
http://www.cambridge.org/9780521852876

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Numerical Methods in Engineering with Python

Numerical Methods in Engineering with Python is a text for engineer-
ing students and a reference for practicing engineers, especially those
who wish to explore the power and efficiency of Python. The choice of
numerical methods was based on their relevance to engineering prob-
lems. Every method is discussed thoroughly and illustrated with prob-
lems involving both hand computation and programming. Computer
code accompanies each method and is available on the book web site.
This code is made simple and easy to understand by avoiding complex
book-keeping schemes, while maintaining the essential features of the
method Python was chosen as the example language because it is ele-
gant, easy to learn and debug, and its facilities for handling arrays are
unsurpassed. Moreover, it is an open-source software package that can
be downloaded freely on the web. Python is a great language for teaching
scientific computation.

Jaan Kiusalaas is a Professor Emeritus in the Department of Engineer-
ing Science and Mechanics at the Pennsylvania State University. He has
taught computer methods, including finite element and boundary ele-
ment methods, for over 30 years. He is also the co-author of four other
books—Engineering Mechanics: Statics, Engineering Mechanics: Dynam-
ics, Mechanics of Materials, and an alternate version of this work with
MATLAB® code.

i

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

ii

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

NUMERICAL METHODS IN
ENGINEERING WITH

Python
Jaan Kiusalaas
The Pennsylvania State University

iii

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge , UK

First published in print format

- ----

- ----

© Jaan Kiusalaas 2005

2005

Information on this title: www.cambridg e.org /9780521852876

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521852876

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Contents

Preface vii

1. Introduction to Python . 1

2. Systems of Linear Algebraic Equations 27

3. Interpolation and Curve Fitting . 103

4. Roots of Equations .142

5. Numerical Differentiation . 181

6. Numerical Integration . 198

7. Initial Value Problems . 248

8. Two-Point Boundary Value Problems 295

9. Symmetric Matrix Eigenvalue Problems 324

10. Introduction to Optimization . 381

Appendices 409

Index 419

v

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

vi

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Preface

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (sophomores, seniors and graduate students). Familiarity with a
computer language is required; knowledge of basic engineering mechanics is useful,
but not essential.

The text attempts to place emphasis on numerical methods, not programming.
Most engineers are not programmers, but problem solvers. They want to know what
methods can be applied to a given problem, what are their strengths and pitfalls and
how to implement them. Engineers are not expected to write computer code for basic
tasks from scratch; they are more likely to utilize functions and subroutines that have
been already written and tested. Thus programming by engineers is largely confined
to assembling existing pieces of code into a coherent package that solves the problem
at hand.

The “piece” of code is usually a function that implements a specific task. For the
user the details of the code are unimportant. What matters is the interface (what goes
in and what comes out) and an understanding of the method on which the algorithm
is based. Since no numerical algorithm is infallible, the importance of understanding
the underlying method cannot be overemphasized; it is, in fact, the rationale behind
learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples that
follow individual topics fall into two categories: hand computations that illustrate the
inner workings of the method and small programs that show how the computer code is
utilized in solving a problem. Problems that require programming are marked with �.

The material consists of the usual topics covered in an engineering course on
numerical methods: solution of equations, interpolation and data fitting, numerical
differentiation and integration, solution of ordinary differential equations and eigen-
value problems. The choice of methods within each topic is tilted toward relevance
to engineering problems. For example, there is an extensive discussion of symmetric,

vii

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

viii Preface

sparsely populated coefficient matrices in the solution of simultaneous equations.
In the same vein, the solution of eigenvalue problems concentrates on methods that
efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This disqual-
ified several well-known historical methods that have been overtaken by more recent
developments. For example, the secant method for finding roots of equations was
omitted as having no advantages over Brent’s method. For the same reason, the mul-
tistep methods used to solve differential equations (e.g., Milne and Adams methods)
were left out in favor of the adaptive Runge–Kutta and Bulirsch–Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that this
topic is best treated by finite element or boundary element methods, which are outside
the scope of this book. The finite difference model, which is commonly introduced
in numerical methods texts, is just too impractical in handling multidimensional
boundary value problems.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (*).

The programs listed in this book were tested with Python 2.2.2 and 2.3.4 under
Windows XP and Red Hat Linux. The source code can be downloaded from the book’s
website at

www.cambridge.org/0521852870

The author wishes to express his gratitude to the anonymous reviewers and
Professor Andrew Pytel for their suggestions for improving the manuscript. Credit
is also due to the authors of Numerical Recipes (Cambridge University Press) whose
presentation of numerical methods was inspirational in writing this book.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide
sufficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and presumably you do, it is not difficult to pick
up the rest as you go.

Python is an object-oriented language that was developed in late 1980s as a
scripting language (the name is derived from the British television show Monty
Python’s Flying Circus). Although Python is not as well known in engineering cir-
cles as some other languages, it has a considerable following in the programming
community—in fact, Python is considerably more widespread than Fortran. Python
may be viewed as an emerging language, since it is still being developed and re-
fined. In the current state, it is an excellent language for developing engineering
applications—it possesses a simple elegance that other programming languages can-
not match.

Python programs are not compiled into machine code, but are run by an inter-
preter1. The great advantage of an interpreted language is that programs can be tested
and debugged quickly, allowing the user to concentrate more on the principles be-
hind the program and less on programming itself. Since there is no need to compile,
link and execute after each correction, Python programs can be developed in a much
shorter time than equivalent Fortran or C programs. On the negative side, interpreted
programs do not produce stand-alone applications. Thus a Python program can be
run only on computers that have the Python interpreter installed.

1 The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

1

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

2 Introduction to Python

Python has other advantages over mainstream languages that are important in a
learning environment:

� Python is open-source software, which means that it is free; it is included in most
Linux distributions.

� Python is available for all major operating systems (Linux, Unix, Windows, Mac OS
etc.). A program written on one system runs without modification on all systems.

� Python is easier to learn and produces more readable code than other languages.
� Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also
a remarkable similarity to MATLAB® (another interpreted language, very popular
in scientific computing). Python implements the usual concepts of object-oriented
languages such as classes, methods, inheritance etc. We will forego these concepts
and use Python strictly as a procedural language.

To get an idea of the similarities between MATLAB and Python, let us look at the
codes written in the two languages for solution of simultaneous equations Ax = b by
Gauss elimination. Here is the function written in MATLAB:

function [x,det] = gaussElimin(a,b)

n = length(b);

for k = 1:n-1

for i = k+1:n

if a(i,k) ˜= 0

lam = a(i,k)/a(k,k);

a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);

b(i)= b(i) - lam*b(k);

end

end

end

det = prod(diag(a));

for k = n:-1:1

b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);

end

x = b;

The equivalent Python function is:

from numarray import dot

def gaussElimin(a,b):

n = len(b)

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

3 1.1 General Information

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

The command from numarray import dot instructs the interpreter to load
the function dot (which computes the dot product of two vectors) from the module
numarray. The colon (:) operator, known as the slicing operator in Python, works the
same way it does in MATLAB and Fortran90—it defines a section of an array.

The statement for k = 1:n-1 in MATLAB creates a loop that is executed with
k = 1, 2, . . . , n − 1. The same loop appears in Python as for k in range(n-1).
Here the function range(n-1) creates the list [0, 1, . . . , n − 2]; k then loops over
the elements of the list. The differences in the ranges of k reflect the native off-
sets used for arrays. In Python all sequences have zero offset, meaning that the in-
dex of the first element of the sequence is always 0. In contrast, the native offset in
MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
conditionals, subroutines etc.). The body of a block is defined by its indentation; hence
indentation is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus the names n and N would represent
different objects.

Obtaining Python

Python interpreter can be downloaded from the Python Language Website
www.python.org. It normally comes with a nice code editor called Idle that allows
you to run programs directly from the editor. For scientific programming we also
need the Numarray module which contains various tools for array operations. It is
obtainable from the Numarray Home Page http://www.stsci.edu/resources/

software hardware/numarray. Both sites also provide documentation for down-
loading. If you use Linux or Mac OS, it is very likely that Python is already installed on
your machine (but you must still download Numarray).

You should acquire other printed material to supplement the on-line documen-
tation. A commendable teaching guide is Python by Chris Fehly, Peachpit Press, CA
(2002). As a reference, Python Essential Reference by David M. Beazley, New Riders

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

4 Introduction to Python

Publishing (2001) is recommended. By the time you read this, newer editions may be
available.

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given
type stored in a fixed memory location. The value may be changed, but not the
type. This it not so in Python, where variables are typed dynamically. The follow-
ing interactive session with the Python interpreter illustrates this (>>> is the Python
prompt):

>>> b = 2 # b is integer type

>>> print b

2

>>> b = b * 2.0 # Now b is float type

>>> print b

4.0

The assignmentb = 2 creates an association between the nameb and the integer
value 2. The next statement evaluates the expression b * 2.0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment—all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a portion
of the string. Here is an example:

>>> string1 = ’Press return to exit’

>>> string2 = ’the program’

>>> print string1 + ’ ’ + string2 # Concatenation

Press return to exit the program

>>> print string1[0:12] # Slicing

Press return

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

5 1.2 Core Python

A string is an immutable object—its individual characters cannot be modified with
an assignment statement and it has a fixed length. An attempt to violate immutability
will result in TypeError, as shown below.

>>> s = ’Press return to exit’

>>> s[0] = ’p’

Traceback (most recent call last):

File ’’<pyshell#1>’’, line 1, in ?

s[0] = ’p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in paren-
theses. If the tuple contains a single object, the parentheses may be omitted. Tuples
support the same operations as strings; they are also immutable. Here is an example
where the tuple rec contains another tuple (6,23,68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple

>>> lastName,firstName,birthdate = rec # Unpacking the tuple

>>> print firstName

John

>>> birthYear = birthdate[2]

>>> print birthYear

68

>>> name = rec[1] + ’ ’ + rec[0]

>>> print name

John Smith

>>> print rec[0:2]

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of operations
that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print a

[1.0, 2.0, 3.0, 4.0]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

6 Introduction to Python

>>> a.insert(0,0.0) # Insert 0.0 in position 0

>>> print a

[0.0, 1.0, 2.0, 3.0, 4.0]

>>> print len(a) # Determine length of list

5

>>> a[2:4] = [1.0, 1.0] # Modify selected elements

>>> print a

[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

If a is a mutable object, such as a list, the assignment statement b = a does not
result in a new object b, but simply creates a new reference to a. Thus any changes
made to b will be reflected in a. To create an independent copy of a list a, use the
statement c = a[:], as illustrated below.

>>> a = [1.0, 2.0, 3.0]

>>> b = a # ’b’ is an alias of ’a’

>>> b[0] = 5.0 # Change ’b’

>>> print a

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> c = a[:] # ’c’ is an independent copy of ’a’

>>> c[0] = 1.0 # Change ’c’

>>> print a

[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can represented as nested lists with each row being an element of the
list. Here is a 3 × 3 matrix a in the form of a list:

>>> a = [[1, 2, 3], \

[4, 5, 6], \

[7, 8, 9]]

>>> print a[1] # Print second row (element 1)

[4, 5, 6]

>>> print a[1][2] # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python sequences
have zero offset, so that a[0] represents the first row, a[1] the second row, etc. With
very few exceptions we do not use lists for numerical arrays. It is much more convenient

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

7 1.2 Core Python

to employ array objects provided by the numarray module, (an extension of Python
language). Array objects will be discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

% Modular division

Some of these operators are also defined for strings and sequences as illustrated
below.

>>> s = ’Hello ’

>>> t = ’to you’

>>> a = [1, 2, 3]

>>> print 3*s # Repetition

Hello Hello Hello

>>> print 3*a # Repetition

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print a + [4, 5] # Append elements

[1, 2, 3, 4, 5]

>>> print s + t # Concatenation

Hello to you

>>> print 3 + s # This addition makes no sense

Traceback (most recent call last):

File ’’<pyshell#9>’’, line 1, in ?

print n + s

TypeError: unsupported operand types for +: ’int’ and ’str’

Python 2.0 and later versions also have augmented assignment operators, such as
a + = b, that are familiar to the users of C. The augmented operators and the equiv-
alent arithmetic expressions are shown in the following table.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

8 Introduction to Python

a += b a = a + b

a -= b a = a - b

a *= b a = a*b

a /= b a = a/b

a **= b a = a**b

a %= b a = a%b

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators
are

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Numbers of different type (integer, floating point etc.) are converted to a common type
before the comparison is made. Otherwise, objects of different type are considered to
be unequal. Here are a few examples:

>>> a = 2 # Integer

>>> b = 1.99 # Floating point

>>> c = ’2’ # String

>>> print a > b

1

>>> print a == c

0

>>> print (a > b) and (a != c)

1

>>> print (a > b) or (a == b)

1

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

9 1.2 Core Python

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns true.
If the condition returns false, the block skipped. The if conditional can be followed
by any number of elif (short for “else if”) constructs

elif condition:
block

which work in the same manner. The else clause

else:

block

can be used to define the block of statements which are to be executed if none of
the if-elif clauses are true. The function sign of a below illustrates the use of the
conditionals.

def sign_of_a(a):

if a < 0.0:

sign = ’negative’

elif a > 0.0:

sign = ’positive’

else:

sign = ’zero’

return sign

a = 1.5

print ’a is ’ + sign_of_a(a)

Running the program results in the output

a is positive

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

10 Introduction to Python

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is true. After execution of
the block, the condition is evaluated again. If it is still true, the block is executed again.
This process is continued until the condition becomes false. The else clause

else:

block

can be used to define the block of statements which are to be executed if condition is
false. Here is an example that creates the list [1, 1/2, 1/3, . . .]:

nMax = 5

n = 1

a = [] # Create empty list

while n < nMax:

a.append(1.0/n) # Append element to list

n = n + 1

print a

The output of the program is

[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement before in Art. 1.1. This statement requires a target and
a sequence (usually a list) over which the target loops. The form of the construct is

for target in sequence:
block

You may add an else clause which is executed after the for loop has finished. The
previous program could be written with the for construct as

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

11 1.2 Core Python

nMax = 5

a = []

for n in range(1,nMax):

a.append(1.0/n)

print a

Here n is the target and the list [1,2, ...,nMax-1], created by calling the range
function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause
associated with the loop, it is not executed. The following program, which searches
for a name in a list, illustrates the use of break and else in conjunction with a for

loop:

list = [’Jack’, ’Jill’, ’Tim’, ’Dave’]

name = eval(raw_input(’Type a name: ’)) # Python input prompt

for i in range(len(list)):

if list[i] == name:

print name,’is number’,i + 1,’on the list’

break

else:

print name,’is not on the list’

Here are the results of two searches:

Type a name: ’Tim’

Tim is number 3 on the list

Type a name: ’June’

June is not on the list

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are au-
tomatically converted to a common type before the operation is carried out. Type
conversions can also achieved by the following functions:

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

12 Introduction to Python

int(a) Converts a to integer

long(a) Converts a to long integer

float(a) Converts a to floating point

complex(a) Converts to complex a + 0 j

complex(a,b) Converts to complex a + bj

The above functions also work for converting strings to numbers as long as the
literal in the string represents a valid number. Conversion from float to an integer is
carried out by truncation, not by rounding off. Here are a few examples:

>>> a = 5

>>> b = -3.6

>>> d = ’4.0’

>>> print a + b

1.4

>>> print int(b)

-3

>>> print complex(a,b)

(5-3.6j)

>>> print float(d)

4.0

>>> print int(d) # This fails: d is not Int type

Traceback (most recent call last):

File ’’<pyshell#7>’’, line 1, in ?

print int(d)

ValueError: invalid literal for int(): 4.0

Mathematical Functions

Core Python supports only a few mathematical functions. They are:

abs(a) Absolute value of a

max(sequence) Largest element of sequence

min(sequence) Smallest element of sequence

round(a,n) Round a to n decimal places

cmp(a,b) Returns

−1 if a < b

0 if a = b

1 if a > b

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

13 1.2 Core Python

The majority of mathematical functions are available in the math module.

Reading Input

The intrinsic function for accepting user input is

raw input(prompt)

It displays the prompt and then reads a line of input which is converted to a string. To
convert the string into a numerical value use the function

eval(string)

The following program illustrates the use of these functions:

a = raw_input(’Input a: ’)

print a, type(a) # Print a and its type

b = eval(a)

print b,type(b) # Print b and its type

The function type(a) returns the type of the object a; it is a very useful tool in
debugging. The program was run twice with the following results:

Input a: 10.0

10.0 <type ’str’>

10.0 <type ’float’>

Input a: 11**2

11**2 <type ’str’>

121 <type ’int’>

A convenient way to input a number and assign it to the variable a is

a = eval(raw input(prompt))

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

14 Introduction to Python

Printing Output

Output can be displayed with the print statement:

print object1, object2, . . .

which converts object1, object2 etc. to strings and prints them on the same line, sep-
arated by spaces. The newline character ’\n’ can be uses to force a new line. For
example,

>>> a = 1234.56789

>>> b = [2, 4, 6, 8]

>>> print a,b

1234.56789 [2, 4, 6, 8]

>>> print ’a =’,a, ’\nb =’,b

a = 1234.56789

b = [2, 4, 6, 8]

The modulo operator (%) can be used to format a tuple. The form of the conversion
statement is

’%format1 %format2 · · ·’ % tuple

where format1, format2 · · · are the format specifications for each object in the tuple.
Typically used format specifications are

wd Integer

w.df Floating point notation

w.de Exponential notation

where w is the width of the field and d is the number of digits after the decimal
point. The output is right-justified in the specified field and padded with blank spaces
(there are provisions for changing the justification and padding). Here are a couple of
examples:

>>> a = 1234.56789

>>> n = 9876

>>> print ’%7.2f’ % a

1234.57

>>> print ’n = %6d’ % n # Pad with 2 spaces

n = 9876

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

15 1.3 Functions and Modules

>>> print ’n = %06d’ %n # Pad with 2 zeroes

n = 009876

>>> print ’%12.4e %6d’ % (a,n)

1.2346e+003 9876

Error Control

When an error occurs during execution of a program an exception is raised and the
program stops. Exceptions can be caught with try and except statements:

try:

do something
except error:

do something else

where error is the name of a built-in Python exception. If the exception error is not
raised, thetryblock is executed; otherwise the execution passes to theexceptblock.
All exceptions can be caught by omitting error from the except statement.

Here is a statement that raises the exception ZeroDivisionError:

>>> c = 12.0/0.0

Traceback (most recent call last):

File ’’<pyshell#0>’’, line 1, in ?

c = 12.0/0.0

ZeroDivisionError: float division

This error can be caught by

try:

c = 12.0/0.0

except ZeroDivisionError:

print ’Division by zero’

1.3 Functions and Modules

Functions

The structure of a Python function is

def func name(param1, param2,. . .):
statements
return return values

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

16 Introduction to Python

where param1, param2,. . . are the parameters. A parameter can be any Python ob-
ject, including a function. Parameters may be given default values, in which case the
parameter in the function call is optional. If the return statement or return values
are omitted, the function returns the null object.

The following example computes the first two derivatives of arctan(x) by finite
differences:

from math import arctan

def finite_diff(f,x,h=0.0001): # h has a default value

df =(f(x+h) - f(x-h))/(2.0*h)

ddf =(f(x+h) - 2.0*f(x) + f(x-h))/h**2

return df,ddf

x = 0.5

df,ddf = finite_diff(arctan,x) # Uses default value of h

print ’First derivative =’,df

print ’Second derivative =’,ddf

Note that arctan is passed to finite diff as a parameter. The output from the
program is

First derivative = 0.799999999573

Second derivative = -0.639999991892

If a mutable object, such as a list, is passed to a function where it is modified, the
changes will also appear in the calling program. Here is an example:

def squares(a):

for i in range(len(a)):

a[i] = a[i]**2

a = [1, 2, 3, 4]

squares(a)

print a

The output is

[1, 4, 9, 16]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

17 1.4 Mathematics Modules

Modules

It is sound practice to store useful functions in modules. A module is simply a file
where the functions reside; the name of the module is the name of the file. A module
can be loaded into a program by the statement

from module name import *

Python comes with a large number of modules containing functions and methods
for various tasks. Two of the modules are described briefly in the next section. Addi-
tional modules, including graphics packages, are available for downloading on the
Web.

1.4 Mathematics Modules

math Module

Most mathematical functions are not built into core Python, but are available by
loading themathmodule. There are three ways of accessing the functions in a module.
The statement

from math import *

loads all the function definitions in the math module into the current function or
module. The use of this method is discouraged because it is not only wasteful, but can
also lead to conflicts with definitions loaded from other modules.

You can load selected definitions by

from math import func1, func2,. . .

as illustrated below.

>>> from math import log,sin

>>> print log(sin(0.5))

-0.735166686385

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

18 Introduction to Python

The third method, which is used by the majority of programmers, is to make the
module available by

import math

The functions in the module can then be accessed by using the module name as a
prefix:

>>> import math

>>> print math.log(math.sin(0.5))

-0.735166686385

The contents of a module can be printed by calling dir(module). Here is how to
obtain a list of the functions in the math module:

>>> import math

>>> dir(math)

[’__doc__’, ’__name__’, ’acos’, ’asin’, ’atan’,

’atan2’, ’ceil’, ’cos’, ’cosh’, ’e’, ’exp’, ’fabs’,

’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’,

’log10’, ’modf’, ’pi’, ’pow’, ’sin’, ’sinh’, ’sqrt’,

’tan’, ’tanh’]

Most of these functions are familiar to programmers. Note that the module in-
cludes two constants: π and e.

cmath Module

The cmath module provides many of the functions found in the math module, but
these accept complex numbers. The functions in the module are:

[’__doc__’, ’__name__’, ’acos’, ’acosh’, ’asin’, ’asinh’,

’atan’, ’atanh’, ’cos’, ’cosh’, ’e’, ’exp’, ’log’,

’log10’, ’pi’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

Here are examples of complex arithmetic:

>>> from cmath import sin

>>> x = 3.0 -4.5j

>>> y = 1.2 + 0.8j

>>> z = 0.8

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

19 1.5 numarray Module

>>> print x/y

(-2.56205313375e-016-3.75j)

>>> print sin(x)

(6.35239299817+44.5526433649j)

>>> print sin(z)

(0.7173560909+0j)

1.5 numarray Module

General Information

The numarray module2 is not a part of the standard Python release. As pointed out
before, it must be obtained separately and installed (the installation is very easy). The
module introduces array objects which are similar to lists, but can be manipulated by
numerous functions contained in the module. The size of the array is immutable and
no empty elements are allowed.

The complete set of functions in numarray is too long to be printed in its entirety.
The list below is limited to the most commonly used functions.

[’Complex’, ’Complex32’, ’Complex64’, ’Float’,

’Float32’, ’Float64’, ’abs’, ’arccos’,

’arccosh’, ’arcsin’, ’arcsinh’, ’arctan’,

’arctan2’, ’arctanh’, ’argmax’, ’argmin’,

’cos’, ’cosh’, ’diagonal’, ’dot’, ’e’, ’exp’,

’floor’, ’identity’, ’innerproduct’, ’log’,

’log10’, ’matrixmultiply’, ’maximum’, ’minimum’,

’numarray’, ’ones’, ’pi’, ’product’ ’sin’, ’sinh’,

’size’, ’sqrt’, ’sum’, ’tan’, ’tanh’, ’trace’,

’transpose’, ’zeros’]

Creating an Array

Arrays can be created in several ways. One of them is to use the array function to
turn a list into an array:

array(list,type = type specification)

2 Numarray is based on an older Python array module called Numeric. Their interfaces and capa-
bilities are very similar and they are largely compatible. Although Numeric is still available, it is no
longer supported.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

20 Introduction to Python

Here are two examples of creating a 2 × 2 array with floating-point elements:

>>> from numarray import array,Float

>>> a = array([[2.0, -1.0],[-1.0, 3.0]])

>>> print a

[[2. -1.]

[-1. 3.]]

>>> b = array([[2, -1],[-1, 3]],type = Float)

>>> print b

[[2. -1.]

[-1. 3.]]

Other available functions are

zeros((dim1,dim2),type = type specification)

which creates a dim1 × dim2 array and fills it with zeroes, and

ones((dim1,dim2),type = type specification)

which fills the array with ones. The default type in both cases is Int.
Finally, there is the function

arange(from,to,increment)

which works just like the range function, but returns an array rather than a list. Here
are examples of creating arrays:

>>> from numarray import arange,zeros,ones,Float

>>> a = arange(2,10,2)

>>> print a

[2 4 6 8]

>>> b = arange(2.0,10.0,2.0)

>>> print b

[2. 4. 6. 8.]

>>> z = zeros((4))

>>> print z

[0 0 0 0]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

21 1.5 numarray Module

>>> y = ones((3,3),type= Float)

>>> print y

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

Accessing and Changing Array Elements

If a is a rank-2 array, then a[i,j] accesses the element in row i and column j, whereas
a[i] refers to row i. The elements of an array can be changed by assignment as shown
below.

>>> from numarray import *

>>> a = zeros((3,3),type=Float)

>>> a[0] = [2.0, 3.1, 1.8] # Change a row

>>> a[1,1] = 5.2 # Change an element

>>> a[2,0:2] = [8.0, -3.3] # Change part of a row

>>> print a

[[2. 3.1 1.8]

[0. 5.2 0.]

[8. -3.3 0.]]

Operations on Arrays

Arithmetic operators work differently on arrays than they do on tuples and lists—the
operation is broadcast to all the elements of the array; that is, the operation is applied
to each element in the array. Here are examples:

>>> from numarray import array

>>> a = array([0.0, 4.0, 9.0, 16.0])

>>> print a/16.0

[0. 0.25 0.5625 1.]

>>> print a - 4.0

[-4. 0. 5. 12.]

The mathematical functions available in numarray are also broadcast, as illus-
trated below

>>> from numarray import array,sqrt,sin

>>> a = array([1.0, 4.0, 9.0, 16.0])

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

22 Introduction to Python

>>> print sqrt(a)

[1. 2. 3. 4.]

>>> print sin(a)

[0.84147098 -0.7568025 0.41211849 -0.28790332]

Functions imported from the mathmodule will work on the individual elements,
of course, but not on the array itself. Here is an example:

>>> from numarray import array

>>> from math import sqrt

>>> a = array([1.0, 4.0, 9.0, 16.0])

>>> print sqrt(a[1])

2.0

>>> print sqrt(a)

Traceback (most recent call last):

...

TypeError: Only rank-0 arrays can be cast to floats.

Array Functions

There are numerous array functions innumarray that perform matrix operations and
other useful tasks. Here are a few examples:

>>> from numarray import *

>>> a = array([[4.0, -2.0, 1.0], \

[-2.0, 4.0, -2.0], \

[1.0, -2.0, 3.0]])

>>> b = array([1.0, 4.0, 2.0])

>>> print dot(b,b) # Dot product

21.0

>>> print matrixmultiply(a,b) # Matrix multiplication

[-2. 10. -1.]

>>> print diagonal(a) # Principal diagonal

[4. 4. 3.]

>>> print diagonal(a,1) # First subdiagonal

[-2. -2.]

>>> print trace(a) # Sum of diagonal elements

11.0

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

23 1.6 Scoping of Variables

>>> print argmax(b) # Index of largest element

1

>>> print identity(3) # Identity matrix

[[1 0 0]

[0 1 0]

[0 0 1]]

Copying Arrays

We explained before that if a is a mutable object, such as a list, the assignment state-
ment b = a does not result in a new object b, but simply creates a new reference to
a, called a deep copy. This also applies to arrays. To make an independent copy of an
array a, use the copy method in the numarray module:

b = a.copy()

1.6 Scoping of Variables

Namespace is a dictionary that contains the names of the variables and their values.
The namespaces are automatically created and updated as a program runs. There are
three levels of namespaces in Python:

� Local namespace, which is created when a function is called. It contains the
variables passed to the function as arguments and the variables created within
the function. The namespace is deleted when the function terminates. If a variable
is created inside a function, its scope is the function’s local namespace. It is not
visible outside the function.

� A global namespace is created when a module is loaded. Each module has its own
namespace. Variables assigned in a global namespace are visible to any function
within the module.

� Built-in namespace is created when the interpreter starts. It contains the functions
that come with the Python interpreter. These functions can be accessed by any
program unit.

When a name is encountered during execution of a function, the interpreter
tries to resolve it by searching the following in the order shown: (1) local namespace,
(2) global namespace, and (3) built-in namespace. If the name cannot be resolved,
Python raises a NameError exception.

Since the variables residing in a global namespace are visible to functions within
the module, it is not necessary to pass them to the functions as arguments (although
is good programming practice to do so), as the following program illustrates.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

24 Introduction to Python

def divide():

c = a/b

print ’a/b =’,c

a = 100.0

b = 5.0

divide()

>>>

a/b = 20.0

Note that the variable c is created inside the function divide and is thus not
accessible to statements outside the function. Hence an attempt to move the print
statement out of the function fails:

def divide():

c = a/b

a = 100.0

b = 5.0

divide()

print ’a/b =’,c

>>>

Traceback (most recent call last):

File ’’C:\Python22\scope.py’’, line 8, in ?

print c

NameError: name ’c’ is not defined

1.7 Writing and Running Programs

When the Python editor Idle is opened, the user is faced with the prompt >>>, in-
dicating that the editor is in interactive mode. Any statement typed into the edi-
tor is immediately processed upon pressing the enter key. The interactive mode is a
good way to learn the language by experimentation and to try out new programming
ideas.

Opening a new window places Idle in the batch mode, which allows typing and
saving of programs. One can also use a text editor to enter program lines, but Idle has
Python-specific features, such as color coding of keywords and automatic indentation,
that make work easier. Before a program can be run, it must be saved as a Python file
with the.py extension, e.g.,myprog.py. The program can then be executed by typing

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

25 1.7 Writing and Running Programs

python myprog.py; in Windows, double-clicking on the program icon will also work.
But beware: the program window closes immediately after execution, before you get
a chance to read the output. To prevent this from happening, conclude the program
with the line

raw input(’press return’)

Double-clicking the program icon also works in Unix and Linux if the first line
of the program specifies the path to the Python interpreter (or a shell script that
provides a link to Python). The path name must be preceded by the symbols#!. On my
computer the path is /usr/bin/python, so that all my programs start with the line

#!/usr/bin/python

On multiuser systems the path is usually /usr/local/bin/python.
When a module is loaded into a program for the first time with the import state-

ment, it is compiled into bytecode and written in a file with the extension .pyc. The
next time the program is run, the interpreter loads the bytecode rather than the origi-
nal Python file. If in the meantime changes have been made to the module, the module
is automatically recompiled. A program can also be run from Idle using edit/run script
menu, but automatic recompilation of modules will not take place, unless the existing
bytecode file is deleted and the program window is closed and reopened.

Python’s error messages can sometimes be confusing, as seen in the following
example:

from numarray import array

a = array([1.0, 2.0, 3.0]

print a

raw_input(’press return’)

The output is

File ’’C:\Python22\test_module.py’’, line 3

print a

ˆ

SyntaxError: invalid syntax

What could possibly be wrong with the line print a? The answer is nothing. The
problem is actually in the preceding line, where the closing parenthesis is missing,

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

26 Introduction to Python

making the statement incomplete. Consequently, the interpreter views the third line
as continuation of the second line, so that it tries to interpret the statement

a = array([1.0, 2.0, 3.0]print a

The lesson is this: when faced with a SyntaxError, look at the line preceding the
alleged offender. It can save a lot of frustration.

It is a good idea to document your modules by adding a docstring the beginning of
each module. The docstring, which is enclosed in triple quotes, should explain what
the module does. Here is an example that documents the module error (we use this
module in several of our programs):

module error

’’’ err(string).

Prints ’string’ and terminates program.

’’’

import sys

def err(string):

print string

raw_input(’Press return to exit’)

sys.exit()

The docstring of a module can be printed with the statement

print module name. doc

For example, the docstring of error is displayed by

>>> import error

>>> print error.__doc__

err(string).

Prints ’string’ and terminates program.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

2 Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns.
It is by far the longest and arguably the most important topic in the book. There is a
good reason for this—it is almost impossible to carry out numerical analysis of any sort
without encountering simultaneous equations. Moreover, equation sets arising from
physical problems are often very large, consuming a lot of computational resources.
It usually possible to reduce the storage requirements and the run time by exploiting
special properties of the coefficient matrix, such as sparseness (most elements of a
sparse matrix are zero). Hence there are many algorithms dedicated to the solution of
large sets of equations, each one being tailored to a particular form of the coefficient
matrix (symmetric, banded, sparse etc.). A well-known collection of these routines is
LAPACK—Linear Algebra PACKage, originally written in Fortran773.

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

A11x1 + A12x2 + · · · + A1nxn = b1

3 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

27

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

28 Systems of Linear Algebraic Equations

A21x1 + A22x2 + · · · + A2nxn = b2 (2.1)

...

An1x1 + An2x2 + · · · + Annxn = bn

where the coefficients Ai j and the constants bj are known, and xi represent the un-
knowns. In matrix notation the equations are written as

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

x1

x2

...
xn

 =

b1

b2

...
bn

 (2.2)

or, simply

Ax = b (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix obtained by adjoining the constant vector b to the
coefficient matrix A in the following fashion:

[
A b

]
=

A11 A12 · · · A1n b1

A21 A22 · · · A2n b2

...
...

. . .
...

...
An1 An2 · · · Ann bn

 (2.4)

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular; that is, |A| �= 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x + y = 3 4x + 2y = 6

Since the second equation can be obtained by multiplying the first equation by two,
any combination of x and y that satisfies the first equation is also a solution of the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

29 2.1 Introduction

second equation. The number of such combinations is infinite. On the other hand,
the equations

2x + y = 3 4x + 2y = 0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot satisfy
the other one.

Ill-Conditioning

An obvious question is: what happens when the coefficient matrix is almost singular;
i.e., if |A| is very small? In order to determine whether the determinant of the coefficient
matrix is “small,” we need a reference against which the determinant can be measured.
This reference is called the norm of the matrix and is denoted by ‖A‖. We can then say
that the determinant is small if

|A| << ‖A‖

Several norms of a matrix have been defined in existing literature, such as

‖A‖ =
√√√√ n∑

i=1

n∑
j=1

A2
i j ‖A‖ = max

1≤i≤n

n∑
j=1

∣∣Ai j

∣∣ (2.5a)

A formal measure of conditioning is the matrix condition number, defined as

cond(A) = ‖A‖ ∥∥A−1
∥∥ (2.5b)

If this number is close to unity, the matrix is well-conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the matrix
norm. Unfortunately, the condition number is expensive to compute for large matri-
ces. In most cases it is sufficient to gauge conditioning by comparing the determinant
with the magnitudes of the elements in the matrix.

If the equations are ill-conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, consider the equations

2x + y = 3 2x + 1.001y = 0

that have the solution x = 1501.5, y = −3000. Since |A| = 2(1.001) − 2(1) = 0.002 is
much smaller than the coefficients, the equations are ill-conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = −1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution!

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

30 Systems of Linear Algebraic Equations

Numerical solutions of ill-conditioned equations are not to be trusted. The reason
is that the inevitable roundoff errors during the solution process are equivalent to in-
troducing small changes into the coefficient matrix. This in turn introduces large errors
into the solution, the magnitude of which depends on the severity of ill-conditioning.
In suspect cases the determinant of the coefficient matrix should be computed so that
the degree of ill-conditioning can be estimated. This can be done during or after the
solution with only a small computational effort.

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems (any
system whose response is proportional to the input is deemed to be linear). Linear
systems include structures, elastic solids, heat flow, seepage of fluids, electromagnetic
fields and electric circuits, i.e., most topics taught in an engineering curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints
are written down. The unknowns x1, x2, . . . , xn represent the forces in the members
and the support reactions, and the constants b1, b2, . . . , bn are the prescribed external
loads.

The behavior of continuous systems is described by differential equations, rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the same:
solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations of
the form Ax = b, where b is the input and x represents the response of the system. The
coefficient matrix A, which reflects the characteristics of the system, is independent
of the input. In other words, if the input is changed, the equations have to be solved
again with a different b, but the same A. Therefore, it is desirable to have an equa-
tion solving algorithm that can handle any number of constant vectors with minimal
computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that they

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

31 2.1 Introduction

transform the original equations into equivalent equations (equations that have the
same solution) that can be solved more easily. The transformation is carried out by
applying the three operations listed below. These so-called elementary operations do
not change the solution, but they may affect the determinant of the coefficient matrix
as indicated in parenthesis.

� Exchanging two equations (changes sign of |A|).
� Multiplying an equation by a nonzero constant (multiplies |A| by the same

constant).
� Multiplying an equation by a nonzero constant and then subtracting it from an-

other equation (leaves |A| unchanged).

Iterative, or indirect methods, start with a guess of the solution x, and then re-
peatedly refine the solution until a certain convergence criterion is reached. Iterative
methods are generally less efficient than their direct counterparts due to the large
number of iterations required. But they do have significant computational advan-
tages if the coefficient matrix is very large and sparsely populated (most coefficients
are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary operations
to produce its own final form of easy-to-solve equations.

Method Initial form Final form

Gauss elimination Ax = b Ux = c

LU decomposition Ax = b LUx = b

Gauss–Jordan elimination Ax = b Ix = c

Table 2.1

In the above table U represents an upper triangular matrix, L is a lower triangular
matrix and I denotes the identity matrix. A square matrix is called triangular if it
contains only zero elements on one side of the leading diagonal. Thus a 3 × 3 upper
triangular matrix has the form

U =

U11 U12 U13

0 U22 U23

0 0 U33

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

32 Systems of Linear Algebraic Equations

and a 3 × 3 lower triangular matrix appears as

L =

L11 0 0

L21 L22 0
L31 L32 L33

Triangular matrices play an important role in linear algebra, since they simplify
many computations. For example, consider the equations Lx = c, or

L11x1 = c1

L21x1 + L22x2 = c2

L31x1 + L32x2 + L33x3 = c3

...

If we solve the equations forward, starting with the first equation, the computations
are very easy, since each equation contains only one unknown at a time. The solution
would thus proceed as follows:

x1 = c1/L11

x2 = (c2 − L21x1)/L22

x3 = (c3 − L31x1 − L32x2)/L33

...

This procedure is known as forward substitution. In a similar way, Ux = c,encountered
in Gauss elimination, can easily be solved by back substitution, which starts with the
last equation and proceeds backward through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux = y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y by means of back substitution.

The equations Ix = c, which are produced by Gauss–Jordan elimination, are
equivalent to x = c (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

A =

2.1 −0.6 1.1

3.2 4.7 −0.8
3.1 −6.5 4.1

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

33 2.2 Gauss Elimination Method

Solution Laplace’s development of the determinant (see Appendix A2) about the first
row of A yields

|A| = 2.1

∣∣∣∣∣ 4.7 −0.8
−6.5 4.1

∣∣∣∣∣ − (−0.6)

∣∣∣∣∣3.2 −0.8
3.1 4.1

∣∣∣∣∣ + 1.1

∣∣∣∣∣3.2 4.7
3.1 −6.5

∣∣∣∣∣
= 2.1(14.07) + 0.6(15.60) + 1.1(−35.37) = 0

Since the determinant is zero, the matrix is singular. It can be verified that the singu-
larity is due to the following row dependency: (row 3) = (3 × row 1) − (row 2).

EXAMPLE 2.2
Solve the equations Ax = b, where

A =

 8 −6 2

−4 11 −7
4 −7 6

 b =

 28

−40
33

knowing that the LU decomposition of the coefficient matrix is (you should verify this)

A = LU =

 2 0 0

−1 2 0
1 −1 1

4 −3 1

0 4 −3
0 0 2

Solution We first solve the equations Ly = b by forward substitution:

2y1 = 28 y1 = 28/2 = 14
−y1 + 2y2 = −40 y2 = (−40 + y1)/2 = (−40 + 14)/2 = −13
y1 − y2 + y3 = 33 y3 = 33 − y1 + y2 = 33 − 14 − 13 = 6

The solution x is then obtained from Ux = y by back substitution:

2x3 = y3 x3 = y3/2 = 6/2 = 3
4x2 − 3x3 = y2 x2 = (y2 + 3x3)/4 = [−13 + 3(3)] /4 = −1

4x1 − 3x2 + x3 = y1 x1 = (y1 + 3x2 − x3)/4 = [14 + 3(−1) − 3] /4 = 2

Hence the solution is x =
[

2 −1 3
]T

2.2 Gauss Elimination Method

Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

34 Systems of Linear Algebraic Equations

form Ux = c. The equations are then solved by back substitution. In order to illustrate
the procedure, let us solve the equations

4x1 − 2x2 + x3 = 11 (a)

−2x1 + 4x2 − 2x3 = −16 (b)

x1 − 2x2 + 4x3 = 17 (c)

Elimination phase The elimination phase utilizes only one of the elementary op-
erations listed in Table 2.1—multiplying one equation (say, equation j) by a constant
λ and subtracting it from another equation (equation i). The symbolic representation
of this operation is

Eq. (i) ← Eq. (i) − λ × Eq. (j) (2.6)

The equation being subtracted, namely Eq. (j), is called the pivot equation.
We start the elimination by taking Eq. (a) to be the pivot equation and choosing

the multipliers λ so as to eliminate x1 from Eqs. (b) and (c):

Eq. (b) ← Eq. (b) − (− 0.5) × Eq. (a)

Eq. (c) ← Eq. (c) − 0.25 × Eq. (a)

After this transformation, the equations become

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

−1.5x2 + 3.75x3 = 14.25 (c)

This completes the first pass. Now we pick (b) as the pivot equation and eliminate x2

from (c):

Eq. (c) ← Eq. (c) − (− 0.5) × Eq.(b)

which yields the equations

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

3x3 = 9 (c)

The elimination phase is now complete. The original equations have been replaced
by equivalent equations that can be easily solved by back substitution.

As pointed out before, the augmented coefficient matrix is a more conve-
nient instrument for performing the computations. Thus the original equations

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

35 2.2 Gauss Elimination Method

would be written as
 4 −2 1 11

−2 4 −2 −16
1 −2 4 17

and the equivalent equations produced by the first and the second passes of Gauss
elimination would appear as

4 −2 1 11.00
0 3 −1.5 −10.50
0 −1.5 3.75 14.25

4 −2 1 11.0

0 3 −1.5 −10.5
0 0 3 9.0

It is important to note that the elementary row operation in Eq. (2.6) leaves the de-
terminant of the coefficient matrix unchanged. This is rather fortunate, since the de-
terminant of a triangular matrix is very easy to compute—it is the product of the
diagonal elements. In other words,

|A| = |U| = U11 × U22 × · · · × Unn (2.7)

Back substitution phase The unknowns can now be computed by back substitu-
tion in the manner described in the previous article. Solving Eqs. (c), (b) and (a) in
that order, we get

x3 = 9/3 = 3

x2 = (−10.5 + 1.5x3)/3 = [−10.5 + 1.5(3)]/3 = −2

x1 = (11 + 2x2 − x3)/4 = [11 + 2(−2) − 3]/4 = 1

Algorithm for Gauss Elimination Method

Elimination phase
Let us look at the equations at some instant during the elimination phase. Assume that
the first krows of A have already been transformed to upper triangular form. Therefore,
the current pivot equation is the kth equation, and all the equations below it are still to
be transformed. This situation is depicted by the augmented coefficient matrix shown
below. Note that the components of A are not the coefficients of the original equations
(except for the first row), since they have been altered by the elimination procedure.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

36 Systems of Linear Algebraic Equations

The same applies to the components of the constant vector b.

A11 A12 A13 · · · A1k · · · A1 j · · · A1n b1

0 A22 A23 · · · A2k · · · A2 j · · · A2n b2

0 0 A33 · · · A3k · · · A3 j · · · A3n b3

...
...

...
...

...
...

...
0 0 0 · · · Akk · · · Akj · · · Akn bk

...
...

...
...

...
...

...
0 0 0 · · · Aik · · · Ai j · · · Ain bi

...
...

...
...

...
...

...
0 0 0 · · · Ank · · · Anj · · · Ann bn

← pivot row

← row being
transformed

Let the ith row be a typical row below the pivot equation that is to be transformed,
meaning that the element Aik is to be eliminated. We can achieve this by multiplying
the pivot row by λ = Aik/Akk and subtracting it from the ith row. The corresponding
changes in the ith row are

Ai j ← Ai j − λAkj , j = k, k + 1, . . . , n (2.8a)

bi ← bi − λbk (2.8b)

To transform the entire coefficient matrix to upper triangular form, k and i in Eqs. (2.8)
must have the ranges k = 1, 2, . . . , n − 1 (chooses the pivot row), i = k + 1, k + 2 . . . , n
(chooses the row to be transformed). The algorithm for the elimination phase now
almost writes itself:

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

In order to avoid unnecessary operations, the above algorithm departs slightly
from Eqs. (2.8) in the following ways:

� If Aik happens to be zero, the transformation of row i is skipped.
� The index j in Eq. (2.8a) starts with k + 1 rather than k. Therefore, Aik is not

replaced by zero, but retains its original value. As the solution phase never accesses
the lower triangular portion of the coefficient matrix anyway, its contents are
irrelevant.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

37 2.2 Gauss Elimination Method

Back Substitution Phase
After Gauss elimination the augmented coefficient matrix has the form

[
A b

]
=

A11 A12 A13 · · · A1n b1

0 A22 A23 · · · A2n b2

0 0 A33 · · · A3n b3

...
...

...
...

...
0 0 0 · · · Ann bn

The last equation, Annxn = bn, is solved first, yielding

xn = bn/Ann (2.9)

Consider now the stage of back substitution where xn, xn−1, . . . , xk+1 have been
already been computed (in that order), and we are about to determine xk from the kth
equation

Akkxk + Ak,k+1xk+1 + · · · + Aknxn = bk

The solution is

xk =
(

bk −
n∑

j=k+1

Akj xj

)
1

Akk
, k = n − 1, n − 2, . . . , 1 (2.10)

The corresponding algorithm for back substitution is:

for k in range(n-1,-1,-1):

x[k]=(b[k] - dot(a[k,k+1:n],x[k+1:n]))/a[k,k]

� gaussElimin

The function gaussElimin combines the elimination and the back substitution
phases. During back substitution b is overwritten by the solution vector x, so that
b contains the solution upon exit.

module gaussElimin

’’’ x = gaussElimin(a,b).

Solves [a]{b} = {x} by Gauss elimination.

’’’

from numarray import dot

def gaussElimin(a,b):

n = len(b)

Elimination phase

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

38 Systems of Linear Algebraic Equations

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

Back substitution

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

Multiple Sets of Equations

As mentioned before, it is frequently necessary to solve the equations Ax = b for several
constant vectors. Let there be msuch constant vectors, denoted by b1, b2, . . . , bm and
let the corresponding solution vectors be x1, x2, . . . , xm. We denote multiple sets of
equations by AX = B, where

X =
[

x1 x2 · · · xm

]
B =

[
b1 b2 · · · bm

]
are n × m matrices whose columns consist of solution vectors and constant vectors,
respectively.

An economical way to handle such equations during the elimination phase is
to include all m constant vectors in the augmented coefficient matrix, so that they
are transformed simultaneously with the coefficient matrix. The solutions are then
obtained by back substitution in the usual manner, one vector at a time. It would
be quite easy to make the corresponding changes in gaussElimin. However, the LU
decomposition method, described in the next article, is more versatile in handling
multiple constant vectors.

EXAMPLE 2.3
Use Gauss elimination to solve the equations AX = B, where

A =

 6 −4 1

−4 6 −4
1 −4 6

 B =

−14 22

36 −18
6 7

Solution The augmented coefficient matrix is
 6 −4 1 −14 22

−4 6 −4 36 −18
1 −4 6 6 7

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

39 2.2 Gauss Elimination Method

The elimination phase consists of the following two passes:

row 2 ← row 2 + (2/3) × row 1

row 3 ← row 3 − (1/6) × row 1
6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 −10/3 35/6 25/3 10/3

and

row 3 ← row 3 + row 2
6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 0 5/2 35 0

In the solution phase, we first compute x1 by back substitution:

X31 = 35
5/2

= 14

X21 = 80/3 + (10/3)X31

10/3
= 80/3 + (10/3)14

10/3
= 22

X11 = −14 + 4X21 − X31

6
= −14 + 4(22) − 14

6
= 10

Thus the first solution vector is

x1 =
[

X11 X21 X31

]T
=

[
10 22 14

]T

The second solution vector is computed next, also using back substitution:

X32 = 0

X22 = −10/3 + (10/3)X32

10/3
= −10/3 + 0

10/3
= −1

X12 = 22 + 4X22 − X32

6
= 22 + 4(−1) − 0

6
= 3

Therefore,

x2 =
[

X12 X22 X32

]T
=

[
3 −1 0

]T

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

40 Systems of Linear Algebraic Equations

EXAMPLE 2.4
An n × n Vandermode matrix A is defined by

Ai j = vn− j
i , i = 1, 2, . . . , n, j = 1, 2, . . . , n

where v is a vector. Use the function gaussElimin to compute the solution of Ax = b,
where A is the 6 × 6 Vandermode matrix generated from the vector

v =
[

1.0 1.2 1.4 1.6 1.8 2.0
]T

and

b =
[

0 1 0 1 0 1
]T

Also evaluate the accuracy of the solution (Vandermode matrices tend to be ill-
conditioned).

Solution
#!/usr/bin/python

example2_4

from numarray import zeros,Float64,array,product, \

diagonal,matrixmultiply

from gaussElimin import *

def vandermode(v):

n = len(v)

a = zeros((n,n),type=Float64)

for j in range(n):

a[:,j] = v**(n-j-1)

return a

v = array([1.0, 1.2, 1.4, 1.6, 1.8, 2.0])

b = array([0.0, 1.0, 0.0, 1.0, 0.0, 1.0])

a = vandermode(v)

aOrig = a.copy() # Save original matrix

bOrig = b.copy() # and the constant vector

x = gaussElimin(a,b)

det = product(diagonal(a))

print ’x =\n’,x

print ’\ndet =’,det

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

41 2.3 LU Decomposition Methods

print ’\nCheck result: [a]{x} - b =\n’, \

matrixmultiply(aOrig,x) - bOrig

raw_input(’’\nPress return to exit’’)

The program produced the following results:

x =

[416.66666667 -3125.00000004 9250.00000012 -13500.00000017

9709.33333345 -2751.00000003]

det = -1.13246207999e-006

Check result: [a]{x} - b =

[-4.54747351e-13 4.54747351e-13 -1.36424205e-12 4.54747351e-13

-3.41060513e-11 9.54969437e-12]

As the determinant is quite small relative to the elements of A (you may want to
print A to verify this), we expect detectable roundoff error. Inspection of x leads us to
suspect that the exact solution is

x =
[

1250/3 −3125 9250 −13500 29128/3 −2751
]T

in which case the numerical solution would be accurate to about 10 decimal places.
Another way to gauge the accuracy of the solution is to compute Ax − b (the result
should be 0). The printout indicates that the solution is indeed accurate to at least
10 decimal places.

2.3 LU Decomposition Methods

Introduction

It is possible to show that any square matrix A can be expressed as a product of a lower
triangular matrix L and an upper triangular matrix U:

A = LU (2.11)

The process of computing L and U for a given A is known as LU decomposition or
LU factorization. LU decomposition is not unique (the combinations of L and U for
a prescribed A are endless), unless certain constraints are placed on L or U. These
constraints distinguish one type of decomposition from another. Three commonly
used decompositions are listed in Table 2.2.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

42 Systems of Linear Algebraic Equations

Name Constraints

Doolittle’s decomposition Lii = 1, i = 1, 2, . . . , n

Crout’s decomposition Uii = 1, i = 1, 2, . . . , n

Choleski’s decomposition L = UT

Table 2.2

After decomposing A, it is easy to solve the equations Ax = b, as pointed out in
Art. 2.1. We first rewrite the equations as LUx = b. Upon using the notation Ux = y,
the equations become

Ly = b

which can be solved for y by forward substitution. Then

Ux = y

will yield x by the back substitution process.
The advantage of LU decomposition over the Gauss elimination method is that

once A is decomposed, we can solve Ax = b for as many constant vectors b as we
please. The cost of each additional solution is relatively small, since the forward and
back substitution operations are much less time consuming than the decomposition
process.

Doolittle’s Decomposition Method

Decomposition Phase
Doolittle’s decomposition is closely related to Gauss elimination. In order to illustrate
the relationship, consider a 3 × 3 matrix A and assume that there exist triangular
matrices

L =

 1 0 0

L21 1 0
L31 L32 1

 U =

U11 U12 U13

0 U22 U23

0 0 U33

such that A = LU. After completing the multiplication on the right hand side, we get

A =

U11 U12 U13

U11 L21 U12 L21 + U22 U13 L21 + U23

U11 L31 U12 L31 + U22 L32 U13 L31 + U23 L32 + U33

 (2.12)

Let us now apply Gauss elimination to Eq. (2.12). The first pass of the elimina-
tion procedure consists of choosing the first row as the pivot row and applying the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

43 2.3 LU Decomposition Methods

elementary operations

row 2 ← row 2 − L21 × row 1 (eliminates A21)

row 3 ← row 3 − L31 × row 1 (eliminates A31)

The result is

A′ =

U11 U12 U13

0 U22 U23

0 U22 L32 U23 L32 + U33

In the next pass we take the second row as the pivot row, and utilize the operation

row 3 ← row 3 − L32 × row 2 (eliminates A32)

ending up with

A′′ = U =

U11 U12 U13

0 U22 U23

0 0 U33

The foregoing illustration reveals two important features of Doolittle’s decompo-
sition:

� The matrix U is identical to the upper triangular matrix that results from Gauss
elimination.

� The off-diagonal elements of L are the pivot equation multipliers used during
Gauss elimination; that is, Li j is the multiplier that eliminated Ai j .

It is usual practice to store the multipliers in the lower triangular portion of the
coefficient matrix, replacing the coefficients as they are eliminated (Li j replacing Ai j).
The diagonal elements of L do not have to be stored, since it is understood that each
of them is unity. The final form of the coefficient matrix would thus be the following
mixture of L and U:

[L\U] =

U11 U12 U13

L21 U22 U23

L31 L32 U33

 (2.13)

The algorithm for Doolittle’s decomposition is thus identical to the Gauss elimi-
nation procedure in gaussElimin, except that each multiplier λ is now stored in the
lower triangular portion of A:

for k in range(0,n-1):

for i in range(k+1,n):

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

44 Systems of Linear Algebraic Equations

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

Solution Phase
Consider now the procedure for solving Ly = b by forward substitution. The scalar
form of the equations is (recall that Lii = 1)

y1 = b1

L21 y1 + y2 = b2

...

Lk1 y1 + Lk2 y2 + · · · + Lk,k−1 yk−1 + yk = bk

...

Solving the k th equation for yk yields

yk = bk −
k−1∑
j=1

Lkj yj , k = 2, 3, . . . , n (2.14)

Therefore, the forward substitution algorithm is

y[0] = b[0]

for k in range(1,n):

y[k] = b[k] - dot(a[k,0:k],y[0:k])

The back substitution phase for solving Ux = y is identical to that used in the
Gauss elimination method.

� LUdecomp

This module contains both the decomposition and solution phases. The decompo-
sition phase returns the matrix [L\U] shown in Eq. (2.13). In the solution phase, the
contents of b are replaced by y during forward substitution. Similarly, back substitu-
tion overwrites y with the solution x.

module LUdecomp

’’’ a = LUdecomp(a).

LU decomposition: [L][U] = [a]. The returned matrix

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

45 2.3 LU Decomposition Methods

[a] = [L\U] contains [U] in the upper triangle and

the nondiagonal terms of [L] in the lower triangle.

x = LUsolve(a,b).

Solves [L][U]{x} = b, where [a] = [L\U] is the matrix

returned from LUdecomp.

’’’

from numarray import dot

def LUdecomp(a):

n = len(a)

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

return a

def LUsolve(a,b):

n = len(a)

for k in range(1,n):

b[k] = b[k] - dot(a[k,0:k],b[0:k])

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

Choleski’s Decomposition

Choleski’s decomposition A = LLT has two limitations:

� Since LLT is always a symmetric matrix, Choleski’s decomposition requires A to
be symmetric.

� The decomposition process involves taking square roots of certain combinations
of the elements of A. It can be shown that in order to avoid square roots of negative
numbers A must be positive definite.

Although the number of multiplications in all the decomposition methods is
about the same, Choleski’s decomposition is not a particularly popular means of

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

46 Systems of Linear Algebraic Equations

solving simultaneous equations due to the restrictions listed above. We study it here
because it is invaluable in certain applications that we encounter later on.

Let us start by looking at Choleski’s decomposition

A = LLT (2.15)

of a 3 × 3 matrix:

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

L11 0 0

L21 L22 0
L31 L32 L33

L11 L21 L31

0 L22 L32

0 0 L33

After completing the matrix multiplication on the right hand side, we get

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

 (2.16)

Note that the right-hand-side matrix is symmetric, as pointed out before. Equating the
matrices A and LLT element-by-element, we obtain six equations (due to symmetry
only lower or upper triangular elements have to be considered) in the six unknown
components of L. By solving these equations in a certain order, it is possible to have
only one unknown in each equation.

Consider the lower triangular portion of each matrix in Eq. (2.16) (the upper
triangular portion would do as well). By equating the elements in the first column,
starting with the first row and proceeding downward, we can compute L11, L21 and
L31 in that order:

A11 = L2
11 L11 =

√
A11

A21 = L11 L21 L21 = A21/L11

A31 = L11 L31 L31 = A31/L11

The second column, starting with second row, yields L22 and L32:

A22 = L2
21 + L2

22 L22 =
√

A22 − L2
21

A32 = L21 L31 + L22 L32 L32 = (A32 − L21 L31)/L22

Finally the third column, third row gives us L33:

A33 = L2
31 + L2

32 + L2
33 L33 =

√
A33 − L2

31 − L2
32

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

47 2.3 LU Decomposition Methods

We can now extrapolate the results for an n × n matrix. We observe that a typical
element in the lower-triangular portion of LLT is of the form

(LLT)i j = Li1 L j1 + Li2 L j2 + · · · + Li j L j j =
j∑

k=1

LikL jk, i ≥ j

Equating this term to the corresponding element of A yields

Ai j =
j∑

k=1

LikL jk, i = j, j + 1, . . . , n, j = 1, 2, . . . , n (2.17)

The range of indices shown limits the elements to the lower triangular part. For the
first column (j = 1), we obtain from Eq. (2.17)

L11 =
√

A11 Li1 = Ai1/L11, i = 2, 3, . . . , n (2.18)

Proceeding to other columns, we observe that the unknown in Eq. (2.17) is Li j (the
other elements of L appearing in the equation have already been computed). Taking
the term containing Li j outside the summation in Eq. (2.17), we obtain

Ai j =
j−1∑
k=1

LikL jk + Li j L j j

If i = j (a diagonal term) , the solution is

L j j =
√√√√A j j −

j−1∑
k=1

L2
jk, j = 2, 3, . . . , n (2.19)

For a nondiagonal term we get

Li j =
(

Ai j −
j−1∑
k=1

LikL jk

)
/L j j , j = 2, 3, . . . , n − 1, i = j + 1, j + 2, . . . , n (2.20)

� choleski(a)

Before presenting the algorithm for Choleski’s decomposition, we make a useful obser-
vation: Ai j appears only in the formula for Li j . Therefore, once Li j has been computed,
Ai j is no longer needed. This makes it possible to write the elements of L over the lower
triangular portion of A as they are computed. The elements above the leading diag-
onal of A will remain untouched. The function listed below implements Choleski’s
decomposition. If a negative diagonal term is encountered during decomposition, an
error message is printed and the program is terminated.

module choleski

’’’ L = choleski(a).

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

48 Systems of Linear Algebraic Equations

Choleski decomposition: [L][L]transpose = [a].

’’’

from numarray import dot

from math import sqrt

import error

def choleski(a):

n = len(a)

for k in range(n):

try:

a[k,k] = sqrt(a[k,k] - dot(a[k,0:k],a[k,0:k]))

except ValueError:

error.err(’Matrix is not positive definite’)

for i in range(k+1,n):

a[i,k] = (a[i,k] - dot(a[i,0:k],a[k,0:k]))/a[k,k]

for k in range(1,n): a[0:k,k] = 0.0

return a

We could also write the algorithm for forward and back substitutions that are
necessary in the solution of Ax = b. But since Choleski’s decomposition has no ad-
vantages over Doolittle’s decomposition in the solution of simultaneous equations,
we will skip that.

EXAMPLE 2.5
Use Doolittle’s decomposition method to solve the equations Ax = b, where

A =

1 4 1

1 6 −1
2 −1 2

 b =

 7

13
5

Solution We first decompose A by Gauss elimination. The first pass consists of the
elementary operations

row 2 ← row 2 − 1 × row 1 (eliminates A21)

row 3 ← row 3 − 2 × row 1 (eliminates A31)

Storing the multipliers L21 = 1 and L31 = 2 in place of the eliminated terms, we obtain

A′ =

1 4 1

1 2 −2
2 −9 0

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

49 2.3 LU Decomposition Methods

The second pass of Gauss elimination uses the operation

row 3 ← row 3 − (−4.5) × row 2 (eliminates A32)

Storing the multiplier L32 = −4.5 in place of A32, we get

A′′ = [L\U] =

1 4 1

1 2 −2
2 −4.5 −9

The decomposition is now complete, with

L =

1 0 0

1 1 0
2 −4.5 1

 U =

1 4 1

0 2 −2
0 0 −9

Solution of Ly = b by forward substitution comes next. The augmented coefficient
form of the equations is

[
L b

]
=

1 0 0 7

1 1 0 13
2 −4.5 1 5

The solution is

y1 = 7

y2 = 13 − y1 = 13 − 7 = 6

y3 = 5 − 2y1 + 4.5y2 = 5 − 2(7) + 4.5(6) = 18

Finally, the equations Ux = y, or

[
U y

]
=

1 4 1 7

0 2 −2 6
0 0 −9 18

are solved by back substitution. This yields

x3 = 18
−9

= −2

x2 = 6 + 2x3

2
= 6 + 2(−2)

2
= 1

x1 = 7 − 4x2 − x3 = 7 − 4(1) − (−2) = 5

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

50 Systems of Linear Algebraic Equations

EXAMPLE 2.6
Compute Choleski’s decomposition of the matrix

A =

 4 −2 2

−2 2 −4
2 −4 11

Solution First we note that A is symmetric. Therefore, Choleski’s decomposition is
applicable, provided that the matrix is also positive definite. An a priori test for positive
definiteness is not needed, since the decomposition algorithm contains its own test: if
the square root of a negative number is encountered, the matrix is not positive definite
and the decomposition fails.

Substituting the given matrix for A in Eq. (2.16), we obtain
 4 −2 2

−2 2 −4
2 −4 11

 =

L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

Equating the elements in the lower (or upper) triangular portions yields

L11 =
√

4 = 2

L21 = −2/L11 = −2/2 = −1

L31 = 2/L11 = 2/2 = 1

L22 =
√

2 − L2
21 =

√
2 − 12 = 1

L32 = −4 − L21 L31

L22
= −4 − (−1)(1)

1
= −3

L33 =
√

11 − L2
31 − L2

32 =
√

11 − (1)2 − (−3)2 = 1

Therefore,

L =

 2 0 0

−1 1 0
1 −3 1

The result can easily be verified by performing the multiplication LLT .

EXAMPLE 2.7
Write a program that solves AX = B with Doolittle’s decomposition method and com-
putes |A|. Utilize the functions LUdecomp and LUsolve. Test the program with

A =

 3 −1 4

−2 0 5
7 2 −2

 B =

6 −4

3 2
7 −5

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

51 2.3 LU Decomposition Methods

Solution The program listed below decomposes A and then prompts for the constant
vectors. After a constant vector is entered, the corresponding solution is computed
and the program prompts for another constant vector. The program is terminated
when a SyntaxError is encountered in input (e.g., when the “return” key is pressed).

#!/usr/bin/python

example2_7

from numarray import zeros,array,Float64,product,diagonal

from LUdecomp import *

a = array([[3.0, -1.0, 4.0], \

[-2.0, 0.0, 5.0], \

[7.0, 2.0, -2.0]])

a = LUdecomp(a)

det = product(diagonal(a))

print ’’\nDeterminant =’’,det

while 1:

print ’’\nInput constant vector (press return to exit):’’

try:

b = array(eval(raw_input(’’==> ’’)),type=Float64)

except SyntaxError: break

x = LUsolve(a,b)

print ’’The solution is:\n’’,x

raw_input(’’\nPress return to exit’’)

Running the program produced the following display:

Determinant = -77.0

Input constant vector (press return to exit):

==> [6.0, 3.0, 7.0]

The solution is:

[1. 1. 1.]

Input constant vector (press return to exit):

==> [-4.0, 2.0, -5.0]

The solution is:

[-1.00000000e+00 1.00000000e+00 2.30695693e-17]

Input constant vector (press return to exit):

==>

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

52 Systems of Linear Algebraic Equations

EXAMPLE 2.8
Test the function choleski by decomposing

A =

1.44 −0.36 5.52 0.00
−0.36 10.33 −7.78 0.00

5.52 −7.78 28.40 9.00
0.00 0.00 9.00 61.00

Solution
#!/usr/bin/python

example2_8

from numarray import array,matrixmultiply,transpose

from choleski import *

a = array([[1.44, -0.36, 5.52, 0.0], \

[-0.36, 10.33, -7.78, 0.0], \

[5.52, -7.78, 28.40, 9.0], \

[0.0, 0.0, 9.0, 61.0]])

L = choleski(a)

print ’L =\n’,L

print ’\nCheck: L*L_transpose =\n’, \

matrixmultiply(L,transpose(L))

raw_input(’’\nPress return to exit’’)

The output is:

L =

[[1.2 0. 0. 0.]

[-0.3 3.2 0. 0.]

[4.6 -2. 1.8 0.]

[0. 0. 5. 6.]]

Check: L*L_transpose =

[[1.44 -0.36 5.52 0.]

[-0.36 10.33 -7.78 0.]

[5.52 -7.78 28.4 9.]

[0. 0. 9. 61.]]

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

53 2.3 LU Decomposition Methods

PROBLEM SET 2.1

1. By evaluating the determinant, classify the following matrices as singular, ill-
conditioned, or well-conditioned.

(a) A =

1 2 3

2 3 4
3 4 5

 (b) A =

 2.11 −0.80 1.72

−1.84 3.03 1.29
−1.57 5.25 4.30

(c) A =

 2 −1 0

−1 2 −1
0 −1 2

 (d) A =

4 3 −1

7 −2 3
5 −18 13

2. Given the LU decomposition A = LU, determine A and |A| .

(a) L =

1 0 0

1 1 0
1 5/3 1

 U =

1 2 4

0 3 21
0 0 0

(b) L =

 2 0 0

−1 1 0
1 −3 1

 U =

2 −1 1

0 1 −3
0 0 1

3. Utilize the results of LU decomposition

A = LU =

 1 0 0

3/2 1 0
1/2 11/13 1

2 −3 −1

0 13/2 −7/2
0 0 32/13

to solve Ax = b, where bT =
[

1 −1 2
]
.

4. Use Gauss elimination to solve the equations Ax = b, where

A =

2 −3 −1

3 2 −5
2 4 −1

 b =

 3

−9
−5

5. Solve the equations AX = B by Gauss elimination, where

A =

2 0 −1 0
0 1 2 0

−1 2 0 1
0 0 1 −2

 B =

1 0
0 0
0 1
0 0

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

54 Systems of Linear Algebraic Equations

6. Solve the equations Ax = b by Gauss elimination, where

A =

0 0 2 1 2
0 1 0 2 −1
1 2 0 −2 0
0 0 0 −1 1
0 1 −1 1 −1

 b =

1
1

−4
−2
−1

Hint : reorder the equations before solving.

7. Find L and U so that

A = LU =

 4 −1 0

−1 4 −1
0 −1 4

using (a) Doolittle’s decomposition; (b) Choleski’s decomposition.

8. Use Doolittle’s decomposition method to solve Ax = b, where

A =

 −3 6 −4

9 −8 24
−12 24 −26

 b =

 −3

65
−42

9. Solve the equations Ax = b by Doolittle’s decomposition method, where

A =

 2.34 −4.10 1.78

−1.98 3.47 −2.22
2.36 −15.17 6.18

 b =

 0.02

−0.73
−6.63

10. Solve the equations AX = B by Doolittle’s decomposition method, where

A =

 4 −3 6

8 −3 10
−4 12 −10

 B =

1 0

0 1
0 0

11. Solve the equations Ax = b by Choleski’s decomposition method, where

A =

1 1 1

1 2 2
1 2 3

 b =

 1

3/2
3

12. Solve the equations
 4 −2 −3

12 4 −10
−16 28 18

x1

x2

x3

 =

 1.1

0
−2.3

by Doolittle’s decomposition method.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

55 2.3 LU Decomposition Methods

13. Determine L that results from Choleski’s decomposition of the diagonal matrix

A =

α1 0 0 · · ·
0 α2 0 · · ·
0 0 α3 · · ·
...

...
...

. . .

14. � Modify the function gaussElimin so that it will work with m constant vectors.
Test the program by solving AX = B, where

A =

 2 −1 0

−1 2 −1
0 −1 1

 B =

1 0 0

0 1 0
0 0 1

15. � A well-known example of an ill-conditioned matrix is the Hilbert matrix

A =

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

Write a program that specializes in solving the equations Ax = b by Doolittle’s
decomposition method, where A is the Hilbert matrix of arbitrary size n × n, and

bi =
n∑

j=1

Ai j

The program should have no input apart from n. By running the program, deter-
mine the largest n for which the solution is within 6 significant figures of the exact
solution

x =
[

1 1 1 · · ·
]T

16. � Write a function for the solution phase of Choleski’s decomposition method.
Test the function by solving the equations Ax = b, where

A =

 4 −2 2

−2 2 −4
2 −4 11

 b =

 6

−10
27

Use the function choleski for the decomposition phase.

17. � Determine the coefficients of the polynomial y = a0 + a1x + a2x2 + a3x3 that
pass through the points (0, 10), (1, 35), (3, 31) and (4, 2).

18. � Determine the 4th degree polynomial y(x) that passes through the points
(0, −1), (1, 1), (3, 3), (5, 2) and (6, −2).

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

56 Systems of Linear Algebraic Equations

19. � Find the 4th degree polynomial y(x) that passes through the points (0, 1),
(0.75, −0.25) and (1, 1), and has zero curvature at (0, 1) and (1, 1).

20. � Solve the equations Ax = b, where

A =

3.50 2.77 −0.76 1.80
−1.80 2.68 3.44 −0.09

0.27 5.07 6.90 1.61
1.71 5.45 2.68 1.71

 b =

7.31
4.23

13.85
11.55

By computing |A| and Ax comment on the accuracy of the solution.

2.4 Symmetric and Banded Coefficient Matrices

Introduction

Engineering problems often lead to coefficient matrices that are sparsely populated,
meaning that most elements of the matrix are zero. If all the nonzero terms are clus-
tered about the leading diagonal, then the matrix is said to be banded. An example of
a banded matrix is

A =

X X 0 0 0
X X X 0 0
0 X X X 0
0 0 X X X
0 0 0 X X

where X’s denote the nonzero elements that form the populated band (some of these
elements may be zero). All the elements lying outside the band are zero. The matrix
shown above has a bandwidth of three, since there are at most three nonzero elements
in each row (or column). Such a matrix is called tridiagonal.

If a banded matrix is decomposed in the form A = LU, both L and U will retain
the banded structure of A. For example, if we decomposed the matrix shown above,
we would get

L =

X 0 0 0 0
X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X

 U =

X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X
0 0 0 0 X

The banded structure of a coefficient matrix can be exploited to save storage and
computation time. If the coefficient matrix is also symmetric, further economies are

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

57 2.4 Symmetric and Banded Coefficient Matrices

possible. In this section we show how the methods of solution discussed previously
can be adapted for banded and symmetric coefficient matrices.

Tridiagonal Coefficient Matrix

Consider the solution of Ax = b by Doolittle’s decomposition, where A is the n × n
tridiagonal matrix

A =

d1 e1 0 0 · · · 0
c1 d2 e2 0 · · · 0
0 c2 d3 e3 · · · 0
0 0 c3 d4 · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn

As the notation implies, we are storing the nonzero elements of A in the vectors

c =

c1

c2

...
cn−1

 d =

d1

d2

...
dn−1

dn

e =

e1

e2

...
en−1

The resulting saving of storage can be significant. For example, a 100 × 100 tridiag-
onal matrix, containing 10,000 elements, can be stored in only 99 + 100 + 99 = 298
locations, which represents a compression ratio of about 33:1.

Let us now apply LU decomposition to the coefficient matrix. We reduce row k by
getting rid of ck−1 with the elementary operation

row k ← row k − (ck−1/dk−1) × row (k − 1), k = 2, 3, . . . , n

The corresponding change in dk is

dk ← dk − (ck−1/dk−1)ek−1 (2.21)

whereas ek is not affected. To finish up with Doolittle’s decomposition of the form
[L\U], we store the multiplier λ = ck−1/dk−1 in the location previously occupied by
ck−1:

ck−1 ← ck−1/dk−1 (2.22)

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

58 Systems of Linear Algebraic Equations

Thus the decomposition algorithm is

for k in range(1,n):

lam = c[k-1]/d[k-1]

d[k] = d[k] - lam*e[k-1]

c[k-1] = lam

Next we look at the solution phase, i.e., the solution of the Ly = b, followed by
Ux = y. The equations Ly = b can be portrayed by the augmented coefficient matrix

[
L b

]
=

1 0 0 0 · · · 0 b1

c1 1 0 0 · · · 0 b2

0 c2 1 0 · · · 0 b3

0 0 c3 1 . . . 0 b4

...
...

...
... · · · ...

...
0 0 · · · 0 cn−1 1 bn

Note that the original contents of c were destroyed and replaced by the multipliers
during the decomposition. The solution algorithm for y by forward substitution is

y[0] = b[0]

for k in range(1,n):

y[k] = b[k] - c[k-1]*y[k-1]

The augmented coefficient matrix representing Ux = y is

[
U y

]
=

d1 e1 0 · · · 0 0 y1

0 d2 e2 · · · 0 0 y2

0 0 d3 · · · 0 0 y3

...
...

...
...

...
...

0 0 0 · · · dn−1 en−1 yn−1

0 0 0 · · · 0 dn yn

Note again that the contents of d were altered from the original values during the
decomposition phase (but e was unchanged). The solution for x is obtained by back
substitution using the algorithm

x[n-1] = y[n-1]/d[n-1]

for k in range(n-2,-1,-1):

x[k] = (y[k] - e[k]*x[k+1])/d[k]

end do

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

59 2.4 Symmetric and Banded Coefficient Matrices

� LUdecomp3

This module contains the functionsLUdecomp3 andLUsolve3 for the decomposition
and solution phases of a tridiagonal matrix. In LUsolve3, the vector y writes over
the constant vector b during forward substitution. Similarly, the solution vector x
overwrites y in the back substitution process. In other words, b contains the solution
upon exit from LUsolve3.

module LUdecomp3

’’’ c,d,e = LUdecomp3(c,d,e).

LU decomposition of tridiagonal matrix [c\d\e]. On output

{c},{d} and {e} are the diagonals of the decomposed matrix.

x = LUsolve3(c,d,e,b).

Solves [c\d\e]{x} = {b}, where {c}, {d} and {e} are the

vectors returned from LUdecomp3.

’’’

def LUdecomp3(c,d,e):

n = len(d)

for k in range(1,n):

lam = c[k-1]/d[k-1]

d[k] = d[k] - lam*e[k-1]

c[k-1] = lam

return c,d,e

def LUsolve3(c,d,e,b):

n = len(d)

for k in range(1,n):

b[k] = b[k] - c[k-1]*b[k-1]

b[n-1] = b[n-1]/d[n-1]

for k in range(n-2,-1,-1):

b[k] = (b[k] - e[k]*b[k+1])/d[k]

return b

Symmetric Coefficient Matrices

More often than not, coefficient matrices that arise in engineering problems are
symmetric as well as banded. Therefore, it is worthwhile to discover special prop-
erties of such matrices and learn how to utilize them in the construction of efficient
algorithms.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

60 Systems of Linear Algebraic Equations

If the matrix A is symmetric, then the LU decomposition can be presented in the
form

A = LU = LDLT (2.23)

where D is a diagonal matrix. An example is Choleski’s decomposition A = LLT that was
discussed in the previous section (in this case D = I). For Doolittle’s decomposition
we have

U = DLT =

D1 0 0 · · · 0
0 D2 0 · · · 0
0 0 D3 · · · 0
...

...
... · · · ...

0 0 0 · · · Dn

1 L21 L31 · · · Ln1

0 1 L32 · · · Ln2

0 0 1 · · · Ln3

...
...

... · · · ...
0 0 0 · · · 1

which gives

U =

D1 D1 L21 D1 L31 · · · D1 Ln1

0 D2 D2 L32 · · · D2 Ln2

0 0 D3 · · · D3 L3n

...
...

... · · · ...
0 0 0 · · · Dn

(2.24)

We now see that during decomposition of a symmetric matrix only U has to be stored,
since D and L can be easily recovered from U. Thus Gauss elimination, which results in
an upper triangular matrix of the form shown in Eq. (2.24), is sufficient to decompose
a symmetric matrix.

There is an alternative storage scheme that can be employed during LU decom-
position. The idea is to arrive at the matrix

U∗ =

D1 L21 L31 · · · Ln1

0 D2 L32 · · · Ln2

0 0 D3 · · · Ln3

...
...

...
. . .

...
0 0 0 · · · Dn

(2.25)

Here U can be recovered from Ui j = Di L ji . It turns out that this scheme leads to a
computationally more efficient solution phase; therefore, we adopt it for symmetric,
banded matrices.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

61 2.4 Symmetric and Banded Coefficient Matrices

Symmetric, Pentadiagonal Coefficient Matrix

We encounter pentadiagonal (bandwidth = 5) coefficient matrices in the solution of
fourth-order, ordinary differential equations by finite differences. Often these matrices
are symmetric, in which case an n × n coefficient matrix has the form

A =

d1 e1 f1 0 0 0 · · · 0
e1 d2 e2 f2 0 0 · · · 0
f1 e2 d3 e3 f3 0 · · · 0
0 f2 e3 d4 e4 f4 · · · 0
...

...
...

...
...

...
. . .

...
0 · · · 0 fn−4 en−3 dn−2 en−2 fn−2

0 · · · 0 0 fn−3 en−2 dn−1 en−1

0 · · · 0 0 0 fn−2 en−1 dn

(2.26)

As in the case of tridiagonal matrices, we store the nonzero elements in the three
vectors

d =

d1

d2

...
dn−2

dn−1

dn

e =

e1

e2

...
en−2

en−1

f =

f1

f2

...
fn−2

Let us now look at the solution of the equations Ax = b by Doolittle’s decomposi-
tion. The first step is to transform A to upper triangular form by Gauss elimination. If
elimination has progressed to the stage where the k th row has become the pivot row,
we have the following situation:

A =

. . .
...

...
...

...
...

...
...

· · · 0 dk ek fk 0 0 0 · · ·
· · · 0 ek dk+1 ek+1 fk+1 0 0 · · ·
· · · 0 fk ek+1 dk+2 ek+2 fk+2 0 · · ·
· · · 0 0 fk+1 ek+2 dk+3 ek+3 fk+3 · · ·

...
...

...
...

...
...

...
. . .

←

The elements ek and fk below the pivot row (the k th row) are eliminated by the
operations

row (k + 1) ← row (k + 1) − (ek/dk) × row k

row (k + 2) ← row (k + 2) − (fk/dk) × row k

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

62 Systems of Linear Algebraic Equations

The only terms (other than those being eliminated) that are changed by the above
operations are

dk+1 ← dk+1 − (ek/dk)ek

ek+1 ← ek+1 − (ek/dk) fk (2.27a)

dk+2 ← dk+2 − (fk/dk) fk

Storage of the multipliers in the upper triangular portion of the matrix results in

ek ← ek/dk fk ← fk/dk (2.27b)

At the conclusion of the elimination phase the matrix has the form (do not confuse d,
e and f with the original contents of A)

U∗ =

d1 e1 f1 0 · · · 0
0 d2 e2 f2 · · · 0
0 0 d3 e3 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 dn−1 en−1

0 0 · · · 0 0 dn

Next comes the solution phase. The equations Ly = b have the augmented coef-
ficient matrix

[
L b

]
=

1 0 0 0 · · · 0 b1

e1 1 0 0 · · · 0 b2

f1 e2 1 0 · · · 0 b3

0 f2 e3 1 · · · 0 b4

...
...

...
... · · · ...

...
0 0 0 fn−2 en−1 1 bn

Solution by forward substitution yields

y1 = b1

y2 = b2 − e1 y1 (2.28)

...

yk = bk − fk−2 yk−2 − ek−1 yk−1, k = 3, 4, . . . , n

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

63 2.4 Symmetric and Banded Coefficient Matrices

The equations to be solved by back substitution, namely Ux = y, have the augmented
coefficient matrix

[
U y

]
=

d1 d1e1 d1 f1 0 · · · 0 y1

0 d2 d2e2 d2 f2 · · · 0 y2

0 0 d3 d3e3 · · · 0 y3

...
...

...
... · · · ...

...
0 0 · · · 0 dn−1 dn−1en−1 yn−1

0 0 · · · 0 0 dn yn

the solution of which is obtained by back substitution:

xn = yn/dn

xn−1 = yn−1/dn−1 − en−1xn

xk = yk/dk − ekxk+1 − fkxk+2, k = n − 2, n − 3, . . . , 1 (2.29)

� LUdecomp5

The function LUdecomp5 below decomposes a symmetric, pentadiagonal matrix A of
the form A = [f\e\d\e\f]. The original vectors d, e and f are destroyed and replaced
by the vectors of the decomposed matrix. After decomposition, the solution of Ax = b
can be obtained by LUsolve5. During forward substitution, the original b is replaced
by y. Similarly, y is written over by x in the back substitution phase, so that b contains
the solution vector upon exit from LUsolve5.

module LUdecomp5

’’’ d,e,f = LUdecomp5(d,e,f).

LU decomposition of symetric pentadiagonal matrix

[f\e\d\e\f]. On output {d},{e} and {f} are the

diagonals of the decomposed matrix.

x = LUsolve5(d,e,f,b).

Solves [f\e\d\e\f]{x} = {b}, where {d}, {e} and {f}

are the vectors returned from LUdecomp5.

’’’

def LUdecomp5(d,e,f):

n = len(d)

for k in range(n-2):

lam = e[k]/d[k]

d[k+1] = d[k+1] - lam*e[k]

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

64 Systems of Linear Algebraic Equations

e[k+1] = e[k+1] - lam*f[k]

e[k] = lam

lam = f[k]/d[k]

d[k+2] = d[k+2] - lam*f[k]

f[k] = lam

lam = e[n-2]/d[n-2]

d[n-1] = d[n-1] - lam*e[n-2]

e[n-2] = lam

return d,e,f

def LUsolve5(d,e,f,b):

n = len(d)

b[1] = b[1] - e[0]*b[0]

for k in range(2,n):

b[k] = b[k] - e[k-1]*b[k-1] - f[k-2]*b[k-2]

b[n-1] = b[n-1]/d[n-1]

b[n-2] = b[n-2]/d[n-2] - e[n-2]*b[n-1]

for k in range(n-3,-1,-1):

b[k] = b[k]/d[k] - e[k]*b[k+1] - f[k]*b[k+2]

return b

EXAMPLE 2.9
As a result of Gauss elimination, a symmetric matrix A was transformed to the upper
triangular form

U =

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

Determine the original matrix A.

Solution First we find L in the decomposition A = LU. Dividing each row of U by its
diagonal element yields

LT =

1 −1/2 1/4 0
0 1 −1/2 1/3
0 0 1 −1/2
0 0 0 1

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

65 2.4 Symmetric and Banded Coefficient Matrices

Therefore, A = LU becomes

A =

1 0 0 0
−1/2 1 0 0

1/4 −1/2 1 0
0 1/3 −1/2 1

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

=

4 −2 1 0
−2 4 −2 1

1 −2 4 −2
0 1 −2 4

EXAMPLE 2.10
Determine L and D that result from Doolittle’s decomposition A = LDLT of the sym-
metric matrix

A =

 3 −3 3

−3 5 1
3 1 10

Solution We use Gauss elimination, storing the multipliers in the upper triangular
portion of A. At the completion of elimination, the matrix will have the form of U∗ in
Eq. (2.25).

The terms to be eliminated in the first pass are A21 and A31 using the elementary
operations

row 2 ← row 2 − (−1) × row 1

row 3 ← row 3 − (1) × row 1

Storing the multipliers (−1 and 1) in the locations occupied by A12 and A13, we get

A′ =

3 −1 1

0 2 4
0 4 7

The second pass is the operation

row 3 ← row 3 − 2 × row 2

which yields, after overwriting A23 with the multiplier 2

A′′ = [
0\D\LT] =

3 −1 1

0 2 2
0 0 −1

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

66 Systems of Linear Algebraic Equations

Hence

L =

 1 0 0

−1 1 0
1 2 1

 D =

3 0 0

0 2 0
0 0 −1

EXAMPLE 2.11
Utilize the functions LUdecmp3 and LUsolve3 to solve Ax = b, where

A =

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 b =

5
−5

4
−5

5

Solution
#!/usr/bin/python

example2_11

from numarray import array,ones

from LUdecomp3 import *

d = ones((5))*2.0

c = ones((4))*(-1.0)

b = array([5.0, -5.0, 4.0, -5.0, 5.0])

e = c.copy()

c,d,e = LUdecomp3(c,d,e)

x = LUsolve3(c,d,e,b)

print ’’\nx =\n’’,x

raw_input(’’\nPress return to exit’’)

The output is:

x =

[2. -1. 1. -1. 2.]

2.5 Pivoting

Introduction

Sometimes the order in which the equations are presented to the solution algorithm
has a profound effect on the results. For example, consider the equations

2x1 − x2 = 1
−x1 + 2x2 − x3 = 0

−x2 + x3 = 0

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

67 2.5 Pivoting

The corresponding augmented coefficient matrix is

[
A b

]
=

 2 −1 0 1

−1 2 −1 0
0 −1 1 0

 (a)

Equations (a) are in the “right order” in the sense that we would have no trouble obtain-
ing the correct solution x1 = x2 = x3 = 1 by Gauss elimination or LU decomposition.
Now suppose that we exchange the first and third equations, so that the augmented
coefficient matrix becomes

[
A b

]
=

 0 −1 1 0

−1 2 −1 0
2 −1 0 1

 (b)

Since we did not change the equations (only their order was altered), the solution is still
x1 = x2 = x3 = 1. However, Gauss elimination fails immediately due to the presence
of the zero pivot element (the element A11).

The above example demonstrates that it is sometimes essential to reorder the
equations during the elimination phase. The reordering, or row pivoting, is also re-
quired if the pivot element is not zero, but very small in comparison to other elements
in the pivot row, as demonstrated by the following set of equations:

[
A b

]
=

 ε −1 1 0

−1 2 −1 0
2 −1 0 1

 (c)

These equations are the same as Eqs. (b), except that the small number ε replaces the
zero element A11 in Eq. (b). Therefore, if we let ε → 0, the solutions of Eqs. (b) and (c)
should become identical. After the first phase of Gauss elimination, the augmented
coefficient matrix becomes

[
A′ b′

]
=

ε −1 1 0

0 2 − 1/ε −1 + 1/ε 0
0 −1 + 2/ε −2/ε 1

 (d)

Because the computer works with a fixed word length, all numbers are rounded off
to a finite number of significant figures. If ε is very small, then 1/ε is huge, and an
element such as 2 − 1/ε is rounded to −1/ε. Therefore, for sufficiently small ε, the
Eqs. (d) are actually stored as

[
A′ b′

]
=

ε −1 1 0

0 −1/ε 1/ε 0
0 2/ε −2/ε 1

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

68 Systems of Linear Algebraic Equations

Because the second and third equations obviously contradict each other, the solution
process fails again. This problem would not arise if the first and second, or the first
and the third equations were interchanged in Eqs. (c) before the elimination.

The last example illustrates the extreme case where ε was so small that roundoff
errors resulted in total failure of the solution. If we were to make ε somewhat bigger
so that the solution would not “bomb” any more, the roundoff errors might still be
large enough to render the solution unreliable. Again, this difficulty could be avoided
by pivoting.

Diagonal Dominance

An n × n matrix A is said to be diagonally dominant if each diagonal element is larger
than the sum of the other elements in the same row (we are talking here about absolute
values). Thus diagonal dominance requires that

|Aii | >

n∑
j=1
j �=i

∣∣Ai j

∣∣ (i = 1, 2, ..., n) (2.30)

For example, the matrix
−2 4 −1

1 −1 3
4 −2 1

is not diagonally dominant, but if we rearrange the rows in the following manner
 4 −2 1

−2 4 −1
1 −1 3

then we have diagonal dominance.
It can be shown that if the coefficient matrix of the equations Ax = b is diagonally

dominant, then the solution does not benefit from pivoting; that is, the equations are
already arranged in the optimal order. It follows that the strategy of pivoting should be
to reorder the equations so that the coefficient matrix is as close to diagonal dominance
as possible. This is the principle behind scaled row pivoting, discussed next.

Gauss Elimination with Scaled Row Pivoting

Consider the solution of Ax = b by Gauss elimination with row pivoting. Recall that
pivoting aims at improving diagonal dominance of the coefficient matrix, i.e., making
the pivot element as large as possible in comparison to other elements in the pivot

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

69 2.5 Pivoting

row. The comparison is made easier if we establish an array s with the elements

si = max
j

∣∣Ai j

∣∣ , i = 1, 2, . . . , n (2.31)

Thus si , called the scale factor of row i, contains the absolute value of the largest
element in the ith row of A. The vector s can be obtained with the algorithm

for i in range(n):

s[i] = max(abs(a[i,:]))

The relative size of an element Ai j (that is, relative to the largest element in the
ith row) is defined as the ratio

ri j =
∣∣Ai j

∣∣
si

(2.32)

Suppose that the elimination phase has reached the stage where the k th row has
become the pivot row. The augmented coefficient matrix at this point is shown below.

A11 A12 A13 A14 · · · A1n b1

0 A22 A23 A24 · · · A2n b2

0 0 A33 A34 · · · A3n b3

...
...

...
... · · · ...

...

0 · · · 0 Akk · · · Akn bk

... · · · ...
... · · · ...

...
0 · · · 0 Ank · · · Ann bn

←

We don’t automatically accept Akk as the next pivot element, but look in the k th column
below Akk for a “better” pivot. The best choice is the element Apk that has the largest
relative size; that is, we choose p such that

rpk = max
j

r jk, j ≥ k

If we find such an element, then we interchange the rows k and p, and proceed with
the elimination pass as usual. Note that the corresponding row interchange must also
be carried out in the scale factor array s. The algorithm that does all this is

for k in range(0,n-1):

Find row containing element with largest relative size

p = int(argmax(abs(a[k:n,k])/s[k:n])) + k

If this element is very small, matrix is singular

if abs(a[p,k]) < tol: error.err(’Matrix is singular’)

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

70 Systems of Linear Algebraic Equations

Check whether rows k and p must be interchanged

if p != k:

Interchange rows if needed

swap.swapRows(b,k,p)

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

Proceed with elimination

The Python statement int(argmax(v)) returns the index of the largest element
in the vector v. The algorithms for exchanging rows (and columns) are included in the
module swap shown below.

� swap

The function swapRows interchanges rows i and j of a matrix or vector v, whereas
swapCols interchanges columns i and j of a matrix.

module swap

’’’ swapRows(v,i,j).

Swaps rows i and j of vector or matrix [v].

swapCols(v,i,j).

Swaps columns i and j of matrix [v].

’’’

def swapRows(v,i,j):

if len(v.getshape()) == 1:

v[i],v[j] = v[j],v[i]

else:

temp = v[i].copy()

v[i] = v[j]

v[j] = temp

def swapCols(v,i,j):

temp = v[:,j].copy()

v[:,j] = v[:,i]

v[:,i] = temp

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

71 2.5 Pivoting

� gaussPivot

The function gaussPivot performs Gauss elimination with row pivoting. Apart from
row swapping, the elimination and solution phases are identical to gaussElimin in
Art. 2.2.

module gaussPivot

’’’ x = gaussPivot(a,b,tol=1.0e-9).

Solves [a]{x} = {b} by Gauss elimination with

scaled row pivoting

’’’

from numarray import *

import swap

import error

def gaussPivot(a,b,tol=1.0e-9):

n = len(b)

Set up scale factors

s = zeros((n),type=Float64)

for i in range(n):

s[i] = max(abs(a[i,:]))

for k in range(0,n-1):

Row interchange, if needed

p = int(argmax(abs(a[k:n,k])/s[k:n])) + k

if abs(a[p,k]) < tol:

error.err(’Matrix is singular’)

if p != k:

swap.swapRows(b,k,p)

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

Elimination

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a [i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

72 Systems of Linear Algebraic Equations

if abs(a[n-1,n-1]) < tol:

error.err(’Matrix is singular’)

Back substitution

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

� LUpivot

The Gauss elimination algorithm can be changed to Doolittle’s decomposition with
minor changes. The most important of these is keeping a record of the row inter-
changes during the decomposition phase. In LUdecomp this record is kept in the array
seq. Initially seq contains [0, 1, 2, . . .]. Whenever two rows are interchanged, the cor-
responding interchange is also carried out in seq. Thus seq shows the order in which
of the original rows have been rearranged. This information is passed on to the so-
lution phase (LUsolve), which rearranges the elements of the constant vector in the
same order before proceeding to forward and back substitutions.

module LUpivot

’’’ a,seq = LUdecomp(a,tol=1.0e-9).

LU decomposition of matrix [a] using scaled row pivoting.

The returned matrix [a] = [L\U] contains [U] in the upper

triangle and the nondiagonal terms of [L] in the lower triangle.

Note that [L][U] is a row-wise permutation of the original [a];

the permutations are recorded in the vector {seq}.

x = LUsolve(a,b,seq).

Solves [L][U]{x} = {b}, where the matrix [a] = [L\U] and the

permutation vector {seq} are returned from LUdecomp.

’’’

from numarray import argmax,abs,dot,zeros,Float64,array

import swap

import error

def LUdecomp(a,tol=1.0e-9):

n = len(a)

seq = array(range(n))

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

73 2.5 Pivoting

Set up scale factors

s = zeros((n),type=Float64)

for i in range(n):

s[i] = max(abs(a[i,:]))

for k in range(0,n-1):

Row interchange, if needed

p = int(argmax(abs(a[k:n,k])/s[k:n])) + k

if abs(a[p,k]) < tol:

error.err(’Matrix is singular’)

if p != k:

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

swap.swapRows(seq,k,p)

Elimination

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

return a,seq

def LUsolve(a,b,seq):

n = len(a)

Rearrange constant vector; store it in [x]

x = b.copy()

for i in range(n):

x[i] = b[seq[i]]

Solution

for k in range(1,n):

x[k] = x[k] - dot(a[k,0:k],x[0:k])

for k in range(n-1,-1,-1):

x[k] = (x[k] - dot(a[k,k+1:n],x[k+1:n]))/a[k,k]

return x

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

74 Systems of Linear Algebraic Equations

When to Pivot

Pivoting has a couple of drawbacks. One of these is the increased time of computation;
the other is the destruction of the symmetry and banded structure of the coefficient
matrix. The latter is of particular concern in engineering computing, where the co-
efficient matrices are frequently banded and symmetric, a property that is utilized
in the solution, as seen in the previous chapter. Fortunately, these matrices are often
diagonally dominant as well, so that they would not benefit from pivoting anyway.

There are no infallible rules for determining when pivoting should be used. Expe-
rience indicates that pivoting is likely to be counterproductive if the coefficient matrix
is banded. Positive definite and, to a lesser degree, symmetric matrices also seldom
gain from pivoting. And we should not forget that pivoting is not the only means of
controlling roundoff errors—there is also double precision arithmetic.

It should be strongly emphasized that the above rules of thumb are only meant
for equations that stem from real engineering problems. It is not difficult to concoct
“textbook” examples that do not conform to these rules.

EXAMPLE 2.12
Employ Gauss elimination with scaled row pivoting to solve the equations Ax = b,
where

A =

 2 −2 6

−2 4 3
−1 8 4

 b =

 16

0
−1

Solution The augmented coefficient matrix and the scale factor array are

[
A b

]
=

 2 −2 6 16

−2 4 3 0
−1 8 4 −1

 s =

6

4
8

Note that s contains the absolute value of the largest element in each row of A. At this
stage, all the elements in the first column of A are potential pivots. To determine the
best pivot element, we calculate the relative sizes of the elements in the first column:

r11

r21

r31

 =

|A11| /s1

|A21| /s2

|A31| /s3

 =

1/3

1/2
1/8

Since r21 is the largest element, we conclude that A21 makes the best pivot element.
Therefore, we exchange rows 1 and 2 of the augmented coefficient matrix and the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

75 2.5 Pivoting

scale factor array, obtaining

[
A b

]
=

−2 4 3 0

2 −2 6 16
−1 8 4 −1

←

s =

4

6
8

Now the first pass of Gauss elimination is carried out (the arrow points to the pivot
row), yielding

[
A′ b′

]
=

−2 4 3 0

0 2 9 16
0 6 5/2 −1

 s =

4

6
8

The potential pivot elements for the next elimination pass are A′
22 and A′

32. We
determine the “winner” from

 ∗
r22

r32

 =

 ∗

|A22| /s2

|A32| /s3

 =

 ∗

1/3
3/4

Note that r12 is irrelevant, since row 1 already acted as the pivot row. Therefore, it is
excluded from further consideration. As r32 is larger than r22, the third row is the better
pivot row. After interchanging rows 2 and 3, we have

[
A′ b′

]
=

−2 4 3 0

0 6 5/2 −1
0 2 9 16

← s =

4

8
6

The second elimination pass now yields

[
A′′ b′′

]
=

[
U c

]
=

−2 4 3 0

0 6 5/2 −1
0 0 49/6 49/3

This completes the elimination phase. It should be noted that U is the matrix that
would result from LU decomposition of the following row-wise permutation of A (the
ordering of rows is the same as achieved by pivoting):

−2 4 3
−1 8 4

2 −2 6

Since the solution of Ux = c by back substitution is not affected by pivoting, we skip
the detailed of the computation. The result is xT =

[
1 −1 2

]
.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

76 Systems of Linear Algebraic Equations

Alternate Solution
It it not necessary to physically exchange equations during pivoting. We could accom-
plish Gauss elimination just as well by keeping the equations in place. The elimination
would then proceed as follows (for the sake of brevity, we skip repeating the details of
choosing the pivot equation):

[
A b

]
=

 2 −2 6 16

−2 4 3 0
−1 8 4 −1

←

[
A′ b′

]
=

 0 2 9 16

−2 4 3 0
0 6 5/2 −1

←

[
A′′ b′′

]
=

 0 0 49/6 49/3

−2 4 3 0
0 6 5/2 −1

But now the back substitution phase is a little more involved, since the order in which
the equations must be solved has become scrambled. In hand computations this is
not a problem, because we can determine the order by inspection. Unfortunately,
“by inspection” does not work on a computer. To overcome this difficulty, we have
to maintain an integer array p that keeps track of the row permutations during the
elimination phase. The contents of p indicate the order in which the pivot rows were
chosen. In this example, we would have at the end of Gauss elimination

p =

2

3
1

showing that row 2 was the pivot row in the first elimination pass, followed by row 3
in the second pass. The equations are solved by back substitution in the reverse
order: Eq. (1) is solved first for x3, then Eq. (3) is solved for x2, and finally Eq. (2)
yields x1.

By dispensing with swapping of equations, the scheme outlined above would
probably result in a faster (and more complex) algorithm than gaussPivot, but the
number of equations would have to be quite large before the difference becomes
noticeable.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

77 2.5 Pivoting

PROBLEM SET 2.2

1. Solve the equations Ax = b by utilizing Doolittle’s decomposition, where

A =

 3 −3 3

−3 5 1
3 1 5

 b =

 9

−7
12

2. Use Doolittle’s decomposition to solve Ax = b, where

A =

 4 8 20

8 13 16
20 16 −91

 b =

 24

18
−119

3. Determine L and D that result from Doolittle’s decomposition of the symmetric
matrix

A =

2 −2 0 0 0
−2 5 −6 0 0

0 −6 16 12 0
0 0 12 39 −6
0 0 0 −6 14

4. Solve the tridiagonal equations Ax = b by Doolittle’s decomposition method,
where

A =

6 2 0 0 0
−1 7 2 0 0

0 −2 8 2 0
0 0 3 7 −2
0 0 0 3 5

 b =

2
−3

4
−3

1

5. Use Gauss elimination with scaled row pivoting to solve

 4 −2 1

−2 1 −1
−2 3 6

x1

x2

x3

 =

 2

−1
0

6. Solve Ax = b by Gauss elimination with scaled row pivoting, where

A =

 2.34 −4.10 1.78

−1.98 3.47 −2.22
2.36 −15.17 6.81

 b =

 0.02

−0.73
−6.63

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

78 Systems of Linear Algebraic Equations

7. Solve the equations

2 −1 0 0
0 0 −1 1
0 −1 2 −1

−1 2 −1 0

x1

x2

x3

x4

 =

1
0
0
0

by Gauss elimination with scaled row pivoting.

8. � Solve the equations

0 2 5 −1
2 1 3 0

−2 −1 3 1
3 3 −1 2

x1

x2

x3

x4

 =

−3
3

−2
5

9. � Solve the symmetric, tridiagonal equations

4x1 − x2 = 9

−xi−1 + 4xi − xi+1 = 5, i = 2, . . . , n − 1

−xn−1 + 4xn = 5

with n = 10.

10. � Solve the equations Ax = b, where

A =

1.3174 2.7250 2.7250 1.7181
0.4002 0.8278 1.2272 2.5322
0.8218 1.5608 0.3629 2.9210
1.9664 2.0011 0.6532 1.9945

 b =

8.4855
4.9874
5.6665
6.6152

11. � Solve the equations

10 −2 −1 2 3 1 −4 7
5 11 3 10 −3 3 3 −4
7 12 1 5 3 −12 2 3
8 7 −2 1 3 2 2 4
2 −15 −1 1 4 −1 8 3
4 2 9 1 12 −1 4 1

−1 4 −7 −1 1 1 −1 −3
−1 3 4 1 3 −4 7 6

x1

x2

x3

x4

x5

x6

x7

x8

=

0
12
−5

3
−25
−26

9
−7

12. � The system shown in Fig. (a) consists of n linear springs that support n masses.
The spring stiffnesses are denoted by ki , the weights of the masses are Wi and
xi are the displacements of the masses (measured from the positions where the
springs are undeformed). The so-called displacement formulation is obtained by

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

79 2.5 Pivoting

writing the equilibrium equation of each mass and substituting Fi = ki(xi+1 − xi)
for the spring forces. The result is the symmetric, tridiagonal set of equations

(k1 + k2)x1 − k2x2 = W1

−ki xi−1 + (ki + ki+1)xi − ki+1xi+1 = Wi , i = 2, 3, . . . , n − 1

−knxn−1 + knxn = Wn

Write a program that solves these equations for given values of n, k and W. Run
the program with n = 5 and

k1 = k2 = k3 = 10 N/mm k4 = k5 = 5 N/mm
W1 = W3 = W5 = 100 N W2 = W4 = 50 N

x1

k

x

k

x

k

k

2

nW

2

3

n

1

W

W

n

1

2

W1

k1

x x1x

W2

k2

k3

x2

x
W

k

k

3

4

5

3

(a) (b)

13. � The displacement formulation for the mass–spring system shown in Fig. (b)
results in the following equilibrium equations of the masses:

k1 + k2 + k3 + k5 −k3 −k5

−k3 k3 + k4 −k4

−k5 −k4 k4 + k5

x1

x2

x3

 =

W1

W2

W3

where ki are the spring stiffnesses, Wi represent the weights of the masses, and
xi are the displacements of the masses from the undeformed configuration of
the system. Write a program that solves these equations, given k and W. Use the
program to find the displacements if

k1 = k3 = k4 = k k2 = k5 = 2k
W1 = W3 = 2W W2 = W

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

80 Systems of Linear Algebraic Equations

14. �

45 kN

1.8 m

2.4 m u1

u 2

u3 u5

u4

The displacement formulation for a plane truss is similar to that of a mass–spring
system. The differences are: (1) the stiffnesses of the members are ki = (E A/L)i ,
where E is the modulus of elasticity, A represents the cross-sectional area and L is
the length of the member; (2) there are two components of displacement at each
joint. For the statically indeterminate truss shown the displacement formulation
yields the symmetric equations Ku = p, where

K =

27.58 7.004 −7.004 0.0000 0.0000
7.004 29.57 −5.253 0.0000 −24.32

−7.004 −5.253 29.57 0.0000 0.0000
0.0000 0.0000 0.0000 27.58 −7.004
0.0000 −24.32 0.0000 −7.004 29.57

 MN/m

p =
[

0 0 0 0 −45
]

T kN

Determine the displacements ui of the joints.

15. �

P P

P

P

P

P

1 2

3

4

5

6

P P2

P3

P4

P5

P6

18 kN 12 kN

45 45

1

In the force formulation of a truss, the unknowns are the member forces Pi . For
the statically determinate truss shown, the equilibrium equations of the joints
are:

−1 1 −1/
√

2 0 0 0
0 0 1/

√
2 1 0 0

0 −1 0 0 −1/
√

2 0
0 0 0 0 1/

√
2 0

0 0 0 0 1/
√

2 1
0 0 0 −1 −1/

√
2 0

P1

P2

P3

P4

P5

P6

=

0
18

0
12

0
0

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

81 2.5 Pivoting

where the units of Pi are kN. (a) Solve the equations as they are with a computer
program. (b) Rearrange the rows and columns so as to obtain a lower triangular
coefficient matrix, and then solve the equations by back substitution using a
calculator.

16. �

P

PP

P

1

2
3

4

P1 P1 P1

P2

P2 P2P3 P3

P3

P4

P5P5 Load = 1

The force formulation of the symmetric truss shown results in the joint equilib-
rium equations

c 1 0 0 0
0 s 0 0 1
0 0 2s 0 0
0 −c c 1 0
0 s s 0 0

P1

P2

P3

P4

P5

 =

0
0
1
0
0

where s = sin θ, c = cos θ and Pi are the unknown forces. Write a program that
computes the forces, given the angle θ . Run the program with θ = 53◦.

17. �

i1
i 2

i3

20

10

R

220 V

0 V

155

5

The electrical network shown can be viewed as consisting of three loops. Apply-
ing Kirchoff’s law (

∑
voltage drops = ∑

voltage sources) to each loop yields the
following equations for the loop currents i1, i2 and i3:

5i1 + 15(i1 − i3) = 220 V

R(i2 − i3) + 5i2 + 10i2 = 0

20i3 + R(i3 − i2) + 15(i3 − i1) = 0

Compute the three loop currents for R = 5, 10 and 20 �.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

82 Systems of Linear Algebraic Equations

18. �

50 30

15

15

20

30

10

510
Ω

25

i

i i

i

2

1

3

4

-120 V +120 V

Determine the loop currents i1 to i4 in the electrical network shown.

19. � Consider the n simultaneous equations Ax = b, where

Ai j = (i + j)2 bi =
n−1∑
j=0

Ai j , i = 0, 1, . . . , n − 1, j = 0, 1, . . . , n − 1

The solution is x =
[

1 1 · · · 1
]T

. Write a program that solves these equations
for any given n (pivoting is recommended). Run the program with n = 2, 3 and 4,
and comment on the results.

∗2.6 Matrix Inversion

Computing the inverse of a matrix and solving simultaneous equations are related
tasks. The most economical way to invert an n × n matrix A is to solve the equations

A X = I (2.33)

where I is the n × nidentity matrix. The solution X, also of size n × n, will be the inverse
of A. The proof is simple: after we premultiply both sides of Eq. (2.33) by A−1 we have
A−1A X = A−1I, which reduces to X = A−1.

Inversion of large matrices should be avoided whenever possible due its high
cost. As seen from Eq. (2.33), inversion of A is equivalent to solving Axi= bi with
i = 1, 2, . . . , n, where bi is the ith column of I. If LU decomposition is employed in
the solution, the solution phase (forward and back substitution) must be repeated n
times, once for each bi . Since the cost of computation is proportional to n3 for the
decomposition phase and n2 for each vector of the solution phase, the cost of inversion
is considerably more expensive than the solution of Ax = b (single constant vector b).

Matrix inversion has another serious drawback—a banded matrix loses its struc-
ture during inversion. In other words, if A is banded or otherwise sparse, then A−1 is
fully populated. However, the inverse of a triangular matrix remains triangular.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

83 2.6 Matrix Inversion

EXAMPLE 2.13
Write a function that inverts a matrix using LU decomposition with pivoting. Test the
function by inverting

A =

 0.6 −0.4 1.0

−0.3 0.2 0.5
0.6 −1.0 0.5

Solution The function matInv listed below uses the decomposition and solution
procedures in the module LUpivot.

#!/usr/bin/python

example2_13

from numarray import array,identity, matrixmultiply

from LUpivot import *

def matInv(a):

n = len(a[0])

aInv = identity(n)*1.0

a,seq = LUdecomp(a)

for i in range(n):

aInv[:,i] = LUsolve(a,aInv[:,i],seq)

return aInv

a = array([[0.6, -0.4, 1.0],\

[-0.3, 0.2, 0.5],\

[0.6, -1.0, 0.5]])

aOrig = a.copy() # Save original [a]

aInv = matInv(a) # Invert [a] (original [a] is destroyed)

print ’’\naInv =\n’’,aInv

print ’’\nCheck: a*aInv =\n’’, matrixmultiply(aOrig,aInv)

raw_input(’’\nPress return to exit’’)

The output is

aInv =

[[1.66666667 -2.22222222 -1.11111111]

[1.25 -0.83333333 -1.66666667]

[0.5 1. 0.]]

Check: a*aInv =

[[1.00000000e+00 -4.44089210e-16 -1.11022302e-16]

[0.00000000e+00 1.00000000e+00 5.55111512e-17]

[0.00000000e+00 -3.33066907e-16 1.00000000e+00]]

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

84 Systems of Linear Algebraic Equations

EXAMPLE 2.14
Invert the matrix

A =

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 5

Solution Since the matrix is tridiagonal, we solve AX = I using the functions in the
module LUdecomp3 (LU decomposition of tridiagonal matrices).

#!/usr/bin/python

example2_14

from numarray import array,ones,identity,Float64

from LUdecomp3 import *

n = 6

d = ones((n))*2.0

e = ones((n-1))*(-1.0)

c = e.copy()

d[n-1] = 5.0

aInv = identity(n)*1.0

c,d,e = LUdecomp3(c,d,e)

for i in range(n):

aInv[:,i] = LUsolve3(c,d,e,aInv[:,i])

print ’’\nThe inverse matrix is:\n’’,aInv

raw_input(’’\nPress return to exit’’)

Running the program results in the following output:

The inverse matrix is:

[[0.84 0.68 0.52 0.36 0.2 0.04]

[0.68 1.36 1.04 0.72 0.4 0.08]

[0.52 1.04 1.56 1.08 0.6 0.12]

[0.36 0.72 1.08 1.44 0.8 0.16]

[0.2 0.4 0.6 0.8 1. 0.2]

[0.04 0.08 0.12 0.16 0.2 0.24]]]

Note that A is tridiagonal, whereas A−1 is fully populated.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

85 2.7 Iterative Methods

∗2.7 Iterative Methods

Introduction

So far, we have discussed only direct methods of solution. The common characteristic
of these methods is that they compute the solution with a finite number of operations.
Moreover, if the computer were capable of infinite precision (no roundoff errors), the
solution would be exact.

Iterative, or indirect methods, start with an initial guess of the solution x and then
repeatedly improve the solution until the change in x becomes negligible. Since the
required number of iterations can be large, the indirect methods are, in general, slower
than their direct counterparts. However, iterative methods do have the following ad-
vantages that make them attractive for certain problems:

1. It is feasible to store only the nonzero elements of the coefficient matrix. This
makes it possible to deal with very large matrices that are sparse, but not neces-
sarily banded. In many problems, there is no need to store the coefficient matrix
at all.

2. Iterative procedures are self-correcting, meaning that roundoff errors (or even
arithmetic mistakes) in one iterative cycle are corrected in subsequent cycles.

A serious drawback of iterative methods is that they do not always converge to the
solution. It can be shown that convergence is guaranteed only if the coefficient matrix
is diagonally dominant. The initial guess for x plays no role in determining whether
convergence takes place—if the procedure converges for one starting vector, it would
do so for any starting vector. The initial guess affects only the number of iterations
that are required for convergence.

Gauss–Seidel Method

The equations Ax = b are in scalar notation

n∑
j=1

Ai j xj = bi , i = 1, 2, . . . , n

Extracting the term containing xi from the summation sign yields

Aii xi +
n∑

j=1
j �=i

Ai j xj = bi , i = 1, 2, . . . , n

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

86 Systems of Linear Algebraic Equations

Solving for xi , we get

xi = 1
Aii

bi −

n∑
j=1
j �=i

Ai j xj

 , i = 1, 2, . . . , n

The last equation suggests the following iterative scheme

xi ← 1
Aii

bi −

n∑
j=1
j �=i

Ai j xj

 , i = 1, 2, . . . , n (2.34)

We start by choosing the starting vector x. If a good guess for the solution is not
available, x can be chosen randomly. Equation (2.34) is then used to recompute each
element of x, always using the latest available values of xj . This completes one iteration
cycle. The procedure is repeated until the changes in x between successive iteration
cycles become sufficiently small.

Convergence of the Gauss–Seidel method can be improved by a technique known
as relaxation. The idea is to take the new value of xi as a weighted average of its previous
value and the value predicted by Eq. (2.34). The corresponding iterative formula is

xi ← ω

Aii

bi −

n∑
j=1
j �=i

Ai j xj

 + (1 − ω)xi , i = 1, 2, . . . , n (2.35)

where the weight ω is called the relaxation factor. It can be seen that if ω = 1, no re-
laxation takes place, since Eqs. (2.34) and (2.35) produce the same result. If ω < 1, Eq.
(2.35) represents interpolation between the old xi and the value given by Eq. (2.34).
This is called underrelaxation. In cases where ω > 1, we have extrapolation, or over-
relaxation.

There is no practical method of determining the optimal value of ω beforehand;
however, a good estimate can be computed during run time. Let �x(k) = ∣∣x(k−1) − x(k)

∣∣
be the magnitude of the change in x during the k th iteration (carried out without
relaxation, i.e., with ω = 1). If k is sufficiently large (say k ≥ 5), it can be shown4 that
an approximation of the optimal value of ω is

ωopt ≈ 2

1 +
√

1 − (
�x(k+p)/�x(k)

)1/p
(2.36)

where p is a positive integer.

4 See, for example, Terrence J. Akai, Applied Numerical Methods for Engineers, John Wiley & Sons
(1994), p. 100.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

87 2.7 Iterative Methods

The essential elements of a Gauss–Seidel algorithm with relaxation are:

1. Carry out k iterations with ω = 1 (k = 10 is reasonable). After the k th iteration
record �x(k).

2. Perform an additional p iterations and record �x(k+p) for the last iteration.
3. Perform all subsequent iterations with ω = ωopt, where ωopt is computed from

Eq. (2.36).

� gaussSeidel

The function gaussSeidel is an implementation of the Gauss–Seidel method with
relaxation. It automatically computes ωopt from Eq. (2.36) using k = 10 and p = 1.
The user must provide the function iterEqs that computes the improved x from the
iterative formulas in Eq. (2.35)—see Example 2.17. The function returns the solution
vector x, the number of iterations carried out and the value of ωopt used.

module gaussSeidel

’’’ x,numIter,omega = gaussSeidel(iterEqs,x,tol = 1.0e-9)

Gauss-Seidel method for solving [A]{x} = {b}.

The matrix [A] should be sparse. User must supply the

function iterEqs(x,omega) that returns the improved {x},

given the current {x} (’omega’ is the relaxation factor).

’’’

from numarray import dot

from math import sqrt

def gaussSeidel(iterEqs,x,tol = 1.0e-9):

omega = 1.0

k = 10

p = 1

for i in range(1,501):

xOld = x.copy()

x = iterEqs(x,omega)

dx = sqrt(dot(x-xOld,x-xOld))

if dx < tol: return x,i,omega

Compute of relaxation factor after k+p iterations

if i == k: dx1 = dx

if i == k + p:

dx2 = dx

omega = 2.0/(1.0 + sqrt(1.0 - (dx2/dx1)**(1.0/p)))

print ’Gauss-Seidel failed to converge’

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

88 Systems of Linear Algebraic Equations

Conjugate Gradient Method

Consider the problem of finding the vector x that minimizes the scalar function

f (x) = 1
2

xT Ax − bT x (2.37)

where the matrix A is symmetric and positive definite. Because f (x) is minimized
when its gradient ∇ f = Ax − b is zero, we see that minimization is equivalent to
solving

Ax = b (2.38)

Gradient methods accomplish the minimization by iteration, starting with an
initial vector x0. Each iterative cycle k computes a refined solution

xk+1 = xk + αksk (2.39)

The step length αk is chosen so that xk+1 minimizes f (xk+1) in the search direction sk.
That is, xk+1 must satisfy Eq. (2.38):

A(xk + αksk) = b (a)

Introducing the residual

rk = b − Axk (2.40)

Eq. (a) becomes αAsk = rk. Premultiplying both sides by sT
k and solving for αk, we

obtain

αk = sT
k rk

sT
k Ask

(2.41)

We are still left with the problem of determining the search direction sk. Intuition
tells us to choose sk = −∇ f = rk, since this is the direction of the largest negative
change in f (x). The resulting procedure is known as the method of steepest descent.
It is not a popular algorithm since its convergence can be slow. The more efficient
conjugate gradient method uses the search direction

sk+1 = rk+1 + βksk (2.42)

The constant βk is chosen so that the two successive search directions are conjugate
to each other, meaning

sT
k+1Ask = 0 (b)

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

89 2.7 Iterative Methods

The great attraction of conjugate gradients is that minimization in one conjugate
direction does not undo previous minimizations (minimizations do not interfere with
one another).

Substituting sk+1 from Eq. (2.42) into Eq. (b), we get(
rT

k+1 + βksT
k

)
Ask = 0

which yields

βk = −rT
k+1Ask

sT
k Ask

(2.43)

Here is the outline of the conjugate gradient algorithm:

� Choose x0 (any vector will do, but one close to solution results in fewer iterations)
� r0 ← b − Ax0
� s0 ← r0 (lacking a previous search direction, choose the direction of steepest

descent)
� do with k = 0, 1, 2, . . .

αk ← sT
k rk

sT
k Ask

xk+1 ← xk + αksk

rk+1 ← b − Axk+1

if |rk+1| ≤ ε exit loop (ε is the error tolerance)

βk ← − rT
k+1Ask

sT
k Ask

sk+1 ← rk+1 + βksk

end do

It can be shown that the residual vectors r1, r2, r3, . . . produced by the algorithm
are mutually orthogonal; that is, ri · r j = 0, i �= j. Now suppose that we have carried out
enough iterations to have computed the whole set of n residual vectors. The residual
resulting from the next iteration must be the null vector (rn+1 = 0), indicating that the
solution has been obtained. It thus appears that the conjugate gradient algorithm is
not an iterative method at all, since it reaches the exact solution after ncomputational
cycles. In practice, however, convergence is usually achieved in less than n iterations.

The conjugate gradient method is not competitive with direct methods in the
solution of small sets of equations. Its strength lies in the handling of large, sparse
systems (where most elements of A are zero). It is important to note that A enters the
algorithm only through its multiplication by a vector; that is, in the form Av, where v is
a vector (either xk+1 or sk). If A is sparse, it is possible to write an efficient subroutine for
the multiplication and pass it, rather than A itself, to the conjugate gradient algorithm.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

90 Systems of Linear Algebraic Equations

� conjGrad

The function conjGrad shown below implements the conjugate gradient algorithm.
The maximum allowable number of iterations is set to n (the number of unknowns).
Note that conjGrad calls the function Av which returns the product Av. This func-
tion must be supplied by the user (see Example 2.18). We must also supply the starting
vector x0 and the constant (right-hand-side) vector b. The function returns the solu-
tion vector x and the number of iterations:

module conjGrad

’’’ x, numIter = conjGrad(Av,x,b,tol=1.0e-9)

Conjugate gradient method for solving [A]{x} = {b}.

The matrix [A] should be sparse. User must supply

the function Av(v) that returns the vector [A]{v}.

’’’

from numarray import dot

from math import sqrt

def conjGrad(Av,x,b,tol=1.0e-9):

n = len(b)

r = b - Av(x)

s = r.copy()

for i in range(n):

u = Av(s)

alpha = dot(s,r)/dot(s,u)

x = x + alpha*s

r = b - Av(x)

if(sqrt(dot(r,r))) < tol:

break

else:

beta = -dot(r,u)/dot(s,u)

s = r + beta*s

return x,i

EXAMPLE 2.15
Solve the equations

 4 −1 1
−1 4 −2

1 −2 4

x1

x2

x3

 =

 12

−1
5

by the Gauss–Seidel method without relaxation.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

91 2.7 Iterative Methods

Solution With the given data, the iteration formulas in Eq. (2.34) become

x1 = 1
4

(12 + x2 − x3)

x2 = 1
4

(−1 + x1 + 2x3)

x3 = 1
4

(5 − x1 + 2x2)

Choosing the starting values x1 = x2 = x3 = 0, we have for the first iteration

x1 = 1
4

(12 + 0 − 0) = 3

x2 = 1
4

[−1 + 3 + 2(0)] = 0.5

x3 = 1
4

[5 − 3 + 2(0.5)] = 0.75

The second iteration yields

x1 = 1
4

(12 + 0.5 − 0.75) = 2.9375

x2 = 1
4

[−1 + 2.9375 + 2(0.75)] = 0.859 38

x3 = 1
4

[5 − 2.9375 + 2(0.859 38)] = 0 .945 31

and the third iteration results in

x1 = 1
4

(12 + 0.85938 − 0 .94531) = 2.978 52

x2 = 1
4

[−1 + 2.97852 + 2(0 .94531)] = 0.967 29

x3 = 1
4

[5 − 2.97852 + 2(0.96729)] = 0.989 02

After five more iterations the results would agree with the exact solution x1 = 3,
x2 = x3 = 1 within five decimal places.

EXAMPLE 2.16
Solve the equations in Example 2.15 by the conjugate gradient method.

Solution The conjugate gradient method should converge after three iterations.
Choosing again for the starting vector

x0 =
[

0 0 0
]T

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

92 Systems of Linear Algebraic Equations

the computations outlined in the text proceed as follows:
First iteration

r0 = b − Ax0 =

12

−1
5

 −

 4 −1 1

−1 4 −2
1 −2 4

0

0
0

 =

 12

−1
5

s0 = r0 =

 12

−1
5

As0 =

 4 −1 1

−1 4 −2
1 −2 4

 12

−1
5

 =

 54

−26
34

α0 = sT
0 r0

sT
0 As0

= 122 + (−1)2 + 52

12(54) + (−1)(−26) + 5(34)
= 0.201 42

x1 = x0 + α0s0 =

0

0
0

 + 0.201 42

 12

−1
5

 =

 2.41 704

−0. 201 42
1.007 10

Second iteration

r1 = b − Ax1 =

 12

−1
5

 −

 4 −1 1

−1 4 −2
1 −2 4

 2.417 04

−0. 201 42
1.007 10

 =

 1.123 32

4.236 92
−1.848 28

β0 = − rT
1 As0

sT
0 As0

= −1.123 32(54) + 4.236 92(−26) − 1.848 28(34)
12(54) + (−1)(−26) + 5(34)

= 0.133 107

s1 = r1 + β0s0 =

 1.123 32

4.236 92
−1.848 28

 + 0.133 107

 12

−1
5

 =

 2.720 76

4.103 80
−1.182 68

As1 =

 4 −1 1

−1 4 −2
1 −2 4

 2.720 76

4.103 80
−1.182 68

 =

 5.596 56

16.059 80
−10.217 60

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

93 2.7 Iterative Methods

α1 = sT
1 r1

sT
1 As1

= 2.720 76(1.123 32) + 4.103 80(4.236 92) + (−1.182 68)(−1.848 28)
2.720 76(5.596 56) + 4.103 80(16.059 80) + (−1.182 68)(−10.217 60)

= 0.24276

x2 = x1 + α1s1 =

 2.417 04

−0. 201 42
1.007 10

 + 0.24276

 2. 720 76

4. 103 80
−1. 182 68

 =

3.077 53

0.794 82
0.719 99

Third iteration

r2 = b − Ax2 =

 12

−1
5

 −

 4 −1 1

−1 4 −2
1 −2 4

3.077 53

0.794 82
0.719 99

 =

−0.235 29

0.338 23
0.632 15

β1 = − rT
2 As1

sT
1 As1

= − (−0.235 29)(5.596 56) + 0.338 23(16.059 80) + 0.632 15(−10.217 60)
2.720 76(5.596 56) + 4.103 80(16.059 80) + (−1.182 68)(−10.217 60)

= 0.0251 452

s2 = r2 + β1s1 =

−0.235 29

0.338 23
0.632 15

 + 0.025 1452

 2.720 76

4.103 80
−1.182 68

 =

−0.166 876

0.441 421
0.602 411

As2 =

 4 −1 1

−1 4 −2
1 −2 4

−0.166 876

0.441 421
0.602 411

 =

−0.506 514
0.727 738
1.359 930

α2 = rT
2 s2

sT
2 As2

= (−0.235 29)(−0.166 876) + 0.338 23(0.441 421) + 0.632 15(0.602 411)
(−0.166 876)(−0.506 514) + 0.441 421(0.727 738) + 0.602 411(1.359 930)

= 0.464 80

x3 = x2 + α2s2 =

3.077 53

0.794 82
0.719 99

 + 0.464 80

−0.166 876

0.441 421
0.602 411

 =

2.999 97

0.999 99
0.999 99

The solution x3 is correct to almost five decimal places. The small discrepancy is
caused by roundoff errors in the computations.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

94 Systems of Linear Algebraic Equations

EXAMPLE 2.17
Write a computer program to solve the following n simultaneous equations by the
Gauss–Seidel method with relaxation (the program should work with any value of n)5.

2 −1 0 0 . . . 0 0 0 1
−1 2 −1 0 . . . 0 0 0 0

0 −1 2 −1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 2 −1 0
0 0 0 0 . . . 0 −1 2 −1
1 0 0 0 . . . 0 0 −1 2

x1

x2

x3

...
xn−2

xn−1

xn

=

0
0
0
...
0
0
1

Run the program with n = 20. The exact solution can be shown to be xi = −n/4 + i/2,
i = 1, 2, . . . , n.

Solution In this case the iterative formulas in Eq. (2.35) are

x1 = ω(x2 − xn)/2 + (1 − ω)x1

xi = ω(xi−1 + xi+1)/2 + (1 − ω)xi , i = 2, 3, . . . , n − 1 (a)

xn = ω(1 − x1 + xn−1)/2 + (1 − ω)xn

These formulas are evaluated in the function iterEqs.

#!/usr/bin/python

example2_17

from numarray import zeros,Float64

from gaussSeidel import *

def iterEqs(x,omega):

n = len(x)

x[0] = omega*(x[1] - x[n-1])/2.0 + (1.0 - omega)*x[0]

for i in range(1,n-1):

x[i] = omega*(x[i-1] + x[i+1])/2.0 + (1.0 - omega)*x[i]

x[n-1] = omega*(1.0 - x[0] + x[n-2])/2.0 \

+ (1.0 - omega)*x[n-1]

return x

n = eval(raw_input(’’Number of equations ==> ’’))

x = zeros((n),type=Float64)

x,numIter,omega = gaussSeidel(iterEqs,x)

5 Equations of this form are called cyclic tridiagonal. They occur in the finite difference formulation
of second-order differential equations with periodic boundary conditions.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

95 2.7 Iterative Methods

print ’’\nNumber of iterations =’’,numIter

print ’’\nRelaxation factor =’’,omega

print ’’\nThe solution is:\n’’,x

raw_input(’’\nPress return to exit’’)

The output from the program is:

Number of equations ==> 20

Number of iterations = 259

Relaxation factor = 1.70545231071

The solution is:

[-4.50000000e+00 -4.00000000e+00 -3.50000000e+00 -3.00000000e+00

-2.50000000e+00 -2.00000000e+00 -1.50000000e+00 -9.99999997e-01

-4.99999998e-01 2.14046747e-09 5.00000002e-01 1.00000000e+00

1.50000000e+00 2.00000000e+00 2.50000000e+00 3.00000000e+00

3.50000000e+00 4.00000000e+00 4.50000000e+00 5.00000000e+00]

The convergence is very slow, because the coefficient matrix lacks diagonal
dominance—substituting the elements of A into Eq. (2.30) produces an equality rather
than the desired inequality. If we were to change each diagonal term of the coefficient
matrix from 2 to 4, A would be diagonally dominant and the solution would converge
in about 20 iterations.

EXAMPLE 2.18
Solve Example 2.17 with the conjugate gradient method, also using n = 20.

Solution The program shown below utilizes the function conjGrad. The solution
vector x is initialized to zero in the program, which also sets up the constant vector b.
The function Av(v) returns the product Av, where A is the coefficient matrix and v is
a vector. For the given A, the components of the vector Av are

(Av)1 = 2v1 − v2 + vn

(Av)i = −vi−1 + 2vi − vi+1, i = 2, 3, . . . , n − 1

(Av)n = −vn−1 + 2vn + v1

which are evaluated by the function Av(v).

#!/usr/bin/python

example2_18

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

96 Systems of Linear Algebraic Equations

from numarray import zeros,Float64,sqrt

from conjGrad import *

def Ax(v):

n = len(v)

Ax = zeros((n),type=Float64)

Ax[0] = 2.0*v[0] - v[1] + v[n-1]

Ax[1:n-1] = -v[0:n-2] + 2.0*v[1:n-1] - v[2:n]

Ax[n-1] = -v[n-2] + 2.0*v[n-1] + v[0]

return Ax

n = eval(raw_input(’’Number of equations ==> ’’))

b = zeros((n),type=Float64)

b[n-1] = 1.0

x = zeros((n),type=Float64)

x,numIter = conjGrad(Ax,x,b)

print ’’\nThe solution is:\n’’,x

print ’’\nNumber of iterations =’’,numIter

raw_input(’’\nPress return to exit’’)

Running the program results in

Number of equations ==> 20

The solution is:

[-4.5 -4. -3.5 -3. -2.5 -2. -1.5 -1. -0.5 0. 0.5 1. 1.5

2. 2.5 3. 3.5 4. 4.5 5.]

Number of iterations = 9

Note that convergence was reached in only 9 iterations, whereas 259 iterations
were required in the Gauss–Seidel method.

PROBLEM SET 2.3

1. Let

A =

 3 −1 2

0 1 3
−2 2 −4

 B =

 0 1 3

3 −1 2
−2 2 −4

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

97 2.7 Iterative Methods

(note that B is obtained by interchanging the first two rows of A). Knowing that

A−1 =

 0.5 0 0.25

0.3 0.4 0.45
−0.1 0.2 −0.15

determine B−1.

2. Invert the triangular matrices

A =

2 4 3

0 6 5
0 0 2

 B =

2 0 0

3 4 0
4 5 6

3. Invert the triangular matrix

A =

1 1/2 1/4 1/8
0 1 1/3 1/9
0 0 1 1/4
0 0 0 1

4. Invert the following matrices:

(a) A =

1 2 4

1 3 9
1 4 16

 (b) B =

 4 −1 0

−1 4 −1
0 −1 4

5. Invert the matrix

A =

 4 −2 1

−2 1 −1
1 −2 4

6. � Invert the following matrices with any method:

A =

5 −3 −1 0
−2 1 1 1

3 −5 1 2
0 8 −4 −3

 B =

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 4

7. � Invert the matrix with any method:

A =

1 3 −9 6 4
2 −1 6 7 1
3 2 −3 15 5
8 −1 1 4 2

11 1 −2 18 7

and comment on the reliability of the result.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

98 Systems of Linear Algebraic Equations

8. � The joint displacements u of the plane truss in Prob. 14, Problem Set 2.2 are
related to the applied joint forces p by

Ku = p (a)

where

K =

27.580 7.004 −7.004 0.000 0.000
7.004 29.570 −5.253 0.000 −24.320

−7.004 −5.253 29.570 0.000 0.000
0.000 0.000 0.000 27.580 −7.004
0.000 −24.320 0.000 −7.004 29.570

 MN/m

is called the stiffness matrix of the truss. If Eq. (a) is inverted by multiplying each
side by K−1, we obtain u = K−1p, where K−1 is known as the flexibility matrix. The
physical meaning of the elements of the flexibility matrix is: K −1

i j = displacements
ui (i = 1, 2, . . . , 5) produced by the unit load pj = 1. Compute (a) the flexibility
matrix of the truss; (b) the displacements of the joints due to the load p5 = −45
kN (the load shown in Prob. 14, Problem Set 2.2).

9. � Invert the matrices

A =

3 −7 45 21
12 11 10 17

6 25 −80 −24
17 55 −9 7

 B =

1 1 1 1
1 2 2 2
2 3 4 4
4 5 6 7

10. � Write a program for inverting an n × n lower triangular matrix. The inversion
procedure should contain only forward substitution. Test the program by invert-
ing the matrix

A =

36 0 0 0
18 36 0 0

9 12 36 0
5 4 9 36

11. Use the Gauss–Seidel method to solve

−2 5 9

7 1 1
−3 7 −1

x1

x2

x3

 =

 1

6
−26

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

99 2.7 Iterative Methods

12. Solve the following equations with the Gauss–Seidel method:

12 −2 3 1
−2 15 6 −3

1 6 20 −4
0 −3 2 9

x1

x2

x3

x4

 =

0
0

20
0

13. Use the Gauss–Seidel method with relaxation to solve Ax = b, where

A =

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 3

 b =

15
10
10
10

Take xi = bi/Aii as the starting vector and use ω = 1.1 for the relaxation factor.

14. Solve the equations

 2 −1 0

−1 2 −1
0 −1 1

x1

x2

x3

 =

1

1
1

by the conjugate gradient method. Start with x = 0.

15. Use the conjugate gradient method to solve

 3 0 −1

0 4 −2
−1 −2 5

x1

x2

x3

 =

 4

10
−10

starting with x = 0.

16. � Solve the simultaneous equations Ax = b and Bx = b by the Gauss–Seidel
method with relaxation, where

b =
[

10 −8 10 10 −8 10
]T

A =

3 −2 1 0 0 0
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
0 0 0 1 −2 3

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

100 Systems of Linear Algebraic Equations

B =

3 −2 1 0 0 1
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
1 0 0 1 −2 3

Note that A is not diagonally dominant, but that does not necessarily preclude
convergence.

17. � Modify the program in Example 2.17 (Gauss–Seidel method) so that it will solve
the following equations:

4 −1 0 0 · · · 0 0 0 1
−1 4 −1 0 · · · 0 0 0 0

0 −1 4 −1 · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · −1 4 −1 0
0 0 0 0 · · · 0 −1 4 −1
1 0 0 0 · · · 0 0 −1 4

x1

x2

x3

...
xn−2

xn−1

xn

=

0
0
0
...
0
0

100

Run the program with n = 20 and compare the number of iterations with Example
2.17.

18. � Modify the program in Example 2.18 to solve the equations in Prob. 17 by the
conjugate gradient method. Run the program with n = 20.

19. �

T = 0

T = 200

T = 100T = 0

0

0

0 0

1 2 3

4 5 6

7 8 9

The edges of the square plate are kept at the temperatures shown. Assuming
steady-state heat conduction, the differential equation governing the temperature
T in the interior is

∂2T
∂x2

+ ∂2T
∂y2

= 0

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

101 2.8 Other Methods

If this equation is approximated by finite differences using the mesh shown, we
obtain the following algebraic equations for temperatures at the mesh points:

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

T1

T2

T3

T4

T5

T6

T7

T8

T9

= −

0
0

100
0
0

100
200
200
300

Solve these equations with the conjugate gradient method.

∗2.8 Other Methods

A matrix can be decomposed in numerous ways, some of which are generally useful,
whereas others find use in special applications. The most important of the latter are
the QR factorization and the singular value decomposition.

The QR decomposition of a matrix A is

A = QR

where Q is an orthogonal matrix (recall that the matrix Q is orthogonal if Q−1 = QT)
and R is an upper triangular matrix. Unlike LU factorization, QR decomposition does
not require pivoting to sustain stability, but it does involve about twice as many op-
erations. Due to its relative inefficiency, the QR factorization is not used as a general-
purpose tool, but finds its niche in applications that put a premium on stabiliy (e.g.,
solution of eigenvalue problems).

The singular value decomposition is useful in dealing with singular or ill-
conditioned matrices. Here the factorization is

A = UΛVT

where U and V are orthogonal matrices and

Λ =

λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

102 Systems of Linear Algebraic Equations

is a diagonal matrix. The elements λi of Λ can be shown to be positive or zero. If
A is symmetric and positive definite, then the λ’s are the eigenvalues of A. A nice
characteristic of the singular value decomposition is that it works even if A is singular
or ill-conditioned. The conditioning of A can be diagnosed from magnitudes of the
λ’s: the matrix is singular if one or more of the λ’s are zero, and it is ill-conditioned if
the condition number

cond(A) = λmax/λmin

is very large.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

3 Interpolation and Curve Fitting

Given the n + 1 data points (xi, yi), i = 0, 1, . . . , n, estimate y(x).

3.1 Introduction

Discrete data sets, or tables of the form

x0 x1 x2 · · · xn

y0 y1 y2 · · · yn

are commonly involved in technical calculations. The source of the data may be ex-
perimental observations or numerical computations. There is a distinction between
interpolation and curve fitting. In interpolation we construct a curve through the data
points. In doing so, we make the implicit assumption that the data points are accurate
and distinct. Curve fitting is applied to data that contain scatter (noise), usually due to
measurement errors. Here we want to find a smooth curve that approximates the data
in some sense. Thus the curve does not necessarily hit the data points. The difference
between interpolation and curve fitting is illustrated in Fig. 3.1.

x

y

Data points

Interpolation

Curve fitting

Figure 3.1. Interpolation and curve fitting of data.

103

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

104 Interpolation and Curve Fitting

3.2 Polynomial Interpolation

Lagrange’s Method

The simplest form of an interpolant is a polynomial. It is always possible to construct
a unique polynomial of degree n that passes through n + 1 distinct data points. One
means of obtaining this polynomial is the formula of Lagrange

Pn(x) =
n∑

i=0

yi�i(x) (3.1a)

where the subscript n denotes the degree of the polynomial and

�i(x) = x − x0

xi − x0
· x − x1

xi − x1
· · · x − xi−1

xi − xi−1
· x − xi+1

xi − xi+1
· · · x − xn

xi − xn

=
n∏

j=0
j �=i

x − xj

xi − xj
, i = 0, 1, . . . , n (3.1b)

are called the cardinal functions.
For example, if n = 1, the interpolant is the straight line P1(x) = y0�0(x) + y1�1(x),

where

�0(x) = x − x1

x0 − x1
�1(x) = x − x0

x1 − x0

With n = 2, interpolation is parabolic: P2(x) = y0�0(x) + y1�1(x) + y2�2(x), where now

�0(x) = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

�1(x) = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

�2(x) = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

The cardinal functions are polynomials of degree n and have the property

�i(xj) =
{

0 if i �= j
1 if i = j

}
= δi j (3.2)

where δi j is the Kronecker delta. This property is illustrated in Fig. 3.2 for three-point
interpolation (n = 2) with x0 = 0, x1 = 2 and x2 = 3.

0 1 2 3
0

1

0
2

1

x

l

l

l Figure 3.2. Example of quadratic cardinal functions.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

105 3.2 Polynomial Interpolation

To prove that the interpolating polynomial passes through the data points, we
substitute x = xj into Eq. (3.1a) and then utilize Eq. (3.2). The result is

Pn(xj) =
n∑

i=0

yi�i(xj) =
n∑

i=0

yiδi j = yj

It can be shown that the error in polynomial interpolation is

f (x) − Pn(x) = (x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ) (3.3)

where ξ lies somewhere in the interval (x0, xn); its value is otherwise unknown. It is
instructive to note that the farther a data point is from x, the more it contributes to
the error at x.

Newton’s Method

Although Lagrange’s method is conceptually simple, it does not lend itself to an effi-
cient algorithm. A better computational procedure is obtained with Newton’s method,
where the interpolating polynomial is written in the form

Pn(x) = a0 + (x − x0)a1 + (x − x0)(x − x1)a2 + · · · + (x − x0)(x − x1) · · · (x − xn−1)an

This polynomial lends itself to an efficient evaluation procedure. Consider, for
example, four data points (n = 3). Here the interpolating polynomial is

P3(x) = a0 + (x − x0)a1 + (x − x0)(x − x1)a2 + (x − x0)(x − x1)(x − x2)a3

= a0 + (x − x0) {a1 + (x − x1) [a2 + (x − x2)a3]}

which can be evaluated backwards with the following recurrence relations:

P0(x) = a3

P1(x) = a2 + (x − x2)P0(x)

P2(x) = a1 + (x − x1)P1(x)

P3(x) = a0 + (x − x0)P2(x)

For arbitrary n we have

P0(x) = an Pk(x) = an−k + (x − xn−k)Pk−1(x), k = 1, 2, . . . , n (3.4)

Denoting the x-coordinate array of the data points by xData and the degree of the
polynomial by n, we have the following algorithm for computing Pn(x):

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

106 Interpolation and Curve Fitting

p = a[n]

for k in range(1,n+1):

p = a[n-k] + (x - xData[n-k])*p

The coefficients of Pn are determined by forcing the polynomial to pass through
each data point: yi = Pn(xi), i = 0, 1, . . . , n. This yields the simultaneous equations

y0 = a0

y1 = a0 + (x1 − x0)a1

y2 = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2 (a)

...

yn = a0 + (xn − x0)a1 + · · · + (xn − x0)(xn − x1) · · · (xn − xn−1)an

Introducing the divided differences

∇yi = yi − y0

xi − x0
, i = 1, 2, . . . , n

∇2 yi = ∇yi − ∇y1

xi − x1
, i = 2, 3, . . . , n

∇3 yi = ∇2 yi − ∇2 y2

xi − x2
, i = 3, 4, . . . n (3.5)

...

∇nyn = ∇n−1 yn − ∇n−1 yn−1

xn − xn−1

the solution of Eqs. (a) is

a0 = y0 a1 = ∇y1 a2 = ∇2 y2 · · · an = ∇nyn (3.6)

If the coefficients are computed by hand, it is convenient to work with the format in
Table 3.1 (shown for n = 4).

x0 y0

x1 y1 ∇y1

x2 y2 ∇y2 ∇2 y2

x3 y3 ∇y3 ∇2 y3 ∇3 y3

x4 y4 ∇y4 ∇2 y4 ∇3 y4 ∇4 y4

Table 3.1

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

107 3.2 Polynomial Interpolation

The diagonal terms (y0,∇y1,∇2 y2,∇3 y3 and∇4 y4) in the table are the coefficients of
the polynomial. If the data points are listed in a different order, the entries in the table
will change, but the resultant polynomial will be the same—recall that a polynomial
of degree n interpolating n + 1 distinct data points is unique.

Machine computations can be carried out within a one-dimensional array a em-
ploying the following algorithm (we use the notation m = n + 1 = number of data
points):

a = yData.copy()

for k in range(1,m):

for i in range(k,m):

a[i] = (a[i] - a[k-1])/(xData[i] - xData[k-1])

Initially, a contains the y-coordinates of the data, so that it is identical to the
second column in Table 3.1. Each pass through the outer loop generates the entries in
the next column, which overwrite the corresponding elements of a. Therefore, a ends
up containing the diagonal terms of Table 3.1, i.e., the coefficients of the polynomial.

� newtonPoly

This module contains the two functions required for interpolation by Newton’s
method. Given the data point arrays xData and yData, the function coeffts re-
turns the coefficient array a. After the coefficients are found, the interpolant Pn(x) can
be evaluated at any value of x with the function evalPoly.

module newtonPoly

’’’ p = evalPoly(a,xData,x).

Evaluates Newton’s polynomial p at x. The coefficient

vector {a} can be computed by the function ’coeffts’.

a = coeffts(xData,yData).

Computes the coefficients of Newton’s polynomial.

’’’

def evalPoly(a,xData,x):

n = len(xData) - 1 # Degree of polynomial

p = a[n]

for k in range(1,n+1):

p = a[n-k] + (x -xData[n-k])*p

return p

def coeffts(xData,yData):

m = len(xData) # Number of data points

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

108 Interpolation and Curve Fitting

a = yData.copy()

for k in range(1,m):

a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1])

return a

Neville’s Method

Newton’s method of interpolation involves two steps: computation of the coefficients,
followed by evaluation of the polynomial. This works well if the interpolation is carried
out repeatedly at different values of x using the same polynomial. If only one point
is to interpolated, a method that computes the interpolant in a single step, such as
Neville’s algorithm, is a better choice.

Let Pk[xi, xi+1, . . . , xi+k] denote the polynomial of degree k that passes through the
k + 1 data points (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k). For a single data point, we have

P0[xi] = yi (3.7)

The interpolant based on two data points is

P1[xi, xi+1] = (x − xi+1)P0[xi] + (xi − x)P0[xi+1]
xi − xi+1

It is easily verified that P1[xi, xi+1] passes through the two data points; that is,
P1[xi, xi+1] = yi when x = xi, and P1[xi, xi+1] = yi+1 when x = xi+1.

The three-point interpolant is

P2[xi, xi+1, xi+2] = (x − xi+2)P1[xi, xi+1] + (xi − x)P1[xi+1, xi+2]
xi − xi+2

To show that this interpolant does intersect the data points, we first substitute x = xi ,
obtaining

P2[xi, xi+1, xi+2] = P1[xi, xi+1] = yi

Similarly, x = xi+2 yields

P2[xi, xi+1, xi+2] = P1[xi+1, xi+2] = yi+2

Finally, when x = xi+1 we have

P1[xi, xi+1] = P1[xi+1, xi+2] = yi+1

so that

P2[xi, xi+1, xi+2] = (xi+1 − xi+2)yi+1 + (xi − xi+1)yi+1

xi − xi+2
= yi+1

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

109 3.2 Polynomial Interpolation

Having established the pattern, we can now deduce the general recursive formula:

Pk[xi, xi+1, . . . , xi+k]

= (x − xi+k)Pk−1[xi,xi+1, . . . , xi+k−1] + (xi − x)Pk−1[xi+1,xi+2, . . . , xi+k]
xi − xi+k

(3.8)

Given the value of x, the computations can be carried out in the following tabular
format (shown for four data points):

k = 0 k = 1 k = 2 k = 3

x0 P0[x0] = y0 P1[x0, x1] P2[x0, x1, x2] P3[x0, x1, x2, x3]

x1 P0[x1] = y1 P1[x1, x2] P2[x1,x2, x3]

x2 P0[x2] = y2 P1[x2, x3]

x3 P0[x3] = y3

Table 3.2

If the number of data points is m, the algorithm that computes the elements of
the table is

y = yData.copy()

for k in range (1,m):

for i in range(m-k):

y[i] = ((x - xData[i+k])*y[i] + (xData[i] - x)*y[i+1])/ \

(xData[i] - xData[i+k])

This algorithm works with the one-dimensional array y, which initially contains
the y-values of the data (the second column in Table 3.2). Each pass through the outer
loop computes the elements of y in the next column, which overwrite the previous
entries. At the end of the procedure, y contains the diagonal terms of the table. The
value of the interpolant (evaluated at x) that passes through all the data points is the
first element of y.

� neville

The following function implements Neville’s method; it returns Pn(x)

module neville

’’’ p = neville(xData,yData,x).

Evaluates the polynomial interpolant p(x) that passes

trough the specified data points by Neville’s method.

’’’

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

110 Interpolation and Curve Fitting

def neville(xData,yData,x):

m = len(xData) # number of data points

y = yData.copy()

for k in range(1,m):

y[0:m-k] = ((x - xData[k:m])*y[0:m-k] + \

(xData[0:m-k] - x)*y[1:m-k+1])/ \

(xData[0:m-k] - xData[k:m])

return y[0]

Limitations of Polynomial Interpolation

Polynomial interpolation should be carried out with the fewest feasible number of
data points. Linear interpolation, using the nearest two points, is often sufficient
if the data points are closely spaced. Three to six nearest-neighbor points produce
good results in most cases. An interpolant intersecting more than six points must be
viewed with suspicion. The reason is that the data points that are far from the point
of interest do not contribute to the accuracy of the interpolant. In fact, they can be
detrimental.

The danger of using too many points is illustrated in Fig. 3.3. There are 11 equally
spaced data points represented by the circles. The solid line is the interpolant, a poly-
nomial of degree ten, that intersects all the points. As seen in the figure, a polynomial
of such a high degree has a tendency to oscillate excessively between the data points.
A much smoother result would be obtained by using a cubic interpolant spanning
four nearest-neighbor points.

x

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

y

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.3. Polynomial interpolant displaying oscillations.

Polynomial extrapolation (interpolating outside the range of data points) is dan-
gerous. As an example, consider Fig. 3.4. There are six data points, shown as circles.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

111 3.2 Polynomial Interpolation

The fifth-degree interpolating polynomial is represented by the solid line. The inter-
polant looks fine within the range of data points, but drastically departs from the
obvious trend when x > 12. Extrapolating y at x = 14, for example, would be absurd
in this case.

x
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

y

-100

0

100

200

300

400

Figure 3.4. Extrapolation may not follow the trend of data.

If extrapolation cannot be avoided, the following two measures can be useful:

� Plot the data and visually verify that the extrapolated value makes sense.
� Use a low-order polynomial based on nearest-neighbor data points. A linear or

quadratic interpolant, for example, would yield a reasonable estimate of y(14) for
the data in Fig. 3.4.

� Work with a plot of log x vs. log y, which is usually much smoother than the x–y
curve, and thus safer to extrapolate. Frequently this plot is almost a straight line.
This is illustrated in Fig. 3.5, which represents the logarithmic plot of the data in
Fig. 3.4.

x
1 10

y

10

100

Figure 3.5. Logarithmic plot of the data in Fig. 3.4.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

112 Interpolation and Curve Fitting

EXAMPLE 3.1
Given the data points

x 0 2 3

y 7 11 28

use Lagrange’s method to determine y at x = 1.

Solution

�0 = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

= (1 − 2)(1 − 3)
(0 − 2)(0 − 3)

= 1
3

�1 = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

= (1 − 0)(1 − 3)
(2 − 0)(2 − 3)

= 1

�2 = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

= (1 − 0)(1 − 2)
(3 − 0)(3 − 2)

= −1
3

y = y0�0 + y1�1 + y2�2 = 7
3

+ 11 − 28
3

= 4

EXAMPLE 3.2
The data points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Determine the degree of this polynomial by constructing the
divided difference table, similar to Table 3.1.

Solution

i xi yi ∇yi ∇2 yi ∇3 yi ∇4 yi ∇5 yi

0 −2 −1

1 1 2 1

2 4 59 10 3

3 −1 4 5 −2 1

4 3 24 5 2 1 0

5 −4 −53 26 −5 1 0 0

Here are a few sample calculations used in arriving at the figures in the table:

∇y2 = y2 − y0

x2 − x0
= 59 − (−1)

4 − (−2)
= 10

∇2 y2 = ∇y2 − ∇y1

x2 − x1
= 10 − 1

4 − 1
= 3

∇3 y5 = ∇2 y5 − ∇2 y2

x5 − x2
= −5 − 3

−4 − 4
= 1

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

113 3.2 Polynomial Interpolation

From the table we see that the last nonzero coefficient (last nonzero diagonal term)
of Newton’s polynomial is ∇3 y3, which is the coefficient of the cubic term. Hence the
polynomial is a cubic.

EXAMPLE 3.3
Given the data points

x 4.0 3.9 3.8 3.7

y −0.06604 −0.02724 0.01282 0.05383

determine the root of y(x) = 0 by Neville’s method.

Solution This is an example of inverse interpolation, where the roles of x and y are
interchanged. Instead of computing y at a given x, we are finding x that corresponds
to a given y (in this case, y = 0). Employing the format of Table 3.2 (with x and y
interchanged, of course), we obtain

i yi P0[] = xi P1[,] P2[, ,] P3[, , ,]

0 −0.06604 4.0 3.8298 3.8316 3.8317

1 −0.02724 3.9 3.8320 3.8318

2 0.01282 3.8 3.8313

3 0.05383 3.7

The following are sample computations used in the table:

P1[y0, y1] = (y − y1)P0[y0] + (y0 − y)P0[y1]
y0 − y1

= (0 + 0.02724)(4.0) + (−0.06604 − 0)(3.9)
−0.06604 + 0.02724

= 3.8298

P2[y1, y2, y3] = (y − y3)P1[y1, y2] + (y1 − y)P1[y2, y3]
y1 − y3

= (0 − 0.05383)(3.8320) + (−0.02724 − 0)(3.8313)
−0.02724 − 0.05383

= 3.8318

All the P’s in the table are estimates of the root resulting from different orders
of interpolation involving different data points. For example, P1[y0, y1] is the root
obtained from linear interpolation based on the first two points, and P2[y1, y2, y3] is
the result from quadratic interpolation using the last three points. The root obtained
from cubic interpolation over all four data points is x = P3[y0, y1, y2, y3] = 3.8317.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

114 Interpolation and Curve Fitting

EXAMPLE 3.4
The data points in the table lie on the plot of f (x) = 4.8 cos

πx
20

. Interpolate this data by

Newton’s method at x = 0, 0.5, 1.0, . . . , 8.0 and compare the results with the “exact”
values yi = f (xi).

x 0.15 2.30 3.15 4.85 6.25 7.95

y 4.79867 4.49013 4.2243 3.47313 2.66674 1.51909

Solution

#!/usr/bin/python

example3_4

from numarray import array,arange

from math import pi,cos

from newtonPoly import *

xData = array([0.15,2.3,3.15,4.85,6.25,7.95])

yData = array([4.79867,4.49013,4.2243,3.47313,2.66674,1.51909])

a = coeffts(xData,yData)

print ’’ x yInterp yExact’’

print ’’-----------------------’’

for x in arange(0.0,8.1,0.5):

y = evalPoly(a,xData,x)

yExact = 4.8*cos(pi*x/20.0)

print ’’%3.1f %9.5f %9.5f’’% (x,y,yExact)

raw_input(’’\nPress return to exit’’)

The results are:

x yInterp yExact

0.0 4.80003 4.80000

0.5 4.78518 4.78520

1.0 4.74088 4.74090

1.5 4.66736 4.66738

2.0 4.56507 4.56507

2.5 4.43462 4.43462

3.0 4.27683 4.27683

3.5 4.09267 4.09267

4.0 3.88327 3.88328

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

115 3.3 Interpolation with Cubic Spline

4.5 3.64994 3.64995

5.0 3.39411 3.39411

5.5 3.11735 3.11735

6.0 2.82137 2.82137

6.5 2.50799 2.50799

7.0 2.17915 2.17915

7.5 1.83687 1.83688

8.0 1.48329 1.48328

3.3 Interpolation with Cubic Spline

If there are more than a few data points, a cubic spline is hard to beat as a global
interpolant. It is considerably “stiffer” than a polynomial in the sense that it has less
tendency to oscillate between data points.

Elastic strip

Pins (data points)

x

y Figure 3.6. Mechanical model of natural cubic spline.

The mechanical model of a cubic spline is shown in Fig. 3.6. It is a thin, elastic
beam that is attached with pins to the data points. Because the beam is unloaded
between the pins, each segment of the spline curve is a cubic polynomial—recall from
beam theory that d4 y/dx4 = q/(E I), so that y(x) is a cubic since q = 0. At the pins, the
slope and bending moment (and hence the second derivative) are continuous. There
is no bending moment at the two end pins; consequently, the second derivative of
the spline is zero at the end points. Since these end conditions occur naturally in the
beam model, the resulting curve is known as the natural cubic spline. The pins, i.e.,
the data points, are called the knots of the spline.

x

y
0

1

i

n

i - 1 i + 1

n - 1

x x x0

1

i i + 1 xxxi - 1 nn- 1

y y
y y

y
y

i, i+ 1f (x)

x

y

Figure 3.7. Cubic spline.

Figure 3.7 shows a cubic spline that spans n + 1 knots. We use the notation
fi,i+1(x) for the cubic polynomial that spans the segment between knots i and i + 1.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

116 Interpolation and Curve Fitting

Note that the spline is a piecewise cubic curve, put together from the n cubics
f0,1(x), f1,2(x), . . . , fn−1,n(x), all of which have different coefficients.

If we denote the second derivative of the spline at knot i by ki , continuity of second
derivatives requires that

f ′′
i−1,i(xi) = f ′′

i,i+1(xi) = ki (a)

At this stage, each k is unknown, except for

k0 = kn = 0 (3.9)

The starting point for computing the coefficients of fi,i+1(x) is the expression for
f ′′
i,i+1(x), which we know to be linear. Using Lagrange’s two-point interpolation, we

can write

f ′′
i,i+1(x) = ki�i(x) + ki+1�i+1(x)

where

�i(x) = x − xi+1

xi − xi+1
�1+1(x) = x − xi

xi+1 − xi

Therefore,

f ′′
i,i+1(x) = ki(x − xi+1) − ki+1(x − xi)

xi − xi+1
(b)

Integrating twice with respect to x, we obtain

fi,i+1(x) = ki(x − xi+1)3 − ki+1(x − xi)3

6(xi − xi+1)
+ A(x − xi+1) − B(x − xi) (c)

where A and B are constants of integration. The terms arising from the integration
would usually be written as C x + D. By letting C = A − B and D = −Axi+1 + Bxi , we
end up with the last two terms of Eq. (c), which are more convenient to use in the
computations that follow.

Imposing the condition fi,i+1(xi) = yi, we get from Eq. (c)

ki(xi − xi+1)3

6(xi − xi+1)
+ A(xi − xi+1) = yi

Therefore,

A = yi

xi − xi+1
− ki

6
(xi − xi+1) (d)

Similarly, fi,i+1(xi+1) = yi+1 yields

B = yi+1

xi − xi+1
− ki+1

6
(xi − xi+1) (e)

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

117 3.3 Interpolation with Cubic Spline

Substituting Eqs. (d) and (e) into Eq. (c) results in

fi,i+1(x) = ki

6

[
(x − xi+1)3

xi − xi+1
− (x − xi+1)(xi − xi+1)

]

− ki+1

6

[
(x − xi)3

xi − xi+1
− (x − xi)(xi − xi+1)

]
(3.10)

+ yi(x − xi+1) − yi+1(x − xi)
xi − xi+1

The second derivatives ki of the spline at the interior knots are obtained from
the slope continuity conditions f ′

i−1,i(xi) = f ′
i,i+1(xi), where i = 1, 2, . . . , n − 1. After a

little algebra, this results in the simultaneous equations

ki−1(xi−1 − xi) + 2ki(xi−1 − xi+1) + ki+1(xi − xi+1)

= 6
(

yi−1 − yi

xi−1 − xi
− yi − yi+1

xi − xi+1

)
, i = 1, 2, · · · , n − 1 (3.11)

Because Eqs. (3.11) have a tridiagonal coefficient matrix, they can be solved econom-
ically with the functions in module LUdecomp3 described in Section 2.4.

If the data points are evenly spaced at intervals h, then xi−1 − xi = xi − xi+1 = −h,
and the Eqs. (3.11) simplify to

ki−1 + 4ki + ki+1 = 6
h2

(yi−1 − 2yi + yi+1), i = 1, 2, . . . , n − 1 (3.12)

� cubicSpline

The first stage of cubic spline interpolation is to set up Eqs. (3.11) and solve them
for the unknown k’s (recall that k0 = kn = 0). This task is carried out by the func-
tion curvatures. The second stage is the computation of the interpolant at x from
Eq. (3.10). This step can be repeated any number of times with different values
of x using the function evalSpline. The function findSegment embedded in
evalSpline finds the segment of the spline that contains x using the method of
bisection. It returns the segment number; that is, the value of the subscript i in
Eq. (3.10).

module cubicSpline

’’’ k = curvatures(xData,yData).

Returns the curvatures {k}of cubic spline at the knots.

y = evalSpline(xData,yData,k,x).

Evaluates cubic spline at x. The curvatures {k} can be

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

118 Interpolation and Curve Fitting

computed with the function ’curvatures’.

’’’

from numarray import zeros,ones,Float64,array

from LUdecomp3 import *

def curvatures(xData,yData):

n = len(xData) - 1

c = zeros((n),type=Float64)

d = ones((n+1),type=Float64)

e = zeros((n),type=Float64)

k = zeros((n+1),type=Float64)

c[0:n-1] = xData[0:n-1] - xData[1:n]

d[1:n] = 2.0*(xData[0:n-1] - xData[2:n+1])

e[1:n] = xData[1:n] - xData[2:n+1]

k[1:n] =6.0*(yData[0:n-1] - yData[1:n]) \

/(xData[0:n-1] - xData[1:n]) \

-6.0*(yData[1:n] - yData[2:n+1]) \

/(xData[1:n] - xData[2:n+1])

LUdecomp3(c,d,e)

LUsolve3(c,d,e,k)

return k

def evalSpline(xData,yData,k,x):

def findSegment(xData,x):

iLeft = 0

iRight = len(xData)- 1

while 1:

if (iRight-iLeft) <= 1: return iLeft

i =(iLeft + iRight)/2

if x < xData[i]: iRight = i

else: iLeft = i

i = findSegment(xData,x) # Find the segment spanning x

h = xData[i] - xData[i+1]

y = ((x - xData[i+1])**3/h - (x - xData[i+1])*h)*k[i]/6.0 \

- ((x - xData[i])**3/h - (x - xData[i])*h)*k[i+1]/6.0 \

+ (yData[i]*(x - xData[i+1]) \

- yData[i+1]*(x - xData[i]))/h

return y

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

119 3.3 Interpolation with Cubic Spline

EXAMPLE 3.5
Use natural cubic spline to determine y at x = 1.5. The data points are

x 1 2 3 4 5

y 0 1 0 1 0

Solution The five knots are equally spaced at h = 1. Recalling that the second deriva-
tive of a natural spline is zero at the first and last knot, we have k0 = k4 = 0. The second
derivatives at the other knots are obtained from Eq. (3.12). Using i = 1, 2, 3 results in
the simultaneous equations

0 + 4k1 + k2 = 6 [0 − 2(1) + 0] = −12

k1 + 4k2 + k3 = 6 [1 − 2(0) + 1] = 12

k2 + 4k3 + 0 = 6 [0 − 2(1) + 0] = −12

The solution is k1 = k3 = −30/7, k2 = 36/7.
The point x = 1.5 lies in the segment between knots 0 and 1. The corresponding

interpolant is obtained from Eq. (3.10) by setting i = 0. With xi − xi+1 = −h = −1, we
obtain from Eq. (3.10)

f0,1(x) = −k0

6

[
(x − x1)3 − (x − x1)

] + k1

6

[
(x − x0)3 − (x − x0)

]
− [y0(x − x1) − y1(x − x0)]

Therefore,

y(1.5) = f0,1(1.5)

= 0 + 1
6

(
−30

7

) [
(1.5 − 1)3 − (1.5 − 1)

] − [0 − 1(1.5 − 1)]

= 0.7679

The plot of the interpolant, which in this case is made up of four cubic segments, is
shown in the figure.

x

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

y

0.00

0.20

0.40

0.60

0.80

1.00

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

120 Interpolation and Curve Fitting

EXAMPLE 3.6
Sometimes it is preferable to replace one or both of the end conditions of the cu-
bic spline with something other than the natural conditions. Use the end condition
f ′

0,1(0) = 0 (zero slope), rather than f ′′
0,1(0) = 0 (zero curvature), to determine the cubic

spline interpolant at x = 2.6, given the data points

x 0 1 2 3

y 1 1 0.5 0

Solution We must first modify Eqs. (3.12) to account for the new end condition. Setting
i = 0 in Eq. (3.10) and differentiating, we get

f ′
0,1(x) = k0

6

[
3

(x − x1)2

x0 − x1
− (x0 − x1)

]
− k1

6

[
3

(x − x0)2

x0 − x1
− (x0 − x1)

]
+ y0 − y1

x0 − x1

Thus the end condition f ′
0,1(x0) = 0 yields

k0

3
(x0 − x1) + k1

6
(x0 − x1) + y0 − y1

x0 − x1
= 0

or

2k0 + k1 = −6
y0 − y1

(x0 − x1)2

From the given data we see that y0 = y1 = 1, so that the last equation becomes

2k0 + k1 = 0 (a)

The other equations in Eq. (3.12) are unchanged. Knowing that k3 = 0, we have

k0 + 4k1 + k2 = 6 [1 − 2(1) + 0.5] = −3 (b)

k1 + 4k2 = 6 [1 − 2(0.5) + 0] = 0 (c)

The solution of Eqs. (a)–(c) is k0 = 0.4615, k1 = −0.9231, k2 = 0.2308.
The interpolant can now be evaluated from Eq. (3.10). Substituting i = 2 and

xi − xi+1 = −1, we obtain

f2,3(x) = k2

6

[−(x − x3)3 + (x − x3)
] − k3

6

[−(x − x2)3 + (x − x2)
]

− y2(x − x3) + y3(x − x2)

Therefore,

y(2.6) = f2,3(2.6) = 0.2308
6

[−(−0.4)3 + (−0.4)
] − 0 − 0.5(−0.4) + 0

= 0.1871

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

121 3.3 Interpolation with Cubic Spline

EXAMPLE 3.7
Utilize the module cubicSpline to write a program that interpolates between given
data points with natural cubic spline. The program must be able to evaluate the
interpolant for more than one value of x. As a test, use data points specified in Example
3.4 and compute the interpolant at x = 1.5 and x = 4.5 (due to symmetry, these values
should be equal).

Solution

#!/usr/bin/python

example3_7

from numarray import array,Float64

from cubicSpline import *

xData = array([1,2,3,4,5],type=Float64)

yData = array([0,1,0,1,0],type=Float64)

k = curvatures(xData,yData)

while 1:

try: x = eval(raw_input(’’\nx ==> ’’))

except SyntaxError: break

print ’’y =’’,evalSpline(xData,yData,k,x)

raw_input(’’Done. Press return to exit’’)

Running the program produces the following result:

x ==> 1.5

y = 0.767857142857

x ==> 4.5

y = 0.767857142857

x ==>

Done. Press return to exit

PROBLEM SET 3.1

1. Given the data points

x −1.2 0.3 1.1

y −5.76 −5.61 −3.69

determine y at x = 0 using (a) Neville’s method; and (b) Lagrange’s method.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

122 Interpolation and Curve Fitting

2. Find the zero of y(x) from the following data:

x 0 0.5 1 1.5 2 2.5 3

y 1.8421 2.4694 2.4921 1.9047 0.8509 −0.4112 −1.5727

Use Lagrange’s interpolation over (a) three; and (b) four nearest-neighbor data
points. Hint : after finishing part (a), part (b) can be computed with a relatively
small effort.

3. The function y(x) represented by the data in Prob. 2 has a maximum at x = 0.7679.

Compute this maximum by Neville’s interpolation over four nearest-neighbor
data points.

4. Use Neville’s method to compute y at x = π/4 from the data points

x 0 0.5 1 1.5 2

y −1.00 1.75 4.00 5.75 7.00

5. Given the data

x 0 0.5 1 1.5 2

y −0.7854 0.6529 1.7390 2.2071 1.9425

find y at x = π/4 and at π/2. Use the method that you consider to be most
convenient.

6. The points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Use the divided difference table of Newton’s method to de-
termine the degree of the polynomial.

7. Use Newton’s method to find the polynomial that fits the following points:

x −3 2 −1 3 1

y 0 5 −4 12 0

8. Use Neville’s method to determine the equation of the quadratic that passes
through the points

x −1 1 3

y 17 −7 −15

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

123 3.3 Interpolation with Cubic Spline

9. The density of air ρ varies with elevation h in the following manner:

h (km) 0 3 6

ρ (kg/m3) 1.225 0.905 0.652

Express ρ(h) as a quadratic function using Lagrange’s method.

10. Determine the natural cubic spline that passes through the data points

x 0 1 2

y 0 2 1

Note that the interpolant consists of two cubics, one valid in 0 ≤ x ≤ 1, the other
in 1 ≤ x ≤ 2. Verify that these cubics have the same first and second derivatives
at x = 1.

11. Given the data points

x 1 2 3 4 5

y 13 15 12 9 13

determine the natural cubic spline interpolant at x = 3.4.

12. Compute the zero of the function y(x) from the following data:

x 0.2 0.4 0.6 0.8 1.0

y 1.150 0.855 0.377 −0.266 −1.049

Use inverse interpolation with the natural cubic spline. Hint : reorder the data so
that the values of y are in ascending order.

13. Solve Example 3.6 with a cubic spline that has constant second derivatives within
its first and last segments (the end segments are parabolic). The end conditions
for this spline are k0 = k1 and kn−1 = kn.

14. � Write a computer program for interpolation by Neville’s method. The program
must be able to compute the interpolant at several user-specified values of x.
Test the program by determining y at x = 1.1, 1.2 and 1.3 from the following
data:

x −2.0 −0.1 −1.5 0.5

y 2.2796 1.0025 1.6467 1.0635

x −0.6 2.2 1.0 1.8

y 1.0920 2.6291 1.2661 1.9896

(Answer: y = 1.3262, 1.3938, 1.4693)

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

124 Interpolation and Curve Fitting

15. � The specific heat cp of aluminum depends on temperature T as follows:6

T (◦C) −250 −200 −100 0 100 300

cp (kJ/kg·K) 0.0163 0.318 0.699 0.870 0.941 1.04

Determine cp at T = 200◦C and 400◦C.

16. � Find y at x = 0.46 from the data

x 0 0.0204 0.1055 0.241 0.582 0.712 0.981

y 0.385 1.04 1.79 2.63 4.39 4.99 5.27

17. � The table shows the drag coefficient cD of a sphere as a function of Reynolds
number Re.7 Use natural cubic spline to find cD at Re = 5, 50, 500 and 5000. Hint :
use log–log scale.

Re 0.2 2 20 200 2000 20 000

cD 103 13.9 2.72 0.800 0.401 0.433

18. � Solve Prob. 17 using a polynomial interpolant intersecting four nearest-
neighbor data points.

19. � The kinematic viscosity µk of water varies with temperature T in the following
manner:

T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

Interpolate µk at T = 10◦, 30◦, 60◦ and 90◦C.

20. �The table shows how the relative densityρ of air varies with altitude h. Determine
the relative density of air at 10.5 km.

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

3.4 Least-Squares Fit

Overview

If the data are obtained from experiments, they typically contain a significant amount
of random noise due to measurement errors. The task of curve fitting is to find a

6 Source: Black, Z. B., and Hartley, J. G., Thermodynamics, Harper & Row, 1985.
7 Source: Kreith, F., Principles of Heat Transfer, Harper & Row, 1973.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

125 3.4 Least-Squares Fit

smooth curve that fits the data points “on the average.” This curve should have a
simple form (e.g., a low-order polynomial), so as to not reproduce the noise.

Let

f (x) = f (x; a0, a1, . . . , am)

be the function that is to be fitted to the n + 1 data points (xi, yi), i = 0, 1, . . . , n. The
notation implies that we have a function of x that contains m+ 1 variable parameters
a0, a1, . . . , am, where m < n. The form of f (x) is determined beforehand, usually from
the theory associated with the experiment from which the data is obtained. The only
means of adjusting the fit is the parameters. For example, if the data represent the
displacements yi of an overdamped mass–spring system at time ti , the theory suggests
the choice f (t) = a0te−a1t. Thus curve fitting consists of two steps: choosing the form
of f (x), followed by computation of the parameters that produce the best fit to the
data.

This brings us to the question: what is meant by “best” fit? If the noise is confined
to the y-coordinate, the most commonly used measure is the least-squares fit, which
minimizes the function

S(a0, a1, . . . , am) =
n∑

i=0

[yi − f (xi)]2 (3.13)

with respect to each aj . Therefore, the optimal values of the parameters are given by
the solution of the equations

∂S
∂ak

= 0, k = 0, 1, . . . , m (3.14)

The terms ri = yi − f (xi) in Eq. (3.13) are called residuals; they represent the discrep-
ancy between the data points and the fitting function at xi . The function S to be
minimized is thus the sum of the squares of the residuals. Equations (3.14) are gen-
erally nonlinear in aj and may thus be difficult to solve. Often the fitting function is
chosen as a linear combination of specified functions f j (x):

f (x) = a0 f0(x) + a1 f1(x) + · · · + am fm(x)

in which case Eqs. (3.14) are linear. If the fitting function is a polynomial, we have
f0(x) = 1, f1(x) = x, f2(x) = x2, etc.

The spread of the data about the fitting curve is quantified by the standard devi-
ation, defined as

σ =
√

S
n − m

(3.15)

Note that if n = m, we have interpolation, not curve fitting. In that case both the
numerator and the denominator in Eq. (3.15) are zero, so that σ is indeterminate.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

126 Interpolation and Curve Fitting

Fitting a Straight Line

Fitting a straight line

f (x) = a + bx (3.16)

to data is also known as linear regression. In this case the function to be minimized is

S(a, b) =
n∑

i=0

[yi − f (xi)]2 =
n∑

i=0

(yi − a − bxi)2

Equations (3.14) now become

∂S
∂a

=
n∑

i=0

−2(yi − a − bxi) = 2

[
a (n + 1) + b

n∑
i=0

xi −
n∑

i=0

yi

]
= 0

∂S
∂b

=
n∑

i=0

−2(yi − a − bxi)xi = 2

(
a

n∑
i=0

xi + b
n∑

i=0

x2
i −

n∑
i=0

xi yi

)
= 0

Dividing both equations by 2 (n + 1) and rearranging terms, we get

a +x̄b =ȳ x̄a +
(

1
n + 1

n∑
i=0

x2
i

)
b = 1

n + 1

n∑
i=0

xi yi

where

x̄ = 1
n + 1

n∑
i=0

xi ȳ = 1
n + 1

n∑
i=0

yi (3.17)

are the mean values of the x and y data. The solution for the parameters is

a = ȳ
∑

x2
i −x̄

∑
xi yi∑

x2
i − (n + 1)x̄2

b =
∑

xi yi − x̄
∑

yi∑
x2

i − (n + 1)x̄2
(3.18)

These expressions are susceptible to roundoff errors (the two terms in each numerator
as well as in each denominator can be roughly equal). It is better to compute the
parameters from

b =
∑

yi(xi −x̄)∑
xi(xi −x̄)

a =ȳ −x̄b (3.19)

which are equivalent to Eqs. (3.18), but much less affected by rounding off.

Fitting Linear Forms

Consider the least-squares fit of the linear form

f (x) = a0 f0(x) + a1 f1(x) + · · · + am fm(x) =
m∑

j=0

aj f j (x) (3.20)

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

127 3.4 Least-Squares Fit

where each f j (x) is a predetermined function of x, called a basis function. Substitution
in Eq. (3.13) yields

S =
n∑

i=0

[
yi −

m∑
j=0

aj f j (xi)

]2

Thus Eqs. (3.14) are

∂S
∂ak

= −2

{
n∑

i=0

[
yi −

m∑
j=0

aj f j (xi)

]
fk(xi)

}
= 0, k = 0, 1, . . . , m

Dropping the constant (−2) and interchanging the order of summation, we get

m∑
j=0

[
n∑

i=0

f j (xi) fk(xi)

]
aj =

n∑
i=0

fk(xi)yi , k = 0, 1, . . . , m

In matrix notation these equations are

Aa = b (3.21a)

where

Akj =
n∑

i=0

f j (xi) fk(xi) bk =
n∑

i=0

fk(xi)yi (3.21b)

Equations (3.21a), known as the normal equations of the least-squares fit, can be
solved with the methods discussed in Chapter 2. Note that the coefficient matrix is
symmetric, i.e., Akj = A jk.

Polynomial Fit

A commonly used linear form is a polynomial. If the degree of the polynomial is m,
we have f (x) = ∑m

j=0 aj x j . Here the basis functions are

f j (x) = x j (j = 0, 1, . . . , m) (3.22)

so that Eqs. (3.21b) become

Akj =
n∑

i=0

x j+k
i bk =

n∑
i=0

xk
i yi

or

A =

n
∑

xi
∑

x2
i . . .

∑
xm

i∑
xi

∑
x2

i

∑
x3

i . . .
∑

xm+1
i

...
...

...
. . .

...∑
xm−1

i

∑
xm

i

∑
xm+1

i . . .
∑

x2m
i

 b =

∑
yi∑
xi yi

...∑
xm

i yi

 (3.23)

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

128 Interpolation and Curve Fitting

where
∑

stands for
∑n

i=0. The normal equations become progressively ill-conditioned
with increasing m. Fortunately, this is of little practical consequence, because only
low-order polynomials are useful in curve fitting. Polynomials of high order are
not recommended, because they tend to reproduce the noise inherent in the
data.

� polyFit

The function polyFit in this module sets up and solves the normal equations for
the coefficients of a polynomial of degree m. It returns the coefficients of the poly-
nomial. To facilitate computations, the terms n ,

∑
xi ,

∑
x2

i , . . . ,
∑

x2m
i that make up

the coefficient matrix in Eq. (3.23) are first stored in the vector s and then inserted
into A. The normal equations are then solved by Gauss elimination with pivoting.
Following the solution, the standard deviation σ can be computed with the func-
tion stdDev. The polynomial evaluation in stdDev is carried out by the embedded
function evalPoly—see Section 4.7 for an explanation of the algorithm.

module polyFit

’’’ c = polyFit(xData,yData,m).

Returns coefficients of the polynomial

p(x) = c[0] + c[1]x + c[2]xˆ2 +...+ c[m]xˆm

that fits the specified data in the least

squares sense.

sigma = stdDev(c,xData,yData).

Computes the std. deviation between p(x)

and the data.

’’’

from numarray import zeros,Float64

from math import sqrt

from gaussPivot import *

def polyFit(xData,yData,m):

a = zeros((m+1,m+1),type=Float64)

b = zeros((m+1),type=Float64)

s = zeros((2*m+1),type=Float64)

for i in range(len(xData)):

temp = yData[i]

for j in range(m+1):

b[j] = b[j] + temp

temp = temp*xData[i]

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

129 3.4 Least-Squares Fit

temp = 1.0

for j in range(2*m+1):

s[j] = s[j] + temp

temp = temp*xData[i]

for i in range(m+1):

for j in range(m+1):

a[i,j] = s[i+j]

return gaussPivot(a,b)

def stdDev(c,xData,yData):

def evalPoly(c,x):

m = len(c) - 1

p = c[m]

for j in range(m):

p = p*x + c[m-j-1]

return p

n = len(xData) - 1

m = len(c) - 1

sigma = 0.0

for i in range(n+1):

p = evalPoly(c,xData[i])

sigma = sigma + (yData[i] - p)**2

sigma = sqrt(sigma/(n - m))

return sigma

Weighting of Data

There are occasions when our confidence in the accuracy of data varies from point to
point. For example, the instrument taking the measurements may be more sensitive
in a certain range of data. Sometimes the data represent the results of several exper-
iments, each carried out under different conditions. Under these circumstances we
may want to assign a confidence factor, or weight, to each data point and minimize
the sum of the squares of the weighted residuals ri = Wi [yi − f (xi)], where Wi are the
weights. Hence the function to be minimized is

S(a0, a1, . . . , am) =
n∑

i=0

W2
i [yi − f (xi)]2 (3.24)

This procedure forces the fitting function f (x) closer to the data points that have
higher weights.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

130 Interpolation and Curve Fitting

Weighted linear regression
If the fitting function is the straight line f (x) = a + bx, Eq. (3.24) becomes

S(a, b) =
n∑

i=0

W2
i (yi − a − bxi)2 (3.25)

The conditions for minimizing S are

∂S
∂a

= −2
n∑

i=0

W2
i (yi − a − bxi) = 0

∂S
∂b

= −2
n∑

i=0

W2
i (yi − a − bxi)xi = 0

or

a
n∑

i=0

W2
i + b

n∑
i=0

W2
i xi =

n∑
i=0

W2
i yi (3.26a)

a
n∑

i=0

W2
i xi + b

n∑
i=0

W2
i x2

i =
n∑

i=0

W2
i xi yi (3.26b)

Dividing Eq. (3.26a) by
∑

W2
i and introducing the weighted averages

x̂ =
∑

W2
i xi∑

W2
i

ŷ =
∑

W2
i yi∑

W2
i

(3.27)

we obtain

a = ŷ − bx̂ (3.28a)

Substituting into Eq. (3.26b) and solving for b yields after some algebra

b =
∑

W2
i yi(xi − x̂)∑

W2
i xi(xi − x̂)

(3.28b)

Note that Eqs. (3.28) are quite similar to Eqs. (3.19) for unweighted data.

Fitting exponential functions
A special application of weighted linear regression arises in fitting various exponential
functions to data. Consider as an example the fitting function

f (x) = aebx

Normally, the least-squares fit would lead to equations that are nonlinear in a and b.
But if we fit ln y rather than y, the problem is transformed to linear regression: fit the
function

F (x) = ln f (x) = ln a + bx

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

131 3.4 Least-Squares Fit

to the data points (xi, ln yi), i = 0, 1, . . . , n. This simplification comes at a price: least-
squares fit to the logarithm of the data is not quite the same as the least-squares fit to
the original data. The residuals of the logarithmic fit are

Ri = ln yi − F (xi) = ln yi − (
ln a + bxi

)
(3.29a)

whereas the residuals used in fitting the original data are

ri = yi − f (xi) = yi − aebxi (3.29b)

This discrepancy can be largely eliminated by weighting the logarithmic fit. From
Eq. (3.29b) we obtain ln(ri − yi) = ln(aebxi) = ln a + bxi , so that Eq. (3.29a) can be writ-
ten as

Ri = ln yi − ln(ri − yi) = ln
(

1 − ri

yi

)

If the residuals ri are sufficiently small (ri << yi), we can use the approximation
ln(1 − ri/yi) ≈ ri/yi , so that

Ri ≈ ri/yi

We can now see that by minimizing
∑

R2
i , we have inadvertently introduced the

weights 1/yi . This effect can be negated if we apply the weights Wi = yi when fitting
F (x) to (ln yi, xi). That is, minimizing

S =
n∑

i=0

y2
i R2

i (3.30)

is a good approximation to minimizing
∑

r2
i .

Other examples that also benefit from the weights Wi = yi are given in Table 3.3.

f (x) F (x) Data to be fitted by F (x)

axebx ln [f (x)/x] = ln a + bx
[
xi, ln(yi/xi)

]
axb ln f (x) = ln a + b ln(x)

(
ln xi, ln yi

)
Table 3.3

EXAMPLE 3.8
Fit a straight line to the data shown and compute the standard deviation.

x 0.0 1.0 2.0 2.5 3.0

y 2.9 3.7 4.1 4.4 5.0

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

132 Interpolation and Curve Fitting

Solution The averages of the data are

x̄ = 1
5

∑
xi = 0.0 + 1.0 + 2.0 + 2.5 + 3.0

5
= 1.7

ȳ = 1
5

∑
yi = 2.9 + 3.7 + 4.1 + 4.4 + 5.0

5
= 4. 02

The intercept a and slope b of the interpolant can now be determined from Eq. (3.19):

b =
∑

yi(xi −x̄)∑
xi(xi −x̄)

= 2.9(−1.7) + 3.7(−0.7) + 4.1(0.3) + 4.4(0.8) + 5.0(1.3)
0.0(−1.7) + 1.0(−0.7) + 2.0(0.3) + 2.5(0.8) + 3.0(1.3)

= 3. 73
5. 8

= 0. 6431

a =ȳ −x̄b = 4.02 − 1.7(0.6431) = 2. 927

Therefore, the regression line is f (x) = 2.927 + 0.6431x, which is shown in the figure
together with the data points.

x
0.00 0.50 1.00 1.50 2.00 2.50 3.00

y

2.50

3.00

3.50

4.00

4.50

5.00

We start the evaluation of the standard deviation by computing the residuals:

x 0.000 1.000 2.000 2.500 3.000

y 2.900 3.700 4.100 4.400 5.000

f (x) 2.927 3.570 4.213 4.535 4.856

y − f (x) −0.027 0.130 −0.113 −0.135 0.144

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

133 3.4 Least-Squares Fit

The sum of the squares of the residuals is

S =
∑

[yi − f (xi)]2

= (−0.027)2 + (0.130)2 + (−0.113)2 + (−0.135)2 + (0.144)2 = 0.06936

so that the standard deviation in Eq. (3.15) becomes

σ =
√

S
n − m

=
√

0.06936
5 − 2

= 0.1520

EXAMPLE 3.9
Determine the parameters a and b so that f (x) = aebx fits the following data in the
least-squares sense.

x 1.2 2.8 4.3 5.4 6.8 7.9

y 7.5 16.1 38.9 67.0 146.6 266.2

Use two different methods: (1) fit ln yi ; and (2) fit ln yi with weights Wi = yi . Compute
the standard deviation in each case.

Solution of Part (1) The problem is to fit the function ln(aebx) = ln a + bx to the data

x 1.2 2.8 4.3 5.4 6.8 7.9

z = ln y 2.015 2.779 3.661 4.205 4.988 5.584

We are now dealing with linear regression, where the parameters to be found are
A = ln a and b. Following the steps in Example 3.8, we get (skipping some of the
arithmetic details)

x̄ = 1
6

∑
xi = 4. 733 z̄ = 1

6

∑
zi = 3. 872

b =
∑

zi(xi − x̄)∑
xi(xi − x̄)

= 16.716
31.153

= 0. 5366 A = z̄ − x̄b = 1. 3323

Therefore, a = eA = 3. 790 and the fitting function becomes f (x) = 3.790e0.5366. The
plots of f (x) and the data points are shown in the figure.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

134 Interpolation and Curve Fitting

x
1 2 3 4 5 6 7 8

y

0

50

100

150

200

250

300

Here is the computation of standard deviation:

x 1.20 2.80 4.30 5.40 6.80 7.90

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 7.21 17.02 38.07 68.69 145.60 262.72

y − f (x) 0.29 −0.92 0.83 −1.69 1.00 3.48

S =
∑

[yi − f (xi)]2 = 17.59

σ =
√

S
6 − 2

= 2.10

As pointed out before, this is an approximate solution of the stated problem, since
we did not fit yi , but ln yi . Judging by the plot, the fit seems to be quite good.

Solution of Part (2) We again fit ln(aebx) = ln a + bx to z = ln y, but this time the
weights Wi = yi are used. From Eqs. (3.27) the weighted averages of the data are (recall
that we fit z = ln y)

x̂ =
∑

y2
i xi∑
y2

i

= 737.5 × 103

98.67 × 103
= 7.474

ẑ =
∑

y2
i zi∑
y2

i

= 528.2 × 103

98.67 × 103
= 5.353

and Eqs. (3.28) yield for the parameters

b =
∑

y2
i zi(xi − x̂)∑

y2
i xi(xi − x̂)

= 35.39 × 103

65.05 × 103
= 0.5440

ln a = ẑ − bx̂ = 5.353 − 0.5440(7.474) = 1. 287

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

135 3.4 Least-Squares Fit

Therefore,

a = eln a = e1.287 = 3. 622

so that the fitting function is f (x) = 3.622e0.5440x. As expected, this result is somewhat
different from that obtained in Part (1).

The computations of the residuals and the standard deviation are as follows:

x 1.20 2.80 4.30 5.40 6.80 7.90

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 6.96 16.61 37.56 68.33 146.33 266.20

y − f (x) 0.54 −0.51 1.34 −1.33 0.267 0.00

S =
∑

[yi − f (xi)]2 = 4.186

σ =
√

S
6 − 2

= 1.023

Observe that the residuals and standard deviation are smaller than in Part (1), indi-
cating a better fit, as expected.

It can be shown that fitting yi directly (which involves the solution of a transcen-
dental equation) results in f (x) = 3.614e0.5442x. The corresponding standard deviation
is σ = 1.022, which is very close to the result in Part (2).

EXAMPLE 3.10
Write a program that fits a polynomial of arbitrary degree mto the data points shown
below. Use the program to determine m that best fits this data in the least-squares
sense.

x −0.04 0.93 1.95 2.90 3.83 5.00

y −8.66 −6.44 −4.36 −3.27 −0.88 0.87

x 5.98 7.05 8.21 9.08 10.09

y 3.31 4.63 6.19 7.40 8.85

Solution The program shown below prompts for m. Execution is terminated by en-
tering an invalid character (e.g., the “return” character).

#!/usr/bin/python

example3_10

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

136 Interpolation and Curve Fitting

from numarray import array

from polyFit import *

xData = array([-0.04,0.93,1.95,2.90,3.83,5.0, \

5.98,7.05,8.21,9.08,10.09])

yData = array([-8.66,-6.44,-4.36,-3.27,-0.88,0.87, \

3.31,4.63,6.19,7.4,8.85])

while 1:

try:

m = eval(raw_input(’’\nDegree of polynomial ==> ’’))

coeff = polyFit(xData,yData,m)

print ’’Coefficients are:\n’’,coeff

print ’’Std. deviation =’’,stdDev(coeff,xData,yData)

except SyntaxError: break

raw_input(’’Finished. Press return to exit’’)

The results are:

Degree of polynomial ==> 1

Coefficients are:

[-7.94533287 1.72860425]

Std. deviation = 0.511278836737

Degree of polynomial ==> 2

Coefficients are:

[-8.57005662 2.15121691 -0.04197119]

Std. deviation = 0.310992072855

Degree of polynomial ==> 3

Coefficients are:

[-8.46603423e+00 1.98104441e+00 2.88447008e-03 -2.98524686e-03]

Std. deviation = 0.319481791568

Degree of polynomial ==> 4

Coefficients are:

[-8.45673473e+00 1.94596071e+00 2.06138060e-02

-5.82026909e-03 1.41151619e-04]

Std. deviation = 0.344858410479

Degree of polynomial ==>

Finished. Press return to exit

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

137 3.4 Least-Squares Fit

Because the quadratic f (x) = −8.5700 + 2.1512x − 0.041971x2 produces the
smallest standard deviation, it can be considered as the “best” fit to the data. But
be warned—the standard deviation is not a reliable measure of the goodness-of-fit.
It is always a good idea to plot the data points and f (x) before final determination
is made. The plot of our data indicates that the quadratic (solid line) is indeed a
reasonable choice for the fitting function.

x

-2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

y

-10.0

-5.0

0.0

5.0

10.0

PROBLEM SET 3.2

Instructions Plot the data points and the fitting function whenever appropriate.
1. Show that the straight line obtained by least-squares fit of unweighted data always

passes through the point (x̄, ȳ).

2. Use linear regression to find the line that fits the data

x −1.0 −0.5 0 0.5 1.0

y −1.00 −0.55 0.00 0.45 1.00

and determine the standard deviation.

3. Three tensile tests were carried out on an aluminum bar. In each test the strain
was measured at the same values of stress. The results were

Stress (MPa) 34.5 69.0 103.5 138.0

Strain (Test 1) 0.46 0.95 1.48 1.93

Strain (Test 2) 0.34 1.02 1.51 2.09

Strain (Test 3) 0.73 1.10 1.62 2.12

where the units of strain are mm/m. Use linear regression to estimate the modulus
of elasticity of the bar (modulus of elasticity = stress/strain).

4. Solve Prob. 3 assuming that the third test was performed on an inferior machine,
so that its results carry only half the weight of the other two tests.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

138 Interpolation and Curve Fitting

5. � Fit a straight line to the following data and compute the standard deviation.

x 0 0.5 1 1.5 2 2.5

y 3.076 2.810 2.588 2.297 1.981 1.912

x 3 3.5 4 4.5 5

y 1.653 1.478 1.399 1.018 0.794

6. �The table displays the mass M and average fuel consumptionφ of motor vehicles
manufactured by Ford and Honda in 1999. Fit a straight line φ = a + bM to the
data and compute the standard deviation.

Model M (kg) φ (km/liter)

Contour 1310 10.2

Crown Victoria 1810 8.1

Escort 1175 11.9

Expedition 2360 5.5

Explorer 1960 6.8

F-150 2020 6.8

Ranger 1755 7.7

Taurus 1595 8.9

Accord 1470 9.8

CR-V 1430 10.2

Civic 1110 13.2

Passport 1785 7.7

7. � The relative density ρ of air was measured at various altitudes h. The results
were:

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

Use a quadratic least-squares fit to determine the relative air density at h =
10.5 km. (This problem was solved by interpolation in Prob. 20, Problem
Set 3.1.)

8. � The kinematic viscosity µk of water varies with temperature T as shown in the
table. Determine the cubic that best fits the data, and use it to compute µk at

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

139 3.4 Least-Squares Fit

T = 10◦, 30◦, 60◦ and 90◦C. (This problem was solved in Prob. 19, Problem Set 3.1
by interpolation.)

T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

9. � Fit a straight line and a quadratic to the data

x 1.0 2.5 3.5 4.0 1.1 1.8 2.2 3.7

y 6.008 15.722 27.130 33.772 5.257 9.549 11.098 28.828

Which is a better fit?

10. � The table displays thermal efficiencies of some early steam engines.8 Determine
the polynomial that provides the best fit to the data and use it to predict the thermal
efficiency in the year 2000.

Year Efficiency (%) Type

1718 0.5 Newcomen

1767 0.8 Smeaton

1774 1.4 Smeaton

1775 2.7 Watt

1792 4.5 Watt

1816 7.5 Woolf compound

1828 12.0 Improved Cornish

1834 17.0 Improved Cornish

1878 17.2 Corliss compound

1906 23.0 Triple expansion

11. The table shows the variation of the relative thermal conductivity kof sodium with
temperature T . Find the quadratic that fits the data in the least-squares sense.

T (◦C) 79 190 357 524 690

k 1.00 0.932 0.839 0.759 0.693

12. Let f (x) = axb be the least-squares fit of the data (xi, yi), i = 0, 1, . . . , n, and let
F (x) = ln a + b ln x be the least-squares fit of (ln xi, ln yi)—see Table 3.3. Prove that

8 Source: Singer, C., Holmyard, E. J., Hall, A. R., and Williams, T. H., A History of Technology, Oxford
University Press, 1958.

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

140 Interpolation and Curve Fitting

Ri ≈ ri/yi , where the residuals are ri = yi − f (xi) and Ri = ln yi − F (xi). Assume
that ri << yi .

13. Determine a and b for which f (x) = a sin(πx/2) + b cos(πx/2) fits the following
data in the least-squares sense.

x −0.5 −0.19 0.02 0.20 0.35 0.50

y −3.558 −2.874 −1.995 −1.040 −0.068 0.677

14. Determine a and b so that f (x) = axb fits the following data in the least-squares
sense.

x 0.5 1.0 1.5 2.0 2.5

y 0.49 1.60 3.36 6.44 10.16

15. Fit the function f (x) = axebx to the data and compute the standard deviation.

x 0.5 1.0 1.5 2.0 2.5

y 0.541 0.398 0.232 0.106 0.052

16. � The intensity of radiation of a radioactive substance was measured at half-year
intervals. The results were:

t (years) 0 0.5 1 1.5 2 2.5

γ 1.000 0.994 0.990 0.985 0.979 0.977

t (years) 3 3.5 4 4.5 5 5.5

γ 0.972 0.969 0.967 0.960 0.956 0.952

where γ is the relative intensity of radiation. Knowing that radioactivity decays
exponentially with time: γ (t) = ae−bt, estimate the radioactive half-life of the
substance.

3.5 Other Methods

Some data are better interpolated by rational functions than by polynomials. A rational
function R(x) is the quotient of two polynomials:

R(x) = Pm(x)
Qn(x)

= a0 + a1x + a2x2 + · · · amxm

b0 + b1x + b2x2 + · · · bnxn

P1: NDZ
CB904-03 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:50

141 3.5 Other Methods

Since R(x) is a ratio, its coefficients can be scaled so that one of the coefficients (usually
b0) is unity. That leaves m+ n + 1 undetermined coefficients which can be computed
by passing R(x) through m+ n + 1 data points.

The following data set is an ideal candidate for rational function interpolation:

x 0 0.6 0.8 0.95

y 0 1.3764 3.0777 12.7062

From the plot of the data points (open circles in Fig. 3.8) it appears that y tends
to infinity near x = 1. That makes the data ill suited for polynomial interpolation.
However, the rational function interpolant

f (x) = 1.3668x − 0.7515x2

1 − 1.0013x

(the solid line in Fig. 3.8) has no trouble handling the singularity.

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Figure 3.8. Rational function interpolation.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

4 Roots of Equations

Find the solutions of f (x) = 0, where the function f is given

4.1 Introduction

A common problem encountered in engineering analysis is this: given a function f (x),
determine the values of x for which f (x) = 0. The solutions (values of x) are known as
the roots of the equation f (x) = 0, or the zeroes of the function f (x).

Before proceeding further, it might be helpful to review the concept of a function.
The equation

y = f (x)

contains three elements: an input value x, an output value y, and the rule f for comput-
ing y. The function is said to be given if the rule f is specified. In numerical computing
the rule is invariably a computer algorithm. It may be a function statement, such as

f (x) = cosh(x) cos(x) − 1

or a complex procedure containing hundreds or thousands of lines of code. As long
as the algorithm produces an output y for each input x, it qualifies as a function.

The roots of equations may be real or complex. The complex roots are seldom
computed, since they rarely have physical significance. An exception is the polynomial
equation

a0 + a1x + a1x2 + · · · + anxn = 0

where the complex roots may be meaningful (as in the analysis of damped vibrations,
for example). For the time being, we will concentrate on finding the real roots of
equations. Complex zeroes of polynomials are treated near the end of this chapter.

142

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

143 4.2 Incremental Search Method

In general, an equation may have any number of (real) roots, or no roots at all.
For example,

sin x − x = 0

has a single root, namely x = 0, whereas

tan x − x = 0

has an infinite number of roots (x = 0, ±4.493, ±7.725, . . .).
All methods of finding roots are iterative procedures that require a starting point,

i.e., an estimate of the root. This estimate can be crucial; a bad starting value may
fail to converge, or it may converge to the “wrong” root (a root different from the one
sought). There is no universal recipe for estimating the value of a root. If the equation is
associated with a physical problem, then the context of the problem (physical insight)
might suggest the approximate location of the root. Otherwise, a systematic numerical
search for the roots can be carried out. One such search method is described in the
next article. The roots can also be located visually by plotting the function.

It is highly advisable to go a step further and bracket the root (determine its lower
and upper bounds) before passing the problem to a root finding algorithm. Prior
bracketing is, in fact, mandatory in the methods described in this chapter.

4.2 Incremental Search Method

The approximate locations of the roots are best determined by plotting the function.
Often a very rough plot, based on a few points, is sufficient to give us reasonable starting
values. Another useful tool for detecting and bracketing roots is the incremental search
method. It can also be adapted for computing roots, but the effort would not be
worthwhile, since other methods described in this chapter are more efficient for that.

The basic idea behind the incremental search method is simple: if f (x1) and f (x2)
have opposite signs, then there is at least one root in the interval (x1, x2). If the interval
is small enough, it is likely to contain a single root. Thus the zeroes of f (x) can be
detected by evaluating the function at intervals �x and looking for change in sign.

There are several potential problems with the incremental search method:

� It is possible to miss two closely spaced roots if the search increment �x is larger
than the spacing of the roots.

� A double root (two roots that coincide) will not be detected.
� Certain singularities of f (x) can be mistaken for roots. For example, f (x) = tan x

changes sign at x = ± 1
2 nπ, n = 1, 3, 5, . . . , as shown in Fig. 4.1. However, these

locations are not true zeroes, since the function does not cross the x-axis.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

144 Roots of Equations

x
0 1 2 3 4 5 6

-10.0

-5.0

0.0

5.0

10.0

Figure 4.1. Plot of tan x.

� rootsearch

This function searches for a zero of the user-supplied function f (x) in the interval
(a,b) in increments of dx. It returns the bounds (x1,x2) of the root if the search
was successful; x1 = x2 = None indicates that no roots were detected. After the
first root (the root closest to a) has been detected, rootsearch can be called again
with a replaced by x2 in order to find the next root. This can be repeated as long as
rootsearch detects a root.

module rootsearch

’’’ x1,x2 = rootsearch(f,a,b,dx).

Searches the interval (a,b) in increments dx for

the bounds (x1,x2) of the smallest root of f(x).

Returns x1 = x2 = None if no roots were detected.

’’’

def rootsearch(f,a,b,dx):

x1 = a; f1 = f(a)

x2 = a + dx; f2 = f(x2)

while f1*f2 > 0.0:

if x1 >= b: return None,None

x1 = x2; f1 = f2

x2 = x1 + dx; f2 = f(x2)

else:

return x1,x2

EXAMPLE 4.1
Use incremental search with �x = 0.2 to bracket the smallest positive zero of f (x) =
x3 − 10x2 + 5.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

145 4.3 Method of Bisection

Solution We evaluate f (x) at intervals �x = 0.2, staring at x = 0, until the function
changes its sign (value of the function is of no interest to us; only its sign is relevant).
This procedure yields the following results:

x f (x)

0.0 5.000

0.2 4.608

0.4 3.464

0.6 1.616

0.8 −0.888

From the sign change of the function we conclude that the smallest positive zero lies
between x = 0.6 and x = 0.8.

4.3 Method of Bisection

After a root of f (x) = 0 has been bracketed in the interval (x1, x2), several methods can
be used to close in on it. The method of bisection accomplishes this by successively
halving the interval until it becomes sufficiently small. This technique is also known
as the interval halving method. Bisection is not the fastest method available for com-
puting roots, but it is the most reliable. Once a root has been bracketed, bisection will
always close in on it.

The method of bisection uses the same principle as incremental search: if there
is a root in the interval (x1, x2), then f (x1) · f (x2) < 0. In order to halve the interval, we
compute f (x3), where x3 = 1

2 (x1 + x2) is the midpoint of the interval. If f (x2) · f (x3) <

0, then the root must be in (x2, x3) and we record this by replacing the original bound
x1 by x3. Otherwise, the root lies in (x1, x3), in which case x2 is replaced by x3. In either
case, the new interval (x1, x2) is half the size of the original interval. The bisection is
repeated until the interval has been reduced to a small value ε, so that

|x2 − x1| ≤ ε

It is easy to compute the number of bisections required to reach a prescribedε.The
original interval �x is reduced to �x/2 after one bisection, �x/22 after two bisections,
and after n bisections it is �x/2n. Setting �x/2n = ε and solving for n, we get

n = ln (|�x| /ε)
ln 2

(4.1)

� bisect

This function uses the method of bisection to compute the root of f(x) = 0 that is
known to lie in the interval (x1,x2). The number of bisections n required to reduce

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

146 Roots of Equations

the interval to tol is computed from Eq. (4.1). By setting switch = 1, we force the
routine to check whether the magnitude off(x)decreases with each interval halving.
If it does not, something may be wrong (probably the “root” is not a root at all, but a
singularity) and root = None is returned. Since this feature is not always desirable,
the default value isswitch = 0. The functionerror.err, which we use to terminate
a program, is listed in Art. 1.6.

module bisect

’’’ root = bisect(f,x1,x2,switch=0,tol=1.0e-9).

Finds a root of f(x) = 0 by bisection.

The root must be bracketed in (x1,x2).

Setting switch = 1 returns root = None if

f(x) increases as a result of a bisection.

’’’

from math import log,ceil

import error

def bisect(f,x1,x2,switch=0,epsilon=1.0e-9):

f1 = f(x1)

if f1 == 0.0: return x1

f2 = f(x2)

if f2 == 0.0: return x2

if f1*f2 > 0.0: error.err(’Root is not bracketed’)

n = ceil(log(abs(x2 - x1)/epsilon)/log(2.0))

for i in range(n):

x3 = 0.5*(x1 + x2); f3 = f(x3)

if (switch == 1) and (abs(f3) >abs(f1)) \

and (abs(f3) > abs(f2)):

return None

if f3 == 0.0: return x3

if f2*f3 < 0.0:

x1 = x3; f1 = f3

else:

x2 =x3; f2 = f3

return (x1 + x2)/2.0

EXAMPLE 4.2
Use bisection to find the root of f (x) = x3 − 10x2 + 5 = 0 that lies in the interval
(0.6, 0.8).

Solution The best way to implement the method is to use the following table. Note
that the interval to be bisected is determined by the sign of f (x), not its magnitude.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

147 4.3 Method of Bisection

x f (x) Interval

0.6 1.616 −
0.8 −0.888 (0.6, 0.8)

(0.6 + 0.8)/2 = 0.7 0.443 (0.7, 0.8)

(0.8 + 0.7)/2 = 0.75 −0. 203 (0.7, 0.75)

(0.7 + 0.75)/2 = 0.725 0.125 (0.725, 0.75)

(0.75 + 0.725)/2 = 0.7375 −0.038 (0.725, 0.7375)

(0.725 + 0.7375)/2 = 0.73125 0.044 (0.7375, 0.73125)

(0.7375 + 0.73125)/2 = 0.73438 0.003 (0.7375, 0.73438)

(0.7375 + 0.73438)/2 = 0.73594 −0.017 (0.73438, 0.73594)

(0.73438 + 0.73594)/2 = 0.73516 −0.007 (0.73438, 0.73516)

(0.73438 + 0.73516)/2 = 0.73477 −0.002 (0.73438, 0.73477)

(0.73438 + 0.73477)/2 = 0.73458 0.000 −

The final result x = 0.7346 is correct within four decimal places.

EXAMPLE 4.3
Find all the zeros of f (x) = x − tan x in the interval (0, 20) by the method of bisection.
Utilize the functions rootsearch and bisect.

Solution Note that tan x is singular and changes sign at x = π/2, 3π/2, To pre-
vent bisect from mistaking these point for roots, we set switch = 1. The close-
ness of roots to the singularities is another potential problem that can be alleviated
by using small �x in rootsearch. Choosing �x = 0.01, we arrive at the following
program:

#!/usr/bin/python

example4_3

from math import tan

from rootsearch import *

from bisect import *

def f(x): return x - tan(x)

a,b,dx = (0.0, 20.0, 0.01)

print ’’The roots are:’’

while 1:

x1,x2 = rootsearch(f,a,b,dx)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

148 Roots of Equations

if x1 != None:

a = x2

root = bisect(f,x1,x2,1)

if root != None: print root

else:

print ’’\nDone’’

break

raw_input(’’Press return to exit’’)

The output from the program is:

The roots are:

0.0

4.4934094581

7.72525183707

10.9041216597

14.0661939129

17.2207552722

Done

4.4 Brent’s Method

Brent’s method9 combines bisection and quadratic interpolation into an efficient
root-finding algorithm. In most problems the method is much faster than bisection
alone, but it can become sluggish if the function is not smooth. It is the recommended
method of root solving if the derivative of the function is difficult or impossible to
compute.

x
xx

x1

23

3

Old interval
New

interval

f (x)

x
x1 x3

x2

x

Old interval
New

interval

x

f (x)

(b) Case of x > x3(a) Case of x < x

Figure 4.2. Inverse quadratic iteration.

9 Brent, R. P., Algorithms for Minimization without Derivatives, Prentice-Hall, 1973.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

149 4.4 Brent’s Method

Brent’s method assumes that a root of f (x) = 0 has been initially bracketed in
the interval (x1, x2). The root-finding process starts with a bisection step that halves
the interval to either (x1, x3) or (x3, x2), where x3 = (x1 + x2)/2, as shown in Figs. 4.2(a)
and (b). In the course of bisection we had to compute f1 = f (x1), f2 = f (x2) and
f3 = f (x3), so that we now know three points on the f (x) curve (the open circles in
the figure). These points allow us to carry out the next iteration of the root by inverse
quadratic interpolation (viewing x as a quadratic function of f). If the result x of the
interpolation falls inside the latest bracket (as is the case in Figs. 4.2) we accept the
result. Otherwise, another round of bisection is applied.

x
x

x1

2

3

f (x) f (x)

x
x1 x3

x2
x

(a) (b)

Figure 4.3. Relabeling roots after an iteration.

The next step is to relabel x as x3 and rename the limits of the new interval
x1 and x2 (x1 < x3 < x2), as indicated in Figs. 4.3. We have now recovered the orig-
inal sequencing of points in Figs. 4.2, but the interval (x1, x2) containing the root
has been reduced. This completes the first iteration cycle. In the next cycle an-
other inverse quadratic interpolation is attempted and the process is repeated un-
til the convergence criterion |x − x3| < ε is satisfied, where ε is a prescribed error
tolerance.

The inverse quadratic interpolation is carried out with Lagrange’s three-point
interpolant described in Section 3.2. Interchanging the roles of x and f , we have

x(f) = (f − f2)(f − f3)
(f1 − f2)(f1 − f3)

x1 + (f − f1)(f − f3)
(f2 − f1)(f2 − f3)

x2 + (f − f1)(f − f2)
(f3 − f1)(f3 − f2)

x3

Setting f = 0 and simplifying, we obtain for the estimate of the root

x = x(0) = − f2 f3x1(f2 − f3) + f3 f1x2(f3 − f1) + f1 f2x3(f1 − f2)
(f1 − f2)(f2 − f3)(f3 − f1)

The change in the root is

�x = x − x3 = f3
x3(f1 − f2)(f2 − f3 + f1) + f2x1(f2 − f3) + f1x2(f3 − f1)

(f2 − f1)(f3 − f1)(f2 − f3)
(4.2)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

150 Roots of Equations

� brent

The function brent listed below is a simplified version of the algorithm proposed by
Brent. It omits some of Brent’s safeguards against slow convergence; it also uses a less
sophisticated convergence criterion.

module brent

’’’ root = brent(f,a,b,tol=1.0e-9).

Finds root of f(x) = 0 by combining quadratic interpolation

with bisection (simplified Brent’s method).

The root must be bracketed in (a,b).

Calls user-supplied function f(x).

’’’

import error

def brent(f,a,b,tol=1.0e-9):

x1 = a; x2 = b;

f1 = f(x1)

if f1 == 0.0: return x1

f2 = f(x2)

if f2 == 0.0: return x2

if f1*f2 > 0.0: error.err(’Root is not bracketed’)

x3 = 0.5*(a + b)

for i in range(30):

f3 = f(x3)

if abs(f3) < tol: return x3

Tighten the brackets on the root

if f1*f3 < 0.0: b = x3

else: a = x3

if (b - a) < tol*max(abs(b),1.0): return 0.5*(a + b)

Try quadratic interpolation

denom = (f2 - f1)*(f3 - f1)*(f2 - f3)

numer = x3*(f1 - f2)*(f2 - f3 + f1) \

+ f2*x1*(f2 - f3) + f1*x2*(f3 - f1)

If division by zero, push x out of bounds

try: dx = f3*numer/denom

except ZeroDivisionError: dx = b - a

x = x3 + dx

If iterpolation goes out of bounds, use bisection

if (b - x)*(x - a) < 0.0:

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

151 4.4 Brent’s Method

dx = 0.5*(b - a)

x = a + dx

Let x3 <-- x & choose new x1 and x2 so that x1 < x3 < x2

if x < x3:

x2 = x3; f2 = f3

else:

x1 = x3; f1 = f3

x3 = x

print ’Too many iterations in brent’

EXAMPLE 4.4
Determine the root of f (x) = x3 − 10x2 + 5 = 0 that lies in (0.6, 0.8) with Brent’s
method.

Solution
Bisection The starting points are

x1 = 0.6 f1 = 0.63 − 10(0.6)2 + 5 = 1.616

x2 = 0.8 f2 = 0.83 − 10(0.8)2 + 5 = −0.888

Bisection yields the point

x3 = 0.7 f3 = 0.73 − 10(0.7)2 + 5 = 0.443

By inspecting the signs of f we conclude that the new brackets on the root are (x3, x2) =
(0.7, 0.8).

First interpolation cycle The numerator of the quotient in Eq. (4.2) is

num = x3(f1 − f2)(f2 − f3 + f1) + f2x1(f2 − f3) + f1x2(f3 − f1)

= 0.7(1.616 + 0.888)(−0.888 − 0.443 + 1.616)

−0.888(0.6)(−0.888 − 0.443) + 1.616(0.8)(0.443 − 1.616)

= −0.307 75

and the denominator is

den = (f2 − f1)(f3 − f1)(f2 − f3)

= (−0.888 − 1.616)(0.443 − 1.616)(−0.888 − 0.443) = −3.9094

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

152 Roots of Equations

Therefore,

�x = f3
num
den

= 0.443
(−0.307 75)
(−3.9094)

= 0.034 87

and

x = x3 + �x = 0.7 + 0.034 87 = 0.734 87

Since the result is within the established brackets, we accept it.

Relabel points As x > x3, the points are relabeled as illustrated in Figs. 4.2(b) and
4.3(b):

x1 ← x3 = 0.7

f1 ← f3 = 0.443

x3 ← x = 0.734 87

f3 = 0.734 873 − 10(0.734 87)2 + 5 = −0.00348

The new brackets on the root are (x1, x3) = (0.7, 0.734 87)

Second interpolation cycle Applying the interpolation in Eq. (4.2) again, we obtain
(skipping the arithmetical details)

�x = −0.000 27

x = x3 + �x = 0.734 87 − 0.000 27 = 0.734 60

Again x falls within the latest brackets, so the result is acceptable. At this stage, x is
correct to five decimal places.

EXAMPLE 4.5
Compute the zero of

f (x) = x |cos x| − 1

that lies in the interval (0, 4) with Brent’s method.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

153 4.5 Newton–Raphson Method

Solution

x

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

f (x)

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

The plot of f (x) shows that this is a rather nasty function within the specified interval,
containing a slope discontinuity and two local maxima. The sensible approach is
to avoid the potentially troublesome regions of the function by bracketing the root
as tightly as possible from a visual inspection of the plot. In this case, the interval
(a, b) = (2.0, 2.2) would be a good starting point for Brent’s algorithm.

Is Brent’s method robust enough to handle the problem with the original brackets
(0, 4)? Well, here is the program and its output:

#!/usr/bin/python

example4_5

from math import cos

from brent import *

def f(x): return x*abs(cos(x)) - 1.0

print ’’root =’’,brent(f,0.0,4.0)

raw_input(’’Press return to exit’’)

root = 2.0739328091

The result was obtained in only five iterations.

4.5 Newton–Raphson Method

The Newton–Raphson algorithm is the best-known method of finding roots for a
good reason: it is simple and fast. The only drawback of the method is that it uses

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

154 Roots of Equations

the derivative f ′(x) of the function as well as the function f (x) itself. Therefore,
the Newton–Raphson method is usable only in problems where f ′(x) can be readily
computed.

The Newton–Raphson formula can be derived from the Taylor series expansion
of f (x) about x:

f (xi+1) = f (xi) + f ′(xi)(xi+1 − xi) + O(xi+1 − xi)2 (a)

where O(z) is to be read as “of the order of z”—see Appendix A1. If xi+1 is a root of
f (x) = 0, Eq. (a) becomes

0 = f (xi) + f ′(xi) (xi+1 − xi) + O(xi+1 − xi)2 (b)

Assuming that xi is a close to xi+1, we can drop the last term in Eq. (b) and solve for
xi+1. The result is the Newton–Raphson formula

xi+1 = xi − f (xi)
f ′(xi)

(4.3)

If x denotes the true value of the root, the error in xi is Ei = x − xi . It can be shown
that if xi+1 is computed from Eq. (4.3), the corresponding error is

Ei+1 = − f ′′(xi)
2 f ′(xi)

E 2
i

indicating that Newton–Raphson method converges quadratically (the error is the
square of the error in the previous step). As a consequence, the number of signif-
icant figures is roughly doubled in every iteration, provided that xi is close to the
root.

Tangent line

f (xi)

i ixx +1
x

f (x)

Figure 4.4. Graphical interpretation of the Newton–Raphson
formula.

A graphical depiction of the Newton–Raphson formula is shown in Fig. 4.4. The for-
mula approximates f (x) by the straight line that is tangent to the curve at xi . Thus xi+1

is at the intersection of the x-axis and the tangent line.
The algorithm for the Newton–Raphson method is simple: it repeatedly applies

Eq. (4.3), starting with an initial value x0, until the convergence criterion

|xi+1 − x1| < ε

is reached, ε being the error tolerance. Only the latest value of x has to be stored. Here
is the algorithm:

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

155 4.5 Newton–Raphson Method

1. Let x be a guess for the root of f (x) = 0.
2. Compute �x = − f (x)/ f ′(x).
3. Let x ← x + �x and repeat steps 2–3 until |�x| < ε.

x x

f (x) f (x)

0

xxx
x0 21

(a) (b)

Figure 4.5. Examples where the Newton–Raphson method
diverges.

Although the Newton–Raphson method converges fast near the root, its global
convergence characteristics are poor. The reason is that the tangent line is not always
an acceptable approximation of the function, as illustrated in the two examples in
Fig. 4.5. But the method can be made nearly fail-safe by combining it with bisection,
as in Brent’s method.

� newtonRaphson

The following safe version of the Newton–Raphson method assumes that the root to
be computed is initially bracketed in(a,b). The midpoint of the bracket is used as the
initial guess of the root. The brackets are updated after each iteration. If a Newton–
Raphson iteration does not stay within the brackets, it is disregarded and replaced
with bisection. Since newtonRaphson uses the function f(x) as well as its derivative,
function routines for both (denoted by f and df in the listing) must be provided by
the user.

module newtonRaphson

’’’ root = newtonRaphson(f,df,a,b,tol=1.0e-9).

Finds a root of f(x) = 0 by combining the Newton-Raphson

method with bisection. The root must be bracketed in (a,b).

Calls user-supplied functions f(x) and its derivative df(x).

’’’

def newtonRaphson(f,df,a,b,tol=1.0e-9):

import error

fa = f(a)

if fa == 0.0: return a

fb = f(b)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

156 Roots of Equations

if fb == 0.0: return b

if fa*fb > 0.0: error.err(’Root is not bracketed’)

x = 0.5*(a + b)

for i in range(30):

fx = f(x)

if abs(fx) < tol: return x

Tighten the brackets on the root

if fa*fx < 0.0:

b = x

else:

a = x; fa = fx

Try a Newton-Raphson step

dfx = df(x)

If division by zero, push x out of bounds

try: dx = -fx/dfx

except ZeroDivisionError: dx = b - a

x = x + dx

If the result is outside the brackets, use bisection

if (b - x)*(x - a) < 0.0:

dx = 0.5*(b-a)

x = a + dx

Check for convergence

if abs(dx) < tol*max(abs(b),1.0): return x

print ’Too many iterations in Newton-Raphson’

EXAMPLE 4.6
A root of f (x) = x3 − 10x2 + 5 = 0 lies close to x = 0.7. Compute this root with the
Newton–Raphson method.

Solution The derivative of the function is f ′(x) = 3x2 − 20x, so that the Newton–
Raphson formula in Eq. (4.3) is

x ← x − f (x)
f ′(x)

= x − x3 − 10x2 + 5
3x2 − 20x

= 2x3 − 10x2 − 5
x (3x − 20)

It takes only two iterations to reach five decimal place accuracy:

x ← 2(0.7)3 − 10(0.7)2 − 5
0.7 [3(0.7) − 20]

= 0.735 36

x ← 2(0.735 36)3 − 10(0.735 36)2 − 5
0.735 36 [3(0.735 36) − 20]

= 0.734 60

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

157 4.5 Newton–Raphson Method

EXAMPLE 4.7
Find the smallest positive zero of

f (x) = x4 − 6.4x3 + 6.45x2 + 20.538x − 31.752

Solution

x
0 1 2 3 4 5

f (x)

-40

-20

0

20

40

60

Inspecting the plot of the function, we suspect that the smallest positive zero is a
double root near x = 2. Bisection and Brent’s method would not work here, since they
depend on the function changing its sign at the root. The same argument applies to
the function newtonRaphson. But there no reason why the unrefined version of the
Newton–Raphson method should not succeed. We used the following program, which
prints the number of iterations in addition to the root:

#!/usr/bin/python

example4_7

def f(x): return x**4 - 6.4*x**3 + 6.45*x**2 + 20.538*x - 31.752

def df(x): return 4.0*x**3 - 19.2*x**2 + 12.9*x + 20.538

def newtonRaphson(x,tol=1.0e-9):

for i in range(30):

dx = -f(x)/df(x)

x = x + dx

if abs(dx) < tol: return x,i

print ’Too many iterations\n’

root,numIter = newtonRaphson(2.0)

print ’Root =’,root

print ’Number of iterations =’,numIter

raw_input(’’Press return to exit’’)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

158 Roots of Equations

The output is

Root = 2.09999998403

Number of iterations = 23

The true value of the root is x = 2.1. It can be shown that near a multiple root the
convergence of the Newton–Raphson method is linear, rather than quadratic, which
explains the large number of iterations. Convergence to a multiple root can be speeded
up by replacing the Newton–Raphson formula in Eq. (4.3) with

xi+1 = xi − m
f (xi)
f ′(xi)

where m is the multiplicity of the root (m = 2 in this problem). After making the change
in the above program, we obtained the result in only 5 iterations.

4.6 Systems of Equations

Introduction

Up to this point, we confined our attention to solving the single equation f (x) = 0.

Let us now consider the n-dimensional version of the same problem, namely

f(x) = 0

or, using scalar notation

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0 (4.4)

...

fn(x1, x2, . . . , xn) = 0

The solution of n simultaneous, nonlinear equations is a much more formidable task
than finding the root of a single equation. The trouble is the lack of a reliable method for
bracketing the solution vector x. Therefore, we cannot provide the solution algorithm
with a guaranteed good starting value of x, unless such a value is suggested by the
physics of the problem.

The simplest and the most effective means of computing x is the Newton–Raphson
method. It works well with simultaneous equations, provided that it is supplied with

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

159 4.6 Systems of Equations

a good starting point. There are other methods that have better global convergence
characteristics, but all of then are variants of the Newton–Raphson method.

Newton–Raphson Method

In order to derive the Newton–Raphson method for a system of equations, we start
with the Taylor series expansion of fi(x) about the point x:

fi(x + ∆x) = fi(x) +
n∑

j=1

∂ fi

∂xj
∆xj + O(�x2) (4.5a)

Dropping terms of order �x2, we can write Eq. (4.5a) as

f(x + ∆x) = f(x) + J(x) ∆x (4.5b)

where J(x) is the Jacobian matrix (of size n × n) made up of the partial derivatives

Ji j = ∂ fi

∂xj
(4.6)

Note that Eq. (4.5b) is a linear approximation (vector ∆x being the variable) of the
vector-valued function f in the vicinity of point x.

Let us now assume that x is the current approximation of the solution of f(x) = 0,
and let x + �x be the improved solution. To find the correction�x, we set f(x + ∆x) = 0
in Eq. (4.5b). The result is a set of linear equations for ∆x :

J(x)∆x = −f(x) (4.7)

The following steps constitute the Newton–Raphson method for simultaneous,
nonlinear equations:

1. Estimate the solution vector x.
2. Evaluate f(x).
3. Compute the Jacobian matrix J(x) from Eq. (4.6).
4. Set up the simultaneous equations in Eq. (4.7) and solve for ∆x.
5. Let x ← x + ∆x and repeat steps 2–5.

The above process is continued until |∆x| < ε, where ε is the error tolerance. As
in the one-dimensional case, success of the Newton–Raphson procedure depends
entirely on the initial estimate of x. If a good starting point is used, convergence to the
solution is very rapid. Otherwise, the results are unpredictable.

Because analytical derivation of each ∂ fi/∂xj can be difficult or impractical, it
is preferable to let the computer calculate the partial derivatives from the finite

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

160 Roots of Equations

difference approximation

∂ fi

∂xj
≈ fi(x + e j h) − fi(x)

h
(4.8)

where h is a small increment and e j represents a unit vector in the direction of xj .
This formula can be obtained from Eq. (4.5a) after dropping the terms of order �x2

and setting ∆x = e j h. We get away with the approximation in Eq. (4.8) because the
Newton–Raphson method is rather insensitive to errors in J(x). By using this ap-
proximation, we also avoid the tedium of typing the expressions for ∂ fi/∂xj into the
computer code.

� newtonRaphson2

This function is an implementation of the Newton–Raphson method. The nested
function jacobian computes the Jacobian matrix from the finite difference approx-
imation in Eq. (4.8). The simultaneous equations in Eq. (4.7) are solved by Gauss
elimination with row pivoting using the function gaussPivot. listed in Section 2.5.
The function subroutine f that returns the array f(x) must be supplied by the user.

module newtonRaphson2

’’’ soln = newtonRaphson2(f,x,tol=1.0e-9).

Solves the simultaneous equations f(x) = 0 by

the Newton-Raphson method using {x} as the initial

guess. Note that {f} and {x} are vectors.

’’’

from numarray import zeros,Float64,dot,sqrt

from gaussPivot import *

def newtonRaphson2(f,x,tol=1.0e-9):

def jacobian(f,x):

h = 1.0e-4

n = len(x)

jac = zeros((n,n),type=Float64)

f0 = f(x)

for i in range(n):

temp = x[i]

x[i] = temp + h

f1 = f(x)

x[i] = temp

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

161 4.6 Systems of Equations

jac[:,i] = (f1 - f0)/h

return jac,f0

for i in range(30):

jac,f0 = jacobian(f,x)

if sqrt(dot(f0,f0)/len(x)) < tol: return x

dx = gaussPivot(jac,-f0)

x = x + dx

if sqrt(dot(dx,dx)) < tol*max(abs(x),1.0): return x

print ’Too many iterations’

Note that the Jacobian matrix J(x) is recomputed in each iterative loop. Since each
calculation of J(x) involves n + 1 evaluations of f(x) (n is the number of equations), the
expense of computation can be high depending on n and the complexity of f(x). It is
often possible to save computer time by neglecting the changes in the Jacobian matrix
between iterations, thus computing J(x) only once. This will work provided that the
initial x is sufficiently close to the solution.

EXAMPLE 4.8
Determine the points of intersection between the circle x2 + y2 = 3 and the hyperbola
xy = 1.

Solution The equations to be solved are

f1(x, y) = x2 + y2 − 3 = 0 (a)

f2(x, y) = xy − 1 = 0 (b)

The Jacobian matrix is

J(x, y) =
[
∂ f1/∂x ∂ f1/∂y
∂ f2/∂x ∂ f2/∂y

]
=

[
2x 2y
y x

]

Thus the linear equations J(x)∆x = −f(x) associated with the Newton–Raphson
method are [

2x 2y
y x

][
�x
�y

]
=

[
−x2 − y2 + 3

−xy + 1

]
(c)

By plotting the circle and the hyperbola, we see that there are four points of
intersection. It is sufficient, however, to find only one of these points, as the others
can be deduced from symmetry. From the plot we also get a rough estimate of the
coordinates of an intersection point: x = 0.5, y = 1.5, which we use as the starting
values.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

162 Roots of Equations

x

y

3

1 2

1

2

-1-2

-1

-2

The computations then proceed as follows.

First iteration Substituting x = 0.5, y = 1.5 in Eq. (c), we get[
1.0 3.0
1.5 0.5

][
�x
�y

]
=

[
0.50
0.25

]

the solution of which is �x = �y = 0.125. Therefore, the improved coordinates of the
intersection point are

x = 0.5 + 0.125 = 0.625 y = 1.5 + 0.125 = 1.625

Second iteration Repeating the procedure using the latest values of x and y, we
obtain [

1.250 3.250
1.625 0.625

][
�x
�y

]
=

[
−0.031250
−0.015625

]

which yields �x = �y = −0.00694. Thus

x = 0.625 − 0.006 94 = 0.618 06 y = 1.625 − 0.006 94 = 1.618 06

Third iteration Substitution of the latest x and y into Eq. (c) yields

[
1.236 12 3.23612
1.618 06 0.61806

][
�x
�y

]
=

[
−0.000 116
−0.000 058

]

The solution is �x = �y = −0.00003, so that

x = 0.618 06 − 0.000 03 = 0.618 03

y = 1.618 06 − 0.000 03 = 1.618 03

Subsequent iterations would not change the results within five significant figures.
Therefore, the coordinates of the four intersection points are

±(0.618 03, 1.618 03) and ± (1.618 03, 0.618 03)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

163 4.6 Systems of Equations

Alternate solution If there are only a few equations, it may be possible to eliminate
all but one of the unknowns. Then we would be left with a single equation which can
be solved by the methods described in Sections 4.2–4.5. In this problem, we obtain
from Eq. (b)

y = 1
x

which upon substitution into Eq. (a) yields x2 + 1/x2 − 3 = 0, or

x4 − 3x2 + 1 = 0

The solutions of this biquadratic equation: x = ±0.618 03 and ±1.618 03 agree with
the results obtained by the Newton–Raphson method.

EXAMPLE 4.9
Find a solution of

sin x + y2 + ln z − 7 = 0

3x + 2y − z3 + 1 = 0

x + y + z − 5 = 0

using newtonRaphson2. Start with the point (1, 1, 1).

Solution Letting x0 = x, x1 = y and x2 = z, we obtain the following program:

#!/usr/bin/python

example4_9

from numarray import zeros,array

from math import sin,log

from newtonRaphson2 import *

def f(x):

f = zeros((len(x)),type=Float64)

f[0] = sin(x[0]) + x[1]**2 + log(x[2]) - 7.0

f[1] = 3.0*x[0] + 2.0**x[1] - x[2]**3 + 1.0

f[2] = x[0] + x[1] + x[2] - 5.0

return f

x = array([1.0, 1.0, 1.0])

print newtonRaphson2(f,x)

raw_input (’’\nPress return to exit’’)

The output from this program is

[0.59905376 2.3959314 2.00501484]

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

164 Roots of Equations

PROBLEM SET 4.1

1. Use the Newton–Raphson method and a four-function calculator (+ − ×÷ oper-
ations only) to compute 3

√
75 with four significant figure accuracy.

2. Find the smallest positive (real) root of x3 − 3.23x2 − 5.54x + 9.84 = 0 by the
method of bisection.

3. The smallest positive, nonzero root of cosh x cos x − 1 = 0 lies in the interval (4, 5).
Compute this root by Brent’s method.

4. Solve Prob. 3 by the Newton–Raphson method.

5. A root of the equation tan x − tanh x = 0 lies in (7.0, 7.4). Find this root with three
decimal place accuracy by the method of bisection.

6. Determine the two roots of sin x + 3 cos x − 2 = 0 that lie in the interval (−2, 2).
Use the Newton–Raphson method.

7. A popular method in hand computation is the secant formula where the improved
estimate of the root (xi+1) is obtained by linear interpolation based two previous
estimates (xi and xi−1):

xi+1 = xi − xi − xi−1

f (xi) − f (xi−1)
f (xi)

Solve Prob. 6 using the secant formula.

8. Draw a plot of f (x) = cosh x cos x − 1 in the range 4 ≤ x ≤ 8. (a) Verify from the
plot that the smallest positive, nonzero root of f (x) = 0 lies in the interval (4, 5).
(b) Show graphically that the Newton–Raphson formula would not converge to
this root if it is started with x = 4.

9. The equation x3 − 1.2x2 − 8.19x + 13.23 = 0 has a double root close to x = 2.

Determine this root with the Newton–Raphson method within four decimal
places.

10. � Write a program that computes all the roots of f (x) = 0 in a given interval with
Brent’s method. Utilize the functions rootsearch and brent. You may use the
program in Example 4.3 as a model. Test the program by finding the roots of
x sin x + 3 cos x − x = 0 in (−6, 6).

11. � Solve Prob. 10 with the Newton–Raphson method.

12. � Determine all real roots of x4 + 0.9x3 − 2.3x2 + 3.6x − 25.2 = 0.

13. � Compute all positive real roots of x4 + 2x3 − 7x2 + 3 = 0.

14. � Find all positive, nonzero roots of sin x − 0.1x = 0.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

165 4.6 Systems of Equations

15. � The natural frequencies of a uniform cantilever beam are related to the roots
βi of the frequency equation f (β) = cosh β cos β + 1 = 0, where

β4
i = (2π fi)2 mL3

E I

fi = ith natural frequency (cps)

m = mass of the beam

L = length of the beam

E = modulus of elasticity

I = moment of inertia of the cross section

Determine the lowest two frequencies of a steel beam 0.9 m. long, with a rectan-
gular cross section 25 mm wide and 2.5 mm in. high. The mass density of steel is
7850 kg/m3 and E = 200 GPa.

16. �
L
2

Length =s O

L
2

A steel cable of length s is suspended as shown in the figure. The maximum tensile
stress in the cable, which occurs at the supports, is

σ max = σ 0 cosh β

where

β = γ L
2σ 0

σ 0 = tensile stress in the cable at O

γ = weight of the cable per unit volume

L = horizontal span of the cable

The length to span ratio of the cable is related to β by

s
L

= 1
β

sinh β

Find σ max if γ = 77 × 103 N/m3 (steel), L = 1000 m and s = 1100 m.

17. �

P
ec

L

P

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

166 Roots of Equations

The aluminum W310 × 202 (wide flange) column is subjected to an eccentric axial
load P as shown. The maximum compressive stress in the column is given by the
so-called secant formula:

σ max = σ̄

[
1 + ec

r2
sec

(
L
2r

√
σ̄

E

)]

where

σ̄ = P/A = average stress

A = 25 800 mm2 = cross-sectional area of the column

e = 85 mm = eccentricity of the load

c = 170 mm = half-depth of the column

r = 142 mm = radius of gyration of the cross section

L = 7100 mm = length of the column

E = 71 × 109 Pa = modulus of elasticity

Determine the maximum load P that the column can carry if the maximum stress
is not to exceed 120 × 106 Pa.

18. �

hQ

H

ho

Bernoulli’s equation for fluid flow in an open channel with a small bump is

Q2

2gb2h2
0

+ h0 = Q2

2gb2h2
+ h + H

where

Q = 1.2 m3/s = volume rate of flow

g = 9.81 m/s2 = gravitational acceleration

b = 1.8 m = width of channel

h0 = 0.6 m = upstream water level

H = 0.075 m = height of bump

h = water level above the bump

Determine h.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

167 4.6 Systems of Equations

19. � The speed v of a Saturn V rocket in vertical flight near the surface of earth can
be approximated by

v = u ln
M0

M0 − ṁt
− gt

where

u = 2510 m/s = velocity of exhaust relative to the rocket

M0 = 2.8 × 106 kg = mass of rocket at liftoff

ṁ = 13.3 × 103 kg/s = rate of fuel consumption

g = 9.81 m/s2 = gravitational acceleration

t = time measured from liftoff

Determine the time when the rocket reaches the speed of sound (335 m/s).

20. �

Isothermal
expansion

Volume reduced
by cooling

Heating at
constant volume

P

VV V

P

P

T

T

T
1

1

1

2

2

2
2

The figure shows the thermodynamic cycle of an engine. The efficiency of this
engine for monoatomic gas is

η = ln(T2/T1) − (1 − T1/T2)
ln(T2/T1) + (1 − T1/T2)/(γ − 1)

where T is the absolute temperature and γ = 5/3. Find T2/T1 that results in 30%
efficiency (η = 0.3).

21. � Gibb’s free energy of one mole of hydrogen at temperature T is

G = −RT ln
[
(T/T0)5/2] J

where R = 8.314 41 J/K is the gas constant and T0 = 4.444 18 K. Determine the
temperature at which G = −105 J.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

168 Roots of Equations

22. � The chemical equilibrium equation in the production of methanol from CO
and H2 is10

ξ (3 − 2ξ)2

(1 − ξ)3
= 249.2

where ξ is the equilibrium extent of the reaction. Determine ξ .

23. � Determine the coordinates of the two points where the circles (x − 2)2 + y2 = 4
and x2 + (y − 3)2 = 4 intersect. Start by estimating the locations of the points from
a sketch of the circles, and then use the Newton–Raphson method to compute
the coordinates.

24. � The equations

sin x + 3 cos x − 2 = 0

cos x − sin y + 0.2 = 0

have a solution in the vicinity of the point (1, 1).Use the Newton–Raphson method
to refine the solution.

25. � Use any method to find all real solutions in 0 < x < 1.5 of the simultaneous
equations

tan x − y = 1

cos x − 3 sin y = 0

26. � The equation of a circle is

(x − a)2 + (y − b)2 = R2

where R is the radius and (a, b) are the coordinates of the center. If the coordinates
of three points on the circle are

x 8.21 0.34 5.96

y 0.00 6.62 −1.12

determine R, a and b.

27. �

O

R

10 From Alberty, R. A., Physical Chemistry, 7th ed., Wiley, 1987.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

169 4.6 Systems of Equations

The trajectory of a satellite orbiting the earth is

R = C
1 + e sin(θ + α)

where (R, θ) are the polar coordinates of the satellite, and C , e and α are constants
(e is known as the eccentricity of the orbit). If the satellite was observed at the
following three positions

θ −30◦ 0◦ 30◦

R (km) 6870 6728 6615

determine the smallest R of the trajectory and the corresponding value of θ .

28. �

300 m

61 m

45
y

xO

v

A projectile is launched at O with the velocity v at the angle θ to the horizontal.
The parametric equations of the trajectory are

x = (v cos θ)t

y = −1
2

gt2 + (v sin θ)t

where t is the time measured from the instant of launch, and g = 9.81 m/s2 rep-
resents the gravitational acceleration. If the projectile is to hit the target at the 45◦

angle shown in the figure, determine v, θ and the time of flight.

29. �

200 mm

15
0

m
m

180 mm

20
0

m
m

1

2

3

y

x

The three angles shown in the figure of the four-bar linkage are related by

150 cos θ1 + 180 cos θ2 − 200 cos θ3 = 200

150 sin θ1 + 180 sin θ2 − 200 sin θ3 = 0

Determine θ1 and θ2 when θ3 = 75◦. Note that there are two solutions.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

170 Roots of Equations

∗4.7 Zeroes of Polynomials

Introduction

A polynomial of degree n has the form

Pn(x) = a0 + a1x + a2x2 + · · · + anxn (4.9)

where the coefficients ai may be real or complex. We will concentrate on polynomials
with real coefficients, but the algorithms presented in this chapter also work with
complex coefficients.

The polynomial equation Pn(x) = 0 has exactly n roots, which may be real or
complex. If the coefficients are real, the complex roots always occur in conjugate pairs
(xr + ixi, xr − ixi), where xr and xi are the real and imaginary parts, respectively. For
real coefficients, the number of real roots can be estimated from the rule of Descartes:

� The number of positive, real roots equals the number of sign changes in the
expression for Pn(x), or less by an even number.

� The number of negative, real roots is equal to the number of sign changes in
Pn(−x), or less by an even number.

As an example, consider P3(x) = x3 − 2x2 − 8x + 27. Since the sign changes twice,
P3(x) = 0 has either two or zero positive real roots. On the other hand, P3(−x) =
−x3 − 2x2 + 8x + 27 contains a single sign change; hence P3(x) possesses one negative
real zero.

The real zeros of polynomials with real coefficients can always be computed by
one of the methods already described. But if complex roots are to be computed, it is
best to use a method that specializes in polynomials. Here we present a method due to
Laguerre, which is reliable and simple to implement. Before proceeding to Laguerre’s
method, we must first develop two numerical tools that are needed in any method
capable of determining the zeroes of a polynomial. The first of these is an efficient
algorithm for evaluating a polynomial and its derivatives. The second algorithm we
need is for the deflation of a polynomial, i.e., for dividing the Pn(x) by x − r , where r is
a root of Pn(x) = 0.

Evaluation of Polynomials

It is tempting to evaluate the polynomial in Eq. (4.9) from left to right by the following
algorithm (we assume that the coefficients are stored in the array a):

p = 0.0

for i in range(n+1):

p = p + a[i]*x**i

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

171 4.7 Zeroes of Polynomials

Since xk is evaluated as x × x × · · · × x (k − 1 multiplications), we deduce that the
number of multiplications in this algorithm is

1 + 2 + 3 + · · · + n − 1 = 1
2

n(n − 1)

If n is large, the number of multiplications can be reduced considerably if we evaluate
the polynomial from right to left. For an example, take

P4(x) = a0 + a1x + a2x2 + a3x3 + a4x4

After rewriting the polynomial as

P4(x) = a0 + x {a1 + x [a2 + x (a3 + xa4)]}
the preferred computational sequence becomes obvious:

P0(x) = a4

P1(x) = a3 + xP0(x)

P2(x) = a2 + xP1(x)

P3(x) = a1 + xP2(x)

P4(x) = a0 + xP3(x)

For a polynomial of degree n, the procedure can be summarized as

P0(x) = an

Pi(x) = an−i + xPi−1(x), i = 1, 2, . . . , n (4.10)

leading to the algorithm

p = a[n]

for i in range(1,n+1):

p = a[n-i] + p*x

The last algorithm involves only n multiplications, making it more efficient for
n > 3. But computational economy is not the prime reason why this algorithm should
be used. Because the result of each multiplication is rounded off, the procedure with
the least number of multiplications invariably accumulates the smallest roundoff
error.

Some root-finding algorithms, including Laguerre’s method, also require evalua-
tion of the first and second derivatives of Pn(x). From Eq. (4.10) we obtain by differ-
entiation

P ′
0(x) = 0 P ′

i (x) = Pi−1(x) + xP ′
i−1(x), i = 1, 2, . . . , n (4.11a)

P ′′
0 (x) = 0 P ′′

i (x) = 2P ′
i−1(x) + xP ′′

i−1(x), i = 1, 2, . . . , n (4.11b)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

172 Roots of Equations

� evalPoly

Here is the function that evaluates a polynomial and its derivatives:

module evalPoly

’’’ p,dp,ddp = evalPoly(a,x).

Evaluates the polynomial

p = a[0] + a[1]*x + a[2]*xˆ2 +...+ a[n]*xˆn

with its derivatives dp = p’ and ddp = p’’

at x.

’’’

def evalPoly(a,x):

n = len(a) - 1

p = a[n]

dp = 0.0 + 0.0j

ddp = 0.0 + 0.0j

for i in range(1,n+1):

ddp = ddp*x + 2.0*dp

dp = dp*x + p

p = p*x + a[n-i]

return p,dp,ddp

Deflation of Polynomials

After a root r of Pn(x) = 0 has been computed, it is desirable to factor the polynomial
as follows:

Pn(x) = (x − r)Pn−1(x) (4.12)

This procedure, known as deflation or synthetic division, involves nothing more than
computing the coefficients of Pn−1(x). Since the remaining zeros of Pn(x) are also the
zeros of Pn−1(x), the root-finding procedure can now be applied to Pn−1(x) rather than
Pn(x). Deflation thus makes it progressively easier to find successive roots, because
the degree of the polynomial is reduced every time a root is found. Moreover, by
eliminating the roots that have already been found, the chances of computing the
same root more than once are eliminated.

If we let

Pn−1(x) = b0 + b1x + b2x2 + · · · + bn−1xn−1

then Eq. (4.12) becomes

a0 + a1x + a2x2 + · · · + an−1xn−1 + anxn

= (x − r)(b0 + b1x + b2x2 + · · · + bn−1xn−1)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

173 4.7 Zeroes of Polynomials

Equating the coefficients of like powers of x, we obtain

bn−1 = an bn−2 = an−1 + rbn−1 · · · b0 = a1 + rb1 (4.13)

which leads to the Horner’s deflation algorithm:

b[n-1] = a[n]

for i in range(n-2,-1,-1):

b[i] = a[i+1] + r*b[i+1]

Laguerre’s Method

Laguerre’s formulas are not easily derived for a general polynomial Pn(x). However,
the derivation is greatly simplified if we consider the special case where the poly-
nomial has a zero at x = r and (n − 1) zeros at x = q. Hence the polynomial can be
written as

Pn(x) = (x − r)(x − q)n−1 (a)

Our problem is now this: given the polynomial in Eq. (a) in the form

Pn(x) = a0 + a1x + a2x2 + · · · + anxn

determine r (note that q is also unknown). It turns out that the result, which is ex-
act for the special case considered here, works well as an iterative formula with any
polynomial.

Differentiating Eq. (a) with respect to x, we get

P ′
n(x) = (x − q)n−1 + (n − 1)(x − r)(x − q)n−2

= Pn(x)
(

1
x − r

+ n − 1
x − q

)

Thus

P ′
n(x)

Pn(x)
= 1

x − r
+ n − 1

x − q
(b)

which upon differentiation yields

P ′′
n (x)

Pn(x)
−

[
P ′

n(x)
Pn(x)

]2

= − 1
(x − r)2

− n − 1
(x − q)2

(c)

It is convenient to introduce the notation

G(x) = P ′
n(x)

Pn(x)
H(x) = G2(x) − P ′′

n (x)
Pn(x)

(4.14)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

174 Roots of Equations

so that Eqs. (b) and (c) become

G(x) = 1
x − r

+ n − 1
x − q

(4.15a)

H(x) = 1
(x − r)2

+ n − 1
(x − q)2

(4.15b)

If we solve Eq. (4.15a) for x − q and substitute the result into Eq. (4.15b), we obtain a
quadratic equation for x − r. The solution of this equation is the Laguerre’s formula

x − r = n

G(x) ±
√

(n − 1)
[
nH(x) − G2(x)

] (4.16)

The procedure for finding a zero of a general polynomial by Laguerre’s formula is:

1. Let x be a guess for the root of Pn(x) = 0 (any value will do).
2. Evaluate Pn(x), P ′

n(x) and P ′′
n (x) using the procedure outlined in Eqs. (4.10) and

(4.11).
3. Compute G(x) and H(x) from Eqs. (4.14).
4. Determine the improved root r from Eq. (4.16) choosing the sign that results

in the larger magnitude of the denominator (this can be shown to improve
convergence).

5. Let x ← r and repeat steps 2–5 until |Pn(x)| < ε or |x − r | < ε, where ε is the error
tolerance.

One nice property of Laguerre’s method is that it converges to a root, with very
few exceptions, from any starting value of x.

� polyRoots

The function polyRoots in this module computes all the roots of Pn(x) = 0, where
the polynomial Pn(x) defined by its coefficient array a = [a0, a1, . . . , an]. After the first
root is computed by the nested function laguerre, the polynomial is deflated using
deflPoly and the next zero computed by applying laguerre to the deflated polyno-
mial. This process is repeated until all nroots have been found. If a computed root has
a very small imaginary part, it is very likely that it represents roundoff error. Therefore,
polyRoots replaces a tiny imaginary part by zero.

module polyRoots

’’’ roots = polyRoots(a).

Uses Laguerre’s method to compute all the roots of

a[0] + a[1]*x + a[2]*xˆ2 +...+ a[n]*xˆn = 0.

The roots are returned in the vector {roots},

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

175 4.7 Zeroes of Polynomials

’’’

from evalPoly import *

from numarray import zeros,Complex64

from cmath import sqrt

from random import random

def polyRoots(a,tol=1.0e-12):

def laguerre(a,tol):

x = random() # Starting value (random number)

n = len(a) - 1

for i in range(30):

p,dp,ddp = evalPoly(a,x)

if abs(p) < tol: return x

g = dp/p

h = g*g - ddp/p

f = sqrt((n - 1)*(n*h - g*g))

if abs(g + f) > abs(g - f): dx = n/(g + f)

else: dx = n/(g - f)

x = x - dx

if abs(dx) < tol*max(abs(x),1.0): return x

print ’Too many iterations in Laguerre’

def deflPoly(a,root): # Deflates a polynomial

n = len(a)-1

b = [(0.0 + 0.0j)]*n

b[n-1] = a[n]

for i in range(n-2,-1,-1):

b[i] = a[i+1] + root*b[i+1]

return b

n = len(a) - 1

roots = zeros((n),type=Complex64)

for i in range(n):

x = laguerre(a,tol)

if abs(x.imag) < tol: x = x.real

roots[i] = x

a = deflPoly(a,x)

return roots

raw_input(’’\nPress return to exit’’)

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

176 Roots of Equations

Since the roots are computed with finite accuracy, each deflation introduces small
errors in the coefficients of the deflated polynomial. The accumulated roundoff error
increases with the degree of the polynomial and can become severe if the polynomial is
ill-conditioned (small changes in the coefficients produce large changes in the roots).
Hence the results should be viewed with caution when dealing with polynomials of
high degree.

The errors caused by deflation can be reduced by recomputing each root using
the original, undeflated polynomial. The roots obtained previously in conjunction
with deflation are employed as the starting values.

EXAMPLE 4.10
A zero of the polynomial P4(x) = 3x4 − 10x3 − 48x2 − 2x + 12 is x = 6. Deflate the
polynomial with Horner’s algorithm, i.e., find P3(x) so that (x − 6)P3(x) = P4(x).

Solution With r = 6 and n = 4, Eqs. (4.13) become

b3 = a4 = 3

b2 = a3 + 6b3 = −10 + 6(3) = 8

b1 = a2 + 6b2 = −48 + 6(8) = 0

b0 = a1 + 6b1 = −2 + 6(0) = −2

Therefore,

P3(x) = 3x3 + 8x2 − 2

EXAMPLE 4.11
A root of the equation P3(x) = x3 − 4.0x2 − 4.48x + 26.1 is approximately x = 3 − i.
Find a more accurate value of this root by one application of Laguerre’s iterative
formula.

Solution Use the given estimate of the root as the starting value. Thus

x = 3 − i x2 = 8 − 6i x3 = 18 − 26i

Substituting these values in P3(x) and its derivatives, we get

P3(x) = x3 − 4.0x2 − 4.48x + 26.1

= (18 − 26i) − 4.0(8 − 6i) − 4.48(3 − i) + 26.1 = −1.34 + 2.48i

P ′
3(x) = 3.0x2 − 8.0x − 4.48

= 3.0(8 − 6i) − 8.0(3 − i) − 4.48 = −4.48 − 10.0i

P ′′
3 (x) = 6.0x − 8.0 = 6.0(3 − i) − 8.0 = 10.0 − 6.0i

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

177 4.7 Zeroes of Polynomials

Equations (4.14) then yield

G(x) = P ′
3(x)

P3(x)
= −4.48 − 10.0i

−1.34 + 2.48i
= −2.36557 + 3.08462i

H(x) = G2(x) − P ′′
3 (x)

P3(x)
= (−2.36557 + 3.08462i)2 − 10.0 − 6.0i

−1.34 + 2.48i

= 0.35995 − 12.48452i

The term under the square root sign of the denominator in Eq. (4.16) becomes

F (x) =
√

(n − 1)
[
n H(x) − G2(x)

]
=

√
2
[
3(0.35995 − 12.48452i) − (−2.36557 + 3.08462i)2

]
= √

5.67822 − 45.71946i = 5.08670 − 4.49402i

Now we must find which sign in Eq. (4.16) produces the larger magnitude of the
denominator:

|G(x) + F (x)| = |(−2.36557 + 3.08462i) + (5.08670 − 4.49402i)|
= |2.72113 − 1.40940i| = 3.06448

|G(x) − F (x)| = |(−2.36557 + 3.08462i) − (5.08670 − 4.49402i)|
= |−7.45227 + 7.57864i| = 10.62884

Using the minus sign, we obtain from Eq. (4.16) the following improved approximation
for the root

r = x − n
G(x) − F (x)

= (3 − i) − 3
−7.45227 + 7.57864i

= 3.19790 − 0.79875i

Thanks to the good starting value, this approximation is already quite close to the
exact value r = 3.20 − 0.80i.

EXAMPLE 4.12
Use polyRoots to compute all the roots of x4 − 5x3 − 9x2 + 155x − 250 = 0.

Solution The commands

>>> from polyRoots import *

>>> print polyRoots([-250.0,155.0,-9.0,-5.0,1.0])

resulted in the output

[2.+0.j 4.-3.j 4.+3.j -5.+0.j]

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

178 Roots of Equations

PROBLEM SET 4.2

Problems 1–5 A zero x = r of Pn(x) is given. Verify that r is indeed a zero, and then
deflate the polynomial, i.e., find Pn−1(x) so that Pn(x) = (x − r)Pn−1(x).

1. P3(x) = 3x3 + 7x2 − 36x + 20, r = −5.

2. P4(x) = x4 − 3x2 + 3x − 1, r = 1.

3. P5(x) = x5 − 30x4 + 361x3 − 2178x2 + 6588x − 7992, r = 6.

4. P4(x) = x4 − 5x3 − 2x2 − 20x − 24, r = 2i.

5. P3(x) = 3x3 − 19x2 + 45x − 13, r = 3 − 2i.

Problems 6–9 A zero x = r of Pn(x) is given. Determine all the other zeros of Pn(x)
by using a calculator. You should need no tools other than deflation and the quadratic
formula.

6. P3(x) = x3 + 1.8x2 − 9.01x − 13.398, r = −3.3.

7. P3(x) = x3 − 6.64x2 + 16.84x − 8.32, r = 0.64.

8. P3(x) = 2x3 − 13x2 + 32x − 13, r = 3 − 2i.

9. P4(x) = x4 − 3x3 + 10x2 − 6x − 20, r = 1 + 3i.

Problems 10–15 Find all the zeros of the given Pn(x).

10. �P4(x) = x4 + 2.1x3 − 2.52x2 + 2.1x − 3.52.

11. �P5(x) = x5 − 156x4 − 5x3 + 780x2 + 4x − 624.

12. �P6(x) = x6 + 4x5 − 8x4 − 34x3 + 57x2 + 130x − 150.

13. �P7(x) = 8x7 + 28x6 + 34x5 − 13x4 − 124x3 + 19x2 + 220x − 100.

14. �P8(x) = x8 − 7x7 + 7x6 + 25x5 + 24x4 − 98x3 − 472x2 + 440x + 800.

15. �P4(x) = x4 + (5 + i)x3 − (8 − 5i)x2 + (30 − 14i)x − 84.

16. �

k

m

m

c

x

x

1

2

k

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

179 4.8 Other Methods

The two blocks of mass m each are connected by springs and a dashpot. The
stiffness of each spring is k, and c is the coefficient of damping of the dashpot.
When the system is displaced and released, the displacement of each block during
the ensuing motion has the form

xk(t) = Akeωr t cos(ωi t + φk), k = 1, 2

where Ak and φk are constants, and ω = ωr ± iωi are the roots of

ω4 + 2
c
m

ω3 + 3
k
m

ω2 + c
m

k
m

ω +
(

k
m

)2

= 0

Determine the two possible combinations of ωr and ωi if c/m = 12 s−1 and k/m =
1500 s−2.

4.8 Other Methods

The most prominent root-finding algorithms omitted from this chapter are the secant
method and its close relative, the false position method. Both methods compute the
improved value of the root by linear interpolation. They differ only by how they choose
the points involved in the interpolation. The secant method always uses the two most
recent estimates of the root, whereas the false position method employs the points that
keep the root bracketed. The secant method is faster of the two, but the false position
method is more stable. Since both are considerably slower than Brent’s method, there
is little reason to use them.

There are many methods for finding zeros of polynomials. Of these, the Jenkins–
Traub algorithm11 deserves special mention due to its robustness and widespread use
in packaged software.

The zeros of a polynomial can also be obtained by calculating the eigenvalues of
the n × n “companion matrix”

A =

−an−1/an −a2/an · · · −a1/an −a0/an

1 0 · · · 0 0
0 1 0 0
...

...
. . .

...
...

0 0 · · · 1 0

11 Jenkins, M., and Traub, J., SIAM Journal on Numerical Analysis, Vol. 7 (1970), p. 545.

P1: NDZ
CB904-04 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 16:26

180 Roots of Equations

where ai are the coefficients of the polynomial. The characteristic equation (see
Section 9.1) of this matrix is

xn + an−1

an
xn−1 + an−2

an
xn−2 + · · · + a1

an
x + a0

an
= 0

which is equivalent to Pn(x) = 0. Thus the eigenvalues of A are the zeroes of Pn(x). The
eigenvalue method is robust, but considerably slower than Laguerre’s method. But it
is worthy of consideration if a good program for eigenvalue problems is available.

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

5 Numerical Differentiation

Given the function f (x), compute dn f/dxn at given x

5.1 Introduction

Numerical differentiation deals with the following problem: we are given the function
y = f (x) and wish to obtain one of its derivatives at the point x = xk. The term “given”
means that we either have an algorithm for computing the function, or possess a
set of discrete data points (xi, yi), i = 0, 1, . . . , n. In either case, we have access to a
finite number of (x, y) data pairs from which to compute the derivative. If you suspect
by now that numerical differentiation is related to interpolation, you are right—one
means of finding the derivative is to approximate the function locally by a polynomial
and then differentiate it. An equally effective tool is the Taylor series expansion of f (x)
about the point xk, which has the advantage of providing us with information about
the error involved in the approximation.

Numerical differentiation is not a particularly accurate process. It suffers from
a conflict between roundoff errors (due to limited machine precision) and errors
inherent in interpolation. For this reason, a derivative of a function can never be
computed with the same precision as the function itself.

5.2 Finite Difference Approximations

The derivation of the finite difference approximations for the derivatives of f (x) is
based on forward and backward Taylor series expansions of f (x) about x, such as

181

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

182 Numerical Differentiation

f (x + h) = f (x) + hf ′(x) + h2

2!
f ′′(x) + h3

3!
f ′′′(x) + h4

4!
f (4)(x) + · · · (a)

f (x − h) = f (x) − hf ′(x) + h2

2!
f ′′(x) − h3

3!
f ′′′(x) + h4

4!
f (4)(x) − · · · (b)

f (x + 2h) = f (x) + 2hf ′(x) + (2h)2

2!
f ′′ (x) + (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) + · · · (c)

f (x − 2h) = f (x) − 2hf ′(x) + (2h)2

2!
f ′′ (x) − (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) − · · · (d)

We also record the sums and differences of the series:

f (x + h) + f (x − h) = 2 f (x) + h2 f ′′(x) + h4

12
f (4)(x) + · · · (e)

f (x + h) − f (x − h) = 2hf ′(x) + h3

3
f ′′′(x) + · · · (f)

f (x + 2h) + f (x − 2h) = 2 f (x) + 4h2 f ′′(x) + 4h4

3
f (4)(x) + · · · (g)

f (x + 2h) − f (x − 2h) = 4hf ′(x) + 8h3

3
f ′′′(x) + · · · (h)

Note that the sums contain only even derivatives, whereas the differences retain just
the odd derivatives. Equations (a)–(h) can be viewed as simultaneous equations that
can be solved for various derivatives of f (x). The number of equations involved and
the number of terms kept in each equation depend on the order of the derivative and
the desired degree of accuracy.

First Central Difference Approximations

The solution of Eq. (f) for f ′(x) is

f ′(x) = f (x + h) − f (x − h)
2h

− h2

6
f ′′′(x) − · · ·

or

f ′(x) = f (x + h) − f (x − h)
2h

+ O(h2) (5.1)

which is called the first central difference approximation for f ′(x). The term O(h2)
reminds us that the truncation error behaves as h2.

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

183 5.2 Finite Difference Approximations

Similarly, Eq. (e) yields the first central difference approximation for f ′′(x):

f ′′(x) = f (x + h) − 2 f (x) + f (x − h)
h2

+ h2

12
f (4)(x) + · · ·

or

f ′′(x) = f (x + h) − 2 f (x) + f (x − h)
h2

+ O(h2) (5.2)

Central difference approximations for other derivatives can be obtained from
Eqs. (a)–(h) in the same manner. For example, eliminating f ′(x) from Eqs. (f) and (h)
and solving for f ′′′(x) yield

f ′′′(x) = f (x + 2h) − 2 f (x + h) + 2 f (x − h) − f (x − 2h)
2h3

+ O(h2) (5.3)

The approximation

f (4)(x) = f (x + 2h) − 4 f (x + h) + 6 f (x) − 4 f (x − h) + f (x − 2h)
h4

+ O(h2) (5.4)

is available from Eqs. (e) and (g) after eliminating f ′′(x). Table 5.1 summarizes the
results.

f (x − 2h) f (x − h) f (x) f (x + h) f (x + 2h)

2hf ′(x) −1 0 1

h2 f ′′(x) 1 −2 1

2h3 f ′′′(x) −1 2 0 −2 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.1. Coefficients of central finite difference approximations
of O(h2)

First Noncentral Finite Difference Approximations

Central finite difference approximations are not always usable. For example, con-
sider the situation where the function is given at the n discrete points x0, x1, . . . , xn.
Since central differences use values of the function on each side of x, we would
be unable to compute the derivatives at x0 and xn. Clearly, there is a need for fi-
nite difference expressions that require evaluations of the function only on one
side of x. These expressions are called forward and backward finite difference
approximations.

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

184 Numerical Differentiation

Noncentral finite differences can also be obtained from Eqs. (a)–(h). Solving Eq. (a)
for f ′(x) we get

f ′(x) = f (x + h) − f (x)
h

− h
2

f ′′(x) − h2

6
f ′′′(x) − h3

4!
f (4)(x) − · · ·

Keeping only the first term on the right-hand side leads to the first forward difference
approximation

f ′(x) = f (x + h) − f (x)
h

+ O(h) (5.5)

Similarly, Eq. (b) yields the first backward difference approximation

f ′(x) = f (x) − f (x − h)
h

+ O(h) (5.6)

Note that the truncation error is now O(h), which is not as good as O(h2) in central
difference approximations.

We can derive the approximations for higher derivatives in the same manner. For
example, Eqs. (a) and (c) yield

f ′′(x) = f (x + 2h) − 2 f (x + h) + f (x)
h2

+ O(h) (5.7)

The third and fourth derivatives can be derived in a similar fashion. The results are
shown in Tables 5.2a and 5.2b.

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2a. Coefficients of forward finite difference approximations
of O(h)

f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2b. Coefficients of backward finite difference approxima-
tions of O(h)

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

185 5.2 Finite Difference Approximations

Second Noncentral Finite Difference Approximations

Finite difference approximations of O(h) are not popular due to reasons that will be
explained shortly. The common practice is to use expressions of O(h2). To obtain
noncentral difference formulas of this order, we have to retain more terms in the
Taylor series. As an illustration, we will derive the expression for f ′(x). We start with
Eqs. (a) and (c), which are

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + h4

24
f (4)(x) + · · ·

f (x + 2h) = f (x) + 2hf ′(x) + 2h2 f ′′ (x) + 4h3

3
f ′′′(x) + 2h4

3
f (4)(x) + · · ·

We eliminate f ′′(x) by multiplying the first equation by 4 and subtracting it from the
second equation. The result is

f (x + 2h) − 4 f (x + h) = −3 f (x) − 2hf ′(x) + 2h3

3
f ′′′(x) + · · ·

Therefore,

f ′(x) = − f (x + 2h) + 4 f (x + h) − 3 f (x)
2h

+ h2

3
f ′′′(x) + · · ·

or

f ′(x) = − f (x + 2h) + 4 f (x + h) − 3 f (x)
2h

+ O(h2) (5.8)

Equation (5.8) is called the second forward finite difference approximation.
Derivation of finite difference approximations for higher derivatives involve ad-

ditional Taylor series. Thus the forward difference approximation for f ′′(x) utilizes
series for f (x + h), f (x + 2h) and f (x + 3h); the approximation for f ′′′(x) involves
Taylor expansions for f (x + h), f (x + 2h), f (x + 3h) and f (x + 4h), etc. As you can see,
the computations for high-order derivatives can become rather tedious. The results
for both the forward and backward finite differences are summarized in Tables 5.3a
and 5.3b.

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h) f (x + 5h)

2hf ′(x) −3 4 −1

h2 f ′′(x) 2 −5 4 −1

2h3 f ′′′(x) −5 18 −24 14 −3

h4 f (4)(x) 3 −14 26 −24 11 −2

Table 5.3a. Coefficients of forward finite difference approximations of O(h2)

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

186 Numerical Differentiation

f (x − 5h) f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

2hf ′(x) 1 −4 3

h2 f ′′(x) −1 4 −5 2

2h3 f ′′′(x) 3 −14 24 −18 5

h4 f (4)(x) −2 11 −24 26 −14 3

Table 5.3b. Coefficients of backward finite difference approximations of O(h2)

Errors in Finite Difference Approximations

Observe that in all finite difference expressions the sum of the coefficients is zero.
The effect on the roundoff error can be profound. If h is very small, the values of f (x),
f (x ± h), f (x ± 2h) etc. will be approximately equal. When they are multiplied by the
coefficients and added, several significant figures can be lost. On the other hand, we
cannot make h too large, because then the truncation error would become excessive.
This unfortunate situation has no remedy, but we can obtain some relief by taking
the following precautions:

� Use double-precision arithmetic.
� Employ finite difference formulas that are accurate to at least O(h2).

To illustrate the errors, let us compute the second derivative of f (x) = e−x at x = 1
from the central difference formula, Eq. (5.2). We carry out the calculations with six-
and eight-digit precision, using different values of h. The results, shown in Table 5.4,
should be compared with f ′′(1) = e−1 = 0.367 879 44.

h 6-digit precision 8-digit precision

0.64 0.380 610 0.380 609 11

0.32 0.371 035 0.371 029 39

0.16 0.368 711 0.368 664 84

0.08 0.368 281 0.368 076 56

0.04 0.368 75 0.367 831 25

0.02 0.37 0.3679

0.01 0.38 0.3679

0.005 0.40 0.3676

0.0025 0.48 0.3680

0.00125 1.28 0.3712

Table 5.4. (e−x)′′ at x = 1 from central finite dif-
ference approximation

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

187 5.3 Richardson Extrapolation

In the six-digit computations, the optimal value of h is 0.08, yielding a result
accurate to three significant figures. Hence three significant figures are lost due to
a combination of truncation and roundoff errors. Above optimal h, the dominant
error is due to truncation; below it, the roundoff error becomes pronounced. The
best result obtained with the eight-digit computation is accurate to four significant
figures. Because the extra precision decreases the roundoff error, the optimal h is
smaller (about 0.02) than in the six-figure calculations.

5.3 Richardson Extrapolation

Richardson extrapolation is a simple method for boosting the accuracy of certain
numerical procedures, including finite difference approximations (we also use it later
in other applications).

Suppose that we have an approximate means of computing some quantity G.
Moreover, assume that the result depends on a parameter h. Denoting the approxi-
mation by g(h), we have G = g(h) + E(h), where E (h) represents the error. Richardson
extrapolation can remove the error, provided that it has the form E(h) = chp, c and p
being constants. We start by computing g(h) with some value of h, say h = h1. In that
case we have

G = g(h1) + chp
1 (i)

Then we repeat the calculation with h = h2, so that

G = g(h2) + chp
2 (j)

Eliminating c and solving for G, we obtain from Eqs. (i) and (j)

G = (h1/h2)pg(h2) − g(h1)
(h1/h2)p − 1

(5.9a)

which is the Richardson extrapolation formula. It is common practice to use h2 = h1/2,

in which case Eq. (5.9a) becomes

G = 2pg(h1/2) − g(h1)
2p − 1

(5.9b)

Let us illustrate Richardson extrapolation by applying it to the finite differ-
ence approximation of (e−x)′′ at x = 1. We work with six-digit precision and uti-
lize the results in Table 5.4. Since the extrapolation works only on the truncation
error, we must confine h to values that produce negligible roundoff. In Table 5.4
we have

g(0.64) = 0.380 610 g(0.32) = 0.371 035

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

188 Numerical Differentiation

The truncation error in the central difference approximation is E(h) = O(h2) = c1h2 +
c2h4 + c3h6 + · · · · Therefore, we can eliminate the first (dominant) error term if we
substitute p = 2 and h1 = 0.64 in Eq. (5.9b). The result is

G = 22g(0.32) − g(0.64)
22 − 1

= 4(0.371 035) − 0.380 610
3

= 0. 367 84 3

which is an approximation of (e−x)′′ with the error O(h4). Note that it is as accurate as
the best result obtained with eight-digit computations in Table 5.4.

EXAMPLE 5.1
Given the evenly spaced data points

x 0 0.1 0.2 0.3 0.4

f (x) 0.0000 0.0819 0.1341 0.1646 0.1797

compute f ′(x) and f ′′(x) at x = 0 and 0.2 using finite difference approximations of
O(h2).

Solution We will use finite difference approximations of O(h2). From the forward
difference tables in Table 5.3a we get

f ′(0) = −3 f (0) + 4 f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.967

f ′′(0) = 2 f (0) − 5 f (0.1) + 4 f (0.2) − f (0.3)
(0.1)2

= 2(0) − 5(0.0819) + 4(0.1341) − 0.1646
(0.1)2

= −3.77

The central difference approximations in Table 5.1 yield

f ′(0.2) = − f (0.1) + f (0.3)
2(0.1)

= −0.0819 + 0.1646
0.2

= 0.4135

f ′′(0.2) = f (0.1) − 2 f (0.2) + f (0.3)
(0.1)2

= 0.0819 − 2(0.1341) + 0.1646
(0.1)2

= −2.17

EXAMPLE 5.2
Use the data in Example 5.1 to compute f ′(0) as accurately as you can.

Solution One solution is to apply Richardson extrapolation to finite difference ap-
proximations. We start with two forward difference approximations of O(h2) for f ′(0):
one using h = 0.2 and the other one using h = 0.1. Referring to the formulas of O(h2)

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

189 5.3 Richardson Extrapolation

in Table 5.3a, we get

g(0.2) = −3 f (0) + 4 f (0.2) − f (0.4)
2(0.2)

= 3(0) + 4(0.1341) − 0.1797
0.4

= 0.8918

g(0.1) = −3 f (0) + 4 f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.9675

Recall that the error in both approximations is of the form E(h) = c1h2 + c2h4 +
c3h6 + · · · . We can now use Richardson extrapolation, Eq. (5.9), to eliminate the dom-
inant error term. With p = 2 we obtain

f ′(0) ≈ G = 22g(0.1) − g(0.2)
22 − 1

= 4(0.9675) − 0.8918
3

= 0.9927

which is a finite difference approximation of O(h4)̇.

EXAMPLE 5.3

α

β

A

B

C

D

a

b

c

d

The linkage shown has the dimensions a = 100 mm, b = 120 mm, c = 150 mm
and d = 180 mm. It can be shown by geometry that the relationship between the
angles α and β is

(d − a cos α − b cos β)2 + (a sin α + b sin β)2 − c2 = 0

For a given value of α, we can solve this transcendental equation for β by one of the
root-finding methods in Chapter 4. This was done with α = 0◦, 5◦, 10◦, . . . , 30◦, the
results being

α (deg) 0 5 10 15 20 25 30

β (rad) 1.6595 1.5434 1.4186 1.2925 1.1712 1.0585 0.9561

If link AB rotates with the constant angular velocity of 25 rad/s, use finite difference
approximations of O(h2) to tabulate the angular velocity dβ/dt of link BC against α.

Solution The angular speed of BC is

dβ

dt
= dβ

dα

dα

dt
= 25

dβ

dα
rad/s

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

190 Numerical Differentiation

where dβ/dα can be computed from finite difference approximations using the data
in the table. Forward and backward differences of O(h2) are used at the endpoints,
central differences elsewhere. Note that the increment of α is

h = (
5 deg

) (π

180
rad/deg

)
= 0.087 266 rad

The computations yield

β̇(0◦) = 25
−3β(0◦) + 4β(5◦) − β(10◦)

2h
= 25

−3(1.6595) + 4(1.5434) − 1.4186
2 (0.087 266)

= −32.01 rad/s

β̇(5◦) = 25
β(10◦) − β(0◦)

2h
= 25

1.4186 − 1.6595
2(0.087 266)

= −34.51 rad/s

etc.

The complete set of results is

α (deg) 0 5 10 15 20 25 30

β̇ (rad/s) −32.01 −34.51 −35.94 −35.44 −33.52 −30.81 −27.86

5.4 Derivatives by Interpolation

If f (x) is given as a set of discrete data points, interpolation can be a very effective
means of computing its derivatives. The idea is to approximate the derivative of f (x)
by the derivative of the interpolant. This method is particularly useful if the data points
are located at uneven intervals of x, when the finite difference approximations listed
in the last article are not applicable.12

Polynomial Interpolant

The idea here is simple: fit the polynomial of degree n

Pn−1(x) = a0 + a1x + a2x2 + · · · + anxn

through n + 1 data points and then evaluate its derivatives at the given x. As pointed
out in Section 3.2, it is generally advisable to limit the degree of the polynomial to
less than six in order to avoid spurious oscillations of the interpolant. Since these
oscillations are magnified with each differentiation, their effect can devastating. In

12 It is possible to derive finite difference approximations for unevenly spaced data, but they would
not be as accurate as the formulas derived in Section 5.2.

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

191 5.4 Derivatives by Interpolation

view of the above limitation, the interpolation is usually a local one, involving no more
than a few nearest-neighbor data points.

For evenly spaced data points, polynomial interpolation and finite difference
approximations produce identical results. In fact, the finite difference formulas are
equivalent to polynomial interpolation.

Several methods of polynomial interpolation were introduced in Section 3.2. Un-
fortunately, none of them is suited for the computation of derivatives of the inter-
polant. The method that we need is one that determines the coefficients a0, a1, . . . , an

of the polynomial. There is only one such method discussed in Chapter 3: the least-
squares fit. Although this method is designed mainly for smoothing of data, it will
carry out interpolation if we use m = n in Eq. (3.22)—recall that mis the degree of the
interpolating polynomial and n + 1 represents the number of data points to be fitted.
If the data contains noise, then the least-squares fit should be used in the smoothing
mode, that is, with m < n. After the coefficients of the polynomial have been found,
the polynomial and its first two derivatives can be evaluated efficiently by the function
evalPoly listed in Section 4.7.

Cubic Spline Interpolant

Due to its stiffness, cubic spline is a good global interpolant; moreover, it is easy to
differentiate. The first step is to determine the second derivatives ki of the spline at
the knots by solving Eqs. (3.11). This can be done with the function curvatures in
the module cubicSpline listed in Section 3.3. The first and second derivatives are
then computed from

f ′
i,i+1(x) = ki

6

[
3(x − xi+1)2

xi − xi+1
− (xi − xi+1)

]

− ki+1

6

[
3(x − xi)2

xi − xi+1
− (xi − xi+1)

]
+ yi − yi+1

xi − xi+1
(5.10)

f ′′
i,i+1(x) = ki

x − xi+1

xi − xi+1
− ki+1

x − xi

xi − xi+1
(5.11)

which are obtained by differentiation of Eq. (3.10).

EXAMPLE 5.4
Given the data

x 1.5 1.9 2.1 2.4 2.6 3.1

f (x) 1.0628 1.3961 1.5432 1.7349 1.8423 2.0397

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

192 Numerical Differentiation

compute f ′(2) and f ′′(2) using (1) polynomial interpolation over three nearest-
neighbor points, and (2) natural cubic spline interpolant spanning all the data
points.

Solution of Part (1) The interpolant is P2(x) = a0 + a1x + a2x2 passing through the
points at x = 1.9, 2.1 and 2.4. The normal equations, Eqs. (3.23), of the least-squares
fit are

 n
∑

xi
∑

x2
i∑

xi
∑

x2
i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i

a0

a1

a2

 =

∑
yi∑

yi xi∑
yi x2

i

After substituting the data, we get
 3 6.4 13.78

6.4 13.78 29.944
13.78 29.944 65.6578

a0

a1

a2

 =

 4.6742

10.0571
21.8385

which yields a =
[
−0.7714 1.5075 −0.1930

]T
.

The derivatives of the interpolant are P ′
2(x) = a1 + 2a2x and P ′′

2 (x) = 2a2.
Therefore,

f ′(2) ≈ P ′
2(2) = 1.5075 + 2(−0.1930)(2) = 0.7355

f ′′(2) ≈ P ′′
2 (2) = 2(−0.1930) = −0.3860

Solution of Part (2) We must first determine the second derivatives ki of the spline
at its knots, after which the derivatives of f (x) can be computed from Eqs. (5.10) and
(5.11). The first part can be carried out by the following small program:

#!/usr/bin/python

example5_4

from cubicSpline import curvatures

from LUdecomp3 import *

from numarray import array

xData = array([1.5, 1.9, 2.1, 2.4, 2.6, 3.1])

yData = array([1.0628, 1.3961, 1.5432, 1.7349, 1.8423, 2.0397])

print curvatures(LUdecomp3,LUsolve3,xData,yData)

raw_input(’’Press return to exit’’)

The output of the program, consisting of k0 to k5, is

[0. -0.4258431 -0.37744139 -0.38796663 -0.55400477 0.]

Press return to exit

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

193 5.4 Derivatives by Interpolation

Since x = 2 lies between knots 1 and 2, we must use Eqs. (5.10) and (5.11) with
i = 1. This yields

f ′(2) ≈ f ′
1,2(2) = k1

6

[
3(x − x2)2

x1 − x2
− (x1 − x2)

]

− k2

6

[
3(x − x1)2

x1 − x2
− (x1 − x2)

]
+ y1 − y2

x1 − x2

= (−0.4258)
6

[
3(2 − 2.1)2

(−0.2)
− (−0.2)

]

− (−0.3774)
6

[
3(2 − 1.9)2

(−0.2)
− (−0.2)

]
+ 1.3961 − 1.5432

(−0.2)

= 0.7351

f ′′(2) ≈ f ′′
1,2(2) = k1

x − x2

x1 − x2
− k2

x − x1

x1 − x2

= (−0.4258)
2 − 2.1
(−0.2)

− (−0.3774)
2 − 1.9
(−0.2)

= −0. 4016

Note that the solutions for f ′(2) in parts (1) and (2) differ only in the fourth significant
figure, but the values of f ′′(2) are much farther apart. This is not unexpected, consid-
ering the general rule: the higher the order of the derivative, the lower the precision
with which it can be computed. It is impossible to tell which of the two results is
better without knowing the expression for f (x). In this particular problem, the data
points fall on the curve f (x) = x2e−x/2, so that the “true” values of the derivatives are
f ′(2) = 0.7358 and f ′′(2) = −0.3679.

EXAMPLE 5.5
Determine f ′(0) and f ′(1) from the following noisy data

x 0 0.2 0.4 0.6

f (x) 1.9934 2.1465 2.2129 2.1790

x 0.8 1.0 1.2 1.4

f (x) 2.0683 1.9448 1.7655 1.5891

Solution We used the program listed in Example 3.10 to find the best polynomial fit
(in the least-squares sense) to the data. The program was run three times with the
following results:

Degree of polynomial ==> 2

Coefficients are:

[2.0261875 0.64703869 -0.70239583]

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

194 Numerical Differentiation

Std. deviation = 0.0360968935809

Degree of polynomial ==> 3

Coefficients are:

[1.99215 1.09276786 -1.55333333 0.40520833]

Std. deviation = 0.0082604082973

Degree of polynomial ==> 4

Coefficients are:

[1.99185568 1.10282373 -1.59056108 0.44812973 -0.01532907]

Std. deviation = 0.00951925073521

Degree of polynomial ==>

Finished. Press return to exit

Based on standard deviation, the cubic seems to be the best candidate for the
interpolant. Before accepting the result, we compare the plots of the data points and
the interpolant—see the figure. The fit does appear to be satisfactory

x

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

f (x)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Approximating f (x) by the interpolant, we have

f (x) ≈ a0 + a1x + a2x2 + a3x3

so that

f ′(x) ≈ a1 + 2a2x + 3a3x2

Therefore,

f ′(0) ≈ a1 = 1.093

f ′(1) = a1 + 2a2 + 3a3 = 1.093 + 2(−1.553) + 3(0.405) = −0. 798

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

195 5.4 Derivatives by Interpolation

In general, derivatives obtained from noisy data are at best rough approximations.
In this problem, the data represent f (x) = (x + 2)/ cosh x with added random noise.
Thus f ′(x) = [

1 − (x + 2) tanh x
]
/ cosh x, so that the “correct” derivatives are f ′(0) =

1.000 and f ′(1) = −0.833.

PROBLEM SET 5.1

1. Given the values of f (x) at the points x, x − h1 and x + h2, where h1 �= h2, de-
termine the finite difference approximation for f ′′(x). What is the order of the
truncation error?

2. Given the first backward finite difference approximations for f ′(x) and f ′′(x),
derive the first backward finite difference approximation for f ′′′(x) using the
operation f ′′′(x) = [

f ′′(x)
]′

.

3. Derive the central difference approximation for f ′′(x) accurate to O(h4) by apply-
ing Richardson extrapolation to the central difference approximation of O(h2).

4. Derive the second forward finite difference approximation for f ′′′(x) from the
Taylor series.

5. Derive the first central difference approximation for f (4)(x) from the Taylor series.

6. Use finite difference approximations of O(h2) to compute f ′(2.36) and f ′′(2.36)
from the data

x 2.36 2.37 2.38 2.39

f (x) 0.85866 0.86289 0.86710 0.87129

7. Estimate f ′(1) and f ′′(1) from the following data:

x 0.97 1.00 1.05

f (x) 0.85040 0.84147 0.82612

8. Given the data

x 0.84 0.92 1.00 1.08 1.16

f (x) 0.431711 0.398519 0.367879 0.339596 0.313486

calculate f ′′(1) as accurately as you can.

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

196 Numerical Differentiation

9. Use the data in the table to compute f ′(0.2) as accurately as possible.

x 0 0.1 0.2 0.3 0.4

f (x) 0.000 000 0.078 348 0.138 910 0.192 916 0.244 981

10. Using five significant figures in the computations, determine d(sin x)/dx at
x = 0.8 from (a) the first forward difference approximation and (b) the first central
difference approximation. In each case, use h that gives the most accurate result
(this requires experimentation).

11. � Use polynomial interpolation to compute f ′ and f ′′ at x = 0, using the data

x −2.2 −0.3 0.8 1.9

f (x) 15.180 10.962 1.920 −2.040

12. �

θ

R
2.5R

A

B

Cx

The crank AB of length R = 90 mm is rotating at the constant angular speed of
dθ/dt = 5000 rev/min. The position of the piston C can be shown to vary with the
angle θ as

x = R
(

cos θ +
√

2.52 − sin2 θ

)

Write a program that computes the acceleration of the piston at θ = 0◦, 5◦, 10◦, . . . ,
180◦ by numerical differentiation.

13. �

γ

α β

C

v

y

x
a

A B

P1: NDZ
CB904-05 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:15

197 5.4 Derivatives by Interpolation

The radar stations A and B, separated by the distance a = 500 m, track the plane
C by recording the angles α and β at one-second intervals. If three successive
readings are

t (s) 9 10 11

α 54.80◦ 54.06◦ 53.34◦

β 65.59◦ 64.59◦ 63.62◦

calculate the speed v of the plane and the climb angleγ at t = 10 s. The coordinates
of the plane can be shown to be

x = a
tan β

tan β − tan α
y = a

tan α tan β

tan β − tan α

14. �

β

θ
α

B

A

D

C

20

70

190

19
0

60

Dimensions
in mm

Geometric analysis of the linkage shown resulted in the following table relating
the angles θ and β:

θ (deg) 0 30 60 90 120 150

β (deg) 59.96 56.42 44.10 25.72 −0.27 −34.29

Assuming that member AB of the linkage rotates with the constant angular ve-
locity dθ/dt = 1 rad/s, compute dβ/dt in rad/s at the tabulated values of θ . Use
cubic spline interpolation.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

6 Numerical Integration

Compute
∫ b

a f (x) dx, where f (x) is a given function

6.1 Introduction

Numerical integration, also known as quadrature, is intrinsically a much more accu-
rate procedure than numerical differentiation. Quadrature approximates the definite
integral ∫ b

a
f (x) dx

by the sum

I =
n∑

i=0

Ai f (xi)

where the nodal abscissas xi and weights Ai depend on the particular rule used for the
quadrature. All rules of quadrature are derived from polynomial interpolation of the
integrand. Therefore, they work best if f (x) can be approximated by a polynomial.

Methods of numerical integration can be divided into two groups: Newton–Cotes
formulas and Gaussian quadrature. Newton–Cotes formulas are characterized by
equally spaced abscissas, and include well-known methods such as the trapezoidal
rule and Simpson’s rule. They are most useful if f (x) has already been computed at
equal intervals, or can be computed at low cost. Since Newton–Cotes formulas are
based on local interpolation, they require only a piecewise fit to a polynomial.

In Gaussian quadrature the locations of the abscissas are chosen to yield the best
possible accuracy. Because Gaussian quadrature requires fewer evaluations of the in-
tegrand for a given level of precision, it is popular in cases where f (x) is expensive

198

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

199 6.2 Newton–Cotes Formulas

to evaluate. Another advantage of Gaussian quadrature is its ability to handle inte-
grable singularities, enabling us to evaluate expressions such as∫ 1

0

g(x)√
1 − x2

dx

provided that g(x) is a well-behaved function.

6.2 Newton–Cotes Formulas

x0 x1 x2 x3 xnxn -1

h

a b

f (x) Pn(x)

x

Figure 6.1. Polynomial approximation of f (x).

Consider the definite integral ∫ b

a
f (x) dx (6.1)

We divide the range of integration (a, b) into n equal intervals of length h = (b − a)/n,
as shown in Fig. 6.1, and denote the abscissas of the resulting nodes by x0, x1, . . . , xn.
Next we approximate f (x) by a polynomial of degree n that intersects all the nodes.
Lagrange’s form of this polynomial, Eq. (3.1a), is

Pn(x) =
n∑

i=0

f (xi)�i(x)

where �i(x) are the cardinal functions defined in Eq. (3.1b). Therefore, an approxima-
tion to the integral in Eq. (6.1) is

I =
∫ b

a
Pn(x)dx =

n∑
i=0

[
f (xi)

∫ b

a
�i(x)dx

]
=

n∑
i=0

Ai f (xi) (6.2a)

where

Ai =
∫ b

a
�i(x)dx, i = 0, 1, . . . , n (6.2b)

Equations (6.2) are the Newton–Cotes formulas. Classical examples of these formu-
las are the trapezoidal rule (n = 1), Simpson’s rule (n = 2) and Simpson’s 3/8 rule
(n = 3). The most important of these is the trapezoidal rule. It can be combined with
Richardson extrapolation into an efficient algorithm known as Romberg integration,
which makes the other classical rules somewhat redundant.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

200 Numerical Integration

Trapezoidal Rule

Ef (x)

x = a x = b x
h

0

Area= I

1

Figure 6.2. Trapezoidal rule.

If n = 1 (one panel), as illustrated in Fig. 6.2, we have �0 = (x − x1)/(x0 − x1) =
−(x − b)/h. Therefore,

A0 = 1
h

∫ b

a
(x − b) dx = 1

2h
(b − a)2 = h

2

Also �1 = (x − x0)/(x1 − x0) = (x − a)/h, so that

A1 = 1
h

∫ b

a
(x − a) dx = 1

2h
(b − a)2 = h

2

Substitution in Eq. (6.2a) yields

I = [f (a) + f (b)]
h
2

(6.3)

which is known as the trapezoidal rule. It represents the area of the trapezoid in Fig. 6.2.
The error in the trapezoidal rule

E =
∫ b

a
f (x)dx − I

is the area of the region between f (x) and the straight-line interpolant, as indicated
in Fig. 6.2. It can be obtained by integrating the interpolation error in Eq. (3.3):

E = 1
2!

∫ b

a
(x − x0)(x − x1) f ′′(ξ)dx = 1

2
f ′′(ξ)

∫ b

a
(x − a)(x − b)dx

= − 1
12

(b − a)3 f ′′(ξ) = − h3

12
f ′′(ξ) (6.4)

Composite Trapezoidal Rule

x0 x1 xi xi+1 xnxn -1

h

a b

f (x)

x

iI
Figure 6.3. Composite trapezoidal rule.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

201 6.2 Newton–Cotes Formulas

In practice the trapezoidal rule is applied in a piecewise fashion. Figure 6.3 shows
the region (a, b) divided into n panels, each of width h. The function f (x) to be inte-
grated is approximated by a straight line in each panel. From the trapezoidal rule we
obtain for the approximate area of a typical (ith) panel

Ii = [f (xi) + f (xi+1)]
h
2

Hence total area, representing
∫ b

a f (x) dx, is

I =
n−1∑
i=0

Ii = [f (x0) + 2 f (x1) + 2 f (x2) + · · · + 2 f (xn−1) + f (xn)]
h
2

(6.5)

which is the composite trapezoidal rule.
The truncation error in the area of a panel is, from Eq. (6.4),

Ei = − h3

12
f ′′(ξ i)

where ξ i lies in (xi, xi+1). Hence the truncation error in Eq. (6.5) is

E =
n−1∑
i=0

Ei = − h3

12

n−1∑
i=0

f ′′(ξ i) (a)

But

n−1∑
i=0

f ′′(ξ i) = n f̄ ′′

where f̄ ′′ is the arithmetic mean of the second derivatives. If f ′′(x) is continuous, there
must be a point ξ in (a, b) at which f ′′(ξ) = f̄ ′′, enabling us to write

n−1∑
i=0

f ′′(ξ i) = nf ′′(ξ) = b − a
h

f ′′(ξ)

Therefore, Eq. (a) becomes

E = − (b − a)h2

12
f ′′(ξ) (6.6)

It would be incorrect to conclude from Eq. (6.6) that E = ch2 (c being a constant),
because f ′′(ξ) is not entirely independent of h. A deeper analysis of the error13 shows
that if f (x) and its derivatives are finite in (a, b), then

E = c1h2 + c2h4 + c3h6 + · · · (6.7)

13 The analysis requires familiarity with the Euler–Maclaurin summation formula, which is covered
in advanced texts.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

202 Numerical Integration

Recursive Trapezoidal Rule

Let Ik be the integral evaluated with the composite trapezoidal rule using 2k−1 panels.
Note that if k is increased by one, the number of panels is doubled. Using the notation

H = b − a

we obtain from Eq. (6.5) the following results for k = 1, 2 and 3.

k = 1 (1 panel):

I1 = [f (a) + f (b)]
H
2

(6.8)

k = 2 (2 panels):

I2 =
[

f (a) + 2 f
(

a + H
2

)
+ f (b)

]
H
4

= 1
2

I1 + f
(

a + H
2

)
H
2

k = 3 (4 panels):

I3 =
[

f (a) + 2 f
(

a + H
4

)
+ 2 f

(
a + H

2

)
+ 2 f

(
a + 3H

4

)
+ f (b)

]
H
8

= 1
2

I2 +
[

f
(

a + H
4

)
+ f

(
a + 3H

4

)]
H
4

We can now see that for arbitrary k >1 we have

Ik = 1
2

Ik−1 + H
2k−1

2k−2∑
i=1

f
[

a + (2i − 1)H
2k−1

]
, k = 2, 3, . . . (6.9a)

which is the recursive trapezoidal rule. Observe that the summation contains only the
new nodes that were created when the number of panels was doubled. Therefore,
the computation of the sequence I1, I2, I3, . . . , Ik from Eqs. (6.8) and (6.9) involves
the same amount of algebra as the calculation of Ik directly from Eq. (6.5). The advan-
tage of using the recursive trapezoidal rule is that it allows us to monitor convergence
and terminate the process when the difference between Ik−1 and Ik becomes suffi-
ciently small. A form of Eq. (6.9a) that is easier to remember is

I (h) = 1
2

I (2h) + h
∑

f (xnew) (6.9b)

where h = H/n is the width of each panel.

� trapezoid

The function trapezoid computes Ik (Inew), given Ik−1 (Iold) from Eqs. (6.8) and
(6.9). We can compute

∫ b
a f (x) dx by calling trapezoid with k = 1, 2, . . . until the

desired precision is attained.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

203 6.2 Newton–Cotes Formulas

module trapezoid

’’’ Inew = trapezoid(f,a,b,Iold,k).

Recursive trapezoidal rule:

Iold = Integral of f(x) from x = a to b computed by

trapezoidal rule with 2ˆ(k-1) panels.

Inew = Same integral computed with 2ˆk panels.

’’’

def trapezoid(f,a,b,Iold,k):

if k == 1:Inew = (f(a) + f(b))*(b - a)/2.0

else:

n = 2**(k -2) # Number of new points

h = (b - a)/n # Spacing of new points

x = a + h/2.0 # Coord. of 1st new point

sum = 0.0

for i in range(n):

sum = sum + f(x)

x = x + h

Inew = (Iold + h*sum)/2.0

return Inew

Simpson’s Rules

f (x)

x = a x = b x
0 x1

hh

ξ

Parabola

2

Figure 6.4. Simpson’s 1/3 rule.

Simpson’s 1/3 rule can be obtained from Newton–Cotes formulas with n = 2; that
is, by passing a parabolic interpolant through three adjacent nodes, as shown in
Fig. 6.4. The area under the parabola, which represents an approximation of

∫ b
a f (x) dx,

is (see derivation in Example 6.1)

I =
[

f (a) + 4 f
(

a + b
2

)
+ f (b)

]
h
3

(a)

x0 xi xi +1 xn

h

a b

f(x)

xxi +2

h
Figure 6.5. Composite Simpson’s 1/3 rule.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

204 Numerical Integration

To obtain the composite Simpson’s 1/3 rule, the integration range (a, b) is divided into
n panels (n even) of width h = (b − a)/n each, as indicated in Fig. 6.5. Applying Eq. (a)
to two adjacent panels, we have∫ xi+2

xi

f (x) dx ≈ [f (xi) + 4 f (xi+1) + f (xi+2)]
h
3

(b)

Substituting Eq. (b) into∫ b

a
f (x)dx =

∫ xm

x0

f (x) dx =
n∑

i=0,2,...

[∫ xi+2

xi

f (x)dx
]

yields ∫ b

a
f (x) dx ≈ I = [f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · (6.10)

· · · + 2 f (xn−2) + 4 f (xn−1) + f (xn)]
h
3

The composite Simpson’s 1/3 rule in Eq. (6.10) is perhaps the best-known method of
numerical integration. Its reputation is somewhat undeserved, since the trapezoidal
rule is more robust, and Romberg integration is more efficient.

The error in the composite Simpson’s rule is

E = (b − a)h4

180
f (4)(ξ) (6.11)

from which we conclude that Eq. (6.10) is exact if f (x) is a polynomial of degree three
or less.

Simpson’s 1/3 rule requires the number of panels n to be even. If this condition
is not satisfied, we can integrate over the first (or last) three panels with Simpson’s
3/8 rule:

I = [f (x0) + 3 f (x1) + 3 f (x2) + f (x3)]
3h
8

(6.12)

and use Simpson’s 1/3 rule for the remaining panels. The error in Eq. (6.12) is of the
same order as in Eq. (6.10).

EXAMPLE 6.1
Derive Simpson’s 1/3 rule from Newton–Cotes formulas.

Solution Referring to Fig. 6.4, we see that Simpson’s 1/3 rule uses three nodes located
at x0 = a, x1 = (a + b) /2 and x2 = b. The spacing of the nodes is h = (b − a)/2. The
cardinal functions of Lagrange’s three-point interpolation are (see Section 3.2)

�0(x) = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

�1(x) = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

�2(x) = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

205 6.2 Newton–Cotes Formulas

The integration of these functions is easier if we introduce the variable ξ with origin
at x1. Then the coordinates of the nodes are ξ0 = −h, ξ1 = 0, ξ2 = h, and Eq. (6.2b)
becomes Ai = ∫ b

a �i(x)dx = ∫ h
−h �i(ξ)dξ . Therefore,

A0 =
∫ h

−h

(ξ − 0)(ξ − h)
(−h)(−2h)

dξ = 1
2h2

∫ h

−h
(ξ2 − hξ)dξ = h

3

A1 =
∫ h

−h

(ξ + h)(ξ − h)
(h)(−h)

dξ = − 1
h2

∫ h

−h
(ξ2 − h2)dξ = 4h

3

A2 =
∫ h

−h

(ξ + h)(ξ − 0)
(2h)(h)

dξ = 1
2h2

∫ h

−h
(ξ2 + hξ)dξ = h

3

Equation (6.2a) then yields

I =
2∑

i=0

Ai f (xi) =
[

f (a) + 4 f
(

a + b
2

)
+ f (b)

]
h
3

which is Simpson’s 1/3 rule.

EXAMPLE 6.2
Evaluate the bounds on

∫ π

0 sin(x) dx with the composite trapezoidal rule using (1)
eight panels and (2) sixteen panels.

Solution of Part (1) With 8 panels there are 9 nodes spaced at h = π/8. The abscissas
of the nodes are xi = iπ/8, i = 0, 1, . . . , 8. From Eq. (6.5) we get

I =
[

sin 0 + 2
7∑

i=1

sin
iπ
8

+ sin π

]
π

16
= 1.97423

The error is given by Eq. (6.6):

E = − (b − a)h2

12
f ′′(ξ) = − (π − 0)(π/8)2

12
(− sin ξ) = π3

768
sin ξ

where 0 < ξ < π . Since we do not know the value of ξ , we cannot evaluate E , but we
can determine its bounds:

Emin = π3

768
sin(0) = 0 Emax = π3

768
sin

π

2
= 0.040 37

Therefore, I + Emin <
∫ π

0 sin(x) dx < I + Emax, or

1.974 23 <

∫ π

0
sin(x) dx < 2.014 60

The exact integral is, of course, 2.

Solution of Part (2) The new nodes created by the doubling of panels are located at
midpoints of the old panels. Their abscissas are

xj = π/16 + jπ/8 = (1 + 2 j)π/16, j = 0, 1, . . . , 7

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

206 Numerical Integration

Using the recursive trapezoidal rule in Eq. (6.9b), we get

I = 1.974 23
2

+ π

16

7∑
j=0

sin
(1 + 2 j)π

16
= 1. 993 58

and the bounds on the error become (note that E is quartered when h is halved)
Emin = 0, Emax = 0.040 37/4 = 0.010 09. Hence

1.993 58 <

∫ π

0
sin(x) dx < 2.003 67

EXAMPLE 6.3
Estimate

∫ 2.5
0 f (x) dx from the data

x 0 0.5 1.0 1.5 2.0 2.5

f (x) 1.5000 2.0000 2.0000 1.6364 1.2500 0.9565

Solution We will use Simpson’s rules, since they are more accurate than the trape-
zoidal rule. Because the number of panels is odd, we compute the integral over the
first three panels by Simpson’s 3/8 rule, and use the 1/3 rule for the last two panels:

I = [f (0) + 3 f (0.5) + 3 f (1.0) + f (1.5)]
3(0.5)

8

+ [f (1.5) + 4 f (2.0) + f (2.5)]
0.5
3

= 2.8381 + 1.2655 = 4.1036

EXAMPLE 6.4
Use the recursive trapezoidal rule to evaluate

∫ π

0

√
x cos x dx to six decimal places.

How many panels are needed to achieve this result?

Solution The program listed below utilizes the function trapezoid.

#!/usr/bin/python

example6_4

from math import sqrt,cos,pi

from trapezoid import *

def f(x): return sqrt(x)*cos(x)

Iold = 0.0

for k in range(1,21):

Inew = trapezoid(f,0.0,pi,Iold,k)

if (k > 1) and (abs(Inew - Iold)) < 1.0e-6: break

Iold = Inew

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

207 6.3 Romberg Integration

print ’’Integral =’’,Inew

print ’’nPanels =’’,2**(k-1)

raw_input(’’\nPress return to exit’’)

The output from the program is:

Integral = -0.894831664853

nPanels = 32768

Hence
∫ π

0

√
x cos x dx = −0.894 832 requiring 32 768 panels. The slow conver-

gence is the result of all the derivatives of f (x) being singular at x = 0. Consequently,
the error does not behave as shown in Eq. (6.7): E = c1h2 + c2h4 + · · ·, but is unpre-
dictable. Difficulties of this nature can often be remedied by a change in variable. In
this case, we introduce t = √

x, so that dt = dx/(2
√

x) = dx/(2t), or dx = 2t dt. Thus

∫ π

0

√
x cos x dx =

∫ √
π

0
2t2 cos t2dt

Evaluation of the integral on the right-hand side was completed with 4096 panels.

6.3 Romberg Integration

Romberg integration combines the trapezoidal rule with Richardson extrapolation
(see Section 5.3). Let us first introduce the notation

Ri,1 = Ii

where, as before, Ii represents the approximate value of
∫ b

a f (x)dx computed by the
recursive trapezoidal rule using 2i−1 panels. Recall that the error in this approximation
is E = c1h2 + c2h4 + · · ·, where

h = b − a
2i−1

is the width of a panel.
Romberg integration starts with the computation of R1,1 = I1 (one panel) and

R2,1 = I2 (two panels) from the trapezoidal rule. The leading error term c1h2 is then
eliminated by Richardson extrapolation. Using p = 2 (the exponent in the leading
error term) in Eq. (5.9) and denoting the result by R2,2, we obtain

R2,2 = 22 R2,1 − R1,1

22 − 1
= 4

3
R2,1 − 1

3
R1,1 (a)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

208 Numerical Integration

It is convenient to store the results in an array of the form[
R1,1

R2,1 R2,2

]

The next step is to calculate R3,1 = I3 (four panels) and repeat Richardson extrap-
olation with R2,1 and R3,1, storing the result as R3,2:

R3,2 = 4
3

R3,1 − 1
3

R2,1 (b)

The elements of array R calculated so far are
 R1,1

R2,1 R2,2

R3,1 R3,2

Both elements of the second column have an error of the form c2h4, which can also
be eliminated with Richardson extrapolation. Using p = 4 in Eq. (5.9), we get

R3,3 = 24 R3,2 − R2,2

24 − 1
= 16

15
R3,2 − 1

15
R2,2 (c)

This result has an error of O(h6). The array has now expanded to
 R1,1

R2,1 R2,2

R3,1 R3,2 R3,3

After another round of calculations we get

R1,1

R2,1 R2,2

R3,1 R3.2 R3,3

R4,1 R4,2 R4,3 R4,4

where the error in R4,4 is O(h8). Note that the most accurate estimate of the integral is
always the last diagonal term of the array. This process is continued until the differ-
ence between two successive diagonal terms becomes sufficiently small. The general
extrapolation formula used in this scheme is

Ri, j = 4 j−1 Ri, j−1 − Ri−1, j−1

4 j−1 − 1
, i > 1, j = 2, 3, . . . , i (6.13a)

A pictorial representation of Eq. (6.13a) is

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

209 6.3 Romberg Integration

Ri−1, j−1

↘
α

↘
Ri, j−1 → β → Ri, j

(6.13b)

where the multipliers α and β depend on j in the following manner:

j 2 3 4 5 6

α −1/3 −1/15 −1/63 −1/255 −1/1023
β 4/3 16/15 64/63 256/255 1024/1023

(6.13c)

The triangular array is convenient for hand computations, but computer imple-
mentation of the Romberg algorithm can be carried out within a one-dimensional
array R′. After the first extrapolation—see Eq. (a)—R1,1 is never used again, so that it
can be replaced with R2,2. As a result, we have the array[

R′
1 = R2,2

R′
2 = R2,1

]

In the second extrapolation round, defined by Eqs. (b) and (c), R3,2 overwrites R2,1,
and R3,3 replaces R2,2, so that the array contains

 R′
1 = R3,3

R′
2 = R3,2

R′
3 = R3,1

and so on. In this manner, R′
1 always contains the best current result. The extrapolation

formula for the k th round is

R′
j = 4k− j R′

j+1 − R′
j

4k− j − 1
, j = k − 1, k − 2, . . . , 1 (6.14)

� romberg

The algorithm for Romberg integration is implemented in the function romberg. It
returns the integral and the number of panels used. Richardson’s extrapolation is
carried out by the subfunction richardson.

module romberg

’’’ I,nPanels = romberg(f,a,b,tol=1.0e-6).

Romberg integration of f(x) from x = a to b.

Returns the integral and the number of panels used.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

210 Numerical Integration

’’’

from numarray import zeros,Float64

from trapezoid import *

def romberg(f,a,b,tol=1.0e-6):

def richardson(r,k):

for j in range(k-1,0,-1):

const = 4.0**(k-j)

r[j] = (const*r[j+1] - r[j])/(const - 1.0)

return r

r = zeros((21),type=Float64)

r[1] = trapezoid(f,a,b,0.0,1)

r_old = r[1]

for k in range(2,21):

r[k] = trapezoid(f,a,b,r[k-1],k)

r = richardson(r,k)

if abs(r[1]-r_old) < tol*max(abs(r[1]),1.0):

return r[1],2**(k-1)

r_old = r[1]

print ’’Romberg quadrature did not converge’’

EXAMPLE 6.5
Show that Rk,2 in Romberg integration is identical to the composite Simpson’s 1/3 rule
in Eq. (6.10) with 2k−1 panels.

Solution Recall that in Romberg integration Rk,1 = Ik denoted the approximate inte-
gral obtained by the composite trapezoidal rule with n = 2k−1 panels. Denoting the
abscissas of the nodes by x0, x1, . . . , xn, we have from the composite trapezoidal rule
in Eq. (6.5)

Rk,1 = Ik =
[

f (x0) + 2
n−1∑
i=1

f (xi) + 1
2

f (xn)

]
h
2

When we halve the number of panels (panel width 2h), only the even-numbered
abscissas enter the composite trapezoidal rule, yielding

Rk−1,1 = Ik−1 =
[

f (x0) + 2
n−2∑

i=2,4,...

f (xi) + f (xn)

]
h

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

211 6.3 Romberg Integration

Applying Richardson extrapolation yields

Rk,2 = 4
3

Rk,1 − 1
3

Rk−1,1

=
[

1
3

f (x0) + 4
3

n−1∑
i=1,3,...

f (xi) + 2
3

n−2∑
i=2,4,...

f (xi) + 1
3

f (xn)

]
h

which agrees with Eq. (6.10).

EXAMPLE 6.6
Use Romberg integration to evaluate

∫ π

0 f (x) dx, where f (x) = sin x. Work with four
decimal places.

Solution From the recursive trapezoidal rule in Eq. (6.9b) we get

R1,1 = I (π) = π

2
[f (0) + f (π)] = 0

R2,1 = I (π/2) = 1
2

I (π) + π

2
f (π/2) = 1.5708

R3,1 = I (π/4) = 1
2

I (π/2) + π

4
[f (π/4) + f (3π/4)] = 1.8961

R4,1 = I (π/8) = 1
2

I (π/4) + π

8
[f (π/8) + f (3π/8) + f (5π/8) + f (7π/8)]

= 1.9742

Using the extrapolation formulas in Eqs. (6.13), we can now construct the following
table:

R1,1

R2,1 R2,2

R3,1 R3.2 R3,3

R4,1 R4,2 R4,3 R4,4

 =

0
1.5708 2.0944
1.8961 2.0046 1.9986
1.9742 2.0003 2.0000 2.0000

It appears that the procedure has converged. Therefore,
∫ π

0 sin x dx = R4,4 = 2.0000,
which is, of course, the correct result.

EXAMPLE 6.7
Use Romberg integration to evaluate

∫ √
π

0 2x2 cos x2 dx and compare the results with
Example 6.4.

Solution
#!/usr/bin/python

example6_7

from math import cos,sqrt,pi

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

212 Numerical Integration

from romberg import *

def f(x): return 2.0*(x**2)*cos(x**2)

I,n = romberg(f,0,sqrt(pi))

print ’’Integral =’’,I

print ’’nPanels =’’,n

raw_input(’’\nPress return to exit’’)

The results of running the program are:

Integral = -0.894831469504

nPanels = 64

It is clear that Romberg integration is considerably more efficient than the trape-
zoidal rule—it required 64 panels as compared to 4096 panels for the trapezoidal rule
in Example 6.4.

PROBLEM SET 6.1

1. Use the recursive trapezoidal rule to evaluate
∫ π/4

0 ln(1 + tan x)dx. Explain the
results.

2. The table shows the power P supplied to the driving wheels of a car as a function
of the speed v. If the mass of the car is m = 2000 kg, determine the time �t it
takes for the car to accelerate from 1 m/s to 6 m/s. Use the trapezoidal rule for
integration. Hint :

�t = m
∫ 6s

1s
(v/P) dv

which can be derived from Newton’s law F = m(dv/dt) and the definition of power
P = F v.

v (m/s) 0 1.0 1.8 2.4 3.5 4.4 5.1 6.0

P (kW) 0 4.7 12.2 19.0 31.8 40.1 43.8 43.2

3. Evaluate
∫ 1
−1 cos(2 cos−1 x)dx with Simpson’s 1/3 rule using 2, 4 and 6 panels.

Explain the results.

4. Determine
∫ ∞

1 (1 + x4)−1dx with the trapezoidal rule using five panels and com-
pare the result with the “exact” integral 0.243 75. Hint : use the transformation
x3 = 1/t.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

213 6.3 Romberg Integration

5.

x

F

The table below gives the pull F of the bow as a function of the draw x. If the bow
is drawn 0.5 m, determine the speed of the 0.075-kg arrow when it leaves the bow.
Hint: the kinetic energy of arrow equals the work done in drawing the bow; that
is, mv2/2 = ∫ 0.5m

0 F dx.

x (m) 0.00 0.05 0.10 0.15 0.20 0.25

F (N) 0 37 71 104 134 161

x (m) 0.30 0.35 0.40 0.45 0.50

F (N) 185 207 225 239 250

6. Evaluate
∫ 2

0

(
x5 + 3x3 − 2

)
dx by Romberg integration.

7. Estimate
∫ π

0 f (x) dx as accurately as possible, where f (x) is defined by the data

x 0 π/4 π/2 3π/4 π

f (x) 1.0000 0.3431 0.2500 0.3431 1.0000

8. Evaluate ∫ 1

0

sin x√
x

dx

with Romberg integration. Hint: use transformation of variable to eliminate the
indeterminacy at x = 0.

9. Newton–Cotes formulas for evaluating
∫ b

a f (x) dx were based on polynomial ap-
proximations of f (x). Show that if y = f (x) is approximated by a natural cubic
spline with evenly spaced knots at x0, x1, . . . , xn, the quadrature formula becomes

I = h
2

(y0 + 2y1 + 2y2 + · · · + 2yn−1 + yn)

− h3

24
(k0 + 2k1 + k2 + · · · + 2kn−1 + kn)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

214 Numerical Integration

where h is the distance between the knots and ki = y ′′
i . Note that the first part is

the composite trapezoidal rule; the second part may be viewed as a “correction”
for curvature.

10. � Evaluate ∫ π/4

0

dx√
sin x

with Romberg integration. Hint: use the transformation sin x = t2.

11. � The period of a simple pendulum of length L is τ = 4
√

L/g h(θ0), where g is the
gravitational acceleration, θ0 represents the angular amplitude and

h(θ0) =
∫ π/2

0

dθ√
1 − sin2(θ0/2) sin2 θ

Compute h(15◦), h(30◦) and h(45◦), and compare these values with h(0) = π/2 (the
approximation used for small amplitudes).

12. �

a

r

P

q

The figure shows an elastic half-space that carries uniform loading of intensity q
over a circular area of radius a. The vertical displacement of the surface at point
P can be shown to be

w (r) = w0

∫ π/2

0

cos2 θ√
(r/a)2 − sin2 θ

dθ r ≥ a

where w0 is the displacement at r = a. Use numerical integration to determine
w/w0 at r = 2a.

13. �

b

m

k

x

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

215 6.4 Gaussian Integration

The mass m is attached to a spring of free length b and stiffness k. The coefficient
of friction between the mass and the horizontal rod is µ. The acceleration of the
mass can be shown to be (you may wish to prove this) ẍ = − f (x), where

f (x) = µg + k
m

(µb + x)
(

1 − b√
b2 + x2

)

If the mass is released from rest at x = b, its speed at x = 0 is given by

v0 =
√

2
∫ b

0
f (x)dx

Compute v0 by numerical integration using the data m = 0.8 kg, b = 0.4 m,µ = 0.3,
k = 80 N/m and g = 9.81 m/s2.

14. � Debye’s formula for the heat capacity CV of a solid is CV = 9Nkg(u), where

g(u) = u3
∫ 1/u

0

x4ex

(ex − 1)2
dx

The terms in this equation are

N = number of particles in the solid

k = Boltzmann constant

u = T/�D

T = absolute temperature

�D = Debye temperature

Compute g(u) from u = 0 to 1.0 in intervals of 0.05 and plot the results.

15. � A power spike in an electric circuit results in the current

i(t) = i0e−t/t0 sin(2t/t0)

across a resistor. The energy E dissipated by the resistor is

E =
∫ ∞

0
R [i(t)]2 dt

Find E using the data i0 = 100 A, R = 0.5 � and t0 = 0.01 s.

6.4 Gaussian Integration

Gaussian Integration Formulas

We found that Newton–Cotes formulas for approximating
∫ b

a f (x)dx work best if
f (x) is a smooth function, such as a polynomial. This is also true for Gaussian

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

216 Numerical Integration

quadrature. However, Gaussian formulas are also good at estimating integrals of the
form

∫ b

a
w(x) f (x)dx (6.15)

where w(x), called the weighting function, can contain singularities, as long as they
are integrable. An example of such an integral is

∫ 1
0 (1 + x2) ln x dx. Sometimes infinite

limits, as in
∫ ∞

0 e−x sin x dx, can also be accommodated.
Gaussian integration formulas have the same form as Newton–Cotes rules:

I =
n∑

i=0

Ai f (xi) (6.16)

where, as before, I represents the approximation to the integral in Eq. (6.15). The
difference lies in the way that the weights Ai and nodal abscissas xi are determined. In
Newton–Cotes integration the nodes were evenly spaced in (a, b), i.e., their locations
were predetermined. In Gaussian quadrature the nodes and weights are chosen so
that Eq. (6.16) yields the exact integral if f (x) is a polynomial of degree 2n + 1 or less;
that is,

∫ b

a
w(x)Pm(x)dx =

n∑
i=0

Ai Pm(xi), m ≤2n + 1 (6.17)

One way of determining the weights and abscissas is to substitute P0(x) = 1,

P1(x) = x, . . . , P2n+1(x) = x2n+1 in Eq. (6.17) and solve the resulting 2n + 2 equations

∫ b

a
w(x)x j dx =

n∑
i=0

Ai x j
i , j = 0, 1, . . . , 2n + 1

for the unknowns Ai and xi .
As an illustration, let w(x) = e−x, a = 0, b = ∞ and n = 1. The four equations

determining x0, x1, A0 and A1 are

∫ ∞

0
e−xdx = A0 + A1

∫ ∞

0
e−xx dx = A0x0 + A1x1

∫ ∞

0
e−xx2dx = A0x2

0 + A1x2
1∫ ∞

0
e−xx3dx = A0x3

0 + A1x3
1

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

217 6.4 Gaussian Integration

After evaluating the integrals, we get

A0 + A1 = 1

A0x0 + A1x1 = 1

A0x2
0 + A1x2

1 = 2

A0x3
0 + A1x3

1 = 6

The solution is

x0 = 2 −
√

2 A0 =
√

2 + 1

2
√

2

x1 = 2 +
√

2 A1 =
√

2 − 1

2
√

2

so that the integration formula becomes∫ ∞

0
e−x f (x)dx ≈

1

2
√

2

[
(
√

2 + 1) f
(

2 −
√

2
)

+ (
√

2 − 1) f
(

2 +
√

2
)]

Due to the nonlinearity of the equations, this approach will not work well for large
n. Practical methods of finding xi and Ai require some knowledge of orthogonal poly-
nomials and their relationship to Gaussian quadrature. There are, however, several
“classical” Gaussian integration formulas for which the abscissas and weights have
been computed with great precision and tabulated. These formulas can be used with-
out knowing the theory behind them, since all one needs for Gaussian integration are
the values of xi and Ai . If you do not intend to venture outside the classical formulas,
you can skip the next two topics of this chapter.

∗Orthogonal Polynomials

Orthogonal polynomials are employed in many areas of mathematics and numerical
analysis. They have been studied thoroughly and many of their properties are known.
What follows is a very small compendium of a large topic.

The polynomials ϕn(x), n = 0, 1, 2, . . . (n is the degree of the polynomial) are said
to form an orthogonal set in the interval (a, b) with respect to the weighting func-
tion w(x) if ∫ b

a
w(x)ϕm(x)ϕn(x)dx = 0, m �= n (6.18)

The set is determined, except for a constant factor, by the choice of the weighting
function and the limits of integration. That is, each set of orthogonal polynomials
is associated with certain w(x), a and b. The constant factor is specified by stan-
dardization. Some of the classical orthogonal polynomials, named after well-known

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

218 Numerical Integration

mathematicians, are listed in Table 6.1. The last column in the table shows the
standardization used.

Name Symbol a b w(x)
∫ b

a w(x)
[
ϕn(x)

]2
dx

Legendre pn(x) −1 1 1 2/(2n + 1)
Chebyshev Tn(x) −1 1 (1 − x2)−1/2 π/2 (n > 0)
Laguerre Ln(x) 0 ∞ e−x 1
Hermite Hn(x) −∞ ∞ e−x2 √

π2nn!

Table 6.1

Orthogonal polynomials obey recurrence relations of the form

anϕn+1(x) = (bn + cnx)ϕn(x) − dnϕn−1(x) (6.19)

If the first two polynomials of the set are known, the other members of the set can be
computed from Eq. (6.19). The coefficients in the recurrence formula, together with
ϕ0(x) and ϕ1(x), are given in Table 6.2.

Name ϕ0(x) ϕ1(x) an bn cn dn

Legendre 1 x n + 1 0 2n + 1 n
Chebyshev 1 x 1 0 2 1
Laguerre 1 1 − x n + 1 2n + 1 −1 n
Hermite 1 2x 1 0 2 2

Table 6.2

The classical orthogonal polynomials are also obtainable from the formulas

pn(x) = (−1)n

2nn!
dn

dxn

[(
1 − x2)n

]
Tn(x) = cos(ncos−1 x), n > 0

Ln(x) = ex

n!
dn

dxn

(
xne−x) (6.20)

Hn(x) = (−1)nex2 dn

dxn
(e−x2

)

and their derivatives can be calculated from

(1 − x2) p′
n(x) = n[−xpn(x) + pn−1(x)]

(1 − x2)T ′
n(x) = n[−xTn(x) + nTn−1(x)]

xL ′
n(x) = n[Ln(x) − Ln−1(x)] (6.21)

H′
n(x) = 2nHn−1(x)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

219 6.4 Gaussian Integration

Other properties of orthogonal polynomials that have relevance to Gaussian in-
tegration are:

� ϕn(x) has n real, distinct zeroes in the interval (a, b).
� The zeros of ϕn(x) lie between the zeros of ϕn+1(x).
� Any polynomial Pn(x) of degree n can be expressed in the form

Pn(x) =
n∑

i=0

ciϕi(x) (6.22)

� It follows from Eq. (6.22) and the orthogonality property in Eq. (6.18) that∫ b

a
w(x)Pn(x)ϕn+m(x)dx = 0, m ≥ 0 (6.23)

∗Determination of Nodal Abscissas and Weights

Theorem The nodal abscissas x0, x1, . . . , xn are the zeros of the polynomial ϕn+1(x)
that belongs to the orthogonal set defined in Eq. (6.18).

Proof We start the proof by letting f (x) = P2n+1(x) be a polynomial of degree 2n + 1.
Since the Gaussian integration with n + 1 nodes is exact for this polynomial, we
have ∫ b

a
w(x)P2n+1(x)dx =

n∑
i=0

Ai P2n+1(xi) (a)

A polynomial of degree 2n + 1 can always written in the form

P2n+1(x) = Qn(x) + Rn(x)ϕn+1(x) (b)

where Qn(x), Rn(x) and ϕn+1(x) are polynomials of the degree indicated by the
subscripts.14 Therefore,∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx +

∫ b

a
w(x)Rn(x)ϕn+1(x)dx

But according to Eq. (6.23) the second integral on the right-hand side vanishes,
so that ∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx (c)

Because a polynomial of degree n is uniquely defined by n + 1 points, it is always
possible to find Ai such that∫ b

a
w(x)Qn(x)dx =

n∑
i=0

Ai Qn(xi) (d)

14 It can be shown that Qn(x) and Rn(x) are unique for given P2n+1(x) and ϕn+1(x).

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

220 Numerical Integration

In order to arrive at Eq. (a), we must choose for the nodal abscissas xi the roots
of ϕn+1(x) = 0. According to Eq. (b) we then have

P2n+1(xi) = Qn(xi), i = 0, 1, . . . , n (e)

which together with Eqs. (c) and (d) leads to

∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx =

n∑
i=0

Ai P2n+1(xi)

This completes the proof.

Theorem

Ai =
∫ b

a
w(x)�i(x)dx, i = 0, 1, . . . , n (6.24)

where �i(x) are the Lagrange’s cardinal functions spanning the nodes at
x0, x1, . . . xn. These functions were defined in Eq. (3.2).

Proof Applying Lagrange’s formula, Eq. (3.1a), to Qn(x) yields

Qn(x) =
n∑

i=0

Qn(xi)�i(x)

which upon substitution in Eq. (d) gives us

n∑
i=0

[
Qn(xi)

∫ b

a
w(x)�i(x)dx

]
=

n∑
i=0

Ai Qn(xi)

or

n∑
i=0

Qn(xi)
[

Ai −
∫ b

a
w(x)�i(x)dx

]
= 0

This equation can be satisfied for arbitrary Q(x) of degree n only if

Ai −
∫ b

a
w(x)�i(x)dx = 0, i = 0, 1, . . . , n

which is equivalent to Eq. (6.24).
It is not difficult to compute the zeros xi , i = 0, 1, . . . , n of a polynomial ϕn+1(x)

belonging to an orthogonal set by one of the methods discussed in Chapter 4. Once
the zeros are known, the weights Ai , i = 0, 1, . . . , n could be found from Eq. (6.24).
However the following formulas (given without proof) are easier to compute

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

221 6.4 Gaussian Integration

Gauss–Legendre Ai = 2

(1 − x2
i)

[
p′

n+1(xi)
]2

Gauss–Laguerre Ai = 1

xi
[

L ′
n+1(xi)

]2
(6.25)

Gauss–Hermite Ai = 2n+2 (n + 1)!
√

π[
H′

n+1(xi)
]2

Abscissas and Weights for Classical Gaussian Quadratures

Here we list some classical Gaussian integration formulas. The tables of nodal ab-
scissas and weights, covering n = 1 to 5, have been rounded off to six decimal places.
These tables should be adequate for hand computation, but in programming you
may need more precision or a larger number of nodes. In that case you should consult
other references,15 or use a subroutine to compute the abscissas and weights within
the integration program.16

The truncation error in Gaussian quadrature

E =
∫ b

a
w(x) f (x)dx −

n∑
i=0

Ai f (xi)

has the form E = K (n) f (2n+2)(c), where a < c < b (the value of c is unknown; only
its bounds are given). The expression for K (n) depends on the particular quadrature
being used. If the derivatives of f (x) can be evaluated, the error formulas are useful
in estimating the error bounds.

Gauss–Legendre Quadrature ∫ 1

−1
f (ξ)dξ ≈

n∑
i=0

Ai f (ξ i) (6.26)

±ξ i Ai ±ξ i Ai

n = 1 n = 4
0.577 350 1.000 000 0.000 000 0.568 889

n = 2 0.538 469 0.478 629
0.000 000 0.888 889 0.906 180 0.236 927
0.774 597 0.555 556 n = 5

n = 3 0.238 619 0.467 914
0.339 981 0.652 145 0.661 209 0.360 762
0.861 136 0.347 855 0.932 470 0.171 324

Table 6.3

15 Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Functions, Dover Publications, 1965;
Stroud, A. H., and Secrest, D., Gaussian Quadrature Formulas, Prentice-Hall, 1966.

16 Several such subroutines are listed in W. H. Press et al., Numerical Recipes in Fortran 90, Cambridge
University Press, 1996.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

222 Numerical Integration

This is the most often used Gaussian integration formula. The nodes are arranged
symmetrically about ξ = 0, and the weights associated with a symmetric pair of nodes
are equal. For example, for n = 1 we have ξ0 = −ξ1 and A0 = A1. The truncation error
in Eq. (6.26) is

E = 22n+3 [(n + 1)!]4

(2n + 3) [(2n + 2)!]3
f (2n+2)(c), − 1 < c < 1 (6.27)

To apply Gauss–Legendre quadrature to the integral
∫ b

a f (x)dx, we must first map
the integration range (a, b) into the “standard” range (−1, 1)̇. We can accomplish this
by the transformation

x = b + a
2

+ b − a
2

ξ (6.28)

Now dx = dξ (b − a)/2, and the quadrature becomes∫ b

a
f (x)dx ≈

b − a
2

n∑
i=0

Ai f (xi) (6.29)

where the abscissas xi must be computed from Eq. (6.28). The truncation error
here is

E = (b − a)2n+3 [(n + 1)!]4

(2n + 3) [(2n + 2)!]3
f (2n+2)(c), a < c < b (6.30)

Gauss–Chebyshev Quadrature

∫ 1

−1

(
1 − x2)−1/2

f (x)dx ≈

π

n + 1

n∑
i=0

f (xi) (6.31)

Note that all the weights are equal: Ai = π/ (n + 1). The abscissas of the nodes, which
are symmetric about x = 0, are given by

xi = cos
(2i + 1)π

2n + 2
(6.32)

The truncation error is

E = 2π

22n+2(2n + 2)!
f (2n+2)(c), − 1 < c < 1 (6.33)

Gauss–Laguerre Quadrature

∫ ∞

0
e−x f (x)dx ≈

n∑
i=0

Ai f (xi) (6.34)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

223 6.4 Gaussian Integration

xi Ai xi Ai

n = 1 n = 4
0.585 786 0.853 554 0.263 560 0.521 756
3.414 214 0.146 447 1.413 403 0.398 667

n = 2 3.596 426 (−1)0.759 424
0.415 775 0.711 093 7.085 810 (−2)0.361 175
2.294 280 0.278 517 12.640 801 (−4)0.233 670
6.289 945 (−1)0.103 892 n = 5

n = 3 0.222 847 0.458 964
0.322 548 0.603 154 1.188 932 0.417 000
1.745 761 0.357 418 2.992 736 0.113 373
4.536 620 (−1)0.388 791 5.775 144 (−1)0.103 992
9.395 071 (−3)0.539 295 9.837 467 (−3)0.261 017

15.982 874 (−6)0.898 548

Table 6.4. Multiply numbers by 10k, where k is given in parentheses

E = [(n + 1)!]2

(2n + 2)!
f (2n+2)(c), 0 < c < ∞ (6.35)

Gauss–Hermite Quadrature

∫ ∞

−∞
e−x2

f (x)dx ≈

n∑
i=0

Ai f (xi) (6.36)

The nodes are placed symmetrically about x = 0, each symmetric pair having the
same weight.

±xi Ai ±xi Ai

n = 1 n = 4
0.707 107 0.886 227 0.000 000 0.945 308

n = 2 0.958 572 0.393 619
0.000 000 1.181 636 2.020 183 (−1) 0.199 532
1.224745 0.295 409 n = 5

n = 3 0.436 077 0.724 629
0.524 648 0.804 914 1.335 849 0.157 067
1.650 680 (−1)0.813 128 2.350 605 (−2)0.453 001

Table 6.5. Multiply numbers by 10k, where k is given in parentheses

E =
√

π(n + 1)!
22(2n + 2)!

f (2n+2)(c), 0 < c < ∞ (6.37)

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

224 Numerical Integration

Gauss Quadrature with Logarithmic Singularity

∫ 1

0
f (x) ln(x)dx ≈ −

n∑
i=0

Ai f (xi) (6.38)

xi Ai xi Ai

n = 1 n = 4
0.112 009 0.718 539 (−1)0.291 345 0.297 893
0.602 277 0.281 461 0.173 977 0.349 776

n = 2 0.411 703 0.234 488
(−1)0.638 907 0.513 405 0.677314 (−1)0.989 305

0.368 997 0.391 980 0.894 771 (−1)0.189 116
0.766 880 (−1)0.946 154 n = 5

n = 3 (−1)0.216 344 0.238 764
(−1)0.414 485 0.383 464 0.129 583 0.308 287

0.245 275 0.386 875 0.314 020 0.245 317
0.556 165 0.190 435 0.538 657 0.142 009
0.848 982 (−1)0.392 255 0.756 916 (−1)0.554 546

0.922 669 (−1)0.101 690

Table 6.6. Multiply numbers by 10k, where k is given in parentheses

E = k(n)
(2n + 1)!

f (2n+1)(c), 0 < c < 1 (6.39)

where k(1) = 0.00 285, k(2) = 0.000 17, k(3) = 0.000 01.

� gaussNodes

The function gaussNodes listed below17 computes the nodal abscissas xi and the
corresponding weights Ai used in Gauss–Legendre quadrature over the “standard”
interval (−1, 1). It can be shown that the approximate values of the abscissas are

xi = cos
π(i + 0.75)

m+ 0.5

where m = n + 1 is the number of nodes, also called the integration order. Using these
approximations as the starting values, the nodal abscissas are computed by finding the
nonnegative zeros of the Legendre polynomial pm(x) with Newton’s method (the neg-
ative zeros are obtained from symmetry). Note thatgaussNodes calls the subfunction
legendre, which returns pm(t) and its derivative as the tuple (p,dp).

17 This function is an adaptation of a routine in Press, W. H. et al., Numerical Recipes in Fortran 90,
Cambridge University Press, 1996.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

225 6.4 Gaussian Integration

module gaussNodes

’’’ x,A = gaussNodes(m,tol=10e-9)

Returns nodal abscissas {x} and weights {A} of

Gauss-Legendre m-point quadrature.

’’’

from math import cos,pi

from numarray import zeros,Float64

def gaussNodes(m,tol=10e-9):

def legendre(t,m):

p0 = 1.0; p1 = t

for k in range(1,m):

p = ((2.0*k + 1.0)*t*p1 - k*p0)/(1.0 + k)

p0 = p1; p1 = p

dp = m*(p0 - t*p1)/(1.0 - t**2)

return p,dp

A = zeros((m),type=Float64)

x = zeros((m),type=Float64)

nRoots = (m + 1)/2 # Number of non-neg. roots

for i in range(nRoots):

t = cos(pi*(i + 0.75)/(m + 0.5)) # Approx. root

for j in range(30):

p,dp = legendre(t,m) # Newton-Raphson

dt = -p/dp; t = t + dt # method

if abs(dt) < tol:

x[i] = t; x[m-i-1] = -t

A[i] = 2.0/(1.0 - t**2)/(dp**2) # Eq.(6.25)

A[m-i-1] = A[i]

break

return x,A

� gaussQuad

The function gaussQuad utilizes gaussNodes to evaluate
∫ b

a f (x) dx with Gauss–
Legendre quadrature using mnodes. The function routine for f (x) must be supplied
by the user.

module gaussQuad

’’’ I = gaussQuad(f,a,b,m).

Computes the integral of f(x) from x = a to b

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

226 Numerical Integration

with Gauss-Legendre quadrature using m nodes.

’’’

from gaussNodes import *

def gaussQuad(f,a,b,m):

c1 = (b + a)/2.0

c2 = (b - a)/2.0

x,A = gaussNodes(m)

sum = 0.0

for i in range(len(x)):

sum = sum + A[i]*f(c1 + c2*x[i])

return c2*sum

EXAMPLE 6.8
Evaluate

∫ 1
−1(1 − x2)3/2dx as accurately as possible with Gaussian integration.

Solution As the integrand is smooth and free of singularities, we could use Gauss–
Legendre quadrature. However, the exact integral can obtained with the Gauss–
Chebyshev formula. We write∫ 1

−1

(
1 − x2)3/2

dx =
∫ 1

−1

(
1 − x2

)2

√
1 − x2

dx

The numerator f (x) = (1 − x2)2 is a polynomial of degree four, so that Gauss–
Chebyshev quadrature is exact with three nodes.

The abscissas of the nodes are obtained from Eq. (6.32). Substituting n = 2,

we get

xi = cos
(2i + 1)π

6
, i = 0, 1, 2

Therefore,

x0 = cos
π

6
=

√
3

2

x1 = cos
π

2
= 0

x2 = cos
5π

6
=

√
3

2

and Eq. (6.31) yields∫ 1

−1

(
1 − x2)3/2

dx ≈

π

3

2∑
i=0

(
1 − x2

i

)2

= π

3

[(
1 − 3

4

)2

+ (1 − 0)2 +
(

1 − 3
4

)2
]

= 3π

8

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

227 6.4 Gaussian Integration

EXAMPLE 6.9
Use Gaussian integration to evaluate

∫ 0.5
0 cos πx ln x dx.

Solution We split the integral into two parts:∫ 0.5

0
cos πx ln x dx =

∫ 1

0
cos πx ln x dx −

∫ 1

0.5
cos πx ln x dx

The first integral on the right-hand side, which contains a logarithmic singularity at
x = 0, can be computed with the special Gaussian quadrature in Eq. (6.38). Choosing
n = 3, we have ∫ 1

0
cos πx ln x dx ≈ −

3∑
i=0

Ai cos πxi

The sum is evaluated in the following table:

xi cos πxi Ai Ai cos πxi

0.041 448 0.991 534 0.383 464 0.380 218
0.245 275 0.717 525 0.386 875 0.277 592
0.556 165 −0.175 533 0.190 435 −0.033 428
0.848 982 −0.889 550 0.039 225 −0.034 892

� = 0.589 490

Thus ∫ 1

0
cos πx ln x dx ≈ −0.589 490

The second integral is free of singularities, so that it can be evaluated with Gauss–
Legendre quadrature. Choosing n = 3, we have∫ 1

0.5
cos πx ln x dx ≈ 0.25

3∑
i=0

Ai cos πxi ln xi

where the nodal abscissas are (see Eq. (6.28))

xi = 1 + 0.5
2

+ 1 − 0.5
2

ξ i = 0.75 + 0.25ξ i

Looking up ξ i and Ai in Table 6.3 leads to the following computations:

ξ i xi cos πxi ln xi Ai Ai cos πxi ln xi

−0.861 136 0.534 716 0.068 141 0.347 855 0.023 703
−0.339 981 0.665 005 0.202 133 0.652 145 0.131 820

0.339 981 0.834 995 0.156 638 0.652 145 0.102 151
0.861 136 0.965 284 0.035 123 0.347 855 0.012 218

� = 0.269 892

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

228 Numerical Integration

from which ∫ 1

0.5
cos πx ln x dx ≈ 0.25(0.269 892) = 0.067 473

Therefore,∫ 1

0
cos πx ln x dx ≈ −0. 589 490 − 0.067 473 = −0. 656 96 3

which is correct to six decimal places.

EXAMPLE 6.10
Evaluate as accurately as possible

F =
∫ ∞

0

x + 3√
x

e−xdx

Solution In its present form, the integral is not suited to any of the Gaussian quadra-
tures listed in this chapter. But using the transformation

x = t2 dx = 2t dt

we have

F = 2
∫ ∞

0
(t2 + 3)e−t2

dt =
∫ ∞

−∞
(t2 + 3)e−t2

dt

which can be evaluated exactly with Gauss–Hermite formula using only two nodes
(n = 1). Thus

F = A0(t2
0 + 3) + A1(t2

1 + 3)

= 0.886 227
[
(0.707 107)2 + 3

] + 0.886 227
[
(−0.707 107)2 + 3

]
= 6. 203 59

EXAMPLE 6.11
Determine how many nodes are required to evaluate∫ π

0

(
sin x

x

)2

dx

with Gauss–Legendre quadrature to six decimal places. The exact integral, rounded
to six places, is 1.418 15.

Solution The integrand is a smooth function; hence it is suited for Gauss–Legendre
integration. There is an indeterminacy at x = 0, but this does not bother the quadra-
ture since the integrand is never evaluated at that point. We used the following pro-
gram that computes the quadrature with 2, 3, . . . nodes until the desired accuracy is
reached:

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

229 6.4 Gaussian Integration

example 6_11

from math import pi,sin

from gaussQuad import *

def f(x): return (sin(x)/x)**2

a = 0.0; b = pi;

Iexact = 1.41815

for m in range(2,12):

I = gaussQuad(f,a,b,m)

if abs(I - Iexact) < 0.00001:

print ’’Number of nodes =’’,m

print ’’Integral =’’, gaussQuad(f,a,b,m)

break

raw_input(’’\nPress return to exit’’)

The program output is

Number of nodes = 5

Integral = 1.41815026778

EXAMPLE 6.12
Evaluate numerically

∫ 3
1.5 f (x) dx, where f (x) is represented by the unevenly spaced

data

x 1.2 1.7 2.0 2.4 2.9 3.3

f (x) −0.362 36 0.128 84 0.416 15 0.737 39 0.970 96 0.987 48

Knowing that the data points lie on the curve f (x) = − cos x, evaluate the accuracy of
the solution.

Solution We approximate f (x) by the polynomial P5(x) that intersects all the data
points, and then evaluate

∫ 3
1.5 f (x)dx ≈

∫ 3
1.5 P5(x)dx with the Gauss–Legendre formula.

Since the polynomial is of degree five, only three nodes (n = 2) are required in the
quadrature.

From Eq. (6.28) and Table 6.3, we obtain for the abscissas of the nodes

x0 = 3 + 1.5
2

+ 3 − 1.5
2

(−0.774597) = 1. 6691

x1 = 3 + 1.5
2

= 2.25

x2 = 3 + 1.5
2

+ 3 − 1.5
2

(0.774597) = 2. 8309

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

230 Numerical Integration

We now compute the values of the interpolant P5(x) at the nodes. This can be done
using the modules newtonPoly or neville listed in Section 3.2. The results are

P5(x0) = 0.098 08 P5(x1) = 0.628 16 P5(x2) = 0.952 16

From Gauss–Legendre quadrature

I =
∫ 3

1.5
P5(x)dx = 3 − 1.5

2

2∑
i=0

Ai P5(xi)

we get

I = 0.75 [0.555 556(0.098 08) + 0.888 889(0.628 16) + 0.555 556(0.952 16)]

= 0.856 37

Comparison with − ∫ 3
1.5 cos x dx = 0. 856 38 shows that the discrepancy is within the

roundoff error.

PROBLEM SET 6.2

1. Evaluate ∫ π

1

ln x
x2 − 2x + 2

dx

with Gauss–Legendre quadrature. Use (a) two nodes and (b) four nodes.

2. Use Gauss–Laguerre quadrature to evaluate
∫ ∞

0 (1 − x2)3e−x dx.

3. Use Gauss–Chebyshev quadrature with six nodes to evaluate∫ π/2

0

dx√
sin x

Compare the result with the “exact” value 2.62206. Hint: substitute sin x = t2.

4. The integral
∫ π

0 sin x dx is evaluated with Gauss–Legendre quadrature using four
nodes. What are the bounds on the truncation error resulting from the quadrature?

5. How many nodes are required in Gauss–Laguerre quadrature to evaluate
∫ ∞

0 e−x

sin x dx to six decimal places?

6. Evaluate as accurately as possible∫ 1

0

2x + 1√
x(1 − x)

dx

Hint : substitute x = (1 + t)/2.

7. Compute
∫ π

0 sin x ln x dx to four decimal places.

8. Calculate the bounds on the truncation error if
∫ π

0 x sin x dx is evaluated with
Gauss–Legendre quadrature using three nodes. What is the actual error?

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

231 6.4 Gaussian Integration

9. Evaluate
∫ 2

0

(
sinh x/x

)
dx to four decimal places.

10. Evaluate the integral

∫ ∞

0

x dx
ex + 1

to six decimal places. Hint : substitute ex = 1/t.

11. � The equation of an ellipse is x2/a2 + y2/b2 = 1. Write a program that computes
the length

S = 2
∫ a

−a

√
1 + (dy/dx)2 dx

of the circumference to five decimal places for given a and b. Test the program
with a = 2 and b = 1.

12. � The error function, which is of importance in statistics, is defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt

Write a program that uses Gauss–Legendre quadrature to evaluate erf(x) for a
given x to six decimal places. Note that erf(x) = 1.000 000 (correct to 6 decimal
places) when x > 5. Test the program by verifying that erf(1.0) = 0.842 701.

13. �

m

k

L

L

A
B

The sliding weight of mass m is attached to a spring of stiffness k that has an
undeformed length L. When the mass is released from rest at B, the time it takes
to reach A can be shown to be t = C

√
m/k, where

C =
∫ 1

0

[(√
2 − 1

)2
−

(√
1 + z2 − 1

)2
]−1/2

dz

Compute C to six decimal places. Hint : the integrand has a singularity at z = 1
that behaves as (1 − z2)−1/2.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

232 Numerical Integration

14. �
x

P

y

A

h

b
B

A uniform beam forms the semiparabolic cantilever arch AB. The vertical dis-
placement of A due to the force P can be shown to be

δA = Pb3

E I
C

(
h
b

)

where E I is the bending rigidity of the beam and

C
(

h
b

)
=

∫ 1

0
z2

√
1 +

(
2h
b

z
)2

dz

Write a program that computes C(h/b) for any given value of h/b to four decimal
places. Use the program to compute C(0.5), C(1.0) and C(2.0).

15. � There is no elegant way to compute I = ∫ π/2
0 ln(sin x) dx. A “brute force” method

that works is to split the integral into several parts: from x = 0 to 0.01, from 0.01
to 0.2 and from x = 0.2 to π/2. In the first part we can use the approximation
sin x ≈ x, which allows us to obtain the integral analytically. The other two parts
can be evaluated with Gauss–Legendre quadrature. Use this method to evaluate
I to six decimal places.

16. �

p (Pa)

620

612

575

530

425
3100

15

35

52

80

112
h (m)

The pressure of wind was measured at various heights on a vertical wall, as shown
on the diagram. Find the height of the pressure center, which is defined as

h̄ =
∫ 112 m

0 h p(h) dh∫ 112 m
0 p(h) dh

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

233 6.5 Multiple Integrals

Hint : fit a cubic polynomial to the data and then apply Gauss–Legendre
quadrature.

∗6.5 Multiple Integrals

Multiple integrals, such as the area integral
∫ ∫

A f (x, y) dx dy, can also be evaluated
by quadrature. The computations are straightforward if the region of integration has a
simple geometric shape, such as a triangle or a quadrilateral. Due to complications in
specifying the limits of integration on x and y, quadrature is not a practical means of
evaluating integrals over irregular regions. However, an irregular region A can always
be approximated as an assembly of triangular or quadrilateral subregions A1, A2, . . . ,
called finite elements, as illustrated in Fig. 6.6. The integral over A can then be evaluated
by summing the integrals over the finite elements:∫ ∫

A
f (x, y) dx dy ≈

∑
i

∫ ∫
Ai

f (x, y) dx dy

Volume integrals can computed in a similar manner, using tetrahedra or rectangular
prisms for the finite elements.

Boundary of region A
Ai

Figure 6.6. Finite element model of an irregular
region.

Gauss–Legendre Quadrature over a Quadrilateral Element

ξ

η
1

1
11

0

0 x

y

1
2

3
4

η = 1

η = −1

ξ = 1ξ = −1

(b)(a)

Figure 6.7. Mapping a quadrilateral into the standard rectangle.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

234 Numerical Integration

Consider the double integral

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη

over the rectangular element shown in Fig. 6.7(a). Evaluating each integral in turn by
Gauss–Legendre quadrature using n + 1 integration points in each coordinate direc-
tion, we obtain

I =
∫ 1

−1

n∑
i=0

Ai f (ξ i, η) dη =
n∑

j=0

A j

[
n∑

i=0

Ai f (ξ i, ηi)

]

or

I =
n∑

i=0

n∑
j=0

Ai A j f (ξ i, η j) (6.40)

As noted previously, the number of integration points in each coordinate direction,
m = n + 1, is called the integration order. Figure 6.7(a) shows the locations of the
integration points used in third-order integration (m = 3). Because the integration
limits were the “standard” limits (−1, 1) of Gauss–Legendre quadrature, the weights
and the coordinates of the integration points are as listed Table 6.3.

In order to apply quadrature to the quadrilateral element in Fig. 6.7(b), we must
first map the quadrilateral into the “standard” rectangle in Fig. 6.7(a). By mapping
we mean a coordinate transformation x = x(ξ, η), y = y(ξ, η) that results in one-to-
one correspondence between points in the quadrilateral and in the rectangle. The
transformation that does the job is

x(ξ, η) =
4∑

k=1

Nk(ξ, η)xk y(ξ, η) =
4∑

k=1

Nk(ξ, η)yk (6.41)

where (xk, yk) are the coordinates of corner k of the quadrilateral and

N1(ξ, η) = 1
4

(1 − ξ)(1 − η)

N2(ξ, η) = 1
4

(1 + ξ)(1 − η) (6.42)

N3(ξ, η) = 1
4

(1 + ξ)(1 + η)

N4(ξ, η) = 1
4

(1 − ξ)(1 + η)

The functions Nk(ξ, η), known as the shape functions, are bilinear (linear in each
coordinate). Consequently, straight lines remain straight upon mapping. In particular,
note that the sides of the quadrilateral are mapped into the lines ξ = ±1 and η = ±1.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

235 6.5 Multiple Integrals

Because mapping distorts areas, an infinitesimal area element dA = dx dy of the
quadrilateral is not equal to its counterpart dA′ = dξ dη of the rectangle. It can be
shown that the relationship between the areas is

dx dy = |J(ξ, η)| dξ dη (6.43)

where

J(ξ, η) =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 (6.44a)

is known as the Jacobian matrix of the mapping. Substituting from Eqs. (6.41) and
(6.42) and differentiating, we find that the components of the Jacobian matrix are

J11 = 1
4

[−(1 − η)x1 + (1 − η)x2 + (1 + η)x3 − (1 − η)x4]

J12 = 1
4

[−(1 − η)y1 + (1 − η)y2 + (1 + η)y3 − (1 − η)y4] (6.44b)

J21 = 1
4

[−(1 − ξ)x1 − (1 + ξ)x2 + (1 + ξ)x3 + (1 − ξ)x4]

J22 = 1
4

[−(1 − ξ)y1 − (1 + ξ)y2 + (1 + ξ)y3 + (1 − ξ)y4]

We can now write∫ ∫
A

f (x, y) dx dy =
∫ 1

−1

∫ 1

−1
f [x(ξ, η), y(ξ, η)] |J(ξ, η)| dξ dη (6.45)

Since the right-hand-side integral is taken over the “standard” rectangle, it can be
evaluated using Eq. (6.40). Replacing f (ξ, η) in Eq. (6.40) by the integrand in Eq. (6.45),
we get the following formula for Gauss–Legendre quadrature over a quadrilateral
region:

I =
n∑

i=0

n∑
j=0

Ai A j f
[
x(ξ i, η j), y(ξ i, η j)

] ∣∣J(ξ i, η j)
∣∣ (6.46)

The ξ and η-coordinates of the integration points and the weights can again be ob-
tained from Table 6.3.

� gaussQuad2

The function gaussQuad2 in this module computes
∫ ∫

A f (x, y) dx dy over a quadri-
lateral element with Gauss–Legendre quadrature of integration order m. The quadri-
lateral is defined by the arrays x and y, which contain the coordinates of the four
corners ordered in a counterclockwise direction around the element. The determinant

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

236 Numerical Integration

of the Jacobian matrix is obtained by calling the function jac; mapping is performed
by map. The weights and the values of ξ and η at the integration points are computed
by gaussNodes listed in the previous article (note that ξ and η appear as s and t in the
listing).

module gaussQuad2

’’’ I = gaussQuad2(f,xc,yc,m).

Gauss-Legendre integration of f(x,y) over a

quadrilateral using integration order m.

{xc},{yc} are the corner coordinates of the quadrilateral.

’’’

from gaussNodes import *

from numarray import zeros,Float64,dot

def gaussQuad2(f,x,y,m):

def jac(x,y,s,t):

J = zeros((2,2),type=Float64)

J[0,0] = -(1.0 - t)*x[0] + (1.0 - t)*x[1] \

+ (1.0 + t)*x[2] - (1.0 + t)*x[3]

J[0,1] = -(1.0 - t)*y[0] + (1.0 - t)*y[1] \

+ (1.0 + t)*y[2] - (1.0 + t)*y[3]

J[1,0] = -(1.0 - s)*x[0] - (1.0 + s)*x[1] \

+ (1.0 + s)*x[2] + (1.0 - s)*x[3]

J[1,1] = -(1.0 - s)*y[0] - (1.0 + s)*y[1] \

+ (1.0 + s)*y[2] + (1.0 - s)*y[3]

return (J[0,0]*J[1,1] - J[0,1]*J[1,0])/16.0

def map(x,y,s,t):

N = zeros((4),type=Float64)

N[0] = (1.0 - s)*(1.0 - t)/4.0

N[1] = (1.0 + s)*(1.0 - t)/4.0

N[2] = (1.0 + s)*(1.0 + t)/4.0

N[3] = (1.0 - s)*(1.0 + t)/4.0

xCoord = dot(N,x)

yCoord = dot(N,y)

return xCoord,yCoord

s,A = gaussNodes(m)

sum = 0.0

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

237 6.5 Multiple Integrals

for i in range(m):

for j in range(m):

xCoord,yCoord = map(x,y,s[i],s[j])

sum = sum + A[i]*A[j]*jac(x,y,s[i],s[j]) \

*f(xCoord,yCoord)

return sum

EXAMPLE 6.13

x

y

1

2
3

4

2 2

3

Evaluate the integral

I =
∫ ∫

A

(
x2 + y

)
dx dy

analytically by first transforming it from the quadrilateral region A shown to the “stan-
dard” rectangle.

Solution The corner coordinates of the quadrilateral are

xT =
[

0 2 2 0
]

yT =
[

0 0 3 2
]

The mapping is

x(ξ, η) =
4∑

k=1

Nk(ξ, η)xk

= 0 + (1 + ξ)(1 − η)
4

(2) + (1 + ξ)(1 + η)
4

(2) + 0

= 1 + ξ

y(ξ, η) =
4∑

k=1

Nk(ξ, η)yk

= 0 + 0 + (1 + ξ)(1 + η)
4

(3) + (1 − ξ)(1 + η)
4

(2)

= (5 + ξ)(1 + η)
4

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

238 Numerical Integration

which yields for the Jacobian matrix

J(ξ, η) =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 =

 1

1 + η

4
0

5 + ξ

4

Thus the area scale factor is

|J(ξ, η)| = 5 + ξ

4

Now we can map the integral from the quadrilateral to the standard rectangle. Refer-
ring to Eq. (6.45), we obtain

I =
∫ 1

−1

∫ 1

−1

[
(1 + ξ)2 + (5 + ξ)(1 + η)

4

]
5 + ξ

4
dξ dη

=
∫ 1

−1

∫ 1

−1

(
45
16

+ 27
8

ξ + 29
16

ξ2 + 1
4
ξ3 + 25

16
η + 5

8
ξη + 1

16
ξ2η

)
dξ dη

Noting that only even powers of ξ and η contribute to the integral, we can simplify the
integral to

I =
∫ 1

−1

∫ 1

−1

(
45
16

+ 29
16

ξ2
)

dξ dη = 41
3

EXAMPLE 6.14
Evaluate the integral ∫ 1

−1

∫ 1

−1
cos

πx
2

cos
π y
2

dx dy

by Gauss–Legendre quadrature of order three.

Solution From the quadrature formula in Eq. (6.40), we have

I =
2∑

i=0

2∑
j=0

Ai A j cos
πxi

2
cos

π yj

2

a

a a

a b

b

b b

y

−1 10

1

−1

0 x

The integration points are shown in the figure; their coordinates and the correspond-
ing weights are listed in Table 6.3. Note that the integrand, the integration points and

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

239 6.5 Multiple Integrals

the weights are all symmetric about the coordinate axes. It follows that the points
labeled a contribute equal amounts to I ; the same is true for the points labeled b.
Therefore,

I = 4(0.555 556)2 cos2 π(0.774 597)
2

+ 4(0.555 556)(0.888 889) cos
π(0.774 597)

2
cos

π(0)
2

+ (0.888 889)2 cos2 π(0)
2

= 1.623 391

The exact value of the integral is 16/π2 ≈ 1.621 139.

EXAMPLE 6.15

x

y

1

3
4

2

34

41

1

Utilize gaussQuad2 to evaluate I = ∫ ∫
A f (x, y) dx dy over the quadrilateral shown,

where

f (x, y) = (x − 2)2(y − 2)2

Use enough integration points for an “exact” answer.

Solution The required integration order is determined by the integrand in
Eq. (6.45):

I =
∫ 1

−1

∫ 1

−1
f [x(ξ, η), y(ξ, η)] |J(ξ, η)| dξ dη (a)

We note that |J (ξ, η)|, defined in Eqs. (6.44), is biquadratic. Since the specified f (x, y)
is also biquadratic, the integrand in Eq. (a) is a polynomial of degree 4 in both ξ and
η. Thus third-order integration is sufficient for an “exact” result.

#!/usr/bin/python

example 6_15

from gaussQuad2 import *

from numarray import array

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

240 Numerical Integration

def f(x,y): return ((x - 2.0)**2)*((y - 2.0)**2)

x = array([0.0, 4.0, 4.0, 1.0])

y = array([0.0, 1.0, 4.0, 3.0])

m = eval(raw_input(’’Integration order ==> ’’))

print ’’Integral =’’, gaussQuad2(f,x,y,m)

raw_input(’’\nPress return to exit’’

Running the above program produced the following result:

Integration order ==> 3

Integral = 11.3777777778

Quadrature over a Triangular Element

1
2

3 4

Figure 6.8. Degenerate quadrilateral.

A triangle may be viewed as a degenerate quadrilateral with two of its corners
occupying the same location, as illustrated in Fig. 6.8. Therefore, the integration for-
mulas over a quadrilateral region can also be used for a triangular element. However,
it is computationally advantageous to use integration formulas specially developed
for triangles, which we present without derivation.18

P
A

A

A 12

1
23

3

x

y

Figure 6.9. Triangular element.

Consider the triangular element in Fig. 6.9. Drawing straight lines from the point
P in the triangle to each of the corners, we divide the triangle into three parts with
areas A1, A2 and A3. The so-called area coordinates of P are defined as

αi = Ai

A
, i = 1, 2, 3 (6.47)

18 The triangle formulas are extensively used in the finite method analysis. See, for example,
Zienkiewicz, O. C., and Taylor, R. L., The Finite Element Method, Vol. 1, 4th ed., McGraw-Hill,
1989.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

241 6.5 Multiple Integrals

where A is the area of the element. Since A1 + A2 + A3 = A, the area coordinated are
related by

α1 + α2 + α3 = 1 (6.48)

Note that αi ranges from 0 (when P lies on the side opposite to corner i) to 1 (when P
is at corner i).

A convenient formula of computing A from the corner coordinates (xi, yi) is

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ (6.49)

The area coordinates are mapped into the Cartesian coordinates by

x(α1, α2, α3) =
3∑

i=1

αi xi y(α1, α2, α3) =
3∑

i=1

αi yi (6.50)

The integration formula over the element is∫ ∫
A

f [x(α), y(α)] dA = A
∑

k

Wk f [x(αk), y(αk)] (6.51)

where αk represents the area coordinates of the integration point k, and Wk are the
weights. The locations of the integration points are shown in Fig. 6.10, and the corre-
sponding values of αk and Wk are listed in Table 6.7. The quadrature in Eq. (6.51) is
exact if f (x, y) is a polynomial of the degree indicated.

a
a

b

c
b

c
d

a

(a) Linear (b) Quadratic (c) Cubic

Figure 6.10. Integration points of trian-
gular elements.

Degree of f (x, y) Point αk Wk

(a) Linear a 1/3, 1/3, 1/3 1

(b) Quadratic a 1/2, 0 , 1/2 1/3
b 1/2, 1/2, 0 1/3
c 0, 1/2 , 1/2 1/3

(c) Cubic a 1/3, 1/3, 1/3 −27/48
b 1/5, 1/5, 3/5 25/48
c 3/5. 1/5 , 1/5 25/48
d 1/5, 3/5 , 1/5 25/48

Table 6.7

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

242 Numerical Integration

� triangleQuad

The function triangleQuad computes
∫ ∫

A f (x, y) dx dy over a triangular region us-
ing the cubic formula—case (c) in Fig. 6.10. The triangle is defined by its corner coor-
dinate arrays xc and yc, where the coordinates are listed in a counterclockwise order
around the triangle.

module triangleQuad

’’’ I = triangleQuad(f,xc,yc).

Integration of f(x,y) over a triangle using

the cubic formula.

{xc},{yc} are the corner coordinates of the triangle.

’’’

from numarray import array,matrixmultiply

def triangleQuad(f,xc,yc):

alpha = array([[1.0/3, 1.0/3.0, 1.0/3.0], \

[0.2, 0.2, 0.6], \

[0.6, 0.2, 0.2], \

[0.2, 0.6, 0.2]])

W = array([-27.0/48.0 ,25.0/48.0, 25.0/48.0, 25.0/48.0])

x = matrixmultiply(alpha,xc)

y = matrixmultiply(alpha,yc)

A = (xc[1]*yc[2] - xc[2]*yc[1] \

- xc[0]*yc[2] + xc[2]*yc[0] \

+ xc[0]*yc[1] - xc[1]*yc[0])/2.0

sum = 0.0

for i in range(4):

sum = sum + W[i] * f(x[i],y[i])

return A*sum

EXAMPLE 6.16

3

1

x

y1

3

2

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

243 6.5 Multiple Integrals

Evaluate I = ∫ ∫
A f (x, y) dx dy over the equilateral triangle shown, where19

f (x, y) = 1
2

(x2 + y2) − 1
6

(x3 − 3xy2) − 2
3

Use the quadrature formulas for (1) a quadrilateral; and (2) a triangle.

Solution of Part (1) Let the triangle be formed by collapsing corners 3 and 4 of a
quadrilateral. The corner coordinates of this quadrilateral are x = [−1, −1, 2, 2]T

and y =
[√

3, − √
3, 0, 0

]T
. To determine the minimum required integration order

for an exact result, we must examine f [x(ξ, η), y(ξ, η)] |J(ξ, η)|, the integrand in (6.45).
Since |J(ξ, η)| is biquadratic, and f (x, y) is cubic in x, the integrand is a polynomial of
degree 5 in x. Therefore, third-order integration will suffice. The program used for the
computations is similar to the one in Example 6.15:

#!/usr/bin/python

example6_16a

from gaussQuad2 import *

from numarray import array

from math import sqrt

def f(x,y):

return (x**2 + y**2)/2.0 \

- (x**3 - 3.0*x*y**2)/6.0 \

- 2.0/3.0

x = array([-1.0,-1.0,2.0,2.0])

y = array([sqrt(3.0),-sqrt(3.0),0.0,0.0])

m = eval(raw_input(’’Integration order ==> ’’))

print ’’Integral =’’, gaussQuad2(f,x,y,m)

raw_input(’’\nPress return to exit’’)

Here is the output:

Integration order ==> 3

Integral = -1.55884572681

Solution of Part (2) The following program utilizes triangleQuad:

#!/usr/bin/python

example6_16b

19 This function is identical to the Prandtl stress function for torsion of a bar with the cross section
shown; the integral is related to the torsional stiffness of the bar. See, for example Timoshenko,
S. P., and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, 1970.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

244 Numerical Integration

from numarray import array

from math import sqrt

from triangleQuad import *

def f(x,y):

return (x**2 + y**2)/2.0 \

- (x**3 - 3.0*x*y**2)/6.0 \

- 2.0/3.0

xCorner = array([-1.0, -1.0, 2.0])

yCorner = array([sqrt(3.0), -sqrt(3.0), 0.0])

print ’’Integral =’’,triangleQuad(f,xCorner,yCorner)

raw_input(’’Press return to exit’’)

Since the integrand is a cubic, this quadrature is also exact, the result being

Integral = -1.55884572681

Note that only four function evaluations were required when using the triangle
formulas. In contrast, the function had to be evaluated at nine points in part (1).

EXAMPLE 6.17
The corner coordinates of a triangle are (0, 0), (16, 10) and (12, 20). Compute∫ ∫

A

(
x2 − y2

)
dx dy over this triangle.

Solution

12 4

10

10

a

b

c

x

y

Because f (x, y) is quadratic, quadrature over the three integration points shown
in Fig. 6.10(b) will be sufficient for an “exact” result. Note that the integration points
lie in the middle of each side; their coordinates are (6, 10), (8, 5) and (14, 15). The area
of the triangle is obtained from Eq. (6.49):

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣∣
1 1 1
0 16 12
0 10 20

∣∣∣∣∣∣∣ = 100

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

245 6.5 Multiple Integrals

From Eq. (6.51) we get

I = A
c∑

k=a

Wk f (xk, yk)

= 100
[

1
3

f (6, 10) + 1
3

f (8, 5) + 1
3

f (14, 15)
]

= 100
3

[
(62 − 102) + (82 − 52) + (142 − 152)

] = 1800

PROBLEM SET 6.3

1. Use Gauss–Legendre quadrature to compute

∫ 1

−1

∫ 1

−1
(1 − x2)(1 − y2) dx dy

2. Evaluate the following integral with Gauss–Legendre quadrature:

∫ 2

y=0

∫ 3

x=0
x2 y2 dx dy

3. Compute the approximate value of

∫ 1

−1

∫ 1

−1
e−(x2+y2) dx dy

with Gauss–Legendre quadrature. Use integration order (a) two and (b) three.
(The “exact” value of the integral is 2.230 985.)

4. Use third-order Gauss–Legendre quadrature to obtain an approximate value of

∫ 1

−1

∫ 1

−1
cos

π(x − y)
2

dx dy

(The “exact” value of the integral is 1.621 139.)

5.

4

4

2
x

y

Map the integral
∫ ∫

A xy dx dy from the quadrilateral region shown to the “stan-
dard” rectangle and then evaluate it analytically.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

246 Numerical Integration

6.

4

4

32
x

y

Compute
∫ ∫

A x dx dy over the quadrilateral region shown by first mapping it into
the “standard” rectangle and then integrating analytically.

7.

4

2

3
x

y

Use quadrature to compute
∫ ∫

A x2 dx dy over the triangle shown.

8. Evaluate
∫ ∫

A x3 dx dy over the triangle shown in Prob. 7.

9.

4

x

y

3

Evaluate
∫ ∫

A(3 − x)y dx dy over the region shown.

10. Evaluate
∫ ∫

A x2 y dx dy over the triangle shown in Prob. 9.

11. �

1 3

x

y

2

13

2

Evaluate
∫ ∫

A xy(2 − x2)(2 − xy) dx dy over the region shown.

12. � Compute
∫ ∫

A xy exp(−x2) dx dy over the region shown in Prob. 11 to four dec-
imal places.

P1: GDZ
CB904-06 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:34

247 6.5 Multiple Integrals

13. �

1

1

x

y

Evaluate
∫ ∫

A(1 − x)(y − x)y dx dy over the triangle shown.

14. � Estimate
∫ ∫

A sin πx dx dy over the region shown in Prob. 13. Use the cubic
integration formula for a triangle. (The exact integral is 1/π .)

15. � Compute
∫ ∫

A sin πx sin π(y − x) dx dy to six decimal places, where A is
the triangular region shown in Prob. 13. Consider the triangle as a degenerate
quadrilateral.

16. �

1

1

1

1

y

x

Write a program to evaluate
∫ ∫

A f (x, y) dx dy over an irregular region that has
been divided into several triangular elements. Use the program to compute∫ ∫

A xy(y − x) dx dy over the region shown.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

7 Initial Value Problems

Solve y′ = F(x, y) with the auxiliary conditions y(a) = α

7.1 Introduction

The general form of a first-order differential equation is

y′ = f (x, y) (7.1a)

where y′ = dy/dx and f (x, y) is a given function. The solution of this equation contains
an arbitrary constant (the constant of integration). To find this constant, we must know
a point on the solution curve; that is, y must be specified at some value of x, say at
x = a. We write this auxiliary condition as

y(a) = α (7.1b)

An ordinary differential equation of order n

y(n) = f
(
x, y, y′, . . . , y(n−1)) (7.2)

can always transformed into n first-order equations. Using the notation

y0 = y y1 = y′ y2 = y′′ . . . yn−1 = y(n−1) (7.3)

the equivalent first-order equations are

y′
0 = y1 y′

1 = y2 y′
2 = y3 . . . y′

n = f (x, y0, y1, . . . , yn−1) (7.4a)

The solution now requires the knowledge n auxiliary conditions. If these conditions
are specified at the same value of x, the problem is said to be an initial value problem.
Then the auxiliary conditions, called initial conditions, have the form

y0(a) = α0 y1(a) = α1 . . . yn−1(a) = αn−1 (7.4b)

248

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

249 7.2 Taylor Series Method

If yi are specified at different values of x, the problem is called a boundary value
problem.

For example,

y′′ = −y y(0) = 1 y′(0) = 0

is an initial value problem since both auxiliary conditions imposed on the solution
are given at x = 0. On the other hand,

y′′ = −y y(0) = 1 y(π) = 0

is a boundary value problem because the two conditions are specified at different
values of x.

In this chapter we consider only initial value problems. The more difficult bound-
ary value problems are discussed in the next chapter. We also make extensive use of
vector notation, which allows us manipulate sets of first-order equations in a concise
form. For example, Eqs. (7.4) are written as

y′ = F(x, y) y(a) = α (7.5a)

where

F(x, y) =

y1

y2

...
f (x, y)

 (7.5b)

A numerical solution of differential equations is essentially a table of x- and y-values
listed at discrete intervals of x.

7.2 Taylor Series Method

The Taylor series method is conceptually simple and capable of high accuracy. Its
basis is the truncated Taylor series for y about x:

y(x + h) ≈ y(x) + y′(x)h + 1
2!

y′′(x)h2 + 1
3!

y′′′(x)h3 + · · · + 1
m!

y(m)(x)hm (7.6)

Because Eq. (7.6) predicts y at x + h from the information available at x, it is also a
formula for numerical integration. The last term kept in the series determines the
order of integration. For the series in Eq. (7.6) the integration order is m.

The truncation error, due to the terms omitted from the series, is

E = 1
(m+ 1)!

y(m+1)(ξ)hm+1, x < ξ < x + h

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

250 Initial Value Problems

Using the finite difference approximation

y(m+1)(ξ) ≈ y(m)(x + h) − y(m)(x)
h

we obtain the more usable form

E ≈ hm

(m+ 1)!

[
y(m)(x + h) − y(m)(x)

]
(7.7)

which could be incorporated in the algorithm to monitor the error in each integration
step.

� taylor

The functiontaylor implements the Taylor series method of integration of order four.
It can handle any number of first-order differential equations y′

i = fi(x, y0, y1, . . .),
i = 0, 1, The user is required to supply the function deriv that returns the 4 × n
array

D =

(y′)T

(y′′)T

(y′′′)T

(y(4))T

 =

y′
0 y′

1 · · · y′
n−1

y′′
0 y′′

1 · · · y′′
n−1

y′′′
0 y′′′

1 · · · y′′′
n−1

y(4)
0 y(4)

1 · · · y(4)
n−1

The function returns the arraysX andY that contain the values of x and y at intervals h.

module taylor

’’’ X,Y = taylor(deriv,x,y,xStop,h).

4th-order Taylor series method for solving the initial

value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

h = increment of x used in integration

deriv = user-supplied function that returns the 4 x n array

[y’[0] y’[1] y’[2] ... y’[n-1]

y’’[0] y’’[1] y’’[2] ... y’’[n-1]

y’’’[0] y’’’[1] y’’’[2] ... y’’’[n-1]

y’’’’[0] y’’’’[1] y’’’’[2] ... y’’’’[n-1]]

’’’

from numarray import array

def taylor(deriv,x,y,xStop,h):

X = []

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

251 7.2 Taylor Series Method

Y = []

X.append(x)

Y.append(y)

while x < xStop: # Loop over integration steps

h = min(h,xStop - x)

D = deriv(x,y) # Derivatives of y

H = 1.0

for j in range(4): # Build Taylor series

H = H*h/(j + 1)

y = y + D[j]*H # H = hˆj/j!

x = x + h

X.append(x) # Append results to

Y.append(y) # lists X and Y

return array(X),array(Y) # Convert lists into arrays

� printSoln

We use this function to printXandYobtained from numerical integration. The amount
of data is controlled by the parameter freq. For example, if freq = 5, every 5th
integration step would be displayed. If freq = 0, only the initial and final values will
be shown.

module printSoln

’’’ printSoln(X,Y,freq).

Prints X and Y returned from the differential

equation solvers using printput frequency ’freq’.

freq = n prints every nth step.

freq = 0 prints initial and final values only.

’’’

def printSoln(X,Y,freq):

def printHead(n):

print ’’\n x ’’,

for i in range (n):

print ’’ y[’’,i,’’] ’’,

print

def printLine(x,y,n):

print ’’%13.4e’’% x,

for i in range (n):

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

252 Initial Value Problems

print ’’%13.4e’’% y[i],

print

m = len(Y)

try: n = len(Y[0])

except TypeError: n = 1

if freq == 0: freq = m

printHead(n)

for i in range(0,m,freq):

printLine(X[i],Y[i],n)

if i != m - 1: printLine(X[m - 1],Y[m - 1],n)

EXAMPLE 7.1
Given that

y′ + 4y = x2 y(0) = 1

determine y(0.1) with the fourth-order Taylor series method using a single integration
step. Also compute the estimated error from Eq. (7.7) and compare it with the actual
error. The analytical solution of the differential equation is

y = 31
32

e−4x + 1
4

x2 − 1
8

x + 1
32

Solution The Taylor series up to and including the term with h4 is

y(h) = y(0) + y′(0)h + 1
2!

y′′(0)h2 + 1
3!

y′′′(0)h3 + 1
4!

y(4)(0)h4 (a)

Differentiation of the differential equation yields

y′ = −4y + x2

y′′ = −4y′ + 2x = 16y − 4x2 + 2x

y′′′ = 16y′ − 8x + 2 = −64y + 16x2 − 8x + 2

y(4) = −64y′ + 32x − 8 = 256y − 64x2 + 32x − 8

Thus at x = 0 we have

y′(0) = −4(1) = −4

y′′(0) = 16(1) = 16

y′′′(0) = −64(1) + 2 = −62

y(4)(0) = 256(1) − 8 = 248

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

253 7.2 Taylor Series Method

With h = 0.1 Eq. (a) becomes

y(0.1) = 1 + (−4)(0.1) + 1
2!

(16)(0.1)2 + 1
3!

(−62)(0.1)3 + 1
4!

(248)(0.1)4

= 0.670700

According to Eq. (7.7) the approximate truncation error is

E = h4

5!

[
y(4)(0.1) − y(4)(0)

]
where

y(4)(0) = 248

y(4)(0.1) = 256(0.6707) − 64(0.1)2 + 32(0.1) − 8 = 166.259

Therefore,

E = (0.1)4

5!
(166.259 − 248) = −6.8 × 10−5

The analytical solution yields

y(0.1) = 31
32

e−4(0.1) + 1
4

(0.1)2 − 1
8

(0.1) + 1
32

= 0.670623

so that the actual error is 0.670623 − 0.670700 = −7.7 × 10−5.

EXAMPLE 7.2
Solve

y′′ = −0.1y′ − x y(0) = 0 y′(0) = 1

from x = 0 to 2 with the Taylor series method of order four. Use h = 0.25 and utilize
the functions taylor and printSoln.

Solution With the notation y0 = y and y1 = y′ the equivalent first-order equations
and the initial conditions are

y′ =
[

y′
0

y′
1

]
=

[
y1

−0.1y1 − x

]
y(0) =

[
0
1

]

Repeated differentiation of the differential equations yields

y′′ =
[

y′
1

−0.1y′
1 − 1

]
=

[
−0.1y1 − x

0.01y1 + 0.1x − 1

]

y′′′ =
[

−0.1y′
1 − 1

0.01y′
1 + 0.1

]
=

[
0.01y1 + 0.1x − 1

−0.001y1 − 0.01x + 0.1

]

y(4) =
[

0.01y′
1 + 0.1

−0.001y′
1 − 0.01

]
=

[
−0.001y1 − 0.01x + 0.1

0.0001y1 + 0.001x − 0.01

]

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

254 Initial Value Problems

Thus the derivative array that has to be computed by the function deriv is

D =

y1 −0.1y1 − x
−0.1y1 − x 0.01y1 + 0.1x − 1

0.01y1 + 0.1x − 1 −0.001y1 − 0.01x + 0.1
−0.001y1 − 0.01x + 0.1 0.0001y1 + 0.001x − 0.01

Here is the program that performs the integration:

#!/usr/bin/python

example7_2

from printSoln import *

from taylor import *

def deriv(x,y):

D = zeros((4,2),type=Float64)

D[0] = [y[1] , -0.1*y[1] - x]

D[1] = [D[0,1], 0.01*y[1] + 0.1*x - 1.0]

D[2] = [D[1,1], -0.001*y[1] - 0.01*x + 0.1]

D[3] = [D[2,1], 0.0001*y[1] + 0.001*x - 0.01]

return D

x = 0.0 # Start of integration

xStop = 2.0 # End of integration

y = array([0.0, 1.0]) # Initial values of {y}

h = 0.25 # Step size

freq = 1 # Printout frequency

X,Y = taylor(deriv,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

The results are:

x y[0] y[1]

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

255 7.3 Runge–Kutta Methods

The analytical solution of the problem is

y = 100x − 5x2 + 990(e−0.1x − 1)

from which we obtain y(2) = 0.543 446, which agrees well with the numerical solution.

7.3 Runge–Kutta Methods

The main drawback of the Taylor series method is that it requires repeated differen-
tiation of the dependent variables. These expressions may become very long and are,
therefore, error-prone and tedious to compute. Moreover, there is the extra work of
coding each of the derivatives. The aim of Runge–Kutta methods is to eliminate the
need for repeated differentiation of the differential equations. Since no such differen-
tiation is involved in the first-order Taylor series integration formula

y(x + h) = y(x) + y′(x)h = y(x) + F(x, y)h (7.8)

it can also be considered as the first-order Runge–Kutta method; it is also called Euler’s
method. Due to excessive truncation error, this method is rarely used in practice.

y' (x)

x
x x + h

Euler's formula

Error

f (x,y)

Figure 7.1. Graphical representation of Euler’s formula.

Let us now take a look at the graphical interpretation of Euler’s formula. For the
sake of simplicity, we assume that there is a single dependent variable y, so that
the differential equation is y′ = f (x, y). The change in the solution y between x and
x + h is

y(x + h) − y(h) =
∫ x+h

x
y′ dx =

∫ x+h

x
f (x, y)dx

which is the area of the panel under the y′(x) plot, shown in Fig. 7.1. Euler’s formula
approximates this area by the area of the cross-hatched rectangle. The area between
the rectangle and the plot represents the truncation error. Clearly, the truncation error
is proportional to the slope of the plot; that is, proportional to y′′(x).

Second-Order Runge–Kutta Method

To arrive at the second-order method, we assume an integration formula of the form

y(x + h) = y(x) + c0F(x, y)h + c1F
[
x + ph, y + qhF(x, y)

]
h (a)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

256 Initial Value Problems

and attempt to find the parameters c0, c1, p and q by matching Eq. (a) to the Taylor
series

y(x + h) = y(x) + y′(x)h + 1
2!

y′′(x)h2 + O(h3)

= y(x) + F(x, y)h + 1
2

F′(x, y)h2 + O(h3) (b)

Noting that

F′(x, y) = ∂F
∂x

+
n−1∑
i=0

∂F
∂yi

y′
i = ∂F

∂x
+

n−1∑
i=0

∂F
∂yi

Fi(x, y)

where n is the number of first-order equations, we can write Eq. (b) as

y(x + h) = y(x) + F(x, y)h + 1
2

(
∂F
∂x

+
n−1∑
i=0

∂F
∂yi

Fi(x, y)

)
h2 + O(h3) (c)

Returning to Eq. (a), we can rewrite the last term by applying a Taylor series in
several variables:

F
[
x + ph, y + qhF(x, y)

] = F(x, y) + ∂F
∂x

ph + qh
n−1∑
i=1

∂F
∂yi

Fi(x, y) + O(h2)

so that Eq. (a) becomes

y(x + h) = y(x) + (c0 + c1) F(x, y)h + c1

[
∂F
∂x

ph + qh
n−1∑
i=1

∂F
∂yi

Fi(x, y)

]
h + O(h3) (d)

Comparing Eqs. (c) and (d), we find that they are identical if

c0 + c1 = 1 c1 p = 1
2

c1q = 1
2

(e)

Because Eqs. (e) represent three equations in four unknown parameters, we can assign
any value to one of the parameters. Some of the popular choices and the names
associated with the resulting formulas are:

c0 = 0 c1 = 1 p = 1/2 q = 1/2 Modified Euler’s method
c0 = 1/2 c1 = 1/2 p = 1 q = 1 Heun’s method
c0 = 1/3 c1 = 2/3 p = 3/4 q = 3/4 Ralston’s method

All these formulas are classified as second-order Runge–Kutta methods, with no for-
mula having a numerical superiority over the others. Choosing the modified Euler’s
method, we substitute the corresponding parameters into Eq. (a) to yield

y(x + h) = y(x) + F
[

x + h
2

, y + h
2

F(x, y)
]

h (f)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

257 7.3 Runge–Kutta Methods

This integration formula can be conveniently evaluated by the following sequence of
operations

K0 = hF(x, y)

K1 = hF
(

x + h
2

, y + 1
2

K0

)
(7.9)

y(x + h) = y(x) + K1

Second-order methods are not popular in computer application. Most programmers
prefer integration formulas of order four, which achieve a given accuracy with less
computational effort.

y'(x)

x
x x + h

h/2h/2f (x,y)
f (x + h/2, y + K0/2)

Figure 7.2. Graphical representation of modified Euler
formula.

Figure 7.2 displays the graphical interpretation of modified Euler’s formula for
a single differential equation y′ = f (x, y). The first of Eqs. (7.9) yields an estimate of
y at the midpoint of the panel by Euler’s formula: y(x + h/2) = y(x) + f (x, y)h/2 =
y(x) + K0/2. The second equation then approximates the area of the panel by the area
K1 of the cross-hatched rectangle. The error here is proportional to the curvature y′′′

of the plot.

Fourth-Order Runge–Kutta Method

The fourth-order Runge–Kutta method is obtained from the Taylor series along the
same lines as the second-order method. Since the derivation is rather long and not very
instructive, we skip it. The final form of the integration formula again depends on the
choice of the parameters; that is, there is no unique Runge–Kutta fourth-order formula.
The most popular version, which is known simply as the Runge–Kutta method, entails
the following sequence of operations:

K0 = hF(x, y)

K1 = hF
(

x + h
2

, y + K0

2

)

K2 = hF
(

x + h
2

, y + K1

2

)
(7.10)

K3 = hF(x + h, y + K2)

y(x + h) = y(x) + 1
6

(K0 + 2K1 + 2K2 + K3)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

258 Initial Value Problems

The main drawback of this method is that it does not lend itself to an estimate of the
truncation error. Therefore, we must guess the integration step size h, or determine
it by trial and error. In contrast, the so-called adaptive methods can evaluate the
truncation error in each integration step and adjust the value of h accordingly (but at
a higher cost of computation). One such adaptive method is introduced in the next
article.

� run kut4

The function integrate in this module implements the Runge–Kutta method of
order four. The user must provide integrate with the function F(x,y) that defines
the first-order differential equations y′ = F(x, y).

module run_kut4

’’’ X,Y = integrate(F,x,y,xStop,h).

4th-order Runge-Kutta method for solving the

initial value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions.

xStop = terminal value of x.

h = increment of x used in integration.

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numarray import array

def integrate(F,x,y,xStop,h):

def run_kut4(F,x,y,h):

Computes increment of y from Eqs. (7.10)

K0 = h*F(x,y)

K1 = h*F(x + h/2.0, y + K0/2.0)

K2 = h*F(x + h/2.0, y + K1/2.0)

K3 = h*F(x + h, y + K2)

return (K0 + 2.0*K1 + 2.0*K2 + K3)/6.0

X = []

Y = []

X.append(x)

Y.append(y)

while x < xStop:

h = min(h,xStop - x)

y = y + run_kut4(F,x,y,h)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

259 7.3 Runge–Kutta Methods

x = x + h

X.append(x)

Y.append(y)

return array(X),array(Y)

EXAMPLE 7.3
Use the second-order Runge–Kutta method to integrate

y′ = sin y y(0) = 1

from x = 0 to 0.5 in steps of h = 0.1. Keep four decimal places in the computations.

Solution In this problem we have

F (x, y) = sin y

so that the integration formulas in Eqs. (7.9) are

K0 = hF (x, y) = 0.1 sin y

K1 = hF
(

x + h
2

, y + 1
2

K0

)
= 0.1 sin

(
y + 1

2
K0

)
y(x + h) = y(x) + K1

Noting that y(0) = 1, we may proceed with the integration as follows:

K0 = 0.1 sin 1.0000 = 0.0841

K1 = 0.1 sin
(

1.0000 + 0.0841
2

)
= 0.0863

y(0.1) = 1.0 + 0.0863 = 1.0863

K0 = 0.1 sin 1.0863 = 0.0885

K1 = 0.1 sin
(

1.0863 + 0.0885
2

)
= 0.0905

y(0.2) = 1.0863 + 0.0905 = 1.1768

and so on. A summary of the computations is shown in the table below.

x y K0 K1

0.0 1.0000 0.0841 0.0863

0.1 1.0863 0.0885 0.0905

0.2 1.1768 0.0923 0.0940

0.3 1.2708 0.0955 0.0968

0.4 1.3676 0.0979 0.0988

0.5 1.4664

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

260 Initial Value Problems

The exact solution can be shown to be

x(y) = ln(csc y − cot y) + 0.604582

which yields x(1.4664) = 0.5000. Therefore, up to this point the numerical solution is
accurate to four decimal places. However, it is unlikely that this precision would be
maintained if we were to continue the integration. Since the errors (due to truncation
and roundoff) tend to accumulate, longer integration ranges require better integration
formulas and more significant figures in the computations.

EXAMPLE 7.4
Solve

y′′ = −0.1y′ − x y(0) = 0 y′(0) = 1

from x = 0 to 2 in increments of h = 0.25 with the Runge–Kutta method of order four.
(This problem was solved by the Taylor series method in Example 7.2.)

Solution Letting y0 = y and y1 = y′, we write the equivalent first-order equations as

y′ = F(x, y) =
[

y′
0

y′
1

]
=

[
y1

−0.1y1 − x

]

Comparing the function F(x,y)here with deriv(x,y)in Example 7.2 we note that it
is much simpler to input the differential equations in the Runge–Kutta method than
in the Taylor series method.

#!/usr/bin/python

example7_4

from numarray import array,zeros,Float64

from printSoln import *

from run_kut4 import *

def F(x,y):

F = zeros((2),type=Float64)

F[0] = y[1]

F[1] = -0.1*y[1] - x

return F

x = 0.0 # Start of integration

xStop = 2.0 # End of integration

y = array([0.0, 1.0]) # Initial values of {y}

h = 0.25 # Step size

freq = 1 # Printout frequency

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

261 7.3 Runge–Kutta Methods

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input(’’Press return to exit’’)

The output from the fourth-order method is shown below. The results are the
same as obtained by the Taylor series method in Example 7.2. This was expected,
since both methods are of the same order.

x y[0] y[1]

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

EXAMPLE 7.5
Use the fourth-order Runge–Kutta method to integrate

y′ = 3y − 4e−x y(0) = 1

from x = 0 to 10 in steps of h = 0.1. Compare the result with the analytical solution
y = e−x.

Solution We used the program shown below. Recalling that run kut4 assumes y to
be an array, we specified the initial value asy = array([1.0]) rather thany = 1.0.

#!/usr/bin/python

example7_5

from numarray import zeros,Float64,array

from run_kut4 import *

from printSoln import *

from math import exp

def F(x,y):

F = zeros((1),type=Float64)

F[0] = 3.0*y[0] - 4.0*exp(-x)

return F

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

262 Initial Value Problems

x = 0.0 # Start of integration

xStop = 10.0 # End of integration

y = array([1.0]) # Initial values of {y}

h = 0.1 # Step size

freq = 20 # Printout frequency

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

Running the program produced the following output:

x y[0]

0.0000e+000 1.0000e+000

2.0000e+000 1.3250e-001

4.0000e+000 -1.1237e+000

6.0000e+000 -4.6056e+002

8.0000e+000 -1.8575e+005

1.0000e+001 -7.4912e+007

It is clear that something went wrong. According to the analytical solution, y
should approach zero with increasing x, but the output shows the opposite trend:
after an initial decrease, the magnitude of y increases dramatically. The explanation
is found by taking a closer look at the analytical solution. The general solution of the
given differential equation is

y = Ce3x + e−x

which can be verified by substitution. The initial condition y(0) = 1 yields C = 0, so
that the solution to the problem is indeed y = e−x.

The cause of trouble in the numerical solution is the dormant term Ce3x. Suppose
that the initial condition contains a small error ε, so that we have y(0) = 1 + ε. This
changes the analytical solution to

y = εe3x + e−x

We now see that the term containing the error ε becomes dominant as x is increased.
Since errors inherent in the numerical solution have the same effect as small changes in
initial conditions, we conclude that our numerical solution is the victim of numerical
instability due to sensitivity of the solution to initial conditions. The lesson is: do not
blindly trust the results of numerical integration.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

263 7.3 Runge–Kutta Methods

EXAMPLE 7.6

Re r v0

H

A spacecraft is launched at altitude H = 772 km above sea level with the speed
v0 = 6700 m/s in the direction shown. The differential equations describing the mo-
tion of the spacecraft are

r̈ = r θ̇
2 − G Me

r2
θ̈ = −2ṙ θ̇

r

where r and θ are the polar coordinates of the spacecraft. The constants involved in
the motion are

G = 6.672 × 10−11 m3kg−1s−2 = universal gravitational constant

Me = 5.9742 × 1024 kg = mass of the earth

Re = 6378.14 km = radius of the earth at sea level

(1) Derive the first-order differential equations and the initial conditions of the form
ẏ = F(t, y), y(0) = b. (2) Use the fourth-order Runge–Kutta method to integrate the
equations from the time of launch until the spacecraft hits the earth. Determine θ at
the impact site.

Solution of Part (1) We have

G Me = (
6.672 × 10−11) (5.9742 × 1024) = 3.9860 × 1014 m3s−2

Letting

y =

y0

y1

y2

y3

 =

r
ṙ
θ

θ̇

the equivalent first-order equations become

ẏ =

ẏ0

ẏ1

ẏ2

ẏ3

 =

y1

y0 y2
3 − 3.9860 × 1014/y2

0

y3

−2y1 y3/y0

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

264 Initial Value Problems

and the initial conditions are

r(0) = Re + H = Re = (6378.14 + 772) × 103 = 7. 15014 × 106 m

ṙ(0) = 0

θ(0) = 0

θ̇(0) = v0/r(0) = (6700) /(7.15014 × 106) = 0.937045 × 10−3 rad/s

Therefore,

y(0) =

7. 15014 × 106

0
0
0.937045 × 10−3

Solution of Part (2) The program used for numerical integration is listed below.
Note that the independent variable t is denoted by x. The period of integration
xStop (the time when the spacecraft hits) was estimated from a previous run of the
program.

#!/usr/bin/python

example7_6

from numarray import zeros,Float64,array

from run_kut4 import *

from printSoln import *

def F(x,y):

F = zeros((4),type=Float64)

F[0] = y[1]

F[1] = y[0]*(y[3]**2) - 3.9860e14/(y[0]**2)

F[2] = y[3]

F[3] = -2.0*y[1]*y[3]/y[0]

return F

x = 0.0

xStop = 1200.0

y = array([7.15014e6, 0.0, 0.0, 0.937045e-3])

h = 50.0

freq = 2

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

265 7.3 Runge–Kutta Methods

Here is the output:

x y[0] y[1] y[2] y[3]

0.0000e+000 7.1501e+006 0.0000e+000 0.0000e+000 9.3704e-004

1.0000e+002 7.1426e+006 -1.5173e+002 9.3771e-002 9.3904e-004

2.0000e+002 7.1198e+006 -3.0276e+002 1.8794e-001 9.4504e-004

3.0000e+002 7.0820e+006 -4.5236e+002 2.8292e-001 9.5515e-004

4.0000e+002 7.0294e+006 -5.9973e+002 3.7911e-001 9.6951e-004

5.0000e+002 6.9622e+006 -7.4393e+002 4.7697e-001 9.8832e-004

6.0000e+002 6.8808e+006 -8.8389e+002 5.7693e-001 1.0118e-003

7.0000e+002 6.7856e+006 -1.0183e+003 6.7950e-001 1.0404e-003

8.0000e+002 6.6773e+006 -1.1456e+003 7.8520e-001 1.0744e-003

9.0000e+002 6.5568e+006 -1.2639e+003 8.9459e-001 1.1143e-003

1.0000e+003 6.4250e+006 -1.3708e+003 1.0083e+000 1.1605e-003

1.1000e+003 6.2831e+006 -1.4634e+003 1.1269e+000 1.2135e-003

1.2000e+003 6.1329e+006 -1.5384e+003 1.2512e+000 1.2737e-003

The spacecraft hits the earth when r equals Re = 6.378 14 × 106 m. This occurs
between t = 1000 and 1100 s. A more accurate value of t can be obtained by polynomial
interpolation. If no great precision is needed, linear interpolation will do. Letting
1000 + �t be the time of impact, we can write

r(1000 + �t) = Re

Expanding r in a two-term Taylor series, we get

r(1000) + ṙ(1000)�t = Re

6.4250 × 106 + (−1.3708 × 103)�t = 6378.14 × 103

from which

�t = 34.184 s

Thus the time of impact is 1034.25.
The coordinate θ of the impact site can be estimated in a similar manner. Using

again two terms of the Taylor series, we have

θ(1000 + �t) = θ(1000) + θ̇(1000)�t

= 1.0083 + (
1.1605 × 10−3) (34.184)

= 1.0480 rad = 60.00◦

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

266 Initial Value Problems

PROBLEM SET 7.1

1. Given

y′ + 4y = x2 y(0) = 1

compute y(0.1) using two steps of the Taylor series method of order two. Compare
the result with Example 7.1.

2. Solve Prob. 1 with one step of the Runge–Kutta method of order (a) two and (b) four.

3. Integrate

y′ = sin y y(0) = 1

from x = 0 to 0.5 with the second-order Taylor series method using h = 0.1. Com-
pare the result with Example 7.3.

4. Verify that the problem

y′ = y1/3 y(0) = 0

has two solutions: y = 0 and y = (2x/3)3/2. Which of the solutions would be re-
produced by numerical integration if the initial condition is set at (a) y = 0 and
(b) y = 10−16? Verify your conclusions by integrating with any numerical method.

5. Convert the following differential equations into first-order equations of the form
y′ = F(x, y):

(a) ln y′ + y = sin x
(b) y′′ y − xy′ − 2y2 = 0
(c) y(4) − 4y′′√1 − y2 = 0

(d)
(

y
′′)2 = ∣∣32y′x − y2

∣∣
6. In the following sets of coupled differential equations t is the independent vari-

able. Convert these equations into first-order equations of the form ẏ = F(t, y):

(a) ÿ = x − 2y ẍ = y − x

(b) ÿ = −y
(

ẏ2 + ẋ2
)1/4

ẍ = −x
(

ẏ2 + ẋ
)1/4 − 32

(c) ÿ2 + t sin y = 4ẋ xẍ + t cos y = 4ẏ

7. � The differential equation for the motion of a simple pendulum is

d2θ

dt2
= − g

L
sin θ

where

θ = angular displacement from the vertical

g = gravitational acceleration

L = length of the pendulum

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

267 7.3 Runge–Kutta Methods

With the transformation τ = t
√

g/L the equation becomes

d2θ

dτ 2
= − sin θ

Use numerical integration to determine the period of the pendulum if the ampli-
tude is θ0 = 1 rad. Note that for small amplitudes (sin θ ≈ θ) the period is 2π

√
L/g.

8. � A skydiver of mass m in a vertical free fall experiences an aerodynamic drag
force FD = cD ẏ2, where y is measured downward from the start of the fall. The
differential equation describing the fall is

ÿ = g − cD

m
ẏ2

Determine the time of a 500 m fall. Use g = 9.80665 m/s2, cD = 0.2028 kg/m and
m = 80 kg.

9. �

P (t)
m

k

y

The spring–mass system is at rest when the force P(t) is applied, where

P(t) =
{

10t N when t < 2 s
20 N when t ≥ 2 s

The differential equation of the ensuing motion is

ÿ = P(t)
m

− k
m

y

Determine the maximum displacement of the mass. Use m = 2.5 kg and k =
75 N/m.

10. �

y

Water level

The conical float is free to slide on a vertical rod. When the float is disturbed
from its equilibrium position, it undergoes oscillating motion described by the
differential equation

ÿ = g
(
1 − ay3)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

268 Initial Value Problems

where a = 16 m−3 (determined by the density and dimensions of the float) and
g = 9.80665 m/s2. If the float is raised to the position y = 0.1 m and released,
determine the period and the amplitude of the oscillations.

11. �
y (t)

L

m

The pendulum is suspended from a sliding collar. The system is at rest when the
oscillating motion y(t) = Y sin ωt is imposed on the collar, starting at t = 0. The
differential equation describing the motion of the pendulum is

θ̈ = − g
L

sin θ + ω2

L
Y cos θ sin ωt

Plot θ vs. t from t = 0 to 10 s and determine the largest θ during this period. Use
g = 9.80665 m/s2, L = 1.0 m, Y = 0.25 m and ω = 2.5 rad/s.

12. �

2 m

r

(t)

The system consisting of a sliding mass and a guide rod is at rest with the mass
at r = 0.75 m. At time t = 0 a motor is turned on that imposes the motion θ(t) =
(π/12) cos πt on the rod. The differential equation describing the resulting motion
of the slider is

r̈ =
(

π2

12

)2

r sin2 πt − g sin
(π

12
cos πt

)
Determine the time when the slider reaches the tip of the rod. Use g =
9.80665 m/s2.

13. �

30

v0

m R

y

x

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

269 7.3 Runge–Kutta Methods

A ball of mass m = 0.25 kg is launched with the velocity v0 = 50 m/s in the direc-
tion shown. If the aerodynamic drag force acting on the ball is FD = CDv3/2, the
differential equations describing the motion are

ẍ = −CD

m
ẋv1/2 ÿ = −CD

m
ẏv1/2 − g

where v =
√

ẋ2 + ẏ2. Determine the time of flight and the range R. Use CD =
0.03 kg/(m·s)1/2 and g = 9.80665 m/s2.

14. � The differential equation describing the angular position θ of a mechanical arm
is

θ̈ = a(b − θ) − θ θ̇
2

1 + θ2

where a = 100 s−2 and b = 15. If θ(0) = 2π and θ̇(0) = 0, compute θ and θ̇ when
t = 0.5 s.

15. �

r

m

L = undeformed length
k = stiffness

The mass m is suspended from an elastic cord with an extensional stiffness k and
undeformed length L. If the mass is released from rest at θ = 60◦ with the cord
unstretched, find the length r of the cord when the position θ = 0 is reached for
the first time. The differential equations describing the motion are

r̈ = r θ̇
2 + g cos θ − k

m
(r − L)

θ̈ = −2ṙ θ̇ − g sin θ

r

Use g = 9.80665 m/s2, k = 40 N/m, L = 0.5 m and m = 0.25 kg.

16. � Solve Prob. 15 if the mass is released from the position θ = 60◦ with the cord
stretched by 0.075 m.

17. �

m
k

y

µ

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

270 Initial Value Problems

Consider the mass–spring system where dry friction is present between the block
and the horizontal surface. The frictional force has a constant magnitude µmg
(µ is the coefficient of friction) and always opposes the motion. The differential
equation for the motion of the block can be expressed as

ÿ = − k
m

y − µg
ẏ

|ẏ|
where y is measured from the position where the spring is unstretched. If the block
is released from rest at y = y0, verify by numerical integration that the next positive
peak value of y is y0 − 4µ mg/k (this relationship can be derived analytically). Use
k = 3000 N/m, m = 6 kg, µ = 0.5, g = 9.80665 m/s2 and y0 = 0.1 m.

18. � Integrate the following problems from x = 0 to 20 and plot y vs. x:

(a) y′′ + 0.5(y2 − 1)y′ + y = 0 y(0) = 1 y′(0) = 0
(b) y′′ = y cos 2x y(0) = 0 y′(0) = 1

These differential equations arise in nonlinear vibration analysis.

19. � The solution of the problem

y′′ + 1
x

y′ + y y(0) = 1 y′(0) = 0

is the Bessel function J0(x). Use numerical integration to compute J0(5) and com-
pare the result with −0.17760, the value listed in mathematical tables. Hint: to
avoid singularity at x = 0, start the integration at x = 10−12.

20. � Consider the initial value problem

y′′ = 16.81y y(0) = 1.0 y′(0) = −4.1

(a) Derive the analytical solution. (b) Do you anticipate difficulties in numerical
solution of this problem? (c) Try numerical integration from x = 0 to 8 to see if
your concerns were justified.

21. �

R R

C

2R
i2

i1

i1
i2

L

E(t)

Kirchoff’s equations for the circuit shown are

L
di1

dt
+ Ri1 + 2R(i1 + i2) = E(t) (a)

q2

C
+ Ri2 + 2R(i2 + i1) = E(t) (b)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

271 7.4 Stability and Stiffness

where i1 and i2 are the loop currents, and q2 is the charge of the condenser.
Differentiating Eq. (b) and substituting the charge–current relationship dq2/dt =
i2, we get

di1

dt
= −3Ri1 − 2Ri2 + E(t)

L
(c)

di2

dt
= −2

3
di1

dt
− i2

3RC
+ 1

3R
dE
dt

(d)

We could substitute di1/dt from Eq. (c) into Eq. (d), so that the latter would assume
the usual form di2/dt = f (t, i1, i2), but it is more convenient to leave the equations
as they are. Assuming that the voltage source is turned on at time t = 0, plot the
loop currents i1 and i2 from t = 0 to 0.05 s. Use E(t) = 240 sin(120πt) V, R = 1.0 �,
L = 0.2 × 10−3 H and C = 3.5 × 10−3 F.

22. �
L L

R R

C CE
i1

i2i1

i2

The constant voltage source of the circuit shown is turned on at t = 0, causing
transient currents i1 and i2 in the two loops that last about 0.05 s. Plot these currents
from t = 0 to 0.05 s, using the following data: E = 9 V, R = 0.25 �, L = 1.2 × 10−3 H
and C = 5 × 10−3 F. Kirchoff’s equations for the two loops are

L
di1

dt
+ Ri1 + q1 − q2

C
= E

L
di2

dt
+ Ri2 + q2 − q1

C
+ q2

C
= 0

Additional two equations are the current–charge relationships

dq1

dt
= i1

dq2

dt
= i2

7.4 Stability and Stiffness

Loosely speaking, a method of numerical integration is said to be stable if the effects
of local errors do not accumulate catastrophically; that is, if the global error remains
bounded. If the method is unstable, the global error will increase exponentially, even-
tually causing numerical overflow. Stability has nothing to do with accuracy; in fact,
an inaccurate method can be very stable.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

272 Initial Value Problems

Stability is determined by three factors: the differential equations, the method of
solution and the value of the increment h. Unfortunately, it is not easy to determine
stability beforehand, unless the differential equation is linear.

Stability of Euler’s Method

As a simple illustration of stability, consider the linear problem

y′ = −λy y(0) = β (7.11)

where λ is a positive constant. The exact solution of this problem is

y(x) = βe−λx

Let us now investigate what happens when we attempt to solve Eq. (7.11) numer-
ically with Euler’s formula

y(x + h) = y(x) + hy′(x) (7.12)

Substituting y′(x) = −λy(x), we get

y(x + h) = (1 − λh)y(x)

If |1 − λh| > 1, the method is clearly unstable since |y| increases in every integration
step. Thus Euler’s method is stable only if |1 − λh| ≤ 1, or

h ≤ 2/λ (7.13)

The results can be extended to a system of n differential equations of the form

y′ = −Λy (7.14)

where Λ is a constant matrix with the positive eigenvalues λi , i = 1, 2, . . . , n. It can
be shown that Euler’s method of integration is stable only if

h < 2/λmax (7.15)

where λmax is the largest eigenvalue of Λ.

Stiffness

An initial value problem is called stiff if some terms in the solution vector y(x) vary
much more rapidly with x than others. Stiffness can be easily predicted for the differ-
ential equations y′ = −Λy with constant coefficient matrix Λ. The solution of these
equations is y(x) = ∑

i Ci vi exp(−λi x), where λi are the eigenvalues of Λ and vi are
the corresponding eigenvectors. It is evident that the problem is stiff if there is a large
disparity in the magnitudes of the positive eigenvalues.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

273 7.4 Stability and Stiffness

Numerical integration of stiff equations requires special care. The step size h
needed for stability is determined by the largest eigenvalue λmax, even if the terms
exp(−λmaxx) in the solution decay very rapidly and become insignificant as we move
away from the origin.

For example, consider the differential equation20

y′′ + 1001y′ + 1000y = 0 (7.16)

Using y0 = y and y1 = y1, the equivalent first-order equations are

y′ =
[

y1

−1000y0 − 1001y1

]

In this case

Λ =
[

0 −1
1000 1001

]

The eigenvalues of Λ are the roots of

|Λ − λI| =
∣∣∣∣∣ −λ −1
1000 1001 − λ

∣∣∣∣∣ = 0

Expanding the determinant we get

−λ(1001 − λ) + 1000 = 0

which has the solutions λ1 = 1 and λ2 = 1000. These equation are clearly stiff. Accord-
ing to Eq. (7.15) we would need h < 2/λ2 = 0.002 for Euler’s method to be stable. The
Runge–Kutta method would have approximately the same limitation on the step size.

When the problem is very stiff, the usual methods of solution, such as the Runge–
Kutta formulas, become impractical due to the very small hrequired for stability. These
problems are best solved with methods that are specially designed for stiff equations.
Stiff problem solvers, which are outside the scope of this text, have much better stabil-
ity characteristics; some of them are even unconditionally stable. However, the higher
degree of stability comes at a cost—the general rule is that stability can be improved
only by reducing the order of the method (and thus increasing the truncation error).

EXAMPLE 7.7
(1) Show that the problem

y′′ = −19
4

y − 10y′ y(0) = −9 y′(0) = 0

20 This example is taken from C. E. Pearson, Numerical Methods in Engineering and Science, van
Nostrand and Reinhold (1986).

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

274 Initial Value Problems

is moderately stiff and estimate hmax, the largest value of h for which the Runge–Kutta
method would be stable. (2) Confirm the estimate by computing y(10) with h ≈ hmax/2
and h ≈ 2hmax.

Solution of Part (1) With the notation y = y0 and y′ = y1 the equivalent first-order
differential equations are

y′ =

 y1

−19
4

y0 − 10y1

 = −Λ

[
y0

y1

]

where

Λ =

 0 −1

19
4

10

The eigenvalues of Λ are given by

|Λ − λI| =
∣∣∣∣∣∣
−λ −1
19
4

10 − λ

∣∣∣∣∣∣ = 0

which yields λ1 = 1/2 and λ2 = 19/2. Because λ2 is quite a bit larger than λ1, the
equations are moderately stiff.

Solution of Part (2) An estimate for the upper limit of the stable range of h can be
obtained from Eq. (7.15):

hmax = 2
λmax

= 2
19/2

= 0.2153

Although this formula is strictly valid for Euler’s method, it is usually not too far off
for higher-order integration formulas.

Here are the results from the Runge–Kutta method with h = 0.1 (by specifying
freq = 0 in printSoln, only the initial and final values were printed):

x y[0] y[1]

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

y(x) = −19
2

e−x/2 + 1
2

e−19x/2

yielding y(10) = −0.0640 11, which agrees with the value obtained numerically.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

275 7.5 Adaptive Runge–Kutta Method

With h = 0.5 we encountered instability, as expected:

x y[0] y[1]

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 2.7030e+020 -2.5678e+021

7.5 Adaptive Runge–Kutta Method

Determination of a suitable step size h can be a major headache in numerical integra-
tion. If h is too large, the truncation error may be unacceptable; if h is too small, we are
squandering computational resources. Moreover, a constant step size may not be ap-
propriate for the entire range of integration. For example, if the solution curve starts
off with rapid changes before becoming smooth (as in a stiff problem), we should
use a small h at the beginning and increase it as we reach the smooth region. This is
where adaptive methods come in. They estimate the truncation error at each integra-
tion step and automatically adjust the step size to keep the error within prescribed
limits.

The adaptive Runge–Kutta methods use so-called embedded integration formu-
las. These formulas come in pairs: one formula has the integration order m, the
other one is of order m+ 1. The idea is to use both formulas to advance the solution
from x to x + h. Denoting the results by ym(x + h) and ym+1(x + h), we may estimate
the truncation error in the formula of order m:

E(h) = ym+1(x + h) − ym(x + h) (7.17)

What makes the embedded formulas attractive is that they share the points where
F(x, y) is evaluated. This means that once ym(x + h) has been computed, relatively
small additional effort is required to calculate ym+1(x + h).

Here are the Runge–Kutta embedded formulas of orders 5 and 4 that were
originally derived by Fehlberg; hence they are known as Runge–Kutta–Fehlberg
formulas:

K0 = hF(x, y)

Ki = hF

(
x + Ai h, y +

i−1∑
j=0

Bi j K j

)
, i = 1, 2, . . . , 5 (7.18)

y5(x + h) = y(x) +
5∑

i=0

Ci Ki (fifth-order formula) (7.19a)

y4(x + h) = y(x) +
5∑

i=0

DiKi (fourth-order formula) (7.19b)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

276 Initial Value Problems

The coefficients appearing in these formulas are not unique. Table 6.1 gives the coef-
ficients proposed by Cash and Karp21 which are claimed to be an improvement over
Fehlberg’s original values.

i Ai Bi j Ci Di

0 − − − − − − 37
378

2825
27 648

1
1
5

1
5

− − − − 0 0

2
3

10
3

40
9

40
− − − 250

621
18 575
48 384

3
3
5

3
10

− 9
10

6
5

− − 125
594

13 525
55 296

4 1 −11
54

5
2

−70
27

35
27

− 0
277

14 336

5
7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 6.1. Cash–Karp coefficients for Runge–Kutta-Fehlberg formulas

The solution is advanced with the fifth-order formula in Eq. (7.19a). The fourth-
order formula is used only implicitly in estimating the truncation error

E(h) = y5(x + h) − y4(x + h) =
5∑

i=0

(Ci − Di)Ki (7.20)

Since Eq. (7.20) actually applies to the fourth-order formula, it tends to overestimate
the error in the fifth-order formula.

Note that E(h) is a vector, its components Ei(h) representing the errors in the
dependent variables yi . This brings up the question: what is the error measure e(h)
that we wish to control? There is no single choice that works well in all problems. If
we want to control the largest component of E(h), the error measure would be

e(h) = max
i

|Ei(h)| (7.21)

We could also control some gross measure of the error, such as the root-mean-square

21 Cash, J. R., and Carp, A. H., ACM Transactions on Mathematical Software, Vol. 16, p. 201 (1990).

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

277 7.5 Adaptive Runge–Kutta Method

error defined by

Ē(h) =
√√√√1

n

n−1∑
i=0

E 2
i (h) (7.22)

where n is the number of first-order equations. Then we would use

e(h) = Ē(h) (7.23)

for the error measure. Since the root-mean-square error is easier to handle, we adopt
it for our program.

Error control is achieved by adjusting the increment h so that the per-step error
e(h) is approximately equal to a prescribed tolerance ε. Noting that the truncation
error in the fourth-order formula is O(h5), we conclude that

e(h1)
e(h2)

≈
(

h1

h2

)5

(a)

Let us suppose that we performed an integration step with h1 that resulted in the error
e(h1). The step size h2 that we should have used can now be obtained from Eq. (a) by
setting e(h2) = ε:

h2 = h1

[
ε

e(h1)

]1/5

(b)

If h2 ≥ h1, we could repeat the integration step with h2, but since the error was below
the tolerance, that would be a waste of a perfectly good result. So we accept the
current step and try h2 in the next step. On the other hand, if h2 < h1, we must scrap
the current step and repeat it with h2. As Eq. (b) is only an approximation, it is prudent
to incorporate a small margin of safety. In our program we use the formula

h2 = 0.9h1

[
ε

e(h1)

]1/5

(7.24)

Recall that e(h) applies to a single integration step; that is, it is a measure of the local
truncation error. The all-important global truncation error is due to the accumulation
of the local errors. What should ε be set at in order to achieve a global error tolerance
εglobal? Since e(h) is a conservative estimate of the actual error, setting ε = εglobal will
usually be adequate. If the number integration steps is large, it is advisable to decrease
ε accordingly.

Is there any reason to use the nonadaptive methods at all? Usually no; however,
there are special cases where adaptive methods break down. For example, adaptive
methods generally do not work if F(x, y) contains discontinuities. Because the error
behaves erratically at the point of discontinuity, the program can get stuck in an infinite
loop trying to find the appropriate value of h. We would also use a nonadaptive method
if the output is to have evenly spaced values of x.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

278 Initial Value Problems

� run kut5

This module is compatible withrun kut4 listed in the previous chapter. Any program
that callsintegrate can choose between the adaptive and the nonadaptive methods
by importing either run kut5 or run kut4. The input argument h is the trial value of
the increment for the first integration step.

module run_kut5

’’’ X,Y = integrate(F,x,y,xStop,h,tol=1.0e-6).

Adaptive Runge-Kutta method for solving the

initial value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

h = initial increment of x used in integration

tol = per-step error tolerance

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numarray import array,sum,zeros,Float64

from math import sqrt

def integrate(F,x,y,xStop,h,tol=1.0e-6):

def run_kut5(F,x,y,h):

Runge-Kutta-Fehlberg formulas

C = array([37./378, 0., 250./621, 125./594, \

0., 512./1771])

D = array([2825./27648, 0., 18575./48384, \

13525./55296, 277./14336, 1./4])

n = len(y)

K = zeros((6,n),type=Float64)

K[0] = h*F(x,y)

K[1] = h*F(x + 1./5*h, y + 1./5*K[0])

K[2] = h*F(x + 3./10*h, y + 3./40*K[0] + 9./40*K[1])

K[3] = h*F(x + 3./5*h, y + 3./10*K[0]- 9./10*K[1] \

+ 6./5*K[2])

K[4] = h*F(x + h, y - 11./54*K[0] + 5./2*K[1] \

- 70./27*K[2] + 35./27*K[3])

K[5] = h*F(x + 7./8*h, y + 1631./55296*K[0] \

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

279 7.5 Adaptive Runge–Kutta Method

+ 175./512*K[1] + 575./13824*K[2] \

+ 44275./110592*K[3] + 253./4096*K[4])

Initialize arrays {dy} and {E}

E = zeros((n),type=Float64)

dy = zeros((n),type=Float64)

Compute solution increment {dy} and per-step error {E}

for i in range(6):

dy = dy + C[i]*K[i]

E = E + (C[i] - D[i])*K[i]

Compute RMS error e

e = sqrt(sum(E**2)/n)

return dy,e

X = []

Y = []

X.append(x)

Y.append(y)

stopper = 0 # Integration stopper(0 = off, 1 = on)

for i in range(10000):

dy,e = run_kut5(F,x,y,h)

Accept integration step if error e is within tolerance

if e <= tol:

y = y + dy

x = x + h

X.append(x)

Y.append(y)

Stop if end of integration range is reached

if stopper == 1: break

Compute next step size from Eq. (7.24)

if e != 0.0:

hNext = 0.9*h*(tol/e)**0.2

else: hNext = h

Check if next step is the last one; is so, adjust h

if (h > 0.0) == ((x + hNext) >= xStop):

hNext = xStop - x

stopper = 1

h = hNext

return array(X),array(Y)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

281 7.5 Adaptive Runge–Kutta Method

from printSoln import *

from math import exp

def F(x,y):

F = zeros((2),type=Float64)

F[0] = y[1]

F[1] = -9.80665 + 65.351e-3 * y[1]**2 * exp(-10.53e-5*y[0])

return F

x = 0.0

xStop = 10.0

y = array([9000, 0.0])

h = 0.5

freq = 1

X,Y = integrate(F,x,y,xStop,h,1.0e-2)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

Running the program resulted in the following output:

x y[0] y[1]

0.0000e+000 9.0000e+003 0.0000e+000

5.0000e-001 8.9988e+003 -4.8043e+000

2.0584e+000 8.9821e+003 -1.5186e+001

3.4602e+000 8.9581e+003 -1.8439e+001

4.8756e+000 8.9312e+003 -1.9322e+001

6.5347e+000 8.8989e+003 -1.9533e+001

8.6276e+000 8.8580e+003 -1.9541e+001

1.0000e+001 8.8312e+003 -1.9519e+001

The first step was carried out with the prescribed trial value h = 0.5 s. Apparently
the error was well within the tolerance, so that the step was accepted. Subsequent
step sizes, determined from Eq. (7.24), were considerably larger.

Inspecting the output, we see that at t = 10 s the object is moving with the speed
v = −ẏ = 19.52 m/s at an elevation of y = 8831 m.

EXAMPLE 7.9
Integrate the moderately stiff problem

y′′ = −19
4

y − 10y′ y(0) = −9 y′(0) = 0

from x = 0 to 10 with the adaptive Runge–Kutta method and plot the results (this
problem also appeared in Example 7.7).

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

282 Initial Value Problems

Solution Since we use an adaptive method, there is no need to worry about the stable
range of h, as we did in Example 7.7. As long as we specify a reasonable tolerance for
the per-step error (in this case the default value 10−6 is fine), the algorithm will find
the appropriate step size. Here is the program and its output:

#!/usr/bin/python

example7_9

from numarray import array,zeros,Float64

from run_kut5 import *

from printSoln import *

def F(x,y):

F = zeros((2),type=Float64)

F[0] = y[1]

F[1] = -4.75*y[0] - 10.0*y[1]

return F

x = 0.0

xStop = 10.0

y = array([-9.0, 0.0])

h = 0.1

freq = 4

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

x y[0] y[1]

0.0000e+000 -9.0000e+000 0.0000e+000

9.8941e-002 -8.8461e+000 2.6651e+000

2.1932e-001 -8.4511e+000 3.6653e+000

3.7058e-001 -7.8784e+000 3.8061e+000

5.7229e-001 -7.1338e+000 3.5473e+000

8.6922e-001 -6.1513e+000 3.0745e+000

1.4009e+000 -4.7153e+000 2.3577e+000

2.8558e+000 -2.2783e+000 1.1391e+000

4.3990e+000 -1.0531e+000 5.2656e-001

5.9545e+000 -4.8385e-001 2.4193e-001

7.5596e+000 -2.1685e-001 1.0843e-001

9.1159e+000 -9.9591e-002 4.9794e-002

1.0000e+001 -6.4010e-002 3.2005e-002

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

280 Initial Value Problems

EXAMPLE 7.8
The aerodynamic drag force acting on a certain object in free fall can be approximated
by

FD = av2e−by

where

v = velocity of the object in m/s

y = elevation of the object in meters

a = 7.45 kg/m

b = 10.53 × 10−5 m−1

The exponential term accounts for the change of air density with elevation. The dif-
ferential equation describing the fall is

mÿ = −mg + FD

where g = 9.80665 m/s2 and m = 114 kg is the mass of the object. If the object is
released at an elevation of 9 km, determine its elevation and speed after a 10–s fall
with the adaptive Runge–Kutta method.

Solution The differential equation and the initial conditions are

ÿ = −g + a
m

ẏ2 exp(−by)

= −9.80665 + 7.45
114

ẏ2 exp(−10.53 × 10−5 y)

y(0) = 9000 m ẏ(0) = 0

Letting y0 = y and y1 = ẏ, we obtain the equivalent first-order equations as

ẏ =
[

ẏ0

ẏ1

]
=

[
y1

−9.80665 + (
65.351 × 10−3

)
y2

1 exp(−10.53 × 10−5 y0)

]

y(0) =
[

9000 m
0

]

The driver program for run kut5 is listed below. We specified a per-step error toler-
ance of 10−2 in integrate. Considering the magnitude of y, this should be enough
for five decimal point accuracy in the solution.

#!/usr/bin/python

example7_8

from numarray import array,zeros,Float64

from run_kut5 import *

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

283 7.6 Bulirsch–Stoer Method

The results are in agreement with the analytical solution.
The plots of y and y′ show every fourth integration step. Note the high density of

points near x = 0 where y′ changes rapidly. As the y′-curve becomes smoother, the
distance between the points increases.

x
0.0 2.0 4.0 6.0 8.0 10.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

y'

y

7.6 Bulirsch–Stoer Method

Midpoint Method

The midpoint formula of numerical integration of y′ = F(x, y) is

y(x + h) = y(x − h) + 2hF
[
x, y(x)

]
(7.25)

It is a second-order formula, like the modified Euler’s formula. We discuss it here
because it is the basis of the powerful Bulirsch–Stoer method, which is the technique
of choice in problems where high accuracy is required.

x - h x x + h
x

y'(x)

f (x,y)

h h

Figure 7.3. Graphical repesentation of the midpoint
formula.

Figure 7.3 illustrates the midpoint formula for a single differential equation
y′ = f (x, y). The change in y over the two panels shown is

y(x + h) − y(x − h) =
∫ x+h

x−h
y′(x)dx

which equals the area under the y′(x) curve. The midpoint method approximates this
area by the area 2hf (x, y) of the cross-hatched rectangle.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

284 Initial Value Problems

x0 xnxn - 1x1 x2 x3

h
x

H
Figure 7.4. Mesh used in the midpoint method.

Consider now advancing the solution of y′(x) = F(x, y) from x = x0 to x0 + H with
the midpoint formula. We divide the interval of integration into n steps of length
h = H/n each, as shown in Fig. 7.4, and carry out the computations

y1 = y0 + hF0

y2 = y0 + 2hF1

y3 = y1 + 2hF2 (7.26)

...

yn = yn−2 + 2hFn−1

Here we used the notation yi = y(xi) and Fi = F(xi, yi). The first of Eqs. (7.26) uses
the Euler formula to “seed” the midpoint method; the other equations are midpoint
formulas. The final result is obtained by averaging yn in Eq. (7.26) and the estimate
yn ≈ yn−1 + hFn available from Euler formula:

y(x0 + H) = 1
2

[
yn + (

yn−1 + hFn
)]

(7.27)

Richardson Extrapolation

It can be shown that the error in Eq. (7.27) is

E = c1h2 + c2h4 + c3h6 + · · ·

Herein lies the great utility of the midpoint method: we can eliminate as many of the
leading error terms as we wish by Richardson’s extrapolation. For example, we could
compute y(x0 + H) with a certain value of h and then repeat the process with h/2.
Denoting the corresponding results by g(h) and g(h/2), Richardson’s extrapolation—
see Eq. (5.9)—then yields the improved result

ybetter(x0 + H) = 4g(h/2) − g(h)
3

which is fourth-order accurate. Another round of integration with h/4 followed by
Richardson’s extrapolation get us sixth-order accuracy, etc.

The y’s in Eqs. (7.26) should be viewed as a intermediate variables, because unlike
y(x0 + H), they cannot be refined by Richardson’s extrapolation.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

285 7.6 Bulirsch–Stoer Method

� midpoint

The function midpoint in this module combines the midpoint method with
Richardson extrapolation. The first application of the midpoint method uses two
integration steps. The number of steps is doubled in successive integrations, each
integration being followed by Richardson extrapolation. The procedure is stopped
when two successive solutions differ (in the root-mean-square sense) by less than a
prescribed tolerance.

module midpoint

’’’ yStop = integrate (F,x,y,xStop,tol=1.0e-6)

Modified midpoint method for solving the

initial value problem y’ = F(x,y}.

x,y = initial conditions

xStop = terminal value of x

yStop = y(xStop)

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numarray import zeros,Float64,sum

from math import sqrt

def integrate(F,x,y,xStop,tol):

def midpoint(F,x,y,xStop,nSteps):

Midpoint formulas

h = (xStop - x)/nSteps

y0 = y

y1 = y0 + h*F(x,y0)

for i in range(nSteps-1):

x = x + h

y2 = y0 + 2.0*h*F(x,y1)

y0 = y1

y1 = y2

return 0.5*(y1 + y0 + h*F(x,y2))

def richardson(r,k):

Richardson’s extrapolation

for j in range(k-1,0,-1):

const = 4.0**(k-j)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

286 Initial Value Problems

r[j] = (const*r[j+1] - r[j])/(const - 1.0)

return

kMax = 51

n = len(y)

r = zeros((kMax,n),type=Float64)

Start with two integration steps

nSteps = 2

r[1] = midpoint(F,x,y,xStop,nSteps)

r_old = r[1].copy()

Double the number of integration points

and refine result by Richardson extrapolation

for k in range(2,kMax):

nSteps = nSteps*2

r[k] = midpoint(F,x,y,xStop,nSteps)

richardson(r,k)

Compute RMS change in solution

e = sqrt(sum((r[1] - r_old)**2)/n)

Check for convergence

if e < tol: return r[1]

r_old = r[1].copy()

print ’’Midpoint method did not converge’’

Bulirsch–Stoer Algorithm

When used on its own, the module midpoint has a major shortcoming: the solution
at points between the initial and final values of x cannot be refined by Richardson
extrapolation, so that y is usable only at the last point. This deficiency is rectified in
the Bulirsch–Stoer method. The fundamental idea behind the method is simple: apply
the midpoint method in a piecewise fashion. That is, advance the solution in stages of
length H, using the midpoint method with Richardson extrapolation to perform the
integration in each stage. The value of H can be quite large, since the precision of the
result is determined by the step length h in the midpoint method, not by H.

The original Bulirsch and Stoer technique22 is a complex procedure that incorpo-
rates many refinements missing in our algorithm. However, the function bulStoer

given below retains the essential ideas of Bulirsch and Stoer.
What are the relative merits of adaptive Runge–Kutta and Bulirsch–Stoer meth-

ods? The Runge–Kutta method is more robust, having higher tolerance for nonsmooth

22 Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, 1980.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

287 7.6 Bulirsch–Stoer Method

functions and stiff problems. In most applications where high precision is not required,
it also tends to be more efficient. However, this is not the case in the computation of
high-accuracy solutions involving smooth functions, where the Bulirsch–Stoer algo-
rithm shines.

� bulStoer

This function contains a simplified algorithm for the Bulirsch–Stoer method.

module bulStoer

’’’ X,Y = bulStoer(F,x,y,xStop,H,tol=1.0e-6).

Simplified Bulirsch-Stoer method for solving the

initial value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

H = increment of x at which results are stored

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numarray import array

from midpoint import *

def bulStoer(F,x,y,xStop,H,tol=1.0e-6):

X = []

Y = []

X.append(x)

Y.append(y)

while x < xStop:

H = min(H,xStop - x)

y = integrate(F,x,y,x + H,tol) # Midpoint method

x = x + H

X.append(x)

Y.append(y)

return array(X),array(Y)

EXAMPLE 7.10
Compute the solution of the initial value problem

y′ = sin y y(0) = 1

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

288 Initial Value Problems

at x = 0.5 with the midpoint formulas using n = 2 and n = 4, followed by Richardson
extrapolation (this problem was solved with the second-order Runge–Kutta method
in Example 7.3).

Solution With n = 2 the step length is h = 0.25. The midpoint formulas, Eqs. (7.26)
and (7.27), yield

y1 = y0 + hf0 = 1 + 0.25 sin 1.0 = 1.210 368

y2 = y0 + 2hf1 = 1 + 2(0.25) sin 1.210 368 = 1.467 87 3

yh(0.5) = 1
2

(y1 + y0 + hf2)

= 1
2

(1.210 368 + 1.467 87 3 + 0.25 sin 1.467 87 3)

= 1.463 459

Using n = 4 we have h = 0.125 and the midpoint formulas become

y1 = y0 + hf0 = 1 + 0.125 sin 1.0 = 1.105 184

y2 = y0 + 2hf1 = 1 + 2(0.125) sin 1.105 184 = 1.223 387

y3 = y1 + 2hf2 = 1.105 184 + 2(0.125) sin 1.223 387 = 1.340 248

y4 = y2 + 2hf3 = 1.223 387 + 2(0.125) sin 1.340 248 = 1.466 772

yh/2(0.5) = 1
2

(y4 + y3 + hf4)

= 1
2

(1.466 772 + 1.340 248 + 0.125 sin 1.466 772)

= 1.465 672

Richardson extrapolation results in

y(0.5) = 4yh/2(0.5) − yh(0.5)
3

= 4(1.465 672) − 1.463 459
3

= 1.466 410

which compares favorably with the “true” solution y(0.5) = 1.466 404.

EXAMPLE 7.11

R

C

L

i

i
E (t)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

289 7.6 Bulirsch–Stoer Method

The differential equations governing the loop current i and the charge q on the ca-
pacitor of the electric circuit shown are

L
di
dt

+ Ri + q
C

= E(t)
dq
dt

= i

If the applied voltage E is suddenly increased from zero to 9 V, plot the resulting loop
current during the first ten seconds. Use R = 1.0 �, L = 2 H and C = 0.45 F.

Solution Letting

y =
[

y0

y1

]
=

[
q
i

]

and substituting the given data, the differential equations become

ẏ =
[

ẏ0

ẏ1

]
=

[
y1

(−Ry1 − y0/C + E) /L

]

The initial conditions are

y(0) =
[

0
0

]

We solved the problem with the function bulStoer with the increment
H = 0.5 s:

example7_11

from bulStoer import *

from numarray import array,zeros,Float64

from printSoln import *

def F(x,y):

F = zeros((2),type=Float64)

F[0] = y[1]

F[1] = (-y[1] - y[0]/0.45 + 9.0)/2.0

return F

H = 0.5

xStop = 10.0

x = 0.0

y = array([0.0, 0.0])

X,Y = bulStoer(F,x,y,xStop,H)

printSoln(X,Y,1)

raw_input(’’\nPress return to exit’’)

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

290 Initial Value Problems

Skipping the numerical output, the plot of the current is

t (s)
0.0 2.0 4.0 6.0 8.0 10.0

i (A)

-2

-1

0

1

2

3

4

Recall that in each interval H (the spacing of open circles) the integration was per-
formed by the modified midpoint method and refined by Richardson’s extrapolation.

PROBLEM SET 7.2

1. Derive the analytical solution of the problem

y′′ + y′ − 380y = 0 y(0) = 1 y′(0) = −20

Would you expect difficulties in solving this problem numerically?

2. Consider the problem

y′ = x − 10y y(0) = 10

(a) Verify that the analytical solution is y(x) = 0.1x − 0.01 + 10.01e−10x.
(b) Determine the step size h that you would use in numerical solution with

the (nonadaptive) Runge–Kutta method.

3. � Integrate the initial value problem in Prob. 2 from x = 0 to 5 with the Runge–
Kutta method using (a) h = 0.1, (b) h = 0.25 and (c) h = 0.5. Comment on the
results.

4. � Integrate the initial value problem in Prob. 2 from x = 0 to 10 with the adaptive
Runge–Kutta method.

5. �

m
k

c

y

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

291 7.6 Bulirsch–Stoer Method

The differential equation describing the motion of the mass–spring–dashpot sys-
tem is

ÿ + c
m

ẏ + k
m

y = 0

where m = 2 kg, c = 460 N·s/m and k = 450 N/m. The initial conditions are y(0) =
0.01 m and ẏ(0) = 0. (a) Show that this is a stiff problem and determine a value of
h that you would use in numerical integration with the nonadaptive Runge–Kutta
method. (b) Carry out the integration from t = 0 to 0.2 s with the chosen h and
plot ẏ vs. t.

6. � Integrate the initial value problem specified in Prob. 5 with the adaptive Runge–
Kutta method from t = 0 to 0.2 s and plot ẏ vs. t.

7. � Compute the numerical solution of the differential equation

y′′ = 16.81y

from x = 0 to 2 with the adaptive Runge–Kutta method. Use the initial conditions
(a) y(0) = 1.0, y′(0) = −4.1; and (b) y(0) = 1.0, y′(0) = −4.11. Explain the large
difference in the two solutions. Hint: derive the analytical solutions.

8. � Integrate

y′′ + y′ − y2 = 0 y(0) = 1 y′(0) = 0

from x = 0 to 3.5. Is the sudden increase in y near the upper limit is real or an
artifact caused by instability?

9. � Solve the stiff problem—see Eq. (7.16)

y′′ + 1001y′ + 1000y = 0 y(0) = 1 y′(0) = 0

from x = 0 to 0.2 with the adaptive Runge–Kutta method and plot y′ vs. x.

10. � Solve

y′′ + 2y′ + 3y = 0 y(0) = 0 y′(0) =
√

2

with the adaptive Runge–Kutta method from x = 0 to 5 (the analytical solution is
y = e−x sin

√
2x).

11. � Solve the differential equation

y′′ = 2yy′

from x = 0 to 10 with the initial conditions y(0) = 1, y′(0) = −1. Plot y vs. x.

12. � Repeat Prob. 11 with the initial conditions y(0) = 0, y′(0) = 1 and the integration
range x = 0 to 1.5.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

292 Initial Value Problems

13. � Use the adaptive Runge–Kutta method to integrate

y′ =
(

9
y

− y
)

x y(0) = 5

from x = 0 to 4 and plot y vs. x.

14. � Solve Prob. 13 with the Bulirsch–Stoer method using H = 0.5.

15. � Integrate

x2 y′′ + xy′ + y = 0 y(1) = 0 y′(1) = −2

from x = 1 to 20, and plot y and y′ vs. x. Use the Bulirsch–Stoer method.

16. �

k
m

x

The magnetized iron block of mass m is attached to a spring of stiffness k and
free length L. The block is at rest at x = L when the electromagnet is turned on,
exerting the repulsive force F = c/x2 on the block. The differential equation of
the resulting motion is

mẍ = c
x2

− k(x − L)

Determine the amplitude and the period of the motion by numerical integration
with the adaptive Runge–Kutta method. Use c = 5 N·m2, k = 120 N/m, L = 0.2 m
and m = 1.0 kg.

17. �

A
B

C

The bar ABC is attached to the vertical rod with a horizontal pin. The assembly
is free to rotate about the axis of the rod. In the absence of friction, the equations
of motion of the system are

θ̈ = φ̇
2

sin θ cos θ φ̈ = −2θ̇ φ̇ cot θ

The system is set into motion with the initial conditions θ(0) = π/12 rad,
θ̇(0) = 0, φ(0) = 0 and φ̇(0) = 20 rad/s. Obtain a numerical solution with the
adaptive Runge–Kutta method from t = 0 to 1.5 s and plot φ̇ vs. t.

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

293 7.6 Bulirsch–Stoer Method

18. � Solve the circuit problem in Example 7.11 if R = 0 and

E (t) =
{

0 when t < 0
9 sin πt when t ≥ 0

19. � Solve Prob. 21 in Problem Set 1 if E = 240 V (constant).

20. �
R1 L

L

R2 C
i1 i2

E (t)
i2i1

Kirchoff’s equations for the circuit in the figure are

L
di1

dt
+ R1i1 + R2(i1 − i2) = E (t)

L
di2

dt
+ R2(i2 − i1) + q2

C
= 0

where

dq2

dt
= i2

Using the data R1 = 4 �, R2 = 10 �, L = 0.032 H, C = 0.53 F and

E(t) =
{

20 V if 0 < t < 0.005 s
0 otherwise

plot the transient loop currents i1 and i2 from t = 0 to 0.05 s.

21. � Consider a closed biological system populated by M number of prey and N
number of predators. Volterra postulated that the two populations are related by
the differential equations

Ṁ = aM − bMN

Ṅ = −cN + dMN

where a, b, c and d are constants. The steady-state solution is M0 = c/d, N0 = a/b;
if numbers other than these are introduced into the system, the populations
undergo periodic fluctuations. Introducing the notation

y0 = M/M0 y1 = N/N0

P1: GDZ
CB904-c07 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:29

294 Initial Value Problems

allows us to write the differential equations as

ẏ0 = a(y0 − y0 y1)

ẏ1 = b(−y1 + y0 y1)

Using a = 1.0/year, b = 0.2/year, y0(0) = 0.1 and y1(0) = 1.0, plot the two popu-
lations from t = 0 to 50 years.

22. � The equations

u̇ = −au + av

v̇ = cu − v − uw

ẇ = −bw + uv

known as the Lorenz equations, are encountered in theory of fluid dynamics.
Letting a = 5.0, b = 0.9 and c = 8.2, solve these equations from t = 0 to 10 with
the initial conditions u(0) = 0, v(0) = 1.0, w(0) = 2.0 and plot u(t). Repeat the
solution with c = 8.3. What conclusions can you draw from the results?

7.7 Other Methods

The methods described so far belong to a group known as single-step methods. The
name stems from the fact that the information at a single point on the solution curve
is sufficient to compute the next point. There are also multistep methods that utilize
several points on the curve to extrapolate the solution at the next step. Well-known
members of this group are the methods of Adams, Milne, Hamming and Gere. These
methods were popular once, but have lost some of their luster in the last few years.
Multistep methods have two shortcomings that complicate their implementation:

� The methods are not self-starting, but must be provided with the solution at the
first few points by a single-step method.

� The integration formulas assume equally spaced steps, which makes it makes it
difficult to change the step size.

Both of these hurdles can be overcome, but the price is complexity of the algorithm
that increases with the sophistication of the method. The benefits of multistep meth-
ods are minimal—the best of them can outperform their single-step counterparts in
certain problems, but these occasions are rare.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

8 Two-Point Boundary Value Problems

Solve y′′ = f (x, y, y′), y(a) = α, y(b) = β

8.1 Introduction

In two-point boundary value problems the auxiliary conditions associated with the
differential equation, called the boundary conditions, are specified at two different
values of x. This seemingly small departure from initial value problems has a major
repercussion—it makes boundary value problems considerably more difficult to solve.
In an initial value problem we were able to start at the point where the initial values
were given and march the solution forward as far as needed. This technique does not
work for boundary value problems, because there are not enough starting conditions
available at either end point to produce a unique solution.

One way to overcome the lack of starting conditions is to guess the missing values.
The resulting solution is very unlikely to satisfy boundary conditions at the other end,
but by inspecting the discrepancy we can estimate what changes to make to the initial
conditions before integrating again. This iterative procedure is known as the shooting
method. The name is derived from analogy with target shooting—take a shot and
observe where it hits the target, then correct the aim and shoot again.

Another means of solving two-point boundary value problems is the finite differ-
ence method, where the differential equations are approximated by finite differences
at evenly spaced mesh points. As a consequence, a differential equation is transformed
into set of simultaneous algebraic equations.

The two methods have a common problem: they give rise to nonlinear sets of
equations if the differential equations are not linear. As we noted in Chapter 2, all
methods of solving nonlinear equations are iterative procedures that can consume a
lot of computational resources. Thus solution of nonlinear boundary value problems

295

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

296 Two-Point Boundary Value Problems

is not cheap. Another complication is that iterative methods need reasonably good
starting values in order to converge. Since there is no set formula for determining these,
an algorithm for solving nonlinear boundary value problems requires informed input;
it cannot be treated as a “black box.”

8.2 Shooting Method

Second-Order Differential Equation

The simplest two-point boundary value problem is a second-order differential equa-
tion with one condition specified at x = a and another one at x = b. Here is an example
of such a problem:

y′′ = f (x, y, y′), y(a) = α, y(b) = β (8.1)

Let us now attempt to turn Eqs. (8.1) into the initial value problem

y′′ = f (x, y, y′), y(a) = α, y′(a) = u (8.2)

The key to success is finding the correct value of u. This could be done by trial and
error: guess u and solve the initial value problem by marching from x = a to b. If
the solution agrees with the prescribed boundary condition y(b) = β, we are done;
otherwise we have to adjust u and try again. Clearly, this procedure is very tedious.

More systematic methods become available to us if we realize that the determi-
nation of u is a root-finding problem. Because the solution of the initial value problem
depends on u, the computed value of y(b) is a function of u; that is

y(b) = θ(u)

Hence u is a root of

r(u) = θ(u) − β = 0 (8.3)

where r(u) is the boundary residual (difference between the computed and specified
boundary value at x = b). Equation (8.3) can be solved by one of the root-finding
methods discussed in Chapter 4. We reject the method of bisection because it involves
too many evaluations ofθ(u). In the Newton–Raphson method we run into the problem
of having to compute dθ/du, which can be done, but not easily. That leaves Brent’s
algorithm as our method of choice.

Here is the procedure we use in solving nonlinear boundary value problems:

1. Specify the starting values u1 and u2 which must bracket the root u of Eq. (8.3).
2. Apply Brent’s method to solve Eq. (8.3) for u. Note that each iteration requires

evaluation of θ(u) by solving the differential equation as an initial value problem.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

297 8.2 Shooting Method

3. Having determined the value of u, solve the differential equations once more and
record the results.

If the differential equation is linear, any root-finding method will need only one
interpolation to determine u. But since Brent’s method uses quadratic interpolation,
it needs three points: u1, u2 and u3, the latter being provided by a bisection step. This
is wasteful, since linear interpolation with u1 and u2 would also result in the correct
value of u. Therefore, we replace Brent’s method with linear interpolation whenever
the differential equation is linear.

� linInterp

Here is the algorithm we use for linear interpolation:

module linInterp

’’’ root = linInterp(f,x1,x2).

Finds the zero of the linear function f(x) by straight

line interpolation based on x = x1 and x2.

’’’

def linInterp(f,x1,x2):

f1 = f(x1)

f2 = f(x2)

return = x2 - f2*(x2 - x1)/(f2 - f1)

EXAMPLE 8.1
Solve the boundary value problem

y′′ + 3yy′ = 0 y(0) = 0 y(2) = 1

Solution The equivalent first-order equations are

y′ =
[

y′
0

y′
1

]
=

[
y1

−3y0 y1

]

with the boundary conditions

y0(0) = 0 y0(2) = 1

Now comes the daunting task of determining the trial values of y′(0). We could
always pick two numbers at random and hope for the best. However, it is possible
to reduce the element of chance with a little detective work. We start by making the
reasonable assumption that y is smooth (does not wiggle) in the interval 0 ≤ x ≤ 2.
Next we note that y has to increase from 0 to 1, which requires y′ > 0. Since both y and

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

298 Two-Point Boundary Value Problems

y′ are positive, we conclude that y′′ must be negative in order to satisfy the differential
equation. Now we are in a position to make a rough sketch of y:

0 2

1

x

y

Looking at the sketch it is clear that y′(0) > 0.5, so that y′(0) = 1 and 2 appear to be
reasonable values for the brackets of y′(0); if they are not, Brent’s method will display
an error message.

In the program listed below we chose the fourth-order Runge–Kutta method
for integration. It can be replaced by the adaptive version by substituting run kut5

for run kut4 in the import statement. Note that three user-supplied functions are
needed to describe the problem at hand. Apart from the function F(x,y) that de-
fines the differential equations, we also need the functions initCond(u) to specify
the initial conditions for integration, and r(u) to provide Brent’s method with the
boundary condition residual. By changing a few statements in these functions, the
program can be applied to any second-order boundary value problem. It also works
for third-order equations if integration is started at the end where two of the three
boundary conditions are specified.

#!/usr/bin/python

example8_1

from numarray import zeros,Float64,array

from run_kut4 import *

from brent import *

from printSoln import *

def initCond(u): # Init. values of [y, y’]; use ’u’ if unknown

return array([0.0, u])

def r(u): # Boundary condition residual--see Eq. (8.3)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

y = Y[len(Y) - 1]

r = y[0] - 1.0

return r

def F(x,y): # First-order differential equations

F = zeros((2),type=Float64)

F[0] = y[1]

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

299 8.2 Shooting Method

F[1] = -3.0*y[0]*y[1]

return F

xStart = 0.0 # Start of integration

xStop = 2.0 # End of integration

u1 = 1.0 # 1st trial value of unknown init. cond.

u2 = 2.0 # 2nd trial value of unknown init. cond.

h = 0.1 # Step size

freq = 2 # Printout frequency

u = brent(r,u1,u2) # Compute the correct initial condition

X,Y = integrate(F,xStart,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

Here is the solution :

x y[0] y[1]

0.0000e+000 0.0000e+000 1.5145e+000

2.0000e-001 2.9404e-001 1.3848e+000

4.0000e-001 5.4170e-001 1.0743e+000

6.0000e-001 7.2187e-001 7.3287e-001

8.0000e-001 8.3944e-001 4.5752e-001

1.0000e+000 9.1082e-001 2.7013e-001

1.2000e+000 9.5227e-001 1.5429e-001

1.4000e+000 9.7572e-001 8.6471e-002

1.6000e+000 9.8880e-001 4.7948e-002

1.8000e+000 9.9602e-001 2.6430e-002

2.0000e+000 1.0000e+000 1.4522e-002

Note that y′(0) = 1.5145, so that our starting values of 1.0 and 2.0 were on the
mark.

EXAMPLE 8.2
Numerical integration of the initial value problem

y′′ + 4y = 4x y(0) = 0 y′(0) = 0

yielded y′(2) =1.653 64. Use this information to determine the value of y′(0) that would
result in y′(2) = 0.

Solution We use linear interpolation

u = u2 − θ(u2)
u2 − u1

θ(u2) − θ(u1)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

300 Two-Point Boundary Value Problems

where in our case u = y′(0) and θ(u) = y′(2). So far we are given u1 = 0 and θ(u1) =
1.653 64. To obtain the second point, we need another solution of the initial value
problem. An obvious solution is y = x, which gives us y(0) = 0 and y′(0) = y′(2) = 1.
Thus the second point is u2 = 1 and θ(u2) = 1. Linear interpolation now yields

y′(0) = u = 1 − (1)
1 − 0

1 − 1.653 64
= 2.529 89

EXAMPLE 8.3
Solve the third-order boundary value problem

y′′′ = 2y′′ + 6xy y(0) = 2 y(5) = y′(5) = 0

and plot y vs. x.

Solution The first-order equations and the boundary conditions are

y′ =

 y′

0

y′
1

y′
2

 =

 y1

y2

2y2 + 6xy0

y0(0) = 2 y0(5) = y1(5) = 0

The program listed below is based on example8 1. Because two of the three
boundary conditions are specified at the right end, we start the integration at x = 5
and proceed with negative h toward x = 0. Two of the three initial conditions are pre-
scribed: y0(5) = y1(5) = 0, whereas the third condition y2(5) is unknown. Because the
differential equation is linear, we replaced brent with linInterp. In linear interpo-
lation the two guesses for y2(5) (u1 and u2) are not important, so we left them as they
were in Example 8.1. The adaptive Runge-Kutta method (run kut5) was chosen for
the integration.

#!/usr/bin/python

example8_3

from numarray import zeros,Float64,array

from run_kut5 import *

from linInterp import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y’’];

use ’u’ if unknown

return array([0.0, 0.0, u])

def r(u): # Boundary condition residual--see Eq. (8.3)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

301 8.2 Shooting Method

y = Y[len(Y) - 1]

r = y[0] - 2.0

return r

def F(x,y): # First-order differential equations

F = zeros((3),type=Float64)

F[0] = y[1]

F[1] = y[2]

F[2] = 2.0*y[2] + 6.0*x*y[0]

return F

xStart = 5.0 # Start of integration

xStop = 0.0 # End of integration

u1 = 1.0 # 1st trial value of unknown init. cond.

u2 = 2.0 # 2nd trial value of unknown init. cond.

h = -0.1 # initial step size

freq = 2 # printout frequency

u = linInterp(r,u1,u2)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

We forgo the rather long printout of the solution and show just the plot:

x
0 1 2 3 4 5

y

-2

0

2

4

6

8

Higher-Order Equations

Let us consider the fourth-order differential equation

y(4) = f (x, y, y′, y′′, y′′′) (8.4a)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

302 Two-Point Boundary Value Problems

with the boundary conditions

y(a) = α1 y′′(a) = α2 y(b) = β1 y′′(b) = β2 (8.4b)

To solve Eq. (8.4a) with the shooting method, we need four initial conditions at x = a,
only two of which are specified. Denoting the unknown initial values by u1 and u2, we
have the set of initial conditions

y(a) = α1 y′(a) = u1 y′′(a) = α2 y′′′(a) = u2 (8.5)

If Eq. (8.4a) is solved with the shooting method using the initial conditions in Eq. (8.5),
the computed boundary values at x = b depend on the choice of u1 and u2. We denote
this dependence as

y(b) = θ1(u1, u2) y′′(b) = θ2(u1, u2) (8.6)

The correct values u1 and u2 satisfy the given boundary conditions at x = b :

θ1(u1, u2) = β1 θ2(u1, u2) = β2

or, using vector notation

θ(u) = β (8.7)

These are simultaneous (generally nonlinear) equations that can be solved by the
Newton–Raphson method discussed in Section 4.6. It must be pointed out again that
intelligent estimates of u1 and u2 are needed if the differential equation is not linear.

EXAMPLE 8.4

x
w0

v
L

The displacement v of the simply supported beam can be obtained by solving the
boundary value problem

d4v
dx4

= w0

E I
x
L

v = d2v
dx2

= 0 at x = 0 and x = L

where E I is the bending rigidity. Determine by numerical integration the slopes at
the two ends and the displacement at mid-span.

Solution Introducing the dimensionless variables

ξ = x
L

y = E I
w0 L4

v

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

303 8.2 Shooting Method

the problem is transformed to

d4 y

dξ4 = ξ y = d2 y

dξ2
= 0 at ξ = 0 and 1

The equivalent first-order equations and the boundary conditions are (the prime
denotes d/dξ)

y′ =

y′
0

y′
1

y′
2

y′
3

 =

y1

y2

y3

ξ

y0(0) = y2(0) = y0(1) = y2(1) = 0

The program listed below is similar to the one in Example 8.1. With appropri-
ate changes in functions F(x,y), initCond(u) and r(u) the program can solve
boundary value problems of any order greater than two. For the problem at hand
we chose the Bulirsch–Stoer algorithm to do the integration because it gives us con-
trol over the printout (we need y precisely at mid-span). The nonadaptive Runge–
Kutta method could also be used here, but we would have to guess a suitable step
size h.

As the differential equation is linear, the solution requires only one iteration with
the Newton–Raphson method. In this case the initial values u1 = dy/dξ |x=0 and u2 =
d3 y/dξ3|x=0 are irrelevant; convergence always occurs in one iteration.

#!/usr/bin/python

example8_4

from numarray import zeros,Float64,array

from bulStoer import *

from newtonRaphson2 import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y’’,y’’’];

use ’u’ if unknown

return array([0.0, u[0], 0.0, u[1]])

def r(u): # Boundary condition residuals--see Eq. (8.7)

r = zeros(len(u),type=Float64)

X,Y = bulStoer(F,xStart,initCond(u),xStop,H)

y = Y[len(Y) - 1]

r[0] = y[0]

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

304 Two-Point Boundary Value Problems

r[1] = y[2]

return r

def F(x,y): # First-order differential equations

F = zeros((4),type=Float64)

F[0] = y[1]

F[1] = y[2]

F[2] = y[3]

F[3] = x

return F

xStart = 0.0 # Start of integration

xStop = 1.0 # End of integration

u = array([0.0, 1.0]) # Initial guess for {u}

H = 0.5 # Printout increment

freq = 1 # Printout frequency

u = newtonRaphson2(r,u,1.0e-4)

X,Y = bulStoer(F,xStart,initCond(u),xStop,H)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

Here is the output:

x y[0] y[1] y[2] y[3]

0.0000e+000 0.0000e+000 1.9444e-002 0.0000e+000 -1.6667e-001

5.0000e-001 6.5104e-003 1.2153e-003 -6.2500e-002 -4.1667e-002

1.0000e+000 -2.4670e-014 -2.2222e-002 -2.7190e-012 3.3333e-001

Noting that

dv
dx

= dv
dξ

dξ

dx
=

(
w0 L4

E I
dy
dξ

)
1
L

= w0 L3

E I
dy
dξ

we obtain

dv
dx

∣∣∣∣
x=0

= 19.444 × 10−3 w0 L3

E I

dv
dx

∣∣∣∣
x=L

= −22.222 × 10−3 w0 L3

E I

v|x=0.5L = 6.5104 × 10−3 w0 L4

E I

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

305 8.2 Shooting Method

which agree with the analytical solution (easily obtained by direct integration of the
differential equation).

EXAMPLE 8.5
Solve

y(4) + 4
x

y3 = 0

with the boundary conditions

y(0) = y′(0) = 0 y′′(1) = 0 y′′′(1) = 1

and plot y vs. x.

Solution Our first task is to handle the indeterminacy of the differential equation
at the origin, where x = y = 0. The problem is resolved by applying L’Hospital’s rule:
4y3/x → 12y2 y′ as x → 0. Thus the equivalent first-order equations and the boundary
conditions that we use in the solution are

y′ =

y′
0

y′
1

y′
2

y′
3

 =

y1

y2

y3{
−12y2

0 y1 if x = 0
−4y3

0/x otherwise

y0(0) = y1(0) = 0 y2(1) = 0 y3(1) = 1

Because the problem is nonlinear, we need reasonable estimates for y′′(0) and
y′′′(0). On the basis of the boundary conditions y′′(1) = 0 and y′′′(1) = 1, the plot of y′′

is likely to look something like this:

1
1

10

y

x

"

If we are right, then y′′(0) < 0 and y′′′(0) > 0. Based on this rather scanty information,
we try y′′(0) = −1 and y′′′(0) = 1.

The following program uses the adaptive Runge-Kutta method (run kut5) for
integration:

#!/usr/bin/python

example8_5

from numarray import zeros,Float64,array

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

306 Two-Point Boundary Value Problems

from run_kut5 import *

from newtonRaphson2 import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y’’,y’’’];

use ’u’ if unknown

return array([0.0, 0.0, u[0], u[1]])

def r(u): # Boundary condition residuals-- see Eq. (8.7)

r = zeros(len(u),type=Float64)

X,Y = integrate(F,x,initCond(u),xStop,h)

y = Y[len(Y) - 1]

r[0] = y[2]

r[1] = y[3] - 1.0

return r

def F(x,y): # First-order differential equations

F = zeros((4),type=Float64)

F[0] = y[1]

F[1] = y[2]

F[2] = y[3]

if x < 10.e-4: F[3] = -12.0*y[1]*y[0]**2

else: F[3] = -4.0*(y[0]**3)/x

return F

x = 0.0 # Start of integration

xStop = 1.0 # End of integration

u = array([-1.0, 1.0]) # Initial guess for u

h = 0.1 # Initial step size

freq = 1 # Printout frequency

u = newtonRaphson2(r,u,1.0e-5)

X,Y = integrate(F,x,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input(’’\nPress return to exit’’)

The results are:

x y[0] y[1] y[2] y[3]

0.0000e+000 0.0000e+000 0.0000e+000 -9.7607e-001 9.7131e-001

1.0000e-001 -4.7184e-003 -9.2750e-002 -8.7893e-001 9.7131e-001

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

307 8.2 Shooting Method

3.9576e-001 -6.6403e-002 -3.1022e-001 -5.9165e-001 9.7152e-001

7.0683e-001 -1.8666e-001 -4.4722e-001 -2.8896e-001 9.7627e-001

9.8885e-001 -3.2061e-001 -4.8968e-001 -1.1144e-002 9.9848e-001

1.0000e+000 -3.2607e-001 -4.8975e-001 -6.7428e-011 1.0000e+000

x
0.00 0.20 0.40 0.60 0.80 1.00

y

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

By good fortune, our initial estimates y′′(0) = −1 and y′′′(0) = 1 were very close to the
final values.

PROBLEM SET 8.1

1. Numerical integration of the initial value problem

y′′ + y′ − y = 0 y(0) = 0 y′(0) = 1

yielded y(1) = 0.741028. What is the value of y′(0) that would result in y(1) = 1,
assuming that y(0) is unchanged?

2. The solution of the differential equation

y′′′ + y′′ + 2y′ = 6

with the initial conditions y(0) = 2, y′(0) = 0 and y′′(0) = 1, yielded y(1) =
3.03765. When the solution was repeated with y′′(0) = 0 (the other conditions
being unchanged), the result was y(1) = 2.72318. Determine the value of y′′(0) so
that y(1) = 0.

3. Roughly sketch the solution of the following boundary value problems. Use the
sketch to estimate y′(0) for each problem.

(a) y′′ = −e−y y(0) = 1 y(1) = 0.5
(b) y′′ = 4y2 y(0) = 10 y′(1) = 0
(c) y′′ = cos(xy) y(0) = 1 y(1) = 2

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

308 Two-Point Boundary Value Problems

4. Using a rough sketch of the solution estimate of y(0) for the following boundary
value problems.

(a) y′′ = y2 + xy y′(0) = 0 y(1) = 2

(b) y′′ = − 2
x

y′ − y2 y′(0) = 0 y(1) = 2

(c) y′′ = −x(y′)2 y′(0) = 2 y(1) = 1

5. Obtain a rough estimate of y′′(0) for the boundary value problem

y′′′ + 5y′′ y2 = 0

y(0) = 0 y′(0) = 1 y(1) = 0

6. Obtain rough estimates of y′′(0) and y′′′(0) for the boundary value problem

y(4) + 2y′′ + y′ sin y = 0

y(0) = y′(0) = 0 y(1) = 5 y′(1) = 0

7. Obtain rough estimates of ẋ(0) and ẏ(0) for the boundary value problem

ẍ + 2x2 − y = 0 x(0) = 1 x(1) = 0

ÿ + y2 − 2x = 1 y(0) = 0 y(1) = 1

8. � Solve the boundary value problem

y′′ + (1 − 0.2x) y2 = 0 y(0) = 0 y(π/2) = 1

9. � Solve the boundary value problem

y′′ + 2y′ + 3y2 = 0 y(0.01) = 0 y(2) = −1

10. � Solve the boundary value problem

y′′ + sin y + 1 = 0 y(0) = 0 y(π) = 0

11. � Solve the boundary value problem

y′′ + 1
x

y′ + y = 0 y(0.01) = 1 y′(2) = 0

and plot y vs. x. Warning: y changes very rapidly near x = 0.

12. � Solve the boundary value problem

y′′ − (
1 − e−x) y = 0 y(0) = 1 y(∞) = 0

and plot y vs. x. Hint: Replace the infinity by a finite value β. Check your choice of
β by repeating the solution with 1.5β. If the results change, you must increase β.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

309 8.2 Shooting Method

13. � Solve the boundary value problem

y′′′ = − 1
x

y′′ + 1
x2

y′ + 0.1(y′)3

y(1) = 0 y′′(1) = 0 y(2) = 1

14. � Solve the boundary value problem

y′′′ + 4y′′ + 6y′ = 10

y(0) = y′′(0) = 0 y(3) − y′(3) = 5

15. � Solve the boundary value problem

y′′′ + 2y′′ + sin y = 0

y(−1) = 0 y′(−1) = −1 y′(1) = 1

16. � Solve the differential equation in Prob. 15 with the boundary conditions

y(−1) = 0 y(0) = 0 y(1) = 1

(this is a three-point boundary value problem).

17. � Solve the boundary value problem

y(4) = −xy2

y(0) = 5 y′′(0) = 0 y′(1) = 0 y′′′(1) = 2

18. � Solve the boundary value problem

y(4) = −2yy′′

y(0) = y′(0) = 0 y(4) = 0 y′(4) = 1

19. �
y

x

v0

8000 m t = 10 st = 0

A projectile of mass m in free flight experiences the aerodynamic drag force
FD = cv2, where v is the velocity. The resulting equations of motion are

ẍ = − c
m

vẋ ÿ = − c
m

vẏ − g

v =
√

ẋ2 + ẏ2

If the projectile hits a target 8 km away after a 10-s flight, determine the launch
velocity v0 and its angle of inclination θ . Use m = 20 kg, c = 3.2 × 10−4 kg/m and
g = 9.80665 m/s2.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

310 Two-Point Boundary Value Problems

20. �

N
x

L

w0
N

v

The simply supported beam carries a uniform load of intensity w0 and the tensile
force N. The differential equation for the vertical displacement v can be shown
to be

d4v
dx4

− N
E I

d2v
dx2

= w0

E I

where E I is the bending rigidity. The boundary conditions are v = d2v/dx2 = 0 at
x = 0 and L. Changing the variables to ξ = x/L and y = (E I/w0 L4)v transforms
the problem to the dimensionless form

d4 y

dξ4 − β
d2 y

dξ2
= 1 β = NL2

E I

y|ξ=0 = d2 y

dξ2

∣∣∣∣
ξ=0

= y|ξ=1 = d2 y

dξ2

∣∣∣∣
ξ=1

= 0

Determine the maximum displacement if (a) β = 1.65929; and (b) β = −1.65929
(N is compressive).

21. � Solve the boundary value problem

y′′′ + yy′′ = 0 y(0) = y′(0) = 0, y′(∞) = 2

and plot y(x) and y′(x). This problem arises in determining the velocity profile of
the boundary layer in incompressible flow (Blasius solution).

8.3 Finite Difference Method

x0x-1 x1 xm - 2 xm - 1xm xm + 1
a b

y-1

y0
y1

ym - 2 ym - 1 ym + 1
ym

x

y

y2

x2

Figure 8.1. Finite difference mesh.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

311 8.3 Finite Difference Method

In the finite difference method we divide the range of integration (a, b) into m
equal subintervals of length h each, as shown in Fig. 8.1. The values of the numerical
solution at the mesh points are denoted by yi , i = 0, 1, . . . , m; the purpose of the two
points outside (a, b) will be explained shortly. We now make two approximations:

1. The derivatives of y in the differential equation are replaced by the finite difference
expressions. It is common practice to use the first central difference approxima-
tions (see Chapter 5):

y′
i = yi+1 − yi−1

2h
y′′

i = yi−1 − 2yi + yi+1

h2
etc. (8.8)

2. The differential equation is enforced only at the mesh points.

As a result, the differential equations are replaced by m+ 1 simultaneous alge-
braic equations, the unknowns being yi , i = 0, 1,m. If the differential equation is
nonlinear, the algebraic equations will also be nonlinear and must be solved by the
Newton–Raphson method.

Since the truncation error in a first central difference approximation is O(h2), the
finite difference method is not nearly as accurate as the shooting method—recall that
the Runge–Kutta method has a truncation error of O(h5). Therefore, the convergence
criterion specified in the Newton–Raphson method should not be too severe.

Second-Order Differential Equation

Consider the second-order differential equation

y′′ = f (x, y, y′)

with the boundary conditions

y(a) = α or y′(a) = α

y(b) = β or y′(b) = β

Approximating the derivatives at the mesh points by finite differences, the prob-
lem becomes

yi−1 − 2yi + yi+1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
, i = 0, 1, . . . , m (8.9)

y0 = α or
y1 − y−1

2h
= α (8.10a)

ym = β or
ym+1 − ym−1

2h
= β (8.10b)

Note the presence of y−1 and ym+1, which are associated with points outside the
solution domain (a, b). This “spillover” can be eliminated by using the boundary

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

312 Two-Point Boundary Value Problems

conditions. But before we do that, let us rewrite Eqs. (8.9) as

y−1 − 2y0 + y1 − h2 f
(

x0, y0,
y1 − y−1

2h

)
= 0 (a)

yi−1 − 2yi + yi+1 − h2 f
(

xi, yi,
yi+1 − yi−1

2h

)
= 0, i = 1, 2, . . . , m− 1 (b)

ym−1 − 2ym + ym+1 − h2 f
(

xm, ym,
ym+1 − ym−1

2h

)
= 0 (c)

The boundary conditions on y are easily dealt with: Eq. (a) is simply replaced
by y0 − α = 0 and Eq. (c) is replaced by ym − β = 0. If y′ are prescribed, we obtain
from Eqs. (8.10) y−1 = y1 − 2hα and ym+1 = ym−1 + 2hβ, which are then substituted
into Eqs. (a) and (c), respectively. Hence we finish up with m+ 1 equations in the
unknowns y0, y1, . . . , ym:

y0 − α = 0 if y(a) = α

−2y0 + 2y1 − h2 f (x0, y0, α) − 2hα = 0 if y′(a) = α

}
(8.11a)

yi−1 − 2yi + yi+1 − h2 f
(

xi, yi,
yi+1 − yi−1

2h

)
= 0 i = 1, 2, . . . , m− 1 (8.11b)

ym − β = 0 if y(b) = β

2ym−1 − 2ym − h2 f (xm, ym, β) + 2hβ = 0 if y′(b) = β

}
(8.11c)

EXAMPLE 8.6
Write out Eqs. (8.11) for the following linear boundary value problem using m = 10:

y′′ = −4y + 4x y(0) = 0 y′(π/2) = 0

Solve these equations with a computer program.

Solution In this case α = y(0) = 0, β = y′(π/2) = 0 and f (x, y, y′) = −4y + 4x. Hence
Eqs. (8.11) are

y0 = 0

yi−1 − 2yi + yi+1 − h2 (−4yi + 4xi) = 0, i = 1, 2, . . . , 9

2y9 − 2y10 − h2(−4y10 + 4x10) = 0

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

313 8.3 Finite Difference Method

or, using matrix notation

1 0
1 −2 + 4h2 1

. . .
. . .

. . .

1 −2 + 4h2 1
2 −2 + 4h2

y0

y1

...
y9

y10

=

0
4h2x1

...
4h2x9

4h2x10

Note that the coefficient matrix is tridiagonal, so that the equations can be
solved efficiently by the decomposition and back substitution routines in module
LUdecomp3, described in Section 2.4. Recalling that in LUdecomp3 the diagonals
of the coefficient matrix are stored in vectors c, d and e, we arrive at the following
program:

#!/usr/bin/python

example8_6

from numarray import zeros,ones,Float64,array,arange

from LUdecomp3 import *

from math import pi

def equations(x,h,m): # Set up finite difference eqs.

h2 = h*h

d = ones((m + 1))*(-2.0 + 4.0*h2)

c = ones((m),type = Float64)

e = ones((m),type = Float64)

b = ones((m+1))*4.0*h2*x

d[0] = 1.0

e[0] = 0.0

b[0] = 0.0

c[m-1] = 2.0

return c,d,e,b

xStart = 0.0 # x at left end

xStop = pi/2.0 # x at right end

m = 10 # Number of mesh spaces

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

c,d,e,b = equations(x,h,m)

c,d,e = LUdecomp3(c,d,e)

y = LUsolve3(c,d,e,b)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

314 Two-Point Boundary Value Problems

print ’’\n x y’’

for i in range(m + 1):

print ’’%14.5e %14.5e’’ %(x[i],y[i])

raw_input(’’\nPress return to exit’’)

The solution is

x y

0.00000e+000 0.00000e+000

1.57080e-001 3.14173e-001

3.14159e-001 6.12841e-001

4.71239e-001 8.82030e-001

6.28319e-001 1.11068e+000

7.85398e-001 1.29172e+000

9.42478e-001 1.42278e+000

1.09956e+000 1.50645e+000

1.25664e+000 1.54995e+000

1.41372e+000 1.56451e+000

1.57080e+000 1.56418e+000

The exact solution of the problem is

y = x − sin 2x

which yields y(π/2) = π/2 = 1. 57080. Thus the error in the numerical solution is
about 0.4%. More accurate results can be achieved by increasing m. For example, with
m = 100, we would get y(π/2) = 1.57073, which is in error by only 0.0002%.

EXAMPLE 8.7
Solve the boundary value problem

y′′ = −3yy′ y(0) = 0 y(2) = 1

with the finite difference method. Use m = 10 and compare the output with the results
of the shooting method in Example 8.1.

Solution As the problem is nonlinear, Eqs. (8.11) must be solved by the Newton–
Raphson method. The program listed below can be used as a model for other second-
order boundary value problems. The function residual(y) returns the residuals
of the finite difference equations, which are the left-hand sides of Eqs. (8.11). The
differential equation y′′ = f (x, y, y′) is defined in the function F(x,y,yPrime). In

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

315 8.3 Finite Difference Method

this problem we chose for the initial solution yi = 0.5xi , which corresponds to the
dashed straight line shown in the rough plot of y in Example 8.1. The starting values
of y0, y1, . . . , ym are specified by function startSoln(x). Note that we relaxed the
convergence criterion in the Newton–Raphson method to 1.0 × 10−5, which is more
in line with the truncation error in the finite difference method.

#!/usr/bin/python

example8_7

from numarray import zeros,Float64,array,arange

from newtonRaphson2 import *

def residual(y): # Residuals of finite diff. Eqs. (8.11)

r = zeros((m + 1),type=Float64)

r[0] = y[0]

r[m] = y[m] - 1.0

for i in range(1,m):

r[i] = y[i-1] - 2.0*y[i] + y[i+1] \

- h*h*F(x[i],y[i],(y[i+1] - y[i-1])/(2.0*h)

return r

def F(x,y,yPrime): # Differential eqn. y’’ = F(x,y,y’)

F = -3.0*y*yPrime

return F

def startSoln(x): # Starting solution y(x)

y = zeros((m + 1),type=Float64)

for i in range(m + 1): y[i] = 0.5*x[i]

return y

xStart = 0.0 # x at left end

xStop = 2.0 # x at right end

m = 10 # Number of mesh intervals

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

y = newtonRaphson2(residual,startSoln(x),1.0e-5)

print ’’\n x y’’

for i in range(m + 1):

print ’’%14.5e %14.5e’’ %(x[i],y[i])

raw_input(’’\nPress return to exit’’)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

316 Two-Point Boundary Value Problems

Here is the output from our program together with the solution obtained in
Example 8.1.

x y y from Ex. 8.1

0.00000e+000 0.00000e+000 0.00000e+000

2.00000e-001 3.02404e-001 2.94050e-001

4.00000e-001 5.54503e-001 5.41710e-001

6.00000e-001 7.34691e-001 7.21875e-001

8.00000e-001 8.49794e-001 8.39446e-001

1.00000e+000 9.18132e-001 9.10824e-001

1.20000e+000 9.56953e-001 9.52274e-001

1.40000e+000 9.78457e-001 9.75724e-001

1.60000e+000 9.90201e-001 9.88796e-001

1.80000e+000 9.96566e-001 9.96023e-001

2.00000e+000 1.00000e+000 1.00000e+000

The maximum discrepancy between the solutions is 1.8% occurring at x = 0.6.
As the shooting method used in Example 8.1 is considerably more accurate than the
finite difference method, the discrepancy can be attributed to truncation errors in
the finite difference solution. This error would be acceptable in many engineering
problems. Again, accuracy can be increased by using a finer mesh. With m = 100 we
can reduce the error to 0.07%, but we must question whether the tenfold increase in
computation time is really worth the extra precision.

Fourth-Order Differential Equation

For the sake of brevity we limit our discussion to the special case where y′ and y′′′ do
not appear explicitly in the differential equation; that is, we consider

y(4) = f (x, y, y′′)

We assume that two boundary conditions are prescribed at each end of the so-
lution domain (a, b). Problems of this form are commonly encountered in beam
theory.

Again we divide the solution domain into m intervals of length h each. Replacing
the derivatives of y by finite differences at the mesh points, we get the finite difference
equations

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2

h4
= f

(
xi, yi,

yi−1 − 2yi + yi+1

h2

)
(8.12)

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

317 8.3 Finite Difference Method

where i = 0, 1, . . . , m. It is more revealing to write these equations as

y−2 − 4y−1 + 6y0 − 4y1 + y2 − h4 f
(

x0, y0,
y−1 − 2y0 + y1

h2

)
= 0 (8.13a)

y−1 − 4y0 + 6y1 − 4y2 + y3 − h4 f
(

x1, y1,
y0 − 2y1 + y2

h2

)
= 0 (8.13b)

y0 − 4y1 + 6y2 − 4y3 + y4 − h4 f
(

x2, y2,
y1 − 2y2 + y3

h2

)
= 0 (8.13c)

...

ym−3 − 4ym−2 + 6ym−1 − 4ym + ym+1 − h4 f
(

xm−1, ym−1,
ym−2 − 2ym−1 + ym

h2

)
= 0

(8.13d)

ym−2 − 4ym−1 + 6ym − 4ym+1 + ym+2 − h4 f
(

xm, ym,
ym−1 − 2ym + ym+1

h2

)
= 0

(8.13e)

We now see that there are four unknowns y−2, y−1, ym+1 and ym+2 that lie outside the
solution domain that must be eliminated by applying the boundary conditions, a task
that is facilitated by Table 8.1.

Bound. cond. Equivalent finite difference expression
y(a) = α y0 = α

y′(a) = α y−1 = y1 − 2hα

y′′(a) = α y−1 = 2y0 − y1 + h2α

y′′′(a) = α y−2 = 2y−1 − 2y1 + y2 − 2h3α

y(b) = β ym = β

y′(b) = β ym+1 = ym−1 + 2hβ

y′′(b) = β ym+1 = 2ym − ym−1 + h2β

y′′′(b) = β ym+2 = 2ym+1 − 2ym−1 + ym−2 + 2h3β

Table 8.1

The astute observer may notice that some combinations of boundary conditions
will not work in eliminating the “spillover.” One such combination is clearly y(a) = α1

and y′′′(a) = α2. The other one is y′(a) = α1 and y′′(a) = α2. In the context of beam
theory, this makes sense: we can impose either a displacement y or a shear force E I y′′′

at a point, but it is impossible to enforce both of them simultaneously. Similarly, it
makes no physical sense to prescribe both the slope y′ and the bending moment E I y′′

at the same point.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

318 Two-Point Boundary Value Problems

EXAMPLE 8.8

P

L
v

x

The uniform beam of length L and bending rigidity E I is attached to rigid supports
at both ends. The beam carries a concentrated load P at its mid-span. If we utilize
symmetry and model only the left half of the beam, the displacement v can be obtained
by solving the boundary value problem

E I
d4v
dx4

= 0

v|x=0 = 0
dv
dx

∣∣∣∣
x=0

= 0
dv
dx

∣∣∣∣
x=L/2

= 0 E I
d3v
dx3

∣∣∣∣
x=L/2

= −P/2

Use the finite difference method to determine the displacement and the bending
moment M = −E I (d2v/dx2) at the mid-span (the exact values are v = P L3/(192E I)
and M = P L/8).

Solution By introducing the dimensionless variables

ξ = x
L

y = E I
P L3

v

the problem becomes

d4 y

dξ4 = 0

y|ξ=0 = 0
dy
dξ

∣∣∣∣
ξ=0

= 0
dy
dξ

∣∣∣∣
ξ=1/2

= 0
d3 y

dξ3

∣∣∣∣
ξ=1/2

= −1
2

We now proceed to writing Eqs. (8.13) taking into account the boundary condi-
tions. Referring to Table 8.1, we obtain the finite difference expressions of the bound-
ary conditions at the left end as y0 = 0 and y−1 = y1. Hence Eqs. (8.13a) and (8.13b)
become

y0 = 0 (a)

0

−−→− 4y0 + 7y1 − 4y2 + y3 = 0 (b)

Equation (8.13c) is

0

−−→y0 − 4y1 + 6y2 − 4y3 + y4 = 0 (c)

At the midspan the boundary conditions are equivalent to ym+1 = ym−1 and

ym+2 = 2ym+1 + ym−2 − 2ym−1 + 2h3(−1/2) = ym−2 − h3

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

319 8.3 Finite Difference Method

Substitution into Eqs. (8.13d) and (8.13e) yields

ym−3 − 4ym−2 + 7ym−1 − 4ym = 0 (d)

2ym−2 − 8ym−1 + 6ym = h3 (e)

The coefficient matrix of Eqs. (a)–(e) can be made symmetric by dividing Eq. (e) by 2.
The result is

1 0 0
0 7 −4 1
0 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 7 −4

1 −4 3

y0

y1

y2

...
ym−2

ym−1

ym

=

0
0
0
...
0
0

0.5h3

The above system of equations can be solved with the decomposition and back
substitution routines in module LUdecomp5—see Section 2.4. Recall that LUdecomp5
works with the vectors d, e and f that form the diagonals of the upper half of the
matrix. The constant vector is denoted by b. The program that sets up and solves the
equations is

#!/usr/bin/python

example8_8

from numarray import zeros,ones,Float64,array,arange

from LUdecomp5 import *

def equations(x,h,m): # Set up finite difference eqs.

h4 = h**4

d = ones((m + 1),type = Float64)*6.0

e = ones((m),type = Float64)*(-4.0)

f = ones((m-1),type = Float64)

b = zeros((m+1),type=Float64)

d[0] = 1.0

d[1] = 7.0

e[0] = 0.0

f[0] = 0.0

d[m-1] = 7.0

d[m] = 3.0

b[m] = 0.5*h**3

return d,e,f,b

xStart = 0.0 # x at left end

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

320 Two-Point Boundary Value Problems

xStop = 0.5 # x at right end

m = 20 # Number of mesh spaces

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

d,e,f,b = equations(x,h,m)

d,e,f = LUdecomp5(d,e,f)

y = LUsolve5(d,e,f,b)

print ’’\n x y’’

for i in range(m + 1):

print ’’%14.5e %14.5e’’ %(x[i],y[i])

raw_input(’’\nPress return to exit’’)

When we ran the program with m = 20, the last two lines of the output were

x y

4.75000e-001 5.19531e-003

5.00000e-001 5.23438e-003

Thus at the mid-span we have

v|x=0.5L = P L3

E I
y|ξ=0.5 = 5.234 38 × 10−3 P L3

E I

d2v
dx2

∣∣∣∣
x=0.5L

= P L3

E I

(
1

L2

d2 y

dξ2

∣∣∣∣
ξ=0.5

)
≈ P L

E I
ym−1 − 2ym + ym+1

h2

= P L
E I

(5.19531 − 2(5.23438) + 5.19531) × 10−3

0.0252

= −0.125 024
P L
E I

M|x=0.5L = −E I
d2v
dx2

∣∣∣∣
ξ=0.5

= 0.125 024 P L

In comparison, the exact solution yields

v|x=0.5L = 5.208 33 × 10−3 P L3

E I
M|x=0.5L = = 0.125 000 P L

PROBLEM SET 8.2

Problems 1–5 Use first central difference approximations to transform the boundary
value problem shown into simultaneous equations Ay = b.

1. y′′ = (2 + x)y, y(0) = 0, y′(1) = 5.

2. y′′ = y + x2, y(0) = 0, y(1) = 1.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

321 8.3 Finite Difference Method

3. y′′ = e−x y′, y(0) = 1, y(1) = 0.

4. y(4) = y′′ − y, y(0) = 0, y′(0) = 1, y(1) = 0, y′(1) = −1.

5. y(4) = −9y + x, y(0) = y′′(0) = 0, y′(1) = y′′′(1) = 0.

Problems 6–10 Solve the given boundary value problem with the finite difference
method using m = 20.

6. � y′′ = xy, y(1) = 1.5 y(2) = 3.

7. � y′′ + 2y′ + y = 0, y(0) = 0, y(1) = 1. Exact solution is y = xe1−x.

8. � x2 y′′ + xy′ + y = 0, y(1) = 0, y(2) = 0.638961. Exact solution is y = sin(ln x).

9. � y′′ = y2 sin y, y′(0) = 0, y(π) = 1.

10. � y′′ + 2y(2xy′ + y) = 0, y(0) = 1/2, y′(1) = −2/9. Exact solution is
y = (2 + x2)−1.

11. �

v

x

w0

L /2 L /4L /4

I0

I1

I0

The simply supported beam consists of three segments with the moments of
inertia I0 and I1 as shown. A uniformly distributed load of intensity w0 acts over
the middle segment. Modeling only the left half of the beam, we can show that
the differential equation

d2v
dx2

= − M
E I

for the displacement v is

d2v
dx2

= −w0 L2

4E I0
×

x
L

in 0 < x <
L
4

I0

I1

[
x
L

− 2
(

x
L

− 1
4

)2
]

in
L
4

< x <
L
2

Introducing the dimensionless variables

ξ = x
L

y = E I0

w0 L4
v γ = I1

I0

the differential equation changes to

d2 y

dξ2
=

−1
4
ξ in 0 < ξ <

1
4

− 1
4γ

[
ξ − 2

(
ξ − 1

4

)2
]

in
1
4

< ξ <
1
2

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

322 Two-Point Boundary Value Problems

with the boundary conditions

y|ξ=0 = dy
dξ

∣∣∣∣
ξ=1/2

= 0

Use the finite difference method to determine the maximum displacement of the
beam using m = 20 and γ = 1.5 and compare it with the exact solution

vmax = 61
9216

w0 L4

E I0

12. �

d0

M0
d1d

x
v L

The simply supported, tapered beam has a circular cross section. A couple of
magnitude M0 is applied to the left end of the beam. The differential equation for
the displacement v is

d2v
dx2

= − M
E I

= − M0(1 − x/L)
E I0(d/d0)4

where

d = d0

[
1 +

(
d1

d0
− 1

)
x
L

]
I0 = πd4

0

64

Substituting

ξ = x
L

y = E I0

M0 L2
v δ = d1

d0

the differential equation changes to

d2 y

dξ2
= − 1 − ξ

[1 + (δ − 1)ξ]4

with the boundary conditions

y|ξ=0 = y|ξ=1 = 0

Solve the problem with the finite difference method using δ = 1.5 and m = 20;
plot y vs. ξ . The exact solution is

y = − (3 + 2δξ − 3ξ)ξ2

6(1 + δξ − ξ)2
+ ξ

3δ

13. � Solve Example 8.4 by the finite difference method with m = 20. Hint: Compute
the end slopes from the second noncentral differences in Tables 5.3.

14. � Solve Prob. 20 in Problem Set 8.1 with the finite difference method. Use m = 20.

P1: GDZ
CB904-08 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 5:32

323 8.3 Finite Difference Method

15. �

L

w0

x

v

The simply supported beam of length L is resting on an elastic foundation of
stiffness kN/m2. The displacement v of the beam due to the uniformly distributed
load of intensity w0 N/m is given by the solution of the boundary value problem

E I
d4v
dx4

+ kv = w0, v|x=0 = d2 y
dx2

∣∣∣∣
x=0

= v|x=L = d2v
dx2

∣∣∣∣
x=L

= 0

The nondimensional form of the problem is

d4 y

dξ4 + γ y = 1, y|ξ=0 = d2 y
dx2

∣∣∣∣
ξ=0

= y|ξ=1 = d2 y
dx2

∣∣∣∣
ξ=1

= 0

where

ξ = x
L

y = E I
w0 L4

v γ = kL4

E I

Solve this problem by the finite difference method with γ = 105 and plot y vs. ξ .

16. � Solve Prob. 15 if the ends of the beam are free and the load is confined to the
middle half of the beam. Consider only the left half of the beam, in which case
the nondimensional form of the problem is

d4 y

dξ4 + γy =
{

0 in 0 < ξ < 1/4
1 in 1/4 < ξ < 1/2

d2 y

dξ2

∣∣∣∣
ξ=0

= d3 y

dξ3

∣∣∣∣
ξ=0

= dy
dξ

∣∣∣∣
ξ=1/2

= d3 y

dξ3

∣∣∣∣
ξ=1/2

= 0

17. � The general form of a linear, second-order boundary value problem is

y′′ = r(x) + s(x)y + t(x)y′

y(a) = α or y′(a) = α

y(b) = β or y′(b) = β

Write a program that solves this problem with the finite difference method for
any user-specified r(x), s(x) and t(x). Test the program by solving Prob. 8.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

9 Symmetric Matrix Eigenvalue Problems

Find λ for which nontrivial solutions of Ax =λx exist.

9.1 Introduction

The standard form of the matrix eigenvalue problem is

Ax = λx (9.1)

where A is a given n × n matrix. The problem is to find the scalar λ and the vector x.
Rewriting Eq. (9.1) in the form

(A − λI) x = 0 (9.2)

it becomes apparent that we are dealing with a system of n homogeneous equations.
An obvious solution is the trivial one x = 0. A nontrivial solution can exist only if the
determinant of the coefficient matrix vanishes; that is, if

|A − λI| = 0 (9.3)

Expansion of the determinant leads to the polynomial equation, also known as the
characteristic equation

a0 + a1λ + a2λ
2 + · · · + anλ

n = 0

which has the roots λi , i = 1, 2, . . . , n, called the eigenvalues of the matrix A. The
solutions xi of (A − λi I) x = 0 are known as the eigenvectors.

As an example, consider the matrix

A =

 1 −1 0

−1 2 −1
0 −1 1

 (a)

324

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

325 9.1 Introduction

The characteristic equation is

|A − λI| =

∣∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣∣ = −3λ + 4λ2 − λ3 = 0 (b)

The roots of this equation are λ1 = 0, λ2 = 1, λ3 = 3. To compute the eigenvector
corresponding the λ3, we substitute λ = λ3 into Eq. (9.2), obtaining

−2 −1 0
−1 −1 −1

0 −1 −2

 x1

x2

x3

 =

 0

0
0

 (c)

We know that the determinant of the coefficient matrix is zero, so that the equations
are not linearly independent. Therefore, we can assign an arbitrary value to any one
component of x and use two of the equations to compute the other two components.
Choosing x1 = 1, the first equation of Eq. (c) yields x2 = −2 and from the third equa-
tion we get x3 = 1. Thus the eigenvector associated with λ3 is

x3 =

 1

−2
1

The other two eigenvectors

x2 =

 1

0
−1

 x1 =

 1

1
1

can be obtained in the same manner.
It is sometimes convenient to display the eigenvectors as columns of a matrix X.

For the problem at hand, this matrix is

X =
[

x1 x2 x3

]
=

1 1 1

1 0 −2
1 −1 1

It is clear from the above example that the magnitude of an eigenvector is indeter-
minate; only its direction can be computed from Eq. (9.2). It is customary to normalize
the eigenvectors by assigning a unit magnitude to each vector. Thus the normalized
eigenvectors in our example are

X =

1/

√
3 1/

√
2 1/

√
6

1/
√

3 0 −2/
√

6
1/

√
3 −1/

√
2 1/

√
6

Throughout this chapter we assume that the eigenvectors are normalized.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

326 Symmetric Matrix Eigenvalue Problems

Here are some useful properties of eigenvalues and eigenvectors, given without
proof:

� All eigenvalues of a symmetric matrix are real.
� All eigenvalues of a symmetric, positive-definite matrix are real and positive.
� The eigenvectors of a symmetric matrix are orthonormal; that is, XT X = I.
� If the eigenvalues of A are λi , then the eigenvalues of A−1 are λ−1

i .

Eigenvalue problems that originate from physical problems often end up with a
symmetric A. This is fortunate, because symmetric eigenvalue problems are easier to
solve than their nonsymmetric counterparts (which may have complex eigenvalues).
In this chapter we largely restrict our discussion to eigenvalues and eigenvectors of
symmetric matrices.

Common sources of eigenvalue problems are the analysis of vibrations and sta-
bility. These problems often have the following characteristics:

� The matrices are large and sparse (e.g., have a banded structure).
� We need to know only the eigenvalues; if eigenvectors are required, only a few of

them are of interest.

A useful eigenvalue solver must be able to utilize these characteristics to minimize
the computations. In particular, it should be flexible enough to compute only what
we need and no more.

9.2 Jacobi Method

Jacobi method is a relatively simple iterative procedure that extracts all the eigenvalues
and eigenvectors of a symmetric matrix. Its utility is limited to small matrices (less
than 20 × 20), because the computational effort increases very rapidly with the size
of the matrix. The main strength of the method is its robustness—it seldom fails to
deliver.

Similarity Transformation and Diagonalization

Consider the standard matrix eigenvalue problem

Ax = λx (9.4)

where A is symmetric. Let us now apply the transformation

x = Px∗ (9.5)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

327 9.2 Jacobi Method

where P is a nonsingular matrix. Substituting Eq. (9.5) into Eq. (9.4) and premultiplying
each side by P−1, we get

P−1APx∗ = λP−1Px∗

or

A∗x∗ = λx∗ (9.6)

where A∗ = P−1AP. Becauseλwas untouched by the transformation, the eigenvalues of
A are also the eigenvalues of A∗. Matrices that have the same eigenvalues are deemed to
be similar, and the transformation between them is called a similarity transformation.

Similarity transformations are frequently used to change an eigenvalue problem
to a form that is easier to solve. Suppose that we managed by some means to find a P
that diagonalizes A∗. Equations (9.6) then are

A∗

11 − λ 0 · · · 0
0 A∗

22 − λ · · · 0
...

...
. . .

...
0 0 · · · A∗

nn − λ

x∗
1

x∗
2

...
x∗

n

 =

0
0
...
0

which have the solutions

λ1 = A∗
11 λ2 = A∗

22 · · · λn = A∗
nn (9.7)

x∗
1 =

1
0
...
0

 x∗

2 =

0
1
...
0

 · · · x∗

n =

0
0
...
1

or

X∗ =
[

x∗
1 x∗

2 · · · x∗
n

]
= I

According to Eq. (9.5) the eigenvectors of A are

X = PX∗ = PI = P (9.8)

Hence the transformation matrix P contains the eigenvectors of A, and the eigenvalues
of A are the diagonal terms of A∗.

Jacobi Rotation

A special similarity transformation is the plane rotation

x = Rx∗ (9.9)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

328 Symmetric Matrix Eigenvalue Problems

where

k �

R =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 c 0 0 s 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −s 0 0 c 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

k

�

(9.10)

is called the Jacobi rotation matrix. Note that R is an identity matrix modified by the
terms c = cos θ and s = sin θ appearing at the intersections of columns/rows k and
�, where θ is the rotation angle. The rotation matrix has the useful property of being
orthogonal, meaning that

R−1 = RT (9.11)

One consequence of orthogonality is that the transformation in Eq. (9.9) has the
essential characteristic of a rotation: it preserves the magnitude of the vector; that is,
|x| = |x∗|.

The similarity transformation corresponding to the plane rotation in Eq. (9.9) is

A∗ = R−1AR = RT AR (9.12)

The matrix A∗ not only has the same eigenvalues as the original matrix A, but thanks
to orthogonality of R, it is also symmetric. The transformation in Eq. (9.12) changes
only the rows/columns k and � of A. The formulas for these changes are

A∗
kk = c2 Akk + s2 A�� − 2cs Ak�

A∗
�� = c2 A�� + s2 Akk + 2cs Ak�

A∗
k� = A∗

�k = (c2 − s2)Ak� + cs(Akk − A��) (9.13)

A∗
ki = A∗

ik = c Aki − s A�i , i �= k, i �= �

A∗
�i = A∗

i� = c A�i + s Aki , i �= k, i �= �

Jacobi Diagonalization

The angle θ in the Jacobi rotation matrix can be chosen so that A∗
k� = A∗

�k = 0. This
suggests the following idea: why not diagonalize A by looping through all the off-
diagonal terms and zero them one by one? This is exactly what Jacobi diagonaliza-
tion does. However, there is a major snag—the transformation that annihilates an

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

329 9.2 Jacobi Method

off-diagonal term also undoes some of the previously created zeroes. Fortunately, it
turns out that the off-diagonal terms that reappear will be smaller than before. Thus
Jacobi method is an iterative procedure that repeatedly applies Jacobi rotations until
the off-diagonal terms have virtually vanished. The final transformation matrix P is
the accumulation of individual rotations Ri :

P = R1·R2·R3 . . . (9.14)

The columns of P finish up being the eigenvectors of A and the diagonal elements of
A∗ = PT AP become the eigenvectors.

Let us now look at the details of a Jacobi rotation. From Eq. (9.13) we see that
A∗

k� = 0 if

(c2 − s2)Ak� + cs(Akk − A��) = 0 (a)

Using the trigonometric identities c2 − s2 = cos2 θ − sin2 θ = cos 2θ and cs =
cos θ sin θ = (1/2) sin 2θ , we obtain from Eq. (a)

tan 2θ = − 2Ak�

Akk − A��

(b)

which could be solved for θ , followed by computation of c = cos θ and s = sin θ . How-
ever, the procedure described below leads to better algorithm.23

Introducing the notation

φ = cot 2θ = − Akk − A��

2Ak�

(9.15)

and utilizing the trigonometric identity

tan 2θ = 2t
(1 − t2)

where t = tan θ , we can write Eq. (b) as

t2 + 2φt − 1 = 0

which has the roots

t = −φ ±
√

φ2 + 1

It has been found that the root |t| ≤ 1, which corresponds to |θ | ≤ 45◦, leads to the
more stable transformation. Therefore, we choose the plus sign if φ > 0 and the minus
sign if φ ≤ 0, which is equivalent to using

t = sgn(φ)
(

− |φ| +
√

φ2 + 1
)

23 The procedure is adapted from Press, W. H., et al., Numerical Recipes in Fortran, 2nd ed, Cambridge
University Press, 1992.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

330 Symmetric Matrix Eigenvalue Problems

To forestall excessive roundoff error if φ is large, we multiply both sides of the equation
by |φ| +

√
φ2 + 1 and solve for t, which yields

t = sgn(φ)

|φ| +
√

φ2 + 1
(9.16a)

In the case of very large φ, we should replace Eq. (9.16a) by the approximation

t = 1
2φ

(9.16b)

to prevent overflow in the computation of φ2. Having computed t, we can use the
trigonometric relationship tan θ = sin θ/ cos θ = √

1 − cos2 θ/ cos θ to obtain

c = 1√
1 + t2

s = tc (9.17)

We now improve the transformation formulas in Eqs. (9.13). Solving Eq. (a) for
A��, we obtain

A�� = Akk + Ak�

c2 − s2

cs
(c)

Replacing all occurrences of A�� by Eq. (c) and simplifying, we can write the transfor-
mation formulas in Eqs.(9.13) as

A∗
kk = Akk − t Ak�

A∗
�� = A�� + t Ak�

A∗
k� = A∗

�k = 0 (9.18)

A∗
ki = A∗

ik = Aki − s(A�i + τ Aki), i �= k, i �= �

A∗
�i = A∗

i� = A�i + s(Aki − τ A�i), i �= k, i �= �

where

τ = s
1 + c

(9.19)

The introduction of τ allowed us to express each formula in the form (original value)
+ (change), which is helpful in reducing the roundoff error.

At the start of Jacobi’s diagonalization process the transformation matrix P is
initialized to the identity matrix. Each Jacobi’s rotation changes this matrix from P to
P∗ = PR. The corresponding changes in the elements of P can be shown to be (only
the columns k and � are affected)

P∗
ik = Pik − s(Pi� + τ Pik) (9.20)

P∗
i� = Pi� + s(Pik − τ Pi�)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

331 9.2 Jacobi Method

We still have to decide the order in which the off-diagonal elements of A are to be
eliminated. Jacobi’s original idea was to attack the largest element since this results
in fewest number of rotations. The problem here is that A has to be searched for
the largest element after every rotation, which is a time-consuming process. If the
matrix is large, it is faster to sweep through it by rows or columns and annihilate
every element above some threshold value. In the next sweep the threshold is lowered
and the process repeated. We adopt Jacobi’s original scheme because of its simpler
implementation.

In summary, the Jacobi diagonalization procedure, which uses only the upper half
of the matrix, is:

1. Find the largest (absolute value) off-diagonal element Ak� in the upper half of A.

2. Compute φ, t, c and s from Eqs. (9.15)–(9.17).
3. Compute τ from Eq. (9.19).
4. Modify the elements in the upper half of A according to Eqs. (9.18).
5. Update the transformation matrix P using Eqs. (9.20).
6. Repeat steps 1–5 until the Ak� < ε, where ε is the error tolerance.

� jacobi

This function computes all eigenvalues λi and eigenvectors xi of a symmetric,
n × n matrix A by the Jacobi method. The algorithm works exclusively with the upper
triangular part of A, which is destroyed in the process. The principal diagonal of A is
replaced by the eigenvalues, and the columns of the transformation matrix P become
the normalized eigenvectors.

module jacobi

’’’ lam,x = jacobi(a,tol = 1.0e-9).

Solution of std. eigenvalue problem [a]{x} = lambda{x}

by Jacobi’s method. Returns eigenvalues in vector {lam}

and the eigenvectors as columns of matrix [x].

’’’

from numarray import array,identity,diagonal

from math import sqrt

def jacobi(a,tol = 1.0e-9):

def maxElem(a): # Find largest off-diag. element a[k,l]

n = len(a)

aMax = 0.0

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

332 Symmetric Matrix Eigenvalue Problems

for i in range(n-1):

for j in range(i+1,n):

if abs(a[i,j]) >= aMax:

aMax = abs(a[i,j])

k = i; l = j

return aMax,k,l

def rotate(a,p,k,l): # Rotate to make a[k,l] = 0

n = len(a)

aDiff = a[l,l] - a[k,k]

if abs(a[k,l]) < abs(aDiff)*1.0e-36: t = a[k,l]/aDiff

else:

phi = aDiff/(2.0*a[k,l])

t = 1.0/(abs(phi) + sqrt(phi**2 + 1.0))

if phi < 0.0: t = -t

c = 1.0/sqrt(t**2 + 1.0); s = t*c

tau = s/(1.0 + c)

temp = a[k,l]

a[k,l] = 0.0

a[k,k] = a[k,k] - t*temp

a[l,l] = a[l,l] + t*temp

for i in range(k): # Case of i < k

temp = a[i,k]

a[i,k] = temp - s*(a[i,l] + tau*temp)

a[i,l] = a[i,l] + s*(temp - tau*a[i,l])

for i in range(k+1,l): # Case of k < i < l

temp = a[k,i]

a[k,i] = temp - s*(a[i,l] + tau*a[k,i])

a[i,l] = a[i,l] + s*(temp - tau*a[i,l])

for i in range(l+1,n): # Case of i > l

temp = a[k,i]

a[k,i] = temp - s*(a[l,i] + tau*temp)

a[l,i] = a[l,i] + s*(temp - tau*a[l,i])

for i in range(n): # Update transformation matrix

temp = p[i,k]

p[i,k] = temp - s*(p[i,l] + tau*p[i,k])

p[i,l] = p[i,l] + s*(temp - tau*p[i,l])

n = len(a)

maxRot = 5*(n**2) # Set limit on number of rotations

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

333 9.2 Jacobi Method

p = identity(n)*1.0 # Initialize transformation matrix

for i in range(maxRot): # Jacobi rotation loop

aMax,k,l = maxElem(a)

if aMax < tol: return diagonal(a),p

rotate(a,p,k,l)

print ’Jacobi method did not converge’

� sortJacobi

The eigenvalues/eigenvectors returned byjacobiare not ordered. The function listed
below can be used to sort the eigenvalues and eigenvectors into ascending order of
eigenvalues.

module sortJacobi

’’’ sortJacobi(lam,x).

Sorts the eigenvalues {lam} and eigenvectors [x]

in order of ascending eigenvalues.

’’’

import swap

def sortJacobi(lam,x):

n = len(lam)

for i in range(n-1):

index = i

val = lam[i]

for j in range(i+1,n):

if lam[j] < val:

index = j

val = lam[j]

if index != i:

swap.swapRows(lam,i,index)

swap.swapCols(x,i,index)

Transformation to Standard Form

Physical problems often give rise to eigenvalue problems of the form

Ax = λBx (9.21)

where A and B are symmetric n × n matrices. We assume that B is also positive defi-
nite. Such problems must be transformed into the standard form before they can be
solved by Jacobi diagonalization.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

334 Symmetric Matrix Eigenvalue Problems

As B is symmetric and positive definite, we can apply Choleski decomposition
B = LLT , where L is a lower-triangular matrix (see Section 2.3). Then we introduce the
transformation

x = (L−1)T z (9.22)

Substituting into Eq. (9.21), we get

A(L−1)T z =λLLT (L−1)T z

Premultiplying both sides by L−1 results in

L−1A(L−1)T z = λL−1LLT (L−1)T z

Because L−1L = LT (L−1)T = I, the last equation reduces to the standard form

Hz = λz (9.23)

where

H = L−1A(L−1)T (9.24)

An important property of this transformation is that it does not destroy the symmetry
of the matrix; i.e., a symmetric A results in a symmetric H.

Here is the general procedure for solving eigenvalue problems of the form Ax =
λBx:

1. Use Choleski decomposition B = LLT to compute L.
2. Compute L−1 (a triangular matrix can be inverted with relatively small computa-

tional effort).
3. Compute H from Eq. (9.24).
4. Solve the standard eigenvalue problem Hz = λz (e.g., using the Jacobi method).
5. Recover the eigenvectors of the original problem from Eq. (9.22): x = (L−1)T z.

Note that the eigenvalues were untouched by the transformation.

An important special case is where B is a diagonal matrix:

B =

β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βn

 (9.25)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

335 9.2 Jacobi Method

Here

L =

β
1/2
1 0 · · · 0

0 β
1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β1/2
n

 L−1 =

β
−1/2
1 0 · · · 0

0 β
−1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β−1/2
n

 (9.26a)

and

Hi j = Ai j√
βiβ j

(9.26b)

� stdForm

Given the matrices A and B, the function stdForm returns H and the transformation
matrix T = (L−1)T . The inversion of L is carried out by invert (the triangular shape
of L allows this to be done by back substitution). Note that original A, B and L are
destroyed.

module stdForm

’’’ h,t = stdForm(a,b).

Transforms the eigenvalue problem [a]{x} = lambda[b]{x}

to the standard form [h]{z} = lambda{z}. The eigenvectors

are related by {x} = [t]{z}.

’’’

from numarray import dot,matrixmultiply,transpose

from choleski import *

def stdForm(a,b):

def invert(L): # Inverts lower triangular matrix L

n = len(L)

for j in range(n-1):

L[j,j] = 1.0/L[j,j]

for i in range(j+1,n):

L[i,j] = -dot(L[i,j:i],L[j:i,j])/L[i,i]

L[n-1,n-1] = 1.0/L[n-1,n-1]

n = len(a)

L = choleski(b)

invert(L)

h = matrixmultiply(b,matrixmultiply(a,transpose(L)))

return h,transpose(L)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

336 Symmetric Matrix Eigenvalue Problems

EXAMPLE 9.1

40 MPa

80 MPa

30 MPa

60 MPa

30 MPa

The stress matrix (tensor) corresponding to the state of stress shown is

S =

80 30 0

30 40 0
0 0 60

 MPa

(each row of the matrix consists of the three stress components acting on a coordinate
plane). It can be shown that the eigenvalues of S are the principal stresses and the
eigenvectors are normal to the principal planes. (1) Determine the principal stresses
by diagonalizing S with one Jacobi rotation and (2) compute the eigenvectors.

Solution of Part(1) To eliminate S12 we must apply a rotation in the 1–2 plane. With
k = 1 and � = 2 Eq. (9.15) is

φ = − S11 − S22

2S12
= −80 − 40

2(30)
= −2

3

Equation (9.16a) then yields

t = sgn(φ)

|φ| +
√

φ2 + 1
= −1

2/3 +
√

(2/3)2 + 1
= −0.535 18

According to Eqs. (9.18), the changes in S due to the rotation are

S∗
11 = S11 − tS12 = 80 − (−0.535 18) (30) = 96.055 MPa

S∗
22 = S22 + tS12 = 40 + (−0.535 18) (30) = 23.945 MPa

S∗
12 = S∗

21 = 0

Hence the diagonalized stress matrix is

S∗ =

96.055 0 0

0 23.945 0
0 0 60

where the diagonal terms are the principal stresses.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

337 9.2 Jacobi Method

Solution of Part (2) To compute the eigenvectors, we start with Eqs. (9.17) and (9.19),
which yield

c = 1√
1 + t2

= 1√
1 + (−0.535 18)2

= 0.88168

s = tc = (−0.535 18) (0.881 68) = −0.471 86

τ = s
1 + c

= −0.47186
1 + 0.881 68

= −0.250 77

We obtain the changes in the transformation matrix P from Eqs. (9.20). Because
P is initialized to the identity matrix, the first equation gives us

P∗
11 = P11 − s(P12 + τ P11)

= 1 − (−0.471 86) [0 + (−0.250 77) (1)] = 0.881 67

P∗
21 = P21 − s(P22 + τ P21)

= 0 − (−0.471 86) [1 + (−0.250 77) (0)] = 0.471 86

Similarly, the second equation of Eqs. (9.20) yields

P∗
12 = −0.471 86 P∗

22 = 0.881 67

The third row and column of P are not affected by the transformation. Thus

P∗ =

0.88167 −0.47186 0

0.47186 0.88167 0
0 0 1

The columns of P∗ are the eigenvectors of S.

EXAMPLE 9.2
L L 2L

C C3C
i1 i2 i3

i1 i2 i3

(1) Show that the analysis of the electric circuit shown leads to a matrix eigenvalue
problem. (2) Determine the circular frequencies and the relative amplitudes of the
currents.

Solution of Part (1) Kirchoff’s equations for the three loops are

L
di1

dt
+ q1 − q2

3C
= 0

L
di2

dt
+ q2 − q1

3C
+ q2 − q3

C
= 0

2L
di3

dt
+ q3 − q2

C
+ q3

C
= 0

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

338 Symmetric Matrix Eigenvalue Problems

Differentiating and substituting dqk/dt = ik, we get

1
3

i1 − 1
3

i2 = −LC
d2i1

dt2

−1
3

i1 + 4
3

i2 − i3 = −LC
d2i2

dt2

−i2 + 2i3 = −2LC
d2i3

dt2

These equations admit the solution

ik(t) = uk sin ωt

where ω is the circular frequency of oscillation (measured in rad/s) and uk are the
relative amplitudes of the currents. Substitution into Kirchoff’s equations yields Au =
λBu (sin ωt cancels out), where

A =

 1/3 −1/3 0

−1/3 4/3 −1
0 −1 2

 B =

1 0 0

0 1 0
0 0 2

 λ = LCω2

which represents an eigenvalue problem of the nonstandard form.

Solution of Part (2) Since B is a diagonal matrix, we can readily transform the problem
into the standard form Hz = λz. From Eq. (9.26a) we get

L−1 =

1 0 0

0 1 0
0 0 1/

√
2

and Eq. (9.26b) yields

H =

 1/3 −1/3 0

−1/3 4/3 −1/
√

2
0 −1/

√
2 1

The eigenvalues and eigenvectors of H can now be obtained with the Jacobi method.
Skipping the details, we obtain the following results:

λ1 = 0.147 79 λ2 = 0.582 35 λ3 = 1.936 53

z1 =

 0.810 27

0.451 02
0.374 23

 z2 =

 0.562 74

−0.420 40
−0.711 76

 z3 =

 0.163 70

−0.787 30
0.594 44

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

339 9.2 Jacobi Method

The eigenvectors of the original problem are recovered from Eq. (9.22): yi= (L−1)T zi ,
which yields

u1 =

 0.810 27

0.451 02
0.264 62

 u2 =

 0.562 74

−0.420 40
−0.503 29

 u3 =

 0.163 70

−0.787 30
0.420 33

These vectors should now be normalized (each zi was normalized, but the transfor-
mation to ui does not preserve the magnitudes of vectors). The circular frequencies
are ωi = √

λi/ (LC), so that

ω1 = 0.3844√
LC

ω2 = 0.7631√
LC

ω3 = 1.3916√
LC

EXAMPLE 9.3

n + 21 2
P

0-1
n +1

nn - 1

L
x

The propped cantilever beam carries a compressive axial load P. The lateral displace-
ment u(x) of the beam can be shown to satisfy the differential equation

u(4) + P
E I

u′′ = 0 (a)

where E I is the bending rigidity. The boundary conditions are

u(0) = u′′(0) = 0 u(L) = u′(L) = 0 (b)

(1) Show that displacement analysis of the beam results in a matrix eigenvalue problem
if the derivatives are approximated by finite differences. (2) Use the Jacobi method to
compute the lowest three buckling loads and the corresponding eigenvectors.

Solution of Part (1) We divide the beam into n + 1 segments of length L/(n + 1) each
as shown. Replacing the derivatives of u in Eq. (a) by central finite differences of O(h2)
at the interior nodes (nodes 1 to n), we obtain

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

h4

= P
E I

−ui−1 + 2ui − ui+1

h2
, i = 1, 2, . . . , n

After multiplication by h4, the equations become

u−1 − 4u0 + 6u1 − 4u2 + u3 = λ(−u0 + 2u1 − u2)

u0 − 4u1 + 6u2 − 4u3 + u4 = λ(−u1 + 2u2 − u3)

... (c)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

340 Symmetric Matrix Eigenvalue Problems

un−3 − 4un−2 + 6un−1 − 4un + un+1 = λ(−un−2 + 2un−1 − un)

un−2 − 4un−1 + 6un − 4un+1 + un+2 = λ(−un−1 + 2un − un+1)

where

λ = Ph2

E I
= P L2

(n + 1)2 E I

The displacements u−1, u0, un+1 and un+2 can be eliminated by using the prescribed
boundary conditions. Referring to Table 8.1, we obtain the finite difference approxi-
mations to the boundary conditions:

u0 = 0 u−1 = −u1 un+1 = 0 un+2 = un

Substitution into Eqs. (c) yields the matrix eigenvalue problem Ax = λBx, where

A =

5 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 6 −4
0 · · · 0 0 1 −4 7

B =

2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 2 −1 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 2

Solution of Part (2) The problem with the Jacobi method is that it insists on finding all
the eigenvalues and eigenvectors. It is also incapable of exploiting banded structures
of matrices. Thus the program listed below does much more work than necessary for
the problem at hand. More efficient methods of solution will be introduced later in
this chapter.

#!/usr/bin/python

example9_3

from numarray import array,zeros,Float64

from stdForm import *

from jacobi import *

from sortJacobi import *

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

341 9.2 Jacobi Method

n = 10

a = zeros((n,n),type=Float64)

b = zeros((n,n),type=Float64)

for i in range(n):

a[i,i] = 6.0

b[i,i] = 2.0

a[0,0] = 5.0

a[n-1,n-1] = 7.0

for i in range(n-1):

a[i,i+1] = -4.0

a[i+1,i] = -4.0

b[i,i+1] = -1.0

b[i+1,i] = -1.0

for i in range(n-2):

a[i,i+2] = 1.0

a[i+2,i] = 1.0

h,t = stdForm(a,b) # Convert to std. form

lam,z = jacobi(h) # Solve by Jacobi mthd.

x = matrixmultiply(t,z) # Eigenvectors of orig. prob.

for i in range(n): # Normalize eigenvectors

xMag = sqrt(dot(x[:,i],x[:,i]))

x[:,i] = x[:,i]/xMag

sortJacobi(lam,x) # Arrange in ascending order

print ’’Eigenvalues:\n’’,lam[0:3]

print ’’\nEigenvectors:\n’’,x[:,0:3]

raw_input(’’\n Press return to exit’’)

Running the program with n = 10 resulted in the following output:

Eigenvalues:

[0.16410379 0.47195675 0.90220118]

Eigenvectors:

[[0.16410119 -0.18476623 0.30699491]

[0.30618978 -0.26819121 0.36404289]

[0.40786549 -0.19676237 0.14669942]

[0.45735999 0.00994855 -0.12192373]

[0.45146805 0.26852252 -0.1724502]

[0.39607358 0.4710634 0.06772929]

[0.30518404 0.53612023 0.40894875]

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

342 Symmetric Matrix Eigenvalue Problems

[0.19863178 0.44712859 0.57038382]

[0.09881943 0.26022826 0.43341183]

[0.0270436 0.07776771 0.1486333]]

The first three mode shapes, which represent the relative displacements of the
buckled beam, are plotted below (we appended the zero end displacements to the
eigenvectors before plotting the points).

u

-0.4

-0.2

0.0

0.2

0.4

0.6

3

1

2

The buckling loads are given by Pi = (n + 1)2 λi E I/L2. Thus

P1 = (11)2 (0.164 103 7) E I
L2

= 19.857
E I
L2

P2 = (11)2 (0.471 956 75) E I
L2

= 57.107
E I
L2

P3 = (11)2 (0.902 201 18) E I
L2

= 109.17
E I
L2

The analytical values are P1 = 20.19E I/L2, P2 = 59.68E I/L2 and P3 = 118.9E I/L2. It
can be seen that the error introduced by the finite difference approximation increases
with the mode number (the error in Pi+1 is larger than in Pi). Of course, the accuracy
of the finite difference model can be improved by using larger n, but beyond n = 20
the cost of computation with the Jacobi method becomes rather high.

9.3 Inverse Power and Power Methods

Inverse Power Method

The inverse power method is a simple and efficient algorithm that finds the smallest
eigenvalue λ1 and the corresponding eigenvector x1 of

Ax = λx (9.27)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

343 9.3 Inverse Power and Power Methods

The method works like this:

1. Let v be an approximation to x1 (a random vector of unit magnitude will do).
2. Solve

Az = v (9.28)

for the vector z.
3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z| = ±1/λ1 and v = x1. The sign of λ1 is de-
termined as follows: if z changes sign between successive iterations, λ1 is negative;
otherwise, λ1 is positive.

Let us now investigate why the method works. Since the eigenvectors xi of
Eq. (9.27) are orthonormal (linearly independent), they can be used as the basis for
any n-dimensional vector. Thus v and z admit the unique representations

v =
n∑

i=1

vi xi z =
n∑

i=1

zi xi (a)

where vi and zi are the components of v and z with respect to the eigenvectors xi .
Substitution into Eq. (9.28) yields

A
n∑

i=1

zi xi −
n∑

i=1

vi xi = 0

But Axi = λi xi , so that

n∑
i=1

(ziλi − vi) xi = 0

Hence

zi = vi

λi

It follows from Eq. (a) that

z =
n∑

i=1

vi

λi
xi = 1

λ1

n∑
i=1

vi
λ1

λi
xi

= 1
λ1

(
v1x1 + v2

λ1

λ2
x2 + v3

λ1

λ3
x3 + · · ·

)
(9.29)

Since λ1/λi < 1 (i �= 1), we observe that the coefficient of x1 has become more promi-
nent in z than it was in v; hence z is a better approximation to x1. This completes the
first iterative cycle.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

344 Symmetric Matrix Eigenvalue Problems

In subsequent cycles we set v = z/|z| and repeat the process. Each iteration will
increase the dominance of the first term in Eq. (9.29) so that the process converges to

z = 1
λ1

v1x1 = 1
λ1

x1

(at this stage v1 = 1 since v = x1, so that v1 = 1, v2 = v3 = · · · = 0).
The inverse power method also works with the nonstandard eigenvalue problem

Ax = λBx (9.30)

provided that Eq. (9.28) is replaced by

Az = Bv (9.31)

The alternative is, of course, to transform the problem to standard form before apply-
ing the power method.

Eigenvalue Shifting

By inspection of Eq. (9.29) we see that the speed of convergence is determined by the
strength of the inequality |λ1/λ2| < 1 (the second term in the equation). If |λ2| is well
separated from |λ1|, the inequality is strong and the convergence is rapid. On the other
hand, close proximity of these two eigenvalues results in very slow convergence.

The rate of convergence can be improved by a technique calledeigenvalue shifting.
If we let

λ = λ∗ + s (9.32)

where s is a predetermined “shift,” the eigenvalue problem in Eq. (9.27) is trans-
formed to

Ax = (λ∗ + s)x

or

A∗x = λ∗x (9.33)

where

A∗ = A − sI (9.34)

Solving the transformed problem in Eq. (9.33) by the inverse power method yields λ∗
1

and x1, where λ∗
1 is the smallest eigenvalue of A∗. The corresponding eigenvalue of the

original problem, λ = λ∗
1 + s, is thus the eigenvalue closest to s.

Eigenvalue shifting has two applications. An obvious one is the determination of
the eigenvalue closest to a certain value s. For example, if the working speed of a shaft
is s rpm, it is imperative to assure that there are no natural frequencies (which are
related to the eigenvalues) close to that speed.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

345 9.3 Inverse Power and Power Methods

Eigenvalue shifting is also be used to speed up convergence. Suppose that we are
computing the smallest eigenvalue λ1 of the matrix A. The idea is to introduce a shift
s that makes λ∗

1/λ
∗
2 as small as possible. Since λ∗

1 = λ1 − s, we should choose s ≈ λ1

(s = λ1 should be avoided to prevent division by zero). Of course, this method works
only if we have a prior estimate of λ1.

The inverse power method with eigenvalue shifting is a particularly powerful tool
for finding eigenvectors if the eigenvalues are known. By shifting very close to an
eigenvalue, the corresponding eigenvector can be computed in one or two iterations.

Power Method

The power method converges to the eigenvalue farthest from zero and the associated
eigenvector. It is very similar to the inverse power method; the only difference be-
tween the two methods is the interchange of v and z in Eq. (9.28). The outline of the
procedure is:

1. Let v be an approximation to x1 (a random vector of unit magnitude will do).
2. Compute the vector

z = Av (9.35)

3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z|′ = ±λn and v = xn (the sign of λn is deter-
mined in the same way as in the inverse power method).

� inversePower

Given the matrix A and the shift s, the function inversePower returns the eigen-
value of A closest to s and the corresponding eigenvector. The matrix A∗ = A − sI is
decomposed as soon as it is formed, so that only the solution phase (forward and
back substitution) is needed in the iterative loop. If A is banded, the efficiency of the
program could be improved by replacing LUdecomp and LUsolve by functions that
specialize in banded matrices (e.g.,LUdecomp5andLUsolve5)—see Example 9.6. The
program line that forms A∗ must also be modified to be compatible with the storage
scheme used for A.

module inversePower

’’’ lam,x = inversePower(a,s,tol=1.0e-6).

Inverse power method for solving the eigenvalue problem

[a]{x} = lam{x}. Returns ’lam’ closest to ’s’ and the

corresponding eigenvector {x}.

’’’

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

346 Symmetric Matrix Eigenvalue Problems

from numarray import zeros,Float64,dot,identity

from LUdecomp import *

from math import sqrt

from random import random

def inversePower(a,s,tol=1.0e-6):

n = len(a)

aStar = a - identity(n)*s # Form [a*] = [a] - s[I]

aStar = LUdecomp(aStar) # Decompose [a*]

x = zeros((n),type=Float64)

for i in range(n): # Seed [x] with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize [x]

x =x/xMag

for i in range(50): # Begin iterations

xOld = x.copy() # Save current [x]

x = LUsolve(aStar,x) # Solve [a*][x] = [xOld]

xMag = sqrt(dot(x,x)) # Normalize [x]

x = x/xMag

if dot(xOld,x) < 0.0: # Detect change in sign of [x]

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return s + sign/xMag,x

print ’Inverse power method did not converge’

EXAMPLE 9.4
The stress matrix describing the state of stress at a point is

S =

−30 10 20

10 40 −50
20 −50 −10

 MPa

Determine the largest principal stress (the eigenvalue of S farthest from zero) by the
power method.

Solution First iteration:
Let v =

[
1 0 0

]T
be the initial guess for the eigenvector. Then

z = Sv =

−30 10 20

10 40 −50
20 −50 −10

 1

0
0

 =

−30.0

10.0
20.0

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

347 9.3 Inverse Power and Power Methods

|z| =
√

302 + 102 + 202 = 37.417

v = z
|z| =

−30.0

10.0
20.0

 1

37.417
=

−0.801 77

0.267 26
0.534 52

Second iteration:

z = Sv =

−30 10 20

10 40 −50
20 −50 −10

−0.801 77

0.267 26
0.534 52

 =

 37.416

−24.053
−34.744

|z| =
√

37.4162 + 24.0532 + 34.7442 = 56. 442

v = z
|z| =

 37.416

−24.053
−34.744

 1

56. 442
=

 0.66291

−0.42615
−0.61557

Third iteration:

z = Sv =

−30 10 20

10 40 −50
20 −50 −10

 0.66291

−0.42615
−0.61557

 =

−36.460

20.362
40.721

|z| =
√

36.4602 + 20.3622 + 40.7212 = 58.328

v = z
|z| =

−36.460

20.362
40.721

 1

58.328
=

−0.62509

0.34909
0.69814

At this point the approximation of the eigenvalue we seek is λ = −58.328 MPa (the
negative sign is determined by the sign reversal of z between iterations). This is actually
close to the second-largest eigenvalue λ2 = −58.39 MPa! By continuing the iterative
process we would eventually end up with the largest eigenvalue λ3 = 70.94 MPa. But
since |λ2| and |λ3| are rather close, the convergence is too slow from this point on for
manual labor. Here is a program that does the calculations for us:

#!/usr/bin/python

example9_4

from numarray import array,matrixmultiply,dot

from math import sqrt

s = array([[-30.0, 10.0, 20.0], \

[10.0, 40.0, -50.0], \

[20.0, -50.0, -10.0]])

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

348 Symmetric Matrix Eigenvalue Problems

v = array([1.0, 0.0, 0.0])

for i in range(100):

vOld = v.copy()

z = matrixmultiply(s,v)

zMag = sqrt(dot(z,z))

v = z/zMag

if dot(vOld,v) < 0.0:

sign = -1.0

v = -v

else: sign = 1.0

if sqrt(dot(vOld - v,vOld - v)) < 1.0e-6: break

lam = sign*zMag

print ’’Number of iterations =’’,i

print ’’Eigenvalue =’’,lam

raw_input(’’\nPrint press return to exit’’)

The results are:

Number of iterations = 92

Eigenvalue = 70.9434833068

Note that it took 92 iterations to reach convergence!

EXAMPLE 9.5
Determine the smallest eigenvalue λ1 and the corresponding eigenvector of

A =

11 2 3 1 4
2 9 3 5 2
3 3 15 4 3
1 5 4 12 4
4 2 3 4 17

Use the inverse power method with eigenvalue shifting knowing that λ1 ≈ 5.

Solution

#!/usr/bin/python##

example9_5

from numarray import array

from inversePower import *

s = 5.0

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

349 9.3 Inverse Power and Power Methods

a = array([[11.0, 2.0, 3.0, 1.0, 4.0], \

[2.0, 9.0, 3.0, 5.0, 2.0], \

[3.0, 3.0, 15.0, 4.0, 3.0], \

[1.0, 5.0, 4.0, 12.0, 4.0], \

[4.0, 2.0, 3.0, 4.0, 17.0]])

lam,x = inversePower(a,s)

print ’’Eigenvalue =’’,lam

print ’’\nEigenvector:\n’’,x

raw_input(’’\nPrint press return to exit’’)

Here is the output:

Eigenvalue = 4.87394637865

Eigenvector:

[-0.26726603 0.74142854 0.05017271 -0.59491453 0.14970633]

Convergence was achieved with 4 iterations. Without the eigenvalue shift 26 iter-
ations would be required.

EXAMPLE 9.6
Unlike Jacobi diagonalization, the inverse power method lends itself to eigenvalue
problems of banded matrices. Write a program that computes the smallest buckling
load of the beam described in Example 9.3, making full use of the banded forms. Run
the program with 100 interior nodes (n = 100).

Solution The function inversePower5 listed below returns the smallest eigenvalue
and the corresponding eigenvector of Ax = λBx, where A is a pentadiagonal matrix
and B is a sparse matrix (in this problem it is tridiagonal). The matrix A is input
by its diagonals d, e and f as was done in Section 2.4 in conjunction with the LU
decomposition. The algorithm for inversePower5 does not use B directly, but calls
the function Bv(v) that supplies the product Bv. Eigenvalue shifting is not used.

module inversePower5

’’’ lam,x = inversePower5(Bv,d,e,f,tol=1.0e-6).

Inverse power method for solving the eigenvalue problem

[A]{x} = lam[B]{x}, where [A] = [f\e\d\e\f] is

pentadiagonal and [B] is sparse.. User must supply the

function Bv(v) that returns the vector [B]{v}.

’’’

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

350 Symmetric Matrix Eigenvalue Problems

from numarray import zeros,Float64,dot

from LUdecomp5 import *

from math import sqrt

from random import random

def inversePower5(Bv,d,e,f,tol=1.0e-6):

n = len(d)

d,e,f = LUdecomp5(d,e,f)

x = zeros((n),type=Float64)

for i in range(n): # Seed {v} with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize {v}

x = x/xMag

for i in range(30): # Begin iterations

xOld = x.copy() # Save current {v}

x = Bv(xOld) # Compute [B]{v}

x = LUsolve5(d,e,f,x) # Solve [A]{z} = [B]{v}

xMag = sqrt(dot(x,x)) # Normalize {z}

x = x/xMag

if dot(xOld,x) < 0.0: # Detect change in sign of {x}

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return sign/xMag,x

print ’Inverse power method did not converge’

The program that utilizes inversePower5 is

#!/usr/bin/python

example9_6

from numarray import ones

from inversePower5 import *

def Bv(v): # Computes {z} = [B]{v}

n = len(v)

z = zeros((n),type=Float64)

z[0] = 2.0*v[0] - v[1]

for i in range(1,n-1):

z[i] = -v[i-1] + 2.0*v[i] - v[i+1]

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

351 9.3 Inverse Power and Power Methods

z[n-1] = -v[n-2] + 2.0*v[n-1]

return z

n = 100 # Number of interior nodes

d = ones((n))*6.0 # Specify diagonals of [A] = [f\e\d\e\f]

d[0] = 5.0

d[n-1] = 7.0

e = ones((n-1))*(-4.0)

f = ones((n-2))*1.0

lam,x = inversePower5(Bv,d,e,f)

print ’’PLˆ2/EI =’’,lam*(n+1)**2

raw_input(’’\nPress return to exit’’)

The output, shown below, is in excellent agreement with the analytical value.

PLˆ2/EI = 20.1867355603

PROBLEM SET 9.1

1. Given

A =

7 3 1

3 9 6
1 6 8

 B =

4 0 0

0 9 0
0 0 4

convert the eigenvalue problem Ax = λBx to the standard form Hz = λz. What is
the relationship between x and z?

2. Convert the eigenvalue problem Ax = λBx, where

A =

 4 −1 0

−1 4 −1
0 −1 4

 B =

 2 −1 0

−1 2 −1
0 −1 1

to the standard form.

3. An eigenvalue of the problem in Prob. 2 is roughly 2.5. Use the inverse power
method with eigenvalue shifting to compute this eigenvalue to four decimal

places. Start with x =
[

1 0 0
]T

. Hint: two iterations should be sufficient.

4. The stress matrix at a point is

S =

 150 −60 0

−60 120 0
0 0 80

 MPa

Compute the principal stresses (eigenvalues of S).

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

352 Symmetric Matrix Eigenvalue Problems

5.

m

L L

k

θ2θ1

2m

The two pendulums are connected by a spring which is undeformed when the
pendulums are vertical. The equations of motion of the system can be shown
to be

kL(θ2 − θ1) − mgθ1 = mL θ̈1

−kL(θ2 − θ1) − 2mgθ2 = 2mL θ̈2

where θ1 and θ2 are the angular displacements and k is the spring stiffness.
Determine the circular frequencies of vibration and the relative amplitudes
of the angular displacements. Use m = 0.25 kg, k = 20 N/m, L = 0.75 m and
g = 9.80665 m/s2.

6.

L L

L

C

C

C

i1 i2

i3i1

i2

i3

Kirchoff’s laws for the electric circuit are

3i1 − i2 − i3 = −LC
d2i1

dt2

−i1 + i2 = −LC
d2i2

dt2

−i1 + i3 = −LC
d2i3

dt2

Compute the circular frequencies of the circuit and the relative amplitudes of the
loop currents.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

353 9.3 Inverse Power and Power Methods

7. Compute the matrix A∗ that results from annihilation of A14 and A41 in the matrix

A =

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

by a Jacobi rotation.

8. � Use the Jacobi method to determine the eigenvalues and eigenvectors of

A =

 4 −1 −2

−1 3 3
−2 3 1

9. � Find the eigenvalues and eigenvectors of

A =

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

with the Jacobi method.

10. �Use the power method to compute the largest eigenvalue and the corresponding
eigenvector of the matrix A given in Prob. 9.

11. � Find the smallest eigenvalue and the corresponding eigenvector of the matrix
A in Prob. 9. Use the inverse power method.

12. � Let

A =

1.4 0.8 0.4

0.8 6.6 0.8
0.4 0.8 5.0

 B =

 0.4 −0.1 0.0

−0.1 0.4 −0.1
0.0 −0.1 0.4

Find the eigenvalues and eigenvectors of Ax = λBx by the Jacobi method.

13. � Use the inverse power method to compute the smallest eigenvalue in Prob. 12.

14. � Use the Jacobi method to compute the eigenvalues and eigenvectors of the
matrix

A =

11 2 3 1 4 2
2 9 3 5 2 1
3 3 15 4 3 2
1 5 4 12 4 3
4 2 3 4 17 5
2 1 2 3 5 8

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

354 Symmetric Matrix Eigenvalue Problems

15. � Find the eigenvalues of Ax = λBx by the Jacobi method, where

A =

6 −4 1 0
−4 6 −4 1

1 −4 6 −4
0 1 −4 7

 B =

1 −2 3 −1
−2 6 −2 3

3 −2 6 −2
−1 3 −2 9

Warning: B is not positive definite.

16. �

1 n2

L
x

u

The figure shows a cantilever beam with a superimposed finite difference mesh. If
u(x, t) is the lateral displacement of the beam, the differential equation of motion
governing bending vibrations is

u(4) = − γ

E I
ü

where γ is the mass per unit length and E I is the bending rigidity. The boundary
conditions are u(0, t) = u′(0, t) = u′′(L, t) = u′′′(L, t) = 0. With u(x, t) = y(x) sin ωt
the problem becomes

y(4) = ω2γ

E I
y y(0) = y′(0) = y′′(L) = y′′′(L) = 0

The corresponding finite difference equations are

7 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 5 −2
0 · · · 0 0 1 −2 1

y1

y2

y3

...
yn−2

yn−1

yn

= λ

y1

y2

y3

...
yn−2

yn−1

yn/2

where

λ = ω2γ

E I

(
L
n

)4

(a) Write down the matrix H of the standard form Hz = λz and the transformation
matrix P as in y = Pz. (b) Write a program that computes the lowest two circular
frequencies of the beam and the corresponding mode shapes (eigenvectors) using
the Jacobi method. Run the program with n = 10. Note: the analytical solution for
the lowest circular frequency is ω1 = (

3.515/L2
)√

E I/γ .

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

355 9.3 Inverse Power and Power Methods

17. �

1 20 3 4 5 6 7 8 9 10

L /4 L /4

(b)

PP L /2L /4 L /4

EI0 2EI0 EI0
(a)

The simply supported column in Fig. (a) consists of three segments with the
bending rigidities shown. If only the first buckling mode is of interest, it is sufficient
to model half of the beam as shown in Fig. (b). The differential equation for the
lateral displacement u(x) is

u′′ = − P
E I

u

with the boundary conditions u(0) = u′(L/2) = 0. The corresponding finite dif-
ference equations are

2 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
0 0 −1 2 −1 0 0 · · · 0
0 0 0 −1 2 −1 0 · · · 0
0 0 0 0 −1 2 −1 · · · 0
...

...
...

...
...

. . .
. . .

. . .
...

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1

u1

u2

u3

u4

u5

u6

...
u9

u10

= λ

u1

u2

u3

u4

u5/1.5
u6/2

...
u9/2
u10/4

where

λ = P
E I0

(
L

20

)2

Write a program that computes the lowest buckling load P of the column with
the inverse power method. Utilize the banded forms of the matrices.

18. �

θ3
θ2θ1

L
L

L

k k
k

P

The springs supporting the three-bar linkage are undeformed when the linkage
is horizontal. The equilibrium equations of the linkage in the presence of the

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

356 Symmetric Matrix Eigenvalue Problems

horizontal force P can be shown to be
6 5 3

3 3 2
1 1 1

 θ1

θ2

θ3

 = P

kL

1 1 1

0 1 1
0 0 1

 θ1

θ2

θ3

where k is the spring stiffness. Determine the smallest buckling load P and the cor-
responding mode shape. Hint: the equations can easily rewritten in the standard
form Aθ = λθ, where A is symmetric.

19. �

m 2m3m
kk k k

u1 u2 u3

The differential equations of motion for the mass–spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3

where ui(t) is the displacement of mass i from its equilibrium position and k
is the spring stiffness. Determine the circular frequencies of vibration and the
corresponding mode shapes.

20. �

L L L L

C C/5C/2 C/3 C/4
i1 i2 i3 i4

i1 i2 i3 i4

Kirchoff’s equations for the circuit are

L
d2i1

dt2
+ 1

C
i1 + 2

C
(i1 − i2) = 0

L
d2i2

dt2
+ 2

C
(i2 − i1) + 3

C
(i2 − i3) = 0

L
d2i3

dt2
+ 3

C
(i3 − i2) + 4

C
(i3 − i4) = 0

L
d2i4

dt2
+ 4

C
(i4 − i3) + 5

C
i4 = 0

Find the circular frequencies of the currents.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

357 9.4 Householder Reduction to Tridiagonal Form

21. �

L L L L

C C/2 C /3 C/4

i1 i2 i3 i4
i1 i2 i3 i4

L

Determine the circular frequencies of oscillation for the circuit shown, given the
Kirchoff equations

L
d 2i1

dt2
+ L

(
d 2i1

dt2
− d 2i2

dt2

)
+ 1

C
i1 = 0

L
(

d 2i2

dt2
− d 2i1

dt2

)
+ L

(
d 2i2

dt2
− d 2i3

dt2

)
+ 2

C
i2 = 0

L
(

d 2i3

dt2
− d 2i2

dt2

)
+ L

(
d 2i3

dt2
− d 2i4

dt2

)
+ 3

C
i3 = 0

L
(

d 2i4

dt2
− d 2i3

dt2

)
+ L

d 2i4

dt2
+ 4

C
i4 = 0

22. � Several iterative methods exist for finding the eigenvalues of a matrix A. One of
these is the LR method, which requires the matrix to be symmetric and positive
definite. Its algorithm very simple:

Let A0 = A
do with i = 0, 1, 2, . . .

Use Choleski’s decomposition Ai = Li LT
i to compute Li

Form Ai+1 = LT
i Li

end do

It can be shown that the diagonal elements of Ai+1 converge to the eigenvalues of
A. Write a program that implements the LR method and test it with

A =

4 3 1

3 4 2
1 2 3

9.4 Householder Reduction to Tridiagonal Form

It was mentioned before that similarity transformations can be used to transform an
eigenvalue problem to a form that is easier to solve. The most desirable of the “easy”
forms is, of course, the diagonal form that results from the Jacobi method. However,
the Jacobi method requires about 10n3 to 20n3 multiplications, so that the amount of

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

358 Symmetric Matrix Eigenvalue Problems

computation increases very rapidly with n. We are generally better off by reducing the
matrix to the tridiagonal form, which can be done in precisely n − 2 transformations
by the Householder method. Once the tridiagonal form is achieved, we still have to
extract the eigenvalues and the eigenvectors, but there are effective means of dealing
with that, as we see the next article.

Householder Matrix

Each Householder transformation utilizes the Householder matrix

Q = I − uuT

H
(9.36)

where u is a vector and

H = 1
2

uT u = 1
2

|u|2 (9.37)

Note that uuT in Eq. (9.36) is the outer product; that is, a matrix with the elements(
uuT

)
i j = uiuj . Since Q is obviously symmetric (QT = Q), we can write

QT Q = QQ =
(

I − uuT

H

)(
I − uuT

H

)
= I − 2

uuT

H
+ u

(
uT u

)
uT

H2

= I − 2
uuT

H
+ u (2H) uT

H2
= I

which shows that Q is also orthogonal.
Now let x be an arbitrary vector and consider the transformation Qx. Choosing

u = x + ke1 (9.38)

where

k = ± |x| e1 =
[

1 0 0 · · · 0
]T

we get

Qx =
(

I − uuT

H

)
x =

[
I − u (x + ke1)T

H

]
x

= x − u
(
xT x+keT

1 x
)

H
= x − u

(
k2 + kx1

)
H

But

2H = (x + ke1)T (x + ke1) = |x|2 + k
(
xT e1+eT

1 x
) + k2eT

1 e1

= k2 + 2kx1 + k2 = 2
(
k2 + kx1

)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

359 9.4 Householder Reduction to Tridiagonal Form

so that

Qx = x − u = −ke1 =
[
−k 0 0 · · · 0

]T
(9.39)

Hence the transformation eliminates all elements of x except the first one.

Householder Reduction of a Symmetric Matrix

Let us now apply the following transformation to a symmetric n × n matrix A:

P1A =
[

1 0T

0 Q

][
A11 xT

x A′

]
=

[
A11 xT

Qx QA′

]
(9.40)

Here x represents the first column of A with the first element omitted, and A′

is simply A with its first row and column removed. The matrix Q of dimensions
(n − 1) × (n − 1) is constructed using Eqs. (9.36)–(9.38). Referring to Eq. (9.39), we
see that the transformation reduces the first column of A to

[
A11

Qx

]
=

A11

−k
0
...
0

The transformation

A ← P1AP1 =
[

A11 (Qx)T

Qx QA′Q

]
(9.41)

thus tridiagonalizes the first row as well as the first column of A. Here is a diagram of
the transformation for a 4 × 4 matrix:

1 0 0 0

0
0 Q
0

·
A11 A12 A13 A14

A21

A31 A′

A41

·
1 0 0 0

0
0 Q
0

=
A11 −k 0 0

−k
0 QA′Q
0

The second row and column of A are reduced next by applying the transformation to
the 3 × 3 lower right portion of the matrix. This transformation can be expressed as
A ← P2AP2, where now

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

360 Symmetric Matrix Eigenvalue Problems

P2 =
[

I2 0T

0 Q

]
(9.42)

In Eq. (9.42) I2 is a 2 × 2 identity matrix and Q is a (n − 2) × (n − 2) matrix constructed
by choosing for x the bottom n − 2 elements of the second column of A. It takes a total
of n − 2 transformation with

Pi =
[

Ii 0T

0 Q

]
, i = 1, 2, . . . , n − 2

to attain the tridiagonal form.
It is wasteful to form Pi and then carry out the matrix multiplication Pi APi . We

note that

A′Q = A′
(

I − uuT

H

)
= A′ − A′u

H
uT = A′−vuT

where

v = A′u
H

(9.43)

Therefore,

QA′Q =
(

I − uuT

H

) (
A′−vuT) = A′−vuT − uuT

H

(
A′−vuT)

= A′−vuT − u
(
uT A′)
H

+ u
(
uT v

)
uT

H

= A′−vuT −uvT + 2guuT

where

g = uT v
2H

(9.44)

Letting

w = v − gu (9.45)

it can be easily verified that the transformation can be written as

QA′Q = A′−wuT −uwT (9.46)

which gives us the following computational procedure which is to be carried out with
i = 1, 2, . . . , n − 2:

1. Let A′ be the (n − i) × (n − i) lower right-hand portion of A.

2. Let x =
[

Ai+1,i Ai+2,i · · · An,i

]T
(the column of length n − i just to the left of A′).

3. Compute |x|. Let k = |x| if x1 > 0 and k = − |x| if x1 < 0 (this choice of sign mini-
mizes the roundoff error).

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

361 9.4 Householder Reduction to Tridiagonal Form

4. Let u =
[

k+x1 x2 x3 · · · xn−i

]T
.

5. Compute H = |u|2.
6. Compute v = A′u/H.
7. Compute g = uT v/(2H).
8. Compute w = v − gu.
9. Compute the transformation A′← A′−wT u − uT w.

10. Set Ai,i+1 = Ai+1,i = −k.

Accumulated Transformation Matrix

Since we used similarity transformations, the eigenvalues of the tridiagonal matrix
are the same as those of the original matrix. However, to determine the eigenvectors
X of original A we must use the transformation

X = PXtridiag

where P is the accumulation of the individual transformations:

P = P1P2· · · Pn−2

We build up the accumulated transformation matrix by initializing P to a n × n iden-
tity matrix and then applying the transformation

P ← PPi =
[

P11 P12

P21 P22

][
Ii 0T

0 Q

]
=

[
P11 P21Q
P12 P22Q

]
(b)

with i = 1, 2, . . . , n − 2. It can be seen that each multiplication affects only the right-
most n − i columns of P (since the first row of P12 contains only zeroes, it can also be
omitted in the multiplication). Using the notation

P′=
[

P12

P22

]

we have [
P12Q
P22Q

]
= P′Q = P′

(
I − uuT

H

)
= P′ − P′u

H
uT = P′−yuT (9.47)

where

y = P′u
H

(9.48)

The procedure for carrying out the matrix multiplication in Eq. (b) is:

� Retrieve u (in our triangularization procedure the u’s are stored in the columns
of the lower triangular portion of A).

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

362 Symmetric Matrix Eigenvalue Problems

� Compute H = |u|2

� Compute y = P′u/H.
� Compute the transformation P′← P′−yuT .

� householder

The function householder in this module does the triangulization. It returns (d, c),
where d and c are vectors that contain the elements of the principal diagonal and
the subdiagonal, respectively. Only the upper triangular portion is reduced to the
triangular form. The part below the principal diagonal is used to store the vectors u.
This is done automatically by the statement u = a[k+1:n,k] which does not create
a new object u, but simply sets up a reference to a[k+1:n,k] (makes a deep copy).
Thus any changes made to u are reflected in a[k+1:n,k].

The function computeP returns the accumulated transformation matrix P. There
is no need to call it if only the eigenvalues are to be computed.

module householder

’’’ d,c = householder(a).

Householder similarity transformation of matrix [a] to

the tridiagonal form [c\d\c].

p = computeP(a).

Computes the accumulated transformation matrix [p]

after calling householder(a).

’’’

from numarray import dot,matrixmultiply,diagonal, \

outerproduct,identity

from math import sqrt

def householder(a):

n = len(a)

for k in range(n-2):

u = a[k+1:n,k]

uMag = sqrt(dot(u,u))

if u[0] < 0.0: uMag = -uMag

u[0] = u[0] + uMag

h = dot(u,u)/2.0

v = matrixmultiply(a[k+1:n,k+1:n],u)/h

g = dot(u,v)/(2.0*h)

v = v - g*u

a[k+1:n,k+1:n] = a[k+1:n,k+1:n] - outerproduct(v,u) \

- outerproduct(u,v)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

363 9.4 Householder Reduction to Tridiagonal Form

a[k,k+1] = -uMag

return diagonal(a),diagonal(a,1)

def computeP(a):

n = len(a)

p = identity(n)*1.0

for k in range(n-2):

u = a[k+1:n,k]

h = dot(u,u)/2.0

v = matrixmultiply(p[1:n,k+1:n],u)/h

p[1:n,k+1:n] = p[1:n,k+1:n] - outerproduct(v,u)

return p

EXAMPLE 9.7
Transform the matrix

A =

7 2 3 −1
2 8 5 1
3 5 12 9

−1 1 9 7

into tridiagonal form using Householder reduction.

Solution Reduce the first row and column:

A′ =

8 5 1

5 12 9
1 9 7

 x =

 2

3
−1

 k = |x| = 3. 7417

u =

 k + x1

x2

x3

 =

 5.7417

3
−1

 H = 1

2
|u|2 = 21. 484

uuT =

 32.967 17 225 −5.7417

17.225 9 −3
−5.7417 −3 1

Q = I−uuT

H
=

−0.53450 −0.80176 0.26725

−0.80176 0.58108 0.13964
0.26725 0.13964 0.95345

QA′Q =

 10.642 −0.1388 −9.1294

−0.1388 5.9087 4.8429
−9.1294 4.8429 10.4480

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

364 Symmetric Matrix Eigenvalue Problems

A ←
[

A11 (Qx)T

Qx QA′Q

]
=

7 −3.7417 0 0
−3.7417 10.642 −0. 1388 −9.1294

0 −0.1388 5.9087 4.8429
0 −9.1294 4.8429 10.4480

In the last step we used the formula Qx =
[
−k 0 · · · 0

]T
.

Reduce the second row and column:

A′ =
[

5.9087 4.8429
4.8429 10.4480

]
x =

[
−0.1388
−9.1294

]
k = − |x| = −9.1305

where the negative sign on k was determined by the sign of x1.

u =
[

k + x1

x2

]
=

[
−9. 2693
−9.1294

]
H = 1

2
|u|2 = 84.633

uuT =
[

85.920 84.623
84.623 83.346

]

Q = I−uuT

H
=

[
0.01521 −0.99988

−0.99988 0.01521

]

QA′Q =
[

10.594 4.772
4.772 5.762

]

A ←

A11 A12 0T

A21 A22 (Qx)T

0 Qx QA′Q

 =

7 −3.742 0 0
−3.742 10.642 9.131 0

0 9.131 10.594 4.772
0 −0 4.772 5.762

EXAMPLE 9.8
Use the function householder to tridiagonalize the matrix in Example 9.7; also de-
termine the transformation matrix P.

Solution
#!/usr/bin/python

example9_8

from numarray import array,matrixmultiply

from householder3 import *

a = array([[7.0, 2.0, 3.0, -1.0], \

[2.0, 8.0, 5.0, 1.0], \

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

365 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

[3.0, 5.0, 12.0, 9.0], \

[-1.0, 1.0, 9.0, 7.0]])

d,c = householder(a)

print ’’Principal diagonal {d}:\n’’,d

print ’’\nSubdiagonal {c}:\n’’,c

print ’’\nTransformation matrix [P]:’’

print computeP(a)

raw_input(’’\nPress return to exit’’)

The results of running the above program are:

Principal diagonal {d}:

[7. 10.64285714 10.59421525 5.76292761]

Subdiagonal {c}:

[-3.74165739 9.13085149 4.77158058]

Transformation matrix [P]:

[[1. 0. 0. 0.]

[0. -0.53452248 -0.25506831 0.80574554]

[0. -0.80178373 -0.14844139 -0.57888514]

[0. 0.26726124 -0.95546079 -0.12516436]]

9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Sturm Sequence

In principle, the eigenvalues of a matrix A can be determined by finding the roots of
the characteristic equation |A − λI| = 0. This method is impractical for large matrices,
since the evaluation of the determinant involves n3/3 multiplications. However, if the
matrix is tridiagonal (we also assume it to be symmetric), its characteristic polynomial

Pn(λ) = |A−λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 − λ c1 0 0 · · · 0
c1 d2 − λ c2 0 · · · 0
0 c2 d3 − λ c3 · · · 0
0 0 c3 d4 − λ · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

366 Symmetric Matrix Eigenvalue Problems

can be computed with only 3(n − 1) multiplications using the following sequence of
operations:

P0(λ) = 1

P1(λ) = d1 − λ (9.49)

Pi(λ) = (di − λ)Pi−1(λ) − c2
i−1 Pi−2(λ), i = 2, 3, . . . , n

The polynomials P0(λ), P1(λ), . . . , Pn(λ) form a Sturm sequence that has the fol-
lowing property:

� The number of sign changes in the sequence P0(a), P1(a), . . . , Pn(a) is equal to the
number of roots of Pn(λ) that are smaller than a. If a member Pi(a) of the sequence
is zero, its sign is to be taken opposite to that of Pi−1(a).

As we see later, Sturm sequence property makes it possible to bracket the eigen-
values of a tridiagonal matrix.

� sturmSeq

Given d, c and λ, the function sturmSeq returns the Sturm sequence

P0(λ), P1(λ), . . . , Pn(λ)

The function numLambdas returns the number of sign changes in the sequence (as
noted before, this equals the number of eigenvalues that are smaller than λ).

module sturmSeq

’’’ p = sturmSeq(c,d,lam).

Returns the Sturm sequence {p[0],p[1],...,p[n]}

associated with the characteristic polynomial

|[A] - lam[I]| = 0, where [A] = [c\d\c] is a n x n

tridiagonal matrix.

numLam = numLambdas(p).

Returns the number of eigenvalues of a tridiagonal

matrix [A] = [c\d\c] that are smaller than ’lam’.

Uses the Sturm sequence {p} obtained from ’sturmSeq’.

’’’

from numarray import ones, Float64

def sturmSeq(d,c,lam):

n = len(d) + 1

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

367 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

p = ones((n),type=Float64)

p[1] = d[0] - lam

for i in range(2,n):

p[i] = (d[i-1] - lam)*p[i-1] - (c[i-2]**2)*p[i-2]

return p

def numLambdas(p):

n = len(p)

signOld = 1

numLam = 0

for i in range(1,n):

if p[i] > 0.0: sign = 1

elif p[i] < 0.0: sign = -1

else: sign = -signOld

if sign*signOld < 0: numLam = numLam + 1

signOld = sign

return numLam

EXAMPLE 9.9
Use the Sturm sequence property to show that the smallest eigenvalue of A is in the
interval (0.25, 0.5), where

A =

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

Solution Taking λ = 0.5, we have di − λ = 1.5 and c2
i−1 = 1 and the Sturm sequence

in Eqs. (9.49) becomes

P0(0.5) = 1

P1(0.5) = 1.5

P2(0.5) = 1.5(1.5) − 1 = 1.25

P3(0.5) = 1.5(1.25) − 1.5 = 0.375

P4(0.5) = 1.5(0.375) − 1.25 = −0.6875

Since the sequence contains one sign change, there exists one eigenvalue smaller
than 0.5.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

368 Symmetric Matrix Eigenvalue Problems

Repeating the process with λ = 0.25, we get di − λ = 1.75 and c2
i−1 = 1, which

results in the Sturm sequence

P0(0.25) = 1

P1(0.25) = 1.75

P2(0.25) = 1.75(1.75) − 1 = 2.0625

P3(0.25) = 1.75(2.0625) − 1.75 = 1.8594

P4(0.25) = 1.75(1.8594) − 2.0625 = 1.1915

There are no sign changes in the sequence, so that all the eigenvalues are greater than
0.25. We thus conclude that 0.25 < λ1 < 0.5.

Gerschgorin’s Theorem

Gerschgorin’s theorem is useful in determining the global bounds on the eigenval-
ues of an n × n matrix A. The term “global” means the bounds that enclose all the
eigenvalues. We give here a simplified version for a symmetric matrix.

� If λ is an eigenvalue of A, then

ai − ri ≤ λ ≤ ai + ri, i = 1, 2, . . . , n

where

ai = Aii ri =
n∑

j=1
j �=i

∣∣Ai j

∣∣ (9.50)

It follows that the limits on the smallest and the largest eigenvalues are given by

λmin ≥ min
i

(ai − ri) λmax ≤ max
i

(ai + ri) (9.51)

� gerschgorin

The function gerschgorin returns the lower and upper global bounds on the eigen-
values of a symmetric tridiagonal matrix A = [c\d\c].

module gerschgorin

’’’ lamMin,lamMax = gerschgorin(d,c).

Applies Gerschgorin’s theorem to find the global bounds on

the eigenvalues of a tridiagomal matrix [A] = [c\d\c].

’’’

def gerschgorin(d,c):

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

370 Symmetric Matrix Eigenvalue Problems

the eigenvalues by Gerschgorin’s theorem. Then the method of bisection in conjunc-
tion with the Sturm sequence property is used to determine rN, rN−1, . . . , r0 in that
order.

module lamRange

’’’ r = lamRange(d,c,N).

Returns the sequence {r[0],r[1],...,r[N]} that

separates the N lowest eigenvalues of the tridiagonal

matrix [A] = [c\d\c]; that is, r[i] < lam[i] < r[i+1].

’’’

from numarray import ones,Float64

from sturmSeq import *

from gerschgorin import *

def lamRange(d,c,N):

lamMin,lamMax = gerschgorin(d,c)

r = ones((N+1),type=Float64)

r[0] = lamMin

Search for eigenvalues in descending order

for k in range(N,0,-1):

First bisection of interval(lamMin,lamMax)

lam = (lamMax + lamMin)/2.0

h = (lamMax - lamMin)/2.0

for i in range(1000):

Find number of eigenvalues less than lam

p = sturmSeq(d,c,lam)

numLam = numLambdas(p)

Bisect again & find the half containing lam

h = h/2.0

if numLam < k: lam = lam + h

elif numLam > k: lam = lam - h

else: break

If eigenvalue located, change the upper limit

of search and record it in [r]

lamMax = lam

r[k] = lam

return r

EXAMPLE 9.11
Bracket each eigenvalue of the matrix A in Example 9.10.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

369 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

n = len(d)

lamMin = d[0] - abs(c[0])

lamMax = d[0] + abs(c[0])

for i in range(1,n-1):

lam = d[i] - abs(c[i]) - abs(c[i-1])

if lam < lamMin: lamMin = lam

lam = d[i] + abs(c[i]) + abs(c[i-1])

if lam > lamMax: lamMax = lam

lam = d[n-1] - abs(c[n-2])

if lam < lamMin: lamMin = lam

lam = d[n-1] + abs(c[n-2])

if lam > lamMax: lamMax = lam

return lamMin,lamMax

EXAMPLE 9.10
Use Gerschgorin’s theorem to determine the bounds on the eigenvalues of the matrix

A =

 4 −2 0

−2 4 −2
0 −2 5

Solution Referring to Eqs. (9.50), we get

a1 = 4 a2 = 4 a3 = 5

r1 = 2 r2 = 4 r3 = 2

Hence

λmin ≥ min(ai − ri) = 4 − 4 = 0

λmax ≤ max(ai + ri) = 4 + 4 = 8

Bracketing Eigenvalues

The Sturm sequence property together with Gerschgorin’s theorem provides us con-
venient tools for bracketing each eigenvalue of a symmetric tridiagonal matrix.

� lamRange

The function lamRange brackets the N smallest eigenvalues of a symmetric tridi-
agonal matrix A = [c\d\c]. It returns the sequence r0, r1, . . . , rN, where each interval

(ri−1, ri) contains exactly one eigenvalue. The algorithm first finds the bounds on all

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

371 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Solution In Example 9.10 we found that all the eigenvalues lie in (0, 8). We now bisect
this interval and use the Sturm sequence to determine the number of eigenvalues in
(0, 4). With λ = 4, the sequence is—see Eqs. (9.49)

P0(4) = 1

P1(4) = 4 − 4 = 0

P2(4) = (4 − 4)(0) − 22(1) = −4

P3(4) = (5 − 4)(−4) − 22(0) = −4

Since a zero value is assigned the sign opposite to that of the preceding member, the
signs in this sequence are (+, −, −, −). The one sign change shows the presence of
one eigenvalue in (0, 4).

Next we bisect the interval (4, 8) and compute the Sturm sequence with λ = 6:

P0(6) = 1

P1(6) = 4 − 6 = −2

P2(6) = (4 − 6)(−2) − 22(1) = 0

P3(6) = (5 − 6)(0) − 22(−2) = 8

In this sequence the signs are (+,−, +, +), indicating two eigenvalues in (0, 6).
Therefore

0 ≤ λ1 ≤ 4 4 ≤ λ2 ≤ 6 6 ≤ λ3 ≤ 8

Computation of Eigenvalues

Once the desired eigenvalues are bracketed, they can be found by determining the
roots of Pn(λ) = 0 with bisection or Brent’s method.

� eigenvals3

The function eigenvals3 computes the N smallest eigenvalues of a symmetric tridi-
agonal matrix with the method of Brent.

module eigenvals3

’’’ lam = eigenvals3(d,c,N).

Returns the N smallest eigenvalues of a

tridiagonal matrix [A] = [c\d\c].

’’’

from lamRange import *

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

372 Symmetric Matrix Eigenvalue Problems

from brent import *

from sturmSeq import sturmSeq

from numarray import zeros,Float64

def eigenvals3(d,c,N):

def f(x): # f(x) = |[A] - x[I]|

p = sturmSeq(d,c,x)

return p[len(p)-1]

lam = zeros((N),type=Float64)

r = lamRange(d,c,N) # Bracket eigenvalues

for i in range(N): # Solve by Brent’s method

lam[i] = brent(f,r[i],r[i+1])

return lam

EXAMPLE 9.12
Use eigenvals3 to determine the three smallest eigenvalues of the 100 × 100 matrix

A =

2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 2

Solution

#!/usr/bin/python

example9_12

from numarray import ones,Float64

from eigenvals3 import *

N = 3

n = 100

d = ones((n))*2.0

c = ones((n-1))*(-1.0)

lambdas = eigenvals3(d,c,N)

print lambdas

raw_input(’’\nPress return to exit’’)

Here are the eigenvalues:

[0.00096744 0.00386881 0.0087013]

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

373 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Computation of Eigenvectors

If the eigenvalues are known (approximate values will be good enough), the best
means of computing the corresponding eigenvectors is the inverse power method
with eigenvalue shifting. This method was discussed before, but the algorithm listed
did not take advantage of banding. Here we present a version of the method written
for symmetric tridiagonal matrices.

� inversePower3

This function is very similar to inversePower listed in Art. 9.3, but it executes much
faster since it exploits the tridiagonal structure of the matrix.

module inversePower3

’’’ lam,x = inversePower3(d,c,s,tol=1.0e-6).

Inverse power method applied to a tridiagonal matrix

[A] = [c\d\c]. Returns the eigenvalue closest to ’s’

and the corresponding eigenvector.

’’’

from numarray import dot,zeros,Float64

from LUdecomp3 import *

from math import sqrt

from random import random

def inversePower3(d,c,s,tol=1.0e-6):

n = len(d)

e = c.copy()

cc = c.copy() # Save original [c]

dStar = d - s # Form [A*] = [A] - s[I]

LUdecomp3(cc,dStar,e) # Decompose [A*]

x = zeros((n),type=Float64)

for i in range(n): # Seed [x] with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize [x]

x =x/xMag

flag = 0

for i in range(30): # Begin iterations

xOld = x.copy() # Save current [x]

LUsolve3(cc,dStar,e,x) # Solve [A*][x] = [xOld]

xMag = sqrt(dot(x,x)) # Normalize [x]

x = x/xMag

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

374 Symmetric Matrix Eigenvalue Problems

if dot(xOld,x) < 0.0: # Detect change in sign of [x]

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return s + sign/xMag,x

print ’Inverse power method did not converge’

EXAMPLE 9.13
Compute the 10th smallest eigenvalue of the matrix A given in Example 9.12.

Solution The following program extracts the Nth eigenvalue of A by the inverse power
method with eigenvalue shifting:

#!/usr/bin/python

example9_13

from numarray import ones

from lamRange import *

from inversePower3 import *

N = 10

n = 100

d = ones((n))*2.0

c = ones((n-1))*(-1.0)

r = lamRange(d,c,N) # Bracket N smallest eigenvalues

s = (r[N-1] + r[N])/2.0 # Shift to midpoint of Nth bracket

lam,x = inversePower3(d,c,s) # Inverse power method

print ’’Eigenvalue No.’’,N,’’ =’’,lam

raw_input(’’\nPress return to exit’’)

The result is

Eigenvalue No. 10 = 0.0959737849345

EXAMPLE 9.14
Compute the three smallest eigenvalues and the corresponding eigenvectors of the
matrix A in Example 9.5.

Solution

#!/usr/bin/python

example9_14

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

375 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

from householder3 import *

from eigenvals3 import *

from inversePower3 import *

from numarray import array,zeros,Float64,matrixmultiply

N = 3 # Number of eigenvalues requested

a = array([[11.0, 2.0, 3.0, 1.0, 4.0], \

[2.0, 9.0, 3.0, 5.0, 2.0], \

[3.0, 3.0, 15.0, 4.0, 3.0], \

[1.0, 5.0, 4.0, 12.0, 4.0], \

[4.0, 2.0, 3.0, 4.0, 17.0]])

xx = zeros((len(a),N),type=Float64)

d,c = householder(a) # Tridiagonalize [A]

p = computeP(a) # Compute transformation matrix

lambdas = eigenvals3(d,c,N) # Compute eigenvalues

for i in range(N):

s = lambdas[i]*1.0000001 # Shift very close to eigenvalue

lam,x = inversePower3(d,c,s) # Compute eigenvector [x]

xx[:,i] = x # Place [x] in array [xx]

xx = matrixmultiply(p,xx) # Recover eigenvectors of [A]

print ’’Eigenvalues:\n’’,lambdas

print ’’\nEigenvectors:\n’’,xx

raw_input(’’Press return to exit’’)

Eigenvalues:

[4.87394638 8.66356791 10.93677451]

Eigenvectors:

[[0.26726603 0.72910002 0.50579164]

[-0.74142854 0.41391448 -0.31882387]

[-0.05017271 -0.4298639 0.52077788]

[0.59491453 0.06955611 -0.60290543]

[-0.14970633 -0.32782151 -0.08843985]]

PROBLEM SET 9.2

1. Use Gerschgorin’s theorem to determine bounds on the eigenvalues of

(a) A =

 10 4 −1

4 2 3
−1 3 6

 (b) B =

 4 2 −2

2 5 3
−2 3 4

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

376 Symmetric Matrix Eigenvalue Problems

2. Use the Sturm sequence to show that

A =

5 −2 0 0
−2 4 −1 0

0 −1 4 −2
0 0 −2 5

has one eigenvalue in the interval (2, 4).

3. Bracket each eigenvalue of

A =

 4 −1 0

−1 4 −1
0 −1 4

4. Bracket each eigenvalue of

A =

6 1 0

1 8 2
0 2 9

5. Bracket every eigenvalue of

A =

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

6. Tridiagonalize the matrix

A =

12 4 3

4 9 3
3 3 15

with Householder’s reduction.

7. Use Householder’s reduction to transform the matrix

A =

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

to tridiagonal form.

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

377 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

8. � Compute all the eigenvalues of

A =

6 2 0 0 0
2 5 2 0 0
0 2 7 4 0
0 0 4 6 1
0 0 0 1 3

9. � Find the smallest two eigenvalues of

A =

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

10. � Compute the three smallest eigenvalues of

A =

7 −4 3 −2 1 0
−4 8 −4 3 −2 1

3 −4 9 −4 3 −2
−2 3 −4 10 −4 3

1 −2 3 −4 11 −4
0 1 −2 3 −4 12

and the corresponding eigenvectors.

11. � Find the two smallest eigenvalues of the 6 × 6 Hilbert matrix

A =

1 1/2 1/3 · · · 1/6
1/2 1/3 1/4 · · · 1/7
1/3 1/4 1/5 · · · 1/8

...
...

...
. . .

...
1/6 1/7 1/8 · · · 1/11

Recall that this matrix is ill-conditioned.

12. � Rewrite the function lamRange(d,c,N) so that it will bracket the N largest
eigenvalues of a tridiagonal matrix. Use this function to bracket the two largest
eigenvalues of the Hilbert matrix in Example 9.11.

13. �

m 2m3m
kk k k

u1 u2 u3

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

378 Symmetric Matrix Eigenvalue Problems

The differential equations of motion of the mass–spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3

where ui(t) is the displacement of mass i from its equilibrium position and k is
the spring stiffness. Substituting ui(t) = yi sin ωt, we obtain the matrix eigenvalue
problem

 2 −1 0
−1 2 −1

0 −1 2

 y1

y2

y3

 = mω2

k

1 0 0

0 3 0
0 0 2

 y1

y2

y3

Determine the circular frequencies ω and the corresponding relative amplitudes
yi of vibration.

14. �
u1 u2 un

m
k1 k2 kn

mm
k3

The figure shows n identical masses connected by springs of different stiffnesses.
The equation governing free vibration of the system is Au = mω2u, where ω is the
circular frequency and

A =

k1 + k2 −k2 0 0 · · · 0
−k2 k2 + k3 −k3 0 · · · 0

0 −k3 k3 + k4 −k4 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 −kn−1 kn−1 + kn −kn

0 · · · 0 0 −kn kn

Given the spring stiffnesses k =
[

k1 k2 · · · kn

]T
, write a program that com-

putes the N lowest eigenvalues λ = mω2 and the corresponding eigenvectors.
Run the program with N = 4 and

k =
[

400 400 400 0.2 400 400 200
]T

kN/m

Note that the system is weakly coupled, k4 being small. Do the results make sense?

15. �

1 n2

L
x

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

379 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

The differential equation of motion of the axially vibrating bar is

u′′ = ρ

E
ü

where u(x, t) is the axial displacement, ρ represents the mass density and E is the
modulus of elasticity. The boundary conditions are u(0, t) = u′(L, t) = 0. Letting
u(x, t) = y(x) sin ωt, we obtain

y′′ = −ω2 ρ

E
y y(0) = y′(L) = 0

The corresponding finite difference equations are

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1

y1

y2

y3

...
yn−1

yn

=
(

ωL
n

)2
ρ

E

y1

y2

y3

...
yn−1

yn/2

(a) If the standard form of these equations is Hz = λz, write down H and the
transformation matrix P in y = Pz. (b) Compute the lowest circular frequency of
the bar with n = 10, 100 and 1000 utilizing the moduleinversePower3. Note: the
analytical solution is ω1 = π

√
E/ρ/ (2L).

16. �

1 2P nn - 1

L

xP

u

k

The simply supported column is resting on an elastic foundation of stiffness k
(N/m per meter length). An axial force P acts on the column. The differential
equation and the boundary conditions for the lateral displacement u are

u(4) + P
E I

u′′ + k
E I

u = 0

u(0) = u′′(0) = u(L) = u′′(L) = 0

Using the mesh shown, the finite difference approximation of these equations is

(5 + α)u1 − 4u2 + u3 = λ(2u1 − u2)

−4u1 + (6 + α)u2 − 4u3 + u4 = λ(−u1 + 2u2 + u3)

P1: JzG
CB904-09 CB904/Kiusalaas 0 521 85287 0 May 4, 2005 14:30

380 Symmetric Matrix Eigenvalue Problems

u1 − 4u2 + (6 + α)u3 − 4u4 + u5 = λ(−u2 + 2u3 − u4)

...

un−3 − 4un−2 + (6 + α)un−1 − 4un = λ(−un−2 + 2un−1 − un)

un−2 − 4un−1 + (5 + α)un = λ(−un−1 + 2un)

where

α = kh4

E I
= 1

(n + 1)4

kL4

E I
λ = Ph2

E I
= 1

(n + 1)2

P L2

E I

Write a program that computes the lowest three buckling loads P and the corre-
sponding mode shapes. Run the program with kL4/(E I) = 1000 and n = 25.

17. � Find smallest five eigenvalues of the 20 × 20 matrix

A =

2 1 0 0 · · · 0 1
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 2 1 0
0 0 · · · 0 1 2 1
1 0 · · · 0 0 1 2

Note: this is a difficult matrix that has many pairs of double eigenvalues.

9.6 Other Methods

On occasions when all the eigenvalues and eigenvectors of a matrix are required, the
QR algorithm is a worthy contender. It is based on the decomposition A = QR where Q
and R are orthogonal and upper triangular matrices, respectively. The decomposition
is carried out in conjuction with Householder transformation. There is also a QL
algorithm : A = QL that works in the same manner, but here L is a lower triangular
matrix.

Schur’s factorization is another solid technique for determining the eigenvalues
of A. Here the decomposition is A = QT UQ, where Q is orthogonal and U is an upper
triangular matrix. The diagonal terms of U are the eigenvalues of A.

The LR algorithm is probably the fastest means of computing the eigenvalues; it
is also very simple to implement—see Prob. 22 of Problem Set 9.1. But its stability is
inferior to the other methods.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

10 Introduction to Optimization

Find x that minimizes F (x) subject to g(x) = 0, h(x) ≥ 0

10.1 Introduction

Optimization is the term often used for minimizing or maximizing a function. It is suf-
ficient to consider the problem of minimization only; maximization of F (x) is achieved
by simply minimizing −F (x). In engineering, optimization is closely related to design.
The function F (x), called the merit function or objective function, is the quantity that
we wish to keep as small as possible, such as cost or weight. The components of x,
known as the design variables, are the quantities that we are free to adjust. Physical
dimensions (lengths, areas, angles, etc.) are common examples of design variables.

Optimization is a large topic with many books dedicated to it. The best we can do in
limited space is to introduce a few basic methods that are good enough for problems
that are reasonably well behaved and don’t involve too many design variables. By
omitting the more sophisticated methods, we may actually not miss all that much.
All optimization algorithms are unreliable to a degree—any one of them may work on
one problem and fail on another. As a rule of thumb, by going up in sophistication we
gain computational efficiency, but not necessarily reliability.

The algorithms for minimization are iterative procedures that require starting
values of the design variables x. If F (x) has several local minima, the initial choice of
x determines which of these will be computed. There is no guaranteed way of finding
the global optimal point. One suggested procedure is to make several computer runs
using different starting points and pick the best result.

More often than not, the design variables are also subjected to restrictions, or
constraints, which may have the form of equalities or inequalities. As an example,
take the minimum weight design of a roof truss that has to carry a certain loading.

381

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

382 Introduction to Optimization

Assume that the layout of the members is given, so that the design variables are the
cross-sectional areas of the members. Here the design is dominated by inequality
constraints that consist of prescribed upper limits on the stresses and possibly the
displacements.

The majority of available methods are designed for unconstrained optimization,
where no restrictions are placed on the design variables. In these problems the min-
ima, if they exist, are stationary points (points where gradient vector of F (x) vanishes).
In the more difficult problem of constrained optimization the minima are usually lo-
cated where the F (x) surface meets the constraints. There are special algorithms for
constrained optimization, but they are not easily accessible due to their complexity
and specialization. One way to tackle a problem with constraints is to use an uncon-
strained optimization algorithm, but modify the merit function so that any violation
of constraints is heavily penalized.

Consider the problem of minimizing F (x) where the design variables are subject
to the constraints

gi(x) = 0, i = 1, 2, . . . , M (10.1a)

hj (x) ≤ 0, j = 1, 2, . . . , N (10.1b)

We choose the new merit function be

F ∗(x) = F (x) + λP(x) (10.2a)

where

P(x) =
M∑

i=1

[gi(x)]2 +
N∑

j=1

{
max

[
0, hj (x)

]}2
(10.2b)

is the penalty function and λ is a multiplier. The function max(a, b) returns the larger of
a and b. It is evident that P(x) = 0 if no constraints are violated. Violation of a constraint
imposes a penalty proportional to the square of the violation. Hence the minimization
algorithm tends to avoid the violations, the degree of avoidance being dependent on
the magnitude of λ. If λ is small, optimization will proceed faster because there is more
“space” in which the procedure can operate, but there may be significant violation of
constraints. On the other hand, a large λ can result in a poorly conditioned procedure,
but the constraints will be tightly enforced. It is advisable to run the optimization
program with λ that is on the small side. If the results show unacceptable constraint
violation, increase λ and run the program again, starting with the results of the pre-
vious run.

An optimization procedure may also become ill-conditioned when the con-
straints have widely different magnitudes. This problem can be alleviated by scaling

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

383 10.2 Minimization Along a Line

the offending constraints; that is, multiplying the constraint equations by suitable
constants.

10.2 Minimization Along a Line

f(x)

x

Local minimum

Global minimum

Constraint boundaries
c d

Figure 10.1. Example of local and global minima.

Consider the problem of minimizing a function f (x) of a single variable x with the
constraints c ≤ x ≤ d. A hypothetical plot of the function is shown in Fig. 10.1. There
are two minimum points: a stationary point characterized by f ′(x) = 0 that represents
a local minimum, and a global minimum at the constraint boundary. It appears that
finding the global minimum is simple. All the stationary points could be located by
finding the roots of df/dx = 0, and each constraint boundary may be checked for a
global minimum by evaluating f (c) and f (d). Then why do we need an optimization
algorithm? We need it if f (x) is difficult or impossible to differentiate; for example, if
f represents a complex computer algorithm.

Bracketing

Before a minimization algorithm can be entered, the minimum point must be brack-
eted. The procedure of bracketing is simple: start with an initial value of x0 and move
downhill computing the function at x1, x2, x3, . . . until we reach the point xn where
f (x) increases for the first time. The minimum point is now bracketed in the inter-
val (xn−2, xn). What should the step size hi = xi+1 − xi be? It is not a good idea have
a constant hi since it often results in too many steps. A more efficient scheme is to
increase the size with every step, the goal being to reach the minimum quickly, even
if the resulting bracket is wide. We chose to increase the step size by a constant factor;
that is, we use hi+1 = chi , c > 1.

Golden Section Search

The golden section search is the counterpart of bisection used in finding roots of
equations. Suppose that the minimum of f (x) has been bracketed in the interval
(a, b) of length h. To telescope the interval, we evaluate the function at x1 = b − Rh

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

384 Introduction to Optimization

and x2 = a + Rh, as shown in Fig. 10.2(a). The constant R will be determined shortly.
If f1 > f2 as indicated in the figure, the minimum lies in (x1, b); otherwise it is located
in (a, x2).

Rh
Rh

a bx1 x2

f1 f2

2Rh - h

Rh'
Rh'

a bx1 x2

h

h'

x

x

f(x)

f(x)

(a)

(b)

Figure 10.2. Golden section telescoping.

Assuming that f1 > f2, we set a ← x1 and x1 ← x2, which yields a new interval (a, b) of
length h′ = Rh, as illustrated in Fig. 10.2(b). To carry out the next telescoping operation
we evaluate the function at x2 = a + Rh′ and repeat the process.

The procedure works only if Figs. 10.1(a) and (b) are similar; i.e., if the same
constant R locates x1 and x2 in both figures. Referring to Fig. 10.2(a), we note that
x2 − x1 = 2Rh − h. The same distance in Fig. 10.2(b) is x1 − a = h′ − Rh′. Equating
the two, we get

2Rh − h = h′ − Rh′

Substituting h′ = Rh and cancelling h yields

2R − 1 = R(1 − R)

the solution of which is the golden ratio24:

R = −1 + √
5

2
= 0.618 033 989 . . . (10.3)

Note that each telescoping decreases the interval containing the minimum by the
factor R, which is not as good as the factor is 0.5 in bisection. However, the golden
search method achieves this reduction with one function evaluation, whereas two
evaluations would be needed in bisection.

24 R is the ratio of the sides of a “golden rectangle,” considered by ancient Greeks to have the perfect
proportions.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

385 10.2 Minimization Along a Line

The number of telescoping required to reduce h from |b − a| to an error tole-
rance ε is given by

|b − a| Rn = ε

which yields

n = ln(ε/ |b − a|)
ln R

= −2.078 087 ln
ε

|b − a| (10.4)

� goldSearch

This module contains the bracketing and the golden section search algorithms. For
the factor that multiplies successive search intervals in bracket we chose c = 1 + R.

module goldSearch

’’’ a,b = bracket(f,xStart,h)

Finds the brackets (a,b) of a minimum point of the

user-supplied scalar function f(x).

The search starts downhill from xStart with a step

length h.

x,fMin = search(f,a,b,tol=1.0e-6)

Golden section method for determining x that minimizes

the user-supplied scalar function f(x).

The minimum must be bracketed in (a,b).

’’’

from math import log

def bracket(f,x1,h):

c = 1.618033989

f1 = f(x1)

x2 = x1 + h; f2 = f(x2)

Determine downhill direction and change sign of h if needed

if f2 > f1:

h = -h

x2 = x1 + h; f2 = f(x2)

Check if minimum between x1 - h and x1 + h

if f2 > f1: return x2,x1 - h

Search loop

for i in range (100):

h = c*h

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

386 Introduction to Optimization

x3 = x2 + h; f3 = f(x3)

if f3 > f2: return x1,x3

x1 = x2; x2 = x3

f1 = f2; f2 = f3

print ’’Bracket did not find a mimimum’’

def search(f,a,b,tol=1.0e-9):

nIter = -2.078087*log(tol/abs(b-a)) # Eq. (10.4)

R = 0.618033989

C = 1.0 - R

First telescoping

x1 = R*a + C*b; x2 = C*a + R*b

f1 = f(x1); f2 = f(x2)

Main loop

for i in range(nIter):

if f1 > f2:

a = x1

x1 = x2; f1 = f2

x2 = C*a + R*b; f2 = f(x2)

else:

b = x2

x2 = x1; f2 = f1

x1 = R*a + C*b; f1 = f(x1)

if f1 < f2: return x1,f1

else: return x2,f2

EXAMPLE 10.1
Use goldSearch to find x that minimizes

f (x) = 1.6x3 + 3x2 − 2x

subject to the constraint x ≥ 0. Compare the result with the analytical solution.

Solution This is a constrained minimization problem. The minimum of f (x) is either
a stationary point in x ≥ 0, or located at the constraint boundary x = 0. We handle
the constraint with the penalty function method by minimizing f (x) + λ [min(0, x)]2.

Starting at x = 1 and choosing h = 0.01 for the first step size in bracket (both
choices being rather arbitrary), we arrive at the following program:

#!/usr/bin/python

example10_1

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

387 10.2 Minimization Along a Line

from goldSearch import *

def f(x):

lam = 1.0 # Constraint multiplier

c = min(0.0, x) # Constraint function

return 1.6*x**3 + 3.0*x**2 - 2.0*x + lam*c**2

xStart = 1.0

h = 0.01

x1,x2 = bracket(f,xStart,h)

x,fMin = search(f,x1,x2)

print ’’x =’’,x

print ’’f(x) =’’,fMin

raw_input (’’\nPress return to exit’’)

The result is

x = 0.27349402621

f(x) = -0.28985978555

Since the minimum was found to be a stationary point, the constraint was not
active. Therefore, the penalty function was superfluous, but we did not know that at
the beginning.

The locations of stationary points are obtained analytically by solving

f ′(x) = 4.8x2 + 6x − 2 = 0

The positive root of this equation is x = 0.273 494. As this is the only positive root,
there are no other stationary points in x ≥ 0 that we must check out. The only other
possible location of a minimum is the constraint boundary x = 0. But here f (0) = 0
is larger than the function at the stationary point, leading to the conclusion that the
global minimum occurs at x = 0.273 494.

EXAMPLE 10.2

c

d

y

b ba

H

B

x

x
_

C

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

388 Introduction to Optimization

The trapezoid shown is the cross section of a beam. It is formed by removing the top
from a triangle of base B = 48 mm and height H = 60 mm. The problem is the find
the height y of the trapezoid that maximizes the section modulus

S = Ix̄/c

where Ix̄ is the second moment of the cross-sectional area about the axis that passes
through the centroid C of the cross section. By optimizing the section modulus, we
minimize the maximum bending stressσ max = M/S in the beam, M being the bending
moment.

Solution Considering the area of the trapezoid as a composite of a rectangle and
two triangles, we find the section modulus through the following sequence of
computations:

Base of rectangle a = B (H − y) /H

Base of triangle b = (B − a) /2

Area A = (B + a) y/2

First moment of area about x-axis Qx = (ay) y/2 + 2 (by/2) y/3

Location of centroid d = Qx/A

Distance involved in S c = y − d

Second moment of area about x-axis Ix = ay3/3 + 2
(
by3/12

)
Parallel axis theorem Ix̄ = Ix − Ad2

Section modulus S = Ix̄/c

We could use the formulas in the table to derive S as an explicit function of y, but
that would involve a lot of error-prone algebra and result in an overly complicated
expression. It makes more sense to let the computer do the work.

The program we used and its output are listed below. As we wish to maximize S
with a minimization algorithm, the merit function is −S. There are no constraints in
this problem.

#!/usr/bin/python

example10_2

from goldSearch import *

def f(y):

B = 48.0

H = 60.0

a = B*(H - y)/H

b = (B - a)/2.0

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

389 10.3 Conjugate Gradient Methods

A = (B + a)*y/2.0

Q = (a*y**2)/2.0 + (b*y**2)/3.0

d = Q/A

c = y - d

I = (a*y**3)/3.0 + (b*y**3)/6.0

Ibar = I - A*d**2

return -Ibar/c

yStart = 60.0 # Starting value of y

h = 1.0 # Size of first step used in bracketing

a,b = bracket(f,yStart,h)

yOpt,fOpt = search(f,a,b)

print ’’Optimal y =’’,yOpt

print ’’Optimal S =’’,-fOpt

print ’’S of triangle =’’,-f(60.0)

raw_input(’’Press return to exit’’)

Optimal y = 52.1762738732

Optimal S = 7864.43094136

S of triangle = 7200.0

The printout includes the section modulus of the original triangle. The optimal
section shows a 9.2% improvement over the triangle.

10.3 Conjugate Gradient Methods

Introduction

We now look at optimization in n-dimensional design space. The objective is to min-
imize F (x), where the components of x are the n independent design variables. One
way to tackle the problem is to use a succession of one-dimensional minimizations
to close in on the optimal point. The basic strategy is

� Choose a point x0 in the design space.
� loop with i = 1, 2, 3, . . .

Choose a vector vi .

Minimize F (x) along the line through xi−1 in the direction of vi . Let the mini-
mum point be xi .

if |xi − xi−1| < ε exit loop

� end loop

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

390 Introduction to Optimization

The minimization along a line can be accomplished with any one-dimensional
optimization algorithm (such as the golden section search). The only question left
open is how to choose the vectors vi .

Conjugate Directions

Consider the quadratic function

F (x) = c −
∑

i

bi xi + 1
2

∑
i

∑
j

Ai j xi xj

= c − bT x + 1
2

xT Ax (10.5)

Differentiation with respect to xi yields

∂ F
∂xi

= −bi +
∑

j

Ai j xj

which can be written in vector notation as

∇F = −b + Ax (10.6)

where ∇F is the gradient of F .
Now consider the change in the gradient as we move from point x0 in the direction

of a vector u. The motion takes place along the line

x = x0 + su

where s is the distance moved. Substitution into Eq. (10.6) yields the expression for
the gradient at x:

∇F |x0+su = −b + A (x0 + su) = ∇F |x0
+ s Au

Note that the change in the gradient is s Au. If this change is perpendicular to a vector
v; that is, if

vT Au = 0 (10.7)

the directions of u and v are said to be mutually conjugate (noninterfering). The
implication is that once we have minimized F (x) in the direction of v, we can move
along u without ruining the previous minimization.

For a quadratic function of n independent variables it is possible to construct n
mutually conjugate directions. Therefore, it would take precisely n line minimizations
along these directions to reach the minimum point. If F (x) is not a quadratic function,
Eq. (10.5) can be treated as a local approximation of the merit function, obtained by

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

391 10.3 Conjugate Gradient Methods

truncating the Taylor series expansion of F (x) about x0 (see Appendix A1):

F (x) ≈ F (x0) + ∇F (x0)(x − x0) + 1
2

(x − x0)T H(x0)(x − x0)

Now the conjugate directions based on the quadratic form are only approximations,
valid in the close vicinity of x0. Consequently, it would take several cycles of n line
minimizations to reach the optimal point.

The various conjugate gradient methods use different techniques for constructing
conjugate directions. The so-called zero-order methods work with F (x) only, whereas
the first-order methods utilize both F (x) and ∇F . The first-order methods are com-
putationally more efficient, of course, but the input of ∇F , if it is available at all, can
be very tedious.

Powell’s Method

Powell’s method is a zero-order method, requiring the evaluation of F (x) only. If the
problem involves n design variables, the basic algorithm is

� Choose a point x0 in the design space.
� Choose the starting vectors vi , i = 1, 2, . . . , n (the usual choice is vi = ei , where ei

is the unit vector in the xi-coordinate direction).
� cycle

do with i = 1, 2, . . . , n

Minimize F (x) along the line through xi−1 in the direction of vi . Let the
minimum point be xi .

end do

vn+1 ← x0 − xn

Minimize F (x) along the line through x0 in the direction of vn+1. Let the
minimum point be xn+1.

if |xn+1 − x0| < ε exit loop

do with i = 1, 2, . . . , n

vi ← vi+1 (v1 is discarded, the other vectors are reused)

end do

� end cycle

Powell demonstrated that the vectors vn+1 produced in successive cycles are mu-
tually conjugate, so that the minimum point of a quadratic surface is reached in
precisely n cycles. In practice, the merit function is seldom quadratic, but as long as
it can be approximated locally by Eq. (10.5), Powell’s method will work. Of course, it

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

392 Introduction to Optimization

usually takes more than ncycles to arrive at the minimum of a nonquadratic function.
Note that it takes n line minimizations to construct each conjugate direction.

Figure 10.3(a) illustrates one typical cycle of the method in a two dimensional
design space (n = 2). We start with point x0 and vectors v1 and v2. Then we find the
distance s1 that minimizes F (x0 + sv1), finishing up at point x1 = x0 + s1v1. Next, we
determine s2 that minimizes F (x1 + sv2) which takes us to x2 = x1 + s2v2. The last
search direction is v3 = x2 − x0. After finding s3 by minimizing F (x0 + sv3) we get to
x3 = x0 + s3v3, completing the cycle.

P0

P1

P2

P3
P4

P5P6

P0(x0)

P1(x1)

P2(x2)

P3(x3)
v1

v3

s2v2

s3v3

s1v1

v2
(a) (b)

Figure 10.3. The method of Powell.

Figure 10.3(b) shows the moves carried out in two cycles superimposed on the
contour map of a quadratic surface. As explained before, the first cycle starts at point
P0 and ends up at P3. The second cycle takes us to P6, which is the optimal point. The
directions P0 P3 and P3 P6 are mutually conjugate.

Powell’s method does have a major flaw that has to be remedied—if F (x) is not
a quadratic, the algorithm tends to produce search directions that gradually be-
come linearly dependent, thereby ruining the progress towards the minimum. The
source of the problem is the automatic discarding of v1 at the end of each cycle. It
has been suggested that it is better to throw out the direction that resulted in the
largest decrease of F (x), a policy that we adopt. It seems counterintuitive to discard
the best direction, but it is likely to be close to the direction added in the next cycle,
thereby contributing to linear dependence. As a result of the change, the search di-
rections cease to be mutually conjugate, so that a quadratic form is not minimized
in n cycles any more. This is not a significant loss since in practice F (x) is seldom a
quadratic.

Powell suggested a few other refinements to speed up convergence. Since they
complicate the bookkeeping considerably, we did not implement them.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

393 10.3 Conjugate Gradient Methods

� powell

The algorithm for Powell’s method is listed below. It utilizes two arrays: df contains
the decreases of the merit function in the first n moves of a cycle, and the matrix u

stores the corresponding direction vectors vi (one vector per row).

module powell

’’’ xMin,nCyc = powell(F,x,h=0.1,tol=1.0e-6)

Powell’s method of minimizing user-supplied function F(x).

x = starting point

h = initial search increment used in ’bracket’

xMin = mimimum point

nCyc = number of cycles

’’’

from numarray import identity,array,dot,zeros,Float64,argmax

from goldSearch import *

from math import sqrt

def powell(F,x,h=0.1,tol=1.0e-6):

def f(s): return F(x + s*v) # F in direction of v

n = len(x) # Number of design variables

df = zeros((n),type=Float64) # Decreases of F stored here

u = identity(n)*1.0 # Vectors v stored here by rows

for j in range(30): # Allow for 30 cycles:

xOld = x.copy() # Save starting point

fOld = F(xOld)

First n line searches record decreases of F

for i in range(n):

v = u[i]

a,b = bracket(f,0.0,h)

s,fMin = search(f,a,b)

df[i] = fOld - fMin

fOld = fMin

x = x + s*v

Last line search in the cycle

v = x - xOld

a,b = bracket(f,0.0,h)

s,fLast = search(f,a,b)

x = x + s*v

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

394 Introduction to Optimization

Check for convergence

if sqrt(dot(x-xOld,x-xOld)/n) < tol: return x,j+1

Identify biggest decrease & update search directions

iMax = int(argmax(df))

for i in range(iMax,n-1):

u[i] = u[i+1]

u[n-1] = v

print ’’Powell did not converge’’

EXAMPLE 10.3
Find the minimum of the function25

F = 100(y − x2)2 + (1 − x)2

with Powell’s method starting at the point (−1, 1). This function has an interesting
topology. The minimum value of F occurs at the point (1, 1). As seen in the figure,
there is a hump between the starting and minimum points which the algorithm must
negotiate.

1000
800
600
400
200

0

y

1.5
1

0.5
0
-0.5

-1 x

1.510.50-0.5-1-1.5

Solution The program that solves this unconstrained optimization problem is

#!/usr/bin/python

example10_3

from powell import *

from numarray import array

def F(x): return 100.0*(x[1] - x[0]**2)**2 + (1 - x[0])**2

xStart = array([-1.0, 1.0])

xMin,nIter = powell(F,xStart)

print ’’x =’’,xMin

25 From Shoup, T. E., and Mistree, F., Optimization Methods with Applications for Personal Computers,
Prentice-Hall, 1987.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

395 10.3 Conjugate Gradient Methods

print ’’F(x) =’’,F(xMin)

print ’’Number of cycles =’’,nIter

raw_input (’’Press return to exit’’)

As seen in the printout, the minimum point was obtained in 14 cycles.

x = [1. 1.]

F(x) = 4.93038065763e-030

Number of cycles = 14

EXAMPLE 10.4
Use powell to determine the smallest distance from the point (5, 8) to the curve
xy = 5.

Solution This is a constrained optimization problem: minimize F (x, y) = (x − 5)2 +
(y − 8)2 (the square of the distance) subject to the equality constraint xy − 5 = 0. The
following program uses Powell’s method with penalty function:

#!/usr/bin/python

example10_4

from powell import *

from numarray import array

from math import sqrt

def F(x):

lam = 1.0 # Penalty multiplier

c = x[0]*x[1] - 5.0 # Constraint equation

return distSq(x) + lam*c**2 # Penalized merit function

def distSq(x): return (x[0] - 5)**2 + (x[1] - 8)**2

xStart = array([1.0, 5.0])

x,numIter = powell(F,xStart,0.01)

print ’’Intersection point =’’,x

print ’’Minimum distance =’’, sqrt(distSq(x))

print ’’xy =’’, x[0]*x[1]

print ’’Number of cycles =’’,numIter

raw_input (’’Press return to exit’’)

As mentioned before, the value of the penalty function multiplier λ (called lam

in the program) can have profound effects on the result. We chose λ = 1 (as in the

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

396 Introduction to Optimization

program listing) with the following result:

Intersection point = [0.73306759 7.58776399]

Minimum distance = 4.28679959441

xy = 5.56234382324

Number of cycles = 6

The small value of λ favored speed of convergence over accuracy. Since the viola-
tion of the constraint xy = 5 is clearly unacceptable, we ran the program again with
λ = 10 000 and changed the starting point to (0.733 07, 7.587 76), the end point of the
first run. The results shown below are now acceptable:

Intersection point = [0.65561312 7.6265359]

Minimum distance = 4.36040970941

xy = 5.00005696388

Number of cycles = 5

Could we have used λ = 10 000 in the first run? In this case we would be lucky
and obtain the minimum in 19 cycles. Hence we save eight cycles by using two runs.
However, a large λ often causes the algorithm to hang up, so that it generally wise to
start with a small λ.

Fletcher–Reeves Method

Let us assume again that the merit function has the quadratic form in Eq. (10.5). Given
a direction v, it took Powell’s method n line minimizations to construct a conjugate
direction. We can reduce this to a single line minimization with a first-order method.
Here is the procedure, known as the Fletcher–Reeves method:

� Choose a starting point x0.
� g0 ← −∇F (x0)
� v0 ← g0 (lacking a previous search direction, we choose the steepest descent).
� loop with i = 0, 1, 2, . . .

Minimize F (x) along vi ; let the minimum point be xi+1.

gi+1 ← −∇F (xi+1).

if
∣∣gi+1

∣∣ < ε or |F (xi+1) − F (xi)| < ε exit loop (convergence criterion).

γ ← (gi+1 · gi+1)/(gi · gi).

vi+1 ← gi+1 + γ vi .

� end loop

It can be shown that vi and vi+1 are mutually conjugate; that is, they satisfy the
relationship vT

i Avi+1 = 0 . Also gi · gi+1 = 0.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

397 10.3 Conjugate Gradient Methods

The Fletcher–Reeves method will find the minimum of a quadratic function in
n iterations. If F (x) is not quadratic, it is necessary to restart the process after every
n iterations. A variant of the Fletcher–Reeves method replaces the expression for γ by

γ = (gi+1 − gi) · gi+1

gi · gi
(10.6)

For a quadratic F (x) this change makes no difference since gi and gi+1 are orthogonal.
However, for merit functions that are not quadratic, Eq. (10.6) is claimed to eliminate
the need for a restart after n iterations.

� fletcherReeves

module fletcherReeves

’’’ xMin,nIter = optimize(F,gradF,x,h=0.01,tol=1.0e-6

Fletcher-Reeves method of minimizing a function.

F(x) = user-supplied function to be minimized.

gradF(x) = user-supplied function for grad(F).

x = starting point.

h = initial search increment used in ’bracket’.

xMin = mimimum point.

nIter = number of iterations.

’’’

from numarray import array,zeros,Float64,dot

from goldSearch import *

from math import sqrt

def optimize(F,gradF,x,h=0.1,tol=1.0e-6):

def f(s): return F(x + s*v) # Line function along v

n = len(x)

g0 = -gradF(x)

v = g0.copy()

F0 = F(x)

for i in range(200):

a,b = bracket(f,0.0,h) # Minimization along

s,fMin = search(f,a,b) # a line

x = x + s*v

F1 = F(x)

g1 = -gradF(x)

if (sqrt(dot(g1,g1)) <= tol) or (abs(F0 - F1) < tol):

return x,i+1

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

398 Introduction to Optimization

gamma = dot((g1 - g0),g1)/dot(g0,g0)

v = g1 + gamma*v

g0 = g1.copy()

F0 = F1

print ’’fletcherReeves did not converge’’

EXAMPLE 10.5
Use the Fletcher–Reeves method to locate the minimum of

F (x) = 10x2
1 + 3x2

2 − 10x1x2 + 2x1

Start with x0 =
[

0 0
]T

.

Solution Since F (x) is quadratic, we need only two iterations. The gradient of F is

∇F (x) =
[

∂ F/∂x1

∂ F/∂x2

]
=

[
20x1 − 10x2 + 2
−10x1 + 6x2

]

First iteration:

g0 = −∇F (x0) =
[

−2
0

]
v0 = g0 =

[
−2

0

]
x0 + sv0 =

[
−2s

0

]

f (s) = F (x0 + sv0) = 10(2s)2 + 3(0)2 − 10(−2s)(0) + 2(−2s)

= 40s2 − 4s

f ′(s) = 80s − 4 = 0 s = 0.05

x1 = x0 + sv0 =
[

0
0

]
+ 0.05

[
−2

0

]
=

[
−0.1

0

]

Second iteration:

g1 = −∇F (x1) =
[

−20(−0.1) + 10(0) − 2
10(−0.1) − 6(0)

]
=

[
0

−1.0

]

γ = g1 · g1

g0 · g0
= 1.0

4
= 0.25

v1 = g1 + γ v0 =
[

0
−1.0

]
+ 0.25

[
−2

0

]
=

[
−0.5
−1.0

]

x1 + sv1 =
[

−0.1
0

]
+ s

[
−0.5
−1.0

]
=

[
−0.1 − 0.5s

−s

]

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

399 10.3 Conjugate Gradient Methods

f (s) = F (x1 + sv1)

= 10(−0.1 − 0.5s)2 + 3(−s)2 − 10(−0.1 − 0.5s)(−s) + 2(−0.1 − 0.5s)

= 0.5s2 − s − 0.1

f ′(s) = s − 1 = 0 s = 1.0

x2 = x1 + sv1 =
[

−0.1
0

]
+ 1.0

[
−0.5
−1.0

]
=

[
−0.6
−1.0

]

We have now reached the minimum point.

EXAMPLE 10.6

b

h

The figure shows the cross section of a channel carrying water. Determine h, b
and θ that minimize the length of the wetted perimeter while maintaining a cross-
sectional area of 8 m2. (Minimizing the wetted perimeter results in least resistance to
the flow.) Use the Fletcher–Reeves method.

Solution The cross-sectional area of the channel is

A = 1
2

[b + (b + 2h tan θ)] h = (b + h tan θ)h

and the length of the wetted perimeter is

S = b + 2(hsec θ)

The optimization problem can be cast as

minimize b + 2hsec θ

subject to (b + h tan θ)h = 8

Equality constraints can often be used to eliminate some of the design variables.
In this case we can solve the area constraint for b, obtaining

b = 8
h

− h tan θ

Substituting the result into the expression for S, we get

S = 8
h

− h tan θ + 2hsec θ

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

400 Introduction to Optimization

We have now arrived at an unconstrained optimization problem of finding h and
θ that minimize S. The gradient of the merit function is

∇S =
[

∂S/∂h
∂S/∂θ

]
=

[
−8/h2 − tan θ + 2 sec θ

−hsec2 θ + 2hsec θ tan θ

]

Letting x =
[

h θ

]T
and starting with x0 =

[
2 0

]T
, we arrive at the following program:

#!/usr/bin/python

example10_6

from fletcherReeves import *

from numarray import array,zeros,Float64

from math import cos,tan,pi

def F(x):

return 8.0/x[0] - x[0]*(tan(x[1]) - 2.0/cos(x[1]))

def gradF(x):

g = zeros((2),type=Float64)

g[0] = -8.0/(x[0]**2) - tan(x[1]) + 2.0/cos(x[1])

g[1] = x[0]*(-1.0/cos(x[1]) + 2.0*tan(x[1]))/cos(x[1])

return g

x = array([2.0, 0.0])

x,nIter = optimize(F,gradF,x)

b = 8.0/x[0] - x[0]*tan(x[1])

print ’’h =’’,x[0],’’m’’

print ’’b =’’,b,’’m’’

print ’’theta =’’,x[1]*180.0/pi,’’deg’’

print ’’perimeter =’’, F(x),’’m’’

print ’’Number of iterations =’’,nIter

raw_input(’’Press return to exit’’)

The results are:

h = 2.14914172295 m

b = 2.48162366149 m

theta = 29.9997001208 deg

perimeter = 7.44483887289 m

Number of iterations = 4

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

401 10.3 Conjugate Gradient Methods

PROBLEM SET 10.1

1. � The Lennard–Jones potential between two molecules is

V = 4ε

[(σ

r

)12
−

(σ

r

)6
]

where ε and σ are constants, and r is the distance between the molecules. Use
the module goldSearch to find σ/r that minimizes the potential and verify the
result analytically.

2. � One wave function of the hydrogen atom is

ψ = C
(
27 − 18σ + 2σ 2) e−σ/3

where

σ = zr/a0

C = 1

81
√

3π

(
z

a0

)2/3

z = nuclear charge

a0 = Bohr radius

r = radial distance

Find σ where ψ is at a minimum. Verify the result analytically.

3. � Determine the parameter p that minimizes the integral∫ π

0
sin x cos px dx

Hint: use numerical quadrature to evaluate the integral.

4. �

R3= 1.5 R4 = 1.8

E = 120 V
i1

i2i1

i2
R R5= 1.2

R2= 3.6 R1= 2

Kirchoff’s equations for the two loops of the electrical circuit are

R1i1 + R3i1 + R(i1 − i2) = E

R2i2 + R4i2 + R5i2 + R(i2 − i1) = 0

Find the resistance R that maximizes the power dissipated by R. Hint: solve
Kirchoff’s equations numerically with one of the functions in Chapter 2.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

402 Introduction to Optimization

5. �

T

a
r

T

A wire carrying an electric current is surrounded by rubber insulation of outer
radius r . The resistance of the wire generates heat, which is conducted through
the insulation and convected into the surrounding air. The temperature of the
wire can be shown to be

T = q
2π

(
ln(r/a)

k
+ 1

hr

)
+ T∞

where

q = rate of heat generation in wire = 50 W/m

a = radius of wire = 5 mm

k = thermal conductivity of rubber = 0.16 W/m · K

h = convective heat-transfer coefficient = 20 W/m2 · K

T∞ = ambient temperature = 280 K

Find r that minimizes T .

6. � Minimize the function

F (x, y) = (x − 1)2 + (y − 1)2

subject to the constraints x + y ≤ 1 and x ≥ 0.6.

7. � Find the minimum of the function

F (x, y) = 6x2 + y3 + xy

in y ≥ 0. Verify the result analytically.

8. � Solve Prob. 7 if the constraint is changed to y ≥ −2.

9. � Determine the smallest distance from the point (1, 2) to the parabola y = x2.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

403 10.3 Conjugate Gradient Methods

10. �

C

x

d

0.4 m

0.4 m

0.2 m

Determine x that minimizes the distance d between the base of the area shown
and its centroid C .

11. �

0.43H

r

H
x

C

The cylindrical vessel of mass M has its center of gravity at C . The water in the
vessel has a depth x. Determine x so that the center of gravity of the vessel–water
combination is as low as possible. Use M = 115 kg, H = 0.8 m and r = 0.25 m.

12. �

b

b
a

a

The sheet of cardboard is folded along the dashed lines to form a box with an
open top. If the volume of the box is to be 1.0 m3, determine the dimensions a
and b that would use the least amount of cardboard. Verify the result analytically.

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

404 Introduction to Optimization

13. �

a b

P
u

v

A
B

C

B'

The elastic cord ABC has an extensional stiffness k. When the vertical force P is
applied at B, the cord deforms to the shape AB′C . The potential energy of the
system in the deformed position is

V = −Pv + k(a + b)
2a

δ2
AB + k(a + b)

2b
δ2

BC

where

δAB =
√

(a + u)2 + v2 − a

δBC =
√

(b − u)2 + v2 − b

are the elongations of AB and BC . Determine the displacements u and v by min-
imizing V (this is an application of the principle of minimum potential energy:
a system is in stable equilibrium if its potential energy is at a minimum). Use
a = 150 mm, b = 50 mm, k = 0.6 N/mm and P = 5 N.

14. �

b = 4 m

P = 50 kN

Each member of the truss has a cross-sectional area A. Find A and the angle θ

that minimize the volume

V = bA
cos θ

of the material in the truss without violating the constraints

σ ≤ 150 MPa δ ≤ 5 mm

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

405 10.3 Conjugate Gradient Methods

where

σ = P
2A sin θ

= stress in each member

δ = Pb
2E A sin 2θ sin θ

= displacement at the load P

and E = 200 × 109 Pa.

15. � Solve Prob. 14 if the allowable displacement is changed to 2.5 mm.

16. �
r1 r2

L = 1.0 m L = 1.0 m
P = 10 kN

The cantilever beam of circular cross section is to have the smallest volume pos-
sible subject to constraints

σ 1 ≤ 180 MPa σ 2 ≤ 180 MPa δ ≤ 25 mm

where

σ 1 = 8P L

πr3
1

= maximum stress in left half

σ 2 = 4P L

πr3
2

= maximum stress in right half

δ = 4P L3

3π E

(
7

r4
1

+ 1

r4
2

)
= displacement at free end

and E = 200 GPa. Determine r1 and r2.

17. � Find the minimum of the function

F (x, y, z) = 2x2 + 3y2 + z2 + xy + xz − 2y

and confirm the result analytically.

18. �

r

h

b

The cylindrical container has a conical bottom and an open top. If the volume V
of the container is to be 1.0 m3, find the dimensions r , h and b that minimize the

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

406 Introduction to Optimization

surface area S. Note that

V = πr2
(

b
3

+ h
)

S = πr
(

2h +
√

b2 + r2
)

19. �

3 m

4 m

P = 200 kN

P = 200 kN

12

3

The equilibrium equations of the truss shown are

σ 1 A1 + 4
5
σ 2 A2 = P

3
5
σ 2 A2 + σ 3 A3 = P

where σ i is the axial stress in member i and Ai are the cross-sectional areas.
The third equation is supplied by compatibility (geometrical constraints on the
elongations of the members):

16
5

σ 1 − 5σ 2 + 9
5
σ 3 = 0

Find the cross-sectional areas of the members that minimize the weight of the
truss without the stresses exceeding 150 MPa.

20. �

B

H

y1
y2

L1

L2

L3

W1

W2

1

3

2

A cable supported at the ends carries the weights W1 and W2. The potential energy
of the system is

V = −W1 y1 − W2 y2

= −W1 L1 sin θ1 − W2(L1 sin θ1 + L2 sin θ2)

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

407 10.4 Other Methods

and the geometric constraints are

L1 cos θ1 + L2 cos θ2 + L3 cos θ3 = B

L1 sin θ1 + L2 sin θ2 + L3 sin θ3 = H

The principle of minimum potential energy states that the equilibrium configu-
ration of the system is the one that satisfies geometric constraints and minimizes
the potential energy. Determine the equilibrium values of θ1, θ2 and θ3 given
that L1 = 1.2 m, L2 = 1.5 m, L3 = 1.0 m, B = 3.5 m, H = 0, W1 = 20 kN and
W2 = 30 kN.

10.4 Other Methods

The Nelder–Mead method, also know as the downhill simplex algorithm, is a popular
and robust method of optimization. Its main attraction is a common sense geometrical
approach that requires no mathematical sophistication. In speed of execution of the
downhill simplex is not competitive with Powell’s method.

Simulated annealing methods have been successfully employed for complex
problems involving many design variables. These methods are based on an anal-
ogy with the annealing as a slowly cooled liquid metal solidifies into a crystalline,
minimum energy structure. One distinguishing feature of simulated annealing is its
ability to pass over local minima in its search for the global minimum.

A topic that we reluctantly omitted is the simplex method of linear programming.
Linear programming deals with optimization problems where the merit function and
the constraints are linear expressions of the independent variables. The general linear
programming problem is to minimize the objective function

F =
n∑

i=1

ai xi

subject to the constraints

n∑
j=1

Bi j xj ≤ bi , i = 1, 2, . . . , m1

n∑
j=1

Ci j xj ≥ ci , i = 1, 2, . . . , m2

n∑
j=1

Di j xj = di , i = 1, 2, . . . , m3

xi ≥ 0, i = 1, 2, . . . n

P1: KIC
CB904-10 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:35

408 Introduction to Optimization

where the constants bi , ci and di are nonnegative. The roots of linear programming
lie in cost analysis, operations research and related fields. We skip this topic because
there are very few engineering applications that can be formulated as linear program-
ming problems. In addition, a fail-safe implementation of the simplex method results
in a rather complicated algorithm. This not to say that the simplex method has no
place nonlinear optimization. There are several effective methods that rely in part on
the simplex method. For example, problems with nonlinear constraints can often be
solved by a piecewise application of linear programming. The simplex method is also
used to compute search directions in the so-called method of feasible directions.

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

Appendices

A1 Taylor Series

Function of a Single Variable

The Taylor series expansion of a function f (x) about the point x = a is the infinite
series

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
(x − a)2

2!
+ f ′′′(a)

(x − a)3

3!
+ · · · (A1)

In the special case a = 0 the series is also known as the MacLaurin series. It can be
shown that the Taylor series expansion is unique in the sense that no two functions
have identical Taylor series.

A Taylor series is meaningful only if all the derivatives of f (x) exist at x = a and
the series converges. In general, convergence occurs only if x is sufficiently close to a;
i.e., if |x − a| ≤ ε, where ε is called the radius of convergence. In many cases ε is infinite.

Another useful form of the Taylor series is the expansion about an arbitrary value
of x:

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ f ′′′(x)

h3

3!
+ · · · (A2)

Since it is not possible to evaluate all the terms of an infinite series, the effect of
truncating the series in Eq. (A2) is of great practical importance. Keeping the first
n + 1 terms, we have

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ · · · + f (n)(x)

hn

n!
+ En (A3)

where En is the truncation error (sum of the truncated terms). The bounds on the
truncation error are given by Taylor’s theorem:

En = f (n+1)(ξ)
hn+1

(n + 1)!
(A4)

409

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

410 Appendices

where ξ is some point in the interval (x, x + h). Note that the expression for En is
identical to the first discarded term of the series, but with x replaced by ξ . Since the
value of ξ is undetermined (only its limits are known), the most we can get out of
Eq. (A4) are the upper and lower bounds on the truncation error.

If the expression for f (n+1)(ξ) is not available, the information conveyed by
Eq. (A4) is reduced to

En = O(hn+1) (A5)

which is a concise way of saying that the truncation error is of the order of hn+1, or
behaves as hn+1. If h is within the radius of convergence, then

O(hn) > O(hn+1)

i.e., the error is always reduced if a term is added to the truncated series (this may not
be true for the first few terms).

In the special case n = 1, Taylor’s theorem is known as the mean value theorem:

f (x + h) = f (x) + f ′(ξ)h, x ≤ ξ ≤ x + h (A6)

Function of Several Variables

If f is a function of the m variables x1, x2, . . . , xm, then its Taylor series expansion
about the point x = [x1, x2, . . . , xm]T is

f (x + h) = f (x) +
m∑

i=1

∂ f
∂xi

∣∣∣∣
x

hi + 1
2!

m∑
i=1

m∑
j=1

∂2 f
∂xi∂xj

∣∣∣∣
x

hi hj + · · · (A7)

This is sometimes written as

f (x + h) = f (x) + ∇ f (x) · h + 1
2

hT H(x)h + · · · (A8)

The vector ∇ f is known as the gradient of f and the matrix H is called the Hessian
matrix of f .

EXAMPLE A1
Derive the Taylor series expansion of f (x) = ln(x) about x = 1.

Solution The derivatives of f are

f ′(x) = 1
x

f ′′(x) = − 1
x2

f ′′′(x) = 2!
x3

f (4) = − 3!
x4

etc.

Evaluating the derivatives at x = 1, we get

f ′(1) = 1 f ′′(1) = −1 f ′′′(1) = 2! f (4)(1) = −3! etc.

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

411 A1 Taylor Series

which upon substitution into Eq. (A1) together with a = 1 yields

ln(x) = 0 + (x − 1) − (x − 1)2

2!
+ 2!

(x − 1)3

3!
− 3!

(x − 1)4

4!
+ · · ·

= (x − 1) − 1
2

(x − 1)2 + 1
3

(x − 1)3 − 1
4

(x − 1)4 + · · ·

EXAMPLE A2
Use the first five terms of the Taylor series expansion of ex about x = 0:

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

together with the error estimate to find the bounds of e.

Solution

e = 1 + 1 + 1
2

+ 1
6

+ 1
24

+ E4 = 65
24

+ E4

E4 = f (4)(ξ)
h5

5!
= eξ

5!
, 0 ≤ ξ ≤ 1

The bounds on the truncation error are

(E4)min = e0

5!
= 1

120
(E4)max = e1

5!
= e

120

Thus the lower bound on e is

emin = 65
24

+ 1
120

= 163
60

and the upper bound is given by

emax = 65
24

+ emax

120

which yields

119
120

emax = 65
24

emax = 325
119

Therefore,

163
60

≤ e ≤ 325
119

EXAMPLE A3
Compute the gradient and the Hessian matrix of

f (x, y) = ln
√

x2 + y2

at the point x = −2, y = 1.

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

412 Appendices

Solution

∂ f
∂x

= 1√
x2 + y 2

(
1
2

2x√
x2 + y 2

)
= x

x2 + y 2

∂ f
∂y

= y
x2 + y 2

∇ f (x, y) =
[

x/(x2 + y 2) y/(x2 + y 2)
]T

∇ f (−2, 1) =
[
−0.4 0.2

]T

∂2 f
∂x2

= (x2 + y 2) − x(2x)
(x2 + y 2)2

= −x2 + y 2

(x2 + y 2)2

∂2 f
∂y 2

= x2 − y 2

(x2 + y 2)2

∂2 f
∂x∂y

= ∂2 f
∂y∂x

= −2xy
(x2 + y 2)2

H(x, y) =
[

−x2 + y 2 −2xy
−2xy x2 − y 2

]
1

(x2 + y 2)2

H(−2, 1) =
[−0.12 0.16

0.16 0.12

]

A2 Matrix Algebra

A matrix is a rectangular array of numbers. The size of a matrix is determined by the
number of rows and columns, also called the dimensions of the matrix. Thus a matrix
of mrows and n columns is said to have the size m× n (the number of rows is always
listed first). A particularly important matrix is the square matrix, which has the same
number of rows and columns.

An array of numbers arranged in a single column is called a column vector, or
simply a vector. If the numbers are set out in a row, the term row vector is used. Thus
a column vector is a matrix of dimensions n × 1 and a row vector can be viewed as a
matrix of dimensions 1 × n.

We denote matrices by boldface, upper case letters. For vectors we use boldface,
lower case letters. Here are examples of the notation:

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 b =

 b1

b2

b3

 (A9)

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

413 A2 Matrix Algebra

Indices of the elements of a matrix are displayed in the same order as its dimensions:
the row number comes first, followed by the column number. Only one index is needed
for the elements of a vector.

Transpose

The transpose of a matrix A is denoted by AT and defined as

AT
i j = A ji

The transpose operation thus interchanges the rows and columns of the matrix. If
applied to vectors, it turns a column vector into a row vector and vice versa. For
example, transposing A and b in Eq. (A9), we get

AT =

 A11 A21 A31

A12 A22 A32

A13 A23 A33

 bT =

[
b1 b2 b3

]

An n × n matrix is said to be symmetric if AT = A. This means that the elements
in the upper triangular portion (above the diagonal connecting A11 and Ann) of a
symmetric matrix are mirrored in the lower triangular portion.

Addition

The sum C = A + B of two m× n matrices A and B is defined as

Ci j = Ai j + Bi j , i = 1, 2, . . . , m; j = 1, 2, . . . , n (A10)

Thus the elements of C are obtained by adding elements of A to the elements of B.
Note that addition is defined only for matrices that have the same dimensions.

Multiplication

The scalar or dot product c = a · b of the vectors a and b, each of size m, is defined as

c =
m∑

k=1

akbk (A11)

It can also be written in the form c = aT b.
The matrix product C = AB of an l × m matrix A and an m× n matrix B is

defined by

Ci j =
m∑

k=1

Aik Bkj , i = 1, 2, . . . , l; j = 1, 2, . . . , n (A12)

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

414 Appendices

The definition requires the number of columns in A (the dimension m) to be equal to
the number of rows in B. The matrix product can also be defined in terms of the dot
product. Representing the ith row of A as the vector ai and the jth column of B as the
vector b j , we have

Ci j = ai · b j (A13)

A square matrix of special importance is the identity or unit matrix

I =

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

(A14)

It has the property AI = IA = A.

Inverse

The inverse of an n × n matrix A, denoted by A−1, is defined to be an n × n matrix
that has the property

A−1A = AA−1 = I (A15)

Determinant

The determinant of a square matrix A is a scalar denoted by |A| or det(A). There is no
concise definition of the determinant for a matrix of arbitrary size. We start with the
determinant of a 2 × 2 matrix, which is defined as∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ = A11 A22 − A12 A21 (A16)

The determinant of a 3 × 3 matrix is then defined as∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣ = A11

∣∣∣∣∣ A22 A23

A32 A33

∣∣∣∣∣ − A12

∣∣∣∣∣ A21 A23

A31 A33

∣∣∣∣∣ + A13

∣∣∣∣∣ A21 A22

A31 A32

∣∣∣∣∣
Having established the pattern, we can now define the determinant of an n × n
matrix in terms of the determinant of an (n − 1) × (n − 1) matrix:

|A| =
n∑

k=1

(−1)k+1 A1kM1k (A17)

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

415 A2 Matrix Algebra

where Mik is the determinant of the (n − 1) × (n − 1) matrix obtained by deleting the
ith row and kth column of A. The term (−1)k+i Mik is called a cofactor of Aik.

Equation (A17) is known as Laplace’s development of the determinant on the
first row of A. Actually Laplace’s development can take place on any convenient row.
Choosing the ith row, we have

|A| =
n∑

k=1

(−1)k+i AikMik (A18)

The matrix A is said to be singular if |A| = 0.

Positive Definiteness

An n × n matrix A is said to be positive definite if

xT Ax > 0 (A19)

for all nonvanishing vectors x. It can be shown that a matrix is positive definite if the
determinants of all its leading minors are positive. The leading minors of A are the
n square matrices

A11 A12 · · · A1k

A12 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

 , k = 1, 2, . . . , n

Therefore, positive definiteness requires that

A11 > 0,

∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣ > 0, . . . , |A| > 0 (A20)

Useful Theorems

We list without proof a few theorems that are utilized in the main body of the text.
Most proofs are easy and could be attempted as exercises in matrix algebra.

(AB)T = BT AT (A21a)

(AB)−1 = B−1A−1 (A21b)∣∣AT
∣∣ = |A| (A21c)

|AB| = |A| |B| (A21d)

if C = AT BA where B = BT , then C = CT (A21e)

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

416 Appendices

EXAMPLE A4
Letting

A =

 1 2 3

1 2 1
0 1 2

 u =

 1

6
−2

 v =

 8

0
−3

compute u + v, u · v, Av and uT Av.

Solution

u + v =

 1 + 8

6 + 0
−2 − 3

 =

 9

6
−5

u · v = 1(8) + 6(0) + (−2)(−3) = 14

Av =

 a1· v

a2· v
a3· v

 =

 1(8) + 2(0) + 3(−3)

1(8) + 2(0) + 1(−3)
0(8) + 1(0) + 2(−3)

 =

−1

5
−6

uT Av = u · (Av) = 1(−1) + 6(5) + (−2)(−6) = 41

EXAMPLE A5
Compute |A|, where A is given in Example A4. Is A positive definite?

Solution Laplace’s development of the determinant on the first row yields

|A| = 1

∣∣∣∣∣ 2 1
1 2

∣∣∣∣∣ − 2

∣∣∣∣∣ 1 1
0 2

∣∣∣∣∣ + 3

∣∣∣∣∣ 1 2
0 1

∣∣∣∣∣
= 1(3) − 2(2) + 3(1) = 2

Development on the third row is somewhat easier due to the presence of the zero
element:

|A| = 0

∣∣∣∣∣ 2 3
2 1

∣∣∣∣∣ − 1

∣∣∣∣∣ 1 3
1 1

∣∣∣∣∣ + 2

∣∣∣∣∣ 1 2
1 2

∣∣∣∣∣
= 0(−4) − 1(−2) + 2(0) = 2

To verify positive definiteness, we evaluate the determinants of the leading
minors:

A11 = 1 > 0 O.K.

∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ =
∣∣∣∣∣ 1 2

1 2

∣∣∣∣∣ = 0 Not O.K.

A is not positive definite.

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

417 A2 Matrix Algebra

EXAMPLE A6
Evaluate the matrix product AB, where A is given in Example A4 and

B =

−4 1

1 −4
2 −2

Solution

AB =

 a1· b1 a1· b2

a2· b1 a2· b2

a3· b1 a3· b2

=

 1(−4) + 2(1) + 3(2) 1(1) + 2(−4) + 3(−2)

1(−4) + 2(1) + 1(2) 1(1) + 2(−4) + 1(−2)
0(−4) + 1(1) + 2(2) 0(1) + 1(−4) + 2(−2)

 =

 4 −13

0 −9
5 −8

P1: GDZ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-11 CB904/Kiusalaas 0 521 85287 0 April 28, 2005 23:34

418

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

Index

adaptive Runge–Kutta method, 275–283
algebra. See linear algebraic equations systems;

matrix algebra
appendices, 409–412
arithmetic operators, in Python, 7
arrays

accessing/changing, 21
copying, 23
creating, 19–21
functions, 22–23
operations on, 21–22

augmented assignment operators, 7
augmented coefficient matrix, 28

backward finite difference approximations,
183

banded matrix, 56–66
bisect, 145–146
bisection method, for equation root, 145–148
brent, 150–151
Brent’s method, 148–153
Bulirsch–Stoer algorithm, 286–290
Bulirsch–Stoer method, 278–279, 283

algorithm, 286–290
midpoint method, 283–284
Richardson extrapolation, 284–286

bulStoer, 287
byte code, 1

choleski(a), 47–48
Choleski’s decomposition, 45–52
cmath module, 18–19
coefficient matrices, symmetric/banded, 56–66

symmetric, 59–60
symmetric/pentadiagonal, 61–66
tridiagonal, 57–59

comparison operators, in Python, 8

composite Simpson’s 1/3 rule, 204
composite trapezoidal rule, 200–201
conditionals, in Python, 9
conjGrad, 86, 90
conjugate gradient methods, 86, 88–96, 389–400

conjugate directions, 390–391
Fletcher–Reeves method, 396–400
Powell’s method, 391–396

continuation character, 6
cubicSpline, 117–119
cubic splines, 115–121, 195
curve fitting. See interpolation/curve fitting
cyclic tridiagonal equation, 94

deflation of polynomials, 172–173
diagonal dominance, 68
Doolittle’s decomposition, 42–45
dot, 3

eigenvals3, 371–372
eigenvalue problems. See symmetric matrix

eigenvalue problems
elementary operations, linear algebra, 31
embedded integration formula, 275
equivalent linear equation, 31
error

control in Python, 15
in finite difference approximations, 186–187

Euhler’s method, stability of, 272
Euler–Maclaurin summation formula, 201
evalPoly, 172
evaluation of polynomials, 170–172
exponential functions, fitting, 130–131

false position method, roots of equations, 179
finite difference approximations, 181–187

errors in, 186–187

419

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

420 Index

finite difference approximations (cont.)
first central difference approximations,

182–183
first noncentral, 183–184
second noncentral, 185

finite elements, 233
first central difference approximations,

182–183
first noncentral finite difference

approximations, 183–184
fletcherReeves, 397–398
Fletcher–Reeves method, 396–400
forward finite difference approximations, 183
fourth-order differential equation, 316–320
fourth-order Runge–Kutta method, 257–265
functions, in Python, 15–16

gaussElimin, 37–38
Gauss elimination method, 33–41

algorithm for, 35–38
back substitution phase, 37
elimination phase, 35–36

back substitution phase, 35
elimination phase, 34–35
multiple sets of equations, 38–41

Gauss elimination with scaled row pivoting,
68–76

Gaussian integration, 215–230
abscissas/weights for Guaussian quadratures,

221–230
Gauss–Chebyshev quadrature, 222
Gauss–Hermite quadrature, 223
Gauss–Laguerre quadrature, 222–223
Gauss–Legendre quadrature, 221–222
Gauss quadrature with logarithmic

singularity, 224
determination of nodal abscissas/weights,

219–221
formulas for, 215
orthogonal polynomials, 217–219

Gauss–Jordan elimination, 32
Gauss–Legendre quadrature over quadrilateral

element, 233–240
gaussNodes, 224–225
gaussPivot, 71–72
gaussQuad, 225–226
gaussQuad2, 235–237
gaussSeidel, 87–88
Gauss–Seidel method, 85–88
gerschgorin, 368–369
Gerschgorin’s theorem, 368–369
golden section search, 383–389
goldSearch, 385–386

Higher-order equations, shooting method,
301–307

householder, 362–363
householder reduction to tridiagonal form,

357–365
accumulated transformation matrix,

361–365
householder matrix, 358–359
householder reduction of symmetric

matrix, 359–361

Idle (code editor), 3
ill-conditioning, 29–30
incremental search method, roots of equations,

143–145
indirect methods. See iterative methods
initial value problems

adaptive Runge–Kutta method, 275–283
Bulirsch–Stoer method, 278–279, 283

algorithm, 286–290
midpoint method, 283–284
Richardson extrapolation, 284–286

introduction, 248–249
multistep methods, 294
problem set, 266–271, 290–294
Runge–Kutta methods, 255–265

fourth-order, 257–265
second-order, 255–257

stability/stiffness, 271–275
stability of Euhler’s method, 272
stiffness, 272–275

Taylor series method, 249–255
Input/output

printing, 14–15
reading, 13

integration order, 234
interpolation, derivatives by, 190–195

cubic spline interpolant, 195
polynomial interpolant, 190–191

interpolation/curve fitting
interpolation with cubic spline, 115–121
introduction, 103
least–squares fit, 124–137

fitting a straight line, 126
fitting linear forms, 126–127
polynomial fit, 127–129
weighting of data, 129–137

fitting exponential functions,
130–131

weighted linear regression, 130
polynomial interpolation, 104–115

Lagrange’s method, 104–105
limits of, 110–115

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

421 Index

Neville’s method, 108–110
Newton’s method, 105–108

problem set, 121–124, 137–140
rational function interpolation, 140–141

interval halving method. See bisection method
inversePower, 345–346
inversePower3, 373–374
iterative methods, 85–96

conjugate gradient method, 86, 88–96
Gauss–Seidel method, 85–88

jacobi, 331
Jacobian matrix, 235
Jacobi method, 326–342

Jacobi diagonalization, 328–333
Jacobi rotation, 327–328
similarity transformation/diagonalization,

326–327
transformation to standard form,

333–342
Jenkins–Traub algorithm, 179–180

knots of spline, 115
Kronecker delta, 104

Lagrange’s method, 104–105
Laguerre’s method, 173–178
lamRange, 369–370
LAPACK (Linear Algebra PACKage), 27
least-squares fit, 124–137

fitting linear forms, 126–127
fitting straight line, 126
polynomial fit, 127–129
weighting data, 129–137

fitting exponential functions,
130–131

weighted linear regression, 130
linear algebraic equations systems. See also

matrix algebra
back substitution, 32
direct methods overview, 31–33
elementary operations, 31
equivalent equations, 31
forward substitution, 32
Gauss elimination method, 33–41

algorithm for, 35–38
back substitution phase, 37
elimination phase, 35–36

back substitution phase, 35
elimination phase, 34–35
multiple sets of equations, 38–41

ill-conditioning, 29–30
introduction, 27–33

iterative methods, 85–96
conjugate gradient method, 86, 88–96
Gauss–Seidel method, 85–88

linear systems, 30
LU decomposition methods, 41–52

Choleski’s decomposition, 45–52
Doolittle’s decomposition, 42–45

matrix inversion, 82–84
methods of solution, 30–31
notation in, 27–28
pivoting, 66–76

diagonal dominance, 68
Gauss elimination with scaled row pivoting,

68–76
when to pivot, 74–76

problem set, 53–56, 77, 86, 96–101
QR decomposition, 101
singular value decomposition, 101
symmetric/banded coefficient matrices,

56–66
symmetric coefficient, 59–60
symmetric/pentadiagonal coefficient,

61–66
tridiagonal coefficient, 57–59

uniqueness of solution, 28–29
linear forms, fitting, 126–127
linear systems, 30
linInterp, 297
lists, 5–7
loops, 10–11
LR algorithm, 380
LUdecomp, 44
LUdecomp3, 59
LUdecomp5, 66
LU decomposition methods, 41–52

Choleski’s decomposition, 45–52
Doolittle’s decomposition, 42–45

LUpivot, 72–73

mathematical functions, 12–13
math module, 17–18
MATLAB, 2–3
matrix algebra, 412–417

addition, 413
determinant, 414–415
example, 416–417
inverse, 414
multiplication, 413–414
positive definiteness, 415
transpose, 413
useful theorems, 415

matrix inversion, 82–84
methods of feasible directions, 408

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

422 Index

methods of solution, 30–31
midpoint, 285–286
minimization along line, 383–389

bracketing, 383
golden section search, 383–389

modules, in Python, 17
multiple integrals, 233

Gauss–Legendre quadrature over
quadrilateral element, 233–240

quadrature over triangular element,
240–245

multistep methods, for initial value problems,
294

NameError, 23
Namespace, 23
natural cubic spline, 115
Nelder–Mead method, 407
neville, 109–110
Neville’s method, 108–110
Newton–Cotes formulas, 199–207

composite trapezoidal rule, 200–201
recursive trapezoidal rule, 202–203
Simpson’s rules, 203–207
trapezoidal rule, 200

newtonPoly, 107–108
newtonRaphson, 155–156
newtonRaphson2, 160–161
Newton–Raphson method, 153–158
norm of matrix, 29
notation, 27–28
Numarray module, 3
numarry module, 19–23, 7

accessing/changing array, 21
array functions, 22–23
copying arrays, 23
creating an array, 19–21
operations on arrays, 21–22

numerical differentiation
derivatives by interpolation, 190–195

cubic spline interpolant, 195
polynomial interpolant, 190–191

finite difference approximations,
181–187

errors in, 186–187
first central difference approximations,

182–183
first noncentral, 183–184
second noncentral, 185

introduction, 181
problem set, 195–197
Richardson extrapolation, 187–190

numerical instability, 243, 262

numerical integration
Gaussian integration, 215–230

abscissas/weights for Guaussian
quadratures, 221–230

Gauss–Chebyshev quadrature, 222
Gauss–Hermite quadrature, 223
Gauss–Laguerre quadrature, 222–223
Gauss–Legendre quadrature, 221–222
Gauss quadrature with logarithmic

singularity, 224
determination of nodal abscissas/weights,

219–221
formulas for, 215
orthogonal polynomials, 217–219

introduction, 198–199, 217
multiple integrals, 233

Gauss–Legendre quadrature over
quadrilateral element, 233–240

quadrature over triangular element,
240–245

Newton–Cotes formulas, 199–207
composite trapezoidal rule, 200–201
recursive trapezoidal rule, 202–203
Simpson’s rules, 203–207
trapezoidal rule, 200

problem set, 212–215, 230–233, 245–247
Romberg integration, 207–212

operators
arithmetic, 7
comparison, 8

optimization
conjugate gradient methods, 389–400

conjugate directions, 390, 391
Fletcher–Reeves method, 396–400
Powell’s method, 391–396

introduction, 381–383
minimization along line, 383–389

bracketing, 383
golden section search, 383–389

Nelder–Mead method, 407
problem set, 401–407
simplex method, 407–408
simulated annealing method, 407

orthogonal polynomials, 217–219
overrelaxation factor, 86, 96–101

piecewise cubic curve, 116
pivoting, 66–76

diagonal dominance, 68
Gauss elimination with scaled row pivoting,

68–76
when to pivot, 74–76

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

423 Index

polyFit, 128–129
polynomial fit, 127–129
polynomial interpolant, 190–191
polynomial interpolation, 104–115

Lagrange’s method, 104–105
limits of, 110–115
Neville’s method, 108–110
Newton’s method, 105–108

polynomials, zeroes of, 170–178
deflation of polynomials, 172–173
evaluation of polynomials, 170–172

Laguerre’s method, 173–178
polyRoots, 174–176
powell, 393–394
Powell’s method, 391–396
Prandtl stress function, 235
printing input, 14–15
printSoln, 251–252
Python

arithmetic operators, 7
cmath module, 18–19
comparison operators, 8
conditionals, 9
error control, 15
functions, 15–16
general information, 1–4

obtaining Python, 3–4
overview, 1–3

lists, 5–7
loops, 10–11
mathematical functions, 12–13
math module, 17–18
modules, 17
numarry module, 19–23

accessing/changing array, 21
array functions, 22–23
copying arrays, 23
creating an array, 19–21
operations on arrays, 21–22

printing input, 14–15
reading input, 13
scoping of variables, 23–24
strings, 5
tuples, 5
type conversion, 11–12
variables, 4
writing/running programs, 24–26

Python interpreter, 1, 1

QR algorithm, 380
quadrature. See numerical integration
quadrature over triangular element,

240–245

rational function interpolation, 140–141
reading input, 13
recursive trapezoidal rule, 202–203
relaxation, 86
relaxation factor, 86, 88–96
Richardson extrapolation, 187–190, 284–286
romberg, 209–210
Romberg integration, 207–212
rootsearch, 144
roots of equations

Brent’s method, 148–153
false position method, 179
incremental search method, 143–145
introduction, 142–143
Jenkins–Traub algorithm, 179–180
method of bisection, 145–148
Newton–Raphson method, 153–158
problem set, 164–169, 178–179
secant method, 179
systems of equations, 158–163

Newton–Raphson method, 159–163
zeroes of polynomials, 170–178

deflation of polynomials, 172–173
evaluation of polynomials, 170–172
Laguerre’s method, 173–178

row pivoting, 56, 67
Runge–Kutta–Fehlberg formulas, 275–276
Runge–Kutta methods, 255–265

fourth-order, 257–265
second-order, 255–257

run kut4, 258–259
run kut5, 278–279, 283

scaled row pivoting, 68–76
secent formula, 179
second forward finite difference

approximations, 185
second noncentral finite difference

approximations, 185
second-order differential equation, 296–301,

311–316
second-order Runge–Kutta method, 255–257
shape functions, 234
shooting method, 296–307

higher-order equations, 301–307
second-order differential equation, 296–301

Shur’s factorization, 380
similarity transformation, 104
Simpson’s 3/8 rule, 204
Simpson’s rules, 203–207
slicing operator, 3
sortJacobi, 333
sparsely populated matrix, 56

P1: JTR/... P2: .../... QC: GDZ/... T1: GDZ
CB904-index CB904/Kiusalaas 0 521 85287 0 April 29, 2005 18:44

424 Index

stability/stiffness, 271–275
stability of Euhler’s method, 272
stiffness, 272–275

stdForm, 335–336
stiffness, 272–275
straight line, fitting, 126
strings, 5
Strum sequence, 365–375
sturmSeq, 366–367, 375
swapCols, 70
swapRows, 70
symmetric/banded coefficient matrices, 56–66

symmetric coefficient, 59–60
symmetric/pentadiagonal coefficient, 61–66
tridiagonal coefficient, 57–59

symmetric coefficient matrix, 59–60
symmetric matrix eigenvalue problems

eigenvalues of symmetric tridiagonal
matrices, 365–375

bracketing eigenvalues, 369–371
computation of eigenvalues, 371–372
computation of eigenvectors, 373–375
Gerschgorin’s theorem, 368–369
Strum sequence, 365–375

householder reduction to tridiagonal form,
357–365

accumulated transformation matrix,
361–365

householder matrix, 358–359
householder reduction of symmetric

matrix, 359–361
introduction, 324–326
inverse power/power methods, 342–351

eigenvalue shifting, 344
inverse power method, 342–344
power method, 345–351

Jacobi method, 326–342
Jacobi diagonalization, 328–333
Jacobi rotation, 327–328
similarity transformation/diagonalization,

326–327
transformation to standard form, 333–342

LR algorithm, 380
problem set, 351–357, 375–380
QR algorithm, 380
Shur’s factorization, 380

symmetric/pentadiagonal coefficient matrix,
61–66

synthetic division, 172–173
systems of equations

Newton–Raphson method, 159–163
roots of equations, 158–163

taylor, 250–251
Taylor series, 249–255, 409–412

function of several variables, 410–412
function of single variable, 409–410

transpose operator, 413
trapezoid, 202–203
trapezoidal rule, 200
triangleQuad, 242
tridiagonal coefficient matrix, 57–59
tuples, 5
two-point boundary value problems

finite difference method, 310–320
fourth-order differential equation, 316–320
second-order differential equation,

311–316
introduction, 295–296
problem set, 307–310, 320–323
shooting method, 296–307

higher-order equations, 301–307
second-order differential equation, 296–301

type(a), 13
type conversion, 11–12

underrelaxation factor, 86, 90

variables
Python, 4
scoping, 23–24
Taylor series, 409–410, 410–412

weighted linear regression, 130
writing/running programs, in Python, 24–26

ZeroDivisionError, 15
zeroes of polynomials, 170–178

deflation of polynomials, 172–173
evaluation of polynomials, 170–172
Laguerre’s method, 173–178

zero offset, 3

	Contents
	Preface
	1 Introduction to Python
	1.1 General Information
	1.2 Core Python
	1.3 Functions and Modules
	1.4 Mathematics Modules
	1.5 numarray Module
	1.6 Scoping of Variables
	1.7 Writing and Running Programs

	2 Systems of Linear Algebraic Equations
	2.1 Introduction
	2.2 Gauss Elimination Method
	2.3 LU Decomposition Methods
	2.4 Symmetric and Banded Coefficient Matrices
	2.5 Pivoting
	∗2.6 Matrix Inversion
	∗2.7 Iterative Methods
	∗2.8 Other Methods

	3 Interpolation and Curve Fitting
	3.1 Introduction
	3.2 Polynomial Interpolation
	3.3 Interpolation with Cubic Spline
	3.4 Least-Squares Fit
	3.5 Other Methods

	4 Roots of Equations
	4.1 Introduction
	4.2 Incremental Search Method
	4.3 Method of Bisection
	4.4 Brent’s Method
	4.5 Newton–Raphson Method
	4.6 Systems of Equations
	∗4.7 Zeroes of Polynomials
	4.8 Other Methods

	5 Numerical Differentiation
	5.1 Introduction
	5.2 Finite Difference Approximations
	5.3 Richardson Extrapolation
	5.4 Derivatives by Interpolation

	6 Numerical Integration
	6.1 Introduction
	6.2 Newton–Cotes Formulas
	6.3 Romberg Integration
	6.4 Gaussian Integration
	∗6.5 Multiple Integrals

	7 Initial Value Problems
	7.1 Introduction
	7.2 Taylor Series Method
	7.3 Runge–Kutta Methods
	7.4 Stability and Stiffness
	7.5 Adaptive Runge–Kutta Method
	7.6 Bulirsch–Stoer Method
	7.7 Other Methods

	8 Two-Point Boundary Value Problems
	8.1 Introduction
	8.2 Shooting Method
	8.3 Finite Difference Method

	9 Symmetric Matrix Eigenvalue Problems
	9.1 Introduction
	9.2 Jacobi Method
	9.3 Inverse Power and Power Methods
	9.4 Householder Reduction to Tridiagonal Form
	9.5 Eigenvalues of Symmetric Tridiagonal Matrices
	9.6 Other Methods

	10 Introduction to Optimization
	10.1 Introduction
	10.2 Minimization Along a Line
	10.3 Conjugate Gradient Methods
	10.4 Other Methods

	Appendices
	Index

