application doesn’t use t
method. This method could be used in the template in order to show a diffe
icon based on whether the user is a preferred or a regular customer. Add
ally, there might be special items that we only show to preferred custome
Thus the catalog can be filtered based on the result returned from calling
method with thegold_customer role.

EJB Tier

In the EJB tier, the sample application usesgetCallerPrincipal andisCallerIn-
Role methods as follows:

• getCallerPrincipal: This method is used to get the caller key to be able to a
cess profile information associated with the principal associated with the

• isCallerInRole: This method is used by the order processing module to e
force award rules based on whether the customer is a preferred customer.
Example 10.27 illustrates the use ofisCallerInRole.

SECURITY 311

ntify
t they
0.28
this

ent

the
private int getBonusMiles() {

int miles = (totalPrice >= 100) ? 1000 : 500;

if (context.isCallerInRole("GOLD_CUSTOMER"))

miles += 1000;

return miles;

}

Code Example 10.27OrderEJB.getBonusMiles

Notice the use of the embedded role nameGOLD_CUSTOMER. When role names
are embedded in the code, the Application Component Provider needs to ide
these roles in a deployment descriptor so that the Deployer can ensure tha
are mapped correctly when the application is deployed. Code Example 1
shows the portions of the sample application deployment descriptor where
happens.

<security-role-ref>

<role-name>GOLD_CUSTOMER</role-name>

<role-link>gold_customer</role-link>

</security-role-ref>

...

<assembly-descriptor>

<security-role>

<role-name>gold_customer</role-name>

</security-role>

...

</assembly-descriptor>

Code Example 10.28Deployment Descriptor Element for Embedded Roles

In this excerpt from the deployment descriptor, the Application Compon
Provider declares the use ofGOLD_CUSTOMER in the application using thesecurity-
role-ref element. The Deployer must ensure that this role is linked to
gold_customer security role.

CHAPTER 10 THE SAMPLE APPLICATION312

epth
.
rio-
user

op-
ter-
ness
s in

od-
jects
the
from

m a

the
and

view
s how
nter-
l. In a
elec-

s, the
quest.
pli-
DK,

ata-
plat-
10.12 Summary

This chapter illustrates the J2EE programming model in the context of an in-d
description of a multitier Web application: the pet store e-commerce application

The functionality of the sample application was determined using a scena
driven approach. Walks through scenarios illustrated the requirements for the
interaction as well as the interactions that happenwithin the system. Analysis of
the sample application identified three very different kinds of interactions: a sh
ping interface that allows shoppers to buy items online, an administration in
face for carrying out store administration activities, and a business-to-busi
interface through which the store can interact with suppliers. The discussion
this chapter focused mainly on the shopping interactions.

The architecture of the sample application partitions its functionality into m
ules, assigns functionality to tiers, and decomposes the modules into specific ob
to represent the behavior and data of the application. The principles guiding
architecture include reuse of software designs and code, separation of stable
volatile code, object decomposition along skill lines, and ease of migration fro
Web-centric to EJB-centric model.

The sample application adapts the Model-View-Controller architecture to
domain of enterprise applications. The model represents the application data
the business rules that govern access and modification of this data. The
renders the contents of a model. It accesses data from the model and specifie
that data should be presented. The controller defines application behavior; it i
prets user gestures and maps them into actions to be performed by the mode
stand-alone GUI client, these user gestures could be button clicks or menu s
tions. In a Web application, they appear asGET andPOST HTTP requests to the
Web tier. Based on the user gesture and the outcome of the model command
controller selects a view to be rendered as part of the response to this user re

The J2EE platform provides system services that simplify the work that ap
cation objects need to perform. The sample application uses the Java 2 S
Enterprise Edition support for distributed transactions across multiple JDBC d
bases. In addition, it uses deployment and security capabilities of the J2EE
form to support customers with different profiles.

Afterword
ent
ter-
s for

lica-

ica-
rints
ers
use

ns
ava
the

lue-

nal
send
THIS book has presented an overview of application design and developm
with the Java 2 Platform, Enterprise Edition. It’s goal has been to introduce en
prise developers to the concepts and technology used in designing application
the J2EE platform, and to give a practical example of a typical enterprise app
tion.

While this book explores many of the key decisions to be made in the appl
tion development process, it is necessarily limited in scope. The J2EE Bluep
program is intended to expand on this effort. It’s goal is to provide develop
using the J2EE platform with ongoing help in designing applications that best
the architecture and features of the platform.

The J2EE Blueprints program will include a Web site, additional publicatio
in various venues, and ultimately, additional books in the Addison-Wesley J
Series. For the latest information on designing enterprise applications with
Java 2 Platform, Enterprise Edition, be sure to regularly check the J2EE B
prints Web site athttp://java.sun.com/j2ee/blueprints.

Your comments on this book and your requests for coverage of additio
topics are important to the success of the J2EE Blueprints program. Please
your feedback toj2eeblueprints-feedback@sun.com.
313

AFTERWORD314

Glossary
to
nfi-

city,

rage

in a
ing

ng

at
ired

to

ir-
MI-

-

es

t is
pes
then-
access controlThe methods by which interactions with resources are limited
collections of users or programs for the purpose of enforcing integrity, co
dentiality, or availability constraints.

ACID The acronym for the four properties guaranteed by transactions: atomi
consistency, isolation, and durability.

activation The process of transferring an enterprise bean from secondary sto
to memory. (Seepassivation.)

applet A component that typically executes in a Web browser, but can execute
variety of other applications or devices that support the applet programm
model.

applet container A container that includes support for the applet programmi
model.

Application Component Provider A vendor that provides the Java classes th
implement components’ methods, JSP page definitions, and any requ
deployment descriptors.

Application Assembler A person that combines components and modules in
deployable application units.

application client A first-tier client component that executes in its own Java v
tual machine. Application clients have access to some (JNDI, JDBC, R
IIOP, JMS) J2EE platform APIs.

application client container A container that supports application client compo
nents.

application client module A software unit that consists of one or more class
and an application client deployment descriptor.

authentication The process by which an entity proves to another entity that i
acting on behalf of a specific identity. The J2EE platform requires three ty
of authentication: basic, form-based, and mutual, and supports digest au
tication.
315

GLOSSARY316

d

er
Web

an
y the

of

he
f an

ess

he

an

t

d in

o-
four
appli-

he
ter-
authorization Seeaccess control.

authorization constraint An authorization rule that determines who is permitte
to access a Web resource collection.

basic authentication An authentication mechanism in which a Web serv
authenticates an entity with a user name and password obtained using the
client’s built-in authentication mechanism.

bean-managed persistenceWhen the transfer of data between an entity be
instance’s variables and the underlying resource manager is managed b
entity bean.

bean-managed transactionWhen an enterprise bean defines the boundaries
the transaction.

business logicThe code that implements the functionality of an application. In t
Enterprise JavaBeans model, this logic is implemented by the methods o
enterprise bean.

business methodA method of an enterprise bean that implements the busin
logic or rules of an application.

callback methodsMethods in a component called by the container to notify t
component of important events in its life cycle.

caller Same ascaller principal .

caller principal The principal that identifies the invoker of the enterprise be
method.

client certificate authentication An authentication mechanism in which a clien
uses a X.509 certificate to establish its identity.

commit The point in a transaction when all updates to any resources involve
the transaction are made permanent.

componentAn application-level software unit supported by a container. Comp
nents are configurable at deployment time. The J2EE platform defines
types of components: enterprise beans, Web components, applets, and
cation clients.

component contractThe contract between a component and its container. T
contract includes: life cycle management of the component, a context in

GLOSSARY 317

m its
om-

tiv-
rise
evel-
rce
on-

h
e: a
d the
ture
n to a

ent.

nt,
JSP,
ser-

’s
rprise

es
s.

ure
ean

an-
nce.

ent,
face that the instance uses to obtain various information and services fro
container, and a list of services that every container must provide for its c
ponents.

connection Seeresource manager connection.

connection factory Seeresource manager connection factory.

connectorA standard extension mechanism for containers to provide connec
ity to enterprise information systems. A connector is specific to an enterp
information system and consists of a resource adapter and application d
opment tools for enterprise information system connectivity. The resou
adapter is plugged in to a container through its support for system-level c
tracts defined in the connector architecture.

Connector architecture An architecture for integration of J2EE products wit
enterprise information systems. There are two parts to this architectur
resource adapter provided by an enterprise information system vendor an
J2EE product that allows this resource adapter to plug in. This architec
defines a set of contracts that a resource adapter has to support to plug i
J2EE product, for example, transactions, security, and resource managem

container An entity that provides life cycle management, security, deployme
and runtime services to components. Each type of container (EJB, Web,
servlet, applet, and application client) also provides component-specific
vices.

container-managed persistenceWhen transfer of data between an entity bean
variables and the underlying resource manager is managed by the ente
bean’s container.

container-managed transactionWhen an EJB container defines the boundari
of a transaction. An entity bean must use container-managed transaction

context attribute An object bound into the context associated with a servlet.

conversational stateThe field values of a session bean plus the transitive clos
of the objects reachable from the bean’s fields. The transitive closure of a b
is defined in terms of the serialization protocol for the Java programming l
guage, that is, the fields that would be stored by serializing the bean insta

CORBA Common Object Request Broker Architecture. A language independ
distributed object model specified by the Object Management Group.

GLOSSARY318

to

a

its

ra-

nvi-

iptor
on-
t a

t
ng its
hash
ent’s
and

g
cted
r),
e-

ng
a-

f a
create methodA method defined in the home interface and invoked by a client
create an enterprise bean.

credentials The information describing the security attributes of a principal.

CTS Compatibility Test Suite. A suite of compatibility tests for verifying that
J2EE product complies with the J2EE platform specification.

delegationAn act whereby one principal authorizes another principal to use
identity or privileges with some restrictions.

Deployer A person who installs modules and J2EE applications into an ope
tional environment.

deployment The process whereby software is installed into an operational e
ronment.

deployment descriptorAn XML file provided with each module and application
that describes how they should be deployed. The deployment descr
directs a deployment tool to deploy a module or application with specific c
tainer options and describes specific configuration requirements tha
Deployer must resolve.

digest authentication An authentication mechanism in which a Web clien
authenticates to a Web server by sending the server a message digest alo
HTTP request message. The digest is computed by employing a one-way
algorithm to a concatenation of the HTTP request message and the cli
password. The digest is typically much smaller than the HTTP request,
doesn’t contain the password.

distributed application An application made up of distinct components runnin
in separate runtime environments, usually on different platforms conne
via a network. Typical distributed applications are two-tier (client-serve
three-tier (client-middleware-server), and multitier (client-multiple middl
ware-multiple servers).

DOM Document Object Model. A tree of objects with interfaces for traversi
the tree and writing an XML version of it, as defined by the W3C specific
tion.

DTD Document Type Definition. A description of the structure and properties o
class of XML files.

GLOSSARY 319

the
ter-

rans-
ided

ed
nt-

e,
ct is
ple-
EJB
ses

d an

ter-
lient
d by

EJB
JB

urce
ted by
ween
EAR file A JAR archive that contains a J2EE application.

EJBTM SeeEnterprise JavaBeans.

EJB container A container that implements the EJB component contract of
J2EE architecture. This contract specifies a runtime environment for en
prise beans that includes security, concurrency, life cycle management, t
action, deployment, naming, and other services. An EJB container is prov
by an EJB or J2EE server.

EJB Container Provider A vendor that supplies an EJB container.

EJB context An object that allows an enterprise bean to invoke services provid
by the container and to obtain the information about the caller of a clie
invoked method.

EJB home object An object that provides the life cycle operations (creat
remove, find) for an enterprise bean. The class for the EJB home obje
generated by the container’s deployment tools. The EJB home object im
ments the enterprise bean’s home interface. The client references an
home object to perform life cycle operations on an EJB object. The client u
JNDI to locate an EJB home object.

EJB JAR file A JAR archive that contains an EJB module.

EJB module A software unit that consists of one or more enterprise beans an
EJB deployment descriptor.

EJB object An object whose class implements the enterprise bean’s remote in
face. A client never references an enterprise bean instance directly; a c
always references an EJB object. The class of an EJB object is generate
the container’s deployment tools.

EJB server Software provides services to an EJB container. For example, an
container typically relies on a transaction manager that is part of the E
server to perform the two-phase commit across all the participating reso
managers. The J2EE architecture assumes that an EJB container is hos
an EJB server from the same vendor, so does not specify the contract bet
these two entities. An EJB server may host one or more EJB containers.

EJB Server Provider A vendor that supplies an EJB server.

GLOSSARY320

tity

’s
ons

a-
ices
nter-
ms,

s.

or
source
sys-

se
files,

t
ns.

able,

in a
egate
If
pri-

to

-

an-
an.
enterprise beanA component that implements a business task or business en
and resides in an EJB container; either an entity bean or a session bean.

enterprise information system The applications that comprise an enterprise
existing system for handling company-wide information. These applicati
provide an information infrastructure for an enterprise. An enterprise inform
tion system offers a well defined set of services to its clients. These serv
are exposed to clients as local and/or remote interfaces. Examples of e
prise information systems include: enterprise resource planning syste
mainframe transaction processing systems, and legacy database system

enterprise information system resourceAn entity that provides enterprise infor-
mation system-specific functionality to its clients. Examples are: a record
set of records in a database system, a business object in an enterprise re
planning system, and a transaction program in a transaction processing
tem.

Enterprise Bean Provider An application programmer who produces enterpri
bean classes, remote and home interfaces, and deployment descriptor
and packages them in an EJB .jar file.

Enterprise JavaBeansTM (EJBTM) A component architecture for the developmen
and deployment of object-oriented, distributed, enterprise-level applicatio
Applications written using the Enterprise JavaBeans architecture are scal
transactional, and secure.

entity bean An enterprise bean that represents persistent data maintained
database. An entity bean can manage its own persistence or it can del
this function to its container. An entity bean is identified by a primary key.
the container in which an entity bean is hosted crashes, the entity bean, its
mary key, and any remote references survive the crash.

finder method A method defined in the home interface and invoked by a client
locate an entity bean.

form-based authenticationAn authentication mechanism in which a Web con
tainer provides an application-specific form for logging in.

group A collection of principals within a given security policy domain.

handleAn object that identifies an enterprise bean. A client may serialize the h
dle, and then later deserialize it to obtain a reference to the enterprise be

GLOSSARY 321

ace
ean.

thods,
ove

ter-
seri-

cu-
nds,
asic

text
nt to

of
he
per-

to
tems

en

ith
home interfaceOne of two interfaces for an enterprise bean. The home interf
defines zero or more methods for creating and removing an enterprise b
For session beans, the home interface defines create and remove me
while for entity beans, the home interface defines create, finder, and rem
methods.

home handleAn object that can be used to obtain a reference of the home in
face. A home handle can be serialized and written to stable storage and de
alized to obtain the reference.

HTML Hypertext Markup Language. A markup language for hypertext do
ments on the Internet. HTML enables the embedding of images, sou
video streams, form fields, references to other objects with URLs and b
text formatting.

HTTP Hypertext Transfer Protocol. The Internet protocol used to fetch hyper
objects from remote hosts. HTTP messages consist of requests from clie
server and responses from server to client.

HTTPS HTTP layered over the SSL protocol.

impersonation An act whereby one entity assumes the identity and privileges
another entity without restrictions and without any indication visible to t
recipients of the impersonator’s calls that delegation has taken place. Im
sonation is a case of simple delegation.

IDL Interface Definition Language. A language used to define interfaces
remote CORBA objects. The interfaces are independent of operating sys
and programming languages.

IIOP Internet Inter-ORB Protocol. A protocol used for communication betwe
CORBA object request brokers.

initialization parameter A parameter that initializes the context associated w
a servlet.

ISV Independent Software Vendor.

J2EETM Java 2, Enterprise Edition.

J2METM Java 2, Micro Edition.

J2SETM Java 2, Standard Edition.

GLOSSARY322

le
lica-

be

a-

eb

to

sists
cols
ca-

the

s

-

n
MG
PI.
J2EE application Any deployable unit of J2EE functionality. This can be a sing
module or a group of modules packaged into an .ear file with a J2EE app
tion deployment descriptor. J2EE applications are typically engineered to
distributed across multiple computing tiers.

J2EE product An implementation that conforms to the J2EE platform specific
tion.

J2EE Product Provider A vendor that supplies a J2EE product.

J2EE serverThe runtime portion of a J2EE product. A J2EE server provides W
and/or EJB containers.

JAR Java ARchive A platform-independent file format that permits many files
be aggregated into one file.

JavaTM 2 Platform, Standard Edition (J2SE platform) The core Java technol-
ogy platform.

JavaTM 2 Platform, Enterprise Edition (J2EE platform) An environment for
developing and deploying enterprise applications. The J2EE platform con
of a set of services, application programming interfaces (APIs), and proto
that provide the functionality for developing multitiered, Web-based appli
tions.

JavaTM 2 SDK, Enterprise Edition (J2EE SDK) Sun’s implementation of the
J2EE platform. This implementation provides an operational definition of
J2EE platform.

JavaTM Message Service (JMS)An API for using enterprise messaging system
such as IBM MQ Series, TIBCO Rendezvous, and so on.

Java Naming and Directory InterfaceTM (JNDI) An API that provides naming
and directory functionality.

JavaTM Transaction API (JTA) An API that allows applications and J2EE serv
ers to access transactions.

JavaTM Transaction Service (JTS)Specifies the implementation of a transactio
manager which supports JTA and implements the Java mapping of the O
Object Transaction Service (OTS) 1.1 specification at the level below the A

GLOSSARY 323

er
re to

ty
lica-
DL

te
cts to
or

lat-

ide
ax
can

ry
by a

is

ver
ges,

iner
JavaBeansTM componentA Java class that can be manipulated in a visual build
tool and composed into applications. A JavaBeans component must adhe
certain property and event interface conventions.

Java IDL A technology that provides CORBA interoperability and connectivi
capabilities for the J2EE platform. These capabilities enable J2EE app
tions to invoke operations on remote network services using the OMG I
and IIOP.

JavaMailTM An API for sending and receiving email.

JavaServer PagesTM (JSP) An extensible Web technology that uses templa
data, custom elements, scripting languages, and server-side Java obje
return dynamic content to a client. Typically the template data is HTML
XML elements, and in many cases the client is a Web browser.

JDBCTM An API for database-independent connectivity between the J2EE p
form and a wide range of data sources.

JMS SeeJava Message Service.

JNDI SeeJava Naming and Directory Interface.

JSP SeeJavaServer Pages.

JSP actionA JSP element that can act on implicit objects and other server-s
objects or can define new scripting variables. Actions follow the XML synt
for elements with a start tag, a body and an end tag; if the body is empty it
also use the empty tag syntax. The tag must use a prefix.

JSP action, customAn action described in a portable manner by a tag libra
descriptor and a collection of Java classes and imported into a JSP page
taglib directive. A custom action is invoked when a JSP page uses acustom
tag.

JSP action, standardAn action that is defined in the JSP specification and
always available to a JSP file without being imported.

JSP application A stand-alone Web application, written using the JavaSer
Pages technology, that can contain JSP pages, servlets, HTML files, ima
applets, and JavaBeans components.

JSP containerA container that provides the same services as a servlet conta
and an engine that interprets and processes JSP pages into a servlet.

GLOSSARY324

is
ines

oth

d is

An

ge
licit

file

that

yn-
ding
ation
page

lid
ation
age

that
le as
.

ed
JSP container, distributedA JSP container that can run a Web application that
tagged as distributable and is spread across multiple Java virtual mach
that might be running on different hosts.

JSP declarationA JSP scripting element that declares methods, variables, or b
in a JSP file.

JSP directiveA JSP element that gives an instruction to the JSP container an
interpreted at translation time.

JSP elementA portion of a JSP page that is recognized by a JSP translator.
element can be a directive, an action, or a scripting element.

JSP expressionA scripting element that contains a valid scripting langua
expression that is evaluated, converted to a String, and placed into the imp
out object.

JSP fileA file that contains a JSP page. In the Servlet 2.2 specification, a JSP
must have a .jsp extension.

JSP pageA text-based document using fixed template data and JSP elements
describes how to process a request to create a response.

JSP scripting elementA JSP declaration, scriptlet, or expression, whose tag s
tax is defined by the JSP specification, and whose content is written accor
to the scripting language used in the JSP page. The JSP specific
describes the syntax and semantics for the case where the language
attribute is "java".

JSP scriptlet A JSP scripting element containing any code fragment that is va
in the scripting language used in the JSP page. The JSP specific
describes what is a valid scriptlet for the case where the language p
attribute is "java".

JSP tagA piece of text between a left angle bracket and a right angle bracket
is used in a JSP file as part of a JSP element. The tag is distinguishab
markup, as opposed to data, because it is surrounded by angle brackets

JSP tag library A collection of custom tags identifying custom actions describ
via a tag library descriptor and Java classes.

JTA SeeJava Transaction API.

JTS SeeJava Transaction Service.

GLOSSARY 325

to

the
are
be

es

and

at-

it

ly

ed
con-

it to
and

loy-

ec-

its

pli-

and
method permissionAn authorization rule that determines who is permitted
execute one or more enterprise bean methods.

module A software unit that consists of one or more J2EE components of
same container type and one deployment descriptor of that type. There
three types of modules: EJB, Web, and application client. Modules can
deployed as stand-alone units or assembled into an application.

mutual authentication An authentication mechanism employed by two parti
for the purpose of proving each other’s identity to one another.

ORB Object Request Broker. A library than enables CORBA objects to locate
communicate with one another.

OS principal A principal native to the operating system on which the J2EE pl
form is executing.

OTS Object Transaction Service. A definition of the interfaces that perm
CORBA objects to participate in transactions.

naming context A set of associations between distinct, atomic people-friend
identifiers and objects.

naming environment A mechanism that allows a component to be customiz
without the need to access or change the component’s source code. A
tainer implements the component’s naming environment, and provides
the component as a JNDI naming context. Each component names
accesses its environment entries using thejava:comp/env JNDI context. The
environment entries are declaratively specified in the component’s dep
ment descriptor.

passivationThe process of transferring an enterprise bean from memory to s
ondary storage. (Seeactivation.)

persistenceThe protocol for transferring the state of an entity bean between
instance variables and an underlying database.

POA Portable Object Adapter. A CORBA standard for building server-side ap
cations that are portable across heterogeneous ORBs.

principal The identity assigned to an user as a result of authentication.

privilege A security attribute that does not have the property of uniqueness
that may be shared by many principals.

GLOSSARY326

P
pro-

aces,

s,

ter-

to

er
. A
It is
r cli-
om-

by
lying
col-
and
.

an-
ated
ress
ter-
en-

rce

e

primary key An object that uniquely identifies an entity bean within a home.

realm Seesecurity policy domain. Also, a string, passed as part of an HTT
request during basic authentication, that defines a protection space. The
tected resources on a server can be partitioned into a set of protection sp
each with its own authentication scheme and/or authorization database.

re-entrant entity bean An entity bean that can handle multiple simultaneou
interleaved, or nested invocations which will not interfere with each other.

Reference Implementation SeeJava 2 SDK, Enterprise Edition.

remote interfaceOne of two interfaces for an enterprise bean. The remote in
face defines the business methods callable by a client.

remove methodMethod defined in the home interface and invoked by a client
destroy an enterprise bean.

resource adapterA system-level software driver that is used by an EJB contain
or an application client to connect to an enterprise information system
resource adapter is typically specific to an enterprise information system.
available as a library and is used within the address space of the server o
ent using it. A resource adapter plugs in to a container. The application c
ponents deployed on the container then use the client API (exposed
adapter) or tool generated high-level abstractions to access the under
enterprise information system. The resource adapter and EJB container
laborate to provide the underlying mechanisms—transactions, security,
connection pooling—for connectivity to the enterprise information system

resource managerProvides access to a set of shared resources. A resource m
ager participates in transactions that are externally controlled and coordin
by a transaction manager. A resource manager is typically in different add
space or on a different machine from the clients that access it. Note: An en
prise information system is referred to as resource manager when it is m
tioned in the context of resource and transaction management.

resource manager connectionAn object that represents a session with a resou
manager.

resource manager connection factoryAn object used for creating a resourc
manager connection.

GLOSSARY 327

in
rent

l.
d
MI

nd
The

er,
Pro-
ys-

li-
d to
on-

ized
ecu-
t is

d in

ss-

ity
and/

eb
tho-

ard-
RMI Remote Method Invocation. A technology that allows an object running
one Java virtual machine to invoke methods on an object running in a diffe
Java virtual machine.

RMI-IIOP A version of RMI implemented to use the CORBA IIOP protoco
RMI over IIOP provides interoperability with CORBA objects implemente
in any language if all the remote interfaces are originally defined as R
interfaces.

role (development)The function performed by a party in the development a
deployment phases of an application developed using J2EE technology.
roles are: Application Component Provider, Application Assembl
Deployer, J2EE Product Provider, EJB Container Provider, EJB Server
vider, Web Container Provider, Web Server Provider, Tool Provider, and S
tem Administrator.

role (security) An abstract logical grouping of users that is defined by the App
cation Assembler. When an application is deployed, the roles are mappe
security identities, such as principals or groups, in the operational envir
ment.

role mapping The process of associating the groups and/or principals recogn
by the container to security roles specified in the deployment descriptor. S
rity roles have to be mapped by the Deployer before the componen
installed in the server.

rollback The point in a transaction when all updates to any resources involve
the transaction are reversed.

SAX Simple API for XML. An event-driven, serial-access mechanism for acce
ing XML documents.

security attributes A set of properties associated with a principal. Secur
attributes can be associated with a principal by an authentication protocol
or by a J2EE Product Provider.

security constraint A declarative way to annotate the intended protection of W
content. A security constraint consists of a Web resource collection, an au
rization constraint, and a user data constraint.

security contextAn object that encapsulates the shared state information reg
ing security between two entities.

GLOSSARY328

rm
ent

E
.

d
ec-
for

ting

is
ist

ting
nse

ch
ses. All
and
ch as

n
irtual

n
og
s that
security permissionA mechanism, defined by J2SE, used by the J2EE platfo
to express the programming restrictions imposed on Application Compon
Providers.

security permission setThe minimum set of security permissions that a J2E
Product Provider must provide for the execution of each component type

security policy domain A scope over which security policies are defined an
enforced by a security administrator. A security policy domain has a coll
tion of users (or principals), uses a well defined authentication protocol(s)
authenticating users (or principals), and may have groups to simplify set
of security policies.

security role Seerole (security).

security technology domainA scope over which the same security mechanism
used to enforce a security policy. Multiple security policy domains can ex
within a single technology domain.

security view The set of security roles defined by the Application Assembler.

server principal The OS principal that the server is executing as.

servlet A Java program that extends the functionality of a Web server, genera
dynamic content and interacting with Web clients using a request-respo
paradigm.

servlet container A container that provides the network services over whi
requests and responses are sent, decodes requests, and formats respon
servlet containers must support HTTP as a protocol for requests
responses, but may also support additional request-response protocols su
HTTPS.

servlet container, distributed A servlet container that can run a Web applicatio
that is tagged as distributable and that executes across multiple Java v
machines running on the same host or on different hosts.

servlet contextAn object that contains a servlet’s view of the Web applicatio
within which the servlet is running. Using the context, a servlet can l
events, obtain URL references to resources, and set and store attribute
other servlets in the context can use.

GLOSSARY 329

The

pli-

ists
per-
lient.
sys-
main-
bean

must
an-

ter-
ay

henti-

uage

ate-
s for
func-
ram

es

ng

ne
ns-
servlet mappingDefines an association between a URL pattern and a servlet.
mapping is used to map requests to servlets.

sessionAn object used by a servlet to track a user’s interaction with a Web ap
cation across multiple HTTP requests.

session beanAn enterprise bean that is created by a client and that usually ex
only for the duration of a single client-server session. A session bean
forms operations, such as calculations or accessing a database, for the c
While a session bean may be transactional, it is not recoverable should a
tem crash occur. Session bean objects can be either stateless or they can
tain conversational state across methods and transactions. If a session
maintains state, then the EJB container manages this state if the object
be removed from memory. However, the session bean object itself must m
age its own persistent data.

SSLSecure Socket Layer. A security protocol that provides privacy over the In
net. The protocol allows client-server applications to communicate in a w
that cannot be eavesdropped or tampered with. Servers are always aut
cated and clients are optionally authenticated.

SQL Structured Query Language. The standardized relational database lang
for defining database objects and manipulating data.

SQL/J A set of standards that includes specifications for embedding SQL st
ments in methods in the Java programming language and specification
calling Java static methods as SQL stored procedures and user-defined
tions. An SQL checker can detects errors in static SQL statements at prog
development time, rather than at execution time as with a JDBC driver.

stateful session bean A session bean with a conversational state.

stateless session beanA session bean with no conversational state. All instanc
of a stateless session bean are identical.

System Administrator The person responsible for configuring and administeri
the enterprise’s computers, networks, and software systems.

transaction An atomic unit of work that modifies data. A transaction encloses o
or more program statements, all of which either complete or roll back. Tra
actions enable multiple users to access the same data concurrently.

GLOSSARY330

nt
ope
can

ta
and

ired
, syn-

the

ng
nd

ass.

an
//
ct

eted
an-

on-
the

this
RL

refix
e
this
uest

ut
tity
transaction attribute A value specified in an enterprise bean’s deployme
descriptor that is used by the EJB container to control the transaction sc
when the enterprise bean’s methods are invoked. A transaction attribute
have the following values:Required, RequiresNew, Supports, NotSupported,
Mandatory, Never.

transaction isolation levelThe degree to which the intermediate state of the da
being modified by a transaction is visible to other concurrent transactions
data being modified by other transactions is visible to it.

transaction managerProvides the services and management functions requ
to support transaction demarcation, transactional resource management
chronization, and transaction context propagation.

Tool Provider An organization or software vendor that provides tools used for
development, packaging, and deployment of J2EE applications.

URI Uniform Resource Identifier. A compact string of characters for identifyi
an abstract or physical resource. A URI is either a URL or a URN. URLs a
URNs are concrete entities that actually exist; A URI is an abstract supercl

URL Uniform Resource Locator. A standard for writing a textual reference to
arbitrary piece of data in the World Wide Web. A URL looks like "protocol:
host/localinfo" where "protocol" specifies a protocol for fetching the obje
(such as HTTP or FTP), "host" specifies the Internet name of the targ
host, and "localinfo" is a string (often a file name) passed to the protocol h
dler on the remote host.

URL path The URL passed by a HTTP request to invoke a servlet. The URL c
sists of the Context Path + Servlet Path + PathInfo, where Context Path is
path prefix associated with a servlet context that this servlet is a part of. If
context is the default context rooted at the base of the Web server’s U
namespace, the path prefix will be an empty string. Otherwise, the path p
starts with a / character but does not end with a / character. Servlet Path is th
path section that directly corresponds to the mapping which activated
request. This path starts with a / character. PathInfo is the part of the req
path that is not part of the Context Path or the Servlet Path.

URN Uniform Resource Name. A unique identifier that identifies an entity, b
doesn’t tell where it is located. A system can use a URN to look up an en

GLOSSARY 331

to

ner
with

lt
those

y
ulti-
The

sts;

he
eb

ans-
ame
Is. A

at
rtual

eb

e

t, or
and
locally before trying to find it on the Web. It also allows the Web location
change, while still allowing the entity to be found.

user data constraint Indicates how data between a client and a Web contai
should be protected. The protection can be the prevention of tampering
the data or prevention of eavesdropping on the data.

WAR file A JAR archive that contains a Web module.

Web application An application written for the Internet, including those bui
with Java technologies such as JavaServer Pages and servlets, as well as
built with non-Java technologies such as CGI and Perl.

Web application, distributable A Web application that uses J2EE technolog
written so that it can be deployed in a Web container distributed across m
ple Java virtual machines running on the same host or different hosts.
deployment descriptor for such an application uses thedistributable ele-
ment.

Web componentA component that provides services in response to reque
either a servlet or a JSP page.

Web container An entity that implements the Web component contract of t
J2EE architecture. This contract specifies a runtime environment for W
components that includes security, concurrency, life cycle management, tr
action, deployment, and other services. A Web container provides the s
services as a JSP container and a federated view of the J2EE platform AP
Web container is provided by a Web or J2EE server.

Web container, distributed A Web container that can run a Web application th
is tagged as distributable and that executes across multiple Java vi
machines running on the same host or on different hosts.

Web Container Provider A vendor that supplies a Web container.

Web module A unit that consists of one or more Web components and a W
deployment descriptor.

Web resource collectionA list of URL patterns and HTTP methods that describ
a set of resources to be protected.

Web serverSoftware that provides services to access the Internet, an intrane
an extranet. A Web server hosts Web sites, provides support for HTTP

GLOSSARY332

ts or
eb
iner
he

erver
two

fine
nts.
other protocols, and executes server-side programs (such as CGI scrip
servlets) that perform certain functions. In the J2EE architecture, a W
server provides services to a Web container. For example, a Web conta
typically relies on a Web server to provide HTTP message handling. T
J2EE architecture assumes that a Web container is hosted by a Web s
from the same vendor, so does not specify the contract between these
entities. A Web server may host one or more Web containers.

Web Server Provider A vendor that supplies a Web server.

XML eXtensible Markup Language. A markup language that allows you to de
the tags (markup) needed to identify the data and text in XML docume
J2EE deployment descriptors are expressed in XML.

Index

A
applets 26

accessing aUserTransaction 35
deploying 58
security 59
session management 59
transactions 202

application clients 19, 26
accessing aUserTransaction 35
client of EJB tier 61
client of Web tier 60
deployment 188
transactions 202

application scenarios 14
business-to-business 20
multitier 16
sample application 242–247
stand-alone client 18
Web-centric 19

archive files
EAR 168
EJB JAR 169
JAR 46
WAR 172

auditing 237
authentication 37–38, 216

basic 38, 220
call patterns 223
client certificate 38
configuration 221
context 216

delegating 217
digest 38, 220
EIS resource 224

application-managed 224
container-managed 224

form-based 38, 221
configuration 186
sample application 303

lazy 220
mechanisms 220

mutual 216, 221
role of references 225
sample application 303–306
scenarios 218

authenticators 216
authorization 37, 39, 225

consistency across components 228
declarative versus programmatic 228
enterprise information systems 161
example 232
programmatic 227

auto-registration 225

B
basic authentication

See authentication, basic.
business logic 114
business objects 113

controlling access to 117
implemented by enterprise beans 118
maintaining state 115
operating on shared data 116
participation in transactions 116
remote accessibility 117
requirements of 115–117
reusability 117
servicing multiple clients 116

C
CGI 77
class files 46
client certificate authentication

See authentication, client certificate.
client tier 6
clients

EIS. See enterprise information systems,
clients.

EJB. See EJB clients.
333

INDEX334
impact of deployment mechanisms 52
impact of host platform 52
impact of network service 50
impact of programming language 53
impact of security constraints 51
operating environment 50
overview 53
supporting multiple types 68
types 54
Visual Basic

See Visual Basic clients.
Web. See Web clients.

Common Gateway Interface 77
components 25

applets 26
application clients 26
EJB 28
enterprise beans 28
portability 10
Web 26

confidentiality mechanisms 235
connection factory references 180

data source 159
mail session 181

connections
See enterprise information systems,

connections.
Connector architecture 41, 161
containers 26

applet 26
APIs 29

application client 26
APIs 29

EJB 28
APIs 29

JSP 27
platform configuration 8
servlet 27
Web 27

APIs 29
credentials 218

D
data access objects 130, 276

as migration path to container-managed
persistence 133

clarifying session bean implementa-
tions 131

example 131
generated by tools 133
providing database portability 133
sample application 276

dependent objects 134, 276
deployment descriptors 33, 174

application 34
application client 34
auth-constraint element 230
common elements 176
component 34
container-transaction element 184
EJB 34
ejb-link element 179
ejb-name element 179
ejb-ref element 178, 225
ejb-ref-name element 179
ejb-ref-type element 179
env-entry element 176
error-page element 186
login-config element 186, 221
method-permission element 39, 183, 232
persistence-type element 184
res-auth element 159, 181, 224
resource-ref element 180, 224–225
res-type element 181
sample application 300
security-constraint element 186, 230
security-role element 182
security-role-ref element 182, 228
servlet element 185
servlet-mapping element 185
transport-guarantee element 222, 308
versioning 193
Web 34

deployment tools
features

name collision management 193
name space management 193
remote accessibility 192
single point of entry 191
undeployment capability 192
vendor-specific information 189

requirements 187
digest authentication

See authentication, digest.

INDEX 335
dynamic content generators
Active Server Pages 67
CGI scripts 77
JSP pages 78
servlets 77

E
EAR files 168
EJB clients 18, 61

advantages 63
deployment 62
disadvantages 64
protocols 61
security 63
transactions 62

EJB components
See enterprise beans.

EJB containers 118
EJB JAR files 169
EJB tier 6
EJBHome 119
EJBObject 120
email

sending from enterprise bean 298
enterprise applications

development challenges 3
enhancing application developer

productivity 3
ensuring choice in servers, tools, and

components 5
ensuring scalability 4
integrating with information

systems 5
maintaining security 5

enterprise beans 28, 118
accessing aUserTransaction 35
appropriate uses of 130
as COM objects 65
class 120
client view 119

implementation 121
create methods 120
deployment 187
EntityBean 120
finder methods 120

home interface 119
operations 119

implementing business objects 118
instances

creating 119
obtaining handles to 120
removing 119

master-detail relationships
implementing the master 137
modeling 136

obtaining a handle to home interface 119
packaging into EJB JAR files 170

by related functionality 171
by security profile 172
interrelated 172
with circular dependencies 172

portability 118
protected 223
protecting 231
references 177–180
remote interface 120

operations 120
sample application 275
See also entity beans.
See also session beans.
service information decoupled from

implementation 119
SessionBean 120
transaction attributes

See transaction attributes.
transactions 203–207
types 28, 118

enterprise information system tier 6
enterprise information systems 141

access objects 151
examples 152
guidelines 152
scenarios 153

accessing 146
authorization 161
capabilities 142
client API 149
clients 67
connections

establishing 154
life cycle 155
managing 155
managing by component type 156

INDEX336
Connector architecture 161
integration

role of tools 150
security architecture 157

integration scenarios 143
distributed purchasing applica-

tion 145
employee self-service applica-

tion 144
e-store application 143

limitations 142
relational databases

accessing with JDBC 146
multiple concurrent connections 156

resource signon 158
application-managed 160
container-managed 159

transactions
JTA 208
resource manager local 209
using 208

Enterprise JavaBeans (EJB)
architecture 28, 118
See also enterprise beans.

entity beans 28, 121
bean-managed persistence 124
characteristics 122
container-managed persistence 125
example 123
instances

finding 120
obtaining primary key 120

lifetime 122
persistence 124
sample application 275
state after system crash 122

error pages
invoking automatically 186

F
form-based authentication

See authentication, form-based.
front components 80–81

H
HTML 45, 55
HTTP 42

properties 55

I
identity selection 229
IDL 43
idlj compiler 43
image files 46
impersonation 216
integrity mechanisms 234
internationalization 88

data handling 89
data input 89
data storage 90
locale-independent data format-

ting 90

J
J2EE applications 34, 168

deployment tasks 187
EJB-centric 96
packaging and deployment activities 165
scenarios

See application scenarios.
supporting multiple types of clients 68
Web-centric 96

J2EE Blueprints
program 313
programming model 2

J2EE Compatibility Test Suite 9
J2EE Developer’s Guide xix
J2EE environment 6
J2EE platform 6

as complement to EJB architecture 9
benefits 10

choice in servers, tools, and
components 13

enhanced application development
productivity 11

integration with enterprise
information systems 12

INDEX 337
scalability 12
simplified security model 14

communication technologies 41
component technologies 25
data formats 45
database API 40
deployment services 33
email API 45
Internet protocols 42
messaging API 44
messaging technologies 44
naming and directory API 40
naming services 33
OMG protocols 43
remote object method invocation API 42
role of containers 7
saving application state 274
security services 37
service technologies 39
Standard Extension APIs 29
support for business logic 9
support for component portability 10
support for multiple client types 8
transaction API 40
transaction services 35

J2EE roles 30
Application Assembler 31
Application Component Provider 31
Deployer 32
J2EE Product Provider 31
packaging and deployment tasks 165–168
System Administrator 32
Tool Provider 32

J2EE SDK 9
J2EE specifications xix, 9
JAF (JavaBeans Activation Framework) 45
JAR files 46
Java IDL 43
Java Message Service (JMS) 44
Java Naming and Directory Interface

(JNDI) 40
Java Remote Method Protocol (JRMP) 42
Java Transaction API (JTA) 40, 201
Java Transaction Service (JTS) 40, 201
JavaBeans Activation Framework (JAF) 45
JavaBeans components, in JSP pages 86
JavaMail 45

JavaServer Pages (JSP) technology 27, 78
See also JSP pages.

JDBC 40
JMS (Java Message Service) 44
JNDI (Java Naming and Directory

Interface) 40
JRMP (Java Remote Method Protocol) 42
JSP pages 27, 78

as front components 81
as presentation components 82
custom tags 86–87
designing 85
error pages 186
expressions 88
JavaBeans components 86
locale-specific 94–96
page directive 88, 95
presentation components

sample application 266
scriptlets 88
tag libraries 86
taglib directive 86
templates 83

sample application 260
versus servlets 85

JTA (Java Transaction API) 40
JTA transactions

See transactions, JTA.
JTS (Java Transaction Service) 40

L
locales 88
localization 89
localized content

delivering 92
list resource bundles 92–94
locale-specific JSP pages 94–96

M
message digests 234
message signatures 234
messages

ensuring privacy of 235
preventing tampering 234

INDEX338
security threats 234
messaging

point-to-point 44
publish-subscribe 44

middle tier 6
modules

application client 34
packaging 174

EJB 34
contents 169
packaging 169

J2EE 34
types 34
Web 34

contents 172
packaging 172

mutual authentication
See authentication, mutual.

MVC architecture 21
Controller 22

in EJB-centric applications 104–107
multiple clients 69
sample application

See sample application,
Controller.

in EJB-centric applications 103
Model 21

in EJB-centric applications 104
multiple clients 68
sample application 273–278

sample application 21, 254–255
Model-View synchronization 294

support for mutiple types of clients 68
View 22

in EJB-centric applications 104
multiple clients 69
sample application 255–273

N
naming contexts 33

environment 33, 178
naming environments 33

entries 176
naming subcontexts 33

ejb 33, 177
jdbc 33, 180

mail 180

P
portability

affected by use of transactions 199
component 10
enterprise bean 118

presentation components 80, 82
principal mapping 224
principals 37
protection domains 217

R
references

connection factory 180
data source 159
mail session 181

enterprise bean 177–180
resources

protected 230
unprotected 231

RMI 42
rmic compiler 43
RMI-IIOP 43

S
sample application

adding users 309
Controller 280–283

EJB tier 281
implementation 282–296
interaction between objects 281
ModelManager 294
ModelUpdateManager 296
RequestProcessor 284
RequestToEventTrans-

lator 285
ScreenFlowManager 293
ShoppingClientController-

EJB 288
ShoppingClientController-

WebImpl 287

INDEX 339
StateMachine 289
Web tier 281

data access objects 276
deployment descriptors 300
design goals 253
email, sending from enterprise bean 298
enterprise beans 275
enterprise requirements 15
entity beans 275
functional specification 247
functionality 242
HTTPSession 274
JSP pages

cart.jsp 269
index.jsp 266
Main.jsp 283
presentation components 266
productcategory.jsp 267
ScreenDefinitions.jsp 264
template 260
template.jsp 261–264

insert tag 262, 264
Model 273–278
Model-View synchronization 294
modules 248, 250
MVC architecture 21, 254–255
obtaining xviii
persistent data 277
relationships between business objects 280
saving state 273
scenarios 242

administration 245
business-to-business 246
shopping 242

screens 256–258
home 266
product category 267
selecting 264
shopping cart 269

security APIs 310
use in EJB tier 310
use in Web tier 310

security implementation
authentication 303–306
confidentiality 308
handling unauthenticated users 306
user administration 308–309

security requirements

authorization 302
confidentiality 302
user administration 302
user authentication 302

ServletContext 274
session beans

stateful 275
stateless 275

signing in 301
signing up 301
stateless services 298
transactions 300
user interface

shopping interaction 256–258
user profiles, maintaining 308
View 255–273

security
accessor components 229
attacks on messages 234
attributes 226
capabilities 226
declarative 38
mechanisms 216

auditing 237
authentication 216
authorization 225
confidentiality 235
integrity 234
mutual authentication 216
See also authentication.
See also authorization.

permissions 226
principal mapping 224
programmatic 38
protection domains 217
roles 39, 227

mapping to group identities 227
mapping to principal identities 227
sample application 307

sample application 301–311
threats to 215

servlets 26, 77
as front components 81
as presentation components 82
limitations of embedded HTML 79
used to extend Web server 85
used to generate binary data 84
versus JSP pages 85

INDEX340
session beans 28, 125
as facade to entity beans 135
stateful 126

characteristics 126
example 127
lifetime 126
sample application 275

stateless 128
characteristics 128
example 129
sample application 275

SSL 42

T
TCP/IP 42
tiers

client 6
EJB 6
enterprise information system 6
middle 6
Web 6

transaction attributes 205
assigning 184
for entity beans 205
for session beans 205
guidelines 207
Mandatory 206
Never 206
NotSupported 206
Required 205
RequiresNew 206
Supports 206

transactions 35, 197
ACID properties 197
applets 202
application clients 202
attributes

See transaction attributes.
compensating 210

pitfalls 211
creating 35
demarcation

bean-managed 37, 204
container-managed 37, 204

benefits of 205

guidelines 207
enterprise beans 36, 203–207

setRollbackOnly 205
enterprise informations systems 208
isolation level 212

guidelines 212
J2EE platform

characteristics 198
scenarios 199

J2EE SDK 198
JTA 35, 200

benefits 201
properties 197

atomicity 197
consistency 197
durability 198
isolation 197

resource manager local 35, 209
Web components 36, 202

U
UserTransaction

accessing 35
from applets 35
from application clients 35
from enterprise beans 35
from Web components 36

V
value objects 134, 276

example 134
immutability 135
properties 134
used to conserve system resources 134

Visual Basic clients 19, 65
limitations 66

W
WAR files 172
Web applications 75

types 96
Web clients

INDEX 341
applets 58
See also applets.

browsers 58
content format 55
plug-ins 59
stand-alone 60

Java 60
non-Java 61

transport protocols 55
types 57

Web components 26, 75
accessing aUserTransaction 36
as front components 80–81
as presentation components 80, 82
deployment 188
limitations on transactions 36
packaging into WAR files 173

cross-dependent servlets 173
cross-linked static content 173

roles 80
using transactions 202

Web containers 76
Web resources 220

confidentiality across absolute links 236
confidentiality across relative links 237
protected 220
protecting 230

Web tier 6

X
XML 17, 20, 46, 56

guidelines 57

	Foreword
	Preface
	Introduction
	1.1 Challenges of Enterprise Application Development
	1.1.1 Programming Productivity
	1.1.2 Response to Demand
	1.1.3 Integration with Existing Systems
	1.1.4 Freedom to Choose
	1.1.5 Maintaining Security

	1.2 The Platform for Enterprise Solutions
	1.2.1 J2EE Platform Overview
	1.2.1.1 Multitier Model
	1.2.1.2 Container-Based Component Management
	1.2.1.3 Support for Client Components
	1.2.1.4 Support for Business Logic Components
	1.2.1.5 Support for the J2EE Standard

	1.2.2 J2EE Platform Benefits
	1.2.2.1 Simplified Architecture and Development
	1.2.2.2 Scales Easily
	1.2.2.3 Integrating Existing Enterprise Information Systems
	1.2.2.4 Choice of Servers, Tools, and Components
	1.2.2.5 Simplified, Unified Security Model

	1.3 J2EE Application Scenarios
	1.3.1 Multitier Application Scenario
	1.3.2 Stand-Alone Client Scenario
	1.3.3 Web-Centric Application Scenario
	1.3.4 Business-to-Business Scenario
	1.3.5 A Note on the MVC Architecture

	1.4 Summary

	J2EE Platform Technologies
	2.1 Component Technologies
	2.1.1 Applets and Application Clients
	2.1.2 Web Components
	2.1.2.1 Servlets
	2.1.2.2 JavaServer Pages Technology
	2.1.2.3 Web Component Containers

	2.1.3 Enterprise JavaBeans Components
	2.1.3.1 Session Beans
	2.1.3.2 Entity Beans
	2.1.3.3 EJB Component Containers

	2.1.4 Components, Containers, and Services

	2.2 Platform Roles
	2.2.1 J2EE Product Provider
	2.2.2 Application Component Provider
	2.2.3 Application Assembler
	2.2.4 Deployer
	2.2.5 System Administrator
	2.2.6 Tool Provider

	2.3 Platform Services
	2.3.1 Naming Services
	2.3.2 Deployment Services
	2.3.2.1 Deployment Units
	2.3.2.2 Platform Roles in the Deployment Process

	2.3.3 Transaction Services
	2.3.3.1 Accessing Transactions
	2.3.3.2 Web Component Transactions
	Transaction Propagation
	State Isolation

	2.3.3.3 Enterprise Bean Transactions

	2.3.4 Security Services
	2.3.4.1 Security Methodologies
	2.3.4.2 Authentication
	2.3.4.3 Authorization

	2.4 Service Technologies
	2.4.1 JDBC API
	2.4.2 Java Transaction API and Service
	2.4.3 Java Naming and Directory Interface
	2.4.4 Connector Architecture

	2.5 Communication Technologies
	2.5.1 Internet Protocols
	2.5.2 Remote Method Invocation Protocols
	2.5.3 Object Management Group Protocols
	2.5.3.1 Java IDL
	2.5.3.2 RMI-IIOP

	2.5.4 Messaging Technologies
	2.5.4.1 Java Message Service
	2.5.4.2 JavaMail
	JavaBeans Activation Framework

	2.5.5 Data Formats

	2.6 Summary

	The Client Tier
	3.1 Requirements and Constraints
	3.1.1 Operating Environment
	3.1.1.1 Network Service
	3.1.1.2 Security and Firewalls

	3.1.2 Deployment
	3.1.3 Implementation
	3.1.3.1 Platform
	3.1.3.2 Programming Language

	3.2 Overview of Client Options
	3.3 Web Clients
	3.3.1 Protocols
	3.3.2 Content Format
	3.3.2.1 HTML
	3.3.2.2 XML

	3.3.3 Types of Web Clients
	3.3.3.1 Web Browsers
	3.3.3.2 Java Applets
	Deployment
	Security
	Session Management

	3.3.3.3 Browser Plug-ins
	3.3.3.4 Stand-Alone Web Clients
	Java Clients and the Swing API
	Non-Java Clients

	3.4 EJB Clients
	3.4.1 Protocols and Facilities
	3.4.1.1 The Client Container
	3.4.1.2 Deployment
	3.4.1.3 Transactions
	3.4.1.4 Security

	3.4.2 Strengths and Weaknesses
	3.4.3 Types of EJB Clients
	3.4.3.1 Java Technology Clients
	Multitier Clients

	3.4.3.2 Non-Java Clients
	Accessing Enterprise Beans as COM Objects
	Limitations
	When to Use COM Clients
	Active Server Pages

	3.5 Enterprise Information System Clients
	3.6 Designing for Multiple Types of Client
	3.6.1 Model
	3.6.2 View
	3.6.3 Controller
	3.6.3.1 Interpreting User Gestures
	3.6.3.2 Selecting the View
	3.6.3.3 Example: The Sample Application Controller

	3.7 Summary

	The Web Tier
	4.1 Web Applications and Web Containers
	4.2 Dynamic Content Creation
	4.2.1 Common Gateway Interface
	4.2.2 Servlets
	4.2.3 JavaServer Pages Technology

	4.3 Servlets and JSP Pages
	4.3.1 Web Component Roles
	4.3.1.1 Front Components
	4.3.1.2 Presentation Components
	Presentation Component Templates

	4.3.2 Servlets
	4.3.2.1 Generating Binary Data
	4.3.2.2 Extending a Web Server’s Functionality

	4.3.3 JSP Pages Versus Servlets

	4.4 JSP Page Design
	4.4.1 JavaBeans Components
	4.4.2 Custom Tags
	4.4.3 Using Scriptlets and Expressions

	4.5 Internationalization and Localization
	4.5.1 Internationalization
	4.5.1.1 Data Input
	4.5.1.2 Data Storage
	4.5.1.3 Enabling Locale-Independent Data Formatting

	4.5.2 Localization
	4.5.2.1 Delivering Localized Content
	4.5.2.2 Localized Messages
	Localized Content in JSP Pages

	4.6 Application Designs
	4.6.1 Applications with Basic JSP Pages and Servlets
	4.6.2 Applications with Modular Components
	4.6.2.1 Modular Components in a JSP Page
	4.6.2.2 Processing Requests with Modular Components
	4.6.2.3 Displaying Personalized Content

	4.6.3 EJB-Centric Applications
	4.6.3.1 Model
	4.6.3.2 View
	4.6.3.3 Controller
	Controller Components

	4.7 Application Migration
	4.7.1 Migrating a Web-Centric Application to Use Enterprise Beans
	4.7.1.1 Centralize Application Control Using an MVC Architecture
	4.7.1.2 Create Enterprise Beans
	4.7.1.3 Move Application Logic to Enterprise Beans
	4.7.1.4 Modify JavaBeans Components
	4.7.1.5 Minimize Display Logic in JSP Pages

	4.8 Summary

	The Enterprise JavaBeans Tier
	5.1 Business Logic
	5.1.1 Common Requirements of Business Objects
	5.1.1.1 Maintain State
	5.1.1.2 Operate on Shared Data
	5.1.1.3 Participate in Transactions
	5.1.1.4 Service a Large Number of Clients
	5.1.1.5 Provide Remote Access to Data
	5.1.1.6 Control Access
	5.1.1.7 Reusable

	5.2 Enterprise Beans as J2EE Business Objects
	5.2.1 Enterprise Beans and EJB Containers
	5.2.1.1 Home Interface
	5.2.1.2 Remote Interface
	5.2.1.3 Enterprise Bean Class

	5.3 Entity Beans
	5.3.1 Guidelines for Using Entity Beans
	5.3.1.1 Example: A User Account Bean

	5.3.2 Persistence in Entity Beans

	5.4 Session Beans
	5.4.1 Stateful Session Beans
	5.4.1.1 Uses of Stateful Session Beans
	5.4.1.2 Example: A Shopping Cart Bean

	5.4.2 Stateless Session Beans
	5.4.2.1 Uses of Stateless Session Beans
	5.4.2.2 Example: A Catalog Bean

	5.5 Design Guidelines
	5.5.1 Data Access Objects
	5.5.1.1 Clarifying Session Bean Implementations
	5.5.1.2 Migrating to Container-Managed Persistence
	5.5.1.3 Database and Schema Portability
	5.5.1.4 Tool Compatibility

	5.5.2 Value Objects
	5.5.2.1 Example: An Address Value Object

	5.5.3 Session Beans as a Facade to Entity Beans
	5.5.4 Master-Detail Modeling Using Enterprise Beans

	5.6 Summary

	The Enterprise Information System Tier
	6.1 Enterprise Information System Capabilities and Limitations
	6.2 Enterprise Information System Integration Scenarios
	6.2.1 An Internet E-Store Application
	6.2.2 An Intranet Human Resources Application
	6.2.3 A Distributed Purchasing Application

	6.3 Relational Database Management System Access
	6.4 Other Enterprise Information System Access
	6.5 Application Component Provider Tasks
	6.6 Application Programming Model
	6.7 Programming Access to Data and Functions
	6.7.1 Client API for Enterprise Information System Access
	6.7.2 Tools for Application Development
	6.7.3 Access Objects
	6.7.3.1 Guidelines for Access Objects
	6.7.3.2 Examples of Access Objects
	6.7.3.3 Usage Scenarios for Access Objects

	6.8 Connections
	6.8.1 Establishing a Connection
	6.8.2 Guidelines for Connection Management
	6.8.2.1 Connection Life Cycle and Connection Pooling
	6.8.2.2 Connection Management by Component Type
	6.8.2.3 Multiple Connections

	6.9 Security
	6.9.1 Security Architecture
	6.9.2 Application Programming Model
	6.9.3 Resource Signon
	6.9.3.1 Container-Managed Signon
	6.9.3.2 Application-Managed Signon
	6.9.3.3 Authorization Model

	6.10 J2EE Connector Architecture
	6.11 Summary

	Packaging and Deployment
	7.1 Roles and Tasks
	7.2 Packaging J2EE Applications
	7.2.1 EJB Modules
	7.2.2 Packaging Components Into EJB Modules
	7.2.2.1 Grouping by Related Functionality
	7.2.2.2 Grouping Interrelated Beans
	7.2.2.3 Grouping for Circular References
	7.2.2.4 Groupings with Common Security Profiles

	7.2.3 Web Modules
	7.2.4 Packaging Components Into Web Modules
	7.2.4.1 Cross-Dependent Servlets
	7.2.4.2 Cross-Linked Static Content
	7.2.4.3 Logical Grouping of Functionality

	7.2.5 Application Client Modules

	7.3 Deployment Descriptors
	7.3.1 Specifying Deployment Descriptor Elements
	7.3.1.1 Common Elements
	Naming Environment Entries
	References to Enterprise Beans
	References to Connection Factories
	Security Elements

	7.3.1.2 Enterprise Bean Elements
	Transaction Elements
	Persistence Elements

	7.3.1.3 Web Component Elements
	Servlet
	Servlet Mapping
	Error Pages
	Form-Based Authentication Configuration

	7.4 Deployment Tools
	7.4.1 Deployment Tool Actions
	7.4.2 Deployment Tool Requirements
	7.4.2.1 Vendor-Specific Information
	7.4.2.2 Single Point of Entry for Deployment
	7.4.2.3 Remotely Accessible Deployment
	7.4.2.4 Undeployment Capability
	7.4.2.5 JNDI Name Space Management
	7.4.2.6 Name Collision Management
	7.4.2.7 Deployment Descriptor Versioning

	7.5 Summary

	Transaction Management
	8.1 Properties of Transactions
	8.2 J2EE Platform Transactions
	8.3 Scenarios
	8.3.1 Accessing Multiple Databases
	8.3.2 Accessing Multiple Enterprise Information Systems From Multiple EJB Servers

	8.4 JTA Transactions
	8.4.1 JTA and JTS

	8.5 Transactions in Applets and Application Clients
	8.6 Transactions in Web Components
	8.7 Transactions in Enterprise Beans
	8.7.1 Bean-Managed Transaction Demarcation
	8.7.2 Container-Managed Transaction Demarcation
	8.7.2.1 Transaction Attributes
	Required
	RequiresNew
	NotSupported
	Supports
	Mandatory
	Never

	8.7.3 Transaction Guidelines
	8.7.3.1 Transaction Attributes Guidelines

	8.8 Transactions in Enterprise Information Systems
	8.8.1 JTA Transactions
	8.8.2 Resource Manager Local Transactions
	8.8.3 Choosing Between JTA and Local Transactions
	8.8.4 Compensating Transactions
	8.8.5 Isolation Level

	8.9 Summary

	Security
	9.1 Security Threats and Mechanisms
	9.2 Authentication
	9.2.1 Protection Domains
	9.2.2 Authentication Mechanisms
	9.2.2.1 Web Tier Authentication
	Authentication Configuration
	Hybrid Authentication

	9.2.2.2 EJB Tier Authentication

	9.2.3 Authentication Call Patterns
	9.2.3.1 Enterprise Information System Tier Authentication

	9.2.4 Auto-Registration
	9.2.5 Exposing Authentication Boundaries with References

	9.3 Authorization
	9.3.1 Declarative Authorization
	9.3.2 Programmatic Authorization
	9.3.3 Declarative Versus Programmatic Authorization
	9.3.4 Isolation
	9.3.5 Identity Selection
	9.3.6 Encapsulation for Access Control
	9.3.7 Controlling Access to J2EE Resources
	9.3.7.1 Controlling Access to Web Resources
	9.3.7.2 Controlling Access to Enterprise Beans
	9.3.7.3 Unprotected Resources

	9.3.8 Example

	9.4 Protecting Messages
	9.4.1 Integrity Mechanisms
	9.4.2 Confidentiality Mechanisms
	9.4.3 Identifying Sensitive Components
	9.4.4 Ensuring Confidentiality of Web Resources

	9.5 Auditing
	9.6 Summary

	The Sample Application
	10.1 Application Functionality
	10.1.1 Scenarios
	10.1.1.1 Shopping Scenario
	10.1.1.2 Administration Scenario
	10.1.1.3 Business-to-Business Scenario

	10.1.2 Functional Specification

	10.2 Application Architecture
	10.2.1 Application Modules
	10.2.2 Application Design
	10.2.2.1 Application Tiers
	10.2.2.2 Application Objects
	Design Goals
	MVC Architecture

	10.3 The View
	10.3.1 Shopping Interaction Interface
	10.3.1.1 Screens
	10.3.1.2 Graphical Design

	10.3.2 JSP Pages
	10.3.2.1 A Template Mechanism
	10.3.2.2 View Selection

	10.3.3 Examples
	10.3.3.1 Home Screen
	10.3.3.2 Product Category Screen
	10.3.3.3 Shopping Cart Screen

	10.4 The Model
	10.4.1 State in the J2EE Platform
	10.4.1.1 Using Enterprise Beans to Maintain Session State
	Stateless Session Beans
	Stateful Session Beans
	Entity Beans

	10.4.1.2 Helper Objects
	Data Access Objects
	Value Objects

	10.4.2 Persistent Data

	10.5 Implementation
	10.6 The Controller
	10.6.1 Main
	10.6.2 RequestProcessor
	10.6.3 RequestToEventTranslator
	10.6.4 ShoppingClientControllerWebImpl
	10.6.5 ShoppingClientController
	10.6.6 StateMachine
	10.6.7 ScreenFlowManager
	10.6.8 Model-View Synchronization
	10.6.8.1 Model Manager
	10.6.8.2 ModelUpdateManager

	10.7 MVC Summary
	10.8 Stateless Services
	10.8.1 Example: A Mailer Bean

	10.9 Deployment
	10.10 Transactions
	10.11 Security
	10.11.1 Requirements
	10.11.2 Implementation
	10.11.2.1 User Authentication
	Web Client Authentication
	Application Client Authentication
	Handling Unauthenticated Users

	10.11.2.2 Authorization
	10.11.2.3 Confidentiality
	10.11.2.4 User Administration
	Maintaining User Profiles
	Adding New Users

	10.11.2.5 Programmatic Security
	Web Tier
	EJB Tier

	10.12 Summary

	Afterword
	Glossary
	Index

