
It’s easy enough to install Wireshark and begin capturing
packets off the wire—or from the air. But how do you
interpret those packets once you’ve captured them? And
how can those packets help you to better understand
what’s going on under the hood of your network?

Practical Packet Analysis shows how to use Wireshark
to capture and then analyze packets as you take an in-
depth look at real-world packet analysis and network
troubleshooting. The way the pros do it.

Wireshark (derived from the Ethereal project), has
become the world’s most popular network sniffing appli-
cation. But while Wireshark comes with documentation,
there’s not a whole lot of information to show you how
to use it in real-world scenarios. Practical Packet Analysis
shows you how to:

• Use packet analysis to tackle common network
problems, such as loss of connectivity, slow networks,
malware infections, and more

• Build customized capture and display filters

• Tap into live network communication

www.nostarch.com

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
SHELVE IN:
NETW

ORKING/SECURITY
$39.95 ($49.95 CDN)

®

D O N ’ T J U S T S T A R E
A T C A P T U R E D

P A C K E T S .
A N A L Y Z E T H E M .

D O N ’ T J U S T S T A R E
A T C A P T U R E D

P A C K E T S .
A N A L Y Z E T H E M .

• Graph traffic patterns to visualize the data flowing
across your network

• Use advanced Wireshark features to understand
confusing packets

• Build statistics and reports to help you better explain
technical network information to non-technical users

Because net-centric computing requires a deep under-
standing of network communication at the packet level,
Practical Packet Analysis is a must have for any network
technician, administrator, or engineer troubleshooting
network problems of any kind.

A B O U T T H E A U T H O R

Chris Sanders is the network administrator for the
Graves County Schools in Kentucky, where he
manages more than 1,800 workstations, 20 servers,
and a user base of nearly 5,000. His website,
ChrisSanders.org, offers tutorials, guides, and
technical commentary, including the very popular
Packet School 101. He is also a staff writer for
WindowsNetworking.com and WindowsDevCenter.com.
He uses Wireshark for packet analysis almost daily.

T E C H N I C A L R E V I E W B Y G E R A L D C O M B S , C R E A T O R O F W I R E S H A R KT E C H N I C A L R E V I E W B Y G E R A L D C O M B S , C R E A T O R O F W I R E S H A R K

Download the capture files

used in this book from

www.nostarch.com/packet.htm
P R A C T I C A L

PA C K E T A N A LY S I S
P R A C T I C A L

PA C K E T A N A LY S I S
U S I N G W I R E S H A R K T O S O L V E R E A L - W O R L D

N E T W O R K P R O B L E M S

C H R I S S A N D E R S

®

P
R

A
C

T
IC

A
L

 P
A

C
K

E
T

 A
N

A
LY

S
IS

P
R

A
C

T
IC

A
L

 P
A

C
K

E
T

 A
N

A
LY

S
IS

S
A

N
D

E
R

S

PRACTICAL PACKET ANALYSIS

PRACTICAL PACKET
ANALYSIS

U s in g W i r e s h a r k t o S o l v e
R e a l - W o r l d N e t w o r k

P r o b l e m s

by Chris Sanders

San Francisco

®

PRACTICAL PACKET ANALYSIS. Copyright © 2007 by Chris Sanders.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-149-2
ISBN-13: 978-1-59327-149-7

Publisher: William Pollock
Production Editor: Christina Samuell
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Gerald Combs
Copyeditor: Megan Dunchak
Compositor: Riley Hoffman
Proofreader: Elizabeth Campbell
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Sanders, Chris, 1986-
 Practical packet analysis : using Wireshark to solve real-world network problems / Chris Sanders.
 p. cm.
 ISBN-13: 978-1-59327-149-7
 ISBN-10: 1-59327-149-2
 1. Computer network protocols. 2. Packet switching (Data transmission) I. Title.
TK5105.55.S265 2007
004.6'6--dc22
 2007013453

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Printed on recycled paper in the United States of America

This book is dedicated to my parents, who bought
the first computer I ever programmed.

B R I E F C O N T E N T S

Acknowledgments ..xv

Introduction ...xvii

Chapter 1: Packet Analysis and Network Basics ...1

Chapter 2: Tapping into the Wire ...15

Chapter 3: Introduction to Wireshark...27

Chapter 4: Working with Captured Packets..39

Chapter 5: Advanced Wireshark Features..51

Chapter 6: Common Protocols ..61

Chapter 7: Basic Case Scenarios ..77

Chapter 8: Fighting a Slow Network ...99

Chapter 9: Security-based Analysis ...121

Chapter 10: Sniffing into Thin Air..135

Chapter 11: Further Reading ..151

Afterword...154

Index ...155

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xv

INTRODUCTION xvii
Why This Book? ..xviii
Concepts and Approach ..xviii
How to Use This Book .. xx
About the Example Capture Files ... xx

1
PACKET ANALYSIS AND NETWORK BASICS 1
What Is Packet Analysis? .. 2
Evaluating a Packet Sniffer .. 2

Supported Protocols ... 2
User Friendliness ... 2
Cost .. 3
Program Support ... 3
Operating System Support ... 3

How Packet Sniffers Work ... 3
Collection ... 3
Conversion ... 3
Analysis ... 3

How Computers Communicate ... 4
Networking Protocols ... 4
The Seven-Layer OSI Model .. 4
Protocol Interaction .. 6
Data Encapsulation ... 7
The Protocol Data Unit ... 8
Network Hardware ... 8
Traffic Classifications ... 12

2
TAPPING INTO THE WIRE 15
Living Promiscuously .. 16
Sniffing Around Hubs ... 16
Sniffing in a Switched Environment ... 18

Port Mirroring ... 18
Hubbing Out .. 19
ARP Cache Poisoning .. 20
Using Cain & Abel .. 21

Sniffing in a Routed Environment .. 24
Network Maps ... 25

x Conten ts in Detai l

3
INTRODUCTION TO WIRESHARK 27
A Brief History of Wireshark .. 27
The Benefits of Wireshark .. 28

Supported Protocols ... 28
User Friendliness ... 28
Cost .. 28
Program Support ... 28
Operating System Support ... 29

Installing Wireshark .. 29
System Requirements ... 29
Installing on Windows Systems ... 29
Installing on Linux Systems .. 31

Wireshark Fundamentals ... 31
Your First Packet Capture ... 31
The Main Window .. 33
The Preferences Dialog .. 34
Packet Color Coding ... 35

4
WORKING WITH CAPTURED PACKETS 39
Finding and Marking Packets ... 39

Finding Packets ... 40
Marking Packets ... 40

Saving and Exporting Capture Files .. 41
Saving Capture Files .. 41
Exporting Capture Data ... 42

Merging Capture Files .. 42
Printing Packets .. 43
Time Display Formats and References ... 43

Time Display Formats ... 43
Packet Time Referencing ... 44

Capture and Display Filters ... 45
Capture Filters .. 45
Display Filters ... 46
The Filter Expression Dialog (the Easy Way) ... 47
The Filter Expression Syntax Structure (the Hard Way) 47
Saving Filters .. 49

5
ADVANCED WIRESHARK FEATURES 51
Name Resolution .. 51

Types of Name Resolution Tools in Wireshark ... 52
Enabling Name Resolution ... 52
Potential Drawbacks to Name Resolution .. 52

Protocol Dissection ... 53
Following TCP Streams .. 55
The Protocol Hierarchy Statistics Window .. 56

Conten ts in Detai l xi

Viewing Endpoints ... 57
Conversations .. 58
The IO Graphs Window ... 59

6
COMMON PROTOCOLS 61
Address Resolution Protocol ... 62
Dynamic Host Configuration Protocol .. 62
TCP/IP and HTTP ... 64

TCP/IP ... 64
Establishing the Session ... 64
Beginning the Flow of Data .. 66
HTTP Request and Transmission ... 66
Terminating the Session .. 67

Domain Name System .. 68
File Transfer Protocol .. 69

CWD Command ... 70
SIZE Command ... 70
RETR Command .. 71

Telnet Protocol ... 71
MSN Messenger Service ... 72
Internet Control Message Protocol .. 75
Final Thoughts .. 75

7
BASIC CASE SCENARIOS 77
A Lost TCP Connection .. 77
Unreachable Destinations and ICMP Codes ... 79

Unreachable Destination .. 79
Unreachable Port .. 80

Fragmented Packets .. 81
Determining Whether a Packet Is Fragmented ... 81
Keeping Things in Order .. 82

No Connectivity ... 83
What We Know ... 84
Tapping into the Wire .. 84
Analysis ... 84
Summary .. 86

The Ghost in Internet Explorer .. 86
What We Know ... 86
Tapping into the Wire .. 86
Analysis ... 87
Summary .. 88

Inbound FTP .. 88
What We Know ... 88
Tapping into the Wire .. 88
Analysis ... 88
Summary .. 90

xii Content s i n De ta i l

It’s Not My Fault! ... 90
What We Know ... 90
Tapping into the Wire .. 90
Analysis ... 90
Summary .. 92

An Evil Program ... 92
What We Know ... 92
Tapping into the Wire .. 92
Analysis ... 93
Summary .. 97

Final Thoughts .. 98

8
FIGHTING A SLOW NETWORK 99
Anatomy of a Slow Download ... 100
A Slow Route ... 104

What We Know ... 104
Tapping into the Wire .. 104
Analysis ... 105
Summary .. 106

Double Vision .. 107
What We Know ... 107
Tapping into the Wire .. 107
Analysis ... 107
Summary .. 109

Did That Server Flash Me? ... 109
What We Know ... 109
Tapping into the Wire .. 109
Analysis ... 110
Summary .. 111

A Torrential Downfall .. 111
What We Know ... 111
Tapping into the Wire .. 111
Analysis ... 112
Summary .. 113

POP Goes the Email Server ... 114
What We Know ... 114
Tapping into the Wire .. 114
Analysis ... 114
Summary .. 115

Here’s Something Gnu .. 115
What We Know ... 116
Tapping into the Wire .. 116
Analysis ... 116
Summary .. 119

Final Thoughts .. 119

Conten t s in Detai l xiii

9
SECURITY-BASED ANALYSIS 121
OS Fingerprinting .. 121
A Simple Port Scan ... 122
The Flooded Printer .. 123

What We Know ... 123
Tapping into the Wire .. 123
Analysis ... 123
Summary .. 124

An FTP Break-In .. 124
What We Know ... 125
Tapping into the Wire .. 125
Analysis ... 125
Summary .. 127

Blaster Worm .. 127
What We Know ... 127
Tapping into the Wire .. 127
Analysis ... 127
Summary .. 128

Covert Information .. 129
What We Know ... 129
Tapping into the Wire .. 129
Analysis ... 129
Summary .. 130

A Hacker’s Point of View ... 130
What We Know ... 130
Tapping into the Wire .. 131
Analysis ... 131
Summary .. 133

10
SNIFFING INTO THIN AIR 135
Sniffing One Channel at a Time ... 135
Wireless Signal Interference .. 136
Wireless Card Modes ... 136
Sniffing Wirelessly in Windows ... 138

Configuring AirPcap .. 138
Capturing Traffic with AirPcap .. 140

Sniffing Wirelessly in Linux .. 141
802.11 Packet Extras ... 142

802.11 Flags ... 143
The Beacon Frame ... 143

Wireless-Specific Columns ... 144
Wireless-Specific Filters ... 145

Filtering Traffic for a Specific BSS Id .. 146
Filtering Specific Wireless Packet Types ... 146
Filtering Specific Data Types ... 146

xiv Content s i n De ta i l

A Bad Connection Attempt .. 148
What We Know ... 148
Tapping into the Wire Air .. 148
Analysis ... 148
Summary .. 150

Final Thoughts .. 150

11
FURTHER READING 151

AFTERWORD 154

INDEX 155

A C K N O W L E D G M E N T S

First and foremost, I would like to thank God for
giving me the strength and fortitude it took to com-
plete this project. When my to-do list grew longer and
longer and there was no end in sight, he was the one
who helped me through all of the stressful times.

I want to thank Bill, Tyler, Christina, and the rest of the team at No Starch
Press for giving me the opportunity to write this book and allowing me the
creative freedom to do it my way. I would also like to thank Gerald Combs for
having the drive and motivation to maintain the Wireshark program, as well
as perform the technical edit of this book. Special thanks go out to Laura
Chappell, as well, for providing some of the best packet analysis training
materials you will find, including several of the packet captures used here.

Personally speaking, I would like to thank Tina Nance, Eddy Wright, and
Paul Fletcher for helping me along the path that has led me to this high point
in my career. You guys have been great spiritual and professional mentors as
well as great friends. Along with that, I have several amazing friends who
managed to put up with me while I was writing this book, which is an

xvi Acknowledgments

accomplishment in itself. I would like to extend a very special thank you to
Mandy, Barry, Beth, Chad, Jeff, Sarah, and Brandon. I couldn’t have done
it without you guys behind me.

Mostly, however, I want to thank my loving parents, Kenneth and Judy
Sanders. Dad, even though you have never laid hands on a computer, your
constant support and nurturing is the reason all of this was possible. Nothing
makes me more driven than the desire to hear you say that you are proud of
me. Mom, you have been gone from us for five years as of the writing of this
book, and although you couldn’t be around to see this achievement, you are
always in my heart, and that is my true driving force. The passion you showed
for living life is what has inspired me to be so passionate in what I do. This
book is every bit as much your accomplishment as it is mine.

I N T R O D U C T I O N

I got my first computer when I was nine years old.
As things go with technology, it broke within about a
year. It was enough of a stretch for my family to afford
a computer in the first place, and paying for it to be
fixed was just financially impossible. However, after
a little reading and experimentation, I fixed the com-
puter myself, and that’s where my interest in technology
began.

That interest evolved into a passion through high school and college, and
as that passion grew, so did my abilities, naturally leading me to situations in
which I really needed to dig further into network and computer problems.
This is when I stumbled upon the Wireshark project (it was called Ethereal at
the time). This software allowed me to enter a completely new world. Being
able to analyze problems in new ways and having the ability to see raw
protocols on the wire gave me limitless power in computer and network
troubleshooting.

xviii In t roduc ti on

The great thing about packet analysis is that it has become an increasingly
popular method of solving problems and learning more about networks.
Thanks to the advent of user groups, wikis, and blogs, the techniques
covered in this book are becoming prerequisite knowledge for some jobs.
Packet analysis is a requirement for managing today’s networks, and this
book will give you the jump start you need in learning how it all works.

Why This Book?

You may find yourself wondering why you should buy this book as opposed
to any other book about packet analysis. The answer lies right in the title:
Practical Packet Analysis. Let’s face it—nothing beats real-world experience,
and the closest you can come to that experience in a book is through practical
examples of packet analysis with real-world case scenarios. The first half of
this book gives you the prerequisite knowledge you will need to understand
packet analysis and Wireshark. The second half of the book is devoted
entirely to practical case scenarios that you could easily encounter in day-
to-day network management.

Whether you are a network technician, a network administrator, a chief
information officer, a desktop technician, or simply a help desk worker, you
have a lot to gain from understanding and using packet analysis techniques.

Concepts and Approach

I am generally a really laid-back guy, so I when I teach a concept, I try to do so
in a really laid-back way. This holds true for the language used in this book.
It is very easy to get lost in technical jargon when dealing with a technical
concept, but I have tried my best to keep things as casual as possible. I’ll
make all definitions clear, straightforward, and to the point, without any
added fluff.

If you really want to learn packet analysis, you should make it a point
to master the concepts in the first several chapters—they are integral to
understanding the rest of the book. The second half of the book is purely
conceptual. You may not see these exact scenarios in your work, but you
should be able to apply the concepts you learn from them in the situations
you do encounter.

Here is a quick breakdown of the chapters of this book.

Chapter 1: Packet Analysis and Network Basics
What is packet analysis? How does it work? How do you do it? This chap-
ter covers the very basics of network communication and packet analysis.

Chapter 2: Tapping into the Wire
This chapter covers the different techniques you can use to place a packet
sniffer on your network.

I n troduct ion xix

Chapter 3: Introduction to Wireshark
Here we’ll look at the basics of Wireshark—where to get it, how to use it,
what it does, why it’s great, and all of that good stuff.

Chapter 4: Working with Captured Packets
Once you get Wireshark up and running, you will want to know the
basics of interacting with captured packets. This is where you’ll learn.

Chapter 5: Advanced Wireshark Features
Once you have learned to crawl, it’s time to take off running with the
advanced Wireshark features. This chapter delves into these features and
goes under the hood to show you things that aren’t always so apparent.

Chapter 6: Common Protocols
This chapter shows what some of the most common network communi-
cation protocols look like at the packet level. In order to understand
how these protocols can malfunction, you first have to understand how
they work.

Chapter 7: Basic Case Scenarios
This chapter contains the first set of real-world case scenarios. Each
scenario is presented in an easy-to-follow format, where for each scenario
the problem, my analysis, and a solution are given. These basic scenarios
deal with only a few computers and involve a limited amount of analysis—
just enough to get your feet wet.

Chapter 8: Fighting a Slow Network
The most common problems network technicians hear about generally
involve slow network performance. This chapter is devoted to solving
these types of problems.

Chapter 9: Security-based Analysis
Network security is the biggest hot-button topic in network administration.
Because of this, Chapter 9 shows you the ins and outs of solving security-
related issues with packet analysis techniques.

Chapter 10: Sniffing into Thin Air
The last chapter of the practical section of the book is a primer on wire-
less packet analysis. This chapter discusses the differences between wireless
analysis and wired analysis and includes a quick case scenario that rein-
forces what you’ve learned.

Chapter 11: Further Reading
The final chapter of the book sums up what you have learned and
includes some other reference tools and websites you might find useful
as you continue to use the packet analysis techniques you have learned.

xx In t roduc ti on

How to Use This Book

I have intended this book to be used in two ways. The first is, of course, as
an educational text that you will read through, chapter by chapter, in order
to gain an understanding of packet analysis. This means paying particular
attention to the real-world scenarios in the last several chapters. The other use
of this book is as a reference resource. There are some features of Wireshark
that you will not use very often, so you may forget how they work. Because of
this, Practical Packet Analysis is a great book to have on your bookshelf should
you need a quick refresher about how to use a specific feature.

About the Example Capture Files

All of the capture files used in this book are available at http://www.nostarch
.com/packet.htm. In order to maximize the potential of this book, I would
highly recommend you download these files and use them as you follow
along with the book.

Several of these capture files were contributed by Laura Chappell of the
Packet Analysis Institute and Wireshark University. Those captures are as
follows:

� blaster.pcap � gnutella.pcap
� destunreachable.pcap � hauntedbrowser.pcap
� dosattack.pcap � http-client-refuse.pcap
� double-vision.pcap � http-fault-post.pcap
� email-troubles.pcap � icmp-tracert-slow.pcap
� evilprogram.pcap � osfingerprinting.pcap
� ftp-crack.pcap � slowdownload.pcap
� ftp-uploadfailed.pcap � tcp-con-lost.pcap

1
P A C K E T A N A L Y S I S A N D

N E T W O R K B A S I C S

A million different things can go wrong
with a computer network on any given

day—from a simple spyware infection to a
complex router configuration error—and it

is impossible to solve every problem immediately. The
best we can hope to do is be fully prepared with the
knowledge and the tools it takes to respond to these types of issues. All net-
work problems stem from the packet level, where even the prettiest-looking
applications can reveal their horrible implementations and seemingly trust-
worthy protocols can prove malicious. To better understand and solve network
problems, we go to the packet level where nothing is hidden from us, where
nothing is obscured by misleading menu structures, eye-catching graphics, or
untrustworthy employees. Here there are no secrets, and the more we can do
at the packet level, the more we can control our network and solve problems.
This is the world of packet analysis.

This book dives into the world of packet analysis headfirst. You’ll learn
what packet analysis is before we delve into network communication, so you
can gain some of the basic background you’ll need to examine different

2 Chapter 1

scenarios. You’ll learn how to use the features of the Wireshark packet
analysis tool to tackle slow network communication, identify application
bottlenecks, and even track hackers through some real-world scenarios. By
the time you have finished reading this book, you should be able to imple-
ment advanced packet analysis techniques that will help you solve even the
most difficult problems in your own network.

What Is Packet Analysis?

Packet analysis, often referred to as packet sniffing or protocol analysis, describes
the process of capturing and interpreting live data as it flows across a net-
work in order to better understand what is happening on that network.
Packet analysis is typically performed by a packet sniffer, a tool used to capture
raw network data going across the wire. Packet analysis can help us under-
stand network characteristics, learn who is on a network, determine who or
what is utilizing available bandwidth, identify peak network usage times,
identify possible attacks or malicious activity, and find unsecured and
bloated applications.

There are various types of packet sniffing programs, including both
free and commercial ones. Each program is designed with different goals
in mind. A few of the more popular packet analysis programs are tcpdump
(a command-line program), OmniPeek, and Wireshark (both GUI-based
sniffers).

Evaluating a Packet Sniffer

There are several types of packet sniffers. When selecting the one you’re
going to use, you should consider the following variables:

Supported Protocols

All packet sniffers can interpret various protocols. Most sniffers can interpret
all of the most common protocols such as DHCP, IP, and ARP, but not all can
interpret some of the more nontraditional protocols. When choosing a sniffer,
make sure that it supports the protocols you’re going to use.

User Friendliness

Consider the packet sniffer’s program layout, ease of installation, and general
flow of standard operations. The program you choose should fit your level of
expertise. If you have very little packet analysis experience, you may want to
avoid the more advanced command-line packet sniffers like tcpdump.
On the contrary, if you have a wealth of experience, you may find a more
advanced program to be a better choice.

� Supported protocols � Program support
� User friendliness � Operating system support
� Cost

Packet Ana lys is and Network Bas ic s 3

Cost
The great thing about packet sniffers is that there are lots of free ones that
rival any commercial product. You should never have to pay for a packet
sniffing application.

Program Support
Even once you have mastered the basics of a sniffing program, you will
probably still need occasional support to solve new problems as they arise.
When evaluating available support, look for things such as developer
documentation, public forums, and mailing lists. Although there may be a
lack of developer support for free packet sniffing programs like Wireshark,
the communities that use these applications will often make up for this.
These communities of users and contributors provide discussion boards,
wikis, and blogs designed to help you to get more out of your packet sniffer.

Operating System Support
Unfortunately, not all packet sniffers support every operating system. Make
sure that the one you choose to learn will work on all the operating systems
that you need to support.

How Packet Sniffers Work

The packet sniffing process can be broken down into three steps: collection,
conversion, and analysis.

Collection
In the first step, the packet sniffer switches the selected network interface into
promiscuous mode. In this mode the network card can listen for all network
traffic on its particular network segment. The sniffer uses this mode along with
low-level access to the interface to capture the raw binary data from the wire.

Conversion
In this step, the captured binary data is converted into a readable form.
This is where most advanced command-line–driven packet sniffers stop.
At this point, the network data is in a form that can be interpreted only
on a very basic level, leaving the majority of the analysis to the end user.

Analysis
The third and final step involves the actual analysis of the captured and
converted data. In this step the packet sniffer takes the captured network
data, verifies its protocol based on the information extracted, and begins its
analysis of that protocol’s specific features.

Further analysis is performed by comparing multiple packets as well as
various other network elements.

4 Chapter 1

How Computers Communicate

In order to fully understand packet analysis, you need to understand exactly
how computers communicate with each other. In this section we’ll examine
the basics of network protocols, the OSI model, network data frames, and the
hardware that supports it all.

Networking Protocols
Modern networks are made up of a variety of different systems running on
many different platforms. To aid this communication, we use a set of common
languages called network protocols that govern network communication.
Common network protocols include TCP, IP, ARP, and DHCP. A protocol
stack is a logical grouping of protocols that work together.

A network protocol can be extremely simple or highly complex,
depending on its function. Although the various network protocols are
often drastically different, most have to address the following issues:

Flow control The generation of messages by the receiving system that
instruct the sending system to speed up or slow down its transmission
of data

Packet acknowledgment The transmission of a return message from
the receiving system to the sending system to acknowledge the receipt
of data

Error detection The use of codes by the sending system to verify that
the data sent wasn’t damaged during transmission

Error correction The retransmission of data that was lost or damaged
during the initial transmission

Segmentation The division of long streams of data into smaller ones for
more efficient transfer

Data encryption A function that uses cryptographic keys to protect data
transmitted across a network

Data compression A method for reducing the size of data transmitted
across a network by eliminating redundant information

The Seven-Layer OSI Model
Protocols are separated based on their functions using an industry-standard
reference model called the Open Systems Interconnections (OSI) reference model.
This model was originally published in 1983 by the International Organization
for Standardization (ISO) as a document called ISO 7498.

The OSI model divides the network communications process into seven
distinct layers:

� Application (Layer 7) � Network (Layer 3)
� Presentation (Layer 6) � Data link (Layer 2)
� Session (Layer 5) � Physical (Layer 1)
� Transport (Layer 4)

Packet Ana lys is and Network Bas ic s 5

The Application Layer

The application layer, the topmost layer on the OSI model, provides a means
for users to actually access network resources. This is the only layer typically
seen by end users, as it provides the interface that is the base for all of their
network activities.

The Presentation Layer

The presentation layer transforms the data it receives into a format that can be
read by the application layer. The data encoding and decoding done here
depends on the application layer protocol that is sending or receiving the
data. This layer also handles several forms of encryption and decryption used
for securing data.

The Session Layer

The session layer manages the dialog, or session between two computers; it
establishes, manages, and terminates this connection among all communi-
cating devices. The session layer is also responsible for establishing whether a
connection is duplex or half-duplex and for gracefully closing a connection
between hosts, rather than dropping it abruptly.

The Transport Layer

The primary purpose of the transport layer is to provide reliable data transport
services to lower layers. Through features including flow control, segmentation

The seven layers in the hierarchical OSI
model (Figure 1-1) make it much easier to
understand network communication. The
application layer at the top represents the
actual programs used to access network
resources. The bottom layer is the physical
layer, through which the actual network
data travels. The protocols at each layer
work together to package data for the next
layer up.

NOTE The OSI model is no more than an industry-
recommended standard; protocol developers are
not required to follow it exactly. As a matter of fact,
the OSI model is not the only networking model that
exists—for example, some people prefer the Department
of Defense (DoD) model. We’ll work around the con-
cepts of the OSI model in this book, so we won’t cover
the DoD model here.

Let’s take a broad look at the functions of
each of the OSI model’s layers as well as some
examples of the protocols used in each.

Figure 1-1: A hierarchical
view of the seven layers of
the OSI model

Application

Presentation

Session

Transport

Network

Data Link

Physical

6 Chapter 1

and desegmentation, and error control, the transport layer makes sure data
gets from point to point error free. Because ensuring reliable data trans-
portation can be extremely cumbersome, the OSI model devotes an entire
layer to it. The transport layer provides its services to both connection-oriented
and connectionless protocols. Firewalls and proxy servers operate at this layer.

The Network Layer

The network layer is responsible for routing data between physical networks,
and it is one of the most complex OSI layers. It is responsible for the logical
addressing of network hosts (for example, through an IP address), and it also
handles packet segmentation, protocol identification, and in some cases,
error detection. Routers operate at this layer.

The Data Link Layer

The data link layer provides a means of transporting data across a physical
network. Its primary purpose is to provide an addressing scheme that can
be used to identify physical devices and provide error-checking features to
ensure data integrity. Bridges and switches are physical devices that operate
at this layer.

The Physical Layer

The physical layer at the bottom of the OSI model is the physical medium
through which network data is transferred. This layer defines the physical
and electrical nature of all hardware used, including voltages, hubs, network
adapters, repeaters, and cabling specifications. The physical layer establishes
and terminates connections, provides a means of sharing communication
resources, and converts signals from digital to analog and vice versa.

Table 1-1 lists some of the more common protocols used at each
individual layer of the OSI model.

l

Protocol Interaction

How does data flow up and down through the OSI model? The initial data
transfer on a network begins at the application layer of the transmitting system.
Data works its way down the seven layers of the OSI model until it reaches the
physical layer, at which point the physical layer of the transmitting system

Table 1-1: Typical Protocols Used in Each Layer of the OSI Model

Layer Protocol

Application HTTP, SMTP, FTP, Telnet

Presentation ASCII, MPEG, JPEG, MIDI

Session NetBIOS, SAP, SDP, NWLink

Transport TCP, UDP, SPX

Network IP, ICMP, ARP, RIP, IPX

Data Link Ethernet, Token Ring, FDDI, AppleTalk

Packet Ana lys is and Network Bas ic s 7

sends the data to the receiving system. The receiving system picks up the
data at its physical layer, and the data proceeds up the remaining layers of
the receiving system to the application layer at the top.

Services provided by various protocols at any given level of the OSI
model are not redundant. For example, if a protocol at one layer provides a
particular service, then no other protocol at any other layer will provide this
same service. Protocols at corresponding layers on the sending and receiving
computers are complementary. If a protocol on layer seven of the sending
computer is responsible for encrypting the data being transmitted, then the
corresponding protocol on layer seven of the receiving machine is expected
to be responsible for decrypting that data. Figure 1-2 shows a graphical
representation of the OSI model as it relates to two communicating clients.
Here you can see communication going from top to bottom on one client
and then reversing when it reaches the second client.

Figure 1-2: Protocols working at the same layer on both the
sending and receiving systems

Each layer in the OSI model is only capable of communicating with the
layers directly above and below it. For example, layer two can only send and
receive data from layers one and three.

Data Encapsulation

The protocols on different layers communicate with the aid of data
encapsulation. Each layer in the stack is responsible for adding a header or
footer to the data being communicated, and these extra bits of information
allow the layers to communicate. For example, when the transport layer
receives data from the session layer, it adds its own header information to
that data before passing it to the next layer.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

8 Chapter 1

The Protocol Data Unit

The encapsulation process creates a protocol data unit (PDU), which includes
the data being sent and all header or footer information added to it.

As data moves down the OSI model, the PDU changes and grows as
header and footer information from various protocols is added to it. The
PDU is in its final form once it reaches the physical layer, at which point
it is sent to the destination computer. The receiving computer strips the
protocol headers and footers from the PDU as the data climbs up the OSI
layers. Once the PDU reaches the top layer of the OSI model, only the
original data remains.

NOTE The term packet is associated with the term Protocol Data Unit (PDU). When
I use the word packet, I am referring to a complete PDU that includes header and
footer information from all layers of the OSI model.

Network Hardware

Now it’s time to look at network hardware, where all of the dirty work is done.
We’ll focus on just a few of the more common pieces of network hardware—
specifically, hubs, switches, and routers.

Hubs

A hub is generally no more than a box with multiple RJ-45 ports, like the
Netgear hub shown in Figure 1-3. Hubs range from very small four-port
hubs to larger 48-port ones designed for rack mounting in a corporate
environment. Hubs are designed to connect network devices so that they
can communicate.

Figure 1-3: A typical four-port Ethernet hub

A hub is nothing more than a repeating device operating on the physical
layer of the OSI model. A repeating device simply takes packets sent from one
port and transmits (repeats) them to every other port on the device. For
example, if a computer on port one of a four-port hub needs to send data
to a computer on port two, the hub sends those packets to ports one, two,
three, and four. The clients connected to ports three and four ignore the
data because it’s not for them, and they drop (discard) the packets. The
result is a lot of unnecessary network traffic.

Packet Ana lys is and Network Bas ic s 9

Imagine you are sending an email to the employees of a company. The
email has the subject line Regarding all marketing staff, but instead of sending
it to only those people who work in the marketing department, you send it to
every employee in the company. The employees who work in marketing will
know it is for them, and they will open it. The other employees, however, will
see that it is not for them, and will discard it. You can see how this would result
in a lot of unnecessary communication and wasted time—yet this is exactly
how a hub functions.

Figure 1-4 provides a graphical display of what is going on here. In this
figure, computer A is transmitting data to computer B. However, when com-
puter A sends this data, all computers connected to the hub receive it. Only
computer B actually accepts the data; the other computers discard it.

One last note about hubs is that they are only capable of operating in
half-duplex mode—that is, they cannot send and receive data at the same time.
This differentiates them from switches, which are full-duplex devices that can
send and receive data synchronously.

While you won’t typically see hubs used in most modern or high-density
networks (switches are used instead, as discussed below), you should know
how hubs work, since they will be very important to packet analysis.

Figure 1-4: The flow of traffic when computer A
transmits data to computer B through a hub

Switches

The best alternatives to hubs in a production or high-density network are
devices called switches. Like a hub, a switch is designed to repeat packets,
but it does so very differently; also like a hub, a switch provides a communi-
cation path for devices, but it does so more efficiently. Rather than broad-
casting data to every individual port, a switch only sends data to the computer
for which the data is intended. Physically speaking, a switch looks identical
to a hub. As a matter of fact, if the device doesn’t identify itself in writing
on the front, you may have trouble knowing exactly which one it is
(Figure 1-5).

Computer A

Computer B

Computer C

Computer D

10 Chapter 1

Several of the larger switches on the market are manageable via special-
ized, vendor-specific software or web interfaces. These switches are commonly
referred to as managed switches and provide several features that can be useful
in network management. This includes the ability to enable or disable specific
ports, view port specifics, make configuration changes, and remotely reboot
the switch.

Figure 1-5: A rack-mountable 24-port Ethernet switch

Switches have advanced functionality in handling transmitted packets. In
order to be able to communicate directly with specific devices, switches must
be able to uniquely identify devices based on their addresses. All this means
that they must operate on the data link layer of the OSI model.

Switches store the Layer 2 address of every connected device in a CAM
table, which acts as a kind of traffic cop. When a packet is transmitted, the
switch reads the Layer 2 header information in the packet and, using the
CAM table as reference, determines which port(s) to send the packet to.
Switches only send packets to specific ports, which greatly reduces network
traffic.

Figure 1-6 shows a graphical representation of traffic flow through a
switch. In this figure, computer A is once again sending data to computer B.
In this instance, the computers are connected through a switch that allows
computer A to send data directly to computer B without the other devices on
the network being aware of this communication. Moreover, multiple conver-
sations can happen at the same time.

Figure 1-6: The flow of traffic when computer A
transmits data to computer B through a switch

Computer A

Computer B

Computer C

Computer D

Packe t Analys is and Network Bas ic s 11

Routers

A router is an advanced network device with a much higher level of function-
ality than either a switch or a hub. A router can take many shapes and forms,
but most have several LED indicator lights on the front and a few network
ports on the back, depending on the size of the network (Figure 1-7). Routers
operate at Layer 3 of the OSI model, where they are responsible for forwarding

An easy way to illustrate the concept of routing is to think of a neighbor-
hood with a network of streets; each street has houses on it, and each house
has its own address (Figure 1-8). You live on a street, so you can move among
all houses on the street. This is very similar to the operation of a switch that
allows communication among all computers on a network segment. To com-
municate with a neighbor on another street, however, a person must follow
the street signs to that neighbor’s house.

Let’s work through an example of communication across streets.
Using Figure 1-8, let’s say I am sitting at 503 Vine Street, and I need to get
to 202 Dogwood Lane. In order to do this, I must cross onto Oak Street, and
then onto Dogwood Lane. Think of this as crossing network segments. If the
device at 192.168.0.3 needs to communicate with the device at 192.168.0.54,
it must cross a router to get to the 10.100.1.1 network, then cross the destina-
tion network segment’s router before it can get to the destination network
segment.

Figure 1-8: Comparison of a routed network to neighborhood streets

packets between two or more net-
works. The process routers use
to direct the flow of traffic among
networks is called routing.

There are several types of
routing protocols that dictate how
different types of packets are
routed to other networks. Routers
commonly use Layer 3 addresses
(such as IP addresses) to uniquely
identify devices on a network.

Figure 1-7: A small router suited for use in a small
network

O
ak Street

Vine Street

Dogwood Lane

501 502 503 504

505 506 507 508

201 202 203 204

205 206 207 208

10.100.1.1

10.100.1.100

192.168.0.1

192.168.0.2

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

192.168.0.7

192.168.0.8

192.168.0.9

10.100.1.150

192.168.0.50

192.168.0.51

192.168.0.52

192.168.0.53

192.168.0.54

192.168.0.55

192.168.0.56

192.168.0.57

192.168.0.58

12 Chapter 1

The size and number of routers on a network will depend on the size
and function of that network. Personal and home-office networks may only
consist of a small router located at the center of the network, whereas a large
corporate network might have several routers spread throughout various
departments, all connecting to one large central router or Layer 3 switch.
A Layer 3 switch is an advanced type of switch that also has built-in function-
ality to act as a router.

As you begin looking at more and more network diagrams, you will come
to understand how data flows through these various points. Figure 1-9 shows
the layout of a very common form of routed network. In this example, two
separate networks are connected via a single router. If a computer on network
A wishes to communicate with a computer on network B, the transmitted data
must go through the router.

Figure 1-9: The flow of traffic when computer A transmits data to computer X
through a router

Traffic Classifications
When considering network traffic, we break it into three main classes: broad-
cast, multicast, and unicast. Each classification has a distinct characteristic
that determines how packets in that class are handled by networking hardware.

Broadcast Traffic

A broadcast packet is one that is sent to all ports on a network segment, regard-
less of whether that port is a hub, switch, or router. Remember from the
section “Hubs” on page 8 that hubs are only capable of broadcast traffic.

Multicast Traffic

Multicast is a means of transmitting a packet from a single source to multiple
destinations simultaneously. The goal of multicast is to make this process as
simple as possible by using as little bandwidth as possible. The optimization
of this traffic lies in the number of times a stream of data is replicated in
order to get to its destination. The exact handling of multicast traffic is
highly dependent upon its implementation in individual protocols. The
primary method of implementing multicast is by using a special addressing

Computer A

Computer B

Computer C

Computer D

Computer Y

Computer W

Computer X

Computer Z

Router

Network A Network B

Packe t Analys is and Network Bas ic s 13

scheme that joins the packet recipients to a multicast group; this is how IP
multicast works. This addressing scheme ensures that the packets are not
capable of being transmitted to computers they are not destined for.

Unicast Traffic

A unicast packet is transmitted from one computer directly to another. The
details of how unicast functions depend upon the protocol using it.

Broadcast Domains

Recall that a broadcast packet is one that is sent to every device on a particular
segment. In larger networks with multiple hubs or switches connected via
different mediums, broadcast packets transmitted from one switch reach
all the way to the ports on the other switches on the network, as they are
repeated from switch to switch.

The extent to which broadcast packets travel is called the broadcast
domain—it is the network segment where any computer can directly transmit
to another computer without going through a router. Figure 1-10 shows an
example of two broadcast domains on a small network. Because each broad-
cast domain extends until it reaches the router, broadcast packets circulate
only within this specified broadcast domain.

Figure 1-10: A broadcast domain extends to everything behind the
current routed segment.

Our earlier example describing how routing relates to a neighborhood
also provides good insight into how broadcast domains work. You can think
of a broadcast domain as being like a neighborhood street. If you stand on
your front porch and yell, only the people on your street will be able to hear
you. If you want to talk to someone on a different street, you have to find a
way to speak to that person directly, rather than broadcasting (yelling) from
your front porch.

The things you have learned here are the absolute basics of packet
analysis. You must understand what is going on at this level of network
communication before you can begin troubleshooting network issues.
In the next chapter we will build on these concepts and discuss more
advanced network communication principles.

Router

Broadcast Domain Broadcast Domain

2
T A P P I N G I N T O T H E W I R E

We can now move on to the final step of
preparation before we begin to capture live

packets on the network. This last step is to
figure out the most appropriate place to put a

sniffer on the network’s cabling system. This is most
often referred to by packet analysts as getting on the wire, tapping the network,
or tapping into the wire. Simply put, this is the process of placing a packet
sniffer on a network in the correct physical location.

Unfortunately, sniffing packets is not as simple as plugging in a laptop
to a network port and capturing traffic (Figure 2-1). In fact, it is sometimes
more difficult to place a packet sniffer on a network’s cabling system than it
is to actually analyze the packets.

The challenge with sniffer placement is that there is a large variety of
networking hardware that is used to connect devices. Because the three main
devices on a modern network (hubs, switches, and routers) all handle traffic
very differently, you must be very aware of the physical setup of the network
you are analyzing.

16 Chapter 2

Figure 2-1: Placing your sniffer on the network is sometimes the biggest challenge you
will face.

The goal of this chapter is to help you develop an understanding of
packet sniffer placement in a variety of different network topologies. We
will look at various real-world network setups as we determine the best way
to capture packets in hub-, switch-, and router-based environments. As a
precursor to understanding sniffer placement, we’ll also take a more in-
depth look at promiscuous mode network cards, how they work, and why
they are a necessity for packet analysis.

Living Promiscuously

Before you can sniff packets on a network, you need a network interface card
(NIC) that supports a promiscuous mode driver. Promiscuous mode is what
allows an NIC to view all of the packets crossing the cabling system.

When an NIC is not in promiscuous mode, it generally sees a large amount
of broadcast and other traffic that is not addressed to it, which it will drop.
When it is in promiscuous mode, it captures everything and passes all traffic
it receives to the CPU, basically ignoring the information it finds in a packet’s
Layer 2 addresses. Your packet sniffing application grabs those packets to
give you a complete and accurate account of all packets on the system.

NOTE Most operating systems (including Windows) will not let you use a network card in
promiscuous mode unless you have elevated user privileges. If you cannot obtain
these privileges on a system, chances are that you should not be performing any type
of packet sniffing on that particular network.

Sniffing Around Hubs

Sniffing on a network that has hubs installed is a dream for any packet
analyst. As you learned earlier, traffic sent through a hub is sent to every
port connected to that hub. Therefore, to analyze a computer on a hub,
all you have to do is plug in a packet sniffer to an empty port on the hub,
and you can see all communication to and from all computers connected
to that hub. As illustrated in Figure 2-2, your visibility window is limitless
when your sniffer is connected to a hub network.

Packet Sniffer

Tapping in to the Wi re 17

Figure 2-2: Sniffing on a hub network provides a limitless visibility
window.

NOTE The visibility window, as shown in various diagrams throughout this book, shows the
devices on the network whose traffic you are able to see with a packet sniffer.

Unfortunately for us, hub-based networks are pretty rare because of the
headache they cause network administrators. Hubs tend to slow network
traffic because only one device can use the hub at any one time; therefore,
a device connected through a hub must compete for bandwidth with the other
devices also trying to communicate through it. When two or more devices
communicate at the same time, packets collide (as shown in Figure 2-3) and
transmitted packets are lost and have to be retransmitted.

ter you’ll learn how to leverage the power of capture and display filters
in order to perform your analysis more efficiently.

Computer A

Computer B Computer C

Computer D

Computer E Computer F

Sniffer

Visibility Window

As collisions increase,
network performance can
decrease dramatically. As the level
of traffic and collisions increases,
devices may have to transmit a
packet three or four times, which
is why most modern networks of
any size use switches.

The only other concern you
have to consider when sniffing
the traffic of an individual com-
puter on a hub network is the
volume of traffic in your capture.
Since an NIC in promiscuous
mode sees all traffic going to and
from all devices on a hub, you will
have a very large amount of data
to sort through, the bulk of which
will be irrelevant. In the next chap-

Figure 2-3: Collisions occur on a hub network
when two devices transmit at the same time.

Transmitting
Computer

Transmitting
Computer

Collision

Hub

18 Chapter 2

Sniffing in a Switched Environment

A switched environment is the most common type of network you will be work-
ing on. Switches provide an efficient means of transporting data via broadcast,
unicast, and multicast traffic. (For more on these topics see Chapter 1.) As a
bonus, switches allow full-duplex communication, meaning that machines
can send and receive data simultaneously through a switch. Unfortunately
for packet analysts, switches add a whole new level of complexity to a packet
analyst’s job. When you plug in a sniffer to a port on a switch, you can only
see broadcast traffic and the traffic transmitted and received by your machine,
as shown in Figure 2-4.

Figure 2-4: The visibility window on a switched network is limited
to the port you are plugged into.

There are three primary ways to capture traffic from a target device on a
switched network: port mirroring, ARP cache poisoning, and hubbing out.

Port Mirroring

Port mirroring, or port spanning as it is often called, is perhaps the easiest way
to capture the traffic from a target device on a switched network. In this type
of setup, you must have access to the command-line interface of the switch
on which the target computer is located. Also, the switch must support port
mirroring and have an empty port into which you can plug your analyzer.

When port mirroring, you log into the command-line interface for your
switch and enter a command that forces the switch to copy all traffic on a
certain port to another port (Figure 2-5). For instance, to capture the traffic
from a device on port three of a switch, you could simply plug your analyzer
into port four and mirror port three to port four. This would allow you to see
all traffic transmitted and received by your target device.

The exact command you will type to set up port mirroring will vary
depending on the manufacturer of the switch you are using. You’ll find a
list of common commands in Table 2-1.

Computer A

Computer B Computer C

Computer D

Computer E Computer F

Sniffer

Visibility
Window

Tapping in to the Wi re 19

Figure 2-5: Port mirroring allows you to expand your visibility window
on a switched network.

When port mirroring, be aware of the throughput of the ports you are
mirroring. Some switch manufacturers allow you to mirror multiple ports to
one individual port, which may be very useful when analyzing the communi-
cation between two or more devices on a single switch. However, consider
what will happen using some basic math. For instance, if you have a 24-port
switch and you mirror 23 full-duplex 100Mbps ports to one port, you could
potentially have 4,600Mbps flowing to that port. This is obviously well beyond
the physical threshold of a single port and can cause packet loss or network
slowdowns if the traffic reaches a certain level. In these situations switches
have been known to completely drop excess packets or “pause” their back-
plane, preventing communication altogether. Be sure that this type of
situation doesn’t occur when you are when trying to perform your capture.

Hubbing Out

Another very simple way of capturing the traffic through a target device on
a switched network is by hubbing out. Hubbing out is a technique in which
you localize the target device and your analyzer system on the same network
segment by plugging them directly into a hub.

Many people think of hubbing out as cheating, but it’s really a perfect
solution in situations where you can’t perform port mirroring but still have
physical access to the switch the target device is plugged into.

Table 2-1: Commands Used to Enable Port Mirroring for Different Manufacturers’ Switches

Manufacturer Port Mirroring Command

Cisco set span <source port> <destination port>

Enterasys set port mirroring create <source port> <destination port>

Nortel port-mirroring mode mirror-port <source port> monitor-port
<destination port>

Computer A

Computer B Computer C

Computer D

Computer E Computer F

Sniffer

Visibility
Window

Computer B’s Port
Mirrored to
Sniffer Port

20 Chapter 2

In order to hub out, all you need is a hub and a few network cables.
Once you have your hardware, go to the switch the target device resides on
and unplug the target from the network. Then plug the target’s network
cable into your hub, and plug in another cable connecting your analyzer.
Next, connect your hub to the network by plugging in a network cable from
it to the network switch. Now you have basically put the target device and
your analyzer into the same broadcast domain, and all traffic from your
target device will be broadcast so that the analyzer can capture those packets
(Figure 2-6).

Figure 2-6: Hubbing out isolates your target device and analyzer on
their own broadcast domain.

In most situations, hubbing out will reduce the duplex of the target
device from full to half. While this method isn’t the cleanest way to tap into
the wire, it’s sometimes your only option when a switch does not support
port mirroring.

NOTE As a reminder, it is usually a nice gesture to alert the user of the device that you
will be unplugging it, especially if that user happens to be the company CEO!

When hubbing out, be sure that you’re using a true hub and not a falsely
labeled switch. Several networking hardware vendors have a bad habit of
marketing and selling a device as a hub when it actually functions as a low-
level switch. If you aren’t working with a proven, tested hub, you will only see
your own traffic, not that of the target device. When you find a hub, test it to
make sure it really is a hub—if it is, it’s a keeper! The best way to determine
whether or not the device you are using is a true hub is to hook a pair of
computers up to it and see if one can sniff the other’s traffic. If so, you have
a true hub in your possession.

ARP Cache Poisoning

Recall from Chapter 1 that the two main types of packet addressing are at
Layers 2 and 3 of the OSI model. These Layer 2 addresses, or MAC addresses,
are used in conjunction with whichever Layer 3 addressing system you are

Computer A

Computer B
Computer C

Computer D

Computer E Computer FSniffer

Visibility
Window

Hub

Tapping in to the Wi re 21

using. In the case of this book (and the industry standard), I refer to the
Layer 3 addressing system as the Internet Protocol (IP) addressing system.

All devices on a network communicate with each other on Layer 3 using
IP addresses. Because switches operate on Layer 2 of the OSI model, they must
be able to translate Layer 2 MAC addresses into Layer 3 IP addresses and vice
versa in order to be able to forward traffic to the appropriate device. This
translation process is done through a Layer 3 protocol known as the Address
Resolution Protocol (ARP).

When one computer needs to send data to another, it sends an ARP
request to the switch it is connected to. The switch then sends an ARP broad-
cast packet to all of the computers connected to it, asking each computer it
reaches if it is has the IP address of the computer trying to be reached. When
the destination computer sees this packet, it identifies itself to the switch
by giving its MAC address. The switch now has a route established to that
destination computer, and any device that wishes to communicate with
the destination computer can use the route. This newly obtained information
is stored in the switch’s ARP cache so that the switch does not have to send a
new ARP broadcast every time it needs to send data to a computer.

ARP cache poisoning is a more advanced form of tapping into the wire
on a switched network. It is commonly used by hackers to send falsely
addressed packets to client systems in order to intercept certain traffic or
cause denial of service (DoS) attacks on a target, but ARP cache poisoning
can still serve as a legitimate way to capture the packets of a target machine
on a switched network.

ARP cache poisoning, sometimes referred to as ARP spoofing, is the process
of sending ARP messages to an Ethernet switch or router with fake MAC
(Layer 2) addresses in order to intercept the traffic of another computer
(Figure 2-7).

Figure 2-7: ARP cache poisoning allows you to intercept the traffic of your target computer.

Using Cain & Abel

When attempting to poison the ARP cache, the first step is to download the
required tools and collect some necessary information. We’ll use the popular
security tool Cain & Abel from Oxid.it (http://www.oxid.it). Go ahead and
install it now.

Normal Traffic Pattern
Target

Computer Switch Router

Sniffer

Poisoned ARP Cache

Switch Router

Sniffer

Target
Computer

22 Chapter 2

Once you have installed the Cain & Abel software, you need to collect
some additional information including the IP addresses of your analyzer
system, the remote system you wish to capture the traffic from, and the
router that the remote system is downstream from.

When you first open Cain & Abel, you will notice a series of tabs near the
top of the window. (ARP cache poisoning is only one of a variety of Cain &
Abel’s features.) For our purposes, we’ll be working in the Sniffer tab. When
you click this tab, you will see an empty table (Figure 2-8).

Figure 2-8: The Sniffer tab in the Cain & Abel main window

In order to fill this table you will need to activate the program’s built-in
sniffer and scan your network for hosts. To do so, follow these steps:

1. Click the second icon on the toolbar, which resembles a network card.
The first time you do this you will be asked to select the interface you
wish to sniff. This interface should be the one that is connected to the
network you will be performing your ARP cache poisoning on.

2. Once you’ve selected this interface, click OK to activate Cain & Abel’s
built-in sniffer.

3. To build a list of available hosts on your network, click the icon that
resembles a plus (+) symbol, and click OK (Figure 2-9).

The once-empty grid should now be filled with a list of all the hosts on
your attached network, along with their MAC addresses, IP addresses, and
vendor identifying information. This is the list you will work from when
setting up your ARP cache poisoning.

At the bottom of the program window, you will see a set of tabs that will
take you to other windows under the Sniffer heading. Now that you have built
your host list, you will be working from the APR tab. Switch to the APR window
by clicking the tab.

Tapping in to the Wi re 23

Figure 2-9: The Cain & Abel
network discovery tool

Once in the APR window, you are presented with two empty tables: an
upper and a lower one. Once you set them up, the upper table will show the
devices involved in your ARP cache poisoning, and the lower table will show
all communication between your poisoned machines.

To set up your poisoning, follow these steps:

1. Click the icon resembling the plus (+) symbol on the program’s standard
toolbar. The window that appears has two selection columns side by side.

2. On the left side, you will see a list of all available hosts on your network.
Click the IP address of the target computer whose traffic you wish to
sniff. This will result in the right window showing a list of all hosts in the
network, omitting the target machine’s IP address.

3. In the right window, click the IP address of the router that is directly
upstream of the target machine, and click OK (Figure 2-10). The
IP addresses of both devices should now be listed in the upper table
in the main application window.

4. To complete the process, click the yellow-and-black radiation symbol on
the standard toolbar. This will activate Cain & Abel’s ARP cache poison-
ing features and allow your analyzing system to be the middleman for all
communications between the target system and its upstream router.

You can now fire up your packet sniffer and begin the analysis process.
When you are finished capturing traffic, simply click the yellow-and-black
radiation symbol again to stop ARP cache poisoning.

24 Chapter 2

Figure 2-10: Selecting the devices for which you wish to enable ARP cache poisoning

NOTE As a final note on ARP cache poisoning, you should be very aware of the roles of the
systems you implement this process for. For instance, do not use this technique when the
target device is something with very high network utilization, such as a fileserver with a
1Gbps link to the network (especially if your analyzer system only provides a 100Mbps
link). When you perform this rerouting of traffic, all traffic transmitted and received
by the target system must first go through your analyzer system, therefore making your
analyzer the bottleneck in the communication process. This can create a DoS-type effect
on the machine you are analyzing, which will result in degraded network performance
and faulty analysis data.

Sniffing in a Routed Environment

All of the techniques for tapping into the wire on a switched network are avail-
able on routed networks, as well. The only major consideration when dealing
with routed environments is the importance of sniffer placement when you are
troubleshooting a problem that spans multiple network segments.

As you learned earlier, a device’s broadcast domain extends until it
reaches a router. At this point the traffic is handed off to the next upstream
router and you lose communication with the packets being transmitted until
you receive an acknowledgment of their receipt. In situations like this where
data must traverse multiple routers, it is important to analyze the traffic on
all sides of the router.

For example, consider the communications problem you might encounter
in a network with several network segments connected via a variety of routers.
In this network, each segment communicates with an upstream segment in
order to store and retrieve data. The problem we’re trying to solve is that a
downstream subnet, network D, cannot communicate with any devices on
network A (Figure 2-11).

Tapping in to the Wi re 25

Figure 2-11: A computer on network D can’t
communicate with one on network A.

Your gut might tell you to sniff the traffic of a device on segment D.
When you do, you can clearly see data being transmitted to segment A, but
without traffic acknowledgments. When sniffing the next upstream network
segment to find the source of the problem, you find that traffic is dropped by
the router of network B. Eventually this leads you to a router configuration
problem that, when corrected, solves your larger dilemma. This is a prime
example of why it is often necessary to sniff the traffic of multiple devices on
multiple segments in order to pinpoint a problem.

Network Maps

In our brief discussion about network placement, we have already looked at
several different network maps. A network map, or network diagram, is a diagram
showing all technical resources on a network and how they are connected.

There is no better way to determine the placement of your packet sniffer
than to be able to visualize the network clearly. If you have a network map
available to you, I would highly recommend keeping it handy, as it will become
a valuable asset in the troubleshooting and analysis process. You may even
want to make a detailed network map of your own network. Remember,
sometimes half the battle in troubleshooting is pinpointing the problem.

Network A

Network B

Network C

Network D

3
I N T R O D U C T I O N T O W I R E S H A R K

There are several different packet sniffing
applications available for performing net-

work analysis, but we’ll be using Wireshark
throughout this book. This chapter discusses the

history of Wireshark, as well as its benefits, installation,
and basic use.

A Brief History of Wireshark

Wireshark has a very rich history. Gerald Combs, a computer science graduate
of the University of Missouri at Kansas City, originally developed it out of
necessity. The very first version of Combs’ application, called Ethereal, was
released in 1998 under the GNU Public License (GPL).

Eight years after releasing Ethereal, Combs left his job to pursue other
career opportunities. Unfortunately, his employer at that time had full rights
to the Ethereal trademarks, and Combs was unable to reach an agreement
that would allow him to control the Ethereal “brand.” Instead, Combs and the
rest of the development team rebranded the project as Wireshark in mid-2006.

28 Chapter 3

Wireshark has grown dramatically in popularity, and its collaborative
development team now boasts over 500 contributors. The program as it exists
under the Ethereal name is no longer being developed.

The Benefits of Wireshark

Wireshark offers several benefits that make it appealing for everyday use. It
is aimed at both the journeyman and the expert packet analyst and offers a
variety of features to entice each. Let’s examine Wireshark according to the
criteria I defined in Chapter 1 for selecting a packet sniffing tool.

Supported Protocols

Wireshark excels in the number of protocols that it supports—over 850 as of
this writing. These protocols run from common ones like IP and DHCP to
more advanced proprietary protocols like AppleTalk and BitTorrent. And
because Wireshark is developed under an open source model, new protocol
support is added with each update. If there is a protocol that Wireshark
doesn’t support, you can code that support yourself and submit your code
to the Wireshark developers for inclusion in the application (if your code is
accepted, of course). That said, there is really almost no protocol that
Wireshark isn’t capable of supporting.

User Friendliness

The Wireshark interface is one of the easiest to understand of any packet
sniffing application. Wireshark is a GUI-based application with very clearly
written context menus and a straightforward layout. It also provides several
features designed to enhance usability, such as protocol-based color coding
and detailed graphical representations of raw data. Unlike some of the more
complicated command-line driven alternatives like tcpdump, the Wireshark
GUI is great for those who are just entering the world of protocol analysis.

Cost

Since it is open source, Wireshark’s pricing can’t be beat. Wireshark is released
as free software under the GPL. You can download and use Wireshark for any
purpose, whether personal or commercial.

Program Support

A software package’s level of support can make or break it. When dealing
with freely distributed software such as Wireshark, there is often no formal
support, which is why the open source community often relies on its user
base to provide support. Luckily for us, the Wireshark community is one of
the best and most active of any open source project. The Wireshark web page
links directly to several forms of support, including online documentation,

I n troduct ion to Wire sha rk 29

a support and development wiki, FAQs, and a place to sign up for the
Wireshark mailing list, which is monitored by most of the program’s top
developers. These developers, along with Wireshark’s massive user base,
provide support that leaves no question unanswered.

Operating System Support

Wireshark supports all major modern operating systems, including Windows,
Mac OS X, and Linux-based platforms. You can view a complete list of sup-
ported operating systems on the Wireshark home page.

Installing Wireshark

The Wireshark installation process is surprisingly simple. In this section we
will look at Wireshark’s system requirements and then go through the steps
involved in installing Wireshark on both Windows and Linux.

System Requirements

Before you install Wireshark, you must make sure that your system meets the
following requirements:

� A 400 MHz processor or faster

� At least 60MB of available storage space

� An NIC that supports promiscuous mode

� The WinPcap capture driver

The WinPcap capture driver is the Windows implementation of the
Pcap packet capturing interface application programming interface (API).
Simply put, this driver interacts with your OS to capture raw packet data,
apply filters, and switch the NIC in and out of promiscuous mode. You can
find the installation package for this driver at http://www.winpcap.org.

NOTE Although you can download WinPcap separately, it is built into the Wireshark installa-
tion package. It is typically better to install WinPcap from the Wireshark installation
package because the included version of WinPcap has been tested to work with Wireshark.

Installing on Windows Systems

The first step when installing Wireshark under Windows is to obtain the
latest installation build from the official Wireshark web page, http://
www.wireshark.org. Navigate to the Downloads section on the website, and
choose a mirror to download from. Once you’ve downloaded the package,
follow these steps:

1. Double-click the .exe file to begin installation, and then click Next in the
introductory window.

2. Read the licensing agreement and click I Agree if you agree.

30 Chapter 3

3. Select the components of Wireshark you wish to install. For our pur-
poses, you can accept the defaults by clicking Next (Figure 3-1).

Figure 3-1: Choosing the Wireshark components you wish to install

4. Click Next in the Additional Tasks window.

5. Select the location where you wish to install Wireshark, and click Next.

6. When the dialog asks whether or not you want to install WinPcap, make
sure the box next to the words Install WinPcap is checked, and click Install
(Figure 3-2). The installation process should begin.

Figure 3-2: Selecting the option to install the WinPcap driver

7. About halfway through the Wireshark installation, the WinPcap installa-
tion should start. When it does, click Next in the introductory window.
Then read the licensing agreement and click I Agree if you do.

I n troduct ion to Wire sha rk 31

8. WinPcap should install on your computer. Once it has finished, click
Finish.

9. Wireshark should complete its installation. Once this is done, click Next.

10. Once the installation confirmation window appears, click Finish.

Installing on Linux Systems
The first step when installing Wireshark on a Linux system is to download the
appropriate installation package. Not every version of Linux is supported, so
don’t be surprised if your specific distribution doesn’t have its own install
package.

RPM-based Systems

To install Wireshark on RPM-based distributions, such as Red Hat, do the
following:

1. Download the appropriate installation package from the Wireshark
web page.

2. Open a console window and type rpm -ivh wireshark-0.99.3.i386.rpm,
substituting the filename of your downloaded package as appropriate.

3. If any dependencies are missing, install them and repeat the
previous step.

DEB-based Systems

To install Wireshark on a DEB-based distribution such as Debian or Ubuntu,
do the following:

1. Download the appropriate installation package from the Wireshark
web page.

2. Open a console window and type apt-get install wireshark.

Wireshark Fundamentals

Once you’ve successfully installed Wireshark on your system, you can begin
to familiarize yourself with it. Now you finally get to open your fully func-
tioning packet sniffer and see . . . absolutely nothing!

The fact is, Wireshark isn’t very interesting when you first open it. In
order for things to really get exciting, you have to get some data.

Your First Packet Capture
In order to get packet data into Wireshark, you’ll perform your first packet
capture. You may be thinking, “How am I going to capture packets when
nothing is wrong on the network?” There are two things wrong with this
statement. The first thing is that there is always something wrong on the
network. If you don’t believe me, then go ahead and send an email to all
of your employees and let them know that everything is working perfectly.

32 Chapter 3

Secondly, there doesn’t have to be something wrong in order for you
to perform packet analysis. In fact, most packet analysts spend more time
analyzing problem-free traffic than traffic they are troubleshooting; you need
a baseline to compare to in order to be able to effectively troubleshoot net-
work traffic. For example, if you ever hope to solve a problem with DHCP by
analyzing its traffic, you must understand what the flow of working DHCP
traffic looks like. More broadly, in order to find anomalies in daily network
activity, you must know what normal daily network activity looks like. When
your network is running smoothly, you can set your baseline so that you’ll
know what its traffic looks like in a normal state.

We’ve covered the basics. Now let’s capture some packets!

1. Open Wireshark.

2. From the main drop-down menu, select Capture and then Interfaces.
You should see a dialog listing the various interfaces that can be used to
capture packets, along with their IP addresses. Choose the interface you
wish to use, and click Capture (Figure 3-3).

Figure 3-3: Selecting an interface on which to perform your packet capture

3. Your packet capture should begin and Wireshark should show the active
packet capture window. This window displays a brief summary of the type
of traffic being captured, as well as the duration of the current capture
(Figure 3-4).

Figure 3-4: The Capture window shows a brief
summary of the packets being captured.

I n troduct ion to Wire sha rk 33

4. Wait about a minute or so, and when you are ready to stop the capture
and view your data, click Stop.

Once you have completed these steps and finished the capture process,
the Wireshark main window will come alive with data. As a matter of fact, you
might be overwhelmed by the amount of data that appears, but it will all start
to make sense very quickly as we break down the main window of Wireshark
one piece at a time.

The Main Window
You’ll spend most of your time in the Wireshark main window. This is where
all of the packets you capture are displayed and broken down into a more
understandable format. Using the packet capture you just made, let’s take a
look at Wireshark’s main window (Figure 3-5), which contains three panes.

The three panes in the main window depend upon one another. In
order to view the details of an individual packet in the Packet Details pane,
you must first select that packet by clicking on it in the Packet List pane.
Once you’ve selected your packet, you can see the exact bytes that correspond
with a certain portion of the packet in the Packet Bytes pane when you click
that portion of the packet in the Packet Details pane.

Figure 3-5: The Wireshark main window uses a three-pane design.

Packet List Pane
The top pane, known as the Packet List pane, displays a table containing all
packets in the current capture file. You’ll see columns containing the packet
number, the relative time the packet was captured, the source and destination
of the packet, the packet’s protocol, and some general information found in
the packet.

Packet Details Pane

The middle pane, known as the Packet Details pane, contains a hierarchical
display of information about a single packet. This display can be collapsed and
expanded to show all of the information collected about an individual packet.

34 Chapter 3

Packet Bytes Pane

The lower pane, and perhaps the most confusing, is the Packet Bytes pane.
This pane displays a packet in its raw, unprocessed form—that is, it shows what
the packet looks like as it travels across the wire. This is raw information with
nothing warm or fuzzy to make it easier to follow.

NOTE It is very important to understand how these different panes work with each other,
since you will be spending most of your time working with them in the main
window.

The Preferences Dialog

Wireshark has several preferences that can be customized to meet your needs.
Let’s look at some of the more important ones.

To access Wireshark’s preferences, select Edit from the main drop-down
menu and click Preferences. This should call up the Preferences dialog,
which contains several customizable options (Figure 3-6).

Figure 3-6: You can customize Wireshark in the Preferences dialog.

These preferences are divided into five major sections: user interface,
capture, printing, name resolution, and protocols.

I n troduct ion to Wire sha rk 35

User Interface

The user interface preferences determine how Wireshark presents data.
You can change most options here according to your personal preferences,
including whether or not to save window positions, the layout of the three
main panes, the placement of the scrollbar, the placement of the Packet List
pane columns, the fonts used to display the captured data, and the back-
ground and foreground colors.

Capture

The capture preferences allow you to specify options related to the way
packets are captured, including your default capture interface, whether or
not to use promiscuous mode by default, and whether or not to update the
Packet List pane in real time.

Printing

The printing preferences section allows you to specify various options related
to the way Wireshark prints your data.

Name Resolution

The preferences in the name resolution section allow you to activate features
of Wireshark that allow it to resolve addresses into more recognizable names
(including MAC, network, and transport name resolution) and specify the
maximum number of concurrent name resolution requests.

Protocols

The preferences in the protocols section allow you to manipulate options
related to the capturing and display of the various protocols Wireshark is
capable of decoding. Not every protocol has configurable preferences, but
some have several things that can be changed. These options are best left
unchanged unless you have a specific reason for doing so, however.

Packet Color Coding

If you are anything like me, you may have an aversion to shiny objects and
pretty colors. If that is the case, the first thing you probably noticed when you
opened Wireshark were the different colors of the packets in the Packet List
pane (Figure 3-7). It may seem like these colors are randomly assigned to
each individual packet, but this is not the case.

NOTE Whenever I refer to traffic, you can assume I am referring to all of the packets displayed
in the Packet List pane. More specifically, when I refer to it in the context of DNS
traffic, I am talking about all of the DNS protocol packets in the Packet List pane.

36 Chapter 3

Each packet is displayed as a certain color for a reason. For example, you
may notice that all DNS traffic is blue and all HTTP traffic is green. These
colors reflect the packet’s protocol. The color coding allows you to quickly
differentiate among various protocols so that you don’t have to read the
protocol field in the Packet List pane for each individual packet. You will
find that this greatly speeds up the time it takes to browse through large
capture files.

Figure 3-7: Wireshark’s color coding allows for quick protocol identification.

Wireshark makes it easy to see which colors are assigned to each protocol
through the Coloring Rules window. To open this window, follow these steps:

1. Open Wireshark.

2. Select View from the main drop-down menu.

3. Click Coloring Rules. The Coloring Rules window should appear
(Figure 3-8), displaying a complete list of all the coloring rules defined
within Wireshark. You can define your own coloring rules and modify
existing ones.

Figure 3-8: The Coloring Rules dialog allows you to view and modify the coloring of
packets.

I n troduct ion to Wire sha rk 37

For example, to change the color used as the background for HTTP
traffic from the default green to lavender, follow these steps:

1. Open Wireshark and access the Coloring Rules dialog (View�Coloring
Rules).

2. Find the HTTP coloring rule in the coloring rules list, and select it by
clicking it once.

3. Click the Edit button.

4. Click the Background Color button (Figure 3-9).

Figure 3-9: When editing a color filter, you can modify both foreground
and background color.

5. Select the color you wish to use on the color wheel and click OK.

6. Click OK twice more to accept the changes and return to the main
window.

7. The main window should then reload itself to reflect the updated color
scheme.

As you work with Wireshark on your network, you will begin to notice
that you work with certain protocols more than others. Here’s where color-
coded packets can make your life a lot easier. For example, if you think that
there is a rogue DHCP server on your network handing out IP leases, you
could simply modify the coloring rule for the DHCP protocol so that it shows
up in bright yellow or some other easily identifiable color. This would allow
you to pick out all DHCP traffic much more quickly and make your packet
analysis more efficient.

4
W O R K I N G W I T H C A P T U R E D

P A C K E T S

Now that you’ve performed your first
packet capture, we’ll cover a few more basic

concepts that you need to know about work-
ing with those captured packets in Wireshark.

This includes finding and marking packets, saving
capture files, merging capture files, printing packets,
and changing time display formats.

Finding and Marking Packets

Once you really get into doing packet analysis, you will eventually encounter
scenarios involving a very large number of packets. As the number of these
packets grows into the thousands and even millions, you will need to be able
to navigate through packets more efficiently. This is the reason Wireshark
allows you to find and mark packets that match certain criteria.

40 Chapter 4

Finding Packets

To find packets that match particular criteria, open the Find Packet dialog
(shown in Figure 4-1) by either selecting Edit from the main drop-down
menu and then clicking Find Packet or pressing CTRL-F on your keyboard.

Figure 4-1: Finding packets in Wireshark based on
specified criteria

This dialog offers three options for finding packets: display filter, hex
value, or string. The display filter option allows you to enter an expression-
based filter that will only find packets that satisfy that expression (this will be
covered later). The hex and string value options search for packets with a
hexadecimal or text string you specify; you can see examples of all these
things in Table 4-1. Other options include the ability to select the window
in which you want to search, the character set to use, and the direction in
which you wish to search.

Once you’ve made your selections, enter your search string in the text
box, and click Find to find the first packet that meets your criteria. To find
the next matching packet, press CTRL-N, or find the previous matching
packet by pressing CTRL-B.

Marking Packets

Once you have found the packets that match your criteria, you can mark those
of particular interest. Marked packets stand out with a black background and
white text, as shown in Figure 4-2. (You can also sort out only marked packets
when saving packet captures.) There are several reasons you may want to
mark a packet, including being able to save those packets separately, or to
be able to find them quickly based upon the coloration.

Table 4-1: Examples of Various Search Types for Finding Packets

Search Type Example

Display filter not ip, ip address==192.168.0.1, arp

Hex value 00:ff, ff:ff, 00:AB:B1:f0

String Workstation1, UserB, domain

Working wi th Captured Packet s 41

Figure 4-2: Comparison of a marked packet to an unmarked packet. They will be highlighted in different colors
on your screen. In this example, packet 1 is marked.

To mark a packet, right-click it in the Packet List pane and choose Mark
Packet from the pop-up. Or, single click a packet in the Packet List pane and
press CTRL-M to mark it. To unmark a packet, toggle this setting off using
CTRL-M again. You may mark as many packets as you wish in a capture. You can
jump forward and backward between marked packets by pressing SHIFT-CTRL-N
and SHIFT-CTRL-B, respectively.

Saving and Exporting Capture Files

As you perform packet analysis, you will find that a good portion of the analysis
you do will happen after your capture. Usually, you will perform several
captures at various times, save them, and analyze them all at once. There-
fore, Wireshark allows you to save your capture files to be analyzed later.

Saving Capture Files

To save a packet capture, select File from the drop-down menu and then
click Save As, or press SHIFT-CTRL-hyphen. You should see the Save File As
dialog (Figure 4-3). Here you will be prompted for a location to save your
packet capture and for the file format you wish to use. If you do not specify
a file format, Wireshark will use the default .pcap file format.

Figure 4-3: The Save File As dialog allows you to
save your packet captures.

42 Chapter 4

One of the more powerful features of the Save File As dialog is the
ability to save a specific packet range. You can choose to save only packets in
a specific number range, marked packets, or packets visible as the result of a
display filter. This is a great way to thin bloated packet capture files.

Exporting Capture Data

You can export your Wireshark capture data into several different formats
for viewing in other mediums or for importing into other packet-analysis
tools. Formats include plaintext, PostScript, comma-separated value (CSV),
and XML. To export your packet capture, choose File�Export, and then
select the format you wish to export to. You will be prompted with a Save As
window containing options related to that specific format.

Merging Capture Files

Certain types of analysis require the ability to merge multiple capture files,
and luckily, Wireshark provides two different methods for doing this.

To merge a capture file, follow these steps:

1. Open one of the capture files you want to merge.

2. Choose File�Merge to bring up the Merge with Capture File dialog
(Figure 4-4).

3. Select the new file you wish to merge into the already open file, and
then select the method to use for merging the files. You can prepend
the selected file to the currently open one, append it, or merge the
files chronologically based on their timestamps.

Figure 4-4: The Merge with Capture File dialog
allows you to merge two capture files.

Working wi th Captured Packet s 43

Alternately, if you want to merge several files quickly in chronological
order, consider using drag and drop. To do so, open the first capture file in
Windows Explorer (or whatever your preferred file browser may be). Then
browse to the second file, click it, and drag it into the Wireshark main window.

Printing Packets

Although most analysis will take place on the computer screen, you will still
find the need to print captured data. To print captured packets, open the
Print dialog by choosing File�Print from the main menu (Figure 4-5).

Figure 4-5: The Print dialog allows you to print the pack-
ets you specify.

You can print the selected data as plaintext, PostScript, or to an output
file. As with the Save File As dialog, you can specify that it print a specific
packet range, marked packets only, or packets displayed as the result of a
filter. You can also select which of Wireshark’s three main panes to print for
each packet. Once you have selected the options you want, simply click Print.

Time Display Formats and References

Time is of the essence—especially in packet analysis. Everything that happens
on a network is time sensitive, and you will need to examine trends and net-
work latency in nearly every capture file. Wireshark recognizes the importance
of time and supplies us with several configurable options relating to it. Here
we take a look at time display formats and references.

Time Display Formats

Each packet that Wireshark captures is given a timestamp, which is applied to
the packet by the operating system. Wireshark can show the absolute time-
stamp as well as the time in relation to the last captured packet and the
beginning and end of the capture.

44 Chapter 4

The options related to the time display are found under the View heading
on the main menu. The Time Display Format section (shown in Figure 4-6)
lets you configure the presentation format as well as the precision of the time
display. The presentation format option lets you choose various options for
time display. The precision options allow you to set the time display precision
to Automatic or a manual setting such as seconds, milliseconds, microseconds,
and so on. We will be changing these options very often later in the book, so
you should familiarize yourself with them now.

Figure 4-6: We will revisit the time display format options often.

Packet Time Referencing

Packet time referencing allows you to configure a certain packet so that all
subsequent time calculations are done in relation to that specific packet. This
feature is particularly handy when you are examining multiple data requests
in one capture file and want to see packet times in reference to each individual
request.

To set a time reference to a certain packet, select the reference packet
in the Packet List pane, then choose Edit�Set Time Reference from the main
menu. Or, select the reference packet and press CTRL-T on your keyboard.
To remove a time reference from a certain packet, select the packet and
complete the aforementioned process a second time.

When you enable a time reference on a particular packet, the time
column in the Packet List pane will display *REF* (Figure 4-7).

Working wi th Captured Packet s 45

Figure 4-7: A packet with the packet time reference toggle enabled

NOTE Setting a packet time reference is only useful when the time display format of a capture
is set to display the time in relation to the beginning of the capture. Any other setting
will produce no usable results and will create a set of times that can be very confusing.

Capture and Display Filters

Earlier we discussed saving packets based upon filters. Filters allow us to show
only particular packets in a given capture. We can create and use an expression
to find exactly what we want in even the largest of capture files. An expression
is no more than a string of text that tells Wireshark what to show and what
not to show.

Wireshark offers two types of filters: capture filters and display filters.

Capture Filters

Capture filters are used during the actual packet capturing process, and are
applied by WinPcap. Knowledge of their syntax can be useful in other
network analysis programs, as well. You can configure them in the Capture
Options dialog where you can specify which traffic you want or don’t want
to be captured.

One good way to use a capture filter would be when capturing traffic on a
server with multiple roles. For example, suppose you are troubleshooting an
issue with a service running on port 262. If the server you are analyzing runs
several different services on a variety of ports, then finding and analyzing only
the traffic on port 262 can be quite a job in itself. To capture only the port 262
traffic, you can use a capture filter. Just follow these steps:

1. Open the Capture Options dialog (Figure 4-8), select the interface you
wish to capture packets on, and choose a capture filter.

2. You can apply the capture filter by typing an expression next to
the Capture Filter button or by clicking the Capture Filter button
itself, which will start the capture filter expression builder that will aid
you in creating your filter. We want our filter to show only traffic
inbound and outbound to port 262, so we type port 262, as shown
in Figure 4-8.

3. Once you have set your filter, click Start to begin the capture. After col-
lecting an adequate sample, you should now only see the port 262 traffic
and be able to more efficiently analyze this particular data.

46 Chapter 4

Figure 4-8: Creating a capture filter in the Capture Options dialog

Display Filters

A display filter is a filter that is applied to a capture file once that file has been
created, that tells it to display only packets that match that filter. You can
enter a display filter in the filter text box above the Packet List pane.

Display filters are more commonly used than capture filters because they
allow you to filter packet data without actually omitting the rest of the data in
the capture file. That way, if you need to revert back to the original capture,
you can simply clear the filter expression.

You might use a display filter to clear irrelevant broadcast traffic from a
capture file—for instance, to clear ARP broadcasts from the Packet List pane
when these packets don’t relate to the current problem being analyzed.
However, because those ARP broadcast packets may be useful later, it’s better
to filter them temporarily than it is to delete them altogether.

To filter out all ARP packets in the capture window, follow these steps:

1. Navigate to the top of the Packet List pane and place your cursor in the
Filter text box.

2. Type !arp and press ENTER to remove all ARP packets from the Packet
List pane (Figure 4-9). To remove the filter, clear the textbox and press
ENTER again.

Figure 4-9: Creating a display filter using the Filter text box above the Packet List
pane.

Working wi th Captured Packet s 47

The Filter Expression Dialog (the Easy Way)

The Filter Expression dialog (Figure 4-10) is a feature that makes it easy for
novice Wireshark users to create capture and display filters. To access this dialog,
click the Capture Filter button in the Capture Options dialog and then click
the Expression button.

Figure 4-10: The Filter Expression dialog allows for easy creation of
filters in Wireshark.

The first thing you will notice in the Filter Expression dialog is a list
of all possible protocol fields on the left side of the window. These fields
specify all possible filter criteria. To create a filter, follow these steps:

1. To view the specific criteria fields associated with a protocol, expand
that protocol by clicking the plus (+) symbol next to it. Once you find
the criteria you want to base your filter on, select it by clicking it.

2. Select the relation that the field you have selected will have to the crite-
ria value you supply. This relation is specified in terms of equal to, greater
than, less than, and so on.

3. Create your filter expression by specifying a criteria value that will relate
to the field you selected. You can define this value or select it from pre-
defined values programmed into Wireshark.

4. Once you have done this, click OK to view the completed text-only ver-
sion of the filter you have just created.

The Filter Expression Syntax Structure (the Hard Way)

The Filter Expression dialog is great for novice users, but once you get the
hang of things, you will find that manually typing filter expressions greatly
increases their efficiency.

48 Chapter 4

The display filter expression syntax structure is very simple, yet it is
extremely powerful. This language is specific to Wireshark. Let’s look at how
this filter syntax works and some examples of what we can do with it.

Filtering Specific Protocols

You will most often use a capture or display filter to filter based upon a specific
protocol. For example, say you are troubleshooting a TCP problem and you
want to see only TCP traffic in a capture file. If so, simply using a filter of tcp
will get the job done.

Now let’s look at things from the other side of the fence. Imagine that
in the course of troubleshooting your TCP problem, you have used the ping
utility quite a bit, thereby generating a lot of ICMP traffic. You could remove
this ICMP traffic from your capture file with the filter expression !icmp.

Comparison Operators

Comparison operators allow us to compare values. For example, when trouble-
shooting TCP/IP networks, you will often need to view all packets referencing
a particular IP address. In a case like this, the equals (==) comparison operator
will allow you to create a filter showing all packets with an IP address of
192.168.0.1 using a filter expression like ip.addr==192.168.0.1.

Or, consider this more advanced example of a comparison operator.
Imagine a scenario where we only need to view the packets less than 128 bytes
in length. We can use the less than or equal to (<=) operator to accomplish this
goal in a filter expression like frame.pkt_len <= 128.

You’ll find a complete list of Wireshark’s comparison operators in
Table 4-2.

Logical Operators

Logical operators allow us to combine multiple filter expressions into one
single statement. You can use logical operators to dramatically increase the
effectiveness of your filters.

For example, consider our previous example of displaying only packets
referencing a certain IP address, and now assume we are interested in two IP
addresses. We can use the or operator to create one expression that will

Table 4-2: Wireshark Filter Expression Comparison Operators

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Working wi th Captured Packet s 49

display packets containing either IP address. The syntax of this expression
would be ip.addr==192.168.0.1 or ip.addr==192.168.0.2. You’ll find a complete
list of Wireshark’s logical operators in Table 4-3.

Sample Filter Expressions

Although the concepts related to creating filter expressions are fairly simple,
you will need to reference several specific keywords and operators when creat-
ing new filters for various problems. Because this book is not intended as a
Wireshark user manual, we won’t cover all of those keywords and opera-
tors, but you will find information on them at the Wireshark website. Table 4-4
gives you an idea of some sample filter expressions.

Saving Filters

Once you begin creating lots of capture and display filters, you will find
that you use certain ones frequently. Fortunately, you don’t need to type
these in each time you want to use them; Wireshark lets you save your filters
for later use.

To save your custom filter, follow these steps:

1. Select Capture�Capture Filters to open the Display Filter dialog
(Figure 4-11).

2. Create a new filter by clicking the New button on the left side of the
screen.

3. Type a name for your filter in the box next to the words Filter name.

4. Type the actual filter in the box next to the words Filter string.

Table 4-3: Wireshark Filter Expression Logical Operators

Operator Description

and Both conditions must be true

or Either one of the conditions must be true

xor One and only one condition must be true

not Neither one of the conditions is true

Table 4-4: Sample Capture and Display Filter Expressions

Expression Description

host www.example.com Displays all traffic from the host www.example.com

host www.example.com and not
(port 80)

Displays all non-web traffic from the host
www.example.com

!dns Shows everything except DNS traffic

not broadcast and not multicast Only shows unicast traffic

ip.dst==192.168.0.1 Shows all traffic destined for 192.168.0.1

50 Chapter 4

5. Once you have finished, click the Save button to save your filter expres-
sion in the list.

Figure 4-11: The Display Filter dialog allows you to save
filter expressions.

Wireshark also includes several built-in filters, but these are just to give
you an example of what a filter should look like. You will want to use them
when you are creating your own filters, however, because they are great for
reference purposes.

5
A D V A N C E D W I R E S H A R K

F E A T U R E S

Once you master the basic concepts of
Wireshark, you will probably want to delve

further into some of its more advanced
features. In this chapter we’ll look at some of

these powerful features, including name resolution,
protocol dissection, and packet reassembly.

Name Resolution

Network data is transported via various alphanumeric addressing systems
that are often too long or complicated to remember, such as the physical
hardware address 00:16:CE:6E:8B:24. Name resolution (also called name lookup)
is the process a protocol uses to convert one identifying address into
another. For example, while a computer might have the physical address
00:16:CE:6E:8B:24, the DNS and ARP protocols allow us to see its name as
Marketing-2. By associating easy-to-read names with these cryptic addresses,
we make them easier to remember and identify.

52 Chapter 5

We can leverage various name resolution tools to make our capture files
more readable and to save a lot of time in certain situations. For example, we
can use DNS name resolution to help readily identify the name of a computer
we are trying to pinpoint as the source of a particular packet.

Types of Name Resolution Tools in Wireshark

There are three types of name resolution available in Wireshark: MAC name
resolution, network name resolution, and transport name resolution.

MAC Name Resolution

MAC name resolution uses the ARP protocol to attempt to convert Layer 2
MAC addresses, such as 00:09:5B:01:02:03, into Layer 3 addresses, such as
10.100.12.1. If attempts at these conversions fail, Wireshark’s last resort is
to convert the first three bytes of the MAC address into the device’s IEEE-
specified manufacturer name, such as Netgear_01:02:03.

Network Name Resolution

Network name resolution attempts to convert a Layer 3 address, such as the IP
address 192.168.1.50, into an easy-to-read DNS name such as MarketingPC1.

Transport Name Resolution

Transport name resolution attempts to convert a port number into a name
associated with it. An example of this would be to display port 80 as http.

Given its benefits, using name resolution may seem like a no-brainer, but
there are some potential drawbacks, including the following:

� Sometimes name resolution fails. This may be simply because the name
is unknown by the name server the query was sent to.

Enabling Name Resolution

To enable name resolution, open
the Capture Options dialog (shown
in Figure 5-1) either by choosing
Capture�Options or by pressing
CTRL-K.

Potential Drawbacks to Name
Resolution

Figure 5-1: Enabling name resolution
features in the Capture Options dialog

Advanced Wireshark Features 53

� Name resolution must take place every time you open a specific
capture file because this information is not saved in the file. This
means that if the servers that a file’s name resolution depends upon
are not available, name resolution will fail.

� DNS may add additional packets to the capture file, silently and without
warning. The resulting traffic to resolve all DNS-based addresses will
cloud your capture file.

� Name resolution requires additional processing overhead. If you are
dealing with a very large capture file and are running low on memory,
you may want to forgo the name resolution feature in order to conserve
system resources.

Protocol Dissection

A protocol dissector allows Wireshark to break down a protocol (ICMP, for
example) into various sections so that it can be analyzed. The ICMP protocol
dissector allows Wireshark to take the raw data off the wire and format it as
an ICMP packet. You can think of a dissector as the translator between the
raw data flowing across the wire and the Wireshark program. In order for a
protocol to be supported by Wireshark, it must have a dissector built into it.

Wireshark uses several dissectors in unison to interpret each packet. It
determines which dissectors to use by using its programmed logic and making
a very well-educated guess.

Unfortunately, Wireshark does not always make the right choices when
selecting the correct dissector to use on a packet. This is especially true when
it is using a protocol on the network in a nonstandard configuration, such as
a non-default port. Luckily, we can change the way Wireshark implements
certain dissectors.

For example, open the trace file wrongdissector.dmp. Notice that this
file contains a bunch of NetBIOS communication between two computers.
However, there is something definitely wrong here. If you click a few of the
packets, you will notice some data in the Packet Bytes pane that definitely
does not look like NetBIOS traffic. In fact, if you look at packets 6 and 7, you
can actually see a username and password being sent from one computer to
the other.

After a little further investigation, we find that the computers we are
analyzing are actually communicating via FTP (note the words FTP Server at
the right side of Figure 5-2). Wireshark thinks that this is NetBIOS traffic
because the server and client are configured to use FTP on port 137, the
default port for NetBIOS communication.

54 Chapter 5

Figure 5-2: FTP server software? This can’t be NetBIOS traffic!

To fix this problem, we force Wireshark to use the FTP protocol dissector
on these packets, a process referred to as a forced decode. To perform this
process, follow these steps:

1. Right-click one of the packets and select Decode As. This will bring
up a dialog in which you can select the dissector you wish to use
(Figure 5-3).

2. Tell Wireshark to decode all TCP source port 137 traffic using the FTP
dissector by selecting source (137) from the drop-down menu and then
selecting FTP under the Transport tab.

3. Once you have made your selections, click OK to see the changes imme-
diately applied to the capture file. You should see the data nicely decoded
so that you can analyze it from the Packet List pane without having to dig
deep into its individual bytes.

Figure 5-3: The Decode As dialog allows you to create forced
decodes.

NOTE The changes you make when creating a forced decode are not saved when you save
the capture file. You must recreate your forced decodes every time you open the
capture file.

Advanced Wireshark Features 55

Following TCP Streams

One of Wireshark’s most useful analysis features is its ability to view TCP
streams as the application layer sees them. This feature allows you to combine
all the information related to packets and shows you the data that those
packets are handing off to the applications that the end user sees. Rather
than viewing data being sent from client to server in a bunch of small
chunks, the TCP Stream feature sorts the data to make it easily viewable.

You could use this tool when trying to capture and decipher instant
messages sent by an employee who is suspected of giving away corporate
accounting information. To see how this would work, open the example
file suspectemployeechat.dmp. In this file you will see a large amount of
traffic generated by the popular IM client MSN Messenger. (You can identify
this as MSN Messenger traffic by the MSNMS that appears in the protocol
field in the Packet List pane.)

If you examine the details of each packet, you can see small bits of text
being transmitted in each one. We could spend a lot of time writing down
the information from each packet and combining it to find out what is
being said in the chat, but that isn’t too practical. Instead, we will use the
TCP Stream window to get a better picture of what is going on.

To follow the TCP stream data, right-click a packet and select Follow TCP
Stream. Doing this in the example capture file will yield some very positive
results. The TCP Stream window now shows the complete chat between our
suspect employee and the person he is communicating with (Figure 5-5).

You can use this feature multiple
times within the same capture file.
Because it can be hard to keep track of
the forced decodes you have applied
when you use more than one in a capture
file, Wireshark does so for you. From the
Decode As dialog, you can click the Show
Current button to display all of the forced
decodes you have created so far. You can
also clear them by clicking the Clear
button (Figure 5-4).

Figure 5-4: Clicking the Show button
shows all of the forced decodes you
have created for a capture file.

56 Chapter 5

Figure 5-5: Looking directly at a TCP stream can make the picture a lot clearer.

In addition to viewing the data in this window, you can also save it as a
text file, print it, or choose to view the data in ASCII, EBCDIC, Hex, C Arrays,
or raw data format.

The Protocol Hierarchy Statistics Window

When dealing with extremely large capture files, we sometimes need to
determine the distribution of protocols in the file—that is, what percentage
of a capture is TCP, what percentage is IP, what percentage is DHCP, and so
on. Rather than counting each packet and totaling the results, we can use
Wireshark’s Protocol Hierarchy Statistics window. This is a great way to bench-
mark your network. For instance, if you know that 10 percent of your network
traffic is usually made up of ARP traffic, and one day you take a capture that
is 50 percent ARP traffic, then you know something might be wrong.

Open the Protocol Hierarchy Statistics window (shown in Figure 5-6) by
choosing Statistics�Protocol Hierarchy.

Notice that not all totals add up to exactly 100 percent. Because a lot of
the packets you will see contain multiple protocols from various layers, the
count of each protocol as compared to each packet may be off. Nevertheless,
you will still get an accurate view of the distribution of protocols in the
capture file.

Advanced Wireshark Features 57

Figure 5-6: The Protocol Hierarchy Statistics window shows the distribution of various
protocols.

Viewing Endpoints

An endpoint is the place where communication ends on a particular
protocol. For instance, there are two endpoints in TCP/IP communication:
the IP addresses of the systems sending and receiving data, 192.168.1.5 and
192.168.0.8. An example on Layer 2 would be the communication taking
place between two physical NICs and their MAC addresses. The NICs sending
and receiving data have addresses of 01:00:5e:00:00:16 and 01:00:5e:01:01:06,
making those addresses the endpoints of communication. You can see a
graphical representation of this concept in Figure 5-7.

Figure 5-7: A graphical representation of endpoints
on a network

When analyzing traffic, you may find that you can narrow down a
problem to a specific endpoint on a network. Wireshark’s Endpoints dialog
(Statistics�Endpoints) shows several helpful statistics for each endpoint
(Figure 5-8), including the addresses of each as well as the number of packets
and bytes transmitted and received by each. The tabs at the top of the window

Conversation A

Conversation B
Endpoint A Endpoint B

00:ff:ac:ce:0b:de 00:ff:ac:e0:dc:0f

192.168.1.25 192.168.1.30

Endpoint A Endpoint B

58 Chapter 5

show all supported and recognized endpoints in the current capture file. Click
a tab to narrow the list of endpoints to specific protocols. Check the box
next to the words Name Resolution to use name resolution within the end-
points dialog.

Figure 5-8: The Endpoints dialog lets you view each of the endpoints in a capture file.

You can use the Endpoints dialog to filter out specific packets for
display in the Packet List pane. If you right-click a specific endpoint, you will
notice several options, including the ability to create a filter to display only
traffic related to this endpoint or all traffic excluding the selected endpoint. As
a bonus, you can also directly export the endpoint into a colorization rule.

Conversations

A conversation on a network, like a conversation between two people, describes
the communication that takes place between two hosts (endpoints). For
example, whereas Jim and Sally’s conversation might consist of “Hey, how
are you?” “I’m great! Yourself?” and “Couldn’t be better!” a conversation
between 192.168.1.5 and 192.168.0.8 might look like “SYN,” “SYN/ACK,” and
“ACK.” (We’ll look at the TCP/IP communication process in more detail in
Chapter 6.)

Wireshark provides a Conversations dialog (Statistics�Conversations),
shown in Figure 5-9. You will see the addresses of the endpoints involved in
the conversation listed as Address A and Address B as well as columns display-
ing the packets and bytes transmitted to and from each device.

Advanced Wireshark Features 59

The conversations listed in this window are divided by the protocol they
use, which can be selected via the tabs at the top of the window. Right-clicking
a specific conversation allows you to create filters that may be useful, such as
displaying all traffic transmitted from device A, all traffic received by device B,
or all traffic communicated between devices A and B.

Figure 5-9: The Conversations window lets you interact with each conversation in a
capture file.

The IO Graphs Window

One of the best ways to visualize trends is to view them graphically. Wireshark’s
IO Graphs window allows you to graph the throughput of data on a network.
You might use this feature to look for spikes or lulls in the throughput of
specific protocols over the course of a day on your network.

Let’s look at an IO graph of an individual computer as it downloads
a file from the Internet. Open the trace file FileDownload.dmp, and then
select Statistics�IO Graphs. Here you can see the low number of bytes per
second early in the capture, until the graph spikes up for a brief amount of
time while the file is being downloaded (Figure 5-10).

You can customize several features of this graph. The most important
two things we will be modifying are the settings for the x-axis and y-axis of the
graph, which allow you to modify the intervals and units used for displaying
the throughput information.

60 Chapter 5

Figure 5-10: The IO graph for our capture file shows valuable trending
information.

Notice that the majority of the configurable options consist of an area
where you can create filters. You can create up to five unique filters (using the
same syntax as a display or capture filter) and specify display colors for those
filters. For instance, you could create filters to show ARP and DHCP traffic
and display the lines on the graph in red and blue so that you can more easily
differentiate the throughput trends between these two protocol types.

Although some of these features may seem like they would only be used
in obscure situations, you will probably find yourself using them more than
you might think. It is important that you familiarize yourself with these
windows and options because we will be referencing them a lot in the next
few chapters.

6
C O M M O N P R O T O C O L S

This chapter is an overview of some of the
more common protocols that appear in

Wireshark. We will look at sample trace files
containing working examples of several different

protocols and then discuss how each one functions.
My goal here is to help you understand each of these
protocols and give you a baseline for comparison when analyzing protocols
that you suspect aren’t working correctly. This chapter contains some very
important basic protocol information. Skipping it would be like watching
part two of a movie without seeing part one—the following chapters just won’t
make sense.

NOTE I won’t go into great detail about the design of each individual protocol; instead, I
have provided the associated RFC number for each. An RFC, or request for comments, is
the official document that defines the implementation standards for protocols in the
TCP/IP stack. You can search for RFC documentation at the RFC Editor home page,
http://www.rfc-editor.org.

62 Chapter 6

Address Resolution Protocol
arp.pcap We’ll start with Address Resolution Protocol (ARP) because it is one of the

simpler protocols, requiring only a few packets to complete its entire opera-
tion. ARP (RFC 826) is used to translate Layer 3 (IP) addresses into Layer 2
(MAC) addresses, thus allowing devices (such as switches and routers) to
determine where other devices are located on each port.

The funny thing about ARP is that it actually provides service to two
different layers of the OSI model: the network layer and the data link layer.

When a computer wants to transmit data to another computer, it must
first know where that computer is. This is done with the aid of the switch or
router connecting the two computers and the ARP protocol.

Now take a look at our capture file, as shown in Figure 6-1. Note that in
the first packet, our source computer (01:16:ce:6e:8b:24) is sending a packet
to ff:ff:ff:ff:ff:ff asking, Who has 192.168.0.1?.

Figure 6-1: The whole ARP process only involves two packets—a request and a reply.

As you learned earlier, a switch only operates on Layer 2; it has no
knowledge of a computer’s Layer 3 address. What does the computer do,
then? Well, what do you do when you don’t know the first name of the Smith
you want to call? You call every Smith in the phone book until you reach the
right one!

ARP provides the functionality to find the client’s Layer 3 address by
allowing the transmitting computer to send an ARP broadcast. This broadcast
is a packet sent to the Layer 2 address ff:ff:ff:ff:ff:ff, the standard broadcast
address; the packet is then forwarded to every computer in that switch’s
broadcast domain.

This packet’s only function is to ask every computer it contacts whether
or not it has an IP address of 192.168.0.1. Computers with a different IP
address will simply drop the packet, while the one that has it will identify
itself by sending a response containing its Layer 2 address back to the
transmitting computer.

The second packet (also shown in Figure 6-1) shows the destination
computer’s ARP response to the first packet. The response is a very straight-
forward one: 192.168.0.1 is at 00:13:46:0b:22:ba. From this point forward, the
transmitting computer will know the Layer 2 address of the destination
computer and will be able to send data directly to it.

Dynamic Host Configuration Protocol
dhcp.pcap Dynamic Host Configuration Protocol (DHCP) is another fairly simple

protocol. DHCP (RFC 2131) automatically provides clients with network-
related configuration information, such as a domain name, NTP server
address, or a unique Layer 3 (IP) address. The DHCP communication

Common Protoco ls 63

process is a client/server communication type in which the client computer
requests an IP address from a DHCP server and the server acknowledges it by
giving it one.

The basic functionality of DHCP is a simple four-step process. The
process begins with packet 1 when the client computer sends a DHCP
Discover packet to the broadcast IP address 255.255.255.255 (as shown
in Figure 6-2).

Figure 6-2: DHCP begins with a DHCP Discover packet, as shown here.

When a client wants to obtain an IP address on a network, it must first
locate a valid DHCP server on that network. It does so by sending a broadcast
packet designed to locate any valid DHCP servers on the network. When a
valid DHCP server receives one of these packets, it sends a response to the
client in a DHCP Offer packet, as seen in packet 2 (Figure 6-3). This packet
contains the IP address that the DHCP server wants to assign to the client
and any other information the server is configured to supply.

Figure 6-3: The DHCP Offer packet is the server’s response to the client.

Once the client receives this packet, it requests the addressing information
from the server by sending a DHCP Request packet, which is packet 3 in our
sample file. Since the client has not yet configured itself with the given IP
address, this packet is once again sent as a broadcast; this tells the server that
the client has accepted its offer and notifies all other DHCP servers on the
network that the client is no longer accepting other offers. Once the server
receives this packet, it assigns this IP address to the client and sends a DHCP
ACK packet back to the client, as seen in packet 4 (Figure 6-4), signifying the
end of the DHCP transaction.

Figure 6-4: The Packet Details pane shows all of the details for this DHCP ACK packet.

Notice that each DHCP transaction has a specific Transaction ID that can
be seen under the Info heading in the Packet List pane. These Transaction IDs
allow the DHCP server to identify and separate each client transaction. This
is important because it allows you to keep each transaction separate in the
analysis process.

Though we’ve covered only four, you may find up to eight different
types of DHCP packets in a capture file. (For more on these and other
DHCP functions, read the DHCP RFC.)

64 Chapter 6

TCP/IP and HTTP
http.pcap TCP/IP is the basis for almost all of the communication we will discuss in this

book. Because it is the most widely used network protocol, we will focus on it.
Hypertext Transfer Protocol (HTTP, RFC 2616) is the server/client–based

protocol used to transfer web pages across a network. A simple HTTP
transaction is a good example of TCP/IP communication. Every time you
search the Internet with Google, check the weather, or even check your
fantasy sports teams, you are transferring data via TCP/IP using HTTP.

TCP/IP

The TCP/IP protocol is really a stack of protocols, consisting of several
different protocols on both Layers 3 and 4 of the OSI model. These protocols
include TCP, IP, ARP, DHCP, ICMP, and many others.

Transmission Control Protocol (TCP, RFC 793) is a Layer 4 protocol that
is commonly used because it provides an efficient method of transparent,
reliable, and bi-directional communication between devices. Bi-directional
communication means that data can be transmitted and received simul-
taneously from a single host.

All of the various benefits and features of TCP are made possible through
different types of TCP packets and flags. In the next several paragraphs we
will look at these different types of packets and what they do.

Internet Protocol (IP, RFC 791) is the Layer 3 protocol that provides the
addressing system that allows communication on a network. IP is a connection-
less protocol, which means that it requires the functionality of TCP bundled
with it to ensure the reliability of transmitted data.

The traffic in the capture file begins with the establishment of a TCP/IP
session, followed by the request and transmission of HTTP data and the
termination of the session. Stepping through this simple communication
between client and server is going to help us in understanding how TCP
and IP work.

Establishing the Session

Before you can transfer data to or from another computer, the sender and
receiver need to complete a TCP handshake. A TCP handshake is a three-step
process whereby the transmitting computer (the client, in this example)
establishes a connection with the destination computer (the server). You
can see the handshake in the first three packets of our capture file, and it is
detailed visually in Figure 6-5.

Now is a very good time to go ahead and establish our client and server
computers. The client computer is shown in the first packet with IP address
145.254.160.237. The server computer is shown in the first packet with
IP address 65.208.228.223.

Common Protoco ls 65

Figure 6-5: The three-step TCP handshake process

The SYN Packet

To begin the handshake process, the client sends a SYN packet to the server;
this packet is designed to establish synchronization with the server, which
ensures that the client and server keep their communications in the proper
order. The SYN packet carries with it a 32-bit sequence number, located in
the header of a TCP packet.

To view a packet’s TCP information, including its sequence number,
expand the TCP section under Wireshark’s Packet Details pane. (You will
refer to this section often because it contains a variety of useful information,
including the source and destination ports used, the sequence number, the
type of TCP packet, and other TCP-specific options.) Notice in the capture
file that the first SYN packet’s sequence number is 0, as shown in Figure 6-6.

Figure 6-6: The Packet Details pane gives you all the information you need about this
packet.

NOTE In Wireshark, TCP sequence numbers are treated as “relative” by default. Wireshark
adjusts the first sequence number in a communication stream so that it is 0 rather than
its true value. This is done so that the sequence numbers are easier to follow.

SYN/ACK, the Server Response

The next step in the handshake process is the response from the server. Once
the server receives the initial SYN packet from the client, it reads the packet’s
sequence number and uses that number in the packet it returns. The response
packet is called a SYN/ACK packet, and it is seen in packet 2 of the example file.

ACK Packet
Seq # 222222222
Ack # 111111112

SYN Packet
Seq # 111111111
Ack # 0

SYN Packet
Seq # 111111112
Ack # 222222223Client Server

66 Chapter 6

The ACK portion of the packet acknowledges the SYN packet—in other
words, it tells the client computer that the server received the SYN packet.
It does this by incrementing the sequence number sent in the original SYN
packet by one and using it as the acknowledgment number in the ACK packet.
When the client receives this acknowledgment number containing the original
SYN sequence number, it knows that the server can receive its communication,
and vice versa. The purpose of SYN portion of the SYN/ACK is the same as in
the original SYN packet: It is used to transmit a sequence number that the
client system can use to acknowledge receipt.

The Final ACK Packet

Finally, the client sends an ACK packet to the server. This packet tells the
server that the client received its SYN/ACK packet. As with step two of
the process, the sequence number is incremented by one and sent as an
acknowledgment number to the server. Once this last ACK packet is
received, communication can begin.

Beginning the Flow of Data

Once the handshake has been established, all packets sent in this particular
session between client and server will use sequence numbers to make sure
they stay in order. However, from now on, these packets will be incremented
by the size of the data frame being transmitted, rather than by one. (To learn
more about how TCP packets stay organized, have a look at RFC 793.)

HTTP Request and Transmission
Once the communication session has been established, it’s time for the actual
request and transmission of the web page you are trying to view. This involves
both HTTP and TCP.

The process begins in packet 4, our first HTTP packet, which asks the
server to transmit the web page to the client. Go ahead and expand the HTTP
section of this packet in the Packet Details pane to view the protocol-specific
information related to this request (as shown in Figure 6-7).

Figure 6-7: The Packet Details pane shows all you would ever want to know about the
request.

As you can see, this packet invokes a GET command (Request Method: GET)
for the web page /download.html on the domain www.ethereal.com (Request
URI: /download.html and Host: www.ethereal.com). You will also notice other

Common Protoco ls 67

information that may be useful, such as character encoding (Accept-Charset:
ISO-8859-1), and the referrer location (Referrer: http://www.ethereal.com/
development.html \r \n).

Once HTTP has made this initial GET request, TCP takes over the data
transfer process. Throughout the rest of the capture file you will see this pro-
cess repeated: HTTP will request data from the server, and the server will then
use TCP to transport this data back to the client. The server lets the client
know the request was valid by sending an HTTP OK message before trans-
mitting the data. (You can see the corresponding GET and OK packets in
the example file at packets 4 and 38, shown in Figure 6-8.)

Figure 6-8: Packets 4 and 38 show a corresponding GET and OK.

Terminating the Session

When there is no more data to be sent over an established connection, the
connection can be terminated in a manner very similar to that of the initial
TCP handshake. Rather than using SYN and ACK packets however, this
process uses FIN and ACK packets, as shown in Figure 6-9.

Figure 6-9: The FIN/ACK handshake process gracefully terminates
a TCP connection.

Client Server

FIN/ACK
Packet

ACK Packet

FIN/ACK
Packet

ACK Packet

68 Chapter 6

When the server finishes transmitting data, it sends a FIN/ACK packet to
the client, as shown in Figure 6-10. The FIN packet is designed to gracefully
close a connection.

Figure 6-10: You can see the details of a FIN/ACK packet in the Packet Details pane.

The client responds to the FIN packet with an ACK packet that uses
the sequence numbers and incrementation rules that it finds in the FIN
packet. This closes communication from the server’s end of things. While
the server can still receive data from the client at this point, it will no
longer transmit data.

To complete the process, the client must initiate this same process again
with the server. The FIN/ACK process must be initiated and acknowledged
by both the client and server.

For example, in packet 40, the server sends a FIN/ACK packet to the
client, and the client responds with its ACK packet in packet 41. Following
that, the client sends its own FIN/ACK packet to the server, and the server
closes the connection with an ACK packet, packet 43, as shown in Figure 6-11.

Figure 6-11: The FIN/ACK process as seen from the Packet List pane

Domain Name System
dns.pcap The Domain Name System (DNS, RFC 1034) translates one form of address

into another—specifically, it translates DNS addresses, such as www.google.com
or MARKETING-PC1, into their corresponding IP addresses. Some form of
address translation is a requirement, since Layer 3 of the OSI model can
only locate a computer if it has its IP address.

DNS translation is a very simple process, and it gets the job done in most
cases using only two packets. The first packet is a request to your network’s
local DNS server that asks, What is the IP address of www.google.com? The second
packet is the response from that DNS server, saying that www.google.com
resides on a server with an IP address of XX.XX.XX.XXX.

Let’s take a look at DNS in action (see Figure 6-12). Notice in the first
packet of the file that a DNS packet from source 192.168.0.114 is requesting
the IP address of http://www.chrissanders.org from destination 205.152.37.23.
The destination IP address receives the query and responds with packet 2,

Common Protoco ls 69

which contains the IP address of the requested website, 208.113.140.24.
Once this process is complete, Layer 3 can take over and complete its TCP
handshake so that data transfer can begin.

Figure 6-12: DNS only requires two packets—a request and a response.

NOTE As you examine the actual sample capture file, you will see several different DNS
queries taking place. Often a single web page will invoke a number of queries because
the information needs to be retrieved from several servers. Try creating a display filter
to show only the DNS traffic and see if you can determine how many different DNS
queries take place in this file.

File Transfer Protocol
ftp.pcap The File Transfer Protocol (FTP, RFC 959) is a Layer 7 protocol that is used to

transfer data between a server and client. Operating on ports 20 and 21, FTP
is one of the most commonly used file transfer utilities. Because FTP is a
client/server protocol, all communication in the capture file involves back-
and-forth traffic between a client computer and a server computer. As with
all TCP processes, FTP begins with a standard TCP handshake, as shown with
packet 1 and in Figure 6-13 below.

Figure 6-13: The TCP handshake is prevalent in various communication types.

Once the handshake process completes, the server sends a welcome
message to the client. This message identifies the server as an FTP server and
tells the client that the server is ready to accept its login credentials, as shown
in Figure 6-14.

Figure 6-14: The beginning of the FTP communication process

Through the next several packets, the client sends a username (csanders)
and a password (echo) to the server, and the server acknowledges them
(Figure 6-15).

Figure 6-15: The username and password of the FTP user being transmitted to the server

70 Chapter 6

This communication is summed up nicely in the Info column of the
Packet List pane, though that window only gives a very brief summary of the
packet contents. If you want to dig a little deeper, you can expand the FTP
section in the Packet Details pane.

Notice that encryption is not used in our example, so the FTP password
can be seen clearly in the capture file in packet 7 (Figure 6-16).

Figure 6-16: The password of the user csanders can be seen clearly in this packet.

CWD Command

As you can see, packet 15 shows a CWD command being sent from the client
to the server. CWD stands for change working directory, and this command is
invoked every time you tell an FTP client to move to a different directory on
the server.

Notice in this example that the CWD command includes requests to
change the working directory to /, which is the root directory of the FTP
server. When you first log into an FTP server, the CWD command is issued
to change to the root directory, /. Once the server receives this CWD
command, it changes to the root directory and tells the client that / is
now the current working directory.

A connecting client uses a list of
commands to interact with an FTP server.
These range from viewing the contents of a
directory, traversing a directory, download-
ing or deleting a file, and so on. (For a
complete list of the available commands
visible in an FTP packet, see RFC 959.)
Let’s look at a few FTP commands used in
our example file, beginning with packet 15,
shown in Figure 6-17.

Figure 6-17: Packet 15 shows the
PWD command being issued to the
server.

SIZE Command

The next command is the SIZE
command, shown in Figure 6-18.
This command reports the size
(in bytes) of a particular file, and
it is always sent with a filename.

Figure 6-18: The SIZE command
being sent to the server

Common Protoco ls 71

the RETR command to the server, requesting download of the file Music.mp3.
Once the server gets this request, it begins sending the data to the client.

NOTE The packets labeled FTP-DATA are ones containing a file that is being downloaded
from or uploaded to the server.

Telnet Protocol
telnet.pcap The telnet protocol (RFC 854) is an unsecured, text-based way for a server and

client to communicate. It is often used to remotely administer servers, switches,
routers, and other network hardware devices.

In this capture file you will see an example of a client computer
(192.168.0.2) connecting to a telnet server (192.168.0.1). As you begin to
step through the data being transmitted, notice that everything is sent in
clear text. For this reason, the telnet protocol should not be used to
transmit sensitive data.

NOTE You can be more secure by forgoing telnet and using SSH instead.

Each telnet session uses several unique options to specify communication
rates and data transfer modes, which must be synchronized between client

Notice in packet 25 that the
client sends the SIZE command
to the server to request the size
of the file Music.mp3. Packet 26
(Figure 6-19) shows the server’s
response, which is the file size of
4,980,924 bytes.

Figure 6-19: The packet returned from the
issued SIZE command

RETR Command

The RETR (retrieve) command,
shown in Figure 6-20, is used by
the client to request the down-
load of a file from the server.
In packet 32, the client sends

Figure 6-20: The RETR command is used
to download a file from the FTP server.

What type of communi-
cation is occurring in this
exchange between server and
client? Starting at the top, we
can immediately draw several
conclusions. The first several
packets confirm that we are
definitely seeing telnet traffic,
because telnet-specific settings
are being communicated
between these two devices,
as shown in Figure 6-21.

Figure 6-21: The first packets of the capture file
are telnet packets between server and client.

72 Chapter 6

and server before communication can begin. These options account for the
first 30 or so packets in the sample capture file.

The first interesting packet is number 27, which identifies the server as
an OpenBSD server. Packet 29 presents a login prompt to the client, and in
packet 31 you can see that the username fake is sent back to the server. Packet
36 requests a password from the client, which is answered in packet 38 with
the password user, which is shown in Figure 6-22. You can now see just how
insecure telnet is. This username and password combination could very well
be the administrative password to one of the most important servers on your
network, and it would still be shown in clear text that is readable by anyone
with a packet sniffer and little bit of knowledge.

Figure 6-22: A password transmitted via telnet can be seen as clear as day.

The rest of the capture file shows the client using the established telnet
session to ping several websites. You can observe this data and exactly how it
is transferred by looking at the telnet section in the Packet Details pane.

MSN Messenger Service
msnms.pcap You may find that you need to analyze the traffic of an instant message con-

versation for several reasons. We explored one possible scenario in Chapter 5
when we suspected an employee of giving away company financial informa-
tion over messenger software. There are several popular instant messaging
applications, and while each one utilizes its own protocol, there are certain
similarities in each. Here we’ll focus specifically on traffic from the MSN
Messenger Service (MSNMS). Let’s see if we can’t catch some employees
in the act.

NOTE Some organizations have policies that prevent the use of messaging software, and if so,
even seeing the MSNMS protocol in a capture file can set off alarms.

The capture file begins like any TCP communication—with a simple
handshake between two clients, as shown in Figure 6-23.

Figure 6-23: The TCP handshake begins the communication process.

Common Protoco ls 73

Following this handshake, the first MSNMS packet is sent from
192.168.0.114 to a server residing outside of your local network (Figure 6-24).

Figure 6-24: This packet shows a client inside our network communicating with a server from the outside world.

This packet is being sent from a computer on your network to a
remote Microsoft server in order to establish a handshake that prepares
for communication. These initial packets are marked as USR packets, as
seen under the MSNMS section of the packet in the Packet Details pane.
You can seen the email address of the person initiating the conversation
(tesla_brian@hotmail.com) in these initial packets (Figure 6-25).

Figure 6-25: The user tesla_brian@hotmail.com
appears to be initiating a conversation, as seen
in the packet details of packet 5.

The next two packets are marked CAL packets, as shown in Figure 6-26.
CAL packets are sent from the computer inside your network to an MSN
server in order to establish communication with another MSNMS user.

Figure 6-26: CAL packets are used here to establish communication between MSNMS users.

As you can see in packet 7, the corresponding MSNMS user has the
email address tesla_thomas@hotmail.com (Figure 6-27).

Figure 6-27: This CAL packet lets us see the email address of the user initiating communication.

The server now acknowledges that it has received CAL packet 7 in
packet 8 (Figure 6-28).

Figure 6-28: Packet 8 shows acknowledgment of packet 7.

74 Chapter 6

Packet 9 is the last packet to be sent to fully establish communication.
As shown in Figure 6-29, packet 9 is a JOI packet sent from the remote MSN
servers, indicating that the other member of the party (tesla_thomas@
hotmail.com, in this case) has successfully joined a session and can establish
communication.

Figure 6-29: Packet 9 is a JOI packet indicating that the users are now sharing a session.

The balance of the capture file contains only MSG packets, which are
simply messages sent from one endpoint to another—in this case between
Brian and Thomas.

The first thing that probably comes to mind when you think of this
concept is, Can I really see what they are saying?! Well, as scary as it is, the
answer is yes. Everything. By simply right-clicking one of the MSG packets
and selecting Follow TCP Stream (as you learned to do in Chapter 5) you
can see the full conversation between Brian and Thomas (Figure 6-30).
This might make you be a little more careful about what you say in instant
messenger conversations while on the job!

Figure 6-30: We’ll see who’s a jerk! You’re fired!

Common Protoco ls 75

Internet Control Message Protocol
icmp.pcap Internet Control Message Protocol (ICMP) is a part of the IP protocol; I like to call

it a utility protocol because it’s used for troubleshooting other protocols. If you
have ever used the ping utility, you have used the ICMP protocol.

Let’s see what common ICMP traffic looks like. The included capture file
only contains eight packets. There are two separate pings to two separate
hosts. Let’s look at the packet details of packet 1, shown in Figure 6-31.

Common sense tells us that if a computer sends an echo request, it
should receive an echo reply, and that’s just what we see in the capture file.
Packet 2 is transmitted back from the remote computer and is marked as
ICMP type 0, an echo (ping) reply.

A standard ping from a Windows command line pings a host four
times. You can see the ping process in the capture file and in Figure 6-32,
as well. The first ping destination, 192.168.0.1, receives and replies to four
pings. Following this, another ping is initiated to 72.14.207.99 (http://
www.google.com), which also receives and replies to four pings.

Figure 6-32: Ping, reply, ping, reply, ping, reply—you get the picture, right?

Final Thoughts

The goal of this chapter has been to introduce you to using Wireshark to
analyze capture files and to use those capture files to show you how some
common protocols work. Although we’ve only briefly covered some of the
more advanced protocols, I highly recommend reading their RFCs and
studying them more in depth. As the book continues on to various sce-
narios, we will be building on the basic concepts you’ve learned here.

If you expand the ICMP section,
you will see what little there is to an
ICMP packet. The first packet is
labeled as type 8, an echo (ping)
request. Every ICMP packet has a
numerical type associated with it,
which determines how the packet is
to be handled by the destination
machine. (RFC 792 lists all the
different types of ICMP packets.)

Figure 6-31: The first ping packet, packet 1

7
B A S I C C A S E S C E N A R I O S

Now we’ve arrived at the real meat and
bones of this book—we are ready to use

Wireshark and packet analysis to actually
analyze network problems.

We’ll begin with a look at some simple scenarios in which our ability to
analyze packets will help us to better understand what’s going on behind the
scenes. Then we’ll look at some simple real-world troubleshooting scenarios
that you could very possibly encounter on a daily basis. Let’s dive in.

A Lost TCP Connection

One of the most common problems we encounter when troubleshooting is
a loss of network connectivity. For now, we’ll ignore the reasons why that
loss of connectivity might occur and take a look at what that loss actually
looks like at the packet level, so you can identify this type of problem when
troubleshooting.

78 Chapter 7

The small capture file tcp-con-lost.pcap (Figure 7-1) shows a loss of con-
nectivity. The file begins with four standard TCP ACK packets sent between
10.3.71.7 and 10.3.30.1.

Figure 7-1: This capture begins simply enough with a few ACK packets.

The problem begins in packet 5, where we first see TCP retransmission
packets (Figure 7-2).

Figure 7-2: These TCP retransmissions are a sign of a weak or dropped connection.

By design, when TCP sends a packet to a destination and does not get a
reply, it waits a specified amount of time then retransmits the original packet.
If a response is still not received, the source (transmitting) computer doubles
the amount of time it waits for a response before sending another retrans-
mission. The concept of a TCP retransmission is illustrated in Figure 7-3.

Figure 7-3: Too many TCP retransmissions are
usually a sign of a connectivity problem.

Connection
Terminated

10.3.30.1 10.3.71.7
SYN

ACK

ACK
Retransmission

ACK
Retransmission

ACK
Retransmission

ACK
Retransmission

ACK
Retransmission

Basi c Case Scenar ios 79

As shown in Figure 7-3, the TCP retransmission process repeats until
five retransmission attempts are completed, which always takes approximately
9.6 seconds under its Windows implementation. Once five retransmission
attempts have failed, the connection has completely failed and the data in
the transmission is lost.

If you set your Wireshark time display format to show the time that has
elapsed since the previously captured packet (View�Time Display Format�
Seconds Since Beginning of Capture), you can visualize the incrementing of
time between packets (Figure 7-4).

Figure 7-4: Windows will retransmit up to five times by default.

Now take a closer look at the packets being retransmitted in Figure 7-4.
Notice that their sequence number (Seq=5840) matches the ACK number of
packet five shown at the bottom of Figure 7-1 (Ack=5840).

As you learned in Chapter 6, TCP relies on these SEQ and ACK numbers
to keep a TCP stream in order. Because the SEQ number shown in the retrans-
mission matches the ACK number of packet 5, you know that packet 5 is the
packet that was lost and is now being retransmitted. The ability to locate the
exact packet at which a TCP retransmission attempt begins may often lead you
to clues that help you determine exactly why a loss of connectivity occurred.

Unreachable Destinations and ICMP Codes

When testing for network connectivity, one of the most commonly used tools
is the ICMP ping utility. If you are lucky, the target you are pinging will respond,
telling you that your ping was successful. Unfortunately, you often won’t get
a ping response back when you’re troubleshooting; you’ll receive a Destination
unreachable message instead. Using a packet sniffer in conjunction with an
ICMP utility can give you a little more information than just ICMP alone
would. Let’s see if we can’t get inside this ICMP error message to isolate the
problem.

Unreachable Destination
destunreach-

able.pcap
When you open the destunreachable.pcap file, you’ll notice that the first
packet in the capture file is your standard Echo (ping) request packet (also known
as an ICMP type 8 packet) from 10.2.10.2 to 10.4.88.88, as shown in Figure 7-5.

To verify this, look at the ICMP section of the Packet Details pane—you
should see this packet identified as such. Typically, though, you would want
to receive an Echo (ping) reply packet (also known as an ICMP type 0 packet)
in response to your ping.

80 Chapter 7

Figure 7-5: A standard ping request from 10.2.10.2 to 10.4.88.88

Examining packet 2 in Figure 7-6, you can see that it too is not a type 0
packet, but rather a type 3 packet, which is returned when a destination you
are trying to ping is unreachable.

Figure 7-6: This ICMP type 3 packet is not what we expected.

NOTE If ICMP only identified the packet type, it wouldn’t give us much useful information.
But fortunately, it gives us a code number too, like Code: 1 (Host unreachable).
(Several types of ICMP packets offer codes with a bit more specific information about the
packet.) Notice that the source IP address in packet 2 is not the computer the ping was
destined for. This is a sure sign that your echo request didn’t make it to its destination.

The listed ICMP code (1) tells us that the ping request made it to the
upstream router or switch, but not to the destination host. When a host is
unreachable, you will also often see an ARP broadcast sent from the router
or switch. A lack of response to this ARP broadcast means that the sending
device cannot find the destination device, so it sends a packet back to the
source computer with an ICMP type 0, code 1 packet.

Unreachable Port

Another common task when troubleshooting is to ping a device on a specific
port. This is typically done to ensure that ports that are required for certain
services to run are open and accepting incoming communication.

For example, you can ensure that FTP is accessible by pinging a remote
computer on port 21. If for some reason the remote computer is not accepting
incoming communication on port 21, it will return an ICMP type 0, code 2
packet, which means that the destination port is unreachable.

Since you will most likely be using ICMP very often in your day-to-day net-
work maintenance routine, you should familiarize yourself with it and some
of its more common types and codes. (I keep a business card–sized quick
reference in my desk; it never hurts to have something like that on hand.)

Basi c Case Scenar ios 81

Fragmented Packets
ipfragments

.pcap
Internet Protocol is used for the bulk of data transfer across a network, but we
often overlook the fact that only so much data can fit on the wire at a time.
In order to address these lower layer limitations, IP features a technology
called fragmentation. IP fragmentation allows the protocol to break large
amounts of data into chunks that can be sent across the wire and reassembled
on the receiving system.

In this section, we’ll look at a stream of data that has been fragmented
by IP.

The trace file ipfragments.pcap consists of 24 packets that show a ping
request and response. From our previous experience, we know that a typical
ICMP ping-and-response sequence only takes eight packets. Then why do we
have so many more here? Because in this case, each request and reply requires
three packets instead of only one, so there are three times more packets than
usual, as you can see in Figure 7-7.

Figure 7-7: This ping request requires three packets rather than one because the data being transmitted is
above average size.

These are the packets you would see if you were to capture a ping whose
data size was larger than the default. By default, a ping only sends 32 bytes
of data to its destination in Windows. However, as you can see, the ping in
this trace file is transmitting 3,072 bytes of data to the client. This presents a
problem because Ethernet is only designed to handle 1,500 bytes in a single
packet. Therefore, IP must fragment the packets into a data stream, which
is what you see in this trace file.

Determining Whether a Packet Is Fragmented
How can you tell if a packet has been fragmented? Luckily, all we need to do
is look at the Packet Details pane in ipfragments.pcap. Here’s how to do it:

1. In the capture file, select packet 1, and then expand the Internet
Protocol section in the lower portion of the Packet Details pane.

2. You should see a section called Flags. Expand this section and you should
see three fields of data, as shown in Figure 7-8. The one that is of most
interest to us is the More Fragments section. Notice that for this packet,
this section has a value of 1; this means that it has more fragments
following it.

82 Chapter 7

Figure 7-8: If the More Fragments flag has a value of 1, you can expect more packets
to come with it.

3. Look at the same section for packet 2; you should see that it has the same
value in the More Fragments field.

4. Look at the More Fragments field for packet 3, shown in Figure 7-9.
Unlike packets 1 and 2, this packet has a 0 in the More Fragments field.
A value of 0 tells us that this packet is the end of the data stream and
that there are no more fragments following it. The only possible values
for this field are 1 and 0.

Figure 7-9: A More Fragments flag set to 0 indicates that this packet is the end of this
particular data stream.

Keeping Things in Order

The next question that arises is how these fragmented packets stay in order.
Since a device can receive multiple data streams at once, IP allows for an
offset value so that receiving systems know the order in which to sequence
fragmented packets.

To view the offset value of a fragmented packet, look under the IP section
of the Packet Details pane. For example, if you view the IP section for packet 1
in the example file, you will see an offset value of 0. This tells you that this is
the first packet in a series of fragmented packets.

Basi c Case Scenar ios 83

If you browse to the second packet, you will see a dramatic change in this
number (Figure 7-10): it rises to 1,480. The reason for this change is that the
offset value of every fragmented packet following the first one is determined
by the payload (data) size of the previous packet (minus the size of the IP
header, which is 20 bytes). In the case of packet 2, this packet takes the
previous offset, which is 0, and adds the size (in bytes) of the previous packet
to it, which is 1,480.

Figure 7-10: Packet 2 has an offset value based on the payload of the previous packet.

Like packet 2, packet 3 takes the previous offset of 1,480 and adds the
previous packet size of 1,480, resulting in a new offset of 2,960. This concept
is illustrated in Figure 7-11.

Figure 7-11: IP fragmentation breaks down large chunks of data into smaller data streams.

Take a look at examples of some other fragmented IP traffic to see if you
can follow a particular data stream until it ends and keep that stream in order
using each packet’s offset. (This may prove to be more of a challenge than
you think in a cluttered capture file.)

No Connectivity
barryscomputer

.pcap and
bethscomputer

.pcap

Now we’ll use Wireshark for the first time to analyze and troubleshoot a real-
world network problem. In this scenario we have two users, Barry and Beth,
who sit next to each other in an office. After a budget increase (yeah, right!),
the IT department has just purchased two new computers for Barry and Beth.
You are in charge of installing these new computers and making sure they
are working properly. After unpacking, plugging in, and configuring both
computers, you begin to test them to make sure everything is working. How-
ever, you quickly run into a problem. Barry’s computer is working perfectly,
but for some reason, Beth’s is unable to access the Internet. Your goal is to
find out why Beth’s computer is unable to connect to the Internet and then
fix the problem.

Packet 1
More Fragments = 1

Offset = 0

Packet 2
More Fragments = 1

Offset = 1480

Packet 3
More Fragments = 0

Offset = 2960

84 Chapter 7

What We Know

The first thing you should always do when troubleshooting a problem is make
a list of what you know about the issue. In this case, we know that Barry and
Beth are both using identical, brand new computers. We also know that both
computers have network connectivity because you assigned them IP addresses
yourself and made sure that you could ping them from another computer on
that network segment. Finally, we know that everything that has been con-
figured on both computers should be exactly the same, since you configured
them one after the other.

Tapping into the Wire

Once we have established what we know about the issue, it is time to devise a
plan to figure out what we don’t know. We begin by figuring out what type of
traffic captures we need to take and where we need to place our analyzer on
the network to get them.

The problem is being able to access the Internet, so the logical choice is
to capture packets while Beth’s computer is trying to access a website. The
network Barry and Beth are connecting to is one we aren’t extremely familiar
with, so for the purposes of comparison, we will capture packets from Barry’s
computer, as well. We’ll end up with two capture files: one that works and
one that doesn’t. Comparing the two should help us determine the problem.
This process is known as baselining. We’ll install Wireshark directly on both
machines.

Analysis

Let’s begin by looking at the trace file showing Barry’s computer successfully
accessing the Internet (barryscomputer.pcap). When you open the trace file,
the first thing you will see is a textbook HTTP transaction.

As you can see in Figure 7-12, you first have an ARP broadcast looking
for the Layer 2 address of the default gateway, 192.168.0.10. Once Barry’s
computer receives a reply to this request, it initiates a TCP handshake with
the remote webserver. Once this is completed, data transfer from the server
to the client begins.

Figure 7-12: Barry’s computer completes a handshake, and then HTTP data transfer begins.

Now that we know what a successful web request should look like on
this network, let’s take a look at the capture file from Beth’s computer
(bethscomputer.pcap) to see if we can find the problem. It shouldn’t take
too long to realize that something is definitely wrong here. As shown

Basi c Case Scenar ios 85

in Figure 7-13, the very first packet is an ARP request, not unlike the one in
barryscomputer.pcap. However, this ARP request is not sent to the same
IP address as the last one. Here, ARP is looking for a device with an IP address
of 192.168.0.11.

Figure 7-13: Beth’s computer appears to be sending an ARP request to a different IP address.

Immediately after that ARP packet, we see a bunch of NetBIOS traffic, as
shown in Figure 7-14. If that other IP address wasn’t a sign that something is
wrong, then all of this NetBIOS traffic definitely is.

Figure 7-14: All this NetBIOS traffic can’t be a good thing.

NetBIOS is an older protocol that is typically only used now as a
backup when TCP/IP isn’t working. The appearance of NetBIOS traffic
here means that since Beth’s computer was unable to successfully connect
to the Internet with TCP/IP, it reverted to NetBIOS as an alternate means
of communication—but that also failed. (Anytime you see NetBIOS on
your network, it is often a good sign that something is not quite right.)

Let’s focus on the biggest anomaly we have seen so far—that is, the
different IP addresses in each of the ARP packets. Barry’s computer used
ARP to find the location of the default gateway, 192.168.0.10. Beth’s com-
puter attempted to do the same thing; however, it tried to find the location
of the IP address 192.168.0.11 and failed, as shown in Figure 7-15. The default
gateway addresses are inconsistent; something is wrong.

Figure 7-15: The different destination addresses for each ARP
packet point to a problem.

Barry’s Computer

Beth’s Computer

86 Chapter 7

A quick check of the TCP/IP settings on both computers reveals the
answer to our problem: a typo. Barry’s computer is set to have a default
gateway of 192.168.0.10, and Beth’s computer is set to 192.168.0.11, which
is the wrong address.

Summary

The errors you run into will often be due to misconfigurations. When possible,
compare a machine that works properly with the one that doesn’t to see if
you can pinpoint the problem. In the preceding scenario we were able to
pinpoint the exact packet in which things did not match up correctly. Once
you can narrow down your problem, you will have a much easier time fixing it.

The Ghost in Internet Explorer
hauntedbrowser

.pcap
This scenario begins with a disturbing call to the help desk from a user on
your network named Chad. According to Chad, his computer has recently
been host to a demonic possession. Despite his best efforts, the home page on
his Internet browser keeps changing itself to point to various weather sites.
Even if he manually changes it back to what it should be, his changes are
reversed after he reboots his computer. Your goal here is to get to the bottom
of this “possession” and to perform an exorcism of the ghosts that have invaded
Chad’s computer.

What We Know

Chad has been with our company quite a while and we know he does not
have a great deal of technical expertise. In fact, he usually does more harm
than good with a computer. (I don’t suppose you know any users like that,
do you?) From a technical standpoint, we know that Chad’s computer is
about two years old, runs the Windows XP operating system, and uses
Internet Explorer 6 as its browser.

Tapping into the Wire

Because this problem occurs on only Chad’s computer, we know that the only
machine we should have to capture packets from is Chad’s. Also, because it
seems that Chad’s home page resets every time he boots up his computer,
we’ll perform our capture at boot time.

In this case, we can’t install Wireshark directly onto Chad’s machine and
capture the packets we need, so hubbing out is a good method to use. If you
don’t remember how this technique is administered, please refer to our
discussion about it in “Hubbing Out” on page 19. The capture will start as
soon as the computer is turned on and will stop as soon as it is completely
booted up; no user interaction will be required.

Basi c Case Scenar ios 87

Analysis

Although there is no user interaction with the computer during the capture,
you may be a bit shocked when you open the trace file (hauntedbrowser.pcap)
and see TCP and HTTP packets shooting across the wire, as shown in
Figure 7-16. During a normal bootup process, you should rarely, if ever,
see packets sent like this.

Figure 7-16: Since there is no user interaction happening on Chad’s computer at the time of this capture, all of
these packets going across the wire should set off some alarms.

Looking more closely at these packets, we can immediately draw some
conclusions. First, we know that all of these HTTP requests are being gen-
erated by Chad’s computer because his IP address is listed as the source of
all the TCP and HTTP packets. Also, you can see in packet 5 (Figure 7-17)
that this computer is sending HTTP packets to a system on the Internet
with the GET command, meaning that it is trying to download data.

Figure 7-17: Looking more closely at packet 5, we see it is trying to download data from the Internet.

Given this information, we can assume that something is running on
Chad’s computer at startup that shouldn’t be. A look further down the
Packet List pane provides us with an insight that may just be the root
of our problem. Packets 11 and 12 do a DNS request for a server on the
weatherbug.com domain, as shown in Figure 7-18.

Figure 7-18: A DNS query to the weatherbug.com domain gives a clue to the culprit.

Considering Chad’s home page keeps changing to weather sites when he
boots up, we have probably just found our culprit. Upon further investigation
of Chad’s computer, our assumptions prove correct, and we find that the
computer has the WeatherBug desktop program running in the background,
set to download new weather information and display it on the home page
after every restart. After uninstalling this software, the problem ceases.

88 Chapter 7

Summary
You will find that many computer and network problems are not the fault
of a particular computer or network, but rather the software running on it.
In this scenario, a weather-tracking program had been installed on Chad’s
computer, causing him to think it was “possessed” because his web browser’s
home page changed after every restart. By capturing and examining packets
with Wireshark, we were able to uncover this program running silently in the
background.

Examining problems at the packet level makes troubleshooting much
easier because so little is hidden.

Inbound FTP
ftpclientdenied

.pcap and
ftpserverdenied

.pcap

In this next scenario, let’s imagine you have just set up a new FTP server for
your company. Clients will be connecting to this FTP server both internally
and externally to download and upload large amounts of data. You have set
up the FTP server software and have created a generic username and password
for use by all employees. However, for some reason when you’re trying to test
the server from a remote machine, you are unable to access it through FTP
client software.

What We Know
We know that this server is brand new and has just been set up using
Windows Server 2003, with all of the latest updates and service packs
installed. We have verified that the FTP software is set up correctly and
is active. We have also verified that the client trying to connect to the
FTP server is using the appropriate IP address and login credentials.

Tapping into the Wire
Because this problem involves both a server and a client machine, we will
take a capture file from both computers. The capture from the client will be
done when the FTP client software tries to connect to the server. The capture
from the server will be done at the moment the client is trying to connecting
to the FTP software. By capturing the files in this fashion, we will be able to
determine whether the problem originates with the client or the server; then
we can proceed with further investigation. We’ll install Wireshark directly on
these two machines for the purpose of these captures.

Analysis
Let’s start with the client to make sure it is initiating communication as it
should be. Looking at the capture file ftpclientdenied.pcap (Figure 7-19), we
see that it is doing exactly what it should be doing. It begins the TCP hand-
shake process by issuing a SYN packet to the remote server, 192.168.0.182.
However, the server does not respond, so the client issues two more SYN
packets to try and establish communication.

Basi c Case Scenar ios 89

Figure 7-19: The client tries to establish connection with SYN packets but gets no response; then it sends a
few more.

This process continues for about nine seconds before the client deter-
mines it is unable to connect to the server. The client is doing exactly what
it is supposed to do concerning the initiation of the TCP handshake, so it is
safe to assume the problem most likely does not reside with the client.

Now let’s look at the trace from the server’s point of view in the
ftpserverdenied.pcap capture file. The two capture files look amazingly
similar; in fact, the only difference between the two files is that the source
and destination addresses on the SYN packets have been switched around
(Figure 7-20). This tells us that the packets being sent from the client are
indeed making it to the server, but that for some unknown reason, the
server is not accepting them.

Figure 7-20: The client and server trace files are almost identical.

There are typically three main reasons a computer will reject packets
sent to it.

� The service that is supposed to be accepting those packets is not running.
Because we know that the FTP server software is running and ready to
accept connections, this can’t be our problem.

� The server is experiencing a very high amount of traffic. In these
situations the server’s buffer can become filled so that it is unable to
communicate at all with some clients. Once again, this can’t be the
cause of our problem, because the server has just been set up and is
under no load whatsoever.

� The packets are being intentionally blocked. What would intentionally
block packets from being received by a computer? Something that is
doing exactly what it is supposed to! After closer examination of the
server, we find that the Windows firewall is enabled on it and is block-
ing all incoming traffic on FTP ports.

Client

Server

90 Chapter 7

Summary

Packet analysis won’t always point you straight to your problem. In fact, in
this scenario nothing specific in the captures identified the firewall as the
problem. However, this analysis allowed us to narrow down the problem
specifically to the server.

Sometimes you must troubleshoot problems that affect dozens or even
hundreds of systems. If you can use packet analysis in those situations to
narrow down your problem to a specific computer, then you have saved
yourself a tremendous amount of time.

It’s Not My Fault!
http-fault-post

.pcap
Some network users are absolutely impossible. Have you ever had a user who
always blames the IT department for every little problem he or she has? Erin
is exactly that kind of user. Any time the network is running the least bit
below an optimal state, she is always glad to let you know.

In this particular scenario, Erin is trying to submit an online order for a
manufacturing-related product. The problem is that when she submits the
form to order the product, it returns an HTTP 403 (Forbidden) error. We
know that this error is almost always caused by a problem on the remote
website, but Erin has complained enough that your boss has asked you to
prove to her that this is truly the case. We have to show that this problem is
due to the remote server, not something at the packet level.

What We Know

We know that Erin has never been able to successfully send data through the
web form in question, but she can submit any other web form she needs to
without a hitch. Looking at the source code of the website in question, we see
that it is using a standard HTML form with nothing flashy attached to it.

Tapping into the Wire

Installing Wireshark on Erin’s computer is the easiest way to get the capture
file we need. Once it’s installed, we can begin the capture process and Erin
can then attempt to fill out and submit her form, at which point we will begin
the analysis process.

Analysis

The trace file (http-fault-post.pcap) begins with a standard TCP hand-
shake between Erin’s computer, 24.4.97.251, and the remote webserver,
216.23.168.114, as shown in Figure 7-21.

Basi c Case Scenar ios 91

Figure 7-21: So far, so good. A standard TCP handshake begins communication with Erin’s computer and the
remote webserver.

Shortly thereafter, HTTP communication begins between the client and
server. Notice in the Info column (Figure 7-22) that it doesn’t take too long
before the client receives the HTTP 403 message from the server, which is
the source of the complaint.

Figure 7-22: The HTTP 403 message comes pretty quickly.

The 403 error happens in packet 9. Because this is really the only stream
of data in the capture we are concerned with, right-click it and choose Follow
TCP Stream to view the clear text reassembly of the HTTP transaction, as
shown in Figure 7-23.

Figure 7-23: The TCP stream of the HTTP transaction that results in the 403 message should
be all the proof you need.

92 Chapter 7

Looking at this TCP stream, we first see the form data being sent from
our client to the server. At this point we should see a response from the
server with something saying the data from the form was accepted, but
instead we see the 403 response. This is enough to prove that the problem
lies with the remote server and not on your network.

Summary

Packet analysis is often a great tool to use when you must prove that you
actually do know what you’re doing. Not only do you sometimes have to
prove your assumptions to management, but sometimes you have to prove
them to yourself.

In this case, the plaintext interpretation of the TCP stream can be shown
to your supervisor to put an end to Erin’s tirade against the IT department.

An Evil Program
evilprogram

.pcap
This scenario is much like the situation with Chad’s haunted computer. In
this case, however, we have a little bit more going on. Mandy is another user
on our network who is complaining about strange things happening in her
browser. The browser keeps changing its home page to a faux security website
at random times throughout the day. Not only that, she is seeing quite a few
pop-ups and her computer is generally sluggish.

If you have any computer repair experience, you are probably pretty sure
this is a spyware problem—and you are right. However, rather than just run-
ning a spyware-removal tool, we are going to take a trace of the computer so
we can see exactly what this spyware is doing to give Mandy’s computer so
much trouble.

What We Know

We don’t need to know a whole lot to solve this particular problem. We know
that Mandy’s computer is operating very slowly and that her browser is being
hijacked constantly. Her computer is running virus-scanning software, so
viruses shouldn’t be too much of a concern for us.

Tapping into the Wire

When troubleshooting a spyware-related problem, it is always a good idea to
begin your trace file when the computer boots up. Most spyware applications
tend to “phone home” to check for updates and such when an infected
computer starts up.

We’ll begin our capture file as soon as the computer boots up and
continue capturing packets until a minute or so after the startup process has
completed. In this case, hubbing out or ARP cache poisoning are the best

Basi c Case Scenar ios 93

methods to use for intercepting this machine’s packets. Since there is a lot of
traffic flowing on our network, we’ll create the capture file using a capture
filter that only catches traffic to and from Mandy’s computer.

Analysis

This is a pretty big capture file, so we’ll start at the beginning. The first two
packets (shown in Figure 7-24) are pretty common sights when a computer
starts up and begins to initialize its TCP/IP stack.

Figure 7-24: The first two packets show Mandy’s computer getting its IP address and making sure there are no
IP conflicts.

The first packet shows the computer asking the DHCP server for its IP
lease. Typically, there is a response to this packet from the DHCP server,
but since this is a broadcast packet, our capture filter doesn’t allow it to be
shown.

The second packet is an ARP packet that we call a gratuitous ARP.
A gratuitous ARP is an ARP broadcast-type packet that is used to ensure that
no other machine on the network has the same IP address as the sending
machine. You should only see gratuitous ARP requests going out; if you see a
gratuitous ARP reply, that means another computer on the network has your
IP address. In this capture we only see requests, so we are in good shape.

The third packet in the capture is one we should be concerned about.
At this point in the computer’s startup process, TCP/IP has yet to fully
initialize: You can see that it is still sending out its gratuitous ARP packets,
as shown in Figure 7-25. But packet 3 shows that a device outside our network
is attempting to communicate with Mandy’s computer on port 5554.

Figure 7-25: Packets 3 and 5 come far too early for the client to be able to receive them.

At this point in the initialization process, no machines should be trying
to communicate with Mandy’s computer, since it isn’t even ready to accept
communication yet. Therefore, Mandy’s computer simply drops the packet
and goes on with its startup process. Another packet like this appears in
packet 5 of the capture file, however this time, the packet has changed the
ports it is using and tries to connect to port 9898, as shown in Figure 7-26.
Very tricky.

94 Chapter 7

Figure 7-26: Another remote connection attempt is made before Mandy’s computer is
ready for it.

Once again, Mandy’s computer is not ready for communication and
simply drops the packet.

Once Mandy’s computer is ready to finally accept communication, it
receives another one of these packets at packet 10. Mandy does not have any
services running on the requested port that can accept the TCP handshake,
so her computer replies to the remote computer with a TCP RST packet,
terminating the communication, as shown in Figure 7-27.

Figure 7-27: Another connection attempt is made, and this time Mandy’s computer is ready for it; however,
it doesn’t have a use for the connection, so it simply sends a RST packet to end the connection.

This process repeats throughout the next several series of packets.
Mandy’s computer is doing exactly what it is supposed to be doing by
refusing this communication.

Filtering out the Good

If you continue to scroll down to packet 68, you will see the first legitimate
communication, as shown in Figure 7-28.

Figure 7-28: This packet shows the beginning of the process of updating virus-scanning software.

Here Mandy’s computer begins to communicate with its virus-scanning
software and downloads an update. These packets are valid, and since we are
only looking for suspicious packets, we’ll filter these out by filtering all traffic
to or from the McAfee IP address shown in packet 68 (Figure 7-29).

NOTE Hopefully you remember how to create filters from our previous discussion.
The filter you want to create to hide any traffic to or from the McAfee server
is !ip.addr==216.49.88.118.

Basi c Case Scenar ios 95

Figure 7-29: This filter removes all of the legitimate traffic so we can focus on what is
abnormal.

Remote Connection Attempts

Once you have this filter set up, the next packet of interest is packet 147,
shown in Figure 7-30.

Figure 7-30: Packet 147 is a messenger packet. We need to investigate this further.

This is a messenger packet being sent from a device on the Internet. You
can view the payload of the messenger packet by viewing the packet’s Packet
Bytes pane, as shown in Figure 7-31.

Figure 7-31: The payload of packet 147

Thankfully, the messenger service is disabled on our network, so Mandy
never sees this message. You can verify that this message is never delivered
by seeing the ICMP Destination unreachable packet our computer sends to
the remote computer directly following the initial connection attempt, as
shown in Figure 7-32.

Figure 7-32: The computer never receives the messenger packet because the service is disabled.

At packet 210 (Figure 7-33), we begin to see something very troubling.

Figure 7-33: There is another remote connection attempt, but this time Mandy’s computer actually responds.

96 Chapter 7

Just like before, we have a remote computer trying to establish communi-
cation with Mandy’s computer by initiating a TCP handshake. However, unlike
before, her computer actually responds this time, via port 1025. This means
that there is a service running on this port that is listening for a connection
from the outside. This is never a good thing!

Closing In on the Problem

At this point you can scroll down for a while and continue to see a lot of the
same thing. Various connection attempts are made to Mandy’s computer,
some of which are successful and some of which are not. Regardless, until
now those connection attempts have not really resulted in much of interest
to us—that is, until packet number 357, shown in Figure 7-34.

Figure 7-34: Packet 357 is a DCEPRC packet initiated by a host outside of our network.

Packet 357 is a DCEPRC, or a Remote Procedure Call (RPC) packet. RPC
is a protocol used to remotely execute programs on a system. Let’s see—here
we have a computer outside of our network trying to remotely start a program
on a computer inside our network. It doesn’t take a PhD in computer science
to figure out that this should not be happening.

Now we will want to watch Mandy’s computer very closely to see exactly
what it communicates back to this remote system. As you monitor its communi-
cation, you will eventually get to packet 381, in which our client makes a DNS
request for updates.virtumonde.com, as shown in Figure 7-35.

Figure 7-35: At this point, Mandy’s computer makes a DNS request to a remote update server.

If something like this happens and you aren’t familiar with the website
being queried, do an Internet search. If you search for the keyword virtumonde,
you will find a lot of results relating to spyware and server hosting.

Let’s take a closer look at the communication between Mandy’s computer
and the remote virtumonde server. To do so, open the Conversations win-
dow and filter out all traffic between our host, 24.6.125.19, and the virtumonde
server, 208.48.15.13 (see Figure 7-36). Once you do this, you’ll have only a
few packets to look at, which will makes things a lot easier.

Basi c Case Scenar ios 97

Figure 7-36: The Conversations window allows us to focus on only these two endpoints.

Continuing down the list of packets, we see in packet 386 that our client
goes out to the virtumonde server and requests the download of a file called
bkinst.exe (Figure 7-37).

Figure 7-37: Mandy’s computer requests to download a file from the virtumonde
server in this packet.

If you do an Internet search for this file, you will see that it is associated
with spyware, browser hijacking, and pretty much every other bad thing you
can think of. You have successfully found the problem affecting Mandy’s
computer.

Summary

In this scenario we learned that the reason Mandy’s computer was doing
strange things was related to a spyware application that was being downloaded
to her computer via a background RPC service. But what was the point of
going through all of that just to find out something we already knew?

98 Chapter 7

We went through this analysis process so that we could better understand
what was happening on the network. If Mandy’s computer was able to be
infected with this spyware, chances are it could happen to somebody else, as
well. Learning the ports and services used in this communication process will
allow us to block them at the firewall level to prevent problems in the future.
Even if a problem may seem like it has a very simple fix, going the extra mile
to find out exactly why it is happening can be very useful in the future.

Final Thoughts

The scenarios provided in this chapter are very simple, but they are also
very important in helping you familiarize yourself with Wireshark, packet
analysis, and network troubleshooting in general. The rest of the book will
be written in much the same format but will focus on different areas of real-
world packet analysis.

8
F I G H T I N G A S L O W N E T W O R K

As a network administrator, much of your
time will be spent fixing computers and

services that are running more slowly than
they should be. The most common complaint

heard by IT staff is that the network is slow. However,
just because someone says that the network is running
slowly does not mean that a network problem is to
blame.

Therefore, before you begin to tackle a slow network problem, you first
have to determine whether the network is, in fact, running slowly. In this
chapter we will look at several different scenarios in which a user is complain-
ing that the network is slow.

100 Chap te r 8

Anatomy of a Slow Download
slowdownload

.pcap
Let’s take a look at the anatomy of a slow download at the packet level.

Scrolling through all of the packets (as shown in Figure 8-1), you will see
a lot of standard HTTP and TCP traffic, and this shows the download taking
place. As we learned in our discussion of HTTP in Chapter 6, HTTP is used
to request the data from a webserver, and then TCP is used to download that
data from the remote server.

Figure 8-1: We need to filter out all of this HTTP and TCP traffic.

In order to filter out the abnormal traffic that is slowing our download,
we’ll use the Expert Infos window. To open this window, click Analyze in the
menu bar and select Expert Infos. You should see something like Figure 8-2.

Figure 8-2: The Expert Infos window shows us chats, warnings, errors, and notes.

F ight ing a Slow Network 101

By default, the Expert Infos window shows all warning, error, note,
and chat traffic from our capture file. Since chat traffic is not usually suspect
(at least for this purpose), we’ll modify the default setting by selecting
Error+Warn+Note from the drop-down box next to the words Severity filter.
Our new Expert Infos window will look like Figure 8-3.

Figure 8-3: The Expert Infos window (sans chats) summarizes all of the problems with this
download.

Notice in Figure 8-3 that an abundance of the packets in our capture file
are TCP Window update packets. The transmission rate of data over a network
is determined by the size of the TCP receive window. When clients are trans-
ferring data, they will constantly send TCP Window update packets to each
other as their ability to receive data speeds up or slows down. These packets
are used to notify a client that it needs to either increase or decrease the size
of the data being transmitted. You can think of this as someone pressing the
button on a water fountain for you. If the button is pressed too much, you
will not be able to catch all of the water in your mouth, so you must instruct
the person to decrease the pressure on the button. On the flip side, if the
person is not pressing the button hard enough, you won’t be drinking as
much water as you could be.

Next, we see our first problematic packets. As the download starts, we
begin to see TCP Previous segment lost packets, as shown in Figure 8-4.

102 Chap te r 8

Figure 8-4: Previous segment lost packets indicate a problem.

These packets tell us that during the course of data transfer, a packet was
suddenly dropped. In response, the client sends Duplicate ACK packets to the
server, requesting that that the lost packet be sent again. The client continues
to send Duplicate ACKs until it receives the requested packet. We then see
the retransmission of the dropped packet as TCP Retransmission in the Expert
Infos window, as shown in Figure 8-5.

Figure 8-5: A fast retransmission is seen after a packet is dropped.

At the beginning of our download, we see only one or two Duplicate
ACKs in a row, but as the download progresses, we begin to see more and
more. This tells us that we are experiencing more latency. If you continue to

F ight ing a Slow Network 103

browse through the rest of the capture, you will see that it is riddled with
segment losses and Duplicate ACKs—the telltale sign of a slow download in
process.

Conveniently, Wireshark allows us to graph the TCP stream for this down-
load, as shown in Figure 8-6. You can access this graph by clicking a packet
related to the stream you wish to analyze (I’ve selected packet number 1,023)
and choosing Statistics�TCP Stream Graph�Round Trip Time Graph. The
TCP Stream Graph feature of Wireshark is a great way of visualizing data
throughput when dealing with a TCP stream.

Figure 8-6: The round trip time graph for this capture

While this graph may not be aesthetically pleasing, it’s a great way to
compare round trip time (RTT) throughout a packet capture. Notice, for
example, that near the beginning of the graph of this capture, we see RTT
of more than one second. This is completely unacceptable for downloading
a file. Even when downloading a file from the Internet, you should see times
no greater than 0.1 seconds, with ideal times of no more than 0.04 seconds
(40 milliseconds). This graph shows us right away that we’ve got a major
problem.

104 Chap te r 8

A Slow Route
icmp-tracert-slow

.pcap
The first step in solving any slow network problem is to determine the
source of the problem. In the following scenario, the help desk has just
received a call from Owen, who is complaining that his Internet connection
is extremely slow.

What We Know
There isn’t a whole lot that we need to know before we can begin to address
this fairly straightforward complaint. We verify that the slow Internet issue
persists regardless of the website visited. And, after further investigation, we
learn that every machine on the same network as Owen is experiencing the
problem.

Tapping into the Wire
Since Owen was the first one to complain about this issue, we will perform the
analysis from his computer (though probably any computer on the network
would suffice). We’ll install Wireshark directly on his machine to get the
packet capture we need.

Since the problem is affecting multiple computers, we know that it
isn’t a problem with Owen’s computer specifically; a capture of just his
computer trying to access the Internet won’t give us the information we
need. Instead, we’ll use the ICMP traceroute utility to get a better idea of
where the problem lies.

traceroute is an ICMP-based diagnostic tool (UDP-based under Unix)
that sends packets to every router along a path, progressing until it reaches a
specified destination. traceroute will report some basic information about
any delays it experiences (as shown in the output in Figure 8-7), but to get a
real grasp about where the bottleneck is, we will capture the results of the
traceroute with Wireshark.

I have included an image of a sample traceroute output screen in
Figure 8-7. Each line represents the time it takes to cross a network in
route to the target destination.

Figure 8-7: Standard traceroute output

F ight ing a Slow Network 105

Analysis

Looking at the capture file (icmp-tracert-slow.pcap, Figure 8-8), the first
thing we see are Echo (ping) request packets being sent from Owen’s com-
puter to a remote host.

Figure 8-8: Echo (ping) request packets being sent from Owen’s computer to a remote host

These packets differ from regular ping packets in one important way,
as you’ll see if you look under the IP section of the Packet Details pane.
The difference is that the time-to-live value in these packets is set to one,
as shown in Figure 8-9.

Figure 8-9: This ping packet has a time-to-live value of one.

The time-to-live (TTL) value is a numerical value that determines how many
times a packet can hop from one router to another across a network. A value of
one means that traceroute will send a packet to the destination device, but that
the packet will expire once it hits the first router along the route; at that time,
an ICMP TTL expired packet will be sent back. Upon receipt of this ICMP
TTL expired packet, traceroute will send another packet with a TTL value
of two, which will cause an ICMP TTL expired packet to be sent back once
the packet hits the second router along the route. This process continues
until a packet has a TTL value that is just enough to reach the destination,
as illustrated in Figure 8-10.

Figure 8-10: The TTL value increases as more networks are crossed en route to a destination.

Tracert Source Tracert DestinationRouter Router

TTL 1
TTL 2

TTL 3

106 Chap te r 8

Applying our newfound knowledge of TTL to our current situation, we
can immediately see a problem with the first packet sent. This packet has a
TTL value of one, so it should have immediately hit the internal router on
our network and reported back to us—but it did not.

Since Owen’s computer doesn’t receive an immediate response back to
the first TTL packet with value one, it waits about three seconds (as shown in
Wireshark’s Time field in Figure 8-11) and then sends another request.

Figure 8-11: Owen’s computer sends an initial request, receives no response, and sends
another request three seconds later.

When Owen’s computer receives no response to this second attempt,
it waits about three more seconds and sends one last packet to the router,
which also proves unsuccessful, as shown in Figure 8-12.

Figure 8-12: After receiving no response yet again, the computer makes one more attempt.

At this point, traceroute gives up on receiving a reply from the first
router, so its next packet (packet four) has a TTL value of two. This packet
reaches the second router successfully, and Owen’s computer receives the
expected ICMP type 11, code 0 packet, which has the Time-to-live exceeded
message, shown in Figure 8-13.

Figure 8-13: This Time-to-live exceeded message is expected.

This process continues through the rest of the capture; the TTL value is
continually incremented until the destination is reached.

What can we determine from this traceroute analysis? First of all, we know
our problem lies with our network’s internal router because we were never
able to receive an ICMP response from it. Routers are very complicated
devices, so we aren’t going to delve into the semantics of exactly what is
wrong with the router. The point is that we have successfully determined
where the problem resides: in our network’s internal router.

Summary

Once again, Wireshark has saved us countless hours of troubleshooting by
allowing us to quickly pinpoint the source of our problem. While Wireshark
won’t tell us what’s wrong with our router or how to fix it, we now know
enough to turn our attention to the router’s configuration to learn more
about the problem.

F ight ing a Slow Network 107

We’ve also learned a few new things about ICMP, as well as how to work
with the traceroute utility. (traceroute has several other configurable options
and uses; you can find out more about them by doing a quick Internet search.)

Double Vision
double-vision

.pcap
In this scenario, you have installed and configured a brand new computer for
Jeff, the newest company employee. Usually, when you install a new computer,
you expect it to be faster than the rest of the devices on your network. How-
ever, after only a short while, Jeff reports that during times of peak usage, his
computer is experiencing severe slowness to the point that certain network
services become unavailable.

What We Know

First of all, we know that Jeff’s computer is brand new, so it should be running
at optimal performance. Aside from that, there are no other reports of net-
work slowness, during either peak or off-peak usage times. We also know that
Jeff is a very high bandwidth user. Most of his tasks are network related, and
he often runs multiple net-centric applications at once. These applications,
along with standard Internet and email clients, create an above-average load
of traffic, but one that our network should be able to handle easily.

Tapping into the Wire

Because this problem is related only to Jeff’s computer, we will install
Wireshark directly on it. The best time to analyze this problem is when
it is happening, which is during peak usage time. We want Jeff to be able
to perform his daily routine, so we’ll start the capture file, let it run for a
few minutes while Jeff does his thing, and then stop it and look at the
collected data.

Analysis

The title of this scenario really becomes clear when you first open the trace
file, double-vision.pcap. Immediately, you will notice two of everything—
every packet in this capture file is repeated, as you can see in the beginning
of the capture in Figure 8-14. This is definitely not normal.

NOTE For the sake of simplicity, we’ll only look at six packets, since that is really all that is
required for our purposes. Just remember that all packets are duplicated for all commu-
nications from Jeff’s computer.

Figure 8-14: You aren’t seeing double—every packet is repeated!

108 Chap te r 8

There are two common causes for duplicate packets in a capture file:
inconsistencies in routing and improperly configured port mirroring. Before
we get down to the nitty gritty and try to determine the cause here, let’s make
sure the packets we are looking at are true duplicates of one another.

One way to determine whether two packets are identical is to look at the
IP identification number of each in its IP header. You’ll find this ID under
the IP section of a packet in the Packet Details pane. You will see that the first
and second packets have the same identification number, 0xc509, as shown
in Figure 8-15.

Figure 8-15: The first two packets have the same identification number.

The same is true for the third and fourth packets, which both have a
transaction ID of 0xaca7, as shown in Figure 8-16. Continuing down the list,
we find that the same is true for every pair of packets in the capture file.

Figure 8-16: The third and fourth packets also have the same identification number.

Now that we know that all of the packets are exact duplicates as far as
payload is concerned, we can begin to try to determine which of our two
possible solutions is most likely to be correct—inconsistent routing or mis-
configured port mirroring. To that end, we’ll look at the TTL values of the
packets. If these values differ, it signals an internal routing problem; if they
are the same, then we probably have a port mirroring problem.

As shown in Figure 8-17, we find that the TTL value of packet 1 is 47,
and the value of packet 2 is 46. This tells us that we definitely have an
internal routing problem. The fact that the second packet decremented by
one means that it went through a router somewhere and was then bounced
back to our machine.

F ight ing a Slow Network 109

Summary

If a machine is configured with the wrong subnet mask, the result can be a
multitude of problems, including preventing that misconfigured computer
from communicating at all. In this case, every packet sent from Jeff’s computer
bounced back, essentially doubling the amount of traffic the computer had
to deal with and slowing communication tremendously during peak times.

Did That Server Flash Me?

http-client-refuse
.pcap

Surprise! Another user is complaining about a slow Internet connection.
This time, Eric complains that he cannot access a part of the Novell website
to download some necessary software. Each time he visits the site, his browser
loads and loads but nothing ever happens. It must be a problem with the
network, right?

What We Know

After a thorough check of the network, we determine that Internet access is
normal for all machines except Eric’s. Therefore, the problem must be specific
to Eric’s workstation. His computer is running Windows, and it’s completely
up to date with all of the latest service packs and patches. Upon further
investigation, we find that the only problem is with one particular section
of the Novell website.

Tapping into the Wire

Because the problem here is only with Eric’s computer, we can install
Wireshark on his system and capture the packets we need. The problem
occurs when he visits a particular section of the Novell website, so we’ll
take the trace file while this particular problem is occurring.

Because this problem is only
occurring on Jeff’s computer, we
conclude that it must be isolated
there, rather than on the network’s
router. After further investigation,
we find that his new computer
was configured with the wrong
subnet mask. Figure 8-17: The TTL values of these

packets are not equal, which points
to a routing problem.

Packet 1:

Packet 2:

110 Chap te r 8

Analysis

When you open http-client-refuse.pcap (shown in Figure 8-18) you should be
able to immediately identify it as HTTP communication, since there is an
HTTP request right after the initial TCP handshake. In fact, this HTTP
request looks normal until packets 28 and 29, as you’ll see below. Let’s step
through and see if we can pinpoint the problem.

Figure 8-18: The capture begins with standard HTTP communication.

Keep an eye on the Time column in this capture. All packets are received
without unusual delays until packet 28. We’re in the middle of an HTTP trans-
action when suddenly there is a 9-second lag between packets 27 and 28.

In the world of network communications, a 9-second delay between
packets is completely unacceptable, unless you are waiting for some form of
user input. After 9 seconds pass, the server can no longer transmit the data
it needs to send back to the client, so it sends a RST packet to terminate the
connection. Our client hasn’t given up yet, and he waits an additional
55 seconds (as shown in Figure 8-19) before acknowledging the reset.

Figure 8-19: Packets 28 and 29 present a problem.

The server has ceased to communicate with the client, and we have to find
out why. We could go through the entire capture step by step and examine
each packet, but that would be an extremely long and tedious process.
Instead, we’ll take the easy way out.

Since we are dealing with an HTTP transaction, the TCP stream should
be easily readable as long as we can follow the trace file. Once you open the
TCP stream, notice that different colors are used to show the communication:
Red is used for data transferred from our client, and blue is used to show
data transferred from the remote webserver.

Looking at this traffic, do you see anything other than normal HTML
being transferred? If you browse down to the second section of traffic coming
from our client, you see a request to get a Flash applet from the Novell server,
as shown in Figure 8-20. This is where the problem lies. The web page Owen
is trying to view is apparently making a request for a Flash object; this kind of
request can be very easily blocked by a pop-up blocker. That’s just what is
happening here.

F ight ing a Slow Network 111

Figure 8-20: This Flash request is the source of our problem.

Summary
After a bit of research into the Flash data being called from the Novell site,
you learn that the site attempts to open its main content in a new Flash
window, which Eric’s pop-up blocker in Internet Explorer is blocking. While
the browser was unable to give us any useful information about the problem
(other than a connection timeout message), we used Wireshark, some basic
packet analysis concepts, and a little patience to pinpoint the exact spot
where the communication process was being hindered.

A Torrential Downfall
torrential-

slowness.pcap
In this next scenario, one of our network users has just called the help desk
complaining that the network is running extremely slowly. He can’t access
the Internet or any net-centric applications at a reasonable speed, and he’s
getting really behind in his work. What’s slowing things down?

What We Know
After surveying other network users we learn that the Internet problem is
widespread. All users report that the Internet is so slow that it is almost
unusable. The edge router of your network also indicates high processor
utilization, showing that it is handling very substantial traffic, both outbound
and inbound.

NOTE The phrase edge router describes the location of a router on a network. An edge router
sits on the network and connects that network to the outside world.

Tapping into the Wire
Because the edge router handles all traffic between the local network and
the Internet, and because it shows high processor load, the edge router is the
best point of analysis here.

112 Chap te r 8

Analysis
We’ll use port mirroring to tackle this scenario, because we obviously can’t
install Wireshark on a router.

The packets included in the capture torrential-slowness.pcap offer only a
brief sampling of the many connections happening on our network, as shown
in Figure 8-21.

Figure 8-21: There are a lot of connection attempts in this capture.

One system inside our network (192.168.0.193) appears repeatedly
in this capture, making and receiving connections from a lot of systems
outside our network. More ominously, most of that traffic is being sent
with the TCP PSH flag on, which forces a receiving computer to skip its
buffer and push that traffic straight through, ahead of any other traffic.
This is almost always a bad sign.

Still worse, most of these connections are already past the TCP handshake
phase, meaning they are actively transferring data to and from our client. You
can get a sense of how many of these connections are taking place by looking
at the Conversations dialog shown in Figure 8-22.

Figure 8-22: The Conversations dialog shows that a lot of conversations are happening.

In just this small, 1-second capture, there are 27 different TCP conver-
sations taking place!

The simplest way to alleviate this problem would be to go to the offending
computer and poke around, but what fun would that be? We’ll do things the
packet analysis way.

F ight ing a Slow Network 113

Looking at the packets, your first course of action might be to track down
the remote IP addresses and see where they are located, typically by perform-
ing a WHOIS lookup on each IP address. However, in this case you would
quickly find that most of these IP addresses do not point to any companies
or even to the same general area, but rather to different locations around
the world.

To further evaluate the packets, you could see whether the TCP stream
holds any valuable information. In this case, following the TCP stream proves
useless—the data shown is gibberish, as you can see in Figure 8-23.

Figure 8-23: The TCP stream doesn’t provide anything of real value.

When these highly technical means of tracking things down fail, what are
you to do? How about the simplest thing possible (other than poking around
on the suspect machine)? Simply scroll down the list of packets, one by one,
and look for something significant.

As you scroll through the packets in the capture, you will eventually find
yourself at packet 99, shown in Figure 8-24. This packet identifies the culprit by
querying remote BitTorrent servers, as shown in the Info field. This popular
peer-to-peer file transfer service is the source of our problem and all of these
connections.

Figure 8-24: Stepping through individual packets leads us to the culprit, BitTorrent.

Summary

In this case, a user installed BitTorrent on his workstation to download music
and configured it to allow both incoming and outgoing connections at an
unlimited rate. This high amount of bandwidth allowed one workstation to
monopolize all of the company’s Internet traffic.

This case reminds us that when doing analysis, it is common to want to use
some of the more advanced features to try to quickly solve the problem; how-
ever, sometimes the quickest solution is to simply examine individual packets.

114 Chap te r 8

POP Goes the Email Server
email-troubles

.pcap
In terms of importance, email ranks right up there with the Internet in the
eyes of employees. That being the case, when it’s not working, you are going
to hear about it.

In this scenario, all of the users on your network are complaining that
their email is taking an extremely long time to reach its destination. While
this is sometimes the case with email sent to other domains, even email they
send to fellow employees within the same organization is taking forever.
Let’s get to the bottom of this.

What We Know

All email in our company is managed through one mail server. After doing
some research, we confirm that this problem exists for all of the email clients
in our network. Whereas a typical intra-office email would normally be
delivered instantaneously, delivery is now taking from 10 to 15 minutes.
The same delay is true for the receipt of external email.

Tapping into the Wire

Because our problem relates to a service that is hosted on one machine, the
mail server, we’ll place our analyzer there. The problem has so far been con-
sistent throughout the work day, so any time is a good time to capture packets.

Analysis

When you look at the results of the capture (email-troubles.pcap) you will
see exactly what you should see on an email server: email packets. There are
a whole lot of Post Office Protocol (POP) packets coming into our mail
server (see Figure 8-25), but just how many and at what rate? Perhaps our
mail server is being overloaded.

Figure 8-25: This capture includes a lot of POP packets.

To determine the rate at which we’re receiving POP packets, change the
time display format to Seconds Since Beginning of Capture and look at the
last packet in the file. This result tells us that we are looking at about two
minutes’ worth of traffic, as shown in the Time column in Figure 8-26.

Figure 8-26: Changing the time display format gives us an idea of how much data we are receiving in what
amount of time.

F ight ing a Slow Network 115

Now we can start to look at each communication stream to see if anything
abnormal is going on.

The great thing about a POP packet is that if you want to view the
contents of the email message it contains, all you have to do is view the TCP
stream associated with it. For example, if you do this for packet 1, you’ll see
that this email includes text as well as an attachment, document_9446.pif, as
shown in Figure 8-27.

Figure 8-27: The details of packet 1 show information about the email being sent.

Looking further through this stream, we see another message from
another suspicious-looking email address; it also has a PIF file attached to it.

A quick search for PIF files will tell you that these are Program Informa-
tion Files—not something you should typically see coming through email.
Not only that, but these files tend to be very large executables. Over the
course of this capture file, these files just keep coming in, from multiple
sources.

What we have here is an influx of spam (and possibly virus- or worm-
containing) email that is overloading our email server and slowing email
traffic across the network.

Summary
Our email server is being overwhelmed by a high volume of spam with large
attachments. This condition is very commonly seen when monitoring email
server performance. As an organization grows, the amount of spam received
grows with it. In the case of our network, the users can either be patient and
ride out the slowness, or the organization can invest in some sort of enterprise
spam-filtering solution.

Here’s Something Gnu
gnutella.pcap This scenario is along the same lines as our earlier BitTorrent scenario. Tina,

a user on our network, calls and complains that her computer is running
incredibly slowly, whether she’s doing something locally, over the local
network, or over the Internet.

116 Chap te r 8

What We Know
This scenario presents the same case as our earlier BitTorrent example. As
such, we know that this problem is widespread and is affecting other users, as
well. However, the other users are only reporting slow speeds when dealing
with the Internet and net-centric applications. The edge router on our
network is reporting high processor utilization and a large amount of
inbound and outbound traffic.

Tapping into the Wire
In this case, all of the symptoms of the affected computers are consistent
with our BitTorrent example, with the exception of Tina’s computer. Not
only are her net-centric applications slow, but her computer is dragging a
bit in general.

Because her computer is showing unique symptoms, we assume that the
problem is related to her computer, so that’s where we’ll begin our analysis.
However, with Tina’s computer running so slowly, installing Wireshark directly
on it might not be the best idea—her computer’s sluggishness could cause
packets to be lost in the capture process. We’ll use port mirroring instead.

Analysis
This capture file (gnutella.pcap) is long, but looks a lot like the BitTorrent
capture, for the most part. As you can see in Figure 8-28, Tina’s computer,
10.1.4.176, appears to be trying to communicate with several different hosts
outside of our network. Most of these attempts either come back unanswered
after the initial SYN or are denied by the client with a RST packet.

Figure 8-28: Most of these TCP connection attempts are failures.

Several things could be causing these connections to fail, but before we
investigate further, lets see exactly how much traffic we are contending with
so that we can determine the extent of our problem. A good way to do at this
is to look at the Conversations dialog to see how many individual TCP and IP
conversations are going on, as shown in Figure 8-29.

The Conversations window shows that this trace file contains 81 IP con-
versations and 243 TCP conversations, as you can see in the tabs at the top of
Figure 8-29. This large number of conversations is usually acceptable if you
are viewing traffic captured from a server, but this is a workstation; it’s not
normal to see this many conversations over such a short a period of time.

F ight ing a Slow Network 117

Figure 8-29: The Conversations dialog shows that a lot of conversations are happening.

If you look at some of these TCP conversations, you will see that every
one involves a remote host. You can tell that most of these conversations
were not successful, since the number of packets for each is very low.

In order to get the information we really need to evaluate the communi-
cation going on here, we need to see a successful conversation. The best way
to do so is from the Conversations window that we already have open. With
the IPv4: 81 tab selected in that window, click the Packets heading to sort all
conversations by the number of packets they contain, as shown in Figure 8-30.

Figure 8-30: A view showing the conversations sorted by the number of packets they contain

You should see communication between Tina’s computer and the
remote host, 65.34.1.56, at the top of the list, as shown in Figure 8-31.

118 Chap te r 8

Figure 8-31: Tina’s computer and a remote host communicate here.

Now, view only these packets by right-clicking this conversation, selecting
Apply as Selected, selecting Apply a Filter, and then choosing A<->B. The
result is that you see only the packets shown in Figure 8-32.

Figure 8-32: Now only the packets in the relevant conversation are shown.

The packets shown in Figure 8-32 offer some additional information that
leads us straight to the problem. Specifically, packets 431, 433, and 434 are
all identified as Gnutel packets. These Gnutel packets are characteristic of
traffic sent or received through the Gnutella file-sharing network. Clicking
them gives a bit more detail, as shown in Figure 8-33.

Figure 8-33: These Gnutella packets contain some interesting information.

The Packet Details pane for packet 431 (in Figure 8-33) doesn’t really give
us any useful information, other than that this packet is a Download/Upload
stream traversing the Gnutella network. If we look at the Packet Bytes pane
(Figure 8-34), however, we see something a bit alarming.

F ight ing a Slow Network 119

Figure 8-34: The Packet Bytes pane shows us what is being downloaded
through Gnutella.

This particular data stream shows a GET command downloading a file
with a name containing the words sorority sex kitten. We have found our
suspect traffic.

As a brief aside, here’s another way to tell that this is Gnutella traffic. If
you look at all of the conversation attempts taking place, you will notice that
the Info heading of the Packet List pane shows all of this communication
happening on port 6346, as shown in Figure 8-35.

Figure 8-35: Looking at the port number is a good way to identify the type of traffic.

A quick search for this port number at http://www.iana.org will list the
services associated with this port.

Summary

The Gnutella network is commonly used for the downloading and distribution
of various file types. This idea may sound great at first, but unfortunately, it
has resulted in a large peer-to-peer network of pornography as well as pirated
software, movies, and music.

In this scenario, it seems that Tina, or someone using Tina’s computer,
has installed some form of Gnutella client in order to download pornographic
material.

Final Thoughts

If you look at way each of these scenarios was resolved, you will notice
that most of the problems were not actually network related. This is pretty
common when it comes to complaints about a slow network. Typically, it
isn’t the network that is slow, but rather problems with individual computers
or applications that make users perceive it that way.

9
S E C U R I T Y - B A S E D A N A L Y S I S

In this chapter we’ll dive into several
security-related network scenarios and work

through them with Wireshark. With looming
threats of hackers, identity thieves, and corporate

data theft, you can’t afford not to be able to analyze the
security of your network at the packet level.

OS Fingerprinting
osfingerprinting

.pcap
Operating system (OS) fingerprinting is a technique used by hackers to identify
a remote computer’s operating system in order to gain information that
could be useful for breaking into it. OS fingerprinting works by using a
remote machine to send various commands to a target computer. When
the remote machine receives the responses to these commands, it can inter-
pret those responses to make an educated guess at the operating system the
target computer is using. Knowing the operating system of a computer you
wish to exploit allows you to quickly find exploits specific to that operating
system.

122 Chap te r 9

When you open osfingerprinting.pcap, you’ll see several different types
of ICMP traffic, as shown in Figure 9-1. Some of this traffic, like Echo (ping)
request and Echo (ping) reply, are common and should not be cause for
alarm. However, traffic like Timestamp request/reply, Address mask request, and
Information request is unusual.

Figure 9-1: This is the kind of ICMP traffic you don’t want to see.

The unusual ICMP request traffic that we see in Figure 9-1 suggests that
our system is the target of an attacker using ICMP-based OS fingerprinting
scans. An attacker sends these requests and uses the target system’s response
(if there is any) to determine the specific operating system running on the
target.

NOTE Because we should never see ICMP types 13, 15, or 17 traffic under normal circum-
stances, we can create a filter that will show only those types of traffic so we can check
for it quickly. This filter is icmp .type==13 || icmp .type==15 || icmp .type==17.

A Simple Port Scan
portscan.pcap Attackers can use port scans to learn very critical information about a network.

Using specialized port-scanning software, a hacker can attempt to connect to a
device on a specified array of ports, such as 21 (FTP) and 80 (HTTP). With the
information received from these scans, an attacker can find open ports that
could allow access to your network. Think of an open port as a secret tunnel
into a well-guarded castle. Once a hacker knows about one of these tunnels, he
may very well be able to get in using the right bag of tricks. Figure 9-2, based on
the capture portscan.pcap, shows a port scan at work.

Figure 9-2: A port scan shows multiple connection attempts on various ports.

Secu ri t y -based Analys i s 123

As you can see in Figure 9-2, there are quite a few packets traveling
between 10.100.25.14 (the local machine) and 10.100.18.12 (a remote
computer). When you take a closer look at these packets, you will see
exactly why they are so suspicious.

Our trace file shows that every packet sent from the remote computer is
being sent to a different port number on the local machine (for example, 21
and 1028).

But more importantly, these ports happen to be commonly exploited
ones, such as telnet, microsoft-ds, FTP, and SMTP. When you see a remote
computer sending multiple packets to commonly exploited ports, you can
typically assume that a port scan is taking place.

The Flooded Printer
printerproblem

.pcap
Even the smallest organizations can have several networked printers. Factor
in the cost of paper, ink, and maintenance, and the total cost of ownership
for even a low-volume network printer can add up quickly.

In this scenario one of the higher-volume network printers on our
network has begun printing out complete garbage, and nobody knows the
source of it. Our goal is to find the source of these mystery documents and
put an end to it.

What We Know

Our printer is a high-volume network printer shared through a server. It has
no special permissions assigned to it nor any extra logging capabilities. The
problem is constant. Even when we clear out the printer’s queue, it fills up
immediately and starts printing again.

Tapping into the Wire

Because the problem printer is installed on a server, there will be a lot
of traffic flowing around the wire, and we’ll have a lot of data to sort
through. Regardless, installing Wireshark directly on the server is the best
way to go. Since the problem seems to be constant, we can capture packets
at any time.

Analysis

The capture file printerproblem.pcap is a pretty good example of what traffic
to a printer looks like. As you can see in Figure 9-3, our server, 10.100.16.15,
is receiving a massive influx of SPOOLS packets from a client within our
network, 10.100.17.47.

124 Chap te r 9

Figure 9-3: All of the SPOOLS traffic is going to the printer.

It’s easy enough to identify the source of the printing in this case, but we
still haven’t solved the problem. To learn more about what’s happening, let’s
view the TCP stream of data being sent to the printer. When you do, you’ll
see that the data is being printed from Microsoft Word and that the username
of the person printing the data is csanders (Figure 9-4).

Figure 9-4: Viewing the TCP stream of data being sent to a printer can give good insight.

Summary

While we haven’t stopped the influx of SPOOLS packets in this scenario, we
have used Wireshark to quickly find the source of our mysterious printer
problem. Having identified the source, we can find out why this information
is being sent to the printer. (Most likely, client 10.100.17.47 on our network
has been compromised in some way.)

An FTP Break-In
ftp-crack.pcap FTP is one of the most commonly used means of transferring large amounts

of data. The company we will be looking at now has an internal FTP server
that it uses to maintain all of its pre-release software. Lately, the IT technician
in charge of maintaining and monitoring this server has noticed a large
amount of traffic on the server after hours. Unfortunately, the FTP server
software doesn’t have logging functionality, so the only way to get a good
grasp of what is going on is to get a packet capture. We want to identify the
reason for the server’s increase in bandwidth and eliminate the source.

Secu ri t y -based Analys i s 125

What We Know

The FTP server is running very old software with no decent logging func-
tionality. All major developers within the company have usernames and
accounts that allow them full access to all files on the server. This server is
also configured so that it may be accessed from outside of the network so
that developers can work from home.

Tapping into the Wire

Since this server is on our network, installing Wireshark on it may seem like
the best method to use. However, since the server is experiencing a very high
traffic load, packets might be dropped if we bog down the server too much,
so we’ll use port mirroring instead.

Analysis

When you open the capture ftp-crack.pcap, you will see a whole lot happening
in a very short amount of time. From our discussion of FTP in Chapter 6, you
should be familiar with how the FTP authentication process should look.

After the initial TCP handshake, a login process will typically take place
so that the user can begin interacting with the server. In this capture, we jump
right into a username and password authentication process, and as you can
see in packet 4 (Figure 9-5), this authentication attempt fails.

Figure 9-5: Packet 4 shows the first authentication
attempt failure.

We might assume that the user trying to log in has mistyped his password,
but that assumption is quickly put to rest in the next several packets. As shown
in Figure 9-6, we see lots of authentication failures.

Figure 9-6: You immediately begin seeing a lot of authentication failures.

Immediately following the failed authentication attempt, we see another
login attempt to the server (10.121.70.151) from a client within our own net-
work (10.234.125.254). The odd thing about this request is that the user is
attempting to log in using the admin account, as seen in packet 10 in Figure 9-7.

126 Chap te r 9

Figure 9-7: Packet 10 shows an attempt to log in to the admin
account.

This is a great opportunity to use a display filter to show only those packets
that represent an FTP login attempt, like so:

ftp.request.command == "USER" || ftp.request.command == "PASS"

Figure 9-8 shows the result of using this filter.

Figure 9-8: The short display filter entered into the Display Filter
window helps to show only relevant traffic.

Now, if we look in the Info column of each login attempt, we can see that
the passwords being used are in alphabetical order—that is, the attacker is
stepping through each letter of the alphabet in succession. This is a tell-
tale sign that someone is trying to guess the password of an account using a
dictionary-style attack. A dictionary attack is one in which passwords are guessed
based upon a user- or machine-created dictionary of words. If you look at the
time between each attempt, you can also see that these attempts to guess the
password are happening too quickly to be entered by a human; they’re most
likely being launched by a cracking tool. We have successfully found the
source of our high-bandwidth utilization.

Secu ri t y -based Analys i s 127

Summary
We have confirmed that a machine within our network is being attacked by a
cracking program designed to perform a dictionary attack on the FTP server.
But our job isn’t done yet. At this point you must determine whether the
employee whose machine is launching the attack is responsible for orches-
trating it or if the machine has been compromised from the outside.

Blaster Worm
blaster.pcap The looming threat of viruses and worms spreading across the Internet is one

that frightens system administrators and end users alike. In this scenario,
Eddy calls the help desk with concerns that his computer has been infected
with a virus. Every time he starts his computer, he receives a message that it
will shut down in 60 seconds. Once this 60-second timer expires, the computer
shuts down as stated. This process keeps repeating continuously and he is not
able to access his computer for more than 60 seconds at a time.

What We Know
We know that Eddy tends to be careful about security, so spyware isn’t an
immediate concern. Our company uses virus-scanning software; however it is
decentralized and mostly user managed.

Tapping into the Wire
Any time you suspect that a virus or worm may be the cause of a computer
problem, it is not usually a wise idea to install a sniffer directly on that
machine. Malicious programs can often work against packet sniffers by not
allowing them to run properly or at all. Our best approach here is to use port
mirroring. The capture will begin as soon as the computer boots up and will
finish when the computer shuts itself down after the 60-second timer expires.

Analysis
The capture file blaster.pcap, shown in Figure 9-9, records a few TCP packets
being transmitted from our suspect computer to another computer on the
local network via ports 1793 and 4444. These packets are captured at a time
when nothing is active on the machine other than the 60-second timer, so
this network activity is suspicious.

Figure 9-9: We shouldn’t see this level of network activity with only the timer running on this machine.

128 Chap te r 9

One of the best ways to identify virus or worm traffic is to look at the raw
data being sent across the wire. Let’s look for each packet in our capture in
the Packet Bytes pane at the bottom of the Wireshark main window. The raw
data for the first packet seems innocent enough; there is not much useful
information, as you can see in Figure 9-10.

Figure 9-10: No useful information can be discerned from packet 1.

Moving on to the second packet, however (Figure 9-11), we see a
reference to the C:\WINNT\System32 directory. This is one of the most
important directories on a Windows 2000 system, since it contains many
of the system files used to load and run Windows. Seeing a network packet
referencing this location is often a sign of trouble.

Figure 9-11: The reference to C:\WINNT\System32 means something might be accessing
our system files.

Once again, the third packet provides no useful information, but
the fourth shows something that may be cause for concern, as shown in
Figure 9-12.

Figure 9-12: Packet 4 shows a reference to msblast.exe.

The Packet Bytes pane of the fourth packet shows a direct reference to
the file msblast.exe. If you were involved in IT during the latter part of 2003,
this filename should jump out at you immediately. However, if you weren’t,
Google is your friend. A search for this name will bring up loads of informa-
tion about the Blaster worm—the source of the problem on Eddy’s computer.

Summary

In this scenario we were faced with a computer with virus-scanning soft-
ware that was not functioning properly; the problem turned out to be the
Blaster worm.

Secu ri t y -based Analys i s 129

When you suspect that you may be dealing with a virus or worm, you can
usually find out all you need to know about the threat by performing an
Internet search for the symptoms. Once you identify the virus or worm you
are dealing with, you can research it and learn how to fight it.

Covert Information
covertinfo.pcap In this scenario you’re the network security officer at a large multinational

corporation. You have just been alerted by your superior that an employee
overheard two other employees discussing the possibility of sneaking off with
some of the company’s assets. Your task in this scenario is to monitor the com-
puters of the two suspect employees to see if you can figure out their plans.

What We Know

This scenario is based on the speculation of another employee. While we
can’t yet verify if what was overheard is true or if it was just taken out of
context, we do know that the two employees in question are very computer
savvy, so our observations should be conducted with the utmost care.

Tapping into the Wire

Because we don’t want our tech-savvy employees to know that we’re onto
them, we want to make absolutely sure that the computers we are monitoring
show no signs of being watched. For this reason, we’ll use port mirroring,
even though we are within our own network. A separate mirror and capture
will have to be set up for each computer being monitored.

Analysis

Throughout the course of these two employees’ daily work, a lot of packets
are generated. In most cases, these packets are legitimate, so the first step is
to search for traffic that could be suspicious. Display filters make it easy to
search for traffic such as DCEPRC, NetBIOS, or ICMP, which we should not
see under normal circumstances. I’ve applied this filter to the covertinfo.pcap
capture; the result is two packets from one employee’s computer, as shown in
Figure 9-13.

Figure 9-13: ICMP? Why would these two employees be pinging each other?

These packets may look like standard ICMP packets, but the source and
destination addresses belong to the computers of our two suspect employees.
Why would they be pinging each other during the middle of the day?

130 Chap te r 9

Next, as with the previous scenario, we’ll look at the Packet Bytes pane
to see if we can find anything interesting in this ping packet. Upon doing so,
we see something a bit alarming, as shown in Figure 9-14.

Figure 9-14: This is definitely not a normal ping packet.

This ping packet is far from standard. As a matter of fact, it is carrying
a secret payload that details more than our employees would care for us
to know!

Summary

The technology used in this scenario is referred to as Loki; it is a means of
sending information across the wire via hidden methods. The term Loki
comes from the first project that ever embedded data into ICMP packets.
In our situation, ICMP was used as the carrier to transmit messages between
our two employees with malicious intent.

The use of covert channels of communication is not a new technology, but
it is evolving constantly. It is not uncommon to find data hidden in other types
of packets as well, such as TCP headers and ARP packets. Always remember
the Packet Bytes pane—while you may not use it often, it’s sometimes the
only way to see the secrets a packet may contain.

A Hacker’s Point of View
hackersview

.pcap
Throughout this book, we have looked at things from the point of view of a
network administrator. But what happens when a hacker with some packet
analysis knowledge decides to take a peek at what’s on the wire? In this
scenario we assume the identity of a hacker attempting to access sensitive
information on his local company network.

What We Know

Even though you’re an employee of the company you are trying to break
into, you have limited access to network resources. The network is a run-of-
the-mill Ethernet network, and it utilizes a few switches and routers. All of
the computers on the network are running various versions of Windows with
access privileges defined on a per-user basis.

Secu ri t y -based Analys i s 131

Tapping into the Wire

Some hackers want to capture the passwords of network administrators to gain
administrative access to a network. Others simply want to bring a network to
its knees. In this case we want to access a router on the network and then do
some serious damage. Network administrators are always tinkering with those
things, so it should be simple enough to monitor the communication
between a network admin and a router to intercept a password.

Luckily, both the network administrator and the target router are on the
same subnet as the computer we will be coordinating our attack from. We’ll
use Cain & Abel to set up ARP cache poisoning between the network admin-
istrator’s computer, 10.100.18.5, and the network router, 10.100.16.1, just as
we did in Chapter 2.

Analysis

After a while, we manage to get a capture file that contains the telnet traffic
of the network administrator logging into the router. For the sake of this
scenario, Figure 9-15 shows only the traffic relating to this particular telnet
session.

Figure 9-15: It appears that we have found what we are looking for.

When we discussed telnet in Chapter 6, we noted that it typically uses
cleartext in its transmission of data. Telnet is commonly used to remotely
administer switches, servers, and routers, as it is here. Most of these devices
have features that enable to you log in securely, usually via SSH, but this is
something that system administrators often neglect. Since the communication
is happening in the clear, we should be able to find the login credentials for
this router with just a little patience.

Telnet is a sequential protocol, meaning that everything happens in a
set series. Therefore, the best way to locate the login process is by stepping
through the Telnet Data packets one by one. As we do, we see the beginning
of the authentication process clearly in packet 8, as shown in Figure 9-16.

Figure 9-16: To begin the authentication process, this packet requests a username.

132 Chap te r 9

If you look in the Packet Details pane in the Telnet field, you will see that
the data being passed from the server is the request for a username. The next
packet replying to the server should contain the username, but it’s a bit trickier
than that.

As you can see in Figure 9-17, packet 10 contains only the letter a. This
doesn’t sound like a typical username, and it isn’t.

Figure 9-17: This packet contains the first piece of the puzzle, an a.

The next packet sent from the client to the server gives us another piece
of the puzzle, the letter d, as shown in Figure 9-18. We’re seeing the admin-
istrator’s response to the server one packet at a time. This process continues
for a few more packets until we can eventually spell out the word admin. Not
too original, huh? It’s probably the default.

Figure 9-18: The pieces start coming together as we get more letters. Here we have a d.

At packet 24 we see a request for a password, as shown in Figure 9-19.

Figure 9-19: The server requests a password from the network administrator.

Once again, we see packets going across the wire that give us the
password one letter at a time (Figure 9-20).

Figure 9-20: The first letter of the password, b, makes its way across the wire.

We continue sniffing these packets until we have the complete password,
barrymanilow. Not only did we manage to capture the router password, but we
have also learned that the network administrator has excellent taste in music!

Secu ri t y -based Analys i s 133

Summary

At this point, we have everything we need to bring down this network. Once
inside the router’s configuration, we can delete subnets, change ip helper-
addresses, and do all sorts of other mischievous things that will cause the
network administrator severe headaches.

The point of this scenario is not to show you how to anger your network
guys, but rather to demonstrate the power someone with a little knowledge
and a packet sniffer can have. With Wireshark and a few other simple tools,
we have effectively found a way to completely terminate all function on this
network.

10
S N I F F I N G I N T O T H I N A I R

The world of wireless networking is com-
pletely different from traditional (wired)

networking. When considering wireless net-
working, we need to take into account issues like

frequencies, standards, and unique security questions.
Given these extra considerations, you can bet that the
sniffing process changes completely.

This chapter is devoted to explaining the wireless sniffing process on
both Windows- and Unix-based systems. As we discuss what makes wireless
sniffing unique, we’ll look at a few examples showing it in action.

Sniffing One Channel at a Time

The first thing to understand about sniffing wireless traffic is that you can
only sniff one wireless channel at a time. Wireless networks in the United
States can operate on one of eleven different channels (more are available

136 Chap te r 10

internationally). Therefore, before you capture the traffic from a wireless
client or access point, you must first identify the channel it is broadcasting on
(Figure 10-1).

Figure 10-1: Sniffing wirelessly can be tedious, since it can only be done
one channel at a time.

The best way to find out which channel is being used is to channel hop.
When you channel hop, you simply start a packet capture and switch rapidly
from channel to channel until you see data that relates to what you are look-
ing for. Although channel hopping isn’t the most technical of solutions,
it works.

Wireless Signal Interference

Unfortunately, sometimes we can’t rely on the integrity of wireless communi-
cation. Because data is sent through the air, it’s very likely that something will
interfere with the signal. Wireless networks include features to handle inter-
ference, but they don’t always work. Therefore, when capturing packets over
a wireless network, pay close attention to your environment to ensure that
there are no large sources of interference, such as large reflective surfaces,
large rigid objects, microwaves, 2.4 GHz wireless phones, thick walls, and
high-density surfaces.

Along these same lines, try to get as close as possible to the device you
are analyzing. You can’t hope to capture all of the packets sent by a device if
you are one floor above it.

Wireless Card Modes

Before sniffing wireless packets, it is a good idea to familiarize yourself with
the different modes in which a wireless card can operate.

Most users only use wireless cards in managed or ad-hoc modes, but other
modes include master mode and monitor mode. I’ll cover each mode below; a
graphical representation of the way each one operates is shown in Figure 10-2.

Wireless Client Wireless
Access Point

Wireless Spectrum
(11 Channels)

1
2
3
4
5
6
7
8
9
10
11

Sni ff ing in to Thi n Ai r 137

Figure 10-2: The different wireless card modes

Managed mode
Managed mode is used when your wireless client connects directly to a
wireless access point (WAP). In these cases, the driver associated with
the wireless NIC relies on the WAP to manage the entire communica-
tions process.

Ad-Hoc mode
Ad-hoc mode is used when you have a wireless network setup in which
devices connect directly to each other. In this mode two wireless clients
that want to communicate with each other share the responsibilities that
a WAP would normally handle.

Master mode
Some higher-end wireless network cards also support master mode.
Master mode allows the wireless NIC to work in conjunction with special-
ized driver software in order to allow the computer to act as a WAP for
other devices.

Managed Mode

Wireless Client

Wireless Client

Wireless Client

Wireless Client

Wireless Client

Wireless ClientWireless Client
(Master)

Wireless Access
Point

Ad-Hoc Mode

Master Mode

Wireless Client Wireless Client

Wireless Client
(Monitoring)

Monitor Mode

138 Chap te r 10

Monitor mode
This is the most important mode for our purposes. Monitor mode is used
when you want your wireless client to stop transmitting and receiving data
and only listen to the packets flying through the air. In order for Wire-
shark to capture wireless packets, your wireless NIC and accompanying
driver must support monitor mode. If you purchase a wireless network
card for the purpose of analysis, be sure that it supports monitor mode
(also known as RFMON mode).

Sniffing Wirelessly in Windows

Even if you have a wireless NIC that supports monitor mode, most Windows-
based wireless NIC drivers won’t allow you to change into this mode. You’ll
need a little extra hardware to get the job done.

Configuring AirPcap

AirPcap (from CACE Technologies, http://www.cacetech.com) is designed
to overcome the limitations that Windows places on wireless packet analysis.
AirPcap is a small USB device (Figure 10-3) resembling a Flash drive that is
designed to capture wireless traffic. AirPcap uses the WinPcap driver discussed
in Chapter 3 and a special client configuration utility.

Figure 10-3: The AirPcap device is very compact, making it easy to tote along
with a laptop.

The AirPcap configuration program is simple to use; it has only a few
configurable options. As shown in Figure 10-4, the AirPcap Control Panel
gives you the following options:

Interface
You can select the device you are using for your capture here. Some
advanced analysis scenarios may require you to use more than one
AirPcap device to sniff simultaneously on multiple channels.

Sni ff ing in to Thi n Ai r 139

Blink Led
Clicking this button will make the LED lights on the AirPcap device
blink. This is primarily used to identify the specific adapter you are
using, if you are using multiple AirPcap devices.

Channel
In this field, you select the channel you want AirPcap to listen on.

Include 802.11 FCS in Frames
By default, some systems strip the last four checksum bits from wireless
packets. This checksum, known as a Frame Check Sequence (FCS), is used to
ensure that packets have not been corrupted during transmission. Unless
you have a specific reason to do otherwise, check this box to include the
FCS checksums.

Capture Type
The two options here are 802.11 Only and 802.11 + Radio. The 802.11
Only option includes the standard 802.11 packet header on all capture
packets. The 802.11 + Radio option includes this header and also pre-
pends it with a radiotap header, which contains additional information about
the packet, such as data rate, frequency, signal level, and noise level.
Choose 802.11 + Radio in order to see all available packet information.

FCS Filter
Even if you uncheck the box next to the words Include 802.11 FCS in
Frames, this option lets you filter out packets that FCS determines are cor-
rupted. Use the Valid Frames option to only show those packets that FCS
thinks can be received successfully.

WEP Configuration
This area (accessible on the Keys tab) allows you enter WEP decryption keys
for the networks you will be sniffing. In order to be able to interpret data
encrypted by WEP, you will have to enter the correct WEP keys into this field.

Figure 10-4: The AirPcap configuration program

140 Chap te r 10

Capturing Traffic with AirPcap
Once you have AirPcap installed and configured, the capture process should
be familiar to you. Just follow these steps:

1. In Wireshark, select Capture�Options.

2. Select your AirPcap device in the Interface selection box, as shown in
Figure 10-5.

Figure 10-5: Choosing the AirPcap device as your capture interface

Everything on this screen should look familiar to you except for
the Wireless Settings button. Clicking this button will give you the same
options that the AirPcap utility gave you, as shown in Figure 10-6. Because
Wireshark is completely integrated with AirPcap, anything configured
in the client utility can also be configured from within Wireshark.

Figure 10-6: The Advanced Wireless Settings dialog allows you to
configure AirPcap from within Wireshark.

Sni ff ing in to Thi n Ai r 141

3. Once you have everything configured to your liking, begin capturing
packets by clicking the Start button.

Sniffing Wirelessly in Linux

Sniffing in Linux is simply a matter of enabling monitor mode on the wireless
NIC and firing up Wireshark. Unfortunately, the procedure for enabling
monitor mode differs with each model of wireless NIC, so I can’t offer a
definitive guide for it here. Your best bet is to do a quick Internet search for
your NIC model for specific details.

One of the more common ways to enable monitor mode in Linux is
through its built-in wireless extensions. You can access these wireless exten-
sions with the iwconfig command. If you type iwconfig from the console, you
should see results like this:

$ iwconfig
Eth0 no wireless extensions
Lo0 no wireless extensions
Eth1 IEEE 802.11g ESSID:"Tesla Wireless Network"

Mode:Managed Frequency:2.462 GHz Access Point: 00:02:2D:8B:70:2E
Bit Rate: 54 Mb/s Tx-Power=20 dBm Sensitivity=8/0
Retry Limit:7 RTS thr:off Fragment thr:off
Power Management:off
Link Quality=75/100 Signal level=-71 dBm Noise level=-86 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:2

The output from the iwconfig command shows that the Eth1 interface
can be configured wirelessly. This is apparent because it shows data for the
802.11g protocol, whereas the interfaces Eth0 and Lo0 return the phrase
no wireless extensions.

Along with all of the wireless information this command provides, such
as the wireless card mode and frequency, notice that the second line under
Eth1 shows that the mode is currently set to Managed. This is what we want to
change.

In order to change the Eth1 interface to monitor mode, you must be
logged in as the root user, either directly or via the switch user (su) command,
shown here.

$ su
Password: <enter root password here>

Once you’re root, you can type commands to configure the wireless
interface options. To configure Eth1 to operate in monitor mode, type

iwconfig eth1 mode monitor

142 Chap te r 10

Once in monitor mode, running the iwconfig command again should
reflect your changes. Now ensure that the Eth1 interface is operational by
typing

iwconfig eth1 up

We’ll also use the iwconfig command to perform the channel-hopping
process discussed earlier in this chapter. Change the channel of the Eth1
interface by typing

iwconfig eth1 channel 3

NOTE You can do this on-the-fly as you are capturing packets, so don’t hesitate to change
channels at will. This command can also be scripted using various Linux scripting
languages to make the process easier.

Once you have completed these configurations, start Wireshark and
begin your packet capture.

802.11 Packet Extras

80211traffic
.pcap

The main difference between the packet structure of a wireless packet and
that of a standard packet is the addition of an 802.11 header. This header
contains extra information about the packet and the medium used to
transmit it, as shown in Figure 10-7.

Figure 10-7: The 802.11 header contains extra wireless
information about the packets.

To examine the packet shown in Figure 10-7 more closely, open the
80211traffic.pcap example file. Let’s look at some of the interesting items in
this header:

Type/Subtype This specifies the type or subtype of the 802.11 packet
shown. The type can be either management, data, or control.

Each type can also have a subtype. For example, the subtype of
management packets can be beacon frame, authentication request,
or disassociation notice.

Sni ff ing in to Thi n Ai r 143

Destination Address, Source Address, and BSS Id These fields contain
the source, destination, and BSS Id addresses of the packet.

Fragment Number and Sequence Number These numbers are used to
place the wireless packets in the appropriate order, similar to the way
TCP assembles data streams.

802.11 Flags
The 802.11 header packet also contains a Flags section with even more
wireless-specific information, as shown in Figure 10-8.

Figure 10-8: The Flags section contains more wireless-specific packet
information.

The Flags section includes these fields:

DS Status The distribution status (DS) field is used to determine which
way the packet is traveling. If the From DS field is 1 and the To DS field
is 0, then the packet is traveling from the WAP to the wireless client. If
the values are the reverse, the packet is traveling from the wireless client
to the WAP. If both numbers are 0, that usually means the packet is being
broadcast from the WAP.

More Fragments This field is used when additional packets are required
in order to read the packet being sent.

Retry The Retry option indicates whether or not the packet being
transmitted is from the original transmission attempt (0) or a
retransmission (1).

PWR MGT This field indicates whether or not a client is going into a
power-saving state.

More Data This field is used by a WAP to inform a client that more
packets are waiting to be sent to it.

Protected Flag This field is used to show whether or not a packet is
using data encryption.

Order Flag The Order field is used to inform the recipient that the
packet must be kept in a particular order, which prevents the recipient
from reorganizing packets in order to increase throughput performance.

The Beacon Frame
The beacon frame is one of the most informative packets in a wireless
transmission. A beacon frame is sent as a broadcast packet from a WAP across
a wireless channel to notify any listening wireless clients that the WAP is

144 Chap te r 10

available and to define the parameters that must be set in order to connect
to it. Therefore, this type of broadcast packet contains a lot of useful infor-
mation, as shown in Figure 10-9.

Figure 10-9: This beacon frame tells you everything you
could ever want to know about the WAP.

Some of the information that you might see in a beacon frame includes
the following:

SSID parameter set This is the SSID that the WAP is broadcasting.

Supported rates This lists the supported rates of data throughput
provided by the WAP and specifies whether the protocol used is 802.11b
or 802.11g.

DS parameter set This shows the channel the WAP is broadcasting on.

Extended supported rates This shows other supported throughput
rates provided by the WAP.

Vendor-specific information This section shows vendor-specific infor-
mation about the WAP, including the chipset manufacturer, tag number,
and tag length. (Note that the chipset manufacturer is not always the
same as the WAP manufacturer.)

Wireless-Specific Columns

Wireshark typically shows six individual columns in the Packet List pane, all
of which should look familiar to you. However, due to the added overhead
when analyzing and interpreting wireless packets, Wireshark displays two
more very useful columns: RSSI and TX Rate. The Received Signal Strength
Indication (RSSI) column shows the radio frequency (RF) signal strength of a
captured packet, while the TX Rate column shows the data rate of a captured
packet, as shown in Figure 10-10. Both indicators can be of great help when
you are troubleshooting wireless connections. In fact, even if your wireless
client software says you have excellent signal strength, doing a capture with
these columns enabled can show you a number that may or may not support
that claim.

Figure 10-10: These two additional columns make a big difference in how you
look at things during analysis.

Sni ff ing in to Thi n Ai r 145

To add these columns to the Packet List pane, follow these steps:

1. Choose Edit�Preferences.

2. Navigate to the Columns section and click New.

3. Type RSSI in the Title field, and select IEEE 802.11 RSSI in the Format
drop-down box.

4. Repeat this process again for the TX Rate column, titling it appropriately
and selecting IEEE 802.11 TX Rate in the Format section. Figure 10-11
shows what this window should look like after you have added informa-
tion for both columns.

5. Click OK in the Preferences dialog to save your changes.

6. Restart Wireshark to display the new columns.

Figure 10-11: Adding the IEEE wireless-specific columns to the Packet List pane

Wireless-Specific Filters

We discussed the benefits of capture filters in Chapter 4. In a wired infra-
structure it is a lot easier to filter the traffic you want to capture, since each
device has its own dedicated cable. In a wireless network, however, all traffic
generated by wireless clients coexists on shared channels, which means that a
capture of any one channel may contain traffic from dozens of clients. This
section is devoted to some packet filters that can be used to help you find the
traffic you want.

146 Chap te r 10

Filtering Traffic for a Specific BSS Id

Each WAP in a network has a unique identifying name called its Basic Service
Set Identifier (BSS Id). This name is sent in every wireless management and
data frame the access point transmits. (See “802.11 Packet Extras” on
page 142.)

Once you know the name of the BSS Id you want to examine, all you really
have to do is to find a packet that has been sent from that particular WAP.
Wireshark shows the transmitting WAP in the Info column of the Packet List
pane, so finding this information is typically pretty easy.

Once you have a packet from the particular WAP you want, find its BSS Id
field in the 802.11 header, as shown in Figure 10-9. This is the address you
will base your filter on.

After you have found the BSS Id MAC address (listed in the Packet Details
pane) you can use the filter wlan.bssid.eq 00:11:23:44:55:66 to show only the
traffic flowing through that particular WAP.

Filtering Specific Wireless Packet Types

Earlier in this chapter, we discussed the different types of wireless packets
you can see on a network. You will often need to be able to filter based upon
these types and subtypes. Use Table 10-1 as a reference to help you to build
the filters you need.

Filtering Specific Data Types

Although wireless management packets are very important for some types
of analysis, our analysis may only require looking at the data being passed
through the air—for instance, if we need to track down rogue wireless clients
or identify the possibility of unwanted information disclosure over the wireless
network. Therefore, we need to know how to filter only data packets.

To filter out all but the data packets in a capture file, use the capture
filter wlan.fc.type eq 2. (If you reference Table 10-1, you will see that a frame
type of 2 will show us all data pertaining to the data frames.)

The only downside to using this filter is that it still allows for the display
of NULL data packets. These packets are used by certain WAPs and wireless
NICs to alert the network that they are about to switch channels. If you don’t
need to see these NULL packets, filter them out by expanding the filter we
created earlier and removing the NULL packet subtype. The filter looks like
this when completed:

(wlan.fc.type eq 2) and !(wlan.fc.subtype eq4).

Differentiating between unencrypted and encrypted data is a great way
to identify rogue WAPs on a network or to determine whether sensitive infor-
mation is being sent in cleartext.

Sni ff ing in to Thi n Ai r 147

Recall the Protected flag from the section “802.11 Flags” on page 143; it
is the flag used to identify a packet as being encrypted or unencrypted. We’ll
base our filter on this flag.

Recall that the Protected flag bit is set to 0 when no encryption is being
used and it is set to 1 if the packet is encrypted with a protocol such as WEP,
WPA, TKIP, and so on. Therefore, using a filter of

wlan.fc.protected eq 0

will show us all packets that are not encrypted. By the same token, a filter of

wlan.fc.protected eq 1

will show only encrypted traffic.

Table 10-1: Wireless Types/Subtypes and Associated Filter Syntax

Frame Type/Subtype Filter Syntax

Management frames wlan.fc.type eq 0

Control frames wlan.fc.type eq 1

Data frames wlan.fc.type eq 2

Association request wlan.fc.type_subtype eq 0

Association response wlan.fc.type_subtype eq 1

Reassociation request wlan.fc.type_subtype eq 2

Reassociation response wlan.fc.type_subtype eq 3

Probe request wlan.fc.type_subtype eq 4

Probe response wlan.fc.type_subtype eq 5

Beacon wlan.fc.type_subtype eq 8

Disassociate wlan.fc.type_subtype eq 10

Authentication wlan.fc.type_subtype eq 11

Deauthentication wlan.fc.type_subtype eq 12

Action frames wlan.fc.type_subtype eq 13

Block ACK requests wlan.fc.type_subtype eq 24

Block ACK wlan.fc.type_subtype eq 25

Power save poll wlan.fc.type_subtype eq 26

Request to send wlan.fc.type_subtype eq 27

Clear to send wlan.fc.type_subtype eq 28

ACK wlan.fc.type_subtype eq 29

Contention free period end wlan.fc.type_subtype eq 30

NULL data wlan.fc.type_subtype eq 36

QoS data wlan.fc.type_subtype eq 40

Null QoS data wlan.fc.type_subtype eq 44

148 Chap te r 10

There are hundreds of ways to filter your captured wireless traffic.
You can view many of these wireless capture filters on the Wireshark wiki
at http://wiki.wireshark.org.

A Bad Connection Attempt
Successful-

WEPAuth.pcap
and Failed-

WEPAuth.pcap

Now let’s take a look at a specific scenario related to wireless packet analysis.
In this scenario, Justin is trying to configure his laptop to access the wireless
network at his office. Unfortunately, it just isn’t working.

What We Know

The network Justin is trying to connect to uses the shared authentication
method with WEP encryption on channel one. Justin should simply be able
to enter these settings into his wireless client to connect, but when he does,
the connection fails.

Tapping into the Wire Air

In this situation, capturing packets from the air requires the same thought
process as capturing packets on a wired connection. Because the process
seems to fail when Justin tries to connect to the wireless network, we’ll capture
packets at that time. The best way to do this is by using the AirPcap device,
set to channel one.

Analysis

Since we have yet to look at any wireless captures, we don’t know what a
successful wireless authentication and association sequence looks like. Let’s
look at a capture file of this process when it’s working correctly—open the
example file SuccessfulWEPAuth.pcap, which shows a successful sequence on
Justin’s network.

The wireless on Justin’s network is set up using WEP shared-key security.
A Wired Equivalent Privacy (WEP) key is a hexadecimal or alphanumeric code
that serves as a type of password used to encrypt the communication between
a WAP and a wireless client (i.e., the user attempting to connect to the wireless
network). In order to connect to a WAP, the wireless client must first complete
a challenge and response with the WAP in order to verify that the correct
WEP key is being used. This challenge and response begins in packet 4 of the
capture file, as shown in Figure 10-12.

Figure 10-12: The WAP issues challenge text to the wireless client.

Sni ff ing in to Thi n Ai r 149

The WAP responds to the connection attempt by sending a challenge
statement to the client. This statement is an encrypted string of text that
must be decrypted by the client (with the appropriate WEP key) and then
sent back to the WAP, as shown in Figure 10-13.

Figure 10-13: The wireless client sends the
unencrypted challenge text back to the WAP.

In packet 6 the wireless client sends back the unencrypted challenge
text, and the WAP to replies with a message stating that the authentication
process was successful, as shown in Figure 10-14.

Figure 10-14: The WAP alerts the client that
authentication was successful.

Finally, after a successful authentication, the client can transmit an
association request, receive an acknowledgment, and connect, as shown in
Figure 10-15.

Figure 10-15: The authentication process is followed by a sweet and simple association request and response.

Now that we know what a connection to a WAP should look like, let’s
look at the capture file from Justin’s connection attempt. As we see in packet 3
(shown in Figure 10-16), the WAP sends challenge text to Justin’s computer,
so we know that the two devices can see each other.

Figure 10-16: The WAP sends challenge text to Justin’s computer.

Packet 5 (in Figure 10-17) shows the wireless client sending its response to
the server, which tells us that these devices are attempting to communicate.

150 Chap te r 10

Figure 10-17: Justin’s computer sends its response to the challenge
text back to the WAP.

At this point in the progression, we should now see a response from the
WAP confirming that the authentication process was successful. But instead,
we see something else, as shown in Figure 10-18. The authentication fails.

Figure 10-18: Apparently, the authentication wasn’t successful.

The message sent from the WAP to Justin’s computer tells us exactly
what is going on: The sequence numbers are out of order. This means that
the response Justin’s computer gave to the challenge text was not correct—
therefore, the WEP key used to decrypt the challenge text has either not
been entered or has been entered incorrectly.

Summary

The sad truth about troubleshooting wireless network problems is that wireless
client software usually doesn’t report specific problems: The client either
connects or it doesn’t. Luckily, wireless packet analysis techniques allow us
to see exactly what is going on and to more efficiently troubleshoot wireless
networks.

Final Thoughts

Wireless networks are becoming a staple in the corporate environment.
As focus shifts to wireless, we must be able to troubleshoot both wired and
wireless networks. The skills and concepts taught in this chapter should help
you to understand the intricacies of troubleshooting a wireless network with
packet analysis.

11
F U R T H E R R E A D I N G

Although Wireshark is the only tool
required for packet analysis in most cases,

several other tools and websites may come in
handy when you’re performing packet analysis.

Cain & Abel (http://www.oxid.it)
You may remember Cain & Abel from our discussion of ARP cache poi-
soning in Chapter 2. Along with being able to perform ARP cache
poisoning, Cain & Abel also has several other great features including
password sniffing and recovery, VoIP recording, and general network
information gathering capabilities.

PingPlotter
This program is an extension of the ICMP ping utility and allows you
take the text output you would normally get from a ping and graph it so
that you can better analyze trends in network connectivity. This capability
comes in handy when you want to do long-term analysis. You can down-
load PingPlotter from http://www.pingplotter.com/download.html.

152 Chap te r 11

Superscan 4
Superscan 4 is a simple network scanning utility. The main draw is its
incredible scanning speed; Superscan scans efficiently and quickly when
you are in a hurry to get the information you need. You’ll find a lot of use
for this tool when collecting information about a host or network. You
can download Superscan from http://www.foundstone.com/resources/
proddesc/superscan.htm.

RUMINT
RUMINT(pronounced room-int) is a freely distributed application that
you can use to visualize captured packet data. It provides several detailed
graph and visualization options to help you better understand and
model the packets you have captured. You can read more about
RUMINT at http://www.rumint.org.

Engage Packet Builder (http://www.engagesecurity.com/products/
engagepacketbuilder)
The Engage Packet Builder by Engage Security (shown in Figure 11-1)
allows you to construct and transmit your own customized packets.
You might use these packets simply for educational purposes or to test
firewalls, intrusion detection systems, or devices susceptible to flooding
attacks.

You can use Engage Packet Builder to craft individual packets with
numerous options, and you can use scripts to automate certain aspects
of packet creation.

Figure 11-1: Engage Security’s Engage Packet Builder

Further Read ing 153

IANA (http://www.iana.org)
The Internet Assigned Number Authority (IANA) oversees the allocation
of IP addresses and protocol number assignments for North America. Its
website offers some valuable reference tools, such as the ability to look
up port numbers, view information related to top-level domain names,
and browse companion sites to find and view RFCs.

Wireshark Wiki and Mailing List (http://www.wireshark.org)
Since Wireshark is a community-driven project, the Wireshark wiki and
mailing list are Wireshark’s primary means of support.

Wireshark University (http://www.wiresharktraining.com)
Wireshark University was launched in March 2007 by several key players in
the Wireshark and packet analysis community, including Gerald Combs
(author of Wireshark), Laura Chappell (Senior Protocol Analyst of the
Packet Analysis Institute), John Bruno (co-founder of CACE technolo-
gies), and Loris Degioanni (author of WinPcap).

Wireshark University is the premier Wireshark training resource. In
addition to its self-paced video training offerings, it also offers a Wireshark
certification program.

http://www.wireshark.org/

A F T E R W O R D

I hope that you have managed to get everything out of
this book that I have put into it. Packet analysis is both a
science and an art, similar to medicine—the network
is the patient and you are the physician. Just as a doctor knows the human
anatomy and the science behind medicine, a network administrator knows the
elements of network architecture and the protocols behind a network. Still,
regardless of how much of the science you understand behind something,
you can’t be the best until you truly understand how it works and have some
experience behind you. This is why seasoned doctors are the go-to people
when it comes to complex cases. The same applies for network administrators.

The main goal of this book has been to introduce you to the tools and
concepts that you must master in order to learn how to get a feel for a net-
work. The more you use packet analysis and the more real-world experience
you gain, the more effectively you will be able to solve even the most complex
network problems. I challenge you to use Wireshark to go out and explore
your own network and others (with permission, of course) and examine
communication at the packet level. It is only there that you will really learn
what it means to delve into a network and see exactly what is happening on
the wire. This is the essence of practical packet analysis.

I N D E X

Numbers
80211traffic.pcap file, 142

A
ACK packet

in DHCP, 63
number, 79
in TCP handshake, 66
for TCP session termination, 67

ad-hoc mode for wireless card, 137
Address Resolution Protocol (ARP),

21, 62
broadcast, 62, 80
cache poisoning, 20–24, 92–93

using Cain & Abel, 21–24, 131
for converting Layer 2 MAC

addresses, 52
packets, 93

gratuitous, 93
filtering out, 46

request, troubleshooting, 85
spoofing, 21

admin account, login attempts,
125–126

AirPcap
capturing traffic with, 140
configuring, 138–139

and operator, 49
Application layer (OSI model), 5
ARP. See Address Resolution Protocol
arp.pcap file, 62
attachments to email, 115
authentication

failed attempts, 125
for telnet, 131
on wireless network, 148–149

B
barryscomputer.pcap file, 84–85
baseline, for troubleshooting

network problems, 32, 84
Basic Service Set Identifier (BSS Id),

filtering traffic for specific, 146
benchmarking a network, using

Protocol Hierarchy Statistics
window for, 56

bethscomputer.pcap file, 84–85
bi-directional communication, 64
binary data, converting to readable

form, 3
BitTorrent servers, 113
Blaster worm, 127–129
blaster.pcap file, 127
booting, reversing browser settings

after, 86
bottleneck, analyzing, 24
broadcast

domains, 13
traffic, 13

using display filter to clear, 46
browser settings reversed, trouble-

shooting, 86–88
Bruno, John, 153
BSS Id (Basic Service Set Identifier),

filtering traffic for specific, 146

C
C:\WINNT\System32 directory, network

packet referencing, 128
CACE Technologies, 138
Cain & Abel, 21–24, 151

for ARP cache poisoning, 131
Sniffer tab, 22

CAL packets, for MSNMS, 72

156 INDEX

CAM table, 10
capture files

example
80211traffic.pcap, 142
arp.pcap, 62
barryscomputer.pcap, 84–85
bethscomputer.pcap, 84–85
blaster.pcap, 127
covertinfo.pcap, 129
destunreachable.pcap, 79
dhcp.pcap, 62
dns.pcap, 68
double-vision.pcap, 107
email-troubles.pcap, 114
evilprogram.pcap, 92
FailedWEPAuth.pcap, 148
FileDownload.dmp, 59
ftp.pcap, 69
ftp-crack.pcap, 125
ftpclientdenied.pcap, 88–89
ftpserverdenied.pcap, 88–89
gnutella.pcap, 115
hackersview.pcap, 130
hauntedbrowser.pcap, 86, 87
http.pcap, 64
http-client-refuse.pcap, 109, 110
http-fault-post.pcap, 90–91
icmp-tracert-slow.pcap, 104, 105
icmp.pcap, 75
ipfragments.pcap, 81
msnms.pcap, 72
osfingerprinting.pcap, 121
portscan.pcap, 122
printerproblem.pcap, 123
slowdownload.pcap, 100
SuccessfulWEPAuth.pcap, 148
suspectemployeechat.dmp, 55
tcp-con-lost.pcap, 78
telnet.pcap, 71
torrential-slowness.pcap, 112
WEPAuth.pcap, 148
wrongdissector.dmp, 53

exporting, 42
merging, 42–43
sample expressions for, 49
saving, 41–42, 49–50

capture filters, 45
using Filter Expression dialog to

create, 47

Capture Interfaces dialog, 32
Capture menu, 32, 140
Capture Options dialog, 45, 52
Capture Type setting (AirPcap), 139
Capture window, 32
capture, Wireshark preferences, 35
capture files
channel hopping, 136
channels for wireless broadcasting, 136
Chappell, Laura, 153
chat traffic, shown in Expert Infos

window, 101
Cisco, port mirroring command for, 19
cleartext transmission, by telnet

protocol, 131
collection, in packet sniffing process, 3
collision of packets, 17
color coding, 35–37
Coloring Rules window, 36–37
Combs, Gerald, 27, 153
comma-separated value (CSV) files, 42
comparison operators, 48
compression of data, 4
computers

communication process, 4–13
data encapsulation, 7
network hardware, 8–12
networking protocols, 4
OSI model, 4–6
protocol data unit, 8
protocol interaction, 6–7
traffic classifications, 12–13

packet rejection by, 89
connectionless protocol, 64
conversations, 10, 58–59
Conversations window, 97, 112

sorting conversations by number
of packets, 117

convertinfo.pcap file, 129
converting binary data to readable

form, 3
costs

of packet sniffers, 3
of Wireshark, 28

covertinfo.pcap file, 129
CSV (comma-separated value) files, 42
CWD command (FTP), 70

INDEX 157

D
data

analysis, by packet sniffer, 3
compression, 4
encapsulation, 7
encryption, 4

WEP key for, 148
packets, filtering wireless traffic

for, 146–148
Data Link layer (OSI model), 6
DCEPRC packets, 96
DEB-based distributions, installing

Wireshark on, 31
Debian system, installing

Wireshark on, 31
Decode As dialog, 54
default gateway, 84–86
Degioanni, Loris, 153
Department of Defense (DoD) model

vs. OSI model, 5
Destination unreachable messages,

79–80, 95
destunreachable.pcap file, 79
DHCP (Dynamic Host Configuration

Protocol), 62–63
Discover packet, 63
Offer packet, 63

dhcp.pcap file, 62
dialog, 5
dictionary attack, 126
Discover packet (DHCP), 63
Display Filter dialog, 49–50
display filters, 46

using Filter Expression dialog
to create, 47

for finding packets, 40
for FTP login attempts, 126
sample expressions, 49
saving, 49–50

DNS (Domain Name System), 68–69
dns.pcap file, 68
documentation, online, for

Wireshark, 28
DoD (Department of Defense) model

vs. OSI model, 5
domain name resolution, and packets

in capture file, 53
Domain Name System (DNS), 68–69

double-vision.pcap file, 107
downloading data, HTTP packets

indicating, 87
DS Status field in 802.11 packet

header, 143
Duplicate ACK packets, 102
Dynamic Host Configuration Protocol

(DHCP), 62–63

E
Echo (ping) reply packets, 79, 105
edge router, using to analyze slow

network problems, 111–113
Edit menu
�Find Packet, 40
�Preferences, 34
�Set Time Reference, 44

editing color filters, 37
email

attachments, 115
server, slow network for, 114–115

email-troubles.pcap file, 114
encapsulation of data, 7–8
encryption of data, 4

WEP key for, 148
endpoints, viewing, 57–58
Engage Packet Builder, 152
Enterasys, port mirroring command

for, 19
errors

correcting, 4
detecting, 4
viewing in Expert Infos window, 101

Ethereal, 27
Ethernet, and packet size limitations, 81
evilprogram.pcap file, 92
Expert Infos window, 100–101
exporting capture files, 42

F
FCS (Frame Check Sequence), 139
file format, for capture file, 41
File menu
�Export, 42
�Merge, 42
�Print, 43
�Save As, 41

158 INDEX

File Transfer Protocol (FTP), 69–71
commands list, 70
evaluating off-hours traffic, 124–127
inbound, 88–90

FileDownload.dmp file, 59
Filter Expression dialog, 47
filter expression syntax structure, 47–49
filters, 45

specific to wireless networks,
145–148

specific to BSS Ids, 146
FIN/ACK packet, for TCP session

termination, 68
FIN packet, for TCP session

termination, 67
Find Packet dialog, 40
firewalls, and blocked packets, 89
Flash applets, pop-up blockers and,

110–111
flow control by protocols, 4
following TCP streams, 55–56
forced decode process, 54
fragmented packets

maintaining order, 82–83
troubleshooting, 81–83

Frame Check Sequence (FCS), 139
ftp.pcap file, 69
ftp-crack.pcap file, 125
FTP. See File Transfer Protocol (FTP)
ftpclientdenied.pcap file, 88–89
full-duplex devices, 9

G
GET request (HTTP), 66–67, 87
getting on the wire

network maps and, 25
promiscuous mode for, 16
in routed environments, 24–25
and sniffing around hubs, 16–17
in switched environments, 18–24

ARP cache poisoning, 20–24
hubbing out, 19–20
port mirroring, 18–19

GNU Public License (GPL), 27
Gnutel packets, 118

Gnutella file-sharing network, slow
network from, 115–119

gnutella.pcap file, 115
GPL (GNU Public License), 27
gratuitous ARP packet, 93

H
hackers, and OS fingerprinting, 121
hackersview.pcap file, 130
half-duplex mode, for hubs, 9
hardware addresses, 51
hauntedbrowser.pcap file, 86, 87
hex value option for packet search, 40
hidden methods, for sending

information, 130
hosts, scanning network for, 22
http-client-refuse.pcap file, 109, 110
http-fault-post.pcap file, 90–91
HTTP (Hypertext Transfer Protocol),

64, 66–67, 100
packets, in bootup process, 87
requests, 110

viewing in Packet Details pane, 66
TCP stream of transaction, 91

HTTP 403 (Forbidden) error, 90, 91
hubbing out, 19–20, 86, 92
hubs, 8–9

disadvantages of, 17
sniffing around, 16–17
testing, 20

I
IANA (Internet Assigned Number

Authority), 153
ICMP. See Internet Control Message

Protocol (ICMP)
icmp-tracert-slow.pcap file, 104, 105
icmp.pcap file, 75
inbound FTP, troubleshooting, 88–90
installing Wireshark, 29–31
International Organization for

Standardization (ISO), 4
Internet Assigned Number

Authority (IANA), 153

INDEX 159

Internet Control Message
Protocol (ICMP), 75

packets, 129–130
protocol dissector, 53
traceroute utility, 104–106
traffic, hackers and, 122

Internet Explorer, reversing settings,
86–88

Internet Protocol (IP), addressing
system, 21

fragmentation, 81
identification number,

of packets, 108
lease, packet asking DHCP server

for, 93
IO Graphs window, 59–60
IP addresses

converting DNS addresses into,
68–69

viewing all packets referencing, 48
WHOIS lookup for, 113

IP. See Internet Protocol (IP)
ipfragments.pcap file, 81
ISO (International Organization for

Standardization), 4
iwconfig command, 141, 142

J
JOI packets, for MSNMS, 74

L
Layer 3 addressing system, 20–21

converting IP addresses into
DNS addresses, 52

Layer 3 switch, 12
Linux systems

installing Wireshark on, 31
and wireless network sniffing,

141–142
logical operators, in filter expression

syntax structure, 48–49
Loki, 130
lost TCP connection, troubleshooting,

77–79
lulls in throughput, looking for, 59

M
MAC name resolution, 52
managed mode, for wireless card, 137
managed switches, 10
marked packets, 40–41

navigating among, 41
master mode for wireless card, 137
Merge with Capture File dialog, 42–43
messenger packets, 95
monitor mode for wireless card,

137, 138
in Linux, 141

More Data field, in 802.11 packet
header, 143

More Fragments field, in 802.11
packet header, 143

MSG packets, for MSNMS, 74
MSN Messenger Service (MSNMS),

55, 72–74
msnms.pcap file, 72
multicast traffic, 13–14
music downloads, and bandwidth

consumption, 113

N
name resolution

drawbacks of, 52
in Wireshark, 51–53

preferences, 35
navigating among marked packets, 41
NetBIOS traffic, as problem

indicator, 85
network. See also slow networks

administrators, hacker monitoring
of communication by, 131

attempted connection by device
outside, 93–94

diagram, 25
hardware, 8–12

hubs, 8–9
routers, 11–12
switches, 9–10
wireless card operation modes,

136–138
maps, 25

160 INDEX

network, continued
name resolution, 52
networking protocols, 4
traffic, classification of, 12–13
troubleshooting no connectivity,

83–86
network interface card (NIC),

promiscuous mode for, 3, 16
Network layer (OSI model), 6
new computer, slow network and,

107–109
NIC (network interface card),

promiscuous mode for, 3, 16
Nortel, port mirroring command for, 19
not operator, 49
notes, viewing in Expert Infos

window, 101

O
Offer packet (DHCP), 63
offset value, of fragmented packets,

82–83
OmniPeek, 2
online

documentation, for Wireshark, 28
order submission, troubleshooting,

90–92
Open Systems Interconnection (OSI)

model, 4–6
OpenBSD server, 72
operating system (OS)

fingerprinting by hackers, 121
packet sniffer support for, 3
Wireshark support of, 29

or operator, 49
Order Flag field, in 802.11 packet

header, 143
OS. See operating system (OS)
osfingerprinting.pcap file, 121
OSI (Open Systems Interconnection)

model, 4–6
Oxid.it, 21

P
Packet Bytes pane, 34, 118–119
Packet Details pane, 65

for HTTP request, 66
More Fragments flag in, 81–82

Packet List pane, 33
wireless-specific columns in,

144–145
packet sniffers

evaluating, 2–3
how they work, 3
placement on network, 15
user friendliness, 2

packet sniffing, 2
packets, 8

802.11 header and, 142–144
beacon frames, 143–144
flags, 143

acknowledgment of, 4
analysis of, explained, 2
collision of, 17
data hidden in, 130
from DNS, 53
finding, 39–41
and first capture, 31–33
fragmented, troubleshooting, 81–83
intentional blocking of, 89
IP identification number of, 108
marking, 40–41
printing, 43
protecting from corruption, 139
referencing C:\WINNT\System32

directory, 128
repeated, 107–109
time display formats for, 43–44
and time referencing, 44–45
viewing all referencing specific

IP address, 48
password

using dictionary attack to guess, 126
for FTP server, 69
intercepting, 131, 132
transmission by telnet, 72

payload of messenger packet, viewing
in Wireshark, 95

.pcap file format, 41
Pcap packet capturing interface, 29
peer-to-peer file transfer service, 113
Physical layer (OSI model), 6
PIF (Program Information Files), 115
ping utility, 75, 79–80

and hidden packet contents, 130
PingPlotter, 151

POP (Post Office Protocol) packets, 114
TCP stream for, 115

INDEX 161

pop-up blockers, and Flash applets,
110–111

port-mirroring mode mirror-port
command (Nortel), 19

ports
using for capture filters, 45
mirroring, 18–19, 115, 125, 127

commands, 19
configuration errors, 108
for covert information

collection, 129
spanning, 18–19
unreachable, 80

portscan.pcap file, 122
Post Office Protocol (POP) packets, 114

TCP stream for, 115
precision, for time display, 44
Preferences dialog, 34–35
Presentation layer (OSI Model), 5
Print dialog, 43
printerproblem.pcap file, 123
printing

packets, 43
Wireshark preferences for, 35

processor requirements,
for Wireshark, 29

Program Information Files (PIF), 115
promiscuous mode, for NIC, 3, 16
Protected Flag field, in 802.11 packet

header, 143
protocol data unit (PDU), 8
Protocol Hierarchy Statistics window,

56–57
protocols

Address Resolution Protocol
(ARP), 62

analysis of, 2
color coding, 35–36
dissection in Wireshark, 53–55
Domain Name System (DNS), 68–69
Dynamic Host Configuration

Protocol (DHCP), 62–63
File Transfer Protocol (FTP), 69–71
filter expression syntax for, 48
and flow control, 4
Hypertext Transfer Protocol

(HTTP), 64, 66–67

interaction, 6–7
Internet Control Message Protocol

(ICMP), 75
by OSI model layer, 6
packet sniffer support for, 2
stacks of, 4
telnet, 71–72
Transmission Control Protocol/

Internet Protocol (TCP/IP),
64–66

Wireshark support of, 28
PWR MGT field, in 802.11

packet header, 143

R
radiotap header (AirPcap), 139
readable data, converting binary

data to, 3
rebooting, reversing browser settings

after, 86
Red Hat system, installing

Wireshark on, 31
Remote Procedure Call (RPC)

packet, 96
repeating device, 8
RETR (retrieve) command (FTP), 71
RFCs, 61

791 for IP, 64
793 for TCP, 64
826 for ARP, 62
854 for telnet, 71
959 for FTP, 69, 70
1034 for DNS, 68
2131 for DHCP, 62
2616 for HTTP, 64

round trip time (RTT), 103
routed environments, sniffing in, 24–25
routers, 11–12, 106
routing, 11

inconsistencies and duplicate
packets, 108

RPC (Remote Procedure Call)
packet, 96

RPM-based distributions, installing
Wireshark on, 31

RST packet, 110
RUMINT visualization utility, 152

162 INDEX

S
saving

capture files, 41–42
filters, 49–50

Secure SHell (SSH), 71
security, 121–133

Blaster worm and, 127–129
and covert information, 129–130
flooded printer, 123–124
FTP break-in, 124–127
from hacker’s point of view,

130–133
and OS fingerprinting, 121–122
and port scan, 122–123

segmentation, 4
SEQ number in TCP, 79
server, non-communication with

client, 110
Session layer (OSI model), 5
set port mirroring create command

(Enterasys), 19
set span command (Cisco), 19
signal interference, in wireless

network, 136
SIZE command (FTP), 70–71
slow networks, 99–119

anatomy of slow download,
100–103

for email server, 114–115
first step in solving, 104
from Gnutella network, 115–119
new computers and, 107–109
from peer-to-peer file transfer

service, 111–113
traceroute utility for evaluating,

104–106
and website access issues, 109–111

slowdownload.pcap file, 100
software, troubleshooting, 88
spam, 115
spikes in throughput, looking for, 59
SPOOLS packets, 123–124
spyware, troubleshooting, 92–98
SSH (Secure SHell), 71
starting program, remote attempt, 96
statistics, for endpoints, 57
Statistics menu, Protocol Hierarchy,

56–57
string option for packet search, 40
su (switch user) command (Linux), 141

subnet mask, 109
SuccessfulWEPAuth.pcap file, 148
Superscan 4 network scanning

utility, 152
support

for packet sniffers, 3
for Wireshark, 28

suspectemployeechat.dmp file, 55
switch user (su) command (Linux), 141
switched environments, sniffing in,

18–24
ARP cache poisoning, 20–24
hubbing out, 19–20
port mirroring, 18–19

switches, 9–10
SYN/ACK packet (TCP), 65
SYN packet (TCP), 65
system requirements, for Wireshark, 29

T
tapping into wire, 15–25

network maps and, 25
promiscuous mode for, 16
in routed environments, 24–25
sniffing around hubs, 16–17
in switched environments, 18–24

ARP cache poisoning, 20–24
hubbing out, 19–20
port mirroring, 18–19

TCP connections, troubleshooting
lost, 77–79

tcp-con-lost.pcap file, 78
TCP handshake, 64

for FTP session, 69
for MSNMS session, 72
from remote computer, 96
SYN packet to begin, 65

TCP/IP (Transmission Control
Protocol/Internet Protocol)

establishing session, 64–66
failed connection attempts, 116
flow of data, 66
HTTP request and transmission,

66–67
packets, in bootup process, 87
retransmissions as sign of dropped

connection, 78
terminating session, 67–68
troubleshooting lost connection,

77–79

INDEX 163

TCP Previous segment lost packets,
101–102

TCP PSH flag, 112
TCP receive window, size of, 101
TCP streams, 113

color coding, 110
following, 55–56
of HTTP transactions, 91
for POP packets, 115
to printers, 124
Wireshark graph of, 103

TCP Window update packets,
and transmission rate, 101

tcpdump, 2
telnet protocol, 71–72

cleartext transmission by, 131
telnet.pcap file, 71
throughput, looking for spikes

or lulls, 59
Time-to-live exceeded message, 106
time-to-live (TTL) value, 105

and internal routing vs. port
mirroring issue, 108

timestamp display format for packets,
43–44

Seconds Since Beginning
of Capture setting, 79, 114

torrential-slowness.pcap file, 112
traceroute utility, 104–106
traffic, 35

classifications for, 12–13
Transaction IDs for DHCP

transaction, 63
Transmission Control Protocol/

Internet Protocol. See TCP/IP
(Transmission Control
Protocol/Internet Protocol)

Transport layer (OSI model), 5–6
transport name resolution, 52
troubleshooting. See also slow networks

browser settings reversed, 86–88
fragmented packets, 81–83
inbound FTP, 88–90
lost TCP connection, 77–79
no connectivity, 83–86
online order submission, 90–92
spyware, 92–98
unreachable destinations and

ICMP codes, 79–80

U
Ubuntu system, installing

Wireshark on, 31
unicast traffic, 13
unmarking packets, 41
unreachable destinations and ICMP

codes, troubleshooting, 79–80
user friendliness

of packet sniffers, 2
of Wireshark, 28

user interface, Wireshark
preferences for, 35

username, for FTP server, 69
USR packets, for MSNMS, 72

V

View menu
�Coloring Rules, 36
�Time Display Format�Seconds

Since Beginning of Capture,
79, 114

viewing endpoints, 57–58
virus-scanning software, updating, 94
viruses, 127–129
visibility window, 17

on switched networks, 19

W

warnings, in Expert Infos window, 101
WeatherBug desktop program, 87
web resources, 151–153
websites, problem accessing particu-

lar sections, 109–111
WEP Configuration (AirPcap), 139
WEP (Wired Equivalent Privacy)

key, 148
WHOIS lookup, for IP addresses, 113
Windows

firewalls, 89
operating system

installing Wireshark on, 29–31
and wireless network sniffing,

138–140
WinPcap driver, 29, 138

164 INDEX

wire, getting on the
network maps and, 25
promiscuous mode for, 16
in routed environments, 24–25
sniffing around hubs, 16–17
in switched environments, 18–24

ARP cache poisoning, 20–24
hubbing out, 19–20
port mirroring, 18–19

Wired Equivalent Privacy (WEP)
key, 148

wireless broadcasting, channels for, 136
wireless networks, 135–150

802.11 packet extras, 142–144
bad connection attempts, 148–150
filters specific to, 145–148
signal interference, 136
sniffing

in Linux, 141–142
in Windows, 138–140
one channel at a time, 135–136

wireless card operation modes,
136–138

Wireshark columns specific to,
144–145

Wireshark, 2
benefits of, 28–29
built-in dissectors, 53
capture options for AirPcap, 140
conversations, 58–59
documentation, online, 28
first packet capture, 31–33
following TCP streams, 55–56

history of, 27–28
installing, 29–31
IO Graphs window, 59–60
mailing list, 153
main window, 33–34

Packet Bytes pane, 34, 118–119
Packet Details pane, 34
Packet List pane, 33, 144–145

name resolution, 51–53
online documentation, 28
Preferences dialog, 34–35
processor requirements, 29
protocol dissection, 53–55
Protocol Hierarchy Statistics

window, 56–57
TCP stream graph, 103
user interface, preferences for, 35
user friendliness of, 28
viewing endpoints, 57–58
wiki, 153

Wireshark University, 153
wlan.fc.type eq capture filters, 146–147
wlan.fc.type_subtype eq capture filters,

146–147
workstations. See also computers

Conversations window for, 116–117
worms, 127–129
wrongdissector.dmp trace file, 53

X
XML files, 42
xor operator, 49

Introducing Wireshark University

Wireshark University Course List

WSU01: Wireshark Functionality and Fundamentals

Learn how to use Wireshark efficiently and effectively by placing Wireshark in the ideal

location to capture traffic (even on a switched network). Learn to focus on key traffic using

filters and display your results with Wireshark’s graphs.

WSU02: TCP/IP Network Analysis

This course focuses on both normal and abnormal communications of the TCP/IP suite and

common applications such as DHCP, DNS, FTP, Telnet, HTTP, POP, and SMTP.

WSU03: Troubleshooting Network Performance

This course focuses on the causes of poor network performance, including packet-loss,

retransmissions, high latency, low throughput rates, minimal bandwidth, application errors,

configuration faults, resolution problems, and protocol behavior problems.

WSU04: Network Forensics and Security

This course focuses on network forensics, including capture locations, stealth-mode capture,

optimal capture and display filters, validating encrypted logins, identifying reconnaissance

processes, locating header and payload signatures, catching penetration tests, malware

behavior, backdoor communications, and virus traffic.

Instructor-led and self-paced courses focused on Wireshark

functionality, TCP/IP Analysis, network troubleshooting and

network forensics.

Wireshark University (WSU) was founded by Laura Chappell,

renowned industry protocol analyst of the Protocol Analysis Institute,

in cooperation with Gerald Combs, original author of Wireshark,

and WinPcap creator Loris Degioanni, both of CACE Technologies.

The Wireshark Certified Network Analyst (WCNA) certification

program validates a candidate’s ability to use Wireshark to perform

network troubleshooting and forensics.

For course information, schedules, and pricing, visit www.wiresharkU.com.

About Wireshark Certification

The Wireshark Certified Network Analyst (WCNA) program consists of a single online test

based on the content and focus of the following Wireshark courses:

� WSU01: Wireshark Functionality and Fundamentals

� WSU02: TCP/IP Network Analysis

� WSU03: Troubleshooting Network Performance

� WSU04: Network Forensics and Security

The WSU Certification Test is a hands-on test administered in a virtual environment.

The candidate is provided access to a virtual host running Wireshark on a network that is

experiencing various performance- and security-related problems.

The Wireshark University
FIN BIT Magazine

Register online to receive notification of each release date for the

FIN BIT Magazine, Wireshark University’s free quarterly magazine

filled with Wireshark tips and tricks, developer notes, trace files,

and more.

Wireshark Certified Network Analyst

VLabSource Online Certification Test

WSU01
Wireshark

Functionality and
Fundamentals

WSU02
TCP/IP

Network
Analysis

WSU03
Troubleshooting

Network
Performance

WSU04
Network

Forensics and
Security

Questions? Contact us at info@wiresharkU.com.

More No-Nonsense Books from

LINUX FIREWALLS
Attack Detection and Response with iptables, psad, and fwsnort

by MICHAEL RASH

Linux firewalls provide capabilities that rival commercial firewalls and are
built upon the powerful Netfilter infrastructure in the Linux kernel. Linux
Firewalls: Attack Detection and Response with iptables, psad, and fwsnort explores
using iptables as an intrusion detection system (IDS) by combining it with
Snort rulesets and custom open-source software created by the author. Pro-
viding concrete examples to illustrate concepts, the book discusses Linux
firewall log analysis and policies, passive network authentication and authori-
zation, exploit packet traces, Snort ruleset emulation, and more. Perl and C
code snippets are included to help readers maximize the deployment of
Linux firewalls as effective mechanisms for the detection and prevention of
various network-based attacks.

JULY 2007, 304 PP., $49.95
ISBN 978-1-59327-141-1

PGP & GPG
Email for the Practical Paranoid
by MICHAEL W. LUCAS

Governments worldwide, major manufacturers, medical facilities, and many
of the smartest computer experts around trust their secure communications
to PGP (Pretty Good Privacy). But, while PGP works amazingly when all is in
order, it isn’t always easy to configure and can be very tricky to troubleshoot.
And email security is hardly the sort of thing you want to leave to chance.
PGP & GPG: Email for the Practical Paranoid is for moderately skilled geeks
who are unfamiliar with public-key cryptography but who want to protect
their communication on the cheap. Author Michael W. Lucas offers this
easy-to-read, informal tutorial on PGP, so you can dive in right away.

APRIL 2006, 216 PP., $24.95
ISBN 978-1-59327-071-2

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet Protocols Reference
by CHARLES M. KOZIEROK

Finally, here’s an encyclopedic, comprehensible, well-illustrated, and com-
pletely current guide to the TCP/IP protocol suite for both newcomers and
seasoned professionals. This complete reference details the core protocols
that make TCP/IP internetworks function, as well as the most important
TCP/IP applications. It includes full coverage of PPP, ARP, IP, IPv6, IP NAT,
IPSec, Mobile IP, ICMP, and much more. It also offers an in-depth view of the
TCP/IP protocol suite, and it describes networking fundamentals and the
important OSI Reference Model.

OCTOBER 2005, 1616 PP., $79.95 HARDCOVER

ISBN 978-159327-047-6

NO STARCH PRESS

SILENCE ON THE WIRE
A Field Guide to Passive Reconnaissance and Indirect Attacks

by MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity, and creativity, and
this book is truly unlike anything else out there. In Silence on the Wire: A Field
Guide to Passive Reconnaissance and Indirect Attacks, Zalewski shares his exper-
tise and experience to explain how computers and networks work, how
information is processed and delivered, and what security threats lurk in the
shadows. No humdrum technical white paper or how-to manual for protect-
ing one’s network, this book is a fascinating narrative that explores a variety
of unique and often quite elegant security challenges that defy classification
and eschew the traditional attacker-victim model.

APRIL 2005, 312 PP., $39.95
ISBN 978-1-59327-046-9

NAGIOS
System and Network Monitoring
by WOLFGANG BARTH

This book shows readers how to configure and use Nagios, an open-source
system- and network-monitoring tool. Nagios makes it possible to continu-
ously monitor network services (SMTP, POP3, HTTP, NNTP, PING, and
so on), host resources (processor load, disk and memory usage, running
processes, log files, and so on), and environmental factors (such as tempera-
ture). When Nagios detects a problem, it communicates the information to
the sys admin via email, pager, SMS, or other user-defined method; current
status information, historical logs, and reports can also be accessed via a web
browser. Nagios: System and Network Monitoring covers the Nagios core as well
as all standard Nagios plug-ins and selected third-party plug-ins, and it shows
readers how to write their own plug-ins. The book covers Nagios 2.0 and is
backward compatible with earlier versions. It has been co-published with
Open Source Press.

MAY 2006, 464 PP. $44.95
ISBN 978-1-59327-070-4

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USA

U P D A T E S

Visit http://www.nostarch.com/packet.htm for updates, errata, and other
information. All of the capture files used in this book are available at http://
www.nostarch.com/packet.htm and http://www.chrissanders.org/PPA.

It’s easy enough to install Wireshark and begin capturing
packets off the wire—or from the air. But how do you
interpret those packets once you’ve captured them? And
how can those packets help you to better understand
what’s going on under the hood of your network?

Practical Packet Analysis shows how to use Wireshark
to capture and then analyze packets as you take an in-
depth look at real-world packet analysis and network
troubleshooting. The way the pros do it.

Wireshark (derived from the Ethereal project), has
become the world’s most popular network sniffing appli-
cation. But while Wireshark comes with documentation,
there’s not a whole lot of information to show you how
to use it in real-world scenarios. Practical Packet Analysis
shows you how to:

• Use packet analysis to tackle common network
problems, such as loss of connectivity, slow networks,
malware infections, and more

• Build customized capture and display filters

• Tap into live network communication

www.nostarch.com

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
NETW

ORKING/SECURITY

$39.95 ($49.95 CDN)

®

D O N ’ T J U S T S T A R E
A T C A P T U R E D

P A C K E T S .
A N A L Y Z E T H E M .

D O N ’ T J U S T S T A R E
A T C A P T U R E D

P A C K E T S .
A N A L Y Z E T H E M .

• Graph traffic patterns to visualize the data flowing
across your network

• Use advanced Wireshark features to understand
confusing packets

• Build statistics and reports to help you better explain
technical network information to non-technical users

Because net-centric computing requires a deep under-
standing of network communication at the packet level,
Practical Packet Analysis is a must have for any network
technician, administrator, or engineer troubleshooting
network problems of any kind.

A B O U T T H E A U T H O R

Chris Sanders is the network administrator for the
Graves County Schools in Kentucky, where he
manages more than 1,800 workstations, 20 servers,
and a user base of nearly 5,000. His website,
ChrisSanders.org, offers tutorials, guides, and
technical commentary, including the very popular
Packet School 101. He is also a staff writer for
WindowsNetworking.com and WindowsDevCenter.com.
He uses Wireshark for packet analysis almost daily.

T E C H N I C A L R E V I E W B Y G E R A L D C O M B S , C R E A T O R O F W I R E S H A R KT E C H N I C A L R E V I E W B Y G E R A L D C O M B S , C R E A T O R O F W I R E S H A R K

Download the capture files

used in this book from

www.nostarch.com/packet.htm
P R AC T I C A L

PAC K E T A N A LY S I S
P R AC T I C A L

PAC K E T A N A LY S I S
U S I N G W I R E S H A R K T O S O L V E R E A L - W O R L D

N E T W O R K P R O B L E M S

C H R I S S A N D E R S

®

P
R

A
C

T
IC

A
L

 P
A

C
K

E
T

 A
N

A
LY

S
IS

P
R

A
C

T
IC

A
L

 P
A

C
K

E
T

 A
N

A
LY

S
IS

S
A

N
D

E
R

S

	Acknowledgments
	Introduction
	Why This Book?
	Concepts and Approach
	How to Use This Book
	About the Example Capture Files

	1: Packet Analysis and Network Basics
	What Is Packet Analysis?
	Evaluating a Packet Sniffer
	Supported Protocols
	User Friendliness
	Cost
	Program Support
	Operating System Support

	How Packet Sniffers Work
	Collection
	Conversion
	Analysis

	How Computers Communicate
	Networking Protocols
	The Seven-Layer OSI Model
	Protocol Interaction
	Data Encapsulation
	The Protocol Data Unit
	Network Hardware
	Traffic Classifications

	2: Tapping into the Wire
	Living Promiscuously
	Sniffing Around Hubs
	Sniffing in a Switched Environment
	Port Mirroring
	Hubbing Out
	ARP Cache Poisoning
	Using Cain & Abel

	Sniffing in a Routed Environment
	Network Maps

	3: Introduction to Wireshark
	A Brief History of Wireshark
	The Benefits of Wireshark
	Supported Protocols
	User Friendliness
	Cost
	Program Support
	Operating System Support

	Installing Wireshark
	System Requirements
	Installing on Windows Systems
	Installing on Linux Systems

	Wireshark Fundamentals
	Your First Packet Capture
	The Main Window
	The Preferences Dialog
	Packet Color Coding

	4: Working with Captured Packets
	Finding and Marking Packets
	Finding Packets
	Marking Packets

	Saving and Exporting Capture Files
	Saving Capture Files
	Exporting Capture Data

	Merging Capture Files
	Printing Packets
	Time Display Formats and References
	Time Display Formats
	Packet Time Referencing

	Capture and Display Filters
	Capture Filters
	Display Filters
	The Filter Expression Dialog (the Easy Way)
	The Filter Expression Syntax Structure (the Hard Way)
	Saving Filters

	5: Advanced Wireshark Features
	Name Resolution
	Types of Name Resolution Tools in Wireshark
	Enabling Name Resolution
	Potential Drawbacks to Name Resolution

	Protocol Dissection
	Following TCP Streams
	The Protocol Hierarchy Statistics Window
	Viewing Endpoints
	Conversations
	The IO Graphs Window

	6: Common Protocols
	Address Resolution Protocol
	Dynamic Host Configuration Protocol
	TCP/IP and HTTP
	TCP/IP
	Establishing the Session
	Beginning the Flow of Data
	HTTP Request and Transmission
	Terminating the Session

	Domain Name System
	File Transfer Protocol
	CWD Command
	SIZE Command
	RETR Command

	Telnet Protocol
	MSN Messenger Service
	Internet Control Message Protocol
	Final Thoughts

	7: Basic Case Scenarios
	A Lost TCP Connection
	Unreachable Destinations and ICMP Codes
	Unreachable Destination
	Unreachable Port

	Fragmented Packets
	Determining Whether a Packet Is Fragmented
	Keeping Things in Order

	No Connectivity
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	The Ghost in Internet Explorer
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Inbound FTP
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	It’s Not My Fault!
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	An Evil Program
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Final Thoughts

	8: Fighting a Slow Network
	Anatomy of a Slow Download
	A Slow Route
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Double Vision
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Did That Server Flash Me?
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	A Torrential Downfall
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	POP Goes the Email Server
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Here’s Something Gnu
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Final Thoughts

	9: Security-based Analysis
	OS Fingerprinting
	A Simple Port Scan
	The Flooded Printer
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	An FTP Break-In
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Blaster Worm
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	Covert Information
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	A Hacker’s Point of View
	What We Know
	Tapping into the Wire
	Analysis
	Summary

	10: Sniffing into Thin Air
	Sniffing One Channel at a Time
	Wireless Signal Interference
	Wireless Card Modes
	Sniffing Wirelessly in Windows
	Configuring AirPcap
	Capturing Traffic with AirPcap

	Sniffing Wirelessly in Linux
	802.11 Packet Extras
	802.11 Flags
	The Beacon Frame

	Wireless-Specific Columns
	Wireless-Specific Filters
	Filtering Traffic for a Specific BSS Id
	Filtering Specific Wireless Packet Types
	Filtering Specific Data Types

	A Bad Connection Attempt
	What We Know
	Tapping into the Wire Air
	Analysis
	Summary

	Final Thoughts

	11: Further Reading
	Afterword
	Index
	Updates

