

PICAXE®

Microcontroller
Projects for

the Evil Genius™

Evil Genius™ Series

Bike, Scooter, and Chopper Projects for the Evil Genius

Bionics for the Evil Genius: 25 Build-It-Yourself Projects

Electronic Circuits for the Evil Genius, Second Edition: 64 Lessons with Projects

Electronic Gadgets for the Evil Genius: 28 Build-It-Yourself Projects

Electronic Sensors for the Evil Genius: 54 Electrifying Projects

50 Awesome Auto Projects for the Evil Genius

50 Green Projects for the Evil Genius

50 Model Rocket Projects for the Evil Genius

51 High-Tech Practical Jokes for the Evil Genius

46 Science Fair Projects for the Evil Genius

Fuel Cell Projects for the Evil Genius

Holography Projects for the Evil Genius

Mechatronics for the Evil Genius: 25 Build-It-Yourself Projects

Mind Performance Projects for the Evil Genius: 19 Brain-Bending Bio Hacks

MORE Electronic Gadgets for the Evil Genius: 40 NEW Build-It-Yourself Projects

101 Outer Space Projects for the Evil Genius

101 Spy Gadgets for the Evil Genius

125 Physics Projects for the Evil Genius

123 PIC® Microcontroller Experiments for the Evil Genius

123 Robotics Experiments for the Evil Genius

PC Mods for the Evil Genius: 25 Custom Builds to Turbocharge Your Computer

PICAXE Microcontroller Projects for the Evil Genius

Programming Video Games for the Evil Genius

Recycling Projects for the Evil Genius

Solar Energy Projects for the Evil Genius

Telephone Projects for the Evil Genius

30 Arduino Projects for the Evil Genius

25 Home Automation Projects for the Evil Genius

22 Radio and Receiver Projects for the Evil Genius

PICAXE®

Microcontroller
Projects for

the Evil Genius™

Ron Hackett

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-0-07-170327-7

MHID: 0-07-170327-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-170326-0,
MHID: 0-07-170326-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs.
To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Evil Genius™, and related trade dress are trademarks or registered trademarks of
The McGraw-Hill Companies and/or its affi liates in the United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. The McGraw-Hill Companies is not associated with any product or vendor mentioned in this
book.

PICAXE is a registered trademark licensed by Microchip Technology Inc. The PICAXE product is developed and distributed by Revolution Education
Ltd. The PIC® trademark is the brand name for Microchip’s microcontroller line of products. Revolution Education Ltd is not an agent or representative
of Microchip and has no authority to bind Microchip in any way.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of this
work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may
not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any
other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content
of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

This book is dedicated to my three beautiful grandchildren: Sasha, James, and Dima.

Ron Hackett has had more than 30 years experience in the fields of education and
psychology. He has taught mathematics, psychology, and computer science courses on both
the high school and college levels, and in-service courses for teachers in the use of
microcomputers in the classroom setting. Ron has published numerous PICAXE-related
articles for Nuts and Volts and SERVO magazines. He also designed the “Brain-Alpha” PC
board used in the popular SERVO TankBot robot. To assist his readers in obtaining
PICAXE information and parts, Ron has also established a website (www.JRHackett.net)
dedicated to “spreading the word” about the PICAXE line of microcontrollers.

When he isn’t ensconced in his basement workspace, writing, or tinkering with Octavius,
Ron enjoys grilling and barbecuing in the outdoor kitchen he built in his backyard.
Currently, he’s working on a PICAXE-based temperature controller for his ceramic smoker.

About the Author

Contents at a Glance

PART ONE PICAXE Basics 1

1 Introduction to PICAXE Programming and Projects 3

2 Introduction to Stripboard Circuits . 15

3 Designing and Building a +5V Regulated Power Supply 27

4 Hardware Overview of the PICAXE M2-Class Processors. . . . 39

5 The Ins and Outs of PICAXE Interfacing 51

6 Introduction to ADC Inputs on M2-Class Processors. 65

PART TWO PICAXE Peripheral Projects 81

7 Introduction to the PICAXE-20X2 Processor 83

8 Infrared Input from a TV Remote Control 93

9 Interfacing Parallel LCDs . 107

10 Serializing a Parallel LCD . 119

11 Interfacing Keypads . 137

12 SPI Communication. 155

13 Background Timing on the 20X2 Processor 173

14 Constructing a Programmable Multifunction
Peripheral Device. 187

15 Developing Software for the Evil Genius MPD 203

PART THREE Octavius: An Advanced Robotics
Experimentation Platform 213

16 Birthing Octavius . 215

17 Driving Octavius . 225

18 Programming Octavius. 239

Epilogue: What’s Next for Octavius?. 253

Index. 255

vii

This page intentionally left blank

ix

Contents

Foreword . xiii

Acknowledgments . xv

Prologue . xvii

PART ONE PICAXE Basics 1

1 Introduction to PICAXE Programming and Projects. 3
Choosing a PICAXE Processor . 3
Interfacing a Project with Your Mac or PC . 4
Using RevEd’s Free Programming Editor or AXEpad Software 5
Programming in PICAXE BASIC. 6
Breadboards, Stripboards, and PC Boards . 7
Project 1 “Hello World”. 8
Debugging a PICAXE Project . 14

2 Introduction to Stripboard Circuits. 15
Designing Stripboard Circuits . 15
Tools for Stripboard Circuit Construction. 18
Project 2 The USBS-PA3 PICAXE Programming Adapter 21
Hello Again . 23

3 Designing and Building a +5V Regulated Power Supply . . . 27
Designing a +5V Regulated Power Supply for Breadboard Circuits 28
Project 3 More Power, Scotty!. 33

4 Hardware Overview of the PICAXE M2-Class Processors . . 39
General-Purpose Variables. 40
Storage Variables . 41
Special-Function Variables . 42
Project 4 Cylon Eye. 45

5 The Ins and Outs of PICAXE Interfacing 51
PICAXE I/O Interfacing . 51
Setting Up an Interrupt Routine . 56
Project 5 Mary . 60

6 Introduction to ADC Inputs on M2-Class Processors 65
Voltage Dividers . 66
Project 6 A Three-State Digital Logic Probe . 70

x PICAXE Microcontroller Projects for the Evil Genius

PART TWO PICAXE Peripheral Projects 81

7 Introduction to the PICAXE-20X2 Processor. 83
Advanced Features of the 20X2 Processor . 83
Project 7 Implementing the 20X2 Master Processor Circuit 86

8 Infrared Input from a TV Remote Control 93
Reception and Transmission of Standard TV IR Signals . 93
IR-Based Serial Communications . 94
Simple IR Object-Detection . 94
Experiment 1: A Simple TV-IR Input Circuit . 95
Experiment 2: Interfacing the IR Circuit with the Master Processor 98
Project 8 Constructing the TV-IR Input Module . 101

9 Interfacing Parallel LCDs . 107
Understanding the Basics of HD44780-based LCDs . 108
Experiment 1: Interfacing an HD44780-based Parallel LCD 110
Project 9 Constructing an Eight-bit Parallel 16 x 2 LCD Board. 114
Programming Challenge . 118

10 Serializing a Parallel LCD . 119
Receiving Serial Data in the Background . 119
Project 10 Constructing a Serialized 16 x 2 LCD. 121

11 Interfacing Keypads . 137
Decoding Matrix Keypads . 138
Project 11 Constructing a Serialized 4 by 4 Matrix Keypad. 145

12 SPI Communication. 155
The MAX7219 8-Digit LED Display Driver . 155
Project 12 Constructing an SPI 4-Digit LED Display . 158
Learning to Count . 168

13 Background Timing on the 20X2 Processor 173
Using Timer1 on the 20X2 Processor . 173
“Deconstructing” a Matrix Keypad . 175
Testing the “New and Improved” Keypad. 177
Project 13 Constructing a Countdown Timer . 179

14 Constructing a Programmable Multifunction
Peripheral Device . 187
Project 14 The Evil Genius Multifunction Peripheral Device 187

15 Developing Software for the Evil Genius MPD 203
Understanding the 20X2’s Built-in Comparator Hardware. 203
Testing Our Comparator 1 Configuration . 206
“We Interrupt This Program to Bring You a Keypress!”. 206
Project 15 A Simple MPD Operating System. 209

PART THREE Octavius: An Advanced Robotics
Experimentation Platform 213

16 Birthing Octavius. 215
Understanding Octavius. 218
Project 16 Building Octavius. 221

17 Driving Octavius . 225
H-Bridge Motor Control Circuits . 225
The L298 Dual H-Bridge Driver . 226
Project 17 Constructing an L298 Dual DC Motor Controller Board 228

18 Programming Octavius . 239
The MaxBotix LV-MaxSonar Ultrasonic Range Finders . 239
Who’s in Charge Here? . 244
Project 18 Hail, Octavius! . 250

Epilogue: What’s Next for Octavius? 253

Index . 255

Contents xi

xi

This page intentionally left blank

xiii

Foreword

I’VE JUST PUT DOWN THE TELEPHONE after a call from a lovely gentleman, who, at the
age of 81, has decided to start electronics as a hobby. He phones every so often and
always ends the conversation with a jovial “Thanks for your help. Got to get this
project finished soon, as I don’t know how long I’ve got left!” I hope it’s a long time!

When we launched the PICAXE system over ten years ago, it was designed as a
method of allowing schoolchildren to use all the power of Microchip PICs within their
school projects without any of the technical difficulties of complicated hardware or
complex programming languages. In the intervening years, the PICAXE system has
been adopted by hundreds of thousands of other users—industrial, hobbyist, and
educational—due to its ease of use. It’s a joy for the team at Revolution Education to
see all the wonderful projects created by users, both young and old, around the world.

In this book, Ron has worked hard to explain how the PICAXE system operates
through simple examples, and I’m sure his easy-to-read style will help many people
progress with their PICAXE projects. With the recent launch of the new M2 series of
PICAXE chips described in this book, we hope you can achieve even more than
before—and if in need of further help (or proud of a project to share!), why not join
the ever-growing PICAXE community at www.picaxeforum.co.uk?

Enjoy!

Clive Seager
Technical Director

Revolution Education, Ltd.

This page intentionally left blank

xv

Acknowledgments

FOR THE PAST THREE YEARS, I have had the opportunity of writing the “PICAXE
Primer” column in Nuts and Volts magazine. I have learned a considerable amount
about PICAXE programming during this time, and I want to thank Nuts and Volts, as
well as my publisher at the magazine, Robin Lemieux, for the opportunity to do so. If
you aren’t already a subscriber to Nuts and Volts, I highly recommend it, along with
its sister publication, SERVO Magazine. In addition to the “PICAXE Primer” column,
Nuts and Volts regularly publishes other PICAXE-based articles, as well as a wide
range of digital and analog projects. Some of the material in PICAXE Microcontroller
Projects for the Evil Genius, especially in Part One, has been adapted from material
previously published in the “PICAXE Primer” column and is presented here it its new
form with the express permission of Nuts and Volts. Thank you, Robin!

This book would never have been possible without the initial enthusiasm, and con-
tinued support and encouragement of Roger Stewart, my Sponsoring Editor at
McGraw-Hill. In addition, Joya Anthony, my Acquisitions Editor, enabled me to keep
on track during the long months of writing the manuscript. Without Joya, I would
probably still be playing around with yet another idea for inclusion in the book. Patty
Wallenburg, my Project Manager, actually made the editing process seem like fun at
times, and she was always available to answer my questions or clarify my confusion.
Thanks also to the many other people at McGraw-Hill who have been involved in this
project. Even though we may not have had the opportunity to communicate directly, I
appreciate everyone’s part in bringing the book to fruition.

I also want to thank Clive Seager (Technical Director of Revolution Education,
Ltd.) for his willingness to read the manuscript and to respond to my many questions
about the features of the new M2-class processors. His invaluable assistance has
helped considerably in making the contents of this book as technically correct as pos-
sible. Any errors that may remain are clearly my responsibility.

Finally, I want to express my love and appreciation to my wife Susan for her
patience, understanding, and support throughout this entire project, not to mention the
last 34 years! For the past several months, free weekends have been almost nonexis-
tent and I have all but disappeared into my basement workspace. Now that the book is
finished and summer has finally arrived, I definitely intend to mend my ways.

This page intentionally left blank

THE FIRST MICROCOMPUTER I ever purchased was
the Synertek Systems SYM Model 1 computer (see
Figure 1). I just couldn’t resist the advertising
blurb: “The [SYM-1] is one of the most versatile
and sophisticated single-board computers
available… It’s an ideal introduction to the
expanding world of microprocessor technology as
well as a powerful development tool for design of
microcomputer-based systems.” In its day (1978),
the SYM-1 was state-of-the-art technology: It ran at
a blazing 1MHz and had 1KB of memory and two
8-bit I/O ports for expansion—all that for only
$239.95! (According to the U.S. Bureau of Labor
Statistics, that’s more than $800 in today’s money.)

Out of the box, the SYM-1 could only be
programmed in machine language—a very tedious
process, to say the least. However, it certainly
provided me with a thorough introduction to the
world of microcontrollers. Using it, I was able to
develop a simple home control system that enabled
me to use any telephone in the house to turn lights
on and off, adjust the temperature, set timers and
alarms, etc. I was having a grand time until the day
the telephone repairman (who came to fix an
unrelated problem) ordered me to cease and desist
or he would confiscate my SYM-1. Back then, Ma
Bell had the legal authority to do exactly that with
anything it didn’t want connected to the phone

xvii

Prologue

Synertek Systems SYM-1 computerFigure 1

system, so of course I complied immediately—at
least until after he left! It wasn’t long before I
moved on, first to a Commodore VIC-20 and then
an Apple IIe, both of which were based on the
same 6502 CPU as the SYM-1, so the transition
was an easy one. When I began writing this book, I
pulled my SYM-1 out of the closet, dusted it off,
and powered it up. Amazingly, it booted up on the
first try!

I can’t resist comparing the SYM-1 to my most
recent microcontroller purchase, Revolution
Education’s PICAXE-20X2 microcontroller. In
Figure 1, you can see the 20X2 sitting just above
the SYM-1 in the middle of the photo. The
processing power of the 20X2 far exceeds that of
the 30 or so chips on the SYM-1’s motherboard. It
can run at speeds up to 64MHz and has a built-in
BASIC interpreter (much easier to program than
machine language), 32KB of memory, two 8-bit
I/O ports, and separate serial lines as well—all that
in a single chip that sells for about $6! In the
SYM-1’s favor, it included a built-in keypad for
input and an LED display for output, but both of
these devices are relatively simple additions to a
20X2 processor. In fact, we will do exactly that in
Chapters 11 and 12.

PICAXE is a registered trademark

licensed by Microchip Technology,

Inc. The PICAXE® product line is developed and

distributed by Revolution Education, Ltd.

Revolution Education, Ltd. is not an agent or

representative of Microchip and has no authority

to bind Microchip in any way.

The PICAXE-20X2 is only one of nine
microcontrollers that are currently produced and
distributed by the British firm of Revolution
Education, Ltd. (www.picaxe.co.uk). Essentially,
a PICAXE microcontroller is a Microchip PIC
microcontroller with a preinstalled proprietary
BASIC interpreter. To program any PICAXE
processor, all you need is a simple serial or USB
connection to a Mac or PC and Revolution

Education’s free Programming Editor or AXEpad
software, with which you can edit, develop, and
test your BASIC programs. In Chapter 1, we’ll
jump right into the details of using the
Programming Editor software when we develop
our first project (“Hello World!”).

Revolution Education (RevEd) released its first
microcontroller way back at the turn of the
century. Figure 2 presents some of the main
features of the current PICAXE lineup, which is
divided into two subgroups: Educational and
Advanced. The Educational line is primarily
designed to provide an introductory experience in
microcontroller programming for students in the
lower and middle school grades, and is widely
used throughout the British public school system
today. However, precisely because the M2 chips
are very inexpensive ($3 or $4 each) and simple to
program, they also provide a great entry point for
students and hobbyists of all ages.

When compared to the Educational line, the
processors in the Advanced line have much greater
capabilities in several areas; size of program and
variable storage areas, number of I/O pins, and
speed of operation are the easiest to spot. However,
those features are only a part of the differences
between the two categories. There are a significant
number of additional features to be found in the
Advanced processors that couldn’t possibly be
summarized in a brief table, but by the time you
have finished working through all the projects in
this book, you will have a good understanding of
many of the advanced features to be found on
PICAXE processors.

Overview

The central concept underlying the organization
of this book is that of “multiprocessor” project
design. In other words, we’re going to use a
PICAXE processor from the Advanced line (the
20X2) to implement a “master processor” project

xviii PICAXE Microcontroller Projects for the Evil Genius

NOTE

and then develop several intelligent peripherals
based on PICAXE processors in the Educational
line (especially the 08M2). For example, in
Chapter 11 we’re going to use the PICAXE-08M2
to develop a serially interfaced keypad that can be
connected easily with our 20X2 master processor.
Of course, the 20X2 (or any PICAXE processor,
for that matter) could also be connected directly
to a keypad without the help of a peripheral
processor, but the approach we are going to take
has two major advantages. First, once we have
developed an “intelligent” peripheral (e.g., our
keypad), it becomes a stand-alone device that can
simply be connected to any future project we
tackle. If we have dozens of projects, we don’t
need dozens of keypads; we can simply move the
keypad from project to project as the need arises.
Second, our multiprocessor approach greatly
simplifies the process of software development as
we move into more complex projects because
many of the programming details of the I/O
interfaces will already have been thoroughly

developed and debugged before interfacing the
peripheral device with the master processor.
Essentially, we’re using a “divide and conquer”
approach to both the hardware and software
development of complex projects.

In Part One of this book, we’re going to start
at the very beginning. Our first project is super-
simple and doesn’t require any previous knowledge
of PICAXE programming. Throughout the
remainder of Part One we’ll focus primarily on the
08M2 and 20M2 processors, and cover some of the
essential elements of PICAXE programming and
I/O interfacing. By the time you have completed
the projects in Part One, you will be ready to
tackle Part Two, in which we will implement our
master/peripheral paradigm.

In Part Two, we will begin by developing a
master processor circuit based on the PICAXE-
20X2 and then move on to the development of
several stand-alone peripherals for our master
processor, including:

Prologue xix

Features summary for current PICAXE processorsFigure 2

■ Infrared remote receiver

■ Sixteen-character-by-two-line LCD

■ 4 by 4 matrix keypad

■ Four-digit LED display

In Part Three, we’ll apply our master/peripheral
paradigm to the development of Octavius, a
sophisticated robotics experimentation platform
that includes a 40X2 master processor and eight
breadboard stations, which span its perimeter and
provide us with the necessary workspace to
develop a range of sensory/motor peripherals to
augment Octavius’ functioning. Octavius also
includes a unique time-slice arrangement that
enables him to communicate with his numerous
sensory/motor peripheral processors and greatly
simplifies the software necessary for monitoring
his various processes and successfully navigating
his way through the environment.

A Brief but Important Note
Concerning All the Projects
in the Book

When I began writing this book, the new M2
class of PICAXE processors had not yet been
announced. All the projects in the book that use a
smaller chip were originally developed using the
older M-class processors (08M, 14M, and 20M).
When RevEd announced the new M2 processors,
I decided to modify all the relevant projects so that
the programs and information in the book would
be as up to date as possible. However, since many
people (including myself) still have the older
M-class processors on hand, the relevant projects
can also be implemented on the corresponding
M-class processor with only minor modifications
to the software presented in the book. When you
visit my website (www.JRHackett.net) to
download the software for the projects, you will
see that I have included an “M” version and an
“M2” version for every relevant program; simply
download the version that will work with the
processor you have available.

xx PICAXE Microcontroller Projects for the Evil Genius

PICAXE Basics

P A R T O N E

This page intentionally left blank

Introduction to PICAXE
Programming and Projects

C H A P T E R 1

I HAVE NEVER BEEN A FAN of microcontroller project
books that take three or four chapters to get to the
first project, so we’re going to tackle the “hands-
on” part as soon as possible. However, there are
a few things about the PICAXE programming
system that we need do to cover before we jump
into our first project. Essentially, the required
information can be divided into four areas:

� Choosing a PICAXE processor

� Interfacing a project with your Mac or PC

� Using RevEd’s free Programming Editor or
AXEpad software

� Programming in PICAXE BASIC

Choosing a PICAXE
Processor

For our first project, we want to get started as
quickly as possible, so we’re going to use the
PICAXE-08M2. It’s the smallest (and therefore
the simplest) processor in the PICAXE lineup,
but don’t let that fool you—the 08M2 packs a

surprising amount of computing power in its little
eight-pin package, which is shown in Figure 1-1.
The 08M2 can operate with a power supply
anywhere between +1.8V and +5.0V, so the
simplest way to power it is to use a two- or three-
AA cell battery pack, which is what we’ll do in
our first project.

Never use a four-cell battery pack.

Six volts can easily damage or

destroy any PICAXE chip.

The power connections for the 08M2 are made
to pins 1 (+V) and 8 (0V or Ground). The Serial In
and Serial Out pins are used for downloading
programs from your Mac or PC. (We’ll get to that
shortly.) Once a program is downloaded to the
08M2, the Serial Out pin can also function as an
output for your program, and the Serial In pin can
function as an input, which gives the 08M2 a total
of six I/O pins: output C.0, inputs C.3 and C.5,
and I/O pins C.1, C.2, and C.4. The different
numbering of the I/O pins and external pins can be

3

PICAXE-08M2 pin-outFigure 1-1

CAUTION

4 PICAXE Microcontroller Projects for the Evil Genius

a little confusing at first, but it’s necessary because
of the underlying structure of the Microchip PIC
microprocessor on which the 08M2 is based. As
you can see in Figure 1-1, many of the 08M2’s I/O
pins have multiple functions. We’ll get into the
details as the need arises; right now, I just want to
mention that the function listed closest to each pin
is always that pin’s default function. In other
words, when a chip is first powered up, each I/O
pin is configured to implement the function that is
adjacent to it, as shown in Figure 1-1. Any pin that
can be either an input or an output always starts
up as an input. This is a safety precaution that
prevents the activation of any peripheral devices
until your program is properly configured.

If you have any previous experience with
microcontrollers, you will notice the absence of
dedicated crystal or resonator pins in Figure 1-1.
Part of the simplicity of the 08M2 is its internal
4MHz resonator (which can also be switched to 8,
16, or 32MHz by your program). The internal
resonator is not as accurate as the external one
found on many of the larger PICAXE processors,
but it’s accurate enough for the vast majority of
08M2 projects. If greater accuracy is needed,
there’s a BASIC command (calibfreq) that allows
you to fine-tune the 08M2’s operating frequency.
Of course, you would need a frequency counter or
oscilloscope to make the necessary adjustments.

Interfacing a Project with
Your Mac or PC

Back when the first PICAXE chip was introduced,
the majority of PCs had only parallel and serial I/O
ports. USB ports had already been developed, but
they were not yet widely available on new PCs. As
a result, programs were originally downloaded
from a PC to a PICAXE chip by means of a simple
three-wire serial interface that’s still in use today.
However, virtually all new Macs and PCs no
longer include serial connectors, so it won’t be

long before the serial port is totally obsolete.
Fortunately, the PICAXE programming interface is
essentially the same for serial or USB connections.
Actually, there are two versions of the
programming interface—basic and enhanced—
both of which are presented in Figure 1-2. The
basic version only includes the 10k and 22k
resistors; the enhanced version adds two optional
parts (the BAT85 diode and the 180� resistor) to
improve the accuracy of the serial download
circuit. For USB connections, the 10k and 22k
resistors are all that’s required, but the enhanced
circuit will also function correctly in this situation
as well.

If you still use a serial connection to your
computer, my recommendation would be to try the
basic interface first. If programs download reliably
to your PICAXE processors, you’re all set. If a
download occasionally fails, try including the
180� resistor and the BAT85 diode. If you do
include the diode, be sure to install it “backwards,”
that is, with its anode (rather than its cathode)
connected to Ground, as shown in Figure 1-2.

If your computer only has USB ports, you will
need a USB-to-serial adapter to program any
PICAXE chip. Before you run out and buy one,
however, you need to know that most currently
available adapters simply don’t work with
PICAXE processors. Fortunately, RevEd produces
the AXE027 USB programming cable, which is
available at www.sparkfun.com (SKU:
PGM-08312) and elsewhere. The AXE027 USB
programming cable terminates in a 3.5-mm
mini-stereo plug that provides the necessary serial
in, serial out, and Ground connections for
programming all PICAXE processors.
Unfortunately, a mini-stereo plug is obviously
not what you would call “breadboard-friendly.”
Since most of the projects in this book will be
implemented on breadboards, we’re going to need
a way to adapt the mini-stereo plug for breadboard
use. We will do exactly that in our “Hello World!”
project later in this chapter.

Before we move on to the Programming Editor
software, I should mention that RevEd also makes
a serial programming cable (the AXE026), which
is also available at SparkFun (SKU: PGM-08313).
The AXE026 serial cable terminates in the same
mini-stereo plug as the AXE027 USB cable. If you
will be using a serial programming connection,
you may want to purchase an AXE026 cable
because it connects to the same adapters that we
will be using throughout this book. Also, it
probably won’t be long before you will be forced
to upgrade to USB anyway; having the same
connector on both cables will ensure that any
adapters you construct or purchase will still be
functional when you switch to a USB connection.

Using RevEd’s Free
Programming Editor or
AXEpad Software

Historically, PICAXE programming was limited to
users of the Windows operating system. Mac users
had to run Virtual PC or some other emulation
software in order to run the free PICAXE
Programming Editor. (There’s a bit of irony in a

Porsche pretending to be a Fiat, but we won’t get
into that here!) However, early in 2009 RevEd
released their new AXEpad software with versions
that run on Windows, Mac OS X, and Linux
systems, so now everyone can join the party.

AXEpad was specifically designed to run on the
new “budget” netbooks, which have considerably
less memory and processing power than standard
laptop and desktop PCs. As a result, AXEpad isn’t
as full-featured as the Programming Editor
(ProgEdit). For example, it lacks three major
features that are included in the Programming
Editor: flow charts, program simulation mode, and
automatic BASIC-to-assembly language
conversion. However, AXEpad does support the
majority of ProgEdit’s standard development
functions, and it’s certainly capable of handling all
the projects we will be implementing throughout
this book. So if you are a Mac or Linux user, you
should give AXEpad a try. If you’re comfortable
with Apple’s Boot Camp, VMware’s Fusion, or
Parallel’s Desktop, you can also install Windows
on your Mac and run the Programming Editor in a
virtual machine. Of course, if you are running
Windows on a PC, you can use whichever program
you prefer.

Chapter 1 � Introduction to PICAXE Programming and Projects 5

PICAXE programming circuitFigure 1-2

6 PICAXE Microcontroller Projects for the Evil Genius

ProgEdit and AXEpad are both available on the
RevEd website (www.picaxe.co.uk). Just click the
Software tab near the top of the page and scroll
down until you find the link for downloading
the latest version of the software you want to
use. While you are at the RevEd site, you can
also download the drivers for the AXE027
programming cable. In addition, be sure to
download all three sections of the PICAXE
Manual (Part I: “Getting Started,” Part II: “BASIC
Commands,” and Part III: “Interfacing Circuits”);
they contain a wealth of helpful information. The
three parts of the manual are also available under
the Help menu of either software package, but it’s
handy to be able to view them on your computer
without having to run a separate piece of software.
Finally, at the RevEd website check out the
PICAXE Forum—just click the Forum tab near the
top of the home page. The forum is the primary
meeting place for more than 50,000 PICAXE
enthusiasts, and it’s a resource that’s well worth
joining. A quick search of the Forum archives will
usually provide helpful answers to any question
you may have. In those rare instances when you
can’t find what you need, just post your question
to the forum with all the relevant details. You’re
bound to get helpful information and advice from
the membership.

When you have downloaded your choice of
PICAXE programming environments, simply
double-click the installer icon and follow the
onscreen directions for installation on your
computer. When we get to our first project, we’ll
discuss the basics of using the software to develop
and download a program to a PICAXE processor.
We’ll focus on ProgEdit throughout the book, but
the principles are similar for the AXEpad software
as well.

Programming in
PICAXE BASIC

The PICAXE BASIC language is similar to (but
much more powerful than) many other variations
of the language. In addition to the usual BASIC
commands (branch, do…loop, for…next, gosub,
goto, if…then…else, select case, etc.), there are
many specialized commands to accomplish a
variety of useful I/O tasks in a simple manner. To
whet your appetite, here’s a brief list of some of
the advanced functions that can be implemented
with the built-in commands in PICAXE BASIC:

� Analog-to-digital conversion

� i2c I/O

� Infrared I/O

� Interrupt processing

� “One-wire” I/O

� PC keyboard input

� Pulse-length measurement and production

� Pulse-width modulation (PWM) for DC motor
control

� Serial I/O

� Servo motor control

� Sound and music output

� Serial Peripheral Interface (SPI) I/O

� Table lookup and lookdown

� Temperature measurement

The documentation for all the PICAXE BASIC
commands is contained in Part II of the PICAXE
Manual. We’ll explore many of these commands
throughout the pages of this book, but you may
also want to spend some time browsing the
documentation in Part II of the manual to get
a sense of the scope of PICAXE BASIC.

Breadboards, Stripboards,
and PC Boards

In this book, we will be focusing on three different
circuit construction techniques: breadboards,
stripboards, and PC boards. Each one of these
approaches to circuit construction has advantages
in different situations, and we’ll capitalize on these
advantages.

� Breadboards are by far the most flexible
approach to use in the early stages of project
development. They are inexpensive, quick to
set up, and easy to modify when changes are
needed. When working with breadboards, it’s
important to remember that neatness counts!
There’s nothing more frustrating than trying to
debug a breadboard circuit that’s a mass of
tangled jumper wires. That’s why I strongly
recommend that you always use the preformed
jumper wires that you will see in our “Hello
World!” project later on.

� Stripboards are simple protoboards with holes
that are evenly spaced on a 0.1-inch (2.54-mm)
grid and connected by rows of copper traces on
the bottom of the board (see Figure 1-3). They

can be helpful in two different situations:
adapting components that are not very
breadboard-friendly for use on a breadboard,
and constructing small circuits that can be
easily moved from breadboard to breadboard
as the need arises. As part of our “Hello
World!” project, we’ll construct a simple
stripboard circuit to adapt the standard
PICAXE mini-stereo connector for use in our
breadboard circuits. In Chapter 2, we’ll get
into the details of stripboard construction and
make a complete programming adapter for use
with our projects.

� PC boards are by far the most reliable method
of circuit construction, but they tend to be
expensive to manufacture in small quantities as
well as difficult and messy (and possibly toxic)
to produce at home. However, the size or
complexity of some circuits requires their use.
For example, I doubt that our “Octavius”
project in Part Three could be implemented
without the use of a PC board. In spite of that
fact, breadboard circuits will also play a central
(perhaps I should say “peripheral”) role in
Octavius’ construction.

Chapter 1 � Introduction to PICAXE Programming and Projects 7

Bottom view of a typical stripboardFigure 1-3

8 PICAXE Microcontroller Projects for the Evil Genius

Project 1
“Hello World”

Traditionally, introductions to microcomputer
programming always begin with a basic “Hello
World!” project. For computers that include output
to a TV or monitor, such as the Commodore VIC-
20 I used many years ago, this program simply
prints the phrase “Hello World!” (or something
similar) on the output screen as a demonstration
that the system is functioning correctly and that it
has been programmed properly by the user. For
microcontrollers without a character-based output
device, such as simple PICAXE systems, the
corresponding “Hello World!” program usually
involves blinking a light-emitting diode (LED) on
one of the processor’s outputs as proof that

everything is functioning properly. In Chapter 10
we’ll develop a character-based liquid crystal
display (LCD) as an output device for our
PICAXE projects, but for our first project, we’ll
stick with the traditional “blinking LED” approach
to demonstrate that we’re on the right track.

The complete parts list for our “Hello World!”
project is presented in the Parts Bin. The listed
sources are only one possible suggestion; most of
the parts we will be using are readily available
from a variety of suppliers.

Step 1: Construct the Stripboard
Mini-Stereo Jack Adapter

We’re going to begin our first project by
constructing the mini-stereo jack adapter, which
uses three of the listed parts: stripboard, mini-
stereo jack, and 10-pin “reverse-mountable” male
header, which requires a brief explanation. Most of
the stripboards that we will construct (including
our mini-stereo adapter) will function by being
inserted into a breadboard circuit. This is usually
accomplished by using a male pin-header. If we
were constructing a PC board adapter, this would
simply involve inserting the male header from the
bottom of the PC board and soldering it on the top.
Stripboards, however, only have copper traces on
the bottom, so we can’t do any soldering on the
top. The solution to this problem (which we’ll
refer to as “reverse mounting”) involves using a
male header that is slightly longer than standard to
compensate for the thickness of the stripboard,
inserting the long ends of the pins through the
stripboard from the top and soldering the pins on
the bottom. To do this successfully, the pins should
be at least 0.32 inches (8.1 mm) long, which is the
length of the reverse-mountable headers that I
carry. If you have male headers with pins that long,
I’m sure they would work just as well.

The schematic for our stereo jack adapter is
presented in Figure 1-4. The circuit is designed to
make our first stripboard as simple as possible. All

PICAXE AXE027 USB programming cable

(sparkfun.com, SKU: PGM-08312)

Breadboard, 400 points (pololu.com,

item #351)

Jumper wires, pre-formed (pololu.com, item

#347 or 354)

3-AA battery holder, enclosed, with switch

(pololu.com, item #1152)

3 AA alkaline batteries (wherever)

Capacitor, .01�F (jrhackett.net)

Header, male, 10-pin, “reverse-mountable”

(jrhackett.net)

LED, resistorized (red or green)

(jrhackett.net)

Mini-stereo jack, 3.5-mm, low-profile

(jrhackett.net)

PICAXE-08M2 (or 08M) (jrhackett.net)

Resistor, 10k, 1/4 watt (jrhackett.net)

Resistor, 22k, 1/4 watt (jrhackett.net)

Stripboard, small (jrhackett.net)

P A R T S B I N

we are doing is bringing the three signals we need
straight out from the mini-stereo jack to the pins of
a five-pin male header. Figure 1-4 also includes the
corresponding labeling for the functions of each of
the three segments of the mating mini-stereo plug
of the AXE027 cable. If you want to use your own
mini-stereo jack, you will need this information to
determine whether its pin-out is the same as the
jack in the parts list.

To construct the stereo jack adapter, first cut a
small piece of stripboard that contains five traces,
with five holes in each trace. I use a band saw for
this purpose, but a small coping saw also works
well. The easiest approach is to “sacrifice” a series
of holes for the cut and then sand the board down
to its final size (see Figure 1-5).

To assemble the adapter:

1. Snap the 10-pin male header into two 5-pin
pieces, and insert the longer ends of the pins
of both pieces through the stripboard (from
the top) so that the pins are in the holes at
each end of the five traces.

2. In order to support the board while soldering,
flip it upside-down (with the headers still
inserted), and insert the shorter ends of the
headers into a breadboard (see Figure 1-6).

3. Solder the five pins of one header in place. The
other header is only being used to support the
stripboard—we’ll remove it in the next step.

4. Remove the stripboard assembly from the
breadboard, save the extra five-pin header for
another project, and snip off the short ends
(top of board) of the soldered header. You may
also want to file the cut ends of the pins
smooth at this point.

5. Insert the stereo jack into the top of the
stripboard so that its round opening is facing
away from the five-pin header and its middle
pin is in the end hole of the middle trace of
the stripboard (see Figure 1-7).

Chapter 1 � Introduction to PICAXE Programming and Projects 9

Schematic for the mini-stereo jack
adapter

Figure 1-4

Stripboard after cutting and
sanding

Figure 1-5
Stripboard ready for solderingFigure 1-6

6. Flip the board and stereo jack upside-down
again, place it on a flat surface, and solder the
three pins of the stereo jack to the board.
Because the adapter is going to be inserted
into a breadboard, it’s a good idea to snip
the protruding pins of the jack as short as
possible and file them smooth (again, refer
to Figure 1-7).

7. Using an old toothbrush and isopropyl alcohol
or paint thinner, clean the flux from the
bottom of the board and allow it to dry.

Figure 1-8 is a photograph of the completed
adapter. Because the photo in Figure 1-8 is not in
color, you can’t see that I have painted the tops of
the header to remind myself of the function of
each pin. (To identify the colors I used, I have
added a single-letter label to each pin.) I used
small jars of Testors model paints and a small
detail brush from the local hobby shop for this
purpose. Stripboard headers tend to be difficult to

label with words or symbols, so I usually use the
following mnemonic color-coding scheme to help
me identify the pin functions. When you get to a
certain age, you need all the memory aids you can
get—trust me!

� Black = Ground (of course)

� Green = SerIn because nowadays it’s “in” to
be green

� Red = +5 volts (naturally)—not used in this
project

� White = No Connection because I already
used black

� Yellow = Serout because you “yell out”

Step 2: Assemble the
Breadboard Circuit

The schematic for the “Hello World!” project is
presented in Figure 1-9. Note the 330� current-

10 PICAXE Microcontroller Projects for the Evil Genius

Bottom view of the completed
mini-stereo jack adapter

Figure 1-7 Top view of completed mini-stereo
jack adapter

Figure 1-8

limiting resistor in series with the LED. If you
decide to use the “resistorized” LED from the parts
list, you should omit the external current-limiting
resistor. However, if you use a “regular” LED, be
sure to include the external resistor.

Using the schematic shown in Figure 1-9 and/or
the photo of the completed project shown in Figure
1-10, assemble the “Hello World” circuit on the
breadboard. Be sure to connect the cathode
(shorter lead) of the LED to Ground. If you decide
to “tin” the ends of the battery holder’s wires
before inserting them in the breadboard, be sure to
use very little solder—it’s easy to make them too
thick to fit in the breadboard holes. (You could
also solder the battery leads to a two-pin male
header if you prefer.) If you don’t tin the leads,
twist the ends of the wires by hand before inserting
them in the breadboard.

In Figure 1-10, you can see the .01μF
decoupling capacitor inserted into the power and
ground rails in the upper-left corner of the photo.
If you look back at the schematic in Figure 1-9,
you can also see that I haven’t included it there.
A decoupling capacitor is a good idea in every
project you build—it helps decrease unwanted
“noise” in the power lines. I consider it to be part
of the breadboard setup, so I don’t generally

include it in the schematic, and I will probably
omit it from the parts list for the remainder of our
projects, but don’t forget to include one on every
breadboard project you construct.

Chapter 1 � Introduction to PICAXE Programming and Projects 11

Schematic for the “Hello World!” projectFigure 1-9

Completed “Hello World!” projectFigure 1-10

As I mentioned earlier, the serial output pin can
also function as a general-purpose output. If your
output is as simple as an LED, you can leave it and
the programming cable connected at the same
time. If you do, the LED will flicker rapidly during
a program the download, which can be a
reassuring indication that download is proceeding
properly. We’re using output C.0 for the LED in
our first project so that you can see how it behaves
during a program download. However, if you plan
to use output C.0 for something more involved
(e.g., motor control), it’s best to disconnect the
device during a program download. Some motors
and other devices can behave erratically or even be
damaged during a program download. To avoid
those risks, it’s easier to use output C.0 for an LED
whenever possible.

Step 3: Programming the
PICAXE-08M2 Processor

If you haven’t already done so, install the ProgEdit
software (or AXEpad, if you prefer) and the drivers

for the AXE027 USB cable onto your computer.
Before running ProgEdit, be sure your AXE027
cable is plugged into an available USB port. When
you do run ProgEdit, the Options window will
probably appear. For now, just close it—we’ll
discuss the various options as we need them. Our
“Hello World” BASIC program listing is presented
in Listing 1-1. As you can see, it’s simple, so it can
be quickly typed into ProgEdit. However, as I
mentioned in the Prologue, all the programs in this
book are also available for downloading from my
website (www.JRHackett.net). Make sure you use
the correct version of each program (M-class vs.
M2-class) for your processor.

When you have finished typing in the program,
save it with the name “HelloWorld”—the “.bas”
will be automatically added. Before we actually
run it, there are three aspects of the program
(actually, any PICAXE program) that I want to
emphasize.

� Comments: Any text that follows an
apostrophe or a semicolon is treated as a
comment. In other words, it’s only there for

12 PICAXE Microcontroller Projects for the Evil Genius

' ============================== HelloWorld.bas ==============================

' This program runs on a PICAXE-08M2.

' It blinks an LED to say "Hello World!"

' === Constants ===

symbol abit = 500 ' used to adjust blink rate

symbol LED = C.0 ' LED on output C.0 (pin 7)

‘ === Directives ===

#com 3 ' specify serial port

#picaxe 08M2 ' specify processor

' ============================ Begin Main Program ============================

do

high LED ' LED on

pause abit ' slow it down

low LED ' LED off

pause abit ' slow it down

loop ' loop forever

LISTING 1-1

us humans. The PICAXE BASIC compiler
ignores comments, and they don’t add to the
length of the downloaded program. They may
seem tedious to type, but they are invaluable.
Without them, a program that you thoroughly
understood when you originally wrote it will
seem incomprehensible six months later—I
guarantee it! So be sure to include copious
comments in all the programs you write.

� Constants: Constants are another convenience
for us humans. In the “Hello World” program,
we really don’t need either of the constants that
I declared. For example, in the main body of
the program, I could have written “high C.0”
and “pause 500” and skipped the constant
declarations completely—the program would
run exactly the same and be the same length.
However, there are two excellent reasons for
not taking that approach. First, constants give
us the opportunity to include meaningful
names in our program, which makes it much
easier to read and understand. Second, in
longer programs you may issue the same
command in several different places. For
example, suppose you have a dozen or so
“pause 500” statements in your program and
you decide the delay needs to be a little longer.
It’s much simpler to change one constant
declaration than it is to change a dozen
statements sprinkled throughout your program,
so the bottom line is the same as it is for
comments: use them!

� Directives: PICAXE BASIC includes more
than a dozen directives (see Part II of the
manual). Each one begins with the “#” symbol
and can be thought of as a special instruction
to the BASIC compiler. Like comments and
constants, directives do not add to the length
of the downloaded program, but they are a real
convenience for the programmer. The two
directives that I have included in the “Hello
World!” program are probably the ones you
will most frequently want to use. As the

program comments explain, they specify
which processor is being used and which
communications port is used to connect our
programming cable. Both of these
specifications can also be set in the Options
window, but it’s much simpler to do it within
the program itself. (In the current version of
AXEpad, it is necessary to use the Options
window.) For example, if you are working with
two programs running on two different
processors (as we will frequently do in Part
Two), using the appropriate #picaxe directive
in each program completely automates the
process of switching back and forth between
processors as you develop their respective
programs. The same is true for the #com
directive. I routinely use two programming
connections (one on com 3 and the other on
com 4). By including the appropriate #com and
#picaxe directives in each program, I can easily
switch between two different programs for two
different processors (by clicking either one of
them) and download the correct program to the
correct processor.

We have one more thing to do before we can
run our “Hello World!” program—we need to be
sure our AXE027 USB cable is properly
configured for use with the ProgEdit or AXEpad
software. To do so, open the Options window,
either by selecting the View | Options menu or
clicking the Options button in the toolbar near the
top of your editor’s window. (If you’re not sure
which button that is, just point to each one and a
tool tip will appear.) When you have opened the
Options window, click the Serial Port tab to access
the relevant settings. If you have more than one
serial port on your computer and/or multiple USB
devices connected to it, you will probably see
more than one available serial port. In order to
determine which serial port is connected to your
AXE027 cable, simply click the button labeled
“Scan for USB Cable,” and a pop-up window
will identify the correct serial port for your cable.

Chapter 1 � Introduction to PICAXE Programming and Projects 13

If you are using AXEpad on a Mac, the
corresponding button is labeled “USB Setup” and
the port identification is as follows: #com
/dev/tty.usbserial-xxxx, where “xxxx” is the four-
digit serial number of your AXE027 cable. In
Linux, it’s: #com /dev/tty/USB0.

When you have configured your AXE027 cable,
you should be ready to run the “Hello World!”
program. Close the Options window, turn on the
power to your breadboard circuit, and select the
PICAXE | Program menu item (or click the
Program tool). The program should download—
you will see the LED flickering as it’s doing so.
Once the download has completed, you should see
the LED on the breadboard blink on and off about
once per second. If you don’t, welcome to the
wonderful world of troubleshooting!

Debugging a PICAXE Project

The most important aspect of the frustrating
process of debugging a project is to take things in
systematic and sequentially logical steps. With that
in mind, here are a couple of points to consider if
you need to debug your “Hello World!” project:

� If the “Hardware not found…” dialog box
appeared, make sure the power is on and
properly connected to the breadboard. Recheck
the AXE027 serial port configuration.

� If the “Downloading Program” dialog box
completed successfully but the LED didn’t
flicker during the process, the LED is probably
inserted backwards. Make sure its cathode is
connected to Ground.

� If the LED did flicker while the program was
being downloaded but it doesn’t blink, recheck
all the wiring connections in the circuit.

14 PICAXE Microcontroller Projects for the Evil Genius

Introduction to
Stripboard Circuits

C H A P T E R 2

STRIPBOARD CIRCUIT CONSTRUCTION is becoming a
popular approach to hard-wiring small circuits.
The simple mini-stereo jack adapter we made in
Chapter 1 was super-easy to build and reliable
enough to survive being moved from one
breadboard project to the next. It’s the first of
several general-purpose circuits that we’ll
construct on a stripboard so that we can use them
in various projects throughout the book. Some of
these circuits will be fairly complicated, so we’re
going to need a good grasp of some of the details
of designing and constructing stripboard circuits.
In this chapter, we’re going to construct a small
stripboard that includes the basic PICAXE
programming circuit so that we won’t have to
duplicate that circuit on every breadboard project
that we develop. We will also use the development
of our small programming adapter as a vehicle for
exploring some of the details of the process of
designing stripboard circuits.

Designing Stripboard Circuits

Essentially, there are four approaches to designing
stripboard circuits:

� Using a pencil and paper (remember them?)

� Using a computer-aided design (CAD)
program specifically designed for stripboards

� Using a CAD program intended for the design
of PC boards

� Using a general-purpose drawing program

Using a Pencil and Paper

When I first started working with stripboard
circuits, I used a pencil (with a big eraser) and a
sheet of graph paper. This approach certainly works
for simple circuits, but it does have one major
drawback, which we were able to avoid when we
constructed our mini-stereo jack adapter. The vast
majority of stripboard designs necessitate cutting
the copper traces on the bottom of the board at
various specific locations to correctly implement
the design of the circuit. Of course, when you are
looking at the bottom of a stripboard, what you see
is inverted 180 degrees from the top view. For
example, suppose you are looking at the top of the
board and there’s a trace that needs to be cut near
the top-left corner of the board. When you turn the
board over, that cut will be near either the bottom-
left corner or the top-right corner, depending on
which way you turned the board—an invitation to
disaster, to say the least!

My initial way of dealing with this problem was
to hang my graph-paper layout in front of a bright
light with the back of the paper facing me so that I
could view the inverted image and cut the traces
correctly. It soon dawned on me that I could
improve the situation by scanning my graph-paper
layout, using a computer graphics program to flip
the image, and then printing out the inverted image
for use as I cut the traces. If you don’t have a
scanner, I’m sure you could do the same thing with
a digital camera. This approach certainly works for
simple circuits, but it’s tedious at best.

15

Using a CAD Program Specifically
Designed for Stripboards

It wasn’t long before I started searching for
software specifically designed for stripboard
layouts. I found a couple of shareware programs,
but they didn’t seem to be actively supported and
weren’t much better than my paper-and-pencil
approach. I found one commercial product,
LochMaster from Abacom Software
(www.abacom-online.de/uk/html/lochmaster.html),
that’s an excellent choice for stripboard layout
design. LochMaster’s automatic board flipping and
3-D printouts make it a pleasure to use. Figure 2-1
shows the top and bottom views of the LochMaster
layout for a simple circuit. As you can see, the
bottom view has been vertically flipped. For
example, the short jumper that is soldered on the
bottom of the board moves from below to above
the middle trace when the board is vertically
flipped. You can also clearly see the two places on
the bottom of the board at which a trace needs to
be cut. (We’ll get into the details of trace cutting
shortly.)

In spite of its visual sophistication, LochMaster
has two major drawbacks that led me to decide not
to use it in this book: It’s relatively expensive and
it only runs on Windows. Now that the AXEpad
software is available for Macintosh and Linux

users, I’m determined to make all our projects
readily accessible to everyone.

Using a CAD Program Intended for
the Design of PC Boards

If you are a reader of my “PICAXE Primer”
column in Nuts and Volts magazine, you know that
in the past I have also used the free expressPCB
software (www.expresspcb.com) for designing
stripboard circuits. While free is good, the
expressPCB program also suffers from the
limitation that it only runs on Windows systems, so
it, too, is not suitable for use in our cross-platform
approach to PICAXE projects.

The next program I considered was the EAGLE
CAD program available from CadSoft
(www.cadsoft.de). “EAGLE” is an acronym that
stands for “Easily Applicable Graphical Layout
Editor.” It runs on both Macintosh and Windows
computers, and a free Light Edition is available.
However, in spite of its name, EAGLE is anything
but easy! It’s an excellent program for designing
PC boards, and I’m sure it could also be used for
stripboard design, but the learning curve is just too
steep for our purposes. It would take an entire
book to fully explain how to use EAGLE, so we’re
going to move on to our fourth and final approach.

16 PICAXE Microcontroller Projects for the Evil Genius

LochMaster printout of top and bottom stripboard viewsFigure 2-1

Using a General-Purpose
Drawing Program

I spent a fair amount of time on the Web trying
to find a cross-platform drawing program for
designing stripboard layouts, but nothing seemed
suitable. Everything I found was either a demo
version of an expensive package or a program
suitable for introducing children to drawing on the
computer; none had the features I wanted. In
desperation, I tried a program that is far from free,
but as close to ubiquitous as computer software
gets: Microsoft Word. At first glance, Word might
seem to be an unlikely prospect for designing
stripboard layouts. But as it turns out, Word’s
drawing features have just the right combination of
simplicity and power that we need to get the job
done quickly and easily. Figure 2-2 shows the top
and bottom views of the Word layout for the same
stripboard circuit that we saw earlier in Figure 2-1.
As you can see, the Word version isn’t nearly as
pretty as the LochMaster version: no 3-D effects
and none of the realism of the LochMaster layout.
However, all the necessary information is
contained in the Word layout. Also, I think the
stark simplicity of the Word layout actually makes
it easier to use. In Figure 2-2, the black jumpers
are installed on the top of the board, and the gray

jumper is installed on the bottom—this is a
standard convention that I will use throughout our
projects. As an aside, both LochMaster and Word
can be used to draw your stripboard layouts in
color. However, because all the photos in this book
are grayscale images, I have chosen to do all the
stripboard layouts in grayscale.

If you have spent the last few years vacationing
on Mars and don’t have a copy of Microsoft Word,
don’t despair. Windows users can download the
free expressPCB software I mentioned earlier, and
Mac users have a couple of choices. Even though
Apple has officially discontinued its AppleWorks
suite of office applications, version 6.2 is still
available on factory-sealed CDs (just search for
“AppleWorks 6”), and Apple still provides a free
update to the last version released (version 6.2.9).
If you don’t have Word, you probably need a good
word processor anyway (which is also included in
the AppleWorks program), and the AppleWorks
drawing program is more than capable of
generating respectable stripboard layouts. If you
prefer software that’s free, try OpenOffice. It
provides all the major functionality of Microsoft
Office (word processor, spreadsheet, database,
presentation software, drawing, etc.) and it runs
on Mac OS X, Linux, and Windows systems.

Chapter 2 � Introduction to Stripboard Circuits 17

Word printout of top and bottom stripboard viewsFigure 2-2

In our next stripboard project in Chapter 3,
we’ll get more into the details of using Word to
generate stripboard layouts, but right now, let’s
turn our attention to the mechanics of constructing
stripboard circuits.

Tools for Stripboard Circuit
Construction

We can make two different types of cuts on a
stripboard trace. The first type is the easier of the
two and therefore the one we will use whenever
we can: cutting a trace at a hole. There is a
specialized tool for this purpose (appropriately
called a “stripboard tool”) that consists of a 3.5-
mm (~ 9/64-inch) drill bit embedded in a plastic
handle. (See the tool in the center of Figure 2-3.)
Commercially available stripboard tools are hard to
find in the United States and expensive to have
shipped from Europe (where they are readily
available), so Figure 2-3 also includes two other
tools that can be used for the same purpose. The
tool at the top of the photo is simply a 1/8-inch
(3.2-mm) hex shank drill bit plugged into a

matching hex socket; the one at the bottom is a
General pin vise (available at Ace Hardware) that’s
holding a 1/8-inch drill bit. Any one of these three
tools works well for cutting a stripboard trace at a
hole.

Before you attack a stripboard with your new
18V lithium-ion cordless drill, let me clarify—
we’re not actually going to drill holes in the
stripboard. We’re just going to press the bit into
the hole where we want to cut the copper trace
and twirl it a few times by hand until the trace is
completely severed around the hole. It’s important
to work slowly and check the result between each
twirl because it’s surprisingly easy to accidentally
cut the adjacent traces if you don’t. Good lighting
and magnification also help minimize disasters.

The second type of cut involves severing a
trace between two holes. To clarify this distinction,
Figure 2-4 presents a close-up photo of both types
of cuts. In it, the third trace from the left has been
cut between two holes. This type of cut is more
difficult than cutting at a hole because it’s
necessary to leave enough copper around both
of the adjacent holes so that a jumper wire or

18 PICAXE Microcontroller Projects for the Evil Genius

Tools for cutting a stripboard trace at a holeFigure 2-3

component pin can be soldered into each one of
them. (If both holes weren’t going to be used for
soldering, we could simply remove the trace at the
unused hole.) If you look back at the stripboard
layout in Figure 2-2, you can see the two locations
where we need to make this type of cut. Looking
at the top view, one cut is just to the left of the
lower lead of resistor R1 and the other is just to the
right of the upper lead of resistor R2. As you can
see, in both cases, the two adjacent holes are going
to require soldering, as indicated by the “filled-in”
hole. If you are willing to make your stripboard
circuits large enough, you can always avoid this
type of cut. For example, if I had made each of the
traces in Figure 2-2 longer by two holes, I could
have spread out the components and jumpers so
that there would be an available hole at which to
make the easier type of cut. However, one of the
most satisfying aspects of designing a stripboard
layout, at least for me, is trying to make the board
as small as possible.

The question remains: How do we cut a trace
between two holes? My first approach was
simple—I used a small, sharp hobby knife (again,
with good lighting and magnification) to carefully
remove a thin slice of copper from the trace

between the two holes. This method certainly
works, but it has two drawbacks. It takes a fair
amount of force to pull the blade through the trace,
so it can become tedious if you have many traces
to cut. Also, the necessary cutting force can easily
facilitate an accidental “slip” resulting in cutting
the wrong trace (or worse, a finger—trust me, I
know!). In an attempt to avoid these problems, I
experimented for a while with using a small rotary
tool and a diamond burr to cut the traces, but this
approach turned out to be even more error-prone.

My third and final method of cutting a
stripboard trace between two holes has completely
eliminated any minor “accidents”—except, of
course, for occasionally cutting a trace in the
entirely wrong place. (A well-known woodworking
axiom comes to mind: “Measure twice, cut once.”
For stripboard construction, we’ll paraphrase it:
“Count twice, cut once.”) To implement this
foolproof method, I made a simple cutting tool
from a small 1/8-inch flat-bladed screwdriver. (See
the top tool in Figure 2-5.) First, I used a grinding
wheel to remove a little metal from each side of
the blade; that is, I reduced the width of the blade
from 1/8 inch (3.2 mm) to about 0.1 inch (2.5 mm)
so that the blade is just slightly wider than a
stripboard trace. Second, I used a sharpening stone
to sharpen the flat edge of the blade. What I ended
up with is a miniature chisel with a 0.1-inch blade.
My homemade stripboard chisel makes a nice
clean cut between two traces, but it does require
frequent resharpening. The steel used in
inexpensive screwdrivers just isn’t hard enough
to hold a sharp edge for very long.

Recently, I found a commercial chisel that’s just
about perfect for between-the-holes trace cutting.
(See the tool in the center of Figure 2-5.) It’s a
3-mm detail chisel used for small, intricate
woodcarvings. Three millimeters is approximately
0.12 inches, which is also slightly too wide for our
purpose, so the chisel does require minor grinding
or filing of both sides to reduce the blade width to
0.1 inch. However, once its width is reduced, this

Chapter 2 � Introduction to Stripboard Circuits 19

Examples of both types of cuts on
stripboard traces

Figure 2-4

little chisel makes precise cuts between two
adjacent holes. (See the cut between the two holes
in the third trace from the left in Figure 2-4). Also,
the commercial chisel is made from hardened
steel, so it remains sharp much longer than the
homemade version. For readers who are interested,
this 3-mm chisel is available on my website.

Whether you use a homemade or commercial
chisel, cutting a trace between two holes is a
simple and safe procedure—just place the chisel
midway between the two holes (holding it at a
slightly acute angle) and press down into the trace
until it is severed. Next, rotate the board 180
degrees and make a second cut very close to the
first one. This results in “popping out” a small
sliver of copper, which severs the trace at that
point. In a way, it’s similar to using a hobby knife,
but I have found that “pushing down” with a chisel
blade is much less error-prone than “pulling
across” with a knife blade. Whichever method you

decide to use for making cuts, it would probably
be a good idea to sacrifice a small piece of
stripboard to practice both types of cuts before you
actually begin to construct our next project.

At this point, I need to back up briefly and
clarify something about Figure 2-4. In it, you can
see that three traces have been cut at a hole. The
hole that’s cut in the far left trace is a good
example of a typical cut made with a 1/8-inch drill
bit. The cut in the second trace from the left was
also made with a drill bit, but then “squared up”
with a chisel. I will sometimes do this if I am
concerned that a trace may not be completely
severed (or if my compulsivity gets the best of
me). For example, if you look closely at the cut
on the far right, you can see that the trace is not
completely severed (a small sliver remains on its
right edge). To correct this, it’s usually better to
use the chisel than it is to go deeper with the drill
bit, because that runs the risk of accidentally

20 PICAXE Microcontroller Projects for the Evil Genius

More stripboard toolsFigure 2-5

cutting into the adjacent trace on the opposite side.
In any case, before beginning to solder the board,
it’s a good idea to use a continuity checker to be
sure that each cut completely severs its trace. It’s
much easier to correct problems before rather than
after soldering.

There is one more tool shown in Figure 2-5 that
we haven’t discussed yet. It’s the long triangular
piece of plastic at the bottom of the photo that’s used
to bend component leads in exact multiples of 0.1
inch (2.54 mm) so they fit perfectly into a stripboard.
Of course, this tool is not at all necessary; you can
certainly do the same thing by hand, but a lead-
forming tool is a real convenience and time-saver
when working with stripboard circuits. If you are
interested in getting one, they’re available at Jameco
Electronics (www.jameco.com)—just search for
“lead forming tool.”

Project 2
The USBS-PA3 PICAXE
Programming Adapter

The simple mini-stereo jack adapter that we
constructed in Chapter 1 is all we really need to
connect a breadboard project to the AXE027
programming cable. However, this time around
we’re going to construct another adapter that will
further simplify the interface between your
computer and any PICAXE breadboard project.
This adapter (which we’ll call the USBS-PA3)
includes the 10k and 22k resistors required in the
standard programming circuit, so we’ll be able to
use it in all the projects we’re going to implement
in Part One of the book.

All the parts required for this project are
available on my website and are listed in the Parts
Bin. Two of the parts require a brief explanation.
First, the high-profile mini-stereo jack has the
same pin-out as the low-profile version that we
used in our first project. The difference is that the

high-profile jack sits high enough on the stripboard
to allow us to include parts underneath it before
soldering the jack in place. This feature will enable
us to significantly reduce the size of the stripboard.
Also, both resistors need to be the smaller 1/6-watt
size to save a little more space.

Figure 2-6 presents the schematic for the USBS-
PA3 adapter, and Figure 2-7 is the stripboard
layout, which includes column and row labels
analogous to those of a standard spreadsheet. I’ll
use this labeling arrangement in all our stripboard
projects to make it easy to refer to specific
locations when necessary; for example, “Next
install the 22k resistor between holes D1 and D5.”
Note that the row labels in Figure 2-7 are reversed
for the top and bottom views—this reflects the
physical reversal that happens when you flip the
board to view the bottom. Of course, there are at
least two ways to flip a board (horizontally or
vertically). When working on the stripboard, it’s
important to make sure you always flip the board
in the same manner that the layout has been
flipped to avoid the possibility of cutting a trace
at the wrong spot.

One final point before we actually begin
construction: The leads on most of the components
that we will be using in our projects (resistors,
capacitors, diodes, etc.) are fairly long; when they
are snipped off after soldering the component in
place, most of them are still about an inch long.
These “off-cuts” are worth saving because they can

Chapter 2 � Introduction to Stripboard Circuits 21

Stripboard, small

Mini-stereo jack, 3.5-mm, high-profile

Resistor, 10k, 1/6 watt

Resistor, 22k, 1/6 watt

Resistor, 100k, 1/4 or 1/6 watt (see text)

Header, male, 10-pin, “reverse-mountable”

P A R T S B I N

serve three helpful functions. First, you can use
them as short jumper wires. Second, because they
are significantly thinner than standard jumper wire,
the ends of two of them can fit in the same hole,
which is sometimes helpful in a stripboard layout.
Third, there are times when it’s necessary to solder
a jumper between two traces on the bottom of a
stripboard, and the thinness of off-cuts makes them
ideal for this purpose.

Okay, we’re finally ready to construct the
USBS-PA3 board. The following list of directions
may seem a little long for such a simple project. In
subsequent projects, I’ll assume you are familiar
with some of the details involved and make the

instructions mercifully shorter. But for this project,
I think the extra detail is helpful. Finally, it’s
always a good idea to read through the entire
project to be sure you fully understand the
sequence before actually beginning the assembly
procedure.

1. Cut a piece of stripboard to the required size
(five tracks of five holes each) and smooth the
edges.

2. Use a small pair of diagonal pliers to snip off
the pin on the jack that would have been
inserted into hole C4 (the one in the middle of
the row of three pins).

22 PICAXE Microcontroller Projects for the Evil Genius

USBS-PA3 schematicFigure 2-6

Top and bottom views of USBS-PA3 stripboard layoutFigure 2-7

3. Use a 3/64-inch drill bit (1.5 mm should also
work, but I haven’t tested that) to widen the
holes at A1, A3, A5, C1, C3, and C5 to
accommodate the mini-stereo jack pins and
plastic supports. If you can’t find a suitable
drill bit, file the jack’s pins slightly until they
fit in the holes at A3, C1, and C5, and slice
off the small round plastic nipples that would
have sat in the holes at A1, A5, and C3.

4. Use a pair of needle-nose pliers to straighten
the pins of the jack and test-fit it in the
stripboard, but do not solder it at this point.

5. Cut the trace between holes C5 and D5.

6. Clean the traces with a Scotch-Brite or similar
plastic abrasive pad.

7. Insert the two resistors as indicated. Solder
and snip the leads at B1, D1, and D5, but do
not solder or snip the lead at B4 yet.

8. Snap off a three-pin section of the reverse-
mountable male header and insert it from the
top of the board in the position indicated in
Figure 2-7. Using the same procedure we
employed in Project 1, support the stripboard
and header on a breadboard while you solder
the header in place.

9. Remove the stripboard assembly from the
breadboard and snip off the short ends (on the
top of the board) of the soldered header. You
may also want to file the cut ends of the
header pins smooth at this point.

10. Insert the mini-stereo jack into the board so
that its three remaining pins are inserted into
holes A3, C1, and C5. Make sure that the jack
is fully inserted into the board.

11. Flip the board and stereo jack upside-down
again and place it on a flat surface. Bend the
unsoldered lead from B4 to the stereo jack pin
at C5. Snip the lead so that it’s just long
enough to bend around the pin at C5.

12. Use needle-nose pliers to pinch the lead
around the pin at C5, and use a small, flat

screwdriver blade to press the lead flat against
the stripboard.

13. Solder the pins/leads at holes A3, B4, C1,
and C5. Because the adapter is going to be
inserted into a breadboard, it’s a good idea to
snip the protruding pins of the jack as short as
possible and file them smooth.

14. Use an old toothbrush and isopropyl alcohol
to clean the flux from the bottom of the board,
and allow it to dry.

15. Inspect the stripboard carefully for accidental
solder connections and other problems.

Hello Again

Figure 2-8 is a photo of the completed USBS-PA3
adapter. In case you decide to paint the tops of the
three header-pins, I have again indicated the colors
that I used.

Figure 2-9 shows the USBS-PA3 installed on
the “Hello World” breadboard circuit that we
developed in Chapter 1. If you look closely at the
photo, you will see a resistor tying the 08M2’s

Chapter 2 � Introduction to Stripboard Circuits 23

Completed USBS-PA3 adapterFigure 2-8

serin pin to ground. What you can’t see in the
grayscale photo is that its value is 100k. This small
addition to the circuit is necessary because of how
the Programming Editor initiates a program
download to a PICAXE processor, but we need to
back up a bit before explaining the details of the
download process.

When an input pin is not connected to any part
of a circuit, it’s said to be “floating,” which means
that it isn’t tied either high or low and the voltage
level on the pin can randomly fluctuate, or “float,”
between high and low values. Theoretically, all
unused input pins should always be tied either high
or low, but in practice, this rule is often ignored. If
you look at our “Hello World” circuit, you can see
that input 3 (external pin 4) has been left floating.
In spite of that omission, the circuit works fine.
However, all inputs that are used in a circuit must
be tied high or low at all times, and the serin input
line is always in use in every PICAXE circuit. This
is because the processor is continually checking
the state of its serin pin (in the background of the
running program) to determine whether ProgEdit
(or AXEpad) wants to initiate a new program
download.

In other words, whenever a program is actively
running on a PICAXE chip and you decide to
download an edited (or entirely different) program,
ProgEdit “interrupts” your running program to
initiate the new download. It does this by pulling
the serin pin high. Whenever the serin pin goes
high (even for 1 microsecond), your program will
stop running and the processor will start looking
for the new download that it expects to receive.
Since a floating pin can easily go high or low
randomly, the serin pin must be held low at all
times in order for your program to run reliably.
That way, the only time the serin pin is high is
when ProgEdit has deliberately raised it to initiate
a new program download.

If you look back at the USBS-PA3 schematic
presented in Figure 2-6, you can see that the 10k
and 22k resistors in the standard programming
circuit tie the serin pin to Ground. However, the
USBS-PA3 is specifically designed to be easily
movable from one project to another, and there
definitely will be times when we will want to be
able to run the program in a project that does not
have the USBS-PA3 attached. The 100k resistor
that ties the serin line to Ground is what enables us
to do this. If we didn’t include it and then removed
the USBS-PA3, the circuit would function
erratically or not at all.

To test this assertion, try the following
experiment. Set up the “Hello World” circuit with
the USBS-PA3 installed but without the 100k
resistor installed. Next, power the circuit; the LED
should start blinking. Now, remove the USBS-PA3
from the breadboard two or three times; the LED
may or may not stop blinking. If it stops blinking,
reinsert the USBS-PA3 and it will start again. If it
continues to blink without the USBS-PA3 in the
circuit, touch the serin pin with your finger and the
blinking will probably stop because your finger
has changed the voltage level on the floating serin
pin. Next, try the same procedure but this time
with the 100k resistor tying the serin pin to

24 PICAXE Microcontroller Projects for the Evil Genius

USBS-PA3 adapter installed on
“Hello World” breadboard

Figure 2-9

Ground. In this case, the LED should continue
blinking when the USBS-PA3 is removed and
when you touch the serin pin with a finger. In
other words, the serin line must always be tied to
Ground in order for a program to function reliably.

At this point, I can almost hear you murmuring,
“What’s the big deal—just leave the 10k and
22k resistors on the breadboard!” That may be
the simpler approach, but it does have two
disadvantages. First, it requires more board
space—for a breadboard circuit, this doesn’t matter
very much, but for some very small PC boards,
even an extra resistor can use up too much board

real estate. More importantly, putting both resistors
in every circuit provides just one more opportunity
to make a mistake. In my experience, it’s better to
tie the serin pin to Ground with a 100k resistor and
keep the PICAXE programming circuit separate, as
we have done with the USBS-PA3. That’s the
approach I will use throughout this book, but you
can certainly modify any or all of the projects to
include the programming circuit if you prefer. In
Part Two of the book, we’ll construct additional
programming adapters for specific purposes as the
need arises, but the USBS-PA3 adapter is all we
need to complete the projects in Part One.

Chapter 2 � Introduction to Stripboard Circuits 25

This page intentionally left blank

Designing and Building a
+5V Regulated Power Supply

C H A P T E R 3

OUR SIMPLE 4.5V BATTERY-POWERED supply was a
quick and easy way to get started with our “Hello
World!” project. In fact, 4.5V is enough to power
any current PICAXE processor, as you can see
from the PICAXE supply ranges presented in
Table 3-1. In addition, the M2-class chips, as well
as the 20X2 and the low-voltage (3V) versions of
the 28X2 and 40X2, can actually run on a 2-AA
supply. However, with a supply voltage that low,
the downloading process is not always reliable, so
if you design a low-voltage project, you will still
need at least a 4.5V supply for downloading your
program to the processor.

When designing a project, it’s important to
check the voltage requirements of each of the
components that you may be using. For example,
many LCD displays require a �5V supply to
function correctly, so a 3-AA supply isn’t
sufficient. There’s another problem with battery-
powered projects that also must be taken into

consideration: Over time, the output voltage will
gradually decrease and then drop rapidly as the
battery pack becomes depleted. In projects as
simple as “Hello World!” all that will happen is
the LED will gradually grow dim and eventually
not light at all. However, if a project involves any
sort of critical timing functions and/or analog-to-
digital conversion (ADC) voltage measurements,
the accuracy of the program’s computations will
suffer as the voltage decreases over time. Because
of the problems associated with low-voltage
battery supplies, it’s a good idea to also have a
regulated �5V power supply available for projects
that require it. In fact, it’s simpler to power all
your PICAXE projects with a regulated �5V
supply, at least during the development stage, and
only switch to battery power in the final version of
a project that requires it.

Of course, you could always purchase a
commercial �5V power supply for this purpose,
but the fact that you’re reading this book suggests
that you prefer building your own equipment, so
that’s exactly what we’re going to do in this
chapter. Also, we’re going to use our �5V
regulated supply project as a “design study” for
the process of using Microsoft Word to develop
stripboard layouts.

27

PICAXE Processors Supply Range

08M2, 14M2, 18M2, 20M2 1.8V to 5.5V

20X2 1.8V to 5.5V

28X2, 40X2 (3V) 1.8V to 3.6V

28X2, 40X2 (5V) 4.2V to 5.5V

TABLE 3-1 Supply Range for Selected
PICAXE Processors

Designing a +5V Regulated
Power Supply for
Breadboard Circuits

Figure 3-1 presents the schematic for our �5V
regulated power supply. The circuit is a typical
design that you have probably seen many times
before. All of the parts are available on my
website. Two of them require a brief explanation:
the power connector and the switch.

There are several different sizes of power
connectors on the market. The one I chose mates
with a power plug that has a 2.1-mm ID (inner

diameter) and a 5.5-mm OD (outer diameter). That
size plug is commonly available and easily
obtained from surplus vendors or obsolete
answering machines, modems, etc. If you decide to
use a different size power connector, you may need
to modify the layout slightly to accommodate it.

The pins of the switch I chose are spaced on
0.1-inch (2.54-mm) centers, which makes it easy to
install in a stripboard circuit, but it’s only capable
of switching currents up to a maximum of 300mA.
The switch’s current limitation may seem a little
too low, since the 7805 regulator is capable of
sourcing a maximum of 1A. However, the 7805
requires a good heat sink to handle currents that
large. Without one, it’s only capable of managing
something in the vicinity of 300mA. Also, more
robust switches tend to have pins that are too
large and inconveniently spaced to be easily
accommodated in a stripboard circuit. Those
considerations, as well as the fact that 300mA is
more than ample for all the projects we will be
constructing, led me to choose the specific switch
in the parts list. This switch has two rows of pins
that attach it more solidly to the stripboard than the
more usual single-row arrangement, but it’s still a
single-pole, double-throw (SPDT) switch. If you
would prefer maximum output from the power
supply, I’m sure the layout could be modified to
accommodate a heftier switch.

28 PICAXE Microcontroller Projects for the Evil Genius

Schematic for +5V regulated power supplyFigure 3-1

Stripboard, large

Two bypass capacitors, 0.01�F each

Capacitor, electrolytic, 47�F

Capacitor, electrolytic, 100�F

Diode, 1N4001

LED, 3-mm, resistorized

7805 voltage regulator

Power connector

Switch, DPDT

Two headers, male, 10-pin, “reverse-mountable”

P A R T S B I N

Using Templates for
Stripboard Layouts

Before we actually construct our circuit, let’s focus
on the process of using the drawing features of
Microsoft Word to develop the stripboard layout.
Since we want our power supply to be convenient
to insert into a breadboard, it needs to be as wide
as a standard breadboard (i.e., 2.0 in., or 5.1 cm).
In other words, our circuit will require 20 traces to
span the two sets of power rails on a standard
breadboard. Also, as we’ll soon see, the circuit is
going to require nine holes in each trace to
accommodate the necessary parts; that’s a total of
180 holes. Furthermore, a trace can’t be a single
object because we need to be able to delete a
section between any two holes to indicate that the
trace is to be cut between those two holes. (We’ll
delete a hole to signify a cut at the hole.)
Consequently, each trace in our layout must be
composed of nine holes and eight short segments,
for a grand total of 340 objects (holes and trace

segments) in our layout—and that’s before we
even begin to draw the components and
connections for our layout!

Needless to say, that’s something you don’t
want to do more than once, so it’s a good idea to
make a template for a stripboard layout and save
it as a separate file that you can open each time
you start a new project. (It’s also a good idea to
make the template a read-only file so you don’t
accidentally save it as your new file and therefore
erase the template.) Actually, you will need to go
through this process twice because some projects
require that the traces run in the “long” direction
on the board. Since a computer monitor is much
wider than it is high, it makes sense to draw the
traces vertically in a “short-trace” layout and
horizontally in a “long-trace” layout. Figure 3-2
shows the Word template that I made for a
horizontal layout, and Figure 3-3 is my template
for a vertical layout.

Chapter 3 � Designing and Building a +5V Regulated Power Supply 29

Microsoft Word template for a horizontal stripboard layoutFigure 3-2

Let’s take a closer look at the vertical template
in Figure 3-3, since that’s the one we need for our
power supply project. To make it, I used the
following settings:

� Page: landscape orientation

� Margins: top and bottom � 1.0"; left � 0.6";
right � 0.8"

� Grid: snap � 0.05"; display � 0.2"
(multiples of 4)

� Holes: circles with 0.2" diameter; 5-points
wide; gray color

� Trace segments: 0.2" lines; 10-points wide;
gray color

To convert the template for our power supply
project, I simply opened my vertical template file,
deleted all the holes and trace segments that we
won’t need, and saved the file with a new name.
The resulting blank layout is shown in Figure 3-4.

30 PICAXE Microcontroller Projects for the Evil Genius

Microsoft Word template for a vertical stripboard layoutFigure 3-3

Blank Microsoft Word layout for +5V regulated power supplyFigure 3-4

Designing Components

Figure 3-5 presents the top and bottom views of
my completed layout for the project. The first
aspect of the layout that we need to discuss is the
process of designing a component. As a simple
example, let’s consider headers H1 and H2. They
are going to be reverse-mounted so that they can
be inserted into the two sets of power rails on a
standard breadboard. Using six pins for each
header may seem excessive, but it serves two
functions. First, the extra pins will hold the power
supply in place more firmly when it’s inserted into
the breadboard. Second, they make it impossible
for the power supply to be incorrectly inserted

along one side of the breadboard. If that were
possible, a direct short would occur, so this is just
a simple safety precaution.

Each header is composed of three parts: the
outline, the pins, and the label. The outline can be
drawn with either the line tool or the rectangle
tool. If you use the rectangle tool, be sure to set its
fill color to “no fill” or you won’t be able to see
what’s behind it. To do so, right-click the rectangle
and choose Format AutoShape from the context
menu. The pins are drawn with the oval tool
(holding down SHIFT to make a circle). They are
0.1 inch in diameter, with a dark gray line and
fill color. (Use Format AutoShape to set their

Chapter 3 � Designing and Building a +5V Regulated Power Supply 31

Completed stripboard layout for power supply projectFigure 3-5

Top View

Bottom View

properties.) Of course, you only need to make one,
then copy and paste as many as you want. The text
(which can be any color and size that you want) is
drawn with the Text Box tool. In order to place the
text precisely where you want it, temporarily turn
off the Snap To Grid option. To do so, choose
Draw and then Grid in the drawing toolbar, drag
the text box to the desired position, and reactivate
Snap To Grid. Each of the other components in the
layout in Figure 3-5 was created in a similar
manner. For example, the two bypass capacitors
are each comprised of an oval (with no fill), two
circles, four short line segments, and the text label.
Finally, I usually draw a rectangle (fine line, no
fill) to outline the entire board.

When you have completed designing a
component, you can SHIFT-click to select every
object in its definition (except the Text label—I’ll
explain shortly) and then choose the Group option
under the Draw icon in the drawing toolbar. That
way, the component is a single object that can
easily be moved, copied, etc. If you need to
modify a component’s design, you can always
“ungroup” it, make the necessary changes, and
then “regroup” it again. The reason for omitting
the label from the component’s definition is that it
makes it easier to copy and paste when multiple
instances of the same component are required in a
design. If the label were included, you would have
to ungroup the component, edit the label, and then
regroup it each time—it’s much easier to simply
add the label separately to each component.

Finally, whenever you are designing a new
component, make sure you know its physical
measurements so that the layout accurately reflects
the amount of space required by the component.
When you are actually soldering the parts in place,
there’s nothing more frustrating than discovering
that there isn’t enough room to insert a component.
Also, you may want to make a separate
Component file into which you can paste a copy of
each component that you design. That way, when
you begin a new stripboard layout, you can open

your Component file and simply copy and paste
each component that you need in the new layout.

Creating the Bottom View of a
Stripboard Layout

When I first experimented with using Word for
designing stripboard layouts, one of the features that
I really appreciated was that once a layout was
finished, all you had to do was select all of the
objects in the layout (using the Select Objects
pointer in the drawing toolbar and dragging across
all the objects, not Select All in the Edit menu—that
doesn’t work), group them, and then simply flip the
layout to get a bottom view. Unfortunately, my early
experiments didn’t include text labels for component
identification. Once I started including them, the Flip
option was grayed out and no longer available. (I’m
using Microsoft Word X for Macintosh; if you have
a different version, you may find that you can flip
the layout using this approach.)

However, there are at least two other reasonably
easy ways to flip a layout to obtain the bottom
view. In Word, you can use the following sequence
of steps:

1. Group all the objects in your layout (as
described previously).

2. Make a mental note of the position of the top
and bottom edges of the layout on the grid.

3. Grab the middle handle at the top of the
layout.

4. Drag it below the bottom of the layout and
release the mouse button.

5. Grab the middle handle at the bottom of the
layout (which is now at the top!).

6. Drag it up to where the top was at the
beginning of this procedure.

7. Adjust the (new) bottom to its original position.

Interestingly, in the bottom view that results
from this procedure, the text labels move
appropriately, but they are not inverted (i.e., they

32 PICAXE Microcontroller Projects for the Evil Genius

are still readable). You may want to save the file
with a new name so that you have two printable
files: top view and bottom view.

The second method of generating a bottom view
of the layout is to capture the window (using
Windows Print Screen or Macintosh Grab
command) that contains the top view, and then
open the resulting image in a graphics program
(such as Windows Paint or Macintosh Preview)
and flip it. (You may also want to crop the image
to remove any extraneous portions of the window.)
Again, you may want to save two different files,
one for each view.

Labeling the Rows and
Columns of the Layout

Whichever method you use to generate the bottom
view of the layout, you will need to label the rows
and columns. The simplest approach is to
handwrite the row and column labels on each view.
(Of course, it’s important to remember to reverse
the order of the row headings!) If you would prefer
to have computer-generated labels similar to the
figures in this book, you can use Microsoft Excel
to accomplish the task. If you used Word to flip the
layout, you can copy the resulting object from the
Word document and then paste it into a new Excel
spreadsheet. If you used the graphics approach,
you can insert the cropped graphic into the Excel
spreadsheet. Either way, you will need to adjust
the column width and row height until it matches
the layout. Once you have done that, you can
simply type in the appropriate row and column
headings in the cells that are adjacent to the layout.
(Again, don’t forget to reverse the row headings
for the bottom view!) That’s the approach I used to
generate all the layouts in the book.

I can imagine that the entire process of
generating a stripboard layout must sound
complicated when you first read through the
details, but after you have done it a few times, it
really is a reasonably quick and easy process. If

you build up your own library of components as I
described earlier, it primarily becomes a simple
matter of copying and pasting, and then drawing in
the appropriate jumper connections. The best part
is the ease with which you can modify the layout
as you work on the design—no more holes in the
graph paper from excessive erasures and redraws!
When the next “great idea” for a stripboard project
occurs to you, give Microsoft Word a try. In the
meantime, we’re finally ready to construct our
�5V regulated power supply.

Project 3
More Power, Scotty!

Before you actually fire up your soldering iron, I
want to mention a little detail about jumpers. The
insulation on jumper wires (especially the short
ones) tends to melt a bit when the jumper is
soldered in place. Also, accurately measuring and
stripping the ends of every jumper wire tends to be
the most tedious aspect of stripboard circuit
construction. To avoid both of these problems, I
have developed the habit of using bare jumper wire
for all my stripboard projects. (Fortunately, I
happen to have a large roll of bare wire that I
found on a surplus site several years ago, which
makes things even easier.) Even if you don’t have
access to bare wire, stripping the insulation from a
four- or five-inch piece of wire is relatively easy,
and then you can cut a few jumpers from one piece
of stripped wire. The only time you may want to
include an insulated jumper wire in a stripboard
circuit is when you think there’s a risk that a bare
wire might accidentally contact another connection
on the board.

The following list of directions may seem a
little daunting, but I think more detail is better than
less, at least at first. Read through the entire list
before you begin construction, and have fun!

1. Cut a stripboard to the required size (20 traces
of 9 holes each), and smooth the edges.

Chapter 3 � Designing and Building a +5V Regulated Power Supply 33

2. Use a stripboard tool to cut the traces at the
following holes: I6, J6, K6, and L6.

3. Make sure that the pins of the power
connector will fit easily into the stripboard,
either by using a 3/64-inch drill bit to
slightly enlarge the holes at K5, K7, and
M6 or by filing the connector’s pins slightly
until they fit.

4. Set the power connector aside and use an
abrasive plastic pad to clean all traces on the
bottom of the board.

5. Insert the following bare jumper wires on top
of the board: C3-Q3, I4-J4, B7-C7, Q7-T7,
A9-D9, and P9-S9. Solder and snip the leads.

6. Insert jumpers D7-I7 and M7-P7. For the
M7-P7 jumper, make sure there’s sufficient
lead length at M7 to extend on the bottom of
the board to I7 as shown on the layout. Solder
and snip leads at D7 and P7, but not yet at I7
and M7.

7. On the bottom of the board, bend the jumper
from M7 to I7 and snip it so that it’s just long
enough to touch the lead at I7. Press it flat
against the bottom of the board and hold it
there with a small spring clamp as shown in
Figure 3-6.

8. Solder the jumper leads at I7 and M7, and
snip the excess lead at I7.

9. Insert bypass capacitors C1 and C2; solder
and snip the leads.

10. Insert diode D1. (Observe correct polarity.)
Solder and snip the leads.

11. Insert the LED. (Observe correct polarity.)
Solder and snip the leads.

12. Insert and solder the switch in place (in either
orientation).

13. Insert the power connector on the top of the
board, making sure it’s fully seated. Invert the
board and solder the pins at K5, K7, and M6.
At K7, make sure that the jumper wire is also
soldered to the connector pin.

34 PICAXE Microcontroller Projects for the Evil Genius

A powered-up Arduino board with LED lit.Figure 3-6

14. Insert capacitors C3 and C4 as indicated on
the layout. (Observe correct polarity.) Solder
and snip the leads at D5, E5, P5, and Q5.

15. Insert the 7805 regulator. Make sure its
orientation matches the shape on the
stripboard layout. (The thinner portion
containing the “7805” label is the metal tab.)
Solder and snip the leads.

16. Sand or file the bottom of the board to remove
all sharp protrusions.

17. Reverse-mount headers H1 and H2; invert the
board and support it with female headers
appropriately spaced on two or three
breadboards as shown in Figure 3-7.

18. Solder the header pins on the bottom of the
board.

19. Use isopropyl alcohol or paint thinner and an
old toothbrush to clean the excess flux from
the bottom of the board.

20. Inspect the board carefully for accidental
solder connections and other potential
problems.

21. Allow the board to dry thoroughly before
testing.

Figure 3-8 is a close-up of the bottom of the
completed power supply circuit, and Figure 3-9
shows it installed on a breadboard, ready for
testing. The three header pins on each side of the
board that appear gray in the photo have been
painted red to make sure that I insert the supply
into the breadboard power rails in the correct
orientation. The two LEDs that are inserted into
the two power rails are, of course, resistorized.
Since they are the smaller 3-mm variety, there’s no
flat section in the plastic to identify the cathode, so
if you cut the leads, be sure to make the cathode
lead slightly shorter for easy identification. When
you test your power supply, also measure the
voltage on both positive rails to make sure that
they’re close to �5.0V (�0.2V should be fine).

Chapter 3 � Designing and Building a +5V Regulated Power Supply 35

Reverse-mounted headers prepared for solderingFigure 3-7

Hello and Good-bye!

Figure 3-10 again presents our “Hello World!”
project—I promise this is the last time you will see
it! In the photo, you can see the arrangement we
will be using for the next few projects, including

our regulated supply and the USBS-PA3
programming adapter.

If you plan to move the adapter

from project to project, don’t

forget to include the 100k resistor that ties the

serout pin to Ground.

36 PICAXE Microcontroller Projects for the Evil Genius

Close-up of bottom of completed power supply circuitFigure 3-8

Completed power supply being tested on breadboardFigure 3-9

CAUTION

Chapter 3 � Designing and Building a +5V Regulated Power Supply 37

Power supply and USBS-PA3 installed on “Hello World!” breadboardFigure 3-10

This page intentionally left blank

Hardware Overview of the
PICAXE M2-Class Processors

C H A P T E R 4

REVOLUTION EDUCATION’S RECENTLY announced
“M2” processors (the 08M2, 14M2, 18M2,
and 20M2) include an impressive array of
enhancements and innovations to their Educational
line of microcontroller products. The pin-out for
each of the new processors is shown in Figures 4-1
through 4-4, and the following list presents a brief
summary of the most important new or improved
features that are available on each of the PICAXE
M2 processors:

■ Program memory and variable storage:
Much larger than older “M” processors.

■ Operating speed: Maximum resonator speed
increased to 32MHz.

■ Supply voltage: All M2 processors can
operate on voltages as low as 1.8V; a 2-AA
or 2-AAA battery pack is all that’s required.

■ Flexible I/O pins: Almost all I/O pins can now
be individually configured as inputs or outputs.

■ Parallel processing: All M2 processors are
capable of executing four separate
programming tasks in parallel.

■ ADC inputs: As many as 11 on a processor.

■ Touch sensors: New capacitive touch sensor
inputs provide a one-wire interface to a simple
copper sensor.

■ DAC output: New digital-to-analog-converter
output pin on each processor.

39

PICAXE-08M2 pin-outFigure 4-1

PICAXE-14M2 pin-outFigure 4-2

■ Internal hardware set-reset (SR) latch: Able
to detect rapidly changing inputs.

■ Built-in “time” variable: Provides access to
an elapsed seconds counter.

From a hardware point of view, the four
processors that comprise RevEd’s M2 class are
similar. All the M2 processors have 28 general-
purpose variables, and they are also all capable of
running at 4, 8, 16, or 32MHz. The big hardware
difference, of course, is in the number of I/O pins
that each processor provides: 08M2 � 6, 14M2 �
12, 18M2 � 16, and 20M2 � 18. Another
distinction is that the 08M2 can store
approximately 200 lines of BASIC code and 48
storage variables, while the three larger processors
are each capable of storing approximately 600
lines of BASIC code and 256-storage variables.

In this chapter, we’re going to take a detailed
look at some of the M2-class capabilities. By the
time we’re finished, we will have covered the
following topics in detail:

■ General-purpose variables

■ Storage variables

■ Special-function variables

General-Purpose Variables

All M2-class processors have 28 bytes of RAM
dedicated to the storage of general-purpose
variables that are labeled from b0 to b27,
organized as shown in Table 4-1.

40 PICAXE Microcontroller Projects for the Evil Genius

PICAXE-18M2 pin-outFigure 4-3

PICAXE-20M2 pin-outFigure 4-4

As you may know, a byte consists

of 8 bits, while a word consists of

16 bits; therefore, a word is composed of 2 bytes

(an upper byte and the lower byte).

As you can see, each pair of byte variables can
also be used as one word variable. If you declare a
word variable (e.g., symbol myWord � w0), make
sure you don’t also define a byte variable using
either one of the two associated bytes (e.g.,
myGoof � b1). The compiler won’t flag this as
an error, but your program is bound to behave
unpredictably, because every time you change
the value of w0 you are also accidentally changing
the value of b1, and vice versa.

In addition to the word/byte arrangement for the
28 general-purpose variables, there are 32
individually accessible bit variables labeled bit0,
bit1, bit2, etc. These variables are actually
subdivisions of b0 through b3, as follows:

■ b0 � bit7:bit6:bit5:bit4:bit3:bit2:bit1:bit0

■ b1 � bit15:bit14:bit13:bit12:bit11:bit10:bit9:
bit8

■ b2 � bit23:bit22:bit21:bit20:bit19:bit18:bit17:
bit16

■ b3 � bit31:bit30:bit29:bit28:bit27:bit26:bit25:
bit24

Using bit variables in your program can be a
powerful technique, but, as mentioned, if you do
this, it’s important to remember that the associated

byte and word variables should not also be used.
For example, if you declare “symbol myBit �
bit10” then don’t use either w0 or b1 in another
variable declaration; if you do, your program may
behave erratically.

Storage Variables

All M2-class processors contain an area of
memory that can be used for the temporary storage
of data, including the value of a variable. On the
08M2, this area is composed of 48 bytes; on the
three larger M2 processors, it contains 256 bytes.
On all four M2 processors, the first 28 bytes
(0–27) are used to store the 28 general-purpose
variables. Therefore, it’s important to not use a
location that has already been assigned to a
general-purpose variable. Except for the general-
purpose variables, these locations cannot be
declared with the “symbol” instruction and the
data they store cannot be used in mathematical
calculations; however, the storage variables are
still a useful feature. For example, suppose you
are developing a complex program in which you
have already used all 28 of the general-purpose
variables and now find that you need just one more
variable to make it all work. You could temporarily
put the contents of variable b0, for example, into
storage, use the b0 variable to accomplish the task
at hand, and then retrieve b0’s original contents
and move on to the next task. Another important
use for this area of memory is to store simple
strings or data arrays that need to be easily
accessed. We’ll discuss this when we look at the
M2 special-function variables.

There are two different methods of storing and
accessing data in the memory storage area. The
simpler method is to use the poke and peek
commands. The syntax for the basic version of the
poke command is poke location, data (see the
manual for the more advanced versions), where
location is the address of the storage area location

Chapter 4 ■ Hardware Overview of the PICAXE M2-Class Processors 41

Word Variables Byte Variables

w0 b1: b0

w1 b3: b2

w2 b5: b4

w3 b7: b6

.

w13 b27:b26

TABLE 4-1 General-Purpose Variables of the

M2-Class Processors

NOTE

42 PICAXE Microcontroller Projects for the Evil Genius

into which you want to place the data byte
referenced by data. Assuming you want to avoid
the locations occupied by the general-purpose
variables, the available locations would be 28 to
47, for the 08M2, or 28 to 255 for the other
M2 processors. For example, if you wanted to
temporarily store the current value of b0 in storage
location 28 of any M2 chip so that you could use
that variable for another purpose, you could write
poke 28, b0.

The basic syntax for the peek command is
similar: peek location, variable. Location has the
same meaning as it does in the poke command, and
variable is the variable into which you want to
place the data byte that’s stored at location.
(Again, there are more advanced forms of the peek
command; see the manual for details.) For
example, if you now want to retrieve the value of
b0 that you had earlier placed in storage location
28, you could write peek 28, b0.

The second way of accessing data in the storage
locations is more complicated. In order to
understand it, we need to first discuss the special-
function variables available on the M2 processors.

Special-Function Variables

In addition to the general-purpose and storage
variables, there are 11 special-function variables
available for use with M2-class chips, as shown in
Table 4-2.

time

Let’s begin with the newest special-function
variable, which was recently introduced on all the
M2-class processors. Time is simply an elapsed
seconds counter that is continually updated in the
background while your program is executing.
It’s a word variable, so it can count from 0 to
65535, at which point it rolls over to 0 again. If
your program is running continuously for much

more than 18 hours (64,800 seconds), you’ll need
to take that into account. If you want to implement
a real-time clock, all you need to do is define
variables for minutes, seconds, hours, etc., check
the value of time periodically, and update your
variables whenever necessary. I thought about
including a real-time clock project in the book, but
it’s really so easy on an M2 processor that I
decided not to. Instead, in Chapter 13 we’ll
develop a countdown timer on the 20X2 processor,
which doesn’t include the built-in time variable so
it’s a little more of a challenging project.

dirsB and dirsC

Before we get into the details of the two dirs
variables, I want mention a powerful aspect of all
PICAXE processors that can sometimes be a little
confusing. The directionality of some I/O pins is
fixed (i.e., some pins are either inputs or outputs
and that can’t be changed); other pins are
bidirectional (but they do have a “default”

Variable Function

time real-time elapsed seconds

*dirsB portB data direction register

dirsC portC data direction register

*pinsB portB input pins

pinsC portC input pins

*outpinsB portB output pins

outpinsC portC output pins

bptr byte scratchpad pointer

@bptr byte scratchpad value pointed

to by bptr

@bptrinc byte scratchpad value pointed

to by bptr (post increment)

@bptrdec byte scratchpad value pointed

to by bptr (post decrement)

* Not available on 08M2

TABLE 4-2 Special-Function Variables of the
M2-Class Processors

direction that they assume whenever the processor
is powered on). In addition, many pins can
implement more than one function (but not at
the same time). With this in mind, consider the
PICAXE-08M2 pin-out presented earlier in Figure
4-1. The C.1, C.2, and C.4 pins are bidirectional,
as indicated by the “In/Out” in their descriptions.
The C.0 pin is fixed as an output, and the C.3 and
C.5 pins are fixed as inputs. In addition, most of
the I/O pins are multifunctional, as shown in their
descriptions. The function that’s listed closest to
its corresponding pin indicates both the default
direction and the default function for that pin. For
example, on power-up, C.0 is configured as the
Serial Out pin, C.5 is configured as the Serial In
pin, and the remaining four I/O pins are configured
as general-purpose inputs.

There are two ways your program can change
the default direction of a bidirectional pin. The
simpler approach is to just use a command that
indicates the direction you want to use. For
example, if you connect an LED and current-
limiting resistor from the 08M2’s C.1 pin to
Ground and execute a high C.1 command in your
program, that pin immediately becomes an output
and the LED is lit. The second method of changing
the default direction of a bidirectional pin is by
using the appropriate special-function variable:
dirsB or dirsC. This approach is more powerful
than the first one because it enables us to change
the directionality of multiple pins with just one
command. Since all the 08M2’s I/0 pins are portC
pins, only dirsC, pinsC, and outpinsC are
implemented on the 08M2, but the following
discussion also applies to dirsB, pinsB, and
outpinsB on the larger M2 processors.

DirsC is an eight-bit variable, but the only bits
of dirsC that are enabled are the ones that
correspond to the processor’s I/O pins that are
bidirectional. Therefore, for the 08M2, dirsC
consists of the following eight bits: x : x : x :
dir4 : x : dir2 : dir1 : x. Placing a 1 in the
appropriate bit position configures the

corresponding I/O pin as an output; a 0 makes it an
input. If you place either a 1 or a 0 in any of the
bits designated by x, nothing happens because that
bit is not implemented on the 08M2. In PICAXE
BASIC, the % symbol is used to indicate a binary
number. Therefore, on the 08M2, the statement
dirsC � %00001111 would configure I/O pin 4 as
an input and I/O pins 2 and 1 as outputs (C.0 is
fixed as an output anyway). Since only the
bidirectional pins are affected, the statement dirsC
� %11100110 would have the same effect.

pinsB and pinsC

The pinsB and pinsC special-function variables
provide access to the real-time values of each of
the processor’s input pins. Similarly to dirsB and
dirsC, the pinsB and pinsC variables are composed
of eight individual bit variables, which correspond
to the eight (possible) pins on an I/O port.
However, the only bits of pinsB and pinsC that are
actually implemented are the ones that correspond
to a valid input pin on the processor you are using.
For example, if you look at the pin-out of the
PICAXE-14M2 presented earlier in Figure 4-2,
you can see that there are only six pins in each of
its two I/O ports.

Let’s assume that your 14M2 program has just
executed a dirsB � %00110011 statement. At this
point, B.3 and B.2 are configured as input pins,
and B.5, B.4, B.1, and B.0 are output pins. (B.0 is
fixed as an output anyway, so it really doesn’t
matter whether you put a 0 or a 1 in the bit0
position of dirsB, but I think it’s a good idea to
always match the bit and the direction of every
pin.) With this configuration of the portB pins,
pinsB now consists of the following eight bits:
x : x : x : x : pinB.3 : pinB.2 : x : x, so pinB.3 and
pinB.2 are the only valid input pin variables. You
can use these variables as you would any variable
(e.g., if pinB.3 = 1 then….), and you can even
include a symbol statement in your variables
declarations to make it easier to remember what’s

Chapter 4 ■ Hardware Overview of the PICAXE M2-Class Processors 43

connected to each input pin (e.g., symbol pushBtn
= pinB.3); in that case, you can also write if
pushBtn = 1 then…, etc. There are also other
approaches to accessing the valid input data; refer
to the “Variables – Special Purpose” section in the
manual.

Finally, it’s worth pointing out that it wouldn’t
make any sense to refer to an input pin on the left
side of an assignment statement. The value of an
input pin is determined by the circuitry to which it
is connected (i.e., an input pin is pulled either high
or low by some external wiring) so we can’t assign
a value to an input pin; we can only read the value
that it already has.

outpinsB and outpinsC

OutpinsB and outpinsC have a similar structure to
that of pinsB and pinsC in that they are each
composed of eight separate pin variables—for
example, outpinsB � outpinB.7 : outpinB.6 :
outpinB.5…, etc.; also, only valid output pin
variables are actually implemented. Both the
outpins variables can be used in two different
ways. To write to the outputs, simply place the
outpins variable on the left side of an assignment
statement. For example, outpinsB � b0 will
transfer the bit values of variable b0 to the output
pins. It’s important to remember that only valid
output pins will be affected.

For example, consider the pin-out of the
PICAXE-20M2 processor shown earlier in Figure
4-4. Suppose there are eight LEDs with current-
limiting resistors connected to portB and the
following code snippet has just been executed:

dirsB = %11110000

outpinsB = %11111111

The result is that only the LEDs connected to
outputs B.7 through B.4 will be lit. The other four
pins have been defined as inputs, so they will be

unaffected by the outpinsB statement. Of course,
you can also write to individual outputs (e.g., high
B.7), which is often easier than using this function
of an outpins variable.

The second use of the two outpins variables is
to read the current value of the valid output pins.
In this case, the outpins variable is placed on the
right side of the assignment statement. Therefore,
executing b0 � outpinsB will transfer the current
pin values of the portB outputs to the variable b0.
If you use this approach, it’s again important to
extract the valid pin data from the extraneous
data—see the manual for details. However, you
can also access the level of individual output pins
by simply using the valid bit variables of the
outpins variable (e.g., if outpinB.6 � 1 then…),
which is frequently all that’s needed. In the project
for this chapter, we’ll actually connect eight LEDs
to portB of the 20M2, so at that point you may
want to experiment with outpinsB and observe
the results.

bptr, @bptr, @bptrinc,
and @bptrdec

I have saved the most powerful (and most
complicated) special-function variables until last.
Earlier in this chapter (in the “Storage Variables”
section) we discussed the use of the peek and poke
commands to access the data in the memory
storage area. That approach is known as direct
addressing because we are directly accessing the
data that is stored at a specific location. There is a
second approach to data access, known as indirect
addressing, which uses a data structure known as a
pointer because it “points to” the data in which we
are actually interested. At first glance, this may
seem unnecessarily complicated, but it provides a
much more flexible and powerful method of data
storage and retrieval.

In Chapter 10 we’re going to use indirect
addressing to implement a serial LCD display; for

44 PICAXE Microcontroller Projects for the Evil Genius

Chapter 4 ■ Hardware Overview of the PICAXE M2-Class Processors 45

now, however, a simple example should help to
clarify the concept of indirect addressing. Suppose
your project needs to receive an eight-byte string
of serial data from a remote processor and then
send it on to the terminal window for display. One
approach (which would involve direct addressing)
would be to use a statement such as “serrxd b0,
b1, b2, b3, b4, b5, b6, b7” to store the incoming
data in eight variables, followed by a similar sertxd
statement to send the data on to the terminal
window. However, that’s a fairly wasteful use of
general-purpose variables; in addition, if you had
to deal with even longer strings of data, you could
easily run out of general-purpose variables for use
in your program.

To accomplish the same task via indirect
addressing, you could use the pointer variable bptr
and the virtual variable @bptr. The word virtual is
used to indicate that @bptr does not refer to a
fixed location in memory. Instead, @bptr contains
the value that is stored in the location “pointed to”
by bptr. In other words, whenever the value of bptr
changes, the value of @bptr also changes because
it now refers to a different location in memory.

To further increase the power (and
complication!) of indirect addressing, the
remaining two special-function variables can also
be used. Whenever @bptrinc is used in a
command, the value of the bptr pointer is
automatically post-incremented (increased by 1
after the data has been accessed); whenever
@bptrdec is used, the value of the bptr pointer is
automatically post-decremented by 1.

I realize that this is fairly complicated, so let’s
return to our example to clarify how it all works.
Suppose you decide to store the eight incoming
bytes in locations 31 through 38 in the memory
storage area. In that case, the following code
snippet accomplishes the entire task:

bptr = 31

serrxd @bptrinc,@bptrinc,@bptrinc,

@bptrinc,@bptrinc,@bptrinc,@bptrinc,

@bptrinc

bptr = 31

sertxd (@bptrinc,@bptrinc,@bptrinc,

@bptrinc,@bptrinc,@bptrinc,@bptrinc,

@bptrinc)

In the serrxd statement, the first time @bptrinc
is accessed, it stores the incoming byte in memory
location 31. At that point, bptr is automatically
incremented, so the next time @bptrinc is accessed
it stores the incoming byte in memory location 32,
and so on. The sertxd statement works in exactly
the same way because bptr has been reinitialized
to 31. The eight bytes have been sequentially
stored and then retransmitted in the same order.

By this time, I would imagine that you have had
more than enough theory for a while, so let’s
actually build something!

Project 4
Cylon Eye

If you’re a science fiction fan (and old enough!),
you probably remember the 1978 television series
Battlestar Galactica. Although the show only lasted
one season, it did introduce a fairly impressive race
of robots called Cylons. Their most memorable
feature was a single “eye” that consisted of a
sinister red light that oscillated back and forth as a
Cylon scanned its environment. Ever since the
original appearance of the Cylons, no self-
respecting microcontroller book would fail to
include a “Cylon Eye” project, usually as a fancy
version of “Hello World.” In Project 4, we’re going
to continue the tradition and develop our own
Cylon Eye. Naturally, we’ll also use our regulated
power supply and our USBS-PA3 programming
adapter, as well as a small stripboard circuit that
will further simplify the breadboard setup.

Cylon Eye Hardware

The schematic for our Cylon Eye project is
presented in Figure 4-5, and the necessary parts are
listed. The project requires eight LEDs but to
simplify our breadboard setup, we’re going to use
a ten-LED bar display and a 470� nine-resistor
single in-line package (SIP) network (both
available on my website). Before we actually set
up our breadboard circuit, we’re going to construct
a small stripboard circuit for the display portion of
the project. This board can also serve as a

convenient troubleshooting device to easily check
the output port on any PICAXE processor if you
suspect that you may have a bad output pin.

Constructing the Stripboard

Our stripboard circuit is quick and easy to
construct, as long as you make sure that you have
the LED bar display and the SIP resistor network
oriented correctly before soldering them in place.
The LED display is a 20-pin dual in-line package
(DIP) unit, with its pins numbered in the same
fashion as a typical integrated circuit (numbers
running down one side and up the other). If you
look at the LED from the bottom, pin 1 is
identified, and the ten pins on that side are the
anodes of each individual LED. The SIP resistor
network contains nine resistors and ten pins. Pin 1,
which is identified with a dot, is the common
Ground connection for the nine resistors, and the
nine remaining pins each connect to the other end
of one of the resistors. If you’re not positive about
which end of the SIP is Ground, you could use a
multimeter to determine which end measures 470
to all the other pins.

The Microsoft Word stripboard layout for the
LED bar display is presented in Figure 4-6. As you
can see, the stripboard is simple. The only aspect
that requires care is that trace A is not severed at
hole 3, but the other traces are severed at all the
other holes in row 3. Trace A is the Ground trace;
if it’s severed, none of the LEDs will light. (We’re

46 PICAXE Microcontroller Projects for the Evil Genius

Schematic for Cylon Eye projectFigure 4-5

Stripboard, small

PICAXE-20M2 (or 20M) processor

Ten-LED bar display

470� nine-resistor SIP network

Resistor, 100k, 1/4 watt

Header, male, 10-pin, “reverse-mountable”

P A R T S B I N

“sacrificing” the first LED for our Ground
connection; only the remaining nine will be
functional.) Be sure to orient the LED display and
the SIP resistor network so that they both have pin
1 in the proper position as indicated in Figure 4-6.

The list of assembly instructions for our LED
bar display board is mercifully short:

1. Prepare a piece of stripboard of the required
size (10 tracks with 6 holes each).

2. Sever the traces at holes B3 through J3. (Do
not sever the trace at A3.)

3. Insert the SIP resistor network as indicated.
Make sure pin 1 is in hole A1, and solder the
SIP in place.

4. Insert the LED bar display as indicated. Make
sure pin 1 is in hole A5, and solder the LED
in place.

5. Snip all the leads on the bottom of the board
as short as possible, and sand or file the cut
ends to remove any sharp edges.

6. Snip off the short ends of every pin in the ten-
pin male header. (You may want to file the cut
ends to remove any sharp edges.)

7. Insert the header from the top of the board as
indicated. Invert the board and support the
header with a small block of wood so that it
remains fully seated in the board, and solder it
in place.

8. Clean the flux from the bottom of the board
and allow it to dry.

9. Inspect the board carefully for accidental
solder connections and other problems.

To test the completed LED bar display board,
insert it into a powered breadboard as shown in
Figure 4-7. Ground the header pin that is in line
with pin 1 of the LED display and pin 1 of the SIP
resistor network. (You may want to mark this pin
with a fine-point Magic Marker to indicate the
Ground pin.) Power up the breadboard, and
connect one end of a jumper wire to the �5V
rail. Sequentially insert the other end into the
breadboard at each of the remaining nine positions
to make sure all the LEDs (except for the one we
have sacrificed for our Ground connection) are
functioning properly. Once you’re sure everything
is okay, we’re ready to set up our Cylon Eye
project.

Setting Up the Breadboard Circuit

To set up your breadboard circuit for the project,
refer to the schematic presented earlier in Figure
4-5 and the photograph of the completed
breadboard setup, shown in Figure 4-8. As you can
see in the photo, the LED display prevents us from
inserting the USBS-PA3 programming adapter in

Chapter 4 ■ Hardware Overview of the PICAXE M2-Class Processors 47

Stripboard layout for LED bar
display

Figure 4-6

48 PICAXE Microcontroller Projects for the Evil Genius

Testing the completed LED bar display boardFigure 4-7

Breadboard setup for Cylon Eye projectFigure 4-8

line with the 20M2’s Serial Out and Ground pins,
but the required connections are still fairly simple.

Cylon Eye Software

We’re going to experiment with three different
programs for our Cylon Eye project. In each
program, we’ll be working with eight LEDs. We
sacrificed the first LED for our common Ground
connection and the second LED is attached to the
20M2’s Serial Out line, so we’ll just watch that
one flicker whenever we download a new program
to the 20M2. We’ll be using the remaining eight
LEDs, which are directly connected to the portB
pins on the 20M2. For our first program, I’ll
provide the complete program listing; for Program
2, I’ll give you the program specifications and a

hint about how to proceed; you’ll have an
opportunity to come up with your own program
before looking at my solution; Program 3 is a
“programming challenge”—I’ll again give you the
program specifications, but leave the solution
entirely up to you.

Program 1: “SimpleCylon”

For our first program (Listing 4-1), we’re simply
going to light the eight LEDs sequentially from
output 0 to output 7 and back again in an infinite
do…loop. As the name implies, it’s a simple
program, but the use of the LEDs variable may
require a brief clarification. First, note that LEDs
has been declared as another name for outpinsB.
We can certainly use outpinsB directly, so this isn’t

Chapter 4 ■ Hardware Overview of the PICAXE M2-Class Processors 49

' =============================== SimpleCylon.bas ===============================

' Eight segments of a Red LED bar display are connected to the

' 20M2’s output portB. Each bar has a 470 ohm resistor to ground.

' Current draw is > 7.25mA per LED. When all nine are lit, current = 65mA.

' === Constants ===

symbol abit = 100 ' used in pauses

' === Variables ===

symbol index = b0 ' used in for/next loops

symbol LED = outpinsB ' used to vary lit LED

' === Directives ===

#com 3 ' specify serial port

#picaxe 20M2 ' specify processor

#no_data ' save download time

#terminal off ' disable terminal window

' ============================= Begin Main Program ==============================

dirsB = %11111111 ' all outputs

LED = %00000001 ' light first LED

do

for index = 2 to 8 ' for 7 LEDs

LED = LED * 2 ' shift right

pause abit ' slow down a bit

next index ' loop

LISTING 4-1

(continued)

50 PICAXE Microcontroller Projects for the Evil Genius

necessary, but meaningful variable names tend to
make a program more readable. Also, if you’re
wondering why LEDs is multiplied and divided by
2 in the for/next loops, it’s because of the way
binary arithmetic operates. For example, consider
the binary number %00000101 (decimal 5). If you
multiply it by 2, you get decimal 10, which is
%00001010. In other words, multiplying a binary
number by 2 shifts every digit one position to the
left. Similarly, dividing a binary number by 2 shifts
every digit one position to the right. So, each time
through the first for/next loop, the next LED
(down) gets lit and each time through the second
for/next loop, the next LED (up) gets lit.

Assuming you have downloaded all the
programs from my website, open SimpleCylon.bas
in ProgEdit (or AXEpad) and download it to your
breadboard circuit; the Cylon Eye should begin its
scan. You may want to experiment with adjusting
the abit constant to see how fast it can go. If you
are up for a challenge, see if you can produce the
same scanning by using the high and low
commands instead of outpinsB.

Program 2: SimpleCylon2

This time, you’re going to produce the same
scanning effect, but with two adjacent LEDs lit at
the same time. The necessary changes are minor:

outpinsB (aka LEDs) needs to be initialized
differently, and the limits of both for/next loops
need to be adjusted. Give it a try before you look
at your downloaded program.

Program 3: Cylon3

As its name implies, this one involves three LEDs
being lit at the same time, but the sequence is more
of a challenge. Here’s how it should proceed:

1. All LEDs off

2. Output 0 LED on

3. Outputs 0 and 1 LEDs on

4. Outputs 0, 1, and 2 LEDs on

5. Three LEDs scan across to the other edge of
the LED bar display

6. Outputs 6 and 7 LEDs on

7. Output 7 LED on

8. All LEDs off

The overall effect is that the three-LED group
enters (one at a time) from the left, scans across
the display, exits (one at a time) from the right, and
then does the same thing back in the opposite
direction.

Good luck, and have fun!

for index = 7 to 1 step -1 ' for 7 LEDs

LED = LED / 2 ' shift left

pause abit ' slow down a bit

next index ' loop

loop

LISTING 4-1 (continued)

The Ins and Outs
of PICAXE Interfacing

C H A P T E R 5

PICAXE PROCESSORS SUPPORT a powerful and
sometimes bewildering array of I/O functions.
Even the entry-level M2-class processors have
a surprisingly wide range of advanced I/O
capabilities (which were listed back in Chapter 1).
We will be covering many of these I/O functions
throughout the subsequent chapters, but in this
chapter, we’re going to focus on the more basic
aspects of I/O interfacing that apply to all PICAXE
processors.

PICAXE I/O Interfacing

In this section, we’re going to examine the basics
of digital outputs and inputs. We’ll also conduct
two simple programming experiments to illustrate
various points in the discussion. In the next
chapter, we’ll take a similar approach to
understanding the basics of implementing analog
inputs with PICAXE processors.

The special-function variables that we have
already discussed are a powerful means of
manipulating multiple I/O pins with one statement.
PICAXE BASIC includes several additional I/O
commands that are usually used to manipulate
a single I/O pin, but can also be applied to
multiple pins in the same statement. Here’s the
complete list:

■ high: Switches an output pin to a “high” level.
If the specified pin is bidirectional and happens
to be set as an input when the command is
issued, the pin is first converted to an output
and then set to a high level.

• Examples: high C.1 or high B.2, B.4,
C.1,…

■ low: Switches an output to a low level. Again,
if the specified pin is bidirectional and happens
to be set as an input when the command is
issued, the pin is first converted to an output
and then set to a low level.

• Examples: low C.1 or low B.2, B.4, C.1,…

■ toggle: Changes the level of an output pin. If it
had been “high,” it becomes low, and vice
versa. If the specified pin is bidirectional and
happens to be set as an input when the toggle
command is issued, the pin is converted to an
output and then set to a “low” level.
Subsequent toggle commands referencing the
same pin toggle its level.

• Examples: toggle C.1 or toggle B.2, B.4,
C.1,…

■ output: Makes the specified pin an output and
sets it to a low level.

• Examples: output C.1 or output B.2, B.4,
C.1,…

■ input: Makes the specified pin an input.

• Examples: input C.1 or input B.2, B.4,
C.1,…

51

52 PICAXE Microcontroller Projects for the Evil Genius

■ reverse: Reverses the direction of the specified
pin; an input becomes an output and vice
versa.

• Examples: reverse C.1 or reverse B.2, B.4,
C.1,…

All these commands are straightforward to
implement; we’ll see many examples of their usage
throughout the programs in this book. If you need
clarification on any of them, refer to the
documentation in Part II of the manual.

Implementing Digital Outputs

There’s an important consideration to keep in mind
whenever you’re working with an output function
on a PICAXE processor. In Part Two of this book,
we’ll be implementing several projects that involve
more than one PICAXE processor. In projects like
that, it’s common for an output of one processor to
be connected to an input of a second processor. If
that input happens to be a bidirectional pin, there’s
always the chance that it could accidentally be
reconfigured as an output. If that were to happen
and the two pins were directly connected, you
could easily have a situation where the output of
one processor is high and the connected output of
the other processor is low. Of course, that would
result in a direct short and possibly damage one
or both processors. To avoid this potentially
disastrous situation, it’s always a good idea to
protect the processors by including a current-
limiting resistor in any I/O connection between
them. A typical value is 1k because it limits the
current to 5mA.

Implementing Digital Inputs

There are two broad categories of digital inputs.
First, an input pin on a processor can be connected
to an output pin on a second processor (or other
electronic device) to implement a connection
between the two devices. In this case, there are two
important considerations: protecting the devices

from excessive current (as we just discussed) and
protecting them from excessive voltage (which we
need to discuss). Subjecting an input pin to a
voltage greater than that of the processor’s supply
voltage is likely to damage the input pin and
possibly the processor as well. Of course, if we’re
talking about two PICAXE processors that are
powered by the same supply, this is a non-issue.
The projects in this book are all in this category, so
we won’t have to worry about it. However, if you
decide to connect a PICAXE input to voltages
higher than �5V (or any negative voltage
whatsoever), you will definitely need some form of
level-shifting circuit to protect the PICAXE input
pins from possible damage.

The second category of input device is a simple
input switch that’s included in a circuit to enable
the user to interact with the project. From an
electronics point of view, this type of switch is
easy to interface. However, from a mechanical
point of view, input switches present two types of
problems for our breadboard-based projects. The
pins on many input switches are not spaced in even
multiples of 0.1 inch (2.54 mm); even if they are,
the pins are frequently not long enough (or thin
enough) to be easily inserted into a breadboard.
Fortunately, both of these problems can be readily
overcome through the use of a small stripboard
circuit. Before we get into the details of interfacing
input switches, we’re going to build a switch
adapter for use in our I/O experiments.

Building a Super-Simple
Switch Stripboard

This little mini-project is harder to say than it is to
build! We’re going to construct a tiny breadboard
adapter for a momentary push-button switch. The
layout presented in Figure 5-1 is sized for a switch
that I had in my miscellaneous parts collection, but
it should be a simple matter to modify the layout
for any small switch you happen to have on hand.

The layout in Figure 5-1 only shows the top
view. We don’t need both views because no traces
need to be severed on the board. Note that all the
traces in the layout are black, not the usual gray.
This is because we’re actually going to build this
one upside-down—the stripboard traces will be on
the top of the board when we build and use the
adapter.

The parts list for the push-button switch adapter
is short: a small piece of stripboard, two 3-pin
sections of male headers (reverse-mountable or
regular length), and a momentary push-button
switch. The assembly procedure is slightly
different from all our previous stripboard circuits.
As I already mentioned, we’re going to assemble
and use this board “upside-down”—its traces will
be on top of the finished board. The following list
of assembly instructions is for the switch that I
used; you may need to modify it to accommodate
your switch:

1. Prepare a piece of stripboard of the required
size (five traces with six holes each).

2. Insert the long ends of the two 3-pin headers
(appropriately spaced) into a breadboard.
Invert the stripboard and place it on the short
ends of the header pins as indicated in the
layout. Solder the header pins in place.

3. Remove the stripboard from the breadboard
and snip off the short ends of the header pins
as close as possible to the board.

4. File the cut ends of the header pins so that the
push-button switch can sit close to the board
on top of the soldering on the trace side.

5. Reinsert the header pins into the breadboard,
and insert the push-button switch from the top
(trace side) of the stripboard as indicated in
the layout. (Depending on the switch that you
use, you may need to bend the pins slightly to
get them to fit into the holes.) Solder the pins
to the traces. (Be careful not to melt the
plastic of the switch.)

6. Clean the flux from the board and allow it
to dry.

7. Inspect the board carefully for accidental
solder connections and other problems.

Figure 5-2 is a close-up of the completed switch
adapter installed on a breadboard for testing. The
second switch on the left in the photo is the slide
switch from our power supply project. Just for fun,
I made an adapter for that one as well. (It’s even
simpler than the push-button adapter; you may
want to give it a try.) The push-button switch
(which I am pressing in the photo) is installed so
that the two 3-pin headers straddle the midline of
the breadboard. When pressed, the switch operates
as follows: The signal that is applied to a pin on
one end of either three-pin header is connected to
the pin at the other end of both headers. In the
photo, �5V is applied to the pin on the right end
of the top header, so whenever the push button is
pressed, both LEDs are powered.

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 53

Top view of stripboard layout for
momentary push-button switch

Figure 5-1

Experiment 1: ButtonCount.bas

Before we implement our first experiment, we
need to discuss a problem associated with all
mechanical switches. Whenever a mechanical
switch is pressed or flipped from one state to
another, the contacts do not make an immediately
solid connection; they actually “bounce” several
times before settling into the new position.
Appropriately enough, this phenomenon is known
as contact bounce, and it presents a problem that
needs to be addressed in any program that includes
an input switch. For example, in our first
experiment we’re going to program a PICAXE-
20M2 to count from 1 to 127 and display each
digital count pattern on the LEDs of the bar
display. The count will start at %00000001 and
should increment by one each time you press the
push button.

If we were to ignore the contact-bounce
problem, a single button-press would probably

increment the count by several steps because the
program is running fast enough to misinterpret one
(bouncing) button-press as several presses. To
make matters worse, the contacts will also bounce
when the button is released. PICAXE BASIC
includes a button command that, among other
things, “de-bounces” a button-press (as usual, refer
to the manual for details). However, because
button is a powerful and flexible command, it can
also be somewhat complicated to implement. A
much simpler approach is to just include a short
pause command whenever the button is pressed or
released. That way, the bouncing will stop before
the next command is executed. Most buttons settle
in 25mS or less, so a delay 50 statement should be
more than enough, unless you are using a cheap or
corroded switch.

Figure 5-3 presents the schematic that we will
use for both our experiments, and Figure 5-4 is a
photo of the completed breadboard circuit. In the
photo, the breadboard is rotated 180 degrees from

54 PICAXE Microcontroller Projects for the Evil Genius

Testing the completed switch adapterFigure 5-2

its usual orientation so that the LED lighting
pattern matches that of a standard binary
number—what that means will become clear when
we run the program. As you see, the momentary
push-button switch is connected to C.1 as specified
in the schematic, and the LED bar display circuit
that we developed in Chapter 4 is not connected to
B.7 of the 20M2. It certainly could be, but this
arrangement was necessary in order to maintain

compatibility with the older 20M processor in case
you prefer that option. (If you are using a 20M2,
when you have completed both experiments, you
may want to rewire the circuit to see if you can get
it to count from 0 to 255.)

As long as the button is not pressed, the 4.7k
resistor holds input C.1 low; when the button is
pressed, C.1 is pulled high. You could reverse this
arrangement (not pressed � high and pressed �
low), but there are two advantages to doing it as
specified in the schematic. First, it’s more intuitive
(high � on and low � off); second, it enables us to
use two of the compiler’s built-in constants (on �

1 and off � 0). Being able to write if btn is off
then… makes a program highly readable.

In the following program listing (Listing 5-1),
you can see how the previously mentioned
considerations have been implemented. As long as
the button is not pressed, the first if…then
statement in the loop is skipped. Whenever a
button-press occurs, that if…then statement is
executed so value is incremented. Also, the two
pause 50 statements eliminate any contact bounce
problems on both the “make” and “break” ends of
the button-press.

The pause abit statement near the beginning of
the program may seem unnecessary, but I included
it to simulate the effect of a longer, more complex
program and to demonstrate a problem with this
approach. Set up the circuit, download the program
to your 20M2, and see if you can diagnose the
problem!

If you experiment with the circuit for a while,
you will probably discover that the program
occasionally fails to respond to a button-press.
This happens whenever the button is pressed
rapidly enough so that the “press” and “release”
both occur during the pause abit statement. As a
result, the program never notices that the button
was just pressed and released. In longer programs,
this same problem can occur even without the

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 55

Schematic for Experiments 1 and 2Figure 5-3

presence of a pause statement because the
processor is busy doing something else when the
button is pressed and released. Fortunately, there’s
a powerful and efficient solution to the problem,
which will be the focus of our second experiment.
But before we get to that, we need to understand
how to implement an interrupt routine in our
programs.

Setting Up an
Interrupt Routine

If you are familiar with the concept of an interrupt
in a program, you will know where this is going.
If not, let me briefly explain. As you know, all
programs tend to proceed in an orderly fashion,
either sequentially executing the program
statements in the order they are written, or by
jumping or branching as specified in the program.
If we want a program to be able to respond to a

button-press, the main program loop has to execute
fast enough so that it doesn’t miss the button-press
while it’s busy doing something else in the loop.
For simple programs, this isn’t usually a problem,
but as the length and complexity of a program
increases, it quickly becomes an impossible task.

The solution is to implement an interrupt
routine in the program. An interrupt is a high-
priority routine that takes precedence over
anything else the program may be doing at the
time. In effect, an interrupt tells the processor
“stop what you’re doing, take care of this, and then
go back and pick up where you left off.”

In order to implement an interrupt, we need to
make two additions to our program. First, at the
beginning of the program we need to issue a setint
command that specifies the input conditions that
we want to trigger the interrupt. Second, we need
to include a subroutine (which must be named
interrupt) that contains the code to be executed.

56 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for Experiments 1 and 2Figure 5-4

The syntax for the setint command is setint
input, mask, port, where input is an eight-bit
constant or variable that specifies the required
input condition, mask is another eight-bit constant
or variable that specifies which inputs are to be
ignored (a 0 in any bit position of the mask tells
the compiler to ignore that input), and port is B or
C, depending on which one you want to use. To

clarify the syntax, let’s use the circuit from
Experiment 1. We want the interrupt to occur
whenever input C.1 goes high (i.e., the button is
pressed) and we want to ignore the values of all
the other inputs. Therefore, the required syntax is
setint %00000010, %00000010, C—the mask
parameter (the second one) instructs the compiler
to ignore all the inputs except for input 1, and the

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 57

' =============================== ButtonCount.bas ===============================

' Program runs on a PICAXE-20M2. Seven segments of an LED

' bar display are connected to outputs B.0-B.6 (pins 18-12).

' An input switch is connected to input C.1 (pin 9)

' and held low with a 4.7k resistor.

' However, there's a problem. Can you diagnose it?

' === Constants ===

symbol abit = 200 ' used for pauses

' === Variables ===

symbol btn = pinC.1 ' switch on input C.1

symbol LEDs = outpinsB

' === Directives ===

#com 3 ' specify com port

#picaxe 20M2 ' specify processor

#no_data ' save download time

#terminal off ' disable terminal window

' ============================= Begin Main Program =============================

dirsB = %11111111 ' all outputs

dirsC = %10111101 ' C.1 & C.6 are inputs

LEDs = %00000001 ' start count at 1

do

pause abit ' simulate a longer program

if btn is on then

inc LEDs

pause 50 ' debounce time for press

tarry:

if btn is on then tarry ' wait for release

pause 50 ' debounce time for release

endif

if LEDs > 127 then

LEDs = 1

endif

loop

LISTING 5-1

58 PICAXE Microcontroller Projects for the Evil Genius

input parameter (the first one) indicates that we
want a “high” level on input 1 to trigger the
interrupt. The syntax may seem a little more
complicated than necessary, but it enables us to
specify various combinations of inputs to trigger
an interrupt, so setint is a powerful command.

PICAXE interrupts are called polled interrupts
because the input values are checked (or “polled”)
immediately after each line of the program is
executed in order to determine whether the
specified “trigger” pattern has occurred (in this
case, a “high” on input 1). In addition, the inputs
are also polled between each note of a play or tune
command and (most importantly for our button-
press example) continuously during pause and wait
commands. That makes it impossible for a button-
press to occur without being responded to
appropriately by the program.

Experiment 2: ButtonIntrpt.bas

This experiment uses the same breadboard setup as
the previous one; the only difference is in the
software (Listing 5-2). We have already discussed
the setint command, so let’s take a look at the main
program. All it does is configure the interrupt,
initialize value, and display the count on the LEDs.
After that, the main do…loop does nothing—it’s
just pretending to be a busy program! All the
processing related to a button-press occurs in the
interrupt subroutine. Whenever the button is
pressed (even in the middle of the wait command),
the program jumps to the interrupt subroutine,
which updates the variables, handles the “make”
and “break” contact-bounce, and resets value to 1
whenever it reaches 127.

The only potentially confusing aspect of the
interrupt subroutine is the final setint command
that’s executed just before returning to the main
program. As you can see, it’s identical to the setint
command at the beginning of the program. This

command is necessary for the following reason: As
soon as the interrupt routine is called, the compiler
immediately disables the original setint command.
If it didn’t, during the entire button-press (which
could last a few hundred mS), the interrupt routine
would be repetitively interrupting itself, resulting
in a deepening recursion that would certainly result
in the program behaving erratically or locking up
altogether. Immediately disabling the interrupt
avoids this situation, but then it’s necessary to
re-establish it just before returning from the
interrupt subroutine. Download ButtonIntrpt.bas to
your 20M2 and see how it functions as compared
to our earlier experiment. It should give you some
idea of the advantages of using an interrupt routine
to handle user input.

Interrupts are a powerful feature of PICAXE
programming. If you decide to use one in your
own program, it would be a good idea to read the
relevant documentation in the manual because
there are a couple of details we didn’t cover here.
However, I do want to mention two specific
aspects of using interrupts before we move on to
our project for this chapter, First, there are times
when you might want to issue a setint off
command. The background polling of the input
pins changes some of the timing on the PICAXE
chips, so you might want to disable interrupts
during any portion of a program that involves exact
timing and then issue another setint command
when the critical routine has finished. Also, when
the interrupt subroutine has finished, program
execution resumes at the line after the one that was
interrupted. As a result, the four commands that
can be interrupted in the middle of their execution
(pause, play, tune, and wait) will not fully
complete their execution. For example, if a wait 1
command is interrupted near the beginning of its
execution, the total delay may only be a small
fraction of a second.

' =========================== ButtonIntrpt.bas ============================

' Program runs on a PICAXE-20M2. Seven segments of an

' an LED bar display are connected to outputs B.0-B.6

' An input switch is connected to input C.1 (pin 9)

' and held low with a 4.7k resistor.

' ===

' === Constants ====

symbol abit = 200 ' used for pauses

' === Variables ====

symbol btn = pinC.1 ' switch on input C.1

symbol LEDs = outpinsB

' === Directives ===

#com 3 ' specify com port

#picaxe 20M2 ' specify processor

#no_data ' save download time

' ========================== Begin Main Program ==========================

dirsB = %11111111 ' all outputs

dirsC = %10111101 ' C.1 & C.6 are inputs

LEDs = %00000001 ' start count at 1

setint %00000010, %00000010, C

do

wait 1 ' simulate a longer program

loop

' ======= End Main Program – Subroutines follow ======

interrupt:

inc LEDs

pause 50 ' debounce time for press

tarry:

if btn is on then tarry ' wait for release

pause 50 ' debounce time for release

if LEDs = 127 then

LEDs = 1

endif

setint %00000010, %00000010, C

return

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 59

LISTING 5-2

Project 5
Mary

“Mary” is an unusual project; on the surface, it
appears to be about making music with a PICAXE
processor, but it really isn’t! Mary’s true purpose
in life is to give us some experience coordinating
different types of outputs on PICAXE processors.
We aren’t going to get into the details of the
PICAXE music-making capabilities, but if you
would like to know more about the subject, you
may want to read the first two installments of the
“PICAXE Primer” column in Nuts and Volts
magazine (December 2007 and February 2008). If
you actually enjoy reading manuals, the details are
also covered in the PICAXE documentation for the
play, sound, and tune commands.

In this project, we’re going to take a familiar
tune (bet you can’t guess which one) and
intersperse the individual notes with a coordinated

pattern on the LED display. We can use exactly the
same hardware setup as our two experiments, with
one small addition—a piezo “beeper.” Piezos are
commonly available on the various surplus sites
and elsewhere, but you can also use a small
speaker if you prefer. If you do, you will need a
couple of additional components (see the PICAXE
documentation for the tune command). The
advantage of a piezo is that it requires no
additional parts whatsoever—its positive terminal
can be directly connected to a PICAXE output,
with its negative terminal connected to Ground.
Whichever device you decide to use, just connect it
to pin C.7 on the 20M2, as shown in the photo of
the breadboard setup presented in Figure 5-5.

Once you’re sure that your circuit is set up
correctly, we’re ready to take a look at Mary’s
program (Listing 5-3). Before we get into the
details, download it to your 20M2 and run it. As
each note is played, you will see a corresponding

60 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for “Mary”Figure 5-5

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 61

LED light on the display. By “corresponding,” I
mean that higher notes will light LEDs further up
the display (“up” being towards the programming
connector). In effect, the display is mimicking a
simple keyboard instrument.

You don’t need to know how to read music to
experiment with Mary, but in case you do, Figure
5-6 presents the tune that I used to come up with

the eight program constants that correspond to
the eight different notes in the song. (I used the
PICAXE documentation for the tune command to
arrive at those values.) If you feel comfortable with
musical notation, you may want to experiment
with an entirely different tune for a project of your
own design.

' ================================== Mary.bas ===================================

' Program runs on a PICAXE-20M2. Seven segments of an LED

' bar display are connected to outputs B.0 through B.6

' A piezo beeper is connected to output C.7.

' ===

' === Constants ====

symbol piezo = C.7 ' piezo on output C.7

symbol C1 = $00 ' C quarter-note

symbol C4 = $80 ' C whole-note

symbol D1 = $02 ' D quarter-note

symbol D2 = $C2 ' D half-note

symbol E1 = $04 ' E quarter-note

symbol E2 = $C4 ' E half-note

symbol G1 = $07 ' G quarter-note

symbol G2 = $C7 ' G half-note

' === Variables ====

symbol LEDs = outpinsB

symbol note = b0

symbol tone = b1

' === Directives ===

#com 3 ' specify com port

#picaxe 20M2 ' specify processor

#no_data ' save download time

' ============================= Begin Main Program ==============================

do

for note = 0 to 12

lookup note,(E1,D1,C1,D1,E1,E1,E2,D1,D1,D2,E1,G1,G2),tone

gosub PlayNote

next note

LEDs = %00000000

LISTING 5-3

(continued)

62 PICAXE Microcontroller Projects for the Evil Genius

pause 40

for note = 0 to 12

lookup note,(E1,D1,C1,D1,E1,E1,E1,E1,D1,D1,E1,D1,C4),tone

gosub PlayNote

next note

LEDs = %00000000

wait 1

loop

' ==================== End Main Program - Subroutines Follow ====================

' === PlayNote Subroutine ===

PlayNote:

select case tone

case C1,C4

LEDs = %01000000

case D1,D2

LEDs = %00100000

case E1,E2

LEDs = %00010000

case G1,G2

LEDs = %00000100

end select

tune piezo,4,(tone)

return

LISTING 5-3 (continued)

Music for “Mary Had a Little Lamb”Figure 5-6

The song consists of 26 notes, which I split in
half and entered in two lookup statements in the
main program. (Actually, the same thing could be
done with one very long lookup statement, but the
printout would be awkward because you can’t
include a line-return character in the middle of a
program statement.) Each time through a for…next
loop, one note is fetched from the lookup table and
stored in the tone variable. Then the program
jumps to the PlayNote subroutine, where a select
case statement coordinates the playing of each
individual note with the lighting of the
corresponding LED. You could also use four

separate if…then statements to accomplish the
same goal, but I think that the select case
command is easier to understand—we’ll find many
uses for it throughout our projects.

If you don’t know how to read music, I hope
you didn’t find Mary to be too frustrating or
confusing. The most important aspect of the
project is the coordination of two different types
of outputs within a program. Also, even if you’re
not interested in making music on PICAXE
processors, you may want to keep the sound
command in mind. It’s simple to use, and audio
feedback can be useful in many projects.

Chapter 5 ■ The Ins and Outs of PICAXE Interfacing 63

This page intentionally left blank

Introduction to ADC Inputs
on M2-Class Processors

C H A P T E R 6

NOW THAT WE HAVE COVERED the basics of digital
I/O, we’re ready to investigate how the M2-class
processors handle analog-to-digital conversions
(ADC). In one sense, this is a much simpler topic
because there are essentially only two different
commands to learn:

■ calibadc (or calibadc10)

■ readadc (or readadc10)

The basic concept underlying all analog-to-
digital conversion on PICAXE processors is that
the value of an analog voltage is approximated
by converting it to a digital number that is
proportional to the original value. The readadc
command, for example, converts an input voltage
level to an eight-bit binary number. If you’re
familiar with binary numbering, you know that an
eight-bit binary number can represent 256 (i.e., 28)
different values ranging from decimal 0 to decimal
255. In comparison, the readadc10 command,
which performs a ten-bit ADC, produces a binary
value that ranges from 0 to 1023. Naturally, the
result of a readadc10 command is much more
accurate than that of the readadc command, but
readacd10 takes longer to execute and it requires a
word variable because a byte variable isn’t large
enough to hold the ten-bit result. Frequently, the
increased accuracy isn’t really necessary and the
readadc command is more than adequate for the
task at hand. The necessary computations are also
easier, so that’s what we’ll use in our first example.

PICAXE processors base all analog-to-digital
conversions on the processor’s supply voltage.
That means an input voltage that’s exactly equal to
the supply voltage would be assigned a value of
255 (the largest eight-bit binary number) by the
readadc command, or a value of 1023 (the largest
ten-bit binary number) by the readadc10
command. Lower voltage levels would be assigned
proportionately lower values, and if the input
voltage were at Ground level, both commands
would assign it a value of 0. As I mentioned in the
previous chapter, applying a voltage to a PICAXE
pin that is greater than the processor’s supply
voltage or lower than Ground (i.e., negative) is
likely to damage or destroy the pin and/or the
processor. That’s an important point to keep in
mind as we work through our experiments.

The M2-class processors also include two ADC
calibration commands (calibadc and calibadc10)
that can be especially helpful in battery-powered
applications. In these situations, the supply voltage
gradually decreases over time as the battery
weakens. Therefore, the ADC reading of the same
voltage level will also change over time. This
problem can be overcome by using one of the
calibration commands, because they provide access
to an internal fixed-voltage reference of �1.024V
that remains constant even as the supply voltage
decreases. In effect, the calibadc (or calibadc10)
command executes a readadc (or readadc10)

65

command on the internal fixed-voltage reference.
Once your program has determined the ADC
reading associated with the fixed-voltage reference,
you can use that value to compute a more accurate
value for an external ADC measurement (e.g., the
real-time battery-supply voltage). We will
experiment with the calibration command in the
next chapter, but for the experiments and project in
this chapter we’ll assume our supply voltage
remains constant at approximately 5.0V.

Voltage Dividers

An underlying concept in many analog-to-digital
conversions is that of the “voltage divider.” In its
simplest form, a voltage divider is a circuit
consisting of two resistors in series, as shown in
Figure 6-1. The math is included in the figure, but
let’s state the voltage divider rule in English: The
voltage drop across a resistor is proportional to the
magnitude of the resistor. In other words, in Figure
6-1, the output voltage (which is the voltage across
Rb) is the same proportion of the input voltage as
Rb is of the total resistance. Using the values from
the figure: Vout/5 � 4700/5700, so Vout is
approximately 4.12V.

Experiment 1: A Simple
Voltage Divider

For our first experiment, we’re going to implement
the voltage divider circuit from Figure 6-1 and see
how close we can come to the predicted voltage
level of 4.12V. To keep things simple, we’ll use an
08M2 processor. If you check the pin-out of the
08M2, you’ll see that it has three ADC inputs on
pins C.1, C.2, and C.4. We’re going to use the
ADC input on C.1 (external pin 6), but they all
function identically, so it really doesn’t matter. The
schematic is presented in Figure 6-2, and the
breadboard layout is shown in Figure 6-3.

The software for our first experiment is
presented in Listing 6-1. As usual, it’s fairly
simple. The only two aspects that require brief
explanations are the readadc and sertxd
statements. Since we are using readadc (not
readadc10), we only need an eight-bit byte
variable to store the result, so Vin has been
declared accordingly. In the sertxd statement, the
“#” symbol is crucial. Without it, the statement
would send the value of Vin; while that may
sound reasonable, it would actually produce
“garbage” in the terminal window. The reason is
that all communication with any serial terminal is
based on the ASCII code, which assigns a value to
all printable and nonprintable characters.

66 PICAXE Microcontroller Projects for the Evil Genius

A basic voltage divider circuitFigure 6-1

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 67

Schematic for voltage divider experimentFigure 6-2

Breadboard layout for voltage divider experimentFigure 6-3

68 PICAXE Microcontroller Projects for the Evil Genius

Consequently, transmitting one value to the
terminal window will result in one character being
displayed (if it’s a printable character). For
example, if our ADC result happened to have a
value of 122 and we transmitted it without the
“#” symbol, we would see a “z” in the terminal
window because that’s the ASCII character
associated with the value of 122. Obviously, we
want to see “122,” not “z,” and the “#” does
exactly that; it breaks the value down into
individual digits and transmits the appropriate
ASCII codes to display them. So, “122” becomes
“1,” “2,” and “2,” and that’s what will be displayed
in the terminal window.

The cr and lf arguments in the sertxd statement
also require an explanation. They are both
predefined constants in the PICAXE compiler. Cr
equals 13 (the ASCII code for “carriage return”),
and lf equals 10 (the ASCII code for “line feed”).
They are two nonprintable characters that, in
effect, move the cursor in the terminal window to
the next line.

Download the program to your breadboard setup
and run it (Listing 6-1). The terminal window
should open automatically, because a #terminal
4800 directive is included in the program. If not,
just choose PICAXE | Terminal in the menu or

' ============================== VoltageDiv1.bas ==============================

' Program runs on a PICAXE-08M2 processor.

' It repetitively updates an ADC voltage

' measurement on ADC1 and displays the results

' in the terminal window. The program also

' blinks an LED to show it’s working.

' ===

' === Constants ====

symbol LED = C.4 ' LED on C.4 (pin 3)

symbol Vdiv = C.1 ' voltage divider on C.1

' === Variables ====

symbol ADCval= b0

' === Directives ===

#com 3 ' specify com port

#picaxe 08M2 ' specify processor

#terminal 4800

' =========================== Begin Main Program ============================

dirsC = %00010101 ' set up I/O directions

do

high LED ' for debugging

readadc Vdiv, ADCval ' get ADC value

pause 500 ' slow down

low LED

sertxd (#ADCval,cr,lf) ' send ADCval to TW

pause 500

loop

LISTING 6-1

press the F8 key. Also, make a note of the value(s)
that are displayed in the terminal window.

When I ran the program, I got an ADC value of
210. Your results may not be identical, but they
should be fairly close. Standard carbon resistors
are usually rated at 5 percent tolerance, which
means that a 1k resistor can measure anywhere
between 950 and 1050 ohms. If an application
requires more accuracy than that, you can use the
measured values of the resistors (rather than their
nominal values) in your computations. A second
alternative would be to purchase 1 percent
precision resistors for use in your ADC projects.
However, standard 5 percent resistors are good
enough for Evil Genius work.

Let’s assume you obtained the same reading that
I did—the question remains, what does 210 mean
in terms of the value of the input voltage? All it
takes to figure out the answer is another
proportion: Vin/5 � 210/255. (In English, the

unknown voltage is to �5V as the ADC reading is
to the number of ADC steps.) Solving that one
gives us 4.12V, which happens to be the exact
result we obtained earlier in Figure 6-1.

Experiment 2: Let Your
PICAXE Do the Math!

In this experiment we’re going to use the same
breadboard setup, but modify our program so that
the 08M2 takes over the chore of computing the
value of the input voltage (see Listing 6-2). This
would be a simple matter, except for the fact that
PICAXE processors are only capable of doing
integer math—no fractions or decimals allowed!
The following program listing only includes the
necessary changes to our first program. You can
either edit the first program to include the changes
or download the complete program
(VoltageDiv2.bas) from my website.

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 69

' =============================== VoltageDiv2.bas ================================

' This time, the 08M2 does the input voltage computation.

' === Variables ===

' Variables b0 through b4 are directly used in

' the bintoascii command, so don't use them here.

symbol ADCval = b5

symbol Vin = w3 ' we need a word variable (see text)

' ============================== Begin Main Program ==============================

dirsC = %00010101

do

high LED

readadc Vdiv, ADCval

pause 500

low LED

Vin = ADCval * 100 / 51

bintoascii Vin, b4, b3, b2, b1, b0

sertxd (b2,".", b1, b0," volts",cr,lf)

pause 500

loop

LISTING 6-2

Let’s take a look at the changes we need to
make in the program. First of all, Vin needs to be
declared as a word variable, not a byte variable—
we’ll soon see why that’s necessary. The rest of the
changes are contained in the three statements
immediately following the low LED statement:

1.) Vin � ADCval * 100 / 51

In order to understand this statement, we need
to go back to the proportion we just solved and do
a little algebra.

If the PICAXE compiler could do decimal
calculations, we would be finished at this point
because this equation yields the same result as
before (4.12V). However, because the compiler
can’t handle decimals, we need to include one
more step. We’re going to multiply the right side
of the equation by 100 to trick the compiler into
thinking that the final answer is 412V rather than
4.12V. This little trick is also why we needed to
declare Vin as a word variable; ADCval could
possibly be as large as 255 and multiplying that
by 100 yields 25,500, which is much too large to
be held in a byte.

2.) bintoascii ADC, b4, b3, b2, b1, b0

This statement may seem a little daunting at
first, but bintoascii is actually a powerful and
simple-to-use command. Essentially, it separates
out each of the digits in its argument (in our case,

ADCval). Since ADCval is a word variable, its
largest possible value is 65,535 so it can have as
many as five digits. Therefore, we need to include
five variables to hold each possible digit of
ADCval. I could have declared the five variables as
tenthousands, thousands, hundreds, tens, and units,
but this is one of the few times that I think it’s
better to directly use the default variable names
instead. By using the variable names b4 through
b0, each name tells us which digit it is (just think
in terms of powers of 10); 104 � the ten-thousands
digit, 103 � the thousands digit, etc. Of course, if
you use this approach, it’s important to not declare
variables b4 through b0 for another use in the same
program.

3.) sertxd (b2,".", b1, b0," volts",cr,lf)

At this point, we have separated out the digits of
Vin, but its value is 100 times too large. Because
the maximum input voltage is �5V, our Vin
variable could now be as large as 500. Therefore,
we only need to deal with b2, b1, and b0 (the
hundreds, tens, and units digits). The sertxd
statement simply transmits the three required digits
(hundreds first) and inserts a decimal point in the
appropriate place to return the number to its
original value (1/100th of Vin). Finally, we’ll also
transmit “ volts” (note the leading space) to make
the output more meaningful.

Project 6
A Three-State Digital
Logic Probe

A logic probe circuit can be as quick and easy as
an LED and a current-limiting resistor with a wire
soldered to each end of the circuit. Simply connect
the ground lead to Ground and touch the other lead
to the point in a circuit that you want to test. If the
LED lights, that point is at a high level; if it
doesn’t, the point is not at a high level. However,
this approach has two drawbacks—it can’t

70 PICAXE Microcontroller Projects for the Evil Genius

distinguish between a point that is low and a point
that is entirely disconnected from the circuit, and it
draws a fair amount of current, which could affect
the circuit’s operation.

Our digital logic probe project employs a simple
ADC circuit that solves both these problems. We’re
actually going to construct two versions. The first
is a breadboard version that we’ll use to test the
circuit. Once we’re sure the project is functioning
correctly, we’ll build a stripboard version of the
circuit and install it in a project case (actually, a
plastic test tube). Before we get started, it’s
important to note that this probe is only designed
for working with digital logic circuits powered by
�5V. Connecting the logic probe to voltages
greater than �5V will most likely damage or
destroy the 08M2 processor.

Breadboard Version
of Digital Logic Probe

The necessary parts for the breadboard version are
listed in the Parts Bin; as usual, all the parts are
available on my website. The schematic for the

project is presented in Figure 6-4, and the
breadboard layout is shown in Figure 6-5. The
three diodes in the circuit require a brief
explanation. They aren’t really necessary in the
breadboard version, but they will be in the final
stripboard project; I decided to include them here
rather than present two different schematics for the
same project. As we’ll soon see, the final project
will connect to the power rails of a breadboard,
and it would be relatively easy to insert the
connector into the rails incorrectly (reversing the
�5V and Ground), which would probably damage
the 08M2. Diode D1 blocks any current flow in the
wrong direction, protecting the 08M2 from
possible damage. Even with both LEDs lit, the
project doesn’t draw much more than 30mA. At
that level, the BAT85 has a forward voltage drop of
approximately 0.5V. Therefore, the probe is
actually powered by +4.5V, which is more than
adequate for the 08M2. Diodes D2 and D3 simply
ensure that any voltages present at the probe tip
also will not exceed 4.5V. As I already mentioned,
you don’t really need to include the diodes in the

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 71

Schematic for digital logic probe circuitFigure 6-4

breadboard test circuit; just be sure to add them in
the final stripboard version.

The software for our logic probe is presented in
Listing 6-3. It’s really simple: just two statements
executing in an infinite do…loop. Let’s start with

the select case statement, which is one of my
favorites. It performs the same function as a series
of if…then statements but it’s much simpler to write
and to understand. Essentially, the select case
statement looks at the value of the specified
variable (ADCval) and then executes the first case
clause that evaluates to true. In our program, if
ADCval is greater than 190, then the LEDs variable
is configured to light the red LED. If ADCval is not
greater than 190, the next case clause is evaluated.
There are two points to keep in mind regarding this
process. If none of the case clauses is true, the
statement executes the else clause (if one is stated).
If there is no else clause, the program advances to
the next statement without executing any of the
case clauses. Also, whenever one of the clauses is
true (and therefore executed), none of the
subsequent clauses are even evaluated; the program
just moves on to the next statement.

The only other aspect of the program that
requires explanation is how I arrived at the values

72 PICAXE Microcontroller Projects for the Evil Genius

Part Label

Three BAT85 diodes D1, D2, D3

Two resistors, 330�

Resistor, 1k —

Two resistors, 10k —

Three resistors, 100k —

Capacitor, 0.01�F C1

LED, red LED1

LED, green LED2

PICAXE-08M2 (or 08M) —

P A R T S B I N

Breadboard layout for digital logic probe circuitFigure 6-5

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 73

' =============================== LogicProbe.bas ===============================

' This program runs on a PICAXE-08M2 at 8 MHz.

' It implements a 3-state digital logic probe.

' ==

' === Constants ==========

symbol Probe = C.1 ' probe on C.1

symbol Red = %00000001 ' turn on red LED

symbol Green = %00000100 ' turn on grn LED

symbol Blank = %00000000 ' both LEDs off

' ADC input boundaries ' ADC values (Open=134)

' ———

symbol Hi = 190 ' High = 254

symbol Lo = 70 ' Low = 10

' === Variables ===

symbol ADCval = b0 ' ADC measurement

symbol LEDs = outpinsC

' === Directives ===

#com 3 ' specify serial port

#picaxe 08M2 ' specify processor

#terminal off ' disable terminal window

' ============================ Begin Main Program =============================

setfreq m8

dirsC = %00000101 ' LEDs on outputs 2 & 0

do

readadc Probe, ADCval

select case ADCval

case > Hi

LEDs = Red

case < Lo

LEDs = Green

else

LEDs = Blank

endselect

loop

LISTING 6-3

for the Hi and Lo constants. (As an aside, I
couldn’t use High and Low as names for these two
constants because the compiler reserves those two
words for the High and Low commands.) In order
to understand how the Hi and Lo values were
determined, let’s consider the three possibilities:
the point in the circuit that the probe is touching is
either at a digital high level, a digital low level, or
open (i.e., not connected to any other point in the
circuit).

1. Probe is open: In this case, the 1k resistor is
effectively disconnected from the circuit, so
the two 100k resistors will place the ADC
reading near the middle of its range, that is,
ADCval � 127. (My actual ADC value in this
situation was 134).

2. Probe is high: In this case, the 1k resistor is
in parallel with the 100k resistor that is
connected to the supply voltage, so the total
resistance on the upper side of the voltage
divider is (1k * 100K)/(1K � 100K) � 990�,
which will raise the ADC reading close to the
top of its range. (My actual ADC reading in
this situation was 254.)

3. Probe is low: In this case, the 1k resistor is in
parallel with the 100k resistor that is
connected to the Ground, so the total
resistance on the lower side of the voltage

divider is 990�, which will lower the ADC
reading almost to 0. (My actual ADC reading
in this situation was 10.)

The Hi constant is the dividing line between a
high input and an open input, so I defined Hi to be
190, which is approximately halfway between 134
and 254. Similarly, I defined Lo to be 70 because
that’s roughly halfway between 10 and 134.

Download LogicProbe.bas to your breadboard
circuit. For test purposes, you can just use an
eight- or ten-inch piece of jumper wire for the
probe. When you (carefully) touch the jumper wire
to a high point in the circuit (e.g., pin 1 of the
08M2), the red LED should light; when you touch
a grounded point (e.g., pin 8 of the 08M2), the
green LED should light; whenever the jumper is
not touching anything (or touching a point on the
breadboard that isn’t connected to anything in the
circuit), neither LED should be lit.

Stripboard Version of
Digital Logic Probe

Obviously, a digital logic probe on a breadboard
isn’t a convenient test instrument. What we need is
a device that’s small enough to be comfortably
held in one hand as we use it to examine our
experiments and projects. The “case” I chose for

74 PICAXE Microcontroller Projects for the Evil Genius

Size comparison of logic probe and mechanical pencilFigure 6-6

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 75

this purpose is a small plastic test tube about four
inches long and two-thirds of an inch in diameter;
it turned out to be comfortable to use, but it was a
challenge to squeeze the logic probe circuit into
such a small space. To give you a sense of the
size of the probe, Figure 6-6 is a photo of the
completed project next to a mechanical pencil.

The parts list for the stripboard version of the
logic probe circuit are listed in the Parts Bin, and
the stripboard layout is presented in Figure 6-7.
We’ll discuss the specifics when we actually
construct the probe, but there are a couple of
points related to the stripboard layout that I want
to clarify before we begin. First, in the layout,
you might have noticed that there are no holes in
column AD. This is because I included the end of
the stripboard (which has no holes in it) in this
project because I wanted to be able to round the
end of the board to match the curve of the bottom
of the test tube, and I preferred not having holes in
that area. If you look closely at the photo in Figure
6-6, you can see that the end of the board has been
rounded.

ID Part

D1, D2, D3 Three BAT85 diodes

— Resistor, 1k, 1/6 watt

— Two resistors, 10k, 1/6 watt

— Three resistors, 100k, 1/6 watt

C1 Capacitor, 0.01�F

LED1 LED, red, resistorized

LED2 LED, green, resistorized

— IC socket, 8-pin, machine-pins

— PICAXE-08M2 (or 08M) processor

H1 Header, male, right angle,

3 pins by 2 rows

— Ribbon cable, 3 feet, 6 conductors

— Plastic test tube

— Finishing nail, 2 inches long

— Two IDC female connectors,

3 pins by 2 rows

— Two 5-pin straight male header

(0.23" and 0.32" mating lengths)

P A R T S B I N

Stripboard layout for logic probe projectFigure 6-7

I also want to clarify what turned out to be the
most difficult aspect of the project. The layout
shows the board as having six traces, which makes
it 0.6 inches (15.2 mm) wide. The inside diameter
of the test tube is also approximately 0.6 inches, so
when I first began the project I naively thought
everything would fit together perfectly. However,
I ran into several problems along the way. Figure
6-8 is a close-up photo of the top of the stripboard
that finally worked, and Figure 6-9 shows the
bottom of the same board. As you can see from the
pattern of partial holes along the top and bottom
edges, the board ended up to be far less than 0.6
inches wide; in fact, it tapers from about 0.525
inches (13.3 mm) at the connector end down to
0.475 inches (12.1 mm) at the probe end. This is
because the test tube tapers along its length—a fact
that I failed to notice before I started!

In addition to the unanticipated taper, the board
is narrower than I intended because three factors
prevented my placing the board at the midline of
the test tube. First, I wanted the “probe” (which is

actually an ordinary finishing nail) to protrude
from the center of the bottom of the test tube. In
Figure 6-8, you can see that the nail is soldered on
top of the board, so the board has to be a little
below the midline. Also, I wouldn’t have been able
to squeeze the 08M2 into the test tube in that
position anyway. For a while, I considered
soldering the 08M2 directly to the board, but I
finally got it to fit by “lowering” the socket—I’ll
explain how in the next section when we actually
construct the stripboard.

Constructing the Stripboard

The most important and difficult part of
constructing the logic probe is getting the board to
fit all the way down into the tapered test tube. Of
course, you can take the easy way out and skip the
test tube altogether—the probe should function
perfectly without it. But if you’re up for the
challenge, I suggest that you read the following
procedures fully before you begin; then start by

76 PICAXE Microcontroller Projects for the Evil Genius

Close-up view of the top of the completed logic probeFigure 6-8

Close-up view of the bottom of the completed logic probeFigure 6-9

shaping the board to fit in the test tube. As a
general guideline, you want to sand or file the
taper on the board so that a little more than half
the hole remains at positions A1 and A6 and the
holes at positions AC1 and AC6 are almost entirely
sanded away, as shown earlier in Figure 6-8. Once
the board is prepared, you’re ready for the
assembly process.

1. Sever the traces on the bottom of the board as
indicated in the layout in Figure 6-7.

2. Round the probe end of the board by sanding
or filing it until it matches the curve of the
bottom of the test tube.

3 From the bottom of the board, use a 1/16-inch
(1.5-mm) drill bit to enlarge the eight holes
for the machine pin socket. This will enable
the socket to sit low enough for the 08M2 to
fit into the test tube. Solder the socket in
place.

4. Solder the nail to the stripboard as follows:
Use a pair of diagonal cutters to remove the
head of the nail so it lies flat on the
stripboard. Cut four bare jumper wires about
two inches long, bend each one into a “U”
shape, and fit it over the top of the nail and
down through the pair of holes on each side of
the nail. On the bottom of the board, use a
pair of pliers to twist the ends of each jumper
together tightly so that the nail is held firmly
in place. (Make sure the nail is positioned
along the midline of the stripboard.) Solder
the jumpers to the top of the nail first. (This
produces so much heat that it would melt the
solder on the bottom of the board if you did it
the other way around.) Let the nail cool; then
solder the jumpers to the bottom of the board
and snip off the excess leads.

5. Drill a 3/32-inch (2.5-mm) hole in the center
of the end of the test tube—there’s a small dot
on the tube at just the right place. Make sure
the stripboard fits all the way down the tube

and the nail protrudes through the hole. Adjust
the width of the board and the size of the hole
if necessary.

6. Test-fit the 3 � 2 right angle male header.
If necessary, sand or file the end of the
stripboard so that the black plastic of the
header just overhangs it, rather than sitting on
top of the board (see Figure 6-8). Solder in
the header and the jumper wire on the bottom
of the board that spans from A2 to A5.

7. Insert one of the 3 � 2 IDC female
connectors onto the male header pins. Also
insert an 08M2 into the socket; then test-fit
the board again to be sure everything will fit
properly inside the test tube. Make any
necessary final adjustments.

8. Solder all the remaining parts (except for the
two LEDs) in place. At the six places along
the edges of the board where a jumper wire or
resistor lead needs to be soldered at a location
that has less than a complete hole, crimp the
lead around the edge of the board to hold it in
place. The three 0.1-inch (2.54-mm) jumper
wires are easy because in each case, one lead
can be bent to touch the other lead. For the
two resistors and the longer jumper wire,
make sure the lead at the edge of the board
does not come in contact with the adjacent
trace on the bottom of the board.

9. Figure 6-10 shows the completed probe being
used to test a circuit. I happen to be left-
handed (as you can see in the photo), which is
why I positioned the red and green LEDs as I
did—it just makes more sense to me that the
high LED is above the low LED. If you’re
right-handed and that sort of thing matters to
you, you may want to reverse the position of
the two LEDs before soldering them in place.
(If so, you will also need to reverse constant
declarations in the program.) Before soldering
each LED in place, bend and snip each

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 77

negative lead so that it just contacts the
adjacent trace as shown in Figure 6-7 and
Figure 6-9.

10. Clean the flux from the bottom of the board
and allow it to dry.

11. Inspect the board carefully for accidental
solder connections and other problems.

Okay, we’re ready for the final step: assembling
the ribbon cable and connecting the logic probe. If
you don’t have experience with ribbon cable and
IDC connectors, take a look at the tutorial on my
website (www.jrhackett.net/progcable.shtml).
When you’re ready to proceed, just follow these
steps.

1. Drill a 5/16-inch (8-mm) hole in the center of
the test tube cap.

2. Attach a 3 � 2 IDC connector to one end of
the six-wire ribbon cable.

3. Pass the other end of the cable through the
hole in the test tube cap.

4. Attach another 3 � 2 IDC connector to the
other end of the cable. Be sure to orient the
connector the same way as the first one. (If
you stretch the cable out so that it’s lying flat
on one side, both connectors should either
point up or point down.)

5. Attach the connector that is on the interior
side of the cap to the stripboard connector so
that the cable exits from the bottom of the
connector. Slide the stripboard fully into the
test tube, and insert the cap into the end of the
test tube.

To test the logic probe, first program an 08M2
with the LogicProbe.bas software and then install
the 08M2 in the socket. Next, connect the ribbon
cable to the supply rails of a breadboard. At this
point, you may not know which way is the correct

78 PICAXE Microcontroller Projects for the Evil Genius

Testing a circuit with the completed logic probeFigure 6-10

orientation, but the logic probe is protected from
any reverse-polarity damage, so we can figure that
one out experimentally. Using two 3-pin sections
from the two 5-pin male headers, connect the
ribbon cable to the power rails of a breadboard. If
the power supply is reversed, the LEDs won’t
light, regardless of which point in the circuit is
probed. If that’s the case, simply rotate the
connector on the power rails 180 degrees and the
probe should function properly. Once you know
which way is the correct orientation for the
connector, you may want to label or paint it to
identify �5V and Ground.

To actually use the logic probe, just attach it to
any breadboard circuit you have on hand. When
power is applied to the board, the probe should be
able to clearly identify the three conditions we
discussed: high, low, and open connections. In
addition, the probe can tell you when an output is
producing a repetitive waveform. To see how it
responds, download the following code snippet to
any PICAXE processor, touch the appropriate
output pin with the probe, and see what happens:

do

high C.0

low C.0

loop

Chapter 6 ■ Introduction to ADC Inputs on M2-Class Processors 79

This page intentionally left blank

PICAXE Peripheral Projects

P A R T T W O

This page intentionally left blank

Introduction to
the PICAXE-20X2 Processor

C H A P T E R 7

NOW THAT WE HAVE COVERED some of the basics of
working with the PICAXE M2-class processors,
we’re almost ready to begin developing our own
stand-alone peripheral devices for use in our
PICAXE projects. However, we have one more
“preparatory” project to complete before we delve
into our first I/O peripheral project. In order to be
able to develop and test our peripheral projects, we
need a “master processor” circuit to function as the
host system for our various I/O devices. I have
chosen the PICAXE-20X2 processor for this
purpose. It’s the newest and smallest chip in the
X2 class of PICAXE processors, and it supports all
the advanced features of the other, more powerful
X2-class processors.

Advanced Features
of the 20X2 Processor

The PICAXE-20X2 implements an impressive
assortment of hardware and software enhancements.
A quick look at the pin-out presented in Figure 7-1
will give you some idea of the range of the 20X2’s
capabilities. It would take more than one volume
to fully explore all the possibilities, and by the
time you did, there would probably be a 20X3 on
the market!

In this introductory chapter, I’m going to briefly
present several of the 20X2’s advanced features
that I have found to be the most useful in my
projects. In subsequent chapters in Part Two, we’ll

explore many of these features in more detail as
they are needed. For now, let’s take a brief look at
some of the 20X2’s major hardware and software
features in the following areas:

■ Supply voltage range

■ Operating frequency range

■ General-purpose variables

■ Flexible I/O pins

■ Internal pull-up resistors

■ Analog-to-digital conversion

■ Serial I/O

■ Background timing and interrupt processing

Supply Voltage Range

The 20X2 has the same supply voltage range of the
M2-class processors; it can run reliably with a
supply voltage anywhere between 1.8V and 5V.
This impressive range opens new possibilities for
battery-powered X2-class projects.

Operating Frequency Range

Unlike the other X2-class processors, the 20X2
does not use an external ceramic resonator to set
its operating frequency. However, it does have the
widest range of internal operating frequencies of
all the PICAXE processors. The 20X2’s setfreq
command can be used to set its internal resonator
to any one of the following frequencies: 31kHz,

83

250kHz, 500kHz, 1MHz, 2MHz, 4MHz, 8MHz,
16MHz, 32MHz, and 64MHz. An operating
frequency of 64MHz is obviously impressive; the
fastest speed for the M2-class chips is 32MHz, so
the 20X2 can execute a program twice as fast as
any M2-class processor.

What’s not so obvious is that an operating speed
of 31kHz is also impressive, because power
consumption is directly related to processor speed.
For example, a 20X2 operating at 16MHz
consumes about 250 times the power than it would
if it were operating at 31kHz. Since many
programs can run effectively at 31kHz, this is an
impressive power savings. When we combine low
operating speed with lower supply voltages, the
power savings are even more impressive. A 20X2
operating at 3V and 31kHz can actually draw as
little as 16μA, which at 3V is only 48μW—an
amazingly small amount of power!

General-Purpose Variables

You may remember that the M2-class processors
each have 28 bytes of RAM dedicated to the
storage of general-purpose variables. On the 20X2,
this figure is doubled to 56 bytes (byte variables
b0 to b55, or word variables w0 to w27, or any
combination of the two). I’ve never written a
program that needed anywhere near that amount of
variable storage, but it’s nice to know it’s there. In

the unlikely event that your program needs more
than 56 general-purpose variables, the 20X2 also
contains another 72 bytes of storage variables (at
locations 56 through 127) that can be accessed
with the peek and poke commands.

Flexible I/O Pins

We have already discussed the M2-class pin
naming convention (i.e., the standard port.pin
format of the pin names, such as C.4, B.0, etc.)
and the fact that almost every I/O pin on the M2-
class processors can be individually configured to
be either an input or an output pin. These powerful
and flexible features were originally introduced on
the PICAXE X2-class processors, so the 20X2
implements them as well. On the 20X2, the C.6
pin is fixed as an input and the A.0 pin is fixed as
an output; all other I/O pins are bidirectional. In
addition, the dirsB and dirsC special-function
variables are used in the same manner that we have
already discussed.

As a result, the vast majority of your experience
in working with the M2-class processors will
easily transfer to the X2-class processors.
Specifically, if you compare the pin-out of the
20M2 (Figure 4-4) with that of the 20X2
(presented earlier in Figure 7-1), you can see that
the majority of the special pin functions on the
20M2 are in exactly the same position on the

84 PICAXE Microcontroller Projects for the Evil Genius

PICAXE-20X2 pin-outFigure 7-1

20X2. The exception to this rule is the 20M2’s
touch inputs, which at this point are unique to the
M2-class processors. If a project doesn’t require
touch inputs, you could easily begin with a 20M2
processor and later move up to a 20X2 processor if
you needed more memory or a specific advanced
function. Other than upgrading the processor, your
project’s hardware could remain virtually
unchanged.

Internal Pull-up Resistors

On each of the X2-class processors, some of the
I/O pins have internal “pull-up” resistors. When
your program enables one of these resistors, its
associated I/O pin is pulled high through an
internal resistor inside the processor. This feature
makes it possible to omit an external resistor when
configuring an I/O pin as an input. For example, if
your project doesn’t use pinC.6 (which is fixed as
an input), you could enable its internal pull-up
resistor rather than adding an external resistor.

The syntax of the pullup command is pullup
mask, where mask is an eight-bit variable or
constant whose bits determine which pull-up
resistors will be enabled. On the 20X2, the
following pins have internal pull-up resistors: B.7,
B.6, B.5, B.1, B.0, C.7, C.6, and C.0. This list is in
the same order as the bits of the mask parameter.
In other words, bit 7 of the mask controls the
resistor for pinB.7, bit 6 of the mask controls the
resistor for pinB.6, etc. For example, consider the
following code fragment:

dirsB %11110000 ' configure pins

B.7… B.4 as out-

puts and B.3… B.0

as inputs

dirsC %00001111 ' configure pins

C.7… C.4 as inputs

and C.3… C.0 as

outputs

pullup %00011110 ' enable the pullups

on inputs B.1,

B.0, C.7 and C.6

Analog-to-Digital Conversion

The X2 processors have more powerful ADC
capabilities than the M2-class chips, but the ADC
functions on the X2 chips are also somewhat more
complex. For example, whenever you use an ADC
command on an M2 processor, the referenced pin
is automatically configured as an analog input (as
we saw in the previous chapter). However, on the
X2 chips, you need to first issue an adcsetup
command to specify which input(s) you want to
configure for ADC use. (For details, see the
adcsetup docs in Part II of the manual.) If you look
back at the pin-out presented earlier in Figure 7-1,
you will see that the 20X2 can implement as many
as 11 ADC inputs. Someday I’m going to figure
out what do with that amazing capability.

The X2-class processors also support the
calibadc and calibadc10 commands that we
discussed in the previous chapter. We will
experiment with that capability later in this chapter
after we have set up our master processor circuit.

Serial I/O

All M2-class processors are capable of
transmitting and receiving serial data. However,
there is a limitation of M2-class serial I/O that
needs to be taken into account in any program. If
serial data is received while an M2 program is
busy executing some other task, the data will be
missed altogether. There are various ways of
dealing with this issue, but they tend to be
complicated. On the X2 processors, this problem
is completely eliminated. All X2-class chips
implement an hserin command that enables a
program to receive serial data in the background
while it tends to other tasks. When the program
is ready, it can access the data that has been
automatically received and process it accordingly.
The hserin command can be a little complicated to
set up correctly, but it’s well worth the effort to do
so. We’ll tackle that task when we design and
construct a serialized LCD display in Chapter 10.

Chapter 7 ■ Introduction to the PICAXE-20X2 Processor 85

86 PICAXE Microcontroller Projects for the Evil Genius

Background Timing
and Interrupt Processing

The X2-class hintsetup command provides true
(i.e., nonpolled) hardware interrupt capability. On
the 20X2, pins B.0 and/or B.1 can be configured to
trigger an interrupt on either the rising or falling
edge of an input pulse, even when the processor is
dozing or sleeping. In addition, the settimer and
setintflags commands can be configured to trigger
an interrupt whenever the 20X2’s internal
hardware timer overflows. Among other things,
this capability enables the 20X2 to maintain an
accurate internal real-time clock. In Chapter 13,
we’ll take advantage of these features when we
develop our countdown timer project.

Project 7
Implementing the 20X2
Master Processor Circuit

Now that we have a basic understanding of some
of the major hardware features of the 20X2
processor, we’re ready to set up the master
processor circuit that we’ll be using to develop
and test the I/O projects that we’ll cover in the
remainder of Part Two of this book. All we really
need is a fair amount of breadboard space to
provide the necessary flexibility for working with
the various projects that we will be developing.
With that requirement in mind, I opted for the
three-breadboard setup shown in Figure 7-2. As

The master processor breadboard layoutFigure 7-2

you can see, this arrangement provides ample
space for the possibility of working with more than
one peripheral project at the same time. As a
general rule, we’ll use the lower breadboard to
develop our input projects and the upper one for
the output projects.

You may have noticed that I didn’t include a
programming adapter connection in the breadboard
layout presented in Figure 7-2. It was an
intentional omission because we need to take a
certain complication into consideration before we
settle on an appropriate programming adapter for
our master processor circuit. Since some of our
peripheral projects will contain their own
processors, we’ll need to be able to switch back
and forth between programming the peripheral
processor and programming the master processor.
We could certainly do that with just one
programming adapter, but it would be much more
convenient to provide the master processor with its
own programming adapter and just use our USBS-
PA3 adapter for our peripheral processors. Also,
since the master processor is in the center of our

three-breadboard layout, it would also be more
convenient if its programming adapter could be
located at the left side of the breadboard rather
than at its top or bottom edge. (This is also why I
didn’t place the power supply to the left of the
master processor.)

By now you have probably guessed that we’re
about to build another programming adapter—if
so, you’re absolutely correct. For a while, I
considered naming it the YAPA-3X2 (for “Yet
Another Programming Adapter”), but I finally
decided to call it the USBS-PA3X2—you can
probably figure out how I arrived at that unwieldy
acronym! In any case, let’s actually build the
USBS-PA3X2 before we go any further.

Constructing the USBS-PA3X2
Programming Adapter

In order to understand the details of constructing
the USBS-PA3X2 adapter, I think it will be helpful
to have a clear idea of how it will be used in our
breadboard circuit. Figure 7-3 shows a close-up

Chapter 7 ■ Introduction to the PICAXE-20X2 Processor 87

Close-up of the USBS-PA3X2 installed on the breadboardFigure 7-3

photo of the master processor circuit with a
completed USBS-PA3X2 installed on the left end
of the middle section of the breadboard so that you
can clearly see how the wiring connections are
made to the serin and serout pins of the 20X2. In
the close-up, you can’t see the third pin (the
ground connection) on each side of the adapter
because it’s underneath the overhang of the stereo
connector. The jumper wire in the upper-left corner
of the photo connects one of the two ground pins
to the ground rail on the breadboard. (You can
connect whichever ground pin is more convenient
for any given project.)

Figure 7-4 presents the stripboard layout for the
USBS-PA3X2 adapter. The only unusual feature of
the layout is that there is a small “notch” in the
stripboard—the section that would have contained
holes E5 and E6 has been cut away so that the
jumper that runs from the adapter to the serout pin
on the 20X2 can sit as close as possible to the chip
(see the close-up presented in Figure 7-3). The
notch is not required for the adapter to function
properly; you can omit it if you prefer.

The required parts are too few to warrant a
formal parts list: a small piece of stripboard; a 10k,
1/6W resistor and a 22k, 1/6W resistor; two 3-pin
sections of reverse-mountable male headers; and a
high-profile stereo connector. If you don’t already
have them on hand, they’re all available on my
website. The two 3-pin headers are spaced so that
they will straddle the center divider when they are
inserted into the breadboard. When the stripboard
is assembled, the three pins of the stereo adapter
will be inserted in holes A3, C1, and E3 and the
stereo adapter will cover the two header pins that
provide the Ground connection at A4 and D4. The
header pins at A5 and D5 are for the connection to
the serout pin of the 20X2, and the pins at A6 and
D6 are for the connection to the serin pin. In each
case, you will use only one of the two possible
connections. However, the availability of the
duplicate pins allows the programming adapter to
be used either in front of the processor or behind
it. Also, the double row of header pins makes the
adapter more stable when it’s inserted into the
breadboard. As usual, read through the entire list

88 PICAXE Microcontroller Projects for the Evil Genius

USBS-PA3X2 stripboard layoutFigure 7-4

of assembly instructions that follows to be sure
you understand the entire procedure before
assembling the board.

1. Cut and sand a piece of stripboard to the
required size (six traces with five holes each).

2. (Optional) Cut and sand a small “notch” in
the stripboard that removes holes E5 and E6,
as shown in the layout presented earlier in
Figure 7-4.

3. Using a 3/64-inch (1.2-mm) drill bit, enlarge
the holes at A1, A3, C1, E1, and E3. If you
can’t locate a 3/64-inch drill bit, 1/16 inch
(1.5 mm) should also work. (As an aside,
Dremel makes a seven-piece set of small drill
bits ranging in size from 1/32 inch to 1/8 inch.
They are readily available at hardware stores
and home improvement centers. If you don’t
have one already, you might want to take a
break and run out to get one. They can be
helpful for stripboard work.)

4. Sever the trace on the bottom of the board
between holes B3 and C3.

5. On the bottom of the stereo connector, use
diagonal cutters to snip off the plastic post
that would have sat at hole C3. Also snip off
the pin that would have sat at hole B3. Cut
both of them as close to the body of the
connector as possible.

6. Test-fit the connector into the stripboard. (Its
three remaining pins should be inserted in
holes A3, C1, and E3.)

7. Insert the 22k resistor leads into holes C3 and
C6; solder and snip the leads on the bottom of
the board.

8. Insert the 10k resistor leads into holes B3 and
D3. Position the resistor so that it sits slightly
above hole C3, as shown in the layout (Figure
7-4). On the bottom of the board, bend the
lead from B3 to B4 and snip it so that it just

reaches B4. Press the lead flat against the
bottom of the board; solder the leads at B3,
B4, and D3; and snip the lead at D3.

9. Insert the ends of an insulated jumper wire at
holes B1 and B5. Solder and snip the leads.
(In the layout, the wire is offset to make it
clear that it has no contact with the resistor
lead at B3; since the insulation will
accomplish that, the wire can actually run
straight between B1 and B5.)

10. Sand or file the bottom of the board to remove
any sharp edges. Remove any unnecessary
“high spots” so the board will be able to be
inserted fully into a breadboard when it’s
being used in a project.

11. Insert the short ends of two 3-pin pieces of
reverse-mountable male headers into a
breadboard to support them during the next
step. (The two headers should just straddle the
gap in the center of the breadboard.)

12. Invert the stripboard and mount it on the long
ends of the male headers (which should
protrude through holes A4–A6 and D4–D6);
solder the six pins in place.

13. Remove the stripboard from the breadboard;
snip the short ends off the header pins and file
them smooth.

14. From the top of the board, insert the pins of
the stereo connector through holes A3, C1,
and E3. Invert the board and place the top of
the stereo connector on a flat surface. Solder
the three pins in place, snip any excess, and
file the pins to remove any sharp edges.

15. Clean the flux from the bottom of the board
and allow it to dry.

16. Inspect the board carefully for accidental
solder connections and other problems.

Chapter 7 ■ Introduction to the PICAXE-20X2 Processor 89

90 PICAXE Microcontroller Projects for the Evil Genius

Testing the USBS-PA3x2
Programming Adapter

When you have completed the programming
adapter, use the photo presented earlier in Figure
7-3 as a guide for assembling your master
processor breadboard circuit. We’ll be using this
circuit throughout Part Two of this book as we
develop and test our peripheral I/O devices. For
now, you may want to set up a simple “Hello
World!” circuit to make sure your USBS-PA3X2
adapter is functioning correctly, or you can try the
following experiment, which demonstrates the use
of the 20X2 calibadc10 command.

Experiment 1: Determining Battery
Supply Voltage

In this experiment, we’re going to revert back to
the 4.5V battery supply that we used in our
original “Hello World!” project. All you need to do
is temporarily remove the 5V regulated supply
from your master processor setup and replace it
with the battery supply. The software for our
experiment is presented in Listing 7-1—as usual,
it can be downloaded from my website.

The bintoascii and sertxd commands are the
same ones we used in Experiment 2 of the
previous chapter, so there are only two questions to
answer about the BattMon.bas program: How did I
arrive at the mysterious value of 52,378? And, why
do we double the value of the batV variable before
sending it on to the terminal window? To answer
those questions, let’s start by stating the “English”
version of the basic relationship among the
variables (presented in the following illustration):

The value of the internal reference voltage is to
the value of the battery voltage as the result of the
calibadc10 command is to the maximum ADC
value. Next, we’ll take a look at the algebraic
version of the same statement and then simplify
the results. In the following paragraph, I’ll explain
each step of the calculations.

Step 1 is just the algebraic equivalent of the
relationship stated earlier. Steps 2, 3, and 4 simply
substitute in the values we know and rearrange the
terms of the equation to solve for Vdd, which is
what we want to know. In step 5, we’re multiplying
both sides of the equation by 100 (and rounding the
result to an integer) in preparation for tricking the
compiler into working with our decimal value. This
is the same approach we took in the previous
chapter. Our integer answer will be 100 times the
actual value that we want (e.g., if Vdd is 4.38V,
we’ll end up with 438 and then insert the decimal
point where we need it in the result).

We would be finished at this point, except for
one little problem: The compiler can’t deal with an
integer as large as 104,755 (the largest allowable
word variable is 65,535, or 216–1). We solve this
problem in step 6 by dividing both sides of the
equation by 2 and making a mental note that we
will need to adjust for that later. In step 7, answer
is what we actually calculated in the program, and

step 8 is our reminder that we need to double that
result to get back to 100Vdd (which is also done in
the program). All that remains is to transmit the
result to the terminal window, with the decimal
point inserted in the correct place to (in effect)
divide by 100 and get back to the actual value of
Vdd. Run the program and measure the battery
voltage with a multimeter to confirm the accuracy
of the results—they should be pretty close.

As you can see, the calibadc and calibadc10
commands can be helpful when working with a
battery-powered project. If these commands
weren’t available, we would need to include some
sort of external voltage reference circuit in order to
be able to accomplish what we just did entirely
with software. Finally, don’t forget that all the M2
processors also support the two ADC calibration
commands.

Chapter 7 ■ Introduction to the PICAXE-20X2 Processor 91

' ================================= BattMon.bas =================================

' Program runs on a PICAXE-20X2 and measures the

' analog value of its three-cell battery supply.

' ===

' === Constants ===

symbol abit = 500 ' used in pauses

symbol LED = B.7 ' debugging LED on B.7

' === Variables ===

' Variables b0 through b4 are directly used in

' the bintoascii command - can't use them here.

symbol ADCval = w3 ' ADC result

symbol batV = w4 ' supply voltage

' === Directives ===

#com 3

#picaxe 20X2

#no_data ' reduces download time

#no_table ' reduces download time

#terminal 9600 ' open terminal window

' ============================= Begin Main Program ==============================

do

high LED

pause abit

calibadc10 ADCval

batV = 52378 / ADCval ' see text

batV = batV * 2 ' see text

low LED

pause abit

bintoascii batV, b4, b3, b2, b1, b0

sertxd (b2,".", b1, b0," volts",cr,lf)

loop

LISTING 7-1

This page intentionally left blank

Infrared Input from
a TV Remote Control

C H A P T E R 8

93

IN THIS CHAPTER, WE’RE GOING to experiment with
the commands that enable PICAXE processors
to receive and decode the infrared (IR) signals
produced by standard TV remote controls. Once
we have an understanding of the concepts
involved, we’ll develop our first peripheral project,
an 08M2-based stand-alone device that can
recognize the TV-remote signals and send the
data on to our 20X2 master processor circuit. In
addition to the built-in IR commands, there are
two other methods of implementing infrared I/O
functions that are based on very different
approaches. Before we get into the details of our
first experiment, let’s take a brief look at PICAXE
IR capabilities in all three of these areas.

Reception and Transmission
of Standard TV IR Signals

All PICAXE processors support built-in
commands that greatly simplify the reception and
transmission of infrared signals. These commands
are based on the Sony infrared remote control
(SIRC) protocol. Even if you don’t own a Sony
TV, virtually all the inexpensive “universal”
remotes on the market today support the SIRC
protocol and can be used with the PICAXE IR
commands. All you need to do is configure the
remote to transmit Sony TV signals. You may need
to try more than one of the Sony codes listed in the

remote’s documentation, but that’s relatively easy
to do.

SIRC signals are modulated onto a 38kHz
carrier wave. Fortunately, several inexpensive IR
decoders also function at 38kHz, so the hardware
requirements are minimal. The Panasonic
PNA4602M decoder that we will be using
(available on my website and elsewhere) includes
visible-light filtering and automatic demodulation
of the SIRC signals. The 4602’s output pin can be
directly connected to a PICAXE input so the
circuitry is quite simple. The PNA4602 pin-out is
shown in Figure 8-1, and its datasheet is available
on my website (www.jrhackett.net/datasheets/
PNA4602M.pdf).

On all current PICAXE processors, the relevant
commands are irin for IR reception and irout for
IR transmission. Irin can be used with any input
pin, and irout can be used with any output pin.
However, the older M-class processors were
limited to a single specific pin for each command.
For example, on the 08M, IR input could only be
received on input 3 (pin 4). In case you plan to use
an 08M processor for the experiments and project
in this chapter, I have used that specific pin so that
either processor (08M or 08M2) will work with the
same hardware setup. (Of course, you will need to
download the “M” version of each program.)

The irin command also includes an optional
“timeout” feature that allows your program to
continue on to other tasks if a valid IR signal is not
received within a specified period. We won’t be
using that feature in this chapter; if you are
interested in more information on it, see the irin
documentation in Part II of the manual.

IR-Based Serial
Communications

All PICAXE processors also support a pwmout
command that is usually used to implement
variable speed control for DC motors. (We’ll use
pwmout for that purpose in Part Three when we
implement the DC motor control system for the
Octavius robot.) Essentially, the pwmout command
generates a continuous pulse-width-modulated
(PWM) output in the background while a PICAXE
program is executing. In other words, pwmout
produces a rapidly oscillating signal with a
specified frequency and duty-cycle. So, pwmout is
an easy way to produce the 38kHz carrier wave
that’s received by the PNA4602M. In order to
establish an infrared serial communications link
between two PICAXE processors, all it takes is a
simple one-transistor circuit to modulate a 38kHz
PWM signal with a standard serial output signal
and use it to drive one or more IR LEDs. On the
other end of the communications link, a second
processor uses an IR detector to demodulate the
incoming signal and convert it back to the standard
serial protocol.

If you’re interested in learning more about this
approach to IR serial communication, three
installments of the PICAXE Primer column in Nuts
and Volts (Oct. 2008, Dec. 2008, and Feb. 2009)
cover the topic in detail. If you don’t already
subscribe, you may want to consider doing so,
since subscribers have full access to all the online
back editions of the magazine.

Simple IR Object-Detection

The third application of the PICAXE IR capability
also involves the pwmout command. In this case,
IR signals are simply used to detect the presence
of an object in the path of an infrared beam. There
are two different approaches to implementing this
capability. The first method involves two separate
PICAXE circuits: one for IR transmission and the
other for IR reception. For example, an 08M2
circuit that continuously transmits a 38kHz IR
“beam” can be placed on one side of a hallway,
with another 08M2 “receiver” circuit on the other
side. Whenever a person (or other object) moves
through the IR beam, the receiver can detect the
momentary break in the beam.

In the second approach to object detection, both
the IR transmission and the IR reception are
implemented on the same processor. This type of
circuit frequently functions as an object detector
for a robot. Essentially, a short 38kHz IR signal is
transmitted and the processor immediately
“listens” for an echo. Objects in front of the IR
detector within four or five feet can be reliably
detected using this approach.

94 PICAXE Microcontroller Projects for the Evil Genius

PNA4602 pin-outFigure 8-1

Experiment 1: A Simple
TV-IR Input Circuit

For our first experiment, we’re going to implement
a simple circuit that’s capable of receiving and
decoding SIRC signals from a TV remote control.
The schematic is presented in Figure 8-2, and the
necessary parts list is again too brief to warrant a
table: PICAXE-08M2, PNA4602M, and a
debugging LED (resistorized or standard).

The breadboard circuit is shown in Figure 8-3.
As you can see, I set up the circuit on the lower
section of our master processor board. While that’s
not really necessary for this experiment (since it
only involves the 08M2), in our second experiment
we’re going to connect the 08M2 to our master
processor, so it’s easier to begin in the right place.
With that in mind, you may want to duplicate my
setup to facilitate making the connections we will
soon implement.

Two other points are worth mentioning. First,
the programming adapter that I used for the 08M2
is functionally identical to the USBS-PA3X2, but

slightly longer. (Actually, it was an early prototype
for the USBS-PA3X2.) When we get to
Experiment 2, you can either move your USBS-
PA3X2 back and forth as you program the two
chips or make a second USBS-PA3X2. That’s the
more convenient approach, especially if you have
two USB cables as shown in the photo. That way,
when we get to Experiment 2, there’s no cable
swapping involved as you move back and forth
between programming the two processors. Of
course, you can also use our original USBS-PA3
adapter as well.

Second, it may not be clear in the photo, but
pin 1 of the 08M2 is at the lower-left corner of the
chip. As a result, the 08M2’s programming adapter
is actually behind the processor rather than in front
of it. That’s one of the advantages of the USBS-
PA3X2 that I mentioned earlier—the required
connections are just as simple either way. Finally,
I haven’t included the 08M2’s programming
interface circuitry in the schematic because it’s
contained within the USBS-PA3X2 adapter. This
will be a standard omission in the remainder of

Chapter 8 ■ Infrared Input from a TV Remote Control 95

Schematic for Experiment 1Figure 8-2

schematics in the book, but don’t forget that it’s
actually there!

As you can see in the schematic (Figure 8-2),
the output of the PNA4602M (pin 1) is directly
connected to input C.3 (pin 4) of the 08M2. The
LED that’s connected to the serout pin is just in the
circuit for debugging purposes. Whenever the 08M2
sends serial data to the terminal window, it does so
via the serout pin, so the LED will flicker briefly to
let you know that the program is looping correctly.

The syntax for the irin command is irin
pin,variable, where pin specifies the IR input pin
and variable specifies the variable to receive the
value associated with a specific keypress on the IR
remote. As I have already mentioned, we’re using
pinC.3 to maintain compatibility with the older
08M processor. The M-class chips also included a
built-in variable named infra, which was
automatically assigned to variable b13. Infra also
functions correctly with the newer irin command,

so we will use it to maintain backwards
compatibility, but don’t forget that you can assign
any variable you want to receive the IR data in an
irin command.

Table 8-1 shows the IR input values for the 16
buttons that are most commonly implemented on
inexpensive universal remotes. (The PICAXE
Manual includes a more complete listing of the
SIRC codes.) In Experiment 1, we’re using the raw
values that are generated by each button-press. In
Experiment 2, we’re going to convert them into a
more logical order, so you may want to refer back
to Table 8-1 when we get to that point.

The software for our first experiment (TV-
IRinput.bas) is as simple as the hardware (see
Listing 8-1); it requires only a brief explanation.
The main loop spends most of its time at the irin
command waiting for valid data. As soon as it
receives a valid data byte, the program transmits it
(as individual digits) to the terminal window,

96 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for Experiment 1Figure 8-3

followed by a carriage return and line feed. (Every
time that happens, the LED will flicker briefly.)
The pause command simply slows the program
down to avoid duplicate data transmissions if the
button is held too long.

Download the program to your breadboard setup
and test it out. If you don’t see the appropriate
values appear in the terminal window in response
to your button-presses, there are two likely
culprits. First, you may need to experiment with a
different Sony TV code for your remote—with the
dozen or so remotes that I have tried, one of the
listed codes has always worked. Second, if the
remote you are using is capable of controlling
more than one device (e.g., a TV and a DVD),
make sure you have pressed the “TV” button. If
one of the other devices is currently active, the
codes are entirely different and the program will
not respond correctly. It’s surprisingly easy to
inadvertently press one of the other device buttons
as you are experimenting. If the program had been
working properly and suddenly stops, that’s
probably what has happened. Simply press the
“TV” button again to be sure.

Chapter 8 ■ Infrared Input from a TV Remote Control 97

TV Remote Raw Value Converted Value
Button (Experiment 1) (Experiment 2)

0 9 0

1 0 1

2 1 2

3 2 3

4 3 4

5 4 5

6 5 6

7 6 7

8 7 8

9 8 9

Channel + 16 10

Channel – 17 11

Volume + 18 12

Volume – 19 13

Mute 20 14

Power 21 15

TABLE 8-1 IR Input Values for Experiment 1
and Experiment 2

' ============================= TV-IRinput.bas =============================

' This program runs on a PICAXE-08M2 processor at 4 MHz.

' It waits for key-press from a SIRC TV remote control.

' When it's been received, it sends it to the Terminal.

' Note: "infra" is a built-in variable assigned to b13.

' ==

' === Directives ===

#com 4 ' specify com port

#picaxe 08M2 ' specify PICAXE processor

#terminal 4800 ' specify terminal baud rate

' =========================== Begin Main Program ==========================

do

irin C.3, infra ' wait here for infrared input

sertxd (#infra,CR,LF) ' send ASCII digits to Terminal

pause 500

loop

LISTING 8-1

98 PICAXE Microcontroller Projects for the Evil Genius

Experiment 2: Interfacing
the IR Circuit with
the Master Processor

When you have Experiment 1 operating correctly,
we’re ready to move on to the task of connecting
our IR-remote circuit to the master processor. Our
breadboard setup for Experiment 2 is shown in
Figure 8-4. It’s essentially the same as our setup
for Experiment 1, with the addition of two
connections between the 08M2 and the 20X2
master processor. As you can see in the photo, the
08M2’s C.2 pin (which we are going to configure
as an output) is connected to the 20X2’s C.2 pin
(which we will configure as an input). Similarly,
the 08M2’s C.4 pin (which will be configured as
an input) is connected to the 20X2’s C.5 pin
(configured as an output). Later when we get to
our project, you’ll see why I chose those particular
pins. Also, you may remember from Chapter 5 that
the function of the 1k resistor in each connection is
to protect the processors from the possibility of
both pins in the same connection accidentally

being configured as outputs. Finally, you can see
that I didn’t include debugging LEDs in the circuit.
If you have any trouble getting the circuit to
function correctly, you may want to add an LED to
each of the output pins (C.2 on the 08M2 and C.5
on the 20X2) for debugging the circuit.

Software for the 08M2 IR
Peripheral Processor

The major purpose of developing a stand-alone
peripheral device for handling IR input is to free
up the master processor to go about its business
without having to deal with the unpredictable
arrival times of the incoming IR data. This task
becomes the responsibility of the peripheral
processor—since it’s the only task it has, there’s no
problem if it devotes virtually 100 percent of its
time to the job. Of course, we also need a flexible
method for the 08M2 to transmit the IR data on to
the 20X2. There are many ways to accomplish this
goal. For example, we could use interrupts to get
the job done, or we could turn to the 20X2’s
powerful hserin command to receive the data in

Breadboard setup for Experiment 2Figure 8-4

Chapter 8 ■ Infrared Input from a TV Remote Control 99

the background. However, I opted for a simple
“hand-shaking” approach in this project. The
08M2 is going to alert the 20X2 when data is
available, and when the 20X2 is ready to receive
the data it will tell the 08M2 to send it. The

advantage of this approach is that it will also work
with any M2 “master” processor.

The necessary software for the 08M2 peripheral
(TV-IRtoMP.bas) is presented in Listing 8-2.
Whenever the 08M2 receives a valid IR data byte,

' ================================ TV-IRtoMP.bas ================================

' This program runs on a PICAXE-08M2 processor at 4 MHz. It waits

' for an IR signal from a SIRC TV remote control. When it's received,

' it encodes & transmits it as single byte to the Master Processor.

' Note: "infra" is a built-in variable assigned to b13.

' ===

' === Constants ===

symbol toMP = C.2 ' output line to master processor

symbol fromMP = C.4 ' input line from master processor

' === Variables ===

symbol junk = w0 ' pulsin requires a word variable

' === Directives ===

#com 4 ' specify com port

#picaxe 08M2 ' specify processor

#terminal off ' disable the Terminal Window

' ============================= Begin Main Program =============================

do

irin C.3, infra ' wait here for infrared input

select case infra ' implement encoding scheme

case < 9

inc infra ' make digits 1-9 & data correspond

case 9

infra = 0 ' make 0 = 0

case < 22

infra = infra - 6 ' lower the remaining values

else

goto skip ' ignore any other keys

endselect

high toMP ' tell MP that data is available

pulsin fromMP, 1, junk ' we’re just waiting

low toMP ' prepare to send data

serout toMP,N2400_4,(infra) ' send remote key-press to Master

skip:

pause 500 ' avoid multiple key-presses

loop

LISTING 8-2

100 PICAXE Microcontroller Projects for the Evil Genius

it uses the select case statement to convert the
incoming signal to the value presented earlier in
the third column of Table 8-1. I chose those
specific values to equate the single-digit buttons
with their corresponding codes and to pack the
remaining codes sequentially. If you prefer a
different encoding scheme, it would be a simple
matter to modify the relevant case clauses in the
select case statement.

As soon as the received data byte has been
encoded, the 08M2 raises its output line (C.2) to a
high level to alert the 20X2 that there’s valid data
available, and then “listens” on its input line (C.4)
for the instruction to send the data. The 20X2 will
send a brief “high” pulse on its output pin (C.5)
that is connected to the 08M’s C.4 input when it’s
ready to receive the data. (The pulsin command
that I used to receive the 20X2’s “send it”
command includes a variable that contains the
length of the incoming pulse. I declared that
variable as junk because we’re not interested in the
length of the pulse, just the fact that it has arrived.)
When the 08M2 receives the “high sign” from the
20X2, it immediately lowers its output pin and
sends the data (serially) to the 20X2, which is
already waiting to receive it.

Before you actually download the TV-
IRtoMP.bas program to the 08M2, let’s take a
look at its companion program for the 20X2
(SerinFromIR.bas), which is shown in Listing 8-3.
The most noteworthy point about the program is
that there are two different declarations for the C.2
pin. That’s necessary because there are two
different ways to refer to an input pin. Most of the
time, we simply want to specify which pin a
command is to use—for example (in the current
program), serin fromIR, …. In this situation, C.2 is
a constant (i.e., the pin on which we are receiving
serial data doesn’t change), so the correct
declaration is symbol fromIR = C.2. However, at
other times, we’re interested in the real-time value
of the input pin; that is, is it currently high or low?

In this case, the current state of the input pin is a
variable that can change—for example (in the
current program), if IRflag � 1 then…. As you
may remember, the special function variable pinsC
(for example) is subdivided into eight individual
pin (bit) variables named pinC.7 through pinC.0 so
the correct declaration for the variable is symbol
IRflag � pinC.2. (Make sure you don’t use the
same name for both declarations!)

The main program is simple. The initial 100mS
pause is just there to simulate a much longer
program. The “data available” signal from the IR
peripheral will most likely arrive somewhere in
the middle of the pause and won’t be noticed
until the pause has timed out. Fortunately, our
communication scheme is specifically set up to
deal with such delays. Immediately after the pause,
the master processor checks to see if there is any
available IR data. If so, the program jumps to the
getData subroutine, where it signals the IR
peripheral to send the data and then receives it and
sends it on to the terminal window for display.
Once that’s done, the main loop simply repeats.

Whenever you are working simultaneously with
two programs for two different processors, there
are a couple of points to keep in mind that will
make things easier. If you are using the terminal
window in one of the programs but not in the other
(as we are in this experiment), be sure to include
the #terminal off directive in the program that
doesn’t need it. This will stop the terminal window
from opening when you don’t want it to. Also,
whenever you need to download both programs,
save the one that uses the terminal window until
last so that it opens for the correct program. If you
need the terminal window and it isn’t there, you
can open it manually from the PICAXE | Terminal
menu option or just press the F8 key.

One last word of caution: There may be times
when one of the programs won’t download
properly. This can happen because the program is
busy waiting for something (either an IR command

or serial input) and doesn’t respond to the
download request. Whenever this happens, just
turn the power off, restart the download, and turn
the power back on—the download should proceed
normally. Keeping all that in mind, download TV-
IRtoMP.bas to the 08M2 and SerinFromIR.bas to
the 20X2. A button-press on the TV remote should
produce the corresponding IR code in the terminal
window. If it doesn’t, you may want to add
debugging LEDs to troubleshoot your setup.

Project 8
Constructing the TV-IR
Input Module

Now that we have a fully functional design, we’re
ready to convert our IR input circuit to a self-
contained peripheral module. As usual, we’ll use a
small stripboard circuit; the schematic is presented
in Figure 8-5. As you can see, it’s similar to the
breadboard circuit we just tested, with one
important exception—the serin pin is directly tied

Chapter 8 ■ Infrared Input from a TV Remote Control 101

' =============================== SerinFromIR.bas ===============================

' Program runs on a 20X2 & receives data from IR peripheral.

' ===

' === Constants ===

symbol abit = 500 ' used in pauses

symbol fromIR = C.2 ' input pin specification

symbol toIR = C.5 ' output pin specification

' === Variables ===

symbol IRflag = pinC.2 ' value of input pin variable

symbol key = b0 ' value of key-press

' === Directives ===

#com 3 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' reduce download time

#no_table ' reduce download time

#terminal 9600 ' open terminal window

' ============================= Begin Main Program =============================

do

pause 100 ' pretend to be busy

if IRflag = 1 then gosub getData

loop

' =================== End Main Program - Subroutines Follow ===================

getData:

pulsout toIR,5 ' 50uS "send it" pulse

serin fromIR,N2400_8,key ' get value of key-press

sertxd (#key,cr,lf) ' send value to Terminal

return

LISTING 8-3

to Ground. In the breadboard circuit, the serin pin
was tied to Ground by the circuitry in the
programming adapter. We won’t be programming
the 08M2 when it’s inserted in the socket because
we have already downloaded and tested the
program in the breadboard circuit. When the
stripboard is completed, we’ll simply remove the
08M2 from the breadboard and insert it into the
stripboard socket. Therefore, we can tie serin
directly to Ground in order to allow the program to
run. The only downside is that we won’t be able to
program the 08M2 when it’s in the stripboard
circuit, but that doesn’t really matter because
there’s no need to change the program. If you think
of a great new feature you would like to add to the
program, all you have to do is temporarily move
the 08M2 to a breadboard circuit to reprogram it
and then back to the stripboard to actually run it.

Constructing the
TV-IR Remote Input Module

Constructing the TV-IR input module is
straightforward. The parts list is shown in the
Parts Bin and the stripboard layout is presented
in Figure 8-6.

Three aspects of the layout require clarification.
First, the machined-pin socket is required because
the jumper from D1 to D5 is on the top of the
board so some space is needed underneath the
socket. Second, the combination of “X” and a dark
center at B5 are intended to indicate that the
header pin should be soldered at this point and
then snipped off. If you prefer, you could use a
four-pin male header instead and leave hole B5
empty. Either way, there should not be a pin at this

102 PICAXE Microcontroller Projects for the Evil Genius

Schematic for the TV-IR input moduleFigure 8-5

ID Part

— Small piece of stripboard,

5 traces with 6 holes each

08M2 DIP socket, 8-pin (machined pins)

08M2 PICAXE-08M2 (or 08M) processor

4602 PNA4602M IR detector

LED LED, 3 mm, resistorized

H1 Header, female, 3-pin section

H2 Header, male, reverse-mountable,

5-pin section

P A R T S B I N

location. Finally, the female header that’s used for
connecting the PNA4602M is included in the
circuit because we’re going to be using the TV-IR
module again when we get to Part Three. At that
time, we’ll need to bend the 4602’s pins at a right
angle. I included the female header so that it would
be possible to use two different 4602s (one with
straight pins and the other with bent pins), rather
than rebending the pins every time we needed a
different orientation for the 4602—it certainly
wouldn’t last very long that way.

As usual, read through the complete list of
assembly instructions that follows to be sure you
understand the entire procedure before assembling
the board.

1. Cut and sand a piece of stripboard to the
required size (five traces with six holes each).

2. Using a 3/64-inch (1.2-mm) drill bit, enlarge
the hole at D1.

3. Sever the traces on the bottom of the board as
indicated in Figure 8-7.

4. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

5. Using a piece of thin wire (cut from a 1/6-
watt resistor or other small part), insert the
jumper from D1 to D5 on the top of the
board; solder and snip the end at D5 on the
bottom of the board. (Do not solder the end at
D1 yet.)

6. Solder the machined-pin socket in place.

7. Observing the correct polarity, insert the
resistorized LED in place; solder and snip the
lead at D1 on the bottom of the board. (Do
not solder the lead at E1 yet.)

8. On the bottom of the board, bend the LED
lead from E1 toward E3. Snip the lead so that
it just touches the trace at E3.

9. Using a small spring clamp to hold the LED
lead tightly against the traces, solder the lead
at E1, E2, and E3.

10. File or sand all the cut leads on the bottom of
the board.

11. From the top of the board, insert the five-pin
reverse-mountable male header through holes
B1–B5; invert the board, support the header
so that it remains fully inserted, and solder the
five pins in place.

Chapter 8 ■ Infrared Input from a TV Remote Control 103

Stripboard layout for TV-IR remote input moduleFigure 8-6

12. Snip the header pin on the bottom of the
board at B5. Do not snip any of the other four
pins! (The short header pins on the top of the
board can either be left intact or snipped,
whichever you prefer.)

13. From the top of the board, insert the three-pin
female header through holes A2–A4; invert
the board, support the header so that it
remains fully inserted, and solder the pins at
A2 and A3. Do not solder the pin at A4 yet.

14. On the bottom of the board, bend a piece of
thin wire jumper around the pin at A4 and
snip it so that it just touches the trace at A5;
solder the jumper at A4 and A5.

15. File or sand all the cut leads on the bottom of
the board.

16. Clean the flux from the bottom of the board
and allow it to dry.

17. Inspect the board carefully for accidental
solder connections and other problems.

Figure 8-7 is a composite photo of the top and
bottom of the completed TV-IR module. In the top
view, I have again painted the tops of the male
header pins to remind myself of their functions
(refer to Figure 8-5 for the header pin-out). If you
decide to do that, don’t wait until after the female

header is soldered in place, as I did—I’m sure it
would be a lot easier that way!

Using the TV-IR Remote
Input Module

When you have completed the TV-IR module,
simply remove the programmed 08M2 from the
breadboard and insert it into the socket on the
stripboard with pin 1 facing up toward the LED.
Also insert the PNA4602M into the three-pin
female header so that the rounded portion is facing
the 08M2. In the breadboard layout presented in
Figure 8-8, you can see that I have removed all the
circuitry related to the 08M2 and replaced it with
the TV-IR module. If you align pin 1 of the
module’s male header (at the right edge of the
module in the photo) with pin C.2 on the 20X4,
pin 4 of the module’s header will also be correctly
aligned with pin C.5 on the 20X2. The new
jumpers in the photo simply connect pin 2 of the
header to �5V and pin 3 to Ground.

Both processors have already been programmed
with the necessary software, so all that remains is to
power up the project and try it out. Since we’re not
downloading a new program, the terminal window
won’t open automatically. To make it visible, just
press the F8 key or select PICAXE | Terminal. The

104 PICAXE Microcontroller Projects for the Evil Genius

Composite photo of completed TV-IR moduleFigure 8-7

system should behave the same as it did in
Experiment 2. If it doesn’t, you will need to recheck
the stripboard soldering for possible problems.

The completed TV-IR module can be used as a
stand-alone peripheral device in any PICAXE

project. All the master processor has to provide is
one output pin and one input pin. In return, it will
gain the capability of being able to respond to real-
time input from the user. As you know, this can be
a valuable addition to many projects.

Chapter 8 ■ Infrared Input from a TV Remote Control 105

Breadboard layout with TV-IR module installedFigure 8-8

This page intentionally left blank

Interfacing Parallel LCDs

C H A P T E R 9

A LIQUID CRYSTAL DISPLAY (LCD) can be a useful
addition to many microcontroller projects. In
addition to providing detailed feedback to the user,
LCDs can be helpful during the debugging phase
of software development. We’re going to focus on
character-based displays rather than graphics
displays because they are readily available,
relatively inexpensive, and easy to interface. We’ll
limit our discussion to LCDs based on the Hitachi
HD44780 controller chip because they constitute
the vast majority of the LCDs that are currently
available from surplus and other parts suppliers.

In this chapter, we’ll examine the details of
interfacing a standard parallel LCD; in the next
chapter we’ll use what we have learned to develop
a stand-alone “serialized” display. Interfacing a
microcontroller with a parallel LCD requires a
minimum of six output lines and a fair amount of
code, so this type of LCD can’t be used in any
projects that are based on the 08M2 processor,
because it doesn’t have six output lines. Even with
the larger M2 processors, there are times when
there aren’t sufficient I/O lines to accomplish
everything you want to do. Of course, there are
many commercially available serial LCDs that
only require one I/O line, but they tend to be fairly
expensive. By the time you finish both LCD
chapters, you’ll be able to construct your own
serialized LCD for a fraction of the cost of a
commercial unit. And the best part is, you’ll have
a lot of fun doing it!

This isn’t my first foray into the world of
character LCDs. I wrote a three-part series on the
subject in the Nuts and Volts “PICAXE Primer”
(April, June, and August 2009). At that time, the
20X2 processor hadn’t yet arrived, so the projects I
developed were based on the 14M. The resulting
serialized LCD module works great, but it does
require the master processor to slow things down a
bit so that the 14M can keep up with the incoming
data. Now that the 20X2 is available, it’s a whole
new ballgame. For one thing, it’s capable of
operating at 64MHz, which is eight times faster
than the 14M’s top speed of 8MHz. More
importantly, the 20X2 supports the new hserin
command, which can receive serial data in the
background while the processor is attending to
other tasks, such as displaying data on an LCD.
Therefore, a 20X2-based serial LCD will greatly
simplify the timing demands on the master
processor that is sending the data to the LCD.

Before we can begin developing our new
“super-serial” LCD, we need to become familiar
with the basics of interfacing with HD44780-based
LCDs. In the following discussion, I’m not going
to repeat all the details originally presented in the
“PICAXE Primer” series of articles, so you may
want to refer to them for more information. In
addition, in Part III of the PICAXE Manual
(“Microcontroller Interfacing Circuits”), pages
30–41 are devoted to interfacing LCDs. Naturally,
there’s also considerable information available on

107

the Web; a quick search for “HD44780” will
provide an overwhelming amount of it. An
excellent two-part tutorial can be found at
www.epemag.com/lcd1.pdf and
www.epemag.com/lcd2.pdf, and a valuable
PICAXE-specific LCD resource is available at
www.hippy.freeserve.co.uk/picaxelc.htm.

Understanding the Basics of
HD44780-based LCDs

Character-based LCDs are commonly available in
sizes of 8, 12, 16, 20, 24, 32, or 40 characters by 1,
2, or 4 lines. We’re going to be using a 16X2
display because that’s by far the most readily
available and inexpensive variety. New displays are
available for about $10 (see www.mouser.com) and
for considerably less on the surplus market (e.g.,
www.allelectronics.com or www.goldmine-elec
.com) and eBay. Any 16-character by 2-line
HD44780-compatible LCD will work for the
experiments and project in this chapter, as long as
it meets the requirements we are about to discuss.

All HD44780-based LCDs share a standard pin-
out, which is presented in Table 9-1. Pins 15 and
16 are optional; their function is to power the
display’s backlight, if it has one. (We’ll discuss
each of the pins in more detail later.) For our
purposes in this chapter, the most important
consideration is the position of the I/O connector
on the LCD board. If you jump ahead for a
moment and take a look at Figure 9-3, you’ll see
the solder connections for the LCD’s 16-pin
connector in a single row near the left end of the
top edge of the display. This is the configuration
that we will need when we construct our projects
in this chapter and the next. The majority of
HD44780-compatible LCDs have their connector
in this position, so you shouldn’t have any
difficulty finding one to use in our experiments.

If you decide to use a backlit display, and
especially if you intend to experiment with more

than one display, there’s an important issue that
you need to keep in mind. The LCD backlighting
is LED-based, so a current-limiting resistor is
usually required. However, the correct value is
rarely stated in the display’s datasheet, so you may
need to do a simple calculation to determine the
correct size for the current-limiting resistor. You
need to know the typical forward voltage (Vf)
across the backlight and the maximum forward
current (If) through the backlight. For example, the
datasheet for one of my LCDs specifies a Vf of
4.0V and an If of 120mA. Since we’re using a 5V
supply, a Vf of 4V leaves 1V to be dropped across
the resistor, and 1V / 120mA � 8.3�, so that’s the
minimum resistor size we need. (Actually, I would
probably double that to be safe.)

108 PICAXE Microcontroller Projects for the Evil Genius

Pin Name Function

1 Vss Ground

2 Vcc +V (+3 to +5 volts)

3 Vee Contrast control

4 RS Register select (H = data

/ L = cmd)

5 R/W Read/write (H = read /

L = write)

6 En Enable

7 DB0 Data bit 0

8 DB1 Data bit 1

9 DB2 Data bit 2

10 DB3 Data bit 3

11 DB4 Data bit 4

12 DB5 Data bit 5

13 DB6 Data bit 6

14 DB7 Data bit 7

15 A Backlight anode

(optional)

16 K Backlight cathode

(optional)

TABLE 9-1 HD44780 LCD Pin-out

Unfortunately, you can’t always find the
datasheet you need, and even if you do, some of
them don’t include the necessary data (go figure!),
so you’re left on our own to determine the correct
size for the current-limiting resistor. The easiest
way to do that is to start with a safe value (e.g.,
330�) and see if the display seems bright enough.
If not, lower the value a bit and try it again until
the display is reasonably bright. Once I have found
a value that I like, I write it on the back of the
display with a Magic Marker. That way I don’t
have to repeat the process every time I experiment
with a different backlit display.

The HD44780 Instruction Set

All HD44780-compatible LCDs also share the
same set of instructions or commands that
accomplish a variety of tasks. For example, you
can send a command to the LCD to show the
cursor or hide it, or make it blink. It’s even
possible to scroll the contents of the display
window to create a “moving message” effect.
However, we have more than enough information
to deal with in this chapter, so we’re going to limit
ourselves to the basic commands presented in
Table 9-2. If you’re interested in some of the more
advanced commands, the datasheet for your LCD
should include a complete reference.

The first command in Table 9-2 requires a brief
explanation. First, the manner in which the LCD is
initialized is determined by a command called
“Function Set.” Rather than explaining all the
options of the Function Set command, I have
simply included the correct value (56) for the way
we are going to set up the interface: a two-line
LCD with 5 � 7 dot characters and an eight-bit
data interface. If your display requires something
different (e.g., if it’s a one-line display), see the
documentation for the Function Set command in
the display’s datasheet.

In addition to being able to move the cursor to
the beginning of either line (the last two commands
in Table 9-2), you can place it at any specific
character location by simply sending the appropriate
command. The display locations are numbered
sequentially from the beginning of each line, so
you just need to know the value that’s associated
with the position at which you want to print the
character. For example, if you wanted to print a
character at the fourth position of line 2, you would
simply send a command of 195 (i.e., 192 �3).
Also, when a character is printed to the display,
there’s no need to specify the location for the next
character—it’s automatically incremented by one
unless you specify otherwise. As we’ll see in our
first experiment, this makes it a simple matter to
send a string like “Hello World!” to the LCD.

LCD Interface Requirements

HD44780-based LCDs can be configured to operate
in either an eight-bit or four-bit data transfer mode.
Since the four-bit mode requires two data transfers
for each byte that is sent to the LCD, it takes
approximately twice as long to display the same
data as it would in the eight-bit mode. When I
developed the PICAXE Primer 14M-based LCD
projects, I used the four-bit mode out of
necessity—the 14M doesn’t have sufficient output
pins to implement the eight-bit mode. (In case you
were wondering, neither does the older 20M.)

Chapter 9 � Interfacing Parallel LCDs 109

Command Function

56 Initialize display as follows:

8 data bits, 2-line LCD,

5 by 7 dots

1 Clear display and cursor “home”

12 Hide cursor

14 Show cursor

128 Move cursor to start of line 1

192 Move cursor to start of line 2

TABLE 9-2 Selected HD44780 Commands

Fortunately, we can now take advantage of the
numerous output pins available on the 20X2 and
configure our interface for eight bits, which turns
out to be much simpler than the four-bit mode. Of
course, it’s also twice as fast.

At this point, we’re ready to take a more
detailed look at the requirements for interfacing
the 20X2 with the HD44780’s 16-pin connector
(refer back to Table 9-1):

� LCD power supply (pins 1 and 2): Nothing
special here—pin 1 is connected to Ground
and pin 2 is connected to �5V.

� Contrast adjustment (pin 3): This pin simply
requires a 10k potentiometer with one end
connected to �5V, the other end grounded, and
the wiper connected to the pin 3 input.

� Register select (pin 4): Prior to sending a data
byte to the LCD, the Register Select pin must
be set high; prior to sending a command byte,
it must be in a low state.

� Read/write input (pin 5): This input needs to
be at a low level whenever we want to write to
the LCD, and at a high level when we want to
read data back from it. We won’t be doing any
data reading, so we’ll just tie pin 5 to Ground.
Because of this, our data interface is
unidirectional. That is, all the PICAXE
connections are outputs and all the LCD
connections are inputs. Therefore, we don’t
have to bother with any current-limiting
resistors on the interface lines (LCD pins
4–14).

� Enable (pin 6): In order to actually send a
data byte to the LCD, a 10μS “high” pulse
must be sent on the Enable line.

� Data (pins 7–14): These are all simply direct
connections.

� Backlight power supply (pins 15 and 16):
We’ve already discussed these connections, but
a little emphasis never hurts: Be extremely
cautious when choosing the current-limiting

resistor for a backlit display. If the display
isn’t backlit, pins 15 and 16 probably won’t
even be there; even if they are, they won’t be
connected to anything.

Experiment 1: Interfacing an
HD44780-based Parallel LCD

Figure 9-1 presents the schematic for our first
experiment. (As usual, I haven’t included the
programming adapter circuitry.) You’re probably
wondering why I chose the specific 20X2 I/O pins
that I did, so I’ll briefly explain. Since we need
eight data lines, portB is the simplest choice
because pin C.6 is fixed as an input-only line. I
could have chosen any of the other portC lines for
register select and input (except for C.6, which is
fixed as an input), but I wanted to avoid C.5 and
C.2 in case you want to experiment with sending
data from the TV-IR module to the LCD. If your
TV-IR circuitry is still on your breadboard, you
won’t need to change any of the connections that
we set up in the previous chapter. Aside from the
LCD itself (which is not available on my website),
the only other required parts are the 10k
potentiometer and the 16-pin headers (which are
available on my website). As I mentioned earlier,
the current-limiting resistor is only needed if you
are using a backlit display, and you may need to
determine its value experimentally.

Figure 9-2 is a close-up photo of my breadboard
setup before installing the LCD. The two short
jumpers indicated by the arrows have no electrical
function. I added them after I accidentally inserted
the LCD’s connector into the breadboard
incorrectly. Fortunately, I didn’t blow anything up,
but the two short jumpers, which have exactly 16
breadboard rows between them, make it impossible
for me to make the same mistake again (I hope).

Figure 9-3 is the same setup with the LCD
inserted between the short jumpers and running the
software we’re about to discuss. In the photo, you

110 PICAXE Microcontroller Projects for the Evil Genius

Chapter 9 � Interfacing Parallel LCDs 111

Schematic for Experiment 1Figure 9-1

Breadboard setup (without the LCD) for Experiment 1Figure 9-2

can see that I have left my TV-IR circuitry intact—
it won’t interfere with the operation of the LCD.

The software for Experiment 1
(LCDparallel.bas) is presented in Listing 9-1. It’s
more involved than that of our previous projects,
so I commented it as thoroughly as I could.

Before you download the software to your
20X2, let’s briefly run through the salient details.
The table command that stores the data to be
displayed on the LCD is a convenient alternative to
the older data command. The significant difference
is that data storage is in Electrically Erasable
Programmable Read-Only Memory (EEPROM),
while table storage is in flash memory, which has a
much faster access time. Otherwise, the two
commands are very similar.

At the beginning of the main program, we
specify the directionality of all the 20X2 I/O pins
(dirsB = %11111111 and dirsC = %10111011). As
you can see, I configured C.6 and C.2 as inputs.
However, C.6 is fixed as an input anyway and

112 PICAXE Microcontroller Projects for the Evil Genius

Same setup, with the LCD installedFigure 9-3

' ============================== LCDparallel.bas ===============================

' Program runs on a PICAXE-20X2; sends serial data to an HD44780 16x2 LCD

' === Constants ===

symbol enable = C.7 ' LCD enable pin connected to C.7

symbol RegSel = C.4 ' LCD RegSel pin connected to C.4

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol index = b1 ' used as counter in For-Next loops

' === Directives ===

#com 3 ' specify download port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#terminal off ' disable terminal

' === Table =====================

Table 0, ("The Evil Genius ") ' data to be displayed on line 1

Table 16, ("PICAXE-20X2 LCD ") ' data to be displayed on line 2

LISTING 9-1

Chapter 9 � Interfacing Parallel LCDs 113

' ============================= Begin Main Program =============================

dirsB = %11111111 ' set all portB pins as outputs

dirsC = %10111011 ' set C.6 and C.2 as inputs

pullup %00000010 ' enable C.6 internal pullup resistor

' === Initialize the LDC ===

pause 200 ' pause 200 mS for LCD initialization

char = 56 ' setup for 8-bits, 2 lines, 5X7 dots

gosub OutCmd ' send instruction to LCD

char = 12 ' display on, cursor off

gosub OutCmd ' send instruction to LCD

' === Main Program Loop – Send data to the LCD ===

do

char = 1 ' clear display & go home

gosub OutCmd ' send instruction to LCD

wait 1

for index = 0 to 15

readtable index, char ' send line 1 to LCD

gosub OutTxt

next index

wait 1

char = 192 ' move cursor to start of line 2

gosub OutCmd ' send instruction to LCD

for index = 16 to 31 ' send line 2 to LCD

readtable index, char

gosub OutTxt

next index

wait 4

loop

' =================== End Main Program – Subroutines Follow ===================

OutCmd:

low RegSel ' set up for command byte

goto Doit ' do it

OutTxt:

high RegSel ' set up for text byte

Doit:

outpinsB = char ' load byte onto outpinsB

pulsout enable,1 ' send data

return

LISTING 9-1 (continued)

we’re not using C.2, but I made it an input to be
consistent with the connections to the IR-TV
module in case you still have it connected. The
next statement (pullup %00000010) enables the
C.6 internal pullup resistor (see the pullup
documentation in the manual for details). This
convenient feature allows us to omit an external
resistor on the unused C.6 line.

In the initialization portion of the main program,
we need to pause briefly as the LCD begins its
internal initialization, and then send two
commands to the LCD: “56” to accomplish the
initialization mode that we discusser earlier, and
“12” to hide the cursor. (You could certainly show
it, if you prefer.) After that, the main do…loop
simply reads data from the table and sends each
character to the LCD.

The OutCmd and OutTxt subroutines are really
the heart of the program. They are unusual in that
they are actually the same subroutine with two
different entry points. This approach simply
ensures that RegSel will be correctly configured for
the byte that is being sent to the LCD (RegSel is
set low for commands and high for text). In the
main portion of the subroutine (at address Doit),
the outgoing character is simply placed on the
output pins (outpinsB � char), and then the
Enable line is pulsed to actually send the character
to the LCD.

That’s all there is to it; download
LCDparallel.bas to your breadboard setup and run
it. At first, you probably won’t see anything at all
on the LCD because the contrast will most likely
need adjustment. While the program is running,
adjust the potentiometer throughout its entire range
until the text is properly displayed. If nothing
appears, you will need to check your breadboard
setup for possible wiring problems.

Project 9
Constructing an Eight-bit
Parallel 16 x 2 LCD Board

Now that we have a fully functional design, we’re
ready to convert our breadboard circuit into a self-
contained peripheral module. As usual, we’ll use a
stripboard circuit for that purpose; the parts list is
presented below (all the parts are available on my
website). We’ll skip the schematic because it’s
essentially the same as the one we just used for our
breadboard circuit (Figure 9-1), with the addition
of the necessary headers to connect to the LCD
and breadboard.

The layout for our parallel LCD module is
presented in Figure 9-4. The first thing we need to
discuss is the size of the stripboard. As you can see
in the layout, it contains 25 traces. However, a
typical 16 � 2 LCD is about 3.2 inches wide,
which is equivalent to 32 traces. Therefore, if you
want the stripboard footprint to match that of the
LCD, you will need to make it 32 traces wide. I
didn’t want to include the extra seven traces in the
layout because I was concerned that it would be
too small to see clearly. If you want to use a “full-

114 PICAXE Microcontroller Projects for the Evil Genius

ID Part

— Stripboard, 25 traces (or 32—see

text) with 14 holes each

— Capacitor, .01�F

— Potentiometer, 10k

H1 Female header, straight, 16 pins

H2 Female header, right-angle, 4 pins

H3 Female header, right-angle, 4 pins

H4 Female header, right-angle, 8 pins

(or two 4-pin headers)

H5 Female header, straight, 4 pins

P A R T S B I N

size” stripboard, just include the extra traces—that
section of the stripboard will be empty anyway.

Okay, let’s discuss the headers. H1 is where the
LCD connector gets inserted. If your LCD didn’t
come with a 16-pin male header already installed,
you will need to add one so that the pins protrude
from the bottom of the LCD. The purpose of H2 is

to make it easy to swap out the current-limiting
resistor whenever it’s necessary—just insert the
resistor leads in the first and last sockets of the
female header, which is recessed by one row so
that the resistor won’t protrude above the top of
the LCD. H3 and H4 are intended to accept
double-ended male headers (available on my

Chapter 9 � Interfacing Parallel LCDs 115

Stripboard layout for parallel LCD moduleFigure 9-4

116 PICAXE Microcontroller Projects for the Evil Genius

website) that are long enough to also insert into a
breadboard (and to bend if you want to adjust the
angle at which the LCD sits). H5 is a straight
female header that has no electrical function. It’s
included so that you can insert a four-pin section
of a male header and snip off the short ends of the
pins. That combination will be the same height as
the 16-pin header with the LCD inserted, so H5
will support the LCD so that it sits parallel to the
stripboard. (This is a parallel LCD, right?) Finally,
the jumpers that run across the tops of each of the
right-angle female headers also have no electrical
function; they simply “clamp” the headers tightly
to the board so that they don’t bend and weaken
from repeated insertions into and extractions from
the breadboard.

As usual, read through the complete list of
assembly instructions that follows to be sure that
you understand the entire procedure before
assembling the board.

1. Cut and sand a piece of stripboard to size
(25 or 32 traces with 14 holes each).

2. Sever the traces on the bottom of the board as
indicated in Figure 9-5.

3. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

4. Insert the jumper from C2 to E2. Bend the
lead flat against the board from C2 to A2 on
the bottom of the board and snip it so that it
just reaches A2. Solder the jumper at E2, but
not yet at C2, B2, or A2.

5. Insert the jumper from C4 to F4. Bend the
lead flat against the board from C4 to B4 on
the bottom of the board and snip it so that it
just reaches B4. Solder the jumper at F4, but
not yet at C4 or B4.

6. Insert all the remaining jumpers except the
three that go over headers H2, H3, and H4;
solder and snip the leads.

7. Insert all the right-angle female headers. Flip
the board over with the headers in place, set it
on a flat surface, and solder all the pins.

8. For each of the right-angle female headers,
bend and insert a jumper so that it spans the
top of the header as shown in Figure 9-5.
Using a small clamp to hold the header and
the jumper tightly against the top of the board,
solder and snip the jumper leads on the
bottom of the board.

9. Insert the capacitor; solder and snip its leads.

10. Insert the 10k potentiometer. Flip the board
over and support it on a flat surface.

11. Make sure the unsoldered jumper leads are
making contact with the appropriate
potentiometer pins; solder one lead at A2, B2,
and C2 and the other lead at B4 and C4.

12. Solder the remaining potentiometer pin at A7.

13. Insert the 16-pin and 4-pin straight female
headers. Flip the board over and support the
headers on a flat surface; solder the headers in
place.

14. File or sand all the cut leads on the bottom of
the board.

15. Clean the flux from the bottom of the board
and allow it to dry.

16. Inspect the board carefully for accidental
solder connections or other problems.

Figure 9-5 is a photo of the completed parallel
LCD module. As you can see, I chose to make the
stripboard the same size as the LCD. (I’ll bet
you’re not surprised.) In addition, you can see the
current-limiting resistor that I have installed in the
H2 header. What you can’t see is that I have filed
the cut ends of the four-pin male header that I
inserted into H5 and painted them to be sure they
don’t make any electrical connection with the
bottom of the LCD board. Also, I have bent and
inserted double-ended male headers in preparation
for mounting the module on my breadboard.

In Figure 9-6, I have removed most of the
jumpers from Experiment 1 and added the
necessary jumpers for the power and Ground
connections, which you can’t see behind the LCD.

Chapter 9 � Interfacing Parallel LCDs 117

Completed parallel LCD moduleFigure 9-5

Parallel LCD module in operationFigure 9-6

(The jumpers to connect the LCD’s Register Select
and Enable lines to the 20X2 were already in
place.) As you can see, all the connections are the
same as the ones we used in Experiment 1, so you
can test the module without needing to change the
software in the 20X2. (Obviously, I changed my
message for a little variety!) Don’t forget that you
will probably need to adjust the contrast again,
unless you used the same potentiometer from
Experiment 1.

Programming Challenge

When you are sure the LCD module is functioning
correctly, you’re ready to take the LCD
programming challenge. I’m assuming you have
left your TV-IR module connected as it was in the
previous chapter. (If not, just reinstall it with the
same connections to the 20X2 pins C.2 and C.5.)
The challenge is to create a 20X2 program that

receives a keypress from the TV remote and
displays its value on the LCD. Have fun!

The parallel LCD module is a great addition to
any breadboard circuit that uses the 20X2
processor, or any X1 or X2 chip for that matter. All
X1 and X2 processors have more than enough
memory and I/O pins to handle the parallel LCD
interface and still have considerable resources
available for other project tasks. The 20M2 would
also be suitable because its pin-out is essentially
the same as that of the 20X2. However, as I
mentioned earlier, the 08M2 definitely wouldn’t
work, and the 14M2 might not be quite adequate
for a project that includes the LCD and two or
three additional I/O devices. The solution, of
course, is to use a 20X2 to “serialize” our LCD
module so that it can be used by any PICAXE
processor, including the little 08M2, which is
exactly what we’re going to do in the next chapter.

118 PICAXE Microcontroller Projects for the Evil Genius

Serializing a
Parallel LCD

C H A P T E R 1 0

IN THIS CHAPTER, as you already know, we’re going
to serialize a parallel LCD. The obvious advantage
of doing so is that a serialized display will be
usable in any project, regardless of which
processor is used, because a serial LCD only
requires one output line for interfacing. In
addition, the 20X2’s capability of receiving serial
data in the background will greatly simplify the
software requirements on the part of the master
processor. If we were to use the older serin
command (as I did in the earlier “PICAXE Primer”
articles that I mentioned in the previous chapter),
we would be restricted to sending serial strings of
one specified length because the serin command
either “hangs” if fewer than the expected number
of bytes are transmitted or “loses” the extra bytes
if too many are sent. Receiving the serial data in
the background completely eliminates these issues
and allows for a simple and flexible programming
interface.

Receiving Serial Data
in the Background

In order to implement serial data reception in the
background, the 20X2’s hsersetup command must
be properly configured. The complete syntax for
the command is hsersetup baud_setup, mode,
where baud_setup specifies the baud rate and
mode configures the available special functions.

Since we want the LCD to respond as quickly as
possible to serial input, we’re going to run the
20X2 at its fastest clock speed (64MHz) and
receive the data at 4800 baud, which can be easily
implemented on all PICAXE processors.
Therefore, we’ll set baud_setup to B4800_64. (See
the manual for details.) The mode parameter is a
three-bit variable or constant whose bits specify
the following special functions:

■ bit2: Invert the serial input data (1 � “N”;
0 � “T”). This option only applies to X2-class
processors. We’ll set bit2 � 1 so that we can
have the option of using a master processor’s
sertxd command (which is always an “N”
transmission) in conjunction with the serout
pin on the M2-class processors.

■ bit1: Invert the serial output data (1 � “N”;
0 � “T”). For the sake of consistency, we’ll
also set bit1 � 1, but it really doesn’t matter
because we won’t be transmitting any serial
data from our LCD. However, it’s worth noting
that whenever hsersetup is configured, both the
hserin pin (B.6 on the 20X2) and the hserout
pin (C.0 on the 20X2) are affected. In other
words, since we’re going to be using B.6 to
receive the serial data, C.0 can’t be used as an
I/O pin in our project—it’s automatically
configured as the hserout pin even though we
don’t need that function in our project.

119

■ bit0: Receive serial data to the scratchpad in
the background (1 � automatic serial reception
in the background/hserin command not used;
0 � reception via hserin command only/no
automatic serial reception).

Taking all this information into consideration,
the hsersetup statement that we need is hsersetup,
B4800_64, %111.

In order to understand how the background
reception of serial data actually occurs, we need to
discuss the scratchpad memory area of the 20X2
and the built-in variables associated with its use.
(The scratchpad area is in addition to the variable
storage memory area that we have already
discussed. All current PICAXE processors have a
variable storage area, but the scratchpad only exists
on X1 and X2 processors.) On the 20X2, the
scratchpad consists of 128 bytes of memory with
addresses from 0 to 127. The contents of the
scratchpad can be accessed directly by using the
get and put commands (see the manual), and
indirectly by using special-function variables that
provide the power of indirect addressing that we
discussed earlier in reference to the variable
storage area. The X1 and X2 processors support
the following built-in pointer variables and a
system flag that can be used to access the data
stored in the scratchpad:

■ hserptr: This is the “data write pointer.” It
contains the address of the scratchpad location
into which the next incoming serial data byte
will be written. As soon as hsersetup has been
properly configured, hserptr is automatically
set to 0 so that the first incoming data byte will
be stored in scratchpad location 0; next,
hserptr is automatically incremented so that
the next incoming byte is stored in location 1,
and so on.

■ ptr: This is the “data read pointer.” It contains
the address of the scratchpad location from
which the next stored data byte will be read. It
functions similarly to the bptr variable that is

used to indirectly access data in the variable
storage area.

■ hserinflag: This is one of the flags contained
in the special-function variable flags. It’s
automatically initialized to 0 when the
hsersetup statement is executed, and
automatically set to 1 as soon as a serial data
byte has been received in the background.
When our program has finished processing the
serial data (i.e., sending it to the LCD), it must
reset hserinflag to 0 in preparation for the next
incoming string of data.

Perhaps the best way to clarify these concepts is
with a concrete example. Let’s assume that our
program has already executed the hsersetup,
B4800_64, %111 statement that we discussed
earlier and, subsequently, the master processor
has sent the serial string “Hello” to the serialized
LCD. Therefore, the following has automatically
occurred in the background: “H” has been stored
in scratchpad location 0, “e” has been stored in
location 1, etc., and hserptr now equals 5 (data has
been automatically stored in scratchpad locations 0
through 4, so the next incoming byte will be stored
at location 5). Also, hserinflag now equals 1
because a background serial-receive has occurred.
At this point, the following code snippet could be
used to access this data and send it to the LCD:

if hserinflag = 1 then

LstChr = hserptr – 1 ' get location

of last

received

byte

for ptr = 0 to LstChr ' for each

received

byte

char = @ptr ' fetch the

character

(see below)

gosub OutByte ' and send it

to the LCD

next ptr

hserinflag = 0 ' reset the

new data

flag

120 PICAXE Microcontroller Projects for the Evil Genius

hserptr = 0 ' reset the

data write

pointer

endif

As I have already mentioned, indirect
addressing may seem to be an unnecessarily
complicated way of doing things, but it’s much
faster than the simpler direct addressing approach
(i.e., get ptr, char). Since we want our LCD to be
as fast as possible, we’ll use pointers and indirect
addressing.

At this point, I’m sure you’ve had your fill of
theory, so let’s take a break from it and construct
our serialized LCD board. Once we have a fully
functional board, we’ll be able to implement our
indirect addressing approach.

Project 10
Constructing a
Serialized 16 x 2 LCD

The parts list for our serialized LCD project is
shown here; as usual, all the parts are available on
my website. The schematic is presented in Figure
10-1; most of it will be familiar by now. However,
there is one important difference that we need to
discuss. Since we need pin B.6 to function as the
hserin pin, it’s not available as a data output pin to
the LCD. In the schematic, you can see that I have
substituted pin C.1 in its place. The software
adjustment required to handle this substitution is
surprisingly simple, as we’ll see when we get to
that point in the project.

Header H2 is another aspect of Figure 10-1 that
requires clarification. Its purpose is to enable us to
insert our USBS-PA3 programming adapter so that
the 20X2 can be programmed directly on the
stripboard. I’m sure you will want to modify and
improve the program to add features along the
way; in-circuit programming is certainly the most
convenient way to accomplish that goal. (When we
discuss the software for the project, I’ll describe

Chapter 10 ■ Serializing a Parallel LCD 121

ID Part

— Stripboard, 32 traces with 14

holes each

— Capacitor, .01�F

— Resistor, 4.7k, 1/4 or 1/6 �

— Resistor, 100k, 1/6 �

— Potentiometer, 10k

— IC socket, 20 machined pins

— PICAXE-20X2

H1 Female header, straight, 16 pins

H2 Female header, right-angle, 3 pins

(see text)

H3 Female header, right-angle, 4 pins

H4, H6 Female header, right-angle, 2 pins

H5 Female header, straight, 4 pins

— Male header, double-ended, two

2-pin pieces

P A R T S B I N

Schematic for the serialized LCD
project

Figure 10-1

how to use the programming adapter header.) One
other minor point with respect to header H2: I
don’t carry three-pin, right-angle female headers,
but it’s a simple matter to start with a four-pin
header, pull out one pin (from the bottom) from
one end of the header, and snip and sand or file the
excess plastic.

Figure 10-2 is the stripboard layout for the
project. As you can see, all the other headers serve
the same functions that we implemented in our
previous project. H1 is where the LCD connector
gets inserted, H3 is for the current-limiting resistor,
H4 and H6 are intended to accept double-ended

male headers (available on my website) that are
long enough to also insert into the breadboard (and
to bend if you want to adjust the angle at which
the LCD sits), and H5 is a straight female header
that has no electrical function—it just supports the
LCD so that it sits parallel to the stripboard, even
though this is definitely not a parallel LCD!

As usual, read through the complete list of
assembly instructions that follows to be sure you
understand the entire procedure before assembling
the board:

122 PICAXE Microcontroller Projects for the Evil Genius

Stripboard layout for serialized LCD projectFigure 10-2

Chapter 10 ■ Serializing a Parallel LCD 123

1. Cut and sand a piece of stripboard to the
required size (32 traces with 14 holes each).

2. Sever the traces on the bottom of the board as
indicated in Figure 10-2.

3. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

4. Insert the jumper from C2 to E2. Bend the
lead flat against the board from C2 to A2 on
the bottom of the board and snip it so that it
just reaches A2. Solder the jumper at E2, but
not yet at C2, B2, or A2.

5. Insert the jumper from C4 to F4. Bend the
lead flat against the board from C4 to B4 on
the bottom of the board and snip it so that it
just reaches B4. Solder the jumper at F4, but
not yet at C4 or B4.

6. Insert all the remaining jumpers, except the
four that go over the tops of the right-angle
female headers; solder and snip the leads.

7. Insert the two resistors; solder and snip their
leads.

8. Insert all the right-angle female headers. Flip
the board over with the headers in place, set it
on a flat surface, and solder all the pins.

9. For each of the four right-angle female
headers, bend and insert a jumper so that it
spans the top of the header as shown in Figure
10-2. Using a small clamp to hold the header
and the jumper tightly against the top of the
board, solder and snip the jumper leads on the
bottom of the board.

10. Insert the capacitor; solder and snip its leads.

11. Insert and solder the 20-pin socket in place
(make sure pin 1 is at H9).

12. Insert the 10k potentiometer. Flip the board
over and support it on a flat surface.

13. Make sure the unsoldered jumper leads are
making contact with the appropriate
potentiometer pins; solder one lead at A2, B2,
and C2 and the other lead at B4 and C4.

14. Solder the remaining potentiometer pin at A7.

15. Insert the 16-pin and 4-pin straight female
headers. Flip the board over, support the headers
on a flat surface, and solder the headers in place.

16. File or sand all the cut leads on the bottom of
the board.

17. Clean the flux from the bottom of the board
and allow it to dry.

18. Inspect the board carefully for accidental
solder connections or other problems.

Testing the Completed LCD Board

Before using any stripboard circuit that includes an
on-board processor, it’s always a good idea to test
the board for any wiring problems (especially in
the power connections) before inserting the
processor into the board. To test the serial LCD
board, insert any size resistor into H3 and use two
2-pin pieces of a double-ended male header to
attach the completed stripboard to a powered
breadboard via H4 and H6. Using the header labels
shown earlier in Figure 10-2, connect �V and B�

to the �5V power rail and connect G to the ground
rail (see Figure 10-3). Turn on the breadboard
power supply and use a multimeter to test for the
presence of �5V at pin 1 of the IC (integrated
circuit) socket, and pins 2 and 15 of H1. Also test
all the other pins of the IC socket and H1 to be
sure that �5V is not present on any other pin.

Testing the Programming
Connection to the LCD Board

Next, power-down the breadboard, insert a 20X2
into the IC socket so that pin 1 is at the lower-left
corner, and insert a resistorized LED into H1 so

that its �5V lead is inserted into pin 14 of H1 and
its Ground lead is inserted into pin 16 of H1. (This
arrangement connects the LED to pin B.7 of the
20X2.) Finally, insert the AXE027 USB cable into
the USBS-PA3 programming adapter and insert the
adapter into H2 so that the USB cable extends
behind the stripboard (see Figure 10-4). When the
adapter is inserted correctly, the Serin connection
will be on the left (looking from the front of the
stripboard) and Serout will be on the right.

The following “bare-bones” code snippet is
a simple “Hello World” program to test the
programming connection to the LCD board. Type
it into the Programming Editor and download it to
the 20X2 on the LCD board. The LED should
blink; if not, you will need to troubleshoot the
wiring connections on your stripboard.

'=== HelloLCD.bas ===

#com 4

#picaxe 20X2

#no_data

#no_table

do

toggle B.7

wait 1

loop

Testing the LCD Interface

When you’re sure that the programming interface
is functioning correctly, we’re ready to test the
interface between the on-board 20X2 and the LCD.
The only difference between this interface and the
one we used in the previous chapter is that we can
no longer use the 20X2’s B.6 pin for output to the
LCD. The software that implements this change

124 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for testing the completed LCD boardFigure 10-3

(LCDtest.bas) is presented in Listing 10-1. It’s
essentially the same as the program we worked
with in Chapter 9, with three simple changes that
handle the necessary pin substitution. First, in the
“Variables” section, I have added a declaration for
the replacement pin (symbol newB.6 � outpinC.1).
Second, at the beginning of the main program, the
dirsB statement (dirsB � %10111111) has been
changed to reflect the fact that pin B.6 will now be
an input. Third, near the end of the “OutCmd &
OutTxt” subroutine (right after the outpinsB �

char statement), I added the following statement:
newB.6 � bit6, which probably requires a quick
explanation. The newB.6 � bit6 statement works
because the char variable has been assigned to
variable b0 and, as you remember, the bits of b0

are individually accessible. If B.6 were still an
output, the outpinsB � char statement would have
assigned bit6 of char to B.6. However, we have
now defined B.6 as an input, so nothing is assigned
to it by the outpinsB � char statement. The
additional statement (newB.6 � bit6) simply
corrects this omission by assigning bit6 of char to
newB.6, which, of course, is actually pinC.1.
Download LCDtest.bas from my website and use
the Programming Editor to download it to the
20X2 on the LCD board. You should see the two-
line message repetitively appearing on the LCD; if
not, you will need to troubleshoot the wiring
connections on your stripboard.

Chapter 10 ■ Serializing a Parallel LCD 125

Breadboard setup for testing the programming connection to the LCD boardFigure 10-4

' ================================= LCDtest.bas ==================================

' Program runs on a PICAXE-20X2 at 8MHz & transmits 8-bit data

' to an HD44780 16x2 LCD display.

' === Constants ===

symbol enable = C.7 ' LCD enable pin connected to C.7

symbol RegSel = C.4 ' LCD RegSel pin connected to C.4

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol index = b1 ' used as counter in For-Next loops

symbol newB.6 = outpinC.1 ' replacement pin for B.6 (hserin)

' Note: newB.6 is a variable because its value can change

' === Directives ===

#com 3 ' specify download port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#terminal off ' make sure terminal is off

' === Table ======================

Table 0, ("Evil Genius LCD ")

Table 16, ("Serial Display! ")

' ============================= Begin Main Program ===============================

dirsB = %10111111 ' set portB as outputs (except B.6)

dirsC = %10111111 ' set portC as outputs (except C.6)

' *** Initialize the LCD ***

pause 200 ' pause 200 mS for LCD initialization

char = 56 ' setup for 8 bits, 2 lines, 5X7 dots

gosub OutCmd ' send instruction to LCD

char = 12 ' display on, cursor off

gosub OutCmd ' send instruction to LCD

' *** Main Program Loop - Send data to the LCD ***

do

char = 1 ' clear display & go home

gosub OutCmd ' send instruction to LCD

wait 1

for index = 0 to 15

readtable index, char ' send line one to LCD

gosub OutTxt

next index

126 PICAXE Microcontroller Projects for the Evil Genius

LISTING 10-1

Installing the LCD Driver Software

When you are sure the LCD interface is
functioning properly, we’re ready to take a look at
the driver software we need to transform the LCD
board into a stand-alone serial peripheral that can
be used in any PICAXE project. The following
software (LCDhserinDriver.bas) may look a little
intimidating simply due to its length (Listing 10-2).
However, if we break it down to its functional
parts, it’s really not that difficult.

Let’s begin with the part that I’m not going
to explain. (How oxymoronic is that?) In the
September 2009 installment of the “PICAXE
Primer” in Nuts and Volts magazine, I went on a
little bit of a rant. I’ll spare you the details, but let
me summarize: There are five lowercase letters (g,
j, p, q, and y) in the modern English alphabet that
should have “descenders,” which is a term that

refers to the portion of the letter that should
be written below the main line of the text.
Unfortunately, typical LCD character sets ignore
this fact and print those letters without any
descenders. In my opinion, this practice greatly
detracts from the readability of the display; to see
what I mean, look back at the letter “g” in the
word “again” that was shown in Figure 9-6 of the
previous chapter.

Fortunately, all HD44780 LCDs include on-
board memory space for eight “custom characters.”
In the “PICAXE Primer” article, I detailed the
process of creating custom characters for the
purpose of improving the display of the five
lowercase letters with descenders. If you are
interested in the details, you may want to obtain a
copy of that article. I’ll just briefly summarize how
the program implements the replacement of the
“offending” characters. First, the data statements

Chapter 10 ■ Serializing a Parallel LCD 127

wait 1

char = 192 ' move cursor to start of line two

gosub OutCmd ' send instruction to LCD

for index = 16 to 31 ' send line two to LCD

readtable index, char

gosub OutTxt

next index

wait 4

loop

' ==================== End Main Program – Subroutines Follow =====================

OutCmd:

Low RegSel ' set up for command byte

goto Doit ' do it

OutTxt:

High RegSel ' set up for text byte

Doit:

outpinsB = char ' load byte onto outpinsB

newB.6 = bit6 ' load bit6 onto pinC.1

pulsout enable,1 ' send data

return

LISTING 10-1 (continued)

128 PICAXE Microcontroller Projects for the Evil Genius

' ============================= LCDhserinDriver.bas ==============================

' Program runs on a PICAXE-20X2. It receives serial data from a

' master processor & displays it on the EG serialized 16x2 LCD.

' === Constants ===

symbol enable = C.7 ' LCD enable pin

symbol RegSel = C.4 ' LCD RegSel pin connected to C.4

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol LstChr = b1 ' used to access hserin data

symbol index = b2 ' used in for/next loop

symbol newB.6 = pinC.1 ' replacement pin for B.6 (hserin)

' Note: newB.6 is a variable because its value can change

' === Directives ===

#com 4 ' specify COM port

#picaxe 20X2 ' specify compiler mode

#no_data ' save time downloading

#terminal off ' make sure terminal is off

' ==

' The following are custom characters with true descenders

' that we will use in place of the built-in versions.

' Note: these cannot be deleted without major program changes.

' ==

' === Data ===

' Lowercase "g"

Data (%00000)

Data (%00000)

Data (%01111) ' ****

Data (%10001) ' * *

Data (%10001) ' * *

Data (%01111) ' ****

Data (%00001) ' *

Data (%01110) ' ***

' Lowercase "p"

Data (%00000)

LISTING 10-2

Chapter 10 ■ Serializing a Parallel LCD 129

Data (%00000)

Data (%10110) ' * **

Data (%11001) ' ** *

Data (%10001) ' * *

Data (%11110) ' ****

Data (%10000) ' *

Data (%10000) ' *

' Lowercase "q"

Data (%00000)

Data (%00000)

Data (%01101) ' ** *

Data (%10011) ' * **

Data (%10001) ' * *

Data (%01111) ' ****

Data (%00001) ' *

Data (%00001) ' *

' Lowercase "j"

Data (%00010) ' *

Data (%00000) '

Data (%00110) ' **

Data (%00010) ' *

Data (%00010) ' *

Data (%00010) ' *

Data (%10010) ' * *

Data (%01100) ' **

' Lowercase "y"

Data (%00000)

Data (%00000)

Data (%10001) ' * *

Data (%10001) ' * *

Data (%10001) ' * *

Data (%01111) ' ****

Data (%00001) ' *

Data (%01110) ' ***

' Bullet

Data (%00000)

Data (%01110) ' ***

Data (%11111) ' *****

Data (%11111) ' *****

Data (%11111) ' *****

Data (%01110) ' ***

Data (%00000)

Data (%00000)

LISTING 10-2 (continued)

(continued)

130 PICAXE Microcontroller Projects for the Evil Genius

' Up-Arrow

Data (%00100) ' *

Data (%01110) ' ***

Data (%10101) ' * * *

Data (%00100) ' *

Data (%00100) ' *

Data (%00100) ' *

Data (%00100) ' *

Data (%00000)

' Down-Arrow

Data (%00100) ' *

Data (%00100) ' *

Data (%00100) ' *

Data (%00100) ' *

Data (%10101) ' * * *

Data (%01110) ' ***

Data (%00100) ' *

Data (%00000)

' ============================= Begin Main Program ===============================

dirsB = %10111111 ' configure portB (B.6 is hserin pin)

dirsC = %10111111 ' configure portC (C.6 is input only)

hsersetup B4800_64, %111 ' setup for background serial receive

' === Initialize the LCD ===

pause 200 ' pause 200 mS for LCD initialization

pinsB = 56 ' setup for 8 bits, 2 lines, 5X8 dots

pulsout enable,1 ' send command

char = 12 ' display on, cursor off

gosub OutByte ' send instruction to LCD

' === Load custom chars into CGRAM ===

char = 64 ' command: define custom characters

low RegSel ' set up for command

gosub OutByte2

high RegSel ' set up for text

for index = 0 to 63 ' install 8 custom characters

read index, char

gosub OutByte2

next index

char = 1 ' clear display and go home

low RegSel ' this must be located here

gosub OutByte2 ' to "turn off" load custom chars

LISTING 10-2 (continued)

Chapter 10 ■ Serializing a Parallel LCD 131

' ==== Main Program Loop - Receive data and display it on LCD ====

setfreq m64

do

if hserinflag = 1 then ' if background receive has occurred

pause 320 ' allow 40mS for max of 20 characters

LstChr = hserptr - 1 ' get address of last byte received

for ptr = 0 to LstChr ' for each scratchpad address,

char = @ptr ' fetch character (indirect addressing)

gosub OutByte ' process char and send it to LCD

next ptr

hserinflag = 0 ' reset the new background data flag

hserptr = 0 ' reset the data write pointer

endif

loop

' =================== End Main Program - Subroutines Follow =====================

OutByte:

select case char

case 0 to 31 ' commands

low RegSel ' set up for command

case 128 to 207 ' provides capability to move the

low RegSel ' cursor to any on-screen location

case 103,106,112,113 ' "g", "j", "p", & "q"

char = char - 103

high RegSel ' set up for text

case 121 ' "y"

char = 4

high RegSel ' set up for text

else ' all other text

high RegSel ' set up for text

endselect

Outbyte2:

outpinsB = char ' load character onto outpinsB

newB.6 = bit6 ' substitute pinC.1 for pinB.6

pulsout enable,1 ' send data

return

LISTING 10-2 (continued)

define the improved dot patterns for each of the
five characters and, just because there was room, I
included three others: a bullet, an up arrow, and a
down arrow. (If you want to display one of those
three characters, you can do so by sending a “5,”
“6,” or “7” character to the LCD.) The section
labeled “Load custom chars into CGRAM”
actually installs those data patterns in the LCD’s
eight bytes of custom character memory.

In the OutByte subroutine, the select case
statement “intercepts” the ASCII codes for the
offending characters and substitutes the correct
code for the new and improved characters. The
same select case statement also determines
whether each incoming character is a command
byte or a text byte and configures RegSel
accordingly. The remainder of the subroutine
simply sends the character out to the LCD for
display, a process we discussed earlier in the
“Testing the LCD Interface” section.

At this point, we have covered all the significant
aspects of the program except for the main
program loop, so let’s turn our attention to that.
Just before entering that loop, we boost the speed
of the 20X2 up to its maximum (setfreq m64) so
that the transfer of data to the LCD can occur as
rapidly as possible. The loop itself consists of one
if statement that only executes if a serial character
has been received in the background; in other
words, if hserinflag is 0, nothing has been received
and the loop just continually repeats without really
doing anything. As soon as a character has been
received, hserinflag is automatically raised to 1 so
the if statement executes the following tasks:

■ pause 320: The hserinflag is automatically
raised as soon as the first character in a string
has been received, so the first thing we need
to do is pause long enough to allow all the
remaining characters to be received. Let’s do a
little math to see how I arrived at the pause
320. We’re receiving data at 4800 baud; let’s
call it 5000 baud to simplify the math. Baud is
defined as bits per second and an eight-bit

character with its start and stop bits totals ten
bits, so 5000 baud equals 500 characters per
second. That means it takes about 2mS to
transmit one serial character. I have placed an
arbitrary length limit of 20 on my serial strings
(16 characters with a couple of commands
thrown in), so the maximum time it should
take to transmit the longest string would be
20 * 2 � 40mS. However, we can’t just say
pause 40 because we’re running the 20X2 at
64MHz, which is eight times its default speed
of 8MHz. Therefore, pauses occur eight times
more quickly than they would at 8MHz. To
compensate for that, we need to multiply the
40 by 8 to get the correct value (320) for our
pause statement.

■ LstChr = hserptr – 1: At this point, we’re
about to enter a for…next loop that sends the
received data on to the LCD, so we need to
know the address of the last character that was
received. Since hserptr is automatically
incremented to prepare for the reception of the
next character, the address of the last character
received is simply hserptr – 1.

■ for…next loop: In this loop, we’re sending the
serial string (one character at a time) to the
LCD. The only tricky part is that we’re using
indirect addressing: Each time through the
loop, the char variable is assigned the value
that is located at the address that is “pointed
to” by the ptr variable. Once that value has
been assigned to char, the OutByte subroutine
is called to send the value to the LCD.

■ hserinflag = 0: Now that the string has been
sent to the LCD, we need to reset hserinflag to
0 in preparation for waiting for the next string
to begin to arrive.

■ hserptr = 0: Similarly, we need to reset the
data-write pointer so that the first character of
the next string will be automatically stored in
scratchpad location 0.

132 PICAXE Microcontroller Projects for the Evil Genius

Chapter 10 ■ Serializing a Parallel LCD 133

Testing the LCD Driver Software

In order to test the LCD driver software, we need to
program our 20X2 master processor (not the on-

board LCD processor) to send some data to the
LCD for display. The following program (Listing
10-3) will certainly get the job done, but you may
want to modify it to suit your purposes. The

' ============================== SeroutToLCD.bas =================================

' This program runs on a PICAXE-20X2 processor at 8 MHz.
' It sends serial data to the Evil Genius LCD display.
' Note 1: The "Display Clear" command (DC) must always
' be sent on a line by itself (or next character is lost).
' Note 2: A minimum delay of 40mS is required between serial
' transmissions to allow time for the LCD to display the data.

' === Constants ===
symbol abit = 40
symbol toLCD = B.7

' LCD Commands
symbol DC = 1 ' display clear & cursor home
symbol C0 = 12 ' cursor off
symbol C1 = 14 ' cursor on (no blink)
symbol CB = 15 ' cursor blink
symbol L1 = 128 ' cursor at position 1 of line 1
symbol L2 = 192 ' cursor at position 1 of line 2

' === Directives ===
#com 3 ' specify COM port
#picaxe 20X2 ' specify compiler mode
#no_data ' save time downloading
#no_table ' save time downloading
#terminal off ' make sure terminal is off

' ============================= Begin Main Program ===============================

wait 1 ' allow time for LCD to initialize
do

serout toLCD, N4800_8, (DC)
wait 1
serout toLCD, N4800_8, (L1,"PICAXE-20X2 LCD ")
pause abit
serout toLCD, N4800_8, (L2,"Serial Display ")
wait 2
serout toLCD, N4800_8, (L1,"The Evil Genius ")
pause abit
serout toLCD, N4800_8, (L2," strikes again! ")
wait 2

loop

LISTING 10-3

program is simple; it just repetitively sends two sets
of strings to the serial LCD module. As you can
see, I have included six LCD commands in the
“Constants” section to get you started, but after
reading the HD44780 documentation, you certainly
can add any commands that you want to use.

Don’t forget that you can also

send a command to place the

cursor at any position on a line, as we discussed in

Chapter 9.

Two important points to keep in mind are noted
in the initial comments. First, the “Display Clear”
command must be sent by itself, not as part of a
longer string, because the display requires a
relatively long time to execute this command, so a
couple of characters that immediately follow it

would be lost if we didn’t allow the necessary time.
Second, whenever you send two strings “back to
back,” it’s necessary to intersperse a brief delay to
allow sufficient time for the LCD module to display
the first string before the second one begins to
arrive. So far, 40mS has worked fine for me, but
you may want to experiment with that value; if the
delay is too short, all that will happen is some
characters will fail to be displayed on the LCD.

My breadboard setup for the completed project
is shown in Figure 10-5. I chose pin B.7 as the
serial output pin for the master processor, but you
could easily redefine it to whichever pin you prefer
to use. First download LCDhserinDriver.bas to the
LCD module, and then download SeroutToLCD.bas
to your master processor on the breadboard—you
should see the two messages repetitively alternating

134 PICAXE Microcontroller Projects for the Evil Genius

NOTE

Breadboard setup for completed serial LCD projectFigure 10-5

on the display. If not, the usual troubleshooting
session is in order!

To see the difference that the custom characters
make, compare the display in Figure 10-5 with that
of Figure 9-6 in Chapter 9. The difference may
seem slight, but when there are three or four
lowercase letters being displayed at one time, it’s
more pronounced. Figure 10-6 shows a display
from the original “PICAXE Primer” article that

includes all five characters for comparison
(reprinted with the kind permission of Nuts and
Volts magazine); line 1 displays the default
characters, and line 2 shows the “new and
improved” custom characters. Personally, I think
that the improved display is worth the additional
programming requirements.

With the completion of our serial LCD project,
we now have a powerful, stand-alone peripheral
display for use with any PICAXE project. All it
requires is one output line, and its timing
requirements are minimal; just be sure to send any
“Display Clear” commands without additional
characters in the same string and include a short
delay after the transmission of each serial string. If
you keep those two caveats in mind, the serial
LCD display will be able to keep up with all the
data you want to send.

Chapter 10 ■ Serializing a Parallel LCD 135

Comparison of LCD standard and
custom characters

Figure 10-6

This page intentionally left blank

Interfacing Keypads

C H A P T E R 1 1

NOW THAT WE HAVE A versatile output device to use
in any PICAXE project, we’re going to shift gears
and focus on developing an input device for our
projects. We’re going to start with a standard
matrix keypad and, similarly to the LCD project
we just completed, serialize it so that it can be
used in any project, even one based on the little
08M2.

Matrix keyboards are generally available in two
sizes: four rows by three columns and four rows by
four columns. The key arrangement on the 4 � 3
version usually matches that of a landline
telephone—remember them? The fourth column of
a 4 � 4 keypad adds the letters A, B, C, and D, as
shown in the following illustration.

We’re going to be using a 4 by 4 keypad in this
chapter, but the experiments and project can easily
be modified for use with a 4 by 3 keypad if you
prefer. The specific keypad that appears in the
chapter’s photos is available on my website, but
any matrix keypad you happen to have on hand
should work just as well—just be sure that it is, in
fact, a matrix layout. I have seen keypads that look
similar to a “genuine” matrix, but actually have
each key connected to its own line with a common
connection to all the keys. It would be possible to
use this type of keypad, but the necessary
modifications would be extensive.

The keypad that I am using includes a row of
eight holes along its bottom edge, into which a
header can be soldered so that the keypad can
easily be connected to a breadboard, stripboard, or
ribbon cable assembly. If you have a keypad that
accepts a header along its top edge, it will work
fine for the breadboard experiments, but our
stripboard project would need to be redesigned to
work with such a keypad. Finally, there seems to
be a fair amount of variation in the specific order
of the connecting points on different matrix
keypads. The simplest arrangement for the user
would naturally be to have the row and column
connections in order. However, probably because
the keypad layout is simpler and therefore less
expensive, the connections are frequently not in
any logical order. If you use a keypad that has its
connection points in an order that differs from the

137

one I’m using, you will need to modify both the
breadboard and stripboard layouts. The schematics,
of course, will remain the same.

Decoding Matrix Keypads

There are two general methods of decoding a
matrix keypad, both of which are based on the
fact that whenever a key is pressed on a matrix
keypad, the corresponding row trace and column
trace are electrically connected. The more common
approach to decoding is referred to as “scanning”
the keypad. In this case, the keypad rows (or
columns) are each connected to an output pin on
the microprocessor, and the columns (or rows) are
each connected to an input pin that’s tied to
Ground by a current-limiting resistor. The
processor sequentially raises each output to a high
level and then checks each of the inputs to see if it
has been pulled high. If so, the key at the

intersection of the currently active row and column
has been pressed.

The second decoding method uses a resistor
matrix to produce an analog voltage level that
differs for each possible keypress. The analog
voltage is connected to an ADC input, and the
processor simply converts the resulting voltage
level back to the corresponding keypress. This is
the approach that we will use in our experiments
and project in this chapter, for two reasons. First,
it enables us to use an 08M2 as the keypad’s
peripheral processor because all we need is one
ADC pin. More importantly, it frees the master
processor from needing to repetitively take ADC
readings to be sure it doesn’t miss a single
keypress whenever it happens. This feature enables
our intelligent keypad peripheral to function
effectively with any M2-class processor. However,
the X2 processors implement two advanced
features—hardware interrupts and hardware

138 PICAXE Microcontroller Projects for the Evil Genius

Resistor-matrix circuit for producing a range of ADC valuesFigure 11-1

Chapter 11 � Interfacing Keypads 139

comparators—that enable them to interface
directly with a resistor matrix keypad. Therefore,
when we get to Chapter 13, we’ll also connect a
keypad to the 20X2 processor without the use of a
peripheral processor at all.

Experiment 1: Interfacing
a Matrix Keypad

Figure 11-1 presents one possible arrangement for
a resistor matrix that can be used in the ADC
approach to keypad decoding. As you can see, each
possible keypress connects two, one, or zero
resistors in series between the �5V line and
Ground. By carefully choosing the values of the
seven resistors in the layout, it’s possible to
produce 16 voltage levels that are spread out far
enough to easily differentiate. I would like to be
able to say that I used a sophisticated mathematical
formula to determine the required resistor values,
but I actually used a more primitive “trial-and-
error” approach to the problem.

Before I discuss my method and the results I
obtained, I need to mention the most important
factor to keep in mind: Standard 1/4-watt resistors
have a 5 percent tolerance rating, which means that
a 10k resistor can actually measure anywhere
between 9.5k and 10.5k. This is why it’s important
to be able to produce a wide range of analog
voltages. If the ADC readings for two adjacent
keys were too close to each other, variations in
actual resistor values could result in misidentifying
the specific key that has been pressed.

In order to make my trial-and-error approach
as painless as possible, I set up a simple Excel
spreadsheet to compute the ADC values that
would result from a specific combination of
resistors and then tried various combinations until I
found one that worked. When I used the 256 levels
provided by the readadc command, some of the
ADC values for two adjacent keys were so close
(differences of four or five) that I was concerned

that errors could result. Switching to the 1024
levels provided by the readadc10 command greatly
simplified the task.

The resistor values that I finally chose are
presented in Figure 11-2. Each of the 16 “key”
positions includes two pieces of relevant data: the
total resistance that is connected in series with the
10k base resistor when the corresponding key is
pressed, and (in parentheses) the resulting value
produced by the readadc10 command. If you are
unsure about the formula to use to compute the
ADC values, refer back to our discussion in
Chapter 6. Finally, I need to emphasize that these
are theoretical results; your specific ADC values
will almost certainly be somewhat different. We’ll
confront that issue in the next section when we
actually construct and test our breadboard circuit.

Constructing a Breadboard Circuit to
Interface a Matrix Keypad

The schematic for our breadboard circuit is
presented in Figure 11-3. As you can see, the eight
connections to the keyboard that I am using are not
logically ordered, but it really doesn’t matter
much. The important thing is to make sure that the
connections for each resistor are the same as the
ones presented earlier in Figure 11-2. If the pin-out
is different for the keypad you intend to use,
simply rearrange the connections appropriately.

The parts list for our breadboard circuit is again
too simple to warrant a table; just a matrix keypad
with a male header, the seven resistors shown in
the schematic, and an 08M2 processor. My
breadboard layout is shown in Figure 11-4. You
can see that the location of the keypad header is
somewhat inconvenient for a breadboard circuit; it
would be better if the header were at the top of the
keypad so that it could connect near the bottom
edge of the breadboard and therefore be closer to
the user. However, when we get to our stripboard
project, the reverse will be true—having the

140 PICAXE Microcontroller Projects for the Evil Genius

Specific resistor-matrix values and corresponding ADC valuesFigure 11-2

Schematic for the matrix keypad circuitFigure 11-3

keypad header on the bottom will greatly simplify
the stripboard circuit, as well as the connection to
the master processor.

Testing the Breadboard Circuit

When you have assembled your breadboard circuit,
we’re ready to discuss our first program
(keypad1.bas), which is presented in Listing 11-1.
Its purpose is to determine how closely our “real-
world” ADC values match the theoretical values
that were presented back in Figure 11-2. The main
program loop repetitively carries out the following
tasks:

� Wait for keypress (theoretically, junk � 0 if no
key is pressed, but “� 5” is safer).

� Pause for 50mS to debounce the switch (the
pause 100 is halved at 8MHz).

� Get ADC value (using readadc10).

� Wait until switch is released.

� Send the digits of the value to the terminal
window (followed by CR and LF).

Download keypad1.bas and use the
Programming Editor to download it to your
breadboard circuit. We’re going to use the results
from this experiment when we get to our next
experiment, so you will need to jot them down.
There should be enough blank space in Figure 11-2
for you to write your actual ADC reading in each
cell. If not (or if you prefer not to write in the
book), just jot them down on a piece of paper.
Press each key a few times—you may get slightly
variable readings for some of the keys. If so, just
choose the most typical value for each key and
make a note of it. (As I mentioned earlier, your
results will most likely differ somewhat from the
theoretical values.)

Chapter 11 � Interfacing Keypads 141

Breadboard layout for the matrix keypad circuitFigure 11-4

Experiment 2: Decoding
the Keypresses

Now that you know the ADC value that’s produced
by each keypress in your breadboard setup, we
need to modify keypad1.bas so that it actually
decodes each keypress and outputs the appropriate
character. Naturally, we’ll need another variable in
which to store the resulting character; let’s call it
char. Also, we’re going to use a select case
statement to accomplish the decoding, but we can’t
use a series of equalities to convert each of the

ADC values to the correct character because (as
we just discovered) some of the values vary
slightly. Also, additional slight variations can be
introduced by changes in temperature and other
factors. To make sure that we always decode the
correct character, we’ll use a series of “less than”
phrases in our select case statement and work our
way up the list. Using this approach, our select
case statement will take the form of the following
code fragment:

142 PICAXE Microcontroller Projects for the Evil Genius

' ================================= keypad1.bas ==================================

' This program uses an ADC approach to decoding a matrix keypad.

' It sends the keypress ADC key value to the terminal window.

' === Variables ===

symbol key = w0 ' used in adc10; word variable is required

symbol junk = b2 ' throwaway variable used for debouncing

' === Directives ===

#com 3 ' specify serial port

#picaxe 08M2 ' specify processor

#terminal 9600 ' open terminal (8MHz produces 9600 BAUD)

' ============================== Begin Main Program ==============================

setfreq m8

dirsC = %00010011

do

wait_for_keypress:

readadc C.2, junk

if junk < 5 then wait_for_keypress

pause 100 ' debounce keypress

readadc10 C.2, key ' get ADC value

wait_for_release:

readadc C.2, junk

if junk > 5 then wait_for_release

sertxd ("key = ",#key,cr,lf) ' send ADC value to terminal

loop

LISTING 11-1

select case key

case < ?

char = 49 ' ASCII code for "1"

case < ?

char = 50 ' ASCII code for "2"

' etc., etc.

The question remains: What specific values
should we use in place of the question marks? The
safest (i.e., most error-free) choice is the midpoint
between each pair of adjacent keys. I’ll use our
theoretical values to clarify this point, but you
should substitute the actual values you obtained
from running the keypad1.bas program. The
theoretical value associated with the “1” key is
361, and the value associated with “2” is 376, so
the midpoint is about 369. Therefore, in our select
case statement, we’ll say that any value less than
369 will be decoded as the “1” character. If we use
the same approach to each of the characters, our
select case statement becomes:

select case key

case < 369

char = 49 ' ASCII code for "1"

case < 385

char = 50 ' ASCII code for "2"

' etc., etc.

Since our select case statement involves 16
distinct cases, it will be fairly long to print out.
To compress it a bit, we’re going to use a little
shortcut. Similarly to many dialects of BASIC,
PICAXE BASIC supports the use of the colon
symbol (:) to separate multiple statements on the
same line, which means we can write:

select case key

case < 369 : char = 49 ' ASCII code

for "1"

case < 385 : char = 50 ' ASCII code

for "2"

case < 402 : char = 51 ' ASCII code

for "3"

case < 434 : char = 65 ' ASCII code

for "A"

' etc., etc.

The “:” shortcut is not something I’m
suggesting you use frequently in your programs;
it can easily make code much more difficult to
read. However, our long select case statement is
perfectly readable in this form, and also much
shorter. One final point: Don’t forget that as soon
as one of the case conditions evaluates to true, the
associated code is executed and the remainder of
the select case statement is skipped. For example,
if key equals 375, char is set to 50 and the
compiler jumps ahead to the program line that
follows the endselect statement.

Our second program (keypad2.bas), which is
presented in Listing 11-2, incorporates all the
changes we just discussed. Download it and use
the Programming Editor to change the theoretical
midpoint values in each of the case conditions to
the values you calculated from the results of
running keypad1.bas. Also note that the sertxd
statement has changed: Instead of sending the
individual digits of the ADC value, we’re now
transmitting the appropriate ASCII value for each
character to the terminal window. Download the
program to your breadboard circuit and test all the
keypresses. You should see the correct character
appear in the terminal window in response to each
keypress. If not, a little troubleshooting is in order.
When everything is working correctly, we’re ready
to convert our breadboard circuit to a stand-alone
peripheral device.

Chapter 11 � Interfacing Keypads 143

' ================================= keypad2.bas ==================================
' This program uses an ADC approach to decoding a matrix keypad.
' It sends the decoded character to the terminal window.

' === Variables ===
symbol key = w0 ' used in adc10; word variable is required
symbol char = b2 ' the char that corresponds to key value
symbol junk = b3 ' throwaway variable used for debouncing

' === Directives ===
#com 3 ' specify serial port
#picaxe 08M2 ' specify processor
#terminal 9600 ' open terminal

' ============================== Begin Main Program ==============================
setfreq m8
dirsC = %00010011

do
wait_for_keypress:

readadc 2, junk
if junk < 5 then wait_for_keypress
pause 100 ' debounce keypress
readadc10 2, key ' get ADC value

wait_for_release:
readadc 2, junk
if junk > 5 then wait_for_release

select case key ' decode keypress
' (Replace the theoretical values with actual values.)

case < 369 : char = 49 ' 1
case < 385 : char = 50 ' 2
case < 402 : char = 51 ' 3
case < 434 : char = 65 ' A
case < 450 : char = 52 ' 4
case < 474 : char = 53 ' 5
case < 500 : char = 54 ' 6
case < 551 : char = 66 ' B
case < 587 : char = 65 ' 7
case < 634 : char = 56 ' 8
case < 674 : char = 57 ' 9
case < 733 : char = 67 ' C
case < 804 : char = 42 ' *
case < 885 : char = 48 ' 0
case < 977 : char = 35 ' #
else : char = 68 ' D

end select

sertxd ("char = ", char, cr, lf) ' send char to terminal
loop

144 PICAXE Microcontroller Projects for the Evil Genius

LISTING 11-2

Project 11
Constructing a Serialized
4 by 4 Matrix Keypad

In addition to decoding the keypresses, our stand-
alone peripheral keypad needs to be able to
transmit the input characters to a master processor.
To accomplish this goal, we’re going to use the
same approach we implemented with our IR TV
remote device in Chapter 8. We’ll talk more about
that after we have constructed and tested the
stripboard circuit. The schematic for our project is
shown in Figure 11-5, and the stripboard layout is
presented in Figure 11-6.

The schematic in Figure 11-5 is similar to that
of the breadboard circuit we just discussed, with
the addition of five headers that serve the
following functions:

H1 and H4: Connect the peripheral keypad to
a breadboard circuit

H2: Enables a programming adapter to be
connected

H3: Allows for a ribbon cable connection
between keypad and master processor

H5: Connects the keypad to the stripboard

With the exception of H5, all the headers are
optional. Because the driver software for the
project is fairly simple, when you have the keypad
functioning correctly, you may have little or no
need to reprogram the 08M2, so you certainly
could omit H2. Even if you did decide to
reprogram the driver, you could easily remove the
08M2 from the stripboard and reprogram it in a
breadboard circuit. The remaining three headers
(H1, H2, and H4) provide two different methods of
connecting the peripheral keypad to a project—if
you construct the project for a specific purpose,
you could leave off the header(s) that aren’t
needed. However, for maximum flexibility, you
may want to include all the headers in the first
version of the project that you construct. Finally, in
the layout shown in Figure 11-6, you can see two
additional headers (H6 and H7) that are not
included in the schematic. They have no electrical
function, but when male headers (with their short
ends snipped) are inserted into them, they will
support the keypad so that it sits parallel to the
stripboard when the project is completed.

Chapter 11 � Interfacing Keypads 145

Schematic for serial keypad projectFigure 11-5

146 PICAXE Microcontroller Projects for the Evil Genius

Stripboard layout for serial keypad projectFigure 11-6

The parts list for our serialized keypad project
is shown here. Except for headers H2 and H5, all
the necessary parts are available on my website.
However, I do carry a 16-pin straight female
header, from which you can easily snip a 3-pin
(H2) and 8-pin (H5) section by “sacrificing” an
adjacent pin in each case and sanding or filing the
excess plastic.

In Figure 11-6, you can see that I am using the
small stripboard for the layout, which is why the
top and bottom traces contain no holes. If that’s
what you use, you will need to drill four holes at
the appropriate positions in the top trace. If you
would rather avoid that chore, you could cut the

necessary stripboard from the larger one that’s
available on my site.

As usual, read through the complete list of
assembly instructions that follows to be sure you
understand the entire procedure before assembling
the board.

1. Cut and sand a piece of stripboard to the
required size (21 traces with 32 holes in all
but the two edge traces).

2. Using a 3/64-inch (1.2-mm) or 1/16-inch
(1.5-mm) bit, drill holes in the solid trace
(row 1) at A1, E1, G1, and H1.

3. Sever the traces on the bottom of the board at
the 18 holes indicated in Figure 11-6.

4. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

5. Insert the jumper from H10 to H13.

6. Flip the board over; bend the lead from H13
to H14, and snip it so that it just reaches the
hole at H14. Solder and snip the lead at H10,
but not yet at H13 or H14.

7. Insert the remaining 11 jumpers; solder and
snip the leads.

8. Insert the eight resistors; solder and snip their
leads.

9. Insert the capacitor; solder and snip its leads.

10. Insert the machined-pin IC socket. Make sure
pin 1 is at E14 and that the jumper lead at
H14 touches the pin at H14; solder all eight
pins and the jumper at H13.

11. Insert the six straight female headers.

12. Flip the board over, support it on a flat
surface, and solder the headers in place.

13. File or sand all the cut leads on the bottom of
the board.

14. Insert the 5 � 2 male header, either normally
on the top or reverse-mounted, depending on
whether you want the ribbon cable to attach
on the top or bottom.

Chapter 11 � Interfacing Keypads 147

ID Part

— Stripboard, 21 traces by 14 holes

each

C1 Capacitor, .01�F

R1 Resistor, 15k, 1/4 �

R2 Resistor, 100k, 1/4 �

R3 Resistor, 4.7k, 1/4 �

R4, R6 2 resistors, 10k, 1/4 �

R5 Resistor, 3.3k, 1/4 �

R7 Resistor, 2.2k, 1/4 �

R8 Resistor, 1k, 1/4 �

IC1 IC socket, 8 machined pins

— PICAXE-08M2 (or 08M)

H1, H4 Female header, straight, 2 pins

H2 Female header, straight, 3 pins

(see text)

H3 Male header, straight, 5 � 2 pins

H5 Female header, straight, 8 pins

(see text)

H6, H7 Female header, straight, 4 pins

(see text)

P A R T S B I N

148 PICAXE Microcontroller Projects for the Evil Genius

15. Solder the 5 � 2 male header in place.

16. Clean the flux from the bottom of the board
and allow it to dry.

17. Inspect the board carefully for accidental
solder connections or other problems.

Testing the Completed Keypad Board

Before we can test the completed keypad board,
we need to connect it to a breadboard circuit. You
can certainly do this by simply inserting four
jumper wires into the sockets of headers H1 and
H4, but the keypad would probably slide around as

you used it. To avoid this problem, I made a rigid
connection between the keypad and the breadboard
by constructing two tiny stripboard circuits. I’ll
describe the process shortly, but I think it will be
easier to follow if you first take a look at the
completed assembly shown in Figure 11-7. In the
photo, you can see that I notched the bottom of my
stripboard to match the shape of the keypad board;
it makes absolutely no functional difference, but I
couldn’t help myself!

In Figure 11-7, you can see my two tiny
stripboard connectors holding the keypad board
tightly against the edge of the breadboard, with the

Completed board (without keypad) with rigid connection to a breadboardFigure 11-7

Chapter 11 � Interfacing Keypads 149

keypad board’s power and ground lines connected
to the corresponding rails on the breadboard. If
you want to construct the two little stripboard
connectors, you can use the following list of
assembly instructions for each of them:

1. Cut and sand a piece of stripboard to the
required size of two traces with seven holes
each. To sand or file the header, it helps to
hold it with a pair of pliers—especially if you
are using a power sander!

2. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

3. Snap two 2-pin pieces from a straight male
header and insert the longer ends of each
piece into a breadboard so that they have five
empty breadboard rows between them.

4. With the traces facing up, mount the
stripboard on the short ends of the two
headers—the headers should be at the extreme
ends of the traces; solder all four pins.

5. Clean the flux from the bottom of the board
and allow it to dry.

6. Inspect the board carefully for accidental
solder connections. (This may seem like
overkill, but you don’t want to short out the
power and ground connections!)

Test 1

Whether you use the tiny stripboards or jumper
wires, connect the keypad board to a powered
breadboard. For the first test, don’t install the
keypad or the 08M2 (see Figure 11-7). Simply
connect the keypad board’s power and ground lines
to those of the breadboard, power the breadboard,
and test for �5V at pin 1 and Ground at pin 8 of
the IC socket. Also, make sure �5V doesn’t
appear at any of the other IC pins.

Test 2

For the second test, turn off the power to the
breadboard and insert an 08M2 into the IC socket

(making sure it’s oriented correctly) and connect a
USBS-PA3 adapter to H2. (The USBS-PA3 serout
pin should be inserted into the header pin closest
to H1.) Also, connect an LED from the keypad’s
“TxD” pin to Ground on the breadboard, as shown
in Figure 11-8. (Refer back to Figure 11-5 for the
location of the “TxD” pin on header H4.) Power
the breadboard and download a simple “Hello
World” program that has an LED declared on
output C.4. If the LED lights, everything is fine; if
not, you will need to troubleshoot the wiring on
the keypad board and the connections to the
breadboard.

Test 3

For the final test of the board, insert the keypad into
the eight-pin header on the board and download the
keypad2.bas program we worked with earlier. It
should function as it did in our breadboard circuit;
each keypress should produce the corresponding
character in the Terminal window.

Installing the Keypad Driver Software

When your keypad board has passed our three little
tests, we’re ready to take a look at the driver
software that we need to install in order to
transform the keypad into a stand-alone serial
peripheral that can be used in any PICAXE
project. As I mentioned earlier, we’re going to use
the same software interface that we did for our IR
TV remote project in Chapter 8. As soon as an
input character has been decoded, the peripheral
processor will raise its output line to a high level to
alert the master processor that there’s valid data
available and then “listen” on its input line for the
instruction to send the data. The master processor
will send a brief “high” pulse on its output pin that
is connected to the 08M2’s input when it’s ready
to receive the data. As we did in Chapter 8, we’ll
use the pulsin command to receive the master
processor’s “Data Terminal Ready” command. As
soon as the peripheral processor has received the

DTR command, it lowers its output pin and sends
the character (serially) to the master processor,
which is already waiting to receive it. If this
explanation isn’t clear, you may want to re-read
the relevant details we covered back in Chapter 8.

The keypadDriver.bas software is essentially the
same as keypad2.bas, so I’m not going to include it
here. The only difference is the addition of five
statements at the end of the main loop to implement
the previous software interface to the master
processor. When you download keypadDriver.bas
from my website, take a look at those statements
before reading further.

Testing the Keypad Driver Software

In order to test the keypad driver software, we first
need to set up the hardware interface between the
keypad and the master processor. Figure 11-9
presents the hardware setup that I used. In it, the
keypad’s “TxD” pin is connected to the 20X2’s
C.6 pin, and the keypad’s “DTR” pin is connected
to the 20X2’s C.7 pin. Since C.6 is going to be
receiving serial input, a 1N4148 diode must be
connected between the C.6 pin and +5V (with the
diode’s cathode connected to +5V)—see the serin
documentation in Part II of the manual for details.
Having to add the diode is worth it, because this

150 PICAXE Microcontroller Projects for the Evil Genius

Keypad breadboard setup for Test 2Figure 11-8

arrangement connects an output to a fixed input in
both I/O connections, which means that we can
skip the usual current-limiting resistor in each line.

When you have completed the hardware
interface between the keypad and your master
processor, we’re ready to move on to our
KeypadTest.bas program (Listing 11-3) that the
master processor will use to test the system. It’s
similar to the software we used in Chapter 8, in

that the pause statement in the main program loop is
used to simulate a busy processor that can only
check for input periodically. As soon as it gets the
signal from the keypad that a character has been
entered, the program jumps to a subroutine that
implements the software interface we just discussed,
gets the character, and sends it to the terminal
window for display.

Chapter 11 � Interfacing Keypads 151

Breadboard setup for testing the keypad driver softwareFigure 11-9

Download KeypadDriver.bas to your keypad
peripheral and KeypadTest.bas to your master
processor. Each time you press a key on the
keypad, the appropriate character should appear
in the terminal window. If not, try removing the
power from the setup and then turning it back on,
because both programs may need to start at the

same time in order for the serial interface to
function correctly. Of course, if that doesn’t solve
the problem, you will need to troubleshoot the
system.

Now that we have completed our serial keypad
project, we have a stand-alone peripheral device
that enables the user to input data to any PICAXE

152 PICAXE Microcontroller Projects for the Evil Genius

' ================================ KeypadTest.bas ================================

' Program runs on a 20X2. It receives data from the keypad

' peripheral & sends it to the terminal window for display.

' === Constants ===

symbol fromKP = C.6

symbol toKP = C.7

' === Variables ===

symbol char = b0

symbol KPflag = pinC.6

' Note: KPflag is a variable because its value can change

' === Directives ===

#com 3 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' reduce download time

#no_table ' reduce download time

#terminal 9600 ' open terminal window

' ============================== Begin Main Program ==============================

dirsc = %10111111

low toKP ' initialize to low

do

pause 100 ' pretend to be busy

if KPflag = 1 then gosub getChar ' go get new char

loop

' ==================== End Main Program - Subroutines Follow ====================

getChar:

pulsout toKP, 2 ' 10uS "send it" pulse

pause 1 ' allow time for keypad

' to lower its output

serin fromKP, N2400_8, char ' get char

sertxd (char, cr, lf) ' send it to terminal

return

LISTING 11-3

project, even one based on the 08M2. However, as
I mentioned near the beginning of this chapter,
we’re going to take another look at keypads in
Chapter 13. At that point, we’ll use two of the
advanced X2-class features to implement a keypad

interface with the PICAXE-20X2 that entirely
eliminates the need for a peripheral processor. In
the meantime, we’re going to turn our attention to
the task of interfacing seven-segment LED
displays with PICAXE processors.

Chapter 11 � Interfacing Keypads 153

This page intentionally left blank

SPI Communication

C H A P T E R 1 2

IN THIS CHAPTER, WE’RE GOING to use the Maxim/
Dallas MAX7219 LED display driver to develop a
stand-alone, four-digit LED display that can be
used in any PICAXE project. Each of our previous
projects has been serially interfaced with our
master processor, but this time we’re going to take
a different approach, for three reasons. First, the
February 2010 installment of the Nuts and Volts
“PICAXE Primer” focused on the construction
of a standard serial LED display based on the
MAX7219, so there’s no need to duplicate that
project here. Second, the 7219 supports the serial
peripheral interface (SPI), which is capable of
operating at much higher speeds than a standard
serial connection can achieve. Also, the X1 and X2
chips support a new “hardware” SPI interface that
simplifies the software involved. As a result, an
SPI-based LED display is a natural fit for our
20X2 master processor, and we’re going to take
full advantage of that fact.

The third reason for choosing an SPI interface is
that it will give us the opportunity to see how easy
it is to use an M2-class processor (the 08M2) to
implement a function in software (SPI output) even
though it doesn’t contain the built-in hardware for
doing so. Some of the material in the following
discussion has been adapted from information
originally published in the February 2010
“PICAXE Primer” column, and is presented here
with the permission of Nuts and Volts magazine.

The MAX7219 8-Digit
LED Display Driver

The datasheet for the MAX7219 is the primary
source for the information contained in the
following discussion. If you would like to
download it for reference, it’s available on my
website and elsewhere. The 7219 is capable of
interfacing a microprocessor with as many as eight
common-cathode, seven-segment LED displays. It
can also drive bar graph displays up to 64 bars or a
maximum of 64 individual LEDs (see the datasheet
for details). Several of the 7219’s features will be
especially helpful as we develop our four-digit
LED display:

� The standard SPI is supported.

� Only three output pins are required for the
interface.

� An internal Scan Limit register allows the user
to display from one to eight digits.

� Digits can be updated individually, rather than
having to update the entire display.

� Internal “binary-coded decimal” (BCD)
decoding eliminates the need for software-
based lookup tables.

� Only one external resistor is required to set the
current for all LED segments.

� A simple digital brightness control can be
adjusted in the software.

155

Figure 12-1 presents the pin-out of the
MAX7219. As you can see, there are eight segment
pins and eight digit pins; each of these 16 outputs
connects directly to the corresponding pin of the
LED display. If you are using the 7219 to drive
fewer than eight LED digits (as we are), make sure
you connect the digit outputs with the lowest
numbers first, because the 7219 always scans the
digits from digit 0 to the highest digit specified. In
other words, the 7219 can automatically multiplex
digits 0–3, but not digits 4–7.

A single resistor connected between +5V and
the ISET pin controls the current that flows
through each of the LED segments. Table 11 in the
7219’s datasheet lists suggested resistor sizes for
various segment currents. I chose to use a 47k
resistor, which results in more-than-adequate
brightness for the LED display that I am using.
You can certainly use the data presented in the
datasheet to adjust that value up or down, but don’t
go below the recommended minimum of 10k;
doing so can cause excessive current flow that
could damage or destroy the 7219.

The MAX7219’s Three-Pin Interface

The 7219 uses a three-pin interface that is SPI-
compatible. A 16-bit data word (more on that
shortly) must be serially shifted into the chip via
the DIN (data in) pin, under the control of the CLK
(clock) pin. Each data bit that is placed on the DIN
line is shifted into the 7219 on the rising edge of
the CLK line. The most significant bit (MSB) of
the data word should be sent first; the high byte of
the word should contain the address of the 7219
internal register into which we want to place the
data, and the low byte should contain the value of
the data. The 7219 has a total of 14 internal digit
and control registers. We will primarily be
concerned with the four that are listed in Table
12-1 and the address registers for the LED digits
themselves, which we’ll soon discuss. When both
bytes have been serially shifted into the 7219, its
LOAD pin must be briefly pulsed in order for the
data to be actually displayed on the LEDs.

Table 12-2 lists the 16 BCD characters that the
7219 can automatically decode. Conveniently, the
BCD value for each of the ten digits is the same as
the digit itself. If you want to light the decimal
point to the right of any character, just add 128 to
the corresponding BCD value (i.e., set bit7 to “1”).
For example, to display a value of 5.2, you would
send the following two values to the LED display:
133 (5 � 128) and 2.

The programming requirements for a seven-
segment LED display usually include what’s
referred to as a “lookup” table, which serves to
convert the value of a specific character to the
corresponding pattern of segments that need to be
lit to display the character. Since we’re going to
use BCD decoding in our project, we’ll be able to
avoid this programming chore. However, in case
you’re interested in being able to display
characters other than those listed in Table 12-2,
Figure 12-2 (Table 6 in the 7219 datasheet)
presents the standard segment-labeling convention
for a seven-segment LED, along with the 7219’s

156 PICAXE Microcontroller Projects for the Evil Genius

MAX7219 pin-outFigure 12-1

mapping of the LED segments to the binary digits
of a data byte. In order to clarify the data presented
in Figure 12-2, let’s assume that you have turned
off the BCD decoding for one of the seven-
segment LEDs and you want to display a capital F
on it. To do so, you need to light segments A, E, F,
and G, so the data value you need is %01000111,
or decimal 71. If you intend to display several
additional non-BCD characters, you will probably
want to implement a software lookup table to
retrieve the necessary values.

The 7219’s decoding scheme allows us to
individually enable or disable BCD decoding for
each of the display’s digits by setting or resetting
the corresponding bits in the value stored in the
Decode Mode register. In our current project, we’re
going to decode all four of our display’s digits (i.e.,
digits 0 through 3), so we need to store %00001111
(decimal 15) in the Decode Mode register. If you
decide to experiment with non-BCD characters,
you will need to appropriately change the value you
store in the Decode Mode register.

Before we actually begin construction of our
project, let’s take a brief look at the protocol for
the transmission of the data that we want to
display. As I mentioned earlier, the 7219 requires a
16-bit data word for each character that we want to
display on one of the seven-segment LEDs in a
display. The data word must consist of two bytes;
the first (high) byte must be the address of the
LED on which we want to display the character.
Unfortunately, in the 7219 pin-out presented earlier
in Figure 12-1, the eight possible LED digits are
labeled from DIG 0 to DIG 7, but the addresses
that are used for the digits range from 1 to 8—just
a potential little source of confusion to keep us on
our toes!

The second byte that we need to send to the
7219 is the value of the character to be displayed.
For our project, that’s simply one of the BCD
values presented earlier in Table 12-2. Since we
will be displaying mostly numerical data, this byte
is simply the value of the digit itself. For example,
if we want to display “3” on digit 0 (the first LED

Chapter 12 � SPI Communication 157

Register Function

Decode Mode

(Address 9) Enables BCD decoding for any combination of digits

Values = 0–255 Example: 15 = %00001111 = decode first four digits from the right

Intensity

(Address 10) Determines brightness of LED display (in addition to ISET resistor)

Values = 0–15 Example: 7 or 8 = Average brightness

Scan Limit

(Address 11) Determines the highest digit (from the right) that will be scanned

Values = 0–7 Example: 3 = Scan digits 0 through 3 from the right

Shutdown

(Address 12) 0 = Display off

Values = 0 or 1 1 = Display on

TABLE 12-1 Selected MAX7219 Internal Memory Registers

BCD Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Character 0 1 2 3 4 5 6 7 8 9 — E H L P blank

TABLE 12-2 MAX7219 BCD Values

from the right), we would need use the 20X2’s
hspi command (we’ll discuss that later) to send the
value “1” followed by the value “3.” Once that’s
been done, we need to briefly pulse the 7219’s
LOAD pin to actually display the “3.”

Project 12
Constructing an SPI
4-Digit LED Display

The schematic for our LED display project is
presented in Figure 12-3. The circuit is extremely
straightforward—all we are doing is making the
necessary connections between the MAX7219 and
our four-digit LED display and including the ISET
resistor circuit and the 10uF electrolytic capacitor
recommended in the 7219 datasheet. The 12 pins
of the LED display are arranged in two rows of six
pins each, which follow the standard IC pin-
numbering convention. If you are looking down at

the display, with the decimal points at the bottom
right of each digit, pin 1 is the first pin on the
left in the bottom row and the numbers run
counterclockwise so that pin 12 is opposite pin 1.

Even though the circuit is simple, the
breadboard wiring can be messy, so we’re going to
skip that part and construct our stripboard circuit
right away. Actually, I’m going to present two
different layout options and you can choose which
one you prefer to construct. The first version
includes a 5 by 2 straight male header that enables
the stripboard to be connected to a breadboard by a
ribbon cable in case you want to locate it some
distance from your master processor circuit. The
layout for this version of the project is presented in
Figure 12-4.

As you can see, the 5 by 2 male header (H5)
provides the same five connections that are
available on H3 and H4. (See the schematic
presented in Figure 12-3 for the specific ordering

158 PICAXE Microcontroller Projects for the Evil Genius

Standard 7-segment LED labeling and 7219 mapping of segments to binary valuesFigure 12-2

of the five connections.) Also, note that the trace
in column A is solid; that’s because I again used a
small stripboard for the circuit, so I had to include
one of the solid traces to total 20 traces. H1 and
H2 are straight female headers into which you can
insert the LED display. If you prefer, you could
omit them and solder the LED display directly to
the stripboard. (Of course, you would need to
check your wiring carefully before doing so,
because fixing any problems might require the
removal of the LED from the board.) Finally, the
three large black circles indicate where you can
safely drill holes in the board for mounting. If
you solder the LED display to the board, the top
two holes would not be available unless you
attached two small bolts before soldering the
display in place.

The second version of the layout is presented in
Figure 12-5. The only functional difference is that
the 5 by 2 male header is not included because I

knew that I only wanted to use the display in my
breadboard circuits. However, I also tried to make
the board as small as possible, which resulted in a
slightly more complicated construction process. I’ll
explain the complications involved, and you can
decide whether the smaller size of this version is
worth the effort.

In Figure 12-5, you can see that row 8 and row
16 each contain two jumpers. This isn’t that much
of a complication; you just need to be sure to
install them properly. In each row, first solder the
short bare jumper in place and then cut and strip
the ends of a longer insulated jumper and solder it
in place. That way, there’s no danger of a possible
“short” on the board. The two insulated jumpers
should be straight; I angled them in the layout for
clarity. Also, at location K13 there are two
different jumpers that need to be inserted into the
same hole. In order to do so, you will need to use
the thin leads from a .01μF capacitor or a 1/6-watt

Chapter 12 � SPI Communication 159

Schematic for the four-digit LED displayFigure 12-3

160 PICAXE Microcontroller Projects for the Evil Genius

Stripboard layout for four-digit LED display (version 1)Figure 12-4

Chapter 12 � SPI Communication 161

Stripboard layout for four-digit LED display (version 2)Figure 12-5

162 PICAXE Microcontroller Projects for the Evil Genius

resistor. Even with thin leads, you may need to
widen the hole slightly—a 3/64-inch (1.2-mm) bit
should be sufficient.

Finally, if you look carefully at the IC socket,
you will see that there’s no solder connection at
pin 24 (hole H9). That’s because I completely
removed that pin from the socket before I soldered
it in place. You could also just snip off the thin
portion of the pin that gets inserted into the hole.
Either way, what’s important is that pin 24 of the
7219 is not electrically connected to any part of
the circuit. The trace that contains hole H9 is used
to connect pin 21 of the 7219 to pin 1 of the LED
display; also, connecting pin 24 at H9 could
damage or destroy the MAX7219.

If you choose to construct version

2 of the layout, make sure you

remove or snip pin 24 of the IC

socket before soldering it in place.

Except for the 5 by 2 male header, the parts list
is the same for both versions of the project. If you
construct the version that includes the 5 by 2 male
header, it should be reverse-mounted so that a
ribbon cable can be inserted from the back of the
board. Also, don’t forget that you can make a
three-pin, right-angle female header from the four-
pin header, as we did in the previous chapter.

As I mentioned earlier I used a small stripboard
for the layout, which is why the trace on the left is
solid (i.e., no holes). If that’s what you use, you
will need to drill one hole in the solid trace at A16.
If you would rather avoid that chore, you could cut
the necessary stripboard from the larger one that’s
available on my site. The following set of
assembly instructions is for version 2 of the
project. If you decide to construct version 1 (which
is simpler), just modify these instructions
appropriately. As usual, read through the complete
list of assembly instructions that follows to be sure
you understand the entire procedure before
beginning.

1. Cut and sand a piece of stripboard to the
required size (20 traces with 16 or 20 holes in
all but one trace).

2. Using a 3/64-inch (1.2-mm) bit, drill a hole at
A16 (solid trace) and enlarge the hole at K13.

3. Sever the traces on the bottom of the board as
indicated in Figure 12-5.

4. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

5. Using the thin cutoff leads from a 0.01uF
capacitor or 1/6W resistor, insert the jumper
from D13 to K13 and the jumper from K13 to
P13.

6. Flip the board over; bend the lead from D13
to C13 and snip it so that it just reaches the
hole at C13.

7. Solder and snip the leads at K13 and P13, but
not yet at C13 or D13.

CAUTION

ID Part

— Stripboard, 20 traces by 16

(or 20) holes

C1 Capacitor, electrolytic, 10�F

C2 Capacitor, .01�F

R1 Resistor, 47k, 1/6 W

IC1 IC socket, 24 machined pins

— MAX7219 LED display driver

H1, H2 Female headers, straight, 6 pins

(see text)

H3 Female header, straight, 2 pins

H4 Female header, straight, 3 pins

(see text)

H5 Male 5 by 2 straight header

(only for v1)

P A R T S B I N

8. Install the jumper between H14 and P14. On
the bottom of the board, bend the lead from
P14 to Q14 and snip it so that it just reaches
Q14. Solder the lead at P14 and Q14; solder
and snip the lead at H14.

9. Insert all the remaining jumpers except for the
following: the one that runs from B8 to M8,
the one that runs from E16 to M16, and the
two that run over the top of H3 and H4.
Solder and snip the leads.

10. Install an insulated jumper between B8 and
M8. Solder and snip its leads.

11. Install an insulated jumper between E16 and
M16. Solder and snip its leads.

12. Insert resistor R1. Solder and snip its leads.

13. Insert headers H3 and H4.

14. Flip the board over and support it on a flat
surface. Make sure the lead from D13 touches
the header pin at C13. Solder the five header
pins and the lead at D13.

15. Insert the two jumpers that run over the tops
of H3 and H4. Use a small spring clamp to
hold each header and jumper tightly against
the board, and solder and snip the leads.

16. Insert capacitor C. Solder and snip its leads.

17. Snip or remove pin 24 from the IC socket.

18. Insert the socket and solder all its remaining pins.

19. Insert capacitor C1. (The positive lead should
be at B10.) Solder and snip its leads.

20. Insert headers H1 and H2 (or the LED display
if you prefer to solder it directly to the board).
Flip the board over, support it on a flat
surface, and solder all the pins.

21. On the bottom of the board, place a short
jumper that spans from R14 to T14. Using a
small spring clamp to hold it in place, solder
it at R14 and T14.

22. File or sand all the cut leads on the bottom of
the board.

23. Clean the flux from the bottom of the board
and allow it to dry.

24. Inspect the board carefully for accidental
solder connections or other problems.

Testing the Completed
4-Digit LED Display

Figure 12-6 is a photo of the completed LED
display (version 2) installed on my 20X2
master processor board and running the
MAXhelp20X2.bas program that we are about to
discuss. (There is a piece of red plastic on top of
the display because it photographed better that
way.) To connect the display to the 20X2, refer to
the pin-outs for H3 and H4 that are shown in the
schematic of Figure 12-3. (In the photo, you can’t
see the power connections to H3 because they are
behind the board.) If you refer to the 20X2 pin-out
presented back in Chapter 7 (Figure 7-1), you will
see that pin 9 of the 20X2 is its hspi sdo pin (sdo
stands for serial data out) and pin 11 is the hspi
sck pin (sck stands for serial clock), so they need
to be connected to the 7219’s DIN pin and CLK
pin, respectively. We can use any output we want
to connect to the 7219’s LOAD pin—I used C.2
(pin 8).

To test the completed display board, we’re
going to run the MAXhelp20X2.bas program in
Listing 12-1. It takes advantage of the 7219’s BCD
decoding to display the word “HELP” on the
LEDs. The program is thoroughly commented,
but the hspisetup command does require a brief
explanation. The complete syntax for the command
is hspisetup mode, spispeed. If you read the
hspisetup documentation in Part II of the manual,
you’ll see that several values can be used for the
mode parameter. However, they all refer to
different options for the reception of SPI data.
Since the 7219 doesn’t send any data back to the
master processor, it doesn’t matter which value we
use, so I just chose the first one (spimode00). The
spispeed parameter accepts one of three different

Chapter 12 � SPI Communication 163

164 PICAXE Microcontroller Projects for the Evil Genius

' =============================== MAXhelp20X2.bas ===============================

' This program runs on a PICAXE-20X2 & controls a MAX7219 LED display

' driver. The MAX7219 is connected to a 4-digit, 7-segment LED display.

' The program displays the word "HELP"

' === Constants ===

' Hardware interface to the MAX7219

symbol load = C.2 ' briefly pulse C.2 to transfer data to LEDs

' Register addresses for the MAX7219

symbol decode = 9 ' decode register; specify digits to decode

symbol brite = 10 ' intensity (brightness) register; 15 = 100%

symbol scan = 11 ' scan-limit register; specify how many digits

symbol on_off = 12 ' 1 = display on; 0 = display off

' === Directives ===

#com 3 ' specify the com port

#picaxe 20X2 ' specify the PICAXE processor

#no_data ' speed up the download

#no_table ' speed up the download

#terminal off ' disable terminal window

' ============================= Begin Main Program =============================

setfreq m64

dirsb = %11111111 ' set portB as all outputs

dirsc = %10111111 ' set portC as outputs (except C.6)

hspisetup spimode00,spifast ' set up hspi

' Initialize MAX7219

hspiout (scan,3) ' set scan limit for digits 0-3

pulsout load,1

hspiout (brite,5) ' set brightness to 5 (15 = 100%)

pulsout load,1

hspiout (decode,15) ' set BCD decoding for digits 0-3

pulsout load,1

hspiout (on_off,1) ' turn display on

pulsout load,1

' Send data to the four digits

hspiout (1,12) ' 1st LED from left = "H"

pulsout load,1

hspiout (2,11) ' 2nd LED from left = "E"

pulsout load,1

hspiout (3,13) ' 3rd LED from left = "L"

pulsout load,1

hspiout (4,14) ' 4th LED from left = "P"

pulsout load,1

LISTING 12-1

Chapter 12 � SPI Communication 165

values. Since we’re running the 20X2 at 64MHz,
I initially thought that the spifast value would
be too fast, but it works fine. Download
MAXhelp20X2.bas to your master processor—you
should see the word “HELP” immediately appear
on the display. If it doesn’t, you’re in for a little
troubleshooting session.

Interfacing the LED Display
with an M2 Processor

When your MAXhelp20X2.bas program is running
correctly, we’re ready to take a look at the program
modifications that are required to interface our
LED display with any M2-class processor. As you
already know, the main consideration is that the
M2 processors do not support the hardware SPI
interface. Therefore, we need to take a software
approach to shifting the 16-bit data out to the
display. In order to make the necessary software as

simple as possible, we’re going to break a rule, so
this is going to be fun. I have mentioned more than
once that whenever you declare a word variable,
you should avoid using either of the associated two
byte variables in the same program. For example,
if your program uses the w0 variable, you should
not also use b0 or b1 because it can result in
erratic program behavior. However, in this case,
breaking that rule actually simplifies our program.
Take a look at the variable declarations in the
MAXhelp.bas program shown in Listing 12-2, and
then I’ll explain what I mean.

As you can see, outByte (the eight-bit data byte
to be sent to the display) is declared as variable b0
and maxReg (the 7219 register that is going to
receive outByte) is declared as variable b1.
However, the very next statement declares forMax
as the w0 variable. Before you send for the
programming police, let me explain. That
combination of variable declarations makes forMax

Completed LED display (version 2)Figure 12-6

166 PICAXE Microcontroller Projects for the Evil Genius

' ================================== MAXhelp.bas =================================

' This program uses a PICAXE-08M2 to manually shift-out SPI data to

' a MAX7219 LED display driver. The 7219 is connected to a 4-digit,

' 7-segment LED display. The program displays the word "HELP"

' === Constants ===

' Hardware interface to the MAX7219

symbol sData = 0 ' data out line to Max7219

symbol clock = 1 ' clock line

symbol sLoad = 2 ' pulse briefly to load data onto LEDs

' Register addresses for the MAX7219

symbol decode = 9 ' decode register; specify digits to decode

symbol brite = 10 ' intensity (brightness) register; 15 = 100%

symbol scan = 11 ' scan-limit register; specify # of LEDs

symbol on_off = 12 ' 1 = display on; 0 = display off

' === Variables =====

symbol outByte = b0 ' data byte to be transmitted to the LED

symbol maxReg = b1 ' MAX register that receives the data byte

symbol forMax = w0 ' We're breaking a rule here! (See text)

symbol index = b2 ' used in for-next loop

' === Directives ====

#com 3 ' specify com port

#picaxe 08M2 ' specify PICAXE processor

#terminal off ' disable terminal window

' ============================== Begin Main Program =============================
setfreq m8
dirsC = %00010111

' Initialize MAX7219
maxReg = scan ' set scan limit for digits 0-3
outByte = 3
gosub shout16

maxReg = brite ' set brightness to 5 (15 = 100%)
outByte = 5
gosub shout16

maxReg = decode ' set BCD decoding for digits 0-3
outByte = 15
gosub shout16

maxReg = on_off ' turn display on
outByte = 1
gosub shout16

' Send data to the four digits
maxReg = 1 ' 1st LED from left = "H"

LISTING 12-2

a 16-bit word variable with its high byte equal to
maxReg and its low byte equal to outByte, which is
exactly the data format that the 7219 expects to
receive. If you look back at any one of the hspiout
statements in the MAXhelp20X2.bas program, you
will see what I mean; for example, consider the
very first one: hspiout (scan, 3). That statement
causes the 20X2 SPI hardware to serially shift out
(MSB first) the eight-bit value associated with the
scan register (which is %00001011, or decimal
11), followed by the eight-bit value of 3 (which is
%00000011).

In the 08M2 version of the software, the
shout16 subroutine accomplishes in software what
the 20X2 can do in hardware; it serially shifts out
the 16-bit data word (MSB first) in a single

for/next loop. All we have to do is be sure that
maxReg (i.e., b0) and outByte (i.e., b1) contain
the correct values before we call the shout16
subroutine. We could have done exactly the same
thing without declaring forMax, but that would
have required two separate for/next loops in the
shout16 subroutine. Using forMax enables us to
simplify the software and we get to break a rule as
well—what more could you ask for?

Figure 12-7 is a photo of my LED display
installed on a breadboard and interfaced with an
08M2 processor. To simplify the interface as much
as possible, I placed the display’s three I/O
connections directly in line with the 08M2’s C.0,
C.1, and C.2 output pins as follows: DIN � C.0,
CLK � C.1, and LOAD � C.2. In the photo, you

Chapter 12 � SPI Communication 167

outByte = 12
gosub shout16

maxReg = 2 ' 2nd LED from left = "E"
outByte = 11
gosub shout16

maxReg = 3 ' 3rd LED from left = "L"
outByte = 13
gosub shout16

maxReg = 4 ' 4th LED from left = "P"
outByte = 14
gosub shout16

' ==================== End Main Program - Subroutines follow =====================
shout16:
for index = 15 to 0 step -1 ' MAX7219 requires a 16-bit word

if bit15 = 1 then ' set sdata to correspond to bit15
high sData

else
low sData

endif
pulsout clock, 2 ' briefly pulse the clock line
forMax = forMax * 2 ' shift char left for next MSB

next index

pulsout sLoad, 2 ' briefly pulse the load line

return

LISTING 12-2 (continued)

can also see the necessary power and ground
connection to the display and the USBS-PA3X2
programming adapter connections. Pin 1 of the
08M2 is at its lower-left corner, so the USBS-
PA3X2 is connected from behind the 08M2. When
you have completed your breadboard setup,
download MAXhelp08M2.bas to the 08M2;
“HELP” should again be displayed. If not, you
will need to check your breadboard wiring.

Learning to Count

When your MAXhelp08M2.bas program is
running correctly, we’re ready to try a second
program on the display. This program
(MAXcount20X2.bas) simply counts from 0 to
9999 in an infinite loop (see Listing 12-3). My
main purpose for including it is to demonstrate
how fast the hspi interface is on the PICAXE-

20X2. The program is fairly simple, but two
aspects of it do require a brief explanation. First, at
the beginning of the main counting loop, we’re
taking advantage of the 20X2’s dig command to
simplify the task of isolating the individual digits
of our counter variable (cntr). The dig command,
which is short for “digit,” returns the value of the
specified digit of a 16-bit number. The
specification of which digit to return follows the
same pattern that we have been using with our
LED display. In other words, “0” refers to the first
digit from the right (the “ones” digit), “1” refers to
the second digit from the right (the “tens” digit),
etc. If you look for dig in Part II of the manual, it’s
in the section titled “Variables – Mathematics.”

Second, the “zero-blanking” aspect of the
program may also require an explanation. It would
certainly be simpler to always display a four-digit
number, no matter how small it is. In other words,

168 PICAXE Microcontroller Projects for the Evil Genius

My LED display installed on a breadboard and interfaced with an 08M2 procesorFigure 12-7

Chapter 12 � SPI Communication 169

' =============================== MAXcount20X2.bas ===============================

' Program runs on a PICAXE-20X2 & controls a MAX7219 display driver.

' The MAX7219 is connected to a 4-digit, 7-segment LED display.

' The program counts from 0 to 9999 in an infinite loop.

' === Constants ===

symbol blank = 15 ' used by MAX7219 to blank a digit

' Hardware interface to the MAX7219

symbol load = C.2 ' briefly pulse C.2 to transfer data to LEDs

' Register addresses for the MAX7219

symbol decode = 9 ' decode register; specify digits to decode

symbol brite = 10 ' intensity (brightness) register; 15 = 100%

symbol scan = 11 ' scan-limit register; specify num of digits

symbol on_off = 12 ' 1 = display on; 0 = display off

' === Variables ===

symbol cntr = w0 ' used to count from 0 to 9999

symbol ones = b2 ' used to access the ones digit of cntr

symbol tens = b3 ' used to access the tens digit of cntr

symbol hnds = b4 ' use to access the hundreds digit of cntr

symbol thos = b5 ' used to access the thousands digit of cntr

symbol val = b6 ' data to be transmitted to the MAX7219

' === Directives ===

#com 3 ' specify the com port

#picaxe 20X2 ' specify the PICAXE processor

#no_data ' speed up the download

#no_table ' speed up the download

#terminal off ' disable terminal window

' ============================= Begin Main Program ==============================

setfreq m64

dirsb = %11111111

dirsc = %10111111

hspisetup spimode00,spifast ' set up hspi

' Initialize MAX7219

hspiout (scan,3) ' set scan limit for digits 0-3

pulsout load,1

hspiout (brite,5) ' set brightness to 5 (15 = 100%)

pulsout load,1

hspiout (decode,15) ' set BCD decoding for digits 0-3

pulsout load,1

hspiout (on_off,1) ' turn display on

pulsout load,1

LISTING 12-3

(continued)

we could easily display “0003” instead of “3” but
the latter version is the way the number “3” should
be displayed. The if/then/else statements in the
program determine whether a “0” or a blank space
should be displayed, depending on the number of
digits in the number that is to be displayed.
Download MAXcount20X2.bas to your master
processor and have fun watching the display count
from 0 to 9999. If you want to see just how fast the
hspi command can run on the 20X2, comment out
(or remove) the pause 500 statement at the end of
the counting loop—it’s very impressive!

A Programming Challenge

Of course, the 08M2 can count just like the 20X2,
but I’m going to leave that one to you as a
programming challenge. However, I will give you
a hint. The M2 processors don’t support the dig
command, so you’ll need to find another way to
individually access the four digits of the cntr
variable. Here’s the hint: Use the bintoascii
command in combination with the fact that for the
ten digits, each ASCII value is equal to the value
of the digit plus 48. So, once you get the four

170 PICAXE Microcontroller Projects for the Evil Genius

do

for cntr = 0 to 9999 ' main counting loop

ones = cntr dig 0 ' 1st digit from right

tens = cntr dig 1 ' 2nd digit from right

hnds = cntr dig 2 ' 3rd digit from right

thos = cntr dig 3 ' 4th digit from right

if thos = 0 then ' thousands digit (1st from left)

val = blank

else

val = thos

endif

hspiout (1,val)

pulsout load,1

if hnds=0 AND cntr<100 then ' hundreds digit (2nd from left)

val = blank

else

val = hnds

endif

hspiout (2,val)

pulsout load,1

if tens=0 AND cntr<10 then ' tens digit (3rd from left)

val = blank

else

val = tens

endif

hspiout (3,val)

pulsout load,1

hspiout (4,ones) ' ones digit (4th from left)

pulsout load,1

pause 500 ' slow down the count a bit

next cntr

loop

LISTING 12-3 (continued)

ASCII values (by using bintoascii), just subtract 48
from each one to get the value of the individual
digit. Have fun!

Once you have risen to the challenge, you may
also want to experiment with turning off the “BCD
decode” mode for one or more of the LEDs and
displaying additional characters. For example, you
can display the word “yES” by using a lowercase
“y,” an uppercase “E,” and an uppercase “S.” To
figure out the value that you need for each of these

letters, refer back to the information presented
earlier in Figure 12-2. Many different uppercase
and lowercase letters can be displayed this way. If
you want to use several different letters, a software
lookup table would be the simplest way to access
the required values to send to the MAX7219.

In the next chapter, we’re going to explore the
20X2’s advanced timing capabilities. As we’ll see,
our LED display will come in handy for this
purpose.

Chapter 12 � SPI Communication 171

This page intentionally left blank

Background Timing
on the 20X2 Processor

C H A P T E R 1 3

EACH OF THE PROJECTS we have constructed thus
far in Part Two has consisted of a single peripheral
device. However, for the remainder of Part Two
we’re going to take a different approach and
implement projects that will integrate the use of
two different peripherals. In this chapter, we’re
going to use a modified keypad and our four-digit
LED display to construct a simple countdown
timer. In Chapter 14 we’ll extend the concept
further and construct the multifunction peripheral
device (MPD), a fully programmable stand-alone
peripheral device that will be able to carry out a
variety of useful functions. In Chapter 15 we’ll
develop a major application for the MPD.

However, before we get to our timer project, we
need to discuss some of the details of the 20X2’s
background timing capabilities. (You have to eat
your broccoli before you get the ice cream!) All
X2-class processors include two hardware timer
modules that can operate in the background.
Timer1 is a 16-bit timer/counter that can be
automatically preloaded with a specific value; it
then repetitively counts up (and overflows) from
that value. Timer3 is also a 16-bit timer, but it is
“free running,” which means that it can’t be
preset—it just repetitively counts up (and
overflows) in the background. Being able to
automatically preload Timer1 gives us a
considerable amount of control over the actual
timing interval that occurs in the background.
Therefore, Timer1 is the better choice for our

countdown timer project later in this chapter, so
let’s take a detailed look at how it functions.

Using Timer1 on the
20X2 Processor

On the 20X2 processor, Timer1 simply operates as
an internal timer. (An external counting mode is
also available on the 28X2 and 40X2 processors—
see the manual for details.) The timer operates
with what are called “minor ticks” and “major
ticks.” A minor tick occurs every (256 / clock
frequency) seconds; therefore, at 16MHz, a minor
tick occurs every 16μS (256 / 16,000,000). An
internal word variable automatically increments on
each minor tick. The minor tick variable is not
accessible from a running program, but each time
it overflows from 65535 to 0, a major tick occurs
and a second internal word variable (timer)
automatically increments. The timer variable can
be accessed in a program to determine the number
of major ticks that have occurred.

Timer1 is configured with the settimer
command. For our purposes, there are two
variations of this command that we need to
understand: settimer preload and settimer off.
The first variation starts the timer running, and the
preload parameter specifies the value at which the
minor ticks begin counting up; the second variation
simply turns off the background timing. By
carefully choosing the preload value, we can

173

control the rate at which the timer variable
increments. For example, suppose we want the
timer variable to increment at the rate of once per
second, which is exactly what we will do in the
countdown timer project. We have already figured
out that a minor tick occurs every 16μS when the
clock frequency is 16MHz. Since one second
equals 1,000,000μS, we need (1,000,000μS /
16μS), or 62,500, minor ticks to produce an exact
one-second delay. Therefore, because the timer is
counting up and it rolls over from 65,535 to 0, we
need to preload the timer with 3036, which is
65,536 – 62,500. In sum, if we issue a settimer
3036 command in a 20X2 program running at
16MHz, the built-in timer variable will increment
exactly once per second.

Actually, you can use Timer1 without going
through all these calculations because the PICAXE
compiler includes three predefined timing
constants that produce a one-second major tick at
three different clock speeds, as shown in Table
13-1. (This approach is almost as easy as using the
M2-class time variable, which is preconfigured to
count exact seconds.) However, it’s a good idea to
have some understanding of how these values are
determined. One reason is that the clock speed of
processors that have internal resonators (such as
the 20X2 and all M2-class processors) is rarely as
precise as that of processors that have external
resonators (such as the 28X2 and 40X2).
Therefore, if the timing requirements of a project
are somewhat critical, you may need to adjust the

preload value slightly to achieve the precise timing
that is required. When we get to our countdown
timer project, we’ll talk more about this issue.

As I have already mentioned, once you have
properly configured the settimer command, your
program can simply access the timer variable to
determine the elapsed time. However, there is a
second, more powerful approach that involves
interrupts and the setintflags command. All
PICAXE X1 and X2 processors include a system
flags byte that contains eight flags that can be used
to trigger an interrupt in various situations. The
one that relates to background timing is the “timer
overflow flag” (toflag), which occupies bit 7 in the
flags byte.

The basic syntax for the setintflags command is
setintflags flags, mask. (There’s also a setintflags
off option to discontinue the interrupts when
needed.) The flags parameter specifies which
condition(s) will trigger an interrupt. Since the
toflag is bit 7 of the flags byte, setting the flags
parameter to %10000000 will cause an interrupt to
be triggered whenever the timer variable overflows.
As usual, a “0” in any position of the mask
parameter is used to ignore the corresponding bit,
so we would also want to set the mask parameter to
%10000000. Thus, the complete command to
enable an interrupt whenever the timer variable
overflows is setintflags %10000000, %10000000.

Once the proper setintflags command has been
issued, all we need is an interrupt subroutine to
implement the necessary tasks whenever the timer
overflows. If we use the specific commands we
have been discussing, our interrupt routine will be
called exactly once per second, so all it needs to do
is update the relevant timing variables (seconds,
minutes, etc.). We will discuss the details when we
get to our countdown timer project. But before we
do that, we need to do a little “surgery” on our
matrix keypad.

174 PICAXE Microcontroller Projects for the Evil Genius

Constant Value Clock Speed

t1s_4 49910 4MHz

t1s_8 34286 8MHz

t1s_16 3036 16MHz

TABLE 13-1 Timer1 Preload Constants that
Produce One-Second Major Ticks

“Deconstructing”
a Matrix Keypad

I have always enjoyed taking things apart to see
how they work, so as soon as I finished writing
Chapter 11, I decided to disassemble the keypad
we used to see how it’s constructed. It turned out
to be a surprisingly easy process, as we’ll soon
see. Figure 13-1 is a photo of the backs of three
different keypads. The keypad in the middle is the
one we used in Chapter 11; the other two are
included for comparison. I have several different
keypads, and they are all constructed in a similar
manner. There are several round plastic posts on
which a PC board is mounted. Each post has been
melted a little to expand it in order to hold the PC
board in place—in effect, the posts have become
little plastic rivets.

To disassemble a keypad, simply use a pair of
flush-cutting pliers to snip off the head of each
plastic rivet. You will also need to use a sharp
hobby knife to shave off any remaining excess
plastic on the tops of the rivets. Next, use a small
flat-bladed screwdriver to pry off the PC board.
(Be sure to mark or remember the correct
orientation of the board so that you can easily
reassemble it later.) Inside, you will find a rubber

sheet that contains 16 conductive “buttons” that
make the necessary contact when a key is pressed.
Figure 13-2 is a photo of the keypad we used in
Chapter 11 with the rubber sheet removed. (Again,
make sure to mark or remember the correct
orientation of the rubber sheet so that you can
easily reassemble the keypad.) In Figure 13-2, you
can also see that four of the keys on my keypad
were formed slightly differently. As far as I can
tell, it has nothing to do with their functionality;
those keys probably just came from two different
manufacturing batches.

Once I disassembled my keypad, I made two
major changes that involve rearranging the keys.
First, since the project in this chapter will be
simpler to wire if the connector is on the top edge
of the keypad and the project in the next chapter
actually requires that arrangement, I decided to
rotate each key 180 degrees. (It might seem
simpler to just rotate the PC board, but I
discovered that the plastic pegs didn’t line up
exactly with the holes when I tried that, so I
rotated each individual key instead.) Originally, I
thought I might have to glue the PC board back in
place when I finished the “surgery,” but it snapped
back onto the plastic pegs and, at least so far, it
seems to be solidly affixed to the keypad. If that

Chapter 13 � Background Timing on the 20X2 Processor 175

Bottom view of three matrix keypadsFigure 13-1

doesn’t happen for you, a small dot of silicone
adhesive on three or four plastic pegs should do
the trick.

In order to make the new keyboard as useful as
possible, I also decided to include a typical four-
key cursor arrangement on the keypad. The final
configuration is shown in the photo in Figure 13-3.
The keypad on the left has had all its keys
rearranged and rotated 180 degrees so the
connector is now on the top, and I have added four
“arrow” symbols that I printed from a Brother

PT-300 label maker to identify my cursor keys. I
used black tape with white letters so that I could
completely cover the original characters on the
keys. Also, I deliberately retained the “B” key as a
“Back” key in a menu structure and the “A” key as
an “Accept” or “Enter” key. The keypad on the
right shows the same rearrangement of the keys,
but I didn’t rotate anything so the connector is still
on the bottom of the keypad. That way, I can still
use that keypad with the stripboard project we
developed in Chapter 11. After I took the photo in

176 PICAXE Microcontroller Projects for the Evil Genius

Disassembled matrix keypadFigure 13-2

Reassembled matrix keypadFigure 13-3

Figure 13-3, I added the same four arrow symbols
to the keypad on the right as well.

As you can see in Figure 13-3, the new key
layout results in a slightly unusual arrangement
for the ten digit keys. I think this compromise is
justified by the convenient layout for the four
arrow keys and the fact that the “Enter” key is
in the lower-right corner where it should be.
However, if you prefer a different arrangement,
now is the time to implement it. When we discuss
the necessary changes in the schematic and the
software, it would be a simple matter to make
additional adjustments for any key arrangement
you choose.

Testing the “New and
Improved” Keypad

Figure 13-4 presents the schematic for a simple
test circuit for our rearranged keypad. If you look
back at the schematic in Figure 11-3 that we used
with our original keypad, you will see that the new

schematic is essentially just a 180-degree rotation
of the original one, which makes perfect sense.
The only other difference is that this time we’re
using the 20X2 processor rather than the 08M2.

Figure 13-5 is a photo of my breadboard setup
for the test circuit. If you compare Figure 13-5 to
the breadboard layout we used with our original
keypad (Figure 11-4), you will also see the 180-
degree rotation in the layout.

When you have assembled your breadboard
circuit, we’re ready to determine whether our
keypad surgery was successful. The program I
used for this purpose (KeypadNew.bas) is
presented in Listing 13-1. It is functionally
identical to the Keypad2.bas program we discussed
in Chapter 11, so I won’t go into the details, except
to point out the rearrangement of the characters.
If you look at the various case statements in the
select case command, you will see that the ADC
values are identical to those that we used in
Chapter 11. However, the char assignments are
completely rearranged. It all makes more sense
if you look at it “from the bottom up.” In other

Chapter 13 � Background Timing on the 20X2 Processor 177

Schematic for the rotated keypad circuitFigure 13-4

178 PICAXE Microcontroller Projects for the Evil Genius

' ================================ KeypadNew.bas ================================
' This program uses an ADC approach to decoding a matrix
' keypad that has had all its keys rotated and rearranged.
' It sends the decoded character to the terminal window.

' === Variables ===
symbol key = w0 ' readadc10 requires a word variable
symbol char = b2 ' char that corresponds to each key value
symbol junk = b3 ' throwaway variable used for debouncing

' === Directives ===
#com 3 ' specify serial port
#picaxe 20X2 ' specify processor
#no_data ' speed up download
#no_table ' speed up download
#terminal 19200 ' open terminal at 19200 baud (for 16MHz)

' ============================== Begin Main Program ==============================
setfreq m16 ' set clock speed

do
wait_for_keypress:

readadc 7, junk
if junk < 5 then wait_for_keypress
pause 50 ' debounce keypress
readadc10 7, key ' get ADC value

wait_for_release:
readadc 7, junk
if junk > 5 then wait_for_release

select case key ' decode keypress
' (Characters are simply rearranged from Ch.11 Program.)

case < 369 : char = 65 ' A
case < 385 : char = 82 ' R
case < 402 : char = 68 ' D
case < 434 : char = 76 ' L
case < 450 : char = 48 ' 0
case < 474 : char = 57 ' 9
case < 500 : char = 85 ' U
case < 551 : char = 66 ' B
case < 587 : char = 56 ' 8
case < 634 : char = 55 ' 7
case < 674 : char = 54 ' 6
case < 733 : char = 53 ' 5
case < 804 : char = 52 ' 4
case < 885 : char = 51 ' 3
case < 977 : char = 50 ' 2
else : char = 49 ' 1

end select

sertxd ("char = ", char, cr, lf) ' send char to terminal
loop

LISTING 13-1

words, if you start at the bottom (which used to be
the top before our little operation), the first three
characters (“1,” “2,” and “3”) are the same. Next,
“A” has been replaced with “4,” “4” has been
replaced with “5,” etc. Finally, rather than using
“*,” “#,” “C,” and “D,” I substituted “U” for “Up,”
“D” for “Down,” “L” for “Left,” and “R” for
“Right” so that I can easily remember the character
that stands for each cursor key.

Download KeypadNew.bas to your breadboard
circuit and test all the keypresses. (Don’t forget
that you may need to change the theoretical values
in the case statements to the actual values you
obtained earlier.) You should see the correct
character appear in the terminal window in
response to each keypress. If not, double-check
each of the case statements in the select case
command. When everything is working correctly,
we’re ready to begin working on our countdown
timer project.

Project 13
Constructing a
Countdown Timer

Now that we have our new keypad functioning
correctly, the hardware portion of our countdown
timer project is really simple. In addition to the
keypad, all we need is the four-digit LED display
we developed in Chapter 12 and a piezo buzzer—
the one we used in Chapter 5 would be fine. Figure
13-6 presents the schematic for the complete
circuit, and Figure 13-7 is a photo of my
breadboard setup.

In order to understand the details of our
project’s software, we need to discuss how the
timer is actually used. When the timer is first
powered up, “0000” is displayed on the LEDs.
Each time the user presses a digit key, that digit
enters the display from the right; as additional
digits are entered, the display scrolls to the left.
If an entry error occurs, each press of the “Back”
key will scroll the display one position to the right
and remove the most recently entered digit. When
the correct time has been entered as “MM.SS,”
pressing the “Accept” key will begin the timer
countdown. The countdown can be aborted at any
time by pressing the “Back” key. When the
countdown is completed, the usual annoying beeps
will occur until the user presses the “Back” key to
reset the timer to “0000.”

The program for our timer project
(TimerDown.bas) is presented in Listing 13-2. It
may appear a little daunting at first, due to its
length. However, most of it is composed of code
modules that we have already discussed, so I won’t
repeat those details. The new portions can be
roughly divided into the following three areas: the
use of the runflag variable, the second select case
command, and the interrupt subroutine. After you
have browsed through the program listing, we’ll
address each of these aspects.

Chapter 13 � Background Timing on the 20X2 Processor 179

Breadboard layout for the rotated
keypad circuit

Figure 13-5

180 PICAXE Microcontroller Projects for the Evil Genius

Schematic for countdown timer projectFigure 13-6

Breadboard setup for countdown timer projectFigure 13-7

Chapter 13 � Background Timing on the 20X2 Processor 181

' ================================ TimerDown.bas =================================

' This program runs on a PICAXE-20X2 & implements a countdown timer.

' The time (minutes & seconds) is displayed on a 4-digit, 7-segment

' LED display that is controlled by a MAX7219 LED display driver.

' A 16-key matrix keypad provides user input to set the timer.

' === Constants ===

' Hardware Interface

symbol keypad = 7 ' keypad input on ADC7 (C.3)

symbol load = C.2 ' pulse C.2 to xfer data to 7219

symbol piezo = C.0 ' piezo beeper on C.0

' Register addresses for the 7219

symbol decode = 9 ' decode register

symbol brite = 10 ' LED intensity register; 15 = max

symbol scan = 11 ' scan-limit register

symbol on_off = 12 ' 1 = display on; 0 = display off

' === Variables ===

symbol key = w0 ' ADC key value

symbol junk = b2 ' temporary variable

symbol mins = b3 ' minutes

symbol secs = b4 ' seconds

symbol rep = b5 ' repetitions in for/next loop

symbol d0 = b6 ' display on 1st LED from right

symbol d1 = b7 ' display on 2nd LED from right

symbol d2 = b8 ' display on 3rd LED from right

symbol d3 = b9 ' display on 4th LED from right

symbol decimal = b10 ' used to insert decimal point

symbol runflag = b11 ' 0 = setting up / 1 = running

' === Directives ===

#com 3 ' specify the serial port

#picaxe 20X2 ' specify the PICAXE processor

#no_data ' speed up the download

#no_table ' speed up the download

#terminal off ' no terminal window

' ============================= Begin Main Program ==============================

setfreq m16 ' set clock speed

hspisetup spimode00, spifast ' set up hspi

dirsb = %11111111 ' PortB all outputs

dirsc = %10110111 ' ADC keypad input on C.3

pullup %00000010 ' enable C.6 pullup (see Manual)

adcsetup = %0000000010000000 ' configure ADC7 (see Manual)

' Initialize MAX7219

hspiout (scan,3) ' set scan limit for digits 0-3

LISTING 13-2

(continued)

182 PICAXE Microcontroller Projects for the Evil Genius

pulsout load,1

hspiout (brite,5) ' set brightness to 5 (15 = 100%)

pulsout load,1

hspiout (decode,15) ' set BCD decoding for digits 0-3

pulsout load,1

hspiout (on_off,1) ' turn display on

pulsout load,1

do

gosub UpdateDisplay

wait_for_keypress:

readadc keypad, junk

if junk < 5 then wait_for_keypress

pause 100 ' debounce key

readadc10 keypad, key ' get ADC value

wait_for_release:

readadc keypad, junk

if junk > 5 then wait_for_release

select case key 'decode keypress

case < 369 : key = 10 ' A

case < 385 : key = 14 '

case < 402 : key = 12 ' D

case < 434 : key = 13 ' L

case < 450 : key = 0 ' 0

case < 474 : key = 9 ' 9

case < 500 : key = 15 ' U

case < 551 : key = 11 ' B

case < 587 : key = 8 ' 8

case < 634 : key = 7 ' 7

case < 674 : key = 6 ' 6

case < 733 : key = 5 ' 5

case < 804 : key = 4 ' 4

case < 885 : key = 3 ' 3

case < 977 : key = 2 ' 2

else : key = 1 ' 1

end select

select case key

case 0 to 9 ' digit key has been pressed

If runflag = 0 then

d3=d2 ' rotate left and add keypress

d2=d1

d1=d0

d0=key

LISTING 13-2 (continued)

Chapter 13 � Background Timing on the 20X2 Processor 183

endif

case 10 ' "Accept" key has been pressed

If runflag = 0 then

runflag = 1

mins = 10 * d3 + d2 ' initialize the timer display

secs = 10 * d1 + d0

settimer t1s_16 ' set timer1 to 1S interrupts

timer = $ffff ' interrupt on next count ($0)

setintflags %10000000,%10000000 ' enable timer interrupt

endif

case 11 ' "Back" key has been pressed

If runflag = 0 then

d0=d1 ' rotate right and add "0"

d1=d2

d2=d3

d3=0

else

reset ' stop the annoying beeping!

endif

case 12 to 15 ' ignore arrow keys

end select

loop

' =================== End Main Program - Subroutines Follow ====================

Interrupt:

toflag = 0 ' clear timer overflow flag

settimer t1s_16 ' set timer1 to 1 Sec interrupts

timer = $ffff ' interrupt on next count ($0)

setintflags %10000000, %10000000 ' re-enable timer interrupt

dec secs ' update seconds

if secs = 255 then ' if seconds wrap from 0 to 255

secs = 59 ' the reset seconds to 59

dec mins ' and decrement minutes

endif

d3 = mins dig 1 ' 4th digit from right

d2 = mins dig 0 ' 3rd digit from right

d1 = secs dig 1 ' 2nd digit from right

d0 = secs dig 0 ' 1st digit from right

UpdateDisplay:

hspiout (1,d3) ' 4th digit from right

pulsout load,1

decimal = d2 + 128

hspiout (2,decimal) ' 3rd digit from right

pulsout load,1

hspiout (3,d1) ' 2nd digit from right

pulsout load,1

hspiout (4,d0) ' 1st digit from right

LISTING 13-2 (continued)

(continued)

In order to understand the TimerDown.bas
program, it’s best to conceptualize it as having two
modes of operation: setup and run. This distinction
is important because the same keypress is
processed differently in each operational mode.
For example, during the setup phase, the digit keys
are used to enter the desired time, but during the
run phase, they are ignored. The function of the
runflag variable is to keep track of which mode is
currently active. When the program starts running,
it’s in the setup mode and all the variables
(including runflag) have been automatically
initialized to 0; when the user presses the “Accept”
key, runflag is set to 1 and the timer is started.

From the beginning of the program through the
completion of the first select case statement, the

code should all be familiar. The second select case
statement is a major part of the code that is new in
this program. Each time a key is pressed, the first
select case statement assigns the appropriate value
(from 0 to 15) to the key variable. The second
select case statement then decides how to respond
to the keypress. Since this is the heart of the
program, let’s examine each of the four cases
individually.

� Case 0 to 9 (digit keys): If runflag � 0 (setup
mode), then the display is shifted left one by
one digit and the key value is displayed on
digit 0 (first from right). Since there is no else
clause, if runflag � 1 (run mode), then nothing
happens (i.e., the digit key is ignored).

184 PICAXE Microcontroller Projects for the Evil Genius

pulsout load,1

if runflag = 1 AND mins = 0 AND secs = 0 then gosub wait_for_reset

return

Paws:

for junk = 1 to 120

pause 1

if pinC.3 = 1 then ' press "back" key to reset timer

reset

endif

next junk

return

WaitForReset:

setintflags off ' disable interrupts

adcsetup = 0 ' disable ADC to use C.3 digitally

do

for rep = 1 to 4

sound piezo, (115,10)

gosub Paws

next rep

for rep = 1 to 3

gosub Paws

next rep

loop

return

LISTING 13-2 (continued)

� Case 10 (“Accept” key): If runflag � 0 (setup
mode), then it’s changed to 1 (run mode), the
minutes and seconds variables are set equal to
the displayed values, and the one-second timer
interrupt is enabled. If runflag � 1 (run mode),
then nothing happens (i.e., the “Accept” key
is ignored).

� Case 11 (“Back” key): If runflag � 0 (setup
mode), then the display is rotated right and the
most recently entered key value is discarded.
If runflag = 1 (run mode), then the else clause
executes and the timer is reset to the setup
mode.

� Case 12 to 15 (arrow keys): Because there is
no code in this case, the arrow keys are always
ignored by the program.

The last major part of the program that requires
explanation is the interrupt subroutine. The
important thing to keep in mind about interrupts
is that as soon as the interrupt subroutine is
executed, interrupts are automatically disabled.
If they weren’t, it would be theoretically possible
for another interrupt to occur while a previous one
was still being processed, which could cause a
program to malfunction. Because our interrupt is
only occurring once a second, this isn’t an issue
for us. However, since the compiler automatically
disables interrupts, our subroutine needs to re-
enable the interrupt each time it executes. The
remainder of the interrupt subroutine simply
updates the secs and mins variables, as well as the
four-digit LED display. One other aspect of the
interrupt subroutine (and the initial enabling of
interrupts) needs to be explained. In both cases,
the timer variable is set to (hexadecimal) $ffff.
Therefore, timer will overflow (from $ffff to
$0000) and trigger an interrupt the next time
that it is incremented, which will be one second
later because the appropriate preload value has
been used.

The WaitForReset subroutine only executes
when the timer has counted down to zero. It
disables the ADC input so that the C.3 pin can be
used digitally in the Paws subroutine. It also
produces the annoying beeps and calls the Paws
subroutine, which repetitively checks for a
keypress indicating that we can’t stand the beeps
anymore. The Paws subroutine may seem a little
strange, but it is the simplest way I could get the
results I wanted. Essentially, Paws subdivides a
much longer pause command so that a keypress
can be tested much more frequently. Also, I didn’t
want to have to include an additional “Reset” key,
so I used the C.3 input that’s used for the ADC
keypad input, but this time I used it digitally.
Pressing the “Back” key produces a high digital
level that resets the program immediately. In fact,
the 1 through 8 keys and the “up arrow” key do
exactly the same thing, but we won’t tell that
to the user!

I think that covers all of the important aspects of
the program, so download it to your 20X2 master
processor and try it out. You may want to check
the accuracy of the timer against another timer or
clock that you know is accurate because, as I
mentioned, the internal resonator of the 20X2 is
not as accurate as the external resonators that are
available on the other X2 processors. When I first
tested my timer, it gained approximately two
seconds per hour. If you require more precision,
the simplest approach would be to experiment with
adjusting the value of the preload constant. Instead
of using the default value (t1s_16 � 3036), you
could increase (or decrease) it a little to slightly
increase (or decrease) the rate of the interrupts.
I was able to reduce my timing error to
approximately one second per hour by using
3041 for my preload value. For even more
precision, you could use a separate time-keeping
chip such as the Dallas/Maxim DS1307 real-time
clock, which uses a crystal-controlled time-base
that’s highly accurate.

Chapter 13 � Background Timing on the 20X2 Processor 185

This page intentionally left blank

Constructing a Programmable
Multifunction Peripheral Device

C H A P T E R 1 4

187

IN THIS CHAPTER AND THE NEXT, we’re going to
focus on the development of a programmable,
multifunction peripheral device (MPD) that we’ll
be able to program to implement a variety of
useful functions. You may be relieved to learn that
there is almost no theory to discuss in this chapter;
we’ll be focusing exclusively on the construction
details of the MPD. In case you’re disappointed by
the lack of theory, there’s a fair amount to look
forward to in Chapter 15 when we develop a major
application for the MPD.

Project 14
The Evil Genius
Multifunction Peripheral
Device

In order to have a clear sense of where we’re
going, let’s start at the end! Figure 14-1 presents
a photo of the completed MPD. Essentially, it
integrates two peripheral devices that we have
already discussed in detail. However, in this case,
the whole equals much more than the sum of its
parts. As you can see in Figure 14-1, the MPD
includes a 16-key keypad for user input and a
16-character by 2-line LCD display for output.
What isn’t visible in the photo is the 20X2
processor inside the plastic enclosure that enables
the MPD to implement an almost limitless variety
of useful tasks.

Figure 14-2 presents the MPD schematic. The
interface to our rotated matrix keypad is identical
to that of our previous project in Chapter 13,
except that pin B.4 is used for the analog input,
rather than C.3—we’ll find out why in Chapter 15.
The LCD interface is also almost identical to the
one we discussed in Chapter 10. The only
difference is that the MPD uses pin C.3 as a

The completed Evil Genius
multifunction peripheral device (MPD)

Figure 14-1

replacement for B.4, and A.0 as the replacement
for B.6—again, we’ll discuss the reasons for these
substitutions in Chapter 15.

The breadboard interface, which is implemented
with a nine- or ten-pin ribbon cable, provides
power for the project and also includes three I/O
lines for interfacing with various breadboard
circuits. Most importantly, the 20X2’s B.6 pin is
available on the breadboard connector. As you may
remember, B.6 is the 20X2’s hserin line, so its
availability to our breadboard projects means that
the MPD is capable of receiving serial data in the
background. This, of course, also means that the

MPD is ideally suited to function as an I/O
terminal for any project that needs one.

The remainder of the schematic is simple: just
the standard PICAXE programming connection
and a piezo beeper for audible output. Actually, I
ended up replacing the piezo with a small 16-ohm
speaker—we’ll discuss that possibility when we
get to the construction of the MPD. Finally, I
didn’t include the size of the current-limiting
resistor for the LCD backlight (pin 15 on the LCD
connector) because it depends on the specific LCD
that you use. I used the SparkFun #LCD-00791
16 � 2 LCD with red characters on a black

188 PICAXE Microcontroller Projects for the Evil Genius

MPD schematicFigure 14-2

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 189

background. This display does not require a
current-limiting resistor for the backlight, so I just
connected pin 15 directly to �5V.

The MPD stripboard layout is our largest one
yet. In order to make the details easier to see, the
layout is presented in two separate figures: Figure
14-3 shows the top view, and Figure 14-4 shows
the bottom view. The size of the stripboard was
determined by the plastic enclosure that I used, and
that’s a subject that we need to discuss in detail
before going any further. Plastic enclosures
certainly make a completed project look
professional, but cutting the necessary openings in
the plastic can also be the most difficult part of the
project. You can certainly construct the MPD and
simply mount it on a small piece of wood, but if
you’re up for a challenge, I’ll discuss the relevant
details of all the steps that I took to modify the
enclosure and get everything to fit correctly.

The plastic enclosure that I used is a PacTec
#60616-510-000-HP that I purchased from
www.mouser.com, but you can also order it
directly from www.pactecenclosures.com. The
exterior dimensions are 5.7 inches (14.5 cm) long
by 3.6 inches (9.1 cm) wide by 1.1 inches (2.8 cm)
deep. If you already have another enclosure that
you want to use, just make sure it’s at least that big
in all three dimensions. In fact, the 1.1-inch depth
required a little extra work to get things to fit—a
depth of at least 1.2 inches would have simplified
the process. If you do use a different enclosure,
you may need to modify the size of the stripboard
accordingly.

The complete parts list for the MPD is
presented next. With the exception of the LCD, the
plastic enclosure, and the hardware used to attach
things to the enclosure, all the parts are available
on my website. Also, I don’t have 8-pin straight

Top view of MPD stripboard layoutFigure 14-3

female headers, but you can use two 4-pin headers,
or cut an 8-pin section from a 16-pin header by
sacrificing an adjacent pin and sanding or filing the
excess plastic.

Preparing the Stripboard

As usual, the first thing you need to do is cut and
sand a piece of stripboard to the required size (32
traces with 23 holes each if you are using the same
enclosure I did). However, because the stripboard
needs to fit correctly into the enclosure, a fair
amount of additional preparation is necessary
before actually assembling the circuit. Start by
cutting the two notches as indicated earlier in
Figure 14-3, but don’t drill the four mounting
holes yet. Test-fit the board in the enclosure,
making sure that the top edge of the board can fit
tightly against the edge of the bottom half of the
enclosure. Next, securely tape the stereo connector

to the board in the proper position—the round
portion of the connector should overhang the
stripboard slightly. Then slide the board back into
the enclosure, centering it from left to right. Add
a piece of masking tape to the outside of the
enclosure, and mark the exact location of the round
portion of the stereo connector (making sure the
board is centered) so that you can drill a 1/4-inch
(6.4-mm) hole to accommodate the round portion
of the connector. Remove the board and drill the
hole in the edge of the enclosure. Test-fit the board
again; if the hole doesn’t line up exactly, enlarging
it slightly should do the job. You can use a sharp
hobby knife to shave off any plastic that interferes
with the connector fitting into the hole.

When you are satisfied with the fit of the stereo
connector in the hole in the enclosure, remove the
connector from the stripboard and follow the same
procedure to locate and drill a hole for access to

190 PICAXE Microcontroller Projects for the Evil Genius

Bottom view of MPD stripboard layoutFigure 14-4

the adjustment screw on the potentiometer. Once
that’s done, you’re ready to drill the four mounting
holes as shown earlier in Figure 14-3. The
diameter of the holes depends upon the hardware
you use to mount the board in the enclosure—7/64
inch (2.8 mm) works well for #4 bolts, and 9/64

inch (3.6 mm) is big enough for #6 bolts. In order
to support the completed MPD at a convenient
angle, I used a 3/16-inch (4.8-mm) bit to drill the
two holes near the bottom corners of the stripboard,
and then attached the stripboard to the enclosure
with two 4.25-inch (11-cm) pieces of #10 threaded
rod. The photo in Figure 14-5 is a side view of my
completed MPD, which shows the arrangement of
the supports. In the photo, I have covered the
threaded rods with black heat-shrink tubing and
added small rubber feet on the ends of the rods to
protect my desk and to keep the MPD from sliding
around when the keys are pressed.

When you have chosen the hardware you want
to use, drill the four mounting holes in the
stripboard, but not yet in the enclosure. Next,
retape the stereo connector and potentiometer to
the board at the appropriate locations and double-
check that everything fits correctly—make sure
that the USB programming cable plugs into the
stereo connector correctly, and that you can use
a small screwdriver to adjust the potentiometer
through the hole in the enclosure. When everything
fits correctly, clamp the stripboard to the enclosure

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 191

ID Part

— Stripboard, 32 traces by 23 holes

each

— Two capacitors, .01�F each

— Resistor, ???�, 1/4 W (see text)

— Resistor, 180�, 1/4 W

— Resistor, 1k, 1/4 W

— Resistor, 2.2k, 1/4 W

— Resistor, 3.3k, 1/4 W

— Resistor, 4.7k, 1/4 W

— Three resistors, 10k, 1/4 W each

— Resistor, 15k, 1/4 W

— Resistor, 22k, 1/4 W

— Potentiometer, 10K

— IC socket, 20 machined pins

— PICAXE-20X2

H1 Female header, straight, 16 pins

H2, H3 Female header, straight, 4 pins

(see text)

H4 Female header, straight, 8 pins

H5 Male header, straight, 5 � 2 pins

— Stereo connector, low-profile

— Piezo or small speaker (see text)

— Ribbon cable, 9 or 10 wire,

6 inches long

— Two IDC connectors, 5 � 2 male

— LCD, 16 � 2 (see text)

— Keypad, 4 � 4 matrix (rotated)

P A R T S B I N

Side view of completed MPDFigure 14-5

(making sure it’s centered from left to right); you
may need to shim under the board to avoid
bending it excessively. Using the holes in the
stripboard as guides, drill the same-sized mounting
holes in the bottom of the enclosure.

Assembling the Stripboard Circuit

To help clarify the following assembly procedures,
Figure 14-6 presents a close-up photo of my
completed stripboard circuit installed in the
enclosure. However, my circuit does differ slightly
from that of the schematic (Figure 14-2) and
layout (Figure 14-3) presented earlier, so don’t use
Figure 14-6 as an assembly guide; just use it as a
guide for installing the stripboard in the enclosure.

There are a couple of reasons for the differences
in the circuit that I assembled. First, when I
originally completed and tested the circuit, I found

that the volume of the sound produced by the piezo
wasn’t as loud as I would like, so I replaced it with
a small 16� speaker that is much louder. This
turned out to involve more work than I thought
because the speaker, which is only about 1.2 inch
(3 cm) in diameter, was too large to fit in the space
between the stripboard and the LCD. I ended up
drilling a circular pattern of holes in the back of
the enclosure underneath the keypad, mounting the
speaker with silicone adhesive, and running its
leads back to the stripboard.

If you decide to make a similar modification, be
sure to read the documentation for the tune
command in Part II of the manual, because it’s
necessary to add a 10μF electrolytic capacitor and
a current-limiting resistor to the speaker circuit.
You can see the capacitor I added just above the
four-pin header near the lower-right corner of the
stripboard. You can’t see the 47� resistor that I

192 PICAXE Microcontroller Projects for the Evil Genius

Completed stripboard circuit installed in the bottom of the enclosureFigure 14-6

used because I soldered it directly to one of the
speaker contacts—it was simpler to do it that way.
I also added the three-pin, right-angle header that
you can see in Figure 14-6 (I didn’t have a two-pin
header available) so that I can disconnect the
board from the speaker if needed. You could also
solder the speaker leads directly to the stripboard
if you prefer.

The second reason for the differences in my
circuit is a little more involved. When I first
designed the circuit, I intended to use the same
software that we discussed in Chapter 11 to
interface the keypad. However, after experimenting
with the MPD for a while, I realized that it would
be much more efficient to employ an interrupt-
based approach to obtaining user input. To do so
required some modifications to the circuit. The
schematic presented earlier in Figure 14-2 and the
layout of Figure 14-3 both reflect the necessary
changes. However, rather than constructing an
entirely new stripboard, I took the easy way out
and “ugly-wired” the changes on the board that I
had already built.

So use Figures 14-2 and 14-3 to construct your
version of the MPD and Figure 14-6 for reference
when you install the stripboard circuit in your
enclosure. When we get to the point where we test
the completed MPD, we’ll just use the same
approach that we did in Chapter 11. In Chapter 15
we’ll get into the details of the interrupt-driven
approach. In spite of the additional complexity, I
think you’ll agree that it’s a much more powerful
method of processing user input.

Before we actually begin construction of the
MPD stripboard, one other aspect of the photo
in Figure 14-6 requires clarification. When the
stripboard is installed in the enclosure, it rests
on two thick plastic ridges on each side of the
enclosure. As a result, tightening the four
mounting bolts causes the stripboard to flex
downward. To avoid possibly cracking the board,
you will need to include some sort of spacer
underneath each mounting point. I used a rubber

pad that I happened to have on hand and just
sandwiched it underneath the entire board. The
only important consideration is that whatever you
use should be nonconductive.

The following list of assembly instructions is
based on the original piezo version of the circuit.
If you decide to use a speaker, just make the
necessary modifications. Before beginning the
assembly, make sure that you have chosen the
correct current-limiting resistor for the backlight of
the LCD that you will be using and read through
the complete list of assembly instructions that
follows to be certain you understand the entire
procedure.

1. Remove the stereo connector, the
potentiometer, and any tape residue from
the board.

2. Sever the traces on the bottom of the board at
the 36 holes shown in Figure 14-3.

3. Clean the bottom of the board with a plastic
Scotch-Brite or similar abrasive pad.

4. Insert all the jumpers; solder and snip their
leads.

5. Insert all the resistors; solder and snip their
leads. (The size of the resistor marked “???”
depends upon the specific backlit LCD you
are using.)

6. Insert the two .01μF capacitors; solder and
snip their leads.

7. Insert and solder the 20-pin socket in place
(make sure pin 1 is at I13).

8. Insert and solder the low-profile stereo
adapter.

9. If you add the 10μF capacitor, insert it at this
point; solder and snip its leads.

10. Insert the 10k potentiometer; solder and snip
its leads.

11. Insert the 5 � 2 straight male header from the
top of the board, with the longer ends of the
pins pointing up; solder it in place.

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 193

12. Insert all the straight female headers. Flip the
board over, support the headers on a flat
surface, and solder the headers in place.

13. If you decide to use a piezo, insert it at this
point; solder and snip its leads.

14. File or sand all the cut leads on the bottom of
the board.

15. Clean the flux from the bottom of the board
and allow it to dry.

16. Inspect the board carefully for accidental
solder connections or other problems.

Installing the Components
in the Enclosure

When you have completed the assembly
procedure, use the photo in Figure 14-6 as a guide
for installing the stripboard in the upper portion of
the bottom of the enclosure. Once that’s done,
we’re ready to complete the installation of the
remaining components. Figure 14-7 is a photo of
my MPD after installing the speaker, the ribbon
cable, and the rotated keypad. It may be hard to
see in the photo, but I had to cut away a small
portion of the keypad’s circuit board to the right of
the header pins in order to insert the ribbon cable
connector into the 5 � 2 header on the stripboard.
To make the cable, I used a 6-inch (15-cm) piece
of 10-wire ribbon, but 9-wire cable will also work
fine. The orientation of the cable and the two 5 �
2 IDC connectors is important. With the (red)
stripe on the left (as shown in Figure 14-7), install
the 5 � 2 IDC connector in the photo so that it’s
facing down. Also, you will need to remove a thin
slice of plastic from the enclosure where the
ribbon cable exits; a sharp hobby knife will do
the job quickly and cleanly.

The orientation of the connector on the other end
of the cable depends on how you want to connect it
to your breadboard circuits. Figure 14-8 is a close-
up photo of my breadboard connection.
I decided to install the connector facing up so that

any unused pins wouldn’t be connected to the
breadboard. If you opt for this approach, you can
use jumper wires to make any connections you
need. Of course, you can also connect power and
ground (pins 1 and 5, respectively) with jumpers,
but I used two tiny pieces of stripboard and
soldered male headers to them so that the
connection is rigid and holds the ribbon cable
connector firmly in place. It doesn’t show in the
photo, but I painted one red and the other black to
remind myself of the correct connections. One
other detail is worth mentioning. If you look
closely at a 5 � 2 ribbon cable connector, you will
see that one side (the top side in the photo) has a
raised area; this is designed to fit into polarized
male connectors to avoid the possibility of inserting
the connector backwards. For our application, be
sure to orient the connector so that the raised area

194 PICAXE Microcontroller Projects for the Evil Genius

MPD with ribbon cable and keypad
attached

Figure 14-7

is on the side that doesn’t abut the breadboard; this
orientation results in the exact 0.1-inch (2.5-mm)
spacing needed for preformed jumpers or the tiny
stripboard connectors that I used.

My original intention was to bolt the keypad to
the bottom of the enclosure, but a funny thing
happened on the way to implementing that
intention. When I cut the openings in the top of the
enclosure for the LCD and keypad (we’ll get to
that shortly), I discovered that the keypad was
about 0.1 inch (2.5 mm) too high to allow the
enclosure pieces to fit together properly. After a
brief moment of panic, I realized that I could
(carefully) remove the black plastic from the
keypad’s header pins and snip 0.1 inch off each
pin. This enabled the keypad to sit low enough so
that the two halves of the enclosure fit together
properly. In fact, the fit is so exact that the keypad
is, in effect, pressed between the top and bottom of
the enclosure. As a result, I decided not to attach

the keypad to the enclosure at all. Rather, I added
the two bolts that you can see in Figure 14-7
(near the left arrow key and the “A” key) and
adjusted them with washers directly under their
heads until the keypad sat perfectly level. With this
arrangement, the enclosure firmly holds the keypad
in place without any additional mounting bolts.

Figure 14-9 is a photo of the MPD with the
LCD inserted into the stripboard header. Before
you do that, don’t forget to snip the short ends of
the pins from two 4-pin male headers and insert
them into the two 4-pin female headers on the
stripboard so that the LCD will sit parallel to the
stripboard (as we did in Chapters 9 and 10).
Coincidentally, the LCD ends up at exactly the
same height as the frame of the keypad. I would
like to be able to say that I planned it that way,
but occasionally good things just happen to
Evil Geniuses!

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 195

MPD ribbon cable attached to a breadboardFigure 14-8

And Now for the Hard Part!

I saved the worst for last: cutting the openings in
the enclosure for the LCD and keypad. I think the
best approach is to measure everything very
carefully and make a paper template to tape on the
top of the enclosure. To avoid potential disaster,
draw the two openings approximately 0.1 inch (2.5
mm) too small in each dimension. The bulk of the
plastic can be easily removed with a drill and a
spade-bit, but the finishing work is tedious at best.
You can use a small hobby saw, a powered rotary
tool, or even a hand file. The main thing is to work
slowly and carefully, and check your work
frequently by test-fitting the enclosure. When the
openings are close to their final sizes, you may
find it helpful to use masking tape to outline the
desired edges and then carefully sand or file to the
edges. Figure 14-10 is a photo of the top of my

enclosure after I finished filing the two openings.
In it, you can see the minor mistakes that I made;
fortunately, everything is black so these little
mistakes aren’t noticeable at all when the
enclosure is completely assembled.

Testing the Completed
Multifunction Peripheral Device

When everything fits together correctly, we’re
ready to test the MPD. (You may not want to
actually secure the two halves of the enclosure
at this point, in case you need to do a little
troubleshooting to get everything to function
properly.) To test the keypad, connect the MPD to
a powered breadboard as shown earlier in Figure
14-8 and download the TestKeypad.bas program
shown in Listing 14-1. Similarly to our keypad-
testing program in Chapter 11, you should see an

196 PICAXE Microcontroller Projects for the Evil Genius

MPD with ribbon cable, keypad, and
LCD attached

Figure 14-9 Top of the enclosure with the
completed openings for the keypad and LCD

Figure 14-10

ADC value in the terminal window each time you
press a key. Since you used a different set of
resistors to construct the circuit, these values may
differ slightly from those of Chapter 11. Make a
list of all the values; you will need them later when
we decode the ADC values.

When you’re sure the keypad is functioning
correctly, we’re ready to test the LCD portion of
the MPD. To do so, we’ll use the following
TestLCD.bas program (Listing 14-2); it’s

essentially the same as the software we discussed
in Chapter 10, except that we’re now replacing
pin B.4 with pin C.3 and B.6 with A.0. Download
TestLCD.bas to your MPD; you should see the
two messages alternating on the LCD, with each
one accompanied by a short “beep” from the
piezo or speaker. If not, you’re in for a little
troubleshooting session!

When all your MPD components are
functioning correctly, we can move on to the final

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 197

' =============================== TestKeypad.bas ===============================

' Program decodes a "rotated" ADC 4X4 matrix keypad

' === Variables ===

symbol key = w0 ' ADC key value

symbol junk = b2 ' throwaway char

' === Directives ===

#com 4 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 9600 ' open terminal

' ============================ Begin Main Prograqm =============================

dirsB = %11101111 ' set pinB.4 as input

adcsetup = %0000000001000000 ' set ADC6 (see Manual)

do

wait_for_keypress:

readadc 6, junk

if junk < 5 then wait_for_keypress

pause 25 'debounce keypress

readadc10 6, key 'get Key value

wait_for_release:

readadc 6, junk

if junk > 5 then wait_for_release

sertxd ("key = ",#key,cr,lf) 'send Key to terminal

loop

LISTING 14-1

198 PICAXE Microcontroller Projects for the Evil Genius

' ================================= TestLCD.bas ==================================

' Program runs on a PICAXE-20X2; sends 8-bit data to 16X2 LCD display

' === Constants ===

symbol cmnd = 0 ' used to set up for cmd/txt byte

symbol text = 1 ' used to set up for cmd/txt byte

symbol enable = C.7 ' LCD enable pin connected to C.7

symbol RegSel = C.4 ' LCD RegSel pin connected to C.4

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol index = b1 ' used as counter in For-Next loops

' Note: The following are variables because their values can change

symbol newB.4 = outpinC.3 ' replacement pin for B.4

symbol newB.6 = outpinA.0 ' replacement pin for B.6 (hserin)

' === Directives ===

#com 4 ' specify download port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#terminal off ' make sure terminal is off

' === Table =====================

Table 0, ("The Evil Genius ")

Table 16, ("Capstone Project")

Table 32, ("A Multi-Function")

Table 48, ("PeripheralDevice")

' ============================== Begin Main Program ==============================

setfreq m16

dirsB = %11101111 ' all outputs, except B.4

dirsC = %10111111 ' all outputs, except C.6

' === Initialize the LCD ===

pause 400 ' pause 200mS for LCD initialization

char = 56 ' setup: 8 bits, 2 lines, 5X7 dots

gosub OutCmd ' send instruction to LCD

char = 12 ' display on, cursor off

gosub OutCmd ' send instruction to LCD

LISTING 14-2

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 199

' === Main Program Loop - Send data to the LCD ===

do

char = 1 ' clear display & go home

gosub OutCmd ' send instruction to LCD

sound C.1,(40,100)

for index = 0 to 15

readtable index, char ' send line one to LCD

gosub OutTxt

next index

char = 192 ' move cursor to start of line two

gosub OutCmd ' send instruction to LCD

for index = 16 to 31 ' send line two to LCD

readtable index, char

gosub OutTxt

next index

wait 4

char = 1 ' clear display & go home

gosub OutCmd ' send instruction to LCD

sound C.1,(60,100)

for index = 32 to 47

readtable index, char ' send line one to LCD

gosub OutTxt

next index

char = 192 ' move cursor to start of line two

gosub OutCmd ' send instruction to LCD

for index = 48 to 63 ' send line two to LCD

readtable index, char

gosub OutTxt

next index

wait 4

loop

' ===================== End Main Program - Subroutines Follow ====================

OutCmd:

low RegSel ' set up for command byte

goto Doit ' do it

LISTING 14-2 (continued)

(continued)

step of calibrating the keypad’s ADC values. The
TestMPD.bas software that follows (Listing 14-3)
should look familiar; it’s a combination of keypad
and LCD routines that we have covered in detail in
the earlier chapters. However, before you
download it to your MPD, you will need to follow

the same procedures we used in the “Experiment
2” section of Chapter 11 and replace the
theoretical ADC midpoint value in each of the case
statements in the select case command with the
actual values your MPD hardware produces. To
do so, use the list you jotted down earlier and

200 PICAXE Microcontroller Projects for the Evil Genius

OutTxt:

high RegSel ' set up for text byte

Doit:

outpinsB = char ' load byte onto outpinsB

newB.4 = bit4 ' substitute outpinC.3 for B.4

newB.6 = bit6 ' substitute outpinA.0 for B.6

pulsout enable,2 ' send data

return

LISTING 14-2 (continued)

' ================================== TestMPD.bas =================================

' This program tests the Evil Genius Multifunction Peripheral Device.

' === Constants ===

symbol cmnd = 0 ' used to set up for cmd/txt byte

symbol text = 1 ' used to set up for cmd/txt byte

symbol enable = C.7 ' LCD enable pin

symbol RegSel = C.4 ' LCD RegSel pin

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol junk = b1 ' throwaway character

symbol key = w1 ' ADC key value

symbol index = b4 ' used in for/next loop

' Note: The following are variables because their values can change

symbol newB.4 = outpinC.3 ' replacement pin for B.4

symbol newB.6 = outpinA.0 ' replacement pin for B.6 (hserin)

' === Directives ===

#com 4 ' specify COM port

#picaxe 20X2 ' specify compiler mode

#no_data ' save time downloading

#no_table ' save time downloading

#terminal off ' make sure terminal is off

LISTING 14-3

Chapter 14 ■ Constructing a Programmable Multifunction Peripheral Device 201

' ============================== Begin Main Program =============================

setfreq m16

dirsA = %11111111 ' configure pinA.0 as output

dirsB = %11101111 ' configure pinB.4 as input

dirsC = %10111111 ' configure pinC.6 as input

adcsetup = %0000000001000000 ' enable ADC6 (see adcsetup in Manual)

' === Initialize the LCD ===

pause 400 ' pause 200 mS for LCD initialization

char = 56 ' setup for 8-bits,2 lines & 5X8 dots

low RegSel ' set up for command byte

gosub OutByte2 ' send instruction to LCD

char = 12 ' display on, cursor off

gosub OutByte ' send instruction to LCD

char = 1 ' clear display and go home

gosub OutByte ' send instruction to LCD

wait 1

' === Main Program Loop – Get keypress and display it on LCD ===

do

wait_for_keypress:

readadc 6, junk

if junk < 5 then wait_for_keypress

pause 50 ' debounce key

readadc10 6, key ' get ADC value

wait_for_release:

readadc 6, junk

if junk > 5 then wait_for_release

select case key ' decode key

case < 364 : char = 65 ' A

case < 379 : char = 82 ' R

case < 395 : char = 68 ' D

case < 422 : char = 76 ' L

case < 452 : char = 48 ' 0

case < 476 : char = 57 ' 9

case < 502 : char = 85 ' U

case < 542 : char = 66 ' B

case < 588 : char = 56 ' 8

case < 629 : char = 55 ' 7

case < 674 : char = 54 ' 6

case < 733 : char = 53 ' 5

case < 804 : char = 52 ' 4

case < 884 : char = 51 ' 3

case < 976 : char = 50 ' 2

else : char = 49 ' 1

end select

LISTING 14-3 (continued)

(continued)

calculate the midpoint value between each pair of
ACD readings. (If this isn’t clear, you may need to
re-read the “Experiment 2” section in Chapter 11.)

When you have updated the midpoint ADC
values in TestMPD.bas, save it and download it to
your MPD. Except for the “Back” key, which
clears the display, each keypress should produce
the corresponding character that the program has

assigned to the key; if not, double-check the ADC
midpoint values you entered into the program.

This completes the construction of our Evil
Genius Multifunction Peripheral Device. In the next
chapter, we’ll explore the details of implementing
an ADC interrupt routine, and then put the MPD to
work by developing a major software application.

202 PICAXE Microcontroller Projects for the Evil Genius

if char = "B" then ' if "B" then

char = 1 ' clear LCD display

sound C.1,(20,150)

gosub OutByte

else ' else

sound C.1,(50,50)

gosub OutByte ' display char

endif

loop

' ===================== End Main Program - Subroutines Follow ====================

OutByte:

select case char

case 32 to 127 ' set up for text

high RegSel

else ' set up for command

low RegSel

endselect

Outbyte2:

outpinsB = char ' load character onto outpinsB

newB.4 = bit4 ' substitute outpinC.3 for pinB.4

newB.6 = bit6 ' substitute outpinA.0 for pinB.6

pulsout enable,2 ' send data

return

LISTING 14-3 (continued)

Developing Software
for the Evil Genius MPD

C H A P T E R 1 5

NOW THAT WE HAVE COMPLETED construction and
testing of our MPD, we’re ready to develop some
software for it. As I mentioned in Chapter 14,
we’re also going to modify our keypad input
routine so that it’s interrupt-based, which will
actually simplify the programming involved and
greatly improve the speed of the MPD’s response
to user input. However, in order to do so, we first
need to discuss a little theory related to the
hardware comparators built into all X2-class
microprocessors. As usual, we’ll focus on the
20X2 hardware, but most of what we cover will
also be directly relevant to the 28X2 and the 40X2
processors as well.

Understanding the 20X2’s
Built-in Comparator
Hardware

All X2-class processors include two hardware
comparators (labeled C1 and C2), which can
compare two analog voltages. Both voltages can be
external (i.e., connected via an ADC pin), or one
can be external and the other can be derived from
the chip’s internal voltage reference (IVR). Figure
15-1 presents the pin-out for the PICAXE-20X2,
which includes the relevant pin assignments for the
20X2’s comparators. As you can see, two pins (15
and 16) are assigned to comparator 2, but only one
pin (14) is assigned to comparator 1. This means
that for comparator 1, the C1� voltage must be
internally derived from the 20X2’s IVR.

203

PICAXE-20X2 pin-out with comparator pin assignmentsFigure 15-1

Consequently, comparator 1 is the ideal choice for
the MPD because we’re only interested in the level
of the single ADC input from the keypad. Because
ADC6 and C1 are both implemented on pin 14 of
the 20X2, ADC6 is the obvious choice for the
keypad input; that’s the reason for the circuit
changes that I mentioned in the previous chapter.

Let’s take a closer look at comparator 1 on the
20X2; its schematic is presented in the following
illustration. The IVR is connected to the positive
input of the comparator, and our (external) keypad
voltage is connected to the negative input, which
means that comparator 1, by default, is an
inverting comparator. In other words, whenever
the external input is higher than the IVR input,
the comparator’s output goes low; whenever the
external input is lower than the IVR input, the
comparator’s output is high. As we’ll soon see,
we can modify the default configuration.

PICAXE comparators can be set up in a variety
of configurations that are controlled by the
compsetup command. The complete syntax is
compsetup config, ivr. Config is a constant or
variable that specifies the configuration options,
and ivr is a constant or variable that specifies the
configuration of an internal voltage ladder that can
be used to adjust the value of IVR. We’re not
going to use the internal voltage ladder, so we can
just set ivr to 0, which disables it; I’ll explain the
reason shortly.

On the 20X2, config is a ten-bit configuration
word that determines the exact mode of operation
for each of the comparators, as shown in Table 15-1.

Let’s consider each bit separately to see how we
want to configure the compsetup command.

� Bit 0 = 1: Enable comparator 1.

� Bit 1 = 0: Disable comparator 2.

204 PICAXE Microcontroller Projects for the Evil Genius

Bit Value Comparator Settings

0 0 Comparator 1 is disabled.

1 Comparator 1 is enabled.

1 0 Comparator 2 is disabled.

1 Comparator 2 is enabled.

2 0 Comparator 1 output is not

inverted.

1 Comparator 1 output is inverted.

3 0 Comparator 2 output is not

inverted.

1 Comparator 2 output is inverted.

4 0 Change in comparator 1 does

not cause change in compflag.

1 Change in comparator 1 sets

compflag.

5 0 Change in comparator 2 does

not cause change in compflag.

1 Change in comparator 2 sets

compflag.

6 1 Bit 6 is not implemented; always

set it to 1.

7 0 Comparator 2 Vin+ is ADC2.

1 Comparator 2 Vin+ is from

voltage divider/fixed ref.

8 0 Comparator 1 Vin+ is set from

voltage divider.

1 Comparator 1 Vin+ is from fixed

1.024V reference.

9 0 Comparator 2 Vin+ is set from

voltage divider.

1 Comparator 2 Vin+ is from fixed

1.024V reference.

TABLE 15-1 20X2 Comparator Configuration
Settings

� Bit 2 = 1: We’ll invert the inverted output, so
it’s no longer inverting!

� Bit 3 = 0: Doesn’t really matter because we
have disabled comparator 2.

� Bit 4 = 0: Just for now—later we’ll discuss
and change this setting.

� Bit 5 = 0: Doesn’t really matter because we
have disabled comparator 2.

� Bit 6 = 1: No choice because bit 6 isn’t
implemented.

� Bit 7 = 0: Doesn’t really matter because we
have disabled comparator 2.

� Bit 8 = 1: We’ll discuss this one next!

� Bit 9 = 0: Doesn’t really matter because we
have disabled comparator 2.

The setting for bit 8 requires a brief explanation.
The IVR on the 20X2 can be derived from two
different sources: the fixed 1.024V reference
voltage or any step of an internal 32-step resistor
ladder that I mentioned earlier. Configuring the
IVR from the resistor ladder is a little complicated;
fortunately for us, it’s not necessary because the
fixed 1.024V IVR will work just fine. To see why
this is the case, we need to refer back to Chapter 6,
where we first discussed ADC inputs. For
convenience, Figure 15-2 reproduces Figure 6-1
and includes the basic voltage divider formula.

As you can see in Figure 15-2, the greater the
resistance above the Vout line, the lower the output
voltage (because Rtotal is larger). If you look back
at our original keypad circuit in Chapter 11, you’ll
see that the greatest resistance above the ADC
output line occurs when the 15k and 3.3k resistors
are connected in series to �5V. When this occurs,
the formula in Figure 15-2 simplifies as follows:

Therefore, the lowest voltage produced by any
keypress is 1.767V. In other words, every keypress
produces a voltage that is greater than the 20X2
IVR of 1.024V. On the other hand, when no key is
pressed, the 10k resistor in the circuit ties the ADC
line to ground. As a result, the comparator 1 output
will change whenever any key is pressed. This
output is always available to a running program by
accessing the built-in compvalue variable; the value
of the comparator 1 output is bit 0 of this variable,
and the output of comparator 2 is bit 1. Since we’re
disabling comparator 2, bit 1 of compvalue will
always be 0. Therefore, for our purposes, whenever
the comparator 1 output is high, compvalue will
equal 1 (because we “inverted the inversion”), and
whenever the comparator 1 output is low,
compvalue will equal 0.

Chapter 15 � Developing Software for the Evil Genius MPD 205

Basic voltage divider circuit and formulaFigure 15-2

Testing Our Comparator 1
Configuration

In order to test the comparator configuration,
simply attach your MPD to a powered breadboard
and add an LED (and current-limiting resistor)
from the C.5 line (pin 3 of the MPD’s breadboard
connector) to Ground, as shown in Figure 15-3. In
the photo, you can also see that I have added labels
below the MPD’s keypad to remind myself of the
connector’s pin-out. (I got tired of having to find
the schematic every time I wanted to connect
something!)

The software for our little test
(Comparator1Demo.bas) is presented in Listing
15-1. The only part of it that I haven’t explained is
the adcsetup statement. Actually, we have
discussed this before, but it’s worth repeating. On
the M2-class and X1-class processors, adcsetup
isn’t required; issuing a readadc or readadc10
command automatically configures the specified
pin as an ADC input. However, on X2-class
processors, adcsetup is required whenever a pin is
to be used as an ADC input or a comparator input.
Therefore, we need to properly configure the
ADC6 pin as shown in the Comparator1Demo.bas
program. (See the adcsetup documentation in Part
II of the manual for details.)

One final point before you download and test
the program; adcsetup is technically a word-length
variable so the equal sign is required in the
assignment statement. On the other hand,
compsetup is technically a command, so no
assignment statement is needed; in fact, including
an equal sign in a compsetup statement will
produce a compiler error. Download
Comparator1Demo.bas to your MPD. When no
key is being pressed on the keypad, the LED
should remain off; pressing any key should light
the LED as long as the key is pressed.

“We Interrupt This Program
to Bring You a Keypress!”

By now you’re probably wondering why we’re
even discussing the 20X2 comparators. The
answer is simple: the setintflags command (which
we discussed in Chapter 13) includes a compflag
bit (bit4) that enables us to configure an interrupt
whenever a comparator output changes state.
That means we can convert our keypad-decoding
software to an interrupt subroutine that will
make each keypress available to our program
immediately.

206 PICAXE Microcontroller Projects for the Evil Genius

Breadboard circuit for testing the
comparator 1 configuration

Figure 15-3

The following program (TestInterrupt.bas,
shown in Listing 15-2) implements the necessary
changes in our software. In the main portion of the
program, the setintflags %00010000,%00010000
command enables an interrupt each time a key is
pressed. The do…loop simply toggles the LED on
C.5 to keep busy while waiting for an interrupt to
occur. In the interrupt subroutine, we need to
temporarily disable the interrupts so that another
one doesn’t occur while we’re processing the first

one. We also need to disable the comparator so that
the ADC6 function on the B.4 pin can be used to
determine which keypress triggered the interrupt.
The main part of the interrupt should be familiar.
We simply decode the keypress, “beep,” and send
the key value to the terminal window for display.
Just before exiting the interrupt subroutine, we
need to clear the interrupt flag and re-enable both
the comparator and the interrupt.

Chapter 15 � Developing Software for the Evil Genius MPD 207

' ============================ Comparator1Demo.bas ============================

' Program demonstrates the use of comparator 1 on the EG MPD.

' === Constants ===

symbol LED = C.5 ' LED on C.5

' === Directives ===

#com 4 ' specify com port

#picaxe 20X2 ' specify compiler mode

#no_data ' save time downloading

#no_table ' save time downloading

#terminal off ' make sure terminal is off

' ============================ Begin Main Program =============================

setfreq m16 ' set frequency to 16MHz

dirsB = %11101111 ' configure pinB.4 as input

dirsC = %10111111 ' configure pinC.6 as input

pullup %00000010 ' enable internal pullup on C.6

adcsetup = %0000000001000000 ' see text

compsetup %0101000101, 0 ' see text

do

if compvalue = 1 then ' any keypress is > 1.024v

high LED

else ' no keypress equals 0v

low LED

endif

loop

LISTING 15-1

208 PICAXE Microcontroller Projects for the Evil Genius

' ============================== TestInterrupt.bas ==============================

' This program tests the ADC keypad interrupt on the Evil Genius MPD.

' === Constants ===

symbol horn = C.1 ' speaker or piezo on C.1

symbol LED = C.5 ' LED on C.5

' === Variables ===

symbol char = b0 ' character to be sent to LCD

symbol junk = b1 ' throwaway character

symbol key = w1 ' ADC keypress value

' === Directives ===

#com 4 ' specify com port

#picaxe 20X2 ' specify compiler mode

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 19200 ' open terminal window

' ============================= Begin Main Program =============================

setfreq m16 ' set frequency to 16MHz

dirsB = %11101111 ' configure pinB.4 as input

dirsC = %10111111 ' configure pinC.6 as input

pullup %00000010 ' enable internal pullup on C.6

adcsetup = %0100000001000000 ' see "adcsetup" in Manual

compsetup %0101010101, 0 ' see "compsetup" in Manual

setintflags %00010000,%00010000 ' see "setintflags" in Manual

do

toggle LED ' toggle LED slowly

wait 8 ' pretend to be busy

loop

' =================== End Main Program - Subroutines Follow ====================

interrupt:

setintflags off ' disable comparator interrupt

compsetup 0,0 ' disable comp so ADC is available

pause 10 ' debounce the keypress

readadc10 6, key ' get ADC value

wait_for_release: ' wait for key to be released

readadc 6, junk

if junk > 5 then wait_for_release

LISTING 15-2

The slow rate at which the LED toggles enables
the program to demonstrate two important
characteristics of interrupts. If you press a key
shortly after the LED changes state, you’ll notice
that it again changes state the instant the key is
released. From this program behavior, you can
deduce both of the characteristics I have in mind.
First, the interrupt condition (C1 output change) is
checked for continuously during the wait statement
(this is also true for pause statements). Second,
when the program returns from the interrupt, it
does not complete the wait (or pause) statement; it
moves on to the next instruction in the program.

Project 15
A Simple MPD Operating
System

Now that we have an understanding of how a
comparator interrupt subroutine functions on the
20X2, we’re ready to tackle our software project: a
simple MPD operating system (MPDOS) that
includes the following features:

� Completely “open-source” code that can be
easily modified by the user.

� Approximately 80 percent of 20X2 memory
remains available for user-developed programs.

� All user-developed programs have access to the
interrupt-driven keypad input.

Chapter 15 � Developing Software for the Evil Genius MPD 209

select case key ' decode key

case < 364 : char = 65 ' A

case < 379 : char = 82 ' R

case < 395 : char = 68 ' D

case < 422 : char = 76 ' L

case < 452 : char = 48 ' 0

case < 476 : char = 57 ' 9

case < 502 : char = 85 ' U

case < 542 : char = 66 ' B

case < 588 : char = 56 ' 8

case < 629 : char = 55 ' 7

case < 674 : char = 54 ' 6

case < 733 : char = 53 ' 5

case < 804 : char = 52 ' 4

case < 884 : char = 51 ' 3

case < 976 : char = 50 ' 2

else : char = 49 ' 1

end select

sertxd ("key = ",char,cr,lf) ' display keypress on terminal

sound horn,(50,20) ' beep

compsetup %0101010001, 0 ' re-enable comparator 1

compflag = 0 ' clear the interrupt flag

setintflags %00010000,%00010000 ' re-enable comparator interrupt

return

LISTING 15-2 (continued)

� Built-in “prompting” characters for full arrow
key functionality.

� Menu-driven user interface for selecting,
running, and inputting data to programs.

� Custom lowercase LCD characters with true
descenders.

The MPDOS “prompting” feature requires an
explanation. As you know, our keypad includes
four arrow keys for use with the LCD display; in
MPDOS, these keys are intended to implement the
following functions:

� Up arrow: Scroll line two of the display up
one line.

� Down arrow: Scroll line two of the display
down one line.

� Left arrow: Move left among the choices
listed on a line (not yet implemented).

� Right arrow: Move right among the choices
listed on a line (not yet implemented).

In addition, the last two character positions on a
line can be reserved to display “prompts” to the
user; position 15 is for the “left and/or right arrow”
prompts, and position 16 is for the “up and/or
down arrow” prompts. Three built-in characters
can be displayed in the “left and/or right” position:
a left-arrow, a right-arrow, and a bidirectional “left
and right” arrow. Similarly, three additional built-
in characters can be displayed in the “up and/or
down” position: an up arrow, a down arrow, and a
bidirectional “up and down” arrow. The purpose of
the “prompt” characters is to remind the user
which arrow keys are currently functional—this
will become clear later when you actually run the
MPDOS software.

Two of the six arrow characters are already built
into the LCD display as characters 126 and 127.
The remaining four characters are defined as
custom characters and loaded into the LCD using
data statements in the MPDOS software. As you

may remember, there are eight locations in the
LCD for custom characters and we have been
using five of them for lowercase letters with true
descenders. Because we need four locations for the
four arrow characters, one of the custom lowercase
letters has to be sacrificed; I chose to eliminate “y”
because it required its own case statement in the
software and the other four characters share the
same case statement. Of course, you can change
that arrangement however you want. Also, I
wanted to assign values to the four “arrow”
characters that are in the normal text range (32 to
127) because that simplified the LCD routine. As a
result, I had to choose four ASCII characters that I
was also willing to sacrifice. I chose the following
four, but you can certainly choose differently if
you prefer:

� ASCII 92: This is the yen symbol on my
LCD; I re-assigned it to the up arrow.

� ASCII 94: This is the ASCII “”̂symbol;
I re-assigned it to the down arrow.

� ASCII 123: This is the ASCII “{“ symbol;
I re-assigned it to the “up and down” arrow.

� ASCII 125: This is the ASCII “}” symbol;
I re-assigned it to the “left and right” arrow.

The MPDOS.bas software is too long to include
here; download it from my website and print out
a copy for reference. When you first see the
program, it may seem a little daunting to say the
least. At almost 400 program lines, it’s by far the
longest piece of software we have discussed.
However, it’s really not as difficult as it seems;
much of it is composed of routines that we have
already discussed. The four “programs” in
MPDOS (BeamMeUp, Cloaking, DeathRay, and
Doomsday) are all trivial; they are merely included
to demonstrate how the “prompt” characters can be
used in a program. The program is also thoroughly
commented, so it should be reasonably easy to
understand.

210 PICAXE Microcontroller Projects for the Evil Genius

Before you test MPDOS.bas, I should remind
you of the functions of the “Accept” and “Back”
keys. “Accept” is like “Enter” on your PC; in
MPDOS, pressing “A” will run the program
currently displayed on the LCD. Pressing “Back”
takes you back one level in the menu system; for
example, pressing “B” when a program is running
returns you to the program selection menu. Watch
the prompts at the right end of line two as you test
the program; that should clarify how they function.

Developing your own programs for use with the
MPD is a simple process. All you need to do is
replace one of the trivial program names in the
table with the name of your program and remove

the code from within the corresponding subroutine.
(Of course, you can also add lines to the table and
subroutines if you develop more than four
programs.) I already have two programs in mind:
an I/O terminal for use with my projects, and a
code timer to help me determine which version of
a software snippet runs faster.

If you develop an interesting application for the
MPD and MPDOS.bas, I would love to hear about
it; you can reach me by e-mail at
Ron@JRHackett.net. If you’re willing to share
your program (and if I get sufficient responses),
I’ll set up a page on my site dedicated to the MPD
so that we all can benefit from each other’s work.

Chapter 15 � Developing Software for the Evil Genius MPD 211

This page intentionally left blank

Octavius: An Advanced
Robotics Experimentation

Platform

P A R T T H R E E

This page intentionally left blank

C H A P T E R 1 6

OVER THE YEARS, I HAVE designed and built many
small robots. At first, I tackled a couple of kits that
simply needed to be assembled (e.g., the robot on
the left in Figure 16-1). Robot kits can provide a
great learning experience, but they tend to be
somewhat limited because they are usually difficult
or impossible to modify once they’re completed.
To overcome this limitation, I soon decided to
design my own robots that included what I thought
was ample breadboard space so that the circuitry

could be easily modified to incorporate new
features as they occurred to me (e.g., the robot on
the right in Figure 16-1). This type of robot was a
great improvement over a kit, but I was surprised
to discover how quickly I ran out of space on the
robot’s breadboard development area.

About a year ago, I began work on “Octavius,”
a PICAXE-powered robot whose goal in life is
to grow up to become a sophisticated robotics
experimentation platform. I specifically designed

215

Birthing Octavius

First- and second-generation robotsFigure 16-1

Octavius’ main logic board so that he has ample
breadboard space in which to implement and test
as many features as I want. The logic board, which
is shown in Figure 16-2, has a unique octagonal
shape that is designed to bring the simplicity and
flexibility of breadboard-based project
development to the world of robotics.

Eight 30-pin female headers are positioned
around Octavius’ perimeter. With a 400-point
breadboard installed next to each of the headers,
Octavius is able to communicate with 75 square
inches of development space spread out among his
eight breadboard units (see Figure 16-3). The extra
PC board and messy cables in the middle of the
photo are a temporary solution to a motor driver
“meltdown” problem that I encountered early in
Octavius’ development. I’ll explain the details
when we discuss Octavius’ motor-driver circuitry.
In the next chapter, we’ll develop a motor-control
project that is a major improvement over Octavius’

original circuitry and can also be used to drive
your next robotic creation.

Each of Octavius’ peripheral breadboards has
access to a total of 30 signals, including 26 I/O
lines from his PICAXE-40X2 CPU as well as the
necessary power and ground lines. Routing all 30
lines to each of the eight breadboards was the most
challenging aspect of Octavius’ design, but it’s also
what gives him his power and flexibility. In
addition, it gives us the opportunity to extend our
“multiprocessor” approach in Part Two to the
world of robotics. The circuitry on any (or all) of
Octavius’ eight breadboards can easily include a
peripheral processor. In fact, it would even be
possible to include more than one processor on a
breadboard if you wanted to do so. Each of the
peripheral processors can independently carry out
its assigned task and easily communicate with
Octavius’ CPU. As a result, Octavius’ power and

216 PICAXE Microcontroller Projects for the Evil Genius

Octavius’ main logic boardFigure 16-2

flexibility are only limited by our imaginations and
programming prowess!

There is one aspect that clearly differentiates
Octavius from all the projects we have completed
thus far in this book. Up to this point, every project
was fully designed and tested before I began
writing about it. In contrast, Octavius is a work in
progress. If you look closely at Figure 16-3, you’ll
see that his main logic board is what’s called a
prototype PC board. For one thing, there’s no silk
screen (the handy white labeling on a PC board).
There is also no solder mask (the protective
coating that covers everything except the soldering
points), although that’s probably not clearly
evident in the photo. I decided to approach the
Octavius project in this manner so that his final
design can benefit from the discoveries I make

during the time I spend experimenting with and
writing about Octavius.

My main purpose for including the chapters and
projects in Part Three is to present what I have
learned so far in my work with Octavius,
especially the mistakes I have made along the way.
That way, when you’re ready to develop your own
robotic creation, you’ll have some idea of what
works and what doesn’t. In this chapter, I’ll
describe how I implemented Octavius’ “body” and
power system, and focus on some of the things you
can do to simplify the process of designing and
building a robot “body.” In Chapter 17, we’ll focus
on constructing a motor controller circuit that’s
capable of delivering a considerable amount of
power to your robot’s motors without risking a
motor controller “meltdown.” In the final chapter,

Chapter 16 � Birthing Octavius 217

Octavius—an advanced robotics experimentation platformFigure 16-3

218 PICAXE Microcontroller Projects for the Evil Genius

we’ll turn our attention to the implementation
of a powerful sensory system that can be used
by any robot.

If you find the material presented in Part Three
helpful in the design and development of your own
robot creation, I would love to hear about it. You
can reach me at Ron@JRHackett.net. Also, if you
are willing to share a photo of your creation, I
would like to include it in a robot “pin-up” gallery
on my website.

Understanding Octavius

Figure 16-4 presents the schematic for Octavius.
Since it’s fairly complicated, let’s break it down
into the following sections for our discussion:

� PC Board Power Supply

� Motor Power Supply

� Programming Adapter

� Peripheral Breadboard Headers

� Time-Slice Generator

� Motor Controller

PC Board Power Supply

Octavius’ PC board power supply is a standard
�5V regulated supply. It includes a charging
connector for the PC board battery (a 12V, 1.3Ah,
lead-acid battery). The connector is identical to the
one we used in our breadboard power supply
project in Chapter 3; it accepts a power plug that
has a 2.1-mm ID (inner diameter) and a 5.5-mm
OD (outer diameter). As I mentioned in Chapter 3,
that size plug is commonly available and easily
obtained from surplus vendors or obsolete
answering machines, modems, etc. You’ll also
need a suitable lead-acid battery charger; ordinary
“wall-wart” supplies will not work, and may
damage the battery and even present a fire hazard.

Finally, the power indicator LED can be
disconnected via header H3 if you prefer to
conserve battery power.

Motor Power Supply

The motor power supply is even simpler because
there’s no regulation involved. It also includes its
own charging connector for the motor battery (a
12V, 8.0Ah, lead-acid battery), as well as a header
to disconnect the power indicator LED, if desired.

Programming Adapter

On Octavius’ prototype PC board, the programming
adapter is connected via a 5 � 2 male header,
which is an interface I have used in most of my
projects for the past few years. However, as we
have already discussed, the serial port is just about
dead by now, so I intend to upgrade Octavius to the
standard audio connector that accepts the AXE027
USB programming cable.

Peripheral Breadboard Headers

Each of the eight peripheral breadboards abuts its
own 30 � 1 female header, allowing for simple
jumper wire connections between the 40X2’s I/O
lines and the breadboard. If you look back at the
photo in Figure 16-3, you will see that each
breadboard unit is actually comprised of one and
a half breadboards. This arrangement allows for
considerable flexibility in the breadboard wiring
because signals can be easily routed around
processors and other components on the board.
Breadboard 0 is at the top of the PC board
(directly above pin 1 of the 40X2), and the
breadboards are numbered consecutively (0
through 7) in a clockwise direction. The order of
the 30 connections shown at the right side of the
schematic is the same for all eight breadboards.

Chapter 16 � Birthing Octavius 219

Octavius’ schematicFigure 16-4

Time-Slice Generator

The 74HC138 is a complementary metal-oxide-
silicon (CMOS) three-line to eight-line inverting
demultiplexer. The three-bit address placed on pins
A0, A1, and A2 of the 74HC138 controls which of
its eight outputs is pulled low (all the other outputs
remain high). The purpose of this circuitry is to
enable Octavius to coordinate all communication
with his numerous sensory/motor peripheral
processors and thereby simplify the software
necessary for monitoring his various processes
and successfully navigating his way through his
environment. My original intention was to
implement a main program loop whereby Octavius
would sequentially signal each peripheral
processor in turn to determine whether the
processor had updated sensory information to
report. However, from working with the ultrasonic
ranging system we’re going to implement in
Chapter 18, I soon realized the power and
simplicity of a sensor that provides a continuously
updated reading on a single output.

For example, suppose you have an 08M
peripheral processor that is monitoring the light
level directly in front of your robot. It would be a
simple matter for the 08M to maintain a pulse-
width modulation (PWM) output signal and update
the duty cycle to reflect the real-time light level it
“sees.” Whenever the master processor wanted to
check the current light-level reading, all it would
need to do is take a pulsin measurement on the
appropriate input pin; no coordinated two-way
communication would be required. I’m just
beginning to explore the possibilities of this
approach, so it’s too soon to know if it’s simpler
than Octavius’ current time-slice arrangement. If it
is, I’ll be able to simplify Octavius’ circuitry.

Motor Controller

Octavius’ prototype PC board includes an
SN754410 motor controller chip, which is a
quadruple half-H driver that is capable of
controlling two DC motors with voltages between
4.5V and 36V, with a maximum current-draw of
1 Amp each. Headers H4 and H5 are included on
the prototype PC board so that a second 754410
can be “piggy-backed” to double the current-
handling capabilities of the motor control circuit.
This turned out to be a good decision because
when I initially designed the circuit, I forgot to
include the necessary inverters. Fortunately, the
headers made it easy to redesign the motor control
circuit (correctly, this time!), build it on a small
stripboard, move the 754410 from the PC board to
the stripboard, and plug it into the headers.

Even though I recovered from that little faux
pas, I still had major problems with the motor
control circuit. The motors that I’m using each
draw about 200mA with no load; under load, that
figure increases to about 600mA. What I didn’t
realize is that a full-stall condition (for example,
when Octavius runs into a wall and the motors
continue to be powered but the wheels are not
turning at all) can drastically increase the current
draw to a value greater than even two 754410
chips can handle. The result was a loud crack and
a lot of “magic smoke,” destroying the motor
driver chips in the process. Even worse, I soon
discovered that one of the PWM pins on my 40X2
was also burned out.

The result of this little tragedy was that I
decided to completely redesign the motor
controller circuit. I’m upgrading Octavius to an
L298 motor driver, which is capable of handling
2 Amps per motor continuously, and 3 Amps per
motor for momentary surges. More importantly,
the L298 includes circuitry that will enable
Octavius (or any robot) to monitor his motors’

220 PICAXE Microcontroller Projects for the Evil Genius

Chapter 16 � Birthing Octavius 221

real-time current levels and take corrective action
if they become dangerously high. We’ll get into the
details of the “new and improved” motor control
circuit in Chapter 17.

Project 16
Building Octavius

In this section, we’re going to take a detailed look
at Octavius’ “brain,” as well as his body. Most of
the following information will be helpful for any
robotics project you undertake.

Octavius’ Printed Circuit Board

Figure 16-2 (presented earlier) showed the printed
circuit board layout for Octavius’ “brain.” The
circuit itself only occupies about 25 percent of the
PC board area; the majority of space is taken up by
the routing of the 30 signals to all eight peripheral
breadboards. I realize that many readers of this
book may not be interested in constructing a robot
as complex as Octavius, so I’m working to
simplify his circuitry and decrease the size of his
main PC board. The final version will definitely be
simpler, smaller, and less expensive to build; I’ll
post updated information on my website. The
following discussion will focus on a couple
features of the Octavius PC board that can be
easily adapted to a robot of your own design.

The four 4-pin female headers (H8 through
H11) that flank the 40X2 processor are included
to provide one possible means of expanding
Octavius’ capabilities. For example, suppose you
want Octavius to be able to rapidly find the
clearest path in his immediate environment. One
possibility would be to add an ultrasonic ranging
system to each of his peripheral breadboards.
However, the cost of eight such systems could well
be prohibitive for most amateur roboticists. A
considerably less expensive (and more elegant)

approach to the problem would be to design a
scanning tower (driven by a stepper motor) that
could rapidly measure the open distance in a
variety of directions. All you would need to do is
design a stripboard circuit for your scanning tower
that includes downward-pointing male headers that
are spaced appropriately to mate with H8 through
H11. That way, one ultrasonic sensor could quickly
get the job done.

IC2 is the 74HC138 three-line to eight-line
inverting demultiplexer that implements Octavius’
time-slice capability. Header H14 provides for the
possibility of rerouting any one of the TS signals
to an expansion board that is mounted in headers
H8 through H11 by simply installing a two-pin
shunt on the two pins of the time-slice signal that
you want to use.

Motor Controller Options

As we have already discussed, Octavius’ original
SN754410 motor controller was not able to handle
the power requirements of the motors that I am
using. In Chapter 17, we’ll discuss this issue in
more detail and construct a motor controller based
on the more powerful L298 dual full-bridge driver
chip, which is more than adequate for the task.

Additional Modifications

There will be a couple of additional minor
modifications on the final Octavius PC board.
First, header H12 is currently used for the
PICAXE programming connection. However, by
now, the vast majority of PC users no longer have
access to the “old-fashioned” serial port with
which header H12 connected. Consequently, the
final PC board will include the standard PICAXE
audio connector for use with the AXE027 USB
programming cable. If you happen to be one of the
“serial port holdouts,” it’s a simple matter to make
an audio cable to DB-9 adapter.

Also, I have found the screw-type connectors
that I am currently using for the power and motor
connectors (J1 through J4) to be problematic; they
are a nuisance whenever Octavius needs to be
disassembled and re-assembled, and it’s far too
easy to accidentally reverse the motor connections
in the process. Therefore, I intend to eliminate
them entirely and substitute direct solder
connections and polarized connectors on the
necessary wires.

Designing a Body

In this section, we’ll discuss some of the factors
that need to be taken into account when you are
designing a body for Octavius (or any robot). I’ll
tell you what I did, including the mistakes I made
along the way. Even if your robot’s body turns out
to be drastically different from the one I

constructed, I think you’ll find a fair amount of
helpful information in this section.

Figure 16-5 is a photo of Octavius on my
“operating table” just after completion of a minor
modification to his body. Let’s begin by discussing
what didn’t work so you can avoid making the
same mistakes I did. When I first built Octavius,
I didn’t include the round, raised platform you can
see about ten inches above the lower platform. In
his first incarnation, I had attached Octavius’ outer
shell (actually, a large, plastic flower pot!) directly
to the bottom platform with some fairly
complicated hardware that allowed me to adjust
the levelness of his body. This approach turned out
to be much more difficult than I anticipated; even
worse, whenever I needed to remove the shell for
any reason, it was a time-consuming process.

222 PICAXE Microcontroller Projects for the Evil Genius

Octavius on the “operating table”Figure 16-5

Chapter 16 � Birthing Octavius 223

My second design is simpler and makes it much
easier to access Octavius’ innards whenever the
need arises. The top platform (1/8-inch fiberboard)
is supported by four pieces of 3/8-inch threaded
rod, but I’m sure 1/4-inch would work just as well.
It was tedious to initially level the top platform at
exactly the right position to give Octavius the
1/4-inch ground clearance that I wanted, but it only
had to be done once. Now, it’s a quick and simple
process to remove the shell and place it back at
exactly the same position. The two bolts that you
can see jutting up from the middle of the top
platform fit through corresponding holes in the
flowerpot and the round base that I used to mount
the PC board and the breadboards. When everything
is in position, two nylon nuts are all it takes to
secure everything in place, and disassembly is just
as easy.

Four sets of cables connect the two batteries and
the two motors to the PC board. I used polarized

power connectors on each cable to make it easier
to disassemble everything when necessary. Be sure
to clearly label each connector, especially if they
are all identical. Also, make sure the cables are
long enough to allow the shell to be lifted high
enough to access the connectors to separate them.
In Figure 16-5, you can see two small “fenders”
above the protruding tops of Octavius’ wheels.
They turned out to be a necessary addition in order
to protect the excess cable length from getting
tangled in the wheels as Octavius was roaming
about. On the next base that I construct, I’ll make
sure the wheels are entirely below the lower
platform, which will eliminate the need for the
protective fenders.

Figure 16-6 shows the details of Octavius’
motor mountings. As you can see, they just barely
fit in the circumference allowed by his flowerpot
shell. The extra rectangular piece of plywood at
the top of the photo is there because I originally

Octavius’ motor mountsFigure 16-6

had a second caster wheel installed. However, that
turned out to be unnecessary as long as the bulk of
Octavius’ weight (i.e., his motor battery) is
positioned directly above the single rear caster.

When you’re ready to design your own robot, I
would suggest that you begin with the motors and
that you test them thoroughly before building the
complete chassis. Make sure that they are capable
of powering your robot’s approximate weight, and
also test their maximum current draw under full-
stall conditions. (If I had taken my own advice, I
probably wouldn’t have destroyed Octavius’
original motor controller circuitry and damaged
two PICAXE-40X2 processors!) If you need more
information on robot motors and drive trains,
check out Building Robot Drive Trains by Dennis
Clark and Michael Owings (McGraw-Hill, 2003).

I think I have included sufficient information on
the construction of Octavius’ body to enable you to
design and construct a robot of your own. In the
next chapter, we’re going to cover the details of

designing a motor control system that’s powerful
enough for a robot of Octavius’ size and weight,
and simple enough to be used with smaller robots
as well. That way, if you would rather begin by
designing a smaller and simpler robot, you could
use our 20X2 master processor as its “brain,” build
a simple one-level platform, and add the motor
controller we are about to discuss and construct. If
you decide to take this approach, you will need to
make one small sacrifice. The L298 chip requires
two PWM signals—one for each motor; however,
it’s also possible to drive both L298 PWM input
lines from the single PWM output on the 20X2.
Your robot will still be able to move forward and
backward at varying speeds, as well as turn in any
direction by rotating in place. Making a gradual
turn by moving along a curved path is the only
ability that is sacrificed by this approach. If you
don’t want to lose that capability, you could switch
to a 20M2 processor (which has four PWM
outputs) or a 28X2, which has two PWM outputs
and four additional I/O pins.

224 PICAXE Microcontroller Projects for the Evil Genius

Driving Octavius

C H A P T E R 1 7

225

WHEN OCTAVIUS EXPERIENCED his unfortunate
motor controller meltdown that I described in the
previous chapter, I knew his SN754410 motor
controller chip wasn’t up to the task of driving him
around his subterranean home, so I decided to
upgrade him to a more powerful propulsion
system. I chose the L298 motor controller chip
for three reasons. First, the L298 is capable of
providing 2A per motor continuously and 3A per
motor for momentary surges, so it’s more than
powerful enough for Octavius. Also, its I/O
interface is identical to that of the SN754410, so
there was no need to change Octavius’ wiring or
software. Most importantly, the L298 includes dual
current-sensing capability, so Octavius (or any
robot) can monitor the current draw of each of his
motors in real time and, if necessary, implement
corrective action to remedy the situation before
any damage is done to his circuitry. For example,
the most likely cause of excessive current draw
would be that Octavius has run into an immovable
object. If that were to happen, his wheels would
either not be turning at all (a complete motor stall)
or they would be drawing excessive current to
overcome friction and spin in place. In either case,
Octavius could detect the excessive motor current
and immediately correct the situation by backing
up a bit, turning, and going in a different direction.

In this chapter, we’re going to take a brief look
at the theory of an H-Bridge motor controller such

as the L298 (or the SN754410, for that matter),
followed by a more in-depth look at the L298.
Finally, we’ll construct a complete L298 dual-
motor controller circuit and conduct experiments
to demonstrate its major capabilities.

H-Bridge Motor
Control Circuits

An H-Bridge motor controller is a simple device
that enables us to easily control the direction in
which a DC motor spins. Essentially, it consists
of four “switches” that are arranged as shown in
Figure 17-1. In the diagram on the left side of the
figure, all four switches are in the open position
so the motor is not powered. In the center diagram,
switches 1 and 4 are closed so the DC current
flows from left to right through the motor, causing
it to spin in one direction. In the diagram on the
right, switches 2 and 3 are closed so the DC
current flows from right to left, causing the motor
to spin in the opposite direction. Of course, in our
simplified diagram, closing switches 1 and 2 (or 3
and 4) is an invitation to disaster because a direct
short is produced between the V� supply and
Ground. Fortunately, all H-Bridge motor
controllers include additional circuitry that
prevents that possibility.

The L298 Dual
H-Bridge Driver

The L298 datasheet, which is available on my
website and elsewhere, lists the following
specifications that are relevant for its use as a DC
motor driver:

■ Supplies 2A per motor continuous (3A surge)

■ Output voltage range from 7.5V to 46V

■ Dual output current-sensing capability

■ Thermal protection (automatic shutdown if
overheated)

■ Standard 5V logic inputs

■ High noise immunity

As you can see, the L298 can handle a
considerable amount of power. I doubt that I would
ever need to run a motor at more than 24 volts, but
it’s nice to know the capability is there. Also, a
continuous 2A per motor output should be plenty
for Octavius, and the output current-sensing
capability is a great safety feature for whenever
Octavius gets himself in a jam.

The L298 pin-out is presented in Figure 17-2.
The chip is installed vertically so the large metal
tab is available for attaching a heat sink, which is
recommended for higher power capability. So far
in my testing, the L298 hasn’t gotten overly warm,
but I’ll add one anyway, just to be safe.

The L298 pin-out isn’t very breadboard- or
stripboard-friendly; the spacing between adjacent
pins is 0.1 inches (2.54 mm), which is perfect, but
the two rows are staggered. As a result, all the pins
in one row would have to be bent 0.05 inches
(1.27 mm) in order for both rows to fit into a
breadboard or stripboard. The project we are about
to construct avoids this problem by using a PC
board (available on my website) that’s specifically
designed for the L298 pin-out (see Figure 17-3).
The extra-wide traces for the output lines ensure
that the board is able to handle all the power that
the L298 can provide.

If you don’t want to construct the complete
project but would like to conduct the experiments
that follow, you may want to bend the L298 pins
so that they can be inserted into a stripboard, and
add two male headers to insert the stripboard

226 PICAXE Microcontroller Projects for the Evil Genius

Simplified H-Bridge diagramFigure 17-1

Chapter 17 ■ Driving Octavius 227

L298 pin-outFigure 17-2

The L298 motor controller PC boardFigure 17-3

adapter into a breadboard. This arrangement
should work fine, but probably only for the low-
power motors that we’re going to use in our
experiments. For driving motors with higher
power requirements, I would strongly recommend
the PC board.

Project 17
Constructing an L298 Dual
DC Motor Controller Board

Figure 17-4 presents the schematic of the L298
motor controller board. Diodes D1–D8 are
necessary to protect the L298 from the voltage
spikes that occur whenever power is applied to or
removed from a DC motor. (Note that they are
installed with their anodes, not their cathodes,
pointing toward Ground.) This phenomenon is
known as counter electromotor force (CEMF), and

is a consequence of the inductive characteristics of
DC motors. We’re not going to get into the details
here, but if you are interested in learning more
about CEMF, a quick web search will produce an
abundance of references. C3 is a 470μF electrolytic
capacitor that’s included to help minimize the
voltage fluctuations whenever the motor power is
switched on or off. R1 and R2 are each 0.5, 3-watt
power resistors that are used in the current-sensing
circuitry—we’ll discuss them when we get to
that topic.

Constructing the L298 PC Board

The parts list for our project is presented in the
Parts Bin. All parts are available on my website.

Assembling the PC board is a quick and easy
process. As usual, read through the complete list of
assembly instructions that follows to be sure you
understand the entire procedure before beginning.

228 PICAXE Microcontroller Projects for the Evil Genius

L298 motor controller schematicFigure 17-4

1. Install capacitors C2 and C3; solder and snip
the leads.

2. Install diodes D1–D8 (observing the “reverse”
polarity); solder and snip the leads.

3. Install the two power resistors; solder and snip
the leads.

4. Install and solder the six-pin screw terminals.

5. Install the 470uF electrolytic capacitor (be
sure to observe the correct polarity); solder
and snip the leads.

6. Install and solder the L298 in place.

7. File or sand all the cut leads on the bottom of
the board.

8. Install the ten-pin male header from the
bottom of the board; solder the short end of
its leads on the top of the board.

9. Clean the flux from the bottom of the board
and allow it to dry.

10. Inspect the board carefully for accidental
solder connections or other problems.

When you have completed the assembly,
we’re almost ready to test the PC board. Before
we can do that, however, we need to discuss the
relationships between the logic levels on the
L298’s input pins and the resulting motor behavior.
These relationships are summarized in Table 17-1.
Each motor is controlled by the state of three input
pins: Enable A and inputs 1 and 2 control one
motor (the one labeled “left” on the schematic);
Enable B and inputs 3 and 4 control the “right”
motor. As you can see, the relationship is the same
for both motors.

To begin, we need to clarify an essential point:
Forward and reverse are relative terms; it all
depends on which way you wire the motor. When
actually constructing a robot, the simplest
approach to this issue is to randomly connect the
two wires from the left motor to the left motor
outputs and randomly connect the two wires from
the right motor to the right motor outputs and see
what happens. If you program your robot to move

Chapter 17 ■ Driving Octavius 229

ID Part

— L298 printed circuit board

(see text)

L298 L298 dual full-bridge driver

C1, C2 Capacitors, 0.1�F

C3 Capacitor, electrolytic, 470�F

D1-D8 Diodes, 1N5818

R1, R2 Power resistors, 0.5 ohms, 3 W

— Male header, straight, 10 pins

— Screw terminals, 5-mm pitch,

6 pins

P A R T S B I N

Enable A (B) Input 1 (3) Input 2 (4) Motor Behavior

High High High Fast Stop (Braking)

High High Low Forward Motion

High Low High Reverse Motion

High Low Low Fast Stop (Braking)

Low High High Coasting Stop

Low High Low Coasting Stop

Low Low High Coasting Stop

Low Low Low Coasting Stop

TABLE 17-1 L298 Bidirectional DC Motor Control

230 PICAXE Microcontroller Projects for the Evil Genius

forward and he spins in a circle, the connections
to the motor that are turning in reverse (or the
corresponding software definition of “forward”)
need to be reversed. Of course, if your creation
runs in reverse, the connections to both motors
(or both software definitions of “forward”) need to
be reversed.

Assuming that issue has been resolved, let’s
examine the data in Table 17-1. As you can see,
the enable input has the highest priority. If your
robot is in motion when the enable input is driven
low, then power to the motor is turned off. The
levels of the associated inputs don’t matter—a
“coasting” stop will occur, which means that your
robot will gradually come to a stop. When enable
is high, the situation is more complex: If the two
associated inputs are at different levels, then the
motor is powered either in a forward or reverse
direction, depending on which input is “high.” If
the two inputs are driven to the same level when

the robot is in motion, he will come to a “fast”
stop. In other words, the “brakes” will be applied
and he will stop more quickly than the “coasting”
stop I already mentioned. (In actual practice, I
haven’t found much difference between the two
types of “stops.”)

The remaining two situations (forward and
reverse motion) are relatively simple. When enable
is driven high and the two associated inputs are at
different levels, the motor will spin in one direction
or the other. As we discussed earlier, once you have
determined which combination of input levels
produces the forward motion, you’re all set.

We’re going to conduct four experiments with
our motor controller board, all of which will
require the same setup on our 20X2 master
processor board. The schematic for our
experimental setup is presented in Figure 17-5. As
you can see, output C.5 on the 20X2 is connected
to both enable pins on the L298. This is because

Schematic for 20X2 master processor motor controller circuitFigure 17-5

C.5 is the 20X2’s only PWM pin, so we’re going
to use it for both enable inputs to the L298. Also,
if you’re wondering about the 1k pull-down
resistor on the C.5 line, it’s there to make sure the
line remains low during the brief time between
applying power to the circuit and the point at
which the software configures pin C.5 as a low
output.

Experiment 1: Testing the
Completed L298 Circuit

Before we actually connect a motor to our L298
board we’re going to test it first, using a simple
LED setup. Figure 17-6 presents the schematic for
the test circuit, which we’re going to assemble on a
separate breadboard and power with a 9V battery
because, as we discussed earlier, the L298 requires
at least 7.5V to operate correctly. In the schematic,
the six screw-terminal connections of the L298
board are at the left, with the “left” motor outputs
at the top. For each pair of motor outputs, the
polarity of the two LEDs (red and green) is
reversed, so only one LED in each pair can light at

a time. I have arbitrarily assigned the green LEDs
to light when forward motion would be produced
if a motor were actually attached; the red LEDs, of
course, signify reverse motion.

Figure 17-7 is a photo of my master processor
breadboard setup for Experiment 1, which includes
the wiring for the motor controller circuit (Figure
17-5) and the auxiliary LED breadboard circuit
(Figure 17-6). Using both schematics and the
photo of the complete setup shown in Figure 17-7,
assemble the circuit for Experiment 1.

Make sure you observe the

correct polarity for the 9V battery

connections.

The software for Experiment 1 (Exp1&2-
DirectionTest.bas) is presented in Listing 17-1.
The main program loop sequentially calls each
subroutine and transmits the corresponding motor
directions to the terminal window. Each subroutine
simply establishes the correct voltage levels on the
L298 inputs to produce the desired voltage levels

Chapter 17 ■ Driving Octavius 231

Schematic for the auxiliary breadboard circuit of Experiment 1Figure 17-6

CAUTION

232 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for Experiment 1Figure 17-7

' ========================== Exp1&2-DirectionTest.bas ==========================

' This program runs on the 20X2 master processor. It demonstrates L298 motor

' direction control.

' === Constants ===

symbol enable = C.5

' === Directives ===

#com 4 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 9600 ' open terminal window

' ============================= Begin Main Program =============================

do

sertxd ("Forward",CR,LF)

gosub fwd

wait 2

sertxd ("Reverse",CR,LF)

gosub bak

wait 2

LISTING 17-1

Chapter 17 ■ Driving Octavius 233

sertxd ("Left",CR,LF)

gosub left

wait 2

sertxd ("Right",CR,LF)

gosub right

wait 2

loop

' ==== End Main Program - subroutines follow ====

fwd: ' go forward

gosub stopp ' always stop first

high B.0 ' setup for forward

low B.2

high B.5

low B.7

high enable ' enable output

return

bak: ' go in reverse

gosub stopp ' always stop first

low B.0 ' setup for reverse

high B.2

low B.5

high B.7

high enable ' enable output

return

left: ' rotate left

gosub stopp ' always stop first

low B.0 ' setup for left turn

high B.2

high B.5

low B.7

high enable ' enable output

return

right: ' rotate right

gosub stopp ' always stop first

high B.0 ' setup for right turn

low B.2

low B.5

high B.7

high enable ' enable output

return

stopp: ' stop

low enable ' disable output

wait 2

return

LISTING 17-1 (continued)

on the two pairs of motor outputs and transmits the
relevant data to the terminal window to assist in
debugging the circuit. If you compare the level
definitions implemented in any one of the
subroutines with the data presented in Table 17-1,
the correspondence will be obvious.

Remember, a turn is actually a

rotation; therefore, one motor is

running forward and the other is running in reverse

in any turn.

The only aspect of Exp1&2-DirectionTest.bas
that requires an explanation is the fact that each
subroutine calls the stopp subroutine before
implementing the desired motor directions. For
our current LED test, this is totally unnecessary,
but we’re going to use the same software in
Experiment 2 with a small DC motor; at that point,
it will be important. Whenever a DC motor is
running in one direction and it is immediately
switched to running in the opposite direction, the
motor’s current draw increases dramatically for a
brief period. In fact, it can easily double that of a
full motor stall. Obviously, this situation could be
disastrous for our L298 board. In addition, it puts a
considerable strain on the motor and the gearbox,
which will ultimately shorten the life of both. The
safest approach to this issue is to always include a
call to a stopp subroutine at the beginning of each
of your motor direction subroutines. (I have a
nagging suspicion that I may have forgotten to take
my own advice and that’s what led to Octavius’
original motor controller meltdown.) The moral of
the story is:

Never change motor directions

without first stopping both

motors for a second or two!

When you have assembled the LED test circuit,
download Exp1&2-DirectionTest.bas to your
master processor. The pattern of the lit LEDs
should be as follows:

■ Forward: Both motor LEDs � green

■ Reverse: Both motor LEDs � red

■ Left turn: Left motor LED � red;
right motor LED � green

■ Right turn: Left motor LED � green;
right motor LED � red

If you get a different pattern, you will need to
check your wiring and the polarity of the LEDs.

Experiment 2: Controlling
a Small DC Motor

When Experiment 1 is functioning correctly, we’re
ready to use the same setup to actually drive a
motor. Any small DC motor that will run at 9V
will be fine for Experiment 2. The following
motors from my local Radio Shack both did the
job: RS #273-255 (9V to 12V) and RS #273-256
(9V to 18V). Of course, larger motors will drain
your 9V battery faster, so for this experiment you
may want to use the smallest 9V motor you can
find. If you happen to have a 12V motor and
battery, you can substitute those as well.

The setup for the remaining three experiments is
the same; simply disconnect the auxiliary LED
breadboard from the L298 board and connect your
motor to the right motor screw terminals on the
L298 board. (However, don’t dismantle the
auxiliary breadboard yet; we’re going to use it
again in the next chapter.) When the motor is
powered, it will tend to jump around a bit, so you
will either need to hold onto it or attach it to
something that is heavy enough to hold it in place.
I used a heavy piece of steel from my shop (see the
photo in Figure 17-8).

When your setup is complete, run the Exp1&2-
DirectionTest.bas program again; the motor should
change direction each time a new subroutine is
executed. If your motor doesn’t come to a full stop
between each direction change, you may want to
lengthen the wait statement in the stopp subroutine
until you find a value that works.

234 PICAXE Microcontroller Projects for the Evil Genius

NOTE

CAUTION

Experiment 3: Implementing
Variable Speed Control

Now that our little motor is running correctly at
full speed, we’re going to experiment with the
pwmout command to adjust its speed. PWM is an
acronym that stands for pulse width modulation,
which refers to the technique of adjusting the
portion of time that a continuous pulse train is
driven high. The complete syntax for the pwmout
command is pwmout pin, period, duty cycle, where
pin specifies the I/O pin to use (C.5 on the 20X2),
period refers to the amount of time required for
one complete cycle of the waveform, and duty
cycle refers to the amount of time each cycle is
driven high. The following illustration should help
to clarify the relationship between these terms:

The pwmout documentation in the manual
includes formulas to compute the values of period
and duty cycle for the specific waveform you want
to generate, but it’s easier to use the Pwmout
Wizard in the Programming Editor; just choose
PICAXE | Wizards | Pwmout in the menu
structure. Be sure to select the clock speed that
you’re using, or the wizard’s values will be way
off the mark.

Chapter 17 ■ Driving Octavius 235

Breadboard setup for Experiments 2 through 4Figure 17-8

236 PICAXE Microcontroller Projects for the Evil Genius

Pwmout differs from most other PICAXE
commands—once your program executes a
pwmout statement, the specified waveform is
continuously generated in the background until the
command is cancelled or modified. This feature is
what makes pwmout so useful for motor control;
whenever the processor wants to change your
robot’s speed or direction, it just needs to issue
another pair of pwmout commands to do so (one
for each motor). However, there’s an even better
way to accomplish the same goal: the pwmduty
command. Once you have issued an initial pwmout
command, pwmduty enables you to update the duty
cycle whenever necessary. The main advantage of
the pwmduty command is that it doesn’t reset the
processor’s internal timer each time it’s used, as
the pwmout command does, so the transition from
one duty cycle value to another is simpler (and
probably a little faster). The syntax is also a little
simpler: pwmduty pin, duty cycles.

The software for Experiment 3 (Exp3-
SpeedTest.bas) is presented in Listing 17-2. In it, I
have configured the pwmout command to generate
a 5kHz signal at the 20X2’s default clock speed of
8MHz. You certainly can lower that if you want,
but some motors produce an annoying hum or buzz
at lower frequencies.

Download Exp3-SpeedTest.bas to the same
master processor setup we just used in Experiment
2; your motor should repetitively cycle through
two speeds (fast and slow) in the same direction. If
it either runs too fast or not at all when 75 percent
PWM is applied, you will need to change the duty
cycle value to obtain the desired results; use the
Pwmout Wizard to adjust the value as necessary.
(Don’t forget to set the clock speed to the 20X2’s
default of 8MHz.)

When you have the program operating correctly,
you may want to experiment with various duty
cycle values. If you do, you’ll discover that there’s
a significant range of values at which your motor
doesn’t run at all. The reason is that the motor
outputs on the L298 are turned off during the low
portion of every PWM cycle; in effect, the motor is
operating on a reduced voltage that’s directly
proportional to the duty cycle value. When the
duty cycle is at 100 percent, the motor receives the
full 9V (usually 12V in a real-world robot).
However, when the duty cycle is at 50 percent, the
motor effectively receives only half the battery
voltage, which may not be enough to run it at all.

Don’t be fooled by motor

controller boards that advertise

“255 speeds in forward and reverse” because as

many as three-fourths of the “speeds” won’t run

your motor at all!

Experiment 4: Monitoring
Motor Current

Our fourth and final experiment is a simple
demonstration of the L298 current-sensing feature.
We’ll again use the same master processor setup,
but with different software (Exp4-CurrentTest.bas),
which is shown in Listing 17-3. The program is
simple; all it does is send the real-time ADC
current-sensing value to the terminal window.
Download it to your master processor and while
it’s running, place a load on the motor by gently
pinching its shaft; you should be able to at least
double the ADC reading.

CAUTION

Chapter 17 ■ Driving Octavius 237

' ============================== Exp3-SpeedTest.bas ==============================

' Program demonstrates DC motor speed control using the pwmout and pwmduty

' commands.

' === Constants =====

symbol enable = C.5

' === Directives ====

#com 4 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 9600 ' open terminal window

' ============================= Begin Main Program ===============================

low enable ' make C.5 an output

pwmout enable, 99, 0 ' set up PWM (0% duty)

' (5kHz PWM @ 8MHz clock)

do

gosub stopp

high B.0 ' set up for forward

low B.2

high B.5

low B.7

sertxd ("Forward Fast",CR,LF)

pwmduty enable, 400 ' 100% duty

wait 2

gosub stopp

high B.0 ' set up for forward

low B.2

high B.5

low B.7

sertxd ("Forward Slow",CR,LF)

pwmduty enable, 300 ' 75% duty

wait 2

loop

' ====== End Main Program - subroutines follow ======

stopp: ' stop

low enable ' disable output

wait 1 ' wait for motor to stop

return

LISTING 17-2

238 PICAXE Microcontroller Projects for the Evil Genius

When I ran the program with the motor shown
in Figure 17-8 (RS# 273-255), I obtained an ADC
reading that fluctuated between 18 and 25. When I
pinched the motor shaft, that figure easily doubled.
If I completely stalled the motor, it increased to
about 90. To see what those results actually mean,
let’s do some calculations using the maximum
value of 90. To begin with, the ADC measurement
is of the voltage that the L298 is placing across
the 0.5-ohm power resistor. Using the same
proportional approach as we did in Chapter 6:
Vin / 5 � 90 / 1023. If you solve that equation for
Vin, it turns out to be 0.44V. (The L298 datasheet

specifies a maximum value of 2V for this figure.)
To determine the current draw, we just need to
apply Ohm’s law: I � E / R or I � 0.44 / 0.5 �
880mA.

So, our little “toy” motor draws almost a full
Amp when stalled. Don’t forget—that figure can
easily double if you immediately switch the motor
from full forward to full reverse, as I may have
accidentally done to poor Octavius. Happily, the
current-sensing capability of the L298 motor
controller board will enable Octavius (or your
robot) to avoid any disasters in the future.

' ====================== Exp4-CurrentTest.bas =======================

' Program demonstrates L298 current-sensing.

' === Constants ======

symbol enable = C.5

' === Variables ======

symbol Vin = b0

' === Directives =====

#com 4 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 9600 ' open terminal window

' ======================= Begin Main Program ========================

low enable ' make C.5 an output

high B.0 ' setup for "forward"

low B.2

high B.5

low B.7

high enable ' start motor

do

' (Pinch motor shaft to see change in ADC value)

readadc10 11, Vin ' get ADC value

sertxd (#Vin, CR, LF) ' send it to Terminal

pause 500

loop

LISTING 17-3

Programming Octavius

C H A P T E R 1 8

239

DEVELOPING AN AUTONOMOUS robot is a challenging
and sometimes frustrating experience. It usually
goes something like this: First, you spend
numerous hours designing and constructing a
chassis, power system, and main logic board. Next,
you research, select, and implement one or more
sensory systems and then write a complex and
elegant program that’s carefully designed to handle
any eventuality. After investing huge amounts of
time, energy, and money, you’re finally ready to
test your new creation. You hit the power switch
and what happens? Your pride and joy darts off
and runs into the nearest obstacle he can find!
If he’s a little guy, like my first- and second-
generation robots, this really isn’t all that much of
a problem. You just run after him, pick him up, and
try to figure out what went wrong. This is when
the frustration (and the real learning) begins. With
little or no information at your disposal, you have
to greatly simplify your software and test
everything one step at a time. It’s a time-
consuming endeavor—reprogramming and
retesting in a seemingly infinite loop—not fun
to say the least!

If you’re working with a robot like Octavius—
one that weighs 25 pounds and has motors that can
draw two or three Amps (or more) when stalled—it
can also be an expensive process. When Octavius
experienced his power train meltdown, I had to
design and build the more powerful motor
controller that we constructed in the previous
chapter. However, I also learned a valuable lesson

from this little disaster: Just like a human infant, a
newborn robot can’t be left entirely on his own
during the early stages of development. My first
attempt at parental control (a large “kill” switch
mounted on Octavius’ rear breadboard) worked
well enough, but I soon tired of chasing him
around my basement workspace.

My second approach to the problem was a little
more sophisticated and it enabled me to avoid
some unnecessary exercise. I decided to apply our
TV-IR remote input module (Project 8) to the
world of robotics. In order to understand how
helpful this approach can be in the process of
Octavius’ early development, we first need a
sensory system that can give him the illusion of
autonomy while we carefully monitor his activity
in the background. Because of its simplicity and
power, I chose a MaxBotix ultrasonic ranging
system to enable Octavius to take his first baby
steps into the real world, so let’s begin there.

The MaxBotix LV-MaxSonar
Ultrasonic Range Finders

MaxBotix (www.MaxBotix.com) offers three
different lines of ultrasonic range finders. The
LV-MaxSonar line includes five sensors that differ
primarily in the beam width for object detection
(see Figure 18-1, which is adapted from the
MaxBotix documentation). In order to provide
Octavius with the widest possible range of

“vision,” I chose the EZ0 unit because it offers the
widest beam width as well as the longest range of
object detection. As you can see in Figure 18-1,
with a 5V supply, the EZ0 is capable of detecting
a 1-inch (2.5-cm) dowel at a distance of almost
10 feet (3 meters).

At this point, you may want to

visit the MaxBotix site and

download the EZ0 datasheet for reference during

the following discussion.

The LV-MaxSonar units can be operated at
either �3.3V or �5V with a surprisingly low
current draw of 2mA. They automatically update
their ranging data every 50mS and simultaneously
output the data in three different formats (analog
voltage, PWM, and standard serial data) that are all

easy to interface with any PICAXE processor. I
think the analog voltage output is the simplest of
the three formats because it doesn’t require any
coordination with the master processor; the latest
reading is always available for the processor to
input as an analog voltage whenever it’s
convenient. In addition, the math involved in
converting the ADC reading to a distance is about
as easy as it gets because the scaling factor for the
sensor’s analog voltage output is Vcc /512 per inch.
Since the readadc10 command divides Vcc into
1024 steps, we just need to divide the ADC result
by 2 in order to obtain the distance to the nearest
object in inches. Finally, the LV-MaxSonar units
can easily be daisy-chained so that multiple
sensors can be operated simultaneously without
interfering with each other. Although we won’t be
using that feature in this chapter, keep it in mind

240 PICAXE Microcontroller Projects for the Evil Genius

LV-MaxSonar detection-beam patternsFigure 18-1

NOTE

for any future plans you may have for your robot.
(I already have two more EZ0 sensors on order as
a present for Octavius’ first birthday!)

Experiment 1: Testing the
MaxSonar-EZ0 Sensor

The LV-MaxSonar units are relatively small (less
than 1 sq. in.) and easy to interface. The composite
photo shown in Figure 18-2 actually shows an EZ1
unit, but all the LV sensors have the same form-
factor. In the photo, you can see that the I/O pins
are clearly labeled on the back of the PC board.
(MaxBotix also included a little gratuitous
proselytizing, but these sensors are so good that I
forgive them!) Since we’re going to use the analog
voltage output (labeled ADC in the photo), we only
need to make the three indicated connections to
interface the range finder with our master processor.

MaxBotix recommends filtering the MaxSonar
power supply in electrically noisy environments to
improve the stability of the output data. Even
though Octavius’ DC motors are on a separate
supply, I also included the recommended
components as shown in the following illustration,
just in case.

Of course, the 100� resistor drops the voltage a
little (200mV at a current draw of 2mA), but the
MaxSonar units operate all the way down to 2.5V,
so I assumed that a little voltage drop wouldn’t
affect their operation at all. (That assumption
turned out to be wrong—we’ll discuss that
shortly.) In any case, the filter ensures a clean
power supply to the sensor. Figure 18-3 is a photo
of my completed EZ0 circuit installed on
Octavius’ front breadboard. (I made the tiny
stripboard circuits you see in the photo to help
align the breadboards with the PC board before
sticking them in place.) If you aren’t yet building a
robot, you can easily install the EZ0 on our master
processor breadboard. Simply connect its analog
output to the ADC5 input (pin 15) on the 20X2.
Don’t forget to include the EZ0 power line filter as
shown earlier in the illustration.

When you have completed the circuit, we’re
ready to test the MaxSonar unit. I did all my

Chapter 18 � Programming Octavius 241

MaxBotix MaxSonar-EZ1 composite photo with pin-outFigure 18-2

testing on Octavius, but the following software
(EZ0toTerm.bas; shown in Listing 18-1) is written
so that you can conduct your tests directly on the
20X2 master processor board. When you run the
program, move an obstacle to various distances
from the EZ0. Measure the distance each time and
note how closely it compares to the EZ0 data. In
case you haven’t read the datasheet, I should point
out that 6 inches (15 cm) is the minimum distance
that the EZ0 can measure; an object closer than
that will still be reported as being 6 inches away.

When I first ran Experiment 1, my EZ0 output
was consistently two or three inches less than the
actual measurement to the obstacle. My first
thought was that the small voltage drop produced
by the power line filter that MaxBotix recommends
might be the cause of this minor discrepancy, so I
replaced the 100� resistor with a jumper wire.
Sure enough, the EZ0 output became much more
accurate (i.e., within one inch of the correct
measurement every time). In spite of the error

introduced by the filter, I decided to reinstall it in
the circuit because of the potentially disruptive
effects from the electrical noise that may be
produced by Octavius’ DC motors. The error
introduced by the filter is easy to correct in the
software—just add 2 to each distance measurement
(right after dividing the raw data by 2).

Experiment 2: Adding a
Four-Digit LED Display

As I have already mentioned, part of the difficulty
in diagnosing the problem when a robot
“misbehaves” stems from the fact that we have
very little information at hand at the moment the
problem occurs. To improve this situation, I
decided to add a display to Octavius. Since I
wanted to be able to read the display from a
distance, I chose to add a four-digit LED display in
spite of its relatively high power consumption.
Naturally, I first thought of using the SPI display

242 PICAXE Microcontroller Projects for the Evil Genius

Octavius’ new “eye”Figure 18-3

we constructed in Chapter 12. However, I didn’t
want to use three of Octavius’ I/O pins for this
purpose, so I opted for a serial LED display that I
had developed earlier for the “PICAXE Primer”
column in Nuts and Volts magazine. If you are
interested in using this display, the bare PC board
is available on my website.

However, for Experiment 2, I modified the
program that I used with Octavius so that it runs
on our 20X2 master processor board with the SPI
LED display. My breadboard setup for this
experiment is shown in Figure 18-4. I realize that

the angle of the photo is a little steep for viewing
the LED display, but I wanted the necessary
connections to the display to be visible (hspi data
out � C.1, clock � B.7, and load � C.2). The
analog voltage output from the EZ0 is connected
to ADC6 (B.4), and there’s a debugging LED on
A.0. Also, the filter recommended by MaxBotix is
included in the power line to the LED. (The 100�

resistor is visible in front of the display, and you
can see the top of the 100μF electrolytic capacitor
sticking out behind it.)

Chapter 18 � Programming Octavius 243

' =============================== EZ0toTerm.bas ===============================

' Program uses a MaxSonar-EZ0 to measure distance to nearest object &

' sends results to the terminal.

' === Constants ===

symbol EZ0 = 5 ' EZ0 on ADC5

symbol LED = 5 ' debugging LED on B.5

' === Variables ===

symbol dist = w0 ' word data from EZ1

' === Directives ===

#com 3 ' specify serial port

#PICAXE 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal 9600 ' open terminal window

' ============================ Begin Main Program ============================

setfreq m8

dirsB = %11110111 ' configure pinB.3 (ADC5) as input

adcsetup = %0000000000100000 ' setup for ADC5 (see Manual)

do

high LED ' for debugging

wait 1

readadc10 EZ0, dist ' get EZ0 raw data

dist = dist / 2 ' convert to inches

sertxd ("Distance = ",#dist,cr,lf)

low LED

wait 1

loop

LISTING 18-1

When you have completed your breadboard
setup, download the EZ0toLEDs.bas program,
which is presented in Listing 18-2. You should
see the real-time distance measurement being
continually updated on the LED display. Since the
filter is included in the circuit and the correction
is in the software, the results should be fairly
accurate. However, if a small constant discrepancy
remains, you may want to adjust the value of the
correction in the program.

Who’s in Charge Here?

Now that we have Octavius’ ultrasonic range finder
operating properly, we’re ready to implement the
TV-IR remote system that I mentioned at the
beginning of the chapter. We’ve already developed
and tested the necessary hardware back in Project
8, so let’s see how we can use our IR-TV input
module to exercise a little supervisory control over
Octavius (or any robot, for that matter).

244 PICAXE Microcontroller Projects for the Evil Genius

Serial LED display mounted on
Octavius’ rear breadboard

Figure 18-4

' ================================ EZ0toLEDs.bas ================================

' Program uses MaxSonar EZ0 to measure the distance to the nearest object

' & sends results to the EG SPI LED.

' === Constants ===

symbol EZ0 = 6 ' EZ0 analog on ADC6 (B.4)

symbol LED = A.0 ' debugging LED on A.0

symbol load = C.2 ' 7219 "Load" pin

symbol blank = 15 ' used to blank an LED

' Register addresses for the MAX7219

symbol decode = 9 ' decode register

symbol brite = 10 ' intensity register

symbol scan = 11 ' scan-limit register

symbol on_off = 12 ' 1 = display on; 0 = off

' === Variables ===

symbol dist = w0 ' data from EZ0

symbol ones = b2 ' for LED display

LISTING 18-2

Chapter 18 � Programming Octavius 245

symbol tens = b3 ' for LED display

' === Directives ===

#com 3 ' specify serial port

#PICAXE 20X2 ' specify processor

#no_data ' save time downloading

#no_table ' save time downloading

#terminal off ' disable terminal window

' ============================= Begin Main Program ==============================

setfreq m8

dirsb = %11101111 ' EZ0 is B.4 (ADC6)

dirsc = %10111111 ' C.6 is input only

adcsetup = %0000000001000000 ' enable ADC6 (B.4)

hspisetup spimode00,spislow ' set up hspi

' Initialize MAX7219

hspiout (scan,3) ' set scan for digits 0-3

pulsout load,1

hspiout (brite,5) ' set brightness to 5

pulsout load,1

hspiout (decode,15) ' set BCD for digits 0-3

pulsout load,1

hspiout (on_off,1) ' turn display on

pulsout load,1

do

high LED ' for debugging

wait 1

readadc10 EZ0,dist ' get EZ0 raw data

dist = dist / 2 ' convert to inches

dist = dist + 2 ' adjust for power filter

tens = dist / 10 ' isolate the tens digit

ones = dist // 10 ' isolate the ones digit

if tens = 0 then ' for zero-blanking

tens = blank

endif

' Send data to the four LED digits

hspiout (1,blank)

pulsout load,1

hspiout (2,tens)

pulsout load,1

hspiout (3,ones)

pulsout load,1

hspiout (4,blank)

pulsout load,1

low LED

wait 1

loop

LISTING 18-2 (continued)

Experiment 3: Controlling the L298
Board with a TV Remote

In this experiment, we’re simply reusing the same
20X2 master processor setup that we used in
Experiment 1 of the previous chapter to test our
L298-based motor controller board and adding the
TV-IR input module from Chapter 8 in order to be
able to remotely control the functioning of the
L298 board. Figure 18-5 is a photo of my
breadboard setup for the experiment. As you can
see in the photo, the input of the TV-IR input
module is connected to pin C.4 of the 20X2 and its
output is connected to pin C.1. These connections
differ from the ones we used in Chapter 8 because
pin C.5 is now being used for the PWM output to
the L298 board, so it’s no longer available for use
with the TV-IR input module. Also note that I have
bent the pins of the PNA4602 so that the sensor is
pointing directly up; that way, when I install the
unit on one of Octavius’ breadboards, I’ll be able
to control him from any direction.

We’re going to use five commands to control
our motors, as shown in Figure 18-6. As you can
see, I have taken advantage of the typical diamond-
shaped pattern of the keys that we will be using so
that the remote control will be as simple as
possible to operate. (When Octavius is about to
crash into something, I don’t want to have to look
at the remote to find the key to stop him.) If you
are interested in the specific remote control in
Figure 18-6, it’s available for less than $5 from
The Home Depot (SKU #372731).

The driver software that we used for the
TV-IR input module in Chapter 8 needs to be
slightly modified to accommodate our new
command structure. The resulting program
(IRtoOctavius.bas) is shown in Listing 18-3. As
you can see, it’s even simpler than the version we
used in Chapter 8 because we’re not using the
number keys this time.

246 PICAXE Microcontroller Projects for the Evil Genius

Breadboard setup for TV remote control of the L298 boardFigure 18-5

Chapter 18 � Programming Octavius 247

TV remote control and commands used in Experiment 3Figure 18-6

' ============================== IRtoOctavius.bas ===============================

' Driver program for 08M2-based TV-IR input module (Ch. 8).

' It waits for a keypress from a SIRC TV remote control

' and then transmits the corresponding value to Octavius.

' === Constants ===

symbol toOct = C.2 ' serout line to Octavius

symbol frOct = C.4 ' input line from Octavius

' === Variables ===

symbol junk = w0 ' word required by pulsin

' === Directives ===

#com 4 ' specify com port

#picaxe 08M2 ' specify processor

#terminal off ' disable terminal window

' ============================= Begin Main Program =============================

do

irin C.3, infra ' wait for IR input

select case infra

case 16 to 20 ' 4 arrows & mute

high toOct ' "ready to send"

pulsin frOct,1,junk ' junk is junk

low toOct

serout toOct,N2400_4,(infra) ' send it

endselect

pause 500 ' slow it down a bit

loop

LISTING 18-3

248 PICAXE Microcontroller Projects for the Evil Genius

When you have completed your breadboard
setup for the experiment, remove the 08M2 from
its socket, install it on a second breadboard,
reprogram it with the IRtoOctavius.bas software,
and reinstall it on the TV-IR module.

The software that we need to install on our
master processor (IRmotorControl.bas) is
presented in Listing 18-4. As you can see, it’s
essentially a combination of the software we
used in Chapters 8 and 17, with two minor

' ============================= IRmotorControl.bas ==============================

' Program runs on the 20X2 master processor. It receives

' data from the IR-TV module and controls 2 DC motors.

' === Constants ===

symbol fromIR = C.1

symbol toIR = C.4

symbol enable = C.5

' === Variables ===

symbol cmnd = b0

symbol IRflag = pinC.1 ' as usual, this is a var

' === Directives ===

#com 3 ' specify com port

#picaxe 20X2 ' specify processor

#no_data ' reduce download time

#no_table ' reduce download time

#terminal off ' disable terminal window

' ============================= Begin Main Program ==============================

do

pause 100 ' pretend to be busy

if IRflag = 1 then

gosub getData

select case cmnd

case 16

gosub fwd

case 17

gosub bak

case 18

gosub right

case 19

gosub left

case 20

gosub stopp

end select

endif

loop

LISTING 18-4

Chapter 18 � Programming Octavius 249

' ==================== End Main Program - Subroutines Follow =====================

getData:

pulsout toIR,10 ' 50uS "send it" pulse

serin fromIR,N2400_8,cmnd ' get data

return

fwd: ' go forward

gosub stopp ' always stop first

high B.0 ' setup for forward

low B.2

high B.5

low B.7

high enable ' enable output

return

bak: ' go in reverse

gosub stopp ' always stop first

low B.0 ' setup for reverse

high B.2

low B.5

high B.7

high enable ' enable output

return

left: ' go left

gosub stopp ' always stop first

low B.0 ' setup for left turn

high B.2

high B.5

low B.7

high enable ' enable output

return

right: ' go right

gosub stopp ' always stop first

high B.0 ' setup for right turn

low B.2

low B.5

high B.7

high enable ' enable output

return

stopp: ' stop

low enable ' disable motor output

wait 2

return

LISTING 18-4 (continued)

250 PICAXE Microcontroller Projects for the Evil Genius

differences: First, the fromIR and toIR constants
are defined differently, as I mentioned earlier;
second, the main loop simply executes the
appropriate subroutine for each of the five
button-presses on the TV remote; all other buttons
are ignored.

Download IRmotorControl.bas to your master
processor. Each button-press on the TV remote
should produce the appropriate LED pattern on the
auxiliary breadboard. (There will be a slight delay
due to the stopp subroutine we have included at the
beginning of each of the other subroutines.) You
may also want to experiment with placing your
breadboard setup on the floor in the middle of a
room to determine whether you have full 360-
degree control of the motor outputs.

Project 18
Hail, Octavius!

Now that we have tested all the necessary
components (L298 motor controller board, TV-IR
input module, EZ0, and serial LED display), we’re
ready to integrate them into a system that will
allow us to exercise supervisory control over
Octavius’ behavior as he pursues his quest for
independence. Figure 18-7 is a photo of the
completed system installed on Octavius’
breadboards. As you can see, I have also upgraded
his motor control circuitry with our L298 board.

The program that controls and integrates all
the new hardware that we have developed
(HailOctavius.bas) is too long to include here;
you can download it from my website. Due to its

Hail, Octavius!Figure 18-7

length, it may seem complicated, but it actually
contains very little code that we haven’t already
discussed. Essentially, the program allows us to
change Octavius’ direction whenever we want, or
to stop him and discontinue his exploratory
behavior completely. All the while, Octavius is
continually updating his ultrasonic range-finding
data. The best part is that the program can be
easily modified whenever I add new sensory
capabilities to Octavius.

HailOctavius.bas can also be easily modified to
run on our master processor, so if you decide to
build your own 20X2-based robot, it would make a
great starting point for exploring the word of
PICAXE robotics. Of course, our “Hail, Octavius!”
project is just the beginning. Its main purpose is to
provide a framework within which to safely endow
a robot with additional sensory/motor functions as
he grows and develops. We’ll discuss some of the
many possibilities in the Epilogue, along with
what’s in store for Octavius as he continues his
journey of exploration and development.

Chapter 18 � Programming Octavius 251

This page intentionally left blank

What’s Next for Octavius?

E P I L O G U E

IN ROBOT YEARS, OCTAVIUS IS STILL in his infancy;
he’s just beginning to toddle about, and he hasn’t
even learned to talk yet! (Although, as we’re about
to see, that’s high on my list of priorities.) Now
that I have completed the manuscript for this book,
I’ve been thinking about some of the capabilities
that I would like to add to Octavius. The following
list comes readily to mind, and I’m sure you could
easily make several additions to it:

� Additional EZ0 ultrasonic ranging sensors:
Just as I began writing this Epilogue, the two
additional EZ0 ultrasonic ranging sensors that I
recently ordered arrived in my (snail) mailbox.
It’s been a struggle to continue writing, but as
soon as I complete the Epilogue, Octavius and
I are going to have some fun!

� Speech synthesis: To help Octavius learn his
first words, I’ll probably use the Devantech
SP03 Speech Module. Although I recently read
that it may have been discontinued, I happen to
have one on hand, so it’s my best choice for
now. The main function that I have in mind for
the SP03 is as a replacement for Octavius’
seven-segment LED display. It would provide a
much more flexible output device for real-time
status reports and other helpful information as
we go along.

� Battery monitoring and status reporting: So
far, I have been quite impressed with how well
Octavius’ batteries have been functioning. In
spite of the fact that I have been spending a

considerable amount of time with Octavius
lately, his batteries seem to be able to run for
weeks at a time without needing to be
recharged. Even so, it would be a real
convenience if I enabled him to verbally report
his battery status from time to time. It’s a
really simple project (just interfacing a couple
of his ADC inputs and voltage dividers with
his two batteries), so it won’t be long before
Octavius will be able to tell me when he’s
“hungry.”

� Self-charging capability: Of course, the next
logical step would be to enable Octavius to
“feed himself” whenever his batteries are
running low. My first thought is to implement
an infrared beacon that Octavius can use to
find his “refueling” station. I’m sure it will
require a fair amount of thought and
experimentation, but it’s a project that I’ll
definitely tackle before long.

� Wireless communication link to a Mac or
PC: I have done some experimenting with
inexpensive wireless links, and I find them to
be frustrating, to say the least. Recently, I
began working with the xBee Communication
Modules. They are more expensive than the
typical 315MHz and 434MHz units that seem
to be available everywhere, but they are also
much more reliable. Since I’m willing to spend
the extra cash to foster my boy’s development,
that’s what he’s going to get!

253

� Scanning tower: I haven’t quite figured out
what I will do with it, but I know that a
scanning tower is in Octavius’ future. (Did
someone say “wireless video link?”)

I could go on, but you get the point—Octavius
and I have a lot to learn, and we’re going to have a
lot of fun doing it!

Working with the EZ0 ultrasonic ranging system
has made me realize that multiple I/O connections
between Octavius’ CPU and his peripheral
processors can actually be coordinated much more
simply than I originally thought. As a result, I have
been working on a redesign of Octavius’ main
logic board that utilizes the PICAXE-28X2 in
place of his 40X2 CPU. I think that the 28X2’s
22 I/O lines will be more than adequate for motor
control and communication with his peripheral
processors. The resulting PC board is less than
one-third the size of the current prototype board,
which will decrease its cost considerably. By the
time you are reading this, the redesigned board
should be available on my website.

In the meantime, you certainly don’t need the
power and sophistication of Octavius to get started

in the word of PICAXE robotics. All you really
need is a 20X2 or 28X2 processor and a couple of
breadboards and motors, along with the motor
controller circuit we developed in Chapter 17—
that and a little creativity and imagination.

With that in mind, and with apologies to Henry
Wadsworth Longfellow (“The Children’s Hour”;
1860), I’ll leave you with this inspiring little
snippet…

Between the daylight and the dark,

When observing his processing power,

Comes a pause in mundane tasks

That is known as the Robots’ Hour.

I hear in the chamber below me,

The whirring of little wheels,

The sound of computation,

And the pride creation feels.

…and a few final words of warning:

Don’t anthropomorphize robots—

they hate it when you do that!

254 PICAXE Microcontroller Projects for the Evil Genius

CAUTION

Index

Note: Italicized page numbers indicate tables and figures.

A

Abacore Software, LochMaster, 16, 16, 17
accept function, 211
adapters, programming

mini-stereo jack, 8–10, 9, 10
USBS-PA3 PICAXE. See USBS-PA3 PICAXE

adapter
USBS-PA3X2, 168

adcsetup command, 85, 206
ADCval, 70, 72
analog-to-digital conversions (ADC), 27, 65–79

commands, 65–66, 85
three-state digital logic probe project, 70–79
voltage dividers, 66–70

AppleWorks suite, 17
Arduino board, 34
arrow keys, 210
ASCII code, 66–68, 132, 143, 170–171, 210
AXE026 serial programming cable, 5
AXE027 USB programming cable, 4–5, 6, 12, 13,

218, 221
AXEpad software, 5–6, 12

Options window, 13, 14

B

back function, 211
background timing, 86
backlight power supply, 110
battery packs, 3
BattMon.bas, 91
baud_setup command, 119
beepers, piezo, 60, 179, 188
bidirectional pins

default direction, 43
digital inputs, 52–56
digital outputs, 52
potential problems, 52

binary numbers
dividing, 50
eight-bit binary numbers, 65
multiplying, 50

bintoascii command, 90, 170–171
bit variables, 41
bit0 function, 120
bit1 function, 119
bit2 function, 119
bptr variable, 42, 45
@bptr variable, 42, 45
@bptrdec variable, 42, 45
@bptrinc variable, 42, 45
breadboards

advantages, 7
assembly, 10–12
current-limiting resistor in series with LED,

10–12
in Cylon Eye project, 47–49, 48
decoupling capacitor, 11
described, 7
design of +5V power supply, 28–33
digital inputs, 52–56
digital logic probe, 71, 71–74, 72
keypad interface, 137–138, 139–142, 148–153
in Mary project, 60
Octavius, 216, 218, 231, 231–234, 232, 235, 246
parallel LCDs, 111, 112, 114, 115–116, 124,

125, 134, 134–135
in PICAXE-20X2 master processor circuit

project, 86, 86–87, 87
testing, 141–142
testing comparator 1 configuration, 208–209
in TV-IR circuits, 98, 105
USBS-PA3 PICAXE adapter on, 23–24, 24,

47–49, 87–91
in voltage divider experiment, 66–69, 67

255

button command, 54
ButtonCount.bas, 54–56, 57
ButtonIntrpt.bas, 58–59
byte variables, 41, 41

C

CAD programs
for PC board design, 16
for stripboard design, 16

CadSoft, EAGLE CAD, 16
calibadc/calibadc10 command, 65–66, 85, 90–91
carriage return command, 96–97
case clauses, 72
case statements, 200
CEMF (counter electromotor force), 228
character-based LCDs, 108. See also parallel LCDs
CLK (clock) pins, 156
comments, PICAXE BASIC, 12–13
comparator, 203–206

built-in PICAXE-20X2 hardware, 203–206
configuration settings, 204
internal voltage regulator (IVR), 203–205
testing comparator 1 configuration, 206, 207

Comparator1Demo.bas, 206, 207
compflag bit, 206
component design, 31–32
compsetup command, 204–205, 206
compsetup config, 204
compvalue variable, 205
constants, PICAXE BASIC, 13
contact bounce, 54
contrast adjustment pin, 110
counter electromotor force (CEMF), 228
critical timing functions, 27
cross-platform approach, 4–5, 13–14

springboard design, 16–18
current-limiting resistors, 10–12, 52, 108–110, 116
cursor movement, 109
Cylon Eye project, 45–50

hardware, 46–49
parts bin, 46
schematic, 46
software, 49–50

Cylon3.bas, 50

D

data command, 112
data pin, 110
data storage command, 112
Data Terminal Ready command, 149–150

debugging
Downloading Program dialog box, 14
Hardware not found... dialog box, 14
LCDs in, 107
TV-IR input circuits, 96–97, 98

decoupling capacitor, 11
delay 50 statement, 54
design process

power supply
+5V regulated power supply for breadboards,

28–37
voltage requirements, 27

stripboard circuit, 15–18
CAD program for PC boards, 16
CAD program for stripboards, 16
general-purpose drawing program, 17–18, 27,

46–47, 47
pencil and paper, 15

dig command, 168, 170–171
digit pins, 156
DIN (data in) pins, 156
DIP (dual in-line package), 46
direct addressing, 44
directives, PICAXE BASIC, 13
dirsB statement, 125
dirsB variable, 42, 42–43, 84
dirsC variable, 42, 42–43, 84
Display Clear command, 134
do…loop, 72, 114, 207
down arrow, 210
downloading

keypad1.bas, 141–142
LED flickers during, 8, 12, 14, 24–25

Downloading Program dialog box, 14
DownloadIRmotorControl.bas, 250
Draw icon (Microsoft Word), 32
dual in-line package (DIP), 46
duty cycle, 235–236

E

EAGLE CAD software (CadSoft), 16
eBay, 108
eight-bit parallel LCD board project, 114–118

assembly instructions, 116
breadboard circuit, 115–116
parts bin, 114
stripboard circuit, 114–115, 115

else clauses, 72
Enable pin, 110, 114, 118, 230–231
endselect statement, 143

256 PICAXE Microcontroller Projects for the Evil Genius

Evil Genius MPD. See programmable
multifunction peripheral device (MPD)

Exp1&2-DirectionTest.bas, 231–234
Exp3-SpeedTest.bas, 236, 237
Exp4-CurrenTest.bas, 236, 238
expressPCB software, 16, 17
EZOtoLEDs.bas, 244–245
EZOtoTerm.bas, 241–242, 243

F

floating input pins, 24
Format AutoShape (Microsoft Word), 31–32
forMax, 165–167
for…next loop, 63, 132, 167
Function Set command, 109

G

general-purpose variables, processor, 40–41, 84
bit variables, 41
byte variables, 41, 41
word variables, 41, 41

get command, 120
getData subroutine, 100
goldmine-elec.com, 108
Ground, tying serin pins to, 24–25
Group option (Microsoft Word), 32

H

H-bridge motor control, 225–228
L298 dual H-bridge driver, 226–228

datasheet, 226
PC board, 227
pin-out, 226, 227

simplified H-bridge diagram, 226
HailOctavius.bas, 250–251
Hardware not found… dialog box, 14
HD44780 controller chip, 107–114

commands, 109
I/O connector, 108
instruction set, 109
interface experiment, 110–114
interface requirements, 109–110
LED-based current-limiting resistor,

108–110
pin-out, 108
serialized LCDs, 127–132

“Hello World” project, 8–14
completed, 11, 11–12, 36, 37
parts bin, 8
schematic, 10–11, 11

stripboard mini-stereo jack adapter, 8–10
USBS-PA3 PICAXE adapter, 23–24, 24, 36, 37

HelloWorld.bas, 12
hex-shank drills, 18, 18
Hi constant, 72–74
high command, 51
high connections, digital logic probe, 74, 79
Hitachi HD44780 controller chip. See HD44780

controller chip
hserin command, 85, 98–99, 107, 121
hserinflag, 120, 132
hserptr, 120–121, 132
hsersetup command, 119, 120–121
hspi command, 158
hspi sck pins, 163
hspi sdo pins, 163
hspiout command, 167
hspisetup command, 163

I

I/O interfacing, 4–5, 13–14, 51–56
commands, 51–52, 54–56, 57–58
digital inputs, 52–56
digital outputs, 52
flexible I/O pins, 84–85
keypad/keyboard, 139–142
for parallel LCDs, 107, 108
serial I/O, 85

if/then/else statements, 170
if...then statement, 55, 63, 72, 132
indirect addressing, 44–45, 121
infra variable, 96
infrared (IR) signals. See TV infrared (IR) signals
input command, 51
internal voltage reference (IVR), 203–205
interrupt routines, 56–59, 86, 185, 206–209
irin command, 93, 94, 96–97
IRmotorControl.bas, 248–250
irout command, 93
IRtoOctavius.bas, 246–248

J

jumper wires
LED, 159–162
stripboard construction, 18–19, 33–34

K

Keypad1.bas, 141–142
Keypad2.bas, 143, 144, 177
KeypadDriver.bas, 150, 152

Index 257

KeypadNew.bas, 177–179
keypads/keyboards. See matrix keypads/keyboards
KeypadTest.bas, 151, 152
keypress decoding, 142–144

L

L298 dual DC motor controller board, 228–238
bidirectional DC motor control, 229, 229–230
controlling small DC motor, 234, 235
controlling with TV remote, 246–250
enable input for forward and reverse motion,

230–231
implementing variable speed control, 235–236
monitoring motor current, 236–238
parts bin, 228, 229
schematic, 228
testing completed circuit, 231, 231–234, 232

L298 dual H-bridge driver, 226–228
datasheet, 226
PC board, 227
pin-out, 226, 227

LCDhserinDriver.bas, 127, 128–132, 134
LCDparallel.bas, 112–114
LCDs (liquid crystal displays). See parallel LCDs
LCDtest.bas, 124–125, 126–127
lead forming tool, 20, 21
LED (light-emitting diode)

constructing 4-digit LED display project,
158–168

assembly instructions, 162–163
interfacing with M2 processor, 165–168
jumpers, 159–162
layout options, 158–162, 160, 161
parts bin, 162
schematic, 159
stripboard layout, 159–162, 160, 161
testing, 163–165

Cylon Eye project, 46–47, 47, 48, 49–50
download flickers, 8, 12, 14, 24–25
MAX7219 8-digit LED display driver,

155–158
BCD decoding, 156–158, 157, 171
four-digit display, 155
internal memory registers, 157
pin-out, 156, 156
7-segment labeling, 158
three-pin interface, 156–158

MaxBotix ultrasonic ranging system, 242–244
resistorized, 10–11
testing completed L298 circuit, 231–234

left and/or right arrow, 210
left arrow, 210
light-emitting diode. See LED (light-emitting

diode)
line feed command, 96–97
line-return character, 63
Linux programming interface, 5
liquid crystal displays (LCDs). See parallel LCDs
Lo constant, 72–74
LOAD pins, 156
LochMaster (Abacore Software), 16, 16, 17
logic probe circuit project, 70–79

breadboard version, 71, 71–74, 72
stripboard version, 74–79, 75, 76
tests, 77–78, 78

LogicProbe.bas, 73, 74, 78–79
long-trace layouts, 29
lookup statement, 62–63
low command, 51
low connections, digital logic probe, 74, 79
LstChr = hserptr – 1, 132

M

Mac programming interface, 4–5, 13–14
AppleWorks suite, 17
Grab command, 33

major ticks, 173
Mary.bas, 61–62
mask, 57–58, 85
matrix keypads/keyboards, 137–153

connecting to other devices, 137–138
constructing serialized keypad, 145–153

assembly instructions, 147–148, 149
installing keypad driver software,

149–150
parts bin, 147
schematic, 140, 145, 145
stripboard layout, 145, 146
testing completed keypad board, 148–149
testing keypad driver software, 150,

150–153, 151
decoding, 138–144

interfacing experiment, 139–142
keypresses experiment, 142–144
resistor-matrix circuit, 138, 138–139, 140
scanning the keyboard, 138

deconstructing, 175, 175–177, 176
multifunction peripheral devices, 187,

187–189, 195
testing reassembled, 177, 177–179, 179

258 PICAXE Microcontroller Projects for the Evil Genius

MAX7219 8-digit LED display driver,
155–158

BCD decoding, 156–158, 157, 171
four-digit display, 155
internal memory registers, 157
pin-out, 156, 156
7-segment labeling, 158
three-pin interface, 156–158

MaxBotix ultrasonic ranging system,
239–244

adding four-digit LED display, 242–244
detection-beam patterns, 240
LV-MaxSonar lines of range finders,

239–244
testing MaxSonar-EZO sensor, 241–242

MAXcount20X2.bas, 168, 169–170
MAXhelp08M2.bas, 165–168
MAXhelp20X2.bas, 163–171
maxReg, 165–167
Microsoft Excel, labeling rows and columns in

stripboard design, 33
Microsoft Office, 17
Microsoft Word

labeling rows and columns, 33
stripboard design, 17–18, 27

blank layout, 30, 30–31
bottom view, 32–33
completed layout, 31
component design, 31–32
Format AutoShape, 31–32
headers, 31–32
horizontal layout, 29, 29
LED bar display, 46–47, 47, 48
Select Objects pointer, 32
Snap to Grid option, 32
templates, 29, 29–30, 30, 31
Text Box tool, 32
top and bottom views, 17, 32–33
vertical layout, 29–30, 30

mini-stereo jack adapter, 8–10
assembly, 9–10, 10
construction, 9
reverse-mountable, 8
schematic, 8–9, 9

minor ticks, 173
mode parameter, 119–120
momentary push-button switch, 52, 53, 55
most significant bit (MSB) pins, 156
mouser.com, 108
moving message effect, 109

MPD. See programmable multifunction peripheral
device (MPD)

MPD operating system (MPDOS), 209–211
downloading, 210
programs in, 210

MPDOS.bas, 211
multifunction peripheral device (MPD). See

programmable multifunction peripheral
device (MPD)

music production, 60–63

O

Octavius, 215–251
construction

body design, 222, 222–224, 223
breadboards, 216, 218, 231, 231–234, 232,

235, 246
building project, 221–224
first- and second-generation robots, 215
main logic board, 216, 216, 221–222
motor controller, 220–221, 225–228
motor mounts, 223, 223–224
multiprocessor approach, 216–217
PC boards, 217, 217, 218, 220–221, 227, 228,

228–231, 229
peripheral breadboard headers, 218
power supply, 218
programming adapter, 218
schematic, 219
time-slice generator, 220

motor controller, 220–221, 225–238
H-bridge motor control circuits, 225, 226
L298 dual DC motor controller board project,

228–238
L298 dual H-bridge driver, 226–228, 227
meltdown, 220, 225
SN752210 motor controller chip,

220–221, 225
origins, 215–218
programming, 239–251

hardware control and integration, 250–251
MaxBotix ultrasonic ranging system,

239–244
TV-IR remote system, 244–250

open connections, digital logic probe, 74, 79
OpenOffice, 17
OutByte subroutine, 132, 165–167
OutCmd subroutine, 114
outpinsB � char statement, 125
outpinsB variable, 42, 44

Index 259

outpinsC variable, 42, 44
output command, 51
OutTxt subroutine, 114

P

Panasonic PNA4602M decoder, 93–96, 94, 103
parallel LCDs, 107–135

breadboards, 111, 112, 114, 115–116, 124, 125,
134, 134–135

eight-bit parallel 16 x 2 LCD board construction
project, 114–118

HD44780-based, 107–114
commands, 109
current-limiting resistors, 108–110
instruction set, 109
interface requirements, 109–110
interfacing experiment, 110–114
pin-out, 108
16-pin connector, 110

I/O lines, 107, 108
nature of, 107
programming challenge, 118
serializing, 119–135

receiving serial data in background, 119–121
serialized 16 � 2 LCD board construction

project, 121–135
pause 50 statement, 55
pause 320 statement, 132
pause 500 statement, 13
pause abit statement, 55–56
pause command, 54, 58, 97, 151, 209
Paws subroutine, 185
PC boards

advantages, 7
described, 7
designing, 16
Octavius, 217, 217, 218, 220–221, 227, 228,

228–231, 229
peek command, 42, 44, 84
period, 235
PICAXE BASIC. See also PICAXE programming

advanced functions, 6
built-in commands, 6
colon symbol, 143
comments, 12–13
constants, 13
directives, 13
documentation, 6
fine-tuning PICAXE-08M2 processor, 4
I/O commands, 51–52, 54–56, 57–58

MPDOS operating system, 209–211
Options window, 13, 14
routines

BattMon.bas, 91
ButtonCount.bas, 54–56, 57
ButtonIntrpt.bas, 58–59
Comparator1Demo.bas, 206, 207
Cylon3.bas, 50
DownloadIRmotorControl.bas, 250
Exp1&2-DirectionTest.bas, 231–234
Exp3-SpeedTest.bas, 236, 237
Exp4-CurrenTest.bas, 236, 238
EZOtoLEDs.bas, 244–245
EZOtoTerm.bas, 241–242, 243
HailOctavius.bas, 250–251
HelloWorld.bas, 12
IRmotorControl.bas, 248–250
IRtoOctavius.bas, 246–248
Keypad1.bas, 141–142
Keypad2.bas, 143, 144, 177
KeypadDriver.bas, 150, 152
KeypadNew.bas, 177–179
KeypadTest.bas, 151, 152
LCDhserinDriver.bas, 127, 128–132, 134
LCDparallel.bas, 112–114
LCDtest.bas, 124–125, 126–127
LogicProbe.bas, 73, 74, 78–79
Mary.bas, 61–62
MAXcount20X2.bas, 168, 169–170
MAXhelp08M2.bas, 165–168
MAXhelp20X2.bas, 163–171
SerinFromIR.bas, 100, 101
SeroutToLCD.bas, 133–135
SimpleCylon.bas, 49–50
SimpleCylon2.bas, 50
TestInterrupt.bas, 207, 208–209
TestKeypad.bas, 196, 197
TestLCD.bas, 197–200
TestMPD.bas, 197–202
TimerDown.bas, 179, 181–184
TV-Irinput.bas, 97
TV-IRtoMP.bas, 99–100
VoltageDiv1.bas, 68
VoltageDiv2.bas, 68

PICAXE compiler, 174
PICAXE Forum, 6
PICAXE processors. See also specific processors

by model name
adapting mini-stereo plug for breadboard use,

4, 8–14

260 PICAXE Microcontroller Projects for the Evil Genius

breadboards. See breadboards
features summary, xix
“Hello World” project, 8–14, 23–24, 36, 37
I/O interfacing, 4–5, 13–14, 51–56

commands, 51–52, 54–56, 57–58
digital inputs, 52–56
digital outputs, 52
flexible I/O pins, 84–85
keypad/keyboard, 139–142
for parallel LCDs, 107, 108
serial I/O, 85

interrupt routine, 56–59, 86
Mary project, 60–63
music production, 60–63
PC boards. See PC boards
selecting, 3–4
simultaneous programs running for different

processors, 100–101
stripboards. See stripboards

PICAXE programming. See also PICAXE BASIC
adapting mini-stereo plug for breadboard use, 4,

8–14
AXEpad software, 5–6, 12–14
debugging, 14
interface with Mac or PC, 4–5, 13–14
interrupt commands, 56–59
processor selection, 3–4
programming circuit, 5
RevEd Programming Editor (ProgEdit), 5–6,

12, 24
PICAXE-08M2, 3–14

analog-to-digital conversions (ADC), 65–79
commands, 65–66
keypads, 138–139
three-state digital logic probe project,

70–79
voltage dividers, 66–70

described, 3
features summary, xix
general-purpose variables, 40–41, 41
internal resonator, 4
keypad interface, 139–142
LED display interface, 165–168, 168, 170–171
new/improved features, 39–40
pin-out, 3, 3–4, 39, 43
power supply, 3, 27
programming, 12–14
special-function variables, 42, 42–45
storage variables, 41–42
TV-IR recognition, 93–105

PICAXE-14M2
features summary, xix
general-purpose variables, 40–41, 41
new/improved features, 39–40
parallel LCDs, 107, 109–110
pin-out, 39
power supply, 27
special-function variables, 42, 42–45
storage variables, 41–42

PICAXE-18M2
features summary, xix
general-purpose variables, 40–41, 41
new/improved features, 39–40
pin-out, 31, 40
power supply, 27
special-function variables, 42, 42–45
storage variables, 41–42

PICAXE-20M2
Cylon Eye project, 45–50

hardware, 46–49
software, 49–50

features summary, xix
general-purpose variables, 40–41, 41
new/improved features, 39–40
pin-out, 40, 84, 85
power supply, 27
special-function variables, 42, 42–45
storage variables, 41–42

PICAXE-20X2, 83–91. See also Octavius
advanced features, 83–86

analog-to-digital conversion, 85
background timing, 86
flexible I/O pins, 84–85
general-purpose variables, 84
internal pull-up resistors, 85
interrupt processing, 86
operating frequency range, 83–84
serial I/O, 85
supply voltage range, 83

described, xviii
features summary, xix
internal resonator, 174
LED display interface, 155, 163–171
master processor circuit project, 86–91
multifunction peripheral device (MPD), MPD

operating system (MPDOS) project,
209–211

multifunction peripheral device (MPD)
comparator

built-in hardware, 203–206

Index 261

PICAXE-20X2 (continued)
configuration settings, 204
interrupt subroutine, 206–209
testing comparator 1 configuration, 206

multifunction peripheral device (MPD)
hardware, 187–202

breadboard interface, 188
completed device, 187, 191
cutting openings for LCD and keypad, 196
installing components, 194–195
matrix keypads/keyboards, 187, 187–189, 195
parts bin, 189–190, 191
piezo beeper, 188
ribbon cable connector, 194, 194, 195, 196
schematic, 187–189, 188, 193
stripboard assembly instructions, 192–194
stripboard layout, 189, 190
stripboard preparation, 190–192
testing, 193, 196–202

multifunction peripheral device (MPD)
software, 203–211

parallel LCDs
interfacing with 16-pin connector, 110–114.

See also parallel LCDs
serializing, 119–135

pin-out, 84, 84–85, 203, 203
power supply, 27, 83
scratchpad, 120
timers, 173–185

countdown timer construction project,
179–185

matrix keypad deconstruction, 175,
175–177, 176

testing new keypad, 177, 177–179, 179
Timer1, 173–174
Timer3, 173

TV-IR master processor, 98–105
PICAXE-28X1, features summary, xix
PICAXE-28X2

external counting mode, 173
external resonator, 174
features summary, xix
power supply, 27

PICAXE-40X1, features summary, xix
PICAXE-40X2. See also Octavius

external counting mode, 173
external resonators, 174
features summary, xix
power supply, 27

piezo beeper, 60, 179, 188

pin vise, 18, 18
pinsB variable, 42, 43–44
pinsC variable, 42, 43–44, 100
play command, 58, 60
PlayNote subroutine, 63
PNA4602M decoder (Panasonic), 93–96, 94, 103
pointers, 44, 120
poke command, 41–42, 44, 84
polled interrupts, 58
port, 57
power connectors, 28
power supply

4.5V, 27, 90
�5V, 27–37

component design, 31–32
design process, 28, 28–37
parts bin, 28
stripboard bottom view, 32–33
stripboard layout templates, 29, 29–30, 30, 31

preload constant, 185
programmable multifunction peripheral device

(MPD)
hardware, 187–202

breadboard interface, 188
built-in comparator, 203–206
comparator 1 configuration test, 206
comparator interrupt subroutine, 206–209
completed device, 187, 191
cutting openings for LCD and keypad, 196
installing components, 194–195
matrix keypads/keyboards, 187, 187–189, 195
parts bin, 189–190, 191
piezo beeper, 188
ribbon cable connector, 194, 194, 195, 196
schematic, 187–189, 188, 193
stripboard assembly instructions, 192–194
stripboard layout, 189, 190
stripboard preparation, 190–192
testing, 193, 196–202

MPD operating system (MPDOS) project,
209–211

software, 203–211
Programming Editor (ProgEdit), 5–6, 12, 24,

141, 143
projects

constructing serialized keypad, 145–153
countdown timer construction, 179–185, 180
Cylon Eye, 45–50
Evil Genius multifunction peripheral device,

187–202

262 PICAXE Microcontroller Projects for the Evil Genius

“Hello World,” 8–14, 23–24
Mary, 60–63
MPD operating system (MPDOS), 209–211
Octavius

building, 221–224
hardware control and integration, 250,

250–251
L298 dual DC motor controller board,

228–238
parallel LCD board construction, 114–118
PICAXE-20X2 master processor circuit, 86–91
serialized LCD board construction, 121–135
SPI 4-digit LED display, 158–168
stripboard design and construction, 33–36
three-state digital logic probe, 70–79
TV-IR input module, 101–105
USBS-PA3 PICAXE adapter, 21–23

ptr, 120
pullup command, 85
pullup mask, 85
pullup statement, 114
pulse-width-modulated (PWM) output, 94, 220,

224, 235
pulsin command, 100, 220
push-button switch adapter, 53, 54
put command, 120
pwmduty, 236
pwmout command, 94, 235–236

R

read/write input pin, 110
readadc/readadc10 command, 65, 66, 139, 206
Register Select pin, 110, 114, 118, 132
resistors, current-limiting, 10–12, 52, 108–110, 116
RevEd. See also entries beginning with “PICAXE”

AXE026 serial programming cable, 5
AXE027 USB programming cable, 4–5, 6, 12,

13, 218, 221
AXEpad software, 5–6, 12–14
PICAXE Forum, 6
Programming Editor (ProgEdit), 5–6, 12, 24

reverse command, 52
reverse mounting

described, 8
reverse-mountable male header, 8, 35

ribbon cables, connecting keypads to, 137–138,
194, 194, 195, 196

right arrow, 210
robotics. See Octavius
runflag variable, 179, 184–185

S

screwdriver, flat-bladed, 19, 20
segment pins, 156
select case statement, 63, 72, 100, 132, 142–143,

177, 179, 184–185
Select Objects pointer (Microsoft Word), 32
serial peripheral interface (SPI), 4–5, 85

LED, 243–244, 244
constructing 4-digit LED display, 158–168
counting, 168–171
MAX7219 8-digit LED display driver,

155–158
matrix keypad construction, 145–153
receiving serial data in background, 119–121
serialized LCDs, 121–135

assembly instructions, 122–123
installing LCD driver software, 127–132
parts bin, 121
schematic, 121
testing completed LCD board, 123
testing LCD driver software, 133–135
testing LCD interface, 124–127
testing programming connection to LCD

board, 123–124
USBS-PA3 programming adapter,

121–123, 124
serin command, 119, 124
serin pins, tying to Ground, 24–25
SerinFromIR.bas, 100, 101
SeroutToLCD.bas, 133–135
sertxd command, 66, 68, 70, 90, 143
setfreq command, 83–84
setint command, 56–58
setintflags command, 86, 174, 206
settimer command, 86, 173–174
74HC138 CMOS demultiplexer, 220, 221
short-trace layouts, 29
shout 16 subroutine, 167
SimpleCylon.bas, 49–50
SimpleCylon2.bas, 50
single in-line package (SIP), 46
single-pole, double-throw (SPDT) switches, 28
SIP (single in-line package), 46
SIRC (Sony infrared remote control protocols), 93,

96, 97
SN754410 motor controller chip, 220–221, 225
Snap to Grid option (Microsoft Word), 32
Sony infrared remote control (SIRC) protocols, 93,

96, 97

Index 263

sound command, 60
sound production, 60–63
sparkfun.com, 4, 5
SPDT (single-pole, double-throw) switches, 28
special-function variables, 42–45

bptr, 42, 45
@bptr, 42, 45
@bptrdec, 42, 45
@bptrinc, 42, 45
dirsB, 42, 42–43, 84
dirsC, 42, 42–43, 84
outpinsB, 42, 44
outpinsC, 42, 44
pinsB, 42, 43–44
pinsC, 42, 43–44, 100
time, 42, 42

SPI communication. See serial peripheral
interface (SPI)

spispeed parameter, 163–165
stopp subroutine, 234, 250
storage variables, processor, 41–42

peek command, 42, 44, 84
poke command, 41–42, 44, 84
temporary storage, 41

stripboard chisel, 19–20, 20
stripboards, 15–25

to adapt mini-stereo for breadboard circuit, 7,
8–10

advantages, 7
connecting keypads to, 137–138
construction, 33–36, 46–47, 47, 48, 88, 88–89,

192–194
LED 4-digit display, 159–162, 160, 161

in Cylon Eye project, 46–47, 47, 48
described, 7, 7
designing, 15–18

CAD program for PC boards, 16
CAD program for stripboards, 16
general-purpose drawing program, 17–18, 27,

29, 29–33, 30, 31, 46–47, 47, 48
multifunction peripheral device (MPD),

189, 190
pencil and paper, 15
serialized LCD project, 122, 122

digital logic probe, 74–79, 75, 76
multifunction peripheral device (MPD), 189,

190, 190–194
parallel LCDs, 114–115, 115, 122, 122
in PICAXE20X2 master processor circuit

project, 88, 88–89

serialized matrix keypad, 145, 146
super-simple switch stripboard, 52–53, 54
tools for construction, 18–21

cutting trace at hole, 18, 18, 19
cutting trace between two holes, 19–21, 20
severing trace between two holes, 18–19, 19

in TV-IR circuits, 103, 104
USBS-PA3 PICAXE programming adapter,

21–23
SYM-1 processor, xvii, xvii–xviii

T

table command, 112–114
table storage command, 112
TestInterrupt.bas, 207, 208–209
TestKeypad.bas, 196, 197
TestLCD.bas, 197–200
TestMPD.bas, 197–202
Text Box tool (Microsoft Word), 32
time-slice generator, 220
time variable, 42, 42
Timer1, 173–174
Timer3, 173
TimerDown.bas, 179, 181–184
toggle command, 51
tools, stripboard circuit construction, 18, 18–21,

19, 20
tune command, 58, 60, 61
TV infrared (IR) signals, 93–105

experiments
interfacing with master processor, 98,

98–101, 99
Octavius, 244–250
simple TV-IR input circuit, 95, 95–97,

96, 97
input module project, 101–105

assembly instructions, 103–104
schematic, 102
using remote input module, 104–105

object-detection, 94
reception and transmission, 93–94
serial communications, 94

TV-Irinput.bas, 97
TV-IRtoMP.bas, 99–100

U

up and/or down arrow, 210
up arrow, 210
USB interface, programming cable, 4–5, 6, 12, 13,

218, 221

264 PICAXE Microcontroller Projects for the Evil Genius

USB-to-serial interface, 4
USBS-PA3 PICAXE adapter, 21–23

assembly procedure, 22–23
completed adapter, 23, 23, 36, 37
in Cylon Eye project, 45–50
in “Hello World” breadboard circuit,

23–24, 24
off-cuts, 21–22
100k resistor, 24–25, 36, 74
parts bin, 21
in PICAXE20X2 master processor circuit

project, 87–91
schematic, 21, 22, 24
in serialized LCD board construction,

121–123, 124
stripboard layout, 21, 22
in TV-IR input circuits, 95

USBS-PA3X2 programming adapter, 168

V

Vin, 70
Virtual PC, 5
virtual variables, 45

voltage dividers, 66–70
basic circuit, 66
breadboard layout, 67
computing value of input voltage experiment,

69–70
schematic, 67
simple voltage divider experiment, 66–69

VoltageDiv1.bas, 68
VoltageDiv2.bas, 68

W

wait command, 58, 209
WaitForReset subroutine, 185
Windows

expressPCB software, 16, 17
LochMaster (Abacore Software), 16, 16, 17
Microsoft Excel, 33
Microsoft Office, 17
Microsoft Word as design software, 17, 17–18,

27, 29, 29–33, 30, 31
Print Screen, 33

Word. See Microsoft Word
word variables, 41, 41

Index 265

	Contents
	Foreword
	Acknowledgments
	Prologue
	Part One: PICAXE Basics
	1 Introduction to PICAXE Programming and Projects
	Choosing a PICAXE Processor
	Interfacing a Project with Your Mac or PC
	Using RevEd’s Free Programming Editor or AXEpad Software
	Programming in PICAXE BASIC
	Breadboards, Stripboards, and PC Boards
	Project 1 “Hello World”
	Debugging a PICAXE Project

	2 Introduction to Stripboard Circuits
	Designing Stripboard Circuits
	Tools for Stripboard Circuit Construction
	Project 2 The USBS-PA3 PICAXE Programming Adapter
	Hello Again

	3 Designing and Building a +5V Regulated Power Supply
	Designing a +5V Regulated Power Supply for Breadboard Circuits
	Project 3 More Power, Scotty!

	4 Hardware Overview of the PICAXE M2-Class Processors
	General-Purpose Variables
	Storage Variables
	Special-Function Variables
	Project 4 Cylon Eye

	5 The Ins and Outs of PICAXE Interfacing
	PICAXE I/O Interfacing
	Setting Up an Interrupt Routine
	Project 5 Mary

	6 Introduction to ADC Inputs on M2-Class Processors
	Voltage Dividers
	Project 6 A Three-State Digital Logic Probe

	Part Two: PICAXE Peripheral Projects
	7 Introduction to the PICAXE-20X2 Processor
	Advanced Features of the 20X2 Processor
	Project 7 Implementing the 20X2 Master Processor Circuit

	8 Infrared Input from a TV Remote Control
	Reception and Transmission of Standard TV IR Signals
	IR-Based Serial Communications
	Simple IR Object-Detection
	Experiment 1: A Simple TV-IR Input Circuit
	Experiment 2: Interfacing the IR Circuit with the Master Processor
	Project 8 Constructing the TV-IR Input Module

	9 Interfacing Parallel LCDs
	Understanding the Basics of HD44780-based LCDs
	Experiment 1: Interfacing an HD44780-based Parallel LCD
	Project 9 Constructing an Eight-bit Parallel 16 x 2 LCD Board
	Programming Challenge

	10 Serializing a Parallel LCD
	Receiving Serial Data in the Background
	Project 10 Constructing a Serialized 16 x 2 LCD

	11 Interfacing Keypads
	Decoding Matrix Keypads
	Project 11 Constructing a Serialized 4 by 4 Matrix Keypad

	12 SPI Communication
	The MAX7219 8-Digit LED Display Driver
	Project 12 Constructing an SPI 4-Digit LED Display
	Learning to Count

	13 Background Timing on the 20X2 Processor
	Using Timer1 on the 20X2 Processor
	“Deconstructing” a Matrix Keypad
	Testing the “New and Improved” Keypad
	Project 13 Constructing a Countdown Timer

	14 Constructing a Programmable Multifunction Peripheral Device
	Project 14 The Evil Genius Multifunction Peripheral Device

	15 Developing Software for the Evil Genius MPD
	Understanding the 20X2’s Built-in Comparator Hardware
	Testing Our Comparator 1 Configuration
	“We Interrupt This Program to Bring You a Keypress!”
	Project 15 A Simple MPD Operating System

	Part Three: Octavius: An Advanced Robotics Experimentation Platform
	16 Birthing Octavius
	Understanding Octavius
	Project 16 Building Octavius

	17 Driving Octavius
	H-Bridge Motor Control Circuits
	The L298 Dual H-Bridge Driver
	Project 17 Constructing an L298 Dual DC Motor Controller Board

	18 Programming Octavius
	The MaxBotix LV-MaxSonar Ultrasonic Range Finders
	Who’s in Charge Here?
	Project 18 Hail, Octavius!

	Epilogue: What’s Next for Octavius?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

